

REPORT OF FINDINGS BUILDING 001 VOC SOURCE ASSESSMENT

IBM Poughkeepsie Facility Poughkeepsie, New York

Prepared for IBM Corporation File No. 3463.00 April 2014

SANBORN, HEAD ENGINEERING, P.C.

2455 South Road Poughkeepsie, NY 12601

April 21, 2014

Alex G. Czuhanich New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E, 12th Floor 625 Broadway Albany, New York 12233-7017

Kristin Kulow New York State Department of Health 28 Hill Street, Suite 201 Oneonta, New York 13820

Re: Report of Findings Building 001 VOC Source Assessment – RCRA Facility Investigation IBM Poughkeepsie Facility Poughkeepsie, New York EPA ID No. NYD080480734, NYSDEC Site No. 314001

Dear Mr. Czuhanich and Ms. Kulow:

The enclosed report presents the findings of our assessment of sources of certain volatile organic compounds (VOCs) in indoor air in Building 001 at the IBM Poughkeepsie facility located at 2455 South Road, Poughkeepsie, New York. This work was conducted consistent with the objectives and procedures described in IBM's Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Work Plan, which was approved by the New York State Department of Environmental Conservation and the New York State Department of Health (the Agencies) in an August 12, 2013 letter to IBM.

IBM is moving forward with the detailed design of a subslab soil vapor extraction (SVE) system, targeting construction beginning in the third quarter of 2014 and startup at the end of the fourth quarter of 2014. IBM understands that construction and operation of the remediation system can proceed once the Agencies have accepted this report.

If you wish to further discuss this document or have questions, please contact Mr. Steve Brannen of IBM at (845) 433-1509.

Sincerely, International Business Machines Corporation

Michael Phelan, Manager Environmental, Planning and Site Support Services

cc: W. Palomino, USEPA Region 2 (cover letter only) A. Everett, USEPA Region 2 (cover letter only)

x

REPORT OF FINDINGS BUILDING 001 VOC SOURCE ASSESSMENT

IBM Poughkeepsie Facility Poughkeepsie, New York

> Prepared for **IBM Corporation**

Poughkeepsie, New York

Prepared by Sanborn, Head Engineering, P.C.

> File 3463.00 April 2014

REPORT OF FINDINGS BUILDING 001 VOC SOURCE ASSESSMENT TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.0	INTRODUCTION	1
1.	1 Report Organization	1
1.	2 Objectives and Scope	2
2.0	BACKGROUND INFORMATION	
2.		
2.		
2.		
2.		
	2.4.1 Hydrogeologic Conditions	4
	2.4.2 Contaminant Distribution	4
2.	5 HVAC System Overview	5
2.0	VOC SOURCE ASSESSMENT AND FINDINGS	C
3.0		
3.	1 Initial Field Screening 3.1.1 Indoor Air Screening Results	
	8	
2	3.1.2 Targeted Screening Results	
3.	2 Actions Taken and Re-Screening Results	
	 3.2.1 Sealing of Floor Slab Penetrations and Features 3.2.2 HVAC System Operational Adjustments 	
	- · · · · · · · · · · · · · · · · · · ·	
n	3.2.3 Re-Screening of Indoor Air	
3.	3 Subslab Vapor and Differential Pressure Assessment	
	3.3.1 Subslab Vapor Screening Results	
	3.3.2 Subslab-to-Indoor Air Differential Pressure Monitoring	
4.0	VAPOR EXTRACTION PILOT TESTING	
4.	1 Testing Procedures	
4.	2 Testing Results	
5.0	REMEDIATION SYSTEM DESIGN BASIS	
5.	8 · · · · · · · · · · · · · · · · · · ·	
5.		
5.		
5.	4 System Location and Safeguards	15
6.0	CONCLUSIONS	15
0.0		I J

EXHIBITS

- Exhibit 2.1 Summary of B001 AHU Operational Conditions
- Exhibit 3.1 Targeted Screening Results in AHU-21 Mechanical Room
- Exhibit 3.2 Summary of AHU Operational Adjustments
- Exhibit 4.1 Subslab Extraction Testing Setup
- Exhibit 4.2 Subslab SVE Testing Data Summary
- Exhibit 5.1 Subslab Vapor Extraction Process Flow Diagram

TABLES

- Table 1 Summary of Portable GC/MS Indoor Air Screening Results
- Table 2 Summary of Subslab Vapor Portable GC/MS Screening Results
- Table 3 Summary of Subslab Vapor Extraction Pilot Test Results

FIGURES

- Figure 1 Locus Plan
- Figure 2 Building 001 Location and VOC Extent in Overburden Groundwater
- Figure 3 Building 001 Layout and HVAC Zones
- Figure 4 Summary of TCE Screening in Indoor Air (Portable GC/MS Results)
- Figure 5 Exploration Location Plan
- Figure 6 Summary of TCE Concentrations in Subslab Vapor
- Figure 7 Summary of Subslab Differential Pressure Monitoring
- Figure 8 Subslab Pressure Response to Vapor Extraction Testing
- Figure 9 Subslab SVE System Layout

APPENDICES

- Appendix A Limitations
- Appendix B Summary of Field Methods and Quality Assurance/Quality Control
 - B.1 Introduction
 - B.2 Indoor Air and Targeted Air Screening
 - B.3 Subslab Vapor Sampling
- Appendix C Supplemental Figures: Subslab Pressure Response to Vapor Extraction Testing
- Appendix D Laboratory Analytical Reports

EXECUTIVE SUMMARY

This report presents the findings of investigations, testing, and actions taken to evaluate the anomalous presence and source of volatile organic compounds (VOCs) in the indoor air of Building 001 (B001) at the IBM Poughkeepsie facility (the Site). The work was conducted consistent with the objectives and procedures described in IBM's Resource Conservation and Recovery Act (RCRA) Facility Investigation Work Plan, which was approved by the New York State Department of Environmental Conservation and the New York State Department of Health (collectively, the Agencies) on August 12, 2013.

B001 was designated in the Work Plan for indoor air sampling because it overlies VOCcontaining groundwater, and it is routinely occupied. Initial field screening of indoor air as part of this investigation indicated the presence of VOCs, predominantly trichloroethene (TCE), consistent with a vapor intrusion source. Based on this finding, IBM elected to conduct a VOC source assessment to understand the origin and potential pathways for VOC vapor entry into the building, and to support possible design and implementation of source remediation measures, if appropriate.

Indoor air screening conducted as part of this work indicated TCE presence throughout B001. Indoor air VOC concentrations were greatest in the north-central and northeast corner of the building, corresponding to a former office area and parts storage room. TCE screening concentrations generally decrease toward the south (in the warehouse area) and west side of the building.

Subsequent screening of subslab vapor indicated that while VOC-containing vapor is widespread under the building, the highest concentrations coincide with the areas where indoor air VOC levels are greatest, i.e., the north-central and northeast area. Subslab vapor screening defined an area of about 4,500 square feet of this 142,000 square foot building where TCE concentrations in subslab vapor are greater than 100,000 micrograms per cubic meter (μ g/m³). In addition, subslab-to-indoor air pressure differentials throughout B001 were found to range from neutral to slightly favorable for vapor entry into the building.

Building reconnaissance, review of HVAC system configuration and operation, and targeted screening revealed potential pathways for VOC vapor entry and unfavorable effects on indoor air quality. In response to these findings, IBM sealed certain pathways for VOC vapor entry and made operational adjustments to the HVAC system. While these efforts represented reasonable and practical actions, they were unsuccessful in reducing TCE levels in indoor air. Therefore, subslab soil vapor extraction (SVE) was evaluated as a means to capture VOCs that might otherwise enter the building.

Subslab SVE testing confirmed the viability of this method of intercepting VOC mass transport into the building through the floor slab. A design basis for a subslab SVE and treatment system has been developed from the results of pilot testing. The design basis is intended to achieve the goals of VOC mass removal and control of subslab-to-indoor air pressure differentials to reduce VOC mass entry into the building, while also providing for operating flexibility, redundancy, and future expansion, if appropriate.

IBM is moving forward with the detailed design of VOC source remediation using subslab SVE, targeting construction beginning in third quarter 2014 and startup in fourth quarter 2014. IBM understands that construction and operation of the remediation system can proceed once the Agencies have accepted this report.

1.0 INTRODUCTION

This report presents the findings of investigations, testing, and actions taken to evaluate the anomalous presence and source of volatile organic compounds (VOCs) in the indoor air of Building 001 (B001) at the IBM Poughkeepsie facility (the Site). A Site locus plan is provided as Figure 1, and the location of B001 on the Site is shown on Figure 2.

This work was conducted consistent with the objectives and procedures described in IBM's Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Work Plan, which was submitted to the New York State Department of Environmental Conservation and the New York State Department of Health (collectively, the Agencies) on October 23, 2012. The Agencies approved the Work Plan in an August 12, 2013 letter to IBM.

B001 was designated in the Work Plan for indoor air sampling because it overlies VOCcontaining groundwater, and it is routinely occupied. Initial field screening of indoor air as part of this investigation indicated the presence of VOCs, predominantly trichloroethene (TCE), consistent with a vapor intrusion source. Based on this finding, IBM elected to conduct a VOC source assessment, which is defined for the purposes of the Work Plan as investigation and testing activities to understand the origin and potential pathways for VOC vapor entry into the building, and to support possible design and implementation of source remediation measures, if appropriate.

Sanborn, Head Engineering P.C. (SHPC) conducted the B001 source assessment beginning in August 2013 through February 2014. Progress updates and preliminary data associated with this work have been communicated to the Agencies through routine correspondence and meetings. The investigation and this report are subject to the standard limitation for this type of work, as described in Appendix A.

1.1 Report Organization

This report is organized into six sections as described below:

Section 1 presents a general introduction, including the objectives and scope of the assessment.

Section 2 provides background on B001 infrastructure, past investigation findings, regulatory status, and an overview of the building's heating, ventilating, and air conditioning (HVAC) system.

Section 3 presents a summary of source assessment activities and findings, including results of field screening, actions taken to-date, and subslab vapor screening.

Section 4 describes pilot testing of subslab soil vapor extraction (SVE) for VOC capture.

Section 5 presents the design basis for a subslab SVE system resulting from the pilot testing work.

Section 6 presents the conclusions of the assessment and this report.

1.2 Objectives and Scope

The objectives of this work were to: 1) evaluate the extent of VOC presence in indoor air, 2) identify the source and distribution of VOC mass below the floor slab, and 3) assess the feasibility of subslab SVE to remove VOC mass and control air pressure gradients across the slab in certain areas that have higher potential for VOC vapor entry into the building.

To meet these objectives, the work included:

- Implementation of an indoor air screening survey using a field-portable gas chromatograph/mass spectrometer (GC/MS) (i.e., HAPSITE manufactured by Inficon of East Syracuse, New York) to assess VOC presence in indoor air.
- Reconnaissance of B001 for potential pathways for VOC entry into the building, including use of a portable GC/MS to screen potential pathways (e.g., floor cracks, sumps).
- Review of the configuration and operating conditions of the building's HVAC systems.
- Implementation of a subslab vapor screening survey using a portable GC/MS to identify the source and distribution of VOC vapor beneath the floor slab and support remediation design.
- Vapor extraction testing from subslab ports to evaluate the method for VOC source remediation and to obtain data to support design of a full-scale subslab SVE system.

2.0 BACKGROUND INFORMATION

This section provides a summary of background information relevant to the assessment work being conducted in B001.

