UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK

FINAL RCRA FACILITY INVESTIGATION OF TEN LANDFILLS

JUNE 1997

for:

U.S. Army Corps of Engineers Baltimore District

USACE Contract No. DACA31-94-D-0017 Delivery Order No. 75

JUL 1 1997

EUR. OF HEZARDOUS COMPLIAINCE & LAND WOR. DIMISION OF SOLID & HAZARDOUS MATERIAL

FUR CENCEARCOND NOT

US Army Corps of Engineers Malcolm Pirnie, Inc. 104 Corporate Park Drive White Plains, NY 10602

UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK

FINAL RCRA FACILITY INVESTIGATION OF TEN LANDFILLS

JUNE 1997

for:

U.S. Army Corps of Engineers Baltimore District

USACE Contract No. DACA31-94-D-0017 Delivery Order No. 75

US Army Corps of Engineers Malcolm Pirnie, Inc. 104 Corporate Park Drive White Plains, NY 10602

UNITED STATES MILITARY ACADEMY West Point, New York

TABLE OF CONTENTS

Secti	on	Page
1.0	INTE	RODUCTION
	1.1	Project Background 1-1
	1.2	Project Objective and Scope 1-2
2.0	SCO	PE OF WORK
	2.1	Groundwater Investigation
	•	2.1.1 Monitoring Well Installation 2-1
		2.1.2 Monitoring Well Development
		2.1.3 Monitoring Well Survey 2-3
		2.1.4 Monitoring Well Sampling 2-3
	2.2	Explosive Soil Gas Survey 2-4
	2.3	Test Pit Excavation
3.0	RES	ULTS
	3.1	Groundwater Analytical Results
	3.2	Explosive Soil Gas Survey Results
	3.3	Test Pit Excavation Results
	3.4	Morgan Farm Road Landfill Seep Sampling
	3.5	Groundwater Movement
4.0	QUA	LITY ASSURANCE/QUALITY CONTROL
	4.1	Data Quality Objectives 4-1
	4.2	Quality Assurance/Quality Control Parameters 4-1
	4.3	Data Validation
	4.4	Data Usability

i

LIST OF TABLES

No.	Description	Following Page
3-1	High School Landfill and Michie Stadium Parking Lot D Landfill Metals Groundwater Results	3-6
3-2	Michie Stadium Parking Lot A Landfill	
3-3	Michie Stadium Parking Lot B Landfill	
3-4	Michie Stadium Parking Lot C Landfill	
3-5	Michie Stadium Parking Lot E Landfill	
3-6	PX Landfill	
3-7	Camp Buckner Landfill	
3-8	Village Farm Landfill	
3-9	Village Farm Landfill Explosive Soil Gas Survey Results	
3-10	High School Landfill - Playing Field Area Explosive Soil Gas Survey Results	
	High School Landfill - Track Area Explosive Soil Gas Survey Results	
3-11	PX Landfill Explosive Soil Gas Survey	
3-12	Camp Buckner Landfill Explosive Soil Gas Survey Results	

LIST OF TABLES - continued

No.	Description	Following Page
3-13	Michie Stadium Parking Lot A	
3-14	Michie Stadium Parking Lot B Explosive Soil Gas Survey Results	
3-15	Michie Stadium Parking Lot C	
3-16	Michie Stadium Parking Lot E	3-6
3-17	Michie Stadium Parking Lot F Explosive Soil Gas Survey Results	
3-18	Camp Buckner Landfill Soil Test Pit Results	
3-19	Village Farm Landfill	
3-20	Morgan Farm Road Landfill	3-6
3-21	Groundwater Elevations	3-6

iii

LIST OF FIGURES

	No.	Description
	1-1	Location Map
	1-2	Vicinity Map
	1-3a	Nine Landfills Location Map
	1-3b	Camp Buckner Location Map
	2-1	Village Farm Landfill Well Location Map
	2-2	Camp Buckner Landfill Well Location Map
•	3-1	Results of Explosive Soil Gas Survey Village Farm Landfill
	3-2	Results of Explosive Soil Gas Survey High School Landfill
	3-3	Results of Explosive Soil Gas Survey PX Landfill
	3-4	Results of Explosive Soil Gas Survey Camp Buckner Landfill
	3-5	Results of Explosive Soil Gas Survey Michie Stadium Lots A, B, C, D, E and F
	3-6	Approximate Locations of Surface Water Samples Morgan Farm Landfill
	3-7	Michie Stadium Parking Lot Landfills Groundwater Elevation Contour Map
	3-8	PX Landfill Groundwater Elevation Contour Map

iv

-10-40

LIST OF FIGURES (con't)

No. Description

- 3-9 Camp Buckner Landfill Groundwater Elevation Contour Map
- 3-10 Village Farm Landfill Groundwater Elevation Contour Map

LIST OF ATTACHMENTS

v

-

No. Description

- A Correspondence
- B Boring Logs and Well Construction Logs

C Groundwater Sample Collection Logs

D Data Validation Assessment

P:\0285659\REPORT\RFI-TOC.WPD

1.0 INTRODUCTION

1.1 Project Background

The United States Military Academy (USMA) is located on the western slope of the Hudson River at West Point, Orange County, New York. The USMA was established in 1802 as a training facility for officers in the military service. The Department of the Army (DA) owns, controls and operates the USMA. The location of the USMA is shown on Figures 1-1 and 1-2.

Various studies, assessments and investigations concerning the environmental conditions of the USMA have been conducted by the DA since 1980. Two recent reports developed by Woodward-Clyde Federal Services (WCFS) are particularly relevant to the development of this report. The first report is the January 1994 Resource Conservation and Recovery Act Facility Assessment Work Plan of Ten Landfills that described the investigation procedures to evaluate ten landfills located throughout the USMA. The ten landfills correspond to ten solid waste management units (SWMUs). SWMU No. USMA-15 has been divided into two landfills (USMA-15A and USMA-15B). The landfills and the corresponding SWMU Number are referred to as:

- PX Landfill (USMA-1)
- Michie Stadium Parking Lot Landfills, Lots A, B, C and E (USMA-2, 3, 4 and 6)
- Professor's Row Landfill (USMA-8)
- Village Farm Landfill (USMA-13)
- Morgan Farm Road Landfill (USMA-15A)

- High School Landfill (USMA-15B); and
- Camp Buckner Landfill (USMA-35).

The second report is the June, 1995 RFA of Ten Landfills Report. The report presents the findings of the RFA Work Plan.

Based upon the results presented in the RFA of Ten Landfills Report, the New York State Department of Environmental Conservation (NYSDEC) required the USMA to further assess the environmental conditions associated with nine of the Ten Landfills (except the Professor's Row Landfill) in a letter dated December 11, 1995 (Attachment A-1). The Professor's Row landfill was excluded because it could not be located during the investigation.

To further assess the environmental conditions associated with the ten landfills as requested by the NYSDEC, Delivery Order Number 0075 was issued by the United States Army Corps of Engineers (USACE) Baltimore District to Malcolm Pirnie, Inc. (Malcolm Pirnie) under Contract Number DACA31-94-D-0017 on April 18, 1996. While conducting the work detailed in Delivery Order 0075 of the USMA Ten Landfill Investigation, additional tasks were identified by the USMA and by the NYSDEC. A modification request was approved by the USMA for Malcolm Pirnie to conduct the additional work. This report summarizes the scope of work and results of the investigation for Delivery Order Number 0075 and Modification 1 to this Delivery Order.

1.2 **Project Objective and Scope**

The USACE authorized Malcolm Pirnie to develop and implement a RFI Work Plan Addendum for the Ten Landfills (Figures 1-3a and 1-3b). The objective of the addendum was to perform additional sampling and investigation of landfills investigated under the 1995 Ten Landfill RFA Report as requested by the NYSDEC. This objective was met by completing the following tasks:

 Installation, development and sampling of three monitoring wells at the Village Farm and Camp Buckner Landfills (total of six monitoring wells).

Originally three wells were also to be installed at the Morgan Farm Road Landfill, but additional seep and surface water sampling and a review of the closure report, was an approved substitute by the NYSDEC (Attachment A-2).

- 2) Collection of groundwater samples from nineteen previously installed monitoring wells located at the PX Landfill, High School Landfill and Michie Stadium Parking Lot Landfills A, B, C and E. All groundwater samples were analyzed for unfiltered Target Analyte List (TAL) metals.
- 3) Completion of an explosive soil gas survey of the PX Landfill, Michie Stadium Parking Lots A, B, C and E, Village Farm Landfill, High School Landfill, and Camp Buckner Landfill. This included the layout of sampling points at each landfill, advancement of sampling boreholes, and field testing of the vapor space in the sampling hole for percent explosive gas. This same procedure was also used at Michie Stadium Parking Lot F in accordance with Modification 1 to Delivery Order 0075.
- 4) In place of the proposed excavation and soil sampling from two test pits at Camp Buckner Landfill, two soil borings were advanced using a drill rig. One boring was advanced through the landfill and a soil sample was collected from the native material below the waste material. The second boring was advanced upgradient from the landfill to collect a background soil sample. Both soil samples were analyzed for TAL metals. Four test pits were excavated by Miller Environmental Group at the Village Farm Landfill. From the four test pits, two composite soil samples were collected from the fill material. Both of these soil samples were analyzed for TAL metals and Toxicity Characteristic Leaching Procedures (TCLP) for cadmium, lead and mercury.

The objectives presented in the Modification 1 Delivery Order 0075 were accomplished by performing the following tasks:

- The repair of seven damaged flush mount monitoring wells in Michie Stadium Parking Lots.
- 2) Monitoring well PXMW-02 was a flush mount well located at the PX Landfill. During the July 1996 groundwater sampling event, this well was found to be covered with approximately 20 cubic yards of soil. In an attempt to prevent future disturbance of the well, three protective four inch diameter steel posts filled with cement (bollards) were installed around the well. The well was also converted from a flush mount to a stickup by extending the PVC well casing three feet above ground and installing a protective casing and lockable cap over the well.
- 3) The collection and analysis of two surface water and one seep sample to determine the need for installing the three monitoring wells at the Morgan Farm Road Landfill. The NYSDEC used the analytical results of these samples and the closure report to determine that there was no need for the installation of the three monitoring wells that were proposed in the original scope of work for this landfill (Attachment A-2).

P:\0285659\REPORT\TEXT-1.0

2.0 SCOPE OF WORK

Section 2.0 describes the details of the scope of work completed for this investigation.

2.1 Groundwater Investigation

The groundwater investigation consisted of four specific tasks:

- Monitoring Well Installation;
- Monitoring Well Development;
- Monitoring Well Survey; and
- Monitoring Well Sampling.

Each of these tasks are described in the following sections.

2.1.1 Monitoring Well Installation

Six monitoring wells were installed as part of this RFI Work Plan Addendum (three monitoring wells each at the Village Farm (MWVF-01, MWVF-02, MWVF-03) and Camp Buckner Landfills (MWCB-01, MWCB-02, MWCB-03) Figures 2-1 and 2-2, respectively.

Boreholes for the monitoring wells were drilled with a truck-mounted George E. Failing SS-25 drill rig using either four or six and one-quarter inch diameter hollow stem augers or a six-inch diameter air percussion hammer. The hollow stem augers were used to drill through the overburden. The air percussion hammer was used to drill into the shallow bedrock and at locations where auger drilling encountered refusal because of cobbles in the overburden. Soil samples were collected from each borehole using a stainless steel split spoon sampler to visually classify the material and to screen the material for organic vapors using a HNu photoionization detector (PID). These samples were collected at two foot intervals beginning at the ground surface and continuing to the base of the borehole. Samples were not collected where refusal was encountered or from the shallow bedrock.

Monitoring well MWVF-01 was installed upgradient of the Village Farm Landfill at a depth of 14 feet below the ground surface. The water table was encountered at approximately seven feet below the ground surface and bedrock was at 14 feet below ground. The well screen was installed from 4 to 14 feet below ground surface so that the screen bridged the surface of the water table.

Monitoring wells MWVF-02 and MWVF-03 were installed downgradient of the Village Farm Landfill at depths of 44 feet and 16 feet below the ground surface, respectively. Competent bedrock was encountered at approximately 32 feet below the ground surface at MWVF-02 and at approximately 13 feet below the ground surface at MWVF-03. The water table was at approximately 31 feet below ground at MWVF-02 and at approximately eight feet below ground at MWVF-03. A 15 foot well screen was installed from 29 to 44 feet in MWVF-02 and a 10 foot well screen was installed from 6 to 16 feet in MWVF-03 in order to bridge the surface of the water table in each well. See boring logs and well construction logs for details (Attachment B).

Monitoring well MWCB-02 was installed upgradient of the Camp Buckner Landfill to a depth of 12.5 feet below the ground surface and bedrock was encountered eight feet below grade. The well screen was installed from 2.5 to 12.5 feet below ground so that the screen bridged the surface of the water table.

Monitoring wells MWCB-01 and MWCB-03 were installed downgradient of the Camp Buckner Landfill at depths of 29.5 feet and 13.5 feet below the ground surface, respectively. Both wells were screened directly above the bedrock surface. The water table was encountered at approximately five feet below grade at MWCB-01 and at approximately eight feet below grade at MWCB-03. MWCB-01 was screened to bridge the water table from 3.5 to 13.5 feet below grade. MWCB-03 was installed deeper because the first water bearing unit was still within the landfill mass. The landfill extended to approximately 17 feet below grade, so the well was screened from 19.5 to 29.5 feet below grade. See boring logs and well construction logs for details (Attachment B).

2.1.2 Monitoring Well Development

Upon completion of the monitoring well installation, each newly installed well was developed with a two-inch submersible pump and dedicated discharge hose. The pump was decontaminated after it's use at each well by scrubbing with a non-phospate detergent and by pumping a deionized water and detergent mix through the pump. The pump was also rinsed with deionized water prior to it's use at the next well location. During development, the turbidity of the discharged water was measured with a Hach 2100P Turbidimeter. Development continued at each location until the turbidity of the groundwater discharge was less than 50 nephelometric turbidity units (NTUs). The final turbidity in wells MWVF-01, MWVF-02 and MWVF-03 was 45 NTU's, 47 NTU's and 20 NTU's, respectively. Both wells MWVF-01 and MWVF-02 were pumped dry during development and were allowed to recharge prior to continuing the well development. The final turbidity in wells MWCB-01, MWCB-02 and MWCB-03 was 49 NTU's, 42 NTU's and 42 NTU's respectively.

2.1.3 Monitoring Well Survey

The newly installed wells were surveyed by Badey & Watson Surveying and Engineering, a New York licensed surveyor to obtain vertical and horizontal reference points. The monitoring well that was extended at the PX Landfill (MWPX-02) was also resurveyed to obtain its new elevation. Ground elevation was measured to the nearest 0.1 foot and well casings to the nearest 0.01 foot. All vertical measurements were referenced to existing site data (e.g. previously installed and surveyed monitoring wells).

2.1.4 Monitoring Well Sampling

Groundwater samples were collected from the six newly installed wells at Camp Buckner and Village Farm Landfills (three from each landfill) and from the 20 previously installed monitoring wells. Groundwater samples were collected from the newly installed wells two weeks after the completion of the well development. Prior to the collection of groundwater samples, groundwater level measurements were obtained.

The hydrogeologic conditions encountered, caused a variation in the groundwater sampling procedure stated in the approved Work Plan Addendum. After reviewing the groundwater sampling logs produced by Woodward-Clyde and the present site conditions, modifications were made to the purging technique. These changes were discussed with the USMA and were also performed by Woodward-Clyde. Modifications included varying the well evacuation device from a 2-inch diameter submersible pump to a bailer, depending on the height of water in the wells. Several wells did not produce enough yield to evacuate the three to five times the standing water volume minimum as proposed in the Work Plan Addendum. Monitoring wells were purged until they were dry, or three well volumes were removed or until the field parameters of temperature, specific conductance, pH and turbidity were within 10% variation while purging (Attachment C). Groundwater samples were collected within two hours of the completion of purging.

The submersible pump and electric cable were properly decontaminated between wells and a dedicated discharge hose was used at each well. Groundwater samples were collected using disposable polyethylene bailers and submitted to the laboratory for unfiltered TAL metal analyses.

2.2 Explosive Soil Gas Survey

An explosive soil gas survey was completed in accordance with the approved work plan at the PX Landfill, Michie Stadium Parking Lots A, B, C, E and F, Village Farm Landfill, High School Landfill, and Camp Buckner Landfill. Prior to the soil gas survey, a sampling grid was established at each landfill with an approximate 100 foot spacing, except at Michie Stadium Parking Lot B, Village Farm and Camp Buckner Landfills where a variable spacing between 50 and 100 feet was used due to access constraints.

At each soil gas survey location, a nominal 1-inch diameter sampling hole was advanced to a depth of approximately 5 feet or refusal using a truck mounted, hydraulically driven probe. A vacuum pump was connected to the probe to facilitate the movement of soil

vapors into the sampling hole. The vacuum was disconnected and the tip of a combustible gas indicator (CGI) was placed above the probe to field screen for percent combustible gas. Upon completion, the sampling hole was filled with bentonite and previously paved surfaces were restored with an asphalt patch.

2.3 Test Pit Excavation

In place of the proposed excavation of two test pits at Camp Buckner Landfill, two soil borings were advanced. One boring was advanced through the landfill and a soil sample was collected from underneath the waste material. The second boring was advanced upgradient from the landfill to collect a background soil sample. Both soil samples were analyzed for TAL metals.

On December 18, 1996, IT Corporation under contract through the Omaha District Army Corps of Engineers performed a test pit survey at Village Farm Landfill. Nineteen test pits were excavated to define the limits and volume of the fill area. Soil samples were not collected from the test pits excavated by IT Corporation. It was estimated that the landfill consists of approximately 2,000 cubic yards of fill material. The landfill debris consisted of plastic, cloth, tires, wood and scrap metal. The test pit survey was utilized to ensure the monitoring wells were located up and downgradient of the landfill.

In addition on April 9, 1997, four test pits were excavated by Miller Environmental Group at the Village Farm Landfill. From the four test pits, two composite soil samples were collected from the fill material. Both of these soil samples were analyzed for TAL metals and Toxicity Characteristic Leaching Procedures (TCLP) for cadmium, lead and mercury.

P:\0285659\REPORT\TEXT-2.0

2-5

3.0 RESULTS

3.1 Groundwater Analytical Results

The 26 groundwater samples that were analyzed for unfiltered TAL metals in accordance with the Army Corps of Engineers January 22, 1996 Scope of Work, were compared to the New York State Department of Environmental Conservation Water Quality Regulations Surface Water and Groundwater Classifications and Standards (water quality standards) New York State Codes, Rules and Regulations, Title 6, Chapter X parts 700-705, water class GA. Water class GA is for fresh groundwater. A total of 10 different metals were detected above the water quality standards from the 26 groundwater samples that were collected and analyzed. The metals that were detected are cadmium, iron, sodium, manganese, lead, arsenic, chromium, zinc, copper and mercury.

At the High School Landfill, two metals, cadmium (0.023 mg/l) and iron (1.62 mg/l), were detected in well HSMW-01 above the water quality standards of 0.010 mg/l and 0.3 mg/l respectively (Table 3-1). The 1995 Woodward-Clyde RFA Report did not report the detection of cadmium. The iron concentration reported at 1.62mg/L exceeded the 1995 reported concentration of 0.599 mg/l. There is no background well to compare these values too, but high concentrations of iron are known to be in the rock of this area.

The groundwater sample collected from the monitoring well upgradient of lots A, B, C and E, MWLD-02 in Parking Lot D of Michie Stadium, indicated that iron (8.49 mg/l) and sodium (960 mg/l) were at concentrations above the class GA water quality standards of 0.3 mg/l and 20 mg/l respectively (Table 3-1).

Metal constituents that exceeded water quality standards at the Michie Stadium Parking Lots A, B, C and E monitoring wells include iron, manganese and sodium. The concentrations of these constituents are relative to the concentrations in the upgradient well MWLD-02. However, manganese tends to be slightly elevated at Lots A, B, C and E (Table

3-1

3-2 to 3-5) when compared to the upgradient well. Manganese concentrations ranged from 0.075 mg/l in the upgradient well, MWLD-02, to 2.24 mg/l in LAMW-03. Iron concentrations also tend to be elevated at Lot E (ranging from 0.218 mg/l to 60.7 mg/l) when compared to the concentration detected in the upgradient well MWLD-02 (8.49 mg/l). The highest concentration of sodium was detected in the upgradient well MWLD-02 (960 mg/l). Concentrations of the above mentioned constituents are similar to those reported by Woodward-Clyde in the 1995 RFA Report.

Four groundwater samples (one upgradient and three downgradient) were collected from the PX Landfill. The groundwater quality near this landfill indicates that there were exceedances of the water quality standards for the following metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, sodium, and zinc in these samples (Table 3-6). The number of and concentrations of the constituents detected in these four samples have increased compared to the 1995 RFA Report data. For example, cadmium and mercury were not detected in 1995, and arsenic, copper, and zinc were detected but at concentrations below the water quality standards. Chromium, lead, iron, manganese and sodium were detected above the standards in the 1995 Report. The groundwater sample collected at upgradient well PXMW-01 had a septic odor and was turbid and black in appearance. Apparently a recently discovered sewer main leak contributed to this well's groundwater quality. The sewer main is currently undergoing replacement.

The three newly installed wells at the Camp Buckner Landfill, also reported detection of metals (Table 3-7) above water quality standards. Iron was detected above the water quality standard of 0.3 mg/l in all three samples. Iron concentrations ranged from 3.12 mg/l in CBMW-01, the upgradient well, to 170 mg/l in CBMW-03, one of the downgradient wells. CBMW-03 also had exceedances of the water quality standards for arsenic, chromium, lead, manganese, and zinc.

The three newly installed wells at Village Farm Landfill, reported levels of iron, manganese and lead at concentrations which exceeded water quality standards (Table 3-8).

3-2

Iron was detected above the water quality standard of 0.3 mg/l in all three samples. Iron concentrations ranged from 16.2 mg/l in the upgradient well, MWVF-01, to 57.8 mg/l in MWVF-03, one of the downgradient wells. Manganese was detected above the water quality standard of 0.3 mg/l in all three well samples. The lowest concentration of manganese (0.407 mg/l) was detected in the upgradient well, MWVF-01. The highest concentration (1.04 mg/l) was detected in the downgradient well MWVF-03. Lead was detected in downgradient well MWVF-03. Lead was detected in downgradient well MWVF-04 (0.054 mg/l) above the water quality standard of 0.025 mg/l.

3.2 Explosive Soil Gas Survey Results

An explosive soil gas survey, which consisted of measuring the percent lower explosive limit (LEL) in a borehole with a combustible gas indicator (CGI), was completed in accordance with the approved work plan and modification at the Camp Buckner Landfill, Michie Stadium Parking Lots A, B, C, E and F, Village Farm Landfill, High School Landfill and the PX Landfill. Soil gases were not detected from any of the sample boreholes at the Village Farm Landfill, High School Landfill, or the PX Landfill (Figures 3-1 to 3-3 and Tables 3-9 to 3-11).

At the Camp Buckner Landfill (Figure 3-4 and Table 3-12), ten soil gas borings were advanced in a sampling grid layout with 50 foot intervals. From the ten boreholes sampled, only three showed positive percent LEL readings which ranged from 5 to 9 percent. These results indicate that this landfill is producing very low levels of explosive gases.

At Michie Stadium, Parking Lot A Landfill (Figure 3-5 and Table 3-13), ten soil gas borings were advanced in a sampling grid layout with 100 foot intervals. From the ten borings sampled, one had a percent LEL reading of 3 to 4 percent and two had a percent LEL readings of 100 percent. The other seven boreholes had non-detect LEL readings. While there are two 100% LEL readings, the results generally suggest low explosive gas production at this landfill.

Michie Stadium Parking Lot B Landfill (Figure 3-5 and Table 3-14) had eight soil gas borel oles advanced in a sampling grid layout with 50 to 100 foot intervals. Only one sample location exhibited a percent LEL reading (16) all other boreholes had non detectable levels of explosive gas. These results indicate that this landfill is producing very low levels of explosive gases.

Michie Stadium Parking Lot C Landfill (Figure 3-5 and Table 3-15) had 11 soil gas boreholes advanced in a sampling grid layout with 100 foot intervals. All of these locations had percent LEL detections of soil gas. Three of the samples had percent LEL readings ranging from 24 to 94 percent, while the remaining seven samples all had detections of 100 percent. These results indicate that this landfill is producing relatively high levels of explosive gases.

Michie Stadium Parking Lot E Landfill (Figure 3-5 and Table 3-16) had 20 soil gas boreholes advanced in a sampling grid layout with 100 foot intervals. Two of the 20 sampling locations had low detections of soil gas ranging from 4 to 6 percent. Of the 18 remaining sampling locations, 15 had percent LEL readings of 100 and the remaining three samples did not have soil gas detections. These three samples were located by the entrance to the parking lot on the north end. These results indicate that this landfill is producing relatively high levels of explosive gases.

At Michie Stadium, Parking Lot F Landfill (Figure 3-5 and Table 3-17), 18 soil gas boreholes were advanced in a sampling grid layout with 100 foot intervals. From the 18 locations sampled, two had percent LEL readings ranging from 20 to 30 percent, and eight had percent LEL readings of 100. The remaining eight locations had non-detect LEL readings. These results indicate that this landfill is producing relatively high levels of explosive gases. It should be understood that the gas maybe measured in its concentrated form in escaping through the sampling penetration in the surface of a large area.

3-4

3.3 Test Pit Excavation Results

In place of the proposed excavation of two test pits at Camp Buckner Landfill, two soil borings were advanced. One boring was advanced through the landfill and a soil sample was collected from underneath the fill (CB-TP-1-1). The second boring was advanced upgradient from the landfill to collect a background soil sample (CB-TP-2-1). These two soil samples were compared to the New York State Department of Environmental Conservation Recommended Soil Cleanup Objectives for Heavy Metals (Revised 12/93) (Table 3-18).

The analytical results indicated that the metals detected in the soil sample beneath the landfill are very similar in concentration to metals detected in the background soil sample. Iron, mercury and zinc are common constituents in both samples which exceeded the NYSDEC criteria. Although the concentrations of those three metals detected in the landfill sample are slightly higher then the background sample, there are other metals where the reverse is true such as beryllium and nickel which exceeded the NYSDEC criteria in the background sample but not the landfill sample. Therefore, it is inconclusive to determine if the landfill has impacted the underlying soils or whether the differences in metal concentrations is due to natural variability.

IT Corporation under contract through the Omaha District Army Corps of Engineers excavated test pits at the Village Farm Landfill to define the limits of the landfill area, however no soil samples were collected at that time. The limits of the landfill area, were used to locate the monitoring wells up and downgradient of the landfill. Upon the completion of the monitoring well installation, four test pits were excavated by Miller Environmental Group. Two composite samples were collected from the fill material in the four test pits. These samples were analyzed for TAL metals.

