## SARNEY FARM SUPERFUND SITE AMENIA, NEW YORK

# 2018 Annual Groundwater Data and Evaluation Report

Prepared for:

U.S. Environmental Protection Agency Region II New York, New York

Dated:

November 9, 2018

Prepared by:



Amec E&E, PC 1090 Elm Street, Suite 201 Rocky Hill, Connecticut



November 9, 2018

Mr. Kevin Willis Remedial Project Manager New York/Caribbean Superfund Branch Emergency and Remedial Response Division U.S. Environmental Protection Agency - Region II 290 Broadway, 20th Floor New York, NY 10007-1866

#### RE: Sarney Farm Superfund Site 2018 Annual Groundwater Data and Evaluation Report

Dear Mr. Willis:

On behalf of Cytec Industries, Inc. and Pitney Bowes Inc., a copy of the 2018 Annual Groundwater Data and Evaluation Report for the Sarney Farm Superfund Site prepared by Amec E&E, PC (Amec) is enclosed. The report discusses data collected during the August 2018 sampling event. The 2018 sampling was performed in accordance with the additional response action required by USEPA's September 8, 2016 letter regarding the Sarney Farm Site on Benson Hill Road in Dover Plains, Amenia, New York. The attached report documents that the identified low level Volatile Organic Compounds (VOCs) in monitoring wells continue to exhibit decreasing concentrations and are attenuating due to ongoing natural processes.

Consistent with the USEPA approved Quality Assurance Project Plan (QAPP), VOCs in Site monitoring wells and private residential water supply wells have been analyzed by USEPA Method 8260. In addition, 1,4-dioxane and Monitored Natural Attenuation parameters have been analyzed for groundwater monitoring wells. Under separate cover, and consistent with prior monitoring events, individual homeowners have been provided the laboratory results of water samples collected from their wells and you have been copied on these transmittals.

As a result of two decades of groundwater monitoring since the completion of soil remediation in 1997, it is well understood that VOC concentrations are decreasing as a result of natural attenuation processes. Additionally, approximately 30 years of sampling potable water supply wells near the site have demonstrated that no complete exposure pathway for the identified low-level VOCs exists.

Mr. Kevin Willis U.S. Environmental Protection Agency 11/9/2018

If you should have any questions regarding this report, please do not hesitate to contact Michael Cote at 860-257-5539.

Sincerely,

Amec E&E, PC

Vinhael & Coto

Michael S. Cote Project Manager

Turyand Haw

Alexander Howe Staff Geologist

cc: Laura Sarney Donald MacMath for Cytec Industries Brian Quillia for Pitney Bowes Jenelle Gaylord, NYSDEC Angela Carpenter, John La Padula, USEPA (w/o enclosure)



## SARNEY FARM SUPERFUND SITE AMENIA, NEW YORK

# 2018 Annual Groundwater Data and Evaluation Report

Prepared for:

U.S. Environmental Protection Agency Region II New York, New York

Dated:

November 9, 2018

Prepared by:



Amec E&E, PC 1090 Elm Street, Suite 201 Rocky Hill, Connecticut

Amec Project No. 3610-17-0146

Augurd Haw

Alexander Howe, NYS PG #1058 Staff Geologist

hard I Coto

Michael Cote, NYS PG #112 Principal Geologist/Project Manager November 9, 2018 Date

November 9, 2018 Date

## TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                                     | 1-1 |
|-----|------------------------------------------------------------------|-----|
|     | 1.1 SITE CHRONOLOGY                                              | 1-1 |
| 2.0 | GROUNDWATER SAMPLING                                             | 2-1 |
| 3.0 | SAMPLING RESULTS AND DATA INTERPRETATION                         | 3-1 |
|     | 3.1 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES (QA/QC)            | 3-1 |
|     | 3.2 RESIDENTIAL WELL SAMPLING RESULTS                            | 3-1 |
|     | 3.3 GROUNDWATER MONITORING WELL SAMPLING RESULTS                 | 3-1 |
|     | 3.3.1 Groundwater Monitoring Well Field Measured Parameters      | 3-2 |
|     | 3.3.2 Groundwater Monitoring Well VOC Sampling Results           | 3-2 |
|     | 3.3.3 Monitored Natural Attenuation Parameter Analytical Results | 3-3 |
| 4.0 | CONCLUSIONS AND RECOMMENDATIONS                                  | 4-1 |
| 5.0 | REFERENCES                                                       | 5-1 |

Sarney Farm Superfund Site, 2018 Annual Groundwater Data and Evaluation Report November 9, 2018 Amec E&E, PC Project Number 3610-17-0146

### TABLES

- Table 1Potable Water Sample Results, 2018 Sampling EventTable 2Summary of 1,2-DCA Concentrations, Evaluated MNA Parameters Over Time, and<br/>Final Field Measured Parameters, 2018 Sampling EventTable 2Summary of Detected VOCe in Redreck Wells 1007 Through 2018 Sampling Event
- Table 3Summary of Detected VOCs in Bedrock Wells 1997 Through 2018 Sampling Events

#### **FIGURES**

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 1,2-DCA Concentrations in Groundwater, Aug. 2007 to Aug. 2018, MW-7 Series
- Figure 4 1,2-DCA Concentrations in Groundwater, MW-7 Series
- Figure 5 1,2-DCA Concentrations in Groundwater, Aug. 2007 to Aug. 2018, MW-9 Series
- Figure 6 1,2-DCA Concentrations in Groundwater, MW-9 Series
- Figure 7 1,2-DCA Concentrations in Groundwater, Aug. 2007 to Aug. 2018, MW-10 Series
- Figure 8 1,2-DCA Concentrations in Groundwater, MW-10 Series

#### **APPENDICES**

- Appendix A 2018 Laboratory Data Reports (Provided on CD)
- Appendix B 2018 Data Validation Reports
- Appendix C Mann-Kendall Test

# **GLOSSARY OF ACRONYMS**

| ARCS    | Assessment and Remediation of Contaminated Sediments              |
|---------|-------------------------------------------------------------------|
| Amec    | Amec E&E, PC                                                      |
| CERCLA  | Comprehensive Environmental Response, Compensation, and Liability |
| CLP     | Contract Laboratory Program                                       |
| COC     | Constituents-of-Concern                                           |
| 1,2-DCA | 1,2-Dichloroethane                                                |
| DO      | Dissolved Oxygen                                                  |
| DCHD    | Dutchess County Health Department                                 |
| FS      | Feasibility Study                                                 |
| LTTD    | Low-Temperature Thermal Desorption                                |
| MACTEC  | MACTEC Engineering and Consulting, Inc.                           |
| MCL     | Maximum Contaminant Level                                         |
| MIBK    | 4-methyl-2-pentanone                                              |
| NPL     | National Priorities List                                          |
| NYSDEC  | New York State Department of Environmental Conservation           |
| Order   | Unilateral Administrative Order                                   |
| ORP     | Oxidation/Reduction Potential                                     |
| PCOR    | Preliminary Close-Out Report                                      |
| PRGE    | Post-ROD Groundwater Evaluation                                   |
| QA/QC   | Quality Assurance/Quality Control                                 |
| QAPP    | Quality Assurance Project Plan                                    |
| RA      | Remedial Action                                                   |
| RI      | Remedial Investigation                                            |
| ROD     | Record of Decision                                                |
| Site    | Sarney Farm Superfund Site                                        |
| TCE     | Trichloroethylene                                                 |
| μg/L    | Micrograms per Liter                                              |
| μg/kg   | Micrograms per Kilogram                                           |
| USACE   | U.S. Army Corps of Engineers                                      |
| USEPA   | U.S. Environmental Protection Agency                              |
| VOCs    | Volatile Organic Constituents                                     |

# 1.0 INTRODUCTION

On behalf of Cytec Industries, Inc. and Pitney Bowes Inc., this 2018 Annual Groundwater Data and Evaluation Report has been prepared by Amec E&E, PC (Amec). This report presents the data for the August 2018 groundwater sampling event at the Sarney Farm Superfund Site (Site), located on Benson Hill Road in Dover Plains, Amenia, New York (Figure 1). This work has been completed pursuant to the requirements of U.S. Environmental Protection Agency (USEPA) Unilateral Administrative Order (Order), Index Number II Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 96-0214 for the Sarney Farm Superfund Site (USEPA, 2003), and the additional response action required by USEPA's September 8, 2016 letter regarding the Sarney Farm Site on Benson Hill Road in Dover Plains, Amenia, New York. Field work, laboratory analyses, and data validation discussed in this report were completed in accordance with the USEPA approved Quality Assurance Project Plan (QAPP, Amec, 2017).

For the August 2018 sampling event, the applicable modifications to the sampling program requested by the USEPA in September 2016 are described below:

- Beginning in 2017, five annual sampling rounds that include the eight monitoring wells and the residential wells in the vicinity of the Site;
- The Groundwater Data and Evaluation Report for these sampling events is to be submitted to the USEPA within 45 days of receipt of final lab data (Final Lab Data for 2018 received October 5, 2018);
- Modification of the laboratory analytical method so that the reporting limit is lower than the applicable standards;
- Addition of 1,4-dioxane for the 2017 sampling event and addition of natural attenuation parameters to the groundwater analytical suite during all five required sampling events.

As presented below, the findings of these analyses demonstrate that natural attenuation processes are degrading VOCs in groundwater at the Site.

#### 1.1 SITE CHRONOLOGY

In the late 1960s, a 5-acre portion of the Site was permitted by the Dutchess County Health Department (DCHD) as a sanitary landfill. Non-permitted industrial waste disposal was reported to have occurred at the Site over a two-year period between 1968 and 1969. The disposal of industrial waste at the Site led to its inclusion on the New York State Department of Environmental Conservation (NYSDEC) Suspected Hazardous Waste Sites Inventory in 1980, and eventually on USEPA's National Priorities List (NPL) in June 1986. Remedial Investigation (RI) and Feasibility Study (FS) reports were completed on behalf of USEPA in the 1980s, the findings of which resulted in the issuance of a Record of Decision (ROD) for the Site in September 1990. The ROD detailed the selected remedy for the Site, which included the following:

#### Drum Removal and Soil Remediation

- Drum and container removal activities
- Excavation and on-site treatment of impacted soil by low-temperature thermal desorption (LTTD).

#### Groundwater Remediation

• No Further Action that included a long-term program to monitor the distribution of contaminants in the bedrock aquifer underlying the Site.

### Drum Removal

The drum removal phase of the remedy was completed between 1992 and 1995. The work began under the direction of TAMS Consultants (TAMS, an Assessment and Remediation of Contaminated Sediments [ARCS] contractor) on behalf of the USEPA. IT Corporation performed the remedial work under subcontract to TAMS. During 1993, U.S. Army Corps of Engineers (USACE) assumed the lead role on behalf of USEPA. IT Corporation was subcontracted by USACE to complete the work. Drum removal and disposal was completed by March 1995.

#### Soil Remediation

The remedial design for the soil remedy was completed by CDM Federal Programs in August 1995 for the USACE. In May 1996, USEPA issued a Special Notice Letter to Pitney Bowes requesting that Pitney Bowes perform the soil remediation work. Pitney Bowes retained MACTEC Engineering and Consulting, Inc. (MACTEC, formerly ESE New York, P.C.) to complete the Remedial Action (RA) for soil. MACTEC proposed minor modifications to the existing design specifications in November 1996, which were subsequently approved by USEPA and NYSDEC in January 1997. MACTEC retained Williams Environmental Services, Inc. to undertake the excavation and on-site thermal treatment of soils. Soil remediation work plans were submitted to USEPA and NYSDEC in June 1997. Approvals were received September/August 1997, and mobilization to the Site began in September 1997. On-site thermal treatment of soil to remove VOCs including 2-butanone, trichloroethylene (TCE), 4-methyl-2-pentanone (MIBK), toluene, 1,2-dichloroethane (1,2-DCA), chloroform, and total xylenes was conducted from August through December 1997. Following a winter shut-down, Site restoration was completed between May and September 1998. Activities related to the treatment of impacted soil were completed by Pitney Bowes in accordance with the 1996 Administrative Order (USEPA, 1996) that was issued by USEPA and documented in the RA Report dated August 1998 (QST, 1998).

Based on the successful completion of the drum/debris removal efforts, the completion of on-site LTTD treatment of soil, and the findings of the Post-ROD Groundwater Evaluation (PRGE) Report (QST, 2001), USEPA issued a Preliminary Close-Out Report (PCOR) for the Site (USEPA, 2002). The PCOR included a complete discussion of remedial activities completed at the Site (including additional groundwater investigation) and concluded that all RAs at the Site have been completed in accordance with <u>Close</u> <u>Out Procedures for National Priorities List Sites</u> (OSWER Directive 9320.2-09 A-P).

#### **Groundwater Remediation**

During 1997, CDM installed two overburden monitoring wells, six piezometers, and one bedrock monitoring well in downgradient of Area 4 in Area 6 (Figure 2). At that time, the monitoring network was comprised of 22 monitoring wells (12 overburden and 10 bedrock) and six piezometers. Two rounds of groundwater samples were collected during that year (May and August). Nineteen wells/piezometers were sampled during the first round (seven overburden and ten bedrock monitoring wells and two piezometers), and 12 monitoring wells/piezometers were sampled during the second (five overburden and four bedrock monitoring wells and three piezometers).

Additional groundwater investigation was required by USEPA and completed on behalf of Pitney Bowes and Cytec Industries by MACTEC between 1999 and 2000 (referred to as Phase 1 and Phase 2, respectively), and included sediment sampling, the installation of additional multi-level bedrock monitoring wells and piezometers, groundwater pumping tests, and groundwater sampling, including nearby residential wells. Sampling locations are shown in Figure 2.

Upon review of groundwater data collected during the Phase 1 and Phase 2 investigations, USEPA required additional rounds of groundwater sampling in 2001 and 2002. The first 2001 sampling event was completed during June, and included monitoring wells MW-7D, MW-9D, MW-10D, MW-11D, MW-14D, MW-15D, EW-4D, and five nearby residential wells (Figure 2). The sampling of residential wells commenced in 1985, and included sampling events in 1985, 1986, 1990, 1992, 1993, 1994, 1995, 1996, 1997, and 1998. The November 2001 PRGE states that the results from these residential well sampling events showed that no well had ever exhibited VOC concentrations at or above New York or Federal drinking water standards. Additionally, no subsequent potable water sampling events have identified exceedances of these drinking water standards.

The findings of these June 2001 investigations were presented to USEPA in the PRGE Report (QST, 2001) that was approved by USEPA and finalized on November 13, 2001. The PRGE Report concluded that constituents-of-concern (COCs), primarily 1,2-DCA, generally exhibited a steady decrease in concentration since routine sampling was initiated in the late 1990s. However certain COCs were still present in a small area of the Site at concentrations in excess of current USEPA Region II groundwater Maximum Contaminant Level (MCL) standards. The overall decrease in 1,2-DCA concentration in groundwater was attributed to the completion of drum removal and on-site LTTD treatment of impacted soil, and the attenuation of contaminants through natural physical and chemical degradation processes. In addition, ongoing sampling and analysis of groundwater collected from down gradient residential supply wells continued to confirm that Site-related constituents have not impacted, nor are they expected to impact, nearby private supply wells. A second 2001 sampling event was completed in December and included monitoring wells MW-7D, MW-9D, and MW-10D.

1-4

#### Revised Groundwater Monitoring Program

Between 1999 and 2002, groundwater sampling had been conducted at approximately six-month intervals at selected monitoring wells at the Site. Specifically, sampling events were performed in July and November 1999, May and November 2000, June and December 2001, and June 2002. The results of sampling events, up to and including the June 2001 sampling event, were included in the PRGE Report (QST, 2001). The results of the December 2001 sampling event were provided to USEPA as an attachment to the Monthly Progress Report Number 65 dated March 11, 2002. The findings of the June 2002 sampling event were included in a Groundwater Evaluation Report (MACTEC, 2002).

In addition to presenting the findings of the June 2002 sampling event, the November 2002 report included a recommendation that future groundwater sampling events at the Site be conducted on an annual basis. The rationale for reducing the sampling frequency was that a continued, steady decrease in groundwater concentrations had been observed during each subsequent sampling event during the period between 1997 and 2002. USEPA approved this recommendation and has required annual sampling for a period of five years beginning in 2003. Subsequently, groundwater sampling has been completed in the summer of 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2017, and 2018 with reports describing the results of the sample analyses being submitted for each year. This report documents the 2018 groundwater sampling event.

As stated in the 2006 Groundwater Monitoring Report (MACTEC, 2006), the steady and predictable rate of decrease of contaminant concentrations in wells monitored over the previous nine years supports groundwater sampling of the current list of wells (MW-7D, MW-9D, MW-10D, and five residences) every two years to provide data at a frequency that will be suitable to demonstrate a continuation in the observed decreasing trend in concentrations. In response to the request for changing the sampling frequency to biennial, USEPA correspondence dated August 8, 2008 directed that annual sampling for four additional years is required.

The current USEPA specified groundwater monitoring program requires annual sampling, which is generally conducted in the third quarter of each year, of monitoring

wells MW-7D (shallow and deep), MW-9D (zones 1 [deep], 2 [intermediate], and 3 [shallow]), MW-10D (zones 1 [deep], 2 [intermediate], and 3 [shallow]), and five private residential water supply wells (Sarney, Emerson, Lienert [formerly Taylor], Gray-Morantz [a.k.a. 151 BHR], and Hurlburt). Note that MW-7D was repaired/replaced consistent with an USEPA approved workplan in 2012 due to damage that occurred subsequent to the 2011 groundwater sampling at this location.

Beginning in 2017, the USEPA requested the following modifications of the Sarney Farm sampling program:

- Beginning in 2017, five annual sampling rounds that include the eight monitoring wells and the five residential wells in the vicinity of the Site;
- The Groundwater Data and Evaluation Report for these sampling events is to be submitted to the USEPA within 45 days of receipt of final lab data (Final Lab Data for 2018 was received October 5, 2018);
- Modification of the laboratory analytical method so that the reporting limit is lower than the applicable standards;
- Sampling Cleaver Swamp surface water and sediment during the 2017 sampling event;
- Addition of 1,4-dioxane for the 2017 sampling event and addition of natural attenuation parameters to the groundwater analytical suite during all five required sampling events;
- Submit a modified Quality Assurance Project Plan (QAPP) that identifies proposed analytical methods and associated reporting limits (completed and USEPA approved, dated July 20, 2017).

# 2.0 GROUNDWATER SAMPLING

Groundwater sampling during the August 2018 sampling event included five residential wells near the Site and the multi-level bedrock monitoring wells located downgradient of Area 4 (MW-7D and MW-9D) and west of Areas 1 and 2 (MW-10D) as shown on Figure 2. The residential wells as described as follows:

- Gray-Morantz (a.k.a. 151 BHR and formerly referred to in prior reports as "Chamberlin")
- Lienert (formerly known as Taylor)
- Emerson
- Hurlburt
- Sarney

Prior to sampling groundwater monitoring wells, water level measurements were collected from the multi-level wells included in this sampling event (MW-7D, MW-9D, and MW-10D). Samples were collected on August 20 and 28, 2018. Groundwater sampling was completed in accordance with USEPA Groundwater Sampling Procedure for Low-Stress (Low-Flow) Purging and Sampling procedures.

The two discrete sampling zones at MW-7D, MW-7D-S (shallow) and MW-7D-D (deep) were purged and sampled using a conventional bladder pump equipped with dedicated Teflon discharge tubing. The purging process at MW-7D included low-flow pumping to minimize drawdown in the well, and monitoring of various groundwater parameters (e.g., pH, temperature, dissolved oxygen (DO), Oxidation/Reduction Potential (ORP), turbidity and conductivity) to confirm that the wells were hydraulically connected to the formation, and that valid groundwater samples would be collected. Once the parameters stabilized over three consecutive readings, the wells were considered sufficiently purged and samples were collected by directing the pump discharge into laboratory prepared sample containers.

Monitoring wells MW-9D and MW-10D are equipped with Solinst multi-level sampling devices that include dedicated, nitrogen-driven, stainless steel/Teflon bladder sampling pumps set at three discrete intervals. Both MW-9D and MW-10D include three discrete depth sampling ports/pump assemblies that are referred to as zones 1 (deep), 2

#### Sarney Farm Superfund Site, 2018 Annual Groundwater Data and Evaluation Report November 9, 2018 Amec E&E, PC Project Number 3610-17-0146

(medium) and 3 (shallow). Purging at these wells is required mainly to flush stagnant water from the dedicated sampling tubes since the design of the multi-level sampling system, which includes the use of permanent packers, precludes the presence of standing casing water. The 0.25-inch diameter sampling tubes contain approximately 0.003 gallons of water per foot. The saturated length of the sampling tubes ranges from approximately 142 feet (deep zone at MW-9D-1) to approximately 47 feet in shallow zone at the same well location. The volume of stagnant tubing water in the longest sampling tube is therefore approximately 0.4 gallons. To adequately purge stagnant sampling tube water at MW-9D and MW-10D, the water was pumped for between approximately 20 minutes and 65 minutes at flow rates of approximately 0.03 to 0.06 gallons/minute, resulting in the removal of approximately 1 to 2 gallons of water or more. Once the dedicated bladder pumps have purged the standing water in the tubing and the purge parameters (e.g., pH, temperature, etc.) had stabilized, the samples were Consistent with the QAPP, groundwater monitoring well samples were collected. submitted to TestAmerica Laboratories for analysis of VOCs and 1,4-dioxane by USEPA Method 8260 (low level) and for Monitored Natural Attenuation (MNA) parameters by various approved methods.

Residential water samples were collected from five locations identified as Sarney, Emerson, Leinert, 151 BHR (Gray-Morantz), and Hurlburt on August 20, 2018. The residential water samples were collected from an outside spigot. Before the samples were collected, the water was allowed to run for approximately 15 minutes to clear the plumbing system of standing water. Residential samples were submitted for laboratory analysis for VOCs by USEPA Method 8260 (low level).

All of the groundwater samples were collected, stored, and delivered to the laboratory under standard chain-of-custody protocols. The samples were collected in laboratory-prepared sample containers and stored on ice in secure coolers until being hand-delivered to the laboratory for analysis. Quality assurance/quality control (QA/QC) samples (field duplicates/trip blanks/equipment blank) were also collected and submitted for laboratory analyses. Backup documentation for laboratory deliverables is maintained at both the TestAmerica archives and in the central project files at Amec offices. Analytical laboratory data reports are provided in Appendix A.

2-2

The VOC analytical data were validated in accordance with USEPA data validation guidelines as presented in the QAPP by Amec chemists. The data validation report is included in Appendix B.

# 3.0 SAMPLING RESULTS AND DATA INTERPRETATION

Sections 3.1 through 3.4 below discuss the findings of the laboratory analyses for the groundwater monitoring wells, residential potable water supply wells, and QA/QC samples.

#### 3.1 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES (QA/QC)

Three trip blanks, two associated with the monitoring wells samples of August 20 and August 28, 2018, one associated with the residential well samples of August 20, 2018 were collected. In addition, one equipment blank (EB-1), one field blank (FB01), and one duplicate groundwater monitoring well sample (MW-7D-D DUP) were collected during the 2018 sampling event. Regarding trip blanks, acetone and methylene chloride (common laboratory cleaning agents) were detected in the trip blank associated with the residential well samples (TB-2) and trip blank TB-1, associated with the monitoring wells sampled on August 20, 2018 (MW-10D-1, 2, and 3). Methylene chloride was also detected in the trip blank associated with the monitoring wells sampled on August 20, 2018 (MW-10D-1, 2, and 3). Methylene chloride was also detected in the trip blank associated with the monitoring wells sampled on August 28, 2018. Acetone was reported in the field blank collected during the monitoring well sampling. 1,4-Dioxane was detected at low levels in the equipment blank and field blank samples. The correlation between groundwater sample MW-7D-D and its duplicate was good.

#### 3.2 RESIDENTIAL WELL SAMPLING RESULTS

During the 2018 sampling, consistent with previous 28 sampling events completed in 1985, 1986, 1990, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, and 2017, in 2018 no VOCs were detected in excess of State or Federal guidelines. A summary of the 2018 Residential Well Sampling Results is presented in Table 1.

#### 3.3 GROUNDWATER MONITORING WELL SAMPLING RESULTS

Section 3.3.1 below presents the findings of the field measured parameters collected during low flow sampling at the groundwater monitoring wells, Section 3.3.2 discusses the findings for the VOC analyses at the monitoring wells, and Section 3.3.3 presents the findings of the MNA analytical results.

#### 3.3.1 Groundwater Monitoring Well Field Measured Parameters

Field measured parameters were collected during low-flow sampling at the monitoring wells using a YSI SSC flow-through cell and a Hach turbidity meter calibrated according to manufactures specifications. Table 2 summarizes the MNA parameter analysis findings and the final pre-sampling field measured parameters.

#### 3.3.2 Groundwater Monitoring Well VOC Sampling Results

The results of bedrock groundwater VOC analyses are summarized and provided in Table 3, Summary of Detected VOCs in Bedrock Wells. This table includes groundwater data back to well installation and initial sampling (1997 for MW-7D; 1999 for MW-9 and MW-10D). The table is organized by well, with data presented in chronological order from the earliest to the latest sampling events. For convenience, columns for the current sampling event data are shaded in blue. Additionally, the concentration of any compound detected above its respective USEPA MCL is darkly shaded and shown in bold font.

During the 2018 sampling event, 1,2-DCA was detected at concentrations above the USEPA MCL (5  $\mu$ g/L) in the shallow and deep zones of MW-7D, in the three zones (shallow, intermediate, deep) in MW-9D, and two zones (deep and intermediate) in monitoring well MW-10D. Predominantly declining concentrations of 1,2-DCA were identified in the sampled wells. Figures 3, 5, and 7 present a graphical depiction of the groundwater concentration data for 1,2-DCA from 2007 through 2018, and Figures 4, 6, and 8 present a graphical depiction of the groundwater concentration data for 1,2-DCA from 2007 through 2018, and Figures 4, 6, and 8 present a graphical depiction of the groundwater concentration data for 1,2-DCA from 2007 through 2018, and Figures 4, 6, and 8 present a graphical depiction of the groundwater concentration data for 1,2-DCA from 2007 through 2018, and Figures 4, 6, and 8 present a graphical depiction of the groundwater concentration data for 1,2-DCA from 2007 through 2018.

In 2018, the highest concentration of 1,2-DCA was detected at the intermediate zone of MW-9D, at 59  $\mu$ g/L. The concentrations of 1,2-DCA detected in the sampled wells predominantly decreased compared to 2017 testing results.

|                                | Sumr               | nary of Recent 1       | ,2-DCA Analytica       | al Results             |                        |
|--------------------------------|--------------------|------------------------|------------------------|------------------------|------------------------|
| Well Depth<br>Zone             | Monitoring<br>Well | 2015 1,2-DCA<br>(μg/L) | 2016 1,2-DCA<br>(μg/L) | 2017 1,2-DCA<br>(μg/L) | 2018 1,2-DCA<br>(μg/L) |
| Shallow                        | MW-7D-S            | 61                     | 50                     | 59                     | 53                     |
| Deeper                         | MW-7D-D            | 79                     | 75                     | 72                     | 35                     |
|                                |                    |                        |                        |                        |                        |
| Shallow                        | MW-9D-3            | 86                     | 92                     | 79                     | 58                     |
| Intermediate                   | MW-9D-2            | 92                     | 87                     | 85                     | 59                     |
| Deep                           | MW-9D-1            | 73                     | 69                     | 70                     | 52                     |
|                                |                    |                        |                        |                        |                        |
| Shallow                        | MW-10D-3           | 0.58                   | ND                     | 0.60                   | 0.89                   |
| Intermediate                   | MW-10D-2           | 37                     | 35                     | 32                     | 23                     |
| Deep                           | MW-10D-1           | 31                     | 29                     | 27                     | 21                     |
| 1,2-DCA = 1,2<br>MW = Monitori |                    | 9                      |                        |                        |                        |

The following summarizes the 1,2-DCA detections in 2015, 2016, 2017, and 2018:

Other than 1,2-DCA, the only other VOCs detected during the 2018 sampling event were:

|                 | VOCs Other Tha                                         | an 1,2-DCA Detected    |                                                        |
|-----------------|--------------------------------------------------------|------------------------|--------------------------------------------------------|
| Parameter       | Maximum<br>Concentration<br>Detected in 2018<br>(µg/L) | Parameter              | Maximum<br>Concentration<br>Detected in 2018<br>(µg/L) |
| 1,4-Dioxane     | 13                                                     | 1,1-Dichloroethane     | 0.57                                                   |
| Benzene         | 3.3                                                    | Tetrachloroethene      | 0.34                                                   |
| Trichloroethene | 3.9                                                    | cis-1,2-Dichloroethene | 6.1                                                    |

Each of these VOCs was identified at concentrations lower than their respective USEPA MCLs, when available.

#### 3.3.3 Monitored Natural Attenuation Parameter Analytical Results

As required by the USEPA, evaluation of MNA at the Site has been completed. Based on MNA evaluation activities conducted in 2011, select MNA parameters were incorporated into the 2018 annual monitoring program for additional analysis. MNA data collected included contaminant concentrations, electron donors and acceptors, metabolic byproducts, and general water quality parameters. During the 2018 monitoring event, MNA parameters were evaluated using accepted laboratory test methods specified in the QAPP for the Site by TestAmerica Laboratories except for the following field parameters: dissolved oxygen (DO), Oxidation-Reduction Potential (i.e., ORP or Eh), pH, and temperature which were field measured. In general, this evaluation Sarney Farm Superfund Site, 2018 Annual Groundwater Data and Evaluation Report November 9, 2018 Amec E&E, PC Project Number 3610-17-0146

has identified predominantly decreasing 1,2-DCA concentrations and groundwater conditions conducive to natural attenuation as discussed below.

Decreases in contaminant concentrations are a primary line of evidence used to support MNA as an implemented remedial strategy. As presented in past annual groundwater monitoring reports prepared for the Site, concentrations of 1,2-DCA (the primary Site contaminant) have decreased significantly since site characterization in 1997. However, in recent years, the rate of this observed decline has appeared to decrease based on graphical depictions of the data. Therefore, the Mann-Kendall Test, a common nonparametric statistical approach used in MNA evaluations, was employed to assess current plume stability and the level of confidence in 1,2-DCA concentration decreases. In the Mann-Kendall Test, contaminant data collected over time from a specific monitoring location are tabulated, compared, and used to calculate a test statistic referred to as the S-statistic (Wiedemeier et al., 2000). The magnitude of the S-statistic indicates the direction and statistical level of confidence in the trend. Positive S-statistics suggest an increasing trend while negative S-statistics suggest a decreasing trend. The Mann-Kendall analysis indicates that 1,2-DCA concentrations in all monitored intervals except MW-9-D2, MW-10D-3, and MW-10D-2 are decreasing with at least 90% confidence. At all three of the monitoring wells, a negative S-statistics suggest concentrations declining, but with less than 90% confidence. The data from MW-10D-3 and MW-10D-2 appear only marginally lower than 90% confidence in declining concentrations, and the data from MW-9D-2 exhibits the lowest confidence in decreasing concentrations.