2.1 B001 Overview

B001 is a one-story structure originally constructed in 1942, including several additions and modifications during its history. It has a current footprint of about 142,000 square feet.

Figure 3 shows the B001 layout. The building is largely unoccupied except for a print shop in the central portion of the building. The loading dock area on the north side and the warehouse on the south side are intermittently occupied for short periods. The office and storage crib areas in the northeast area are unoccupied.

2.2 B001 Infrastructure

B001 is constructed of a reinforced poured concrete foundation with reinforced poured-inplace concrete floors and a steel column and truss framing system. Exterior walls are constructed of concrete block. B001 was constructed in at least two phases, based on foundation design drawings. Crawl spaces open to the outdoors are present below the corridor and loading dock area on the north side of the building. There are approximately two to three feet of void space beneath the concrete floors in these locations.

B001 does not have a foundation underdrain system; however, as shown on Figure 3, storm drain lines connected to roof drains run under B001 and exit the north side where they connect to the site storm sewer system.

Inactive, former industrial waste (IW) drains are present beneath B001. In addition, exterior subsurface piping and manholes associated with the former IW sewer system were located outside the south, east, and north sides of B001 (RCRA Solid Waste Management Unit [SWMU] 194 – Former IW Drainage System). The exterior IW sewer lines were suspected of leaking up until the early 1980s, when the system was removed from service.¹ TCE presence in groundwater beneath and proximate to B001 has been attributed to releases from the IW sewer system.²

Three former underground storage tanks (USTs) were located in the alcove at the northeast corner of B001 (RCRA SWMU 203). One 3,500-gallon capacity UST was used to store steam clean waste and waste oil. The two other tanks were each 1,500-gallon capacity and used to store steam clean waste. The date of removal of the alcove USTs is uncertain, but is estimated to have occurred in the mid-1980s.

2.3 Remediation and Regulatory Status

IBM voluntarily initiated a Groundwater Protection Program at the Site in 1978 to characterize and remediate sources of contaminated media.³ Several VOC groundwater plumes were identified during that investigation. The plume beneath and proximate to B001 is referred to at the Site Gravel Plume, which is identified as Area of Concern (AOC) B in the RCRA Part 373 Permit for the Site.⁴ Two groundwater extraction wells are currently operating in the Site Gravel Plume. One of these wells, T-8S, is located in the B001 alcove. The other extraction well, T-315S, is located to the east of B001 in the alcove between Building 002 and Building 012. Combined, these wells withdraw approximately 50 to 60 gallons per minute and are controlling migration of the plume and reducing the mass of TCE discharging to the on-site tributary (designated H-107) that leads to the Hudson River.

As a condition of the Site's RCRA Part 373 permit renewal in 1997, NYSDEC required further assessment of the former UST area in the B001 alcove (RCRA SWMU 203). A RCRA Facility Assessment Sampling Visit conducted in 1997 in the alcove area indicated detections of certain VOCs, including TCE, in soil and groundwater. However, the detections were not

¹ *IBM Poughkeepsie Groundwater RCRA Facility Investigation, Main Plant Site*, prepared by Groundwater Sciences Corporation, December 12, 1997.

² *IBM Poughkeepsie Statement of Basis: Proposed Final Corrective Measures,* prepared by Groundwater Sciences Corporation, March 14, 2007.

³ *IBM Poughkeepsie Groundwater RCRA Facility Investigation, Main Plant Site*, prepared by Groundwater Sciences Corporation, December 12, 1997.

⁴ 6NYCRR Part 373 Permit, DEC Hazardous Waste Permit 3-1346-00035/00123, EPA ID No. NYD080480734, Attachment XI, Corrective Action, 2009.

considered to be responsible for the TCE in the Site Gravel Plume, the source of which had been previously attributed to the former IW sewer system (RCRA SWMU 194). In a letter to IBM dated July 24, 1998, NYSDEC concurred with the finding that no further action was necessary for the B001 alcove area.⁵

IBM has obtained approved Final Corrective Measures status from NYSDEC for groundwater investigation and remediation matters addressed under the RCRA Part 373 Permit. A groundwater monitoring program (GMP) associated with corrective actions at the Site is currently being implemented in accordance with the 2009 RCRA Part 373 Permit.

2.4 Subsurface Conditions

The following sections provide a summary of the subsurface conditions beneath B001, including a discussion of the hydrogeology and subsurface contaminant distribution.

2.4.1 Hydrogeologic Conditions

Groundwater is present in both the overburden and bedrock units beneath the Site. Overburden thickness ranges from approximately 0 to 95 feet across the Site, corresponding with a highly irregular top-of-bedrock surface. Figure 2 shows the approximate areas at the Site where there is no saturated overburden because of the shallow bedrock in those areas.

The bedrock surface beneath B001 forms an apparent trough with a northeast to southwest alignment. At the deepest point, along the west-central edge of the building, bedrock is about 55 feet below ground surface (bgs), while bedrock is generally about 25 feet bgs at the northwest and southeast corners of the building. ⁶ The overburden beneath B001 consists of up to approximately 15 feet of medium to coarse-grained fill underlain by sand and gravel (west) and silt (east). Overburden groundwater beneath B001 generally flows from east to west and is locally influenced by the Site Gravel Plume extraction wells to the northeast. Overburden groundwater is present at depths of between approximately 15 feet (east) and 25 feet (west) below the building floor slab.⁷

2.4.2 Contaminant Distribution

VOCs have been detected in soil and groundwater surrounding B001 during previous investigations. Figure 2 shows the inferred extent of total VOCs in overburden groundwater at the Site, with B001 located above the eastern part of the Site Gravel Plume. A summary of TCE detections (the chemical detected at the highest concentration and greatest frequency) in soil and groundwater in the vicinity of B001 is provided below:

⁵ *IBM Poughkeepsie Statement of Basis: Proposed Final Corrective Measures*, prepared by Groundwater Sciences Corporation, March 14, 2007.

⁶ Based on Bedrock Surface contours provided on Plate 12 of the *IBM Poughkeepsie Groundwater RCRA Facility Investigation, Main Plant Site Report,* prepared by Groundwater Sciences Corporation, December 12, 1997.

⁷ Based on floor slab elevation provided on Plate 13 of the *IBM Poughkeepsie Groundwater RCRA Facility Investigation, Main Plant Site Report,* prepared by Groundwater Sciences Corporation, December 12, 1997 and groundwater elevation data presented in Groundwater Sciences Corporation's 2011 Annual Groundwater Monitoring Report Main Plant Site, dated April 26, 2012.

	Page 5
20140421-B001 Findings.doc 346	63.00

- Soil: Soil samples were collected as part of the RCRA Facility Assessment process. TCE concentrations in these samples ranged from non-detect to approximately 4,500 micrograms per kilogram (μg/kg) in the alcove just outside the northeast corner of B001.
- Groundwater: TCE concentrations up to 1,700 micrograms per liter (μg/L) were observed in groundwater samples collected in 2012 from a monitoring well located north of the northeast corner of B001.

2.5 HVAC System Overview

The HVAC system in B001 includes 4 active air handling units (AHUs) that serve 3 zones of the building. The AHUs are located in mechanical rooms within B001. The AHU mechanical rooms and zones they serve are shown on Figure 3.

A summary of AHU operating conditions when assessment activities were initiated in August 2013 is provided in Exhibit 2.1 below.

AHU No.	Area Served	Operating Schedule	Outside Air Flow / Exchange Rate
AC-1	Print shop (east side storage area)	Shut off	None
AC-2	Print shop (center)	24 hrs/day	Unknown
AC-5	Warehouse	0700 - 1600	Unknown
AC-21	Office space	0600 - 1800	None – recirculation only
AC-31	None	Out of service	None
AC-32	Print shop (west side)	24 hrs/day	Unknown

Exhibit 2.1 Summary of B001 AHU Operational Conditions

Operating conditions and features of the AHUs relevant to the indoor VOC levels and source assessment are as follows:

- Due to infrastructure and access constraints associated with the AHU equipment, outside and return air flows cannot be measured or estimated accurately; thus, air exchange rates for B001 are unknown.
- The AHU serving the currently vacant office space (AC-21) is a return/recirculation air unit only; outside air is not being directly provided to this space.
- The parts storage/crib area in the northeast corner is served by space heaters only; outside air is not being directly provided to this space.
- The loading dock and adjacent areas in the northwest corner are served by space heaters and ventilation fans.

3.0 VOC SOURCE ASSESSMENT AND FINDINGS

VOC source assessment activities were initiated in August 2013 and included the following steps:

- Field screening of indoor air and targeted screening of certain features of the building;
- Re-screening of indoor air after actions were taken to seal certain floor penetrations and implement HVAC operational adjustments;
- Field screening of subslab vapor; and
- Monitoring of subslab-to-indoor air differential pressures.

The following sections provide details and discussion of the investigation methods and results in the general sequence they were conducted. The field methods were implemented in general accordance with the procedures and protocols provided in the RFI Work Plan, Appendix A; field screening of subslab vapor using a portable GC/MS was conducted in accordance with the procedures described in a letter from IBM to NYSDEC dated January 22, 2014. Refer to Appendix B of this report for further details and documentation of the field methods and data quality assurance/quality control (QA/QC).

3.1 Initial Field Screening

Initial field screening for VOCs in indoor air was conducted at 60 locations throughout B001. The purpose of field screening was to: 1) obtain an initial understanding of the potential presence and levels of VOCs in indoor air, 2) support the selection of targeted field screening locations such as floor cracks and sump covers, and 3) support the selection of subslab monitoring and screening locations.

Field screening was conducted using a portable GC/MS. The samples were screened for a focused list of analytes that serve as indicators of potential VOC vapor entry, including 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (c-1,2-DCE), trans-1,2-dichloroethene (t-1,2-DCE), tetrachloroethene (PCE), and TCE. The portable GC/MS data were used for general screening purposes only.

3.1.1 Indoor Air Screening Results

The initial indoor air screening event was conducted in August and September 2013. Subsequent screening was conducted after sealing of certain potential vapor entry pathways and limited HVAC operational adjustments, described further in Section 3.2. All of the screening results are presented in Table 1. Figure 4 shows the initial indoor air screening results for TCE.

TCE was detected at almost all screening locations at concentrations consistently greater than other analytes. For the initial screening event, TCE detections in indoor air ranged from 0.75 to 2,900 micrograms per cubic meter (μ g/m³). The highest TCE concentrations, typically greater than 100 μ g/m³, were generally observed within the currently vacant office space in the north-central area, and in the currently vacant parts storage/crib area in the

northeast corner of B001. TCE screening concentrations generally decrease toward the south (in the warehouse area) and west side of the building.

In the northeast corner, the parts crib is not served by an AHU, while the AHU serving the vacant office space is a recirculation air system only; it does not currently provide any outside air to the vacant office space.

At two of the screening locations for indoor air (IA2001 and IA2024), grab air samples were collected into Summa canisters at about the same time as the portable GC/MS screening. The Summa data is shown in Table 1. Although the Summa samples do not represent actual field duplicate samples, the portable GC/MS screening and laboratory results exhibit order of magnitude agreement. Figure 4 shows the TCE result for portable GC/MS screening alongside the laboratory result at location IA2001. The Summa grab sample for IA2024 was collected during an intermediate screening event and is only shown in Table 1.

Indoor air screening results after sealing of certain pathways and limited HVAC operational adjustments are shown on Figure 4 and discussed in Section 3.2.3.

