The RETEC Group, Inc. 1001 West Seneca Street, Suite 204, Ithaca, New York 14850-3342 T 607.277.5716 F 607.277.9057 www.ensr.aecom.com

August 14, 2007

Mr. Josh Cook MGP Remedial Section Bureau of Western Remedial Action Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7010

RECEIVED

AUG 2 0 2007

No pertor Sureau C Orvision of Environmental Remediation

Subject: Soil Vapor Intrusion Evaluation Report 28 Pike Street Section Pike Street Former MGP Site Port Jervis, New York NYSDEC Site No. 03-36-049V

Dear Mr. Cook,


On behalf of our client, Orange and Rockland Utilities, Inc. (O&R), ENSR Corporation (dba The RETEC Group, Inc. [RETEC]) has prepared this soil vapor intrusion (SVI) evaluation report for the 28 Pike Street section of the former Pike Street manufactured gas plant (MGP) site located in Port Jervis, New York. This report has been modified to reflect the comments provided in your letter dated July 3, 2007.

Background

The attached Figure 1 shows the layout of the 28 Pike Street property and the surrounding area. Two previous SVI sampling events have been completed at the property. The first event was completed in June 2004, with the results submitted to the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) in the Phase II RI Report for the Port Jervis MGP site, dated October 25, 2005. A second sampling event was completed in June 2006 with the results provided to the agencies in the Supplemental Investigation (SI) Report for the 28 Pike Street section of the site, dated January 24, 2007. The NYSDOH requested that a third round of sampling be performed to obtain SVI samples during the heating season (between November 15 and March 31) to further evaluate the potential vapor intrusion pathway. The third SVI sampling event was completed on March 20, 2007. The results of the field activities and laboratory analyses are presented below.

Scope of work

The SVI evaluation sampling was performed in accordance with the methods and procedures provided in the NYSDOH document entitled "*Final – Guidance for Evaluating Soil Vapor Intrusion in the State of New York*," dated October 2006 [NYSDOH Guidance]. The scope of work for the evaluation included the completion of a NYSDOH Indoor Air Quality Questionnaire and Building Inventory, a Chemical Products Inventory, and the collection and analysis of SVI samples.

Property building and chemical inventory

A reconnaissance was performed at the property building on March 19, 2007. The observations made during the reconnaissance are presented on the completed NYSDOH Indoor Air Quality Questionnaire which is included in Appendix A. The observations made during the chemical products inventory are summarized in Table 1, which is a completed NYSDOH Household Products Inventory Form.

SVI sample locations

The locations of the March 2007 SVI samples are shown in red on Figure 1. The locations of the samples previously collected at the property are also included on the figure in blue (June 2004) and green (June 2006). The sample locations for the March 2007 event are summarized as follows:

- Sub-slab soil vapor sample GRSG5(07) was collected in the boiler room of the basement which has a concrete floor.
- Soil vapor sample GRSG6(07) was collected from the main area of the basement which has an earthen floor.
- Indoor air sample GRIA6(07) was collected from the main area of the basement, near soil vapor sample GRSG6(07).
- Indoor air sample GRIA5(07) and duplicate indoor air sample GRIA50(07) were collected from the restaurant area on the first floor of the building.
- Ambient air sample GRAMBUP(07) was collected to the southwest of the property building at an upwind location.

Soil vapor sampling

Two types of soil vapor samples were collected. Sub-slab vapor sample GRSG5(07) was collected from immediately below the concrete floor of the basement boiler room. A sub-slab soil vapor sampling point was installed at this location by drilling a ¾-inch diameter hole through the concrete floor slab with a rotary hammer. TeflonTM tubing was placed in the hole, and the hole was sealed with modeling clay.

Soil vapor sample GRSG6(07) was collected from the main area of the basement (Figure 1). A Geoprobe[™] PRT (Post-Run Tubing) Systems sampler was used to collect the soil vapor sample. A hand-held electric jackhammer was used to advance the sampler probe assembly which consisted of 1 ¼-inch outside diameter (O.D.) steel drill rod, a PRT expendable point holder, a PRT adapter, and an expendable (single use) drive point, to 5 feet below the ground surface (bgs). A "knock-out rod" was advanced through the soil vapor probe and the expendable point holder to ensure the point was removed and the rod end was open to allow soil vapor to enter the assembly. The soil vapor probe was then retracted 1 foot with a hand-held jack to expose the sampling interval (4 to 5 feet bgs). TeflonTM tubing was then attached to the PRT adaptor fitting and inserted down the probe rod and threaded into the PRT point holder. The annulus around the rod was then filled with a hydrated bentonite slurry, 4 inches in diameter, from 0 to 1 foot bgs.

A helium tracer gas evaluation was then performed for both soil vapor samples to ensure the integrity of the soil vapor sampling seals, and to assess the potential for the introduction of indoor air into the soil vapor samples. A metal shroud was used as an air-tight chamber to retain the helium. The chamber was placed over the sampling points and sealed to the concrete floor with modeling clay, or to the earthen floor with hydrated bentonite. The sampling tubing was run through a hole at the top of the chamber and sealed. Helium was then introduced through an opening at the top of the chamber. The

helium concentration was measured with a helium detector through an opening at the bottom of the chamber to ensure that the chamber was filled with helium to a concentration greater than 90%. Once this measurement was confirmed, the chamber was sealed. Approximately 3 volumes of air were purged from the sampling tubing with the helium meter at a rate of approximately 0.2 liters per minute. Helium was not detected in the purged air from any of the samples, indicating that the seals were competent. The soil vapor samples were also analyzed for helium to confirm the field screening results. The laboratory results are discussed below. The soil vapor points were then left to stabilize overnight so that the soil vapor samples could be collected at the same time as the indoor and ambient air samples.

SVI sample collection

The soil vapor, indoor air, and ambient air samples were collected in 6-liter Summa sampling canisters provided by Air Toxics Laboratory of Folsom, California. Each canister was equipped with a flow restrictor which was pre-set to collect the samples over a time period of approximately 2 hours. Laboratory grade, ¼-inch Teflon[™] tubing was used to connect the sampling equipment to the flow restrictors. Following sample collection, the canisters were shipped to the laboratory. The chain of custody record for the sample shipment is included in with the laboratory results in Appendix B.

SVI evaluation results

The air and soil vapor samples were analyzed by Air Toxics, which is a NYSDOH Environmental Laboratory Accreditation Program (ELAP) certified laboratory, for volatile organic compounds (VOCs) by U.S. EPA Method TO-15 (including naphthalene). The sub-slab vapor samples were also analyzed for helium by ASTM Method ASTM D-1945. Consistent with the sampling performed in 2004 and 2006, in addition to the standard TO-15 list of compounds, several additional compounds were analyzed for, including: indane, indene, thiophene, styrene, 2-methyl pentane, isopentane, 2,3-dimethyl pentane, isooctane, and methyl tert-butyl ether (MTBE). The results of the SVI analyses are summarized in Table 2. The laboratory Form I Results Sheets are included in Appendix B. The full NYSDEC Category B Analytical Services Protocol (ASP) laboratory package is included in Appendix C (CD-ROM). The results of the sampling events performed in June 2004, June, 2006 and this event are summarized in Table 3.

DUSR review

A Data Usability Summary Report (DUSR) was prepared in order to perform a review the comprehensive data package provided by the laboratory. Air data quality for the VOC analyses was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance, internal standards, initial and continuing calibrations, continuing calibration verifications, surrogate recoveries, LCS, laboratory blanks, laboratory duplicates, compound identification, and compound quantitation. No problems were identified for the analyses and the data was determined to be useable with some qualifications for laboratory blank contamination and calibration nonconformance. The Form I Results Sheets in Appendix B, and the data summary spreadsheets (Tables 2 and 3) have been modified to reflect the findings of the DUSR. The DUSR is included in Appendix D.

Analytical results

On Tables 2 and 3, the sample results are compared to a database of typical background indoor air concentrations from fuel oil heated homes in New York State that was compiled by the NYSDOH in 2003, and revised in 2005. Using this dataset, background values have been established, which are expressed as statistical values in the tables. The "75th percentile" value indicates that 75% of the background indoor air concentrations were below that value. Similarly, the "90th percentile" value

indicates that 90% of the background indoor air concentrations were below that value. Where a concentration is greater than the 75th percentile concentration listed on the tables, the concentration is highlighted with yellow shading. Where a concentration is greater than the 90th percentile concentration listed on the tables, the concentration listed on the tables, the concentration is highlighted with green shading.

The 68 VOCs that were analyzed are divided into two categories in the data summary table. The first category includes compounds that could possibly be related to MGP sources, but may also be related to non-MGP sources, including: benzene, naphthalene, and indene. The second category includes compounds that are certainly not related to MGP sources, including: ethanol, chlorinated hydrocarbons, and methyl tert-butyl ether (MTBE), a gasoline additive.

The NYSDOH has developed decision matrices for four specific VOC compounds to assist in determining whether further actions are required regarding these compounds. The compounds include TCE and carbon tetrachloride, which are addressed in Soil Vapor/Indoor Air Matrix 1, and 1,1,1 TCA and PCE which are addressed in Soil Vapor/Indoor Air Matrix 2. Decision matrices have not yet been established for any other compounds. The concentrations of VOCs in ambient air, soil vapor and indoor air, and the actions indicated in the respective NYSDOH soil vapor matrix tables, where applicable, are discussed below. The NYSDOH matrix tables are included in Appendix E.

Ambient air results

The ambient air sample contained VOCs which were detected in concentrations within the typical range for indoor air.

Tracer gas analyses

The results of the helium tracer gas analyses for the sub-slab (GRSG5(07)) and soil vapor (GRSG6(07)) samples indicate that helium was not detected in concentrations greater than the method detection limits for either of the samples. The results of the analysis indicate that the seals installed during the sub-slab and soil vapor sampling were effective in preventing the infiltration of ambient air into the vapor samples.

Non-MGP-related VOCs

Consistent with the sampling performed in 2004 and 2006, the two soil vapor samples contained non-MGP-related VOCs in concentrations higher than the typical range found in indoor air (i.e. greater than the 90th percentile of NYSDOH indoor air background values). The indoor air samples also contained non-MGP-related VOCs. Examination of the relative concentrations of these VOCs in the soil vapor and indoor air samples indicates whether or not soil vapor intrusion was occurring at the time of sampling.

Tetrachloroethene (also known as perchloroethene, or PCE, a common dry cleaning agent) was detected in the soil vapor samples from the boiler room and main basement areas in concentrations of 89 and 20 μ g/m³, respectively. For comparison, the NYSDOH background value (90th percentile) for PCE is 2.9 μ g/m³. PCE was not detected in concentrations greater than the method reporting limits in the indoor air samples of 1 μ g/m³. These results indicate that intrusion of the soil vapor into the indoor air was not apparent. As shown on Table 3, the concentrations for PCE in soil vapor are similar to the results of the sampling performed in 2004 and 2006. Possible actions for PCE are addressed in the NYSDOH Vapor/Indoor Matrix 2 Table (Appendix E). The levels of PCE detected in soil vapor and indoor air in previous rounds of sampling (June, 2006) require reasonable and practical actions to be taken to identify source(s) and reduce exposures. As the former MGP site is not considered a potential

7

source of PCE, we understand that further assessment will be conducted separately from activities associated with the MGP site.

Trichlorofluoromethane (also known as Freon 11 – a refrigerant gas) was found at a concentration of 39 μ g/m³ in the sample from beneath the boiler room, and a concentration of 25 μ g/m³ in the sample from beneath the main basement area. Freon 11 was not detected in the indoor air samples in concentrations greater than the 75th percentile background value for this compound. The highest indoor concentration was 2.5 μ g/m³, which was similar to the ambient air sample concentration of 1.6 μ g/m³. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Dichlorofluoromethane (also known as Freon 12 – a refrigerant gas) was found at a concentration of 9.8 μ g/m³ in the sample from beneath the boiler room, and a concentration of 4.3 μ g/m³ in the sample from beneath the main basement area. Freon 12 was not detected in the indoor air samples in concentrations greater than the 75th percentile background value for this compound. The highest indoor concentration was 2.8 μ g/m³, which was similar to the ambient air sample concentration of 2.6 μ g/m³. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Chloroform was not detected in the sample from beneath the boiler room's concrete slab, yet was detected in a concentration of $1.2 \ \mu g/m^3$ in the sample from beneath the main basement area (not covered by a slab), which is greater than the 75th percentile background value for this compound of 0.54 $\mu g/m^3$. Chloroform was detected in the basement indoor air sample at a concentration of $1.5 \ \mu g/m^3$, which is greater than the 90th percentile background value for this compound of $1.4 \ \mu g/m^3$. It was not detected in the ambient air sample. Because the concentration of this compound was equivalent or slightly higher in the indoor air than the uncovered soil vapor sample, yet was not detected in the sub-slab soil vapor, the source of the chloroform may be from the building and migrating into the uncovered soil vapor but not the covered sub-slab soil vapor. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Acetone was detected in the sample from beneath the boiler room's concrete slab at a concentration of 37 μ g/m³, and was detected at a concentration of 17 μ g/m³ in the sample from beneath the main basement area (not covered by a slab). It was detected in the indoor air samples at concentrations of 11, 15, and 16 μ g/m³. It was detected in the ambient air sample at a concentration of 16 μ g/m³. Because the concentration of this compound in the indoor air was equivalent or lower than the ambient air concentration, for this compound intrusion of the soil vapor into the indoor air was not apparent.

Ethanol was detected in the sample from beneath the boiler room's concrete slab at a concentration of $20 \ \mu g/m^3$, yet was detected in a concentration of $330 \ \mu g/m^3$ in the sample from beneath the main basement area (not covered by a slab). Ethanol was detected in the basement indoor air sample at a concentration of $530 \ \mu g/m^3$, and in the first floor indoor air samples at concentrations of $520 \ and 490 \ ug/m^3$. It was detected in the ambient air sample at a concentration of $12 \ \mu g/m^3$. Because the concentration of this compound was higher in the indoor air than the uncovered soil vapor sample, yet was present in a much lower concentration in the sub-slab soil vapor, the source of the ethanol may be from the building and migrating into the uncovered soil vapor but not the covered sub-slab soil vapor. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Possibly MGP-related VOCs

For the sub-slab soil vapor sample collected in the boiler room, none of the VOCs that the NYSDEC and NYSDOH consider to be potentially attributable to MGP operations were detected at concentrations above the method detection limits, with the exception of toluene, which was detected at a concentration of 0.69 μ g/m³, which is within the typical range that this compound is found in indoor air (i.e. lower than the 90th percentile of NYSDOH background value of 58 μ g/m³). The concentrations of VOCs beneath the slab were lower than the sampling performed in 2004 and 2006, and were lower than the concentrations in the soil vapor and indoor air samples collected in 2007.

For the soil vapor sample collected from the main area of the basement, which is not covered by a concrete slab, several compounds that could possibly be MGP related were detected in concentrations greater than the 90th percentile of the NYSDOH indoor air background values.

The compounds indan, indene, and thiophene, which are considered especially indicative of MGP impacts, were not detected in either of the soil vapor samples or in any of the indoor air samples.

2-methylpentane was detected at a concentration of 10 μ g/m³ in the soil vapor sample, and was detected at higher concentrations, 16 and 17 μ g/m³, in the indoor air sample. It was not detected in the ambient air sample. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Benzene was detected at a concentration of $4 \mu g/m^3$ in the soil vapor sample, and was detected at higher concentrations, 5.3 and 6, and 5.9 $\mu g/m^3$, in the indoor air samples. It was detected in the ambient air sample at 0.54 $\mu g/m^3$. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Cyclohexane was detected at a concentration of 2.8 μ g/m³ in the soil vapor sample, and was detected at higher concentrations, 4, 4.4 and 4.9 μ g/m³, in the indoor air sample. It was not detected in the ambient air sample. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Ethylbenzene was detected at a concentration of 23 μ g/m³ in the soil vapor sample, and was detected at a higher concentration of 29 μ g/m³ in the basement indoor air sample, and at 4.2 and 3.6 μ g/m³, in the first floor indoor air samples. It was not detected in the ambient air sample. The concentrations of ethylbenzene in the soil vapor and basement indoor air sample were above the typical range found in indoor air (i.e. above the 90th percentile NYSDOH indoor air background value of 7.4 μ g/m³). These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Hexane was detected at a concentration of $9.3 \ \mu g/m^3$ in the soil vapor sample, and was detected at higher concentrations of 13, 14, and 15 $\ \mu g/m^3$ in the indoor air samples. It was not detected in the ambient air sample. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Isopentane was detected at a concentration of 87 μ g/m³ in the soil vapor sample, and was detected at a higher concentration of 99 μ g/m³ in the basement indoor air sample, and at 78 and 81 μ g/m³, in the first floor indoor air samples. It was not detected in the ambient air sample. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Toluene was detected at a concentration of 8.4 μ g/m³ in the soil vapor sample, and was detected at lower concentrations of 5.6, 5.8, and 6.3 μ g/m³ in the indoor air samples. These concentrations were

below the typical range found in indoor air (i.e. above the 90th percentile NYSDOH indoor air background value of 58 μ g/m³). It was detected in the ambient air sample at a concentration of 1.3 μ g/m³. These concentrations were below the typical range found in indoor air (i.e. above the 90th percentile NYSDOH indoor air background value of 58 μ g/m³). These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

M/p-xylenes were detected at a concentration of 130 μ g/m³ in the soil vapor sample, and were detected at a higher concentration of 150 μ g/m³ in the basement indoor air sample, and at 20 and 19 μ g/m³ in the first floor indoor air samples. These concentrations were above the typical range found in indoor air (i.e. above the 90th percentile NYSDOH indoor air background value of 12 μ g/m³). They were not detected in the ambient air sample. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

O-xylene was detected at a concentration of 89 μ g/m³ in the soil vapor sample, and was detected at a concentration of 84 μ g/m³ in the basement indoor air sample, and at 10 and 9.3 μ g/m³ in the first floor indoor air samples. These concentrations were above the typical range found in indoor air (i.e. above the 90th percentile NYSDOH indoor air background value of 7.6 μ g/m³). It was not detected in the ambient air sample. These results indicate that for this compound intrusion of the soil vapor into the indoor air was not apparent.

Discussion of results and conclusions

Taken together, the results from this sampling event form a pattern for those VOCs that were present in indoor air above typical background values. The pattern indicates that an indoor source of the VOCs may have been migrating from the indoor air downward into the soil vapor in the area not covered by the concrete slab, and were less able to migrate into the soil vapor that is covered by the concrete slab. The mechanism for this possible downward migration is most likely caused by downward air movement through the soil. Environmental and building factors, such as temperature difference between indoor and outdoor air, can result in a pressure differential between the building and the soil that induces migration of vapor phase contaminants [NYSDOH Guidance pp 2-7]. However, this interpretation of the results is not conclusive because toluene was detected in soil vapor in sampling performed in 2004 and 2006. It is therefore possible that the soil vapor could be impacted, at least in part, as a result of subsurface contamination.

The table below provides a summary based on the 2007 sampling.

Compound	Detected in indoor air higher than background or ambient	Detected at higher concentration in indoor air than soil vapor	Detected in soil vapor (not covered by slab)	Detected in sub-slab vapor	Soil vapor intrusion apparent
PCE	No				No
Freon 11	No				No
Freon 12	No				No
Chloroform	Yes	Yes	Yes	No	No
Acetone	No				No
Ethanol	Yes	Yes	Yes	No	No
2-methylpentane	Yes	Yes	Yes	No	No
Benzene	No				No
Cyclohexane	No				No
Ethylbenzene	Yes	Yes	Yes	No	No
Hexane	Yes	Yes	Yes	No	No
Isopentane	Yes	Yes	Yes	No	No
Toluene	No			Yes	No
m/p-Xylenes	Yes	Yes	Yes	No	No
o-Xylene	Yes	Yes	Yes	No	No

The indoor source or sources of the compounds which were present in indoor air above typical background values (ethylbenzene, xylenes, and chloroform) were not apparent from the building inventory. However, observations made during the sampling event included an odor of cleaning products present in the building. Cleaning products used to remove grease or paint products could contain ethylbenzene and xylenes [National Institutes of Health website: http://householdproducts.nlm.nih.gov].

Recommendations

With regard to the results for ethylbenzene, xylenes, and chloroform the concentrations detected are likely due to indoor sources rather than vapor intrusion from the MGP impacts. Therefore steps should be taken to identify the indoor source(s) and reduce exposures accordingly (e.g. by keeping containers tightly capped or by storing VOC-containing products in places where people do not spend much time [NYSDOH Guidance, p.51].

The non-MGP-related compound PCE was detected in the soil vapor samples collected in the property building in concentrations that were greater than the typical background range for indoor air. PCE was not detected in any of the indoor air samples collected at the property. We understand that, based on these and previous results, additional activities related to PCE will be conducted separately from activities associated with the MGP site.

If you have any questions regarding the information provided in this letter, please do not hesitate to contact us at (607) 277-5716.

