UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK

TEN LANDFILLS
RCRA FACILITY INVESTIGATION
PHASE II GROUNDWATER MONITORING
DRAFT FINAL REPORT

DECEMBER 1999

Prepared for:

U.S. Army Corps of Engineers
Baltimore District

USACE Contract No. DACA31-94-D-0017
Delivery Order No. 75

0285-659

Malcolm Pirnie, Inc. 104 Corporate Park Drive White Plains, NY 10602

UNITED STATES MILITARY ACADEMY West Point, New York

TABLE OF CONTENTS

Secti	on		Page
1.0	INTE	RODUCTION	1-1
1.0	1.1	Project Background	
	1.2	Project Objective and Scope	
	1.2	rioject Objective and Scope	1-2
2.0	SCO	PE OF WORK	2-1
	2.1	Groundwater Investigation	2-1
		2.1.1 Monitoring Well Installation	2-1
		2.1.2 Monitoring Well Development	2-2
		2.1.3 Monitoring Well Survey	2-2
		2.1.4 Monitoring Well Sampling	
		2.1.5 Groundwater Seep Sampling	
3.0	RESI	ULTS	3-1
	3.1	Groundwater Analytical Results	
	3.2	Groundwater Seep Analytical Results	
4.0	QUA	LITY ASSURANCE/QUALITY CONTROL	4-1
	4.1	Data Quality Objectives	4-1
	4.2	Quality Assurance/Quality Control Parameters	4-1
	4.3	Data Validation	
	4.4	Data Usability	4-2
	4.5	Sample Handling/Shipping and Chain-of-Custody	4-2
	4.6	Decontamination	4-3
5.0	FINE	DINGS AND RECOMMENDATIONS	5-1
	5.1	Michie Stadium Parking Lot B and Lot E Landfills	5-1
	5.2	Camp Buckner Landfill	
	5.3	PX Landfill	5-2

TABLE OF CONTENTS

LIST OF TABLES

No.	Description	Following Page
3-1	Michie Stadium Parking Lot B and Lot E Landfills Metals Groundwater Results for LBMW-03 and LEMW-01 through	
3-2	Camp Buckner Landfill	3-2
3-3	PX Landfill	
3-4	PX Landfill	3-2
3-5	PX Landfill	
3-6	PX Landfill	
3-7	PX Landfill	3-2

TABLE OF CONTENTS

LIST OF FIGURES

Description
Location Map
Vicinity Map
Ten Landfills Location Map
Camp Buckner Location Map
Michie Stadium Parking Lot Landfills Well Location Map
Camp Buckner Landfill Well Location Map
PX Landfill Well Location Map
PX Landfill Seep Sample Location Map

LIST OF ATTACHMENTS

No.	Description	
A	Soil Boring Logs	
В	Groundwater Sample Collection Logs	
C	Data Validation Assessment	

1.0 INTRODUCTION

1.1 Project Background

The United States Military Academy (USMA) is located on the western side of the Hudson River at West Point, Orange County, New York. The USMA was established in 1802 as a training facility for officers in the Army. The Department of the Army (DA) owns, controls and operates the USMA. The location of the USMA is shown on Figures 1-1 and 1-2.

Various studies, assessments and investigations concerning the environmental conditions of the USMA have been conducted by the DA since 1980. Three recent work plans and two reports are particularly relevant to the development of this report. The first work plan is the January 1994 Resource Conservation and Recovery Act (RCRA) Facility Assessment Work Plan of Ten Landfills that described the investigation to evaluate ten landfills located throughout the USMA. The ten landfills correspond to ten solid waste management units (SWMUs). SWMU No. USMA-15 has been divided into two landfills (USMA-15A and USMA-15B). The landfills and the corresponding SWMU Number are referred to as:

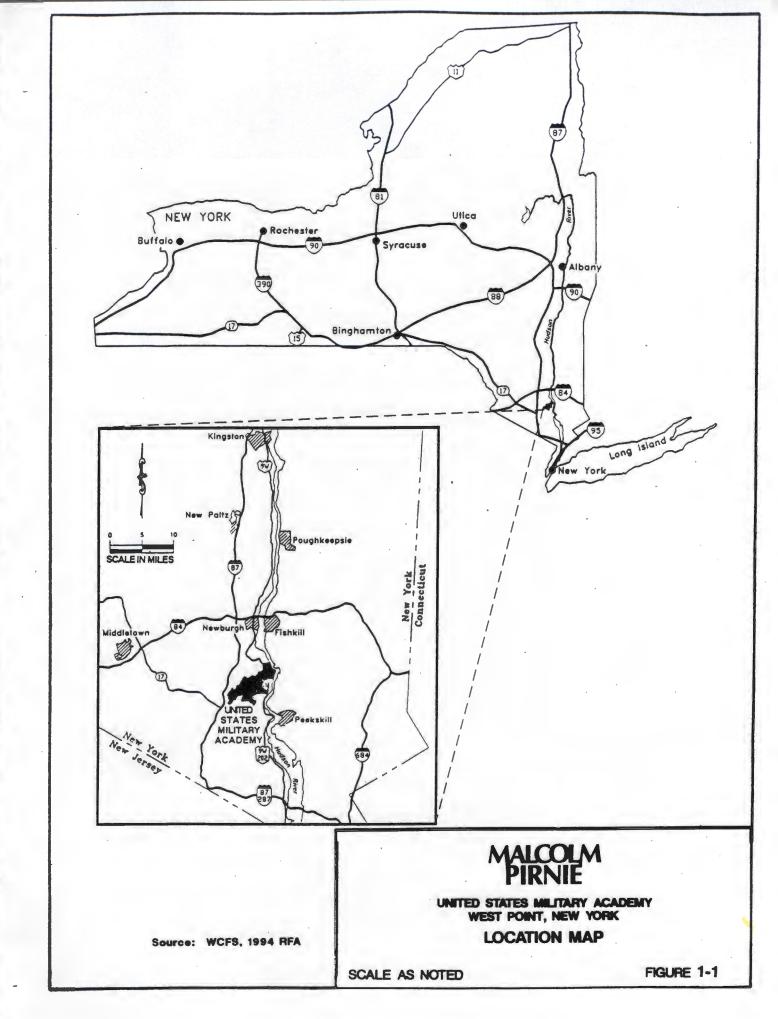
- PX Landfill (USMA-1)
- Michie Stadium Parking Lot Landfills, Lots A, B, C and E (USMA-2, 3, 4 and 6)
- Professor's Row Landfill (USMA-8)
- Village Farm Landfill (USMA-13)
- Morgan Farm Road Landfill (USMA-15A)
- High School Landfill (USMA-15B); and
- Camp Buckner Landfill (USMA-35).

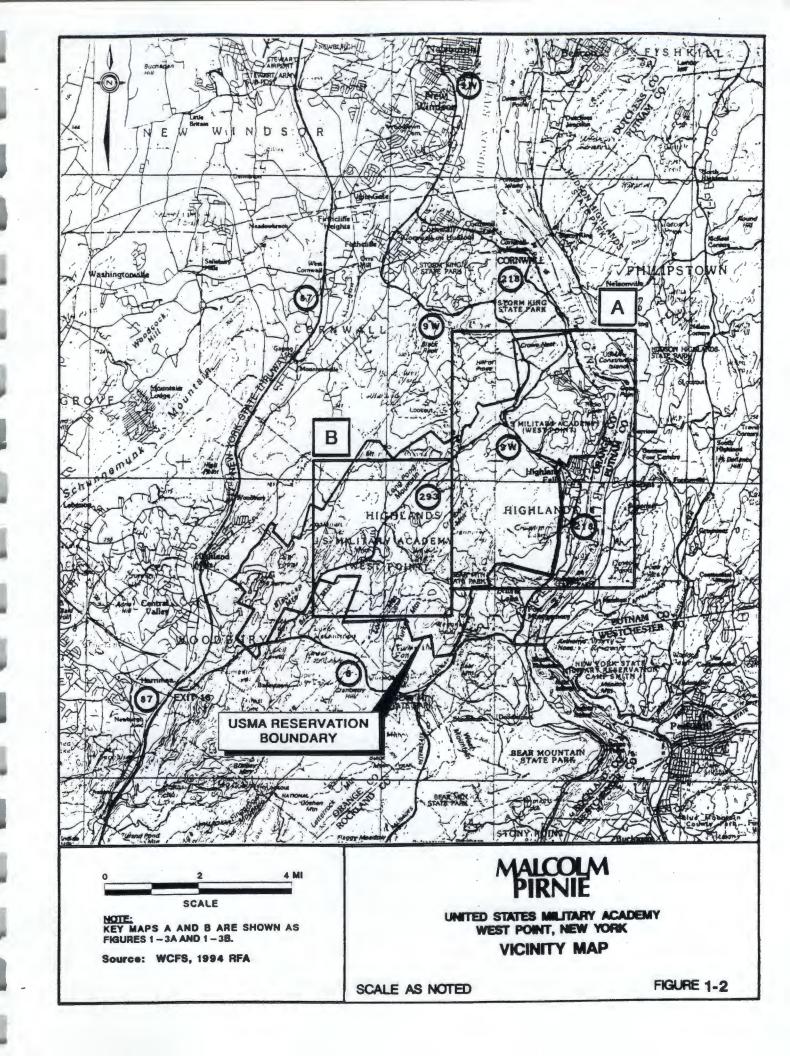
The first report is the June 1995 RFA of Ten Landfills Report. The report presented the findings of the 1994 RFA Work Plan.

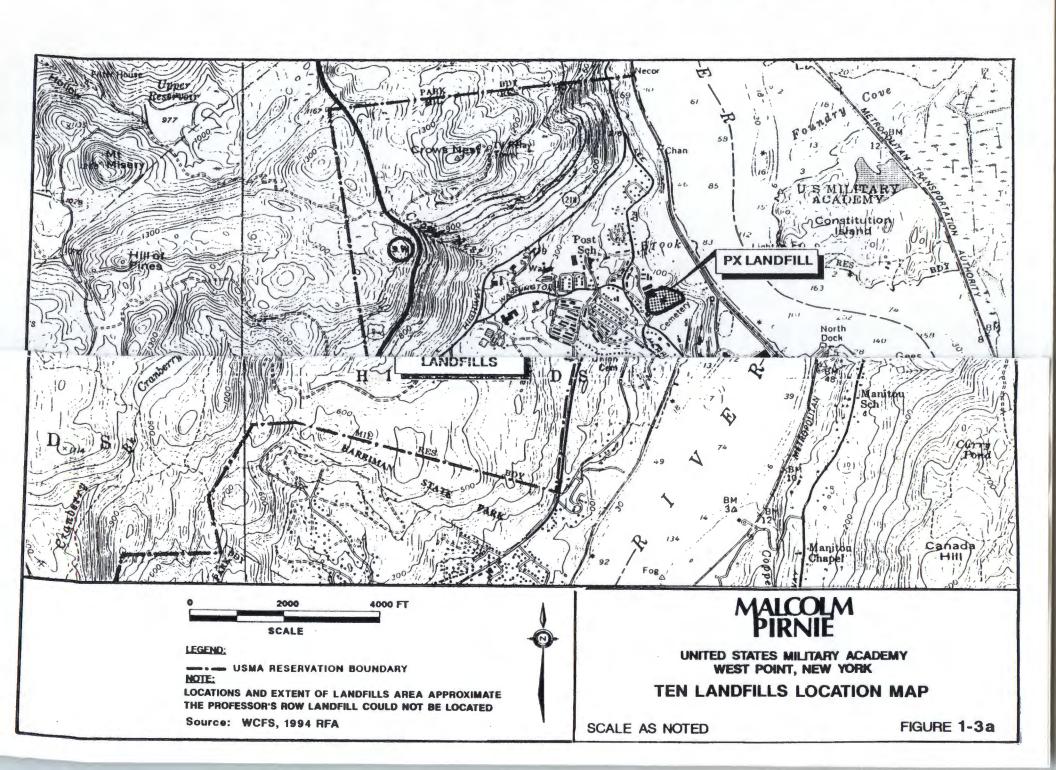
Based upon the results presented in the RFA of Ten Landfills Report, the New York State Department of Environmental Conservation (NYSDEC) required the USMA to further

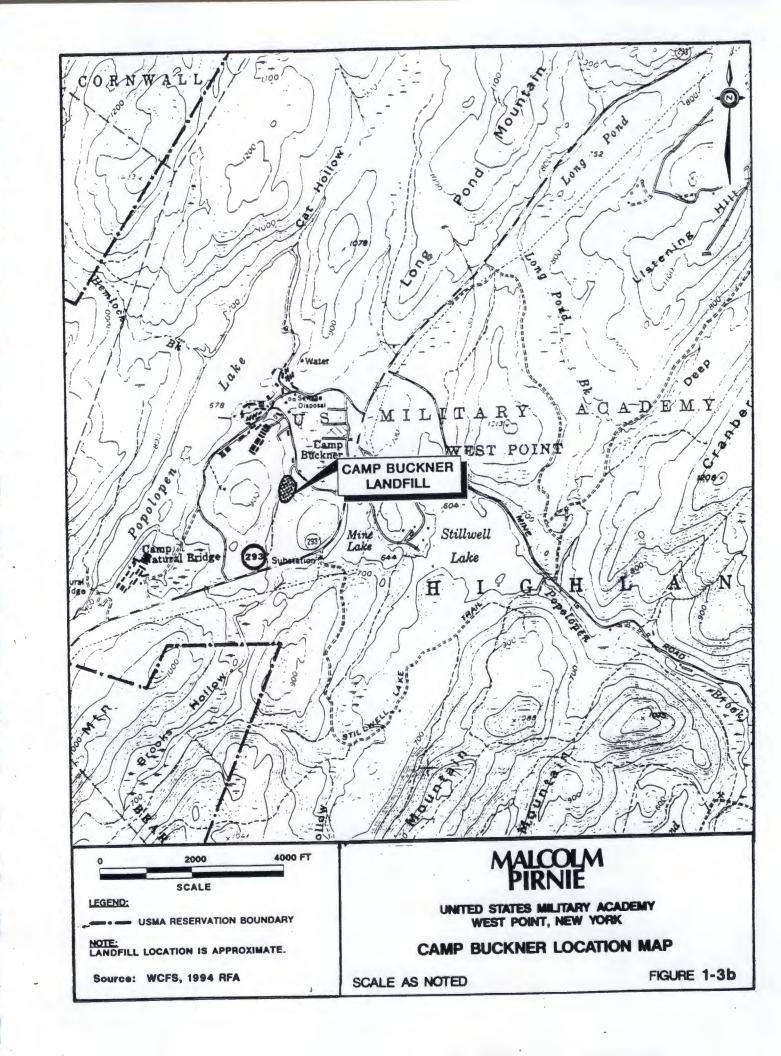
assess the environmental conditions associated with nine of the Ten Landfills (except the Professor's Row Landfill) in a letter dated December 11, 1995. The Professor's Row landfill was excluded because it could not be located during the RFA investigation.

Subsequent to the NYSDEC requirement for further action, Delivery Order Number 0075 was issued by the United States Army Corps of Engineers (USACE) to Malcolm Pirnie, Inc. (Malcolm Pirnie) under Contract Number DACA31-94-D-0017 on April 18, 1996. A Work Plan Addendum (the second work plan) dated May 21, 1996 was written under that Delivery Order.


The second report issued was the June 1997 Final RCRA Facility Investigation of Ten Landfills Report which presented the results of the 1996 Work Plan Addendum.


Based upon the results presented in the 1997 Final RFI of Ten Landfills Report, NYSDEC in its February 17, 1998 letter requested additional investigations. A Phase II Work Plan Addendum (the third work plan) dated June 1998 was written to address that request. This report summarizes the scope of work and results of the Phase II Work Plan Addendum investigations.


1.2 Project Objective and Scope


The USACE authorized Malcolm Pirnie to develop and implement a Phase II Work Plan Addendum for the Ten Landfills. The objective of this addendum was to perform additional sampling and investigation of the Michie Lots B and E, Camp Buckner, and PX Landfills (Figures 1-3a and 1-3b) as requested by the NYSDEC in its February 17, 1998 letter. This objective was met by completing the following tasks:

Collection of one round of groundwater samples from monitoring wells LBMW-03, LEMW-01, LEMW-02, LEMW-03, LEMW-04, and LEMW-05. These monitoring wells are located at the Michie Stadium Lots B and E Landfills. Groundwater samples (filtered and unfiltered) were analyzed for Target Analyte List (TAL) metals.

- Collection of quarterly groundwater samples from the four existing monitoring wells located at the PX Landfill (PXMW-01, PXMW-02, PXMW-03, and PXMW-04) and from one monitoring well at the Camp Buckner Landfill (CBMW-03). Groundwater samples (filtered and unfiltered) were analyzed for TAL metals.
- 4) Collection of up to three groundwater seep samples downslope of the PX Landfill. Groundwater seep samples (unfiltered) were analyzed for TAL metals.

2.0 SCOPE OF WORK

The following sections describe the details of the scope of work completed for this investigation. Figures 2-1 through 2-4 show the sample locations for the individual areas of concern.

2.1 Groundwater Investigation

The groundwater investigation consisted of five specific tasks:

- Monitoring Well Installation;
- Monitoring Well Development;
- Monitoring Well Survey;
- Monitoring Well Sampling; and
- Groundwater Seep Sampling

Each of these tasks are described in the following sections.