The analytical results of the fill material showed exceedances of the NYSDEC criteria for copper, iron, lead, magnesium, manganese, mercury, nickel and zinc (Table 3-19).

After reviewing the exceedances of the NYSDEC criteria for the fill material, a Toxicity Characteristic Leaching Procedure (TCLP) was preformed on the two samples for cadmium, lead and mercury. The analytical results of the TCLP were below the standards for classifying materials as hazardous (Table 3-19).

3.4 Morgan Farm Road Landfill Seep Sampling

The analytical results of the surface water and seep samples were compared to the New York State Department of Environmental Conservation Water Quality Regulations Surface Water and Groundwater Classifications and Standards New York State Codes, Rules and Regulation Title 6, Chapter X Parts 700 - 705 for Class B Streams (Table 3-20). The upgradient (SW-3) and downgradient (SW-1) surface water samples had detections of iron (0.355 mg/l and 0.347 mg/l, respectively) above the NYSDEC criteria. The first seep sample (SW-2) did not have any detections above the NYSDEC criteria. The second seep sample (Seep-2) had detections of aluminum, cobalt, iron, lead, manganese, and vanadium above the NYSDEC criteria. The surface water and seep sample locations can be seen on Figure 3-6. These results were submitted to the NYSDEC by Eugene Rood (USMA) in his January 10, 1997 letter. The NYSDEC in its January 15, 1997 letter response (Attachment A-2) decided that monitoring wells were not required at the Morgan Farm Road Landfill.

3.5 Groundwater Movement

Groundwater levels were measured from each monitoring well prior to sampling. Groundwater elevations are summarized in Table 3-21. Groundwater contour maps for the Michie Stadium Lots A, B, C, D and E (Figure 3-7) and the PX Landfill (Figure 3-8) indicate similar groundwater movement as compared to the 1995 data. Groundwater movement at Camp Buckner is to the southeast (Figure 3-9) and at Village Farm to the south - southeast (Figure 3-10). P:\0285659\REPORT\TEXT-3.0

TEN LANDFILLS USMA WEST POINT

High School Landfill and Michie Stadium Parking Lot D Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	H	ISMW-01 7/12/96 mg/L	MWLD-02 7/18/96 mg/L		
Aluminum	N/A		0.351 J		0.707	
Antimony		<	0.06 J	<	0.06	
Arsenic	0.025	<	0.010 J .	<	0.010	
Barium	1		0.071 J		0.117 J	
Beryllium	N/A	<	0.005 J	<	0.005	
Cadmium	0.010		<u>0.023</u> J		0.004 J	
Calcium			46.8 J		85.5	
Chromium	0.050	<	0.01 J		0.006 J	
Cobalt	N/A	<	0.05 J		0.005 J	
Copper	0.2		0.012 J		0.020 J	
Iron	0.3		<u>1.62</u> J		8.49	
Lead	0.025		0.008 J	<	0.010	
Magnesium	N/A		4.70 J		12.0	
Manganese	0.3		0.226 J		0.075	
Mercury	0.002	<	0.0005 J	<	0.0005	
Nickel	N/A		0.008 J	<	0.04 J	
Potassium			9.38 J		6.96	
Selenium	0.01	<	0.005 J	<	0.005 J	
Silver	0.05	<	0.010 J	<	0.010	
Sodium	20		13.8 J		960	
Thallium	N/A	<	0.010 J	<	0.010 J	
Vanadium	N/A	<	0.05 J	<	0.05	
Zinc	0.3		0.251 J		0.078	

J - Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot A Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	1	LAMW-01 7/18/96 mg/L	L	AMW-02 7/18/96 mg/L	L	AMW-03 7/18/96 mg/L
Aluminum	N/A		0.357		1.16		0.212
Antimony		<	0.06	<	0.06	<	0.06
Arsenic	0.025	<	0.010	<	0.010	<	0.010
Barium	1		0.062 J		0.061 J		0.122 J
Beryllium	N/A	<	0.005	<	0.005	<	0.005 ·
Cadmium	0.010		0.004 J	<	0.005	<	0.005
Calcium			54.2		60.9		42.0
Chromium	0.050	<	0.01		0.008 J	<	0.01
Cobalt	N/A		0.009 J		0.006 J		0.012 J
Copper	0.2		0.012 J		0.015 J		0.033
Iron	0.3		2.29		1.63		2.12 J
Lead	0.025		0.003 J	·	0.004 J		0.004 J
Magnesium	N/A		11.2		20.9		7.71
Manganese	0.3		0.922		0.172		2.24
Mercury	0.002	<	0.0005	<	0.0005	<	0.0005
Nickel	N/A		0.008 J		0.010 J		0.050 J
Potassium			7.90		9.30		5.85
Selenium	0.01	<	0.005 J	<	0.005 J	<	0.005 J
Silver	0.05	<	0.010	<	0.010	<	0.010
Sodium	20		108		178		163
Thallium	N/A	<	0.010 J	<	0.010 J	<	0.010 J
Vanadium	N/A	<	0.05	<	0.05	<	0.05
Zinc	0.3		0.118		0.164		0.080

J - Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

Exceedances of the water quality standards are bolded and underlined.

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot B Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	LBMW-01 7/18/96 mg/L		L	BMW-02 7/18/96 mg/L	L	BMW-03 7/18/96 mg/L
Aluminum	N/A		0.276		0.124 J		0.256
Antimony		<	0.06	<	0.06	<	0.06
Arsenic	0.025	<	0.010	<	0.010	<	0.010
Barium	1		0.026 J		0.030 J		0.164 J
Beryllium	N/A	<	0.005	<	0.005	<	0.005
Cadmium	0.010	<	0.005	<	0.005	<	0.005
Calcium			21.5		32.2		89.2
Chromium	0.050	<	0.01	<	0.01	<	0.01
Cobalt	N/A	<	0.05	<	0.05		0.025 J
Copper	0.2		0.021 J		0.012 J		0.007 J
Iron	0.3		3.72		0.130		29.9
Lead	0.025		0.025		0.002 J		0.003 J
Magnesium	N/A		4.32 J		6.07		17.8
Manganese	0.3		0.606		0.157		1.66
Mercury	0.002	<	0.0005	<	0.0005	<	0.0005
Nickel	N/A	<	0.04 J	<	0.04 J	<	0.04 J
Potassium		<.	5.0		7.24		8.74
Selenium	0.01	<	0.005 J	<	0.005 J	<	0.005 J
Silver	0.05	<	0.010	<	0.010	<	0.010
Sodium	20		35.6		75.4		317
Thallium	N/A	<	0.010 J	<	0.010 J	<	0.020 J
Vanadium	N/A	<	0.05	<	0.05	<	0.05
Zinc	0.3		0.087		0.103		0.123

J - Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

Exceedances of the water quality standards are bolded and underlined.

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot C Landfill Metals Groundwater Results

Location ID	NYSDEC ⁽¹⁾	ι	CMW-01	L	CMW-02	L	.CMW-03	
Date Collected	Water Quality		7/17/96	7/17/96		7/17/96		
Units	Regualtions		mg/L		mg/L		mg/L	
Aluminum	N/A	_	0.197 J		0.576		1.95	
Antimony		<	0.06	<	0.06	<	0.06	
Arsenic	0.025	<	0.010	<	0.010	<	0.010	
Barium	1		0.032 J		0.034 J		0.094 J	
Beryllium	N/A	<	0.005	<	0.005	<	0.005	
Cadmium	0.010		0.005	<	0.005	<	0.005	
Calcium			40.5		25.7		70.2	
Chromium	0.050	<	0.01		0.006 J	<	0.01	
Cobalt	N/A	<	0.05	<	0.05		0.006 J	
Copper	0.2		0.019 J		0.011 J	-	0.009 J	
Iron	0.3		6.80		0.883		26.0	
Lead	0.025		0.002 J		0.003 J		0.003 J	
Magnesium	N/A		9.80		5.14		14.0	
Manganese	0.3		0.158		0.020		0.493	
Mercury	0.002	<	0.0005	<	0.0005	<	0.0005	
Nickel	. N/A		6.98 J	<	0.04 J	<	0.04 J	
Potassium		<	0.04		1.92 J		7.97	
Selenium	0.01	<	0.005 J	<	0.005 J	<	0.005 J	
Silver	0.05	<	0.010	<	0.010	<	0.010	
Sodium	20		70.8		88.9		182	
Thallium	N/A	<	0.010 J	<	0.010 J	<	0.010 J	
Vanadium	N/A	<	0.05	<	0.05	<	0.05	
Zinc	0.3		0.105		0.100		0.100	

J - Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot E Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	L	-EMW-01 7/17/96 mg/L	l	EMW-02 7/17/96 mg/L	L	EMW-03 7/18/96 mg/L	L	EMW-04 7/17/96 mg/L	L	EMW-05 7/18/96 mg/L
Aluminum	. N/A		0.309		0.242		1.03		3.70		0.670
Antimony		< .	0.06	<	0.06	<	0.06	<	0.06	<	0.06
Arsenic	. 0.025	<	0.010	<	0.010		0.003 J		0.002 J	<	0.010
Barium	1		0.125 J		0.043 J		0.023 J		0.295		0.082 J
Beryllium	N/A	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Cadmium	0.010	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
Calcium			65.8		15.3		8.28		99.8		35.6
Chromium	0.050	<	0.01	<	0.01	<	0.01		0.009 J	<	0.010
Cobalt	N/A	<	0.05	<	0.05		0.022 J	<	0.05		0.024 J
Copper	0.2		0.010 J		0.010 J		0.016 J		0.016 J		0.012 J
Iron	0.3		60.7		0.218		9.11		50.3		32.4
Lead	0.025		0.003 J	<	0.005		0.002 J		0.013		0.003 J
Magnesium	N/A		14.4		2.57 J		2.11 J		28.7		9.91
Manganese	0.3		1.82		0.27		0.149		1.08		1.90
Mercury	0.002	<	0.0005	<	0.0005	<	0.0005	<	0.0005	<	0.0005
Nickel	N/A	<	0.04 J	<	0.04 J		0.016 J	. <	0.04 J	<	0.04 J
Potassium			5.39		2.31.J	<	5.0		22.2		4.59 J
Selenium	0.01	<	0.005 J	<	0.005 J	<	0.005 J	<	0.005 J	<	0.005
Silver	0.05	<	0.010	<	0.010	<	0.010	<	0.010	<	0.010 J
Sodium	20		139		120		10.5		143		150
Thallium	N/A	<	0.010 J	<	0.010 J	<	0.020 J	<	0.010 J	<	0.020 J
Vanadium	N/A	<	0.05	<	0.05	<	0.05	<	0.05	<	0.05
Zinc	0.3		0.098		0.101		0.103		0.138		0.086

J - Estimated Value

11

1 - NYSDEC Water Quality Standards for class GA waters.

Exceedances of the water quality standards are bolded and underlined.

age

TEN LANDFILLS USMA WEST POINT

PX Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	PXMW-01 8/5/96 mg/L	P	2XMW-02 8/5/96 mg/L	F	2XMW-03 8/5/96 mg/L	F	2XMW-04 8/5/96 mg/L
Aluminum	N/A	160		13.3		2.73		49.9
Antimony		0.051 J	<	0.06	<	0.06		0.038 J
Arsenic	0.025	0.052		0.025	<	0.010	·	0.002 J
Barium	1	0.734		0.118		0.037 J		0.405
Beryllium	N/A	0.016	<	0.005	<	0.005		0.003 J
Cadmium	0.010	0.019		0.094	<	0.005		0.004 J
Calcium		109		85.9		258		93.6
Chromium	0.050	0.213	-	0.014		0.005 J		0.101
Cobalt	N/A	0.106		0.017 J		0.005 J		0.061
Copper	0.2	0.840		0.037		0.014 J		0.172
Iron	0.3	217 J		24.7 J		5.99 J		<u>110</u> J
Lead	0.025	1.51		0.048	<	0.010		0.160
Magnesium	N/A	50.7		22.8		83.5		48.3
Manganese	0.3	1.86		0.605		0.065		1.77
Mercury	0.002	0.006	< '	0.0005		0.0015	<	0.0005
Nickel	N/A	0.224		0.023 J		0.008 J		0.074
Potassium		22.7		10.5		5.57	_	18.8
Selenium	0.01	< 0.025		0.003 J	<	0.025	<	0.005
Silver	0.05	< 0.010	<	0.010	<	0.010	<	0.010
Sodium	20	34.2		139		329		171
Thallium	N/A	< 0.010	<	0.05	<	0.05	<	0.010
Vanadium	N/A	0.220		0.021 J		0.010 J		0.144
Zinc	0.3	3.62	1	0.552		0.061		0.307

J - Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

Exceedances of the water quality standards are bolded and underlined.

p:\0285659\report\Gwdata.xls-PX

TEN LANDFILLS USMA WEST POINT

Camp Buckner Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	Water Quality 8/5/96 8/5/		CBMW-03 8/5/96 mg/L
Aluminum	N/A	1.52	7.20	74.3
Antimony		< 0.06	< 0.06	< 0.06
Arsenic	0.025	< 0.010	0.002 J	0.046
Barium	1	0.028 J	0.058 J	0.448
Beryllium	N/A	< 0.005	< 0.005	0.004 J
Cadmium	0.010	< 0.005	< 0.005	< 0.005
Calcium		30.3	18.1	156
Chromium	0.050	0.006 J	0.010	0.101
Cobait	N/A	< 0.05	0.008 J	0.073
Copper	0.2	0.017 J	0.030	0.183
Iron	0.3	<u>3.12</u> J	<u>14.0</u> J	<u>170</u> J
Lead	0.025	0.002 J	0.014	0.212
Magnesium	N/A	5.24	4.76 J	56.0
Manganese	0.3	0.228	0.401	4.34
Mercury	0.002	< 0.0005	< 0.0005	< 0.0005
Nickel	N/A	0.011 J	0.013 J	·0.151
Potassium		1.77 J	3.76 J	8.26
Selenium	0.01	< 0.005	< 0.005	< 0.025
Silver	0.05	< 0.010	< 0.010	< 0.010
Sodium	20	2.88 J	3.32 J	4.74
Thallium	N/A	< 0.010	< 0.010	< 0.010
Vanadium	N/A	0.004 J	0.009 J	0.110
Zinc	0.3	0.066	0.107	0.500

NTU = 40

-

NO 47.

vtuzionos tubid

J- Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

Exceedances of the water quality standards are bolded and underlined.

p;\0285659\report\Gwdata.xis-camp B

TEN LANDFILLS USMA WEST POINT

Village Farm Landfill Metals Groundwater Results

Location ID Date Collected Units	NYSDEC ⁽¹⁾ Water Quality Regualtions	r	MWVF-01 2/12/97 mg/L		/WVF-02 2/12/97 mg/L	MWVF-03 2/12/97 mg/L		
Aluminum	N/A		8.43 J		24.80 J		37.8 J	
Antimony		<	0.06 J	<	0.06 J	<	0.06 J	
Arsenic	0.025		0.003 J	<	0.010 J	<	0.010 J	
Barium	1		0.55 J		0.141 J		0.283 J	
Beryllium	N/A	<	0.005 J		0.002 J		0.002 J	
Cadmium	0.010	<	0.005 J	<	0.005 J	<	0.005 J	
Calcium			10.4 J		43.9 J		14.8 J	
Chromium	0.050		0.005 J		0.020 J		0.024 J	
Cobalt	N/A	<	0.05 J		0.015 J		0.016 J	
Copper	0.2		0.034 J		0.064 J		0.072 J	
Iron	0.3		<u>16.2</u> J		42.9 J		57.8 J	
Lead	0.025		0.01 J	1	0.054 J		0.025 J	
Magnesium	N/A		4.29 J		14.9 J		8.94 J	
Manganese	0.3	_	0.407 J		0.825 J		1.04 J	
Mercury	0.002	. <	0.0005 J	<	0.0005 J	<	0.0005 J	
Nickel	N/A		0.008 J		0.025 J		0.028 J	
Potassium			2.06 J		4.63 J		3.62 J	
Selenium	0.01	<	0.005 J	<	0.005 J	<	0.005 J	
Silver	0.05	<	0.010 J	<	0.010 J		0.011 J	
Sodium	20		2.42 J		5.54 J		2.35 J	
Thallium	N/A	· <	0.010 J	<	0.010 J	<	0.010 J	
Vanadium	N/A		0.004 J		0.045 J		0.047 J	
Zinc	0.3		0.066 J		0.092 J		0.130 J	

J- Estimated Value

1 - NYSDEC Water Quality Standards for class GA waters.

Exceedances of the water quality standards are bolded and underlined.

TEN LANDFILLS USMA WEST POINT

Village Farm Landfill Explosive Soil Gas Survey Results

Location	<u>% LEL</u> Reading	<u>Depth</u> (feet below grade)	<u>Comments</u>	
VF - 1	(ND)	3	refusal	
VF - 2	(ND)	2	refusal	
VF - 3	(ND)	2.5	refusal	
VF - 4	(ND)	3.5	refusal	
VF - 5	(ND)	2	refusal	
VF - 6	(ND)	2	refusal	
VF - 7	(ND)	2.5	refusal	
VF - 8	(ND)	4	refusal	
VF - 9	(ND)	5		
VF - 10	(ND)	5		
VF - 11	(ND)	1		
VF - 12	(ND)	5		
VF - 13	(ND)	5		
VF - 14	(ND)	2		
VF - 15	(ND)	2.5		
VF - 16	(ND)	2	hit water	
VF - 17	(ND)	2	hit water	
VF - 18	(ND)	2.5	hit water	
VF - 19	(ND)	D) 2 hit wa	hit water	
VF - 20	(ND)	2.5 refu		
VF - 21	(ND)	2	refusal	

upoter dere

TEN LANDFILLS USMA WEST POINT

High School Landfill - Playing Field Area Explosive Soil Gas Survey Results

Location	% LEL Reading	<u>Depth</u> (feet below grade)	<u>Comments</u>	
PF - 1	(ND)	3.5	refusa	
PF - 2	(ND)	2	refusa	
PF - 3	(ND)	2.5	refusa	
PF - 4	(ND)	3	refusa	
PF - 5	(ND)	2.5	refusa	
PF - 6	(ND)	2	refusa	
PF - 7	(ND)	2.5	refusa	
PF - 8	(ND)	2	refusa	
PF - 9	(ND)	2	refusa	
PF - 10	(ND)	2.5	refusa	
PF - 11	(ND)	2	refusa	
PF - 12	(ND)	2.5	refusa	
PF - 13	(ND)) 4		
PF - 14	(ND)	2.5		
PF - 15	(ND)	2.5		
PF - 16	(ND)	2.5	refusa	
PF - 17	(ND)	3	refusa	
PF - 18	(ND)) 3		
PF - 19	(ND)) 2.5 ref		
PF - 20	(ND)	2 refu		

TABLE 3-10 (continued)

TEN LANDFILLS USMA WEST POINT

High School Landfill - Track Area Explosive Soil Gas Survey Results

Location	<u>% LEL</u> Reading	<u>Depth</u> (feet below grade)	Comments
T - 1	(ND)	2.5	refusa
T - 2	(ND)	4.5	refusa
T - 3	(ND)	2	refusa
T - 4	(ND)	2	refusa
T - 5	(ND)	2	refusa
T-6	(ND)	2	refusa
T - 7	(ND)	2.5	refusa
T - 8	(ND)	4	refusa
T - 9	(ND)	2	refusa
T - 10	(ND)	4	refusa
T - 11	(ND)	2	refusa
T - 12	(ND)	2.5	refusa
T - 13	(ND)	2	refusa
T - 14	(ND)	. 2	refusa
T - 15	(ND)	3.5	refusa
T - 16	(ND)	2.5	refusa
T - 17	(ND)	3	refusa
T - 18	(ND)	3.5	refusa
T - 19	(ND)	3.5	refusa
T - 20	(ND)	. 3	refusa
T - 21	(ND)	2	refusa
T - 22	(ND))) 4	
T - 23	(ND)	2.5	
T - 24	(ND)	2.5 refusa	
T - 25	(ND)	2.5 ref	

TEN LANDFILLS USMA WEST POINT

PX Landfill Explosive Soil Gas Survey Results

Location	% LEL	Depth	Comments	
	Reading	(feet below grade)		
PX - 1	(ND)	5		
PX - 2	(ND)	3	refusal	
PX - 3	(ND)	5		
PX - 4	(ND)	4.5	refusa	
PX - 5	(ND)	5		
PX-6	(ND)	4.5	refusa	
PX - 7	(ND)	5		
PX - 8	(ND)	4.5	refusa	
PX - 9	(ND)	5		
PX - 10	(ND)	. 5		
PX - 11	(ND)	5		
PX - 12	(ND)	5	5	
PX - 13	(ND)	4	refusal	
PX - 14	(ND)	4.5	4.5refuse4.5refuse	
PX - 15	(ND)	4.5		
PX - 16	(ND)	3	the second se	
PX - 17	(ND)	4	refusal	
PX - 18	(ND)	5		
PX - 19	(ND)	5		
PX - 20	(ND)	5		
PX - 21	(ND)	3.5	refusal	
PX - 22	(ND)	2	refusal	
PX - 23	(ND)	2.5	refusal	
PX - 24	(ND)			
PX - 25	(ND)	2	refusal	
PX - 26	(ND)	5		
PX - 27	(ND)	5		

- ----

TEN LANDFILLS USMA WEST POINT

Camp Buckner Landfill Explosive Soil Gas Survey Results

Location	<u>% LEL</u> Reading	<u>Depth</u> (feet below grade)	Comments
CB - 1	(ND)	2.5	refusal
CB - 2	9	3.5	refusal
CB - 3	(ND)	3.5	refusa
CB - 4	(ND)	2	refusa
CB - 5	9	3.5	refusa
CB - 6	(ND)	(ND) 3.5	
CB - 7	5	4	refusa
CB - 8	(ND)	3.5	refusa
CB - 9	(ND)	2	refusa
CB - 10	(ND)	1D) 4 re	

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot A Explosive Soil Gas Survey Results

Comments	<u>Depth</u> (feet below grade)	<u>% LEL</u> Reading	Location
refusal	4 - 4.5	(ND)	A-1
refusal - moist	4 - 4.5	3 - 4	A-2
refusal - hit water	4 - 4.5	(ND)	A-3
	5	100	A-4
	4.5	(ND)	A-5
	5	100	A-6
moist	. 4	(ND)	A-7
refusal	3.5	(ND)	A-8
refusal	4	(ND)	A-9
	4.5	(ND)	A-10

-

.

TEN LANDFILLS

Michie Stadium Parking Lot B Explosive Soil Gas Survey Results

Location	% LEL Reading	<u>Depth</u> (feet below grade)	Comments
B-1	(ND)	4	
B-2	(ND)	4.5	
B-3	(ND)	2.5	refusal
B-4	(ND)	3.5	refusal
B-5	(ND)	2.5	refusal
B-6	(ND)	4.5	
B-7	16	4.5	
B-8	(ND)	3.5	refusal

-

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot C Explosive Soil Gas Survey Results

Location	<u>% LEL</u> Reading	<u>Depth</u> (feet below grade)	<u>Comments</u>	
C-1	100	4		
C-2	94	3	refusa	
C-3	100	4	refusa	
C-4	100	3.5	refusa	
C-5	24	2	refusa	
C-6	56	3.5	refusa	
C-7	100	3	refusa	
C-8	100	5		
C-9	100	5	•	
C-10	100	5		
C-11	100	3.5	refusa	

-

ī.

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot E Explosive Soil Gas Survey Results

Location	<u>% LEL</u> Reading	<u>Depth</u> (feet below grade)	Comments
E-1	100	5	odor
E-2	100	5	odor
E-3	100	5	odor
E-4	100	5	odor
E-5	100	3.5	refusal
E-6	6	5	odor
E-7	4	5	
E-8	100	5	odor
E-9	100	5	odor
E-10	100	. 5	odor
E-11	100	5	odor
E-12	100	3	refusal - faint odor
E-13	100	5	odor
E-14	100	5	odor
E-15	100	5	odor
E-16	(ND)	2	refusal
E-17	(ND)	2.5	refusal
E-18	(ND)	3	refusal
E-19	100	5	
E-20	100	4.5	refusal - odor

- 2

TEN LANDFILLS USMA WEST POINT

Michie Stadium Parking Lot F Explosive Soil Gas Survey Results

Location	<u>% LEL</u> Reading	<u>Depth</u> (feet below grade)	Comments	
F-1	100	5	odor	
F-2	(ND)	5		
F-3	(ND)	5		
F-4	100	5	odo	
F-5	100	3	odor	
F-6	(ND)	2.5		
F-7	100	5	odor	
F-8	(ND)	5	•	
F-9	100	4	odo	
F-10	100	5	odo	
F-11	20	5		
F-12	(ND)	2.5		
F-13	100	5	odor	
F-14	30	3	odor	
F-15	(ND)	. 3		
F-16	. (ND)	4		
F-17	100	5	odor	
F-18	(ND)	2.5	*	

-

TEN LANDFILLS USMA WEST POINT

Camp Buckner Landfill Soil Test Pit Results

Location ID	NYSDEC	CB-TP-1-	1 C	B-TP-2-1
Date Collected	Criteria*	7/2/96		7/2/96
Units	·	mg/kg		mg/kg
Aluminum	33,000	580	0	8093
Antimony	N/A	< 15.	7 <	6.65
Arsenic	7.5	6.3	1	0.55 J
Barium	300	37.	8 J	44.6
Beryllium	0 - 1.75	0.2	6 J	33.2
Cadmium	10	< 1.3	1 <	0.55
Calcium	35,000	821	5	1519
Chromium	50	8.1	4	10.5
Cobalt	30	4.73	2 J	7.65
Copper	. 25	29.	1	18.7
Iron	2,000	1126	0	9911
Lead	4 - 61	12.4	4 J	6.90 J
Magnesium	100 - 5,000	2940	0	3337
Manganese	50 - 5,000	21	7 J	191 J
Mercury	0.1	0.8	<u>3</u> J	0.28 J
Nickel	13	9.19	9 J	14.3
Potassium	43,000	553	3 J	956
Selenium	2	< 1.3	1 J <	0.55 J
Silver	N/A	< 2.62	2 <	1.11
Sodium	6,000 - 8,000	73.	5 J	51.8 J
Thallium	N/A	< 2.62	2 J <	1.11 J
Vanadium	150	11.:	3 J	8.87
Zinc	20	114	4	57.6

Total Solids	38.10%	90.20%

J - Estimated Value

* - New York State Department of Environmental Conservation Recommended Soil Cleanup Objectives for Heavy Metals.