Sincerely yours,

ame rd. Edward

James H. Edwards Senior Geologist

John T. Fren

John T. Finn, P.E. Senior Engineer

JHE:mlr

Attachments: Table 1 – NYSDOH Household Products Inventory Form Table 2 – SVI Sample Results - March 2007 Table 3 – June 2004, June 2006 and March 2007 SVI Sample Results Figure 1 – Site Plan with SVI Sampling Locations Appendix A – NYSDOH Indoor Air Quality Questionnaire Appendix B – Chain-of-custody Form and Form I Laboratory Results Sheets Appendix C – NYSDEC ASP Category B Laboratory Report Package (CD-ROM) Appendix D – DUSR Appendix E – NYSDOH Soil Vapor/Indoor Air Matrix Tables

cc: Maribeth McCormick – O&R Kristin Kulow – NYSDOH Project File: 05090-012

Table 1Chemical Products Inventory28 Pike Street SectionPort Jervis MGP SiteMarch 2007

Product	Container Condition	VOC Content
First Floor Storage Room		
Old English Oil	Good	Not listed
Xtra Pine Oil Cleaner	Good	Pine oil
Raid Wasp and Hornet	Good	Petroleum products
Mega Glass Floor Finish	Good	Ethyl ether
UniKote Floor Cleaner	Good	Acrylic copolymer
Febreeze fabric refresher	Good	Not listed
Murphy's Oil Soap	Good	Not listed
Orange Glow Wood Cleaner	Good	Not listed
Comet with Bleach	Good	Not listed
Reliance Pine Oil Cleaner	Good	Pine oil
Hot Shot Flying Insect Killer	Good	Not listed
Kitchen Comet Spray Cleaner with Bleach Pine Oil Cleaner (SYSCO) Grease Terminator Grill Cleaner Ultra Clean Detergent Dining Room/Bar 20 Small oil lamps on tables Beer, wine, liquor	Good Good Good Good Good/open to air Good	Perfume Not listed Not listed Not listed Petroleum products Ethanol
Basement		
A-1 Bleach	Good	NaOH, NaOCI
Crème Cleanser	Good	Alkyl-ammonium chloride
Sysco Blue Concentrate Cleaner	Good	Surfactants
Work Safe Kitchen Degreaser (SYSCO)	Good	Surfactants
Cleaner with Bleach (SYSCO)	Good	Surfactants
Sysco Green Detergent	Good	Surfactants

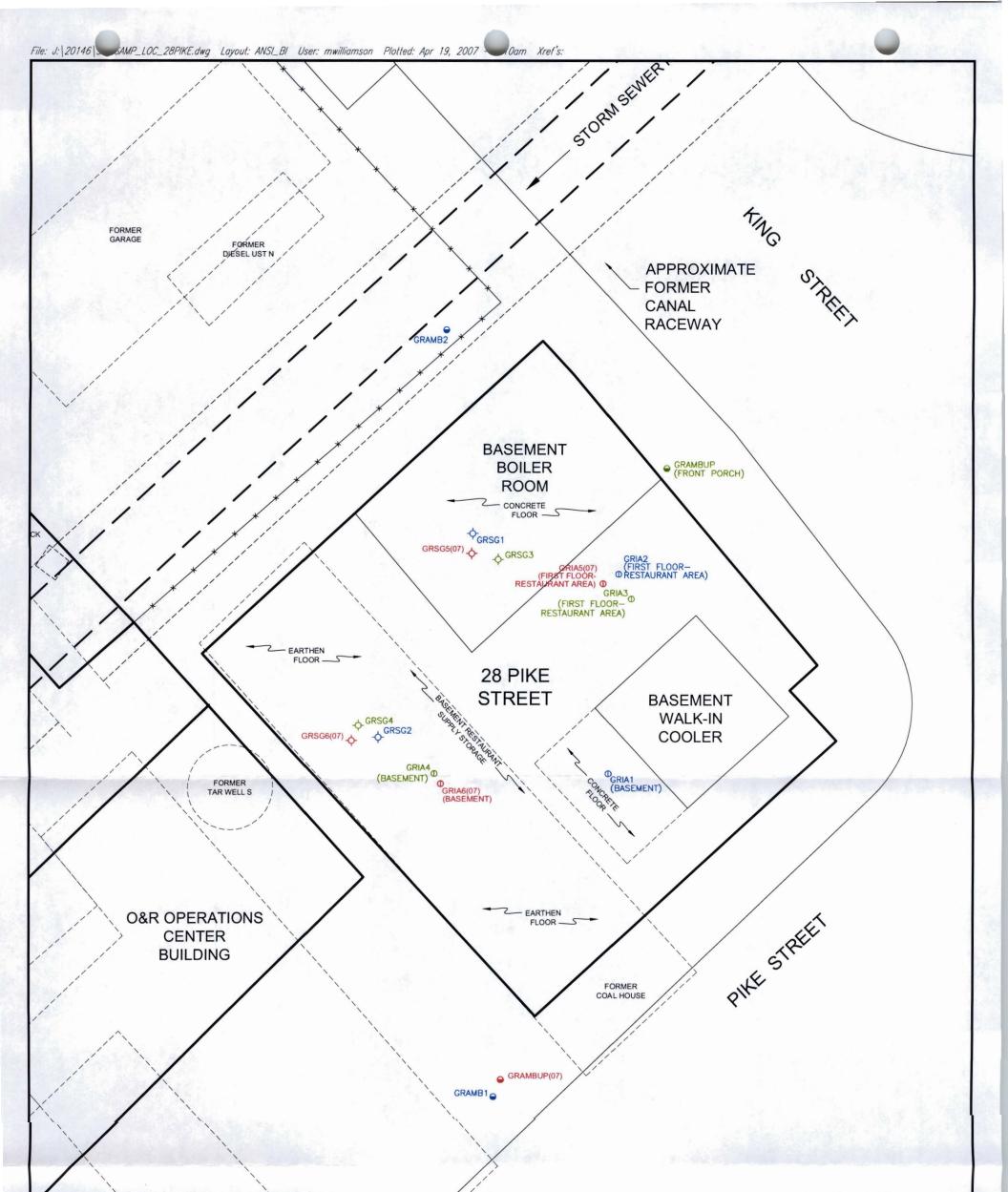
Table 2 SVI Sample Results March 2007 28 Pike Street

I seation ID			Basamant	1	Fire	El	Duddaar		
Type of Sample		Sub-slab Vapor	Soil Vapor	Indoor Air	Indoor Air	Indoor Air	Ambient	NTSUUH Backg	Values ³
Sample ID	CAS No.	GRSG5(07)	GRSG6(07)	GRIA6(07)	GRIA5(07)	GRIA50(07)DUP	GRAMBUP(07)		1000
Sample Date Lab Sample ID		3/20/2007 0703524A/B-04A/B	3/20/2007 0703524A/B-05A/B	70	3/20/2007 0703524A-02A/B	3/20/2007 0703524A-03A/B	3/20/2007 0703524A-06A/B	/5th Percentile	90th Percentile
or Other Source					-	-			
1,2,4-Trimethylbenzene	95-63-6	0.78 U		0.75 U	0.79 U	0.76 U	0.72 U	4.3	9.5
2,2,4-Trimethylpentane	540-84-1	3.7 U	3.6 U	3.6 U	3.8 U	3.6 U		NL	NL 0.0
2,3-Dimethylpentane	565-59-3							2.2	7.5
2-Methylpentane	107-83-5	2.8 U		16				N N	NL
4-Eurynouene Benzene	71-43-2	0.5 U	4 0	5.3	o 4	5.9 U	0.54	5.9	15
Carbon Disulfide	75-15-0	+	2.4 U	2.4 U	2.5 U	2.4 U		NL 00	N
Cyclohexane	110-82-7	$\left \right $						2.6	8.1
Ethylbenzene	100-41-4	0.69 U	23	29	4.2	3.6	0.63 U	2.8	7.4
Heptane	142-82-3	2.8 U	9.3	13	14	15	36 11	<i>Б</i>	19
Indan	496-11-7	3.8 U	3.7 U	3.7 U	3.9 U	3.7 U		ř,	N S
Indene	95-13-6	3.8 U						NL	NL
Isopentane	78-784	2.3 U						N	NL
Naphthalene	91-20-3	4.1 U	4.1	4	4.2 U	4.1		NL	1 NE
Thiophene	110-02-1	2.7 U	27 1					N CO	NI
Toluene	108-88-3							24.8	58
m/p-Xylenes	136777-61-2	0.69 U	130	150	20	19	0.63 U	4.6	12
Not MGP Related (µg/m ³)) ²	0-14-U	0.03	60	0.4	U.	0.0	0.00	3,1	1.0
1,1,1-Trichloroethane (1,1,1-TCA)	71-55-6	0.86 U	0.84 U	0.83 U			0.8 U	1.1	3.1
1,1,2,2-1 etrachloroethane	79-34-5	1.1 U	\downarrow				1	<0.25	<0.25
1,1-Dichloroethane	75-34-3	+	0.63 U	0.62 U	0.65 U	0.63 U		<0.25	<0.25
1,1-Dichloroethene	75-35-4	0.63 U						<0.25	<0.25
1.2,4-1 richloroberizerie	106-02-1	1.9 UJ	1.0 0.0	1 3 UJ			1.4 UJ	<0.25	3.4
1,2-Dichlorobenzene	95-50-1	-						<0.25	0.72
1,2-Dichloroethane	107-06-2	0.64 U	0.63 U	0.62 U	0.65 U	0.63 U	0.59 U	<0.25	<0.25
1,3-Butadiene	106-99-0	+	1.7 U		1.8 U	1.7 U		NL NL	NL NL
1,3-Dichlorobenzene	541-73-1							<0.25	0.6
1,4-Dichlorobenzene	106-46-7	0.95 U	0.93 U	0.91 U				0.54	1.3
2-Butanone (MEK)	78-93-3	\parallel	2.3 U	2.2 U	2.4 U	2.3 U	3.7	7.3	16
2-Hexanone	109 10 1	+					» З	NL	NL
Acetone	67-64-1	37 0	17 0	11 0	15 0	16	16	52	110
Benzyl chloride	100-44-7	0.82 U	0.8 U	0.79 U	0.83 U			NL	NL
Bromodichloromethane	75-27-4	5.3 U			5.4 U	5.2 U		NL	N
Bromomethane	74-83-9	1.1 U	1.2 U	0.76 U	0.68 U	0.74 U	0.8 U	<0.25	0.6
Carbon Tetrachloride	56-23-5	\square			1	0.98 U		0.59	0.81
Chlorobenzene	75-00-7	0.73 U	0.71 U	0.7 U	0.74 U			<0.25	<0.25
Chloroform	67-66-3	\mid		1.5	0.94 J			0.54	1.4
Chloromethane	74-87-3	0.33 U	1.3 U	1.5 U	1.9 J			1.8	3.3
cis-1,2-Dichloropropene	10061-01-5	0.03 0	0.7 1	+	0.73	0.7 11		<0.25	<0.25
Dibromochloromethane	124-48-1	\parallel		Ц				NL	NL
Ethanol	64-17-5	20	330 J	530 J	520 J	490 J		540	1400
1,1,2-Trichlorotrifluoroethane (Freon 113)	76-13-1	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.1 U	1.1	1.8
1,2-Dichlorotetrafluoroethane	76-14-2			Ц			1 U	<0.25	0.52
Dichlorodifluoromethane (Freon 12)	75-71-8							4.1	15
Methyl tert-Bulyl Ether	1634-04-3	28 1		97 U	2 0 0			×0.25	4.6
Methylene Chloride (Dichloromethane)	75-09-2		0.54 U		0.62 J	0.58 J	0.51 U	6.6	22
2-Propanol	67-63-0	+		1.9 U				N	N
Tetrachloroethene (PCE)	127-18-4			-1 -3				11	2.9
Tetrahydrofuran	109-99-9	2.3 U		2.2 U				0.35	3.3
trans-1,2-Dichloroethene	10061 02 6	3.1 U	3.1 U	0 60 U	3.2 U	3.1 U	2.9 U	NA	NA
Trichloroethene (TCE)	79-01-6	0.85 U		0.82 U			0.78 U	<0.25	0.48
Vinyl Chloride	75-01-4	0.4 U	0.4 U	0.39 U		0.4 U		<0.25	<0.25

Note:
Al units in micrograms per cubic meter (ug/m¹)
1 These compounds may be related to either MGP sources or non-MGP sources, or both. MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the carburetted water gas process. Non-MGP sources include MGP tars and petroleum feedstocks exhaust, construction materials, and cigarette snoke.
2 These compounds are processes, such as the carburetted water gas process. Non-MGP sources, such as vehicle exhaust, heating and air conditioning systems, cleaning agents, art supplies, paints, etc.
3 New York State Department of Health, November 14, 2005.
Bod - Compound detected in a concentration grater than the method reporting limits.
Bod - Compound detected in a concentration grater than the method reporting limits.
Bod - Compound detected in a concentration grater than the method reported limits.
Bod - Compound detected in a concentration grater than the method reported limits.
Bod - Compound detected in a concentration grater than the method reported limits.
Bod - Compound detected in the sample is a field dupletable.
Du / As suffix on Sample ID incleates that the sample is a field dupletable.
U - The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
N - The analyte has prostined up identified and the associated numerical value represents its approximate concentration.
N - The analyte was analyzed for, but was not detected. The second that has been tensitively identified and the associated numerical value for imprecise.
J - The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate concentration of the analyte in the sample.
J - The analyte was analyzed for, but was not detected. The reported value is the approximate concentration of the analyte in the sample.
J - The analyte was analyz