To assess the level of confidence in trends over time, the Mann-Kendall Test derived Sstatistics for each of the Mann-Kendall Tests from 2011 and through 2018 were graphed and correlated to evaluate how the trends in concentrations have changed over time. Decreasing trends in the S-statistic with time, suggesting more confidence in the declining trend in 1,2-DCA concentrations, were evident at monitoring wells MW7D-S, MW9-D1, and MW10-D1. Increasing trends in the S-statistic over time, suggesting less confidence in the declining trend in 1,2-DCA concentrations, were evident at monitoring wells MW-10D-2 and MW9-D2. At monitoring wells MW7D-D, MW9-D3, and MW10-D3, linear interpolation of S-statistic values suggested poor correlation with time. In consideration of the currently stable trend in 1,2-DCA concentrations indicated by the Sarney Farm Superfund Site, 2018 Annual Groundwater Data and Evaluation Report November 9, 2018 Amec E&E, PC Project Number 3610-17-0146

Mann-Kendall test at MW9-D2, these results suggest that future application of the test may also identify the trends in 1,2-DCA concentrations as generally stable.

The primary electron donor that has been evaluated at the Site to date is organic carbon indicated by groundwater Total Organic Carbon (TOC) concentrations. Recent TOC concentrations are lower than observed during initial rounds of sampling conducted in 1999 and 2000. Under methanotrophic conditions, methane can also serve as an electron donor. Methane concentrations were lower in August 2018 than during initial rounds of sampling conducted in 1999 and 2000. However, methane concentrations were higher and more prevalent in August 2018 than in August 2011 and showed increases from August 2017 to August 2018. This increase may be associated with the production of methane as a metabolic byproduct of methanogenisis which suggests that highly reducing conditions are present, indicating conditions appropriate for contaminant natural attenuation.

The evaluation of MNA data collected in August 2018 suggests that:

#### a) <u>Concentrations of 1,2-DCA are attenuating in Site monitoring wells.</u>

Concentrations have declined at MW10-D3 to a concentration only slightly higher than the New York State water quality standard for 1,2-DCA, and generally decreasing 1,2-DCA concentrations are noted throughout the monitoring array.

b) <u>The level of confidence in observed declines is greatest in the deep intervals of MW9</u> <u>and MW10 (i.e., MW9-D1 and MW10-D1) and the shallow intervals of MW7D and</u> <u>MW9 (i.e., MW7D-S and MW9-D3).</u>

1,2-DCA concentrations at monitoring well MW9-D2 currently appear to be stable and based on an assessment of Mann-Kendall S-statistics over time, will likely remain stable in the near term. The distribution of both contaminant levels and stability of 1,2-DCA concentrations with depth may provide insight into the mechanisms of attenuation occurring at the Site. It is possible that interactions with the surface are promoting declines in the shallow interval (possibly due to dilution and/or supply of organic carbon) and that the isolation of depth mat be promoting declines in the deep interval (due to relatively stronger reducing conditions). c) <u>Geochemical data continue to suggest that conditions conducive to reductive</u> <u>dechlorination are present in most of the Site monitoring wells (i.e., low oxygen</u> <u>concentrations, low Eh readings, the presence of ferrous iron, and the presence of</u> <u>methane).</u>

This MNA data suggests that the annual frequency of monitoring has been sufficient to evaluate trends but may be reduced further without significant impact to future evaluations.

# 4.0 CONCLUSIONS AND RECOMMENDATIONS

The following section of this report summarizes the findings and conclusions of the 2018 groundwater sampling event and provides applicable recommendations.

#### CONCLUSIONS AND RECOMMENDATIONS

- 1. In the residential wells, in 2018 no VOCs were detected, and none have been detected above State or Federal guidelines during 29 sampling events since monitoring began in 1985.
- 2. Groundwater monitoring of select bedrock and residential wells has been conducted on an annual basis for 16 years (2002 through 2018) with previous semi-annual sampling having been conducted from 1999 through 2001. Periodic sampling and analysis of the nearby residential wells has been conducted since 1985. The data continue to suggest that reducing the groundwater monitoring frequency would be adequate to continue to demonstrate the attenuation of VOCs at the Site.

Data collected during the 2018 sampling event from the Site monitoring wells indicate that concentrations of 1,2-DCA remain above the USEPA MCL on the Site. The impacted area of the aquifer remains relatively small, with the concentrations of 1,2-DCA in groundwater continuing to show generally decreasing trends since source removal activities and treatment of contaminated soils was completed in 1997.

1,4-dioxane was detected at low concentrations not exceeding 13  $\mu$ g/L in each of the sampled groundwater monitoring wells.

**RECOMMENDATION**: The data suggests that USEPA approval of a Technical Impracticability (TI) Waiver is appropriate. At this time, Amec is preparing a TI Evaluation Report for the Site and recommends that the frequency of groundwater monitoring be reduced. The data from the private wells and the groundwater monitoring wells is supported by the USEPA statement in the Third Five-Year Review (2016) "since there have been no historic detections in the residential wells, it is indicative that these wells are not in hydraulic connection with contaminated fractures in the bedrock." Therefore, there are no complete exposure pathways for the Site groundwater contamination.

3. Mann-Kendall statistical evaluation and graphical depictions of trends demonstrate that low level 1,2-DCA concentrations are continuing to attenuate due to ongoing natural processes.

Though the rate of VOC degradation may slow, VOCs at the Site continue to attenuate. As a result, reducing the groundwater monitoring frequency at the Site will not adversely impact human health or the environment.

The area of impacted Site groundwater is remote and difficult to access. If the Site were to be re-developed, the DCHD would restrict the installation of potable water supply wells in this area. In the Third Five Year Review for the Site, the USEPA stated that "EPA believes that the DCDH requirement for installation of new wells currently provides adequate control to ensure that this localized portion of the aquifer is not utilized for drinking water. The DCDH requires that a plan (including the specific location) for drilling a well be submitted for review and approval prior to the well installation. DCDH reviews this drilling plan against the NYSDEC list of inactive hazardous waste disposal sites to determine if there may be any groundwater quality concerns in the vicinity prior to issuing a permit for well installation."

Based on these factors, the absence of contaminants exceeding regulatory criteria in surface water and in potable water supply wells for nearly thirty years, Amec concludes that the No Further Action remedy for groundwater selected by the USEPA in the ROD continues to be protective and appropriate, and no further response actions are necessary.

## 5.0 REFERENCES

Amec E&E, PC, July 20, 2017, Quality Assurance Project Plan.

Amec Foster Wheeler, November 2017, Annual Groundwater Monitoring Report.

Amec Foster Wheeler, October 2016, Annual Groundwater Monitoring Report.

Amec Foster Wheeler, December 2015, Annual Groundwater Monitoring Report.

Amec Foster Wheeler, November 2014, Annual Groundwater Monitoring Report.

Amec Foster Wheeler, October 2013. Annual Groundwater Monitoring Report.

Amec Foster Wheeler, January 2012. Annual Groundwater Monitoring Report.

- MACTEC (formerly ESE New York, P.C.), June 11, 2001. Sarney Farm Site, June 2001Groundwater sampling Program ESE No. 716472.0400, letter submitted to USEPA Region II.
- MACTEC (formerly ESE New York, P.C.), November 4, 2002. Groundwater Evaluation Report.

MACTEC, April, 2008. Annual Groundwater Monitoring Report.

MACTEC, October 2009. Annual Groundwater Monitoring Report.

MACTEC, October 2010. Annual Groundwater Monitoring Report.

- QST New York, P.C., August 1998. Remedial Action Report, draft submitted to USEPA Region II.
- QST New York, P.C., February 26, 1999. Sarney Farm Superfund Site, Groundwater Focused Feasibility Study Sampling and Analysis Plan, Final version submitted to USEPA by QST New York P.C.

QST New York, P.C., November 13, 2001. Post-ROD Groundwater Evaluation Report.

- USEPA, October 2002. Preliminary Close-Out Report for the Sarney Farm Superfund Site.
- USEPA, 2003. Unilateral Administrative Order, Index Number II CERCLA 96-0214 for the Sarney Farm Superfund Site.
- USEPA, February 13, 2008. RE: Follow up: Sarney Farm Superfund Site, email submitted to MACTEC.

TABLES

#### TABLE 1 POTABLE WATER SAMPLE RESULTS

#### AUGUST 2018 WATER SAMPLING SARNEY FARM SUPERFUND SITE AMENIA, NEW YORK

| Sample D                 | elivery Group | 151BHR           | EMERSON          | HURLBERT         | LIENERT          | SARNEY           |
|--------------------------|---------------|------------------|------------------|------------------|------------------|------------------|
|                          | Location      | 460-163028-1     | 460-163028-1     | 460-163028-1     | 460-163028-1     | 460-163028-1     |
|                          | Sample Date   | 8/20/2018        | 8/20/2018        | 8/20/2018        | 8/20/2018        | 8/20/2018        |
|                          | Sample ID     | 151 BHR          | EMERSON          | HURLBURT         | LEINERT          | SARNEY           |
| Parameter                | Units         | Result Qualifier |
| 1,1,1-Trichloroethane    | μg/L          | 0.5 U            |
| 1,1,2-Trichloroethane    | μg/L          | 0.5 U            |
| 1,1-Dichloroethane       | μg/L          | 0.5 U            |
| 1,1-Dichloroethene       | μg/L          | 0.5 U            |
| 1,2,3-Trichlorobenzene   | μg/L          | 0.5 U            |
| 1,2,4-Trichlorobenzene   | μg/L          | 0.5 U            |
| 1,2,4-Trimethylbenzene   | μg/L          | 0.5 U            |
| 1,2-Dichlorobenzene      | μg/L          | 0.5 U            |
| 1,2-Dichloroethane       | μg/L          | 0.5 U            |
| 1,2-Dichloropropane      | μg/L          | 0.5 U            |
| 1,3,5-Trimethylbenzene   | μg/L          | 0.5 U            |
| 1,3-Dichlorobenzene      | μg/L          | 0.5 U            |
| 1,4-Dichlorobenzene      | μg/L          | 0.5 U            |
| 2-Butanone               | μg/L          | 2.5 U            |
| 2-Hexanone               | μg/L          | 2.5 U            |
| 4-Methyl-2-pentanone     | μg/L          | 2.5 U            |
| Acetone                  | μg/L          | 1.6 J            | 1.6 J            | 2.2 J            | 1.4 J            | 1.6 J            |
| Benzene                  | μg/L          | 0.5 U            |
| Carbon disulfide         | μg/L          | 0.5 U            |
| Carbon tetrachloride     | μg/L          | 0.5 U            |
| Chlorobenzene            | μg/L          | 0.5 U            |
| Chloroethane             | μg/L          | 0.5 U            |
| Chloroform               | μg/L          | 0.5 U            |
| Chloromethane            | μg/L          | 0.5 U            |
| Cis-1,2-Dichloroethene   | μg/L          | 0.5 U            |
| Dichlorodifluoromethane  | μg/L          | 0.5 U            |
| Ethylbenzene             | μg/L          | 0.5 U            |
| Methylene chloride       | μg/L          | 0.5 U            |
| Naphthalene              | μg/L          | 0.5 U            |
| Propylbenzene            | μg/L          | 0.5 U            |
| Styrene                  | μg/L          | 0.5 U            |
| Tetrachloroethene        | μg/L          | 0.5 U            |
| Toluene                  | μg/L          | 0.5 U            |
| trans-1,2-Dichloroethene | μg/L          | 0.5 U            |
| Trichloroethene          | μg/L          | 0.5 U            |
| Trichlorofluoromethane   | μg/L          | 0.5 U            |
| Vinyl chloride           | μg/L          | 0.5 U            |
| Xylene, o                | μg/L          | 0.5 U            |
| Xylenes (m&p)            | μg/L          | 0.5 U            |
| Xylenes, Total           | μg/L          | 1 U              | 1 U              | 1 U              | 1 U              | 1 U              |

Notes:

U = Not detected above the presented Reporting Limit

J = Estimated Concentration

µg/L = micrograms per liter

# TABLE 2 SUMMARY OF 1,2-DCA CONCENTRATIONS, EVALUATED MNA PARAMETERS OVER TIME, AND FINAL FIELD MEASURED PARAMETERS Sarney Farm Superfund Site - Amenia, New York

|                   |       |        |                    |                     |                                    | Paramete           | er Concenti         | ation by Lo           | cation              |                      |                       |
|-------------------|-------|--------|--------------------|---------------------|------------------------------------|--------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|
| Parameter<br>Name | Units | Date   | MW7D-S<br>39-72 ft | MW7D-D<br>72-101 ft | MW7D-D<br>(Duplicate)<br>72-101 ft | MW9-D3<br>38-55 ft | MW9-D2<br>55-102 ft | MW9-D1<br>102 -147 ft | MW10-D3<br>48-68 ft | MW10-D2<br>68-110 ft | MW10-D1<br>110-144 ft |
| 1,2-DCA           | µg/L  | Nov-99 | 390                | 600                 | NA                                 | 450                | 360                 | 400                   | 14                  | 67                   | 70                    |
|                   |       | May-00 | 250                | 490                 | NA                                 | 350                | 300                 | 320                   | 6                   | 69                   | 86                    |
|                   |       | Jul-06 | 8                  | 190                 | 190                                | 130                | 160                 | 100                   | NA                  | 30                   | 44                    |
|                   |       | Aug-11 | 130                | 48                  | 50                                 | 110                | 73                  | 89                    | 0.9                 | 43                   | 36                    |
|                   |       | Aug-17 | 59                 | 72                  | 58                                 | 79                 | 85                  | 70                    | 0.6                 | 32                   | 27                    |
|                   |       | Aug-18 | 53                 | 35                  | 36                                 | 58                 | 59                  | 52                    | 0.89                | 23                   | 21                    |
| Ethane            | µg/L  | Nov-99 | 8.3                | 7.3                 | NA                                 | <5.0               | 8.0                 | 35                    | <5.0                | <5.0                 | 6.4                   |
|                   |       | May-00 | NA                 | 6.4                 | NA                                 | NA                 | NA                  | 31                    | NA                  | <4.0                 | NA                    |
|                   |       | Aug-11 | <4                 | <4                  | <4                                 | <4                 | <4                  | <4                    | <4                  | <4                   | <4                    |
|                   |       | Aug-17 | NA                 | NA                  | NA                                 | NA                 | NA                  | NA                    | NA                  | NA                   | NA                    |
| Ethene            | µg/L  | Nov-99 | <6.0               | <6.0                | NA                                 | <6.0               | <6.0                | <6.0                  | <6.0                | <6.0                 | <6.0                  |
|                   |       | May-00 | NA                 | <3.0                | NA                                 | NA                 | NA                  | 3.3                   | NA                  | <3.0                 | NA                    |
|                   |       | Aug-11 | <3                 | <3                  | <3                                 | <3                 | <3                  | <3                    | <3                  | <3                   | <3                    |
|                   |       | Aug-17 | NA                 | NA                  | NA                                 | NA                 | NA                  | NA                    | NA                  | NA                   | NA                    |
| TOC               | mg/L  | Nov-99 | 17.3               | 16.1                | NA                                 | 15                 | 16.5                | 15.9                  | 12.7                | 12.8                 | 10.9                  |
|                   |       | May-00 | NA                 | 15.9                | NA                                 | NA                 | NA                  | NA                    | NA                  | 12.4                 | NA                    |
|                   |       | Aug-11 | <1                 | <20.98              | <1                                 | <1                 | 0.41J               | 0.7J                  | <1                  | <1                   | 0.47J                 |
|                   |       | Aug-17 | 1.2                | 1.1                 | 1.2                                | 1.1                | 1.1                 | 1.4                   | 0.86                | 0.84                 | 0.87                  |
|                   |       | Aug-18 | <1                 | 0.66                | <1                                 | <1                 | <1                  | 0.75                  | <1                  | <1                   | <1                    |
| Dissolved         | mg/L  | Nov-99 | 0.91               | 0.91                | NA                                 | 0.3                | 0.37                | 0.36                  | 2.54                | 0.34                 | 0.33                  |
| Oxygen            |       | May-00 | NA                 | 0.35                | NA                                 | NA                 | NA                  | 2.57                  | NA                  | 2.04                 | NA                    |
| (Field            |       | Aug-11 | 0.69               | 0.25                | NA                                 | 1.43               | 0.48                | 0.9                   | 3.82                | 0.81                 | 0.47                  |
| Measured)         |       | Aug-17 | 0.61               | 0.94                | NA                                 | 0.5                | 0.5                 | 0.6                   | 2.5                 | 0.9                  | 0.6                   |
|                   |       | Aug-18 | 0.47               | 1.1                 | NA                                 | 1.0                | 1.1                 | 1.2                   | 4.2                 | 0.84                 | 0.75                  |
| Nitrogen as       | mg/L  | Nov-99 | <0.2               | <0.2                | NA                                 | <0.2               | <0.2                | <0.2                  | <0.2                | <0.2                 | <0.2                  |
| Nitrate-Nitrite   |       | May-00 | NA                 | <0.2                | NA                                 | NA                 | NA                  | <0.2                  | NA                  | <0.2                 | NA                    |
|                   |       | Aug-17 | <0.05              | <0.05               | <0.05                              | <0.05              | <0.05               | < 0.05                | <0.05               | <0.05                | < 0.05                |
|                   |       | Aug-18 | <0.05              | <0.05               | <0.05                              | <0.05              | <0.05               | < 0.05                |                     | <0.05                | < 0.05                |
| Nitrate as N      | mg/L  | Aug-11 | <0.05              | <0.05               | <0.05                              | <0.05              | <0.05               | < 0.05                | 0.15                | <9.25                | 0.062                 |
| Nitrite as N      | mg/L  | Aug-11 | <0.01              | <0.01               | <0.01                              | <0.01              | <0.01               | <0.01                 | <0.01               | <11.27               | <0.01                 |
| Manganese         | µg/L  | Nov-99 | 235                | 98.2                | NA                                 | 120                | 94.5                | 24.2                  | 21.2                | 64.8                 | 36.6                  |
|                   |       | May-00 | NA                 | 63                  | NA                                 | NA                 | NA                  | 13.8B                 | NA                  | 61.9                 | NA                    |

# TABLE 2 SUMMARY OF 1,2-DCA CONCENTRATIONS, EVALUATED MNA PARAMETERS OVER TIME, AND FINAL FIELD MEASURED PARAMETERS Sarney Farm Superfund Site - Amenia, New York

|                   |       |        |                    |                     |                                    | Paramete           | er Concentr         | ation by Lo           | cation              |                      |                       |
|-------------------|-------|--------|--------------------|---------------------|------------------------------------|--------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|
| Parameter<br>Name | Units | Date   | MW7D-S<br>39-72 ft | MW7D-D<br>72-101 ft | MW7D-D<br>(Duplicate)<br>72-101 ft | MW9-D3<br>38-55 ft | MW9-D2<br>55-102 ft | MW9-D1<br>102 -147 ft | MW10-D3<br>48-68 ft | MW10-D2<br>68-110 ft | MW10-D1<br>110-144 ft |
| Iron, Total       | µg/L  | Nov-99 | 5.3B               | 609                 | NA                                 | 678                | 623                 | 75.6B                 | 7B                  | 16B                  | 352                   |
|                   |       | May-00 | NA                 | 672                 | NA                                 | NA                 | NA                  | 131                   | NA                  | <10.7                | NA                    |
|                   |       | Aug-11 | 430                | 395                 | 406                                | 891                | 673                 | 296                   | 4240                | 187J                 | 245J                  |
|                   |       | Aug-17 | 860                | 750                 | 190                                | 1000               | 700                 | 460                   | 3800                | 69                   | 340                   |
|                   |       | Aug-18 | 640                | 290                 | 290                                | 1000               | 680                 | 320                   | 4200                | 110                  | 370                   |
| Iron, Ferrous     | mg/L  | Aug-11 | 2                  | <1                  | NA                                 | 1                  | 4                   | <1                    | <1                  | <1                   | 2                     |
| (Dissolved)       |       | Aug-17 | 0                  | 0                   | NA                                 | 0.3                | 0.2                 | 0                     | 0                   | 0                    | 0.12                  |
|                   |       | Aug-18 | 0.47               | 0.3                 | 0.28                               | 0.95               | 0.66                | 0.27                  | 0.069               | 0.083                | 0.36                  |
| Sulfate           | mg/L  | Nov-99 | 23                 | 23                  | NA                                 | 25                 | 26                  | 17                    | 20                  | 23                   | 19                    |
|                   |       | May-00 | NA                 | 24                  | NA                                 | NA                 | NA                  | 18                    | NA                  | 24                   | NA                    |
|                   |       | Aug-11 | 33.8               | 28.3                | 28.4                               | 35.2               | 29.8                | 20.3                  | 22.1                | 224.1                | 22.9                  |
|                   |       | Aug-17 | 26.7               | 26.9                | 27.6                               | 27.4               | 31.5                | 22.9                  | 19.9                | 28                   | 26.3                  |
|                   |       | Aug-18 | 28.1               | 27.1                | 27.2                               | 28.3               | 30.8                | 22.9                  | 21.9                | 31.5                 | 28.5                  |
| Sulfide           | mg/L  | Nov-99 | <0.1               | <0.1                | NA                                 | <0.1               | <0.1                | <0.1                  | <0.1                | <0.1                 | 0.28                  |
|                   |       | May-00 | NA                 | <0.1                | NA                                 | NA                 | NA                  | 0.4                   | NA                  | <0.1                 | NA                    |
|                   |       | Aug-11 | <1                 | <1                  | <1                                 | <1                 | <1                  | 1                     | <1                  | <1                   | 1                     |
|                   |       | Aug-17 | <1                 | <1                  | <1                                 | <1                 | <1                  | <1                    | <1                  | <1                   | <1                    |
|                   |       | Aug-18 | <1                 | <1                  | <1                                 | <1                 | <1                  | 0.8 J                 | <1                  | <1                   | <1                    |
| Alkalinity        | mg/L  | Nov-99 | 334                | 343                 | NA                                 | 334                | 334                 | 356                   | 260                 | 260                  | 251                   |
|                   |       | May-00 | NA                 | 377                 | NA                                 | NA                 | NA                  | 291                   | NA                  | 272                  | NA                    |
|                   |       | Aug-11 | 345                | 279                 | 269                                | 330                | 275                 | 247                   | 319                 | 256                  | 239                   |
|                   |       | Aug-17 | NA                 | NA                  | NA                                 | NA                 | NA                  | NA                    | NA                  | NA                   | NA                    |
| Chloride          | mg/L  | Nov-99 | 5.7                | 17.1                | NA                                 | 6.6                | 8.6                 | 5.7                   | 5.7                 | 4.8                  | 3.8                   |
|                   |       | May-00 | NA                 | 9.6                 | NA                                 | NA                 | NA                  | <5.0                  | NA                  | <5.0                 | NA                    |
|                   |       | Aug-11 | 3.1                | 3.4                 | 3.4                                | 2.8                | 3.9                 | 4.1                   | 1.8                 | 113.1                | 4                     |
|                   |       | Aug-17 | NA                 | NA                  | NA                                 | NA                 | NA                  | NA                    | NA                  | NA                   | NA                    |
| Carbon            | µg/L  | Nov-99 | <350               | <350                | NA                                 | <350               | <350                | <350                  | <350                | <350                 | <350                  |
| Dioxide           |       | May-00 | NA                 | <350                | NA                                 | NA                 | NA                  | <350                  | NA                  | <350                 | NA                    |
|                   |       | Aug-11 | 4800               | 3000                | 3200                               | 6200               | 4000                | 4900                  | 4600                | 3200                 | 2000                  |
|                   |       | Aug-17 | NA                 | NA                  | NA                                 | NA                 | NA                  | NA                    | NA                  | NA                   | NA                    |

#### TABLE 2 SUMMARY OF 1,2-DCA CONCENTRATIONS, EVALUATED MNA PARAMETERS OVER TIME, AND FINAL FIELD MEASURED PARAMETERS Sarney Farm Superfund Site - Amenia, New York

|                   |       |        |                    |                     |                                    | Paramete           | er Concenti         | ation by Lo           | cation              |                      |                       |
|-------------------|-------|--------|--------------------|---------------------|------------------------------------|--------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|
| Parameter<br>Name | Units | Date   | MW7D-S<br>39-72 ft | MW7D-D<br>72-101 ft | MW7D-D<br>(Duplicate)<br>72-101 ft | MW9-D3<br>38-55 ft | MW9-D2<br>55-102 ft | MW9-D1<br>102 -147 ft | MW10-D3<br>48-68 ft | MW10-D2<br>68-110 ft | MW10-D1<br>110-144 ft |
| Methane           | µg/L  | Nov-99 | 110                | 88                  | NA                                 | 85                 | 81                  | 15                    | <2                  | 8.6                  | 21                    |
|                   |       | May-00 | NA                 | 90                  | NA                                 | NA                 | NA                  | 24                    | NA                  | 7.2                  | NA                    |
|                   |       | Aug-11 | <2                 | <2                  | <2                                 | <2                 | <2                  | 4.2                   | <2                  | <2                   | 16                    |
|                   |       | Aug-17 | 5.1                | 8.2                 | 22                                 | 1.3                | 4.4                 | 14                    | 0.19 J              | 0.61                 | 19                    |
|                   |       | Aug-18 | 11                 | 51                  | 49                                 | 2                  | 15                  |                       | <.58                | 1.8                  | 43                    |
| pH (Field         | std.  | Nov-99 | 7.4                | 7.3                 | NA                                 | 7.3                | 7.3                 | 7.4                   | 7.4                 | 7.4                  | 7.1                   |
| Measured)         | units | May-00 | NA                 | 7.3                 | NA                                 | NA                 | NA                  | 7.5                   | NA                  | 7.2                  | NA                    |
|                   |       | Aug-11 | 7.0                | 7.1                 | NA                                 | 7.1                | 7.4                 |                       | 7.0                 | 6.9                  | 7.2                   |
|                   |       | Aug-17 | 7.4                | 7.5                 | NA                                 | 7.4                | 7.6                 | 7.7                   | 7.1                 | 7.5                  |                       |
|                   |       | Aug-18 | 7.3                | 7.1                 | NA                                 | 5.7                | 5.7                 | 5.7                   | 7.4                 | 7.4                  | 7.3                   |
| Eh* (Field        | mV    | Nov-99 | 99.7               | -52.2               | NA                                 | -91                | -107                | -127                  | -51                 | -111                 | -101                  |
| Measured)         |       | May-00 | NA                 | -128                | NA                                 | NA                 | NA                  | -184.9                | NA                  | -52.9                | NA                    |
|                   |       | Aug-11 | 71                 | 78                  | NA                                 | -87                | -148                | -89                   | 46                  | 67                   | -145                  |
|                   |       | Aug-17 | -77                | -54                 | NA                                 | -160               | -220                | -210                  | 80                  | -39                  | -120                  |
|                   |       | Aug-18 | -9.4               | 36.8                | NA                                 | -134               | -190                | -200                  | 34.4                | -44.3                | -89.3                 |
| Temp. (Field      | °C    | Nov-99 | 5.7                | 7.4                 | NA                                 | 9.4                | 9.4                 | 9.4                   | 10                  | 10                   | 10                    |
| Measured)         |       | May-00 | NA                 | 11                  | NA                                 | NA                 | NA                  | 10                    | NA                  | 11                   | NA                    |
|                   |       | Aug-11 | 12                 | 11                  | NA                                 | Anomolous          | 13                  | 14                    | 13                  | 13                   | 13                    |
|                   |       | Aug-17 | 22                 | 16                  |                                    | 15                 | 13                  | 15                    |                     | 12                   | 13                    |
|                   |       | Aug-18 | 13                 | 13                  | NA                                 | 14                 | 14                  | 15                    | 10                  | 11                   | 11                    |

Notes:

\* Eh is a measurement of Oxidation-Reduction Potential (ORP) using a hydrogen electrode.

1,2-DCA = 1,2-Dichloroethane

B = data qualifier indicating the analyte was present in the associated laboratory blank

J = data qualifier indicating the analyte concentration is estimated

NA = not analyzed

 $^{o}$ C = degrees Celsius  $\mu$ g/L = micrograms per Liter mg/L = milligrams per Liter mV = millivolts std. units = Standard Units

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.<br>Date Sampled | EPA MCL | NYSDEC   | MW-70<br>05/28/97 | MW-7D<br>08/06/97 | MW-7DE |   | MW-7D-<br>9/15/199 |          | MW-7D-D-D<br>9/15/1999 |   | MW-7D-<br>11/16/19 |    | MW-7D-<br>5/25/200 |   | MW-7D-<br>11/14/20 |   | MW-7D-D<br>11/14/20 |    | MW-7D<br>6/19/20 |   | MW-7D-D<br>6/19/20 |                                             |
|--------------------------|---------|----------|-------------------|-------------------|--------|---|--------------------|----------|------------------------|---|--------------------|----|--------------------|---|--------------------|---|---------------------|----|------------------|---|--------------------|---------------------------------------------|
| Sample/Zone Depth        | (ug/L)  | Class GA | 50 ft.            | 50 ft.            | 89 ft. |   | 72 - 101           |          | 72 - 101 f             |   | 72 - 101           |    | 72 - 101           |   | 72 - 101           |   | 72 - 101            |    | 72 - 101         |   | 72 - 101           |                                             |
| Analyte (ug/L)           | (5)     | (ug/L)   |                   |                   |        |   | -                  |          | -                      | - |                    |    |                    |   | _                  |   | _                   | -  |                  |   |                    |                                             |
| Chloromethane            |         | 5        |                   |                   | 9      |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Vinyl Chloride           | 2       | 2        |                   | 1                 |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Chloroethane             |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Methylene Chloride       | 5       | 5        | 25                |                   |        |   |                    |          |                        |   | 0.5                | J  |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Acetone                  |         | 50       |                   |                   |        |   | 3                  | J        | 5.                     | J |                    | -  |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Carbon Disulfide         |         | 60       |                   |                   |        |   |                    | -        |                        | - |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,1-Dichloroethene       | 7       | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,1-Dichloroethane       |         | 5        | 46                |                   |        |   | 4                  | J        | 4                      | 1 | 4.1                |    | 3                  | J | 3                  | J | 2                   | .1 | 3                |   | 3                  | J                                           |
| Chloroform               | 1       | 7        | 40                |                   | <br>   |   |                    | 0        |                        | , | 7.1                |    | Ű                  | 0 | Ű                  | 0 |                     | 0  |                  | ° |                    | <u> </u>                                    |
| 1,2-Dichloroethane       | 5       | 0.6      | 6400              | 760               | 910    |   | 640                | п        | 680 [                  | n | 600                | п  | 490                |   | 600                |   | 540                 |    | 460              |   | 490                |                                             |
| 2-Butanone               | 5       | 50       | 0400              | 700               | 310    | _ | 040                | <u> </u> | 0001                   |   | 000                | 5  | 430                | _ | 000                | _ | 340                 |    | 400              |   | 400                |                                             |
| 1,1,1-Trichloroethane    | 200     |          |                   | <br>              |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | ├                                           |
| Carbon Tetrachloride     | 200     | 5        |                   | <br><u> </u>      | <br>   |   |                    |          | <del>  − −  </del>     |   |                    |    | +                  |   |                    |   |                     |    |                  |   |                    | ├──                                         |
| 1,2-Dichloropropane      | 5       | 0        |                   |                   | <br>   |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
|                          | 5       | 1        | 16                |                   | <br>   |   | 2                  |          | 3                      |   | 3.3                |    | 2                  |   | 2                  |   | 3                   |    | 0                |   | 2                  | <b>├</b> ──                                 |
| Trichloroethene          | 5       | 5        | 10                | 17                | <br>17 |   | 2<br>14            | J        | 15                     | J | 3.3<br>14          |    | 11                 | J | 3<br>12            | J | 12                  | J  | 2                |   |                    |                                             |
| Benzene                  | 5       | 1        | 100               | 17                | <br>17 |   | 14                 |          | 15                     |   | 14                 |    | 11                 |   | 12                 |   | 12                  |    | 11               |   | 10                 | <b> </b>                                    |
| 4-Methyl-2-Pentanone     |         | 5<br>50  |                   |                   | <br>   |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| 2-Hexanone               | _       |          |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | Ļ                                           |
| Tetrachloroethene        | 5       | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | Ļ                                           |
| Toluene                  | 1000    |          |                   |                   | <br>   |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| Chlorobenzene            | 100     |          |                   |                   | <br>   |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| Ethylbenzene             | 700     |          |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | L                                           |
| Styrene                  | 100     | -        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | L                                           |
| P & M Xylenes            |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | L                                           |
| O Xylene                 |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Xylenes (total)          | 10000   | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,1,2-Trichloroethane    | 5       | 1        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Dichlorodifluoromethane  |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| Trichlorofluoromethane   |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| cis-1,2-Dichloroethene   | 70      | 5        |                   |                   |        |   | 31                 |          | 33                     |   | 47                 | JD | 36                 |   | 41                 |   | 40                  |    | 35               |   | 34                 |                                             |
| trans-1,2-Dichloroethene | 100     | 5        | 140               | 16                | 27     |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| N-Propylbenzene          |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,3,5-Trimethylbenzene   |         | 5        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,2,4-Trimethylbenzene   |         | 5        |                   | 1 1               |        |   |                    |          |                        |   |                    |    | 1                  |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,3-Dichlorobenzene      |         | 3        |                   | 1 1               |        |   |                    |          |                        |   |                    |    | 1                  |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,4-Dichlorobenzene      | 75      | 3        |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,2-Dichlorobenzene      | 600     |          |                   |                   |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    |                                             |
| 1,2,4-Trichlorobenzene   | 70      |          |                   | 1 1               |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| Naphthalene              |         | 10       |                   | † †               |        |   |                    |          |                        |   |                    |    | 1                  |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| 1,2,3-Trichlorobenzene   |         | 5        |                   | <br>              |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| 1,4-Dioxane              |         | 5        |                   | <br>              |        |   |                    |          |                        |   |                    |    |                    |   |                    |   |                     |    |                  |   |                    | <u> </u>                                    |
| .,. Dioxune              | I       | 5        |                   | I I               |        |   |                    |          | 1 1                    |   |                    |    | 11                 |   | Data Qualifiers    |   | 1                   |    |                  |   |                    | <u>ــــــــــــــــــــــــــــــــــــ</u> |

Notes:

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCL Most recent sampling events are blue shaded columns

ft. = foot USEPA = U.S Environmental Proctection Agency B = Analyte detected in blank.