2.1.1 Monitoring Well Installation

The scope of work outlined in the June 1998 RFI Phase II Work Plan Addendum includes the installation of up to two additional overburden monitoring wells hydraulically upgradient of the PX Landfill and the existing upgradient well (PXMW-01). PXMW-01 is screened immediately above the overburden/bedrock contact at approximately 11 feet below the ground surface. As stated in the work plan, bedrock outcrops upgradient from PXMW-01 along Washington Road (i.e., the saturated overburden pinches out between PXMW-01 and the bedrock outcrop).

An attempt was made to install the two upgradient monitoring wells adjacent to Building 695 and southwest of PXMW-03. However, since groundwater was not encountered above the overburden/bedrock contact within the soil borings, the overburden wells could not be installed. The locations of the two soil borings (PXMW-05 and PXMW-

06) are shown on Figure 2-3. The boring logs for PXMW-05 and PXMW-06 are found in Attachment A.

2.1.2 Monitoring Well Development

Monitoring well development was not conducted as part of the Phase II Work Plan Addendum tasks because no new monitoring wells were installed during the Phase II work.

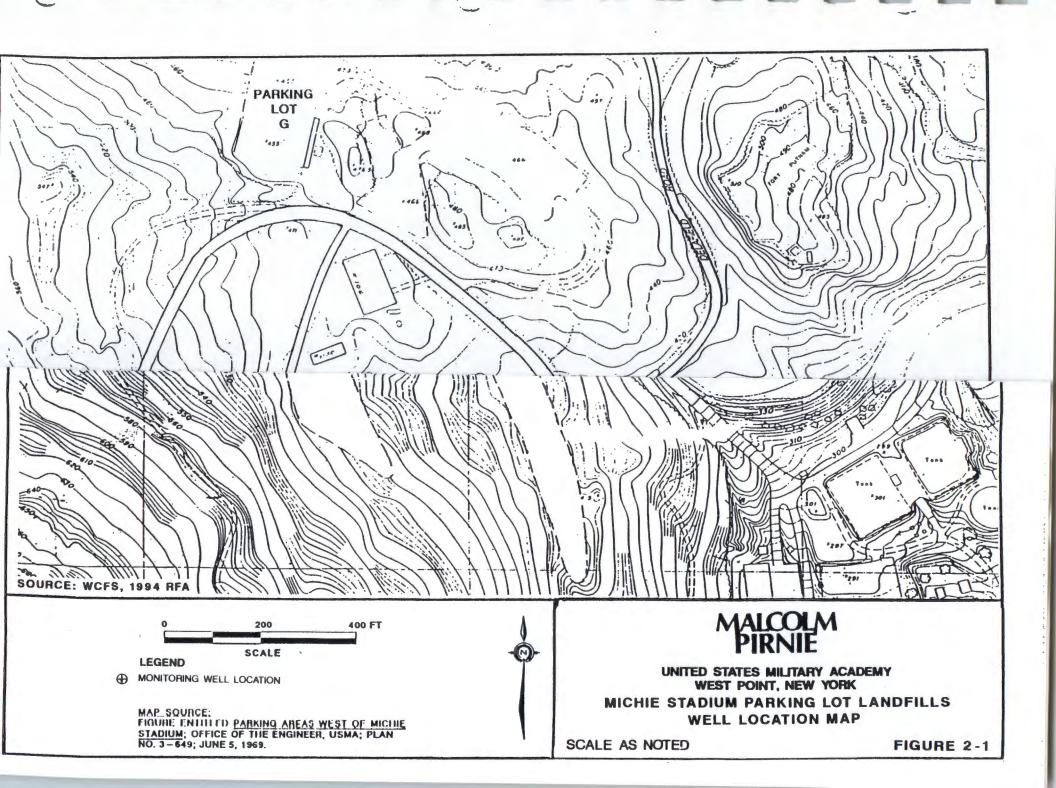
2.1.3 Monitoring Well Survey

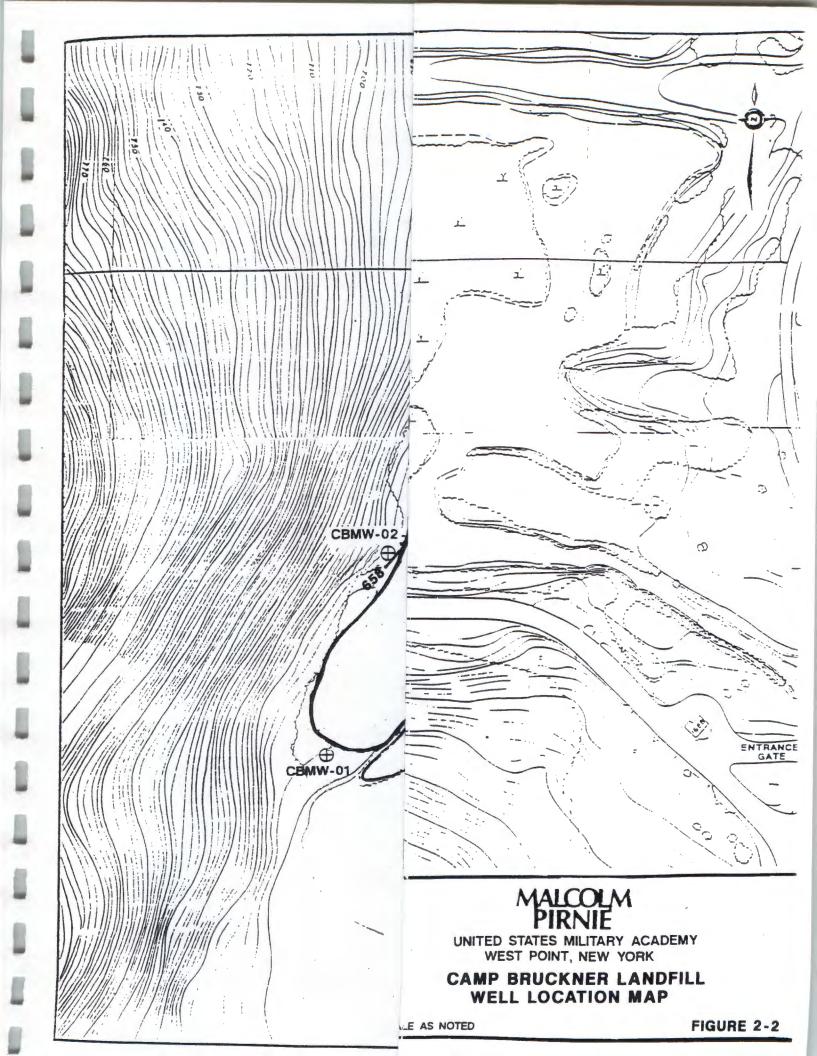
Monitoring well survey was not conducted as part of the Phase II Work Plan Addendum tasks because no new monitoring wells were installed during the Phase II work.

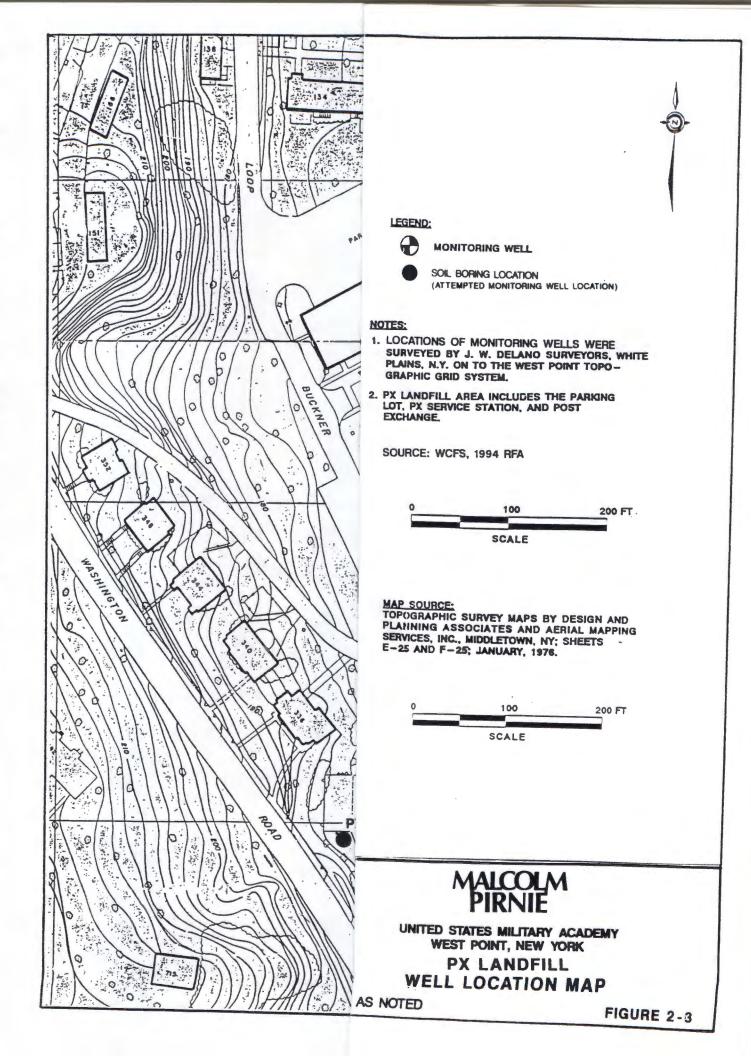
2.1.4 Monitoring Well Sampling

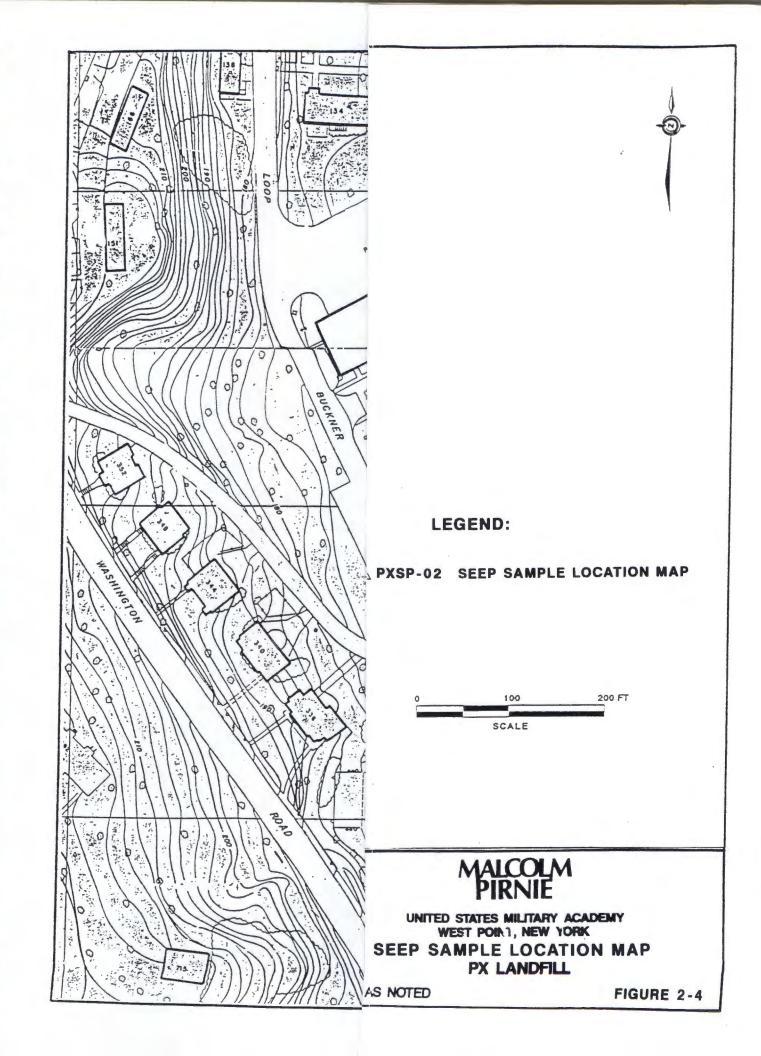
Groundwater samples were collected from monitoring wells located at the Michie Stadium Landfill (LBMW-03, LEMW-01 through LEMW-05 on Figure 2-1); Camp Buckner Landfill (CBMW-03 on Figure 2-2); and PX Landfill (PXMW-01 through PXMW-04 on Figure 2-3). Prior to the collection of groundwater samples, groundwater level measurements were obtained from each of the monitoring wells.

The hydrogeologic conditions encountered caused a variation in the monitoring well sampling procedure stated in the approved Phase II Work Plan Addendum. Modifications were made to the purging technique. Modifications included varying the well evacuation device from a 2-inch diameter submersible pump to a dedicated disposable polyethylene bailer, because of the height and volume of water in the wells. Several wells did not produce enough yield to evacuate the three to five times the standing water volume minimum as proposed in the Phase II Work Plan Addendum. Monitoring wells were purged until they were dry, or three well volumes were removed (Attachment B). Groundwater samples were collected within two hours of the completion of purging.


Groundwater samples were collected using disposable polyethylene bailers and submitted to the laboratory for filtered and unfiltered TAL metal analyses. The filtered


groundwater samples were filtered in the field using a 10 um filter apparatus, except during the second round quarterly sampling. During this round, samples were inadvertently filtered with a 1.0 um filter instead of the 10 um filter size specified in the approved Phase II Work Plan Addendum. This change was brought to the attention of the NYSDEC prior to analysis of the samples and the decision was made to analyze filtered and unfiltered aliquots as sampled.


2.1.5 Groundwater Seep Sampling


Groundwater seep samples were collected from locations downgradient from the PX Landfill (Figure 2-4), in lieu of being able to install monitoring wells downgradient from the PX Landfill and collect groundwater samples from these wells. Unfiltered seep samples were collected directly into the sample container and were analyzed for TAL metals.

During the first round quarterly sampling, groundwater seeps were not present in the PX area. A water sample was collected from a culvert located adjacent to the PXMW-02 monitoring well in lieu of the seep samples. During the second round quarterly sampling, one groundwater seep (PXSP-02) was found and sampled. On the third and fourth quarterly sampling, the groundwater seep PXSP-02 was again found and sampled. No other seeps were observed in the PX area in the last three sampling rounds.

3.1 Groundwater Analytical Results

The groundwater samples that were analyzed for filtered and unfiltered TAL metals in accordance with the Phase II Work Plan Addendum Scope of Work, were compared to the New York State Department of Environmental Conservation Water Quality Regulations Surface Water and Groundwater Classifications and Standards (water quality standards) New York State Codes, Rules and Regulations, Title 6, Chapter X parts 700-705, water class GA. Water class GA is for fresh groundwater.

Metal constituents that exceeded water quality standards for the one round of groundwater sampling at the Michie Stadium Parking Lots B and E monitoring wells (LBMW-03 and LEMW-01 through LEMW-05) include cadmium, iron, lead, manganese, and sodium (Table 3-1). Cadmium was detected at concentrations above the class GA water quality standard at 33.5 ug/l in LBMW-03 (filtered) and 460 ug/l (unfiltered). Cadmium was also detected slightly above the standard in the filtered and unfiltered samples collected from LEMW-05. Lead was detected above the class GA water quality standard in LBMW-03 and LEMW-04, but only in the unfiltered samples. Non-hazardous constituents iron, manganese, and sodium were detected in most of the Michie Stadium Parking Lots B and E monitoring wells above the class GA water quality standards. The concentrations of these non-hazardous constituents are similar and in the same order of magnitude to those reported by Woodward-Clyde in the 1995 RFA Report and Malcolm Pirnie in the 1997 Final RCRA Facility Investigation (RFI) of Ten Landfills Report.

The analytical results of four rounds of quarterly groundwater sampling at the Camp Buckner Landfill monitoring well CBMW-03, conducted as part of the Phase II Work Plan Addendum Scope of Work, are summarized in Table 3-2. Both filtered and unfiltered samples were collected and analyzed for TAL Metals. Non-hazardous constituents iron and manganese have been detected in CBMW-03 above the class GA water quality standard in

both filtered and unfiltered samples in the four rounds of sampling. Chromium and lead have only been detected in the February 12, 1999 unfiltered groundwater sample from CBMW-03 above the water quality standards. The concentrations of these two constituents are lower than the concentrations detected in 1996.

The analytical results of the four rounds of quarterly sampling at the PX Landfill monitoring wells (PXMW-01, PXMW-02, PXMW-03, and PXMW-04) are summarized in Tables 3-3 to 3-6. A filtered groundwater sample from the background monitoring well at the PX Landfill (PXMW-01) was not collected on the third (May 1999) and fourth (August 1999) round of sampling due to insufficient sample volume. For all the other PX Landfill monitoring wells, filtered and unfiltered samples were collected during the four quarterly sampling events. All groundwater samples were analyzed for TAL Metals. The following metals have been detected in the PX Landfill monitoring wells above the NYSDEC class GA water quality standards: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, selenium, and sodium. The concentrations of most of these detected constituents have decreased compared to the 1997 RFI of Ten Lanfills Report data. Most of the observed exceedances above the class GA water quality standards have been detected in the unfiltered groundwater samples. Selenium was detected above the class GA water quality standard of 10 ug/l in the filtered and unfiltered samples collected from PXMW-03 during the four quarterly sampling rounds.

3.2 Groundwater Seep Analytical Results

During the first round of quarterly sampling, none of the groundwater seeps (Figure 2-4) at the PX area could be found. A water sample was collected from a culvert located adjacent to PXMW-02 monitoring well in lieu of the seep samples. Only the groundwater seep PXSP-02 was found and sampled during the second, third, and fourth rounds of quarterly sampling. The analytical results for the unfiltered water sample from the culvert and the PXSP-02 samples are summarized in Table 3-7. The non-hazardous constituents iron, manganese, and sodium were detected above the NYSDEC class GA water quality

standards. Lead was detected in PXSP-02 (67.9 ug/l) above the class GA water quality standard of 25 ug/l.