3.1.2 Targeted Screening Results

Targeted screening of certain features of the floor and building infrastructure was conducted using a portable GC/MS with the goal of evaluating them as potential pathways for subslab VOCs to enter the indoor air. Targeted screening included floor cracks, expansion joints, sump pit covers, and various utility penetrations through the slab. A total of 27 targeted air locations were screened.

Exhibit 3.1 shows the results of targeted screening of a utility pipe penetration through the wall of the mechanical room housing AHU AC-21. These results show the utility feature as a potential source for VOCs to be drawn into AC-21 and subsequently distributed to the adjacent former office area.

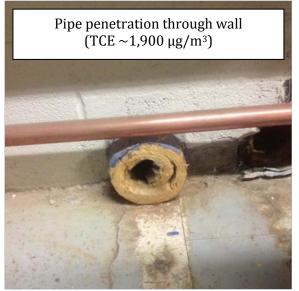


Exhibit 3.1 - Targeted Screening Results in AHU-21 Mechanical Room

Based on the results of the targeted screening, IBM implemented a program to seal potential pathways for VOC entry into indoor air. These actions are described below.

3.2 Actions Taken and Re-Screening Results

IBM undertook reasonable and practical actions to seal certain pathways for VOC vapor entry and to make operational adjustments to the HVAC system. These actions were followed by re-screening of indoor air.

3.2.1 Sealing of Floor Slab Penetrations and Features

Sealing of certain floor slab features was conducted using a combination of materials, including expanding foam, silicone and polyurethane sealants, and non-shrinking grout. The types of features sealed included:

- Gaps around the steel plates covering the sump pits currently receiving condensate from the HVAC system;
- Pipe penetrations through the covers of the sump pits;
- Floor slab/wall utility penetrations;
- Expansion joints; and
- Cracks and holes in the concrete floor or subfloor.

While sealing was completed for accessible features that exhibited relatively higher VOC screening results, it was not practical to seal all floor cracks, joints, and penetrations because much of the building slab is inaccessible under raised flooring. Subslab vapor extraction would be better suited to address these areas.

3.2.2 HVAC System Operational Adjustments

Exhibit 3.2 summarizes the operational adjustments that IBM made to certain AHUs, showing changes from previous conditions highlighted.

AHU No.	Area Served	Pre- Adjustment Schedule	Post- Adjustment Schedule	Other Adjustments	Outside Air Flow (cfm)
AC-1	Print shop	Shut off	24 hrs/day	Changed outside air damper from 50% to 100% open	Unknown
AC-2	Print shop	24 hrs/day	24 hrs/day	Changed outside air damper from 50% to 100% open	Unknown
AC-5	Warehouse	0700 - 1600	24 hrs/day	Increased outside air	Increased from 150 to 2,000
AC-21	Vacant office space	0600 - 1800	24 hrs/day	None	None
AC-31	None	Out of service	Out of service	None	None
AC-32	Print shop	24 hrs/day	24 hrs/day	None	Unknown

Red font indicates modified condition.

Exhibit 3.2 - Summary of AHU Operational Adjustments

April 21, 2014		
20140421-B001 Findings.doc		

The above adjustments bring more outside air into B001; however, it was not possible to accurately estimate the additional outside air flow due to the physical constraints of the existing AHU infrastructure.

3.2.3 Re-Screening of Indoor Air

After completion of the sealing work and HVAC operational adjustments described above, indoor air was re-screened at certain locations using a portable GC/MS in October and November 2013. All the portable GC/MS screening data in presented in Table 1. As shown on Figure 4, the TCE concentrations at re-screened locations generally increased in the print shop and the vacant office space, and decreased slightly in the warehouse.

Overall, the HVAC adjustments were unsuccessful in reducing TCE levels in indoor air. Since conditions did not improve, IBM elected to return to the prior operating conditions for AC-1 (print shop) and AC-21 (vacant office space).

Given the results of these actions, source remediation is planned for VOC capture and reduction of VOC migration into indoor air.

3.3 Subslab Vapor and Differential Pressure Assessment

An assessment of subslab VOC presence and subslab-to-air differential pressure conditions was conducted to: 1) evaluate the source and extent of the VOCs below the floor slab, 2) obtain an understanding of differential pressures relevant to potential VOC entry into indoor air, and 3) establish a subslab testing and monitoring network to support potential VOC source remediation.

Figure 5 shows the location of subslab monitoring and vapor extraction ports installed throughout B001. The network includes 49 subslab vapor monitoring points and 15 subslab vapor extraction ports. The subslab port network provides broad coverage of the building, with higher spatial density in the north and northeast areas where indoor air and targeted screening indicated relatively higher VOC concentrations.

The subslab monitoring and extraction ports were constructed in general accordance with the procedures and protocols provided in the RFI Work Plan, Appendix A. Refer to Appendix B of this report for further details and documentation of the field methods, including the results of integrity testing.

3.3.1 Subslab Vapor Screening Results

Subslab vapor samples were initially collected at 42 monitoring points and 12 extraction ports. The samples were collected into 1-liter gas sampling bags and screened using a portable GC/MS for the same analytes screened in indoor air. The subslab vapor screening results are presented in Table 2. Similar to the indoor air screening, TCE, and to a much lesser extent c-1,2-DCE, were the compounds detected at the highest concentrations in almost all of the samples. At many locations, multiple screenings were conducted using two different portable GC/MS methods to achieve a lower reporting limit when initial results were less than the reporting limit.

April 21, 2014	Page 10
20140421-B001 Findings.doc	3463.00

Figure 6 shows the TCE concentrations observed in the subslab vapor screening samples, where the posted TCE result typically represents the highest concentration detected at each location. The inferred TCE isopleths shown on Figure 6 indicate concentrations greater than 100,000 μ g/m³ beneath about 4,500 square feet in the north-northeastern area of the building. This area corresponds to the currently vacant areas of relatively higher indoor TCE screening levels and where outdoor air exchange is limited. TCE concentrations in subslab vapor gradually decrease with increasing distance from the northeast portion of B001.

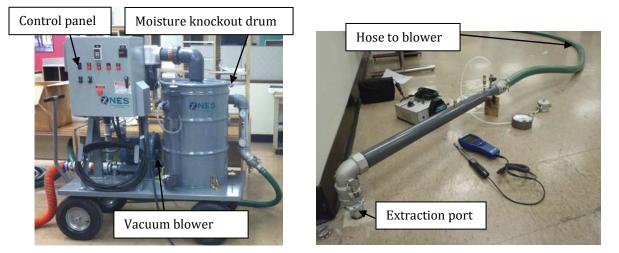
For data comparison purposes, subslab vapor samples at three locations (EP2005, SSV2010, and SSV2016) were collected into Summa canisters at about the same time as the portable GC/MS screening. The Summa data is shown in Table 2. Figure 6 shows the TCE results for portable GC/MS screening alongside the laboratory results for the initial screening event⁸. Although the portable GC/MS and Summa data do not represent true field duplicate samples, the portable GC/MS and Summa TCE results compare very well for the samples at EP2005 and SSV2010, where relative percent differences (RPD) were 5% for EP2005 and 23% for SSV2010. In aggregate, the portable GC/MS data quality is considered appropriate to support the objectives of subslab VOC source assessment and remediation design support. Further discussion of subslab vapor screening data QA/QC is provided in Appendix B.

3.3.2 Subslab-to-Indoor Air Differential Pressure Monitoring

Observations of subslab pressure relative to the indoor air pressure were obtained at the monitoring ports using digital micro-manometers. Figure 7 shows the results at each location using color-coding to indicate where subslab pressure was greater than or neutral relative to indoor air. Review of these data indicate that all of the locations exhibit neutral to slightly positive pressure differentials relative to indoor air, conditions which support migration of VOCs from the subsurface to indoor air.

4.0 VAPOR EXTRACTION PILOT TESTING

Subslab SVE testing was conducted in February 2014 to: 1) evaluate the method as a potential source reduction/remediation measure to remove VOC mass from beneath the building, and 2) obtain observational data that could be used to support design of a full-scale remediation system. This section provides a summary of the testing procedures, results, and implications for remediation system design.


4.1 Testing Procedures

Subslab SVE testing was conducted at 15 extraction ports that were installed throughout B001. The extraction ports are identified with the prefix "EP" and their locations are shown on Figure 5. Each extraction port was constructed by coring a hole through the concrete floor slab and installing a 1 ¼ -in.-diameter by 1-ft-long PVC screen equipped with a capped port flush with the floor. To test each port for soil vapor extraction, a regenerative vacuum

⁸ The Summa canister data for SSV2010 is not shown on Figure 6 because it was not collected during the round with the highest TCE detection.

April 21, 2014	Page 11
20140421-B001 Findings.doc	3463.00

blower mounted on a portable cart, shown in Exhibit 4.1 below, was used to withdraw vapor from the ports for durations of approximately 60 minutes each. The vapor flow rate and applied vacuum was monitored and recorded at each extraction port using the assembly shown in Exhibit 4.1. For each test, the differential pressure response between the subslab and indoor air was monitored at the other nearby subslab ports using digital manometers.

Exhibit 4.1 – Subslab Extraction Testing Setup. Blower cart (left) and extraction port test assembly (right)

4.2 Testing Results

Figure 8 summarizes the vapor extraction conditions and inferred combined extent of subslab pressure response for all 15 extraction tests. Please note that the results of the individual tests are superimposed on Figure 8; simultaneous extraction would likely result in a somewhat different response pattern. The subslab pressure response for each individual test is shown on Figures C-1 through C-15 in Appendix C. On these figures, the inferred extent of subslab pressure response is depicted by the pressure differential isopleths of -0.004 inches of water column (in. wc) (or 1 Pascal); this value, or lower pressure (greater vacuum), is indication that vapor extraction has influence, and is expected to be sufficient to capture subslab soil vapor, within at least the area encompassed by the -0.004 in. wc isopleths.

The test results indicate a wide range of variability in the extent of subslab pressure response and extraction flow rate, which is typical for an older industrial building. For example, while the applied vacuum at the ports generally ranged from 40 to 60 in. wc, the resulting extraction rates ranged from less than 10 cubic feet per minute (cfm) up to 110 cfm. At some ports, vacuum influence was observed at radial distances of 100 feet or more (e.g, EP2004); other ports yielded low flow with limited subslab vacuum response (e.g, EP2014).

Although the individual test results varied, the aggregate results indicate that significant and extensive depressurization can be achieved under the central and northern area of B001 by concurrent extraction from the installed port network. In particular, simultaneous

April 21, 2014	Page 12
20140421-B001 Findings.doc	3463.00

extraction from several ports installed in the north-central and northeast areas of the building (within the vacant office area and former parts crib) will effectively depressurize this area where subslab TCE concentrations are greater than 100,000 μ g/m³, the area that represents the primary source of VOCs in the indoor air of B001.

During each test, a sample of the vapor stream was collected into a Tedlar bag and screened using a PID. Near the conclusion of most tests, a grab sample of the vapor stream was collected into a Summa canister for analysis by USEPA Method TO-15 for the project-specific analyte list. The screening and laboratory data for each test are summarized in Exhibit 4.2 below. The complete analytical results for the extraction test vapor samples are provided in Table 3.