D = Value obtained through secondary dilution. E = Value exceeded instrument calibration range.

NYSDEC = New York State Department of Environmental Conservation J = Indicates an estimated value.

Blank = Not detected.

MCL = Maximum Contaminant Level

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NYSDEC   | MW-7D-D    |           |            | MW-7D    |           | MW-7D-E  |     | MW-7E    |     | MW-7D-D  |     | MW-7D    |     | MW-7D-D  |     | MW-7D       |     | MW-7D-  |       | MW-7D-   |     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|------------|----------|-----------|----------|-----|----------|-----|----------|-----|----------|-----|----------|-----|-------------|-----|---------|-------|----------|-----|
| Date Sampled             | EPA MCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Class GA | 12/12/200  |           |            | 6/20/20  |           | 6/20/20  |     | 7/24/200 |     | 7/24/200 |     | 7/13/200 |     | 7/13/200 |     | 8/10/20     |     | 8/10/20 |       | 7/25/200 |     |
| Sample/Zone Depth        | (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/L)   | 72 - 101 f | t. 72 - 1 | 01 ft.     | 72 - 101 | ft.       | 72 - 101 | ft. | 72 - 101 | ft. | 72 - 101 | ft. | 72 - 101 | ft. | 72 - 101 | ft. | 72 - 101    | ft. | 72 - 10 | 1 ft. | 72 - 101 | ft. |
| Analyte (ug/L)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Chloromethane            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Vinyl Chloride           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Chloroethane             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Methylene Chloride       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Acetone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50       |            |           | 4 J        |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Carbon Disulfide         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60       |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,1-Dichloroethene       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1.1-Dichloroethane       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        | 2 J        |           | 2 J        | 3        | 3 J 3 J 2 |          | 2   | J        | 1   | J        | 1   | J        | 1   | J        | 1   | J           | 1   | J       | 1     | J        |     |
| Chloroform               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7        |            |           |            |          |           |          |     | -        |     | -        |     | -        |     | -        |     | -           |     |         |       | -        |     |
| 1,2-Dichloroethane       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6      | 510        | 52        | 20         | 380      |           | 360      |     | 250      |     | 250      |     | 290      | J   | 280      | J   | 290         |     | 270     |       | 190      |     |
| 2-Butanone               | , in the second se | 50       | 0.0        |           |            |          |           |          |     |          |     |          |     |          | -   |          | -   |             |     |         |       |          |     |
| 1,1,1-Trichloroethane    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     | 1       |       |          |     |
| Carbon Tetrachloride     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,2-Dichloropropane      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Trichloroethene          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 2 J        |           | 2 J        | 3        | 1         | 3        |     | 2        | 1   | 2        |     | 2        | ,   | 2        | 1   | 2           |     | 2       |       | 2        |     |
|                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | 2 3        |           | 2 J<br>8 J | 11       | J         | 12       |     | 2        |     | 5        |     | 2        | J   | 2        | J   | 7           |     |         | J     | 2        |     |
| Benzene                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 8 J        |           | δJ         | 11       |           | 12       |     | 5        | J   | 5        | J   |          |     |          |     | 1           | J   | 1       | J     | 5        | J   |
| 4-Methyl-2-Pentanone     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           | _          |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 2-Hexanone               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50       |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Tetrachloroethene        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Toluene                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Chlorobenzene            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Ethylbenzene             | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Styrene                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| P & M Xylenes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| O Xylene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Xylenes (total)          | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,1,2-Trichloroethane    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Dichlorodifluoromethane  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Trichlorofluoromethane   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| cis-1,2-Dichloroethene   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | 32         | 3         | 31         | 37       |           | 38       |     | 30       |     | 30       |     | 34       | J   | 32       | J   | 32          |     | 32      |       | 27       |     |
| trans-1,2-Dichloroethene | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     | 3        |     |             |     |         |       |          |     |
| N-Propylbenzene          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     | -        |     |             |     |         |       |          |     |
| 1,3,5-Trimethylbenzene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,2,4-Trimethylbenzene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,3-Dichlorobenzene      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .3       |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,4-Dichlorobenzene      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             | -   |         |       |          |     |
| 1,2-Dichlorobenzene      | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     | 1       |       |          |     |
| 1,2,4-Trichlorobenzene   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| Naphthalene              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,2,3-Trichlorobenzene   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10       |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,2,3-Thchlorobenzene    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ວ<br>5   |            |           |            |          |           |          | L   |          |     |          |     |          |     |          |     |             |     |         |       |          |     |
| 1,4-DIOXane              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5        |            |           |            |          |           |          |     |          |     |          |     |          |     |          |     | Qualifiers: |     | 1       |       |          |     |

Notes:

 Invises

 1997 and Sept. 1999 data have NOT been validated.

 Bodd/Shaded = Exceedance of the applicable EPA MCL

 Most recent sampling events are blue shaded columns

 MCL = Maximum Contaminant Level

ft. = foot USEPA = U.S Enviromental Proctection Agency

NYSDEC = New York State Department of Environmental Conservation

B = Analyte detected in blank.
 D = Value obtained through secondary dilution.
 E = Value exceeded instrument calibration range.
 J = Indicates an estimated value.
 Blank = Not detected.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         | 100050             | MW-7D-D  | D-DP  | MW-7D-              | ) N   | IW-7D-D     | MW-7D-D  | D-DP  | MW-7D   | Đ        | MW-7D-D | -DP | MW-7D        | )-D | MW-7D-I | OUP    | MW         | 7D-D   | MW-7  | D-DUP  | MW-7D  | )-D                                         |
|--------------------------|---------|--------------------|----------|-------|---------------------|-------|-------------|----------|-------|---------|----------|---------|-----|--------------|-----|---------|--------|------------|--------|-------|--------|--------|---------------------------------------------|
| Date Sampled             | EPA MCL | NYSDEC<br>Class GA | 7/25/20  | 06    | 7/18/200            | 7 9   | /3/2008     | 9/3/20   | 08    | 8/18/20 | 09       | 8/18/20 | 09  | 08/24/*      | 10  | 08/24/1 | 0      | 08/2       | 3/11   | 08/23 | 3/11   | 08/28/ | 12                                          |
| Sample/Zone Depth        | (ug/L)  | (ug/L)             | 72 - 101 | 1 ft. | 72 - 101 f          | t. 72 | 2 - 101 ft. | 72 - 101 | 1 ft. | 72-101  | ft.      | 72-101  | ft. | 72-101       | ft. | 72-101  | ft.    | 72-1       | 01 ft. | 72-10 | 01 ft. | 72-101 | ft.                                         |
| Analyte (ug/L)           |         | (ug/L)             |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Chloromethane            |         | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Vinyl Chloride           | 2       | 2                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Chloroethane             |         | 5                  |          |       |                     |       |             |          |       | 0.14    | J        |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Methylene Chloride       | 5       | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Acetone                  | -       | 50                 |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        | 1                                           |
| Carbon Disulfide         |         | 60                 |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        | 1                                           |
| 1,1-Dichloroethene       | 7       | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,1-Dichloroethane       |         | 5                  | 1        | .1    | 1.2 J               |       | 0.76 J      | 0.74     | .l    | 0.71    | J        | 0.71    | J   | 0.6          | J   | 0.61    | J      | 0.47       | .1     | 0.4   | .8.J   | 0.54   | .1                                          |
| Chloroform               | 1       | 7                  |          | Ŭ     | 0                   |       | 0.100       | 0.11     | •     | 0       | <u> </u> | 0       | Ŭ.  | 0.0          | °   | 0.01    | •      | 0.11       | 0      | 0.1   | 00     | 0.01   | Ŭ                                           |
| 1,2-Dichloroethane       | 5       | 0.6                | 190      |       | 130                 |       | 150         | 160      |       | 80      |          | 82      |     | 60           |     | 60      |        | 48         |        | 5     | 0      | 130    | .1                                          |
| 2-Butanone               | 0       | 50                 | 100      |       |                     |       |             | 100      | 100   |         |          | 02      |     |              |     |         |        |            |        |       |        | 100    | -                                           |
| 1,1,1-Trichloroethane    | 200     |                    |          |       | <u>├</u>            |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        | ├──                                         |
| Carbon Tetrachloride     | 200     | 5                  |          |       | <del>   </del>      |       |             |          |       |         |          |         |     | -            |     |         |        |            |        | -     |        |        | ├                                           |
| 1,2-Dichloropropane      | 5       | 3                  |          |       | <del>} − − </del> † | _     |             | +        |       |         |          |         |     | <del> </del> |     |         |        |            |        | +     | -      |        | ├──                                         |
| Trichloroethene          | 5       |                    | 2        |       | 1.8 J               |       | 1.5 J       | 1.6      |       | 0.82    |          | 0.85    | 1   | 0.51         |     | 0.53    |        |            |        |       | _      |        | <u> </u>                                    |
|                          | 5       |                    | 5        |       | 3.7 J               |       | 4.8 J       | 5.1      |       | 0.02    | J        | 0.05    | J   | 0.31         |     | 0.53    |        |            |        |       | _      | 5.3    | <u> </u>                                    |
| Benzene                  | 5       |                    | 5        | J     | 3.7 J               |       | 4.8 J       | 5.1      | J     |         |          |         |     | 0.23         | J   | 0.24    | J      |            |        |       | _      | 5.3    | ┝──                                         |
| 4-Methyl-2-Pentanone     |         | 5                  |          |       | <b>├</b>            |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       | _      |        | <u> </u>                                    |
| 2-Hexanone               |         | 50                 |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       | _      |        | <u> </u>                                    |
| Tetrachloroethene        | 5       |                    |          |       |                     |       |             |          |       | 0.11    | J        |         |     |              |     |         |        |            |        |       | _      |        | <u> </u>                                    |
| Toluene                  | 1000    | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        | <u> </u>                                    |
| Chlorobenzene            | 100     | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        | <u> </u>                                    |
| Ethylbenzene             | 700     | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Styrene                  | 100     | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| P & M Xylenes            |         | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| O Xylene                 |         | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Xylenes (total)          | 10000   | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,1,2-Trichloroethane    | 5       | 1                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Dichlorodifluoromethane  |         | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| Trichlorofluoromethane   |         | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| cis-1,2-Dichloroethene   | 70      | 5                  | 26       |       | 20                  |       | 22          | 24       |       | 6       |          | 5.8     |     | 3.6          | J   | 3.6     | J      | 2.9        |        | 2     | 8      | 10     |                                             |
| trans-1,2-Dichloroethene | 100     | 5                  |          |       |                     |       |             |          |       | 0.56    | J        | 0.47    | J   |              |     |         |        |            |        |       |        |        |                                             |
| N-Propylbenzene          |         | 5                  |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,3,5-Trimethylbenzene   |         | 5                  |          |       | i i                 |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,2,4-Trimethylbenzene   |         | 5                  |          | 1     |                     |       |             | 1        |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,3-Dichlorobenzene      | 1       | 3                  |          |       |                     |       |             |          |       |         |          |         |     | 1            |     | 1       |        |            |        |       |        |        |                                             |
| 1,4-Dichlorobenzene      | 75      | 3                  |          | 1     | 1 1                 |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,2-Dichlorobenzene      | 600     |                    |          |       |                     |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,2,4-Trichlorobenzene   | 70      |                    |          | 1     | 1                   |       |             | 1        |       |         |          | 1       |     |              |     |         |        |            |        |       |        |        | t                                           |
| Naphthalene              | 1       | 10                 |          |       | t t                 |       |             |          |       |         |          |         |     |              |     |         |        |            |        |       |        |        |                                             |
| 1,2,3-Trichlorobenzene   |         | 5                  |          | 1     | <u>├</u>            |       |             | 1        |       |         |          |         |     |              |     |         |        |            |        | 1     |        |        | <u>+</u>                                    |
| 1,4-Dioxane              |         | 5                  |          | 1     | <u>├</u>            |       |             | 1        |       |         |          |         |     |              |     |         |        |            |        | 1     |        |        | <u>+</u>                                    |
| .,. Bioxune              |         | 5                  |          |       | I                   |       |             | 1        |       |         |          | 1       | l   | I            |     | I       | Data O | ualifiers: | I      |       | 1      |        | <u>ــــــــــــــــــــــــــــــــــــ</u> |

Notes:

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCL Most recent sampling events are blue shaded columns MCL = Maximum Contaminant Level

ft. = foot USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation J = Indicates an estimated value.

B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.<br>Date Sampled | EPA MCL | NYSDEC   | MW-7D-DUP<br>08/28/12 | MW-7D-D<br>08/21/13 | MW-7D-DUP<br>08/21/13 | MW-7D-D<br>08/19/14 | MW-7D-DUP<br>08/19/14 | MW-7D-D<br>08/19/15 | MW-7D-DUP<br>08/19/15 | MW-7D-D<br>08/23/16 |     | D-DUP<br>3/16 | MW-7D<br>08/22/1 |    | MW-7D-I<br>08/22/1 |    | MW-7D-E<br>08/28/18 |     | /-7D-DUP<br>8/28/18 | MW-7D-9                                 |                |
|--------------------------|---------|----------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|---------------------|-----|---------------|------------------|----|--------------------|----|---------------------|-----|---------------------|-----------------------------------------|----------------|
| Sample/Zone Depth        | (ug/L)  | Class GA | 72-101 ft.            | 72-101 ft.          |     | 01 ft.        | 72-101           |    | 72-101             |    | 72-101 ft           |     | 2-101 ft.           | 39 - 72 ft                              |                |
| Analyte (ug/L)           | (ug/L)  | (ug/L)   | 72-10111.             | 72-10111.           | 72-101 11.            | 72-101 11.          | 72-101 11.            | 72-10111.           | 72-101 11.            | 72-101 11.          | 12- | orn.          | 72-101           | п. | 12-101             | п. | 72-10110            | . , | 2-101 11.           | 39-721                                  | L.             |
| Chloromethane            |         | 5        |                       |                     |                       |                     |                       |                     |                       | 1                   |     |               |                  |    |                    |    |                     |     |                     | r r                                     |                |
| Vinyl Chloride           | 2       | 2        |                       |                     |                       |                     |                       |                     |                       | 1                   |     |               |                  |    |                    |    |                     | -   |                     | r – †                                   |                |
| Chloroethane             | 2       | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | r – †                                   |                |
| Methylene Chloride       | 5       | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | t                                       |                |
| Acetone                  | 5       | 50       |                       |                     |                       |                     |                       |                     |                       | 1                   |     |               |                  |    |                    |    |                     | -   |                     | r – †                                   |                |
| Carbon Disulfide         |         | 60       |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | t                                       |                |
| 1,1-Dichloroethene       | 7       | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | t                                       |                |
| 1,1-Dichloroethane       |         | 5        | 0.59 J                |                     |                       |                     |                       |                     |                       |                     |     |               | 0.50             |    | 0.39               |    | 0.37                |     | 0.4 J               | 3.6                                     |                |
| Chloroform               |         | 7        | 0.000                 |                     |                       |                     |                       |                     |                       |                     |     |               | 0.00             |    | 0.00               |    | 0.07                |     | 0.4 0               | 0.0                                     |                |
| 1,2-Dichloroethane       | 5       | 0.6      | 130 J                 | 86                  | 81                    | 78                  | 78                    | 79 J                | 81 J                  | 75                  |     | 79            | 72               |    | 58                 | J  | 35                  |     | 36                  | 390                                     | D              |
| 2-Butanone               |         | 50       |                       |                     | •.                    |                     |                       |                     | 0.0                   |                     |     |               |                  |    | ••                 | -  |                     |     |                     |                                         |                |
| 1,1,1-Trichloroethane    | 200     |          |                       |                     |                       |                     | 1 1                   |                     |                       | 1 1                 |     |               |                  |    |                    |    |                     |     |                     | i t                                     |                |
| Carbon Tetrachloride     | 5       |          |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | 1                                       |                |
| 1,2-Dichloropropane      | 5       | -        |                       |                     |                       |                     |                       |                     |                       | 1 1                 |     |               | 1                |    |                    |    |                     |     |                     | i l                                     |                |
| Trichloroethene          | 5       | 5        | 1.6 J                 |                     |                       |                     |                       |                     |                       | 1.2                 |     | 1.2           | 1.3              |    | 0.94               |    | 0.60                |     | 0.61                | 4.6                                     |                |
| Benzene                  | 5       | 1        | 5.4                   |                     |                       |                     |                       |                     |                       |                     |     |               | 0.94             |    | 0.63               |    | 0.48                | J   | 0.47 J              | 12                                      |                |
| 4-Methyl-2-Pentanone     |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| 2-Hexanone               |         | 50       |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| Tetrachloroethene        | 5       | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| Toluene                  | 1000    | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | í l                                     |                |
| Chlorobenzene            | 100     | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | í T                                     |                |
| Ethylbenzene             | 700     | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | í l                                     |                |
| Styrene                  | 100     | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | í l                                     |                |
| P & M Xylenes            | 1       | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | í l                                     |                |
| O Xylene                 |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | i l                                     |                |
| Xylenes (total)          | 10000   | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | i l                                     |                |
| 1,1,2-Trichloroethane    | 5       | 1        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | i l                                     |                |
| Dichlorodifluoromethane  |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | i l                                     |                |
| Trichlorofluoromethane   |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | i l                                     |                |
| cis-1,2-Dichloroethene   | 70      |          | 11                    | 9.5                 | 9.2                   | 6.5                 | 6.3                   | 5.5                 | 5.6                   | 7.3                 |     | 7.7           | 6.2              |    | 4.1                |    | 2.5                 |     | 2.6                 | 45 .                                    | JD             |
| trans-1,2-Dichloroethene | 100     | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| N-Propylbenzene          |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | ı                                       |                |
| 1,3,5-Trimethylbenzene   |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| 1,2,4-Trimethylbenzene   |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | i l                                     |                |
| 1,3-Dichlorobenzene      |         | 3        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| 1,4-Dichlorobenzene      | 75      |          |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| 1,2-Dichlorobenzene      | 600     |          |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | ı [                                     |                |
| 1,2,4-Trichlorobenzene   | 70      | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | ı                                       |                |
| Naphthalene              |         | 10       |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     |                                         |                |
| 1,2,3-Trichlorobenzene   |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               |                  |    |                    |    |                     |     |                     | ı                                       |                |
| 1,4-Dioxane              |         | 5        |                       |                     |                       |                     |                       |                     |                       |                     |     |               | 2.4              | J  | 4.2                | J  | 5.8                 |     | 5.6                 | ı — — — — — — — — — — — — — — — — — — — | ך <sub>-</sub> |

Notes:

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCL Most recent sampling events are blue shaded columns MCL = Maximum Contaminant Level

ft. = foot

USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation

Data Qualifiers: B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         |          | MW-7D-S-D | DUP MW | -7D-S    | MW-7D    | -S          | MW-7D-   | S           | MW-7D    | -S          | MW-7D    | -S          | MW-7D   | -S          | MW-7D-S   | MM  | -7D-S       | MW-7   | D-S         | MW-7D   | -S  | MW-7D-  | S/DP    |
|--------------------------|---------|----------|-----------|--------|----------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|---------|-------------|-----------|-----|-------------|--------|-------------|---------|-----|---------|---------|
| Date Sampled             | EPA MCL | NYSDEC   | 11/16/199 | 99 5/2 | 5/2000   | 11/14/20 | 000         | 6/19/200 | )1          | 12/12/20 | 01          | 6/20/200 | 02          | 7/24/20 | 03          | 7/13/2004 | 8/1 | )/2005      | 7/25/2 | 2006        | 7/17/20 | 07  | 7/17/20 | 007     |
| Sample/Zone Depth        | (ug/L)  | Class GA | 39 - 72 f | t. 39  | - 72 ft. | 39 - 72  | 39 - 72 ft. |          | 39 - 72 ft. |          | 39 - 72 ft. |          | 39 - 72 ft. |         | 39 - 72 ft. |           | 39  | 39 - 72 ft. |        | 39 - 72 ft. |         | ft. | 39 - 72 | 2 ft.   |
| Analyte (ug/L)           |         | (ug/L)   |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Chloromethane            |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Vinyl Chloride           | 2       | 2        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Chloroethane             |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Methylene Chloride       | 5       | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Acetone                  |         | 50       |           |        |          |          |             |          |             | 3        | J           |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Carbon Disulfide         |         | 60       |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| 1,1-Dichloroethene       | 7       | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             | 0.12    | J   | 0.1     | J       |
| 1,1-Dichloroethane       |         | 5        | 3.6       |        | 6 J      | 5        | J           | 4        | J           | 3        | J           | 5        | J           |         |             | 2 J       |     |             | 0.5    | 5 J         | 2.2     |     | 2.2     |         |
| Chloroform               |         | 7        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| 1,2-Dichloroethane       | 5       | 0.6      | 410       | D      | 250      | 280      |             | 190      |             | 340      |             | 170      |             | 2       | J           | 2 J       |     | 1 J         | 8      | 3 J         | 110     |     | 120     |         |
| 2-Butanone               |         | 50       |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| 1,1,1-Trichloroethane    | 200     | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| Carbon Tetrachloride     | 5       | 5        |           |        |          | 1        |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         | · · · · |
| 1,2-Dichloropropane      | 5       | 1        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| Trichloroethene          | 5       | 5        | 4         |        | 4 J      | 2        | J           | 1        | J           | 2        | J           | 2        | J           |         |             | 1 J       |     |             | 0.6    | βJ          | 1.5     | J   | 1.6     | J       |
| Benzene                  | 5       | 1        | 10        |        | 12       | 12       |             | 9        | JD          | 8        | J           | 9        | J           |         |             |           |     |             |        |             | 1.3     | J   | 1.4     | J       |
| 4-Methyl-2-Pentanone     |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| 2-Hexanone               |         | 50       |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         | -       |
| Tetrachloroethene        | 5       | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Toluene                  | 1000    | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         | -       |
| Chlorobenzene            | 100     | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Ethylbenzene             | 700     | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         | -       |
| Styrene                  | 100     | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| P & M Xylenes            |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| O Xylene                 |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Xylenes (total)          | 10000   | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         | -       |
| 1,1,2-Trichloroethane    | 5       | 1        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Dichlorodifluoromethane  |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| Trichlorofluoromethane   |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| cis-1,2-Dichloroethene   | 70      | 5        | 44 .      | JD     | 31       | 16       |             | 9        | J           | 19       | J           | 13       |             | 3       | J           | 11 J      |     | 4 J         | 7      | ' J         | 9.5     | J   | 9.5     | J       |
| trans-1,2-Dichloroethene | 100     | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| N-Propylbenzene          |         | 5        |           |        |          | 1        |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         | · · · · |
| 1,3,5-Trimethylbenzene   |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| 1,2,4-Trimethylbenzene   |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| 1,3-Dichlorobenzene      |         | 3        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| 1,4-Dichlorobenzene      | 75      | 3        |           |        |          | 1        |             | 1        |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| 1,2-Dichlorobenzene      | 600     | 3        |           |        |          | 1        |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| 1,2,4-Trichlorobenzene   | 70      | 5        |           |        |          |          |             | 1 1      |             |          |             |          |             |         |             |           |     |             |        |             |         |     |         |         |
| Naphthalene              |         | 10       |           |        |          | 1        |             | 1        |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| 1,2,3-Trichlorobenzene   |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |
| 1,4-Dioxane              |         | 5        |           |        |          |          |             |          |             |          |             |          |             |         |             |           |     |             |        | 1           |         |     |         |         |

Notes:

Notes: 1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCL Most recent sampling events are blue shaded columns MCL = Maximum Contaminant Level

ft. = foot USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation Data Qualifiers: B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         |                    | MW-7D-S<br>9/3/2008<br>39 - 72 ft. |   | MW-7D-S<br>8/18/2009<br>39 - 72 ft. |   | MW-7D-S<br>08/24/10<br>39 - 72 ft. |   | MW-7D-S<br>08/23/11<br>39 - 72 ft. |   | MW-7D-S<br>08/28/12<br>39 - 72 ft. |   | MW-7D-S<br>08/21/13<br>39 - 72 ft. |  | MW-7D-S<br>08/19/14<br>39 - 72 ft. |   | MW-7D-S<br>08/19/15<br>39 - 72 ft. |        | MW-7D-S<br>08/23/16<br>39 - 72 ft. |  | MW-7D-S<br>08/22/17<br>39 - 72 ft. |  | MW-7D-S<br>08/28/18<br>39 - 72 ft. |           |
|--------------------------|---------|--------------------|------------------------------------|---|-------------------------------------|---|------------------------------------|---|------------------------------------|---|------------------------------------|---|------------------------------------|--|------------------------------------|---|------------------------------------|--------|------------------------------------|--|------------------------------------|--|------------------------------------|-----------|
| Date Sampled             | EPA MCL | NYSDEC             |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Sample/Zone Depth        | (ug/L)  | Class GA<br>(ug/L) |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Analyte (ug/L)           |         | (ug/L)             |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Chloromethane            |         | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Vinyl Chloride           | 2       | 2                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Chloroethane             |         | 5                  |                                    |   | 0.15                                | J |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Methylene Chloride       | 5       | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Acetone                  |         | 50                 |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   | 1 1                                |        |                                    |  |                                    |  |                                    |           |
| Carbon Disulfide         |         | 60                 |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| 1,1-Dichloroethene       | 7       | 5                  | 0.1                                | J | 0.32                                | J | 0.29                               | J |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| 1,1-Dichloroethane       |         | 5                  | 1.4                                | J | 2                                   | J | 1.7                                | J | 0.5                                | J | 0.55                               | J |                                    |  |                                    |   |                                    |        |                                    |  | 0.42                               |  | 0.57                               | 1         |
| Chloroform               |         | 7                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | ·         |
| 1,2-Dichloroethane       | 5       | 0.6                | 110                                | 1 | 110                                 |   | 110                                |   | 130                                |   | 100                                |   | 44                                 |  | 65                                 |   | 61                                 |        | 50                                 |  | 59                                 |  | 53                                 |           |
| 2-Butanone               |         | 50                 |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| 1,1,1-Trichloroethane    | 200     |                    |                                    | 1 |                                     |   |                                    |   |                                    |   | 1                                  |   |                                    |  |                                    |   | 1 1                                |        |                                    |  |                                    |  |                                    | 1         |
| Carbon Tetrachloride     | 5       | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,2-Dichloropropane      | 5       | 1                  |                                    | 1 |                                     |   |                                    |   |                                    |   | 1                                  |   |                                    |  |                                    |   | 1 1                                |        |                                    |  |                                    |  |                                    | 1         |
| Trichloroethene          | 5       | 5                  | 1.4                                | J | 1.6                                 | J | 1.4                                | J | 2.4                                |   | 1.7                                |   |                                    |  | 1.1                                | J | 1.2 J                              |        |                                    |  | 0.98                               |  | 1.1                                | 1         |
| Benzene                  | 5       |                    | 2.2                                |   | 2.6                                 |   | 0.28                               |   |                                    |   | 3.4                                |   |                                    |  | 1.4                                |   | 1.1 J                              |        |                                    |  | 0.91                               |  | 0.97                               |           |
| 4-Methyl-2-Pentanone     | -       | 5                  |                                    | - |                                     | - |                                    | - |                                    |   |                                    |   |                                    |  |                                    | - |                                    |        |                                    |  |                                    |  |                                    |           |
| 2-Hexanone               |         | 50                 |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Tetrachloroethene        | 5       |                    |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Toluene                  | 1000    | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Chlorobenzene            | 100     | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Ethylbenzene             | 700     | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Styrene                  | 100     | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| P & M Xylenes            |         | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| O Xylene                 |         | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| Xylenes (total)          | 10000   | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| 1,1,2-Trichloroethane    | 5       | 1                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | · · · · · |
| Dichlorodifluoromethane  |         | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| Trichlorofluoromethane   |         | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| cis-1,2-Dichloroethene   | 70      | 5                  | 12                                 |   | 8.3                                 | J | 7.7                                | J | 20                                 |   | 7.6                                |   | 2.3                                |  | 6.4                                |   | 5.3                                |        | 4.5                                |  | 5.2                                |  | 4.9                                | 1         |
| trans-1,2-Dichloroethene | 100     | 5                  |                                    |   | 0.13                                |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        | -                                  |  |                                    |  |                                    | 1         |
| N-Propylbenzene          |         | 5                  |                                    |   |                                     | - |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    | 1         |
| 1,3,5-Trimethylbenzene   | 1       | 5                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   | 1                                  |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,2,4-Trimethylbenzene   | 1       | 5                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,3-Dichlorobenzene      | 1       | 3                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   | 1                                  |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,4-Dichlorobenzene      | 75      | 3                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,2-Dichlorobenzene      | 600     |                    |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,2,4-Trichlorobenzene   | 70      | 5                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| Naphthalene              | 1.0     | 10                 |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  |                                    |  |                                    |           |
| 1,2,3-Trichlorobenzene   |         | 5                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   | + +                                |        |                                    |  |                                    |  |                                    |           |
|                          |         | 5                  |                                    | 1 |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    |        |                                    |  | 2.6                                |  | 3.4                                | _         |
| 1,4-Dioxane              |         | 5                  |                                    |   |                                     |   |                                    |   |                                    |   |                                    |   |                                    |  |                                    |   |                                    | lata Q | ualifiers:                         |  | 2.6                                |  | 3.4                                | 4         |

Notes:

1997 and Sept. 1999 data have NOT been validated. 
 Boild/Shade = Exceedance of the applicable EPA MCL
 USEPA = U.S Enviromental Proctection Agency

 Most recent sampling events are blue shaded columns
 NYSDEC = New York State Department of Environmental Conservation

ft. = foot

MCL = Maximum Contaminant Level

B = Analyte detected in blank. D = Value obtained through secondary dilution. E = Value exceeded instrument calibration range.