-

TEN LANDFILLS USMA WEST POINT

Village Farm Landfill Soil Test Pit Results

Metals				
Location ID Date Collected Units	NYSDEC Criteria*	TP-1 4/9/97 mg/kg	TP-2 4/9/97 mg/kg	
Aluminum	33,000	12000	11500	
Antimony	N/A	7.97 U	7.49 U	
Arsenic	7.5	1.33 U	1.25 U	
Barium	300	134	161	
Beryllium	0 - 1.75	0.664 U	0.624 U	
Cadmium	10	2.2	3.13	
Calcium	35,000	4060	5940	
Chromium	. 50	21	18.4	
Cobalt	30	11.4	10.4	
Copper	25	173	58.4	
Iron	2,000	33500	21200	
Lead	4 - 61	726	594	
Magnesium	100 - 5,000	4240	5530	
Manganese	50 - 5,000	1000	382	
Mercury	0.1	0.279	0.795	
Nickel	13	34	18.5	
Potassium	43,000	984	1060	
Selenium	2	0.664 U	0.624 U	
Silver	N/A	1.33 U	1.25 U	
Sodium	6,000 - 8,000	135	84.1	
Thallium	. N/A	1.33 U	1.25 U	
Vanadium	150	22.7	22.5	
Zinc	20	655	429	

15.3	80.1
	0.0

Toxicity Characteristic Leaching Procedure (TCLP)

	Regulatory Level**	TP-1 Mg/L	TP-2 Mg/L
Cadmium	1.0	0.100 U	0.100 U
Lead	. 5.0	2.03	4.40
Mercury	0.2	0.00300 U	0.00300 U

* - New York State Department of Environmental Conservation Recommended Soil Cleanup Objectives for Heavy Metals.

U - Undetected

** - USEPA 40 CFR Part 261.24 toxicity characheristics.

]

TEN LANDFILLS USMA WEST POINT

Morgan Farm Road Landfill Surface Water and Seep Results

Location ID Date Collected Units	NYSDEC Criteria Class B Stream	(1	SW-1 7/12/96 mg/L downgradient)		SW-2 7/12/96 mg/L seep-1)		SW-3 7/12/96 mg/L upgradient)		Seep 11/19/96 mg/L
Aluminum	0.1		0.057 J		0.072 J		0.060 J		121
Antimony	N/A	<	0.06 J	<	0.06 J	<	0.06 J	<	0.06
Arsenic	0.190 ⁽¹⁾	<	0.010 J	<	0.010 J	<	0.010 J		0.020
Barium *	1 ⁽²⁾		0.017 J		0.031 J		0.011 J		0.781
Beryllium	· 1.1 ⁽³⁾	<	0.005 J	<	0.005 J	<	0.005 J		0.012
Cadmium	0.5 ⁽⁴⁾	<	0.005 J	<	0.005 J	<	0.005 J	<	0.005
Calcium	N/A		7.16 J		41.8 J		5.72.J		139
Chromium	5.8 ⁽⁴⁾		0.007 J	<	0.01 J	<	0.01 J		0.079
Cobalt	0.005 ⁽⁶⁾	<	0.050 J	<	0.05 J	<	0.05 J		0.161
Copper	2.9 ⁽⁵⁾		0.029 J		0.007 J	<	0.01 J		0.161
Iron	0.3		<u>0.347</u> J		0.058 J		0.355 J		833
Lead	0.05 ⁽⁴⁾		0.006 J		0.007 J		0.004 J		0.377
Magnesium	35 ⁽²⁾		1.70 J		7.30 J		1.44 J		27.3
Manganese	0.3 ⁽²⁾		0.026 J		0.031 J		0.023 J		12.7
Mercury	0.002 ⁽²⁾		0.00076 J	<	0.0005 J	<	0.0005 J	<	0.0005
Nickel	5.0 ⁽⁴⁾	1	0.143 J	<	0.04 J	<	0.04 J		0.075
Potassium	N/A		2.17 J		2.39 J	<	5.0 J		6.48
Selenium	0.01 ⁽⁶⁾	<	0.005 J	. <	0.005 J	<	0.005 J	<	0.005
Silver	0.05 ⁽⁷⁾	<	0.010 J	<	0.010 J	<	0.010 J		0.013
Sodium	N/A		12.2 J		36.2 J		3.47 J		31.8
Thallium	0.008 ⁽⁶⁾	<	0.010 J	<	0.010 J	<	0.010 J	<	0.050
Vanadium	0.014 ⁽⁶⁾	<	0.05 J	<	0.05 J	<	0.05 J		0.209
Zinc	4.9 ⁽⁵⁾		0.087 J		0.103 J		0.121 J		0.875

N/A = Not Applicable

(1) = Standard applies to dissolved form.

(2) = A class B criteria does not exist. Therefore a more stringent criteria of a class A stream was used.

- (3) = 1,100 ug/L when hardness is greater than 75 ppm.
- (4) = Standard is calculated based on listed formula. Standard applies to acid-soluable form.*

. ...

- (5) = Standard is calculated based on listed formula. Standard applies to dissolved form.*
- (6) = Standard applies to acid-soluable form.
- (7) = Standard applies to ionic silver.
- * = An average value for calcium and magnesium was used to calculate the average hardness value used in calculating the standards derived from formulas. As provided in <u>Groundwater</u> by Freeze and Cherry (1979).

** = Average hardness value is equal to 168 mg/L.

*** = Exceedances of criteria have been bolded and underlined.

TEN LANDFILLS USMA WEST POINT

Groundwater Elevations

Location .	Well ID	Elevation at Top of PVC (feet)*	Depth to Water from TOC (feet)**	Groundwater Elevation
High School - Playing Field	HSMW-01		23.12	
Michie Stadium Parking Lot A	LAMW-01	412.49	1.00	411.49
	LAMW-02	409.93	15.95	393.98
	LAMW-03	412.49	5.32	407.17
Michie Stadium Parking Lot B	LBMW-01	430.35	4.28	426.07
	LBMW-02	424.45	7.59	416.86
	LBMW-03	421.04	4.33	416.71
Michie Stadium Parking Lot C	LCMW-01	455.93	7.52	448.41
inionic olderan ranking Lot o	LCMW-02	454.75	15.93	438.82
	LCMW-03	456.85	23.64	433.21
Michie Stadium Parking Lot D	MWLD-02	544.96	17.68	527.28
Michie Stadium Parking Lot E	LEMW-01	506.12	9.14	496.98
	LEMW-02	501.69	6.92	490.98
	LEMW-02	509.43	39.60	469.83
	LEMW-04	507.26	13.33	493.93
	LEMW-05	501.51	24.18	493.93
PX Landfill	PXMW-01	169.94	3.48	166.46
	PXMW-02(2)		60.48	104.75
	PXMW-03	166.73	53.05	113.68
	PXMW-04	166.47	44.50	121.97
Camp Buckner Landfill ⁽¹⁾	CBMW-01	662.20	7.26	654.94
	CBMW-02	665.40	7.22	658.18
	CBMW-03	660.60	7.24	653.36
Village Farm Landfill ⁽¹⁾	VFMW-01	876.21	7.24	868.97
Thage I ann Lanuill	VFMW-01	816.45	33.54	782.91
	VFMW-02	822.54	9.05	813.49

* - Elevations were taken from the 1995 Woodward-Clyde RCRA Facility Assessment of Ten Landfills Report.

** - Depth to water was measured during the groundwater sampling event.

TOC - Top of Casing.

HSMW-01 was not surveyed.

(1) - Elevations were surveyed by Badey & Watson, Surveying and Engineering, 1997.

(2) - This well has been extended to a stick up. The correct elevation as surveyed by Badey & Watson, Surveying and Engineering, is 169.09.

4.0 QUALITY ASSURANCE/QUALITY CONTROL

4.1 Data Quality Objectives

The data quality objectives (DQOs) that were determined for the USMA RFA Work Plan Addendum have been achieved. The DQOs were developed to support a certain level of data quality useful to the investigation. The data quality levels that were determined for the different objectives of this report are stated below.

The explosive soil gas survey and the health and safety screening was preformed using a Level 1 data quality definition. A data quality Level 1 is defined as follows:

> Level 1 - Field screening or analysis using portable instruments. Results are often not compound specific and typically not quantitative, but collection of data of this quality is important because results are available in real-time.

The groundwater, surface water, and soil samples submitted for laboratory analyses were of Level III data quality. A Level III data quality is defined as follows:

Level III - Analyses performed in an off-site laboratory using standard documented procedures. Level III analyses may or may not use contract laboratory procedures (CLP); but, although QA/QC may be rigorous, Level III analyses do not usually use the validation or documentation procedures required of Level IV CLP analysis.

4.2 Quality Assurance/Quality Control Parameters

To ensure that the DQOs have been met, the quality assurance and quality control parameters of precision, accuracy, comparability, completeness, representativeness, and sensitivity were utilized in the interpretation and validation of the analytic samples collected.

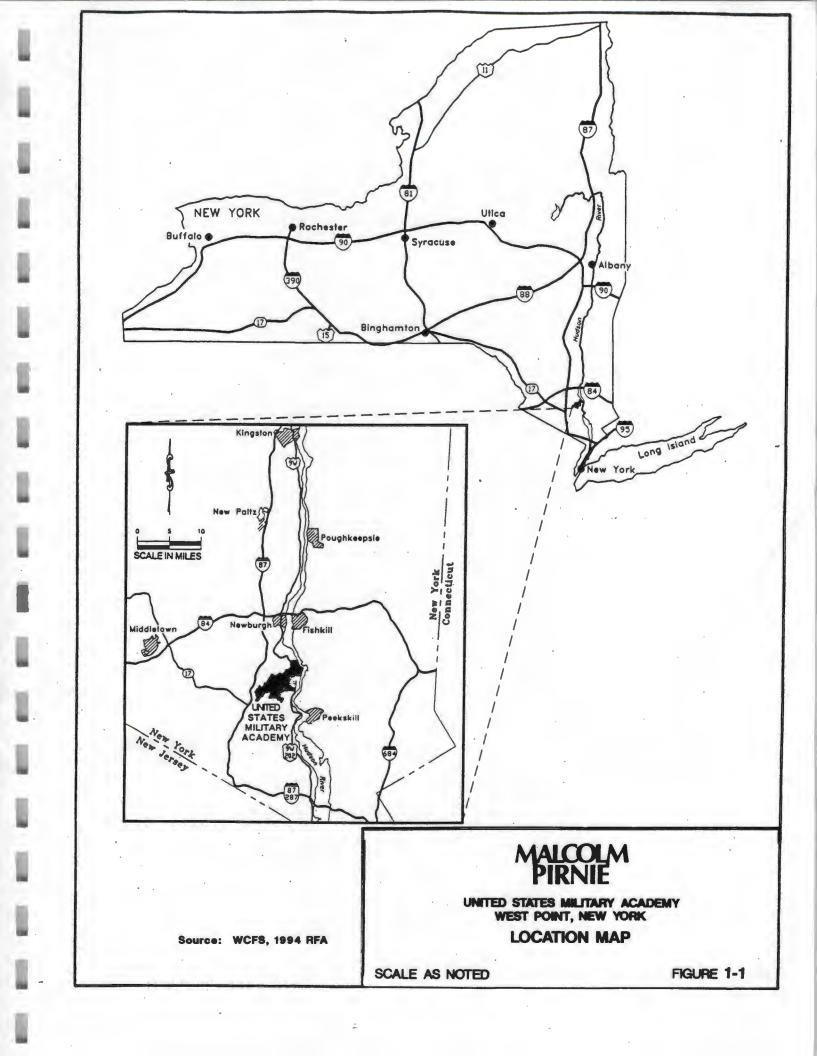
4-1

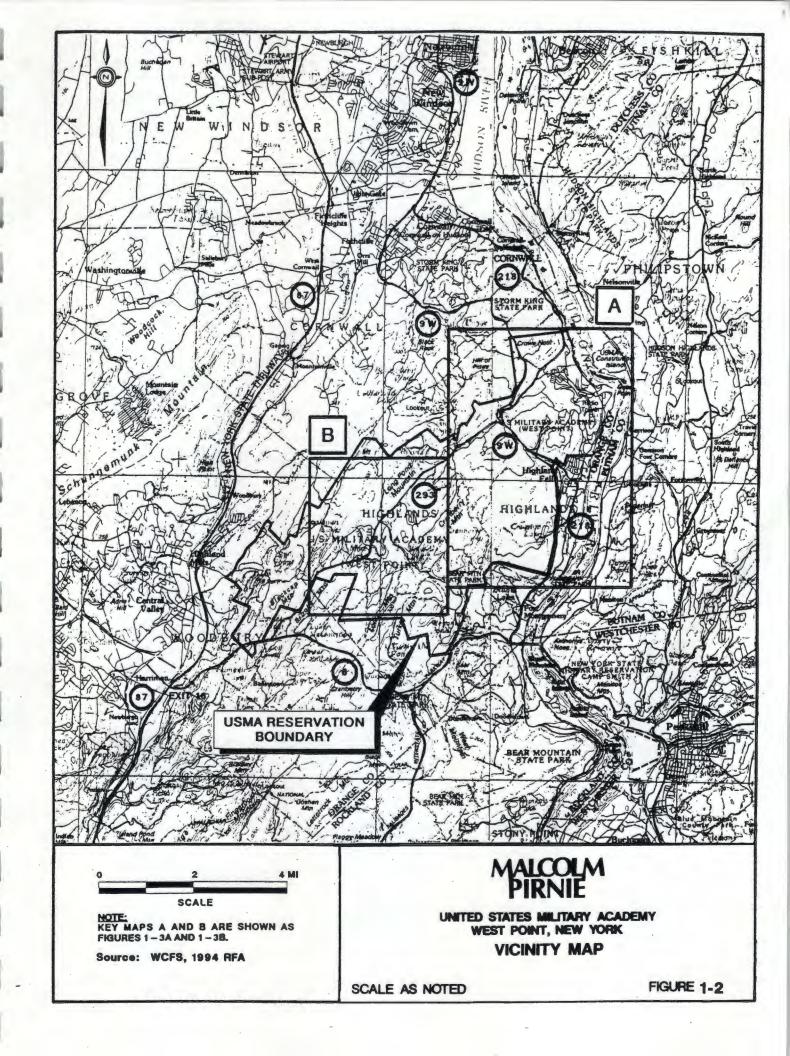
- ----

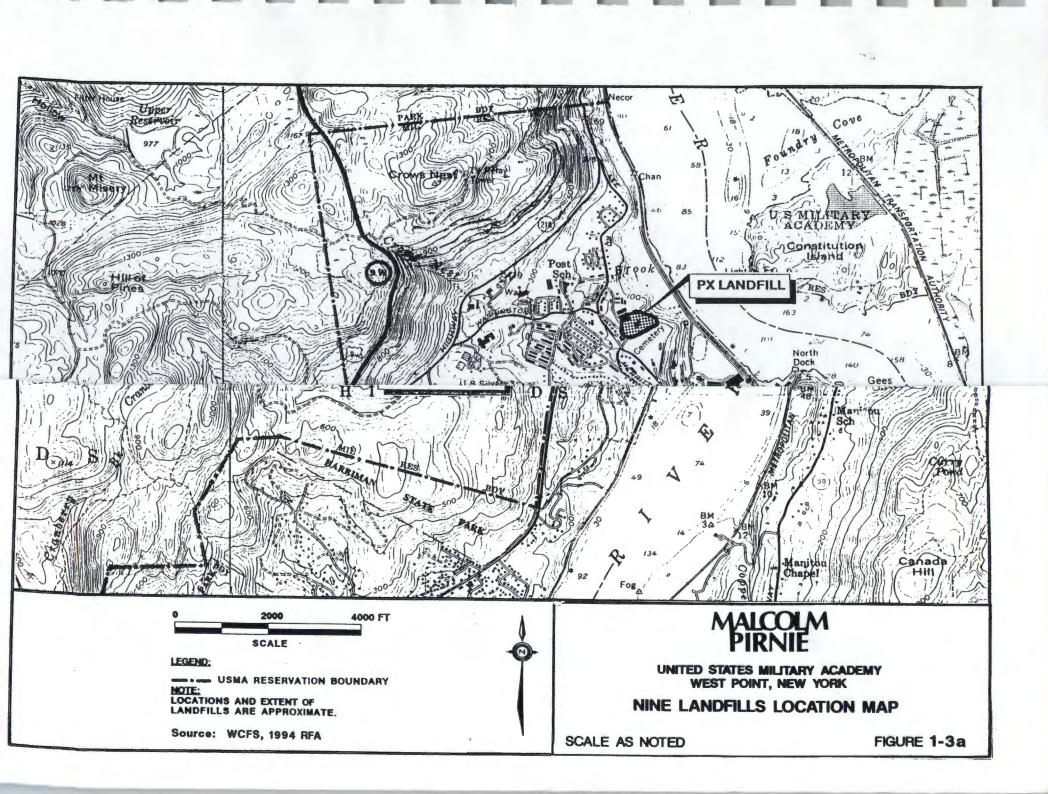
4.3 Data Validation

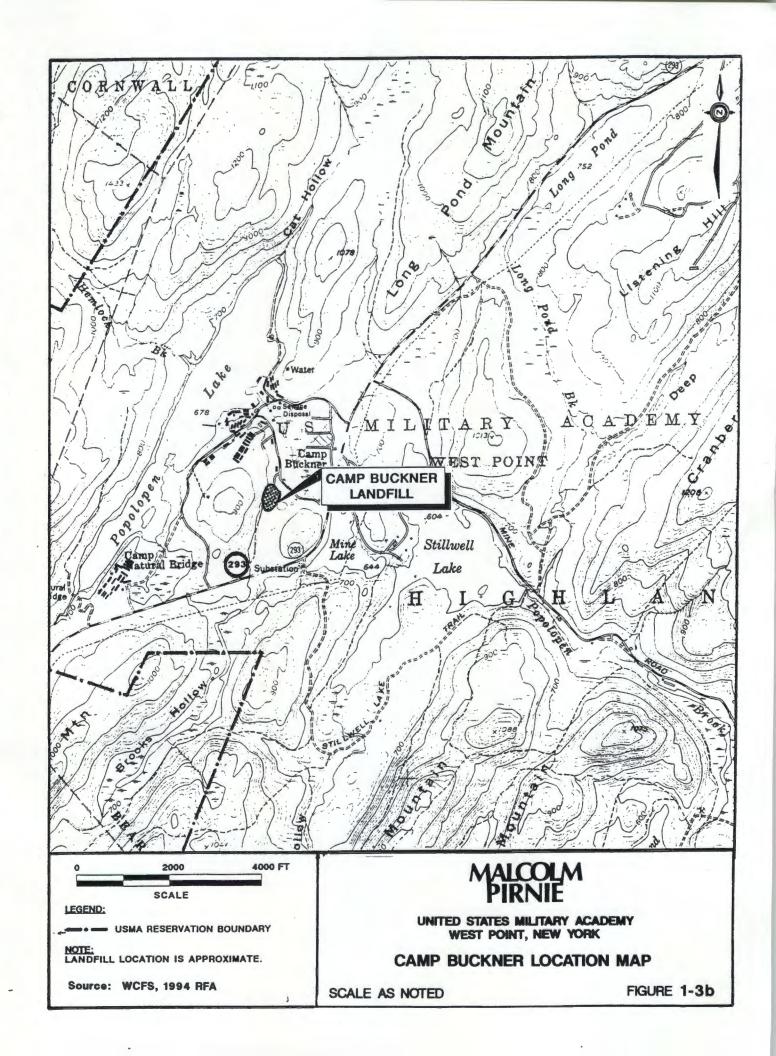
All analytical samples were validated in accordance with the Level III requirements. The data was reviewed for contractual and technical compliance. Qualifications were applied following the intent of the National Functional Guidelines with Region II modifications. Samples were qualified based on the following guidelines:

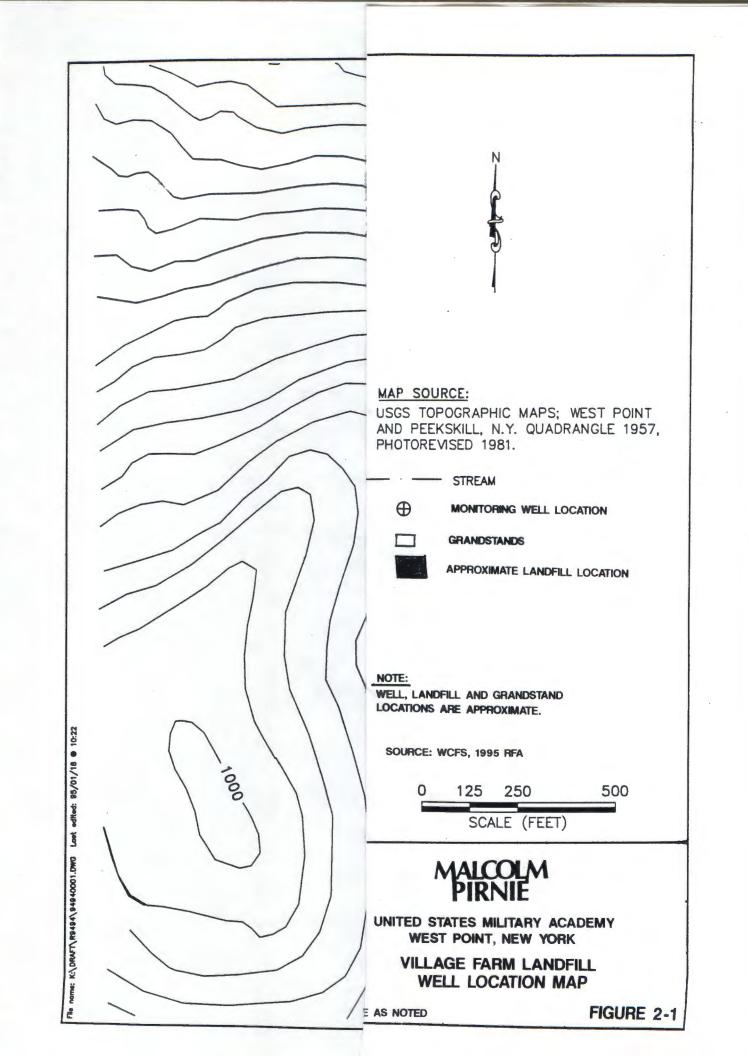
- 1. Sample Integrity
- 2. Holding Times
- 3. Initial and Continuing Calibration
- 4. Blank Contamination
- 5. Laboratory Control Sample
- 6. Matrix Spike and Matrix Spike Duplicate
- 7. Duplicate Sample Analysis

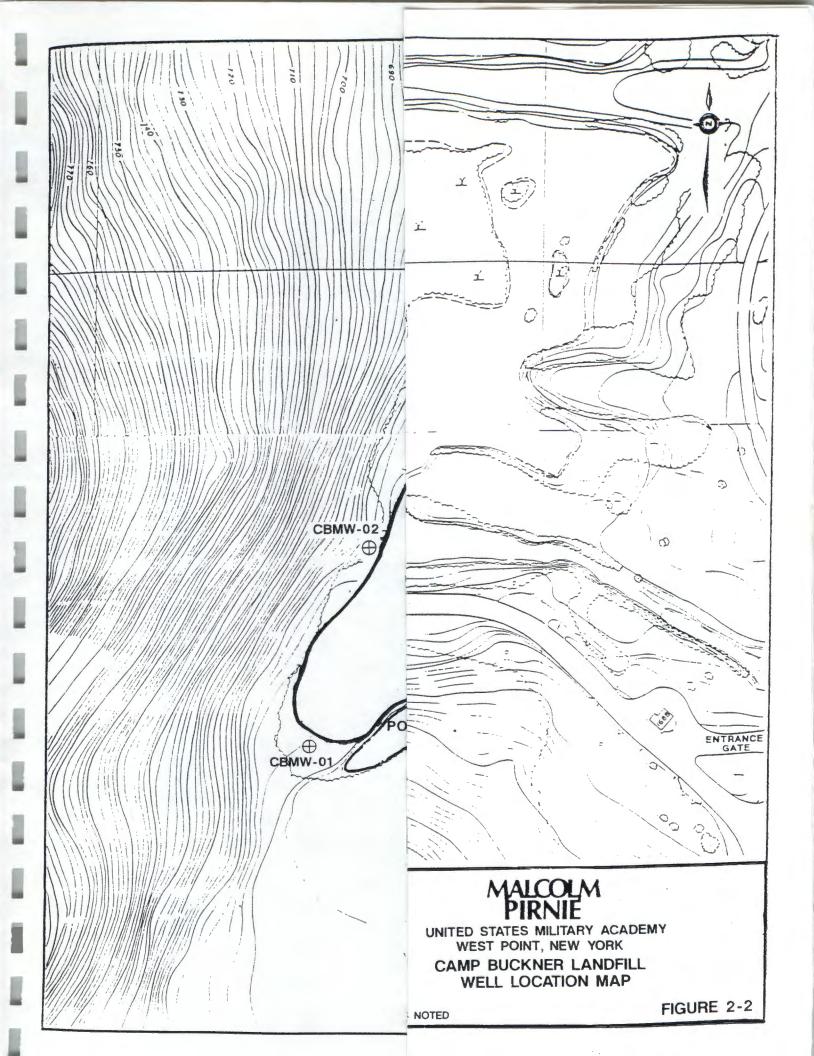

Details of the validation are included in Attachment D.