TABLE 3-1

United States Military Academy West Point Ten Landfills Phase II RFI

Michie Stadium Parking Lot B and Lot E Landfills Metals Groundwater Results for LBMW-03 and LEMW-01 through LEMW-05

Sample Location				Mitchie Stadium P	arking Lot Landfills		
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	LBMW-03-F 11/11/1998 ug/l	LBMW-03-NF 11/11/1998 ug/l	LEMW-01-F 11/11/1998 ug/l	LEMW-01-NF 11/11/1998 ug/l	LEMW-02-F 11/11/1998 ug/l	LEMW-02-NF 11/11/1998 ug/l
Aluminum	N/A	472	8160	< 200	236	341	541
Antimony	3	< 5	< 5	< 5	< 5	< 5	< 5
Arsenic	25	< 5	16.3	< 5	< 5	< 5	< 5
Barium	1000	< 200	< 200	< 200	< 200	< 200	< 200
Beryllium	N/A	< 5	< 5	< 5	< 5	< 5	< 5
Cadmium	5	33.5	460	< 4	< 4	4.5	4.6
Calcium		25200	118000	62300	60000	7600	7630
Chromium	50	< 10	22.5	< 10	< 10	< 10	< 10
Cobalt	N/A	< 50	< 50	< 50	< 50	< 50	< 50
Copper	200	< 25	50.7	< 25	< 25	< 25	< 25
Iron	300	11900	96900	53800	53800	1450	2110
Lead	25	8.5	114	7.5	< 3	3.8	3.2
Magnesium	N/A	< 5000	52800	11900	11500	< 5000	< 5000
Manganese	300	665	1630	1640	1580	90.2	101
Mercury	0.7	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Nickel	100	< 40	50.3	< 40	< 40	< 40	< 40
Potassium		< 5000	< 5000	< 5000	< 5000	< 5000	< 5000
Selenium	10	< 5	< 5	< 5	< 5	< 5	< 5
Silver	50	< 10	< 10	< 10	< 10	< 10	< 10
Sodium	20000	133000	140000	158000	153000	61500	62800
Thallium	N/A	< 5	< 5	< 5	< 5	< 5	< 5
Vanadium	N/A	< 50	< 50	< 50	< 50	< 50	< 50
Zinc	N/A	99.1	1310	< 20	25.9	43.8	< 20

Exceedances of the water quality standards are bolded and underlined.

^{* =} NYSDEC Water Quality Standards for class GA Waters "-F" suffix on Location ID denotes filtered sample. "-NF" suffix on Location ID denotes non-filtered sample.

TABLE 3-1 (CONTINUED)

United States Military Academy West Point Ten Landfills Phase II RFI

Michie Stadium Parking Lot B and Lot E Landfills Metals Groundwater Results for LBMW-03 and LEMW-01 through LEMW-05

Sample Location				Mitchie Stadium P	arking Lot Landfills		
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	LEMW-03-F 02/11/1999 ug/l	LEMW-03-NF 02/11/1999 ug/l	LEMW-04-F 11/11/1998 ug/l	LEMW-04-NF 11/11/1998 ug/l	LEMW-05-F 11/11/1998 ug/l	LEMW-05-NF 11/11/1998 ug/l
Aluminum	N/A	2000 J	8040	1850	6780	1050	1340
Antimony	3	< 5	< 5	< 5	< 5	< 5	< 5
Arsenic	25	< 5	6.3	< 5	< 5	< 5	< 5
Barium	1000	< 200	< 200	297	393	< 200	< 200
Beryllium	N/A	< 5	< 5	< 5	< 5	< 5	< 5
Cadmium	5	< 4	< 4	< 4	< 4	5.8	5.6
Calcium		25200	25000	124000	124000	25700	25000
Chromium	50	< 10	18.5	< 10	15	< 10	< 10
Cobalt	N/A	< 50	< 50	< 50	< 50	50.2	< 50
Copper	200	< 25	26.4	< 25	< 25	< 25	< 25
Iron	300	20900	27500	58900	97200	20100	20400
Lead	25	< 3	8.8	8.7	46.9	11.2	7.1
Magnesium	N/A	6270	7500	31900	31700	5670	5620
Manganese	300	270	377 J	1220	1340	1180	1140
Mercury	0.7	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Nickel	100	< 40	< 40	< 40	< 40	< 40	< 40
Potassium		< 5000	5520 J	28900	29600	< 5000	< 5000
Selenium	10	< 5	< 5	< 5	< 5	< 5	< 5
Silver	50	< 10	< 10	< 10	< 10	< 10	< 10
Sodium	20000	41800	42500 J	176000	171000	122000	119000
Thallium	N/A	< 5	< 5	< 5	< 5	< 5	< 5
Vanadium	N/A	< 50	< 50	< 50	< 50	< 50	< 50
Zinc	N/A	78.6	185	29.4	105	40.1	42.5

Note:

Exceedances of the water quality standards are bolded and underlined.

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters

[&]quot;-F" suffix on Location ID denotes filtered sample.

[&]quot;-NF" suffix on Location ID denotes non-filtered sample.

TABLE 3-2 United States Military Academy West Point Ten Landfills Phase II RFI Camp Buckner Landfill Metals Groundwater Results for CBMW-03

Sample Location					(Camp Buckner Landf	ill			
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	CBMW-03 8/5/1996** ug/l	CBMW-03-F 11/09/1998 ug/l	CBMW-03-F 02/12/1999 ug/l	CBMW-03-F 05/12/1999 ug/l	CBMW-03-F 08/18/1999 ug/l	CBMW-03-NF 11/09/1998 ug/l	CBMW-03-NF 02/12/1999 ug/l	CBMW-03-NF 05/12/1999 ug/l	CBMW-03-N 08/18/1999 ug/l
Aluminum	N/A	74,300	819	2320 J	2350	10600	6740	54200	17100	9320
Antimony	3	< 60	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Arsenic	25	46	< 5	< 5	< 5	< 5	< 5	23.2	5.1	< 5
Barium	1000	448	< 200	< 200	< 200	242	< 200	418	214	274
Beryllium	N/A	4	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Cadmium	5	< 5	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
Calcium		156.000	91300	85600	80200	98700	87400	95700	89100	126000
Chromium	50	101	< 10	< 10	< 10	14.4	< 10	64	24.4	12.4
Coball	N/A	73	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
Copper	200	183	< 25	< 25	< 25	< 25	< 25	90.5	38.3	< 25
Iron	300	170,000	2990 J	4490	4350	27200	15500 J	88700	38600	24400
Lead	25	212	< 3	< 3	< 3	11.6	4.6	35.8	14.8 J	9.7
Magnesium	N/A	56,000	14800	14300	13900	19000	16300	34200	21800	18900
Manganese	300	4,340	635	652	537	1490	762	2210 J	1320	2050
Mercury	0.7	< 0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.4
Nickel	100	151	< 40	< 40	< 40	< 40	< 40	74.9	< 40	< 40
Potassium		8,260	< 5000	< 5000	< 5000	< 5000	< 5000	9640 J	< 5000	< 5000
Selenium	10	< 25	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Silver	50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Sodium	20000	4.740	5210	5180	5470	5320 J	5010	6620 J	5470	5220 J
Thallium	N/A	< 10	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Vanadium	N/A	110	< 50	< 50	< 50	< 50	< 50	84	< 50	< 50
Zinc	N/A	500	71.3	< 20	23.7	70.9	31.9	235	88.4	66

Notes:

^{**} Taken from Malcolm Pirnie 1997 Final RFI of Ten Landfills report (for comparison purposes).

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters

[&]quot;-F" suffix on Location ID denotes filtered sample.

[&]quot;-NF" suffix on Location ID denotes non-filtered sample.

TABLE 3-3 United States Military Academy West Point Ten Landfills Phase II RFI PX Landfill Metals Groundwater Results for PXMW-01

Sample Location						PX Landfill				
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	PXMW-01 8/5/1996** ug/l	PXMW-01-F 11/10/1998 ug/l	PXMW-01-F 02/11/1999 ug/l	PXMW-01-F 05/13/1999 ug/l	PXMW-01-F 08/18/1999 ug/l	PXMW-01-NF 11/10/1998 ug/i	PXMW-01-NF 02/11/1999 ug/l	PXMW-01-NF ¹ 05/13/1999 ug/l	PXMW-01-N 08/18/1999 ug/l
Aluminum	- N/A	160.000	464	5990 J	NS	NS	761	50100	15100	28000
Antimony	3	51	< 5	< 5	NS	NS	< 5	< 5	< 5	< 5
Arsenic	25	52	5.1	6.1	NS	NS	< 5	32.5	14.8	32.1
Barium	1000	734	< 200	< 200	NS	NS	< 200	473	< 200	336
Beryllium	N/A	16	< 5	< 5	NS	NS	< 5	5.5	< 5	< 5
Cadmium	5	19	< 4	< 4	NS	NS	< 4	8.6	5.2	6.7
Calcium		109,000 7	18000	21900	NS	NS	18000	49000	37300	45500
Chromium	50	213	< 10	< 10	NS	NS	< 10	53.7	20	51
Cobalt	N/A	106	< 50	< 50	NS	NS	< 50	< 50	< 50	< 50
Copper	200	840	47.9	62.2	NS	NS	46.1	337	166	406
Iron	300	217,000	3190 J	10900	NS	NS	3860 J	81000	29600	53700
Lead	25	1.510	11.1	45.6	NS	NS	14.1	304	112 J	192
Magnesium	N/A	50,700	< 5000	5100	NS	NS	< 5000	15600	9030	12700
Manganese	300	1.860	78	152	NS	NS	82.5	593 J	309	521
Mercury	0.7	6	< 0.2	< 0.2	NS	NS	< 0.2	1.2	0.38	0.85
Nickel	100	224	< 40	< 40	NS	NS	< 40	58.6	<40	54.3
Potassium		22,700	21100 J	12000	NS	NS	21600 J	15400 J	11400	18600
Selenium	10	< 25	< 5	< 5	NS	NS	< 5	8.9	9.9	17.8
Silver	50	< 10	< 10	< 10	NS	NS	< 10	< 10	< 10	< 10
	-		-	+						

NS

NS

NS

54100

< 5

< 50

NS

NS

NS

NS

63900

< 5

< 50

59.8

51600 J

96.4

1250

< 5

46800

< 5

< 50

641

35800 J

89.7

1290

< 5

Zinc Notes:

Sodium

Thallium

Vanadium

34,200

< 10

220

3,620

62200

< 5

< 50

55

20000

N/A

N/A

N/A

[&]quot;Taken from Malcolm Pirnie 1997 Final RFI of Ten Landfills report (for comparison purposes).

NS = Sample was not collected due to insufficient sample volume.

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters

[&]quot;-F" suffix on Location ID denotes filtered sample.

[&]quot;-NF" suffix on Location ID denotes non-filtered sample.

TABLE 3-4

United States Military Academy West Point Ten Landfills Phase II RFI PX Landfill

Metals Groundwater Results for PXMW-02

Sample Location									PX Landfill								
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	PXMW-02 8/5/1996** ug/l	PXMW-02-F 11/11/1998 ug/l		PXMW-02-F 02/11/1999 ug/l		PXMW-02-F 05/12/1999 ug/l		PXMW-02-F 08/18/1999 ug/l		PXMW-02-NF 11/10/1998 ug/l		PXMW-02-NF 02/11/1999 ug/l		PXMW-02-NF 05/12/1999 ug/l		PXMW-02 N 08/18/1999 ug/l
Aluminum	N/A	13,300	4420		1120 J		1560		988		20300		17500		3590		2200
Antimony	3	< 60	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Arsenic	25	25	10.5	<	5	<	5	<	5		22.2		14.2	<	5	<	5
Barium	1000	118	< 200	<	200	<	200	<	200	<	200	<	200	<	200	<	200
Beryllium	N/A	< 5	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Cadmium	5	94	7,6	<	4	<	4	<	4		29.7		9.9	<	4	<	4
Calcium		85,900	83600		76700		89400		80700		87800		78500		91400		77500
Chromium	50	14	< 10	<	10	<	10	<	10		21.3		16.1	<	10	<	10
Cobalt	N/A	17	< 50	<	50	<	50	<	50	<	50	<	50	<	50	<	50
Copper	200	37	< 25	<	25	<	25	<	25		42.1		35.3	<	25	<	25
Iron	300	24.700	5250 J		1600		2290		1300		28900 J		20900		5890		3600
Lead *	25	48	13.5	<	3		8.6 J		5.8		46		28		9.8 J		8.6
Magnesium	N/A	22,800	20400		18500		22800		19200		24200	\vdash	21100		23600		18700
Manganese	300	605	111		40.4		58.3		34.3	1	661		587.1		206		136
Mercury	0.7	< 0.5	< 0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2
Nickel	100	23	< 40	<	40	<	40	<	40	<	40	<	40	<	40	<	40
Potassium		10,500	9450 J		8410		9720		8580		12600 J		11900 J		10300		8550
Selenium	10	3.0	5.6		7.2		6	<	5		8.7		5.1	T	7.1		5.4
Silver	50	< 10	< 10	<	10	<	10	<	10	<	10	<	10	<	10	<	10
Sodium	20000	139.000	163000		118000		133000		145000 J	1	162000		124000 J		136000	1	138000 J
Thallium	N/A	< 50	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Vanadium	N/A	21	< 50	<	50	<	50	<	50	<	50	<	50	<	50	<	50
Zinc	N/A	552	93.7	<	20	+	36.5	+	36.6		299	1	149	1	50.3	1	30.4

Notes:

^{**} Taken from Malcolm Pirnie 1997 Final RFI of Ten Landfills report (for comparison purposes).

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters

[&]quot;-F" suffix on Location ID denotes filtered sample.

[&]quot;-NF" suffix on Location ID denotes non-filtered sample.

United States Military Academy West Point Ten Landfills Phase II RFI **PX Landfill** Metals Groundwater Results for PXMW-03

Sample Location										PX Landfill			_					
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	PXMW-03 8/5/1996** ug/l		PXMW-03-F 11/10/1998 ug/l		PXMW-03-F 02/11/1999 ug/l		PXMW-03-F 05/12/1999 ug/l		PXMW-03-F 08/18/1999 ug/l		PXMW-03-NF 11/10/1998 ug/l		PXMW-03-NF 02/11/1999 ug/l		PXMW-03-NF 05/12/1999 ug/l		PXMW-03-N 08/18/1999 ug/l
Aluminum	N/A	2,730		914		704 J	T	2600	T	1370	<	200		4460		16300		4100
Antimony	3	< 60	<	5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Arsenic	25	< 10	<	5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Barium	1000	37	<	200	<	200	<	200	<	200	<	200	<	200	<	200	<	200
Beryllium	N/A	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Cadmium	5	< 5	<	4	<	4	<	4	<	4	<	4	<	4	<	4 -	<	4
Calcium		258,000		195000		203000	1	196000		234000	1	187000	1	189000		204000	-	230000
Chromium	50	5	<	10	<	10	<	10	<	10	<	10	<	10		39	<	10
Cobalt	N/A	5	<	50	<	50	<	50	<	50	<	50	<	50	<	50	<	50
Copper	200	14	<	25	<	25	<	25	<	25	<	25	<	25		37.5	<	25
Iron	300	5,990		1310 J		1240		4540		2430		269 J	1	6100		32200		7640
Lead	25	< 10		3.2	<	3		5.2 J		7.9	<	3	<	3		11.7 J		10.9
Magnesium	N/A	83,500		65000		63400	\top	65200	\top	68400		59500		62200	1	73200		68700
Manganese	300	65		17.4		16.6	\top	45.3		29.5	<	15		59.6 J		287		103
Mercury	0.7	1.5	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2
Nickel	100	8	<	40	<	40	<	40	<	40	<	40	<	40 .	<	40	<	40
Potassium		5,570		5330		5630		6140		6320		5030	1	6720 J		9970	-	6890
Selenium	10	< 25		16.4		16.1		18.6	t	18.5		14.4		14		18.2		16.8
Silver	50	< 10	<	10	<	10	<	10	<	10	<	10	<	10	<	10	<	10
Sodium	20000	329,000		535000		488000		388000		383000 J	1	521000		572000 J		395000	-	374000 J
Thallium	N/A	< 50	<	5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Vanadium	N/A	10	<	50	<	50	<	50	<	50	<	50	<	50		52.2	<	50
Zinc	N/A	61		45	<	20	1	21	+	154	<	20	1	22.2		78.9	-	46.8
Notes:					1		_						1		1		_	10.0

Notes:

** Taken from Malcolm Pirnie 1997 Final RFI of Ten Landfills report (for comparison purposes).

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters

[&]quot;-F" suffix on Location ID denotes filtered sample.

[&]quot;-NF" suffix on Location ID denotes non-filtered sample.