Port Location	Applied Vacuum [in. wc]	Extracted Flow Rate [cfm]	PID Screening [ppmv]	Total VOCs - Laboratory Analysis [ppmv] [µg/m ³]		VOC Removal Rate [lbs/hr]
EP2001	57	26	6.8	NS	NS	NS
EP2002	57	25	6.4	1.1	6,100	5.6E-04
EP2003	37	110	11	0.27	1,400	5.8E-04
EP2004	57	48	11	1.0	5,600	9.7E-04
EP2005	55	25	13	NS	NS	NS
EP2006	56	6.6	19	1.8	9,900	2.4E-04
EP2007	60	38	24	0.55	3,000	4.2E-04
EP2008	60	110	19	7.6	41,000	1.6E-02
EP2009	39	110	99	83	440,000	1.9E-01
EP2010	38	110	12	0.25	1,300	5.4E-04
EP2011	58	13	7.0	1.9	10,000	4.8E-04
EP2012	39	97	18	5.3	29,000	1.0E-02
EP2013	59	34	4.7	0.45	2,400	3.1E-04
EP2014	54	15	6.0	NS	NS	NS
EP2015	58	58	6.2	NS	NS	NS

Exhibit 4.2: Subslab SVE Testing Data Summary

Red font indicates port planned for full-scale operation; NS = Not Sampled

The subslab SVE test data indicate substantial depressurization and interception of VOC mass flux can be achieved by four ports (EP2008, EP2009, EP2010, EP2012) located within the approximately 4,500 ft² area delineated by the 100,000 μ g/m³ TCE isopleth encompassing the north-central and northeast area of the building that is the primary source of indoor air VOC presence. However, extraction from more ports than is necessary to address the primary source area would be a prudent measure in that it provides redundancy and flexibility to adjust system operations if appropriate based on future observed conditions.

5.0 REMEDIATION SYSTEM DESIGN BASIS

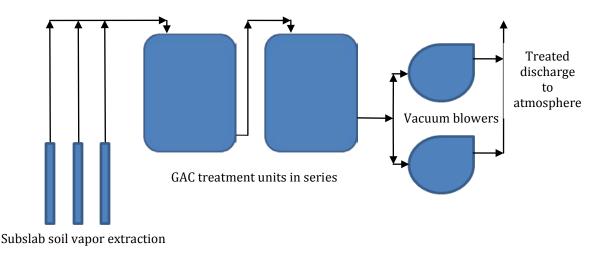
This section presents the design basis for VOC source remediation beneath B001. The remediation design is based on the results of vapor extraction pilot testing, which indicates

April 21, 2014	Page 13
	Tuye 15
20140421-B001 Findings.doc	3463.00

that subslab SVE will achieve the goals of removal of VOC source mass from below the slab and capture of VOC vapor migrating into the building space. The design of the subslab SVE and treatment system is described below, including the configuration of the vapor extraction ports, target operating conditions (applied vacuum and extraction flow rate), and treatment of VOC-containing vapor.

5.1 Extraction Port Configuration and Target Operating Conditions

As indicated in Section 4.2, subslab SVE from 4 ports would effectively depressurize and remove VOC mass from the primary VOC source area delineated by the 100,000 μ g/m³ subslab TCE isopleths located in the north-central and northeast area of the building. However, initially, vapor extraction from a sufficient number of ports to encompass much of the 10,000 μ g/m³ subslab TCE isopleths are planned as a conservative measure to provide redundancy and operating flexibility.


A total of 9 of the 15 extraction ports used for pilot testing, and one new extraction port to be installed in the northeast corner of the building, will be incorporated into the full-scale system. The 9 existing ports, which are shown in red font in Exhibit 4.2 and shown on the system layout on Figure 9, were selected because they exhibited favorable test results with respect to extraction rate and area of influence. The tenth port (EP2016 shown on Figure 9) will be installed approximately 30 feet to the east of EP2012 and, for design purposes, is assumed to have similar extraction properties (flow rate vs. applied vacuum, radius of influence) as EP2012.

The design target for the applied vacuum at the extraction ports will be 60 in. we because this was the vacuum during pilot testing that provided a reasonable balance among extraction flow, vacuum influence, and the efficient operating range of blower capability.

At the target applied vacuum, the total subslab SVE rate estimated by summing the extraction rates observed during pilot testing at the 10 ports would be about 650 cfm. The actual withdrawal rate during simultaneous extraction from the port network will likely be lower than estimated above due in part to superposition effects and competition among extraction ports. Overall, the planned extraction port network and target operating conditions will provide for operating flexibility and redundancy via overlapping areas of influence. Additional ports can be added if appropriate based on the results of system startup performance testing.

5.2 Process Flow Diagram

The planned process flow diagram for the system is shown in Exhibit 5.1. Subslab soil vapor will be withdrawn from the extraction ports using a duplex vacuum blower system. Before entering the blower(s), the vapor will pass through two granular activated carbon (GAC) units plumbed in series. Placing the GAC units on the suction side of the blower(s) has several advantages, including 1) maintaining under vacuum all pipe and equipment with VOC-containing vapor, and 2) eliminating the need for a blower aftercooler, which would otherwise be needed on the blower discharge to reduce the temperature prior to GAC treatment. The treated vapor passing through the vacuum blower will be discharged outside via a new exhaust stack.

Exhibit 5.1 - Subslab Vapor Extraction Process Flow Diagram

A duplex blower system will be used to provide operating flexibility, redundancy, and allow for future system expansion if determined necessary. Each vacuum blower will be sized to achieve an applied vacuum at the extraction ports of 60 in. wc at a total vapor extraction rate of about 500 cfm. The blowers will be sized to account for combined head loss through the piping network and GAC filled vessels. The blowers will be regenerative type blowers such as FPZ's Model K11-MS with an estimated 10 to 15 horsepower motor and variable frequency drive (VFD). The VFDs will allow for lower power consumption when operating at conditions less than the capacity of the blowers.

5.3 VOC Mass Removal and Treatment

The sum of the VOC mass removal rates observed during short-term testing of the 10 ports planned for full-scale operation was about 0.2 lb/hr (5 lbs/day). Over time, we expect the actual VOC mass recovery rate will decrease according to an exponential decay curve that approaches an asymptote that represents the mass transfer limitations in the subsurface.

While the projected VOC removal rate is expected to be less than the emission rate potential threshold of 0.5 lbs/hr that would require air pollution controls under NYSDEC Division of Environmental Remediation guidelines⁹, installation of GAC for emissions control is planned. VOC mass in the vapor stream will be treated using coconut-shell GAC units installed in a lead-lag configuration. Each GAC unit will contain about 700 lbs of GAC. Assuming an adsorption capacity of about 0.1 lb VOC per lb GAC, and that the initial average VOC loading will be 50% of that observed during pilot testing (i.e. 2.5 lbs/day), a 700 lb GAC unit would need to be replaced after about 28 days. The GAC replacement frequency will gradually decrease as the VOC mass recovery rate declines. GAC treatment may be removed in the future if emissions will not cause air pollution as indicated by an air quality impact analysis conducted in accordance with NYSDEC Division of Air Resources guidance.

⁹ NYSDEC, Division of Environmental Remediation, Internal memorandum from Dale Desnoyers, "Substantive Compliance with Air Requirements", February 28, 2003.

April 21, 2014	Page 15
20140421-B001 Findings.doc	3463.00

Monitoring of the VOC breakthrough of the lead unit will be conducted, and when the lead unit has exhausted its capacity, the lag unit could be moved to the lead position, and a fresh GAC unit could be placed in the lag position. Spent GAC will be sent off-Site for reactivation or disposal.

5.4 System Location and Safeguards

The subslab SVE and treatment equipment is planned for installation in a current storage room adjacent to the loading bays on the north end of Building 001 (see Figure 9). This area of the building is not routinely occupied and is not served by an AHU, only by space heaters and ventilation fans. The system will include the following engineering design and operational safeguards that will prevent VOC vapors from entering the building during system operation, maintenance shutdowns, or potential system malfunction:

- The vacuum blower will be located downstream of the GAC units such that VOCcontaining vapors and the GAC units are maintained under a vacuum condition during operation.
- The discharge from the vacuum blower will contain only treated vapor and will be piped to an exhaust stack that will be installed through the roof of the building.
- For maintenance shutdowns, including GAC replacement, the GAC beds and associated pipe/hose will be purged with clean, indoor air by opening a purge air inlet valve located upstream of the GAC units. This will allow clean indoor air to be drawn through the GAC units to flush out VOC-containing vapor from the system prior to shut down and carbon change outs.
- The equipment room will be equipped with a new exhaust system, such that the equipment area will be ventilated during maintenance shut downs, including when the GAC vessels are opened for carbon change outs.
- The equipment room and surrounding area is not served by an AHU; therefore, potential indoor air communication with other areas of the building is limited.
- The system will be equipped with several sensors and alarms (e.g., low vacuum, high temperature) that will automatically shut down the system, and that will be interconnected with the Site-wide alarm system that is monitored around the clock.

6.0 CONCLUSIONS

The results of this work have met the objectives of: 1) evaluating the extent of VOC presence in indoor air, 2) identifying the source and distribution of VOC mass below the floor slab, and 3) evaluating the feasibility of subslab SVE to remove VOC mass and control air pressure gradients across the slab in certain areas that have higher potential for VOC vapor entry into the building.

Indoor air screening indicates VOC presence throughout B001. The indoor VOC presence can be explained by vapor entry from residual VOC source mass in soil and groundwater

beneath the building. Indoor air VOC concentrations were greatest in the north-central and northeast corner of the building, corresponding to the area where subslab vapor screening indicated the highest VOC concentrations under the building. Subslab vapor screening defined an area of about 4,500 square feet where TCE presence in subslab vapor is greater than 100,000 μ g/m³. This area also corresponds to rooms that are not served by AHUs (the former parts crib) or where air exchange is limited (the former office area).

Monitoring of subslab-to-indoor air pressure differentials throughout B001 indicate that in most areas, generally neutral to slightly positive subslab pressure exists, conditions that are favorable to migration of VOCs from the subsurface to indoor air.

Subslab SVE testing confirmed the viability of this method of intercepting VOC mass transport into the building through the floor slab. A design basis for a subslab SVE and treatment system has been developed from the results of pilot testing. The design basis is intended to achieve the goals of VOC mass removal and control of subslab-to-indoor air pressure differentials to reduce VOC mass entry into the building, while also providing for operating flexibility, redundancy, and future expansion, if appropriate.

IBM is moving forward with the detailed design of VOC source remediation using subslab SVE, targeting construction beginning in third quarter 2014 and startup in fourth quarter 2014. IBM understands that construction and operation of the remediation system can proceed once the Agencies have accepted this report.