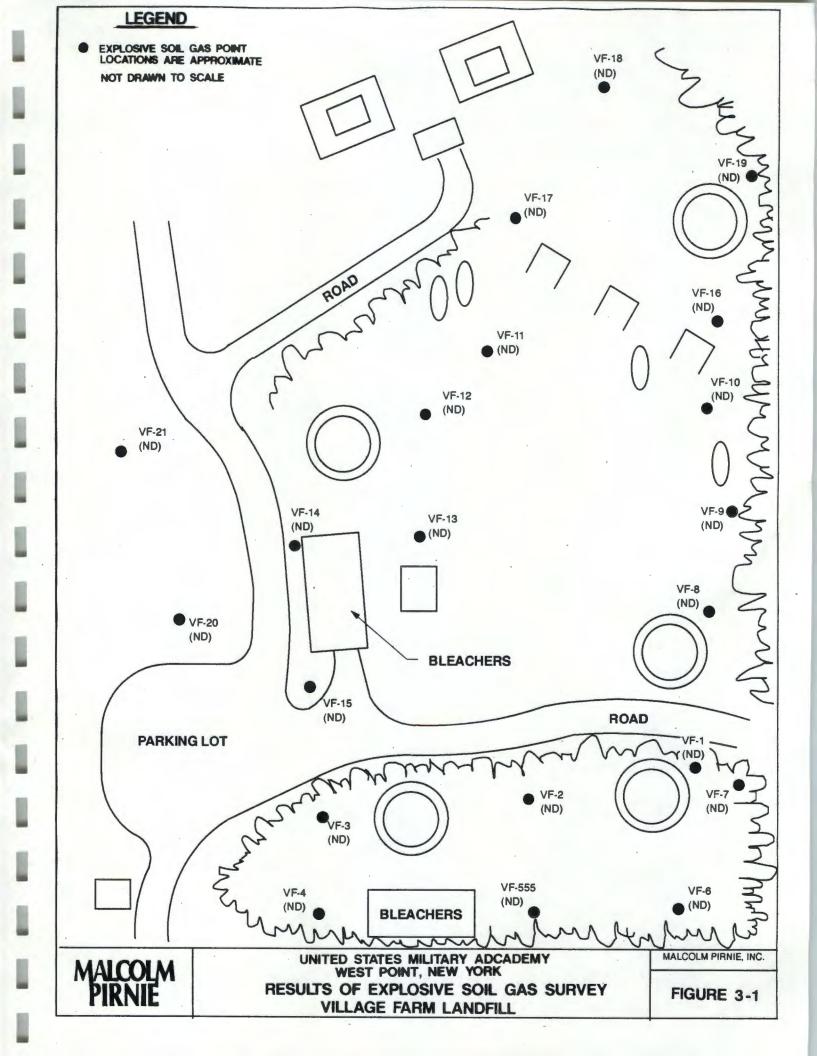

4.4 Data Usability

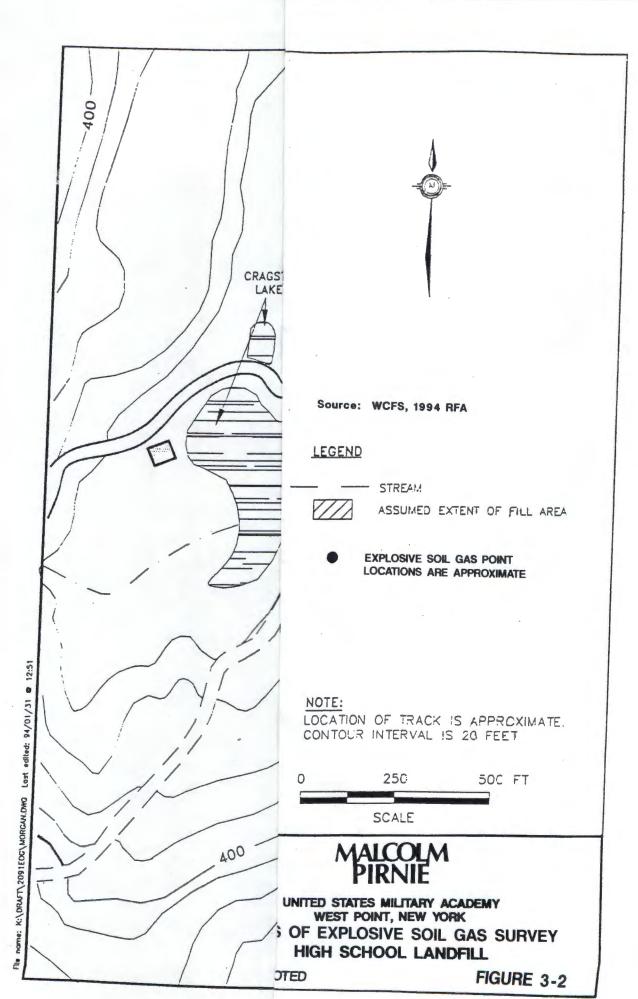

The results of the data validation have shown that the DQO's and the quality assurance and quality control parameters have been met. The data is therefore considered to be usable to this investigation.

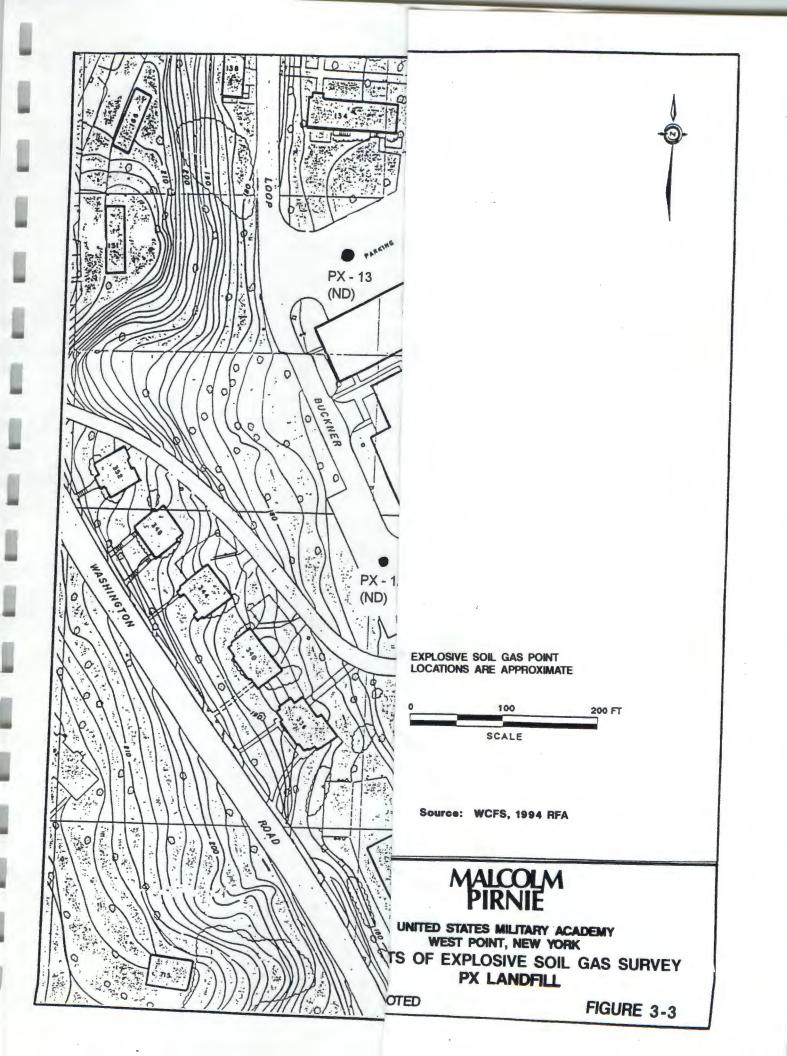

P:\0285659\REPORT\TEXT-4.0

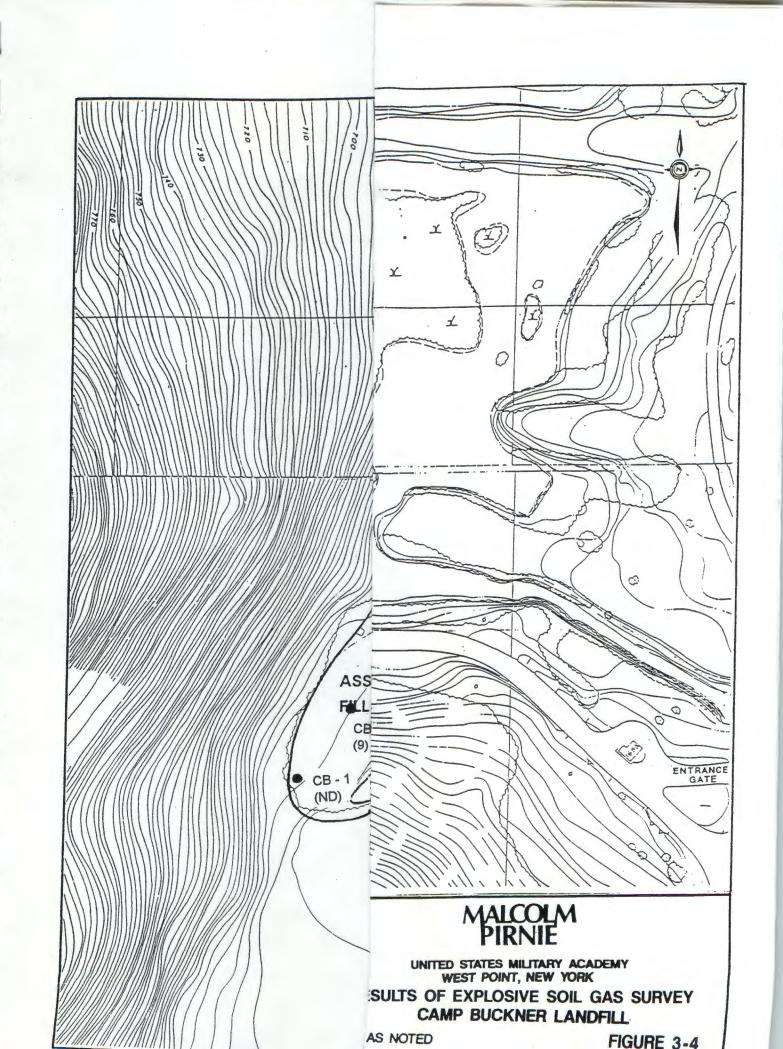


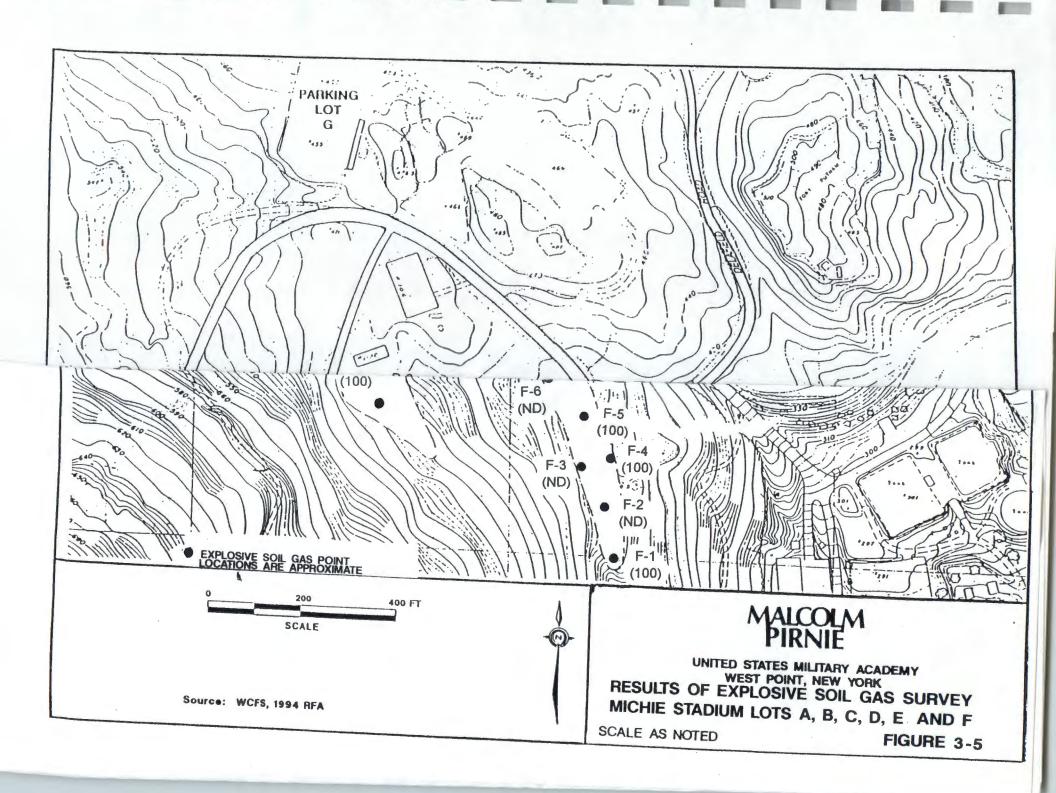


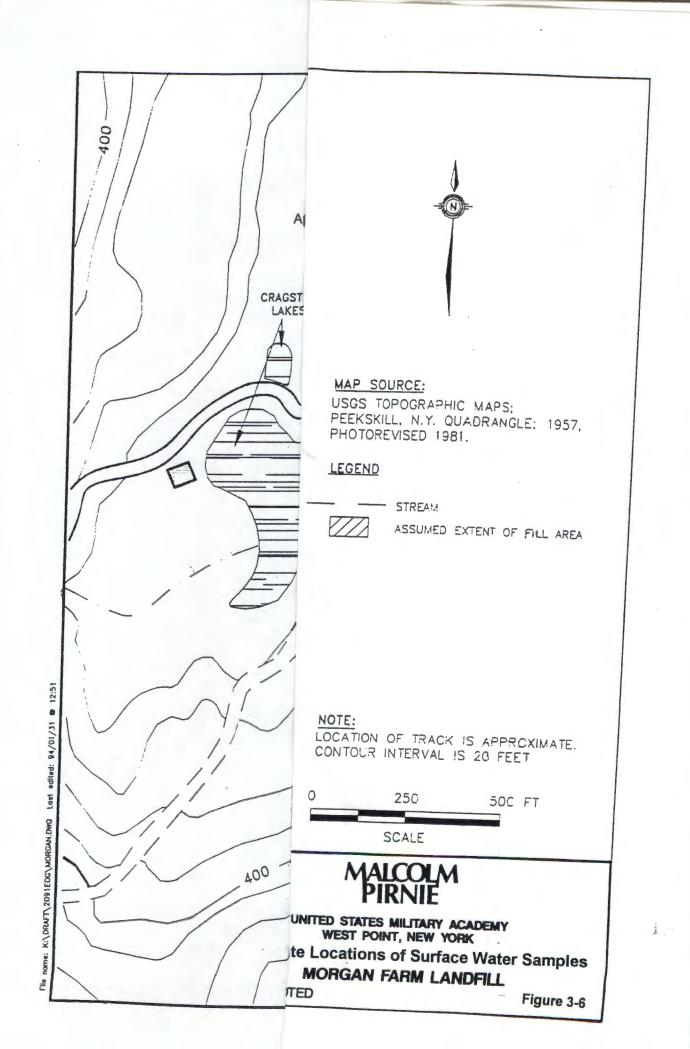


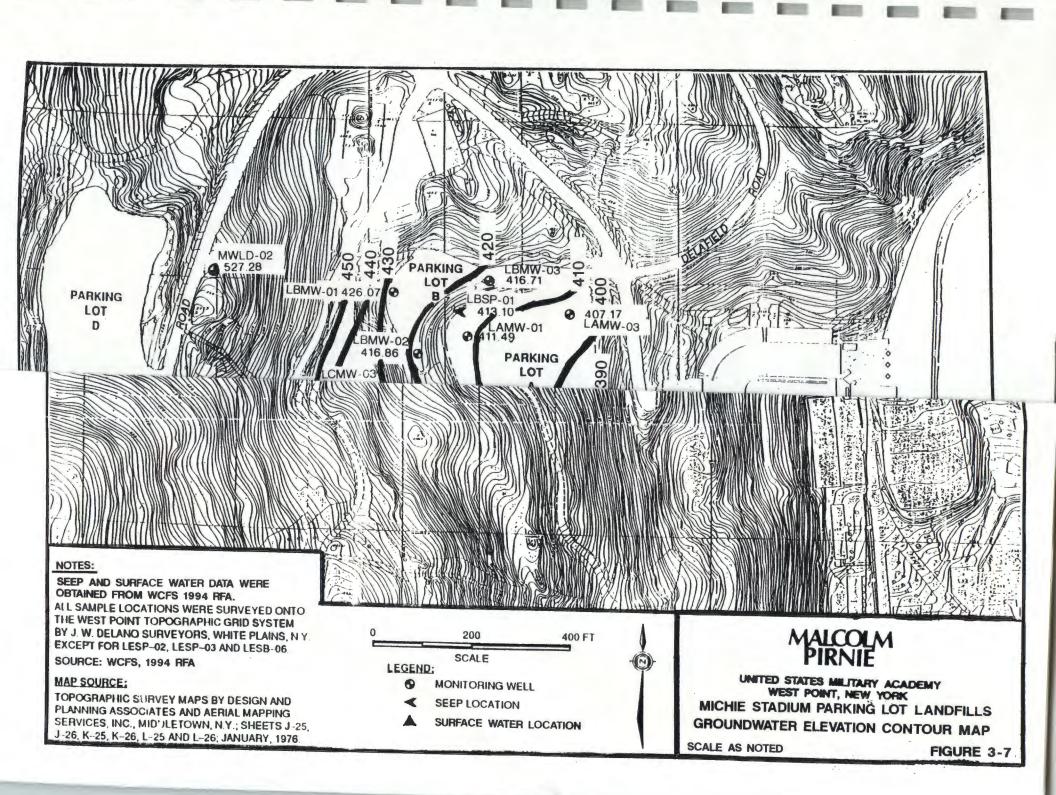


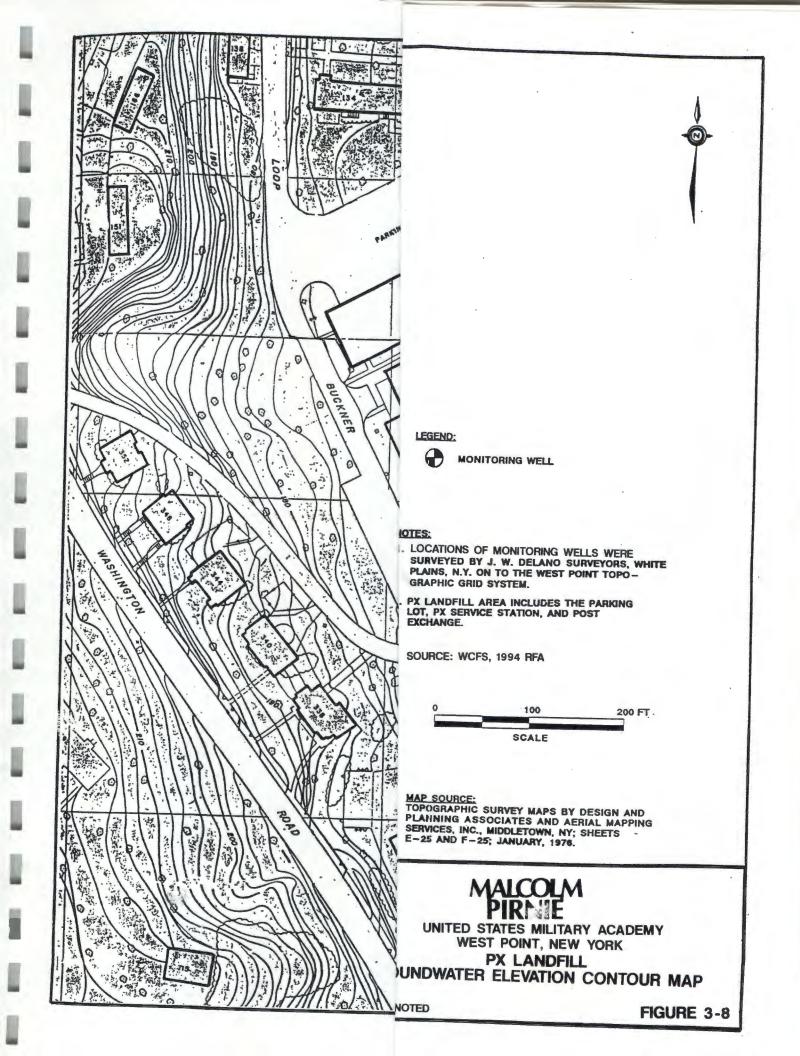


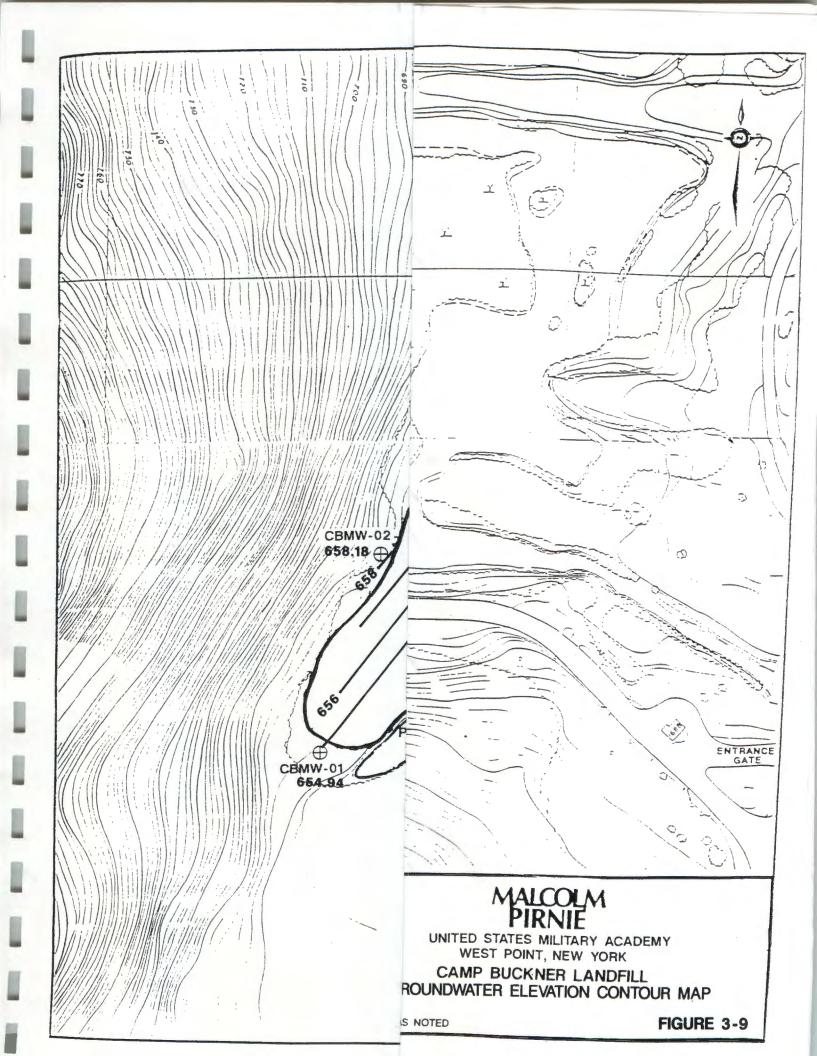


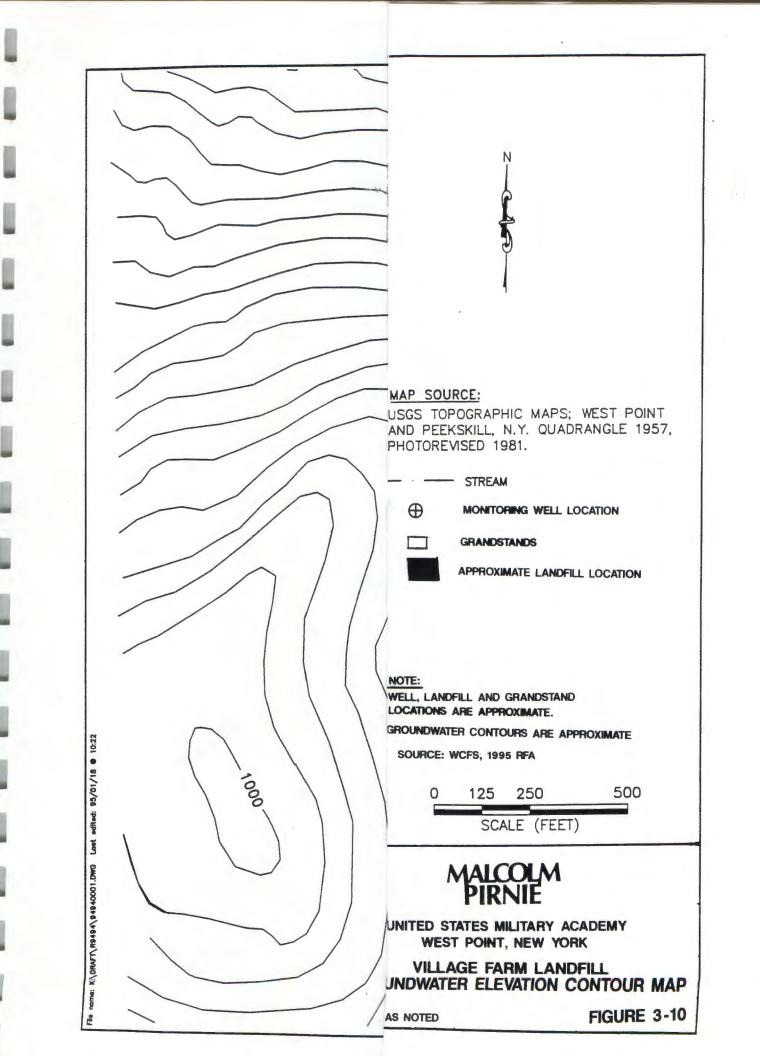












ATTACHMENT A

L

Ē

CORRESPONDENCE

ATTACHMENT A-1

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road, Albany, New York 12233

> Michael D. Zagata Commissioner

December 11, 1995

Mr. Bill Kavanagh Environmental Manager Department of the Army United States Military Academy West Point, New York 10996

Dear Mr. Kavanagh:

Re: RCRA Facility Assessment (RFA) - Ten Landfills Report, United States Military Academy, West Point, New York.

The New York State Department of Environmental Conservation (Department) has completed a review of the "RCRA Facility Assessment (RFA) of Ten Landfills Report" dated June 1995. Based upon the groundwater data provided by the RFA, the Department believes that there is a need to further assess the following landfills for possible releases: PX, Michie Stadium, Village Farm, and Camp Buckner Landfills.

Therefore, the Department requires the United States Military Academy to submit a second round of groundwater samples from the landfills listed above within 120 days of the date of this letter. This will require at least three groundwater monitoring wells (one upgradient and two downgradient) at the Village Farm and Camp Buckner Landfills. In addition, soil samples shall be taken at 2 feet intervals during the monitoring well installation. The purpose of the groundwater/soil sampling is to confirm the presence of hazardous waste and/or constituents.

Department is also concerned that buried materials in the landfills may have the capacity to generate fugitive methane gas and therefore request that screening for explosives gases be Bill Kavanagh 12/11/95 page 2 of 2

done at each of the landfill sites.

Finally, the Department would also like the Acadamey to take the necessary measures that will reduce the amount of surface water infiltrating into the Michie Stadium landfills, Lots C, E, and F (i.e., improvement on the asphalt cover and/or storm water catch basins).

The Department recognizes that interim corrective measures are presently on going at the Morgan Farm Landfill. However, the Department may ask for additional groundwater sampling after the ICM is completed.

Please be advised that at this time the Department makes no determination concerning any corrective measures which may be needed at the Four and Six Landfill projects pursuant to RCRA Subtitle C.

If you have any additional questions or concerns regarding these matters, please call me or my supervisor, Mr. Dennis Wolterding, at (518) 457-9361.

Sincerely,

James E. Yuchniewicz

James E. Yuchniewicz Engineering Geologist Bureau of Haz. Compliance & Land Management Div. of Solid & Hazardous Materials

- CC: E. Dassatti, Central Office
 - S. Kaminski, Central Office
 - D. Wolterding, Central Office
 - R. Aldrich, Reg. 3 Office
 - J. Petiet, Central Office

ATTACHMENT A-2

ENVIRONMENTAL MA

DEPARTMENT OF THE ARMY UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK 10996

January 10, 1997

ATTENTION OF

Department of Housing and Public Works

SUBJECT: 10 Landfill Investigations

Mr. Keith H. Gronwald New York State Department of Environmental Conservation 50 Wolf Road, Room 460 Albany, New York 12233-7252

Dear Mr. Gronwald:

In pursuit of completing the 10 Landfill Investigation, the following information is enclosed which requires your input:

- Village Farm Landfill test pit survey

- Morgan Farm Landfill sampling results

The Village Farm Landfill test pit survey was performed to delineate the extent of fill in order to select monitoring well locations. We request your concurrence or recommendations with the location proposed in Figure 3.