TABLE 3-6

United States Military Academy West Point Ten Landfills Phase II RFI PX Landfill

Metals Groundwater Results for PXMW-04

Sample Location								_	PX Landfill								
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	PXMW-04 8/5/1996** ug/l	PXMW-04-F 11/10/1998 ug/l		PXMW-04-F 02/11/1999 ug/l		PXMW-04-F 05/12/1999 ug/l		PXMW-04-F 08/18/1999 ug/l		PXMW-04-NF 11/10/1998 ug/l		PXMW-04-NF 02/11/1999 ug/l		PXMW-04-NF 05/12/1999 ug/l		PXMW-04-NF 08/18/1999 ug/l
Aluminum	N/A	49,900	7110	T	2350 J		4700	1	4510		2800		51000		26600		28100
Antimony	3	38	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Arsenic	25	2	< 5	<	5	<	5	<	5	<	5	Т	17	<	5	<	5
Barium	1000	405	< 200	<	200	<	200	<	200	<	200		404	1	248		409
Beryllium	N/A	3	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Cadmium	5	4	< 4	<	4	<	4	<	4	<	4	<	4	<	4	<	4
Calcium		93,600	71900		74300		70400		69500	1	69800		79100		77300		79700
Chromium	50	101	11.5	<	10	<	10	<	10	<	10	1	87.5		53.8		52.7
Cobalt	N/A	61	< 50	<	50	<	50	<	50	<	50		50.2	<	50	<	50
Copper	200	172	< 25	<	25	<	25	<	25	<	25		160		102		108
fron	300	110,000	11800 J		5080		9290		9660	+	5160 J		97100		60800		61700
Lead	25	160	7.3	<	3	+	6.1 J		7.8	<	3	1	30.4		20.5 J		34.8
Magnesium	N/A	48,300	22200		21400		23300	1	20300	+	20600		39600	-	34900	-	31000
Manganese	300	1.770	171		73.9		134	1	138	+	75.5		1470 J	t	960		1220
Mercury	0.7	< 0.5	< 0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2
Nickel	100	74	< 40	<	40	<	40	<	40	<	40		62.2	t	40.3		43.3
Potassium		18,800	< 5000	<	5000	<	5000	<	5000	<	5000		15200 J	H	10900	-	9990
Selenium	10	< 5	< 5	<	5	<	5	<	5	<	5	<	5		7.2	<	5
Silver	50	< 10	< 10	<	10	<	10	<	10	<	10	<	10	<	10	<	10
Sodium	20000	171.000	240000	T	225000	T	224000	\top	206000 J	+	236000	-	210000 J	1	192000		206000 J
Thallium	N/A	< 10	< 5	<	5	<	5	<	5	<	5	<	5	<	5	<	5
Vanadium	N/A	144	< 50	<	50	<	50	<	50	<	50	-	138	1	83.5	-	81.8
Zinc	N/A	307	41.9	+	20.1	+	29.5	1	36.5	<	20	1	194	\vdash	126		172
Notes:						-						_		_			

Notes:

** Taken from Malcolm Pirnie 1997 Final RFI of Ten Landfills report (for comparison purposes).

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters

[&]quot;-F" suffix on Location ID denotes filtered sample.

[&]quot;-NF" suffix on Location ID denotes non-filtered sample.

TABLE 3-7 **United States Military Academy West Point**

Ten Landfills Phase II RFI **PX Landfill**

Metals Groundwater Seep Results for PXSP-02 and PXCulvert

Sample Location			P	(Seep	
Location ID Date Collected Units	NYSDEC* Water Quality Regulations	PXCulvert - NF 11/10/1998 ug/l	PXSP-02 - NF 02/11/1999 ug/l	PXSP-02 - NF 05/12/1999 ug/l	PXSP-02 - NF 08/18/1999 ug/l
Aluminum	N/A	204	< 200	1940	< 200
Antimony	3	< 5	< 5	< 5	< 5
Arsenic	25	< 5	< 5	< 5	< 5
Barium	1000	< 200	< 200	< 200	< 200
Beryllium	N/A	< 5	< 5	< 5	< 5
Cadmium	5	< 4	< 4	< 4	< 4
Calcium		14800	92000	80100	70300
Chromium	50	< 10	< 10	< 10	< 10
Cobalt	N/A	< 50	< 50	< 50	< 50
Copper	200	< 25	< 25	28.3	< 25
Iron	300	217 J	109	3600	233
Lead	25	< 3	3.2	67.9 J	7.5
Magnesium	N/A	< 5000	22200	21100	17400
Manganese	300	< 15	18 J	683	40.4
Mercury	0.7	< 0.2	< 0.2	< 0.2	< 0.2
Nickel	100	< 40	< 40	< 40	< 40
Potassium		< 5000	5430 J	< 5000	< 5000
Selenium	10	< 5	< 5	< 5	< 5
Silver	50	< 10	< 10	< 10	< 10
Sodium	20000	36300	506000 J	237000	162000 J
Thallium	N/A	< 5	< 5	< 5	< 5
Vanadium	N/A	< 50	< 50	< 50	< 50
Zinc	N/A	< 20	59.4	248	46.1

Note:

J - Estimated value. See Appendix C for additional notes.

^{* =} NYSDEC Water Quality Standards for class GA Waters "-F" suffix on Location ID denotes filtered sample.
"-NF" suffix on Location ID denotes non-filtered sample.

4.0 QUALITY ASSURANCE/QUALITY CONTROL

4.1 Data Quality Objectives

The data quality objectives (DQOs) that were determined for the Phase II Work Plan Addendum have been achieved. The DQOs were developed to support a certain level of data quality useful to the investigation. The data quality level that was determined for the objectives of this report are stated below.

The groundwater and groundwater seep samples submitted for laboratory analyses were of Level III data quality. A Level III data quality is defined as follows:

Level III - Analyses performed in an off-site laboratory using standard documented procedures. Level III analyses may or may not use contract laboratory procedures (CLP); but, although QA/QC may be rigorous, Level III analyses do not usually use the validation or documentation procedures required of Level IV CLP analysis.

4.2 Quality Assurance/Quality Control Parameters

To ensure that the DQOs have been met, the quality assurance and quality control parameters of precision, accuracy, comparability, completeness, representativeness, and sensitivity were utilized in the interpretation of the analytic samples collected.

4.3 Data Validation

All analytical samples were validated in accordance with the Level III requirements. The data was reviewed for contractual and technical compliance. Qualifications were applied following the intent of the National Functional Guidelines with Region II modifications. Samples were qualified based on the following guidelines:

- 1. Sample Integrity
- 2. Holding Time
- 3. Initial and Continuing Calibration
- 4. Blank Contamination
- 5. Interference Check Samples (ICS)
- 6. Matrix Spike
- 7. Laboratory Duplicate
- 8. Laboratory Control Sample
- 9. ICP Serial Dilution

Details of the validation are included in Attachment C.

4.4 Data Usability

The results of the data validation have shown that the DQO's and the quality assurance and quality control parameters have been met. The data is therefore considered to be valid and usable for this investigation.

4.5 Sample Handling/Shipping and Chain-of-Custody

The sample handling and sample custody procedures described in the Phase II Work Plan Addendum were followed during all sampling events. These procedures are similarly described in the RFA Work Plan and CDAP and are summarized in Table 3-1of the Phase II Work Plan Addendum. After each sample was collected and appropriately identified, entries were made on the chain-of-custody form which included: sampler names and signatures, sampling station identification, date, time, type of sample and the required analysis.

The sample containers were placed into coolers with ice packs to keep the samples cold (4°C). Packing materials were placed in the coolers and around the containers to prevent the sample containers from moving and breaking.

The samples were either transported to the laboratory under custody of sampling personnel or turned over to laboratory personnel. The sampler signed and dated the "relinquished by" blank space on the chain-of-custody form. The laboratory personnel who assumed custody of the samples signed and dated the next "received by" blank on the chain -of-custody form.

The holding time of a sample is defined as the maximum allowable time between sample collection and analysis and/or extraction, based on the analyte of interest, stability factors, preservatives (if any) and sample matrix. Holding times are specified in the USEPA SW-846 methods and in USACE and NYSDEC guidance documents. All samples were received in the laboratory within the required holding time.

4.6 Decontamination

Dedicated disposable polyethylene bailers were used in purging and collecting samples from the monitoring wells. The groundwater seep samples were collected directly into the sample containers. The filter apparatus was decontaminated before entering the sample location, between each use, and before leaving the site, following the protocol oulined in section 3.4 of the Phase II Work Plan Addendum.

5.0 FINDINGS AND RECOMMENDATIONS

5.1 Michie Stadium Parking Lot B and Lot E Landfills

One round of groundwater samples for filtered and unfiltered metals from monitoring well LBMW-03 located downgradient of Michie Lot B was requested by the NYSDEC in its February 17, 1998 letter to get more accurate groundwater data. Cadmium was detected in LBMW-03 above the class GA water quality standard in the unfiltered and filtered samples. Lead was detected above the water quality standard only in the unfiltered sample. These constituents were either not detected or detected at concentrations below the water quality standards as reported in the 1997 Final RFI of Ten Landfills Report. The June 1995 RFA of Ten Landfills Report showed that metals were not sampled from well LBMW-03. Based on these findings, one round of groundwater sampling from well LBMW-03 for filtered and unfiltered metals is recommended for Michie Parking Lot B Landfill to confirm the presence of these constituents.

One round of groundwater samples for filtered and unfiltered metals from monitoring wells LEMW-01 to LEMW-05 located on Michie Lot E was requested by the NYSDEC in its February 17, 1998 letter to get more accurate groundwater data. Cadmium was detected slightly above the class GA water quality standard of 5 ug/l in LEMW-05 at 5.8 ug/l (filtered) and 5.6 ug/l (unfiltered). Lead was detected above the water quality standard (25 ug/l) in LEMW-04 (46.9 ug/l, but only in the unfiltered sample. No hazardous constituents were detected above the class GA water quality standards in LEMW-01, LEMW-02, and LEMW-03. No further action is recommended for the Michie Stadium Parking Lot E Landfill because the exceedance for cadmium was only slightly above the water quality standard and lead was detected above the standard in just one unfiltered sample out of the ten samples collected (five filtered and five unfiltered). In addition, cadmium was not detected and lead was detected below the water quality standard in LEMW-01 to LEMW-05, as reported in the 1997 Final RFI of Ten Landfills Report. The June 1995 RFA of Ten Landfills Report showed that lead was detected below the class GA water quality standard in LEMW-02 and LEMW-04.

5.2 Camp Buckner Landfill

Four rounds of quarterly groundwater sampling was conducted on well CBMW-03 in accordance with the Phase II Work Plan Addendum Scope of Work. The NYSDEC, in its February 17, 1998 letter, had requested that filtered and unfiltered groundwater samples be collected from well CBMW-03 because of the high turbidity of the well water. Chromium and lead have been detected in CBMW-03 above the class GA water quality standards in the unfiltered samples only once during the four rounds of quarterly groundwater sampling. These constituents were either not detected or had concentrations below the water quality standards in the unfiltered samples in the other three rounds. These constituents were detected above the standards in the 1996 sampling. However, the concentrations have decreased. Chromium and lead were also either not detected or detected below the water quality standards in the filtered samples in all four rounds of quarterly groundwater sampling. No further action is recommended for the Camp Buckner Landfill because these results indicate that in all the samples, except one unfiltered sample, chromium and lead were either not detected or had concentrations below the class GA water quality standards.

5.3 PX Landfill

Four rounds of quarterly groundwater sampling were conducted on wells PXMW-01, PXMW-02, PXMW-03, and PXMW-04 in accordance with the Phase II Work Plan Addendum Scope of Work. The NYSDEC, in its February 17, 1998 letter, had requested that filtered and unfiltered groundwater samples be collected from these wells because it appears that the high levels of turbidity may have affected the concentrations of constituents reported in the 1997 Final RFI of Ten Landfills Report. The analytical results of the four rounds of quarterly sampling have shown that most of the exceedances above the class GA water quality standards have been detected in the unfiltered samples. Most of the filtered samples have constituent concentrations that were either not detected or detected below the class GA water quality standards. The unfiltered groundwater samples generally had high levels of turbidity. It is likely that the elevated concentrations of the unfiltered samples may

be attributed to metals adsorbed onto suspended particulates. The exceedances for arsenic, cadmium, chromium, lead, and mercury mentioned in the NYSDEC's February 17, 1998 letter and detected mostly in upgradient well PXMW-01, had been reduced to a one-time exceedance of lead (PXMW-01) and cadmium (PXMW-02) water quality standards, in the filtered samples in the four sampling rounds. The other constituents of concern cited in the February 17, 1998 NYSDEC letter were mostly either not detected or detected below the water quality standards in the filtered samples collected from the four PX Landfill wells during the four sampling rounds. In addition, the concentrations of these constituents have generally dropped below the concentrations reported in the 1997 Final RFI of Ten Landfills Report. This reduction in constituent concentrations was observed in the four PX Landfill wells not only in the filtered samples but also in the unfiltered samples as well during the four sampling rounds. Selenium was detected above the class GA water quality standard only in PXMW-03. The non-hazardous constituents iron, manganese, and sodium were detected in the unfiltered groundwater seep samples collected from PXSP-02 (located directly downgradient of the PX Landfill) during the second, third, and fourth sampling rounds. Lead was detected in the unfiltered groundwater seep samples above the class GA water quality standard only once during the three sampling events. No other potential hazardous metal constituents have been detected in the groundwater seep samples. No further action is being recommended for the PX Landfill because these findings show that the more significant metal concentration exceedances above the class GA water quality standards are pretty much limited to the area of the landfill footprint; moreover, most of these exceedances have been detected in the unfiltered samples. Lastly, the concentrations of the constituents of concern cited in the NYSDEC February 17, 1998 letter were observed to have generally dropped not only in the filtered but also in the unfiltered samples during the four rounds of quarterly sampling.

ATTACHMENT A
SOIL BORING LOGS

MALCOLM PIRNIE, INC. BORING: PXMW-05 ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018 DATE: 10/16/98 **USMA West Point 10 Landfills** PROJECT NAME: 0285-659-100 LOCATION: PX Landfill JOB NUMBER: WEATHER: Partly Cloudy, 60F Advanced Drilling, Inc. DRILLING FIRM: ELEVATION: N/A 4-1/4" Hollow Stem Auger DRILLING METHOD: DATUM: **Ground Surface** Brian Wagner DRILLER: HYDROGEOLOGIST: Joe Claypoole HELPER: Rick Parez He SAMPLE INFORMATION DESCRIPTION REMARKS Const. Blows per 6" Depth Depth Rec No. dk br slty snd, occ grvl; moist N/A 10" 6 0-2' 2 refusal encountered at 2' 100/1" END OF BORING AT 2 FT BELOW GROUND SURFACE, ENCOUNTERED REFUSAL backfilled hole with native soil.

MALCOLM PIRNIE, INC.

PROJECT NAME:

ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

USMA West Point 10 Landfills

BORING: PXMW-06 DATE: 10/16/98

		0285-659-100 LOCATION: Advanced Drilling, Inc. WEATHER:								
RILLING FIRM:							EATHER:	Partly Cloudy, 60F		
RILLING METHOD:	4-1/4"	Holla	w Ste	ım Au	ger		VATION:	N/A		
RILLER:	Brian V		r				DATUM:	Ground Surface		
ELPER:	Rick Pa	arez				HYDROGEO		Joe Claypoole		
SAMPLE INFORMA No. Depth Rec		SAMPLE INFORMATION Blows per 6*			ATION ell slows per 6" Depth DESCRIPTION Const.					
1 0-2'	10" 5	10	25	35		red br sandy gravel, some silt; moist	N/A			
2 2-4'	12" 17	27	40	35	2	olive br sandy gravel, some silt, moist		angular gravel in shoe		
					4					
3 4-6'	16" 45	54	61	96		sandy gravel as above, moist				
					. 6	approx. 30% angular rock fragments				
4 6-8'	4" 140	140 25/3" - sandy gravel slough from above recovered 8 wet								
						ENCOUNTERED REFUSAL AT 6'6" BELOW GRADE.		Monitored water level in augers for '40 minutes. Water level remained at aprox. 6'6" below grade.		