Table 2 SVI Sample Results

Table 3 SVI Sample Summary 28 Pike Street


<table-container> Image <</table-container>									Main						E1			1.11					
Image: bold bold bold bold bold bold bold bold	Sample Location								-			Alt:			First Floor	-						NYSDOH B	ackground
Desc District District <t< th=""><th></th><th>CAS No.</th><th>Sub-slab Vapor</th><th>Sub-slab Vapor</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Indoor Air</th><th>Ambient</th><th></th><th></th><th></th><th>Ambient</th><th>Indoor Ai</th><th>r Values³</th></t<>		CAS No.	Sub-slab Vapor	Sub-slab Vapor												Indoor Air	Ambient				Ambient	Indoor Ai	r Values ³
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>																						75th	90th
Instrument beam Units					1	4A/B 04			-	_													
Science Science <t< th=""><th></th><th>(1) 1</th><th>GRSG1</th><th>GRSG3</th><th>GRSG5(07)</th><th>)</th><th>GRSG2</th><th>GRSG4</th><th>GRSG6(07</th><th>$\frac{1}{2}$</th><th>GRIA1</th><th>GRIA4</th><th>GRIA6(07)</th><th>GRIA2</th><th>GRIA3</th><th>GRIA5(07)</th><th>GRAMB-1</th><th>GRAMB-2</th><th>GRAMB-2</th><th>GRAMBUP</th><th>GRAMBUP(07)</th><th>· or occurate</th><th>· crocitate</th></t<>		(1) 1	GRSG1	GRSG3	GRSG5(07))	GRSG2	GRSG4	GRSG6(07	$\frac{1}{2}$	GRIA1	GRIA4	GRIA6(07)	GRIA2	GRIA3	GRIA5(07)	GRAMB-1	GRAMB-2	GRAMB-2	GRAMBUP	GRAMBUP(07)	· or occurate	· crocitate
Schedingering Scheding			0.2	4.0	0.70		0.2	0.70.11	12	+ +	4511	7.0.11	0.75 11	25	1011	0.70	10			10	0.70	10	
Schenkersen State State State State															-								
Schedingerine Scheding																							
Schehole		565-59-3			3.2	U				U		32 U		-								-	
back back <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.7 U</td><td></td><td>NL</td><td>NL</td></th<>						-														2.7 U		NL	NL
Sick Nick Nick A. O A. O A. O A. O A. O A. A. A. A. A.<										U													
Schedung 1100 210 210 0 110 210										<u> </u>						-							
mbance bit is bit is<																							
inter 100.0 <th< td=""><td>Ethylbenzene</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Ethylbenzene					_				1													
State 45.17 60.0 70.0 70.0 70.0 <th< td=""><td>Heptane</td><td></td><td></td><td></td><td></td><td></td><td>8.7 U</td><td></td><td></td><td></td><td></td><td>32 U</td><td></td><td>5.1</td><td>54</td><td>5.7</td><td>3.4 U</td><td>3.4 U</td><td>3.4 U</td><td>3.1 U</td><td>3 U</td><td>7.6</td><td>19</td></th<>	Heptane						8.7 U					32 U		5.1	54	5.7	3.4 U	3.4 U	3.4 U	3.1 U	3 U	7.6	19
boxe 50-14 010 A10 A10<	Hexane																						-
Importan BA BA BA BA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
bicha 950 10 410 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>										1													
Space Space <th< td=""><td>Naphthalene</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Naphthalene					-				U													
black black <t< td=""><td>Styrene</td><td>100-42-5</td><td>3.5 U</td><td>0.65 U</td><td></td><td>-</td><td></td><td>0.68 U</td><td></td><td>U</td><td>5.1</td><td>6.7 U</td><td>0.65 U</td><td></td><td></td><td>0.68 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>	Styrene	100-42-5	3.5 U	0.65 U		-		0.68 U		U	5.1	6.7 U	0.65 U			0.68 U							_
DepAre USU 74-12 DEV DEV DEV DEV <th< td=""><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						U				U				-			-						
Oxive Sch 2 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1<	the state of the						and the second																
Index dependent Image										1													
Shilpersentini (LINA) Firste 6.430 6.430 1		00-47-0	5.2		0.05	-	0.9	0.700	35		4.00	0.00		2.4	100	10	1.0	1.9	1.5	1.1	0.03 0	3.1	1.0
1)2.2 Alteringendem 1954.8 55.0 10.0 10.0 20.0 10.0 10.0 10.0 </td <td></td> <td>71-55-6</td> <td>45U</td> <td>0.83 U</td> <td>0.86</td> <td>U</td> <td>230</td> <td>0.88.U</td> <td>0.84</td> <td>U</td> <td>500</td> <td>86U</td> <td>0.83 U</td> <td>0.97.11</td> <td>13.11</td> <td>0.88 11</td> <td>0.9111</td> <td>0.9111</td> <td>0.9111</td> <td>0.8311</td> <td>0.8 11</td> <td>11</td> <td>31</td>		71-55-6	45U	0.83 U	0.86	U	230	0.88.U	0.84	U	500	86U	0.83 U	0.97.11	13.11	0.88 11	0.9111	0.9111	0.9111	0.8311	0.8 11	11	31
13.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.																							
11.50e/stand 75.84 3.20 0.630 0.630 0.640	1,1,2-Trichloroethane					U	2.3 U	0.88 U	0.84	U	5.0 U	8.6 U	0.83 U	0.97 U	13 U	0.88 U	0.91 U	0.91 U	0.91 U	0.83 U			
12.4. Toolswardsen 12.9. Tools and all all all all all all all all all al						-								-									
1220emontante (EDB) 188-04 6.3.0 71.0 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 10.0 12.0 12.0										<u> </u>													
12.000000000000000000000000000000000000																							
12.3Defendement 97.0 9.84 9.84 9.84 9.70 6.87 9.70 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 6.87 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.970																							
13.88.868/m 156.90 9.00 1.70 1.77 0 1.70 1.71 0 1.80		107-06-2	3.3 U	0.62 U	0.64	U	1.7 U		0.63	U		6.4 U	0.62 U	0.72 U		0.65 U							
33-Discription 95-U 0.95 0 2.8.0 0.97U 0.95U 0.95U 0.91U 0.95U 0.95U 0.95U 0.91U 0.91U 0.95U 0.95U 0.91U 0.91U 0.95U 0.91U 0.95U 0.91U 0.91U 0.95U 0.91U 0.91U 0.91U 0.91U 0.91U 0.95U 0.91U 0.91U <						-																	
14-Deconsence 140-0 140-0 100 <td></td>																							
14-Decame 120 2.8 U 7.7U 2.9 2.9 1.9 2.2U 4.3U 2.2U 4.3U 2.2U 4.3U 2.2U 3.3U 2.2U 3.3U 2.2U 3.3U 2.2U 3.3U 3.2U 3.3U 3.3U <t< td=""><td>and an end of the second se</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	and an end of the second se																						
Selamone (MEA) 79-33 74 74 74 74 74 75 74 75 74 75 74 75 74 75																						-	
4Methy-Spectratione 1010 31 U 31 U 32 U 33 U 32 U 31 U 32 U 33 U 32 U 32 U 33 U 32 U 32 U 32 U 32 U 33 U 32 U 33 U 30 U	2-Butanone (MEK)	78-93-3		4.7 J			19			U	13 U											-	
Acher 67.44 780 77 7 7 7 <th7< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th7<>																							
Bency chardse 109-447 4.2 U 0.79 U 0.82 U 0.83 U 0.86 U 0.86 U 0.76 U 0.76 U N. N. Bronnohlsnomelhane 75-25 Z 42 U 7.8 U 0.8 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td>U</td> <td></td>						U				U													
Bromodelinomentane 75-27-4 27.U 5.1.U 5.3.U 14.U 5.4.U 5.2.U 5.0.U 5.0.U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+ </td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										+				-									
Bronnohm 75-22 42U 7.8 U 8.2 U 9.2 U 8.3 U 8.6 U 47.0 V 8.6 U <										_													
Bronemahane 74.839 3.2 U 0.59 U 1.1 U 1.6 U 0.62 U 1.2 U 3.5 U 6.1 U 0.76 U 0.6 0U 9.3 U 0.6 U 0.5 U			42 U																				
Chlorobarene 109-907 3.8 U 0.70 U 0.7 U 0.7 U 0.7 U 0.77 U 0.77 U 0.70 U 0.77	Bromomethane													0.69 U	9.3 U		0.65 U	0.65 U	0.65 U	0.59 U	0.8 U		0.6
Chloroshane 75003 2.2.U 0.40 UJ 0.42 UJ 0.41 UJ 0.42 UJ 0.44 UJ 0.41 UJ 0.45 UJ 0.45 UJ 0.41 UJ 0.42 UJ 0.41 UJ 0.41 UJ 0.41 UJ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
Chlorodrm 67-66-3 4.0 0.74 0.73 0 3.8 1.8 1.2 6.44 7.70 1.5 0 1.3 120 0.94 J 0.810 0.810 0.76 0.71 U 0.54 1.4 Chlorodrehne 156-592 3.20 0.600 0.63 U 1.70 0.64U 0.61 U 3.01 0.63 U 0.700 9.50 0.64 U 0.66U 0.62U -0.2S										-					-		0.110						
Chloromethane 74-87-3 1.7 U 0.46 0.33 U 0.88 U 0.33 U 1.3 U 3.3 3.3 U 1.5 U 1.8 U 5.0 U 1.9 J 1.2 L 1.4 U 0.61 U 0.5 U 0.2 U 0.61 U <th< td=""><td>Chloroform</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 55</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Chloroform									- 55													
isb-3p-2 3.2.U 0.60.U 0.63 U 1.7.U 0.64.U 0.61 U 0.66.U 0.67.U 0.7.U 0.66.U 0.67.U 0.7.U 0.7.U 0.66.U 0.60.U 0.61.U 0.62.U			1.7 U	0.46		-		0.33 U	1.3	U													
Dbromechane 124-48-1 35 U 6.5 U 6.7 U 12 U 6.8 U 7.6 U 100 U 6.8 U 7.1 U 7.1 U 6.2 U NL NL Ethand 64-175 7.7 U 42 20 11 13 33 U 258 25 6.9 8.9 U 22 7.6 13 U 2.4 1.8 1.9 1.6 1.6 1.6 5.4 7.7 1.0 1.1 U 3.3 U 1.2 U 1.2 U 1.2 U 1.4 U 1.8 U 1.9 1.6 1.6 1.6 5.4 1.7 1.0 U 1.1 U 1.1 U 1.1 U 1.2 U 1.2 U 1.2 U 1.1 U	cis-1,2-Dichloroethene									-											0.58 U	<0.25	<0.25
Ethand 64-17-5 7.7 U 42 20 11 13 330 J 740 J 900 530 J 1200 J 1600 520 J 6.1 7.5 18 12 540 1400 Trichoroflucorentane (Freon 11) 75-69.4 61 68 39 130 250 25 6.9 8.9 U 2.2 7.6 13U 2.4 1.8 1.9 1.6 1.6 5.40 1.1 1.2 1.1 1.2	cis-1,3-Dichloropropene																						
Trichorolucromethane (Freon 11) 75-69-4 61 68 39 130 250 25 6.9 8.9 U 2.2 7.6 13U 2.4 1.8 1.9 1.6 1.6 5.4 177 1,1,2-Tichlorotiffluoroethane (Freon 13) 76-13-1 6.3 U 1.2 U 3.3 U 1.2 U 1.2 U 7.0 U 12U 1.2 U 1.4 U 18U 1.2 U 1.3 U 1.2 U 1.3 U 1.2 U 1.1 U 1.1 U 1.4 U 1.8 U 1.2 U 1.2 U 1.4 U 1.4 U 1.8 U 1.3 U 1.2 U 1.1 U 1.1 U 1.4 U 1.4 U 1.8 U 1.2 U 1.2 U 1.4 U 1.4 U 1.2 U 1.4 U 1.4 U 1.2 U 1.4 U 1.2 U 1.4 U 1.2						0				-													
1,1,2-richlorotethane (Freon 113) 76-13-1 6.3.U 1.2.U 1.2 U 3.3.U 1.2.U 1.2 U 7.0.U 1.2.U 1.2.U 1.4.U 18.U 1.2.U 1.3.U 1.3.U 1.3.U 1.2.U 1.1.U 1.1 U 3.0.U 1.1.U 1.1 U 1.2.U 1.1.U	Trichlorofluoromethane (Freon 11)					and the second				-													
12-Dichlorodetrafluoropehane 76-14-2 5.7 U 1.1 U	1,1,2-Trichlorotrifluoroethane (Freon 113)		6.3 U	1.2 U	1.2	U	3.3 U			U													
Hexachorobutadiene (C-46) 87-68-3 44 UJ 8.1 U 8.4 U 23 UJ 8.6 U 8.3 U 44 U 8.1 U 8.1 U 8.6 U 8.9 U 8.9 U 8.9 U 8.1 U 7.8 U 4.0 2.5 U 4.6 U Methyler-Butyl Ether 1634-04-4 15 U 2.7 U 2.8 U 9.0 2.9 U 2.8 U 160 U 3.4 J 2.7 U 0 3.2 U 4.3 U 2.9 U 3.0 U 5.0 U 5.6 U 5.6 U 5.6 U 5.6 U 5.0 U<	1,2-Dichlorotetrafluoroethane				1.1	U			1.1	U		11 U	1.1 U	1.2 U	17 U	1.1 U	1.2 U	1.2 U	1.2 U	1.1 U	1 U	<0.25	0.52
Methylether 1634-044 15 U 2.7 U 2.8 U 9.0 2.9 U 2.8 U 16 U 3.4 J 2.7 U 3.2 U 43 U 2.9 U 3.0 U																							
Methylene Chloride (Dichloromethane) 75-09-2 5.3 0.98 0.55 U 1.5U 0.56U 0.54 U 3.2U 5.5U 0.53 U 0.62 J 0.97 0.81 0.53U 0.51 U 6.66 22 2-Propanol 67-63-0 13 2.5 1.9 U 13 2.0U 1.9 U 11U 19U 1.9 U 3.1 2.9U 2 U 2.0U 1.9U 1.8 U NL NL Propene 115-07-1 7.0U 1.3U 1.4 U 3.7U 12 1.3 U 7.8U 1.8U 1.5U 1.4U 1.4U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										-					-		-						
2-Propanol 67-63-0 13 2.5 1.9 U 13 2.0U 1.9 U 19U 1.9 U 3.1 29U 2 U 2.0U 1.9U 1.8 U NL NL Propene 1150-71 7.0U 1.3U 1.4 U 3.7U 12 1.3 U 7.8U 14U 1.3 U 1.5U 21U 1.4 U 1.4U NL NL Tetrachorethene (PCE) 127.18- 160 89 24 100 0.0 6 .0U 28 1 U 1.5U 21U 1.4 U 1.4U 1.4U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>										_													
Propene 115-07-1 7.0 U 1.3 U 1.4 U 3.7 U 12 1.3 U 7.8 U 1.4 U 1.3 U 1.4 U 3.7 U 12 1.3 U 1.4 U 1.4 U 1.3 U 1.4 U										_													
Tetrachloroethene (PCE) 127-18-4 28 160 89 24 110 20 6.2 U 28 1 U 1.1 U 1.1 U 1.1 U 1.1 U 0.99 U 0.35 3.33 Trans.12.Dichloroethene 156.60-5 16 U 3.0 U 3.1 U 3.3 U 3.2 U 3.2 U 3.2 U	Propene	115-07-1	7.0 U	1.3 U	1.4				1.3		7.8 U												
Trans-1,2-Dichloroethene 156-60-5 16 U 3.0 U 3.1 U 8.5 U 3.2 U 3.1 U 18 U 3.1 U 18 U 3.1 U 18 U 3.1 U 18 U 3.1 U 3.1 U 3.1 U 3.2 U 3.1						ndu - Juli				5 18											0.99 U	1.1	2.9
Trans-1,3-Dichloropropene 10061-02-6 3.7 U 0.69 U 0.72 U 1.9 U 0.73 U 0.7 U 4.1 U 7.2 U 0.69 U 0.81 U 11 U 0.73 U 0.76 U 0.69 U 0.66 U <0.25 C <0.25 C Trichloroptenen (TCE) 79-01-6 4.4 U 0.82 U 0.86 U 0.83 U 4.9 U 8.5 U 0.82 U 0.96 U 0.90 U 0.90 U 0.80 U 0.82 U 0.48 U 0.48 U 0.82 U 0.81 U 11 U 0.96 U 0.90 U 0.90 U 0.80 U 0.82 U 0.48 U 0.48 U 0.81 U 0.81 U 11 U 0.96 U 0.76 U 0.69 U 0.66 U 0.25 C 0.45 U 0.48 U 0.81 U 0.81 U 0.80 U 0.80 U 0.82 U 0.78 U 0.42 U 0.40 U 0.80 U 0.40 U																							
Trichloroethene (TCE) 79-01-6 4.4 U 0.82 U 0.85 U 2.3 U 0.86 U 0.83 U 4.9 0.85 U 4.9 0.82 U 0.96 U 0.96 U 0.96 U 0.90 U 0.90 U 0.90 U 0.82 U 0.78 U <0.25 0.48																							
	Vinyl Chloride																				0.37 U	<0.25	<0.25

Notes:

All units in micrograms per cubic meter (µg/m²) 1 - These compounds may be related to either MGP sources or non-MGP sources, or both. MGP sources include MGP tars and petroleum feedstocks used in MGP processes, such as the carburetted water gas process. Non-MGP sources include cleaning products, floor wax and polish, vehicle

used in MGP processes, such as the carburetted water gas process. Non-MGP sources include cleaning products, floor wax and polish, vehicle exhaust, construction materials, and cigarette smoke.
 These compounds are not related to MGP sources and are present due to non-MGP sources, such as vehicle exhaust, heating and air conditioning systems, cleaning agents, art supplies, paints, etc.
 New York State Department of Health, November 14, 2005.
 Bold - Compound detected in a concentration greater than the method reporting limits.

Exceeds NYSDOH Background Indoor Air Values 75th Percentile
Exceeds NYSDOH Background Indoor Air Values 90th Percentile
Dup - As suffix on Sample ID indicates that the sample is a field duplicate.
NL - Not listed - data not available for background concentrations for these compounds.
U - The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
R - The data are unusable. The sample results are rejected due to serious deficiencies in the ability to meet quality control criteria. The presence or absence of the analyte cannot be verified.

RETEC	SOURCE: DONALD STEDGE PLS: 2000 LANGAN ENGINEERS PLS: 2003 ROBERT MURRAY PLS: 2004	DATE: 4/19/07 DRWN: MAW/BIL		SVI SAMPLE LOCATIONS 28 PIKE STREET FIGURE 1
1	=10'	28 PIKE STREET SECTION		MARCH 2007
5555			L	SUBSURFACE OR HISTORIC STRUCTURES
5 0	10			EXISTING STRUCTURES
			<u> </u>	FENCE
	P			APPROXIMATE PROPERTY LINE
	1		• •	PREVIOUS AMBIENT AIR SAMPLE LOCATION
	a second second		0 0	PREVIOUS INDOOR AIR SAMPLE LOCATION
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		\$	PREVIOUS SOIL VAPOR OR SUB-FLOOR SOIL VAPOR SAMPLE LOCATION
			GRAMBUP	2007 SVI AMBIENT AIR SAMPLE LOCATION
			O GRIA4	2007 SVI INDOOR AIR SAMPLE LOCATION
			-∲- ^{GRSG4}	2007 SVI SUB-FLOOR OR SUB-SLAB VAPOR SAMPLE LOCATION
				LEGEND
		11		LEGEND

ENSR

Appendix A

NYSDOH Indoor Air Quality Questionnaire and Building Inventory

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

Preparer's Name: Jesse Lloyd, James Edwards Date P

Preparer's Affiliation: The RETEC Group, Inc.

Date Prepared: March 19, 2007

Phone No: 1-607-277-5716

Purpose of Investigation:

To evaluate current indoor air conditions and potential infiltration of soil vapor to the indoor air.

1. OCCUPANT: Multiple

Interviewed: (Y)N

Last Name: Codichini

Address: 28 Pike Street, Port Jervis, New York 12771

County: Orange

Home Phone: (845) 856-3905

Office Phone:

First Name: Rich

Number of Occupants/persons at this location: Occupants in the restaurant area only during open hours. Occupants on second floor in apartments.

2. OWNER OR LANDLORD: (Check if same as occupant X)

Interviewed: Y N

Last Name: Codichini

First Name: Rich

Address: As Above

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial School Church Commercial/Multi-use Other:

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular 2-Family Split Level Contemporary Apartment House Log Home 3-Family Colonial Mobile Home Townhouses/Condos Other: Apartments above restaurant

If multiple units, how many? Four

If the property is commercial, type? (es), first floor

Business Type(s): Restaurant

Does it include residences (i.e., multi-use)? Yes second and third floors.

Other characteristics:

Number of floors: 3

Is the building insulated? Y(N)

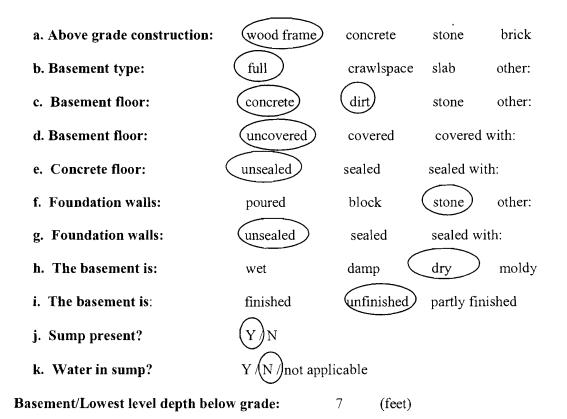
4. AIRFLOW

Airflow between floors:

No airflow observed at basement to first or first to second staircases.

Airflow near source:

Very slight upward flow from basement.


Outdoor air infiltration:

Some infiltration at kitchen door, very slight infiltration at front door.

Infiltration into air ducts:

None observed.

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

Identify potential soil vapor entry points and approximate size. (e.g., cracks, utility ports, drains)

Large area of basement floor is earthen, remainder is concrete in the boiler room and in front of the basement walk-in cooler. Foundation walls are laid-up stone. Basement is frequently flooded.

Building age: 1880s

How air tight? Tight / (Average) / Not Tight

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

1, pr of 100011g 5,50001(5) 15		(
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiat Wood Stove	ion Rad	water baseboard iant floor loor wood boiler	Other:
The primary type of fuel use	ed is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Ke Sol	rosene ar	
Domestic hot water tank fue	led by: Natural gas			
Boiler/furnace located in:	Basement	Outdoor	Main Floor	Other:
Air conditioning:	Central Air	Window units	Open Windows	None
Are there air distribution du in the restaurant kitchen.	acts present? No,	with the except	ion of ventilation	fans above the stoves
Describe the supply and air There is a cold air return an diagram,	· · · · · · · · · · · · · · · · · · ·		,	0
NA				
7. OCCUPANCY				
Is basement /lowest level occ	cupied? Full-time	Occasiona	lly Seldom	Almost Never
Level General Use of	<u>f Each Floor (e.g., fa</u>	amilyroom, bed	room, laundry, w	<u>orkshop, storage)</u>
Basement: Storage of restaura	ant supplies, boiler ro	oom for the build	ding, walk-in coole	er.
1 st Floor: Restaurant, kitchen,	, tavern			
2 nd Floor: Apartments				
3 rd Floor: Apartments				
8. FACTORS THAT MAY	INFLUENCE INDO	OOR AIR QUA	LITY	
a. Is there an attached gar	age?		Y(N)	
b. Does the garage have a	separate heating un	iit?	Y / N / NA	
c. Are petroleum-powered stored in the garage? (e			Y / N / NA Please speci	fy
d. Has the building ever h	ad a fire?		Y NWher	1?
e. Is a kerosene or unvent	ted gas space heater	present?	Y / (N) When	re?
f. Is there a workshop or	hobby/craft area?	Y /	N Where & Ty	pe?
g. Is there smoking in the	building?	Y /	N How frequent	ly?

h. Have cleaning products been used recently? products (degreasers, glass and surface cleaner)	(Y) N	When & Type? Kitchen cleaning
i. Have cosmetic products been used recently? Unkn	nown	
j. Has painting/staining been done in the last 6 month	s? Y/N)Where & When?
k. Is there new carpet, drapes or other textiles?	YN	Where & When?
l. Have air fresheners been used recently? freshener in bathrooms	(Y) N	When & Type? Automatic air
m. Is there a kitchen exhaust fan? building	Y N	If yes, where vented? North side of
n. Is there a bathroom exhaust fan? west.	Y N	If yes, where vented? Outside wall to
o. Is there a clothes dryer?	Y (N)	If yes, is it vented outside?
p. Has there been a pesticide application?	Y (N)	When & Type?
Are there odors in the building?	(Y)/N	

If yes, please describe: Food odors in kitchen (cooking oil, grease, spices), musty odor in basement, cleaning supply odor (ammonia-like, fragrances) in first floor store room, air freshener odor near bathrooms.

Do any of the building occupants use solvents at work? Y(N)(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response): Unknown

Is there a radon mitigation system for the building/structure? Y /(N) Date of Installation:

9. WATER AND SEWAGE

Water Supply:Public WaterDrilled WellDriven WellDug WellOther:Sewage Disposal:Public SewerSeptic TankLeach FieldDry WellOther:

ENSR

Appendix B

Chain of Custody Record and Form I Laboratory Sheets

Client Sample ID: GRSG5(07)

Lab ID#: 0703524A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: 3/20/07 FIG Name Sec. 1974-16 Date of Analysis: 4/3/07-06:26 AM Dil. Factor **Rpt.** Limit Rpt. Limit Amount Amount Compound (ppbv) (ppbv) (uG/m3) (uG/m3) 2.0 0.78 9.8 Freon 12 0.16 0.16 Not Detected 1.1 Not Detected Freon 114 0.33 0.16 Not Detected Not Detected Chloromethane 0.16 Not Detected 0.40 Not Detected Vinyl Chloride 0.16 0.29 ØU 0.61 1.1 ß U Bromomethane 0.16 UJ Not Detected 0.42 **U**J Not Detected Chloroethane 0.16 6.9 0.89 39 Freon 11 1.1-Dichloroethene 0.16 Not Detected 0.63 Not Detected 0.16 Not Detected 1.2 Not Detected Freon 113 0.16 0.55 Not Detected Not Detected Methylene Chloride 0.16 Not Detected 0.64 Not Detected 1,1-Dichloroethane 0.16 Not Detected 0.63 Not Detected cis-1.2-Dichloroethene 0.16 0.77 Not Detected Not Detected Chloroform 0.16 0.86 1.1.1-Trichloroethane Not Detected Not Detected 0.16 0.99 Carbon Tetrachloride Not Detected Not Detected 0.16 Not Detected 0.64 Not Detected 1,2-Dichloroethane Trichloroethene 0.16 Not Detected 0.85 Not Detected 0.16 Not Detected 0.73 Not Detected 1,2-Dichloropropane 0.16 Not Detected 0.72 Not Detected cis-1,3-Dichloropropene 0.16 0.18 0.69 0.60 Toluene trans-1,3-Dichloropropene 0.16 Not Detected 0.72 Not Detected 0.16 1,1,2-Trichloroethane Not Detected 0.86 Not Detected Tetrachloroethene 0.16 13 1.1 89 Not Detected 1,2-Dibromoethane (EDB) 0.16 1.2 Not Detected Chlorobenzene 0.16 Not Detected 0.73 Not Detected 0.16 Ethyl Benzene Not Detected 0.69 Not Detected 0.16 0.69 m,p-Xylene Not Detected Not Detected o-Xylene 0.16 Not Detected 0.69 Not Detected 0.16 0.67 Styrene Not Detected Not Detected 1,1,2,2-Tetrachloroethane 0.16 Not Detected 1.1 Not Detected 1,3,5-Trimethylbenzene 0.16 Not Detected 0.78 Not Detected 0.16 Not Detected 0.78 1,2,4-Trimethylbenzene Not Detected 0.16 Not Detected 0.95 1,3-Dichlorobenzene Not Detected 1.4-Dichlorobenzene 0.16 Not Detected 0.95 Not Detected alpha-Chlorotoluene 0.16 Not Detected 0.82 Not Detected 1,2-Dichlorobenzene 0.16 0.95 Not Detected Not Detected 0.79 UJ 1,2,4-Trichlorobenzene Not Detected U J 5.9 UJ Not Detected U J Hexachlorobutadiene 0.79 Not Detected 8.4 Not Detected Propylene 0.79 Not Detected 1.4 Not Detected

HUG MAINER

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GRSG5(07)