J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                              | l –     |          | MW-9D     | -1 | MW-9D-1       | MW-9    | )-1 | MW-9D-1       | MW-9D    | )-1 | MW-9D     | -1 | MW-9D-    | .1 | MW-9D    | -1     | MW-9D-1       | MW-9    | D-1 | MW-9[    | <u>)-1</u> |
|---------------------------------------|---------|----------|-----------|----|---------------|---------|-----|---------------|----------|-----|-----------|----|-----------|----|----------|--------|---------------|---------|-----|----------|------------|
| Date Sampled                          | EPA MCL | NYSDEC   | 09/15/9   |    | 11/15/99      | 05/24/0 |     | 11/14/00      | 06/19/0  |     | 12/12/0   |    | 06/20/02  |    | 07/24/0  |        | 07/13/04      | 08/10/  |     | 07/25/   |            |
| Sample/Zone Depth                     | (ug/L)  | Class GA | 102 - 147 |    | 102 - 147 ft. |         |     | 102 - 147 ft. | 102 - 14 |     | 102 - 147 |    | 102 - 147 |    | 102 - 14 |        | 102 - 147 ft. | 102 - 1 |     | 102 - 14 |            |
| Analyte (ug/L)                        | (+3)    | (ug/L)   |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Chloromethane                         |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Vinvl Chloride                        | 2       | 2        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Chloroethane                          |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Methylene Chloride                    | 5       | 5        | 2         | J  | 1.1 J         |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Acetone                               |         | 50       | 5         |    |               |         |     |               |          |     | 3         | J  |           |    |          |        |               |         |     |          |            |
| Carbon Disulfide                      |         | 60       |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,1-Dichloroethene                    | 7       | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,1-Dichloroethane                    |         | 5        | 4         | J  | 3.3           | 2       | 2 J | 2 J           | 1        | J   | 1         | J  | 2         | J  | 1        | J      | 0.9 J         |         |     | 0.5      | J          |
| Chloroform                            |         | 7        |           |    |               |         |     |               |          |     |           |    |           | -  |          | -      |               | 2       | 2 J |          | J          |
| 1,2-Dichloroethane                    | 5       | 0.6      | 510       | D  | 400 D         | 320     | )   | 290           | 240      |     | 200       |    | 160       |    | 200      |        | 150 J         | 93      | 5   | 100      |            |
| 2-Butanone                            |         | 50       |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,1,1-Trichloroethane                 | 200     | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Carbon Tetrachloride                  | 5       | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,2-Dichloropropane                   | 5       | 1        |           |    |               |         | 1   |               |          |     |           |    |           |    |          |        |               | 1       |     |          |            |
| Trichloroethene                       | 5       | 5        | 3         | J  | 2.8           | 1       | IJ  | 1 J           |          |     | 1         | J  | 2         | J  | 2        | J      | 2 J           |         |     | 0.5      | J          |
| Benzene                               | 5       |          | 17        |    | 15            | 10      | ) J | 9 J           | 8        | J   | 7         | J  | 7         |    | 7        | J      | -             | 4       | J   |          | J          |
| 4-Methyl-2-Pentanone                  |         | 5        |           |    |               |         |     |               |          |     |           |    |           | -  |          |        |               |         |     |          | -          |
| 2-Hexanone                            |         | 50       |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Tetrachloroethene                     | 5       | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Toluene                               | 1000    | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Chlorobenzene                         | 100     | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Ethylbenzene                          | 700     | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Styrene                               | 100     | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| P & M Xylenes                         | 1       | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| O Xylene                              |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Xylenes (total)                       | 10000   | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,1,2-Trichloroethane                 | 5       | 1        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Dichlorodifluoromethane               | 1       | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| Trichlorofluoromethane                |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| cis-1,2-Dichloroethene                | 70      | 5        |           |    | 24            | 16      | 6   | 13            | 10       |     | 13        |    | 13        |    | 16       |        | 12 J          | 7       | ' J | 7        | J          |
| trans-1,2-Dichloroethene              | 100     | 5        | 23        |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| N-Propylbenzene                       |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,3,5-Trimethylbenzene                |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,2,4-Trimethylbenzene                |         | 5        |           |    | 1 1           |         |     | 1             |          |     |           |    |           |    |          |        | 1             |         |     |          |            |
| 1,3-Dichlorobenzene                   |         | 3        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,4-Dichlorobenzene                   | 75      | 3        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,2-Dichlorobenzene                   | 600     | 3        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,2,4-Trichlorobenzene                | 70      | 5        |           |    | 1 1           |         |     | 1             |          |     |           |    |           |    |          |        | 1             |         |     |          |            |
| Naphthalene                           |         | 10       |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,2,3-Trichlorobenzene                |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| 1,4-Dioxane                           |         | 5        |           |    |               |         |     |               |          |     |           |    |           |    |          |        |               |         |     |          |            |
| · · · · · · · · · · · · · · · · · · · |         |          | Notes:    |    |               |         |     |               |          |     | •         |    |           |    |          | Data 0 | Qualifiers:   |         |     |          |            |

Notes:

1997 and Sept. 1999 data have NOT been validated.
Bold/Shaded = Exceedance of the applicable EPA MCL

ft. = foot

Data Qualifiers:

B = Analyte detected in blank.

D = Value obtained through secondary dilution. E = Value exceeded instrument calibration range.

J = Indicates an estimated value.

Most recent sampling events are blue shaded columns MCL = Maximum Contaminant Level ug/L = Micrograms per Liter

USEPA = U.S Enviromental Proctection Agency NYSDEC = New York State Department of Environmental Conservation

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |           | NYSDEC   | MW-9E    |        | MW-9D-1        | MW-9D    |        | MW-9E    |       | MW-9D    |       | MW-9D    |       | MW-9D    |       | MW-9D    |          | MW-9D      |       | MW-9D     |      | MW-9D    |       | MW-9E    |          |
|--------------------------|-----------|----------|----------|--------|----------------|----------|--------|----------|-------|----------|-------|----------|-------|----------|-------|----------|----------|------------|-------|-----------|------|----------|-------|----------|----------|
| Date Sampled             |           | Class GA | 07/17/0  |        | 09/04/08       | 08/18/0  |        | 08/24/*  |       | 08/23/1  |       | 08/28/1  |       | 08/21/1  |       | 08/19/1  |          | 08/19/1    |       | 08/23/1   |      | 08/22/1  |       | 08/28/   |          |
| Sample/Zone Depth        | (ug/L)    | (ug/L)   | 102 - 14 | 17 ft. | 102 - 147 ft.  | 102 - 14 | 7 ft.  | 102 - 14 | 7 ft. | 102 - 14 | 7 ft. | 102 - 14 | 7 ft. | 102 - 14 | 7 ft. | 102 - 14 | 7 ft.    | 102 - 14   | 7 ft. | 102 - 147 | ′ft. | 102 - 14 | 7 ft. | 102 - 14 | 7 ft.    |
| Analyte (ug/L)           |           | (+3)     |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Chloromethane            |           | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Vinyl Chloride           | 2         | 2        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Chloroethane             |           | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Methylene Chloride       | 5         | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Acetone                  |           | 50       |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Carbon Disulfide         |           | 60       | 7.1      | J      |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,1-Dichloroethene       | 7         | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,1-Dichloroethane       |           | 5        | 0.59     | J      | 0.47 J         | 0.52     | J      | 0.49     | J     | 0.42     | J     | 0.42     | J     |          |       |          |          |            |       |           |      | 0.43     | J     | 0.35     | J        |
| Chloroform               |           | 7        | 0.78     | J      |                | 0.23     | J      |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,2-Dichloroethane       | 5         | 0.6      | 110      |        | 110            | 93       | J      | 90       |       | 89       |       | 78       |       | 78       |       | 71       |          | 73         |       | 69        |      | 70       |       | 52       |          |
| 2-Butanone               |           | 50       |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,1,1-Trichloroethane    | 200       | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Carbon Tetrachloride     | 5         | 5        |          |        | 1              |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,2-Dichloropropane      | 5         | 1        |          |        | 1              |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Trichloroethene          | 5         | 5        | 0.86     | J      | 0.69 J         | 0.83     | J      | 0.83     | J     |          |       | 0.68     | J     |          |       |          |          |            |       |           |      | 0.60     |       | 0.48     | J        |
| Benzene                  | 5         | 1        | 4.6      |        | 4.6 J          | 3.6      |        | 3.6      |       | 4.3      |       | 3.8      | -     |          |       | 3.1      | J        | 3.4        | J     | 3.2       |      | 3.5      |       | 3.3      | -        |
| 4-Methyl-2-Pentanone     | Ű         | 5        |          | •      |                | 0.0      | Ŭ.     | 0.0      | •     |          |       | 0.0      |       |          |       | 0.1      | <u> </u> | 0.1        | •     | 0.2       |      | 0.0      |       | 0.0      |          |
| 2-Hexanone               |           | 50       |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Tetrachloroethene        | 5         |          |          |        |                | 0.11     | .1     |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Toluene                  | 1000      | 5        |          |        |                | 0.11     | °      | 0.13     | J     |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Chlorobenzene            | 100       | 5        |          |        |                |          |        |          | -     |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Ethylbenzene             | 700       | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Styrene                  | 100       | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| P & M Xylenes            | 100       | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| O Xylene                 |           | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Xylenes (total)          | 10000     | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,1,2-Trichloroethane    | 5         | 1        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Dichlorodifluoromethane  |           | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Trichlorofluoromethane   |           | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| cis-1,2-Dichloroethene   | 70        | 5        | 8.6      |        | 8.2 J          | 7.1      | 1      | 6.6      |       | 5.6      |       | 6.4      |       | 5.9      |       | 4.8      | .1       | 4.9        |       | 5.7       |      | 5.3      |       | 4.5      | -        |
| trans-1,2-Dichloroethene | 100       | 5        | 5.0      | -<br>- | 0.20           | 1.1      | -<br>- | 5.0      | Ŭ.    | 5.0      |       | 5.4      |       | 0.0      |       | 0        | ~        | 7.5        | -     | 0.7       |      | 0.0      |       | 4.0      |          |
| N-Propylbenzene          | 100       | 5        | -        |        | <del>   </del> |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,3,5-Trimethylbenzene   |           | 5        | -        |        | <del>   </del> |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          | <u> </u> |
| 1,2,4-Trimethylbenzene   |           | 5        |          |        | + +            |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,3-Dichlorobenzene      |           | 3        |          |        | + +            |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,4-Dichlorobenzene      | 75        | 3        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,2-Dichlorobenzene      | 600       | 3        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
|                          | 600<br>70 | 3        |          |        | <u>├</u> ──    |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,2,4-Trichlorobenzene   | 70        | -        |          |        | <u>├</u> ──    |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| Naphthalene              |           | 10       |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       |          |          |
| 1,2,3-Trichlorobenzene   |           | 5        |          |        |                |          |        |          |       |          |       |          |       |          |       |          |          |            |       |           |      |          |       | 10       |          |
| 1,4-Dioxane              |           | 5        | Notes:   |        |                |          |        |          |       |          |       |          |       |          |       |          |          | ualifiers: |       |           |      | 11       |       | 13       |          |

1997 and Sept. 1999 data have NOT been validated.

Bold/Shaded = Exceedance of the applicable EPA MCL

Most recent sampling events are blue shaded columns

MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

ft. = foot USEPA = U.S Enviromental Proctection Agency

NYSDEC = New York State Department of Environmental Conservation

Blank = Not detected.

B = Analyte detected in blank.

J = Indicates an estimated value.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

Prepared by / Date: ATH 10/03/18 Checked by / Date:

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 | 1       |          | MW-9D    | 2 | MW-9D    | 2 | MW-9D    | 2 | MW-9D2     | ) | MW-9D    | 2 | MW-9D    | 2 | MW-9D    | 2 | MW-9D    | 2 | MW-9D    | 12 | MW-9[    | 2ר | MW-9    | D2 |
|--------------------------|---------|----------|----------|---|----------|---|----------|---|------------|---|----------|---|----------|---|----------|---|----------|---|----------|----|----------|----|---------|----|
| Date Sampled             | EPA MCL | NYSDEC   | 09/15/99 |   | 11/15/99 |   | 05/24/00 |   | 11/14/00   |   | 06/19/0  |   | 12/12/0  |   | 06/20/0  |   | 07/24/03 |   | 07/13/0  |    | 08/10/0  |    | 07/25/  |    |
| Sample/Zone Depth        | (ug/L)  | Class GA | 55 - 102 |   | 55 - 102 |   | 55 - 102 |   | 55 - 102 f |   | 55 - 102 |   | 55 - 102 |   | 55 - 102 |   | 55 - 102 |   | 55 - 102 |    | 55 - 102 |    | 55 - 10 |    |
| Analyte (ug/L)           | (09.2)  | (ug/L)   | 00 102   |   | 00 .02   |   | 00 102   |   | 00 1021    |   | 00 .02   |   | 00 102   |   | 00 .02   |   | 00 102   |   | 00 .02   |    | 00 .0.   |    | 00 10   |    |
| Chloromethane            |         | 5        |          |   |          |   |          |   |            |   |          |   | l r      |   |          |   |          |   |          |    |          |    |         |    |
| Vinvl Chloride           | 2       | -        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Chloroethane             |         | 5        |          |   |          |   |          |   |            |   |          |   | 1        |   |          |   |          |   |          |    |          |    |         |    |
| Methylene Chloride       | 5       | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Acetone                  |         | 50       | 3        | J |          |   |          |   |            |   |          |   | 3        | J |          |   |          |   |          |    |          |    |         |    |
| Carbon Disulfide         |         | 60       |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,1-Dichloroethene       | 7       | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,1-Dichloroethane       |         | 5        | 5        | J | 5.3      |   | 3        | J | 3.         | J | 3        | J | 2        | J | 2        | J | 2        | J | 1        | J  | 1        | J  | 0.8     | J  |
| Chloroform               |         | 7        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,2-Dichloroethane       | 5       | 0.6      | 610      | D | 360      | D | 300      |   | 310        |   | 300      |   | 280      |   | 260      |   | 200      |   | 160      | J  | 140      |    | 160     |    |
| 2-Butanone               |         | 50       |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,1,1-Trichloroethane    | 200     | 5        |          |   | 1.6      |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Carbon Tetrachloride     | 5       | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,2-Dichloropropane      | 5       | 1        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Trichloroethene          | 5       | 5        | 5        | J | 9.3      |   | 2        | J | 8.         | J | 4        | J | 6        | J | 7        | J | 3        | J | 3        | J  | 5        | J  | 2       | J  |
| Benzene                  | 5       | 1        | 12       |   | 11       |   | 7        | J | 7.         | J | 8        | J | 6        | J | 6        | J | 2        | J |          |    |          |    | 0.6     | J  |
| 4-Methyl-2-Pentanone     |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 2-Hexanone               |         | 50       |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Tetrachloroethene        | 5       | 5        |          |   |          |   |          |   |            |   | 0.5      |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Toluene                  | 1000    | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Chlorobenzene            | 100     | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Ethylbenzene             | 700     | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Styrene                  | 100     | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| P & M Xylenes            |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| O Xylene                 |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Xylenes (total)          | 10000   | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,1,2-Trichloroethane    | 5       | 1        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Dichlorodifluoromethane  |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Trichlorofluoromethane   |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| cis-1,2-Dichloroethene   | 70      |          | 30       |   | 38       | D | 18       |   | 33         |   | 27       |   | 28       |   | 26       |   | 19       |   | 15       | J  | 16       |    | 16      |    |
| trans-1,2-Dichloroethene | 100     | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| N-Propylbenzene          |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,3,5-Trimethylbenzene   |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,2,4-Trimethylbenzene   |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,3-Dichlorobenzene      |         | 3        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,4-Dichlorobenzene      | 75      |          |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,2-Dichlorobenzene      | 600     |          |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,2,4-Trichlorobenzene   | 70      |          |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| Naphthalene              |         | 10       |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,2,3-Trichlorobenzene   |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |
| 1,4-Dioxane              |         | 5        |          |   |          |   |          |   |            |   |          |   |          |   |          |   |          |   |          |    |          |    |         |    |

Notes:

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI Most recent sampling events are blue shaded columns

ft. = foot

USEPA = U.S Environmental Proctection Agency

NYSDEC = New York State Department of Environmental Conservation

Data Qualifiers: B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

J = Indicates an estimated value.

Blank = Not detected.

MCL = Maximum Contaminant Level ug/L = Micrograms per Liter

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.<br>Date Sampled | EPA MCL | NYSDEC   | MW-9<br>07/17/ |      | MW-9<br>09/03/ |      | MW-90<br>08/18/0 |      | MW-9<br>08/24/ |       | MW-9E<br>08/30/1 |      | MW-9E<br>8/28/20 |              | MW-9E<br>8/21/20 |          | MW-90<br>8/19/20 |          | MW-9E<br>8/19/20 |      | MW-90<br>8/23/20 |      | MW-90<br>8/22/20 |       | MW-9D2<br>8/28/201 |          |
|--------------------------|---------|----------|----------------|------|----------------|------|------------------|------|----------------|-------|------------------|------|------------------|--------------|------------------|----------|------------------|----------|------------------|------|------------------|------|------------------|-------|--------------------|----------|
| Sample/Zone Depth        | (ug/L)  | Class GA | 55 - 10        |      | 55 - 10        |      | 55 - 102         |      | 55 - 10        |       | 55 - 102         |      | 55 - 102         |              | 55 - 102         |          | 55 - 102         |          | 55 - 102         |      | 55 - 102         |      | 55 - 102         |       | 55 - 102           |          |
| Analyte (ug/L)           | (ug/L)  | (ug/L)   | 55 - 10        | Ζ π. | 33 - 10        | Ζ π. | 55 - 10          | - n. | 35 - 10        | 2 11. | 55 - 102         | . n. | 55 - 102         | <b>-</b> II. | 55 - 102         | <u> </u> | 55 - 102         | <u> </u> | 55 - 102         | - n. | 55 - 102         | . n. | 55 - 102         | - 11. | 55 - 102           | п.       |
| Chloromethane            |         | 5        |                | -    |                |      |                  |      |                | 1     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Vinyl Chloride           | 2       |          |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Chloroethane             | 2       |          |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Methylene Chloride       | 5       | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Acetone                  | 5       | 50       |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Carbon Disulfide         |         | 60       |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,1-Dichloroethene       | 7       | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,1-Dichloroethane       | · · ·   | 5        | 0.68           | .1   | 0.67           | .1   | 0.59             | J    | 0.59           | J     |                  |      | 0.6              | .1           |                  |          |                  |          |                  |      |                  |      | 0.41             | .1    | 0.36 J             |          |
| Chloroform               |         | 7        | 0.00           | 0    | 0.07           | 0    | 0.00             | 0    | 0.00           | Ŭ     |                  |      | 0.0              | 0            |                  |          |                  |          |                  |      |                  |      | 0.41             | Ŭ     | 0.00 0             | <u> </u> |
| 1.2-Dichloroethane       | 5       | 0.6      | 140            |      | 130            |      | 110              |      | 120            |       | 73               |      | 74               |              | 98               |          | 96               |          | 92               |      | 87               |      | 85               |       | 59                 |          |
| 2-Butanone               | Ű       | 50       |                |      |                |      |                  | _    |                |       |                  |      |                  |              | •••              |          |                  |          |                  |      | •.               |      |                  |       |                    |          |
| 1,1,1-Trichloroethane    | 200     | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Carbon Tetrachloride     | 5       | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,2-Dichloropropane      | 5       | 1        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Trichloroethene          | 5       | 5        | 2.1            | J    | 2.2            | J    | 1.6              | J    | 2              | J     |                  |      | 3.1              |              |                  |          |                  |          | 1.5              | J    | 1.8              |      | 1.2              |       | 0.94               |          |
| Benzene                  | 5       | 1        | 1              | J    | 0.76           | J    |                  |      | 1.3            | J     |                  |      | 2.2              |              |                  |          |                  |          |                  |      | 1.3              |      | 0.87             |       | 0.78               |          |
| 4-Methyl-2-Pentanone     |         | 5        |                | -    |                | -    |                  |      |                | -     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 2-Hexanone               |         | 50       |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Tetrachloroethene        | 5       | 5        |                |      |                |      | 0.14             | J    | 0.21           | J     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Toluene                  | 1000    | 5        |                |      |                |      |                  |      | 0.11           | J     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Chlorobenzene            | 100     | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Ethylbenzene             | 700     | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Styrene                  | 100     | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| P & M Xylenes            |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| O Xylene                 |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       | 1                  |          |
| Xylenes (total)          | 10000   | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,1,2-Trichloroethane    | 5       | 1        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Dichlorodifluoromethane  |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Trichlorofluoromethane   |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| cis-1,2-Dichloroethene   | 70      | 5        | 14             |      | 12             |      | 10               |      | 11             |       | 9.2              |      | 5.3              |              | 7.3              |          | 6.9              |          | 6.0              |      | 8.4              |      | 6.9              |       | 6.1                |          |
| trans-1,2-Dichloroethene | 100     | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| N-Propylbenzene          |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,3,5-Trimethylbenzene   |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,2,4-Trimethylbenzene   |         | 5        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,3-Dichlorobenzene      |         | 3        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,4-Dichlorobenzene      | 75      | 3        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,2-Dichlorobenzene      | 600     | 3        |                |      |                |      |                  |      |                |       |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,2,4-Trichlorobenzene   | 70      | -        |                |      |                |      |                  |      |                | L     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| Naphthalene              |         | 10       |                |      |                |      |                  |      |                | L     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,2,3-Trichlorobenzene   |         | 5        |                |      |                |      |                  |      |                | ļ     |                  |      |                  |              |                  |          |                  |          |                  |      |                  |      |                  |       |                    |          |
| 1,4-Dioxane              |         | 5        |                |      |                |      |                  |      |                | 1     | 1                |      |                  |              |                  |          |                  |          |                  |      |                  |      | 7.2              |       | 10                 |          |

ft. = foot

NYSDEC = New York State Department of Environmental Conservation

Notes:

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI

Most recent sampling events are blue shaded columns USEPA = U.S Environmental Proctection Agency

MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

Data Qualifiers:

B = Analyte detected in blank. D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         | NYSDEC   | MW-9D     | 3   | MW-9D3      | MW-9D   | )3  | MW-9D     | 3  | MW-9D   | 3   | MW-9D3    | 3  | MW-9D     | 3   | MW-9D   | 3   | MW-9D     | 3   | MW-9D   | 3   | MW-9D   | )3  |
|--------------------------|---------|----------|-----------|-----|-------------|---------|-----|-----------|----|---------|-----|-----------|----|-----------|-----|---------|-----|-----------|-----|---------|-----|---------|-----|
| Date Sampled             | EPA MCL | Class GA | 09/15/99  | 9   | 11/15/99    | 05/24/0 | 0   | 11/14/00  | )  | 06/19/0 | 1   | 12/12/01  | 1  | 06/20/02  | 2   | 07/24/0 | 3   | 07/13/04  | 4   | 08/10/0 | 5   | 07/25/0 | 6   |
| Sample/Zone Depth        | (ug/L)  | (ug/L)   | 38 - 55 1 | ft. | 38 - 55 ft. | 38 - 55 | ft. | 38 - 55 1 | t. | 38 - 55 | ft. | 38 - 55 f | t. | 38 - 55 f | ft. | 38 - 55 | ft. | 38 - 55 1 | ft. | 38 - 55 | ft. | 38 - 55 | ft. |
| Analyte (ug/L)           |         | (ug/L)   |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Chloromethane            |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Vinyl Chloride           | 2       | 2        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Chloroethane             |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Methylene Chloride       | 5       | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Acetone                  |         | 50       | 4         | J   |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Carbon Disulfide         |         | 60       |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,1-Dichloroethene       | 7       | 5        |           |     | 4.5         |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,1-Dichloroethane       |         | 5        | 4         | J   |             | 3       | J   | 2         | J  | 2       | J   | 2.        | J  | 2         | J   | 2       | J   | 1         | J   |         |     | 0.8     | J   |
| Chloroform               |         | 7        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,2-Dichloroethane       | 5       | 0.6      | 540       | D   | 450 D       | 350     |     | 330       |    | 310     |     | 360       |    | 270       |     | 200     |     | 190       | J   | 150     |     | 130     |     |
| 2-Butanone               |         | 50       |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,1,1-Trichloroethane    | 200     | 5        |           |     | 1.5         | 1       | J   |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Carbon Tetrachloride     | 5       | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,2-Dichloropropane      | 5       | 1        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Trichloroethene          | 5       | 5        | 4         | J   | 9.1         | 8       | J   | 7         | J  | 8       | J   | 7.        | J  | 8         | J   | 6       | J   | 5         | ſ   | 5       | J   | 5       | J   |
| Benzene                  | 5       | 1        | 10        |     | 9.3         | 8       | J   | 7         | J  | 7       | J   | 6.        | J  | 5         | J   | 2       | J   |           |     |         |     | 0.6     | J   |
| 4-Methyl-2-Pentanone     |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 2-Hexanone               |         | 50       |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Tetrachloroethene        | 5       | 5        |           |     |             |         |     |           |    |         |     |           |    | 0.9       | J   |         |     |           |     |         |     |         |     |
| Toluene                  | 1000    | 5        |           |     |             |         |     | 1         |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Chlorobenzene            | 100     | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Ethylbenzene             | 700     | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Styrene                  | 100     | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| P & M Xylenes            |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| O Xylene                 |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Xylenes (total)          | 10000   | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,1,2-Trichloroethane    | 5       | 1        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Dichlorodifluoromethane  |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| Trichlorofluoromethane   |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| cis-1,2-Dichloroethene   | 70      | 5        | 24        |     | 39 JE       | ) 37    |     | 33        |    | 32      |     | 32        |    | 27        |     | 21      |     | 18        | J   | 15      |     | 13      |     |
| trans-1,2-Dichloroethene | 100     | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| N-Propylbenzene          |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,3,5-Trimethylbenzene   |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,2,4-Trimethylbenzene   |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,3-Dichlorobenzene      |         | 3        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,4-Dichlorobenzene      | 75      | 3        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,2-Dichlorobenzene      | 600     | 3        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,2,4-Trichlorobenzene   | 70      |          |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         | _   |
| Naphthalene              |         | 10       |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,2,3-Trichlorobenzene   |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |
| 1,4-Dioxane              |         | 5        |           |     |             |         |     |           |    |         |     |           |    |           |     |         |     |           |     |         |     |         |     |

Notes:

 Bold/Shaded
 Exceedance of the applicable EPA MCI

 Most recent sampling events are blue shaded columns

ft. = foot

USEPA = U.S Environmental Proctection Agency

Data Qualifiers: B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range. J = Indicates an estimated value.