ATTACHMENT B

GROUNDWATER SAMPLE COLLECTION LOGS

PROJECT NUMBER:			SAMPLE COL	HER TITLES	
	8001216		DATE:	11-11-98	•
PROJECT NAME:	Dever Municipal	Wei] #4	SAMPLERS:	TDEK	
SITE LOCATION:	Dover, NJ			P RABIDI	EAU
			•		
	4		WEATHER		
ITE CONTACT:	विश्विष्ठ Gareia		CONDITIONS:		
WELL IDENTIFICATIO	N NUMBER:	LBMW	1-03		
VELL HEADSPACE READING	-	PID MODEL	/LAMP:		
EPTH TO WATER (Before Pu	rging) =	10.69	_ FEET FROM TO	P OF CASING	
VELL DEPTH =		11.08	FEET FROM TO	P OF CASING	
EIGHT OF WATER IN WELL =		.39	FEET		
VATER IN ONE WELL VOLUM	=	. 25	GALLONS		
PURGE TIME (start/finish) =	NA				
VELL EVACUATION DEVICE:					
AMPLING TIME (start/finish)	09	15/092	0		
			BAILER		*
AMPLE COLLECTION DEVICE		004 13	عرس ال		
AMPLE APPEARANCE:					
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	*				
specific conductivity (umhos/cm)					
redox (eh)					
redox (eh) turbidity (ntu)				r	
				-	
turbidity (ntu)					
turbidity (ntu) pH (SU)	•				

GROUNDWA	TER MONITO	RING WELL S	AMPLE COL	LECTION LC)GS
PROJECT NUMBER:	18001210		DATE:	1-11-98	}
PROJECT NAME:	Doger Municipal	VelL#4	SAMPLERS:	all Dello	l
SITE LOCATION:	Bever, NJ		7	>box Ro	bibeau
	west form	*			
SITE CONTACT:	Diego Garcia		WEATHER CONDITIONS:		•
WELL IDENTIFICATIO	N NUMBER:	LEN	1W 01		
WELL HEADSPACE READING		PID MODEL/L	.AMP:	***	
DEPTH TO WATER (Before Pu	rging) =	9.61	FEET FROM TOP	OF CASING	4 " WEL
WELL DEPTH =		21.47	FEET FROM TOP	OF CASING	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HEIGHT OF WATER IN WELL =	_	11.86	FEET		
WATER IN ONE WELL VOLUM	E=	7.7	GALLONS		
PURGE TIME (start/finish) =	1300	1320			
WELL EVACUATION DEVICE:	Bai	les			
SAMPLING TIME (start/finish)	= 123	20	•		à
SAMPLE COLLECTION DEVICE	=:	Poer BA	KER		
SAMPLE APPEARANCE:		•			
FIELD PARAMETERS	men 2"	relatives 15	THIRD	FOURTH	FIFTH
temperature (degrees C)	14.7	14.7	14.5		
specific conductivity (umhos/cm)	1.34	1-28	1.34		
redox (eh)					
turbidity (ntu)	NA STA	NA ALON	NA		
pH (SU)	6.18	6.17	6.21		
dissolved oxygen (mg/l)	ALV21 3.02	2.36	2.70	-	
water level volume purged (gallons)					
	SAMPLE A	NALYSIS INF	ORMATION		
ANALYSIS REQUIRED:	<u> </u>				
LABORATORY:					
CONTACT:					
NOTES:					
	Casina Diamana (1)	Co-lea Val	Gollone and Ecoth		
	Casing Diameter (in) 2.0	Casing Volume (Gallons per Foot) 0.1632		
	4.0		0.6528		

FIRITIE	ONE	NTERNATIONAL	BLVD., MAHWAH,	NEW JERSEY 074	95-0018
GROUNDWA	TER MONITO	RING WELL	SAMPLE COL	LECTION LC	GS
ROJECT NUMBER:	2864810		DATE:	1-11-98	
ROJECT NAME:	Dover Municipal	We'll #4	SAMPLERS:	J DEKOG	NE
SITE LOCATION:	Sover, NJ				DEAN
			,	111111111111111111111111111111111111111	
SITE CONTACT:	Blego-Statio		WEATHER CONDITIONS: (NERCAST, LT	BREEZ
VELL IDENTIFICATION	NUMBER:	LEM	W-02		
ELL HEADSPACE READING =		PID MODE			
EPTH TO WATER (Before Pur	ging) =	18,50	FEET FROM TO	P OF CASING	
VELL DEPTH =	_	29,32	FEET FROM TO	P OF CASING	
EIGHT OF WATER IN WELL =	-	1082	FEET		
VATER IN ONE WELL VOLUME	=	~7.1	GALLONS		
	1015	1 10 30	(military and military and mili		
URGE TIME (start/finish) =	1	7			
ELL EVACUATION DEVICE:	1841		6		
AMPLING TIME (start/finish) =		11 00			
AMPLE COLLECTION DEVICE:	Po	24 BK	HUER		
AMPLE APPEARANCE:					
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
		SECOND	ITIKD	FOORITI	FIFTH
temperature (degrees C) specific conductivity	12.7				
(umhos/cm)	.274				
redox (eh)					
turbidity (ntu)	Ø				
	5.86				
	7 45				
	> 0 3				
volume purged (gallons)					
pH (SU) dissolved oxygen (mg/l) water level	5.86 3.85				
· siams baiges (Banone)		<u> </u>			
·	SAMPLE A	NALYSIS IN	<u>IFORMATION</u>		
NALYSIS REQUIRED:					
ABORATORY:					
ONTACT:			٠		
NOTES:	DRV	(a) ~	7 gal	(I Volue	me.
			V		
	Casing Diameter (in)	Casing Volum	(Gailons per Foot)		
	2.0	Casing volume	0.1632		

0.6528

1.4687

4.0

GROUNDWA	TER MONITOR	RING WELL	SAMPLE COL	LECTION LC	<u>IGS</u>
PROJECT NUMBER:	- ED012/0		DATE:	-11-98	
PROJECT NAME:	Bevermunicipal	Nell'H4-	SAMPLERS:	DEKOCK	-IE
SITE LOCATION:	Bover, NJ			PAT RABI	DEAU
SITE CONTACT:	Diego-Carcia		WEATHER CONDITIONS:		
WELL IDENTIFICATION	N NUMBER:	LE	mw 03		
VELL HEADSPACE READING		PID MODE			
EPTH TO WATER (Before Pu	rging) =	42.41	FEET FROM TO	OF CASING	
VELL DEPTH =		42,80	FEET FROM TO		14
EIGHT OF WATER IN WELL =	_	0.39	FEET		4 WEZ
VATER IN ONE WELL VOLUME	-	.25	GALLONS		
URGE TIME (start/finish) =	1105				
/ELL EVACUATION DEVICE:					
AMPLING TIME (start/finish)	NOT	-1): INSUFFIC	1- 1-14-	
· FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)					
specific conductivity (umhos/cm)					
redox (eh)					
turbidity (ntu)					
pH (SU)					
dissolved oxygen (mg/l)				-	
water level volume purged (gallons)					`
	SAMPLE A	NALYSIS IN	FORMATION		
NALYSIS REQUIRED: ABORATORY: ONTACT:	0800 N-11-98				
NOTES:	DRN	AFTER	2 200	ml.	
					Of Rosum
	NOT &	NOUGH	Had to C	outer ne	ed parassa
	Casing Diameter (In)	Casing Volume	(Gallons per Foot)		
·	2.0		0.1632		

1.4687

ROJECT NUMBER:	99.01-216	_	DATE:	-11-98	
ROJECT NAME:	Dover Municipal We	1 #4	SAMPLERS:		
ITE LOCATION:	Bover, NJ		-		
SITE CONTACT:	Diego Garois		WEATHER CONDITIONS:		
WELL IDENTIFICATIO	N NUMBER:	LEN	1W 04		
VELL HEADSPACE READING	=	PID MODEL/	LAMP:		
EPTH TO WATER (Before Pu	rging) =	12.61	FEET FROM TOP	OF CASING	4" wel
VELL DEPTH =		20.25	FEET FROM TOP	OF CASING	T was
HEIGHT OF WATER IN WELL =		7.64	FEET		
VATER IN ONE WELL VOLUM	= ~	5	GALLONS		
PURGE TIME (start/finish) =	1330	1 13 45			
VELL EVACUATION DEVICE:		1			
AMPLING TIME (start/finish)	= 14.0	70	•		
SAMPLE COLLECTION DEVICE			Pow		•
SAMPLE APPEARANCE:		an (7		
			THIRD	FOURTH	FIFTH
FIELD PARAMETERS	FIRST	SECOND		FOURTH	FIFTH
temperature (degrees C) specific conductivity	15.0	15.1	14.6		
(umhos/cm)	1.88	1.74	1.68		
redox (eh)					
turbidity (ntu)	NA	NA	NA		
pH (SU)	6,42	6.35	6.40		
dissolved oxygen (mg/l)	2.03	2.11	2.09	-	
water level volume purged (gallons)	4				
	CAMPLEAN	N VOIC INF	ODMATION		
	SAMPLE ANA	ALTOID INF	ORMATION		
NALYSIS REQUIRED: ABORATORY:					
CONTACT:			•		
NOTES:	DAGO		Hotok		
		-		0 /	
	Casing Diameter (in)	Casing Volume (Gallons per Foot)		

1.4687

<u>GROUNDWA</u>	TER MONITOR	ING WELL	SAMPLE COL	LECTION L	ogs
PROJECT NUMBER:	8001248		DATE:	1-11-	98
PROJECT NAME:	Dover Municipal V	Vell #4	SAMPLERS:	IDEK	·
SITE LOCATION:	Dover, NJ			PRABID	EAV
			WEATHER		
SITE CONTACT:	Diego Garcia		CONDITIONS:		
WELL IDENTIFICATION	NUMBER:	LEM	N-05		
WELL HEADSPACE READING =		PID MODEL	/LAMP:		
DEPTH TO WATER (Before Pur	ging) =	33.65	FEET FROM TOP	OF CASING	4" WELL
WELL DEPTH =		36.22	FEET FROM TOP		
HEIGHT OF WATER IN WELL =		2,57	FEET		
WATER IN ONE WELL VOLUME	_	1.7	GALLONS		
PURGE TIME (start/finish) =	10:00	1000	_		
WELL EVACUATION DEVICE:		l			
SAMPLING TIME (start/finish) =	11	50			
SAMPLE COLLECTION DEVICE	P	ory B	AILER		
SAMPLE APPEARANCE:		•			
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	11.6				
specific conductivity (umhos/cm)	741				
redox (eh)	_				
turbidity (ntu)	71000				
pH (SU)	6.08				
dissolved oxygen (mg/l)	3.80		·	•	
water level volume purged (gallons)					
	SAMDLE	NAI VSIS IN	EOPMATION		
volume purged (gallons)	SAMPLE A	NALYSIS IN	FORMATION		
	SAMPLE A	NALYSIS IN	FORMATION		
volume purged (gallons) ANALYSIS REQUIRED: LABORATORY:					
volume purged (gallons) ANALYSIS REQUIRED: LABORATORY: CONTACT:			FORMATION 2 gall		
volume purged (gallons) ANALYSIS REQUIRED: LABORATORY: CONTACT:	Dey	@ ~11	7 gall	€ The state of th	
volume purged (gallons) ANALYSIS REQUIRED: LABORATORY: CONTACT:		@ ~11		<u></u>	

PROJECT NAME:	100		SAMPLE COLL	LO HON LO	<u>G</u>
	569 bookstor		DATE:	1-9-98	
	Dover-Münicipal	Welk#4	SAMPLERS: 7	TEFF DEFO	SKIE
SITE LOCATION:	DOVER, NO		•	T RABBIA	
	WEST POINT	-	,		
SITE CONTACT:	Plu KAVANAVE Diogo-Garcia	- K	WEATHER CONDITIONS: CL	R. 250°	F
WELL IDENTIFICATION	NUMBER:	CBM	W-03		
VELL HEADSPACE READING =		PID MODEL/	LAMP:		
EPTH TO WATER (Before Purg	jing) =	7,39	FEET FROM TOP	OF CASING	
VELL DEPTH =		15,80	FEET FROM TOP	OF CASING	
EIGHT OF WATER IN WELL =		8.41	FEET		
VATER IN ONE WELL VOLUME			GALLONS		
URGE TIME (start/finish) =	g: AC	5/10/10			
VELL EVACUATION DEVICE:		CEABLE P	by BAILE	R	
		10:10			
AMPLING TIME (start/finish) =		10.10	-		*
AMPLE COLLECTION DEVICE:			-		
AMPLE APPEARANCE:					
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	12.6	12,6	12.7	·	
specific conductivity (umhos/cm)	.389	.397	-395		
redox (eh)		_	-		
turbidity (ntu)	999	999	869		
	7.37	7.44	7.46		
pH (SU)					
pH (SU) dissolved oxygen (mg/l)	10.4	1.74	2.21	-	
	10.4 12al	1.74 2.god		•	

1.4687

PROJECT NUMBER:	80012150		DATE:	1-10-98	
PROJECT NAME: WEST POI		Well#4	SAMPLERS:	s dexos	FLE
HTE LOCATION: 10 LANSFIL	(Dover, No		_F	RABLI	DEAU
ITE CONTACT:	Diego Garcia	· · · · · · · · · · · · · · · · · · ·	WEATHER CONDITIONS: (LDY CO	740 Ca
VELL IDENTIFICATION	NUMBER:	PX - M	W-01		
ELL HEADSPACE READING =		PID MODEL/	LAMP:		
EPTH TO WATER (Before Pur	ging) =	3.52	FEET FROM TOP	OF CASING	
/ELL DEPTH =		9.85	FEET FROM TOP	OF CASING	
EIGHT OF WATER IN WELL =		6.33	FEET		
ATER IN ONE WELL VOLUME	=	24	GALLONS		
	na	40/09	18		
URGE TIME (start/finish) =					
			10		
URGE TIME (start/finish) = /ELL EVACUATION DEVICE:					
/ELL EVACUATION DEVICE: AMPLING TIME (start/finish) =		45			è
VELL EVACUATION DEVICE: AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE:		45	ILER		
/ELL EVACUATION DEVICE: AMPLING TIME (start/finish) =		45			٠
VELL EVACUATION DEVICE: AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE:		45		FOURTH	FIFTH
VELL EVACUATION DEVICE: AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE:		9 45 Pory 134	ILER	FOURTH	FIFTH
VELL EVACUATION DEVICE: AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE: FIELD PARAMETERS	FIRST	9 45 Pory 134	ILER	FOURTH	FIFTH
AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	FIRST	SECOND	THIRD	FOURTH	FIFTH
AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	FIRST	SECOND	THIRD	FOURTH	FIFTH
AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh)	FIRST 140 1.04	SECOND	THIRD	FOURTH	FIFTH
AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu)	FIRST	SECOND	THIRD	FOURTH	FIFTH
AMPLING TIME (start/finish) = AMPLE COLLECTION DEVICE: AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu) pH (SU)	FIRST 1.04	SECOND	THIRD	FOURTH	FIFTH

0.6528

1.4687

4.0

GROUNDWATER MONITO	ORING WELL	SAMPLE CO	LLECTION LOGS

R	GROUND	VATERINO	MITOKIIA	G WELL	SAIVIF LE C	OLLECTION LOGS	
k	PROJECT NUMBER:		01216		DATE:	11-10-91	
	PROJECT NAME:	-Dover Mt	micipal Well	#4	SAMPLERS:	IDEKOSKIE	
l	SITE LOCATION:	Pover N.	J		_	PRABIDEAU	
	SITE CONTACT:	Diego Ga	rela		WEATHER CONDITIONS	CLDY 40°F	
	WELL IDENTIFICAT	ION NUMB	ER:	Px mw	02		
ı	WELL HEADSPACE READI	NG =		PID MODEL	LAMP:		
ĺ	DEPTH TO WATER (Before	Purging) =		4.50	FEET FROM 1	TOP OF CASING	
ě	WELL DEPTH =		4	7.97	FEET FROM 1	TOP OF CASING	
ì	HEIGHT OF WATER IN WEL	.L =		3.47	FEET		
Ü	WATER IN ONE WELL VOLU	UME =	1	5	GALLONS		
ı	PURGE TIME (start/finish)		9 05/	935			
	WELL EVACUATION DEVIC	E:	D15804	ABLE	BAILE	2.	
ı	SAMPLING TIME (start/finis	sh) =	1030	•	_		

SAMPLE APPEARANCE:

SAMPLE COLLECTION DEVICE:

FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	10.4	/1			
specific conductivity (umhos/cm)	1,5	114			
redox (eh)					
turbidity (ntu)	373	99			
pH (SU)	7.68	8.2			
dissolved oxygen (mg/l)	8.0	0008 7.8			
water level					
volume purged (gallons)	.5	DRV			

BAILER DOLY

volume purged (gallons)	.5	DRY			
	SAMPLE	ANALYSIS II	FORMATIC	<u>DN</u>	
ANALYSIS REQUIRED: LABORATORY: CONTACT:					
NOTES:	DR	10,100	0		

Casing Diameter (in)	Casing Volume (Gallons per Foot)	
2.0	0.1632	
4.0	0.6528	
6.0	1.4687	

OJECT NUMBER:	8001216		DATE: 11-10-98		
ROJECT NAME:	Dover-Municipa		SAMPLERS: T DEKO SKIE		
ROJECT NAME: ITE LOCATION:	Dover, NJ	LIEUI MA			
HE LOOA HON.	- Dover, NJ		P (ZABIDEAD		
TE CONTACT: Diego Garcia			WEATHER		
			CONDITIONS:	LDY CA	LM 20
VELL IDENTIFICATIO	N NUMBER:	Px My	N-03		
ELL HEADSPACE READING		PID MODEL	LAMP:		·
EPTH TO WATER (Before Pu	rging) =	53.87	FEET FROM TOP	OF CASING	
/ELL DEPTH =		60,34	FEET FROM TOP	OF CASING	
EIGHT OF WATER IN WELL =		6.47	FEET		
ATER IN ONE WELL VOLUM	=	4.2	GALLONS		
URGE TIME (start/finish) =	08	25 085	5		
ELL EVACUATION DEVICE:					•
The second secon		1			
AMPLING TIME (start/finish)	110 %	15			
AMPLING TIME (start/finish)			CALLED		*
AMPLE COLLECTION DEVICE		Sp pory	BALLEL		è
					•
AMPLE COLLECTION DEVICE			THIRD	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE:	Dr.	SP Pory		FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	FIRST	SECOND 1217	THIRD 12.7	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	FIRST	SECOND 1217	THIRD 12.7 3.81	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh)	FIRST 12,7	SECOND 12.7 3.76	THIRD 12.7 3.81	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu)	FIRST 12,7 3.68	SECOND 12:7 3.16	THIRD 12.7 3.81	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu) pH (SU)	FIRST 12,7 3.68	SECOND 12.7 3.76	THIRD 12.7 3.81	FOURTH	FIFTH

Casing Diameter (in)	Casing Volume (Gallons per Foot)	
2.0	0.1632	
4.0	0.6528	
6.0	1.4687	