Lab ID#: 0703524A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: 3/20/07

DITLACION STREET	Jano .	997 (PA	Sare of vend vales a	and for a win a
	Rot. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,3-Butadiene	0.79	Not Detected	1.7	Not Detected
Acetone	0.79	16	1.9	37
Carbon Disulfide	0.79	Not Detected	2.5	Not Detected
trans-1,2-Dichloroethene	0.79	Not Detected	3.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.79	1.4	2.3	4.0
Hexane	0.79	Not Detected	2.8	Not Detected
Tetrahydrofuran	0.79	Not Detected	2.3	Not Detected
Cyclohexane	0.79	Not Detected	2.7	Not Detected
1,4-Dioxane	0.79	Not Detected	2.8	Not Detected
Bromodichloromethane	0.79	Not Detected	5.3	Not Detected
4-Methyl-2-pentanone	0.79	Not Detected	3.2	Not Detected
2-Hexanone	0.79	Not Detected	3.2	Not Detected
Dibromochloromethane	0.79	Not Detected	6.7	Not Detected
Bromoform	0.79	Not Detected	8.2	Not Detected
4-Ethyltoluene	0.79	Not Detected	3.9	Not Detected
Ethanol	0.79	10	1.5	20
Methyl tert-butyl ether	0.79	Not Detected	2.8	Not Detected
Heptane	0.79	Not Detected	3.2	Not Detected
Naphthalene	0.79	Not Detected	4.1	Not Detected
2-Methylpentane	0.79	Not Detected	2.8	Not Detected
Isopentane	0.79	Not Detected	2.3	Not Detected
2,3-Dimethylpentane	0.79	Not Detected	3.2	Not Detected
2,2,4-Trimethylpentane	0.79	Not Detected	3.7	Not Detected
Indene	0.79	Not Detected	3.8	Not Detected
Indan	0.79	Not Detected	3.8	Not De <u>tecte</u> d
Thiophene	0.79	Not Detected	2.7	Not Detected
2-Propanol	0.79	Not Detected	1.9	Not Detected

- B = Compound present in laboratory blank greater than reporting limit, background subtraction not performed. UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	44 J
Unknown	NA	NA	680 J
Unknown	NA	NA	36 J
Unknown	NA	NA	2.6 J
Acetaldehyde	75-07-0	64%	3.1 N J

Client Sample ID: GRSG5(07)

Lab ID#: 0703524A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name in	rp. 102.26 Date of Collection: 3/20/07
	Date of Analysis: 4/3/07.06/26 AM
Dil bortori	
Dil. Factor:	

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	2.1 J
Unknown	NA	NA	1.6 J
Unknown	NA	NA	1.8 J
Heptanal	111-71-7	58%	1.6 N J
Unknown	NA	NA	<u> </u>

Container Type: 6 Liter Summa Special (100% Certified)

Container Type, o Ener Summa Opeciar (1		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	100	70-130
Toluene-d8	94	70-130

Client Sample ID: GRSG5(07)

Lab ID#: 0703524A-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Namo, Sugar II. San	100 100 100 100 100 100 100 100 100 100	· 16 at 3	Date of Collection: 3/20/07	
Dil Factor & PA	Rpt. Limit		Date of Analysis 4 Rot. Limit	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.16	Not Detected	0.50	Not Detected
Container Type: 6 Liter Summa	Special (100% Certified)			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		122		70-130
Toluene-d8		98		70-130
4-Bromofluorobenzene		111		70-130

Client Sample ID: GRSG5(07)

Lab ID#: 0703524B-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1945

File Name 9032406b Dill Factors 1.58		Ollection: 3/20/071
Compound	Rpt. Limit	Amount (%)
Helium	0.079	Not Detected

Container Type: 6 Liter Summa Special (100% Certified)

Client Sample ID: GRIA5(07) Lab ID#: 0703524A-02A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name Dil. Factor:	g040224 1.61		Date of Collection: 3/20/07 Date of Analysis: 4/3/07 05:07 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
Freon 12	0.16	0.57	0.80	2.8 [.]	
Freon 114	0.16	Not Detected	1.1	Not Detected	
Chloromethane	0.16	0.92 jé J	0.33	1.9 g J	
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected	
Bromomethane	0.16	0.18 , 10	0.62	0.68 Je U	
Chloroethane	0.16 W	Not Detected	0.42 45	Not Detected	
Freon 11	0.16	0.43	0.90	2.4	
1,1-Dichloroethene	0.16	Not Detected	0.64	Not Detected	
Freon 113	0.16	Not Detected	1.2	Not Detected	
Methylene Chloride	0.16	0.18 J	0.56	0.62 J	
1,1-Dichloroethane	0.16	Not Detected	0.65	Not Detected	
cis-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected	
Chloroform	0.16	0.19 J	0.79	0.94 J	
1,1,1-Trichloroethane	0.16	Not Detected	0.88	Not Detected	
Carbon Tetrachloride	0.16	Not Detected	1.0	Not Detected	
1,2-Dichloroethane	0.16	Not Detected	0.65	Not Detected	
Trichloroethene	0.16	Not Detected	0.86	Not Detected	
1,2-Dichloropropane	0.16	Not Detected	0.74	Not Detected	
cis-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected	
Toluene	0.16	1.6	0.61	5.8	
trans-1,3-Dichloropropene	0.16	Not Detected	0.73	Not Detected	
1,1,2-Trichloroethane	0.16	Not Detected	0.88	Not Detected	
Tetrachloroethene	0.16	Not Detected	1.1	Not Detected	
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected	
Chlorobenzene	0.16	Not Detected	0.74	Not Detected	
Ethyl Benzene	0.16	0.97	0.70	4.2	
m,p-Xylene	0.16	4.7	0.70	20	
o-Xylene	0.16	2.3	0.70	10	
Styrene	0.16	Not Detected	0.68	Not Detected	
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected	
1,3,5-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected	
1,2,4-Trimethylbenzene	0.16	Not Detected	0.79	Not Detected	
1,3-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected	
1,4-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected	
alpha-Chlorotoluene	0.16	Not Detected	0.83	Not Detected	
1,2-Dichlorobenzene	0.16	Not Detected	0.97	Not Detected	
1,2,4-Trichlorobenzene	0.80 UJ	Not Detected U J	6.0 UJ	Not Detected U J	
Hexachlorobutadiene	0.80	Not Detected	8.6	Not Detected	
Propylene	0.80	Not Detected	1.4	Not Detected	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GRIA5(07) Lab ID#: 0703524A-02A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Dil. Factor:	an an the second second		Date of Antifvisis: 4/3/07/05/07/Anti-		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
1,3-Butadiene	0.80	Not Detected	1.8	Not Detected	
Acetone	0.80	6.2	1.9	15	
Carbon Disulfide	0.80	Not Detected	2.5	Not Detected	
trans-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.80	Not Detected	2.4	Not Detected	
Hexane	0.80	4.1	2.8	14	
Tetrahydrofuran	0.80	Not Detected	2.4	Not Detected	
Cyclohexane	0.80	1.3	2.8	4.4	
1,4-Dioxane	0.80	Not Detected	2.9	Not Detected	
Bromodichloromethane	0.80	Not Detected	5.4	Not Detected	
4-Methyl-2-pentanone	0.80	Not Detected	3.3	Not Detected	
2-Hexanone	0.80	Not Detected	3.3	Not Detected	
Dibromochloromethane	0.80	Not Detected	6.8	Not Detected	
Bromoform	0.80	Not Detected	8.3	Not Detected	
4-Ethyltoluene	0.80	Not Detected	4.0	Not Detected	
Ethanol	0.80	270 E J	1.5	520 E J	
Methyl tert-butyl ether	0.80	Not Detected	2.9	Not Detected	
Heptane	0.80	1.4	3.3	5.7	
Naphthalene	0.80	Not Detected	4.2	Not Detected	
2-Methylpentane	0.80	4.5	2.8	16	
Isopentane	0.80	26	2.4	78	
2,3-Dimethylpentane	0.80	Not Detected	3.3	Not Detected	
2,2,4-Trimethylpentane	0.80	Not Detected	3.8	Not Detected	
Indene	0.80	Not Detected	3.8	Not Detected	
Indan	0.80	Not Detected	3.9	Not Detected	
Thiophene	0.80	Not Detected	2.8	Not Detected	
2-Propanol	0.80	Not Detected	2.0	Not Detected	

-E = Exceeds instrument calibration range.--

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	22 J
Methane, chlorodifluoro-	75-45-6	11%	3.0 N J
Propane, 2-methyl-	75-28-5	59%	51 N J
Butane	106-97-8	72%	50 N J
Unknown	NA	NA	4.4 J

Client Sample ID: GRIA5(07)

Lab ID#: 0703524A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name Dil Factor Dil Factor

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane	109-66-0	90%	24 N J
Cyclobutane, ethyl-	4806-61-5	53%	4.9 N J
Unknown	NA	NA	4.2 J
Benzaldehyde	100-52-7	96%	4.3 N J
Unknown	NA	NA	16 J

Container Type: 6 Liter Summa Special (100% Certified)

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	97	70-130
Toluene-d8	96	70-130

. . .

Client Sample ID: GRIA5(07)

Lab ID#: 0703524A-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil. Fastorit	1.61		Date of Collection	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.16	1.9	0.51	6.0
Container Type: 6 Liter Su	mma Special (100% Certified)			
				Method
Surrogates		%Recovery		Limits

1,2-Dichloroethane-d4	119	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: GRIA50(07) Lab ID#: 0703524A-03A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Slevanov Disfantationalista interación	1.55 gov.0225	D	Date of Collection: 3/20/07 Date of Analysist, 4/3/07 05-51: AM	
	Rot. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	<u>(uG/m3)</u>
Freon 12	0.16	0.55	0.77	2.7
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.16	0.90 ,B J	0.32	1.8 þ J
/inyl Chloride	0.16	Not Detected	0.40	Not Detected
Bromomethane	0.16	0.19 🗹 V	0.60	0.74 U
Chloroethane	0.16 UJ	Not Detected	0.41 US	Not Detected
Freon 11	0.16	0.44	0.87	2.5
1,1-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Freon 113	0.16	Not Detected	1.2	Not Detected
Methylene Chloride	0.16	0.17 J	0.54	0.58 J
1,1-Dichloroethane	0.16	Not Detected	0.63	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Chloroform	0.16 US	Not Detected	0.76 uS	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.84	Not Detected
Carbon Tetrachloride	0.16	Not Detected	0.98	Not Detected
1,2-Dichloroethane	0.16	Not Detected	0.63	Not Detected
Frichloroethene	0.16	Not Detected	0.83	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.72	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.70	Not Detected
Foluene	0.16	1.7	0.58	6.3
rans-1,3-Dichloropropene	0.16	Not Detected	0.70	Not Detected
1,1,2-Trichloroethane	0,16	Not Detected	0.84	Not Detected
Tetrachloroethene	0.16	Not Detected	1.0	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.71	Not Detected
Ethyl Benzene	0.16	0.82	0.67	3.6
n,p-Xylene	0.16	4.4	0.67	19
-Xylene	0.16	2.1	0.67	9.3
Styrene	0.16	Not Detected	0.66	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
1,3,5-Trimethylbenzene	0.16	Not Detected	0.76	Not Detected
1,2,4-Trimethylbenzene	0.16	Not Detected	0.76	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.80	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
1,2,4-Trichlorobenzene	0.78 UJ	Not Detected U J	5.8 UJ	Not Detected U
lexachlorobutadiene	0.78	Not Detected	8.3	Not Detected
Propylene	0.78	Not Detected	1.3	Not Detected

1533

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GRIA50(07)

Lab ID#: 0703524A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

	Rot. Limit		Data or collection: 5/20/07.		
Compound	(ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
I,3-Butadiene	0.78	Not Detected	1.7	Not Detected	
Acetone	0.78	6.6	1.8	16	
Carbon Disulfide	0.78	Not Detected	2.4	Not Detected	
rans-1,2-Dichloroethene	0.78	Not Detected	3.1	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.78	Not Detected	2.3	Not Detected	
Hexane	0.78	4.4	2.7	15	
Fetrahydrofuran	0.78	Not Detected	2.3	Not Detected	
Cyclohexane	0.78	1.4	2.7	4.9	
I,4-Dioxane	0.78	Not Detected	2.8	Not Detected	
Bromodichloromethane	0.78	Not Detected	5.2	Not Detected	
	0.78	Not Detected	3.2	Not Detected	
2-Hexanone	0.78	Not Detected	3.2	Not Detected	
Dibromochloromethane	0.78	Not Detected	6.6	Not Detected	
Bromoform	0.78	Not Detected	8.0	Not Detected	
1-Ethyltoluene	0.78	Not Detected	3.8	Not Detected	
Ethanol	0.78	260 \$ 5	1.5	490 E J	
Methyl tert-butyl ether	0.78	Not Detected	2.8	Not Detected	
Heptane	0.78	1.5	3.2	6.2	
Naphthalene	0.78	Not Detected	4.1	Not Detected	
2-Methylpentane	0.78	4.9	2.7	17	
sopentane	0.78	27	2.3	81	
2,3-Dimethylpentane	0.78	Not Detected	3.2	Not Detected	
2,2,4-Trimethylpentane	0.78	Not Detected	3.6	Not Detected	
ndene	0.78	Not Detected	3.7	Not Detected	
ndan	0.78	Not Detected	3.7	Not Detected	
Thiophene	0.78	Not Detected	2.7	Not Detected	
2-Propanol	0.78	Not Detected	1.9	Not Detected	

-B-- Compound present in laboratory blank greater than reporting limit, background subtraction not performed.-UJ = Non-detected compound associated with low bias in the CCV

- E = Execceds instrument calibration range --

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	26 J
Propane, 2-methyl-	75-28-5	59%	52 N J
Butane	106-97-8	72%	48 N J
Unknown	NA	NA	4.3 J
Pentane	109-66-0	9 0%	25 N J

Client Sample ID: GRIA50(07)

Lab ID#: 0703524A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name 2017 201 (040225)	Dateroine oile official (2)/0002
File Name (Series)	
Dil, Factor.	Date of Analysist 4/3/07 05/41 AM

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Pentane, 3-methyl-	9 6-14 -0	80%	5.3 N J
Hexane, 3-methyl-	589-34-4	81%	3.4 N J
Cyclotrisiloxane, hexamethyl-	541-05-9	72%	3.9 N J
Unknown	NA	NA	4.1 J
Unknown	NA	NA	8.8 J

Container Type: 6 Liter Summa Special (100% Certified)

Surrogates	, %Recovery	Method Limits
1,2-Dichloroethane-d4	110	70-130
4-Bromofluorobenzene	100	70-130
Toluene-d8	94	70-130

Client Sample ID: GRIA50(07)

Lab ID#: 0703524A-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM

File Name - Service	6040311 • • • • 1.55		Date of Gollection Date of Analysis: 4/	
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.16	1.8	0.50	5.9
Container Type: 6 Liter Summa	Special (100% Certified)			
		%Recovery		Method Limits
Surrogates				
Surrogates 1,2-Dichloroethane-d4		121		70-130

Client Sample ID: GRSG6(07)

Lab ID#: 0703524A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name Date of Collection? 3/20/07 Dil Factor: 155 Date of Collection? 3/20/07 10 AM

Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.16	0.87	0.77	4,3
Freon 114	0.16	Not Detected	1.1	Not Detected
Chloromethane	0.16	0.62 × U	0.32	1.3 ,B' U
Vinyl Chloride	0.16	Not Detected	0.40	Not Detected
Bromomethane	0.16	0.32,BV	0.60	1.2, B' U
Chloroethane	0.16 WJ	Not Detected	0.41 45	Not Detected
Freon 11	0.16	4.4	0.87	25
1,1-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Freon 113	0.16	Not Detected	1.2	Not Detected
Methylene Chloride	0.16	Not Detected	0.54	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.63	Not Detected
cis-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Chloroform	0.16	0.25	0.76	1.2
1.1.1-Trichloroethane	0.16	Not Detected	0.84	Not Detected
Carbon Tetrachloride	0.16	Not Detected	0.98	Not Detected
1,2-Dichloroethane	0.16	Not Detected	0.63	Not Detected
Trichloroethene	0.16	Not Detected	0.83	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.72	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.70	Not Detected
Toluene	0.16	2.2	0.58	8.4
trans-1,3-Dichloropropene	0.16	Not Detected	0.70	Not Detected
1,1,2-Trichloroethane	0.16	Not Detected	0.84	Not Detected
Tetrachloroethene	0.16	3.0	1.0	20
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.71	Not Detected
Ethyl Benzene	0.16	5.4	0.67	23
m,p-Xylene	0.16	31	0.67	130
o-Xylene	0.16	20	0.67	89
Styrene	0.16	Not Detected	0.66	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
1,3,5-Trimethylbenzene	0.16	Not Detected	0.76	Not Detected
1,2,4-Trimethylbenzene	0.16	0.24	0.76	1.2
1,3-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.80	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
1,2,4-Trichlorobenzene	0.78 UJ	Not Detected U J	5.8 UJ	Not Detected U
Hexachlorobutadiene	0.78	Not Detected	8.3	Not Detected
Propylene	0.78	Not Detected	1.3	Not Detected

Client Sample ID: GRSG6(07) Lab ID#: 0703524A-05A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Date of collection, 3/20/07

DIII Factor: Filling T	55 00 (55 00)		Date of Analysis: 4	ISION OF DAM
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	0.78	Not Detected	1.7	Not Detected
Acetone	0.78	7.4	1.8	17
Carbon Disulfide	0.78	Not Detected	2.4	Not Detected
trans-1,2-Dichloroethene	0.78	Not Detected	3.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.78	Not Detected	2.3	Not Detected
Hexane	0.78	2.6	2.7	9.3
Tetrahydrofuran	0.78	Not Detected	2.3	Not Detected
Cyclohexane	0.78	0.82	2.7	2.8
1,4-Dioxane	0.78	Not Detected	2.8	Not Detected
Bromodichloromethane	0.78	Not Detected	5.2	Not Detected
4-Methyl-2-pentanone	0.78	Not Detected	3.2	Not Detected
2-Hexanone	0.78	Not Detected	3.2	Not Detected
Dibromochloromethane	0.78	Not Detected	6.6	Not Detected
Bromoform	0.78	Not Detected	8.0	Not Detected
4-Ethyltoluene	0.78	Not Detected	3.8	Not Detected
Ethanol	0.78	180 \$ 5	1.5	330 E J
Methyl tert-butyl ether	0.78	Not Detected	2.8	Not Detected
Heptane	0.78	1.0	3.2	4.1
Naphthalene	0.78	Not Detected	4.1	Not Detected
2-Methylpentane	0.78	3.0	2.7	10
Isopentane	0.78	29	2.3	87
2,3-Dimethylpentane	0.78	Not Detected	3.2	Not Detected
2,2,4-Trimethylpentane	0.78	Not Detected	3.6	Not Detected
Indene	0.78	Not Detected	3.7	Not Detected
Indan	0.78	Not Detected	3.7	Not Detected
Thiophene	0.78	Not Detected	2.7	Not Detected
2-Propanol	0.78	Not Detected	1.9	Not Detected

— B = Compound precent in laboratory blank greater than reporting limit, background subtraction not performed.
UJ = Non-detected compound associated with low bias in the CCV

-E = Excoods instrument calibration range.