S:\CONDATA\3400s\3463.00\Source Files\B001\2014 Source Investigation Report\20140421-B001 Findings.doc

TABLES

TABLE 1 Summary of Portable GC/MS Indoor Air Screening Results Building 001 IBM Poughkeepsie Facility Poughkeepsie, New York

Sample	Collection	Carrent - TT	Location	PID	1,1-DCA	1,1-DCE	c-1,2-DCE	t-1,2-DCE	PCE	TCE
Location	Date	Sample Type	Description	ppbv	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
IA2001	8/27/13 11:37	Portable GC/MS - Room Air	Office Area	158	< 0.40	< 0.40	0.87	< 0.40	< 0.68	240
IA2001	9/13/13 13:51	Portable GC/MS - Room Air	Office Area	100	< 0.40	3.3	1.2	< 0.40	< 0.68	380
IA2001	9/13/13 13:58	SUMMA Grab - Room Air	Office Area	NA	< 0.23	< 0.23	0.25	< 0.23	< 0.39	160
IA2001	10/29/13 11:22	Portable GC/MS - Room Air	Office Area	NA	<2.0	<2.0	<2.0	<2.0	<0.68	1,200
IA2001	11/20/13 12:59	Portable GC/MS - Room Air	Office Area	283	<4.0	<4.0	<4.0	<4.0	<1.4	1,300
IA2001	11/21/13 17:39	Portable GC/MS - Room Air	Office Area	490	<4.0	<4.0	<4.0	<4.0	<1.4	1,100
IA2002	8/27/13 11:47	Portable GC/MS - Room Air	Office Area	170	< 0.40	4.8	0.75	< 0.40	< 0.68	230
IA2003	8/27/13 13:00	Portable GC/MS - Room Air	Print Room	135	< 0.40	< 0.40	0.56	< 0.40	< 0.68	47
IA2003	10/29/13 13:42	Portable GC/MS - Room Air	Print Room	NA	<2.0	<2.0	<2.0	<2.0	< 0.68	75
IA2003	11/20/13 11:08	Portable GC/MS - Room Air	Print Room	86	<2.0	<2.0	<2.0	<2.0	< 0.68	70
IA2003	11/21/13 15:53	Portable GC/MS - Room Air	Print Room	190	<2.0	<2.0	<2.0	<2.0	< 0.68	100
IA2004	8/27/13 13:12	Portable GC/MS - Room Air	Print Room	146	< 0.40	< 0.40	0.44	< 0.40	< 0.68	48
IA2005	8/27/13 13:25	Portable GC/MS - Room Air	Print Room	148	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	48
IA2005	10/29/13 13:52	Portable GC/MS - Room Air	Print Room	NA	<2.0	<2.0	<2.0	<2.0	< 0.68	70
IA2006	8/27/13 13:35	Portable GC/MS - Room Air	Print Room	147	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	39
IA2007	8/27/13 13:50	Portable GC/MS - Room Air	Print Room	NA	< 0.40	3.8	< 0.40	< 0.40	< 0.68	43
IA2008	8/27/13 15:04	Portable GC/MS - Room Air	Warehouse Area	NA	< 0.40	< 0.40	< 0.40	< 0.40	1.2	15
IA2000	8/27/13 15:16	Portable GC/MS - Room Air	Warehouse Area	90	< 0.40	< 0.40	< 0.40	< 0.40	0.75	13
IA2009	8/27/13 15:28	Portable GC/MS - Room Air	Warehouse Area	125	< 0.40	< 0.40	0.63	< 0.40	0.75	12
IA2010 IA2011	8/27/13 15:28	Portable GC/MS - Room Air	Warehouse Area	123	< 0.40	< 0.40	< 0.40	< 0.40	1.4	23
IA2011 IA2012	· · ·	Portable GC/MS - Room Air		123						23 9.1
IA2012 IA2012	8/27/13 16:10		Warehouse Area	NA	< 0.40	< 0.40	<0.40 <2.0	< 0.40	0.88	9.1 7.0
IA2012 IA2013	10/29/13 11:55 8/27/13 16:21	Portable GC/MS - Room Air Portable GC/MS - Room Air	Warehouse Area Warehouse Area	NA 111	<2.0 <0.40	<2.0 <0.40	<0.40	<2.0 <0.40	<0.68	7.0 9.7
		/								
IA2013	10/29/13 12:05	Portable GC/MS - Room Air	Warehouse Area	NA 107	<2.0	<2.0	<2.0	<2.0	<0.68	7.5
IA2014	8/27/13 16:29	Portable GC/MS - Room Air	Warehouse Area	107	< 0.40	< 0.40	0.44	< 0.40	0.75	8.6
IA2015	8/27/13 16:39	Portable GC/MS - Room Air	Warehouse Area	100	< 0.40	< 0.40	0.48	< 0.40	< 0.68	9.1
IA2016	8/27/13 16:48	Portable GC/MS - Room Air	Warehouse Area	95	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	9.7
IA2016	10/29/13 12:17	Portable GC/MS - Room Air	Warehouse Area	NA	<2.0	<2.0	<2.0	<2.0	<0.68	7.0
IA2017	8/27/13 17:01	Portable GC/MS - Room Air	Warehouse Area	99	< 0.40	< 0.40	< 0.40	< 0.40	0.75	10
IA2017	10/29/13 11:45	Portable GC/MS - Room Air	Warehouse Area	NA	<2.0	<2.0	<2.0	<2.0	<0.68	8.6
IA2018	8/27/13 17:11	Portable GC/MS - Room Air	Warehouse Area	90	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	9.7
IA2019	8/27/13 17:24	Portable GC/MS - Room Air	Warehouse Area	86	< 0.40	< 0.40	0.52	< 0.40	<0.68	9.7
IA2020	8/27/13 17:32	Portable GC/MS - Room Air	Hallway	74	< 0.40	< 0.40	0.48	< 0.40	< 0.68	9.7
IA2021	8/27/13 17:41	Portable GC/MS - Room Air	Hallway	75	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	11
IA2022	8/28/13 8:47	Portable GC/MS - Room Air	East Hallway	161	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	43
IA2022	10/29/13 9:40	Portable GC/MS - Room Air	East Hallway	NA	<2.0	<2.0	<2.0	<2.0	< 0.68	51
IA2023	8/28/13 9:29	Portable GC/MS - Room Air	East Hallway	192	< 0.40	4.8 J	< 0.40	< 0.40	<0.68	38
IA2024	8/28/13 9:52	Portable GC/MS - Room Air	Parts Crib	573	1.2	< 0.40	5.9	< 0.40	17	1,200
IA2024	10/29/13 14:24	Portable GC/MS - Room Air	Parts Crib	NA	<2.0	<2.0	3.4	<2.0	8.1	590
IA2024	10/29/13 14:24	SUMMA Grab - Room Air	Parts Crib	NA	0.62	< 0.20	3.0	< 0.20	7.1	450
IA2024	11/20/13 14:02	Portable GC/MS - Room Air	Parts Crib	314	<4.0	<4.0	6.7	<4.0	14	910
IA2024	11/21/13 17:05	Portable GC/MS - Room Air	Parts Crib	556	<4.0	<4.0	4.4	<4.0	14	910
IA2025	8/28/13 10:04	Portable GC/MS - Room Air	Parts Crib	625	1.3	< 0.40	6.7	< 0.40	20	1,300
IA2026	8/28/13 10:58	Portable GC/MS - Room Air	HVAC Room East	95	< 0.40	< 0.40	0.71	< 0.40	<0.68	260
IA2026	10/29/13 15:43	Portable GC/MS - Room Air	HVAC Room East	NA	<2.0	<2.0	<2.0	<2.0	<0.68	640
IA2026	11/20/13 10:04	Portable GC/MS - Room Air	HVAC Room East	220	<2.0	<2.0	<2.0	<2.0	<0.68	590
IA2026	11/21/13 17:26	Portable GC/MS - Room Air	HVAC Room East	344	<2.0	<2.0	<2.0	<2.0	<0.68	540
IA2027	8/28/13 11:11	Portable GC/MS - Room Air	HVAC Room West	26	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	30
IA2027	10/29/13 12:47	Portable GC/MS - Room Air	HVAC Room West	NA	<2.0	<2.0	<2.0	<2.0	<0.68	120
IA2027	11/20/13 13:42	Portable GC/MS - Room Air	HVAC Room West	12	<2.0	<2.0	<2.0	<2.0	< 0.68	70
IA2027	11/21/13 17:15	Portable GC/MS - Room Air	HVAC Room West	237	<2.0	<2.0	<2.0	<2.0	< 0.68	160
IA2028	8/28/13 11:19	Portable GC/MS - Room Air	HVAC Room West	22	< 0.40	5.2 J	< 0.40	< 0.40	<0.68	31
IA2028	10/29/13 12:56	Portable GC/MS - Room Air	HVAC Room West	NA	<2.0	<2.0	<2.0	<2.0	<0.68	70
IA2029	8/28/13 11:28	Portable GC/MS - Room Air	HVAC Room West	30	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	25
IA2030	8/28/13 11:39	Portable GC/MS - Room Air	HVAC Room West	35	< 0.40	6.7 J	< 0.40	< 0.40	< 0.68	27
IA2031	8/28/13 13:07	Portable GC/MS - Room Air	Storage Room	44	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	24
IA2032	8/28/13 13:47	Portable GC/MS - Room Air	NW Corner Storage Area	178	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	0.75
IA2032	10/29/13 10:50	Portable GC/MS - Room Air	NW Corner Storage Area	NA	<2.0	<2.0	<2.0	<2.0	<0.68	< 0.54
IA2032	8/28/13 14:07	Portable GC/MS - Room Air	SW Mechanical Room	130	< 0.40	< 0.40	< 0.40	< 0.40	0.95	13
IA2034	8/28/13 14:14	Portable GC/MS - Room Air	SW Mechanical Room	NA	< 0.40	< 0.40	< 0.40	< 0.40	1.0	13
IA2034 IA2034	10/29/13 17:54	Portable GC/MS - Room Air	SW Mechanical Room	NA	<2.0	<2.0	<2.0	<2.0	<0.68	7.5
IA2034 IA2035	8/28/13 14:28	Portable GC/MS - Room Air	Server Room	128	<0.40	<0.40	<0.40	<0.40	< 0.68	36
			Warehouse Area							
IA2036	8/28/13 14:41	Portable GC/MS - Room Air	wai enouse Area	130	< 0.40	< 0.40	0.91	< 0.40	<0.68	15

TABLE 1 Summary of Portable GC/MS Indoor Air Screening Results Building 001 IBM Poughkeepsie Facility Poughkeepsie, New York