PROJECT NUMBER:	8001216		DATE:	- 10-98	~~	
		144				
PROJECT NAME: SITE LOCATION:	Dover Municipal	Well #4	SAMPLERS: JEFT DEKDS			
SITE LOCATION:	Dover, NJ		P. KARIDE			
	CONTACT: Diego Garcia		WEATHER			
SITE CONTACT:			CONDITIONS:			
WELL IDENTIFICATIO	N NUMBER:	# PX M	W-04			
VELL HEADSPACE READING		PID MODEL/	LAMP:			
EPTH TO WATER (Before Pu	rging) =	46.14	FEET FROM TOP	OF CASING		
VELL DEPTH =		53,60	FEET FROM TOP	OF CASING		
EIGHT OF WATER IN WELL =		7.46	FEET			
VATER IN ONE WELL VOLUME	=	1.2	GALLONS			
PURGE TIME (start/finish) =	08 10	10820				
VELL EVACUATION DEVICE:		1				
AMPLING TIME (start/finish)	10:2	50 /	•			
AMPLE COLLECTION DEVICE			AILERC			
		r rowu is	TILE ICE			
AMPLE APPEARANCE:		r roly is	THE COL			
AMPLE APPEARANCE:				L EOUBTH	EIETH	
AMPLE APPEARANCE: FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C)		SECOND	THIRD	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	FIRST 13.7.	SECOND	THIRD	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	FIRST	SECOND	THIRD	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh)	FIRST 13.7.	SECOND 14.3 1.49 7.001 7.65	THIRD 14,5 1,67 7,600 7,01	FOURTH	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu)	FIRST 13.7. 1.66	SECOND 14.3 1.46	THIRD 14,5 1,67	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	FIRST 13.7 1.66 >1000 7.18 6.78	SECOND 14.3 1.46 7.001 7.65 7.02	THIRD 14,5 1,67 7,60 7,01 7,61	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	FIRST 13.7 1:66 >1000 7:18 6:78	SECOND 14.3 1.46 7.00 7.65 7.02	THIRD 14,5 1,67 7.00 7.01 7.61	FOURTH	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	FIRST 13.7 1:66 >1000 7:18 6:78	SECOND 14.3 1.46 7.001 7.65 7.02	THIRD 14,5 1,67 7.00 7.01 7.61	FOURTH	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu) pH (SU) dissolved oxygen (mg/l) water level volume purged (gallons)	FIRST 13.7 1:66 >1000 7:18 6:78	SECOND 14.3 1.46 7.00 7.65 7.02	THIRD 14,5 1,67 7.00 7.01 7.61	FOURTH	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu) pH (SU) dissolved oxygen (mg/l) water level volume purged (gallons) NALYSIS REQUIRED: ABORATORY:	FIRST 13.7 1:66 >1000 7:18 6:78	SECOND 14.3 1.46 7.00 7.65 7.02	THIRD 14,5 1,67 7.00 7.01 7.61	FOURTH .	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu) pH (SU) dissolved oxygen (mg/l) water level volume purged (gallons) NALYSIS REQUIRED: ABORATORY: ONTACT:	FIRST 13.7 1:66 >1000 7:18 6:78	SECOND 14.3 1.46 7.00 7.65 7.02	THIRD 14,5 1,67 7.00 7.01 7.61	FOURTH	FIFTH	
AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) redox (eh) turbidity (ntu) pH (SU) dissolved oxygen (mg/l) water level volume purged (gallons) NALYSIS REQUIRED: ABORATORY:	FIRST 13.7 1:66 >1000 7:18 6:78	SECOND 14.3 1.46 7.00 7.65 7.02	THIRD 14,5 1,67 7.00 7.01 7.61	FOURTH	FIFTH	

Casing Diameter (in)	Casing Volume (Gallons per Foot)	
2.0	0.1632	
4.0	0.6528	
6.0	1.4687	

MALLULM FLKITE, LITCIUS CONFONAIS FANK UNIVE, WHILE FLAINS, NEW YORK 10602-0751 ONE INTERNATIONAL BLVD., MAHWAH, NEW JERSEY 07495-0018 GROUNDWATER MONITORING WELL SAMPLE COLLECTION LOGS 0285059 DATE: 2-11-99 PROJECT NUMBER: SAMPLERS: JDEK PROJECT NAME: E ABUILAR SITE LOCATION: WEATHER BICC KAUMUNUSH CONDITIONS: Clear MILD IT BREEZE SITE CONTACT: WELL IDENTIFICATION NUMBER: LEMW-03 WELL PERMIT NUMBER -PID MODEL/LAMP MINI RAE # WELL HEADSPACE READING - 4.4 DEPTH FROM TOP OF CASING TO TOP OF SCREEN DEPTH TO WATER (Before Purging) 38.90 AT TIME: (FEET FROM TOC) = PURGE INFORMATION WELL DEPTH (FEET FROM TOC) = 42.75 TIME START: 1425-1535 HEIGHT OF WATER IN WELL = TIME FINISH: DEPTH TO WATER (After Purging) AMOUNT OF WATER IN ONE DEPTH TO WATER (Before Sampling) WELL VOLUME (GALLONS) = 2.51-gal TIME OF WELL SAMPLING: Start/Finish WELL EVACUATION DEVICE: SAMPLE COLLECTION DEVICE: SAMPLE APPEARANCE: A:30 4 44 45 FIELD PARAMETERS FIRST SECOND THIRD FOURTH AFTER SAMPLING temperature (degrees C) 11.3 10.8 specific conductivity 439 441 0.44 (umhos/cm) 5.81 5.84 5,40 pH (SU) dissolved oxygen (mg/l) 3.06 volume purged (gallons)/VV 594/>1000 50 7/000 SAMPLE ANALYSIS INFORMATION **ANALYSIS REQUIRED:** LABORATORY: CONTACT: NOTES: Free Product Present? (YES/NO/NOT MEASURED) Purge Rate -

Casing Diameter	(in) Casing Volume (Gallons per Linear Foot)
2.0	0.1632
4.0	0.6528
6.0	1.4687

GROUND	WATER MO	NITORING WEL	L SAMPLE C	OLLECTION	OGS
PROJECT NUMBER:				-12-98	LOGO
PROJECT NAME:			SAMPLERS:		
SITE LOCATION:			J. 10.		
SITE LOCATION.			-		
			WEATHER		
SITE CONTACT:			CONDITIONS:		
WELL IDENTIFICAT	TION NUMBE	R: CB MW.	03 WELL	PERMIT NUMBER	
WELL HEADSPACE READ!					
DEPTH FROM TOP OF CAS	SING TO TOP OF	SCREEN			2" well
					6. Well
DEPTH TO WATER (Before	Purging) 7	24	AT TIME: 0°	150	
				URGE INFORMAT	ION
WELL DEPTH (FEET FROM	TOC) = 15.	96	TIME START:	1000	
HEIGHT OF WATER IN WE		7/	TIME FINISH:	10 10	
		^		(After Purging)	
AMOUNT OF WATER IN O	NE / /	(1)			
WELL VOLUME (GALLO	ONS) = 1.4	Zal	DEPTH TO WATER	(Delore Sampling	
AMOUNT OF WATER IN OI WELL VOLUME (GALLO)NS) = 1.44	gal .	TIME OF		
WELL EVACUATION DEVICES AMPLE COLLECTION DE	$\sum \frac{\partial (SP)}{\partial S} = \frac{1}{2} \frac$	BUY BAILER	TIME OF WELL SAMPLING:	Start/Finish 10	
WELL EVACUATION DEVIC	$\sum \frac{\partial S }{\partial S} = \frac{1}{2} \frac{\partial S }{\partial S}$ $VICE: \qquad SA$	BUY BAILER	TIME OF WELL SAMPLING:		
WELL EVACUATION DEVICES AMPLE COLLECTION DE	$\sum \frac{\partial (SP)}{\partial S} = \frac{1}{2} \frac$	BOLY BAILER	TIME OF WELL SAMPLING:	Start/Finish (C	20/1029
WELL EVACUATION DEVICES AMPLE COLLECTION DESAMPLE APPEARANCE:	VICE: SA	BLY BAILER 1005 SECOND	TIME OF WELL SAMPLING:	Start/Finish 10	20/1029
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	VICE: SA	POLY BAILER ME 1005 SECOND 8.0	TIME OF WELL SAMPLING:	Start/Finish 10	20/1029
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	VICE: 54 VICE: 54 VICE: 54 VICE: 54 VICE: 54 VICE: 54 VICE: 54 VICE: 54 VICE: 54 VICE: 54	POLY BAILER ME 1005 SECOND 8.0 .378	TIME OF WELL SAMPLING: THIRD 7.7 384	Start/Finish 10 IDID FOURTH 7.40	20/1029
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l)	VIDE: 54 VIDE: 54 VIDE: 54 VIDE: 54 VIDE: 54 VIDE: 54	POLY BAILER ME 1005 SECOND 8.0	TIME OF WELL SAMPLING:	10 10 FOURTH 7,40	20/1029
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU)	VIDE: 54 VIDE: 54 VIDE: 54 VIDE: 54 VIDE: 54 VIDE: 54	1005 SECOND 3.0 .378 6.61	TIME OF WELL SAMPLING: THIRD 7.7 384 6.73	10 10 FOURTH 7,40	AFTER SAMPLIN
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l)	VICE: 34 VICE:	1005 SECOND 8.0 .378 .6.61 .1.81 .448 7 1000	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
SAMPLE COLLECTION DESAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallons)	VICE: 34 VICE:	1005 SECOND 8.0 .378 .6.61 .1.81	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l)	VICE: 34 VICE:	1005 SECOND 8.0 .378 .6.61 .1.81 .448 7 1000	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone)	VICE: 34 VICE:	1005 SECOND 8.0 .378 .6.61 .1.81 .448 7 1000	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
MELL EVACUATION DEVICES SAMPLE COLLECTION DE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone) NALYSIS REQUIRED:	VICE: 34 VICE:	1005 SECOND 8.0 .378 .6.61 .1.81 .448 7 1000	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone)	VICE: 34 VICE:	1005 SECOND 8.0 .378 .6.61 .1.81 .448 7 1000	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
WELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone) WALYSIS REQUIRED: ABORATORY: CONTACT:	VICE: 54 V 7 00 FIRST 8.8 1390 1.21 10 / 800 SAMF	BLY CAILER ME 1005 SECOND 378 4,61 1,81 144/7 1000 PLE ANALYSIS	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
MELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone) NALYSIS REQUIRED: ABORATORY: CONTACT:	VICE: 54 V 7 00 FIRST 8.8 1390 1.21 10 / 800 SAMF	BLY CAILER ME 1005 SECOND 378 4,61 1,81 144/7 1000 PLE ANALYSIS	THIRD 7.7 7.8 4.73 1.90 2.84 2.84 3.80	10 10 FOURTH 7, 40 , 397 6.74 [.3] 4,24/71000	AFTER SAMPLIN
WELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone) WALYSIS REQUIRED: ABORATORY: CONTACT:	FIRST 8.8 390 900 SAME	BLY BAILER ME 1005 SECOND 378 4181 14497 1000 PLE ANALYSIS	TIME OF WELL SAMPLING: THIRD 7,7 784 6,73 1,90 2.84/> 1500 INFORMATIO	1010 FOURTH 7,40 ,397 6.74 1.31 4.221/2000	AFTER SAMPLIN
WELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone) WALYSIS REQUIRED: ABORATORY: CONTACT:	FIRST 8.8 390 300 SAMF	BLY BAILER ME ID 0 5 SECOND 378 6,61 1,81 1447 000 PLE ANALYSIS (in) Casing Volume (TIME OF WELL SAMPLING: THIRD THIRD 1.90 2.84 INFORMATIO	1010 FOURTH 7,40 ,397 6.74 1.31 4.221/2000	AFTER SAMPLIN
WELL EVACUATION DEVICES SAMPLE COLLECTION DESAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) pH (SU) dissolved oxygen (mg/l) volume purged (gallone) WALYSIS REQUIRED: ABORATORY: CONTACT:	FIRST 8.8 390 900 SAME	BLY BAILER SECOND SECOND 3.0 13.78 6.61 1.81 1447 1000 PLE ANALYSIS (In) Casing Volume (TIME OF WELL SAMPLING: THIRD 7,7 784 6,73 1,90 2.84/> 1500 INFORMATIO	1010 FOURTH 7,40 ,397 6.74 1.31 4.221/2000	AFTER SAMPLIN

PROJECT NUMBER:	0285655		DATE: 2		LOGS
PROJECT NAME:			SAMPLERS:		ESKIE
SITE LOCATION:				707	
-	-		WEATHER		
SITE CONTACT:			CONDITIONS:		
WELL IDENTIFICATI WELL HEADSPACE READIN		PID MODELIL		PERMIT NUMBE	R -
DEPTH FROM TOP OF CAS	ING TO TOP OF	SCREEN			
DEPTH TO WATER (Before I (FEET FROM TOC)		50	AT TIME: //	10	
WELL DEPTH (FEET FROM	TOC) = 9	.85	_TIME START: /	PURGE INFORMA	TION
HEIGHT OF WATER IN WELL	L = (e	.35	_TIME FINISH: /	(After Purging)	
AMOUNT OF WATER IN ONI WELL VOLUME (GALLON		5 4.1 gal	DEPTH TO WATER		g)
WELL EVACUATION DEVICE	1	- Ora	TIME OF WELL SAMPLING:	Start/Finish	
WELL EVACUATION DEVICE		mer pis	forable)		
SAMPLE APPEARANCE:	FIGOR	050019			
FIELD PARAMETERS temperature (degrees C)	FIRST	SECOND	THIRD	FOURTH	AFTER SAMPLING
specific conductivity	•				
(umhos/cm) pH (SU)	•		-		
dissolved oxygen (mg/l)					
volume purged (gallons)					
	SAMI	PLE ANALYSI	SINFORMATIO	N	
ANALYSIS REQUIRED:	COLI	born	TOTAL/ TE	CAL	
LABORATORY:	NO	TE: WEU	L DRY Q	Sgal =	1130
CONTACT:			•		
NOTES: Free Product Preser Purge Rate —	n? (YES/NO/NO)T MEASURED)			
		(le) Cools - V-l	/O-11	5- M)	
<u>C</u>	2.0	(in) Casing Volume	(Gallons per Linear 0.1632	<u> </u>	
	4.0 6.0		0.6528 1.4687		
	0.0		1.400/		

PROJECT NUMBER:	II MONITORING WE		-11-98	LOGS
PROJECT NAME:		SAMPLERS: T		
SITE LOCATION:			A	
SITE CONTACT:		WEATHER CONDITIONS: (De	an WARM	LTRREEZ
WELL IDENTIFICATION N WELL HEADSPACE READING	PID MODELAU		PERMIT NUMBE	R -
DEPTH FROM TOP OF CASING TO	TOP OF SCREEN			2 il well
DEPTH TO WATER (Before Purging) (FEET FROM TOC) =	64A6	AT TIME:		2 well
WELL DEPTH (FEET FROM TOC) =	68.10	TIME START:	RGE INFORMA	TION
HEIGHT OF WATER IN WELL	3.64	TIME FINISH: DEPTH TO WATER (235 L	124@1.5 gal
AMOUNT OF WATER IN ONE	2600	DEPTH TO WATER (•)
WELL VOLUME (GALLONS) =	U. O Jac	TIME OF WELL SAMPLING: Start/Finish 3 20/13		
WELL EVACUATION DEVICE:		WELL Gran Line. 5	SELVI WISSII I	
SAMPLE COLLECTION DEVICE:				`
SAMPLE APPEARANCE:				
17.0	17,10			
FIELD PARAMETERS FIRE		THIRD	FOURTH	AFTER SAMPLING
temperature (degrees C) 10.9		10.6	DRN	
specific conductivity (umhos/cm) 1.17	1560 (.13/65A	1.12 / 632	@11.5	Fal
pH (SU) 7.40	1040	7.49	6 11	
volume purged (gallons)		1,79,0		
	SAMPLE ANALYSIS		1	
ANALYSIS REQUIRED:				
LABORATORY: NO	TE: DTW 6	4.50' @	1320	
CONTACT:				
NOTES: Free Product Present? (YES Purge Rate —	S/NO/NOT MEASURED)			. =
Cesina D	iameter (in) Casing Volume	(Gallons per Linear F	000	
2.0		0.1632		
4.0 6.0		0.6528 1.4687		

		NITORING WE					
PROJECT NUMBER:				-11-90)		
PROJECT NAME:			SAMPLERS:				
SITE LOCATION:	WESTPOINT						
	ρX						
SITE CONTACT:					1dn 45%		
WELL IDENTIFICAT WELL HEADSPACE READII		PID MODEL/LA	MP WELL	PERMIT NUMBER	1-		
DEPTH FROM TOP OF CAS	SING TO TOP OF	SCREEN					
DEPTH TO WATER (Before (FEET FROM TOC)		3.48	AT TIME:				
	(a	0.40		IRGE INFORMAT	ION		
WELL DEPTH (FEET FROM		6.92	TIME START:	11 00			
HEIGHT OF WATER IN WE	ш. е	0.10	TIME FINISH: DEPTH TO WATER	After Purging)			
AMOUNT OF WATER IN OR	E 1 Ca	2 0	DEPTH TO WATER		1		
WELL VOLUME (GALLO	NS) = 4.50	Za	TIME OF		. / _		
			WELL SAMPLING: S	tert/Finish 12	50/1254		
WELL EVACUATION DEVIC	E:				ı		
SAMPLE COLLECTION DE	VICE:				•		
SAMPLE APPEARANCE:							
	1100						
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	AFTER SAMPLING		
temperature (degrees C)	\$12. AE	13.2	13.1/	1			
specific conductivity	3.68	3.68	3.77	PI			
	5.00				1		
(umhos/cm)	10001	>1000/6.75	71000/6.83	11 /			
dissolved oxygen (mg/l)	7.26	7.85	71000/6.83				
NTU / pH (SU)	10001			14.9			
dissolved oxygen (mg/l)	7.26 8	1.85 4.5	9,0				
dissolved oxygen (mg/l) volume purged (gallons)	7.26 8	1.85 4.5	6.63				
DTU / pH (SU) dissolved oxygen (mg/l) volume purged (gallons)	9 SAMI	7.85 A.S PLE ANALYSIS	9.0 SINFORMATION				
DTU / pH (SU) dissolved oxygen (mg/l) volume purged (gallons) ANALYSIS REQUIRED: LABORATORY:	7.26 8	7.85 A,S PLE ANALYSIS	9.0 SINFORMATION				
DTU / pH (SU) dissolved oxygen (mg/l) volume purged (gallons) ANALYSIS REQUIRED: LABORATORY:	9 SAMI	7.85 A.S PLE ANALYSIS	9,0 SINFORMATION 56.70	N.			
dissolved oxygen (mg/l) volume purged (gailons)	SAMI	7.85 A.S PLE ANALYSIS	9,0 SINFORMATION 56.70				
DTU / pH (SU) dissolved oxygen (mg/l) volume purged (gailons) ANALYSIS REQUIRED: LABORATORY: CONTACT: NOTES: Free Product Pres	SAMI 12.4 ent? (YES/NO/NO	7.85 A,S PLE ANALYSIS OT MEASURED)	Gallons per Linear	N N q gas			
DTU / pH (SU) dissolved oxygen (mg/l) volume purged (gailons) ANALYSIS REQUIRED: LABORATORY: CONTACT: NOTES: Free Product Pres	SAMI 12.4	7.85 A,S PLE ANALYSIS OT MEASURED)	6,63 9,0 SINFORMATION 56.70'	N N q gas			