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Unknown	NA	NA	19 J
Unknown	NA	NA	20 J
Methane, chlorodifluoro-	75-45-6	83%	6.3 N J
Propane, 2-methyl-	75-28-5	59%	36 N J
Butane	106-97-8	80%	35 N J

Client Sample ID: GRSG6(07)

Lab ID#: 0703524A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: 3/20/07 S. Date of Collection: 3/20/07 S. S. Date of Analysis: 4/3/07/07 10 AM

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (p <u>pbv)</u>
Acetaldehyde	75-07-0	9.0%	3.6 N J
Pentane	109 - 66-0	90%	15 N J
Pentane, 3-methyl-	96-14-0	64%	3.6 N J
Octadecane, 2-methyl-	1560-88-9	64%	2.9 N J
Dodecane, 2,7,10-trimethyl-	74645-98-0	90%	6.3 N J

Container Type: 6 Liter Summa Special (100% Certified)

		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	113	70-130
4-Bromofluorobenzene	104	70-130
Toluene-d8	96	70-130

Client Sample ID: GRSG6(07)

Lab ID#: 0703524A-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	Rpt. Limit	Amount	Date of Analysis: 4/ Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Benzene	0.16	1.3	0.50	4.0

%Recovery	
120	70-130
97	70-130
112	70-130
	120 97

Client Sample ID: GRSG6(07)

Lab ID#: 0703524B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1945

File Nanto Dill Factori y		ollection:=3/20/07 T nalvsisi 3/24/07 12:47 PM
Compound	Rpt. Limit (%)	Amount (%)
	0.078	Not Detected

Container Type: 6 Liter Summa Special (100% Certified)

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GRIA6(07) Lab ID#: 0703524A-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

4. L. I

-Fild Name	en 1992 (* 1983)		Date of Collection:	3/20107
Dil. Factor:	152		Date of Analysis: 4	3/07 04:21 AM
	Rot. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.15	0.56	0.75	2.8
Freon 114	0.15	Not Detected	1.1	Not Detected
Chloromethane	0.15	0.74 R U	0.31	1.5 b, U
Vinyl Chloride	0.15	Not Detected	0.39	Not Detected
Bromomethane	0.15	0.20 b V	0.59	0.76 B V
Chloroethane	0.15 UJ	Not Detected	0.40 10	Not Detected
Freon 11	0.15	0.39	0.85	2.2
1,1-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Freon 113	0.15	Not Detected	1.2	Not Detected
Methylene Chloride	0.15	Not Detected	0.53	Not Detected
1,1-Dichloroethane	0.15	Not Detected	0.62	Not Detected
cis-1,2-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Chloroform	0.15	0.30	0.74	1.5
1,1,1-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Carbon Tetrachloride	0.15	Not Detected	0.96	Not Detected
1,2-Dichloroethane	0.15	Not Detected	0.62	Not Detected
Trichloroethene	0.15	Not Detected	0.82	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.70	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
Toluene	0.15	1.5	0.57	5.6
trans-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
1,1,2-Trichloroethane	0.15	Not Detected	0.83	Not Detected

0.15	Not Detected	1.0	Not Detected
0.15	Not Detected	1.2	Not Detected
0.15	Not Detected	0.70	Not Detected
0.15	6.8	0.66	29
0.15	35	0.66	150
0.15	19	0.66	84
0.15	Not Detected	0.65	Not Detected
0.15	Not Detected	1.0	Not Detected
0.15	Not Detected	0.75	Not Detected
0.15	Not Detected	0.75	Not Detected
0.15	Not Detected	0.91	Not Detected
0.15	Not Detected	0.91	Not Detected
0.15	Not Detected	0.79	Not Detected
0.15	Not Detected	0.91	Not Detected
0.76 u.s	Not Detected U J	5.6 ЦГ	Not Detected U J
0.76	Not Detected	8.1	Not Detected
0.76	Not Detected	1.3	Not Detected
	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.15 Not Detected 0.15 Not Detected 0.15 6.8 0.15 35 0.15 19 0.15 Not Detected 0.76 Not Detected U J	0.15 Not Detected 1.2 0.15 Not Detected 0.70 0.15 6.8 0.66 0.15 35 0.66 0.15 19 0.66 0.15 Not Detected 0.65 0.15 Not Detected 1.0 0.15 Not Detected 0.75 0.15 Not Detected 0.75 0.15 Not Detected 0.75 0.15 Not Detected 0.75 0.15 Not Detected 0.91 0.15 Not Detected 0.91 0.15 Not Detected 0.79 0.15 Not Detected 0.91 0.15 Not Detected 0.91 0.15 Not Detected 0.91 0.76 Not Detected 0.81

Client Sample ID: GRIA6(07) Lab ID#: 0703524A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

lie Name: 200	AUG02281		Date of Collection:	STATE SALE
Dill Factory in a state of the	1,52%		Date of Analysis: 4	WY YOR STRATEGIC
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	0.76	Not Detected	1.7	Not Detected
Acetone	0.76	4.6	1.8	11
Carbon Disulfide	0.76	Not Detected	2.4	Not Detected
trans-1,2-Dichloroethene	0.76	Not Detected	3.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.76	Not Detected	2.2	Not Detected
Hexane	0.76	3.7	2.7	13
Tetrahydrofuran	0.76	Not Detected	2.2	Not Detected
Cyclohexane	0.76	1.2	2.6	4.0
1,4-Dioxane	0.76	Not Detected	2.7	Not Detected
Bromodichloromethane	0.76	Not Detected	5.1	Not Detected
4-Methyl-2-pentanone	0.76	Not Detected	3.1	Not Detected
2-Hexanone	0.76	Not Detected	3.1	Not Detected
Dibromochloromethane	0.76	Not Detected	6.5	Not Detected
Bromoform	0.76	Not Detected	7.8	Not Detected
4-Ethyltoluene	0.76	Not Detected	3.7	Not Detected
Ethanol	0.76	280 E J	1.4	530 E J
Methyl tert-butyl ether	0.76	Not Detected	2.7	Not Detected
Heptane	0.76	1.2	3.1	5.1
Naphthalene	0.76	Not Detected	4.0	Not Detected
2-Methylpentane	0.76	4.4	2.7	16
Isopentane	0.76	34	2.2	99
2,3-Dimethylpentane	0.76	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.76	Not Detected	3.6	Not Detected
Indene	0.76	Not Detected	3.6	Not Detected
Indan	0.76	Not Detected	3.7	Not Detected
Thiophene	0.76	Not Detected	2.6	Not Detected
2-Propanol	0.76	Not Detected	1.9	Not Detected

----B ~ Compound present in laboratory blank greater than reporting limit, background subtraction not performed: UJ = Non-detected compound associated with low bias in the CCV

--- E = Exceeds instrument calibration range.-

TENTATIVELY IDENTIFIED COMPOUNDS

CAS Number	Match Quality	Amount (ppbv)
NA	NA	21 J
75-45-6	10%	9.9 N J
75-28-5	9.0%	49 N J
NA	NA	4.1 J
106-97-8	72%	45 N J
	NA 75-45-6 75-28-5 NA	NA NA 75-45-6 10% 75-28-5 9.0% NA NA

Client Sample ID: GRIA6(07)

Lab ID#: 0703524A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

BIG NAME SHARE			
		Dacionolice	
Dil Factor		Date of Analysis:	

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Acetaldehyde	75-07-0	86%	5.2 N J
Pentane	109-66-0	90%	22 N J
Cyclopropane, propyl-	2415-72-7	53%	4.4 N J
2-Pentene, 2,3-dimethyl-	10574 - 37-5	81%	2.7 N J
Unknown	NA	NA	3.8 J

Container Type: 6 Liter Summa Special (100% Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	70-130
4-Bromofluorobenzene	105	70-130
Toluene-d8	94	70-130

Client Sample ID: GRIA6(07)

Lab ID#: 0703524A-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM

Dil Factor, State	1.52 ····		Date of Collectione Date of Analysis, 4/	
Compound	Rot. Limit	Amount	Rpt. Limit	Amount
Compound Benzene	(ppbv) 0.15	(ppbv) 1.6	(uG/m3) 0.48	<u>(uG/m3)</u> 5.3

Container Type: 6 Liter Summa Special (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	119	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	111	70-130

aderes in

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: GRAMBUP(07) Lab ID#: 0703524A-06A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name."	1 m 3D40228		Date of Collection: Date of Analysis:	
Cillendean, seriestrop, and series		Amount		
Compound	Rpt. Limit	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Compound	(ppbv)			
Freon 12	0.15	0.53	0.72	2.6
Freon 114	0.15	Not Detected	1.0	Not Detected
Chloromethane	0.15	0.59 ,B V	0.30	1.2, B U
Vinyl Chloride	0.15	Not Detected	0.37	Not Detected
Bromomethane	0.15	0.21 B U	0.57	0.80 0
Chioroethane	0.15 US	Not Detected	0.38 uS	Not Detected
Freon 11	0.15	0.28	0.82	1.6
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
Freon 113	0.15	Not Detected	1.1	Not Detected
Methylene Chloride	0.15	Not Detected	0.51	Not Detected
1,1-Dichloroethane	0.15	Not Detected	0.59	Not Detected
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
Chloroform	0.15	Not Detected	0.71	Not Detected
1,1,1-Trichloroethane	0.15	Not Detected	0.80	Not Detected
Carbon Tetrachloride	0.15	Not Detected	0.92	Not Detected
1,2-Dichloroethane	0.15	Not Detected	0.59	Not Detected
Trichloroethene	0.15	Not Detected	0.78	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.67	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.66	Not Detected
Toluene	0.15	0.34	0.55	1.3
trans-1,3-Dichloropropene	0.15	Not Detected	0.66	Not Detected
1,1,2-Trichloroethane	0.15	Not Detected	0.80	Not Detected
Tetrachloroethene	0.15	Not Detected	0.99	Not Detected
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.1	Not Detected
Chlorobenzene	0.15	Not Detected	0.67	Not Detected
Ethyl Benzene	0.15	Not Detected	0.63	Not Detected
m,p-Xylene	0.15	Not Detected	0.63	Not Detected
o-Xylene	0.15	Not Detected	0.63	Not Detected
Styrene	0.15	Not Detected	0.62	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
1,3,5-Trimethylbenzene	0.15	Not Detected	0.72	Not Detected
1,2,4-Trimethylbenzene	0.15	Not Detected	0.72	Not Detected
1,3-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
alpha-Chlorotoluene	0.15	Not Detected	0.76	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
1,2,4-Trichlorobenzene	0.73 UJ	Not Detected U J	5.4 UJ	Not Detected U J
Hexachlorobutadiene	0.73	Not Detected	7.8	Not Detected
Propylene	0.73	Not Detected	1.2	Not Detected

Client Sample ID: GRAMBUP(07)

Lab ID#: 0703524A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

in the second second second second

FileNenda State (1996) Bill Ferior, Fa ll	g020228.4 1.46		Date of Collection Date of Analysis	
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	0.73	Not Detected	1.6	Not Detected
Acetone	0.73	6.9	1.7	16
Carbon Disulfide	0.73	Not Detected	2.3	Not Detected
trans-1,2-Dichloroethene	0.73	Not Detected	2.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.73	1.3	2.2	3.7
Hexane	0.73	Not Detected	2.6	Not Detected
Tetrahydrofuran	0.73	Not Detected	2.2	Not Detected
Cyclohexane	0.73	Not Detected	2.5	Not Detected
1,4-Dioxane	0.73	Not Detected	2.6	Not Detected
Bromodichloromethane	0.73	Not Detected	4.9	Not Detected
4-Methyl-2-pentanone	0.73	Not Detected	3.0	Not Detected
2-Hexanone	0.73	Not Detected	3.0	Not Detected
Dibromochloromethane	0.73	Not Detected	6.2	Not Detected
Bromoform	0.73	Not Detected	7.5	Not Detected
4-Ethyltoluene	0.73	Not Detected	3.6	Not Detected
Ethanol	0.73	6.4	1.4	12
Methyl tert-butyl ether	0.73	Not Detected	2.6	Not Detected
Heptane	0.73	Not Detected	3.0	Not Detected
Naphthalene	0.73	Not Detected	3.8	Not Detected
2-Methylpentane	0.73	Not Detected	2.6	Not Detected
Isopentane	0.73	Not Detected	2.2	Not Detected
2,3-Dimethylpentane	0.73	Not Detected	3.0	Not Detected
2,2,4-Trimethylpentane	0.73	Not Detected	3.4	Not Detected
Indene	0.73	Not Detected	3.5	Not Detected
Indan	0.73	Not Detected	3.5	Not Detected
Thiophene	0.73	Not Detected	2.5	Not Detected
2-Propanol	0.73	Not Detected	1.8	Not Detected

-- B = Compound present in laboratory blank greater than reporting limit, background subtraction not performed. UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
Acetaldehyde	75-07-0	86%	3.1 N J
Unknown	NA	NA	2.0 J
Tridecane	629-50-5	86%	5.7 N J
Unknown	NA	NA	3.9 J
Cyclohexane, isothiocyanato-	1122-82-3	53%	1.9 N J

Client Sample ID: GRAMBUP(07)

Lab ID#: 0703524A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

FileName: 1997	cit/10228 Date of Collection: 3/20/07	
	Date of Analysis: 4/3/07/08:13 AM	
Dill Factor		

Container Type: 6 Liter Summa Special (100% Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
4-Bromofluorobenzene	103	70-130	
Toluene-d8	97	70-130	

Client Sample ID: GRAMBUP(07)

Lab ID#: 0703524A-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM

	6040316		Date of Collection Date of Analysis , 4/	
Compound	1746 202 Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Benzene	0.15	0.17	0.47	0.54
Container Type: 6 Liter Summa	Special (100% Certified)			Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		121		70-130
Toluene-d8		98		70-130
4-Bromofluorobenzene		112		70-130

ENSR

Appendix C

NYSDEC Category B Laboratory Deliverable Package (CD-ROM)

ENSR

Appendix D

DUSR

Data Usability Summary Report

DATE: April 16, 2007

TO: Mr. James Edwards The RETEC Group, Inc. - Merged with ENSR in 2007 1001 West Seneca Street, Suite 204 Ithaca, NY 14850

- FROM: Gregory A. Malzone Data Validator
- SUBJECT: Orange and Rockland O & R/Port Jervis 28 Pike Street March 20, 2007 Air Sampling Event
- Data Validation: Air Toxics LTD Work Orders: 0703524A and 0703524B

Overview

Air Toxics LTD. (ATL) work orders 0703524A and 0703524B contained two (2) soil gas, three (3) indoor air, and one (1) ambient air samples collected during the March 20, 2007 air sampling event at the O & R/Port Jervis 28 Pike Street site. A sample submittal summary is attached in Appendix A of this report.

Air Toxics LTD., 180 Blue Ravine Road, Suite B, Folsom, CA 95630 analyzed the samples for Volatile Organic Compounds (VOCs) using USEPA Compendium Method TO-15. Benzene was determined using GC/MS in the Selected Ion Monitoring (SIM) mode because a problem was encountered with ATL's low-level instrument establishing a curve for benzene. The helium analyses for the soil gas samples were performed using modified ASTM method D1945.

Summary

Data quality for this organic analysis was evaluated by reviewing the following parameters: holding times, GC/MS tuning and performance, internal standards, initial and continuing calibrations, continuing calibration verifications, surrogate recoveries, laboratory control standards (LCSs), laboratory blanks, laboratory duplicates, compound identification, and compound quantitation.

The Form 1s attached as Appendix A were revised to include the data validation qualifiers. All USEPA-defined data qualifiers and changes made by the data evaluators were added in red ink. A glossary of data qualifier definitions is included as Attachment 1. All samples were analyzed successfully and the results are useable with some qualification. Completeness of 100% was achieved for this data set.

Each specific issue of concern with respect to data usability is addressed below. Support documentation for data qualifications was included in Appendix B. Specific page references were provided in each item header for the supporting documentation.

Volatile Organic Compounds

- a. Chain-of-Custody (COC) Issues Canister ID (pp. 0881): The canister ID numbers for samples GRIA6(07) and GRSG5(07) were incorrectly recorded on the chain-of-custody record. The ID numbers were corrected on the COC and in the raw data records.
- b. Blank Contamination (pp. 0366-0367): Chloromethane and bromomethane were detected in the method blank (0703524-07A) at 0.10 ppbv and 0.21 ppbv, respectively. All samples were affected. All positive bromomethane results were less than five times the blank level. The "B" qualifiers appended to the bromomethane results by ATL were changed to "U" qualifiers, as undetected, because of laboratory contamination. Chloromethane results that were less than five times the blank level were also qualified "U," as undetected, because of laboratory contamination. The chloromethane results for samples GRIA5(07) and GRIA50(07) were greater than five times the blank level, taking into account the dilutions. The chloromethane results for samples GRIA5(07) and GRIA50(07) were qualified "J," as estimated concentrations, because of high bias due to laboratory contamination.
- c. Calibrations (pp. 0389-0399, 0715-0716, 0717-0718): The March 20, 2007 initial calibration relative standard deviations (RSDs) for chloroethane and methylene chloride were greater than the 30% specification limit on instrument msd.g. All samples were affected. All results reported for chloroethane were nondetect. Validation action was not required in response to the calibration nonconformance. The positive methylene chloride results for samples GRIA5(07) and GRIA50(07)

Client Work Product Private and Confidential were qualified "J," as estimated concentrations, because of the calibration nonconformance. The direction of bias cannot be determined.

The continuing calibration verification (CCV) percent difference (%D) for 1,2,4-trichlorobenzene was less than the lower quality control limit of -30% on April 2, 2007 at 10:15 hrs. on instrument msd.g. In addition, the percent recovery for the CCV was less than the lower quality control limit for 1,2,4-trichlorobenzene. All samples were affected. All 1,2,4-trichlorobenzene results were nondetect and were qualified "UJ," as estimates, because of low instrument bias.

- d. Laboratory Control Sample Recoveries (pp. 0748-0751): The LCS (0703524A-09A) recoveries for chloroethane and 1, 2, 4-trichlorobenzene were less than the lower quality control limit of 70%, but greater than 30%. All samples were affected. All results for chloroethane and 1, 2, 4trichlorobenzene were nondetect and were qualified "UJ," as estimates, because the low method bias.
- e. Calibration Range Exceeded (pp. Form Is): The following samples had analyte concentrations that exceeded the calibration range: GRIA6(07) ethanol, GRIA5(07) ethanol, GRIA50(07) ethanol, and GRSG6(07) ethanol. The "E" qualifiers appended to the results by ATL were changed to "J" qualifiers, as estimated concentrations. The direction of bias cannot be determined.

Helium Analysis

No data quality issues were noted. No data qualifications were required.

Field Duplicates

Field Duplicate Precision (pp.0096-0098, 0135, 0160-0162, 0198): Samples GRIA5(07) and GRIA50(07) were the primary and field duplicate samples collected for this sampling event. No data qualifications are required based on the relative percent difference (RPD) of field duplicate sample data alone. However, the positive results are presented in the table below to evaluate precision and sample homogeneity. All RPDs were less than 25%. Overall, laboratory and field precision were acceptable.

The difference between the primary and field duplicate results for chloroform for samples GRIA5(07) and GRIA50(07) was greater than the reporting limit. The chloroform results for samples GRIA5(07) and GRIA50(07) were qualified "J/UJ," as estimates, because of poor field sampling and/or laboratory precision and/or sample heterogeneity, based on professional judgment.

Field Duplicate Comparison 28 Pike Street Property

Analyte	GRIA5(07) (ppbv)	GRIA50(07) (ppbv)	%RPD	Qualifications
Freon 12	0.57	0.55	4	None
Chloromethane	0.92 J	0.90 J	2	None
Freon 11	0.43	0.44	2	None
Methylene Chloride	0.18 J	0.17 J	6	None
Benzene	1.9	1.8	5	None
Chloroform	0.19 J	0.16 UJ	NC	J/J
Toluene	1.6	1.7	6	None

Client Work Product Private and Confidentia

Merged with ENSR in 200

Field Duplicate Comparison (Continued) 28 Pike Street Property

Analyte	GRIA5(07) (ppbv)	GRIA50(07) (ppbv)	%RPD	Qualifications
Ethylbenzene	0.97	0.82	17	None
m,p-Xylene	4.7	4.4	7	None
o-Xylene	2.3	2.1	9	None
Acetone	6.2	6.6	6	None
Hexane	4.1	4.4	7	None
Cyclohexane	1.3	1.4	7	None
Ethanol	270 J	260 J	4	None
Heptane	1.4	1.5	7	None
2-Methylpentane	4.5	4.9	9	None
Isopentane	26	27	4	None

<u>Notes</u>

The laboratory indicated that no second source (i.e., independently traceable) standard was commercially available for propylene, 2-methylpentane, isopentane, 2,3-dimethylpentane, 2,2,4-trimethylpentane, indene, indan, and thiophene. These analytes were not spiked into the LCS sample.

Tentatively Identified Compounds (TICs) were identified by the laboratory and are included on the Form 1s.

The data were reviewed according to USEPA Compendium Method TO-15, Determination of VOCs in Air Collected in Specially Prepared-Canisters and Analyzed by Gas Chromatography / Mass Spectrometry (GC/MS), January 1999, and with reference to USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, document number EPA 540/R-99/008.

Attachments

Glossary of USEPA-defined data qualifier codes.

Appendices

- 1.0 Appendix A Data Summary
- 2.0 Appendix B Support Documentation

Attachment 1

Glossary of Data Qualifier Codes

Glossary of Data Qualifier Codes

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
- NJ The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.
- J The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximated and may be inaccurate or imprecise.