Sample	Collection		Location	PID	1.1-DCA	1.1-DCE	c-1.2-DCE	t-1,2-DCE	PCE	TCE
Location	Date	Sample Type	Description	ppbv	$\mu g/m^3$					
IA2037	8/28/13 14:59	Portable GC/MS - Room Air	Print Room	122	< 0.40	< 0.40	< 0.40	<0.40	<0.68	24
IA2037	10/29/13 13:30	Portable GC/MS - Room Air	Print Room	NA	<2.0	<2.0	<2.0	<2.0	< 0.68	70
IA2037	11/20/13 10:57	Portable GC/MS - Room Air	Print Room	90	<2.0	<2.0	<2.0	<2.0	< 0.68	54
IA2037	11/21/13 15:39	Portable GC/MS - Room Air	Print Room	204	<2.0	<2.0	<2.0	<2.0	< 0.68	110
IA2038	8/28/13 15:11	Portable GC/MS - Room Air	Print Room	145	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	30
IA2038	10/29/13 14:00	Portable GC/MS - Room Air	Print Room	NA	<2.0	<2.0	<2.0	<2.0	<0.68	70
IA2038	11/20/13 11:34	Portable GC/MS - Room Air	Print Room	76	<2.0	<2.0	<2.0	<2.0	< 0.68	140
IA2038	11/21/13 16:06	Portable GC/MS - Room Air	Print Room	193	<2.0	<2.0	<2.0	<2.0	< 0.68	100
IA2039	8/28/13 15:21	Portable GC/MS - Room Air	Print Room	131	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	29
IA2039	10/29/13 14:08	Portable GC/MS - Room Air	Print Room	NA	<2.0	<2.0	<2.0	<2.0	<0.68	70
IA2040	8/28/13 15:33	Portable GC/MS - Room Air	Print Room	146	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	32
IA2041	8/28/13 15:49	Portable GC/MS - Room Air	NW Corner Storage Area	105	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	< 0.54
IA2042	8/28/13 16:00	Portable GC/MS - Room Air	NW Corner Storage Area	293	< 0.40	< 0.40	< 0.40	< 0.40	<0.68	0.81
IA2043	8/28/13 16:15	Portable GC/MS - Room Air	NW Corner Storage Area	230	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	< 0.54
IA2044	8/28/13 17:08	Portable GC/MS - Room Air	Office Area	180	< 0.40	3.0 J	< 0.40	< 0.40	<0.68	100
IA2045	8/28/13 17:38	Portable GC/MS - Room Air	Office Area	NA	< 0.40	2.8 J	< 0.40	< 0.40	<0.68	100
IA2046	8/29/13 8:52	Portable GC/MS - Room Air	Parts Crib	170	< 0.40	< 0.40	2.2	< 0.40	4.0	210
IA2047	8/29/13 9:03	Portable GC/MS - Room Air	Closet	850	1.5	< 0.40	39	< 0.40	62	2,900
IA2047	10/29/13 9:54	Portable GC/MS - Room Air	Closet	NA	<8.1	<7.9	<7.9	<7.9	4.6	300
IA2048	8/29/13 9:23	Portable GC/MS - Room Air	Hallway	218	< 0.40	< 0.40	2.1	< 0.40	3.7	200
IA2049	8/29/13 9:32	Portable GC/MS - Room Air	Hallway	270	< 0.40	< 0.40	2.0	< 0.40	3.7	200
IA2050	8/29/13 10:02	Portable GC/MS - Room Air	Print Room	174	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	25
IA2051	8/29/13 10:15	Portable GC/MS - Room Air	Electrical Room	160	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	24
IA2052	8/29/13 10:40	Portable GC/MS - Room Air	Parts Crib	450	1.3	< 0.40	5.9	< 0.40	18	1,100
IA2053	8/29/13 10:57	Portable GC/MS - Room Air	Parts Crib	440	1.2	< 0.40	5.6	< 0.40	17	1,100
IA2054	8/29/13 13:26	Portable GC/MS - Room Air	Hallway	110	< 0.40	< 0.40	1.5	< 0.40	2.6	160
IA2054	10/29/13 10:04	Portable GC/MS - Room Air	Hallway	NA	<2.0	<2.0	<2.0	<2.0	1.2	130
IA2055	8/29/13 17:56	Portable GC/MS - Room Air	Hallway	204	< 0.40	3.4 J	< 0.40	< 0.40	< 0.68	16
IA2056	8/30/13 11:36	Portable GC/MS - Room Air	B002 Linkway	127	< 0.40	< 0.40	0.48	< 0.40	< 0.68	59
IA2057	8/30/13 11:47	Portable GC/MS - Room Air	B002 Linkway	152	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	53
IA2058	8/30/13 11:59	Portable GC/MS - Room Air	Loading Dock Storage	78	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	2.7
IA2059	8/30/13 12:59	Portable GC/MS - Room Air	Hallway	180	< 0.40	4.0 J	< 0.40	< 0.40	< 0.68	33
IA2060	9/11/13 9:56	Portable GC/MS - Room Air	B002 Tunnel	200	< 0.40	< 0.40	1.4	< 0.40	1.6	23
Field Blank	8/27/13 11:10	Portable GC/MS - Outside Air	Outside Stair #3 (B003)	NA	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	< 0.54
Field Blank	8/28/13 8:16	Portable GC/MS - Outside Air	Outside Stair #3 (B003)	NA	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	0.75
Field Blank	8/29/13 8:40	Portable GC/MS - Outside Air	Outside B001	NA	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	0.97
Field Blank	8/30/13 11:20	Portable GC/MS - Outside Air	Outside B001	NA	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	2.1
Field Blank	8/30/13 13:21	Portable GC/MS - Outside Air	Outside B001	NA	< 0.40	< 0.40	< 0.40	< 0.40	< 0.68	2.1
Field Blank		Portable GC/MS - Outside Air	Outside B001	NA	<2.0	<2.0	<2.0	<2.0	< 0.68	< 0.54
Field Blank	10/29/13 14:55	Portable GC/MS - Outside Air	Outside B001	NA	<2.0	<2.0	<2.0	<2.0	<0.68	0.97
Field Blank	10/29/13 16:07	Portable GC/MS - Outside Air	Outside B001	NA	<2.0	<2.0	<2.0	<2.0	<0.68	< 0.54
Field Blank	11/20/13 9:50	Portable GC/MS - Outside Air	Outside Stair #3 (B003)	NA	<2.0	<2.0	<2.0	<2.0	<0.68	< 0.54
Field Blank	11/20/13 10:42	Portable GC/MS - Outside Air	Outside B001	NA	<2.0	<2.0	<2.0	<2.0	<0.68	< 0.54
Field Blank	11/20/13 13:24	Portable GC/MS - Outside Air	Outside B001	NA	<2.0	<2.0	<2.0	<2.0	<0.68	0.75

Notes:

1. This table summarizes data recorded during field screening of grab indoor air samples using a HAPSITE Smart portable gas chromatograph/mass spectrometer (GC/MS), manufactured by Inficon. The instrument was calibrated to manufacturer prepared standards ranging from 0.1 part per billion on a volumetric basis (ppbv) to 50 ppbv, for the following compounds: tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (c-1,2-DCE), trans-1,2-dichloroethene (t-1,2-DCE), 1,1-dichloroethene (1,1-DCA). The field samples were collected by Sanborn Head personnel directly into the portable GC/MS sampling probe from the location and on the dates noted in the table. The samples were screened using the portable GC/MS in selective ion monitoring (SIM) mode. Results were converted to micrograms per cubic meter (µg/m³) by Sanborn Head assuming standard temperature (25 °C) and pressure (1 atmosphere) for the conversion. Results were rounded to two significant figures.

2. The portable GC/MS was used as a field screening tool; therefore, the data should be considered estimated and not suitable for final decision-making. The findings should be considered in conjunction with results of samples analyzed in accordance with USEPA TO-15 protocol.

3. "PID" indicates photoionization detector data presented in ppbv.

4. Legend / Flags

< - The analyte was not detected above the indicated reporting limit.

J - The analyte should be considered estimated.

NA - Not analyzed.

ND - Not detected above the PID reporting limit.

TABLE 2 Summary of Portable GC/MS Subslab Vapor Screening Results Building 001 IBM Poughkeepsie Facility Poughkeepsie, New York