The seep and surface water sampling at Morgan Farm Landfill was performed to evaluate the need for groundwater monitoring wells. Based on the analytical results, we don't believe monitoring wells are merited and we request your concurrence.

A well driller has tentatively been scheduled for Village Farm for the week of January 20,1997 and we would appreciate your input prior to mobilization. Please respond at your earliest convenience to Bill Kavanagh at (914) 938-4459.

Sincerely,

Eugene E. Rood, P.E. C, Environmental Management Division

Enclosures

01003

INTERNATIONAL TECHNOLOGY CORPORATION

Project Summary

This summary presents activities performed during the United States Military Academy (USMA). Village Farm Landfill Test Pit Survey. Contract Number DACW45-94-D-0054. Delivery Order Number 19, at West Point. New York, for the period of December 18-19, 1996.

This project was performed in response to previous investigations which were conducted at the Village Farm Landrill to determine the extent of the fill area.

IT Corporation (IT) was contracted to execute this Rapid Response Landfill project to address this site. The following were IT's objectives for the project:

- Determine the extent of the landfill.
- Determine the volume of the landfill, and
- Characterize the contents of the landfill.

Incusive activities began on December 18, 1996 at the Village Farm Landfill. A total of nineteen test pits were excavated to assist in determining the extent of the landfill. The landfill is estimated to be 66 feet long by 58 feet and 38 feet wide at the west and east ends, respectively. The limits of the landfill extend beyond this area, but in small quantities, just below the ground surface. The depth of the landfill is approximately 12 feet throughout. Given the assumed area and depth of fill material, a volume of approximately 2,000 cubic yards was estimated. A summary of the Test Pit survey is presented below. Note: small to large boulders were encountered throughout the entire area of the Test Pit Survey.

Test Pit 01;

1) Location - 55 feet east of the outside corners of the #1 and #3 fire range three sided structures.

2) Depth of the test pit - & feel

3) Groundwater sceping in at 4-6 feet.

4) No landfill material encountered.

Test Pir 02:

1) Location - 75 and 95 feet east of the outside corners of the #1 and #3 fire range three sided structures, respectively.

2) Depth of the test pit - 6 feet.

3) No landfill material encountered.

Test Pic (13:

1) Location - 116 and 110 feet northwest of the north and south, west corners of the grandstand. respectively.

2) Depth of the test pit - 8 feet.

3) Groundwater seeping in at 2 feet.

4) No landfill material encountered in the test pit, however, minor fill material on eastern edge of the test pit, just below the ground surface.

02/06/97 THU 09:56 FAX 9149384588

ENVIRONMENTAL MA

FROMI IT CORP

004

INTERNATIONAL TECHNOLOGY CORPORATION

Test Pit U4:

1) Depth of the test pit - 10 feet

2) Groundwater sceping in at 6 feet.

3) No landfill material encountered in the test pit, however, minor fill material on northeast edge of the ust pit, just below the ground surface.

FAX ND.; 7162710251

Test Pil US:

1) Location - 100 and 94 feet southwest of the north and south, west corners of the grandstand. respectively.

2) Depth of the test pit - 8 fect.

3) Groundwater seeping in rapidly at 2 feet

4) Landfill material encountered in the test pit down to a depth of 8 feet, however, higher percentage of soil.

Test Pil 06A:

1) Depth of the test pit - 4 feet. 2) No landfill material encountered.

Test Pit 06B:

1) Depth of the test pit - 4 feet. 2) No landrill material encountered.

Test Pit UG:

1) Location - 81 and 92 feet northwest of the north and south, west corners of the grandstand. respectively.

2) Depth of the test pit - 6 feel

3) Groundwater sceping in at 4 feet.

4) Landfill material encountered in the test pit down to a depth of 6 feet

Test Pil 07A:

1) Depth of the test pit - 4 leet. 2) No landfill material encountered.

Test Pit 07B:

1) Depth of the test pit - 4 feet. 2) No landfill material encountered.

Tast Pit 07C:

1) Depth of the test pit - 4 feet. 2) No landfill material encountered.

Use or disclosure of the proposal data on this page is subject to the restriction on the cover page of this proposal.

02/06/97 THU 09:56 FAX 9149384588

ENVIRONMENTAL MA

FAX NO.: 7162710251

81-86-97 15:21 P. 85

INTERNATIONAL TECHNOLOGY CORPORATION

Test Pit 07:

1) Location - 23 feet north of the northwest corner of the grandstand.

2) Depth of the use pit - 6 leet.

3) Groundwater seeping in at 4 leet.

4) A 2 foot layer of landfill material encountered in the test pit 2 feet below the ground surface.

Test Pil ON:

1) Location - 48 and 37 feet southeast of the north and south, east corners of the grandstand, respectively.

2) Depth of the test pit - 7 feet.

3) Groundwater seeping in at 4 feet.

4) A 3 foot layer of landfill material encountered in the test pit 2 feet below the ground surface.

Test Pit (19:

1) Location - 43 and 24 feet southwest of the north and south, west corners of the grandstand, respectively.

2) Depth of the test pit - 7 feet.

3) Groundwater sceping in at 7 feel

4) Landfill material encountered in the test pit down to a depth of 7 feet however, higher percentage of soil.

Test Pit 10:

1) Location - 48 and 54 feet west of the north and south, west corners of the grandstand. respectively.

2) Depth of the test pit - 12 feet.

3) Groundwater at 6 feet

4) Landrill material encountered in the test pit down to a depth of 12 feet

TUSL PILLI

1) Location - 69 and 68 feet west of the north and south, west corners of the grandstand. respectively.

2) Depth of the test pit - 12 feet.

3) Groundwater at 7.5 feet.

4) Landfill material encountered in the test pit down to a depth of 12 feet.

Test Pit 12:

1) Location - 7 and 16 feet west of the north and south, west corners of the grandstand. respectively.

2) Depth of the test pit - 5.5 feet.

3) Groundwater at 3.5 licet.

4) A 2.5 foot layer of landfill material encountered in the test pit from 3 to 5.5 feet.

FAX ND.: 7162710251

ENVIRONMENTAL MA

FROM: IT CORP

Test Pit 13:

() Location - 24 and 35 feet west of the north and south, west corners of the grandstand, respectively.

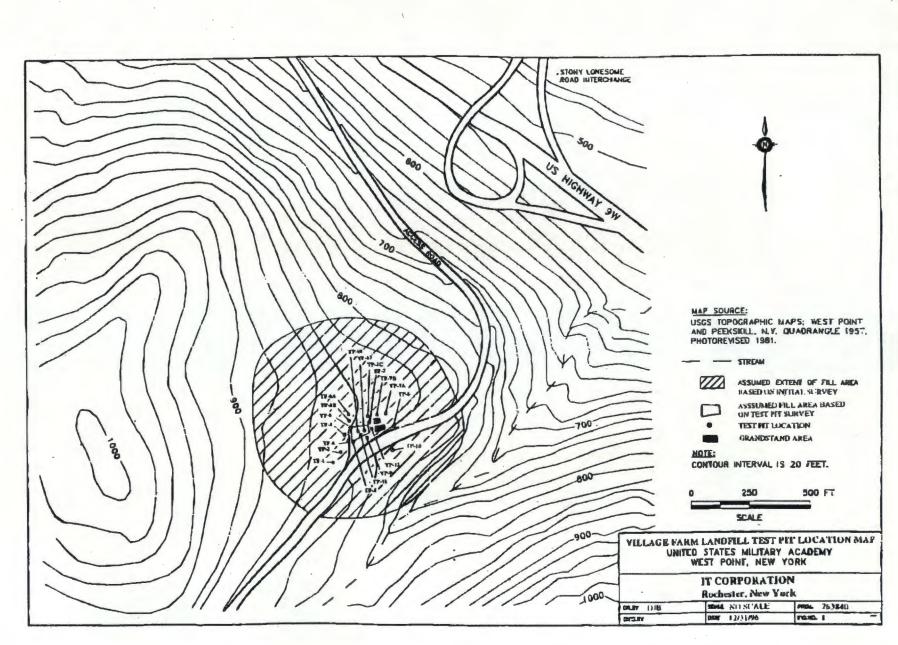
2) Depth of the test pit - 12 feet.

3) Groundwater at 3 feet

4) Landfill material encountered in the test pit down to a depth of 12 feet.

Test Pit 14:

1) Location - southwest of the grandstand, across the access road.


2) Depth of the test pit - 8 feet.

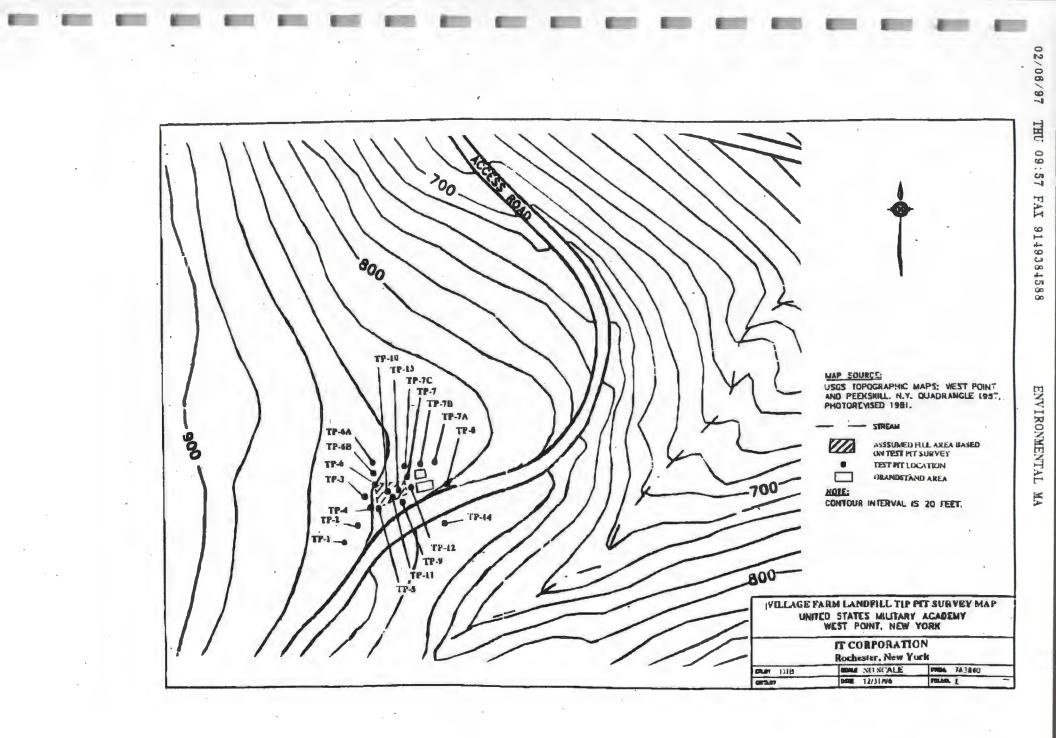
3) Groundwater at 5 feet.

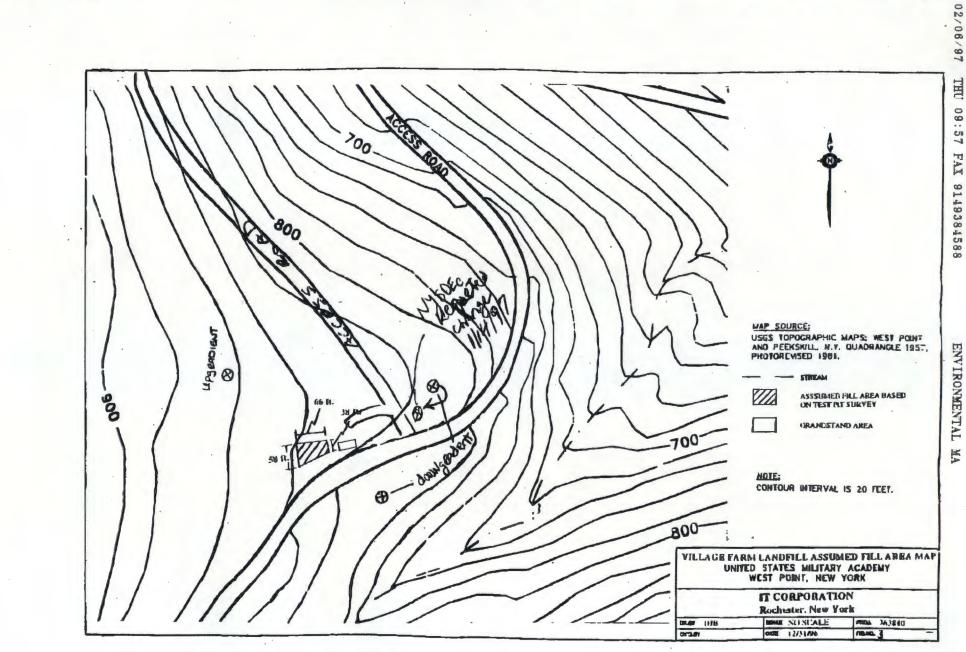
4) No landfill material encountered.

The landfill debris consisted of plastic, cloth, tires, wood and scrap metal. Percentages of each waste stream was inconsistent between each test pit and could not be determined. The volume of scrap metal did not appear to be sufficient to warrant refuse at a recycling facility if the landfill is removed. The majority of the landfill debris was discovered in an area 68 feet long and 58 and 38 feet wide (see Figure 3 - Assumed Fill Area Map). Fill material was recorded from just below the ground surface down to a depth of 12 feet. A high percentage of the material removed from this area was landfill debris with little soil and boulders mixed throughout. The volume calculations estimated the landfill contents to be approximately 1,400 cubic yards. The landfill extended beyond this area, but in small quantities relative to the fill area. This area was broken down into two sections. The first section, located just west of the grandstand, measured 85 feet wide on the castem end and 80 feet at the western end and 110 feet long at the southern end and 72 feet on the northern end. The second section, located just south of the grandstand measured 30 feet wide on the eastern end and 40 feet at the western end and 100 feet long at the southern and northern ends. Volume calculations from this area (based on a two foot layer of fill material) totaled approximately 600 cubic yards. It is estimated that 2,000 cubic yards of till material exists in the Village Farm Landfill. At the conclusion of each test pit the material was placed back into the excavation, with the cover soil placed on top. Field activities were completed December 19, 1996.

006

9149384588 ENVIRONMENTAL


XX


02/08/97

DEL

09:57 FAX

2007

800 0

THU 09:57

05/07/97 WED 11:05 FAX 9149384588

ENVIRONMENTAL MA

W. UUL

New York State Department of Environmental Conservation Division of Solid & Hazardous Materials Bureau of Hazardous Waste Facilities 50 Wolf Road, Albany, New York 12233-7252 518-457-9236 FAX 518-457-9240 January 15, 1997

John P. Cahill Acting Commissioner

Mr. William Kavanagh Environmental Management Branch Department of Housing and Public Works United States Military Academy West Point, New York 10996

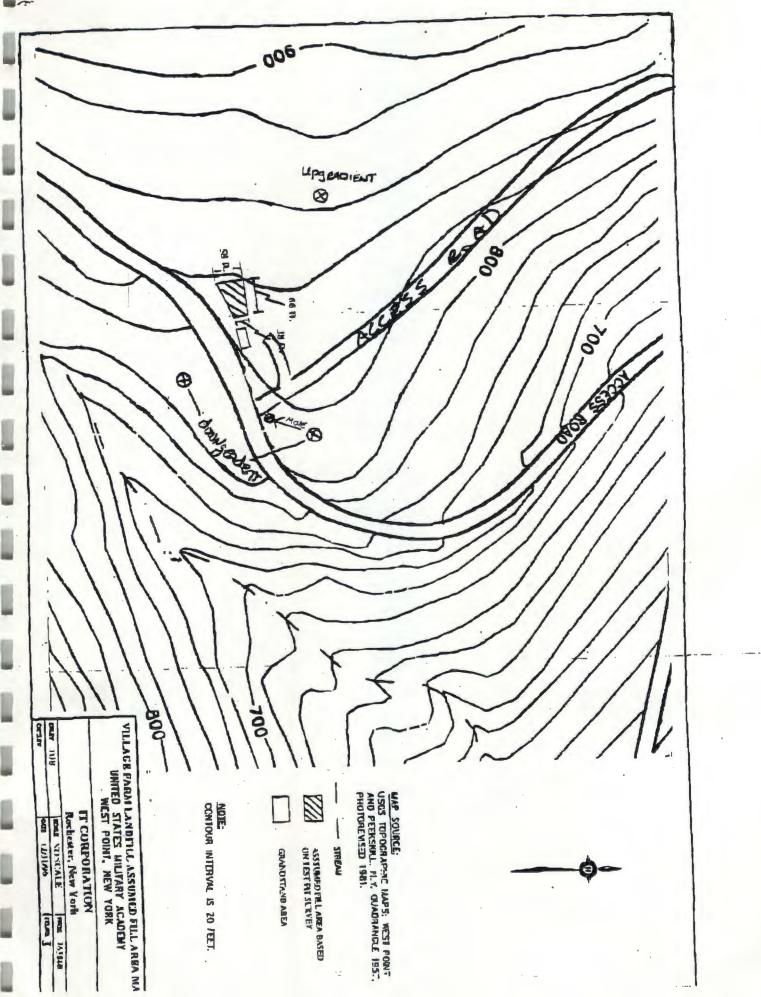
Dear Mr. Kavanagh:

Re: 10 Landfills Investigation (Village Farm & Morgan Farm Landfills)

The following is to confirm discussions during our telephone conversation of January 14, 1997 relating to your faxed letter of January 10, 1997 on the proposed monitoring well locations for the Village Farm Landfill and stream and seep sampling results for the Morgan Farm Landfill.

Regarding the proposed monitoring well locations for the Village Farm Landfill, I recommended moving the northernmost downgradient well southwest such that it would be located near the intersection of the two access roads (map attached). The reason for this change is to bring the well into a location which is more likely to be in the flowpath of any potential plume from the facility and to bring the well closer to the waste mass. If during drilling of any of the monitoring wells, waste is encountered, the hole should be abandoned and the well moved to a more appropriate location. If this condition occurs, please make an attempt to contact me immediately to discuss alternate locations for the well. With this change, the well installation anticipated for the week of January 20, 1997 is approved.

The sampling results for the Morgan Farm Landfill have been reviewed and a determination has been made that monitoring wells are not necessary at this time for this particular site. Monitoring of the stream and the seep however will be needed to evaluate any impacts which this remediated site may still have upon the environment. This information will also be forwarded to the Division of Water for their concurrence.


If you have any questions, or need further clarification please feel free to call me at (518) 457-9253.

Sincerely,

Keith H. Gronwald Sr. Engineering Geologist

Attachment,

cc: Eugene Rood, West Point

ATTACHMENT B

1

-

1

0

1

E

E

BORING LOGS AND WELL CONSTRUCTION LOGS

ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

ROJE	CT NAME:		<u>1953</u>	AWE	st Po	nt Te	n Landi	lis	DATE	July 1 - 3, 1996
OB NU	IMBER		028	659-	100				OCATION	Camp Buckner Landfill
RISSI	NC STRIM		Adve	inced	Drillin			AAXA&AAXAXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	WEATHER	Partly Cloudy, 85f
RILLI	NG METHO	DD:					Ligers		LEVATION	N/A
RILLE				Comps				-	DATUM	Ground Surface
ELPE				Hoffm				HYDBOG	EOLOGIST	Eric Johnson
4-58-5		UE INFO		A de la constante de la constan					WEILE	Enc. Sontison
No.	Depth	Rec		Blows	nar A'		Depth	SOIL DESCRIPTION	CONS	REMARKS
S-1	0-2ft	6"	6	3	50/1		Minuted clubbs	Brown-tan F - M SAND with Silt & Clay; trace (+)		PID = 0.0 ppm
								F - VC Gravel		
										Cement Collar = 0 - 2 ft below
										ground
S-2	2-4ft	10"	9	13	8	6	2	Same As Above		PID = 0.0 ppm
-										Moist at approximately 4 ft.
		-	+							
S-3	4-6ft	10"	2	3	3	4	4	Same As Above with concrete, wood and aluminum		PID = 0.0 ppm
		10	-		-			fragments		
										Cement/Bentonite Grout =
										2 - 14.5 ft below ground
S-4	6-8ft	12"	2	2	5	7	6	Same As Above with organic Peat/Mulch		PID = 0.0 ppm
			-							
			-					Gray F SAND & Silt with VC Gravel		
S-5	8 - 10 ft	10"	4	4	8	10	8	Gray SILT and Gravel		PID = 0.0 ppm
	U IUI			-	-					Saturated - water at 8 ft below
										ground surface
S-6	10 - 12 ft	12"	2	2	3	3	10	Gray SILT and Clay with VC Gravel and Rock		PID = 0.0 ppm
			-					Fragments (Fill)		
			-		-					Well Riser = 2" I.D. Sch 40 P
S-7	'12 - 14 ft	10"	8	10	13	13	12	Same As Above		PID = 0.0 ppm
	1. 1916	10		10				Sume rus rus its		
	_									
										,
S-8	14 - 16 ft	10"	3	5	9	12	14	Same As Above		PID = 0.0 ppm
			-			-				
			-							Bentonite Pellet Seal =
S-9	16 - 18 ft	18"	25	26	9	10	16	10" Same As Above		14.5 ~ 17.5 ft below ground PID = 0.0 ppm
00	10	10	20	20	-					1 1D - 0.0 ppm
								8" Gray CLAY with F - VC Gravel (Fill)		
										×
S-10	18 - 20 ft	18"	6	5	4	4	18	10" Same As Above		PID = 0.0 ppm
			-	-						
			-	-	-			8" Gray CLAY with little Slit (material is very cohesive)		#1 Sand Filter Pack = 17.5 - 30 ft below ground
S-11	20 - 22 ft	20"	8	14	22	33	20	Same As Above with weathered Gneiss fragments		PID = 0.0 ppm
								Silt noted in tip of split spoon.		Well Screen = 2" I.D. Sch 40
0.45	00 015	0.00	-	07	-		-			PVC 10 Slot
S-12	22 - 24 ft	22"	30	32	50/5	-	. 22	Gray SILT/CLAY grading to Tan - Brown with VC Gravel	-	PID = 0.0 ppm
			-	-				V Glaver		
	*									
S-13	24 - 26 ft	20"	9	21	17	15	24	Same As Above with some F - M Sand		PID = 0.0 ppm
				1						
			-	-					_	
S-14	26 - 28 ft	18"	14	14	7	20	26	Same As Above		PID = 0.0 ppm
0-14	20-2011	10	14	14	1	20	20	Como no novo		- oro hhu
S-15	28 - 30 ft	6"	36	50/4			28	Same As Above with Rock Fragments in tip		PID = 0.0 ppm
			-					spilt spoon	_	
			-	-						
			-	-		-	30	END OF BORING AT 30 FT BELOW GROUND		8
								DECT OF CONTROL OF TELEON GROUND		-

Page 1 of 1

WELL CONSTRUCTION LOG

ONE INTERNATIONAL BLVD. MAHWAH, NJ 07495 - 0018

X LOCKING PROTECTIVE	PROJECT NAME	USMA Ten Landfills	
CASING	PROJECT #	0285-659-100	
FLUSHMOUNT	WELL I.D.	CBMW-1	
	LOCATION	Camp Buckner Landfill	
OTHER			
BENTONITE GROUT	TOP OF CASING ELEVATION GROUND ELEVATION DEPTH TO WATER DRILLING CONTRACTOR	7.20 feet below top of casing Advanced Drilling, Inc.	
GROUT	DRILLER	Rick Empson	
BACKFILL	DRILLING METHOD	8 1/4 inch Hollow Stem Augers	
	DRILLING FLUID	None	
	DRILLING DATE	July 1, 1996	
14.5 FT	COMPLETION DATE	July 3, 1996	
SLURRY	DEVELOPMENT DATE	July 8, 1996	
BENTONITE SEAL X PELLETS	WELL PURPOSE	Groundwater Monitoring Program	
17.5 FT HOLEPLUG			*
FT	CASING JOINTS:		
	0,0110 301110.		COUPLING JOINT
GRAVEL PACK	CASING 2 INCH (I.D.)	STAINLESS X STEEL	PVC
FILTER X SAND PACK	SCREEN 2 INCH (I.D.)	10 SLOT	PVC
PACK			STAINLESS STEEL
	REMARKS		
29.5_FT			*
30_FT	HYDROGEOLOGIST	Eric Johnson	
TOTAL DRILLED DEPTH			

SURFACE UNLESS OTHERWISE NOTED

ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

BORING: CBMW-2

	TNAME					int le	n Landi		DATE	
	MBER:			-659-					ATION	
	IG HIRM		Adve	inced	Dallin	ng, Ind	<u>.</u>	WE	ATHER	Partly Cloudy, 85F
	IG METHO)D:				tem /	ugers/		ATION	N/A
DRILLE				Emps					DATUM	Ground Surface
HELPER				Hoffin	nain			HYDROGEOL	OGIST	Eric Johnson
		ue info								
No.	Depth	Rec		1	per 6	_	Depth	SOIL DESCRIPTION	CONS	REMARKS
S-1	0-2ft	20"	3	4	7	7		Brownish - tan F SAND & Silt; trace (+) Clay; some (-) F - VC Gravel	298	PID = 0.0 ppm
S-2	2-4 ft	18"	6	16	14	12	2	Same As Above with Grayish color		PID = 0.0 ppm
S-3	4 - 6 ft	12"	7	10	20	23	4	6" Same As Above (Saturated)		PID = 0.0 ppm
	•							6" Gray-Tan-Brown VF SAND & Silt; trace (+) F - C Gravel		Water at approximately 4 ft. below ground
S-4	6-8 ft	18"	16	27	31	50/5	6	Same As Above with Brownish Tan color		PID = 0.0 ppm
							8	No samples collected from 8 ft to end of boring. Drilling in bedrock with 6" Air Percussion Hammer		
							10			
		,					12		=	
							14	END OF BORING AT 13 FT BELOW GROUND ENCOUNTERED BEDROCK AT 8 FT.		Well construction was compressed because of depth from ground surface to top of screen. Well Screen = 2" I.D. Sch 40 PVC 10 Slot Well Riser = 2" I.D. Sch 40 PV #1 Sand Pack = 1.5 - 13 ft. below ground Bentonite Pellet Seal = 0.5 - 1.5 ft. below ground Cement/Bentonite Grout = 0 - 0.5 ft. below ground