ENSR ALCOM

Appendix A

Data Summary Tables

Appendix B

Support Documentation

WORK ORDER #: 0703524A

Work Order Summary

CLIENT:	Mr. Jesse Lloyd The RETEC Group, Inc. 1001 W. Seneca St. Suite 204 Ithaca, NY 14850	BILL TO:	Mr. Scott Hauswirth The RETEC Group, Inc. 1001 W. Seneca St. Suite 204 Ithaca, NY 14850
PHONE:	607-277-5716	P.O. #	
FAX:		PROJECT #	ORAN2 28 PIKE STREET
DATE RECEIVED: DATE COMPLETED:	03/22/2007 04/04/2007	CONTACT:	Kelly Buettner

FRACTION #	NAME	TEST	RECEIPT <u>VAC</u> ./PRES.
01A	GRIA6(07)	Modified TO-15	3.5 "Hg
01B	GRIA6(07)	Modified TO-15	3.5 "Hg
01BB	GRIA6(07) Duplicate	Modified TO-15	3.5 "Hg
02A	GRIA5(07)	Modified TO-15	5.0 "Hg
02B	GRIA5(07)	Modified TO-15	5.0 "Hg
03A	GRIA50(07)	Modified TO-15	4.0 "Hg
03B	GRIA50(07)	Modified TO-15	4.0 "Hg
04A	GRSG5(07)	Modified TO-15	4.5 "Hg
04B	GRSG5(07)	Modified TO-15	4.5 "Hg
05A	GRSG6(07)	Modified TO-15	4.0 "Hg
05B	GRSG6(07)	Modified TO-15	4.0 "Hg
06A	GRAMBUP(07)	Modified TO-15	2.5 "Hg
06B	GRAMBUP(07)	Modified TO-15	2.5 "Hg
07A	Lab Blank	Modified TO-15	NA
07B	Lab Blank	Modified TO-15	NA
08A	CCV	Modified TO-15	NA
08B	CCV	Modified TO-15	NA

Continued on next page

WORK ORDER #: 0703524A

Work Order Summary

CLIENT:	Mr. Jesse Lloyd The RETEC Group, Inc. 1001 W. Seneca St. Suite 204 Ithaca, NY 14850	BILL TO:	Mr. Scott Hauswirth The RETEC Group, Inc. 1001 W. Seneca St. Suite 204 Ithaca, NY 14850
PHONE:	607-277-5716	P.O. #	
FAX:		PROJECT #	ORAN2 28 PIKE STREET
DATE RECEIVED:	03/22/2007	CONTACT:	Kelly Buettner
DATE COMPLETED:	04/04/2007		

FRACTION #	NAME	<u>TEST</u>	RECEIPT <u>VAC./PRES</u> ,
09A	LCS	Modified TO-15	NA
09B	LCS	Modified TO-15	NA

Sinda d. Fruman

DATE: <u>04/06/07</u>

Laboratory Director

CERTIFIED BY:

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 The RETEC Group, Inc. Workorder# 0703524A

Six 6 Liter Summa Special (100% Certified) samples were received on March 22, 2007. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

Method modifications taken to run these samples are summarized in the below table. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications			
ICAL %RSD acceptance criteria +- 30% RSD with 2 compounds allowed out to < 40% RSD		30% RSD with 4 compounds allowed out to < 40% RSD			
Daily Calibration	+- 30% Difference	= 30% Difference with four allowed out up to </=40%.;<br flag and narrate outliers			
Blank and standards	Zero air	Nitrogen			
Method Detection Limit Follow 40CFR Pt.136 App. B		The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases			
Sample collection media Summa canister		ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request			

Receiving Notes

The Chain of Custody (COC) information for sample GRIA5(07) did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

Analytical Notes

The results for each sample in this report were acquired from two separate data files.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the

bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

rl-File was requantified for the purpose of reissue

The RETEC Group, Inc. 1301 W. Saikas Suber Son 2014 - Uraa (607) 277-6113 Thore - 1307) 277-6307 Far www.rzecoom
0400
č
Chain of Custody Record

0703524		- 10 365 ₅	esaion c		-31.01-5	.05.5	-31.0-5.5 -28.5 -4.5	76.55	-31.01,55.5		X CALL RETEC	Prior to	bilution *		ł tsbarstory:	Sentpia Receict	Total # Container Received?	200 Steas Irriad? Reserved Contoners Intac?	
	The RETEC Group, inc. 1311 W.Sanza Suet. S	EV EV	Ant of the	AL CO	1 3.54		× 4.50 m	X 40 0 4 1	2 . Suffe			-			 Sample Duatodian Remarka (Completed By Leboratory)	24/CC Level Tume:pund	lerel : :1 Routine		CUSTODY SEAL INTAGTY
•	ecord Nº 0400	22 44ES EQUARD	8 か か よ	STL Ne Contr Land Number 2	HOC DESCENSION	12953	0825- 1203 1587 - 10156 V	1202 12081							Rozivad by: (Signeture) Date: 1 : ne	••	Program of Signatures Days I The The Story of Signatures		BACTAGO ONDA
	stody F	Project Narrie 28 7.14 E JT. EKT Project Number OVAN Bend Provint JANES EQUARDS Sampler (Frint Neime) J Addresse Local WEST JEWERA Sampler (Print Neimer) J	578 204 Itures NY 14850	Phone: Lon: Lon: <thlon:< thr=""> Lon: Lon:</thlon:<>		GRIAS (07)	XHGRIASOLOZ)	566 (07)	MAGRAMBUPCO3)						Zeinquished by (Signature) Roz	Zach		Ralicquished by: (5g-at-s)	White: Lab Copy Yellow, P.M. Copy Fir of Fight Lap

	d By: MA	Date: 3 220-	7 Giv	ven To: De File to folder
			,	iating this Sample Discrepancy Report
		ected: 0703524		
	orkorder(s) aff	<u>~ ~ ^</u>		
S	ample(s) affect	ed: <u>QZT</u>	<u></u>	
	mple Receipt D tes of Lab Narr		<u>r Page of</u>	Sample Receipt Confirmation and in Receiving
		rly relinquished / received. filled out in ink.		Flow controller used - canister samples received ambient or under pressure.
		labels do not match the COC.		No brass cap on canister (do not narrate).
	Samples rece	ived at wrong temperature (≠ 4±2 °C circle one) was present. A temp. bla	ル	VOA vial for RSK-175 analysis received with headspace bubble <5mm (<i>do not narrate</i>).
		present (circle one).	ă X	Other (describe below).
	broken, howe	iner (Tube/VOA vial) was received ver sample was intact.		
escri	ibe the Discrer	aner: Can # UNCOMO	$c \neq ($	should be 9583)
		In Receiving Notes of Lab Narrati		
_		received with samples. od(s) is not specified /	_	Canister leaked to ambient during pressurization.
Ĺ		ecified (circle one) on the COC.		Tedlar bag / canister received emitting a strong or sample can / cannot (circle one) be analyzed.
		mples on the COC does not match the notes that were received.	ne 🗆	Canister sample received with a vacuum difference >7.0"Hg between the receipt vac. and the final vacuum difference indication and the final vacuum difference indication of the same second difference in
		e received expired.	_	reported on the COC, indicating loss of vacuum. Canister sample received at >15"Hg (<i>not</i> identified
		. I time a in mot doou mented for oower "		
	Sampling date <u>any</u> samples (e / time is not documented for <u>some</u> / circle one).	,	as a Trip/Field Blank).
_	any samples (Sample receiv	circle one). /ed with discernable volume of H ₂ O i	in 🗆	as a Trip/Field Blank). Trip Blank received at low vacuum (< 25"Hg).
	any samples (Sample receive the Tedlar Bay Sample conta	circle one). /ed with discernable volume of H ₂ O i g. iner (Tube/VOA vial/DNPH Bottle, et	in 🗆	as a Trip/Field Blank). Trip Blank received at low vacuum (< 25"Hg). Tedlar Bag for Sulfur analysis has metal fitting. Incorrect sampling media / container for analysis
	any samples (Sample receiv the Tedlar Bay Sample conta was received	circle one). /ed with discernable volume of H ₂ O in g. iner (Tube/VOA vial/DNPH Bottle, et broken / leaking (circle one). /SK-175 analysis received with	in 🗆	as a Trip/Field Blank). Trip Blank received at low vacuum (< 25"Hg). Tedlar Bag for Sulfur analysis has metal fitting. Incorrect sampling media / container for analysis requested.
	any samples (Sample received Sample conta was received VOA vial for R headspace bu	circle one). /ed with discernable volume of H ₂ O is g. iner (Tube/VOA vial/DNPH Bottle, etc broken / leaking (circle one). SK-175 analysis received with bble >5mm. SK-175 CO ₂ analysis received	, D in D ic.) D	as a Trip/Field Blank). Trip Blank received at low vacuum (< 25"Hg). Tedlar Bag for Sulfur analysis has metal fitting. Incorrect sampling media / container for analysis requested. Custody Seal on the outside of the container was
	any samples (Sample received Sample conta was received VOA vial for R headspace bu Samples for R preserved with Tedlar Bag received	circle one). /ed with discernable volume of H ₂ O is g. iner (Tube/VOA vial/DNPH Bottle, etc broken / leaking (circle one). SK-175 analysis received with bble >5mm. SK-175 CO ₂ analysis received	, , , , , , , , , , , , , , , , , , ,	as a Trip/Field Blank). Trip Blank received at low vacuum (< 25"Hg). Tedlar Bag for Sulfur analysis has metal fitting. Incorrect sampling media / container for analysis requested. Custody Seal on the outside of the container was broken / improperly placed (circle one).

Revised 10/11/06

Client Sample ID: Lab Blank Lab ID#: 0703524A-07A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name Dil. Factor: s	040206 a 1.00		Date of Collection N Date of Analysis: 4/2	207 1253 PM
	Rot. Limit	Amount	Rpt. Limit	Amount

Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.10	Not Detected	0.49	Not Detected
Freon 114	0.10	Not Detected	0.70	Not Detected
Chloromethane	0.10	0.10	0.21	0.21
Vinyl Chloride	0.10	Not Detected	0.26	Not Detected
Bromomethane	0.10	0.21	0.39	0.81
Chloroethane	0.10	Not Detected	0.26	Not Detected
Freon 11	0.10	Not Detected	0.56	Not Detected
1,1-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Freon 113	0.10	Not Detected	0.77	Not Detected
Methylene Chloride	0.10	Not Detected	0.35	Not Detected
1,1-Dichloroethane	0.10	Not Detected	0.40	Not Detected
cis-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
1,1,1-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Carbon Tetrachloride	0.10	Not Detected	0.63	Not Detected
1,2-Dichloroethane	0.10	Not Detected	0.40	Not Detected
Trichloroethene	0.10	Not Detected	0.54	Not Detected
1,2-Dichloropropane	0.10	Not Detected	0.46	Not Detected
cis-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
Toluene	0.10	Not Detected	0.38	Not Detected
trans-1,3-Dichloropropene	0.10	Not Detected	0.45	Not Detected
1,1,2-Trichloroethane	0.10	Not Detected	0.54	Not Detected
Tetrachloroethene	0.10	Not Detected	0.68	Not Detected
1,2-Dibromoethane (EDB)	0.10	Not Detected	0.77	Not Detected
Chlorobenzene	0.10	Not Detected	0.46	Not Detected
Ethyl Benzene	0.10	Not Detected	0.43	Not Detected
m,p-Xylene	0.10	Not Detected	0.43	Not Detected
o-Xylene	0.10	Not Detected	0.43	Not Detected
Styrene	0.10	Not Detected	0.42	Not Detected
1,1,2,2-Tetrachloroethane	0.10	Not Detected	0.69	Not Detected
1,3,5-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,2,4-Trimethylbenzene	0.10	Not Detected	0.49	Not Detected
1,3-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,4-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
alpha-Chlorotoluene	0.10	Not Detected	0.52	Not Detected
1,2-Dichlorobenzene	0.10	Not Detected	0.60	Not Detected
1,2,4-Trichlorobenzene	0.50	Not Detected U J	3.7	Not Detected U J
Hexachlorobutadiene	0.50	Not Detected	5.3	Not Detected
Propylene	0.50	Not Detected	0.86	Not Detected

Client Sample ID: Lab Blank Lab ID#: 0703524A-07A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Flic Name, Purchage, and Dir Factore State	BOAGADO SA SA		Date of Analysis: 4	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected

Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Acetone	0.50	Not Detected	1.2	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
1,4-Dioxane	0.50	Not Detected	1.8	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
2-Hexanone	0.50	Not Detected	2.0	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Ethanol	0.50	Not Detected	0.94	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Naphthalene	0.50	Not Detected	2.6	Not Detected
2-Methylpentane	0.50	Not Detected	1.8	Not Detected
Isopentane	0.50	Not Detected	1.5	Not Detected
2,3-Dimethylpentane	0.50	Not Detected	2.0	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Indene	0.50	Not Detected	2.4	Not Detected
Indan	0.50	Not Detected	2.4	Not Detected
Thiophene	0.50	Not Detected	1.7	Not Detected
2-Propanol	0.50	Not Detected	1.2	Not Detected

 $\ensuremath{\mathsf{UJ}}$ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount (ppbv)
None Identified			
Container Type: NA - Not Applicable			

Surray and an	0/ D	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130

Client Sample ID: Lab Blank Lab ID#: 0703524A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Elle Name (1997) Dil Hactor (1997) Martin Martin (1997)		lection: NA alysis: 4/2/07 12/03 PM
Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	98	70-130
Toluene-d8	95	70-130

INITIAL CALIBRATION DATA

End Cal Date Quant Method Origin	: : :	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD Disabled 3.50
Integrator		HP RTE
Method file		/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

Calibration File Names:

Level 5: /chem/msdg.i/20Mar2007.b/g032007.d Level 6: /chem/msdg.i/20Mar2007.b/g032008.d Level 7: /chem/msdg.i/20Mar2007.b/g032009.d Level 8: /chem/msdg.i/20Mar2007.b/g032010.d Level 9: /chem/msdg.i/21Feb2007.b/g032013.d Level 10: /chem/msdg.i/20Mar2007.b/g032013.d Level 12: /chem/msdg.i/20Mar2007.b/g032004.d

ompound	0.10000 Level 5	Level 6	Level 7	Level 8	Level 9	Level 10)	RRF	% RSD
	 5.000 Level 12	' 	 		l			
176 Methyl Acetate	+++++ 6.87191	5. 34857 	6.99627	7.32996	+++++	8.33842	ا6.97703	15.43
	+++++ 0.41157	0.32269 	0.36240	0.45082	+++++	0.56545	 0.42259	22.11
178 1,2,3-Trichlorobenzene	/ / +++++ 0.95068	0.88776; 	0.91876 	1.09383	+++++	1.33443 	1.03709	17.74
) +++++ +++++	2.64097 	2.71644	2.83323	2.74809 	2.94082 	ا 2.77591	4.14
3 Freen 134a	· +++++	, ++++ 	+++++ 	++++ 	+++++ 	, +++++ 	, +++++	+++++
4 Propylene	+++++ +++++	1.28043	1.24997 	1.35390 	1.26870 	1.29917 	 1.29043	3.07
5 Freon 152A		 +++++ 	,		,		 +++++	
	-	 	 		 		 	

Start Cal Date	:	21-FEB-2007 14:04
End Cal Date	:	20-MAR-2007 18:54
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000	I	
	Level 5						RRF)	% RSD
	 5.000 Level 12	1		l I		1		
6 Dichlorodifluoromethane/Frl2	3.41360 +++++	3.08312	3.31460	3.26494	3.11517	3.14514	3.22276	 4.015;
7 Freon 114	2.38608 +++++	2.30846	2.43915	2.45194 	2.33896 	2.42950) 	 2.39235	2.4411
8 Chloromethane	2.21188; +++++ (1.74300	1.63597	, 1.48883 	1.38103 	1.45518 	 1.65265	18.369
9 Vinyl Chloride	! 1.62018 +++++	1.53617	1.65513	1.70658 	1.62844	1.70237 	1.64148	3.838t
10 1,3-Butadiene	1.96633 +++++	1.18639	1.28008	1.24548	1.18673 	1.229561	1.34910	ا 22.571
11 Bromomethane	1.01209 +++++	0.91467	0.92697	1.16334	1.16477 		 1.06403	12.1041
12 Freon 22	+++++ +++++	l		I I	· I I	•	+++++	, +++++
13 Chloroethane	1.06062 +++++	0.88905	0.71539	0.49664	0.48835	0.43723	0.68121	37.085 <
174 2,4-Dimethylpentane	++++++ 3.65329	2.84153	3.60860	3.99540 	+++++ 	4.28355	3.676471	14.726
14 Isopentane	+++++ +++++	1.26662	1.27728	1.47356 	1.12689	0.82016 	 1.19290	20.3021
	;							

Start Cal Date	:	21-FEB-2007 14:04
End Cal Date	:	20-MAR-2007 18:54
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000 I	!	
Compound	Level 5						RRF	% RSD
	 5.000 Level 12	1	 	 	 			
15 Viny1 Bromide	====================================	0.93426	0.91106	0.91351;	+++++	0.91190)		
16 Trichlorofluoromethane/Frll	! 2.70170 +++++	2.72423 	2.79153 	2.86556 	2.76419 	2.71475	2.76033	2.22
17 Ethanol	-	0.48246 	0.55634	0.48760 	0.45135	0.45996 	 0.48754	8.47
18 1,1-Dichloroethene	i 0.89253	0.80169	0.72409	0.82178	0.80282	0.70051	l 0.790571	8.79
	1.76481 +++++	1.88062 	1.66017	1.95034 	1.85842	1.66027	! 1.79577;	6.71
20 Carbon Disulfide	'	4.68689	3.67316	4.33266	4.35224 	3.55338 	י ן 4.11967	11.77
21 Acetone	{ +++++ [+++++	3.11208	2.60100 	2.61415 	2.47440 	2.16591	: 2.59351	13.16
22 Acrolein	+++++ +++++			+++++	,		+++++	+++++
23 Pentane	-		 +++++ !	+++++	+++++	+++++) +++++	+++++
24 2-Propanol	- ! +++++ / +++++	1	''''	I	2.69384	2.17761	'	9.22

~

Air Toxics Ltd.

Start Cal Date End Cal Date Quant Method Origin Target Version Integrator	: : :	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD Disabled 3.50 HP RTE
Method file Cal Date Curve Type	:	/chem/msdg.i/20Mar2007.b/t141221d.m 21-Mar-2007 16:38 jgray Average

	0.10000	0.50000	2.000	10.000	20.000	40.000 /	+	I.
Compound						Level 10	RRF I	% RSD
	 5.000 Level 12	 	i i i	1		(1	1
	+++++ +++++	0.61746	0.42499 	0.68477 	0.69464	0.43513 	0.57140	23.179
26 2-Methylpentane	+++++ 1.19371	0.83036	1.14770	1.26979 	+++++	1.41585	1.17148;	18.447
27 Acetonitrile	+++++ 2.91283	2.31082	3.04035	3.06044 \	+++++ 	3.44123 	2.95313	13.875;
28 Methylene Chloride	1.59961 +++++	1.28653	0.67149	1.16778; 	1.17487 	0.76613	 1.11107	، 30.890
	3.34739 +++++	3.31004 	2.48250≀ 	3.71522	3.43283	3.62029	3.31805†	13.215)
30 trans-1,2-Dichloroethene	0.87067 +++++	0.88905	0.50539	0.96450 	0.88809 0.88809	0.906361	0.83734	19.8041
31 Acrylonitrile	+++++ 1.26550	1.56693	1.27144 	1.38443	+++++ 	1.64330	1 1.42632	12.065)
32 Hexane	3.35960 +++++	2.77603	2.93339 	3.02515 	2.98771	3.08570 	1 3.01126↓	6.703
33 1,1-Dichloroethane	2.88329 +++++	2.77135	2.78830	3.01854 1	2.96530	3.08626	 2.91884	4.3391
•		2.70013	2.96986	3.19081(3.11636	3.423351	l	1

INITIAL CALIBRATION DATA

Start Cal Date End Cal Date Quant Method Origin	: :	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD Disabled
Target Version		3.50
Integrator	-	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000	I	
Compound	Level 5						RRF	% RSD
	 5.000	,					1	
	Level 12	I I	l	I	l	1	I	
								2======
35 Vinyl Acetate	\ +++++ +++++						 4.80284	7.66
36 cis-1,2-Dichloroethene	0.86296	0.88392						
	+++++		1	,			0.87863	2.73
37 2-Butanone	0.74790	,		,				
	+++++		I	I	`		0.70861	6.44
169 Ethyl Acetate	 +++++		•					
io billi keelde	4.76407		-		-		4.83772	8.71
		,				,		
38 Tetrahydrofuran	+++++						2.191361	4.49
40 Chloroform	2.20770		2.27373	2.44800	2.37313		I	
	+++++		,	,			2.33795	
41 Cyclohexane	2.02161	1	,	'		1	1	
	+++++		I	ł	1		1.98587	5.29
42 1,1,1-Trichloroethane			,					
	+++++	1.502721	2.000001				2.13732(5.72
				,			-	
43 2,3-Dimethylpentane	0.19505		0.22749	0.24108	+++++ ;		ا 0.22458	11.99
			I			,		
44 Carbon Tetrachloride	1.87345	1.80956	1.86446;	2.05631	2,00307	2.150031	I	
	+++++	I I	۱	l	1	I.	1.95948	6.71
						!		

0393

Start Cal Date End Cal Date	-	21-FEB-2007 14:04 20-MAR-2007 18:54
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000		
						Level 10	RRF (% RSD
	5.000 Level 12		 	 	ז ו	 	 	
45 2,2,4-Trimethylpentane		2.68295	2.77361		2.93674	3.11186		
	` +++++ +++++		1.10848		1.08895	1.12035		9.475
	0.44144	0.43436	0.43251 	0.45198 	0.46366) 	0.46779 	0.44862	3.336
	0.91011	0.80980	0.90963	0.92105	0.90092(0.96299	 0.90242	5.587
	+++++ 0.53491	0.51114	0.52408	0.54978 i	+++++ ! !	0.57936	0.53986)	4.863
52 Trichloroethene	0.38396	0.39533	0.39632 	0.40969 	0.41320 	0.43011}	0.404771	4.031
53 1,2-Dichloropropane	0.44474	0.40752	0.45507	0.46352 	0.468691	0.48578	0.454221	5.877
54 1,4-Dioxane	0.17836	0.18600	0.19506	0.18803) 	0.19873	0.20203	0.19137	4.620
	0.52646	0.51345	0.54115	0.56488 	0.58058 	0.59890 	0.55424	5.934
	0.45690	0.47860	0.51938	0,529861	0.53701 	0.55340	0.51253	7.229
	·····	 		l	I		1.	