NYSDEC = New York State Department of Environmental Conservation

MCL = Maximum Contaminant Level ug/L = Micrograms per Liter

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         | NYSDEC   | MW-9D3      | MW-9D3      | MW-9D3      | MW-9D3      | MW-9D3      | MW-9D3     |      | W-9D3      | MW-9D   |      | MW-9D   | -     | W-9D3      | MW-9D     |          | V-9D3    |
|--------------------------|---------|----------|-------------|-------------|-------------|-------------|-------------|------------|------|------------|---------|------|---------|-------|------------|-----------|----------|----------|
| Date Sampled             | EPA MCL | Class GA | 07/17/07    | 09/03/08    | 08/18/09    | 08/24/10    | 08/23/11    | 08/28/12   |      | 8/21/13    | 08/19/1 |      | 08/19/1 |       | 3/23/16    | 08/22/1   |          | 28/18    |
| Sample/Zone Depth        | (ug/L)  | (ug/L)   | 38 - 55 ft. | 38 - 55 ft | . 38 | 8 - 55 ft. | 38 - 55 | ift. | 38 - 55 | ft. 3 | 3 - 55 ft. | 38 - 55 1 | ft. 38 - | - 55 ft. |
| Analyte (ug/L)           |         | (09/2)   |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Chloromethane            |         | 5        |             |             |             | 0.44 J      |             |            |      |            | T       |      |         |       |            |           |          |          |
| Vinyl Chloride           | 2       | 2        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Chloroethane             |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Methylene Chloride       | 5       | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Acetone                  |         | 50       |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Carbon Disulfide         |         | 60       |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,1-Dichloroethene       | 7       | 5        |             |             |             | 0.1 J       |             |            |      |            | T       |      |         |       |            |           |          |          |
| 1,1-Dichloroethane       |         | 5        | 0.58 J      | 0.5 J       | 0.46 J      | 0.46 J      | 0.4 J       | 0.55 J     |      |            |         |      |         |       |            | 0.32      | J 0.     | .27 J    |
| Chloroform               |         | 7        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,2-Dichloroethane       | 5       | 0.6      | 110         | 120         | 100         | 120         | 110         | 110        |      | 90         | 78      |      | 86      |       | 92         | 79        |          | 58       |
| 2-Butanone               |         | 50       |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,1,1-Trichloroethane    | 200     | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Carbon Tetrachloride     | 5       | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,2-Dichloropropane      | 5       | 1        |             |             |             |             |             |            |      |            | 1 1     |      |         |       |            |           |          |          |
| Trichloroethene          | 5       | 5        | 4.5 J       | 4 J         | 4.6 J       | 4.1 J       | 5.3 J       | 3.1        |      |            | 4       |      | 3.8     | J     | 3.3        | 3.4       | 3.       | .90      |
| Benzene                  | 5       | 1        | 0.24 J      |             |             | 0.19 J      |             | 2.6        |      |            |         |      |         |       |            | 0.56      | 0.       | .88      |
| 4-Methyl-2-Pentanone     |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 2-Hexanone               |         | 50       |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Tetrachloroethene        | 5       | 5        | 0.36 J      |             | 0.57 J      | 0.56 J      |             |            |      |            |         |      |         |       |            | 0.29      | J 0.     | .34 J    |
| Toluene                  | 1000    | 5        |             |             |             | 0.1 J       |             |            |      |            |         |      |         |       |            |           |          |          |
| Chlorobenzene            | 100     | 5        |             |             |             |             |             |            |      |            | 1 1     |      |         |       |            |           |          |          |
| Ethylbenzene             | 700     | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Styrene                  | 100     | 5        |             |             |             |             |             |            |      |            | 1 1     |      |         |       |            |           |          |          |
| P & M Xylenes            |         | 5        |             |             |             |             |             |            |      |            | 1 1     |      |         |       |            |           |          |          |
| O Xylene                 |         | 5        |             |             |             |             |             |            |      |            | 1 1     |      |         |       |            |           |          |          |
| Xylenes (total)          | 10000   | 5        |             |             |             |             |             |            |      |            | 1 1     |      |         |       |            |           |          |          |
| 1,1,2-Trichloroethane    | 5       | 1        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Dichlorodifluoromethane  |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Trichlorofluoromethane   |         | 5        |             |             |             |             |             | T I        |      |            |         |      |         |       |            |           |          |          |
| cis-1,2-Dichloroethene   | 70      | 5        | 9.7 J       | 9.4 J       | 8.6 J       | 8.1 J       | 6.8 J       | 5.7        |      | 6          | 5.6     |      | 5.2     |       | 6.7        | 5.7       | Ę        | 5.6      |
| trans-1,2-Dichloroethene | 100     | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| N-Propylbenzene          |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,3,5-Trimethylbenzene   |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,2,4-Trimethylbenzene   |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,3-Dichlorobenzene      |         | 3        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,4-Dichlorobenzene      | 75      |          |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,2-Dichlorobenzene      | 600     | 3        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,2,4-Trichlorobenzene   | 70      | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| Naphthalene              |         | 10       |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
| 1,2,3-Trichlorobenzene   |         | 5        |             |             |             |             |             |            |      |            |         |      |         |       |            |           |          |          |
|                          |         |          |             |             |             |             |             |            |      |            |         |      |         |       |            |           | -        |          |

 Bold/Shaded
 Exceedance of the applicable EPA MCI
 ft. = foot

 Most recent sampling events are blue shaded columns
 USEPA = U.S Environmental Proctection Agency

MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

NYSDEC = New York State Department of Environmental Conservation

B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range. J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.<br>Date Sampled | EPA MCL | NYSDEC             | MW-10E<br>09/15/99 |   | MW-10E<br>11/15/99 |   | MW-10<br>05/24/0 |    | MW-10<br>11/14/0 |     | MW-100<br>06/19/0 |   | MW-100<br>12/12/0 |    | MW-10D1<br>06/19/02 | 10D1<br>4/03 | MW-10<br>07/13/0 |          | MW-10D1<br>08/10/05 |   | -10D1<br>25/06 |
|--------------------------|---------|--------------------|--------------------|---|--------------------|---|------------------|----|------------------|-----|-------------------|---|-------------------|----|---------------------|--------------|------------------|----------|---------------------|---|----------------|
| Sample/Zone Depth        | (ug/L)  | Class GA<br>(ug/L) | 110 - 144          |   | 110 - 144          |   | 110 - 14         |    | 110 - 14         |     | 110 - 144         |   | 110 - 144         |    | 110 - 144 ft        | 144 ft.      | 110 - 14         |          | 110 - 144 ft.       |   | - 144 ft.      |
| Analyte (ug/L)           |         | (13)               |                    |   |                    | - |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Chloromethane            |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Vinyl Chloride           | 2       | 2                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Chloroethane             |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Methylene Chloride       | 5       | 0                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Acetone                  |         | 50                 | 6                  | J |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Carbon Disulfide         |         | 60                 |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1,1-Dichloroethene       | 7       | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1,1-Dichloroethane       |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Chloroform               |         | 7                  | 1                  | J | 0.9                | J |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1,2-Dichloroethane       | 5       | 0.6                | 47                 |   | 70                 | D | 86               |    | 61               | 1   | 74                |   | 67                |    | 56                  | 62           | 61               | J        | 40                  |   | 44             |
| 2-Butanone               |         | 50                 |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1,1,1-Trichloroethane    | 200     | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Carbon Tetrachloride     | 5       | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1,2-Dichloropropane      | 5       | 1                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Trichloroethene          | 5       | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Benzene                  | 5       | 1                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 4-Methyl-2-Pentanone     | -       | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 2-Hexanone               |         | 50                 |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Tetrachloroethene        | 5       | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Toluene                  | 1000    | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Chlorobenzene            | 100     |                    |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Ethylbenzene             | 700     |                    |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Styrene                  | 100     |                    |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| P & M Xylenes            |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| O Xylene                 |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Xylenes (total)          | 10000   | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1.1.2-Trichloroethane    | 5       | 1                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Dichlorodifluoromethane  | , s     | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| Trichlorofluoromethane   |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| cis-1.2-Dichloroethene   | 70      | 5                  | 1                  | J | 2                  |   | 1                | .1 | 1                | 1.1 | 1                 | J | 2                 | .1 | 2 J                 | 2 J          | 2                | 2 J      | 1 J                 |   | 1 J            |
| trans-1,2-Dichloroethene | 100     |                    |                    | • | _                  |   |                  | •  |                  |     |                   | • | -                 | Ŭ  |                     |              |                  |          |                     |   |                |
| N-Propylbenzene          |         | 5                  |                    |   |                    |   |                  |    |                  |     |                   |   |                   |    |                     |              |                  |          |                     |   |                |
| 1,3,5-Trimethylbenzene   |         | 5                  |                    |   |                    |   | 1                |    | 1                | 1   | 1                 |   | 1                 |    | <u>∤ </u>           |              | 1                |          | 1 1                 | 1 |                |
| 1,2,4-Trimethylbenzene   |         | 5                  |                    |   |                    |   | 1                |    | 1                | 1   | 1                 |   | 1                 |    |                     |              | 1                | 1        |                     | 1 | -+-            |
| 1,3-Dichlorobenzene      |         | 3                  |                    |   |                    |   | t                |    | 1                | 1   |                   |   | <u> </u>          |    | <u>├</u>            |              |                  |          | 1                   |   |                |
| 1,4-Dichlorobenzene      | 75      | 3                  |                    |   |                    |   | 1                |    | 1                | 1   | 1                 |   | 1                 |    |                     |              | 1                | 1        |                     | 1 | -+-            |
| 1,2-Dichlorobenzene      | 600     |                    |                    |   |                    |   | 1                |    | 1                | 1   | 1                 |   | 1                 |    |                     |              | 1                | 1        |                     | 1 | -+-            |
| 1,2,4-Trichlorobenzene   | 70      |                    |                    |   |                    |   |                  |    |                  | 1   | 1                 |   |                   |    | <del>   </del>      |              | 1                | +        |                     |   | ———            |
| Naphthalene              | 10      | 10                 |                    |   |                    |   |                  |    |                  | 1   | 1                 |   |                   |    | <del>   </del>      |              | 1                | +        |                     |   | ———            |
| 1,2,3-Trichlorobenzene   |         | 10                 |                    |   |                    |   | 1                |    | +                | +   | 1                 |   | 1                 |    | <del>   </del>      |              | 1                | <u> </u> |                     |   |                |
| 1,4-Dioxane              |         | 5                  |                    |   |                    |   | -                |    | +                | +   |                   |   | -                 |    | ╂───┤─              | -            | 1                | <u> </u> |                     | - |                |
|                          | l       | 5                  | Notes:             |   |                    |   | I                | I  | I                | 1   | I                 |   | I                 | I  |                     | <br>         | Data Qualifie    | <u> </u> |                     |   |                |

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI

ft. = foot

Most recent sampling events are blue shaded columns MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation

B = Analyte detected in blank. D = Value obtained through secondary dilution. E = Value exceeded instrument calibration range. J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                                      |           | NYSDEC   | MW-10D1     | MW-10D1           | MW-10D1       | MW-10D-1                    | MW-10D-1                                     | MW-10D-1      | MW-10D-1      | MW-10D-1      | MW-10D-1         | MW-10D-1      | MW-10D-1      | MW-10D-1      |
|-----------------------------------------------|-----------|----------|-------------|-------------------|---------------|-----------------------------|----------------------------------------------|---------------|---------------|---------------|------------------|---------------|---------------|---------------|
| Date Sampled                                  | EPA MCL   | Class GA | 07/17/07    | 09/04/08          | 08/19/09      | 08/25/10                    | 08/30/11                                     | 08/29/12      | 08/21/13      | 08/20/14      | 08/20/15         | 08/24/16      | 08/23/17      | 08/20/18      |
| Sample/Zone Depth                             | (ug/L)    | (ug/L)   | 110 - 144 f | ft. 110 - 144 ft. | 110 - 144 ft. | 110 - 144 ft.               | 110 - 144 ft.                                | 110 - 144 ft. | 110 - 144 ft. | 110 - 144 ft. | 110 - 144 ft.    | 110 - 144 ft. | 110 - 144 ft. | 110 - 144 ft. |
| Analyte (ug/L)                                |           | (ug/L)   |             |                   |               |                             |                                              |               |               |               |                  | -             |               |               |
| Chloromethane                                 |           | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Vinyl Chloride                                | 2         | 2        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Chloroethane                                  |           | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Methylene Chloride                            | 5         | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Acetone                                       |           | 50       |             |                   |               |                             |                                              |               |               |               |                  |               |               | 1.2 J         |
| Carbon Disulfide                              |           | 60       |             |                   |               |                             | 0.41 J                                       |               |               |               |                  |               |               |               |
| 1,1-Dichloroethene                            | 7         | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,1-Dichloroethane                            |           | 5        |             |                   |               | 0.14 J                      |                                              |               |               |               |                  |               |               |               |
| Chloroform                                    |           | 7        | 0.36 J      | 0.34 J            |               |                             | 0.28 J                                       |               |               |               |                  |               |               |               |
| 1,2-Dichloroethane                            | 5         | 0.6      | 40          | 41                | 43            | 41                          | 36                                           | 34            | 27            | 29            | 31               | 29            | 27            | 21            |
| 2-Butanone                                    |           | 50       |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,1,1-Trichloroethane                         | 200       | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Carbon Tetrachloride                          | 5         |          |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,2-Dichloropropane                           | 5         | -        |             | 1 1               | 1 1           | 1 1                         | 1 1                                          |               |               |               |                  | 1 1           |               |               |
| Trichloroethene                               | 5         |          |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Benzene                                       | 5         | 1        | 0.15 J      | 0.14 J            |               | 0.21 J                      | 0.18 J                                       |               |               |               |                  |               | 0.13 J        | 0.1 J         |
| 4-Methyl-2-Pentanone                          | , v       | 5        | 0.100       | 0.140             |               | 0.210                       | 0.100                                        |               |               |               |                  |               | 0.100         | 0.10          |
| 2-Hexanone                                    |           | 50       |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Tetrachloroethene                             | 5         |          |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Toluene                                       | 1000      | •        | 0.43 J      | 0.35 J            |               | 0.37 J                      |                                              |               |               |               |                  |               |               |               |
| Chlorobenzene                                 | 1000      |          | 0.43 3      | 0.55 5            |               | 0.37 5                      |                                              |               |               |               |                  |               |               |               |
| Ethylbenzene                                  | 700       |          |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Styrene                                       | 100       |          |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| P & M Xylenes                                 | 100       | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| O Xylene                                      |           | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Xylenes (total)                               | 10000     | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,1,2-Trichloroethane                         | 10000     | -        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Dichlorodifluoromethane                       | 5         | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| Trichlorofluoromethane                        |           | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| cis-1,2-Dichloroethene                        | 70        | 5        | 1.3 J       | 1.3 J             | 1.5 J         | 1.4 J                       | 1.6                                          | 1.2 J         |               | 0.98 J        | 0.95 J           | 1.3           | 1.1           | 1.2           |
| trans-1,2-Dichloroethene                      | 100       |          | 1.3 J       | 1.5 J             | 1.0 0         | 1. <del>4</del> J           | 1.0                                          | 1.2 J         |               | 0.80 0        | 0.85 5           | 1.5           | 1.1           | 1.2           |
| N-Propylbenzene                               | 100       | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,3,5-Trimethylbenzene                        |           | 5        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,3,5-Trimethylbenzene                        |           | 5        |             | -+                | <u> </u>      | <u> </u>                    | <u>}                                    </u> | + +           | + +           | + +           |                  | <u> </u>      |               |               |
| 1,3-Dichlorobenzene                           |           | 3        |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
| 1,4-Dichlorobenzene                           | 75        | 3        |             |                   |               | <u>├</u>                    | <u> </u>                                     | + +           | + +           | + +           |                  |               |               |               |
| 1,2-Dichlorobenzene                           | 600       |          |             |                   |               | <u>├</u>                    | <u> </u>                                     | + +           | + +           | + +           |                  |               |               |               |
| 1,2-Dichlorobenzene<br>1,2,4-Trichlorobenzene | 600<br>70 |          |             |                   |               | <b>├</b> ── <del> </del> ── |                                              |               |               |               |                  |               |               |               |
| 1,2,4-1 richlorobenzene<br>Naphthalene        | 70        | 10       |             |                   |               | <u>├</u>                    | <u> </u>                                     |               |               |               |                  |               |               |               |
| 1,2,3-Trichlorobenzene                        |           | 10       |             |                   |               |                             |                                              |               |               |               |                  |               |               |               |
|                                               | L         | 5        |             |                   |               | <b>├</b> ── <del> </del> ── |                                              |               |               |               |                  |               | 1.2           | 1.0           |
| 1,4-Dioxane                                   | L         | 5        | Notes:      |                   |               |                             |                                              |               |               |               | Data Qualifiers: | I I           | 1.3           | 1.2           |

ft. = foot

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI Most recent sampling events are blue shaded columns

MCL = Maximum Contaminant Level ug/L = Micrograms per Liter

USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation D = Value obtained through secondary dilution.

B = Analyte detected in blank.

E = Value exceeded instrument calibration range. J = Indicates an estimated value.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.<br>Date Sampled | EPA MCL | NYSDEC   | MW-10E<br>09/15/9 |     | MW-10E<br>11/15/99 |     | MW-10E<br>05/24/00 |     | MW-10E<br>11/14/0 |     | MW-100   |     | MW-10E   |     | MW-100<br>06/19/0 |      | MW-10    |      | MW-100<br>07/13/0 |     | MW-10<br>08/10/0 |     | MW-10<br>07/25/ |       |
|--------------------------|---------|----------|-------------------|-----|--------------------|-----|--------------------|-----|-------------------|-----|----------|-----|----------|-----|-------------------|------|----------|------|-------------------|-----|------------------|-----|-----------------|-------|
|                          |         | Class GA |                   |     |                    |     |                    |     |                   |     | 06/19/0  |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Sample/Zone Depth        | (ug/L)  | (ug/L)   | 68 - 110          | ft. | 68 - 110           | ft. | 68 - 110           | ft. | 68 - 110          | ft. | 68 - 110 | ft. | 68 - 110 | ft. | 68 - 110          | ) π. | 68 - 110 | ) π. | 68 - 110          | ft. | 68 - 11          | 0π. | 68 - 11         | 0 ft. |
| Analyte (ug/L)           |         | _        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Chloromethane            |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Vinyl Chloride           | 2       | _        |                   |     |                    |     |                    |     |                   |     |          |     | 2        | J   |                   |      |          |      |                   |     |                  |     |                 |       |
| Chloroethane             |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Methylene Chloride       | 5       | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Acetone                  |         | 50       | 3                 | J   |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Carbon Disulfide         |         | 60       |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,1-Dichloroethene       | 7       | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,1-Dichloroethane       |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Chloroform               |         | 7        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,2-Dichloroethane       | 5       | 0.6      | 48                |     | 67                 | D   | 69                 |     | 91                |     | 82       |     | 88       |     | 87                |      | 73       |      | 69                | J   | 55               |     | 30              |       |
| 2-Butanone               |         | 50       |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,1,1-Trichloroethane    | 200     | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Carbon Tetrachloride     | 5       | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,2-Dichloropropane      | 5       | 1        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Trichloroethene          | 5       | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Benzene                  | 5       | 1        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 4-Methyl-2-Pentanone     |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 2-Hexanone               |         | 50       |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Tetrachloroethene        | 5       | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Toluene                  | 1000    | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Chlorobenzene            | 100     | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Ethylbenzene             | 700     | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Styrene                  | 100     | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| P & M Xylenes            |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| O Xylene                 |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Xylenes (total)          | 10000   | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,1,2-Trichloroethane    | 5       | 1        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Dichlorodifluoromethane  |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| Trichlorofluoromethane   |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| cis-1,2-Dichloroethene   | 70      | 5        | 1                 | J   | 2.3                |     |                    |     | 1                 | J   |          |     | 3        | J   | 3                 | J    | 2        | J    | 1                 | J   | 1                | J   | 0.8             | J     |
| trans-1,2-Dichloroethene | 100     | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| N-Propylbenzene          |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,3,5-Trimethylbenzene   |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          | 1    |                   |     |                  |     |                 |       |
| 1,2,4-Trimethylbenzene   |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          | l    |                   |     |                  |     |                 |       |
| 1,3-Dichlorobenzene      |         | 3        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          | l l  |                   |     |                  |     |                 |       |
| 1,4-Dichlorobenzene      | 75      | 3        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,2-Dichlorobenzene      | 600     |          |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          | l l  |                   |     |                  |     |                 | 1     |
| 1,2,4-Trichlorobenzene   | 70      |          |                   |     | 1                  |     |                    |     | 1                 |     | 1        |     | 1        |     |                   |      |          | 1    |                   |     |                  |     |                 | 1     |
| Naphthalene              |         | 10       |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,2,3-Trichlorobenzene   |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          |      |                   |     |                  |     |                 |       |
| 1,4-Dioxane              |         | 5        |                   |     |                    |     |                    |     |                   |     |          |     |          |     |                   |      |          | l l  |                   |     |                  |     |                 |       |

Notes:

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI Most recent sampling events are blue shaded columns

MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

ft. = foot

USEPA = U.S Environmental Proctection Agency

NYSDEC = New York State Department of Environmental Conservation

Data Qualifiers: B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

J = Indicates an estimated value. Blank = Not detected.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                                   |          | NYSDEC   | MW-10   |       | MW-10    |       | MW-10D2      | MW-10   |       | MW-10    |       | MW-10    |       | MW-10D-2    |     | /W-10D-   |    | MW-10D   |     | MW-10D-  |     | MW-10D-2     |        | 10D-2  |
|--------------------------------------------|----------|----------|---------|-------|----------|-------|--------------|---------|-------|----------|-------|----------|-------|-------------|-----|-----------|----|----------|-----|----------|-----|--------------|--------|--------|
|                                            | EPA MCL  | Class GA | 07/17/  |       | 09/04/0  |       | 08/19/09     | 08/25/  |       | 08/24/1  |       | 08/29/1  |       | 08/22/13    |     | 08/20/14  |    | 08/20/1  |     | 08/24/16 |     | 08/23/17     | 08/20  |        |
| Sample/Zone Depth                          | (ug/L)   | (ug/L)   | 68 - 11 | 0 ft. | 68 - 110 | 0 ft. | 68 - 110 ft. | 68 - 11 | 0 ft. | 68 - 110 | ) ft. | 68 - 110 | ) ft. | 68 - 110 ft | . 6 | 8 - 110 1 | t. | 68 - 110 | tt. | 68 - 110 | tt. | 68 - 110 ft. | 68 - 1 | 10 ft. |
| Analyte (ug/L)                             |          |          |         |       |          | _     |              |         | -     |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Chloromethane                              |          | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Vinyl Chloride                             | 2        | 2        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Chloroethane                               |          | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Methylene Chloride                         | 5        | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Acetone                                    |          | 50       |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Carbon Disulfide                           |          | 60       |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| 1,1-Dichloroethene                         | 7        | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| 1,1-Dichloroethane                         |          | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Chloroform                                 |          | 7        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| 1,2-Dichloroethane                         | 5        | 0.6      | 52      |       | 46       |       | 8.3 J        | 48      |       | 43       |       | 43       |       | 11          |     | 28        |    | 37       |     | 35       |     | 32           | 2      | 23     |
| 2-Butanone                                 |          | 50       |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| 1,1,1-Trichloroethane                      | 200      | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Carbon Tetrachloride                       | 5        | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| 1,2-Dichloropropane                        | 5        | 1        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Trichloroethene                            | 5        | 5        |         |       |          |       | 0.3 J        | 0.24    | J     |          |       |          |       |             |     |           |    |          |     |          |     | 0.33 J       |        |        |
| Benzene                                    | 5        | 1        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              | 0.4    | 14 J   |
| 4-Methyl-2-Pentanone                       | -        | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| 2-Hexanone                                 | -        | 50       |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Tetrachloroethene                          | 5        | 5        |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Toluene                                    | 1000     | 5        |         |       |          |       |              | 0.17    | 1     |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Chlorobenzene                              | 1000     |          |         |       |          |       |              | 0.17    | Ŭ.    |          |       |          |       |             |     |           |    |          |     |          |     |              |        | _      |
| Ethylbenzene                               | 700      |          |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| Styrene                                    | 100      |          |         |       |          |       |              |         |       |          |       |          |       |             |     |           |    |          |     |          |     |              |        |        |
| P & M Xylenes                              | 100      | 5        |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        |        |
| O Xylene                                   |          | 5        |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        | -      |
| Xylenes (total)                            | 10000    | 5        |         |       |          |       |              | -       |       |          |       |          |       |             | -   |           |    |          |     |          |     |              |        | -      |
| 1.1.2-Trichloroethane                      | 10000    | 1        |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        |        |
| Dichlorodifluoromethane                    | 5        | 5        |         |       |          |       |              | -       |       |          |       |          |       |             | -   |           |    |          |     |          |     |              |        |        |
| Trichlorofluoromethane                     |          | 5        |         |       |          |       |              | -       |       |          |       |          |       |             | -   |           |    |          |     |          |     |              |        | -      |
| cis-1.2-Dichloroethene                     | 70       | 5        | 0.91    |       | 0.31     | 1     | 0.46 J       | 0.84    | 1     |          |       | 0.7      | i     | 0.51 J      | -   | 0.58 J    |    |          |     |          |     | 0.77         | 0.5    | 55     |
| trans-1,2-Dichloroethene                   | 100      |          | 0.91    | J     | 0.31     | J     | 0.40 J       | 0.04    | 5     |          |       | 0.7      | 5     | 0.51 J      |     | J.JU J    |    |          |     |          |     | 0.77         | 0.5    |        |
| N-Propylbenzene                            | 100      | C        |         |       |          |       |              | -       |       | +        |       | +        |       | <u> </u>    | _   |           |    |          |     |          |     |              |        |        |
| 1,3,5-Trimethylbenzene                     |          | 5        |         |       |          |       |              | -       |       | +        |       | +        |       |             | _   |           |    |          |     |          |     |              |        |        |
| 1,2,4-Trimethylbenzene                     |          | C _      |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        |        |
|                                            | <u> </u> | 5        |         |       |          |       |              | _       | -     |          |       |          |       |             | _   |           |    |          |     |          |     |              |        |        |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene | 75       | 3        |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        |        |
|                                            |          |          |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        |        |
| 1,2-Dichlorobenzene                        | 600      |          |         |       |          |       |              |         |       | l        |       | l        |       |             | _   |           |    |          |     |          |     |              |        | -      |
| 1,2,4-Trichlorobenzene                     | 70       | -        |         |       |          |       |              |         |       |          |       |          |       |             | _   |           |    |          |     |          |     |              |        | _      |
| Naphthalene                                | L        | 10       |         | L     |          |       |              | -       | ļ     |          |       |          |       |             |     |           |    |          |     |          |     |              |        | _      |
| 1,2,3-Trichlorobenzene                     | L        | 5        |         |       |          |       |              | -       | ļ     |          |       |          |       |             |     |           |    |          |     |          |     |              |        | _      |
| 1,4-Dioxane                                |          | 5        |         |       |          |       |              |         |       | l        |       | l        |       |             |     |           |    |          |     |          |     |              | 0.3    | 33 J   |

1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI

ft. = foot

Most recent sampling events are blue shaded columns

MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

USEPA = U.S Enviromental Proctection Agency NYSDEC = New York State Department of Environmental Conservation

J = Indicates an estimated value. Blank = Not detected.

B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         | NYSDEC   | MW-10E   |     | MW-10D3     | MW-10D    |    | MW-10   |     | MW-10D    |    | MW-10D    |     | MW-10D3     | MW-10   |     | MW-10   |     | MW-10E  |     | MW-10   |     |
|--------------------------|---------|----------|----------|-----|-------------|-----------|----|---------|-----|-----------|----|-----------|-----|-------------|---------|-----|---------|-----|---------|-----|---------|-----|
| Date Sampled             | EPA MCL | Class GA | 09/15/99 |     | 11/15/99    | 05/24/00  |    | 11/14/0 |     | 06/19/01  |    | 12/12/01  |     | 06/19/02    | 07/24/0 |     | 07/13/0 |     | 08/10/0 |     | 07/25/0 |     |
| Sample/Zone Depth        | (ug/L)  | (ug/L)   | 40 - 68  | ft. | 40 - 68 ft. | 40 - 68 f | t. | 40 - 68 | ft. | 40 - 68 f | t. | 40 - 68 f | ft. | 40 - 68 ft. | 40 - 68 | ft. |
| Analyte (ug/L)           |         |          |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Chloromethane            |         | 5        |          |     |             |           |    |         |     |           |    |           |     | 3 J         |         |     |         |     |         |     |         |     |
| Vinyl Chloride           | 2       | 2        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Chloroethane             |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Methylene Chloride       | 5       | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         | 1   |
| Acetone                  |         | 50       | 3        | J   |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         | 1   |
| Carbon Disulfide         |         | 60       |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         | 1   |
| 1,1-Dichloroethene       | 7       | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         | 1   |
| 1,1-Dichloroethane       |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         | 1   |
| Chloroform               |         | 7        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         | 1   |
| 1,2-Dichloroethane       | 5       | 0.6      | 3        | J   | 14          | 6         | J  |         |     | 19        |    | 5         | J   | <b>3</b> J  | 6       | J   | 6       | J   | 5       | J   |         |     |
| 2-Butanone               |         | 50       |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,1,1-Trichloroethane    | 200     | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Carbon Tetrachloride     | 5       | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,2-Dichloropropane      | 5       | 1        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Trichloroethene          | 5       | 5        | 1        | J   |             |           |    | 1       | J   |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Benzene                  | 5       | 1        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 4-Methyl-2-Pentanone     |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 2-Hexanone               |         | 50       |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Tetrachloroethene        | 5       | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Toluene                  | 1000    | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Chlorobenzene            | 100     | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Ethylbenzene             | 700     | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Styrene                  | 100     | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| P & M Xylenes            |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| O Xylene                 |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Xylenes (total)          | 10000   | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,1,2-Trichloroethane    | 5       | 1        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Dichlorodifluoromethane  |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Trichlorofluoromethane   |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| cis-1,2-Dichloroethene   | 70      | 5        |          |     | 0.8 J       |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| trans-1,2-Dichloroethene | 100     | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| N-Propylbenzene          |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,3,5-Trimethylbenzene   |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,2,4-Trimethylbenzene   |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,3-Dichlorobenzene      |         | 3        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,4-Dichlorobenzene      | 75      |          |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,2-Dichlorobenzene      | 600     | 3        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,2,4-Trichlorobenzene   | 70      | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| Naphthalene              |         | 10       |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,2,3-Trichlorobenzene   |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |
| 1,4-Dioxane              |         | 5        |          |     |             |           |    |         |     |           |    |           |     |             |         |     |         |     |         |     |         |     |

Notes:

 Instruct
 Instruct

 1997 and Sept. 1999 data have NOT been validated.
 Instruct

 Bold/Shaded = Exceedance of the applicable EPA MCI
 Most recent sampling events are blue shaded columns

 MCL = Maximum Contaminant Level
 Shaded columns

ft. = foot

ug/L = Micrograms per Liter

USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation Data Qualifiers: B = Analyte detected in blank.

D = Value obtained through secondary dilution.

E = Value exceeded instrument calibration range.

J = Indicates an estimated value. Blank = Not detected.