1

WELL CONSTRUCTION LOG

ONE INTERNATIONAL BLVD. MAHWAH, NJ 07495 - 0018

X LOCKING PROTECTIVE	PROJECT NAME	USMA Ten Landfills	
CASING	PROJECT #	0285-659-100	
FLUSHMOUNT	WELL I.D.	CBMW-2	
	LOCATION	Camp Buckner Landfill	
OTHER			
	TOP OF CASING ELEVATION		
BENTONITE GROUT	GROUND ELEVATION		
X BENTONITE/CEMENT	DEPTH TO WATER	5.61 feet below top of casing	
GROUT	DRILLING CONTRACTOR	Advanced Drilling, Inc.	_
	DRILLER	Rick Empson	
BACKFILL	DRILLING METHOD	8 1/4 inch Hollow Stern Augers/6 inch Air Pen	cussio
	DRILLING FLUID	None	
	DRILLING DATE	July 2, 1996	
0.5_FT	COMPLETION DATE	July 9, 1996	
SLURRY	DEVELOPMENT DATE	July 8, 1996	
BENTONITE	WELL PURPOSE	Groundwater Monitoring Program	
SEAL X PELLETS			
1.5 FT HOLEPLUG			
2.5 FT	CASING JOINTS: CASING 2 INCH (I.D.	X FLUSH JOINT COUPLING) STAINLESS X PVC STEEL	JOIN
	SCREEN 2 INCH (I.D.) 10 SLOT X PVC	
FILTER X SAND PACK			
PACK		STAINLESS	
FORMATION		STEEL	
COLLAPSE			
	REMARKS Well const	ruction was compressed because of	
		pth below ground surface.	
	301001100	pur below ground surface.	
-			
-			
-			
12.5 FT			
13_FT	HYDROGEOLOGIST	Eric Johnson	
TOTAL DRILLED DEPTH			
SUREMENTS ARE FROM GROUND			

ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

BORING: CBMW-3

ROJE						214C-06X-	n Land	1118		DATES	TELEPITY POWERONCE TO POWER PRODUCTION	
	IMBER:			-659					La contra contra de la contra de	ATION		
	NG FIRM:		2017: 2017:	interio Second	8974III	ng, in	<u>C.</u>			Millar	Partly Cloudy, 85F	
	NG METHO	<i></i>		Emp	112 M & S		ugersi	5* Air Percussion Hammer		ATION:	N/A	
IELPE				Hoff						ATUM:	Ground Surface	
unnara		LE INFO			0.6.92			1949)2(a	0(6)=(0)8	OGIST	Eric Johnson	
No.	Depth	Ree			i per 6		Depth	SOIL DESCRIPTION		WELL	DEMANUA	
S-1	0-2ft	6"	6	50/2			SSSunderd evande	Brownish tan SILT/SAND		Skoola	REMARKS PID = 0.0 ppm	
								Encountered refusal on cobbles			a b bio ppm	
			-	-		-						
			-	-	-		2			88 8	*	
-				1			-	No samples collected to 5 ft.				
								Drilling through cobbies				
			-		-		4					
S-2	5-7 ft	10"	4	7	13	16		Brownish Tan SILT/SAND with Mulch/Peat		-	PID = 0.0 ppm	
							6					
S-3 ·	7-9ft	4"	6	9	50/2			Same As Above		_	000 00	
			Ť		JUIZ			Encountered boulder at 8 ft.		-	PID = 0.0 ppm Boring was moved ~15 ft to th	
							8				south because of auger	
8.4	0.44.4	4.0*									refusal.	
S-4	9-11 ft	18"	1	1	1	1		8" PEAT with organic matter			PID = 0.0 ppm	
							10	10" Gray SILT with Clay (Saturated)				
							• ,					
S-5	11 - 13 ft	12"	2	2	3	4		Same As Above			PID = 0.0 ppm	
			-	-			12					
							14			-		
S-6	13 - 15 ft	14"	50/5		-	-		Gray Silty F - VC SAND; trace F - VC Gravel			PID = 0.0 ppm	
	_											
-	-					-	14					
		-						END OF BORING AT 14 FT BELOW GROUP	ND		Well construction was	
					-		16	ENCOUNTERED AUGER REFUSAL			compressed because of	
											depth from ground surface to top of screen.	
											Well Screen = 2" I.D. Sch 40	
				-							PVC 10 Slot	
				_							Well Riser = 2" I.D. Sch 40 PV	
				-	-						#1 Sand Pack = 2 - 14 ft. below ground	
											z - i- ir paiow ground	
					-						Bentonite Pellet Seal =	
											0.5 - 2 ft. below ground	
											Cement/Bentonite Grout=	
											0 - 0.5 ft. below ground	
				-								
					-							

- -

WELL CONSTRUCTION LOG

ONE INTERNATIONAL BLVD. MAHWAH, NJ 07495 - 0018

	PROJECT NAME	USMA Ten Landfills	
	PROJECT #	0285-659-100	•
	WELL I.D.	CBMW-3	
OTHER		Camp Buckner Landfill	
BENTONITE GROUT X BENTONITE/CEMENT GROUT BACKFILL 0.5 FT 0.5 FT SEAL X PELLETS 2.0 FT HOLEPLUG	TOP OF CASING ELEVATION GROUND ELEVATION DEPTH TO WATER DRILLING CONTRACTOR DRILLER DRILLING METHOD DRILLING FLUID DRILLING DATE COMPLETION DATE DEVELOPMENT DATE WELL PURPOSE	7.22 feet below top of casing Advanced Drilling, Inc. Rick Empson 8 1/4 inch hollow Stem Augers None July 2, 1996 July 3, 1996 July 8, 1996 Groundwater Monitoring Progra	
3.5 FT	CASING JOINTS: CASING 2 INCH (I.D.) SCREEN 2 INCH (I.D.) REMARKS	STEEL	COUPLING JOINT PVC PVC STAINLESS STEEL
13.5 FT 14.0 FT TOTAL DRILLED DEPTH	HYDROGEOLOGIST	Eric Johnson	-

ALL MEASUREMENTS ARE FROM GROUND SURFACE UNLESS OTHERWISE NOTED

ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

BORING: MWVF-01

	CT NAME IMBER:					961031	in Land	HIIS		ATE:	
	NG FIRM			5-659					LOCA		
	NG METHO	3)39		110000		ng, in	c. Ugers		WEAT		where the second s
RILLE		-0.		Emp			HERE &		ELEVA		
ELPE				Hoff						TUM:	000000000000000000000000000000000000000
		LE INFO						HYDROG			Joe Caragine
No.	Depth	Rec			per 6	•	Depth	SOIL DESCRIPTION	00000000 00000	WELL	
1	0-2 ft	9"	11	9	8	6	Silicadoré etcelez	Dark Brown F - M Sandy SILT; some Gravel;		000005	REMARKS HNu = 0 ppm
								trace Clay			Frost in sample.
			-	-	-						
2	2-4ft	6"	3	2	3	3	2	Brown F - M Sandy SILT;some Gravel;			
-			-		13	3	2	trace Clay			HNu = 0 ppm
								duot only			
-											
3	4-6ft	11"	6	7	16	45	4	Same As Above		_	HNu = 0 ppm
			-	-	-					-	
									,	-	
4	6-8ft	18"	11	8	6	12	6	Same As Above		-	HNu = 0 ppm
			-	-							Bottom 9" of sample is wet.
			-		-	\vdash				_	
5	8 - 10 ft	20"	11	14	17	22	8	Same As Above with rock fragments in nose of		-	HNu = 0 ppm
								spill spoon.		-	Sample is saturated.
		_								=	
6	10 - 12 ft	17"	9	37	26	24	10	Come As Above		_	
0	10 - 12 IL	1/	9	3/	20	24	10	Same As Above		-	HNu = 0 ppm
			-							-	Sample is saturated. DTW in borehole is 7 ft.
										-	below the ground surface
							12	No sample collected from 12 - 14 ft. because of			ground condice
			-					difficult drilling.			
			-							_	
							14				
								END OF BORING AT 14 FT. BELOW GROUND			Total Well Depth = 16.19 ft.
								ENCOUNTERED AUGER REFUSAL			below top of casing
-				-	-						Depth to Water = 8.96 ft.
											below top of casing
											Well construction was
-					-	_					compressed because of
				-		-	1	· ·			depth from ground surface
											to top of screen.
											Well Screen = 2" I.D. Sch 40
-											PVC 10 Slot
				-							Well Riser = 2" I.D. Sch 40
											PVC
			-								
				-				•			#1 Sand Filter Pack =
							•				3 - 14 ft. below ground
											Bentonite Pellet Seal =
-											2 - 3 ft. below ground
-								•			
						-					Cement/Bentonite Grout = 0 - 2 ft, below ground
								· · · · ·			o - z n, below ground
			-		_						
									-		

-

Page 1 of 1

WELL CONSTRUCTION LOG

ONE INTERNATIONAL BLVD. MAHWAH, NJ 07495 - 0018

	PROJECT NAME	USMA West Point Ten Landfills	
CASING	PROJECT #	0285-659-100	
FLUSHMOUNT	WELL I.D.	MWVF - 01	
OTHER		Village Farm Landfill	
BENTONITE GROUT BENTONITE/CEMENT GROUT BACKFILL 2 FT BENTONITE SEAL 3 FT HOLEPLUG	TOP OF CASING ELEVATION GROUND ELEVATION DEPTH TO WATER DRILLING CONTRACTOR DRILLER DRILLING METHOD DRILLING FLUID DRILLING DATE COMPLETION DATE DEVELOPMENT DATE WELL PURPOSE	8.96 feet below top of casing Advanced Drilling, Inc. Rick Empson 6 1/4 Inch Hollow Stem Augers None	m
4_FT	CASING JOINTS: CASING 2 INCH ((I.D.)	COUPLING JOINT
GRAVEL PACK	SCREEN 2 INCH ((I.D.) <u>10</u> SLOT X	PVC
			STEEL
	REMARKS Well co	postruction was compressed because of	
	screen	depth below ground surface.	
			-
			-
14_FT	HYDROGEOLOGIST	Joe Caragine	
TOTAL DRILLED DEPTH			-
ALL MEASUREMENTS ARE FROM GROUND SURFACE UNLESS OTHERWISE NOTED			

MALCOLM PIRNIE, INC. ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

BORING: MWVF-02

22(0)(OT NAME		USN	A W		ant Te	n Land		DATE			
	UMBER			659					CATION:	1/22 - 23/1997 Village Farm Landfill		
	NG FIRM					ngain		W	EATHER	Clear, 30F's		
	NG METH	OD:	6 1/4	l' Ho	low S	item A	ugers/C		VATION:	N/A		
RILLE				Emp					DATUM:	Ground Surface		
E				Hoffi	nan			HYDROGEO	HYDROGEOLOGIST: Joe Caragine			
No.	Depth	LE INFO			i per 6		6 mm		WELL			
1	0-2 ft	22"	21	18	8	5	Depth	SOIL DESCRIPTION 11" Dark brown F - M Sandy SILT	CONS	REMARKS		
								11" Gravish Brown F - M Sandy SILT; trace Gravel & Clay		HNu = 0 ppm Frost in sample. Drilled through cobbles.		
2	2-4 ft	23*	10	17	19	20	2	Grayish Brown F - M Sandy SILT; some Gravel; trace Clay		HNu = 0 ppm		
3	4-6 ft	24"	16	19	20	24	4	Same As Above		HNu = 0 ppm		
4	6-8ft	24"	18	23	26	50/5	6	Provo E. M. Sandy Cli Turner Original				
	<u><u><u>v</u></u>-on</u>	24	10	2.5	20	50/5	0	Brown F - M Sandy SILT; some Gravel; trace Clay		HNu = 1.5 ppm		
5	8 - 10 ft	22*	11	17	26	50/5	8	Same As Above with rock fragments in nose of split spoon.		HNu = 1.2 ppm		
							10	No sample collected from 10 - 12 ft. Drilled through cobbles.				
6	12 - 14 ft	9"	12	24	26	36	12	Brown F - M SAND; some Silt and Gravel		HNu = 0 ppm		
7	14 - 16 ft	21"	16	23	18	23	14	Same As Above		HNu = 0 ppm		
							16	No sample collected from 16 - 18 ft. Drilled through cobbles.				
8	18 - 20 ft	0"	50/1	1		-	18	No Recovery				
9	20 - 22 ft	0"	50/2		-	-	20	No Recovery Some rock fragments in nose of split spoon.				
							22			Change drilling to air percussion. Appear to be in weathered roo		
							24	Cuttings are brown weathered rock.				
				-			26	Cuttings change to grayish color at ~27 ft.	88 388			

Page 1 of 2

MALCOLM PIRNIE, INC. ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

BORING: MWVF-02

	CT NAME IMBER:			-650			on Landf		DATES		
	GEIRM								CATION		
		302				ng, in			Ather	Cient, 30Fis	
RILLE		<i></i>		Emp.			ugers/b		ATION	N/A	
				Hoff					DATUM:	Ground Surface	
2283		LE INFO			110-13 88		200000000000000000000000000000000000000	HYDROGEO		Joe Caragine	
No.	Depth	Rec			s par s	Ŭ.	Depth	SOIL DESCRIPTION	WELL		
				T	25 ab.(183.)	T	28	OUL DESCRIPTION	CONS	REMARKS	
_											
			-		-						
			-		-	-	30				
			1			-	30				
										DTW in borehole is 31.5 ft. below ground surface.	
										Delow ground sunace.	
					-		32				
		1			-			Appear to be in competent bedrock at ~32 ft.			
									-		
							34				
			-								
			-	-	-						
							36				
								Appear to encounter a fracture at ~37 ft.			
								Cuttings become saturated.			
							38				
				-			30				
			-				40				
-											
									-		
							42		-		
		-	-	_							
-											
				-			44				
								END OF BORING AT 44 FT. BELOW GROUND		Total Well Depth = 46.05 ft	
								BORING IS INTO COMPETENT BEDROCK		below top of casing	
-+						_	46				
							. 40			Depth to Water = 34.05 ft	
										below top of casing	
										Well Screen = 2" I.D. Sch 40	
-+										PVC 10 Slot 15 Feet	
							1			Well Riser = 2" I.D. Sch 40 P	
										1.0. 001 40 P	
-+				-						#1 Sand Filter Pack =	
-+										27 - 44 ft. below ground	
										Bentonite Pellet Seal =	
								1		24 - 27 ft. below ground	
				_							
		-				-				Cement/Bentonite Grout =	
										0 - 24 ft. below ground	

-

Page 2 of 2

WELL CONSTRUCTION LOG

ONE INTERNATIONAL BLVD. MAHWAH, NJ 07495 - 0018

	LOCKING PROTECTIVE	PROJECT NAME	USMA West Point Ten Landfil	ls
	CASING	PROJECT #	0285-659-100	
	FLUSHMOUNT	WELL I.D.	MWVF - 02	
	OTHER	LOCATION	Village Farm Landfill	
	BENTONITE GROUT	TOP OF CASING ELEVATION GROUND ELEVATION	· · · · · · · · · · · · · · · · · · ·	
		DEPTH TO WATER	34.05 feet below top	of casing
X	BENTONITE/CEMENT	DRILLING CONTRACTOR	Advanced Drilling, Inc	
	GROUT	DRILLER	Rick Empson	
	BACKFILL	DRILLING METHOD	6 1/4 Inch Hollow Ste	m Augers/6 inch Air Percussio
		DRILLING FLUID	None	
		DRILLING DATE	1/22 - 23/1997	
24 FT	_	COMPLETION DATE	1/23/1997	-
	SLURRY	DEVELOPMENT DATE	1/28/1997	
BENTONITE		WELL PURPOSE	Groundwater Monitor	na Program
SEAL	X PELLETS			
27_FT	HOLEPLUG			
29_FT		CASING JOINTS:	X FLUSH JOINT	
	GRAVEL PACK	CASING 2 INCH (I.D.)	STAINLESS STEEL	X PVC
		SCREEN 2 INCH (I.D.)	10_SLOT	X PVC
	FORMATION			STAINLESS
-		REMARKS		
=	•			
FT				
44FT	•	HYDROGEOLOGIST	Joe Caragine	
TOTAL DRILLED	ЕРТН	1		

ONE INTERNATIONAL BOULEVARD MAHWAH, NEW JERSEY 07495-0018

BORING: MWVF-03

	CT NAME	•		6-6-59		AHR 16	in Land	illi s		DATE	Management and the second s	
	NG FIRM					ng, In				ATION		
	NG METH	00.		r Par						THER	www.www.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	
DRILLE				Emp		213			Contraction of the local division of the loc	ATION:		
IELPE				Hoff						ATUM	Ground Surface	
		LE INFO			nett i S			HYDRO		Jos Caragine		
No.	Depth	Rec		Blows	and a		Cartt			WELL		
1	0-2 ft	8"	21	20	12	11	Depth	SOIL DESCRIPTION 3" Reddish Brown F - M Sandy SILT		CONS		
			1	-	-			A LOGADI DIOWITE - M Salidy SIL I			HNu = 0 ppm	
								5" Brown F - M Silty SAND; some Gravel				
2	2-4 ft	11"	7	5	5	7	2	3" Same As Above			HNu = 2.1 ppm	
			-	-	-							
		-	-	-	-			8" Brown F - M Sandy SILT; trace Gravel & Clay				
3	4-6ft	18"	17	21	17	17	4	Same As Above with some Gravel	1993			
		10	11	21	11	11	4	Same As Above with some Gravei			HNu = 0 ppm	
4	6-8ft	16"	17	26	36	50/4	6	Same As Above			HNu = 0 ppm	
		-								-	a second a laboration	
-				-								
			-		-							
			-	-	-		8	No sample collected from 8 - 10 ft.		_		
			-					Drilled through cobbles.		_		
										-		
5	10 - 12 ft	15"	6	8	16	16	10	6" Brown F - M Sandy SILT; some Gravel		-	HNu = 0 ppm	
										-	Sample is molst.	
								9" Brown F - M SAND; some Silt & Gravel				
6	10 44.4	449	10	50.00	-							
6	12 - 14 ft	11"	46	50/2			12	3" Same As Above		_	HNu = 0 ppm	
						-		8" Brown F - C SAND with rock fragments		_	Sample is saturated.	
								C DIOWITE C OMIND WITH FOCK TRAGINENTS		_	DTW in borehole is 8.2 ft.	
							14	water and the second		-	below the ground surface.	
			1					No sample collected from 14 - 16 ft.		-		
								Drilling in bedrock.		-		
		_										
				-		_	16		T			
			-			-		END OF BORING AT 16 FT. BELOW GROUN	D		Total Well Depth = 17.74 ft.	
					-	-		ENCOUNTERED BEDROCK AT 13 FT.			below top of casing	
											Depth to Water = 10.30 ft.	
											below top of casing	
											,	
			-		-	_					Well construction was	
			-					· · · · · · · · · · · · · · · · · · ·			compressed because of	
			-			-					depth from the ground surface to top of screen.	
											to top of acredit.	
-								•			Well Screen = 2" I.D. Sch 40	
						_					PVC 10 Slot	
-						-						
							•	•			Well Riser = 2" I.D. Sch 40 PV	
											#1 Sand Filter Pack =	
			-	-							4 - 16 ft. below ground	
											i i i i i i i i i i i i i i i i i i i	
				_							Bentonite Pellet Seal =	
			-	_							2 - 4 ft. below ground	
-+			-	-	-+	-						
				-	-	-					Cement/Bentonite Grout =	
											0 - 2 ft. below ground	

**

Page 1 of 1

WELL CONSTRUCTION LOG

ONE INTERNATIONAL BLVD. MAHWAH, NJ 07495 - 0018

	OTECTIVE PROJECT NAME	L	JSMA West Point Ten Landfi	lls	
CASING	PROJECT #	0	285-659-100		
FLUSHMOU!	IT WELL I.D.	N	1WVF - 03		
	LOCATION	V	lillage Farm Landfill		
OTHER			,		
	TOP OF CASING				-
	DEPTH TO WATE		10.30 feet below top	of opeing	
X BENTON	TE/CEMENT DRILLING CONTR		Advanced Drilling, Ind		
GROUT	DRILLER		Rick Empson		
BACKFIL	DRILLING METHO	DD	6" Air Percussion		
	DRILLING FLUID		None		
	DRILLING DATE		1/23/1997		
2 FT	COMPLETION DA	TE	1/23/1997		
SLUF			1/28/1997		
BENTONITE	WELL PURPOSE		Groundwater Monitor	ing Decare	
SEAL X PELL			Groundwater Monitor	ing Program	m
4 FT HOLE	PLUG				
6 FT					
	CASING JOINTS:		X FLUSH JOINT		
					COUPLING JOINT
	CASING	2 INCH (I.D.)	STAINLESS	X	PVC
			STEEL		PVC
GRAV	EL PACK		. SIEEL		
		2 INCH (I.D.)	10 SLOT	X	PVC
FILTER X SAND	PACK	2			PVC
PACK					
	ATION	- L.			STAINLESS
					STEEL
	REMARKS		on was compressed becaus	e of	-
	-	screen depth b	elow ground surface.		. 1
			····		_
					-
					_
FT					*
16FT	HYDROGEOLOGI	ST Jo	e Caragine		_
TOTAL DRILLED DEPTH					-
ALL MEASUREMENTS ARE FROM GROUND					
SURFACE UNLESS OTHERWISE NOTED				-	
CONTRACTOR OFFICIATION OFFICIATION OFFICIAL					

۰. هم

ATTACHMENT C

GROUNDWATER SAMPLE COLLECTION LOGS

		SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7/12	96
PROJECT NAME U.S.M.A Wost	Point SAMPLERS Hope	Kowakk.
SITE LOCATION Wast Point M	UY Eric	Johnson
WELL ID # HSm -1 P	PURGING	SAMPLING
(Circle one) T	IME START: 1030 IME FINISH: 1045 RECOVERY TIME:	TIME START: 1115 TIME FINISH: 1503
WELL EVACUATION DEVICE: 2:50	osable bailer	
SAMPLE COLLECTION DEVICE:		
WATER LEVEL MEASUREMENT DEVICE:	M-Scope	
HEADSPACE MEASUREMENT DEVICE:	AIM	
WELL DEPTH (FT. FROM TOC)	= 25,1	
DEPTH TO WATER (FT. FROM TOC)	= 23.12	TIME 1025
HEIGHT OF WATER IN WELL	= 1.98	
ONE WELL VOLUME (GALLONS)	= 1.3	
VOLUME WATER REMOVED (GALLONS)	(.16 g/ft in 2° diameter	RATE < ^V 2 gpm

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		1/2 gal	2gal	1		
Temperature(°C)		1 0	13.5%	Dre		
Specific Conductivity		295	295	8		
рН		6.83	6.83			
NTU		9.6	12.3	V		

WEATHER CONDITIONS: (Today) <u>Clardey</u> overcast 80°F (Previous 2 Days) <u>Some</u>

WELL CONDITION (CASING, COLLAR, LOCK):

12

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Matels	1000 mL	HUOS
		2

	SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 71896
PROJECT NAME U.S.M.A Wes	t Point SAMPLERS Hope Kourkk
SITE LOCATION Wast Point	NY John Ilkourts
WELL ID # LAMUS-01	PURGING SAMPLING
(Circle one)	TIME START: 1125 TIME START: 114 TIME FINISH: 1132 RECOVERY TIME:
WELL EVACUATION DEVICE: 2"	· · · · · · · · · · · · · · · · · · ·
WATER LEVEL MEASUREMENT DEVICE	M-Scipe
HEADSPACE MEASUREMENT DEVICE:	NA
WELL DEPTH (FT. FROM TOC)	- 556
DEPTH TO WATER (FT. FROM TOC)	- 10 TIME 1125
HEIGHT OF WATER IN WELL	= 4.56
ONE WELL VOLUME (GALLONS)	- 29
VOLUME WATER REMOVED (GALLONS	

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		2gal	6500	9gal		
Temperature(℃)		25.50	2300	23°C.		
Specific Conductivity		TODXIT.	POEX/O	TEVID		
pH		10.22	6.16	6.13		
		96	2:52	46		•

WEATHER CONDITIONS:	(Today) Sun	iny	85°F			
	(Previous 2 Days)	peta	the ra	in	and	ny
WELL CONDITION (CASIN	NG, COLLAR, LOCK):	coll	on fi	led	Aba	bentomite
	,t		-			

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL	HUOZ
		,

-

	SAMPLE COLLECTION LOG
PROJECT # 02851.59200	DATE 7/18/916
PROJECT NAME U.S.M.A Wost	Point SAMPLERS Hope Kowakk
SITE LOCATION Wast Point	NY John Iskarts
WELL ID # LAmw-02	PURGING SAMPLING
UPGRADIENT / DOWNGRADIENT (Circle one) HEADSPACE <u>N/A</u> (ppm)	TIME START: 1204 TIME START: 1225 TIME FINISH: 1213 TIME FINISH: 1223 RECOVERY TIME:
WELL EVACUATION DEVICE: 2'	
WATER LEVEL MEASUREMENT DEVICE	m-scupe
HEADSPACE MEASUREMENT DEVICE:	NIA
WELL DEPTH (FT. FROM TOC)	= 24.46
DEPTH TO WATER (FT. FROM TOC)	= 15.95 TIME 1204
HEIGHT OF WATER IN WELL	= 24.40 8.51
ONE WELL VOLUME (GALLONS)	= 5.5
	(.16 g/ft in 2" diameter well, .65 g/ft in 4" diameter well)
VOLUME WATER REMOVED (GALLONS	$= 10$ RATE $\angle 1/20PM$
SAMPLE APPEARANCE:	

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH .	FIFTH
Volume Purged (gal)		Saal	10gal	De		
Temperature(°C)		22°C	1702	10		
Specific Conductivity		140×10	120×10			
pН		5.69	5.73			
NTU		067	053	V		

WEATHER CONDITIONS:	(Today)	Senny	85°F			
	(Previous	2 Days)	cloude,	raine	Sunny	_
WELL CONDITION (CASI	NG, COLLA	R, LOCK): C	2000 V	, ,	2	•
		,t	0			

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Models	1000 mL	HUO3
and the second sec	•	

1(2)
Kowakk.
Itrouts
AMPLING
IME START: 1310 IME FINISH: 1315
oump
TIME 1245
RATE L/26PM

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)	•	Saal	15gal	24 gal		
Temperature(℃)		2400	2002	1902		
Specific Conductivity		IZOXID	115×10	10000		
pH		5.71	5,56	5.68		
NTU		28	24	25		

WEATHER CONDITIONS: (Today) Sunny 850F. ra. my sunny

WELL CONDITION (CASING, COLLAR, LOCK):