Start Cal Date	:	21-FEB-2007 14:04
End Cal Date	:	20-MAR-2007 18:54
Quant Method	:	ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000 1	1	
Compound	Level 5	Level 6	Level 7 (Level 8 \	Level 9	Level 10	RRF	% RSD
				!				
	Level 12	: I		I				
	= ========			-				
57 Octane	+++++ 0.456911		0.44661		+++++	0.49289	0.44765!	11.505
				,		•		
58 4-Methyl-2-pentanone	1.11363	0.96975	1.10875	1.07333	1.11336	1.13576	ł	
	F +++++	I I	1	ι	I		1.08577	
	1.58984			,		1.204231		
	+++++	1.105/15/	1.13003		11111111		1.25358	13.174
	-	1						
61 trans-1,3-Dichloropropene	0.56855	0.595421				0.69844		7.000
	+++++	·	 	'			0.63773	7.839
62 1,3-Dichloropropane	++++	· +++++	+++++	++++	+++++	, +++++	, I	
	+++++	I	l I	I	ł	4	+++++	+++++
	0.42687			1	1			
	+++++	0.50556	0.403191	0.484551	0.49185	0.50471		5.953
	-							
	0.598201		0.63358				·	
	+++++		 		,		0.63640	
65 1,2,3-Trichloropropane	· { +++++	+++++	+++++	+++++	+++++ }	+++++		
	+++++	I		I	I	ì	+++++	+++++
66 Dibromomethane		+++++	+++++	+++++	+++++	+++++		
	+++++	11111		11111	11111	1	+++++	++++
	- !							
67 2-Hexanone	(+++++ (0.62617	0.643831	0.617061	0.680001	0.71005	I	
	+++++							5.933

End Cal Date Quant Method	: :	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000		
Compound	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10	RRF	% RSD
							I	
	Level 12					1	1	
			==================		=======			
68 Dibromochloromethane	0.58529	0.60102						
	+++++					,	0.66737	
69 1,2-Dibromoethane	0.68291	'	· ·		,	,	1	
	+++++	I	I	I	I	t	0.70884	3.87
					,			
70 p-Cymene	+++++		1.74795	2.04050	+++++	2.36823	ا 1.87631	20.72
			(
71 Hexachloroethane	+++++ (+++++	+++++ }	+++++ }	+++++	++++	I	
	+++++	I	I	1	ł	1	+++++	+++++
73 Chlorobenzene	 1.08709		'	'		1 19134		
	+++++		1.123,51				1.12959	3.57
	1I				i	i		
173 Nonane	+++++			1.87762			1	
	1.85496		'	ا ا			1.70866	
74 Ethyl Benzene	0.57692	'	,	,			1	
	; +++++ j	I	I	I	1	I	0.61593	5.49
				,	,	!		
168 1,1,1,2-Tetrachloroethane	+++++ +++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++
						}	{	
75 m,p-Xylene	0.80614	0.739641	0.78488	0.77616	0.81241	0.85457	1	
	+++++	I	I	I	1	1	0.79563	4.86
	 +++++	+++++	+++++	+++++	+++++	+++++		
	+++++					1	+++++	+++++
					•I			
	_!!	I			I	1	l	

Start Cal Date End Cal Date	:	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD
Quant Method	-	
Origin	:	Disabled
Target Version	:	3.50
Integrator	:	HP RTE
Method file	:	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date	:	21-Mar-2007 16:38 jgray
Curve Type	:	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000	<u> </u>	
Compound	Level 5						RRF	% RSD
	Level 12				1	, I	L	
		*=======		===============	=======	=======		=======================================
77 o-Xylene	0.64338						ا 0.69212	6.6
	· +++++ !		1	1	'			
78 Styrene	0.99482	1.02983	1.13233	1.14843	1,19310	1.26661	l.	
	} +++++		'	r	I		1.12752	8.9
79 Bromoform	0.47164		1	,				
	+++++		0.504751	0.30410	0.020001		0.55055	15.6
				- }			-	
170 alpha-Pinene	+++++							
	1.24878		 				1.17035	21.8
80 Cumene	1.68700					,		
	+++++				1	•	1.87590	7.4
82 1,1,2,2-Tetrachloroethane	 0.80896		,					
82 1,1,2,2-Tetrachloroethane	+++++				1.012801		ا 0.958921	9.1
					1		-	
83 Propylbenzene	2.15340		2.33749					
	+++++ 				1		2.26561	
84 4-Ethyltoluene	1.64556					,	l I	
	+++++		1	. 1	I		1.88459	8.3
172 2-Chlorotoluene	 +++++				,			
1/2 2-Chiorocordene	0.46779		0.43176		++++ !		0.45211	15.8
	!		·					
85 1,3,5-Trimethylbenzene		1.50216	1,56700	1.60012	1.69634	1.75223	ł	
	\ +++++			1	1	 	1.59846	6.8
	·-			~-				

End Cal Date Quant Method	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD Disabled
• = - 5	3.50
Integrator	HP RTE
Method file :	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date :	21-Mar-2007 16:38 jgray
Curve Type	Average

	0.10000	0.50000	2.000 1	10.000 /	20.000	40.000	(
Compound	Level 5 (RRF	∜ RSD
	5.000 Level 12	i	 	1	I I	+		
175 Decane	+++++ 1.70093	1.12722	1.57242	1.76432	++++ 	2.02760	1.63850	20.17
86 tert-Butylbenzene	+++++ 1.55076	1.12067	1.49850	1.63589 	+++++ 	1.89350 (1.53986	18.13
87 1,2,4-Trimethylbenzene	1.39436 +++++	1.45245	1.58731	1.57861	1.65810	1.71851	 1.56489	7.81
88 sec-Butylbenzene	+++++ 2.08133	1.50418	1.93841	2.19591 	+++++)	2.533961	2.050761	18.35
89 1,3-Dichlorobenzene	0.94722 +++++	1.00674 	1.07496	1.03371; 	1.09601) 	1.15019 	1.05147	6.78
90 1,4-Dichlorobenzene	1.01176 +++++	1.03613 	1.08566	1.06376 	1.11502	1.16809) 	l 1.08007;	5.21
171 1,2,3-Trimethylbenzene	+++++ 0.64428	0.44440	0.59468	0.66253 	+++++	0.79076	0.627331	19.96
91 alpha-chlorotoluene	0.81955 +++++	0.89327	1.00534	1.07372 	1.18125 	1.239641	I 1.03546	15.70
92 Indan	+++++ 1.53125	1.09644	1.43411 	1.60545)	++++ 	1.926991	 1.51885	19.74
93 Butylbenzene	+++++ 0.51934	0.36497 	0.49965	0.55653 	+++++	0.67086 	0.522271	21.08
	+۱+ ۱				i		-	

End Cal Date : Quant Method : Origin :	21-FEB-2007 14:04 20-MAR-2007 18:54 ISTD Disabled 3.50
5	HP RTE
Method file :	/chem/msdg.i/20Mar2007.b/t141221d.m
Cal Date :	21-Mar-2007 16:38 jgray
Curve Type :	Average

	0.10000	0.50000	2.000	10.000	20.000	40.000	1	
Compound	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10;	RRF	% RSD
						!	1	
	5.000		1	I	I	1	t	
	Level 12		I	I	I	1	1	
*******	===========	===================		=============	===================	========		
94 1,2-Dichlorobenzene	0.76580	0.85729	0.94763	0.91924	0.97249	1.02720	1	
	+++++		1	. 1	I	•	0.91494	10.08
					,		,	
95 Indene	+++++			1.3928/1	+++++)	1.66514		
	1.28932			. I	1		1.27573	22.91
	+++++					1.09309		
96 1,2,4-fffchiofobenzene	· · · · · · · · · · · · · · · · · · ·	0.51034	1.07545	. 0.057051	0.94231		0,973461	11.15
	· · · · · · · · · · · · · · · · · · ·	- -						
	+++++				'	0.607941		
	+++++						0.51979	10.89
	1							
98 Naphthalene	++++	2.57405	2.76453	2.92158	3.26508	3.61116/	i	
	+++++				1	1	3.02728	13.65

\$ 47 1,2-Dichloroethane-d4	1.34928	1.39590	1.34194	1.42677	1.43407	1.51527!	1	
	; ++++	1	I	· • •	1	1	1.41054	4.53
\$ 59 Toluene-d8	0.99460	0.97818	1.002701	1.01166	0.996551	0.99332	I.	
	+++++	l i	1	· 1	I	1	0.99617	1.11
- 				,				
\$ 81 Bromofluorobenzene								
	+++++		1		I		0.510291	2.78
						*		
	ł					1	I_	

Client Sample ID: CCV

Lab ID#: 0703524A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Compound	%Recovery
 Freon 12	92
Freon 114	102
Chloromethane	86
Vinyl Chloride	89
Bromomethane	88
	71
Freon 11	105
1,1-Dichloroethene	103
Freon 113	105
Methylene Chloride	110
1,1-Dichloroethane	113
cis-1,2-Dichloroethene	106
Chloroform	115
1,1,1-Trichloroethane	108
Carbon Tetrachloride	114
1,2-Dichloroethane	
Trichloroethene	102
1,2-Dichloropropane	108
cis-1,3-Dichloropropene	97
Toluene	95
trans-1,3-Dichloropropene	
1,1,2-Trichloroethane	109
Tetrachloroethene	111
1,2-Dibromoethane (EDB)	108
Chlorobenzene	108
Ethyl Benzene	104
m,p-Xylene	98
o-Xylene	101
Styrene	102
1,1,2,2-Tetrachloroethane	109
1,3,5-Trimethylbenzene	98
1,2,4-Trimethylbenzene	91
1,3-Dichlorobenzene	91
1,4-Dichlorobenzene	91
alpha-Chlorotoluene	
1,2-Dichlorobenzene	93
1,2,4-Trichlorobenzene	65 Q
Hexachlorobutadiene	90
Propylene	86

Client Sample ID: CCV

Lab ID#: 0703524A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name at the g040203.	of Collection NA
	See A Million Andrew A Market A Market Andrew A
Dil/Factori 7 2 2 Dite	of Analysis: 4/2/07-10:15 AM

Compound	%Recovery
1,3-Butadiene	77
Acetone	104
Carbon Disulfide	104
trans-1,2-Dichloroethene	121
2-Butanone (Methyl Ethyl Ketone)	112
Hexane	107
Tetrahydrofuran	111
Cyclohexane	107
1,4-Dioxane	76
Bromodichloromethane	107
4-Methyl-2-pentanone	103
2-Hexanone	105
Dibromochloromethane	113
Bromoform	110
4-Ethyltoluene	104
Ethanol	90
Methyl tert-butyl ether	101
Heptane	108
Naphthalene	119
2-Methylpentane	99
Isopentane	89
2,3-Dimethylpentane	102
2,2,4-Trimethylpentane	119
Indene	97
indan	96
Thiophene	103
2-Propanol	100

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
4-Bromofluorobenzene	106	70-130	
Toluene-d8	100	70-130	

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msdg.iInjection Date: 02-APR-2007 10:15Lab File ID: g040203.dInit. Cal. Date(s): 21-FEB-2007 20-MAR-2007Analysis Type: AIRInit. Cal. Times: 14:04Lab Sample ID: CCV-1Quant Type: ISTDMethod: /chem/msdg.i/02Apr2007.b/t141221d.m

			۱	I		MIN	ļ	MAX	1
		POUND		/ AMOUNT				%D / %DRIFT	
==: \$		1,2-Dichloroethane-d4		1.41054	1.52990		-8.46212		
Ş	59	Toluene-d8	I	0.99617	0.993071	0.010;	0.31112	30.00000	Average
\$	81	Bromofluorobenzene	I	0.51029!	0.53957!	0.010/	-5.73772	30.00000	Average
	4	Propylene	I	1.29043	1.10943	0.010	14.02646	30.00000	Average
	6	Dichlorodifluoromethane/Frl	I	3.22276	2.94941	0.010	8.48197	30.00000	Average
	7	Freon 114	I	2.39235	2.45002	0.010	-2.41077	30.00000	Average
	8	Chloromethane	ł	1.65265	1.42062	0.010	14.03968	30.00000	Average
	9	Vinyl Chloride	I	1.64148	1.45659	0.010	11.26335	30.00000	Average
	10	1,3-Butadiene	I	1.34910	1.03708	0.010	23.12783	30.00000	Average
	11	Bromomethane	I.	1.06403	0.93192;	0.010	12.41680	30.0000	Average
	13	Chloroethane	I.	0.68121(0.48505	0.010	28.79605	30.00000	Average
	16	Trichlorofluoromethane/Frll	I	2.760331	2.89370	0.010/	-4.83190	30.00000	Average
	17	Ethanol	I.	0.487541	0.43782!	0.010+	10.19855	30.00000	Average
	19	Freon 113	I	1.795771	1.88610	0.010;	-5.03021	30.00000	Average
_	18	l,1-Dichloroethene	I	0.790571	0.81740	0.010;	-3.39327	30.00000	Average
	21	Acetone	I	2.59351	2.69854	0.010	-4.04986	30.00000	Average
	24	2-Propanol	I	2.45514	2.45528	0.010	-0.00576	30.00000	Average
	20	Carbon Disulfide	1	4.11967	4.27472	0.010	-3.76372	30.00000	Average
	25	3-Chloroprene	ł	0.57140	0.66635	0.010	-16.61760	30.00000	Average
	28	Methylene Chloride	I.	1.11107	1.22438	0.010	-10.19847	30.00000	Average
	29	MTBE	L	3.31805	3.344901	0.010	-0.80921	30.00000	Average
	30	trans-1,2-Dichloroethene	I.	0.83734	1.01053	0.010)	-20.68273	30.00000	Average
	32	Hexane	I.	3.01126)	3.21536	0.010/	-6.77780	30.00000	Average
	33	1,1-Dichloroethane	ŧ	2.91884	3.30173	0.010	-13.11792	30.00000	Average
	35	Vinyl Acetate	ł	4.80284	5.14929	0.010	-7.21328	30.00000	Average
	37	2-Butanone	I	0.70861	0.79100	0.010	-11.62825	30.00000	Average
	36	cis-1,2-Dichloroethene	I.	0.878631	0.93041;	0.010;	-5.89351	30.00000	Average
	38	Tetrahydrofuran	I.	2.19136	2.436781	0.0101	-11.19955	30.00000	Average
	40	Chloroform	I	2.337951	2.68574	0.010	-14.87602	30.00000	Average
	42	1,1,l-Trichloroethane	I	2.13732	2.30487	0.010;	-7.83953	30.00000	Average
	41	Cyclohexane	L	1.98587	2.12501	0.010	-7.00667	30.00000	Average
	44	Carbon Tetrachloride	I	1.95948	2.23512	0.010	-14.06706	30.00000	Average
	45	2,2,4-Trimethylpentane	I	2.917341	3.48174	0.010	-19.34623	30.00000	Average
	46	Benzene	I.	1.14308	1.13440	0.010	0.759321	30.00000	Average
	48	1,2-Dichloroethane	I.	0.448621	0.464921	0.010	-3.63269	30.00000	Average

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msdg.iInjection Date: 02-APR-2007 10:15Lab File ID: g040203.dInit. Cal. Date(s): 21-FEB-2007 20-MAR-2007Analysis Type: AIRInit. Cal. Times: 14:04Lab Sample ID: CCV-1Quant Type: ISTDMethod: /chem/msdg.i/02Apr2007.b/t141221d.m

	COMPOUND		 / AMOUNT	RF10		MIN RRF		/ %DRIFT	≩D		 CURVE TYP
	49 Heptane	i i	0.90242	0.974	961	0.010	1	-8.03902		30.00000	Average
	52 Trichloroethene	ŧ	0.40477	0.411	651	0.010	I -	-1.69932		30.00000	Average
	53 1,2-Dichloropropane	t	0.45422	0.491	401	0.010	L	-8.18494;		30.00000	Average
	54 1,4-Dioxane	I.	0.19137	0.146	001	0.010	L	23.70703+		30.00000	Average
	55 Bromodichloromethane	ł	0.55424	0.594	681	0.010	L	-7.29671		30.00000	Average
	56 cis-1,3-Dichloropropene	1	0.51253	0.497	191	0.010	1	2.99278		30.00000	Average
	58 4-Methyl-2-pentanone	F	1.08577	1.116	04	0.010	L	-2.78802}		30.00000	Average
	60 Toluene	1 I	1.25358	1.186	481	0.010	L	5.35253		30.00000	Average
	61 trans-1,3-Dichloropropene	1	0.63773	0.675	111	0.010	L	-5.86187		30.00000	Average
	63 1,1,2-Trichloroethane	1	0.48245	0.527	031	0.010	L	-9.24044!		30.00000	Average
	64 Tetrachloroethene	I.	0.636401	0.705	671	0.010	1	-10.88430		30.00000	Average
	67 2-Hexanone	1	0.65542	0.689	991	0.010	1	-5.27297		30.00000	Average
	68 Dibromochloromethane	1	0.66737	0.755	151	0.010	1	-13.15324		30.00000	Average
	69 1,2-Dibromoethane	I.	0.70884	0.764	7010	0.010	I.	-7.87970		30.00000	Average
,	73 Chlorobenzene	1	1.12959	1.215	411	0.010	1	-7.59721		30.00000	Average
	74 Ethyl Benzene	I.	0.61593	0.638	981	0.010	1	-3.743031		30.00000	Average
	75 m,p-Xylene	I.	0.795631	0,782	291	0.010	1	1.67757		30.00000	Average
	77 o-Xylene	Ŧ	0.69212	0.696	81	0.010	I.	-0.67706!		30.00000	Average
	78 Styrene	1	1.127521	1.151	951	0.010	L	-2.16701		30.00000	Average
	79 Bromoform	1	0.550551	0.608	451	0.010	1	-10.51626		30.00000	Average
	80 Cumene	1	1.875901	1.898	0210	0.010	L	-1.17933		30.00000	Average
	82 1,1,2,2-Tetrachloroethane	I.	0.958921	1.042	65 (0.010	L	-8.73187		30.00000	Average
	83 Propylbenzene	1	2.26561	2.398	74)(0.010	I.	-5.87633		30.00000	Average
	84 4-Ethyltoluene	I	1.88459	1.968	31 (0.010	L	-4.44244		30.00000	Average
	85 1,3,5-Trimethylbenzene	I	1.59846;	1.563	2310	0.010	L	2.203841		30.00000	Average
	87 1,2,4-Trimethylbenzene	T	1.564891	1.419	9310	0.010	1	9.262921		30.00000	Average
	89 1,3-Dichlorobenzene	i	1.05147	0.959	95)(0.010	t	8.704511		30.00000	Average
	90 1,4-Dichlorobenzene	1	1.08007	0.979	8910	0.010	I	9.27530		30.00000	Average
	91 alpha-chlorotoluene		1.03546	1.144	8410	0.010	۱ ·	-10.56297		30.00000	Average
	94 1,2-Dichlorobenzene	I	0.914941	0.853	051	0.010	L	6.76397		30.00000	Average
	96 1,2,4-Trichlorobenzene	1	0.973461	0.637	31	0.010	I.	34.53101		30.00000	Average
	97 Hexachlorobutadiene	1	0.519791	0.468	6810	0.010	L	9.832661		30.00000	Average
	98 Naphthalene	I.	3.027281	3.610	2010	0.010	ł	-19.25575		30.00000	Average
	14 Isopentane	I.	1.19290	1.062	22 (0.010	ł	10.95506		30.00000	Average

Client Sample ID: LCS

Lab ID#: 0703524A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name g040	205 Date of Collection: NA W. C. as Annual
	Date of Analysis: 4/2/07 11:40 AM
File Name Dill Factori	

Compound	%Recovery
Freon 12	80
Freon 114	94
Chloromethane	75
Vinyl Chloride	79
Bromomethane	87
Chloroethane	64 Q
Freon 11	95
1.1-Dichloroethene	111
Freon 113	112
Methylene Chloride	116
1,1-Dichloroethane	112
cis-1,2-Dichloroethene	107
Chloroform	111
1,1,1-Trichloroethane	104
Carbon Tetrachloride	109
1.2-Dichloroethane	107
Trichloroethene	109
1,2-Dichloropropane	115
cis-1,3-Dichloropropene	103
Toluene	104
trans-1,3-Dichloropropene	
1,1,2-Trichloroethane	113
Tetrachloroethene	112
1,2-Dibromoethane (EDB)	108
Chlorobenzene	111
Ethyl Benzene	108
m,p-Xylene	103
o-Xylene	106
Styrene	106
1,1,2,2-Tetrachloroethane	120
1,3,5-Trimethylbenzene	106
1,2,4-Trimethylbenzene	103
1,3-Dichlorobenzene	104
1,4-Dichlorobenzene	102
alpha-Chlorotoluene	119
1,2-Dichlorobenzene	107
1,2,4-Trichlorobenzene	69 Q
Hexachlorobutadiene	96
Propylene	Not Spiked

Client Sample ID: LCS

Lab ID#: 0703524A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

selle Name Assessment and Assessment (040205-e)	etteroj selolle etternik lA
DIL Factor: A 100% A 100% A 110 B	ate of Analysis: 4/2/07 11 40 AM