#### 2018 Annual Groundwater Monitoring Report Sarney Farm Superfund Site, Amenia, New York

| Well No.                 |         | NYSDEC   | MW-10   | D3  | MW-10   | 03        | MW-10D    | 03  | MW-10   | D3  | MW-10E  | 03  | MW-10   | D3  | MW-10D    | 3  | MW-10D3    | 3     | MW-10      | 03  | MW-10     | D3   | MW-10   | D3  | MW-1   | 0D3   |
|--------------------------|---------|----------|---------|-----|---------|-----------|-----------|-----|---------|-----|---------|-----|---------|-----|-----------|----|------------|-------|------------|-----|-----------|------|---------|-----|--------|-------|
| Date Sampled             | EPA MCL | Class GA | 07/17/0 | )7  | 09/04/0 | 8         | 08/19/09  | 9   | 08/24/1 | 0   | 08/24/1 | 1   | 08/29/1 | 2   | 08/22/13  | 3  | 08/20/14   |       | 08/20/1    | 5   | 08/24/1   | 6    | 08/23/1 | 7   | 08/23  | /17   |
| Sample/Zone Depth        | (ug/L)  | (ug/L)   | 40 - 68 | ft. | 40 - 68 | ft.       | 40 - 68 f | ft. | 40 - 68 f | ť. | 40 - 68 ft |       | 40 - 68    | ft. | 40 - 68   | ft.  | 40 - 68 | ft. | 40 - 6 | 8 ft. |
| Analyte (ug/L)           |         | (ug/L)   |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     | No Detect | ions |         |     |        |       |
| Chloromethane            |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Vinyl Chloride           | 2       | 2        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Chloroethane             |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Methylene Chloride       | 5       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Acetone                  |         | 50       |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     | 1.0    | 6 J   |
| Carbon Disulfide         |         | 60       |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,1-Dichloroethene       | 7       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,1-Dichloroethane       |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Chloroform               |         | 7        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,2-Dichloroethane       | 5       | 0.6      | 10      | U   | 1.1     | J         | 2.1       | J   | 0.16    | J   | 0.9     | J   |         |     |           |    | 0.75 J     |       | 0.58       | J   |           |      | 0.6     |     | 0.89   | 9     |
| 2-Butanone               |         | 50       |         |     |         |           |           |     |         |     |         |     |         |     | i i       |    |            |       |            |     |           |      |         |     |        |       |
| 1,1,1-Trichloroethane    | 200     |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Carbon Tetrachloride     | 5       |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,2-Dichloropropane      | 5       | 1        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Trichloroethene          | 5       | 5        | 0.52    | J   | 0.39    | J         | 0.36      | J   | 0.5     | J   | 0.28    | J   |         |     |           |    | 0.34 J     |       | 0.63       | J   |           |      | 0.71    |     | 0.68   | 8     |
| Benzene                  | 5       | 1        |         | -   |         | -         |           | -   |         | -   |         | -   |         |     |           |    |            | -     |            | -   |           |      |         |     |        |       |
| 4-Methyl-2-Pentanone     | 0       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        | +     |
| 2-Hexanone               |         | 50       |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            | -     |            |     |           |      |         |     |        | ++    |
| Tetrachloroethene        | 5       |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        | +     |
| Toluene                  | 1000    | 5        |         |     |         |           |           |     | 0.27    | 1   |         |     |         |     |           |    |            | -     |            |     |           |      |         |     |        | ++    |
| Chlorobenzene            | 1000    |          |         |     |         |           |           |     | 0.21    | 0   |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        | +     |
| Ethylbenzene             | 700     |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Styrene                  | 100     |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| P & M Xylenes            |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| O Xvlene                 |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Xylenes (total)          | 10000   | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,1,2-Trichloroethane    | 5       |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Dichlorodifluoromethane  | Ů       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| Trichlorofluoromethane   |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| cis-1,2-Dichloroethene   | 70      | 5        |         |     |         |           | 0.16      | J   | 0.16    | J   |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| trans-1,2-Dichloroethene | 100     |          |         |     |         |           |           | -   |         | -   |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| N-Propylbenzene          |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,3,5-Trimethylbenzene   | 1       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,2,4-Trimethylbenzene   |         | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,3-Dichlorobenzene      | 1       | 3        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,4-Dichlorobenzene      | 75      | 3        |         |     |         |           |           |     |         |     |         |     |         |     | i i       |    |            |       |            |     |           |      |         |     |        |       |
| 1,2-Dichlorobenzene      | 600     |          |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,2,4-Trichlorobenzene   | 70      |          |         |     |         |           |           |     |         |     |         |     |         |     | i i       |    |            |       |            |     |           |      |         |     |        |       |
| Naphthalene              |         | 10       |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,2,3-Trichlorobenzene   | 1       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
| 1,4-Dioxane              | 1       | 5        |         |     |         |           |           |     |         |     |         |     |         |     |           |    |            |       |            |     |           |      |         |     |        |       |
|                          | •       |          | Notes:  |     |         | · · · · · |           |     |         |     |         |     | -       |     |           |    | D          | ata Q | ualifiers: |     | •         |      |         |     |        | -     |

ft. = foot

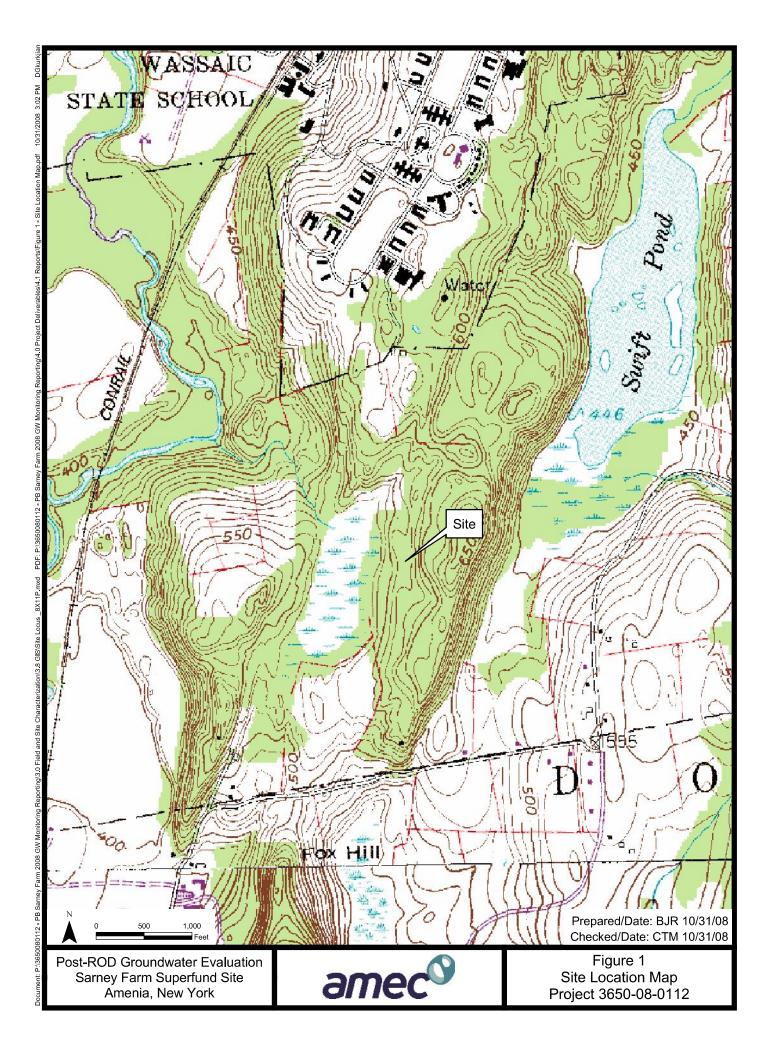
1997 and Sept. 1999 data have NOT been validated. Bold/Shaded = Exceedance of the applicable EPA MCI

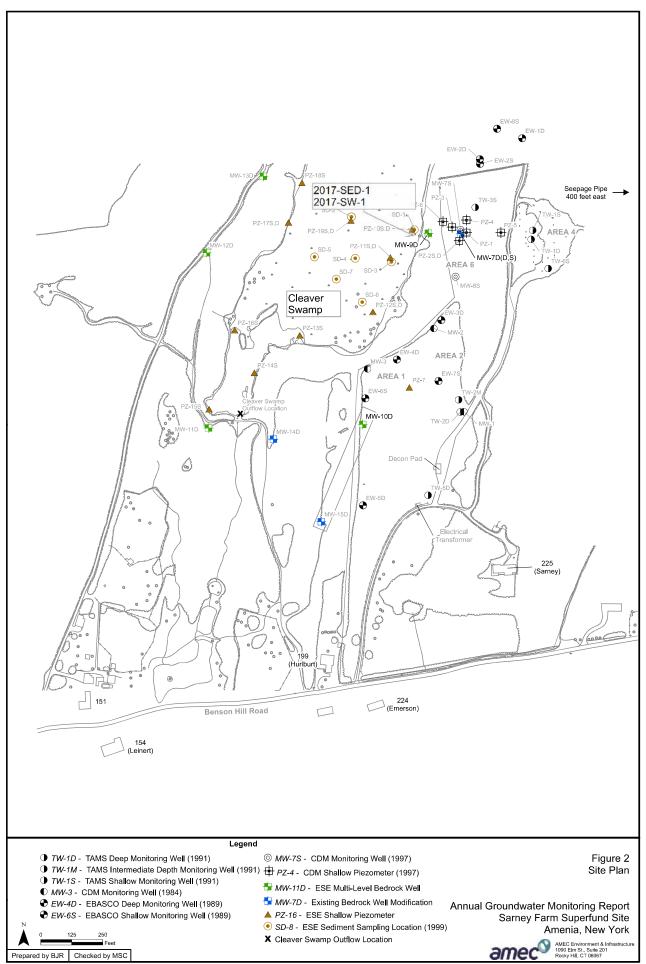
Most recent sampling events are blue shaded columns

MCL = Maximum Contaminant Level

ug/L = Micrograms per Liter

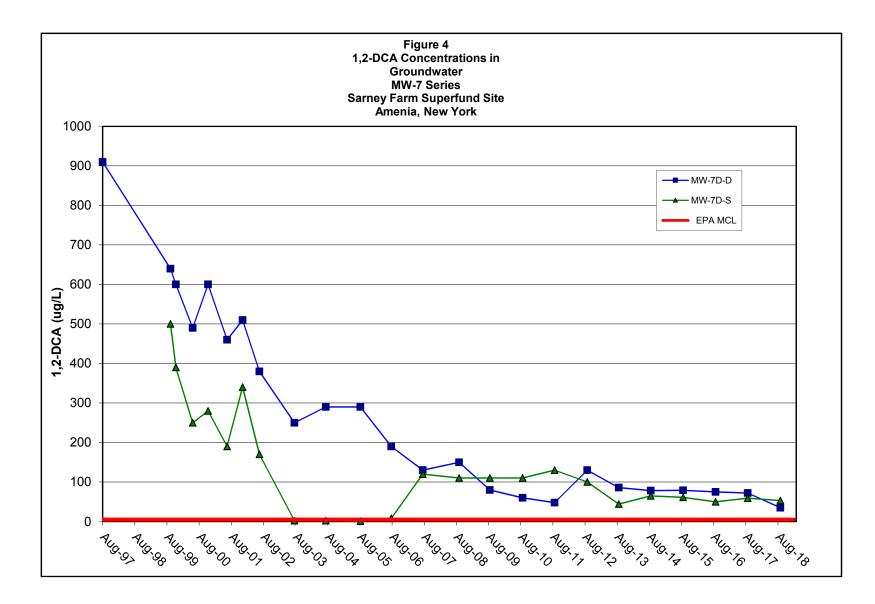
USEPA = U.S Environmental Proctection Agency NYSDEC = New York State Department of Environmental Conservation D = Value obtained through secondary dilution.

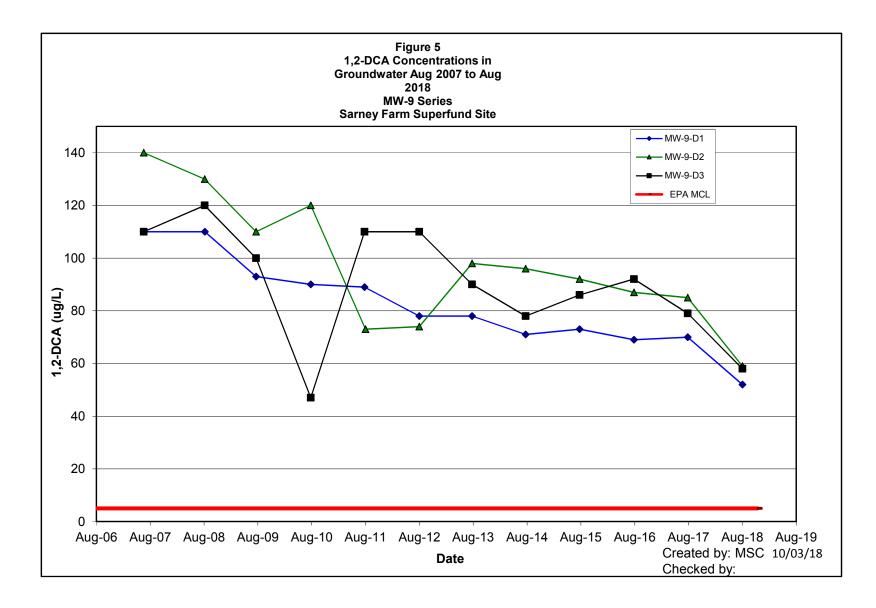

E = Value exceeded instrument calibration range. J = Indicates an estimated value.

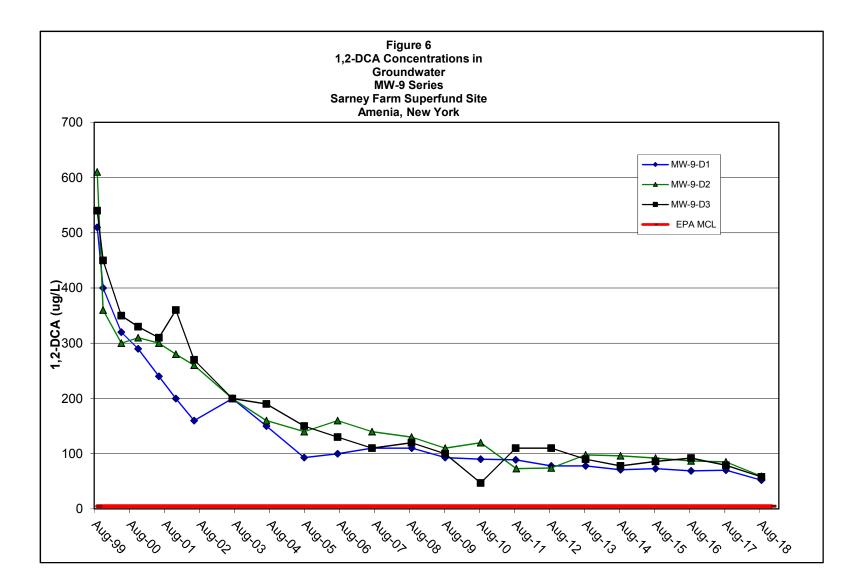

Blank = Not detected.

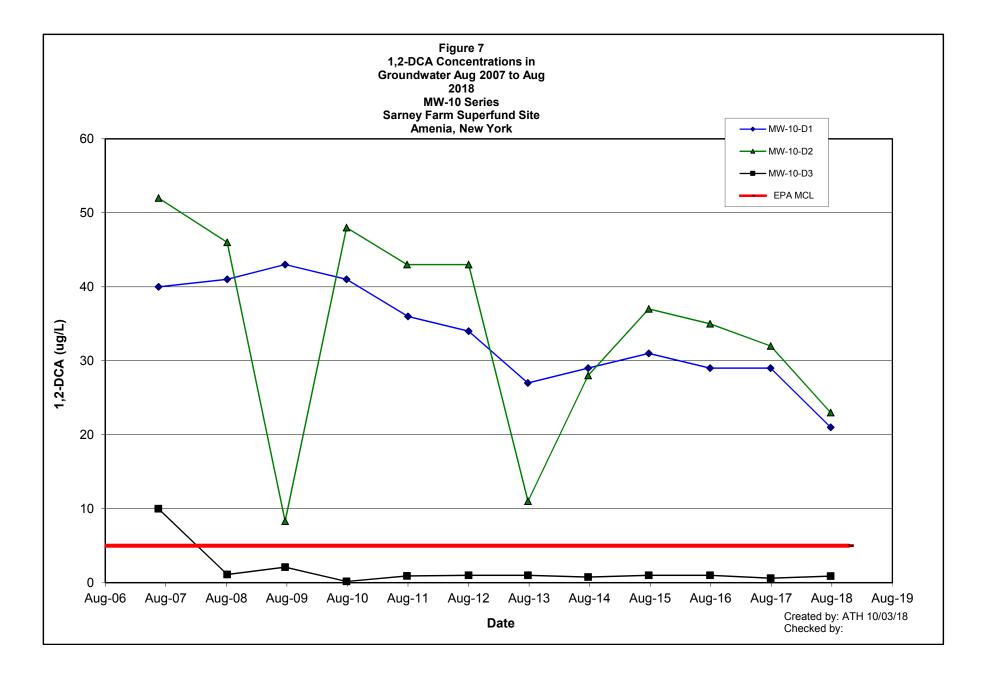
B = Analyte detected in blank.

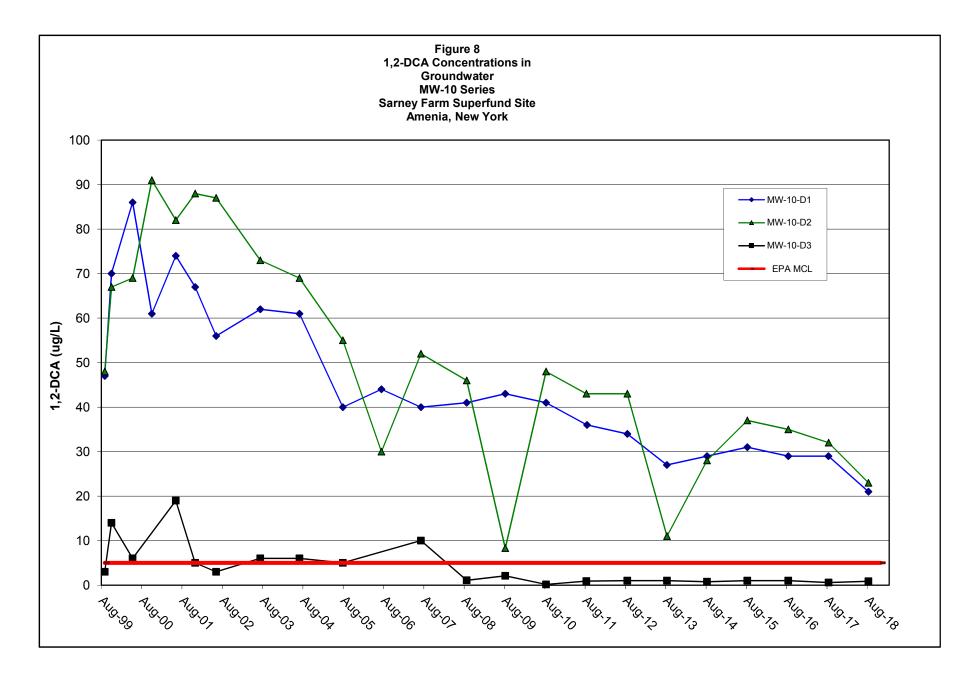
Prepared by / Date: ATH 10/03/2018 Checked by / Date: MSC 11/6/2018


**FIGURES** 





ent: P:/GISIProjects/Samey/Mapdocuments/SameyFarm\_11X17\_LS.mxd PDF: P:/GISIProjects/Samey/Figures/Figure 2 - Site Plan.pdf 12/5/2011 9:52 AM bjroden














# APPENDIX A

2018 Laboratory Data Reports

(Provided on CD)

# **APPENDIX B**

2018 Data Validation Reports

### DATA VALIDATION SUMMARY REPORT AUGUST 2018 WATER SAMPLING SARNEY FARM SUPERFUND SITE AMENIA, NEW YORK

### **1.0 INTRODUCTION**

Data validation was completed on the volatile organic compound (VOC) groundwater monitoring well and residential well samples collected in August 2018 at the Sarney Farm Superfund Site in Amenia, New York. Samples were analyzed by TestAmerica Laboratories, Inc., located in Buffalo, New York (TAL-BUF), Edison, New Jersey (TAL-ED), and Savannah, Georgia (TAL-SAV). Results were reported in the following sample delivery groups (SDGs):

- 460-163028-1
- 480-140674-1
- 480-140973-1

Table 1 includes a list of samples included in this data evaluation. Samples were analyzed for the following analytical parameters using the methods listed in Table 1:

- Volatile Organic Compounds (VOCs) using Method 8260C
- 1,4-Dioxane using Method 8260C Selected Ion Monitoring (SIM)
- Monitored Natural Attenuation (MNA) Parameters (see Table 1)

Data validation was completed based on procedures described in the project quality assurance plan *Modified UFP-QAPP Sarney Farm Superfund Site* (AMEC E&E, 2017) and general procedures described in the U. S. Environmental Protection Agency (USEPA) Region II data validation guidelines (USEPA, 2014). Stage 2A validation was completed for all parameters (USEPA, 2009). Professional judgment was used when evaluating data for the analytical methods used during this sampling event. Sample event information included in this data validation summary report is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

Laboratory deliverables included:

- Chain of custody records
- Sample receipt logs
- Sample results
- Associated quality control (QC) results

The data validation included the following evaluations. QAPP or laboratory limits, as applicable, were used as control limits for data evaluation.

- Case Narrative and Chain of Custody (COC) Review
- Data Package Completeness
- Holding Times

- Field and Laboratory Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- Field Duplicates
- Surrogate Spikes (if applicable)
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in USEPA validation guidelines and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

J = concentration is estimated

U = target analyte is not detected at, or above, the reported detection limit

Results are interpreted to be usable as reported by the laboratory or as qualified in the following section and summarized on Table 3.

### 2.0 DATA VALIDATION QUALIFICATION ACTION SUMMARY

### <u>VOCs</u>

 Acetone (6.1 µg/L) was reported in the field blank associated with the aqueous samples. Low concentration detections of acetone in samples were less than the reporting limit and were qualified non-detect (U) at the reporting limit. Qualified results are summarized on Table 3 with reason code BL2.

#### 1,4-Dioxane

 1,4-Dioxane (0.34J – 0.36J µg/L) was reported in the equipment blank and field blank associated with the aqueous samples. A low concentration detection of 1,4-dioxane in sample MW-10D-2 was less than the reporting limit and was qualified non-detect (U) at the reporting limit. Low concentration detections of 1,4-dioxane in samples MW-10D-1 and MW-9D-3 were greater than the reporting limit and were reported without qualification. Qualified results are summarized on Table 3 with reason code BL2.

#### **MNA Parameters**

 Low concentration detections of total organic carbon in all a subset samples were qualified non-detect (U) at the reporting limit based on detections in the associated method blanks. Qualified results are summarized in Table 3 with reason code BL1.

### **Reference:**

AMEC E&E, 2017. "Quality Assurance Project Plan Sarney Farm Superfund Site Benson Hill Road Dover Plains, Dutchess County, New York;" AMEC E&E, October 2016, Revised February 2017, Revised July 2017.

U.S. Environmental Protection Agency (USEPA), 2009. "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use"; Office of Solid Waste and Emergency Response; EPA-540-R-08-005; January 2009.

USEPA Region 2, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) SW-846 Method 8260B and 8260C"; SOP # HW-24, Revision 4, Hazardous Waste Support Branch; September 2014.

Reviewed by:

QA Chemist: Wolfgang D. Calicchio

. Coliclis

September 27, 2018

Senior Review: Christian Ricardi, NRCC-EAC

October 1, 2018

|              |          |             |             | Analy | Class      | VOCs  | 1,4-Dioxane |     | Nitrate/Nitrite | Metals | Metals | TOC   | Methane | Sulfide      |
|--------------|----------|-------------|-------------|-------|------------|-------|-------------|-----|-----------------|--------|--------|-------|---------|--------------|
|              |          |             |             | Analy | sis Method | 8260C | 8260C SIM   | 300 | 353.2           | 6010C  | 6010C  | 9060A | RSK-175 | SM 4500 S2 F |
|              |          |             |             |       | Fraction   | Ν     | N           | I   | I               | I      | D      | I     | N       | I            |
| SDG          | Location | Sample ID   | Sample Date | Media | QC Code    |       |             |     |                 |        |        |       |         |              |
| 460-163028-1 | 151BHR   | 151 BHR     | 8/20/2018   | GW    | FS         | 40    |             |     |                 |        |        |       |         |              |
| 460-163028-1 | EMERSON  | Emerson     | 8/20/2018   | GW    | FS         | 40    |             |     |                 |        |        |       |         |              |
| 460-163028-1 | HURLBERT | Hurlburt    | 8/20/2018   | GW    | FS         | 40    |             |     |                 |        |        |       |         |              |
| 460-163028-1 | LIENERT  | Lienert     | 8/20/2018   | GW    | FS         | 40    |             |     |                 |        |        |       |         |              |
| 460-163028-1 | SARNEY   | Sarney      | 8/20/2018   | GW    | FS         | 40    |             |     |                 |        |        |       |         |              |
| 460-163028-1 | QC       | TB-2        | 8/20/2018   | BW    | TB         | 40    |             |     |                 |        |        |       |         |              |
| 480-140674-1 | MW-10D-1 | MW-10D-1    | 8/20/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140674-1 | MW-10D-2 | MW-10D-2    | 8/20/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140674-1 | MW-10D-3 | MW-10D-3    | 8/20/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140674-1 | QC       | TB-1        | 8/20/2018   | BW    | TB         | 40    | 1           |     |                 |        |        |       |         |              |
| 480-140973-1 | QC       | EB01        | 8/28/2018   | BW    | EB         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | QC       | FB01        | 8/28/2018   | BW    | FB         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | MW-7D-S  | MW-7D-5     | 8/28/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | MW-7D-D  | MW-7D-D     | 8/28/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | MW-7D-D  | MW-7D-D DUP | 8/28/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | MW-9D-1  | MW-9D-1     | 8/28/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | MW-9D-2  | MW-9D-2     | 8/28/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | MW-9D-3  | MW-9D-3     | 8/28/2018   | GW    | FS         | 40    | 1           | 1   | 1               | 1      | 1      | 1     | 1       | 1            |
| 480-140973-1 | QC       | TB02        | 8/28/2018   | BW    | TB         | 40    |             |     |                 |        |        |       |         |              |

#### Note:

BW = blank water

D = dissolved

EB = equipment blank

FD = field duplicate

FS = field sample

GW = groundwater

N = normal

T = total

TB = trip blank

Count = number of target analytes reported

|       |          |                         | SDG         | 460-163028-1     | 460-163028-1     | 460-163028-1     |
|-------|----------|-------------------------|-------------|------------------|------------------|------------------|
|       |          |                         | Location    | 151BHR           | EMERSON          | HURLBERT         |
|       |          | :                       | Sample Date | 8/20/2018        | 8/20/2018        | 8/20/2018        |
|       |          |                         | Sample ID   | 151 BHR          | Emerson          | Hurlburt         |
|       |          |                         | QC Code     | FS               | FS               | FS               |
| Class | Fraction | Parameter               | Units       | Result Qualifier | Result Qualifier | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethene      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloropropane     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 2-Butanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 2-Hexanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Benzene                 | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon disulfide        | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Dichlorodifluoromethane | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Ethylbenzene            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Methylene chloride      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Naphthalene             | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Propylbenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Styrene                 | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Tetrachloroethene       | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |

|              |          |                          | SDG<br>Location |        | 63028-1<br>BHR |        | 3028-1<br>RSON |                | 63028-1<br>_BERT |
|--------------|----------|--------------------------|-----------------|--------|----------------|--------|----------------|----------------|------------------|
|              |          | Sa                       | ample Date      |        | 8/20/2018      |        | 8/20/2018      |                | /2018            |
|              |          | 58                       | Sample ID       |        | 151 BHR        |        | Emerson        |                |                  |
|              |          |                          | QC Code         |        | -S             | FS     |                | Hurlburt<br>FS |                  |
| Class        | Fraction | Parameter                | Units           | Result | Qualifier      | Result | Qualifier      | Result         | Qualifier        |
| 8260C        | N        | Toluene                  | UG/L            | 0.5    |                | 0.5    |                | 0.5            |                  |
| 8260C        | Ν        | trans-1,2-Dichloroethene | UG/L            | 0.5    |                | 0.5    |                | 0.5            |                  |
| 8260C        | Ν        | Trichloroethene          | UG/L            | 0.5    | υ              | 0.5    | U              | 0.5            | U                |
| 8260C        | Ν        | Trichlorofluoromethane   | UG/L            | 0.5    | ίU             | 0.5    | U              | 0.5            | U                |
| 8260C        | Ν        | Vinyl chloride           | UG/L            | 0.5    | 0.5 U          |        | 0.5 U          |                | U                |
| 8260C        | Ν        | Xylene, o                | UG/L            | 0.5    | ΰU             | 0.5    | U              | 0.5            | U                |
| 8260C        | N        | Xylenes (m&p)            | UG/L            | 0.5    | υ              | 0.5    | U              | 0.5            | U                |
| 8260C        | N        | Xylenes, Total           | UG/L            | 1      | U              | 1      | U              | 1              | U                |
| 8260C SIM    | N        | 1,4-Dioxane              | UG/L            |        |                |        |                |                |                  |
| RSK-175      | N        | Methane                  | UG/L            |        |                |        |                |                |                  |
| 300          | Т        | Sulfate                  | MG/L            |        |                |        |                |                |                  |
| 353.2        | Т        | Nitrate+Nitrite as N     | MG/L            |        |                |        |                |                |                  |
| 6010C        | Т        | Iron                     | MG/L            |        |                |        |                |                |                  |
| 6010C        | D        | Iron                     | MG/L            |        |                |        |                |                |                  |
| 9060A        | Т        | Total Organic Carbon     | MG/L            |        |                |        |                |                |                  |
| SM 4500 S2 F | Т        | Sulfide                  | MG/L            |        |                |        |                |                |                  |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|       |          |                         | SDG         | 460-163028-1     | 460-163028-1     | 460-163028-1     |
|-------|----------|-------------------------|-------------|------------------|------------------|------------------|
|       |          |                         | Location    | LIENERT          | QC               | SARNEY           |
|       |          | :                       | Sample Date | 8/20/2018        | 8/20/2018        | 8/20/2018        |
|       |          |                         | Sample ID   | Lienert          | TB-2             | Sarney           |
|       |          |                         | QC Code     | FS               | ТВ               | FS               |
| Class | Fraction | Parameter               | Units       | Result Qualifier | Result Qualifier | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethene      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloropropane     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 2-Butanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 2-Hexanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L        | 2.5 U            | 1.7 J            | 2.5 U            |
| 8260C | N        | Benzene                 | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon disulfide        | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Dichlorodifluoromethane | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Ethylbenzene            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Methylene chloride      | UG/L        | 0.5 U            | 0.85             | 0.5 U            |
| 8260C | N        | Naphthalene             | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Propylbenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Styrene                 | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Tetrachloroethene       | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |

|              |   |                          | SDG        |        | 63028-1   |        | 3028-1    |        | 63028-1   |
|--------------|---|--------------------------|------------|--------|-----------|--------|-----------|--------|-----------|
|              |   |                          | Location   |        |           |        | QC        |        | RNEY      |
|              |   | 5                        | ample Date |        | 8/20/2018 |        | 8/20/2018 |        | /2018     |
|              |   |                          | Sample ID  |        | enert     |        | 3-2       |        | rney      |
|              |   | _                        | QC Code    |        | -S        |        | В         |        | S         |
| Class        |   | Parameter                | Units      | Result | Qualifier | Result | Qualifier | Result | Qualifier |
| 8260C        | N | Toluene                  | UG/L       | 0.5    | 5 U       | 0.5    | U         | 0.5    |           |
| 8260C        | N | trans-1,2-Dichloroethene | UG/L       | 0.5    | 5 U       | 0.5    | U         | 0.5    | U         |
| 8260C        | N | Trichloroethene          | UG/L       | 0.5    | υ         | 0.5    | U         | 0.5    | U         |
| 8260C        | N | Trichlorofluoromethane   | UG/L       | 0.5    | υ         | 0.5    | U         | 0.5    | U         |
| 8260C        | Ν | Vinyl chloride           | UG/L       | 0.5 U  |           | 0.5 U  |           | 0.5    | U         |
| 8260C        | Ν | Xylene, o                | UG/L       | 0.5    | ίU        | 0.5    | U         | 0.5    | U         |
| 8260C        | Ν | Xylenes (m&p)            | UG/L       | 0.5    | 5 U       | 0.5    | U         | 0.5    | U         |
| 8260C        | Ν | Xylenes, Total           | UG/L       | 1      | U         | 1      | U         | 1      | U         |
| 8260C SIM    | Ν | 1,4-Dioxane              | UG/L       |        |           |        |           |        |           |
| RSK-175      | Ν | Methane                  | UG/L       |        |           |        |           |        |           |
| 300          | Т | Sulfate                  | MG/L       |        |           |        |           |        |           |
| 353.2        | Т | Nitrate+Nitrite as N     | MG/L       |        |           |        |           |        |           |
| 6010C        | Т | Iron                     | MG/L       |        |           |        |           |        |           |
| 6010C        | D | Iron                     | MG/L       |        |           |        |           |        |           |
| 9060A        | Т | Total Organic Carbon     | MG/L       |        |           |        |           |        |           |
| SM 4500 S2 F | Т | Sulfide                  | MG/L       |        |           |        |           |        |           |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|       |          |                         | SDG         | 480-140674-1     | 480-140674-1     | 480-140674-1     |
|-------|----------|-------------------------|-------------|------------------|------------------|------------------|
|       |          |                         | Location    | MW-10D-1         | MW-10D-2         | MW-10D-3         |
|       |          |                         | Sample Date | 8/20/2018        | 8/20/2018        | 8/20/2018        |
|       |          |                         | Sample ID   | MW-10D-1         | MW-10D-2         | MW-10D-3         |
|       |          |                         | QC Code     | FS               | FS               | FS               |
| Class | Fraction | Parameter               | Units       | Result Qualifier | Result Qualifier | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethene      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L        | 21               | 23               | 0.89             |
| 8260C | N        | 1,2-Dichloropropane     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U<br>0.5 U   |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L        |                  | 0.5 U 0.5 U      |                  |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 2-Butanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 2-Hexanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Benzene                 | UG/L        | 0.1 J            | 0.44 J           | 0.5 U            |
| 8260C | N        | Carbon disulfide        | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L        | 1.2              | 0.55             | 0.5 U            |
| 8260C | N        | Dichlorodifluoromethane | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Ethylbenzene            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Methylene chloride      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Naphthalene             | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Propylbenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Styrene                 | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Tetrachloroethene       | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |

|              |          |                          | SDG        |        | 0674-1    |          | 0674-1    |          | 40674-1   |
|--------------|----------|--------------------------|------------|--------|-----------|----------|-----------|----------|-----------|
|              |          |                          | Location   | MW-    | 10D-1     | MW-10D-2 |           | MW-10D-3 |           |
|              |          | S                        | ample Date | 8/20   | 8/20/2018 |          | 8/20/2018 |          | /2018     |
|              |          |                          | Sample ID  | MW-    | 10D-1     | MW-10D-2 |           | MW-      | 10D-3     |
|              |          |                          | QC Code    | F      | S         | F        | S         | F        | S         |
| Class        | Fraction | Parameter                | Units      | Result | Qualifier | Result   | Qualifier | Result   | Qualifier |
| 8260C        | N        | Toluene                  | UG/L       | 0.5    | U         | 0.5      | U         | 0.5      | U         |
| 8260C        | N        | trans-1,2-Dichloroethene | UG/L       | 0.5    | U         | 0.5      | U         | 0.5      | U         |
| 8260C        | N        | Trichloroethene          | UG/L       | 0.5    | U         | 0.5      | U         | 0.68     |           |
| 8260C        | N        | Trichlorofluoromethane   | UG/L       | 0.5    | U         | 0.5      | U         | 0.5      | U         |
| 8260C        | N        | Vinyl chloride           | UG/L       | 0.5 U  |           | 0.5 U    |           | 0.5      | U         |
| 8260C        | N        | Xylene, o                | UG/L       | 0.5    | U         | 0.5      | U         | 0.5      | U         |
| 8260C        | N        | Xylenes (m&p)            | UG/L       | 0.5    | U         | 0.5      | U         | 0.5      | U         |
| 8260C        | N        | Xylenes, Total           | UG/L       | 1      | U         | 1        | U         | 1        | U         |
| 8260C SIM    | N        | 1,4-Dioxane              | UG/L       | 1.2    | U         | 0.4      | U         | 0.4      | U         |
| RSK-175      | N        | Methane                  | UG/L       | 43     |           | 1.8      |           | 0.58     | U         |
| 300          | Т        | Sulfate                  | MG/L       | 28.5   |           | 31.5     |           | 21.9     |           |
| 353.2        | Т        | Nitrate+Nitrite as N     | MG/L       | 0.05   | U         | 0.05     | U         | 0.17     |           |
| 6010C        | Т        | Iron                     | MG/L       | 0.37   |           | 0.11     |           | 4.2      |           |
| 6010C        | D        | Iron                     | MG/L       | 0.36   |           | 0.083    |           | 0.069    |           |
| 9060A        | Т        | Total Organic Carbon     | MG/L       |        |           | 1 U 1 U  |           | 1        | U         |
| SM 4500 S2 F | Т        | Sulfide                  | MG/L       | 1      | U         | 1        | U         | 1        | U         |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|       |          |                         | <b>SDG</b> 480-140674-1 |                  | 480-140973-1     | 480-140973-1     |
|-------|----------|-------------------------|-------------------------|------------------|------------------|------------------|
|       |          |                         | Location                | QC               | MW-7D-D          | MW-7D-D          |
|       |          |                         | Sample Date             | 8/20/2018        | 8/28/2018        | 8/28/2018        |
|       |          |                         | Sample ID               | TB-1             | MW-7D-D          | MW-7D-D DUP      |
|       |          |                         | QC Code                 | TB               | FS               | FD               |
| Class | Fraction | Parameter               | Units                   | Result Qualifier | Result Qualifier | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L                    | 0.5 U            | 0.37 J           | 0.4 J            |
| 8260C | N        | 1,1-Dichloroethene      | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L                    | 0.5 U            | 35               | 36               |
| 8260C | N        | 1,2-Dichloropropane     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U<br>2.5 U   |
| 8260C | N        | 2-Butanone              | UG/L                    | 2.5 U            |                  |                  |
| 8260C | N        | 2-Hexanone              | UG/L                    | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L                    | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L                    | 1.8 J            | 2.5 U            | 2.5 U            |
| 8260C | N        | Benzene                 | UG/L                    | 0.5 U            | 0.48 J           | 0.47 J           |
| 8260C | N        | Carbon disulfide        | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L                    | 0.5 U            | 2.5              | 2.6              |
| 8260C | N        | Dichlorodifluoromethane | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Ethylbenzene            | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Methylene chloride      | UG/L                    | 0.84             | 0.5 U            | 0.5 U            |
| 8260C | N        | Naphthalene             | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Propylbenzene           | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Styrene                 | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Tetrachloroethene       | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |

|              |          |                          | SDG         |        | 10674-1   |         | 0973-1    |         | 40973-1   |
|--------------|----------|--------------------------|-------------|--------|-----------|---------|-----------|---------|-----------|
|              |          |                          | Location    | C      | QC        | MW-7D-D |           | MW-7D-D |           |
|              |          |                          | Sample Date | 8/20   | 8/20/2018 |         | 8/28/2018 |         | /2018     |
|              |          |                          | Sample ID   | TI     | 3-1       | MW-7D-D |           | MW-7E   | D-D DUP   |
|              |          |                          | QC Code     | Г      | В         | F       | S         | F       | D         |
| Class        | Fraction | Parameter                | Units       | Result | Qualifier | Result  | Qualifier | Result  | Qualifier |
| 8260C        | N        | Toluene                  | UG/L        | 0.5    | U         | 0.5     | U         | 0.5     | U         |
| 8260C        | N        | trans-1,2-Dichloroethene | UG/L        | 0.5    | U         | 0.5     | U         | 0.5     | U         |
| 8260C        | N        | Trichloroethene          | UG/L        | 0.5    | U         | 0.6     |           | 0.61    |           |
| 8260C        | N        | Trichlorofluoromethane   | UG/L        | 0.5    | U         | 0.5     | U         | 0.5     | U         |
| 8260C        | N        | Vinyl chloride           | UG/L        | 0.5 U  |           | 0.5 U   |           | 0.5     | U         |
| 8260C        | N        | Xylene, o                | UG/L        | 0.5 U  |           | 0.5 U   |           | 0.5     | U         |
| 8260C        | N        | Xylenes (m&p)            | UG/L        | 0.5    | U         | 0.5     | U         | 0.5     | U         |
| 8260C        | N        | Xylenes, Total           | UG/L        | 1      | U         | 1       | U         | 1       | U         |
| 8260C SIM    | N        | 1,4-Dioxane              | UG/L        | 0.4    | U         | 5.8     |           | 5.6     |           |
| RSK-175      | N        | Methane                  | UG/L        |        |           | 51      |           | 49      |           |
| 300          | Т        | Sulfate                  | MG/L        |        |           | 27.1    |           | 27.2    |           |
| 353.2        | Т        | Nitrate+Nitrite as N     | MG/L        |        |           | 0.05    | U         | 0.05    | U         |
| 6010C        | Т        | Iron                     | MG/L        |        |           | 0.29    |           | 0.29    |           |
| 6010C        | D        | Iron                     | MG/L        |        |           | 0.3     |           | 0.28    |           |
| 9060A        | Т        | Total Organic Carbon     | MG/L        |        |           | 1       |           | 1       | U         |
| SM 4500 S2 F | Т        | Sulfide                  | MG/L        |        |           | 1       | U         | 1       | U         |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|       |          |                         | SDG         | 480-140973-1     | 480-140973-1     | 480-140973-1     |
|-------|----------|-------------------------|-------------|------------------|------------------|------------------|
|       |          |                         | Location    | MW-7D-S          | MW-9D-1          | MW-9D-2          |
|       |          | :                       | Sample Date | 8/28/2018        | 8/28/2018        | 8/28/2018        |
|       |          |                         | Sample ID   | MW-7D-5          | MW-9D-1          | MW-9D-2          |
|       |          |                         | QC Code     | FS               | FS               | FS               |
| Class | Fraction | Parameter               | Units       | Result Qualifier | Result Qualifier | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L        | 0.57             | 0.35 J           | 0.36 J           |
| 8260C | N        | 1,1-Dichloroethene      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L        | 53               | 52               | 59               |
| 8260C | N        | 1,2-Dichloropropane     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 2-Butanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 2-Hexanone              | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L        | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Benzene                 | UG/L        | 0.97             | 3.3              | 0.78             |
| 8260C | N        | Carbon disulfide        | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L        | 4.9              | 4.5              | 6.1              |
| 8260C | N        | Dichlorodifluoromethane | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Ethylbenzene            | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Methylene chloride      | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Naphthalene             | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Propylbenzene           | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Styrene                 | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Tetrachloroethene       | UG/L        | 0.5 U            | 0.5 U            | 0.5 U            |

|              |          |                          | SDG         |           | 0973-1    |           | 0973-1    |         | 10973-1   |
|--------------|----------|--------------------------|-------------|-----------|-----------|-----------|-----------|---------|-----------|
|              |          |                          | Location    | MW-       | -7D-S     | MW-9D-1   |           | MW-9D-2 |           |
|              |          |                          | Sample Date | 8/28/2018 |           | 8/28/2018 |           | 8/28    | /2018     |
|              |          |                          | Sample ID   | MW        | -7D-5     | MW-9D-1   |           | MW      | -9D-2     |
|              |          |                          | QC Code     | F         | S         | F         | S         | F       | S         |
| Class        | Fraction | Parameter                | Units       | Result    | Qualifier | Result    | Qualifier | Result  | Qualifier |
| 8260C        | Ν        | Toluene                  | UG/L        | 0.5       | U         | 0.5       | U         | 0.5     | U         |
| 8260C        | N        | trans-1,2-Dichloroethene | UG/L        | 0.5       | U         | 0.5       | U         | 0.5     | U         |
| 8260C        | N        | Trichloroethene          | UG/L        | 1.1       |           | 0.48      | J         | 0.94    |           |
| 8260C        | N        | Trichlorofluoromethane   | UG/L        | 0.5       | U         | 0.5       | U         | 0.5     | U         |
| 8260C        | N        | Vinyl chloride           | UG/L        | 0.5 U     |           | 0.5 U     |           | 0.5     | U         |
| 8260C        | Ν        | Xylene, o                | UG/L        | 0.5       | U         | 0.5       | U         | 0.5     | U         |
| 8260C        | Ν        | Xylenes (m&p)            | UG/L        | 0.5       | U         | 0.5       | U         | 0.5     | U         |
| 8260C        | Ν        | Xylenes, Total           | UG/L        | 1         | U         | 1         | U         | 1       | U         |
| 8260C SIM    | Ν        | 1,4-Dioxane              | UG/L        | 3.4       |           | 13        |           | 10      |           |
| RSK-175      | Ν        | Methane                  | UG/L        | 11        |           | 33        |           | 15      |           |
| 300          | Т        | Sulfate                  | MG/L        | 28.1      |           | 22.9      |           | 30.8    |           |
| 353.2        | Т        | Nitrate+Nitrite as N     | MG/L        | 0.05      | U         | 0.05      | U         | 0.05    | U         |
| 6010C        | Т        | Iron                     | MG/L        | 0.64      |           | 0.32      |           | 0.68    |           |
| 6010C        | D        | Iron                     | MG/L        | 0.47      |           | 0.27      |           | 0.66    |           |
| 9060A        | Т        | Total Organic Carbon     | MG/L        | 1         | U         | 1         | U         | 1       | U         |
| SM 4500 S2 F | Т        | Sulfide                  | MG/L        | 1         | U         | 0.8       | J         | 1       | U         |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|       |          |                         | <b>SDG</b> 480-140973-1 |                  | 480-140973-1     | 480-140973-1     |
|-------|----------|-------------------------|-------------------------|------------------|------------------|------------------|
|       |          |                         | Location                | MW-9D-3          | QC               | QC               |
|       |          | :                       | Sample Date             | 8/28/2018        | 8/28/2018        | 8/28/2018        |
|       |          |                         | Sample ID               | MW-9D-3          | TB02             | EB01             |
|       |          |                         | QC Code                 | FS               | ТВ               | EB               |
| Class | Fraction |                         | Units                   | Result Qualifier | Result Qualifier | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L                    | 0.27 J           | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethene      | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L                    | 58               | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,2-Dichloropropane     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | 2-Butanone              | UG/L                    | 2.5 U            | 2.5 U            | 2.6              |
| 8260C | N        | 2-Hexanone              | UG/L                    | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L                    | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L                    | 2.5 U            | 2.5 U            | 2.5 U            |
| 8260C | N        | Benzene                 | UG/L                    | 0.88             | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon disulfide        | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L                    | 5.6              | 0.5 U            | 0.5 U            |
| 8260C | N        | Dichlorodifluoromethane | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Ethylbenzene            | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | N        | Methylene chloride      | UG/L                    | 0.5 U            | 0.41 J           | 0.5 U            |
| 8260C | N        | Naphthalene             | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | Ν        | Propylbenzene           | UG/L                    | 0.5 U            | 0.5 U            | 0.5 U            |
| 8260C | Ν        | Styrene                 | UG/L                    | 0.5 U 0.5 U      |                  | 0.5 U            |
| 8260C | N        | Tetrachloroethene       | UG/L                    | 0.34 J           | 0.5 U            | 0.5 U            |

|              |          |                          | SDG       |         | 0973-1    |           | 0973-1    |           | 0973-1    |
|--------------|----------|--------------------------|-----------|---------|-----------|-----------|-----------|-----------|-----------|
|              |          |                          | Location  | MW-9D-3 |           | QC        |           | QC        |           |
|              |          | Sample Date              |           | 8/28    | /2018     | 8/28/2018 |           | 8/28/2018 |           |
|              |          |                          | Sample ID | MW      | -9D-3     | TE        | 302       | EE        | 301       |
|              |          |                          | QC Code   | F       | S         | Т         | В         | E         | В         |
| Class        | Fraction | Parameter                | Units     | Result  | Qualifier | Result    | Qualifier | Result    | Qualifier |
| 8260C        | N        | Toluene                  | UG/L      | 0.5     |           | 0.5       |           | 0.5       |           |
| 8260C        | N        | trans-1,2-Dichloroethene | UG/L      | 0.5     | U         | 0.5       | U         | 0.5       | U         |
| 8260C        | N        | Trichloroethene          | UG/L      | 3.9     |           | 0.5       | U         | 0.5       | U         |
| 8260C        | N        | Trichlorofluoromethane   | UG/L      | 0.5     | U         | 0.5       | U         | 0.5       | U         |
| 8260C        | N        | Vinyl chloride           | UG/L      | 0.5     | U         | 0.5       | U         | 0.5       | U         |
| 8260C        | Ν        | Xylene, o                | UG/L      | 0.5     | U         | 0.5       | U         | 0.5       | U         |
| 8260C        | N        | Xylenes (m&p)            | UG/L      | 0.5     | U         | 0.5       | U         | 0.5       | U         |
| 8260C        | N        | Xylenes, Total           | UG/L      | 1       | U         | 1         | U         | 1         | U         |
| 8260C SIM    | Ν        | 1,4-Dioxane              | UG/L      | 1.2     | U         |           |           | 0.36      | J         |
| RSK-175      | N        | Methane                  | UG/L      | 2       |           |           |           | 0.58      | U         |
| 300          | Т        | Sulfate                  | MG/L      | 28.3    |           |           |           | 2         | U         |
| 353.2        | Т        | Nitrate+Nitrite as N     | MG/L      | 0.05    | U         |           |           | 0.05      | U         |
| 6010C        | Т        | Iron                     | MG/L      | 1       |           |           |           | 0.05      | U         |
| 6010C        | D        | Iron                     | MG/L      | 0.95    |           |           |           | 0.05      | U         |
| 9060A        | Т        | Total Organic Carbon     | MG/L      | 1       | U         |           |           | 1         | U         |
| SM 4500 S2 F | Т        | Sulfide                  | MG/L      | 1       | U         |           |           | 1         | U         |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|       |          |                         | SDG         | 480-140973-1     |
|-------|----------|-------------------------|-------------|------------------|
|       |          |                         | Location    | QC               |
|       |          |                         | Sample Date | 8/28/2018        |
|       |          |                         | Sample ID   | FB01             |
|       |          |                         | QC Code     | FB               |
| Class | Fraction | Parameter               | Units       | Result Qualifier |
| 8260C | N        | 1,1,1-Trichloroethane   | UG/L        | 0.5 U            |
| 8260C | N        | 1,1,2-Trichloroethane   | UG/L        | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethane      | UG/L        | 0.5 U            |
| 8260C | N        | 1,1-Dichloroethene      | UG/L        | 0.5 U            |
| 8260C | N        | 1,2,3-Trichlorobenzene  | UG/L        | 0.5 U            |
| 8260C | N        | 1,2,4-Trichlorobenzene  | UG/L        | 0.5 U            |
| 8260C | N        | 1,2,4-Trimethylbenzene  | UG/L        | 0.5 U            |
| 8260C | N        | 1,2-Dichlorobenzene     | UG/L        | 0.5 U            |
| 8260C | N        | 1,2-Dichloroethane      | UG/L        | 0.5 U            |
| 8260C | N        | 1,2-Dichloropropane     | UG/L        | 0.5 U            |
| 8260C | N        | 1,3,5-Trimethylbenzene  | UG/L        | 0.5 U            |
| 8260C | N        | 1,3-Dichlorobenzene     | UG/L        | 0.5 U            |
| 8260C | N        | 1,4-Dichlorobenzene     | UG/L        | 0.5 U            |
| 8260C | N        | 2-Butanone              | UG/L        | 2.8              |
| 8260C | N        | 2-Hexanone              | UG/L        | 2.5 U            |
| 8260C | N        | 4-Methyl-2-pentanone    | UG/L        | 2.5 U            |
| 8260C | N        | Acetone                 | UG/L        | 6.1              |
| 8260C | N        | Benzene                 | UG/L        | 0.5 U            |
| 8260C | N        | Carbon disulfide        | UG/L        | 0.5 U            |
| 8260C | N        | Carbon tetrachloride    | UG/L        | 0.5 U            |
| 8260C | N        | Chlorobenzene           | UG/L        | 0.5 U            |
| 8260C | N        | Chloroethane            | UG/L        | 0.5 U            |
| 8260C | N        | Chloroform              | UG/L        | 0.5 U            |
| 8260C | N        | Chloromethane           | UG/L        | 0.5 U            |
| 8260C | N        | Cis-1,2-Dichloroethene  | UG/L        | 0.5 U            |
| 8260C | N        | Dichlorodifluoromethane | UG/L        | 0.5 U            |
| 8260C | Ν        | Ethylbenzene            | UG/L        | 0.5 U            |
| 8260C | Ν        | Methylene chloride      | UG/L        | 0.5 U            |
| 8260C | Ν        | Naphthalene             | UG/L        | 0.5 U            |
| 8260C | Ν        | Propylbenzene           | UG/L        | 0.5 U            |
| 8260C | Ν        | Styrene                 | UG/L        | 0.5 U            |
| 8260C | Ν        | Tetrachloroethene       | UG/L        | 0.5 U            |

|              |          |                          | SDG         | 480-140 | )973-1    |
|--------------|----------|--------------------------|-------------|---------|-----------|
|              |          |                          | Location    | Q       | C         |
|              |          |                          | Sample Date | 8/28/2  | 2018      |
|              |          |                          | Sample ID   | FBO     | D1        |
|              |          |                          | QC Code     | FE      | 3         |
| Class        | Fraction | Parameter                | Units       | Result  | Qualifier |
| 8260C        | N        | Toluene                  | UG/L        | 0.5 0   | U         |
| 8260C        | N        | trans-1,2-Dichloroethene | UG/L        | 0.5 0   | U         |
| 8260C        | N        | Trichloroethene          | UG/L        | 0.5 0   | U         |
| 8260C        | N        | Trichlorofluoromethane   | UG/L        | 0.5 0   | U         |
| 8260C        | N        | Vinyl chloride           | UG/L        | 0.5 0   | U         |
| 8260C        | N        | Xylene, o                | UG/L        | 0.5 0   | U         |
| 8260C        | N        | Xylenes (m&p)            | UG/L        | 0.5 0   | U         |
| 8260C        | N        | Xylenes, Total           | UG/L        | 1 (     | U         |
| 8260C SIM    | N        | 1,4-Dioxane              | UG/L        | 0.34    | J         |
| RSK-175      | N        | Methane                  | UG/L        | 0.58 0  | J         |
| 300          | Т        | Sulfate                  | MG/L        | 2       | U         |
| 353.2        | Т        | Nitrate+Nitrite as N     | MG/L        | 0.05 0  | U         |
| 6010C        | Т        | Iron                     | MG/L        | 0.05 0  | J         |
| 6010C        | D        | Iron                     | MG/L        | 0.05 0  | U         |
| 9060A        | Т        | Total Organic Carbon     | MG/L        | 1 (     | J         |
| SM 4500 S2 F | Т        | Sulfide                  | MG/L        | 1 (     | J         |

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

EB = equipment blank

MG/L = milligram per liter

UG/L = microgram per liter

U = not detected

J = estimated value

T = total

D = dissolved

N = normal

|              |                 |             |               | Field Sample |                      | Lab    | Lab       | Validated | Validation | Val Reason | Result |
|--------------|-----------------|-------------|---------------|--------------|----------------------|--------|-----------|-----------|------------|------------|--------|
| SDG          | Analysis Method | Location ID | Lab Sample ID | ID           | Parameter Name       | Result | Qualifier | Result    | Qualifier  | Code       | Units  |
| 480-140674-1 | 8260C SIM       | MW-10D-2    | 480-140674-2  | MW-10D-2     | 1,4-Dioxane          | 0.33   | J         | 0.4       | U          | BL2        | UG/L   |
| 460-163028-1 | 8260C           | Sarney      | 460-163028-1  | Sarney       | Acetone              | 1.6    | J         | 2.5       | U          | BL2        | UG/L   |
| 460-163028-1 | 8260C           | Emerson     | 460-163028-2  | Emerson      | Acetone              | 1.6    | J         | 2.5       | U          | BL2        | UG/L   |
| 460-163028-1 | 8260C           | Hurlburt    | 460-163028-3  | Hurlburt     | Acetone              | 2.2    | J         | 2.5       | U          | BL2        | UG/L   |
| 460-163028-1 | 8260C           | Lienert     | 460-163028-4  | Lienert      | Acetone              | 1.4    | J         | 2.5       | U          | BL2        | UG/L   |
| 460-163028-1 | 8260C           | 151 BHR     | 460-163028-5  | 151 BHR      | Acetone              | 1.6    | J         | 2.5       | U          | BL2        | UG/L   |
| 480-140674-1 | 8260C           | MW-10D-1    | 480-140674-1  | MW-10D-1     | Acetone              | 1.2    | J         | 2.5       | U          | BL2        | UG/L   |
| 480-140674-1 | 8260C           | MW-10D-3    | 480-140674-3  | MW-10D-3     | Acetone              | 1.6    | J         | 2.5       | U          | BL2        | UG/L   |
| 480-140973-1 | 9060A           | MW-9D-1     | 480-140973-1  | MW-9D-1      | Total Organic Carbon | 0.75   | JB        | 1         | U          | BL1        | MG/L   |
| 480-140973-1 | 9060A           | MW-7D-D     | 480-140973-2  | MW-7D-D      | Total Organic Carbon | 0.66   | JB        | 1         | U          | BL1        | MG/L   |

Notes:

BL1 = Method blank qualifier

BL2 = Field QC Blank Qualifier

MG/L = milligram per liter

UG/L = microgram per liter

# **APPENDIX C**

Mann-Kendall Test

| TABLE 1                                                        |
|----------------------------------------------------------------|
| 2018 MANN-KENDALL STATISTICAL EVALUATION PER WIEDEMEIER ET AL. |