ANALYTICAL PARAMETERS CONTAINERS PRESERVATIVES HU03 TAL Models 1000 ml

gard

(Previous 2 Days) D. Cloudy

		SHUPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7 19	912
PROJECT NAME U.S.M.A Wes	t Point SAMPLERS Hipe	Kowakk.
SITE LOCATION Wast Point	NY Joh	
WELL ID # LBMW-01	PURGING	SAMPLING
UPGRADIENT / DOWNGRADIENT	TIME START: 0955	TIME START: 1011
	TIME FINISH: 1003 RECOVERY TIME:	TIME FINISH: 101-5
WELL EVACUATION DEVICE: 2"	Jubmersible o	and
	,	
WATER LEVEL MEASUREMENT DEVICE	m-Scope	
HEADSPACE MEASUREMENT DEVICE:	NA	
WELL DEPTH (FT. FROM TOC)	= 12.72	
DEPTH TO WATER (FT. FROM TOC)	= 4.28	TIME 0955
HEIGHT OF WATER IN WELL	= 8.44	
ONE WELL VOLUME (GALLONS)	= 5.4	
	(.16 g/ft in 2" diameter	well, .65 g/ft in 4° diameter well)
VOLUME WATER REMOVED (GALLONS)		RATE LYZGPM
SAMPLE APPEARANCE: SI. Show	y Ambia	

-

-

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Isgal	1000el	15gel		
Temperature(°C)		17bc	1800	1852		
Specific Conductivity		50x10	40×10	40×10	•	
рН		5.96	5.92	5.80		
VTU		85.8	50.9	53.7		

WEATHER CONDITIONS: (Today)	Source	8595	
(Previou	s 2 Days) p. do	ide rain	Sunn
WELL CONDITION (CASING, COL	LAR, LOCK): Need	2 compress	tim cap #
	+ Cita	e ber	

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Matels	1000 mL	HUD
		3

- ----

		SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7	18 96
PROJECT NAME US. M.A WOS	Point SAMPLERS Ha	De Kouzikk.
SITE LOCATION Wast Point	NY L	ohn Ifkourts
WELL ID # LBmw-02	PURGING	SAMPLING
UPGRADIENT / DOWNGRADIENT (Circle one) HEADSPACE N (ppm)	TIME START: 1035 TIME FINISH: 1053 RECOVERY TIME:	TIME START: 110)
WELL EVACUATION DEVICE: 2"	Submersible	pune
SAMPLE COLLECTION DEVICE:	ailer	
WATER LEVEL MEASUREMENT DEVICE	m-scope	
HEADSPACE MEASUREMENT DEVICE:	AIN	
WELL DEPTH (FT. FROM TOC)	- 18.61	
DEPTH TO WATER (FT. FROM TOC)	- 7.59	TIME 1035
HEIGHT OF WATER IN WELL	= 11.02	
ONE WELL VOLUME (GALLONS)	= _7.1	
VOLUME WATER REMOVED (GALLONS)	2.	ter well, .65 g/ft in 4° diameter well) RATE ∠ / z GPM
SAMPLE APPEARANCE:	2	

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Tcal	14000	2190	Q	
Temperature(°C)		15%	14%	1402		
Specific Conductivity		130×10	85×10	65×10		
рН		5.84	6.07	6.10		
NTU		263	37	17		

WEATHER CONDITIONS: (Today) Sun	nu 85°F
(Previous 2 Days)	p. cloudy rainy summe
WELL CONDITION (CASING, COLLAR, LOCK):	
p.	0

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Models	1000 mL	HU02
·		3

2 N	SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7/18/91
PROJECT NAME U.S.M.A Worst	Point SAMPLERS Hope Kourtk
SITE LOCATION Wast Point M	UY John Ifkovite
WELL ID # LOMW-03 P	URGING SAMPLING
(Circle one) T	IME START: 0920 TIME START: 0950 IME FINISH: 0938 TIME FINISH: 0955
WELL EVACUATION DEVICE: 2"	Submersible pump
WATER LEVEL MEASUREMENT DEVICE: HEADSPACE MEASUREMENT DEVICE:	m-scope
WELL DEPTH (FT. FROM TOC)	=_11.05
DEPTH TO WATER (FT. FROM TOC)	= 4.33 TIME 0920
HEIGHT OF WATER IN WELL	= 10.72
ONE WELL VOLUME (GALLONS)	= 42
	(.16 g/ft in 2" diameter weil, .65 g/ft in 4" diameter well)
VOLUME WATER REMOVED (GALLONS)	= 12 RATE L/26PM
SAMPLE APPEARANCE:	^

÷

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Had	800	12. gai		
Temperature(°C)		1990	ZPOL	212		
Specific Conductivity		270×10	190×10	230×10		
pH		6.17	6.11	6.16		
NTO		124×1000	39.8	30.0		

WEATHER CONDITIONS:	(Today) Sev	non 85	505		
	(Previous 2 Days)	p. clouder	rain	SURVE	
WELL CONDITION (CASIN					box

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL .	HUOS

5 I		SHORFLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7	7/96
PROJECT NAME USMA West	Point SAMPLERS HO	e Kourkk
SITE LOCATION Wast Point	NY Je	n D'Angelo
WELL ID # CMWDI	PURGING	SAMPLING
	TIME START: 1433 TIME FINISH: 1446 RECOVERY TIME:	TIME START: 1447 TIME FINISH: 1450
WELL EVACUATION DEVICE: 2"	submisile Tiles	punp
WATER LEVEL MEASUREMENT DEVICE	:_m-scare	
HEADSPACE MEASUREMENT DEVICE:	NIA	
WELL DEPTH (FT. FROM TOC)	= 12.28	
DEPTH TO WATER (FT. FROM TOC)	= 7.52	TIME 1436
HEIGHT OF WATER IN WELL	= 4.76	
ONE WELL VOLUME (GALLONS)	= 3.09	
VOLUME WATER REMOVED (GALLONS)	0	RATE CZGPM
SAMPLE APPEARANCE: SI: Shu	s Aubid	

ECOL

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		3 gal	1980	9 gal		
Temperature(°C)		20	19	:9		
Specific Conductivity		60×10	60×10	60×10		
pH		5.85	5.92	5.92		
•		700	430	218		

WEATHER CONDITIONS:	(Today) Summer 850F
1 8 1	(Previous 2 Days) p. cloudy rainy
WELL CONDITION (CASI	NG, COLLAR, LOCK: Not als curb box Coner

M: 53: 4 ANALYTICAL PARAMETERS CONTAINERS PRESERVATIVES HU03 TAL Motels 1000 ml

	SAMPLE COLLECTION LOG
PROJECT # 02851,59200 DATE	7/17/96
PROJECT NAME U.S. M.A Wost Point SAMPLERS	Lipe Kouzikk
SITE LOCATION West Point NY	Ven D'Angelo
WELL ID # LCMW-02 PURGING 1350	SAMPLING d
UPGRADIENT / DOWNGRADIENT TIME START: 1445 (Circle one) TIME FINISH: 1407 HEADSPACE N/A (ppm) RECOVERY TIME:	TIME START: 1423 TIME FINISH: 1425
WELL EVACUATION DEVICE: 2" Submersible	permo
SAMPLE COLLECTION DEVICE: bailes	3
WATER LEVEL MEASUREMENT DEVICE: M-Scare	
HEADSPACE MEASUREMENT DEVICE: N/ A	
WELL DEPTH (FT. FROM TOC) = 22.74	-
DEPTH TO WATER (FT. FROM TOC) = 15.93	TIME 14151350
HEIGHT OF WATER IN WELL = 10.91	
ONE WELL VOLUME (GALLONS) = 4.43	
VOLUME WATER REMOVED (GALLONS) = 4743	neter well, .65 g/ft in 4° diameter well) 2 RATE 2426-PM

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Hacil	Rael	12000		
Temperature(°C)		202	1750	17.5%		
Specific Conductivity		60×10	'DXIO	boxio		
рН		5.61	5.88	591		
NTU		77.810	038.1xr	28.3	. 00	

850F WEATHER CONDITIONS: (Today) (Previous 2 Days) p. cloud

ar der

WELL CONDITION (CASING, COLLAR, LOCK):

ANALYTICAL PARAMETERS PRESERVATIVES CONTAINERS HU03 TAL Motels 1000 ml

		SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 71	196
PROJECT NAME US.M.A West	Point SAMPLERS Hope	Kowakk.
SITE LOCATION Wast Point	NY Jan	D'Angela
WELL ID # <u>CCMW-03</u>	PURGING	SAMPLING
UPGRADIENT / DOWNGRADIENT (Circle one) HEADSPACE <u>N/A</u> (ppm)	TIME START: 1344 TIME FINISH: 1356 RECOVERY TIME:	TIME START: 1403 TIME FINISH: 1405
WELL EVACUATION DEVICE: 2"	Submensible pun	P
SAMPLE COLLECTION DEVICE:	a: ler	
WATER LEVEL MEASUREMENT DEVICE	: M.Scepe	
HEADSPACE MEASUREMENT DEVICE:	AIM	
WELL DEPTH (FT. FROM TOC)	- 30.22	
DEPTH TO WATER (FT. FROM TOC)	- 23.64	TIME 13:44
HEIGHT OF WATER IN WELL	= 6.58	
ONE WELL VOLUME (GALLONS)	=_1.05	
VOLUME WATER REMOVED (GALLONS)		RATE CYZOPM
SAMPLE APPEARANCE: Cloon		

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		lagel	242 500	4000		
Temperature (°C)		182	15°C	152		
Specific Conductivity		IIDXID	NOXID	110×10		
рН		5.89	6.01	6.05		
		45.3	H7106	110		

WEATHER CONDITIONS:	(Today)	Sugar	14	850F			
	(Previous	s 2 Days)	0.0	Late	rain	Sunne	
WELL CONDITION (CASIN	NG, COLL	AR, LOCK)	: Noc	i cho i	2007 00	ver ba	

WELL CONDITION (CASING, COLLAR, LOCK): NOO 0

cover missing

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL	HUOZ
		3

		SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7	196
PROJECT NAME US.M.A West	t Point SAMPLERS Hipe	Kowakk.
SITE LOCATION Wast Point	Not YU	n Iftorits
WELL ID # MWLD-2	PURGING	SAMPLING
UPGRADIENT / DOWNGRADIENT (Circle one) HEADSPACE <u>N/A</u> (ppm)	TIME START: 0850 TIME FINISH: 0905 RECOVERY TIME:	TIME START: 1447 TIME FINISH: 1450
WELL EVACUATION DEVICE: 2"	Submersible pur	no
WATER LEVEL MEASUREMENT DEVICE	M-Scope	
HEADSPACE MEASUREMENT DEVICE:	NA	
WELL DEPTH (FT. FROM TOC)	= 23.52	
DEPTH TO WATER (FT. FROM TOC)	= 17.68	TIME DESD
HEIGHT OF WATER IN WELL	= 5.84	
ONE WELL VOLUME (GALLONS)	= 3.8	
	(.16 g/ft in 2° diameter	weil, .65 g/ft in 4" diameter well)
VOLUME WATER REMOVED (GALLONS	. = 8	RATE LYZGPM
SAMPLE APPEARANCE: 00000		

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Haal	Saal	Dry		
Temperature(°C)		1800	150	0		
Specific Conductivity		1300	200%			
pН		7.95	8.14			
NTU		90×00	033×1700	P		

WEATHER CONDITIONS:	(Today)	Sun	m	850F			
	(Previous	2 Days)	p.c	10ide	rainy	SUNDY	
WELL CONDITION (CASING, COLLAR, LOCK):							
		t	0				

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL	HUDZ
•		,

-

PROJECT # D285(
	00 Dent C	Deret CAMPIE	ATE 7/1	1 1.14	1.1	
SITE LOCATION LUCC			1 -	1		
SITE LOCATION WOR		JRGING	Jen D	3		
UPGRADIENT / DOWNG (Circle one) HEADSPACEA	RADIENT TI		150	SAMPLI TIME STA TIME FIN	ART: <u>12 c</u> IISH: <u>12 1</u>	0
WELL EVACUATION DEV	ICE: 2"	subaersi	ley Dr	amo		
SAMPLE COLLECTION D	EVICE:	- brile	Y.			
WATER LEVEL MEASURE	MENT DEVICE:	m-sc	ape			
HEADSPACE MEASUREM	ENT DEVICE:	AIM	•			
WELL DEPTH (FT. FROM	TOC)	= 21,4	12			
DEPTH TO WATER (FT. F	ROM TOC)	= 9.11	-	1	TME 1148	
EIGHT OF WATER IN WI	ELL	= 12.7	28			
ONE WELL VOLUME (GAL	LONS)	= 7,9	g 2" diameter			
OLUME WATER REMOVE	<u>cleon</u> <u>First</u>	= 24 Second	Third	^	ATE	
FIELD PARAMETERS	GALIBRATION	-mmer	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)	8 gal	ibaal	24000		•	
Temperature(°C)	1 16	15°C	14.2			
Specific Conductivity	110	110	110			
рН	585	6.02	6.00			
NTU	044	014	014		-	
EATHER CONDITIONS: ((ELL CONDITION (CASING	(Previous 2 Days)	p.cla	350F	incz	Coin 3	
ANALYTICAL PARAM	AETERS	CONTAIN	IERS	PR	ESERVATIVE	s ·
TAL Motels		1000 ml		HUC		
					2	
	1					
					······	

unealter

		SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 7/17	96
PROJECT NAME U.S.M.A West	Point SAMPLERS Hope	Kowakk.
SITE LOCATION Wast Point	NY Jon	D'Angelo
WELL ID # LEMW-02	PURGING	SAMPLING
(Circle one)	TIME START: 0847 TIME FINISH: 0847 RECOVERY TIME:	TIME START: 1020 TIME FINISH: 1020
WELL EVACUATION DEVICE: 50	ler	
SAMPLE COLLECTION DEVICE:	ler	·····
WATER LEVEL MEASUREMENT DEVICE	M-Scope	
HEADSPACE MEASUREMENT DEVICE:	Ala	
WELL DEPTH (FT. FROM TOC)	= 29.29	
DEPTH TO WATER (FT. FROM TOC)	= 6.92	TIME_0845
HEIGHT OF WATER IN WELL	= 22.37	
ONE WELL VOLUME (GALLONS)	= 14.54	•
	(.16 g/ft in 2" diameter	well, .65 g/ft in 4° diameter well)
VOLUME WATER REMOVED (GALLONS)	= 20	RATE LY20PM
SAMPLE APPEARANCE:		

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH.	FIFTH
Volume Purged (gal)		15926	200al			
Temperature(°C)		15%	1792			
Specific Conductivity		450	450	40		
рH		5.68	5.51	d'		
		100	87			

WEATHER CONDITIONS:	(Today) Sunne	850F		
· · ·	(Previous 2 Days)	dout	Sunny	FQ:03
WELL CONDITION (CASI		aord 1	- 21	0
	,tr	3		

CONTAINERS	PRESERVATIVES
1000 mL	HUOZ
	•

-

MALCOLM

		•	1	SAMPL	E COLLEC	TION LO
PROJECT # 02851			ATE 7/1	796		
PROJECT NAME US.			RS Hope	· Koui	akk .	
SITE LOCATION West	E Bort N'	Y	Jen	D'A	align	
WELL ID # LEMW-	-03 PUF	GING TI	7196	SAMPLI		96
UPGRADIENT / DOWNG		E START: 11	16	TIME ST	ART: US	35
(Circle one) HEADSPACE		E FINISH: 11		TIME FIN	ISH: 083	38
WELL EVACUATION DEVI	ce baio					
SAMPLE COLLECTION DI		0.0.				
WATER LEVEL MEASURE			0			
HEADSPACE MEASUREM			×,			
WELL DEPTH (FT. FROM		= 42.8	D			
DEPTH TO WATER (FT. FI		= 39.		1	TME /1/6	,
HEIGHT OF WATER IN WI			20			
ONE WELL VOLUME (GAL	LONS)	- 2.1	08			
		(.16 g/ft in	2º diameter	well, .65 g	j/ft in 4" diam	neter well
VOLUME WATER REMOVE	ED (GALLONS)	= 3		R	ATE LY	26P.
SAMPLE APPEARANCE:	Andia	1 - 9	en			
		0	3			
FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		2900	Dry			
Temperature(°C)		17	10			
Specific Conductivity		180				
pН		5.19	·			
NTO	•	536	N			
	1		N	L	1	1
VEATHER CONDITIONS: (850F			
	(Previous 2 Days)	•	ily C	ains,	Sema	Ly
ELL CONDITION (CASING	G, COLLAR, LOCK): <u> </u>	1			
		0		1		
ANALYTICAL PARA	METERS	CONTAIL	NERS	PF	RESERVATIVE	S
TAL Motels	1	1m 600		HUC	22	
					2	
						-
				1		

- ----

				SAMP	E COLLEC	TION LO
PROJECT # DZ851	59200		DATE 71	196		
PROJECT NAME U.S.	n.A west Pr	ant SAMPI	ERS HO	e Kou	nkk.	
SITE LOCATION Was	t Point N'		20	D'A	tage	
WELL ID # LEMW	-04 PUI	RGING		SAMPLI	NG	
UPGRADIENT / DOWNG (Circle one) HEADSPACE N-A	TIM	E START: L E FINISH: N COVERY TIM	047	TIME ST	ART: 105	
WELL EVACUATION DEV	ICE: 2" 5	obnersi	ble Du	900		
SAMPLE COLLECTION D			,			
WATER LEVEL MEASURE	MENT DEVICE:	n-sex	20			
HEADSPACE MEASUREM		AIC				
WELL DEPTH (FT. FROM	TOC)	- 20	0.30			
DEPTH TO WATER (FT. F	ROM TOC)		33	-	TIME 103	~
HEIGHT OF WATER IN W	ELL	= (0	.97			
ONE WELL VOLUME (GAI	LONS)		53			
			in 2° diameter	well 65 c	/ft in 4° dian	neter well)
VOLUME WATER REMOVI	ED (GALLONS)	= 12			ATE 27	- HOM
SAMPLE APPEARANCE:	Slight	· ali	1()			CO POOL
	- St. Shert	y sa	nerico)		·····	
FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Had	8agl	12 aje		
		1 Gial	LUGGIV	11040	4	1

voiume Purgeo (gai)	176.4	10agu	12aa	
Temperature(°C)	1600	16°C	1602	
Specific Conductivity	145	148	140	
рН	6.06	6.08	6.80	
NTU	375	502	156	

WEATHER CONDITIONS:	(Today) Summe.	850F	
	(Previous 2 Days) p. clo	de Scenne	rain
WELL CONDITION (CASIN	NG, COLLAR, LOCK): -	ad' s	5
	: 0		

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 ml	HUO,
		2

19-10 10-10

-

				SAMPL	E COLLEC	TION LOG
PROJECT # D2851	,59200		DATE 71	1910		
PROJECT NAME US	n.A west Po	nt SAMPL	ERS HOP	Kow	akk.	
SITE LOCATION West	E Point NY		Jer	, D'A	Incelo	
WELL ID # LEMW	-05 PUR	GING 7	17/96	SAMPLIN	16 07/18	\$196
UPGRADIENT / DOWNG	RADIENT TIME	START: 0	930	TIME STA	AT: 08	
(Circle one) HEADSPACE A)/A	(ppm) REC	OVERY TIME	094		SH: 087	20
WELL EVACUATION DEVI	ICE: 2" 3.6	mers.bl	e purf	2		
SAMPLE COLLECTION D				•		
WATER LEVEL MEASURE	MENT DEVICE:	M-Scar	ke			
HEADSPACE MEASUREM		NA				
WELL DEPTH (FT. FROM	TOC)	= 36	.28			
DEPTH TO WATER (FT. F	ROM TOC)	= 24.	18	т	IME 092	50
HEIGHT OF WATER IN W	ELL	= 12	.10			
ONE WELL VOLUME (GAL	LONS)	= 7.	8			
		(.16 g/ft li	n 2° diameter	well, .65 g	/ft in 4" diam	neter well)
VOLUME WATER REMOVE	ED (GALLONS)	= 12	-	R	ATE 24	ZGPM
SAMPLE APPEARANCE:	Slightly	Augl	rid			
			a la companya da companya d			
FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		Tapl	12 900	Duy		
- (80)		1	0	0	1	

				1
Volume Purged (gal)	Tapl	12 900	Duy	
Temperature(°C)	2000	2202	0	
Specific Conductivity	100 X10	DOXIO		
pH	5.61	5.68		
NTU	113	130	V	

WEATHER CONDITIONS:	(Today) Serve	ng 8595			
	(Previous 2 Days)	D'claster	rain	Sume	
WELL CONDITION (CASIN		1 -11	2	3	
		0			

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL	HUD
		2

	SAMPLE COLLECTION LOG
PROJECT # 02851,59200	DATE 8 5 96
PROJECT NAME US. M.A Wes	
SITE LOCATION Wast Point	My Eric Johnson
WELL ID # PXmw-OI	PURGING SAMPLING
UPGRADIENT / DOWNGRADIENT (Circle one) HEADSPACE N (ppm)	TIME START: 1323 TIME START: 1545 TIME FINISH: 1345 TIME FINISH: 1545 TIME FINISH: 1545
WELL EVACUATION DEVICE: ba	iler
WATER LEVEL MEASUREMENT DEVICE HEADSPACE MEASUREMENT DEVICE:	AIM
WELL DEPTH (FT. FROM TOC)	= 4.82
DEPTH TO WATER (FT. FROM TOC)	= 3.48 TIME 1317
HEIGHT OF WATER IN WELL	= 10.34
ONE WELL VOLUME (GALLONS)	= 41
VOLUME WATER REMOVED (GALLONS SAMPLE APPEARANCE: block	(.16 g/ft in 2° diameter well, .65 g/ft in 4° diameter well) $= 4 \pm 2^{\circ}$ RATE $\leq 16^{\circ}$ PM

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		1920	Dry			
Temperature(℃)		25	5			
Specific Conductivity		670				
рН		7.06				
NTU'S		>1000	V			•

WEATHER CONDITIONS:	(Today)	Autori	85-90°F	
			1	

(Previous 2 Days) p. cloudy (Ciny

WELL CONDITION (CASING, COLLAR, LOCK): DK Note: Drge extremely turbid, black in

color

500

70

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL	HUDZ
		3

PROJECT # DZ851,	59200)		ATE 81-	5/910	E COLLEC	
PROJECT NAME USO					Kow	okk.	
SITE LOCATION WOOT				Erre	*	neen	
WELL ID # PXmw		PURG	ING		SAMPLI		
UPGRADIENT / DOWNG (Circle one) HEADSPACE N/A		TIME		300	TIME STA	NAT: 153	
	1			*		·····	
WELL EVACUATION DEV	1				•		
SAMPLE COLLECTION D					-		
WATER LEVEL MEASURE HEADSPACE MEASUREM			1	10			
WELL DEPTH (FT. FROM		_1	= 61.4	10			
DEPTH TO WATER (FT. F				.48	т	TME 225	5
HEIGHT OF WATER IN W			= 0				
ONE WELL VOLUME (GAL				15		•	
			(16 g/ft in	2º diameter	well 65 o	j/ft in 4" diam	neter weil
			, dou	dy	R	ATE	1/2 6
		to	C	dy SECOND	R THIRD	FOURTH	FIFTH
AMPLE APPEARANCE:	Clear	to	, Clou	dy SECOND	1	1	1
FIELD PARAMETERS	Clear	to	, Clou		THIRD	1	1
Volume Purged (gal)	Clear	to	FIRST 0.5	1.0	THIRD	1	1
FIELD PARAMETERS Volume Purged (gal) Temperature(°C)	Clear	to	FIRST 0.5 13.0	1.0 13.2 1290	THIRD	1	1
FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity	Clear	to	FIRST 0.5 13.0 1190	1.0	THIRD	1	1
FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH NTU`S REATHER CONDITIONS:	CLEOK CALIBRATI		FIRST 0.5 13.0 1190 6.76 36.4	$ \begin{array}{r} 1.0 \\ 1.32 \\ 1.200 \\ 1.200 \\ 1.00 \\ $	THIRD	1	1
FIELD PARAMETERS Volume Purged (gal) Temperature(℃) Specific Conductivity pH Nてい`S	CLEOK CALIBRATI	ON 10N 175) OCK):	FIRST 0.5 13.0 1190 6.76 36.4 36.4	1.0 1.3.2 1.200 1.0	THIRD Dryg	FOURTH.	FIFTH
FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH NTU`S REATHER CONDITIONS:	CLEAR CALIBRATI (Today) (Previous 2 Da G, COLLAR, LO	ON 10N 175) OCK):	FIRST 0.5 13.0 1190 6.76 36.4 36.4	1.0 1.3.2 1.200 1.0	THIRD Dryg	1	FIFTH
FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH <u>NTU`S</u> REATHER CONDITIONS:	CLEAR CALIBRATI (Today) (Previous 2 Da G, COLLAR, LO		FIRST 0.5 13.0 1190 6.76 36.4 36.4	1.0 1.3.2 1.200 1.0	THIRD Dryg	FOURTH.	FIFTH
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH NTU`S FEATHER CONDITIONS: FELL CONDITION (CASING ANALYTICAL PARAM	CLEAR CALIBRATI (Today) (Previous 2 Da G, COLLAR, LO		FIRST 0.5 13.0 1.90 6.76 36.4 36.4 20 20 20 20 20 20 20 20 20 20 20 20 20	1.0 1.3.2 1.200 1.0	THIRD Dryg V V V V V V V V V V V V V V V V V V V	FOURTH.	FIFTH
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH NTU`S FEATHER CONDITIONS: FELL CONDITION (CASING ANALYTICAL PARAM	CLEAR CALIBRATI (Today) (Previous 2 Da G, COLLAR, LO		FIRST 0.5 13.0 1.90 6.76 36.4 36.4 20 20 20 20 20 20 20 20 20 20 20 20 20	1.0 1.3.2 1.200 1.0	THIRD Dryg V V V V V V V V V V V V V V V V V V V	FOURTH.	FIFTH

PROJECT # D285659200 DATE 0596 PROJECT NAME USMA West Point SAMPLERS Hope Kowarkk SITE LOCATION West Point NY Essee Johnson WELL ID # DXMW-D3 PURGING SAMPLING UPGRADIENT / DOWNGRADIENT TIME START: 1440 TIME START: 1608 (Circle one) HEADSPACE N/A (ppm) RECOVERY TIME: WELL EVACUATION DEVICE: Dales SAMPLE COLLECTION DEVICE: Dales WATER LEVEL MEASUREMENT DEVICE: N/A	
SITE LOCATION West Bart NY	
WELL ID #	
WELL ID #	
(Circle one) HEADSPACE N/A (ppm) RECOVERY TIME: WELL EVACUATION DEVICE: balles SAMPLE COLLECTION DEVICE: balles WATER LEVEL MEASUREMENT DEVICE:	
SAMPLE COLLECTION DEVICE: bailer WATER LEVEL MEASUREMENT DEVICE:Scope	
WATER LEVEL MEASUREMENT DEVICE:Scope	
HEADSPACE MEASUREMENT DEVICE: NIA	
WELL DEPTH (FT. FROM TOC) = 60.40	
DEPTH TO WATER (FT. FROM TOC) = 53.05 TIME 1435	
HEIGHT OF WATER IN WELL = 7.35	
ONE WELL VOLUME (GALLONS) = 4.8	
(.16 g/ft in 2° diameter well, .65 g/ft in 4° diameter	r well)
volume water removed (Gallons) = 5 gel Rate 2721 sample appearance: Light Cloudy for Clouds	<u>5-PN</u>
FIELD PARAMETERS CALIBRATION FIRST SECOND THIRD FOURTH F	IFTH
Volume Purged (gal) · 2 cpl Scal Dr.	
Temperature(°C) 15,9 16,1 0	