	NATER MONI	TOHING WE		11-99
PROJECT NUMBER:		_	SAMPLERS: E	4
PROJECT NAME:		_	SAMPLENS.	1
SITE LOCATION:				
-		_	WEATHER	
SITE CONTACT:			CONDITIONS:	·
WELL IDENTIFICAT WELL HEADSPACE READIN	ION NUMBER	PID MODELILA	14 70 1115	ERMIT NUMBER -
DEPTH FROM TOP OF CAS	ING TO TOP OF S	CREEN		
DEPTH TO WATER (Before (FEET FROM TOC)		.22	AT TIME:	
WELL DEPTH (FEET FROM		.70	TIME START:	IGE INFORMATION
HEIGHT OF WATER IN WEL	1 = 8	.48	TIME FINISH: DEPTH TO WATER (A	fter Purging)
AMOUNT OF WATER IN ON			DEPTH TO WATER (B	
WELL VOLUME (GALLO		1.4 gal		eiore camping)
			TIME OF WELL SAMPLING: Str	art/Finish 1145
WELL EVACUATION DEVICE	E:			
SAMPLE COLLECTION DEV	ICE:			<u> </u>
SAMPLE APPEARANCE:				
FIELD PARAMETERS	FIRST 00	SECOND III	THIRD 1/8	FOURTH AFTER SAMPLING
temperature (degrees C)	3.7	4.2	14.2	14:6
specific conductivity	1.72	1.69	1.67	1.70
(m.S.lar) -(umhoe/em)	6.40	6.68	6.82	6.88
dissolved oxygen (mg/l)	6-66	9.16	9.02	9.38
volume purged (gallons)	initial/>1000	1.4/71000	2.8/>1000	4.2/71000
Nta	SAMPI	LE ANALYSIS	INFORMATION	
ANALYSIS REQUIRED:				
-				
LABORATORY:				
CONTACT:				
NOTES: Free Product Press Purge Rate —	ent? (YES/NO/NOT	MEASURED)		
- -	Casing Diameter (n) Casing Volume	(Gallons per Linear F	oot
	2.0	III OGSING VOIGING	0.1632	
	4.0		0.6528	
			1.4687	

ITE LOCATION: ITE CONTACT: VELL IDENTIFICATION	0285659 Ten Landfills USMA West Point, NY Bill Kavanaugh		DATE: SAMPLERS:	5-12-99 Jeffrey DeKoskie John Ifkovits	
ROJECT NAME: ITE LOCATION: ITE CONTACT: VELL IDENTIFICATION VELL HEADSPACE READING =	USMA West Point, NY Bill Kavanaugh		SAMPLERS:		
ITE CONTACT: VELL IDENTIFICATION	West Point, NY Bill Kavanaugh			John Ifkovits	
WELL IDENTIFICATION	Bill Kavanaugh		-		
WELL IDENTIFICATION			WEATHER		· · · · · · · · · · · · · · · · · · ·
	NUMBER:		CONDITIONS: Se	way, ctu	1, ~ 500
VELL HEADSPACE READING =	MOMBETT.	CB-MW			
	7	PID MODEL/L	AMP:		
EPTH TO WATER (Before Purg	ing) =	7.35	FEET FROM TOP	OF CASING	
VELL DEPTH =	nd	16.13	FEET FROM TOP	OF CASING	
EIGHT OF WATER IN WELL =	_	8.78	FEET		
VATER IN ONE WELL VOLUME	_	1.4	GALLONS		
PURGE TIME (start/finish) =	0815	10848			
VELL EVACUATION DEVICE:		DISPOS. BI	tiler.		
AMPLING TIME (start/finish) =	08	50 / 0854	_		
SAMPLE COLLECTION DEVICE:	-	E : BAILER			
SAMPLE APPEARANCE:		N'S		·	
SAMPLE APPEARANCE.	0825	0833	0841	0848	
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	10.0	9.6	9.4	9.3	
specific conductivity	102	279	.387		
	, 433	.379	. 567	. 404	
(umhos/cm) Turbidity (ntu)	583	>1000	71000	>1000	
(umhos/cm)					
(umhos/cm) Turbidity (ntu)	583	>1000	.01	71000	
(umhos/cm) Turbidity (ntu) Salinity %	583	>1000	>1000 .01 - 7.26	7.25	
(umhos/cm) Turbidity (ntu) Salinity % Redox (eh)	583	>1000	.01	71000	
(umhos/cm) Turbidity (ntu) Salinity % Redox (eh) pH (SU)	583 .01 - 6.47	>1000	>1000 .01 - 7.26	7.25	

0.6528

1.4687

4.0

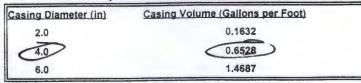
_MALCOLM. PIRNIE

Depth to Water

volume purged (gallons)

ONE INTERNATIONAL BLVD., MAHWAH, NEW JERSEY 07495-0018

GROUNDWATER	MONITORING WEL	LL SAMPLE COL	LECTION LOGS


GROONDIT	TER MONTO	1110 11	<u> </u>		
PROJECT NUMBER:	0285659		DATE:	5-12-99	
PROJECT NAME:	Ten Landfills		SAMPLERS:	Jeffrey DeKosk	le
SITE LOCATION:	USMA			John Ifkovits	
	West Point, NY		-		
SITE CONTACT:	Bill Kavanaugh		CONDITIONS: 4	LEAR, WINE	y, 265°
WELL IDENTIFICATIO	N NUMBER:	PX M	10 W		
WELL HEADSPACE READING	= Ø	PID MODE	L/LAMP:		
DEPTH TO WATER (Before Pu	rging) =	7.71	FEET FROM TO	P OF CASING	
WELL DEPTH =	-	10.05	FEET FROM TO	P OF CASING	
HEIGHT OF WATER IN WELL =		2.34	FEET		
WATER IN ONE WELL VOLUM	E= _	1.5	GALLONS		
PURGE TIME (start/finish) =	12 30	11245			•
WELL EVACUATION DEVICE:	2" De	SPOS B	AILER		
SAMPLING TIME (start/finish)	= * 5/13/99	10 00	_		
SAMPLE COLLECTION DEVICE	2"	DISPOS. 1	BAILEK.		
SAMPLE APPEARANCE:	BLACK	H20.			
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	14,5	14.2			
specific conductivity (umhos/cm)	.454	. 430			
Turbidity (ntu)	352	628			
Salinity %	,01	.01			
Redox (eh)	_	_			
pH (SU)	6.58	6.47			
dissolved oxygen (mg/l)	0.98	2.10			

SAMPLE ANALYSIS INFORMATION

1.5

ANALYSIS REQUIRED:	TAL METALS & TOTAL/FELAL COLIFORM
LABORATORY: /	LUTEST / STL ENVIROTEST FOR LOWFORM
CONTACT: #51	3 99 COLLECTED TOTAL/FECAL COLIFORM & TAL METALS, UNFLITCHE
NOTES:	WELL DEN: 1.5 same @ 1245 hrs/1330 hrs: DRV/1500 DRY

NOTES: WELL DRY: 1.5 gars @ 1245 hrs/ 1330 hrs: DRY/ 1500 DR

GROUNDWATER MONITORING WELL SAMPLE COLLECTION LOGS

PRO.	JECT	NUMBER:	
PRU.	JEUI	MOINDELY.	

0285659

DATE:

5-12-99

PROJECT NAME:

Ten Landfills

SAMPLERS:

Jeffrey DeKoskie

SITE LOCATION:

USMA

John Ifkovits

CATION.

West Point, NY

WEATHER

SITE CONTACT:

Bill Kavanaugh

CONDITIONS: SUNNY, LT BREEZE, ~55 "

WELL IDENTIFICATION NUMBER:

PX MW-02

WELL HEADSPACE READING =

PID MODEL/LAMP:

DEPTH TO WATER (Before Purging) =

67116

FEET FROM TOP OF CASING

WELL DEPTH =

68.28

FEET FROM TOP OF CASING

WEEE DE. 111

00.00

FEET FROM TOP OF CASING

HEIGHT OF WATER IN WELL =

3.80

FEET

WATER IN ONE WELL VOLUME =

D. GALLONS

PURGE TIME (start/finish) =

1030/1046

WELL EVACUATION DEVICE:

DISPOS. BLILER 2"

SAMPLING TIME (start/finish) =

10 55/10 59

SAMPLE COLLECTION DEVICE:

SHME BAILER

SAMPLE APPEARANCE:

SUCHTLY TURBID

FIELD PARAMETERS.	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	11.6	11.0	11.1	10.7	
specific conductivity (umhos/cm)	1.48	143	1.43	1.43	
Turbidity (ntu)	78	159	207	212	
Salinity %	0.06	0.06	0.06	0.06	
Redox (eh)	-	_	_	_	
pH (SU)	6.47	6.87	7.41	7.29	
dissolved oxygen (mg/l)	7.12	7.23	11.14	7.43	
Depth to Water		•	,		
volume purged (gallons)	-	0.6	1.2	1.8	

SAMPLE ANALYSIS INFORMATION

ANALYSIS REQUIRED:

TAL METALS 10 UM FILTER & UNFILTERED

LABORATORY:

ACCUTEST

CONTACT:

NOTES:

DUP: PX-MW-07

NON FILTERED

COLLECTED.

Casing Diameter (in)	Casing Volume (Gallons per Foot)	
(2.0)	0.1632	
4.0	0.6528	
6.0	1.4687	

DO IFOT NUMBER	0205550		DATE	5-12-99	
PROJECT NUMBER:	0285659		DATE:		<u> </u>
PROJECT NAME:	Ten Landfills		SAMPLERS:	Jeffrey DeKoski	0
SITE LOCATION:	West Point, NY	d		John Ifkovits	
	Wood Folia, W		WEATHER	******	
SITE CONTACT:	Bill Kavanaugh			SUMMY, BREET	ey, n 60
WELL IDENTIFICATION	NUMBER:	Px Mu	0-03		
WELL HEADSPACE READING =	6	PID MODEL/	LAMP:		
DEPTH TO WATER (Before Pur	ging) =	53.13	FEET FROM TOP	OF CASING	
WELL DEPTH =	_	61.60	FEET FROM TOP	OF CASING	
HEIGHT OF WATER IN WELL =		8.47	FEET		
WATER IN ONE WELL VOLUME	=	5.5	GALLONS		
PURGE TIME (start/finish) =	10	30/1119			
WELL EVACUATION DEVICE:	40		SHILER		
SAMPLING TIME (start/finish) =		0 /1245			٠
SAMPLE COLLECTION DEVICE		E BAILE			
	· - 24.	er baro			
SAMPLE APPEARANCE:	1030	1058	11 19		
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	14.0	14.9	15.0		
specific conductivity	(-110				
(umhos/cm)	3.75	3.76	3.79		
Turbidity (ntu)	Ø	7/000	71000		
Salinity %	0.18	0.18	0.17		
Redox (eh)	_				
pH (SU)	6.89	7.12	7.23		
dissolved oxygen (mg/l)	6.20	7.50	7.62		
Depth to Water	_				
volume purged (gallons)	Ø	5.5	11.0		
	SAMPLE A	NALYSIS INI	FORMATION		
ANALYSIS REQUIRED:	TAL N	WETALS	FILTERE	D /UN-FIL	reed
ABORATORY:	ACCUTE	ST	·		
CONTACT:	•				
NOTES:	WELL D	ey: 11 gas	501	19 hrs	
	Casing Diameter (in)	Casing Volume	(Gallons per Foot)		

0.6528

1.4687

IIMAIL	ONE INTERN	ATIONAL BLVD.,	MANYAN, NEW J	ERSET 0/495-001	8
GROUNDWA	VATER MONITORING WELL SAMPLE COLLECTION		LECTION LO	GS	
PROJECT NUMBER:	0285659		DATE:	5-12-99	
PROJECT NAME:	Ten Landfills		SAMPLERS:	Jeffrey DeKosk	ie
SITE LOCATION:	USMA			John Ifkovits	
SITE CONTACT:	West Point, NY Bill Kavanaugh		WEATHER CONDITIONS: C	LEAR, LT B	HERE N 60°
WELL IDENTIFICATION		PX W	W OA		
WELL HEADSPACE READING	- ø	PID MODEL/	LAMP:		
DEPTH TO WATER (Before Po	urging) =	44.87	FEET FROM TOP	OF CASING	
WELL DEPTH =	_	53.67	FEET FROM TOP	OF CASING	
HEIGHT OF WATER IN WELL:	_	8.80	FEET	·	
WATER IN ONE WELL VOLUM	E=	1.4	GALLONS		
PURGE TIME (start/finish) =	11 17	1/1132			
WELL EVACUATION DEVICE:	2"	DISPOS.	BAILER		
SAMPLING TIME (start/finish)	= 1300	11310			è
SAMPLE COLLECTION DEVIC	E: SAM	5 BALLER			
SAMPLE APPEARANCE:	LLOUD	y H20	- 2000		
FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	16.2	15.6	15.4	15.4	
specific conductivity	165	111	1/2	114	

FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	16.2	15.6	15.4	15.4	
specific conductivity (umhos/cm)	1.65	1.64	1.63	1.64	
Turbidity (ntu)	172	999	71000	71000	
Salinity %	.07	.07	.07	.07	
Redox (eh)	_		-	_	
pH (SU)	7.04	6.97	6.90	6.94	
dissolved oxygen (mg/l)	6.72	7.60	7.66	7.73	
Depth to Water	_		_	-	
volume purged (gallons)	Ø	1.4	2.8	4.2	

SAMPLE ANALYSIS INFORMATION

ANALYSIS REQUIRED:	TAL	METALS	FILTERED	/.UNFILTERED
LABORATORY:	ACCU	TEST		
CONTACT:				

asing Diameter (in)	Casing Volume (Gallons per Foot
2.0	0.1632
4.0	0.6528
6.0	1,4687

GROUNDWA	TER MONITO	RING WELL	SAMPLE COL	LECTION LO	GS
PROJECT NUMBER:	0285659		DATE: 8	-18-99	
PROJECT NAME:	TEN LANDFILL	IS.	SAMPLERS: J	JOEKOSKIE	
SITE LOCATION:			J	J CARAGINE	
	USMA				-
SITE CONTACT:	TEFF		WEATHER CONDITIONS:S	way HHH,	C+ 8000
				The state of the s	ui gac
WELL IDENTIFICATION	NUMBER:	CB-MW	1-03		
VELL HEADSPACE READING =		PID MODEL	/LAMP:		
EPTH TO WATER (Before Pur	ging) =	7.79	FEET FROM TOP	OF CASING	
VELL DEPTH =	_	16.25	FEET FROM TOP	OF CASING	
HEIGHT OF WATER IN WELL =		8.46	- FEET		
VATER IN ONE WELL VOLUME	-	1.4	GALLONS		
	1309	5/1320			
PURGE TIME (start/finish) =		7			
VELL EVACUATION DEVICE:		SARCE B	tilee		
SAMPLING TIME (start/finish) =	13 25	1330	_		*
AMPLE COLLECTION DEVICE	DISP	OSABLE BA	HLER		·
AMPLE APPEARANCE:	CLOUD			1370	
	1306	1310	1212	1320	
	FIRST	SECOND	THIRD.	FOURTH	FIFTH
FIELD PARAMETERS					
FIELD PARAMETERS temperature (degrees C)	16.6	15.3	14.2	13.5	
temperature (degrees C) specific conductivity					
temperature (degrees C) specific conductivity (umhos/cm)	16.6 .673 >1000	15.3	14.2	13.5	
temperature (degrees C) specific conductivity	.673	.610	.683	.605 >1000	
temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu)	,673	,610	.683	.605	
temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity %	,673	,610	.683 71000 .02	.605 >1000	
temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh)	.673 71000 .02	.610	.683	.605 >1000 .02	
temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh) pH (SU)	.673 >1000 .02	.610 >1000 .02	.683 71000 .02 6.58	.605 >1000 02	

LABORATORY:

ACCUTEST

CONTACT:

COLECTED	BUND	DUP: "CB-MW-04"	TOTAL MILS

NOTES:
5076
1,3636

Casing Diameter (in)	Casing Volume (Gallons per Foot)	
2.0	0.1632	٠
4.0	0.6528	4
6.0	1.4687	

GROUNDWA		ING WELL		ECTION LO	GS
	<u>TER MONITOR</u>	IIIO IIEEE	SAMPLE COLL	LO HON LO	00
ROJECT NUMBER:	0285659		DATE: 8	18.99	
ROJECT NAME:	TEN LANDEIUS SAMPLERS: JEKOSKIE				
ITE LOCATION:					
		•	-		
			WEATHER		
ITE CONTACT:	JEFF	· · · · · · · · · · · · · · · · · · ·	CONDITIONS: So	ner wie	w
VELL IDENTIFICATION	NUMBER:	PX- Mu	3- (
ELL HEADSPACE READING =		PID MODEL	/LAMP:		
EPTH TO WATER (Before Pur	ging) =	6.23	_FEET FROM TOP O	F CASING PJ	c
VELL DEPTH =	-	10.18	FEET FROM TOP O	F CASING	
EIGHT OF WATER IN WELL =		3.95	FEET		
ATER IN ONE WELL VOLUME	_	2.6	GALLONS		
URGE TIME (start/finish) =	08 50				
		•			
ELL EVACUATION DEVICE:	DISPOSA	BLE BALL	EL		0.0
	al a a				
AMPLING TIME (start/finish) =	* 8-19-99 @	0845	_		*
		0845 6481E B41			è
AMPLE COLLECTION DEVICE	DE-205	ABLE BAI			•
AMPLE COLLECTION DEVICE AMPLE APPEARANCE:	857	404	9.09	FOURTU	Leien
MPLE COLLECTION DEVICE MPLE APPEARANCE: FIELD PARAMETERS	\$ 57 FIRST	904 SECOND		FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C)	857	404	9.09	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	8 5 7 FIRST 23.7	904 SECOND 23.6	9.09	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	8 5 7 FIRST 23.7	904 SECOND 23.6	9.09	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu)	857 FIRST 23.7 .717 71000	904 SECOND 23.6 .692 >1000	9.09	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity %	8 5 7 FIRST 23.7	904 SECOND 23.6	9.09	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu)	# 57 FIRST 23.7 717 71000	904 SECOND 23.6 .692 >1000	9.09	FOURTH	FIFTI
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh)	857 FIRST 23.7 .717 71000	904 SECOND 23.6 .692 >1000	9.09	FOURTH	FIFTH
AMPLE COLLECTION DEVICE AMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh) pH (SU)	# 57 FIRST 23.7 717 71000 .03	904 SECOND 23.6 .692 >1000 .02	9.09	FOURTH	FIFTH

4.0

237015475

ROJECT NUMBER:				V . 10 . 11	
SPITE CINAME			DATE: SAMPLERS:	8-18-99	
SITE LOCATION:			JAMPLERS.		
SITE EGGATION.					
		-	WEATHER		
SITE CONTACT:			CONDITIONS:		***
WELL IDENTIFICATIO	N NUMBER:	Px MW	-02		
WELL HEADSPACE READING	=	PID MODEL			
				22.01.01.01.0	
DEPTH TO WATER (Before Pu	rging) =	<u>54.46</u>	_ FEET FROM TO		
WELL DEPTH =	<i>a</i>	58.35	_ FEET FROM TO	P OF CASING	
HEIGHT OF WATER IN WELL =		3.89	_FEET		
WATER IN ONE WELL VOLUM	F =	0.62	GALLONS		
ANIEK IN ONE MELL MOLDIN	-	0.00			
PURGE TIME (start/finish) =		10935	_		
PURGE TIME (start/finish) = WELL EVACUATION DEVICE:	09 20		_		
PURGE TIME (start/finish) =	09 20		_		
PURGE TIME (start/finish) = WELL EVACUATION DEVICE:	09 20		_		è
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE	09 20				*
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE:	09 20	/0935			*
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish)	09 20		THIRD	FOURTH	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE:	09 20	/0935		FOURTH	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity	09 20 FIRST	SECOND /2.9	THIRD /2, 7		FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	09 20	SECOND 12.9	THIRD /2.7 /.38	126	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu)	FIRST 13.9	SECOND (2.9) (35) (158)	THIRD /2.7 /.38 512	126	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm)	FIRST 13.9	SECOND 12.9	THIRD /2.7 /.38	126	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh)	FIRST 3.9 Hary .4/ 175 0.05	SECOND (2.9) (3.5) (3.5) (3.5) (3.6)	THIRD 12.7 1.38 512 0.06	126 1.37 135 0.06	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh) pH (SU)	FIRST 3.9 175 0.05 6.87	SECOND 12.9 1.35 158 0.06	THIRD 12.7 1.38 512 0.06 6.97	126 1.37 135 0.06 -	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh)	FIRST 3.9 Hary .4/ 175 0.05	SECOND (2.9) (3.5) (3.5) (3.5) (3.6)	THIRD 12.7 1.38 512 0.06	126 1.37 135 0.06	FIFTH
PURGE TIME (start/finish) = WELL EVACUATION DEVICE: SAMPLING TIME (start/finish) SAMPLE COLLECTION DEVICE SAMPLE APPEARANCE: FIELD PARAMETERS temperature (degrees C) specific conductivity (umhos/cm) Turbidity (ntu) Salinity % Redox (eh) pH (SU)	FIRST 3.9 175 0.05 6.87	SECOND 12.9 1.35 158 0.06	THIRD 12.7 1.38 512 0.06 6.97	126 1.37 135 0.06 -	FIFTH

2834 389

Casing Diameter (in)

2.0

4.0

0.1632

0.6528

1.4687

GROUNDWATER MONITORING WELL SAMPLE COLLECTION LOGS

DDA	IECT	NUMBER:	
PRU	JEUL	NUMBER	

0285659

8-18-99 DATE:

PROJECT NAME:

TEN LANDFILLS

J DEKOSKIE SAMPLERS:

SITE LOCATION: LANDFILL CARAGINE

SITE CONTACT:

CONDITIONS:

WEATHER

PX MW-03

WELL IDENTIFICATION NUMBER:

WELL HEADSPACE READING =

PID MODEL/LAMP:

DEPTH TO WATER (Before Purging) =

53,40 FEET FROM TOP OF CASING

FEET FROM TOP OF CASING

WELL DEPTH =

70 30

HEIGHT OF WATER IN WELL =

FEET

WATER IN ONE WELL VOLUME =

GALLONS

PURGE TIME (start/finish) =

1050/1115

WELL EVACUATION DEVICE:

SAMPLING TIME (start/finish) =

R30/1235

SAMPLE COLLECTION DEVICE:

SAMPLE APPEARANCE:

10 53

FIELD PARAMETERS	FIRST	SECOND	THIRD	FOURTH	FIFTH
temperature (degrees C)	15.2	14.7	14.5	14.5	
specific conductivity (umhos/cm)	4.06	4.05	4.09	4.07	
Turbidity (ntu)	51	143	343	328	
Salinity %	0.20	0.20	0.20	0.20	
Redox (eh)	_	-	-		
pH (SU)	6.94	6.59	6.58	6.58	
dissolved oxygen (mg/l)	7.82	7.64	7-63	7.62	
Depth to Water					
volume purged (gallons)	6	5	10	13 (DRY)	

SAMPLE ANALYSIS INFORMATION

ANALYSIS REQUIRED:

LABORATORY:

CONTACT:

NOTES:

7.651 65
365
4.745

Casing Diameter (in)	Casing Volume (Gallons per Foot)	
2.0	0.1632	
4.0	0.6528	
6.0	1.4687	

WELL HEADSPACE READING =

HEIGHT OF WATER IN WELL =

DEPTH TO WATER (Before Purging) =

PROJECT NUMBER:

PROJECT NAME:

SITE LOCATION:

SITE CONTACT:

WELL DEPTH =

ONE INTERNATIONAL BLVD., MAHWAH, NEW JERSEY 07495-0018

WEATHER

Px-MW-04

FEET

0.6528

1.4687

PID MODEL/LAMP:

,48

.78

DATE: 8-18-99

SAMPLERS: J DEFOSKIE

FEET FROM TOP OF CASING

FEET FROM TOP OF CASING

CONDITIONS: SUNN, WARM

J CARAGINE

LT BREEZE

~ 85 HOM

FIFTH

GROUNDWATER MONITORING WELL SAMP	LE COLLECTION LOGS
----------------------------------	--------------------

0285659

TEN LANDFILLS

PX LANDFILL

JEFF

WELL IDENTIFICATION NUMBER:

	/ 10 30 ABLE BAIL 0 / 10 45		
10 41	0/1045		
015	1020	1025	1030
FIRST	SECOND	THIRD	FOURT
6.5	16.2	16.1	16.2
.68	1.70	1.70	1.70
000	\$ 1000	>1000	> 1000
7	.07	107	10=
70	/ 71	. 51	6.8
		6.[]	
.24	7.75	7.84	7.98
\$	1.2	2.4	4.6
	FIRST 6.5 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69	FIRST SECOND 16.2 16.2 16.2 1.70 1000 7 ,07 1.78 1.75 1.72 AMPLE ANALYSIS INF	FIRST SECOND THIRD 0.5 16.2 16.1 1.70 1.70 1.70 91000 91000 7 .07 .07 1.78 6.71 6.71 1.74 7.75 7.84

4.0

ATTACHMENT C DATA VALIDATION ASSESSMENT

Memorandum

To: Teri Haelen/Joseph Claypoole

From: Valerie A. Smith

Date: 12/15/99

Re: Validatin of West Point Phase II RFI Inorganic Data

Four data packages received from Accutest were validated for TAL Metals. A limited review (i.e., reporting forms) of the following quality controls were performed on each data package, to evaluate the usability of the data. Qualifications were applied following the intent of the National Functional guidelines with Region II modifications.

The samples associated with the four data packages are as follows:

E42004 (samples collected 11/9-11/98)

E42004 (samples collected 11/9-11/98)		
Lab ID No.	Client ID No.	
E42004-1	CBMW-03-NF	
E42004-2	CBMW-03-F	
E42004-9	PXMW-01-NF	
E42004-10	PXMW-01-F	
E42004-11	PXMW-02-NF	
E42004-12	PXMW-02-F	
E42004-13	PXMW-03-NF	
E42004-14	PXMW-03-F	
E42004-15	PXMW-04-NF	
E42004-16	PXMW-04-F	
E42004-17	MW-20-NF	
E42004-18	PX-CULVERT-NF	
E42004-19	LBMW-03-NF	
E42004-20	LBMW-03-F	
E42004-21	LEMW-01-NF	
E42004-22	LEMW-01-F	
E42004-23	LEMW-02-NF	
E42004-24	LEMW-02-F	
E42004-25	LEMW-04-NF	
E42004-26	LEMW-04-F	
E42004-27	LEMW-05-NF	
E42004-28	LEMW-05-F	
E42004-29	FIELD BLANK	

E42004A (samples	s collected 11/9/98)	
Lab ID No.	Client ID No.	
E42004-3A	VFMW-01-NF	
E42004-4A		
E42004-5A	VFMW-01-5	
	VFMW-02-NF	
E42004-6A	VFMW-02-F	
E42004-7A	VFMW-03-NF	
E42004-8A	VFMW-03-F	
1745560 (1	.11 . 13/11 10/00	
	ollected 2/11-12/99)	
Lab ID No.	Client ID No.	
E45568-1	PX-MW-01	
E45568-2	PX-MW-02	
E45568-3	PX-MW-03	
E45568-4	PX-MW-04	
E45668-5	LE-MW-03	
E45668-6	CB-MW-03	
E45568-7	PX SEEP 2 (SP-02)	
E45568-7	FB-1	
E45568-9	PX-MW-01 filtered	
E45568-10	PX-MW-02 filtered	
E45568-11	PX-MW-03	
E45568-12	PX-MW-04	
E45568-13		
E45668-14	LE-MW-03	
E43008-14	CB-MW-03	
E49817 (samples co	llected 5/12/00)	
Lab ID No.		
E49817-1	Client ID No.	
	CB-MW-03	
E49817-2	CB-MW-03 filtered	
E49817-4	PX-MW-01	
E49817-5	PX-MW-02	
E49817-6	PX-MW-02 filtered	
E49817-7	PX-MW-03	
E49817-8	PX-MW-03 filtered	
E49817-9	PX-MW-04	
E49817-10	PX-MW-04 filtered	
E49817-11	PX-MW-07	
E49817-12	FB-1	
E49817-13	PX SEEP 02	
E54422 (samples co		
Lab ID No.	Client ID No.	
E54422-1	PX-MW-02	
E54422-2	PX-MW-04	
E54422-3	PX-MW-03	
E54422-4	CB-MW-03	
E54422-5	CB-MW-04	
E54422-6	FB-1	
E54422-7	PX-SEEP-2	
E54422-8	PX-MW-01	
E54422-9	PX-MW-02 filtered	
E54422-10	PX-MW-04 filtered	
E54422-11	PX-MW-03 filtered	
F54422-12	CP MW 03 filtered	

E54422-12

CB-MW-03 filtered

The following information was used to validate the analytical results:

Inorganics

Sample Integrity
Holding Time
Initial and Continuing Calibration
Blank Contamination
Interference Check Samples (ICS)
Matrix Spike
Laboratory Duplicate
Laboratory Control Sample (LCS)
ICP Serial Dilution

Sample Integrity: Samples were received at the laboratory intact, in the appropriate sample bottles showing no evidence of tampering. Sample paperwork was reviewed to determine that the samples being validated were indeed the ones collected from the site. The Chain of Custody was properly filled out including sampler signature, date and time of sampling and analyses requested. Custody transfers between different parties was maintained.

Holding Time: All samples were digested and analyzed within 28 days for mercury and 6 months for all other analytes.

Initial and Continuing Calibration: The initial and continuing calibration verification standards have met the QC criteria.

Blank Contamination: All blanks (field, initial, continuing, preparation) have met the QC criteria.

Interference Check Samples: The ICS have met the QC criteria.

Matrix Spike: The matrix spike QC criteria have been met for all data sets, with the exceptions listed below:

E45568

Aluminum should be qualified estimated "J" in samples listed below due high matrix spike recovery:

Aluminum "J" -	PX-MW-01 filtered	PX-MW-02 filtered
	PX-MW-03 filtered	PX-MW-04 filtered

LW-MW-03 filtered CB-MW-03 filtered

Laboratory Duplicate: The laboratory duplicate QC criteria have been met for all data sets, with the exceptions listed below:

E42004

Positive Iron results should be qualified estimated "J" in samples listed below due to high RPD:

Iron "J" -	CBMW-03-NF	CBMW-03-F
	PXMW-01-NF	PXMW-01-F
	PXMW-02-NF	PXMW-02-F
	PXMW-03-NF	PXMW-03-F

Laboratory Duplicate (continued):

E42004

Iron "J" -

PXMW-04-NF

PXMW-04-F

MW-20-NF

PX-CULVERT-NF

E42004A

Positive Iron results should be qualified estimated "J" in samples listed below due to high RPD:

Iron "J" -

VFMW-01-NF

VFMW-01-F

VFMW-02-NF

VFMW-02-F

VFMW-03-NF

VFMW-03-F

E45568

Positive Manganese results should be qualified estimated "J" in samples listed below due to high RPD:

Manganese "J" - PX-MW-01

PX-MW-02

PX-MW-03

PX-MW-04

LE-MW-03

CB-MW-03

PX-SEEP-2

FB-1

E49817

Positive Lead results should be qualified estimated "J" in samples listed below due to high RPD:

Lead "J" -

CB-MW-03

PX-MW-01

PX-MW-02

PX-MW-02 filtered

PX-MW-03

PX-MW-03 filtered

PX-MW-04

PX-MW-04 filtered

PX-MW-07

PX SEEP 02

Laboratory Control Sample: The LCS met the QC criteria.

ICP Serial Dilution: The ICP Serial Dilution QC criteria have been met for all data sets, with the exceptions listed below:

E42004

Potassium should be considered estimated "J" in the samples listed below due to RPD >10% and sample results greater than $50 \times IDL$:

Potassium "J" - PXMW-01-NF

PXMW-01-F

ICP Serial Dilution (continued):

E42004

Potassium "J" - PXMW-03-NF

PXMW-03-F

MW-20-NF

PX-MW-02-NF

PX-MW-02-F

E42004A

Potassium should be considered estimated "J" in the samples listed below due to RPD >10% and sample results greater than 50 x IDL:

Potassium "J" - VFMW-01-NF

VFMW-01-F

VFMW-02-NF

VFMW-03-NF

VFMW-03-F

E45568

Potassium and Sodium should be considered estimated "J" in the samples listed below due to RPD >10% and sample results greater than 50 x IDL:

Potassium "J" and Sodium "J" -

PX-MW-01

PX-MW-02

PX-MW-03

PX-MW-04

LW-MW-03

CB-MW-03

PX-SEEP-2

E54422

Sodium should be considered estimated "J" in the samples listed below due to RPD >10% and sample results greater than 50 x IDL:

Sodium "J" -

PX-MW-02

PX-MW-04

PX-MW-03

CB-MW-03

CB-MW-04

PX-SEEP-2

PX-MW-01

PX-MW-02 filtered

PX-MW-04 filtered

PX-MW-03 filtered

CB-MW-03 filtered

DATA USEABILITY

Samples were found to be valid and acceptable based upon a limited Data Validation. Due to various QC problems some analytes may have been qualified with "J" (estimated). All action is detailed above.