|                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                              |                                                                          |                                                                                     | Well                                                                                                                                      | D: MW7D-S                                                                                                                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                              |                                                                          |                                                                                     | 1,2-DCA Co                                                                                                                                | ncentration                                                                                                                                                                     | [ug/L] in Gro                                    | undwater by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / Date                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    | 08/23/11                                     | 08/28/12                                                                 | 08/21/13                                                                            | 08/19/14                                                                                                                                  | 08/20/15                                                                                                                                                                        | 08/24/16                                         | 08/23/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08/28/18                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    | 130                                          | 100                                                                      | 44                                                                                  | 65                                                                                                                                        | 61                                                                                                                                                                              | 50                                               | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53                                                                                                                                                     | Number of >0<br>Values                                                                                                                                                                         | Number of <0<br>Values                                                                                                                           |
| 08/23/11                                                                                                                                                                                                             | 130                                                                                                                                                                                |                                              | -30                                                                      | -86                                                                                 | -65                                                                                                                                       | -69                                                                                                                                                                             | -80                                              | -71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -77                                                                                                                                                    | 0                                                                                                                                                                                              | 7                                                                                                                                                |
| 08/28/12                                                                                                                                                                                                             | 100                                                                                                                                                                                |                                              |                                                                          | -56                                                                                 | -35                                                                                                                                       | -39                                                                                                                                                                             | -50                                              | -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -47                                                                                                                                                    | 0                                                                                                                                                                                              | 6                                                                                                                                                |
| 08/21/13                                                                                                                                                                                                             | 44                                                                                                                                                                                 |                                              |                                                                          |                                                                                     | 21                                                                                                                                        | 17                                                                                                                                                                              | 6                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                      | 5                                                                                                                                                                                              | 0                                                                                                                                                |
| 08/19/14                                                                                                                                                                                                             | 65                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           | -4                                                                                                                                                                              | -15                                              | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -12                                                                                                                                                    | 0                                                                                                                                                                                              | 4                                                                                                                                                |
| 08/20/15                                                                                                                                                                                                             | 61                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 | -11                                              | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -8                                                                                                                                                     | 0                                                                                                                                                                                              | 3                                                                                                                                                |
| 08/24/16                                                                                                                                                                                                             | 50                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                      | 2                                                                                                                                                                                              | 0                                                                                                                                                |
| 08/23/17                                                                                                                                                                                                             | 59                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6                                                                                                                                                     | 0                                                                                                                                                                                              | 1                                                                                                                                                |
| 08/28/18                                                                                                                                                                                                             | 53                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sum                                                                                                                                                    | 7                                                                                                                                                                                              | 21                                                                                                                                               |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    | Trend with at                                | least 90% C                                                              | onfidence: De                                                                       | ecreasing Col                                                                                                                             | ncentrations                                                                                                                                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        | S-statistic:                                                                                                                                                                                   | -14                                                                                                                                              |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      | _                                                                                                                                                                                  |                                              |                                                                          |                                                                                     | Well I                                                                                                                                    | D: MW7D-D                                                                                                                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                              |                                                                          |                                                                                     | 1,2-DCA Co                                                                                                                                | ncentration                                                                                                                                                                     | [ug/L] in Gro                                    | undwater by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / Date                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    | 08/23/11                                     | 08/28/12                                                                 | 08/21/13                                                                            | 08/19/14                                                                                                                                  | 08/20/15                                                                                                                                                                        | 08/24/16                                         | 08/23/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08/28/18                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        | Number of >0                                                                                                                                                                                   | Number of <                                                                                                                                      |
|                                                                                                                                                                                                                      |                                                                                                                                                                                    | 48                                           | 130                                                                      | 86                                                                                  | 78                                                                                                                                        | 79                                                                                                                                                                              | 75                                               | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                     | Values                                                                                                                                                                                         | Values                                                                                                                                           |
| 08/23/11                                                                                                                                                                                                             | 48                                                                                                                                                                                 |                                              | 82                                                                       | 38                                                                                  | 30                                                                                                                                        | 31                                                                                                                                                                              | 27                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -13                                                                                                                                                    | 6                                                                                                                                                                                              | 1                                                                                                                                                |
| 08/28/12                                                                                                                                                                                                             | 130                                                                                                                                                                                |                                              |                                                                          | -44                                                                                 | -52                                                                                                                                       | -51                                                                                                                                                                             | -55                                              | -58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -95                                                                                                                                                    | 0                                                                                                                                                                                              | 6                                                                                                                                                |
| 08/21/13                                                                                                                                                                                                             | 86                                                                                                                                                                                 |                                              |                                                                          |                                                                                     | -8                                                                                                                                        | -7                                                                                                                                                                              | -11                                              | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -51                                                                                                                                                    | 0                                                                                                                                                                                              | 5                                                                                                                                                |
| 08/19/14                                                                                                                                                                                                             | 78                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           | 1                                                                                                                                                                               | -3                                               | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -43                                                                                                                                                    | 1                                                                                                                                                                                              | 3                                                                                                                                                |
| 08/20/15                                                                                                                                                                                                             | 79                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 | -4                                               | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -44                                                                                                                                                    | 0                                                                                                                                                                                              | 3                                                                                                                                                |
|                                                                                                                                                                                                                      | 75                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -40                                                                                                                                                    | 0                                                                                                                                                                                              | 2                                                                                                                                                |
| 08/24/16                                                                                                                                                                                                             | 75                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -37                                                                                                                                                    | 0                                                                                                                                                                                              | 1                                                                                                                                                |
| 08/24/16<br>08/23/17                                                                                                                                                                                                 | 73                                                                                                                                                                                 |                                              |                                                                          |                                                                                     |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                  |
|                                                                                                                                                                                                                      | 72<br>35                                                                                                                                                                           | Trend with at                                | ileast 90% C                                                             | onfidence: De                                                                       |                                                                                                                                           |                                                                                                                                                                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sum                                                                                                                                                    | 7<br>S-statistic:                                                                                                                                                                              | 21<br>-14                                                                                                                                        |
| 08/23/17                                                                                                                                                                                                             | 72<br>35                                                                                                                                                                           |                                              |                                                                          |                                                                                     | Well<br>1,2-DCA Co                                                                                                                        | D: MW9D-3                                                                                                                                                                       |                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v Date                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                  |
| 08/23/17                                                                                                                                                                                                             | 72<br>35                                                                                                                                                                           | Trend with at<br>08/23/11                    | 1 least 90% C                                                            | onfidence: De<br>08/21/13                                                           | Well                                                                                                                                      | ID: MW9D-3                                                                                                                                                                      | [ug/L] in Gro<br>08/24/16                        | undwater by<br>08/23/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        | S-statistic:                                                                                                                                                                                   | -14                                                                                                                                              |
| 08/23/17                                                                                                                                                                                                             | 72<br>35                                                                                                                                                                           |                                              |                                                                          |                                                                                     | Well<br>1,2-DCA Co                                                                                                                        | D: MW9D-3                                                                                                                                                                       |                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v Date                                                                                                                                                 | S-statistic:<br>Number of >0                                                                                                                                                                   |                                                                                                                                                  |
| 08/23/17                                                                                                                                                                                                             | 72<br>35                                                                                                                                                                           | 08/23/11                                     | 08/28/12                                                                 | 08/21/13<br><b>90</b>                                                               | Well<br>1,2-DCA Co<br>08/19/14                                                                                                            | D: MW9D-3<br>ncentration<br>08/20/15                                                                                                                                            | 08/24/16                                         | 08/23/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>7 Date</b><br>08/28/18                                                                                                                              | S-statistic:<br>Number of >0<br>Values                                                                                                                                                         | -14<br>Number of <                                                                                                                               |
| 08/23/17<br>08/28/18                                                                                                                                                                                                 | 72<br>35                                                                                                                                                                           | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b>                                                               | Well<br>1,2-DCA Co<br>08/19/14<br>78                                                                                                      | D: MW9D-3<br>ncentration<br>08/20/15<br>86                                                                                                                                      | 08/24/16<br><b>92</b>                            | 08/23/17<br><b>79</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 Date<br>08/28/18<br>58                                                                                                                               | S-statistic:<br>Number of >0<br>Values<br>0                                                                                                                                                    | -14<br>Number of <<br>Value                                                                                                                      |
| 08/23/17<br>08/28/18<br>08/23/11                                                                                                                                                                                     | 72<br>35                                                                                                                                                                           | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b><br>-20                                                        | Well<br>1,2-DCA Co<br>08/19/14<br>78<br>-32                                                                                               | D: MW9D-3<br>incentration<br>08/20/15<br>86<br>-24                                                                                                                              | 08/24/16<br>92<br>-18                            | 08/23/17<br><b>79</b><br>-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 Date<br>08/28/18<br>58<br>-52                                                                                                                        | S-statistic:<br>Number of >0<br>Values<br>0                                                                                                                                                    | -14<br>Number of <<br>Value<br>6                                                                                                                 |
| 08/23/17<br>08/28/18<br>08/23/11<br>08/23/11<br>08/28/12                                                                                                                                                             | 72<br>35<br>110<br>110                                                                                                                                                             | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b><br>-20                                                        | Well<br>1,2-DCA Co<br>08/19/14<br>78<br>-32<br>-32                                                                                        | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24                                                                                                                        | 08/24/16<br>92<br>-18<br>-18                     | 08/23/17<br>79<br>-31<br>-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date<br>08/28/18<br>58<br>-52<br>-52                                                                                                                   | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1                                                                                                                                          | -14<br>Number of <<br>Value<br>6<br>6                                                                                                            |
| 08/23/17<br>08/28/18<br>08/23/11<br>08/23/11<br>08/28/12<br>08/21/13                                                                                                                                                 | 72<br>35<br>110<br>110<br>90                                                                                                                                                       | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b><br>-20                                                        | Well<br>1,2-DCA Co<br>08/19/14<br>78<br>-32<br>-32                                                                                        | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-24<br>-4                                                                                                           | 08/24/16<br>92<br>-18<br>-18<br>2                | 08/23/17<br><b>79</b><br>-31<br>-31<br>-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>08/28/18<br>58<br>-52<br>-52<br>-52<br>-32                                                                                                     | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3                                                                                                                                     | -14<br>Number of <<br>Value<br>6<br>6<br>6<br>4                                                                                                  |
| 08/23/17<br>08/28/18<br>08/23/11<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14                                                                                                                                     | 72<br>35<br>110<br>110<br>90<br>78                                                                                                                                                 | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b><br>-20                                                        | Well<br>1,2-DCA Co<br>08/19/14<br>78<br>-32<br>-32                                                                                        | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-24<br>-4                                                                                                           | 08/24/16<br>92<br>-18<br>-18<br>2<br>14          | 08/23/17<br>79<br>-31<br>-31<br>-11<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 Date<br>08/28/18<br>-52<br>-52<br>-32<br>-20                                                                                                         | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3                                                                                                                                     | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1                                                                                                  |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15                                                                                                                         | 72<br>35<br>110<br>110<br>90<br>78<br>86                                                                                                                                           | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b><br>-20                                                        | Well<br>1,2-DCA Co<br>08/19/14<br>78<br>-32<br>-32                                                                                        | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-24<br>-4                                                                                                           | 08/24/16<br>92<br>-18<br>-18<br>2<br>14          | 08/23/17<br><b>79</b><br>-31<br>-31<br>-11<br>1<br>-11<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28                                                                                            | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1                                                                                                                                | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2                                                                                             |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/24/16                                                                                                             | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92                                                                                                                                     | 08/23/11                                     | 08/28/12<br><b>110</b>                                                   | 08/21/13<br><b>90</b><br>-20                                                        | Well<br>1,2-DCA Co<br>08/19/14<br>78<br>-32<br>-32                                                                                        | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-24<br>-4                                                                                                           | 08/24/16<br>92<br>-18<br>-18<br>2<br>14          | 08/23/17<br><b>79</b><br>-31<br>-31<br>-11<br>1<br>-11<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34                                                                                     | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0                                                                                                                           | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2                                                                                        |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/24/16<br>08/23/17                                                                                                 | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58                                                                                                                         | 08/23/11 110                                 | 08/28/12<br>110<br>0                                                     | 08/21/13<br><b>90</b><br>-20                                                        | Well 1<br>1,2-DCA Co<br>08/19/14<br>78<br>-32<br>-32<br>-12                                                                               | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8                                                                                                             | 08/24/16<br>92<br>-18<br>-18<br>2<br>14          | 08/23/17<br><b>79</b><br>-31<br>-31<br>-11<br>1<br>-11<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-34<br>-21                                                                       | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0<br>0<br>0                                                                                                                 | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>2<br>1                                                                              |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/24/16<br>08/23/17                                                                                                 | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58                                                                                                                         | 08/23/11 110                                 | 08/28/12<br>110<br>0                                                     | 08/21/13<br>90<br>-20<br>-20                                                        | Well 1<br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>ecreasing Con<br>Well                                                      | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>8<br>                                                                                       | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6     | 08/23/17<br><b>79</b><br>-31<br>-31<br>-11<br>1<br>-7<br>-13<br>-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum                                                                       | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0<br>0<br>5                                                                                                                 | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>22                                                              |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/24/16<br>08/23/17                                                                                                 | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58                                                                                                                         | 08/23/11<br>110                              | 08/28/12<br>110<br>0<br>                                                 | 08/21/13<br>90<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-2 | Well 1<br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>ecreasing Con<br>Well 1<br>1,2-DCA Cc                               | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>                                                                                                         | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-31<br>-11<br>1<br>-7<br>-7<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum                                                                       | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0<br>0<br>5                                                                                                                 | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>22                                                              |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/24/16<br>08/23/17                                                                                                 | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58                                                                                                                         | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12       | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well 1 1,2-DCA Cc 08/19/14 78 -32 -32 -32 -12 ccreasing Con Well 1,2-DCA Cc 08/19/14                                                      | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>                                                                                                         | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>undwater by<br>08/23/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18                                                   | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0                                                                                 | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>22<br>-17<br>Number of <                                                       |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/28/12<br>08/28/12<br>08/21/13<br>08/29/15<br>08/24/16<br>08/23/17<br>08/28/18                                                                                                 | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58                                                                                                                         | 08/23/11<br>110                              | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | Well 1<br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>                                                                    | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>                                                                                                         | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>-13<br>-0<br>08/23/17<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ✓ Date<br>08/28/18<br>58<br>-52<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>✓ Date<br>08/28/18<br>59                                    | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values                                                                       | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>22<br>-17<br>Number of <<br>Value                                              |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/28/12<br>08/21/13<br>08/23/17<br>08/23/17<br>08/23/17<br>08/23/11                                                                                     | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58                                                                                                                         | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12       | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well 1<br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>                                                                    | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>                                                                                                         | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>-13<br>-13<br>-10<br>08/23/17<br>-13<br>-13<br>-13<br>-13<br>-13<br>-14<br>-14<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date<br>08/28/18<br>58<br>-52<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br><b>Sum</b><br>08/28/18<br>08/28/18<br>59<br>-14                      | S-statistic:<br>Number of >0<br>Values<br>0<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6                                                             | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>22<br>-17<br>Number of <<br>Value<br>1                                         |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/22/15<br>08/22/17<br>08/23/17<br>08/23/17<br>08/23/11<br>08/23/11<br>08/23/11                                                             | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58<br>                                                                                                                     | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00        | Well  <br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>ecreasing Col<br>well  <br>1,2-DCA Cc<br>08/19/14<br>96<br>23<br>22 | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>-8<br>-24<br>-4<br>-8<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24 | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br><b>79</b><br>-31<br>-11<br>1<br>-7<br>-13<br>-13<br>-13<br>-10<br>08/23/17<br>-13<br>-11<br>-11<br>-7<br>-13<br>-13<br>-11<br>-11<br>-7<br>-13<br>-11<br>-11<br>-7<br>-13<br>-11<br>-11<br>-11<br>-7<br>-13<br>-11<br>-7<br>-13<br>-11<br>-7<br>-13<br>-11<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-13<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7<br>-7 | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18<br>59<br>-14<br>-15                             | S-statistic:<br>Number of >0<br>Values<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6<br>5                                                                  | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>1<br>22<br>-17<br>Number of <<br>Value<br>1<br>1<br>1<br>1<br>1<br>1      |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/22/15<br>08/22/17<br>08/23/17<br>08/28/18<br>08/23/17<br>08/28/18                                                                         | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>79<br>58                                                                   | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well 1<br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>                                                                    | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>-8<br>-24<br>-4<br>-8<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24 | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-31<br>-11<br>1<br>-7<br>-13<br>08/23/17<br>08/23/17<br>85<br>12<br>11<br>-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18<br>59<br>-14<br>-15<br>-39                      | S-statistic:<br>Number of >0<br>Values<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6<br>5<br>0<br>0                                                        | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>1<br>22<br>-17<br>Number of <<br>Value<br>1<br>1<br>5                     |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/28/12<br>08/28/12<br>08/21/13<br>08/22/13<br>08/22/17<br>08/23/17<br>08/23/17<br>08/23/17<br>08/23/18<br>08/23/11<br>08/23/11<br>08/23/11<br>08/23/11<br>08/23/11             | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58<br>92<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58                                           | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well  <br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>ecreasing Col<br>well  <br>1,2-DCA Cc<br>08/19/14<br>96<br>23<br>22 | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>-8<br>-24<br>-4<br>-8<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24 | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>08/23/17<br>85<br>12<br>11<br>-13<br>-11<br>-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-52<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18<br>59<br>-14<br>-15<br>-39<br>-37               | S-statistic:<br>Number of >0<br>Values<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -14<br>Number of 4<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>1<br>22<br>-17<br>Number of 4<br>Value<br>1<br>5<br>4                              |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/28/12<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/23/17<br>08/28/18<br>08/23/17<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/21/13<br>08/21/13             | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58                                                                                     | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well  <br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>ecreasing Col<br>well  <br>1,2-DCA Cc<br>08/19/14<br>96<br>23<br>22 | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>-8<br>-24<br>-4<br>-8<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24 | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>08/23/17<br>85<br>12<br>11<br>-13<br>-11<br>-13<br>-11<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18<br>59<br>-14<br>-15<br>-39<br>-37<br>-33        | S-statistic:<br>Number of >0<br>Values<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -14<br>Number of 4<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>1<br>22<br>-17<br>Number of 4<br>Value<br>1<br>5<br>4<br>3                         |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/28/12<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/24/16<br>08/23/17<br>08/28/18<br>08/28/18<br>08/28/12<br>08/28/12<br>08/21/13<br>08/21/13<br>08/21/13<br>08/21/13 | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58 | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well  <br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>ecreasing Col<br>well  <br>1,2-DCA Cc<br>08/19/14<br>96<br>23<br>22 | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>-8<br>-24<br>-4<br>-8<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24 | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>08/23/17<br>85<br>12<br>11<br>-13<br>-11<br>-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18<br>59<br>-14<br>-15<br>-39<br>-33<br>-33<br>-28 | S-statistic:<br>Number of >0<br>Values<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>1<br>22<br>-17<br>Number of <<br>Value<br>1<br>1<br>5<br>4<br>3<br>2<br>2 |
| 08/23/17<br>08/28/18<br>08/28/18<br>08/28/12<br>08/28/12<br>08/21/13<br>08/19/14<br>08/20/15<br>08/23/17<br>08/28/18<br>08/23/17<br>08/28/18<br>08/23/11<br>08/28/12<br>08/21/13<br>08/21/13<br>08/21/13             | 72<br>35<br>110<br>110<br>90<br>78<br>86<br>92<br>79<br>58<br>79<br>58<br>79<br>58<br>79<br>58                                                                                     | 08/23/11<br>110<br>Trend with at<br>08/23/11 | 08/28/12<br>110<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>8/28/12<br>74 | 08/21/13<br>90<br>-20<br>-20<br>0                                                   | Well  <br>1,2-DCA Cc<br>08/19/14<br>78<br>-32<br>-32<br>-12<br>-12<br>ecreasing Col<br>well  <br>1,2-DCA Cc<br>08/19/14<br>96<br>23<br>22 | D: MW9D-3<br>ncentration<br>08/20/15<br>86<br>-24<br>-24<br>-4<br>8<br>-24<br>-4<br>-8<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24<br>-24                    | 08/24/16<br>92<br>-18<br>-18<br>2<br>14<br>6<br> | 08/23/17<br>79<br>-31<br>-11<br>1<br>-7<br>-13<br>08/23/17<br>85<br>12<br>11<br>-13<br>-11<br>-13<br>-11<br>-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / Date<br>08/28/18<br>58<br>-52<br>-52<br>-32<br>-20<br>-28<br>-34<br>-21<br>sum<br>/ Date<br>08/28/18<br>59<br>-14<br>-15<br>-39<br>-37<br>-33        | S-statistic:<br>Number of >0<br>Values<br>0<br>1<br>3<br>1<br>0<br>0<br>5<br>S-statistic:<br>Number of >0<br>Values<br>6<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -14<br>Number of <<br>Value<br>6<br>6<br>4<br>1<br>2<br>2<br>1<br>2<br>1<br>22<br>-17<br>Number of <<br>Value<br>1<br>2<br>4<br>3                |

| TABLE 1                                                        |
|----------------------------------------------------------------|
| 2018 MANN-KENDALL STATISTICAL EVALUATION PER WIEDEMEIER ET AL. |

| Image: state in the s |                                                                                                                                 | г                                |                                 |                                   |                                      |                        | D: MW9D-1      |               |              |              |              |             |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|----------------|---------------|--------------|--------------|--------------|-------------|---------|
| B         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              | 1            |             |         |
| 0122111         01         11         13         16         20         19         37         0         17           0022112         78         0         0         77         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 | -                                | 08/23/11                        | 08/28/12                          | 08/21/13                             | 08/19/14               | 08/20/15       | 08/24/16      | 08/23/17     | 08/28/18     | Number of >0 | Number of < |         |
| 01221/13         78         0         77         55         99         78         78         0         17           0821/13         78         0         -77         55         99         -85         -38         0         1           0821/13         78         0         -77         55         9         -85         -28         0         -22           0821/16         73         0         -         -         -         1         1.17         1         -           08221/17         70         0         -         -         -         1.18         0         -         2           08221/1         70         0         -         0         0.211         0.171         0.18         VMID-3         -         2         2           Trend with at least 90% Confidence. Decreasing Concentration Structure by Date         -         0.2011         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2211         0.2111         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |                                  | 89                              |                                   | 78                                   |                        |                |               |              | 52           | Values       | Value       |         |
| 082113         76         1         2         -2         -1         -108         0         1         0           082016         73         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                  |                                 | -11                               |                                      |                        |                |               |              |              |              | 7           |         |
| Oprimine         Ti         Image: Second Sec                   |                                                                                                                                 |                                  |                                 |                                   | 0                                    |                        |                |               |              |              |              | 5           |         |
| 082211         73         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                  |                                 |                                   |                                      | -7                     |                |               |              |              |              | 5           |         |
| 08/24/15         6.9         1         1         1         1         1         1         1         1         1         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>3</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                  |                                 |                                   |                                      |                        | 2              |               |              |              |              | 3           |         |
| 08/23/17         70         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-4</td><td></td><td></td><td></td><td>3</td></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                | -4            |              |              |              | 3           |         |
| 08/28/18         52         statistic         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              |              | 1           |         |
| S-tatistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              |              | 25          |         |
| Vell ID: MW10D-3           1.2-DCA Concentration [ug1] in Groundwater by Date           08/23/11         08/23/12         08/21/13         08/21/14         08/20/15         09/23/17         08/20/15         08/23/17         08/20/15         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         0         0.75         1         1         0.6         0.89         Values         Number of >0         Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00/20/10                                                                                                                        |                                  | Trend with at                   | t least 90% C                     | onfidence: De                        | ecreasing Col          | ncentrations   |               |              | Juin         |              | -23         |         |
| 1-26C orbusted by United and the set of the set        |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              |              |             |         |
| bellow         bellow<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                                  |                                 |                                   | 1.2-DCA Co                           |                        |                |               | Date         |              |              |             |         |
| Image: constraint of the set of  |                                                                                                                                 | Ī                                | 08/23/11                        | 08/28/12                          |                                      |                        |                |               |              | 08/20/18     |              |             |         |
| 08/23/11         1         0.025         0         0.025         0.025         0.025         0.015         0.14         0         0           08/21/13         1         0         0.25         0.25         0.15         0.14         0         0           08/21/13         1         0         0.25         0.25         0.15         0.14         3         7           08/21/15         1         0         0         0.4         0.11         0         1         0         0         0.4         0.11         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              |              |             |         |
| 08/28/12         0.75         0.25         0.25         0.25         0.15         0.14         0         0           08/19/14         0.75         0.25         0.25         0.25         0.15         0.14         3         0           08/20/15         1         0.25         0.25         0.25         0.01         0.02         0.02         0.01         0         0         0         0.01         0         0         0         0.01         0         0         0         0         0.01         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Value</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                  | 1                               |                                   |                                      |                        |                |               |              |              |              | Value       |         |
| 08/21/13         1         0.025         0         0         0.04         0.011         5         0           08/20/15         1         0         0.25         0.25         0.25         0.15         0.14         3         0           08/20/15         1         0         0         0.04         0.011         0         2           08/20/15         0.80         0         0         0.04         0.011         0         2           08/20/15         0.80         0         0         0.04         0.011         0         2           08/20/15         0.81         0         0         0.02         0.0         0         0           08/20/15         0.814/16         0         0         0         0         0         0         0         0           08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/23/17         08/20/18         Number of >0         Number of >0         Number of >0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                  |                                 | -0.25                             | -                                    |                        |                |               |              |              |              | 6           |         |
| 08/19/14         0.75         0         0         0.14         3         1           08/24/16         1         0         0.04         0.011         0         2           08/24/16         1         0         0.04         0.011         0         2           08/24/16         0.89         0         0         0.029         0         0           08/24/16         0.89         0         0         0.029         0         0           08/24/16         0.89         0         0         0         0         0         0           08/24/11         0.813ticially significant trend indicated         5         5         2         23         Values         Values<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                  |                                 |                                   | 0.25                                 |                        |                |               |              |              |              | 6           |         |
| 08/20/15         1         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                  |                                 |                                   |                                      | -0.25                  |                |               |              |              |              | 0           |         |
| 08/24/16         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         1         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         1         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                  |                                 |                                   |                                      |                        | 0.25           |               |              |              |              | 1           |         |
| 08/23/17         0.6         0         0.29         0         0           08/20/18         0.99         Image: Constraint of the const                                                                                          |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                | 0             |              |              |              | 2           |         |
| 08/20/18         0.89         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-0.4</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               | -0.4         |              |              |             |         |
| Trend : No statistically significant trend indicated         S-statistic:: -1           Well ID: MV10D-2           Well ID: MV10D-2           08/23/11         08/23/11         OB/23/11          OB/23/11 <th colspan<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1<br/>19</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <td></td> <td>1<br/>19</td> |                                  |                                 |                                   |                                      |                        |                |               |              |              |              |             | 1<br>19 |
| Well ID: MW10D-2           1.2-DCA Concentration [ug/L] in Groundwater by Date           08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11         08/23/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00/20/10                                                                                                                        |                                  | Trend · No st                   | tatistically sig                  | nificant trend                       | indicated              |                |               |              | Juin         |              | -11         |         |
| 1,2-DCA Concentration [ug/L] in Groundwater by Date           08/23/11         08/23/12         08/21/13         08/19/14         08/20/15         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17         08/23/17 <th< td=""><td></td><td></td><td></td><td>auououny org.</td><td></td><td></td><td>D. MW10D-2</td><td></td><td></td><td></td><td>e etallettet</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 |                                  |                                 | auououny org.                     |                                      |                        | D. MW10D-2     |               |              |              | e etallettet |             |         |
| 08/23/11         08/23/12         08/21/13         08/19/14         08/20/15         08/23/17         08/23/17         08/20/18         Number of >0           08/23/11         43         43         11         28         37         35         32         22         Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 | Ī                                |                                 |                                   |                                      |                        |                |               | undwater by  | Date         |              |             |         |
| Harmonic of the set o |                                                                                                                                 | ·                                | 08/23/11                        | 08/28/12                          | 08/21/13                             |                        |                |               |              |              |              |             |         |
| 08/23/11       43       0       -32       -15       -6       -8       -11       -20       0       0         08/28/12       43       -32       -15       -6       -8       -11       -20       0       0         08/28/12       43       -32       -15       -6       -8       -11       -20       0       0         08/21/13       11       0       17       26       24       21       12       5       0         08/20/15       37       0       0       -2       -5       1.4       0       2         08/24/16       35       0       0       -3       -12       0       2       0       2         08/20/18       23       0       0       0       -3       -12       0       2         08/20/18       23       0       0       0       -3       0       0       2         08/20/18       23       0       0       -12       0       -5       -3       0       0       0       0       2       0       -2       -4       1       0       0       0       0       0       0       0       0 <td></td> <td>Number of &gt;0</td> <td>Number of</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              | Number of >0 | Number of   |         |
| 08/28/12       44       -32       -15       -6       -8       -11       -20       0       0         08/21/13       11       17       26       24       21       12       5       0         08/20/15       37       0       9       7       4       -5       3       -7         08/20/15       37       0       -3       -12       0       -7       -7       -8       0       -7         08/20/15       37       0       -3       -12       0       -7       -8       0       -7         08/23/17       32       0       0       -3       -12       0       -7       -9       0       -7         08/20/18       23       0       0       0       -9       0       -7       -5       -7       -9       0       -7         08/20/18       10       12       08/19/14       08/20/15       08/20/17       08/20/17       08/20/17       08/20/18       -7       -13       0       0       -7         08/23/11       08/29/12       08/19/14       08/20/15       08/20/15       08/20/17       08/20/18       0       10       0       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                  | 43                              |                                   |                                      |                        |                |               | 32           |              |              | Value       |         |
| 08/21/13         11         17         26         24         21         12         5         0           08/19/14         28         9         7         4         -5         3         -7           08/20/15         37         9         7         4         -5         3         -7           08/20/15         37         9         7         4         -5         3         -7           08/20/15         37         9         7         4         -5         3         -7           08/20/16         35         9         7         4         -5         3         -7           08/23/17         32         9         1         -9         0         -7           08/20/18         23         9         7         -9         0         -7           Well ID: MW10D-1           Well ID: MW10D-1           08/23/11         08/28/12         08/21/13         08/12/13         08/20/15         08/23/17         08/20/18         0         2         0         -6         3         -7         -5         -3         -5         -7         -13         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |                                  |                                 | 0                                 |                                      |                        |                |               |              |              |              | 6           |         |
| 08/19/14         28         0         9         7         4         -5         3         -6           08/20/15         37         0         0         0         -2         -5         -14         0         5           08/24/16         35         0         0         0         -3         -12         0         2           08/23/17         32         0         0         0         -3         -12         0         2           08/20/18         23         0         0         0         -9         0         0           08/20/18         23         0         0         0         -9         0         0           08/20/18         23         0         0         0         -9         0         0           08/20/18         23         0         0         -5         -7         -9         0         0         0           08/20/18         08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         Number of >0         Number of >0           08/23/11         36         34         27         29         31         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                  |                                 |                                   | -32                                  |                        |                |               |              |              |              | 6           |         |
| 08/20/15         37         0         0         -2         -5         -14         0         5           08/24/16         35         0         0         -3         -12         0         2           08/23/17         32         0         0         -3         -12         0         2           08/20/18         23         0         0         -9         0         -7           08/20/18         23         0         0         -9         0         -7           08/20/18         23         0         0         -9         0         -7           08/20/18         23         0         0         -9         0         -7           08/20/18         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         08/23/17         08/20/18         Number of >0         Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                  |                                 |                                   |                                      | 17                     |                |               |              |              |              | 0           |         |
| 08/24/16         35         0         -3         -12         0         2           08/23/17         32         0         0         -9         0         -7           08/20/18         23         0         0         9         0         -7           08/20/18         23         0         0         -9         0         -7           08/20/18         23         0         0         -9         0         -7           08/20/18         23         0         0         -9         0         -7           08/20/18         0         0         Sestatistic:         -1         -1         -1         0         0         2         -1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td>-</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                 |                                  |                                 |                                   |                                      |                        | 9              |               |              |              | -            | 1           |         |
| 08/23/17         32         0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-2</td> <td></td> <td></td> <td></td> <td>3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                | -2            |              |              |              | 3           |         |
| 08/20/18         23         sum         8         1           Trend : No statistically significant trend indicated         S-statistic:1           Well ID: MW10D-1           Well ID: MW10D-1           Well ID: MW10D-1           08/23/11         08/23/11         OB/23/11         OB/23/17         OB/20/18           OB/23/11         OB/23/11         OB/23/17         OB/20/18         Number of >0         Number o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               | -3           |              |              | 2           |         |
| Trend : No statistically significant trend indicated         S-statistic: -1           Well ID: MW10D-1           Well ID: MW10D-1           1,2-DCA Concentration [ug/L] in Groundwater by Date           08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         Number of >0         Number           08/23/11         36         34         27         29         31         29         27         21         Values         Values           08/23/11         36         -2         -9         -7         -5         -7         -9         -15         0         7           08/23/11         36         -2         -9         -7         -5         -7         -9         -15         0         7           08/28/12         34         -7         -5         -3         -5         -7         -13         0         6           08/21/13         27         2         4         2         0         -6         3         -7           08/20/15         31         0         0         -2         -8         1         2         2         0         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              |              | 1           |         |
| Well ID: MW10D-1           1,2-DCA Concentration [ug/L] in Groundwater by Date           08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18           08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         Number of >0         Number of >0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06/20/16                                                                                                                        |                                  | Trend : No.st                   | tatistically sig                  | nificant trend                       | indicated              |                |               |              | sum          |              | 19<br>-11   |         |
| 1,2-DCA Concentration [ug/L] in Groundwater by Date           08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         Number of >0         Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                  | TTETIU . NO SI                  | austically sign                   | inicant trenu                        | Indicated              |                |               |              |              | S-Statistic. | -11         |         |
| 1,2-DCA Concentration [ug/L] in Groundwater by Date           08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         Number of >0         Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                  |                                 |                                   |                                      | Well                   | D. MW10D_1     |               |              |              |              |             |         |
| 08/23/11         08/28/12         08/21/13         08/19/14         08/20/15         08/24/16         08/23/17         08/20/18         Number of >0         Number of >0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>[ua/L1 in Gro</td> <td>undwater by</td> <td>Date</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                  |                                 |                                   |                                      | -                      | -              | [ua/L1 in Gro | undwater by  | Date         |              |             |         |
| 36         34         27         29         31         29         27         21         Number of >0         Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 | ·                                | 08/23/11                        | 08/28/12                          | 08/21/13                             |                        |                |               |              |              |              |             |         |
| 08/23/11       36       -2       -9       -7       -5       -7       -9       -15       0       1         08/28/12       34       -7       -5       -3       -5       -7       -13       0       0         08/28/12       34       -7       -5       -3       -5       -7       -13       0       0         08/21/13       27       2       4       2       0       -6       3       4         08/19/14       29       -       2       4       2       0       -6       3       4         08/20/15       31       -       -       2       0       -2       -8       0       5         08/20/15       31       -       -       -       -7       -6       0       5         08/23/17       27       -       -       -       -6       0       5       -4         08/20/18       21       -       -       -       -6       0       5       -4         04/20/18       21       -       -       -       -       -       -4       -4       2         08/20/18       21       -       - </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Number of &gt;0</td> <td>Number of</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | -                                |                                 |                                   |                                      |                        |                |               |              |              | Number of >0 | Number of   |         |
| 08/28/12         34         -7         -5         -3         -5         -7         -13         0         0           08/21/13         27          2         4         2         0         -6         3         -7           08/19/14         29          2         4         2         0         -6         3         -7           08/20/15         31           2         0         -2         -8         1         2           08/20/15         31            -2         -4         -10         0         3           08/20/15         31            -2         -4         -10         0         3           08/23/17         27             -6         0         -7           08/20/18         21             sum         4         2           Trend with at least 90% Confidence: Decreasing Concentrations         S-statistic: -4           Application of Mann-Kendall Test is per Wiedemeier et al. (2000).         -7           oreight consecutive sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                  | 36                              |                                   |                                      |                        |                |               |              |              |              | Value       |         |
| 08/21/13         27         2         4         2         0         -6         3         -7           08/19/14         29         2         0         -2         -8         1         1         2           08/20/15         31         2         2         0         -2         -8         1         1         2           08/20/15         31         2         -2         -4         -10         0         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td></td> <td></td> <td></td> <td>-2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |                                  |                                 | -2                                |                                      |                        |                |               |              |              |              | 7           |         |
| 08/19/14         29         20         -2         -8         1         2           08/20/15         31         -2         -2         -4         -10         0         3           08/20/15         31         -2         -2         -4         -10         0         3           08/20/15         31         -2         -2         -4         -10         0         3           08/24/16         29         -2         -8         0         2         -2         -8         0         2           08/23/17         27         -         -         -         -6         0         -7         -6         0         -7         -8         0         2         -8         0         2         -8         0         2         -6         0         -7         -8         0         2         -7         -6         0         -7         -8         0         2         -7         -8         0         -7         -8         0         -7         -8         0         2         -8         0         2         -8         0         2         -8         1         2         -8         1         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                  |                                 |                                   | -7                                   |                        |                |               |              |              |              | 6           |         |
| 08/20/15         31         -2         -4         -10         0         33           08/24/16         29         -2         -8         0         2           08/23/17         27         -6         0         2           08/20/18         21         -6         0         2           Trend with at least 90% Confidence: Decreasing Concentrations         S-statistic:         -1           tes:           Application of Mann-Kendall Test is per Wiedemeier et al. (2000).         S-statistic greater than or equal ±12 indicates a trend with at least 90% confidence. For         For eight consecutive sampling events, an S-statistic greater than or equal ±12 indicates a trend with at least 90% confidence. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                  |                                 |                                   |                                      | 2                      |                |               |              |              |              | 1           |         |
| 08/24/16         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                                  |                                 |                                   |                                      |                        | 2              |               |              |              |              | 2           |         |
| 08/23/17       27       -6       0       -6       0       -6       0       -6       0       -6       0       -2         08/20/18       21       Image: Construction of Mann-Kendall Test is per Wiedemeier et al. (2000).       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         Concentrations       S-statistic:       -1         Trend with at least 90% confidence: Decreasing Concentrations         Set colspan="2">Set colspan="2">Set colspan="2"Set colspan="2"Set colspan="2"Set colspan="2"Set colspan="2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                | -2            |              |              |              | 3           |         |
| 08/20/18       21       sum       4       2         Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1         otes:<br>Application of Mann-Kendall Test is per Wiedemeier et al. (2000).         For eight consecutive sampling events, an S-statistic greater than or equal ±12 indicates a trend with at least 90% confidence. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               | -2           |              |              | 2           |         |
| Trend with at least 90% Confidence: Decreasing Concentrations       S-statistic:       -1 <u>otes:</u> -1         Application of Mann-Kendall Test is per Wiedemeier et al. (2000).       -1         For eight consecutive sampling events, an S-statistic greater than or equal ±12 indicates a trend with at least 90% confidence. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                  |                                 |                                   |                                      |                        |                |               |              |              |              | 1           |         |
| o <u>tes:</u><br>Application of Mann-Kendall Test is per Wiedemeier et al. (2000).<br>For eight consecutive sampling events, an S-statistic greater than or equal ±12 indicates a trend with at least 90% confidence. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08/20/18                                                                                                                        |                                  | Turned with a                   | . la a at 0.00% . 0               | - Eduardo D                          |                        |                |               |              | sum          |              | 22<br>-18   |         |
| S-statistic>0 = Increasing Trend; S-statistic<0 = Decreasing Trend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Application<br>For eight co<br>an S-statisti                                                                                    | onsecutive sa<br>ic of less thar | mpling event<br>1 ±12, the tree | s, an S-statis<br>nd is not stati | tic greater that<br>stically signifi | an or equal ±<br>cant. | 12 indicates a | trend with at | least 90% co | nfidence. Fc | pr           |             |         |