Acetone116Carbon Disulfide99rans-1,2-Dichloroethene1132-Butanone (Methyl Ethyl Ketone)111Hexane103Tetrahydrofuran117Cyclohexane1031,4-Dioxane127Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane114Bromoform1214-Methyl-2-pentanone118Ethanol88Wethyl ter-butyl ether93Heptane111Naphtalene742-MethylpentaneNot Spiked2,3-DimethylpentaneNot SpikedIndeneNot Spiked	Compound	%Recovery
Carbon Disulfide 99 trans-1,2-Dichloroethene 113 2-Butanone (Methyl Ethyl Ketone) 111 Hexane 103 Tetrahydrofuran 117 Cyclohexane 103 Tetrahydrofuran 117 Cyclohexane 103 1,4-Dioxane 127 Bromodichloromethane 112 4-Methyl-2-pentanone 118 2-Hexanone 113 Dibromochloromethane 114 Bromodichloromethane 114 Bromodichloromethane 114 Bromodichloromethane 114 Bromodichloromethane 113 Dibromochloromethane 114 Bromodichloromethane 111 Bromodichloromethane 114 Bromodichloromethane 111 Patento 118 Ethanol 88 Methyl tert-butyl ether 93 Heptane 111 Naphthalene 74 2.4-Ethylipentane Not Spiked Sopentane </td <td>1,3-Butadiene</td> <td>70</td>	1,3-Butadiene	70
Date of Decemposition113Decemposition11114-exane103Tetrahydrofuran117Cyclohexane1031,4-Dioxane127Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane1143romodrof1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot SpikedndeneNot SpikedIndenNot Spiked	Acetone	116
2-Butanone (Methyl Ethyl Ketone)111Hexane103Tetrahydrofuran117Cyclohexane1031,4-Dioxane127Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane114Bromoform114Bromoform111Brethyltert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot Spiked3-DibrethylpentaneNot Spiked3-DimethylpentaneNot Spiked<	Carbon Disulfide	99
Hexane 103 Tetrahydrofuran 117 Cyclohexane 103 1,4-Dioxane 127 Bromodichloromethane 112 4-Methyl-2-pentanone 108 2-Hexanone 113 Dibromochloromethane 114 Bromodichloromethane 114 Bromoform 121 4-Ethyltoluene 118 Ethanol 88 Methyl tert-butyl ether 93 Heptane 111 Naphthalene 74 2-Methylpentane Not Spiked 3-Dimethylpentane Not Spiked 4-petane 111 Naphthalene 74 2-Methylpentane Not Spiked 2,3-Dimethylpentane Not Spiked 2,2-Lintenthylpentane Not Spiked 2,2-Lintenthylpentane Not Spiked 2,2,4-Trimethylpentane Not Spiked 104en Not Spiked 105pinee Not Spiked	trans-1,2-Dichloroethene	113
Tetrahydrofuran117Cyclohexane1031,4-Dioxane127Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane114Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedThiopheneNot Spiked	2-Butanone (Methyl Ethyl Ketone)	
Cyclohexane1031,4-Dioxane127Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane114Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedIndeneNot SpikedIndeneNot SpikedNot SpikedNot SpikedThiopheneNot Spiked		103
1,4-Dioxane127Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane114Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedndeneNot SpikedIndanNot SpikedThiopheneNot Spiked	Tetrahydrofuran	117
Bromodichloromethane1124-Methyl-2-pentanone1082-Hexanone113Dibromochloromethane114Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedndeneNot SpikedndeneNot SpikedNot Spiked	Cyclohexane	103
4-Methyl-2-pentanone 108 2-Hexanone 113 Dibromochloromethane 114 Bromoform 121 4-Ethyltoluene 118 Ethanol 88 Methyl tert-butyl ether 93 Heptane 111 Naphthalene 74 2-Methylpentane Not Spiked sopentane Not Spiked 2,3-Dimethylpentane Not Spiked Indene Not Spiked Inden Not Spiked Indan Not Spiked	1,4-Dioxane	127
2-Hexanone113Dibromochloromethane114Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedIndeneNot SpikedNot Spiked	Bromodichloromethane	112
Dibromochloromethane114Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedNot Spiked	4-Methyl-2-pentanone	108
Bromoform1214-Ethyltoluene118Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedindeneNot SpikedIndeneNot SpikedNot Spiked	2-Hexanone	113
4-Ethyltoluene 118 Ethanol 88 Methyl tert-butyl ether 93 Heptane 111 Naphthalene 74 2-Methylpentane Not Spiked sopentane Not Spiked 2,3-Dimethylpentane Not Spiked 2,2,4-Trimethylpentane Not Spiked indene Not Spiked Indene Not Spiked Not Spiked Not Spiked Not Spiked Not Spiked Not Spiked Not Spiked	Dibromochloromethane	114
Ethanol88Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedndeneNot SpikedIndanNot SpikedThiopheneNot Spiked	Bromoform	121
Methyl tert-butyl ether93Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedIndeneNot SpikedIndeneNot SpikedNot Spiked	4-Ethyltoluene	118
Heptane111Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedIndanNot SpikedThiopheneNot Spiked	Ethanol	88
Naphthalene742-MethylpentaneNot SpikedsopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedindeneNot SpikedIndeneNot SpikedIndanNot SpikedThiopheneNot Spiked	Methyl tert-butyl ether	93
2-Methylpentane Not Spiked sopentane Not Spiked 2,3-Dimethylpentane Not Spiked 2,2,4-Trimethylpentane Not Spiked indene Not Spiked Indan Not Spiked Thiophene Not Spiked	Heptane	111
sopentaneNot Spiked2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedIndanNot SpikedThiopheneNot Spiked	Naphthalene	74
2,3-DimethylpentaneNot Spiked2,2,4-TrimethylpentaneNot SpikedIndeneNot SpikedIndanNot SpikedThiopheneNot Spiked	2-Methylpentane	Not Spiked
2,2,4-Trimethylpentane Not Spiked Indene Not Spiked Indan Not Spiked Thiophene Not Spiked	Isopentane	Not Spiked
Indene Not Spiked Indan Not Spiked Thiophene Not Spiked	2,3-Dimethylpentane	Not Spiked
Indan Not Spiked Thiophene Not Spiked	2,2,4-Trimethylpentane	Not Spiked
Thiophene Not Spiked	Indene	Not Spiked
	Indan	Not Spiked
2-Propanol 107	Thiophene	Not Spiked
	2-Propanol	107

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	105	70-130
Toluene-d8	100	70-130

-

Air Toxics Ltd.

RECOVERY REPORT

Client Name:Client SDG: 02Apr2007Sample Matrix: GASFraction: VOALab Smp Id: LCS-1Client Smp ID: LCS-1Level: LOWOperator: eaData Type: MS DATASampleType: LCSSpikeList File: Spectra.spkQuant Type: ISTDSublist File: AT06p4.subMethod File: /chem/msdg.i/02Apr2007.b/t141221d.mMisc Info: 50ppbv-10ppbvFile: Attack

1		CONC	CONC	0	
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
Ļ		PPBV	PPBV		1
1					!!
6	Dichlorodifluorome	10.000	7.995	79.95	70-130
7	Freon 114	10.000	9.401	94.01	70-130
8	Chloromethane	10.000	7.544	75.44	70-130
9	Vinyl Chloride	10.000	7.921	79.21	70-130
10	1,3-Butadiene	10.000	7.001		60-140
11	Bromomethane	10.000	8.696		70-130
13	Chloroethane	10.000	6.396	63.96*	70-130
. 16	Trichlorofluoromet	10.000	9.503	95.03	70-130
17	Ethanol	10.000	8.821	88.21	70-130
19	Freon 113	10.000	11.252	•	70-130
18	1,1-Dichloroethene	10.000	11.143	111.43	70-130
21	Acetone	10.000	11.619	116.19	70-130
20	Carbon Disulfide	10.000	9.889	98.89	70-130
1 24	2-Propanol	10.000	10.711	107.11	60-140
28	Methylene Chloride	10.000	11.597	115.97	70-130
29	MTBE	10.000	9.315	93.15	70-130
30	trans-1,2-Dichloro	10.000	11.291	112.91	70-130
32	Hexane	10.000	10.286	102.86	70-130
33	1,1-Dichloroethane	10.000	11.157	111.57	70-130
36	cis-1,2-Dichloroet	10.000	10.706		70-130
	2-Butanone	10.000	11.127		70-130
38	7	10.000	11.696	116.96	70-130
•	Chloroform	10.000	11.072		70-130
41	Cyclohexane	10.000	10.298		70-130
42	• •		10.429		70-130
	Carbon Tetrachlori		10.860		70-130
	Benzene	10.000	10.377		70-130
	Heptane	10.000	11.083		70-130
	1,2-Dichloroethane		10.745		70-130
	Trichloroethene	10.000	10.933		70-130
	1,2-Dichloropropan		11.504		70-130
54	-	10.000	12.727		70-130
55	Bromodichlorometha	10.000	11.153	111.53	70-130
					11
				_	

0750

		CONC	CONC	00	1 1
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
1		PPBV	PPBV	1	1 1
I					
56	cis-1,3-Dichloropr	10.000	10.331	103.31	70-130
58	4-Methyl-2-pentano	10.000	10.832	108.32	70-130
60	Toluene	10.000	10.458	104.58	70-130
61	trans-1,3-Dichloro	10.000	10.510	105.10	70-130
63	1,1,2-Trichloroeth	10.000	11.272	112.72	70-130
67	2-Hexanone	10.000	11.282	112.82	70-130
1 64	Tetrachloroethene	10.000	11.153	111.53	70-130
1 68	Dibromochlorometha	10.000	11.455	114.55	70-130
69	1,2-Dibromoethane	10.000	10.842	108.42	70-130
73	Chlorobenzene	10.000	11.072	-	70-130
74	Ethyl Benzene	10.000	10.762	107.62	70-130
75	m,p-Xylene	10.000	10.267	102.67	70-130
77	o-Xylene	10.000	10.602	106.02	70-130
78	Styrene	10.000	10.561	105.61	70-130
79	Bromoform	10.000	12.089	120.89	70-130
l 80	Cumene	10.000	11.356	113.56	70-130
82	1,1,2,2-Tetrachlor	10.000	11.950	119.50	70-130
83	Propylbenzene	10.000	11.841	118.41	70-130
84	4-Ethyltoluene	10.000	11.764	117.64	70-130
85	1,3,5-Trimethylben	10.000	10.596	105.96	70-130
I 87	1,2,4-Trimethylben	10.000	10.286	102.87	70-130
89	1,3-Dichlorobenzen		10.399	103.99	70-130
90	1,4-Dichlorobenzen	10.000	10.198		70-130
91	T		11.913		70-130
94	1,2-Dichlorobenzen	10.000	10.681	106.81	70-130
96	1,2,4-Trichloroben		6.899	68.99*	70-130
97	Hexachlorobutadien	10.000	9.581	95.81	60-140
98	Naphthalene	10.000	7.361	73.61	60-140
l					

	SURROGATE COMPOUND	CONC ADDED PPBV	CONC RECOVERED PPBV	% RECOVERED 	LIMITS
-	\$ 47 1,2-Dichloroethane	10.000	9.847	98.47	70-130
	\$ 59 Toluene-d8	10.000	9.980	99.80	70-130
ł	\$ 81 Bromofluorobenzene	10.000	10.463	104.63	70-130
1_	I				

WORK ORDER #: 0703524B

Work Order Summary

CLIENT:	Mr. Jesse Lloyd The RETEC Group, Inc. 1001 W. Seneca St. Suite 204 Ithaca, NY 14850	BILL TO:	Mr. Scott Hauswirth The RETEC Group, Inc. 1001 W. Seneca St. Suite 204 Ithaca, NY 14850
PHONE:	607-277-5716	P.O. #	
FAX:		PROJECT #	ORAN2 28 PIKE STREET
DATE RECEIVED: DATE COMPLETED:	03/22/2007 04/03/2007	CONTACT:	Kelly Buettner

			RECEIPT
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.
04A	GRSG5(07)	Modified ASTM D-1945	4.5 "Hg
05A	GRSG6(07)	Modified ASTM D-1945	4.0 "Hg
05AA	GRSG6(07) Duplicate	Modified ASTM D-1945	4.0 "Hg
06A	Lab Blank	Modified ASTM D-1945	NA
07A	LCS	Modified ASTM D-1945	NA

Sinda d. Fruman CERTIFIED BY:

DATE: <u>04/03/07</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/06, Expiration date: 06/30/07

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1945 The RETEC Group, Inc. Workorder# 0703524B

The laboratory performed analysis via modified ASTM Method D-1945 for Helium in natural gas using GC/TCD. The method involves direct injection of 1.0 mL of sample. See the data sheets for the reporting limits for each compound.

Requirement	ASTM D-1945	ATL Modifications
Normalization	Sum of original values should not differ from 100.0% by more than 1.0%.	Sum of original values may range between 75-125%. Normalization of data not performed.
Sample analysis	Equilibrate samples to 20-50° F. above source temperature at field sampling	No heating of samples is performed.
Sample calculation	Response factor is calculated using peak height for C5 and lighter compounds.	Peak areas are used for all target analytes to quantitate concentrations.
not be < half of nor differ by more than 2 Xacceptance criterion is $\ RSD . Amust be within the linear range of calibration$		A minimum 3-point linear calibration is performed. The acceptance criterion is %RSD = 25%. All target analytes must be within the linear range of calibration (with the exception of O2, N2, and C6+ Hydrocarbons).</td
Sample Injection Volume	0.50 mL to achieve Methane linearity.	1.0 mL.

Method modifications taken to run these samples include:

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Six qualifiers may have been used on the data analysis sheets and indicate as follows:

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Project No. 0R4N2 - 20146 - 300	Page / f	_
Client Orange + Kockeland	Date 04/17/07	RETEC
site Brt JErvin - 28 Pike St.	Ву GAM	
Subject Example Calculation	App.	

0703524 -01A

taluene = 1.5 Bobo-15: 1, 4 - difluorolienzene

Conc. = (analyte fequence) (ng 15) (DF) = (81549)(10)(1.52) (Apbv) (15 Lesponce) (ICAL RRF) = (666553)(1.25358) = 1.48 pbv

H. A. Malon 04/17/07

ENSR

Appendix E

NYSDOH Guidance Document Matrix Tables

-

Soil Vapor/Indoor Air Matrix 1

October 2006

		INDOOR AIR CONCENTRATIO	N of COMPOUND (mcg/m ³)
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.25	0.25 to < 1	1 to < 5.0	5.0 and above
< 5	1. No further action	2. Take reasonable and practical actions to identify source(s) and reduce exposures	3. Take reasonable and practical actions to identify source(s) and reduce exposures	 Take reasonable and practical actions to identify source(s) and reduce exposures
5 to < 50	5. No further action	6. MONITOR	7. MONITOR	8. MITIGATE
50 to < 250	9. MONITOR	10. MONITOR / MITIGATE	11. MITIGATE	12. MITIGATE
250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

No further action:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take reasonable and practical actions to identify source(s) and reduce exposures:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

MONITOR:

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MITIGATE:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MONITOR / MITIGATE:

Monitoring or mitigation may be recommended after considering the magnitude of sub-slab vapor and indoor air concentrations along with building- and sitespecific conditions.

See additional notes on page 2.

MATRIX 1 Page 1 of 2

Soil Vapor/Indoor Air Matrix 2

October 2006

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)			
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 3	3 to < 30	30 to < 100	100 and above
< 100	1. No further action	2. Take reasonable and practical actions to identify source(s) and reduce exposures	3. Take reasonable and practical actions to identify source(s) and reduce exposures	 Take reasonable and practical actions to identify source(s) and reduce exposures
100 to < 1,000	5. MONITOR	6. MONITOR / MITIGATE	7. MITIGATE	8. MITIGATE
1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE

No further action:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Take reasonable and practical actions to identify source(s) and reduce exposures:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly (e.g., by keeping containers tightly capped or by storing volatile organic compound-containing products in places where people do not spend much time, such as a garage or outdoor shed). Resampling may be recommended to demonstrate the effectiveness of actions taken to reduce exposures.

MONITOR:

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to determine whether concentrations in the indoor air or sub-slab vapor have changed. Monitoring may also be needed to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined on a site-specific and building-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MITIGATE:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system, and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

MONITOR / MITIGATE:

Monitoring or mitigation may be recommended after considering the magnitude of sub-slab vapor and indoor air concentrations along with building- and sitespecific conditions.

MATRIX 2 Page 1 of 2

	Indoor Air Concentration of Volatile Chemical (mcg/m ³)		
Sub-slab Vapor Concentration of Volatile Chemical (mcg/m ³)	Concentration Range 1	Concentration Range 2	Concentration Range 3
Concentration Range 1	ACTION	ACTION	ACTION
Concentration Range 2	ACTION	ACTION	ACTION
Concentration Range 3	ACTION	ACTION	ACTION

Table 3.2 General format of a decisio	n matrix
---------------------------------------	----------

Indoor air and sub-slab vapor concentration ranges in a matrix are selected based on a number of considerations in addition to health risks. For example, factors that are considered when selecting the ranges include, but are not limited to, the following:

- a. human health risks (i.e., cancer and non-cancer health effects) associated with exposure to the volatile chemical in air;
- b. the NYSDOH's guidelines for volatile chemicals in air [Table 3.1];
- c. background concentrations of volatile chemicals in air [Section 3.2.4];
- d. analytical capabilities currently available; and
- e. attenuation factors (i.e., the ratio of indoor air to sub-slab vapor concentrations).

3.4.2 Matrices

The NYSDOH has developed two matrices, which are included at the end of Section 3.4, to use as tools in making decisions when soil vapor may be entering buildings. The first decision matrix was originally developed for TCE and the second for PCE. As summarized in Table 3.3, four chemicals have been assigned to the two matrices to date.

Chemical	Soil Vapor/Indoor Air Matrix [*]
Carbon tetrachloride	Matrix 1
Tetrachloroethene (PCE)	Matrix 2
1,1,1-Trichloroethane (1,1,1-TCA)	Matrix 2
Trichloroethene (TCE)	Matrix 1

Table 3.3 Volatile chemicals and their decision matrices

*The decision matrices are available at the end of Section 3.4.

ENSR

U.S. Locations

AK, Anchorage (907) 561-5700

AL, Birmingham (205) 980-0054

AL, Florence (256) 767-1210

CA, Alameda (510) 748-6700

CA, Camarillo (805) 388-3775

CA, Orange (714) 973-9740

CA, Sacramento (916) 362-7100

CO, Ft. Collins (970) 493-8878

CO, Ft. Collins Tox Lab. (970) 416-0916

CT, Stamford (203) 323-6620

CT, Willington (860) 429-5323

FL, St. Petersburg (727) 577-5430

FL, Tallahassee (850) 385-5006

GA, Norcross (770) 381-1836

IL, Chicago (630) 836-1700

IL, Collinsville (618) 344-1545

LA, Baton Rouge (225) 751-3012

MA, Harvard Air Lab. (978) 772-2345

MA, Sagamore Beach (508) 888-3900

MA, Westford (978) 589-3000

MA, Woods Hole (508) 457-7900

MD, Columbia (410) 884-9280

ME, Portland (207) 773-9501

MI, Detroit (269) 385-4245

MN, Minneapolis (952) 924-0117

NC, Charlotte (704) 529-1755

NC, Raleigh (919) 872-6600

NH, Belmont (603) 524-8866

NJ, Piscataway (732) 981-0200

NY, Albany (518) 453-6444

NY, Rochester (585) 381-2210

NY, Syracuse (315) 432-0506

NY, Syracuse Air Lab. (315) 432-0506

OH, Cincinnati (513) 772-7800

PA, Langhorne (215) 757-4900

PA, Pittsburgh (412) 261-2910

RI, Providence (401) 274-5685

SC, Columbia (803) 216-0003 TX, Dallas (972) 509-2250

TX, Houston (713) 520-9900

TX, San Antonio (210) 296-2125

VA, Chesapeake (757) 312-0063

VA, Glen Allen (804) 290-7920

WA, Redmond (425) 881-7700

WI, Milwaukee (262) 523-2040

Headquarters MA, Westford (978) 589-3000

Worldwide Locations

Azerbaijan Belgium Bolivia Brazil China England France Germany Ireland Italy Japan Malaysia Netherlands Philippines Scotland Singapore Thailand Turkey Venezuela

www.ensr.aecom.com

RETEC Locations

AK, Anchorage (907) 561-5700

CA, Long Beach (562) 420-2933

CO, Fort Collins (970) 493-3700

CO, Golden (303) 271-2100

CT, New Haven (203) 776-2358

GA, Atlanta (770) 296-9300

IL, Chicago (773) 714-9900

IN, Carmel (317) 843-0008 KS, Shawnee Mission (913) 362-8444

MA, Concord (978) 371-1422

MN, St. Paul (651) 222-0841

MT Billings (406) 652-7481

NC, Morrisville (919) 651-5700

NY, Ithaca (607) 277-5716

NY, Nyack (845) 348-1520

PA, Eagleville (610) 650-8770 PA, Monroeville (412) 380-0140

TX, Austin (512) 330-0507

WA, Bellingham (360) 647-0990

WA, Seattle (206) 624-9349

WA, Vancouver (360) 695-5706

WY, Casper (307) 261-4209

n F

ENSR