 Specific Conductivity
 3500
 3220

 pH
 6.53
 6.52

 NTU'S
 62.1
 36.6

 WEATHER CONDITIONS:
 (Today)
 Sugar, 85-909

 (Previous 2 Days)
 p. closder
 Fain, Supar,

WELL CONDITION (CASING, COLLAR, LOCK):

CONTAINERS PRESERVATIVES ANALYTICAL PARAMETERS AND TAL Motels 1000 ml

	*		-	SAMPL	E COLLEC	TION L
PROJECT # D2851			DATE 85	910		
PROJECT NAME US.	1.A west Po	ant SAMPL	RS HOR	Kow	akk.	
SITE LOCATION Wast	E Point N'	1	Eric	- Joh	men	
WELL ID # PXMW	-OH PUR	IGING		SAMPUN	IG	
UPGRADIENT / DOWNGH (Circle one) HEADSPACE NA	TIME	E START: / E FINISH: / COVERY TIME	400		RT: 1555	
WELL EVACUATION DEVI	1					
SAMPLE COLLECTION DE	1		•			
WATER LEVEL MEASURE						
HEADSPACE MEASUREM		1				
WELL DEPTH (FT. FROM	TOC)	= 53.	60			
DEPTH TO WATER (FT. F	ROM TOC)	= 44.		Т	IME 135	3
HEIGHT OF WATER IN WE	ELL	= 9	10			
ONE WELL VOLUME (GAL	LONS)	=	5			
	•	(.16 g/ft in	2ª diameter	well, .65 g	/ft in 4" diam	neter we
OLUME WATER REMOVE	D (GALLONS)	= 1.:	5	R	ATE Z	1/26
AMPLE APPEARANCE:	Slightly	turbid				,
		Frita	150			
FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		1.0	1.5	DRY		
Temperature(°C)		18.0	18.0	1		
		1500	1500			
Specific Conductivity					1	
		6.79	6,96			
рН		6.79 76.2	6.96	1		
PH NTUS VEATHER CONDITIONS: ((Previous 2 Days) _	76.2 7. clo	104 5-9000		Sunna	3
PH NTL'S VEATHER CONDITIONS: ((Previous 2 Days) _ G, COLLAR, LOCK)	76.2 7. clo	104 5-90°.5 ody ro	a.m.	SUNNA	3
PH NTUS VEATHER CONDITIONS: (VELL CONDITION (CASING ANALYTICAL PARAM	(Previous 2 Days) _ G, COLLAR, LOCK)	76.2 7. clo. : ccontain	104 5-90°.5 ody ro	a'ny,	Sunna	3 3 S
PH NTUS VEATHER CONDITIONS: (VELL CONDITION (CASING	(Previous 2 Days) _ G, COLLAR, LOCK)	76.2 7. clou : ccco	104 5-90°.5 ody ro	PRI	Sunna ESERVATIVE	S
PH NTUS VEATHER CONDITIONS: (VELL CONDITION (CASING ANALYTICAL PARAM	(Previous 2 Days) _ G, COLLAR, LOCK)	76.2 7. clo. : ccontain	104 5-90°.5 ody ro	PRI	Sunna ESERVATIVE	s
PH NTUS VEATHER CONDITIONS: (VELL CONDITION (CASING ANALYTICAL PARAM	(Previous 2 Days) _ G, COLLAR, LOCK)	76.2 7. clo. : ccontain	104 5-90°.5 ody ro	PRI	SUNNA ESERVATIVE	S
PH NTUS VEATHER CONDITIONS: (VELL CONDITION (CASING ANALYTICAL PARAM	(Previous 2 Days) _ G, COLLAR, LOCK)	76.2 7. clo. : ccontain	104 5-90°.5 ody ro	PRI	Sunna ESERVATIVE	S

STORF LE COCLECTION LL
PROJECT # 02851,59200 DATE 0591
PROJECT NAME U.S. M.A West Point SAMPLERS Hope Kourkk
SITE LOCATION Wast Point NY Eric Johnson
WELL ID # CBMW- PURGING SAMPLING
UPGRADIENT / DOWNGRADIENT TIME START: 0930 TIME START: 110 (Circle one) TIME FINISH: 1006 TIME FINISH: 115 HEADSPACE N/A (ppm) RECOVERY TIME: TIME FINISH: 115
WELL EVACUATION DEVICE: 2" Submersible Dumo
SAMPLE COLLECTION DEVICE: bailer
WATER LEVEL MEASUREMENT DEVICE: M-Scope
HEADSPACE MEASUREMENT DEVICE: NIA
WELL DEPTH (FT. FROM TOC) = 32.10
DEPTH TO WATER (FT. FROM TOC) = 7.26 TIME 0925
HEIGHT OF WATER IN WELL = 24 84
ONE WELL VOLUME (GALLONS) = 4
(.16 g/ft in 2° diameter well, .65 g/ft in 4° diameter weil
VOLUME WATER REMOVED (GALLONS) = 12 gel RATE CIGPN
SAMPLE APPEARANCE: Clear w/ light bood first

NOI E COLLEC

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		lagel	5gal	9 gal	12cal	
Temperature(°C)		1600	14.3%	14.5%	IN Set	
Specific Conductivity		300	220	200	210	
рH		7.49	7.56	7.32	7.35	
NTU'S		462	76.9	39.6	40.6	

WEATHER CONDITIONS: (Today) Summer 85-900F (Previous 2 Days) 0 7 7 WELL CONDITION (CASING, COLLAR, LOCK): C 200

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Matels	1000 mL	HUDZ
		3

PROJECT # DZ851			DATE 85	the second se		
PROJECT NAME US.			ERS Hope	Kow	akk.	
SITE LOCATION Wood		NY	Eric	e Joh	nson	
WELL ID # CBMW	-2	PURGING		SAMPLIN	NG	
UPGRADIENT / DOWNGR (Circie one) HEADSPACE		TIME START: (TIME FINISH: (RECOVERY TIM	2840	TIME STA	NAT: 10210 ISH: 1040	5
WELL EVACUATION DEVI	CE: bail	105				
SAMPLE COLLECTION DE	EVICE: ba	les				
WATER LEVEL MEASURE	MENT DEVICE	m-scop	٩			
EADSPACE MEASUREM	ENT DEVICE:	AIM				
WELL DEPTH (FT. FROM	TOC)	= 13	72			
DEPTH TO WATER (FT. FR	ROM TOC)	7	. 22	T	IME 080	5
EIGHT OF WATER IN WE	ELL	=	.50			
ONE WELL VOLUME (GAL	LONS)	=	00			
OLUME WATER REMOVE	ED (GALLONS)		in 2° diameter 1.5 1.5 1.5 1.5 1.5 1.5		ATE	6-12
AMPLE APPEARANCE: _	CALIBRATIC	to tan	1.5 tint/(SECOND	THIRD		6-P FIFTH
AMPLE APPEARANCE: _	Grey	to tan DN FIRST 0.5 gg	1.5 tint/(SECOND	Clear	ATE	6-17
AMPLE APPEARANCE:	Grey	to tan DN FIRST D.5 30 18°C	1.5 1.5 SECOND 1.5 17.5 C	THIRD	ATE	6-17
AMPLE APPEARANCE: _ FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity	Grey	to tan DN FIRST 0.5	1.5 1.5/1 SECOND 1.592 17.5°C 595	THIRD	ATE	6-17
AMPLE APPEARANCE: _ FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity	Grey	to tan DN FIRST D.5 30 18°C	1.5 1.5 SECOND 1.5 17.5 595 5.31	THIRD	ATE	6-17
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH S EATHER CONDITIONS: (CALIBRATIC CALIBRATIC	to tan DN FIRST 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.5 1.5 5.5 5.3 46.3 85-90°	THIRD DRY	ATE	6-17
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH S EATHER CONDITIONS: (CALIBRATIC CALIBRATIC CALIBRATIC (Previous 2 Day 3, COLLAR, LO	to tan DN FIRST 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.5 5.5 5.3 5.3 46.3 85-90° 0224 0	THIRD DRY F	ATE	FIFTH
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH S EATHER CONDITIONS: (ELL CONDITION (CASING	CALIBRATIC CALIBRATIC CALIBRATIC (Previous 2 Day 3, COLLAR, LO	to tan DN FIRST 0.5 % 18°C 655 5.89 7.9.9 7.9.9 (5) p. cl. DCK): got	1.5 5.5 5.3 5.3 5.3 46.3 85-90° 0224 10 10 10 10 10 10 10 10 10 10	THIRD DRY F	FOURTH	FIFTH
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH S EATHER CONDITIONS: (ELL CONDITION (CASING ANALYTICAL PARAM	CALIBRATIC CALIBRATIC CALIBRATIC (Previous 2 Day 3, COLLAR, LO	to tan DN FIRST D.5 go 18°C 655 5.89 7.9.9 7.9.9 (5) p. cl. DCK): got CONTA	1.5 5.5 5.3 5.3 5.3 46.3 85-90° 0224 10 10 10 10 10 10 10 10 10 10	THIRD DRY F	FOURTH	FIFTH
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH S EATHER CONDITIONS: (ELL CONDITION (CASING ANALYTICAL PARAM	CALIBRATIC CALIBRATIC CALIBRATIC (Previous 2 Day 3, COLLAR, LO	to tan DN FIRST D.5 go 18°C 655 5.89 7.9.9 7.9.9 (5) p. cl. DCK): got CONTA	1.5 5.5 5.3 5.3 5.3 46.3 85-90° 0224 10 10 10 10 10 10 10 10 10 10	THIRD DRY F	FOURTH	FIFTH
AMPLE APPEARANCE: FIELD PARAMETERS Volume Purged (gal) Temperature(°C) Specific Conductivity pH S EATHER CONDITIONS: (ELL CONDITION (CASING ANALYTICAL PARAM	CALIBRATIC CALIBRATIC CALIBRATIC (Previous 2 Day 3, COLLAR, LO	to tan DN FIRST D.5 go 18°C 655 5.89 7.9.9 7.9.9 (5) p. cl. DCK): got CONTA	1.5 5.5 5.3 5.3 5.3 46.3 85-90° 0224 10 10 10 10 10 10 10 10 10 10	THIRD DRY F	FOURTH	FIFTH

9-17-48-

		SAMPLE COLLECTION LOG
PROJECT # 0285659700	DATE 8 5	96
PROJECT NAME U.S.M.A West P	oint SAMPLERS Hope	Kowakk.
SITE LOCATION Wast Point N	Y Eric	Johnson
WELLID # CBMLU-3 PU	IRGING	SAMPLING
(Circle one) TIN	ME START: <u>D85D</u> ME FINISH: <u>3925</u> ECOVERY TIME:	TIME START: 1055 TIME FINISH: 1190
WELL EVACUATION DEVICE: haile	c	
SAMPLE COLLECTION DEVICE: bail	er	
WATER LEVEL MEASUREMENT DEVICE: _	m-scape	
HEADSPACE MEASUREMENT DEVICE:	NA	
WELL DEPTH (FT. FROM TOC)	= 15.99	
DEPTH TO WATER (FT. FROM TOC)	= 7.24	TIME 0847
HEIGHT OF WATER IN WELL	= 8.75	
ONE WELL VOLUME (GALLONS)	= 1.4	
	(.16 g/ft in 2° diameter	well, .65 g/ft in 4° diameter well)
VOLUME WATER REMOVED (GALLONS)	= Scel	RATE GYEGPM
SAMPLE APPEARANCE: tubid	0	

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH .	FIFTH
Volume Purged (gal)		0.50	25	4.5		
Temperature(°C)		16. °C	15%	15%		
Specific Conductivity		690	610	570		
рН		7.18	7.09	7.12		
NTU'S		71000	71000	00012		

WEATHER CONDITIONS: (Today) Summer 85-90% (Previous 2 Days) D. clouds Qu Fain WELL CONDITION (CASING, COLLAR, LOCK):

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL Motels	1000 mL	HUO2
		7

PIRNIE

	SAMPLE COLLECTION LOG
PROJECT # 1235659200	DATE 2/12/97
PROJECT NAME LONA West Pont SAMP	PLERS H. Kanalsk
SITE LOCATION West But NY	C. Trime
WELL ID # MWNF-OL PURGING	SAMPLING
UPGRADIENT / DOWNGRADIENT TIME START: ((Circle one) TIME FINISH: HEADSPACE NA (ppm) RECOVERY TI	OGHO TIME FINISH: C950
WELL EVACUATION DEVICE: Contrit upool	prop poly pipe wil check value
SAMPLE COLLECTION DEVICE: d. sposible	
WATER LEVEL MEASUREMENT DEVICE: M-Score	20
HEADSPACE MEASUREMENT DEVICE:	
WELL DEPTH (FT. FROM TOC) =	0.18
DEPTH TO WATER (FT. FROM TOC) =	7.24 TIME 0930
HEIGHT OF WATER IN WELL	8.94
ONE WELL VOLUME (GALLONS) =	143
(.16 g/	ft in 2° diameter well, .65 g/ft in 4° diameter well)
VOLUME WATER REMOVED (GALLONS) =	AD RATE
SAMPLE APPEARANCE: blocmich	turbind

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		11/2	3	41/2		
Temperature(°C)		6.3	6.6	6.6		
Specific Conductivity		80.0	0.09	0.05		
pH		8.01	7.81	5.72		
NTJ		7000	>1000	837		

~25°F WEATHER CONDITIONS: (Today) Cold cloude (Previous 2 Days) D. cloudy ~40°F

WELL CONDITION (CASING, COLLAR, LOCK):

02 .
2

45

PIRNIE

	SAMPLE COLLECTION LOG
PROJECT # 1235659200	DATE 2/12/97
PROJECT NAME USMA West Point	SAMPLERS H. Kawalak
SITE LOCATION West But WY	C. Trinne
WELL ID # MLANF -02 PURG	ING SAMPLING
(Circle one) TIME	TIME START: 0915 TIME START: 0915 TIME FINISH: 0920 VERY TIME: 5 minutes
SAMPLE COLLECTION DEVICE: 2,505	
WATER LEVEL MEASUREMENT DEVICE:	
HEADSPACE MEASUREMENT DEVICE:	
WELL DEPTH (FT. FROM TOC)	= 46.12
DEPTH TO WATER (FT. FROM TOC)	= 33.54 TIME 09.00
HEIGHT OF WATER IN WELL	= 12.58
ONE WELL VOLUME (GALLONS)	= 2.01
	(.16 g/ft in 2° diameter well, .65 g/ft in 4° diameter well)
VOLUME WATER REMOVED (GALLONS)	=RATE
SAMPLE APPEARANCE: Brown -	Containe

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		2	4	6		
Temperature(°C)		8.4	9.2	9.4		
Specific Conductivity		0.53	0.23	0.22		
pH ·		7.20	7.46	7.42		
NTU		2000	JUL	2007		

WEATHER CONDITIONS: (Today) D clady cold windy ~254 & very ~40°F (Previous 2 Days) d. cla

WELL CONDITION (CASING, COLLAR, LOCK):

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL models	16	HNO3
``````````````````````````````````````	· · · · · · · · · · · · · · · · · · ·	

-

45 .

# PIRNIE

FIRINE	SAMPLE COLLECT	TION LOG
PROJECT # 1285659200	DATE 2112197	
PROJECT NAME USMA West	Parat SAMPLERS H. Kanalsk	
SITE LOCATION West But N	C. Trinne	
WELL ID # MWYF-03	PURGING SAMPLING	
UPGRADIENT / DOWNGRADIENT (Circle one) HEADSPACE NA (ppm)	TIME EINIGH, ACT TIME EINISH' (1925	
	s pipe wit check value	
SAMPLE COLLECTION DEVICE:		
WATER LEVEL MEASUREMENT DEVICE		
HEADSPACE MEASUREMENT DEVICE:	DIA	
WELL DEPTH (FT. FROM TOC)	= 18.0	
DEPTH TO WATER (FT. FROM TOC)	= 9.05 TIME 081	5
HEIGHT OF WATER IN WELL	= 8.95	
ONE WELL VOLUME (GALLONS)	= 1,43	
	(.16 g/ft in 2° diameter well, .65 g/ft in 4° diar	neter well)
VOLUME WATER REMOVED (GALLONS	5) = <u>~ 5</u> RATE	
SAMPLE APPEARANCE: DEDIST	The developing	

FIELD PARAMETERS	CALIBRATION	FIRST	SECOND	THIRD	FOURTH	FIFTH
Volume Purged (gal)		142	3	442		
Temperature(°C)		6.1	6.2	6.4		
Specific Conductivity		0.24	0.08	0.09		
pН		6.63	6.89	6.78		
NITU		5000	>0000	20002		

WEATHER CONDITIONS:	(Today)	Claude	2 vere	cold	25°F	w. der
		2 Days) 0.				

WELL CONDITION (CASING, COLLAR, LOCK):

ANALYTICAL PARAMETERS	CONTAINERS	PRESERVATIVES
TAL metals	1L	ANC
	·	

-

45

### **ATTACHMENT D**

### DATA VALIDATION ASSESSMENT

To: Terri Haelen/Hope Kowalski

Date: February 10,1997

From: Luisa S. McGinn

Re: Validation of Waste Samples Collected at West Point, NY

This data package consisted of twenty-six (26) water samples collected at West Point, New York on July 12, 1996 through August 5, 1996. These samples were analyzed for TAL metals. This validation report is a review of the following samples:

**Client Description** Lab ID **SW-1** 96-01032-N SW-2 96-01033-N SW-3 96-01034-N 96-01035-N HSMW-01 **LEMW-02** 96-01049-N 96-01050-N **LEMW-04** LEMW-01 96-01051-N 96-01052-N LCMW-03 **LCMW-02** 96-01053-N 96-01054-N LCMW-01 LEMW-5 96-01059-N LEMW-3 96-01060-N 96-01061-N LBMW-3 96-01062-N LBMW-1 LBMW-2 96-01063-N LAMW-2 96-01064-N LAMW-3 96-01065-N LAMW-1 96-01066-N 96-01067-N MWLD-2 CBMW-01 96-01280-N 96-01281-N **CBMW-02** 96-01282-N CBMW-03 **PXMW-01** 96-01283-N **PXMW-02** 96-01284-N 96-01285-N **PXMW-03** PXMW-04 96-01286-N

The analysis performed by Malcolm Pirnie was in accordance with the Scope of Work, Sampling and Analysis for West Point, New York. Samples in this data package were qualified based upon the following guidelines:

- 1. Sample Integrity
- 2. Holding Times
- 3. Initial and Continuing Calibration
- 4. Blank Contamination
- 5. Laboratory Control Sample
- 6. Matrix Spike and Matrix Spike Duplicate
- 7. Duplicate Sample Analysis

The data was reviewed for contractual and technical compliance. Qualifications were applied following the intent of the National Functional Guidelines with Region II modifications.

**Sample Integrity:** Sample condition upon receipt was satisfactory. A pH of <2 was recorded for all samples. Sample temperature upon receipt was recorded for samples received on 7/16/96 at 8.6C, outside the control limit of 4C + 2C. All samples received on 7/16/96 were qualified for all analytes as estimated.

J----> all analytes in samples SW-1, SW-2, SW-3 & HSMW-01

**Holding times:** All samples were digested and analyzed within 28 days for Mercury and 6 months for all other analytes.

**Initial and Continuing Calibration:** The following continuing calibration verification standards were outside the control limits of 90-110%: Co-CCV1 (89.4%), As-CCV2 (89.4%), Se-CCV7 (88.4%), TI-CCV1 (110.8%), TI-CCV2 (111.0%), TI-CCV1 (111.8%) and TI-CCV2 (112.0%). Based on professional judgement, no action was taken for Co-CCV1 (89.4%), As-CCV2 (89.4%), TI-CCV1 (110.8%), and TI-CCV2 (111.0%). Action was taken for Se-CCV7 (88.4%), TI-CCV1 (111.8%) and TI-CCV2 (112.0%), and the following data results were qualified as estimated:

- J----> Se in
- Se in LBMW-01 and MWLD-02.

J----> TI In LAMW-01, MWLD-02, LAMW-03, and LBMW-02.

Blank Contamination: Method blank met QC criteria.

**Matrix Spike Analysis:** The matrix spike recoveries for Fe (73.0%), Ni (59.8%), Se (71.5%) and TI (45.0%) were outside the control limits of 75-125%. All associated data results >IDL were qualified as estimated "J" and all data results <IDL were qualified as estimated "J" and all data results <IDL were qualified as estimated "UJ" for Fe, Ni, Se and TI

J----> Fe in CBMW-01, CBMW-02, CBMW-03, PXMW-01, PXMW-02, PXMW-03 & PXMW-04.

J----> Ni, Se and Ti in SW-1, SW-2, SW-3, HSMW-01, LEMW-02, LEMW-04, LEMW-01, LCMW-03, LCMW-02, LCMW-01, LEMW-5, LEMW-3,

### LBMW-3, LBMW-1, LBMW-2, LAMW-2, LAMW-3, LAMW-1 & MWLD-2

**Matrix Spike and Matrix Spike Duplicate Analysis:** Percent RPD for Fe (28.1%) was high. However, no further action was taken since all associated samples were already qualified as estimated "J" due to matrix spike recovery criteria.

It should be noted that for all analytes except silver and mercury, a post-digestion spike is required if the matrix spike recovery does not meet criteria. A post-digestion spike was analyzed for associated analytes, and the recoveries were within 75-125%, indicating a matrix related problem associated with the samples.

- -

To: Terri Haelen/Hope Kowalski

Date: February 10,1997

From: Luisa S. McGinn

Re: Validation of Waste Samples Collected at West Point, NY

This data package consisted of two (2) soil samples collected at Camp Buchner Landfill, West Point, New York on July 2, 1996. These samples were analyzed for TAL metals. This validation report is a review of the following samples:

Client Description Lab ID

CB-TP-1-1	96-01029-N
CB-TP-1-1	96-01030-N

The analysis performed by Malcolm Pirnie was in accordance with the Scope of Work, Sampling and Analysis for West Point, New York. Samples in this data package were qualified based upon the following guidelines:

- 1. Sample Integrity
- 2. Holding Times
- 3. Initial and Continuing Calibration
- 4. Blank Contamination
- 5. Laboratory Control Sample
- 6. Matrix Spike and Matrix Spike Duplicate

7. Duplicate Sample Analysis

The data was reviewed for contractual and technical compliance. Qualifications were applied following the intent of the National Functional Guidelines with Region II modifications.

**Sample Integrity:** Sample condition upon receipt was satisfactory. Sample temperature upon receipt was not recorded.

**Holding times:** All samples were digested and analyzed within 28 days for Mercury and 6 months for all other analytes.

**Initial and Continuing Calibration:** The continuing calibration verification standards (CCV2) for TI, analysis date 8/4/96 and Se, analysis date 8/6/96 were 111.8% and 88.4% respectively. These were outside the control limits of 90-110%. Therefore, all associated data results were qualified as estimated "J".

J----> Se and TI in samples CB-TP-1-1 & CB-TP-2-1

#### Blank Contamination: Method blank met QC criteria.

**Matrix Spike Analysis:** The matrix spike recoveries for Pb (69.9%), Sb (66.0%) and Hg (126.0%) were outside the control limits of 75-125%. All associated positive data results for Hg were qualified as estimated "J". All associated data results > IDL were qualified as estimated "J" and data results < IDL were qualified as estimated "UJ" for Pb and Sb.

J----> Hg in samples CB-TP-1-1 & CB-TP-2-1 J----> Pb and Sb in samples CB-TP-1-1 & CB-TP-2-1

Matrix Spike and Matrix Spike Duplicate Analysis: Percent RPD's for Mn (37.6%) and Pb (66.2%) were high; therefore, the following samples were qualified as estimated "J":

J----> Mn in samples CB-TP-1-1 & CB-TP-2-1

Note: Pb was previously qualified due to spike recovery criteria; no further action was taken.

-----

It should be noted that for all analytes except silver and mercury, a post-digestion spike is required if the matrix spike recovery does not meet criteria. A post-digestion spike was analyzed for associated analytes, and the recoveries were within 75-125%, indicating a matrix related problem associated with the samples. To: Terri Haelen/Hope Kowalski

Date: April 10,1997

From: Lisa Greco Jupa Dreco

Re: Validation of Waste Samples Collected at West Point, NY

This data package consisted of three (3) aqueous samples collected at U.S.M.A. West Point Landfill, West Point, New York on February 12, 1997. These samples were analyzed for TAL metals. This validation report is a review of the following samples:

Client Description	Lab ID

MWVF-01	97-00371-N
MWVF-02	97-00372-N
MWVF-03	97-00373-N

This analysis was performed by the Malcolm Pirnie, Inc. Tarrytown Laboratory in accordance with the Scope of Work, Sampling and Analysis for West Point, New York. Samples in this data package were qualified based upon the following guidelines:

#### 1. Sample Integrity

- 2. Holding Times
- 3. Initial and Continuing Calibration
- 4. Blank Contamination
- 5. Laboratory Control Sample
- 6. Matrix Spike and Matrix Spike Duplicate
- 7. Duplicate Sample Analysis

The data was reviewed for contractual and technical compliance. Qualifications were applied following the intent of the National Functional Guidelines with Region II modifications.

Sample Integrity: The sample temperature upon receipt was 16°C. Therefore, all analytes in all three samples were qualified as estimated "J".

Holding times: All samples were digested and analyzed within 28 days for Mercury and 6 months for all other analytes.

Initial and Continuing Calibration: The initial and continuing calibration verification standards met the QC criteria.

Blank Contamination: All method blanks met the QC criteria.

Matrix Spike Analysis: The matrix spike recovenes for antimony (35.0%) and silver (48.0%) were outside the control limits of 75-125%. All associated data results were qualified as estimated "J". It should be noted that these analytes were previously qualified as estimated "J" due to sample integrity criteria. It should be noted that a post-digestion spike was analyzed for antimony and silver, and the results were acceptable (i.e, %R between 75 - 125%).

J----> Ag and Sb in samples MWVF-01, MWVF-02, and MWVF-03.

Matrix Spike and Matrix Spike Duplicate Analysis: The percent RPD's met the QC criteria.

LCS Analysis: All LCS recoveries met the QC criteria.