D							I	1			ī
	Sample	Collection	Sample Type	Location	PID	1,1-DCA	1,1-DCE			PCE	TCE
Lo	ocation	Date	Sumple Type	Description	ppbv	$\mu g/m^3$	$\mu g/m^3$	μg/m ³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
Е	EP2001	1/15/14 14:19	Portable GC/MS - Subslab Vapor	SW Mechanical Room	1,500	<1.6	<1.2	<17	1.8	95	1,000 JL
	EP2001	1/15/14 15:30	Portable GC/MS - Subslab Vapor	SW Mechanical Room	NA	<1.7	<1.2	<9.1	<1.2	88	19 JL
	EP2001		Portable GC/MS - Subslab Vapor	SW Mechanical Room	2,300	<3.1	<4.0	< 0.59	<0.87	9.5 JL	240 JL
		1/22/14 14:17	, .							-	,
	EP2001	3/12/14 10:54	Portable GC/MS - Subslab Vapor	SW Mechanical Room	3,700	<6,800	<4,000	<4,000	<4,000	<4,000	5,400
E	EP2002	1/17/14 9:02	Portable GC/MS - Subslab Vapor	Warehouse Area	3,500	<4.0	<4.0	<4.0	<4.0	<6,800	7,000
E	EP2003	1/16/14 15:49	Portable GC/MS - Subslab Vapor	Print Room	2,000	<4,100	<4.0	<4.0	<4.0	<6,800	<5,400
Е	EP2003	1/23/14 10:35	Portable GC/MS - Subslab Vapor	Print Room	1,000	2.1	3.5	<1.5	3.5	31	1,100
	EP2004	1/16/14 15:26	Portable GC/MS - Subslab Vapor	Print Room	2,200	<4.0	<4.0	<4.0	<4.0	<6,800	4,800 J
			· · · · ·							,	
	EP2004	1/21/14 15:28	Portable GC/MS - Subslab Vapor	Print Room	2,600	<4.0	<4.0	<4.0	<4.0	<6,800	7,500
	EP2005	1/16/14 14:29	Portable GC/MS - Subslab Vapor	Print Room	30,000	<4,000	<4,000	<4,000	<4,000	<6,800	45,000
E	EP2005	1/16/14 14:29	SUMMA Canister	Print Room	NA	<21	<20	660	<20	180	43,000
E	EP2005	1/21/14 16:14	Portable GC/MS - Subslab Vapor	Print Room	16,000	<4,000	<4,000	<4,000	<4,000	<6,800	41,000
E	EP2006	1/16/14 11:23	Portable GC/MS - Subslab Vapor	HVAC Room West	3,800	<4,000	<4,000	<4,000	<4,000	<6,800	12,000
	EP2007	1/16/14 10:59	Portable GC/MS - Subslab Vapor	Electrical Room	1,600	<4,000	<4,000	<4,000	<4,000	<6,800	3,400 J
	EP2007	1/21/14 16:06	Portable GC/MS - Subslab Vapor	Electrical Room	1,500	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
-		, ,	· · · · ·					,			
	EP2007	1/22/14 18:07	Portable GC/MS - Subslab Vapor	Electrical Room	1,600	2.9	<1.2	1.8	<2.1	15	30 JL
E	EP2007	1/23/14 11:06	Portable GC/MS - Subslab Vapor	Electrical Room	1,600	<3.1	< 0.40	< 0.40	< 0.40	1.8 JL	4,600 JL
E	EP2008	1/16/14 8:49	Portable GC/MS - Subslab Vapor	Office Area	2,300	<8,100	<7,900	<7,900	<7,900	<14,000	11,000
E	EP2008	1/16/14 9:47	Portable GC/MS - Subslab Vapor	Office Area	2,300	<4,000	<4,000	<4,000	<4,000	<6,800	7,000
Е	EP2008	1/21/14 14:29	Portable GC/MS - Subslab Vapor	Office Area	2,200	<4,000	<4,000	<4,000	<4,000	<6,800	5,900
	EP2009	1/16/14 9:36	Portable GC/MS - Subslab Vapor	Office Area	390,000	<32,000	<32,000	<32,000	<32,000	<54,000	1,100,000
		, ,	, , , , , , , , , , , , , , , , , , ,			-		,		,	
	EP2010	1/16/14 16:56	Portable GC/MS - Subslab Vapor	Crib Area	1,300	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
	EP2010	1/16/14 17:15	Portable GC/MS - Subslab Vapor	Crib Area	1,300	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
	EP2010	1/21/14 16:34	Portable GC/MS - Subslab Vapor	Crib Area	482	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
E	EP2010	1/23/14 8:24	Portable GC/MS - Subslab Vapor	Crib Area	1,300	1.9	2.1	<1.9	<6.3	<2.0	110
E	EP2011	1/16/14 14:13	Portable GC/MS - Subslab Vapor	Print Room	2,800	<4,000	<4,000	<4,000	<4,000	<6,800	15,000
	EP2012	1/16/14 17:08	Portable GC/MS - Subslab Vapor	Crib Area	8,600	<4,000	<4,000	<4,000	<4,000	<6,800	10,000
	EP2012	1/21/14 16:51	Portable GC/MS - Subslab Vapor	Crib Area	4,000	<4,000	<4,000	<4,000	<4,000	<6,800	7,500
			, <u>,</u>			,	,	*		,	-
	EP2015	3/12/14 17:27	Portable GC/MS - Subslab Vapor	HVAC Room East	900	<1.6	<1.6	<1.6	<1.6	4.5	1,100
	SV2001	1/15/14 11:33	Portable GC/MS - Subslab Vapor	Warehouse Area	1,700	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SS	SV2001	1/22/14 12:30	Portable GC/MS - Subslab Vapor	Warehouse Area	647	<1.2	2.5	<4.4	<1.2	<2.0	81
SS	SV2002	1/22/14 11:41	Portable GC/MS - Subslab Vapor	Warehouse Area	843	2.2	<1.2	<4.4	<1.2	2.5	590
	SV2003		Portable GC/MS - Subslab Vapor	Warehouse Area	586	2.6	< 0.4	1.8	< 0.40	52	590 JL
		, ,	· · ·								,
	SV2004	1/22/14 13:10	Portable GC/MS - Subslab Vapor	Warehouse Area	2,500	7.7	<1.2	2.3	<1.2	<2.0	21 JL
SS	SV2004	3/12/14 11:07	Portable GC/MS - Subslab Vapor	Warehouse Area	4,000	<4,000	<4,000	<4,000	<4,000	<6,800	9,100
SS	SV2005	1/15/14 13:43	Portable GC/MS - Subslab Vapor	SW Mechanical Room	1,100,000	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SS	SV2005	1/22/14 13:00	Portable GC/MS - Subslab Vapor	SW Mechanical Room	1,300	<1.2	<1.2	<4.4	<1.2	3.2	1,300
	SV2006	1/17/14 10:13	Portable GC/MS - Subslab Vapor	Warehouse Area	7,500	<4,000	<4,000	<4,000	<4,000	<6,800	3,800 J
	SV2006	1/22/14 18:35	Portable GC/MS - Subslab Vapor	Warehouse Area	25,000	<13	<1.6	<1.9	<2.9	<2.7	410 JL
		, ,	, <u>,</u>			_					,
	SV2007	1/22/14 12:39	Portable GC/MS - Subslab Vapor	Warehouse Area	948	<1.2	<1.2	<4.4	<1.2	3.7	1,100
	SV2008	1/22/14 11:53	Portable GC/MS - Subslab Vapor	Warehouse Area	681	1.8	<1.2	<4.4	<1.2	<2.0	39
SS	SV2009	1/22/14 10:33	Portable GC/MS - Subslab Vapor	Warehouse Area	726	2.2	3.9	1.6	3.9	29	590 JL
SS	SV2010	1/15/14 17:27	Portable GC/MS - Subslab Vapor	Crib Area	150,000	<12,000	14,000	<12,000	12,000	<20,000	1,100,000
	SV2010	1/16/14 16:53	SUMMA Canister	Crib Area	NA	360	<269	5,200	<269	7,700	580,000
	SV2010	1/16/14 17:29		Crib Area	150,000	<12,000	<12,000	<12,000	<12,000	<20,000	460,000
							· · · · · ·		-	,	
	SV2010	1/21/14 17:03	Portable GC/MS - Subslab Vapor	Crib Area	330,000	<32,000	<32,000	<32,000	<32,000	<54,000	860,000
	SV2011	1/22/14 10:22	Portable GC/MS - Subslab Vapor	Warehouse Area	646	2.1	0.52	1.9	0.52	2.3	26
SS	SV2012	1/22/14 10:10	Portable GC/MS - Subslab Vapor	Warehouse Area				1.0			
SS	SV2013	1/17/14 9:55	Portable GC/MS - Subslab Vapor		446	3.2	13	4.8	7.1	17	240
	SV2014	, ,		Warehouse Area	446 5,000	3.2 <4,000	13 <4,000	4.8 <4,000	7.1 <4,000		240 8,100
		1/17/14 9.44		Warehouse Area	5,000	<4,000	<4,000	<4,000	<4,000	17 <6,800	8,100
		1/17/14 9:44	Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area	5,000 2,800	<4,000 <4,000	<4,000 <4,000	<4,000 <4,000	<4,000 <4,000	17 <6,800 <6,800	8,100 4,800 J
SS	SV2014	1/22/14 15:12	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area	5,000 2,800 3,400	<4,000 <4,000 <2.4	<4,000 <4,000 <2.4	<4,000 <4,000 <3.6	<4,000 <4,000 <5.2	17 <6,800 <6,800 <4.1	8,100 4,800 J 200
-	SV2015	1/22/14 15:12 1/15/14 13:17	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room	5,000 2,800 3,400 800	<4,000 <4,000 <2.4 <4,000	<4,000 <4,000 <2.4 <4,000	<4,000 <4,000 <3.6 <4,000	<4,000 <4,000 <5.2 <4,000	17 <6,800 <6,800 <4.1 <6,800	8,100 4,800 J 200 <5,400
	SV2015 SV2015	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room	5,000 2,800 3,400 800 NA	<4,000 <4,000 <2.4 <4,000 7.3	<4,000 <4,000 <2.4 <4,000 2.3	<4,000 <4,000 <3.6 <4,000 <9.1	<4,000 <4,000 <5.2 <4,000 1.3	17 <6,800 <6,800 <4.1 <6,800 9.5	8,100 4,800 J 200 <5,400 700 JL
	SV2015	1/22/14 15:12 1/15/14 13:17	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room	5,000 2,800 3,400 800	<4,000 <4,000 <2.4 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2	<4,000 <4,000 <3.6 <4,000	<4,000 <4,000 <5.2 <4,000	17 <6,800 <6,800 <4.1 <6,800	8,100 4,800 J 200 <5,400
SS	SV2015 SV2015	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room	5,000 2,800 3,400 800 NA	<4,000 <4,000 <2.4 <4,000 7.3	<4,000 <4,000 <2.4 <4,000 2.3	<4,000 <4,000 <3.6 <4,000 <9.1	<4,000 <4,000 <5.2 <4,000 1.3	17 <6,800 <6,800 <4.1 <6,800 9.5	8,100 4,800 J 200 <5,400 700 JL
SS SS	SV2015 SV2015 SV2015 SV2015	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room	5,000 2,800 3,400 800 NA 1,000 NA	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6	17 <6,800 <6,800 <4.1 <6,800 9.5 6.2 18	8,100 4,800 J 200 <5,400 700 JL 600 1,300
SS SS SS	SV2015 SV2015 SV2015 SV2015 SV2015 SV2016	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58 1/16/14 17:45	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway	5,000 2,800 3,400 800 NA 1,000 NA 1,400	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000	17 <6,800 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J
SS SS SS SS	SV2015 SV2015 SV2015 SV2015 SV2016 SV2016	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58 1/16/14 17:45 1/22/14 13:05	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800
SS SS SS SS	SV2015 SV2015 SV2015 SV2015 SV2016 SV2016 SV2016	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58 1/16/14 17:45 1/22/14 13:05 1/22/14 14:38	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL
SS SS SS SS SS	SV2015 SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2016 SV2017	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58 1/16/14 17:45 1/22/14 13:05 1/22/14 14:38 1/17/14 9:15	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Server Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000
SS SS SS SS SS	SV2015 SV2015 SV2015 SV2015 SV2016 SV2016 SV2016	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58 1/16/14 17:45 1/22/14 13:05 1/22/14 14:38	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL
55 55 55 55 55 55 55 55	SV2015 SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2016 SV2017	1/22/14 15:12 1/15/14 13:17 1/15/14 15:46 1/22/14 12:48 3/12/14 15:58 1/16/14 17:45 1/22/14 13:05 1/22/14 14:38 1/17/14 9:15	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Server Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000
SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 12:48$ $\frac{3}{12}/14 \ 15:58$ $\frac{1}{16}/14 \ 17:45$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 15:33$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800 <6,800 <6,800	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700
SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020	$\frac{1/22/14 \ 15:12}{1/15/14 \ 13:17}$ $\frac{1}{15/14 \ 15:46}$ $\frac{1}{22/14 \ 15:58}$ $\frac{1}{16/14 \ 17:45}$ $\frac{1}{122/14 \ 13:05}$ $\frac{1}{22/14 \ 13:05}$ $\frac{1}{22/14 \ 14:38}$ $\frac{1}{17/14 \ 9:15}$ $\frac{1}{16/14 \ 15:12}$ $\frac{1}{16/14 \ 15:33}$ $\frac{1}{16/14 \ 16:13}$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Server Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000	17 <6,800	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400
SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020	$\frac{1/22/14 \ 15:12}{1/15/14 \ 13:17}$ $\frac{1/15/14 \ 15:46}{1/22/14 \ 15:58}$ $\frac{3/12/14 \ 15:58}{1/16/14 \ 17:45}$ $\frac{1/22/14 \ 13:05}{1/22/14 \ 13:05}$ $\frac{1/22/14 \ 14:38}{1/17/14 \ 9:15}$ $\frac{1/16/14 \ 15:12}{1/16/14 \ 15:33}$ $\frac{1/16/14 \ 16:13}{1/23/14 \ 9:56}$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Server Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 1.3	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <0.75	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 0.63	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 0.79	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800 <6,800 <6,800 <6,800 18	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160
SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2020	$\frac{1/22/14}{15:12}$ $\frac{1}{15/14}$ $\frac{1}{15/14}$ $\frac{1}{15/14}$ $\frac{1}{15/14}$ $\frac{1}{15:14}$ $\frac{1}{122/14}$ $\frac{1}{15:58}$ $\frac{1}{16/14}$ $\frac{1}{15:58}$ $\frac{1}{122/14}$ $\frac{1}{13:05}$ $\frac{1}{22/14}$ $\frac{1}{13:05}$ $\frac{1}{22/14}$ $\frac{1}{13:05}$ $\frac{1}{122/14}$ $\frac{1}{14:13}$ $\frac{1}{16/14}$ $\frac{1}{15:33}$ $\frac{1}{16/14}$ $\frac{1}{16:13}$ $\frac{1}{23/14}$ $\frac{1}{15:6}$ $\frac{1}{16/14}$ $\frac{1}{6:04}$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 1.3 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <0.75 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 18 \\ <6,800 \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400
SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2020 SV2021	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 17:45$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 10:07$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room Print Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 <4,000 1.3 <4,000 2.5	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800 <6,800 <6,800 <6,800 <6,800 18 <6,800 37	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100
SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2020	$\frac{1/22/14}{15:12}$ $\frac{1}{15/14}$ $\frac{1}{15/14}$ $\frac{1}{15/14}$ $\frac{1}{15/14}$ $\frac{1}{15:14}$ $\frac{1}{122/14}$ $\frac{1}{15:58}$ $\frac{1}{16/14}$ $\frac{1}{15:58}$ $\frac{1}{122/14}$ $\frac{1}{13:05}$ $\frac{1}{22/14}$ $\frac{1}{13:05}$ $\frac{1}{22/14}$ $\frac{1}{13:05}$ $\frac{1}{122/14}$ $\frac{1}{14:13}$ $\frac{1}{16/14}$ $\frac{1}{15:33}$ $\frac{1}{16/14}$ $\frac{1}{16:13}$ $\frac{1}{23/14}$ $\frac{1}{15:6}$ $\frac{1}{16/14}$ $\frac{1}{6:04}$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 1.3 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <0.75 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 18 \\ <6,800 \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2020 SV2021	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 17:45$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 10:07$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room Print Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 <4,000 1.3 <4,000 2.5	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800 <6,800 <6,800 <6,800 <6,800 18 <6,800 37	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022	$\frac{1}{22}/14 15:12$ $\frac{1}{15}/14 13:17$ $\frac{1}{15}/14 15:46$ $\frac{1}{22}/14 12:48$ $\frac{3}{12}/14 15:58$ $\frac{1}{16}/14 17:45$ $\frac{1}{22}/14 13:05$ $\frac{1}{22}/14 13:05$ $\frac{1}{22}/14 14:38$ $\frac{1}{17}/14 9:15$ $\frac{1}{16}/14 15:12$ $\frac{1}{16}/14 16:13$ $\frac{1}{23}/14 9:56$ $\frac{1}{16}/14 16:04$ $\frac{1}{23}/14 10:07$ $\frac{1}{16}/14 15:41$ $\frac{1}{23}/14 9:19$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room Print Room Print Room Print Room Print Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 5,782	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 1.3 <4,000 2.5 <4,000 4.9	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 2.1	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5 <4,000 1.1	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800 <6,800 <6,800 <6,800 18 <6,800 18 <6,800 37 <6,800 16	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100 <5,400 590 JL
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:33$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:17$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor Subslab Vapor Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Hallway Print Room Print Room Print Room Print Room Print Room Print Room Print Room Print Room Print Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900 480 782 NA	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 2.5	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 <2.3 <4,000 2.1 <0.20	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5 <4,000 1.1 1.9	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 230 JL 11,000 9,700 <5,400 160 <5,400 1,100 <5,400 590 JL 430
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2022 SV2022	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 15:41$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:13$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 8,17 6,00 9,00 8,00 8,00 8,00 8,00 8,00 8,00 8	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 <2.3 <4,000 2.1 <0.20 13	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5 <4,000 1.1 1.9 <0.79	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 2.1 0.22 <0.79	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 18 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ 22 \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100 <5,400 590 JL 430 860
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2022 SV2022 SV2023	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 15:33$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 15:41$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:13$ $\frac{1}{16}/14 \ 15:02$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Whechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900 480 782 NA NA NA 300	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 4.9 0.33 <0.81 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000	<4,000 <4,000 <3.6 <4,000 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5 <4,000 1.1 1.9 <0.79 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22 <0.79 <4,000	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 230 JL 11,000 <5,400 160 <5,400 1,100 <5,400 590 JL 430 860 <5,400
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2022 SV2023	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:13$ $\frac{1}{16}/14 \ 15:02$ $\frac{1}{21}/14 \ 15:42$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900 480 782 NA NA NA 300 640	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 4.9 0.33 <0.81 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <4,000 <4,000 <4,000 <4,000 <0.75 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000	<4,000 <4,000 <3.6 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5 <4,000 1.1 1.9 <0.79 <4,000 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22 <0.79 <4,000 <4,000	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ 22 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ \\ \\6,800 \\ \\ \\8,800 \\ \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 $	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 1,100 <5,400 5,400 590 JL 430 860 <5,400
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2022 SV2023 SV2023	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:33$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:41$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:41$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:17$ $\frac{3}{12}/14 \ 15:42$ $\frac{1}{21}/14 \ 15:42$ $\frac{1}{23}/14 \ 9:06$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 6,17 6,00 9,00 4,80 7,82 NA NA NA 3,00 6,40 6,54	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 4.9 0.33 <0.81 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000 4.8	$\begin{array}{r} <4,000\\ <4,000\\ <3.6\\ <4,000\\ <9.1\\ <4.4\\ <1.6\\ <4,000\\ \hline \textbf{2.9}\\ \textbf{1.2 JL}\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <1.5\\ <4,000\\ <1.5\\ <4,000\\ \hline \textbf{1.1}\\ \textbf{1.9}\\ <0.79\\ <4,000\\ <1.9\end{array}$	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 <2.1 0.22 <0.79 <4,000 <4,000 4.8	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ 22 \\ <6,800 \\ <6,800 \\ <2.0 \\ \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100 <5,400 590 JL 430 860 <5,400 19 JL
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2022 SV2023	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:13$ $\frac{1}{16}/14 \ 15:02$ $\frac{1}{21}/14 \ 15:42$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900 480 782 NA NA NA 300 640	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 4.9 0.33 <0.81 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <4,000 <4,000 <4,000 <4,000 <0.75 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000	<4,000 <4,000 <3.6 <9.1 <4.4 <1.6 <4,000 2.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <1.5 <4,000 1.1 1.9 <0.79 <4,000 <4,000	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22 <0.79 <4,000 <4,000	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ 22 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ 30 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ \\ \\6,800 \\ \\ \\8,800 \\ \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 \\ \\8,800 $	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 1,100 <5,400 5,400 5,400 590 JL 430 860 <5,400
SS SS SS SS SS SS SS SS SS SS SS SS SS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2022 SV2023 SV2023	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 17:45$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 15:41$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:13$ $\frac{1}{16}/14 \ 15:02$ $\frac{1}{21}/14 \ 15:42$ $\frac{1}{23}/14 \ 9:06$ $\frac{3}{12}/14 \ 14:36$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 6,17 6,00 9,00 4,80 7,82 NA NA NA 3,00 6,40 6,54	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <1.9 <3.1 <4,000 <4,000 2.5 <4,000 2.5 <4,000 4.9 0.33 <0.81 <4,000 2.3	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000 4.8	$\begin{array}{r} <4,000\\ <4,000\\ <3.6\\ <4,000\\ <9.1\\ <4.4\\ <1.6\\ <4,000\\ \hline \textbf{2.9}\\ \textbf{1.2 JL}\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <1.5\\ <4,000\\ <1.5\\ <4,000\\ \hline \textbf{1.1}\\ \textbf{1.9}\\ <0.79\\ <4,000\\ <1.9\end{array}$	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22 <0.79 <4,000 2.1 0.22 <0.79 <4,000 4.8 <1.6	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ 22 \\ <6,800 \\ <6,800 \\ <2.0 \\ \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100 <5,400 590 JL 430 860 <5,400 19 JL
SS SSS SSS SSS SSS SSS SSS SSS SSS SSS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2023 SV2023 SV2023 SV2023 SV2024	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:48$ $\frac{3}{12}/14 \ 15:58$ $\frac{1}{16}/14 \ 17:45$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 15:41$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:17$ $\frac{3}{12}/14 \ 14:13$ $\frac{1}{16}/14 \ 15:42$ $\frac{1}{23}/14 \ 9:06$ $\frac{3}{12}/14 \ 14:41$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 420 617 600 900 480 782 NA NA 300 640 654 NA 368	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <4,000 <4,000 <4,000 2.5 <4,000 4.9 0.33 <0.81 <4,000 4.9 0.33 <1.6 <4,000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <4,000 <4,000 <4,000 <4,000 <0.75 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000 2.1 <0.20 13 <4,000 4.8 <1.6 <4,000	$\begin{array}{r} <4,000\\ <4,000\\ <3.6\\ <4,000\\ <9.1\\ <4.4\\ <1.6\\ <4,000\\ \hline 2.9\\ 1.2 JL\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <1.5\\ <4,000\\ \hline 1.1\\ 1.9\\ <0.79\\ <4,000\\ \hline 1.1\\ 1.9\\ <0.79\\ <4,000\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <4,000\\ <1.9\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6\\ <1.6$	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22 <0.79 <4,000 2.1 0.22 <0.79 <4,000 2.1 0.22 <0.79	17 <6,800 <4.1 <6,800 9.5 6.2 18 <6,800 14 <0.68 <6,800 <6,800 <6,800 <6,800 <6,800 <6,800 37 <6,800 16 15 22 <6,800 16 15 22 <6,800 3.8 <6,800	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 230 JL 11,000 <5,400 160 <5,400 1,100 <5,400 590 JL 430 860 <5,400 25,400 19 JL 110 19,000
SS SSS SSS SSS SSS SSS SSS SSS SSS SSS	SV2015 SV2015 SV2015 SV2016 SV2016 SV2016 SV2017 SV2018 SV2019 SV2020 SV2021 SV2022 SV2022 SV2022 SV2022 SV2023 SV2023 SV2023	$\frac{1}{22}/14 \ 15:12$ $\frac{1}{15}/14 \ 13:17$ $\frac{1}{15}/14 \ 15:46$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{16}/14 \ 17:45$ $\frac{1}{22}/14 \ 15:58$ $\frac{1}{12}/14 \ 15:58$ $\frac{1}{22}/14 \ 13:05$ $\frac{1}{22}/14 \ 14:38$ $\frac{1}{17}/14 \ 9:15$ $\frac{1}{16}/14 \ 15:12$ $\frac{1}{16}/14 \ 16:13$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 16:04$ $\frac{1}{23}/14 \ 9:56$ $\frac{1}{16}/14 \ 15:41$ $\frac{1}{23}/14 \ 9:19$ $\frac{3}{12}/14 \ 14:13$ $\frac{1}{16}/14 \ 15:02$ $\frac{1}{21}/14 \ 15:42$ $\frac{1}{23}/14 \ 9:06$ $\frac{3}{12}/14 \ 14:36$	Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor SUMMA Canister Portable GC/MS - Subslab Vapor Portable GC/MS - Subslab Vapor	Warehouse Area Warehouse Area Warehouse Area SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room SW Mechanical Room Hallway Hallway Hallway Hallway Server Room Print Room	5,000 2,800 3,400 800 NA 1,000 NA 1,400 NA 1,900 7,000 1,000 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 4,200 6,17 6,00 9,00 4,80 7,82 NA NA NA NA NA NA NA	<4,000 <4,000 <2.4 <4,000 7.3 <1.2 <1.6 <4,000 <4,000 <4,000 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,0000 2.5 <4,00000 2.5 <4,00000 2.5 <4,00000 2.5 <4,000000000000000000000000000000000000	<4,000 <4,000 <2.4 <4,000 2.3 <1.2 15 <4,000 <1.9 <0.40 <4,000 <4,000 <4,000 <4,000 <4,000 <2.3 <4,000 <2.3 <4,000 2.1 <0.20 13 <4,000 4.8 <1.6	$\begin{array}{r} <4,000\\ <4,000\\ <3.6\\ <4,000\\ <9.1\\ <4.4\\ <1.6\\ <4,000\\ \hline \textbf{2.9}\\ \textbf{1.2 JL}\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <4,000\\ <1.5\\ <4,000\\ <1.5\\ <4,000\\ \hline \textbf{1.1}\\ \textbf{1.9}\\ <0.79\\ <4,000\\ <1.9\\ <1.6\\ \end{array}$	<4,000 <4,000 <5.2 <4,000 1.3 <1.2 <1.6 <4,000 <1.9 1.2 JL <4,000 <4,000 <4,000 <4,000 <4,000 <2.4 <4,000 <2.4 <4,000 2.1 0.22 <0.79 <4,000 2.1 0.22 <0.79 <4,000 4.8 <1.6	$\begin{array}{r} 17 \\ <6,800 \\ <6,800 \\ <4.1 \\ <6,800 \\ 9.5 \\ 6.2 \\ 18 \\ <6,800 \\ 14 \\ <0.68 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ <6,800 \\ 37 \\ <6,800 \\ 37 \\ <6,800 \\ 16 \\ 15 \\ 22 \\ <6,800 \\ 16 \\ 15 \\ 22 \\ <6,800 \\ <2.0 \\ 3.8 \\ \end{array}$	8,100 4,800 J 200 <5,400 700 JL 600 1,300 4,700 J 4,800 230 JL 11,000 12,000 9,700 <5,400 160 <5,400 1,100 <5,400 590 JL 430 860 <5,400 25,400 19 JL 110

TABLE 2 Summary of Portable GC/MS Subslab Vapor Screening Results Building 001 IBM Poughkeepsie Facility Poughkeepsie, New York

Sample	Collection	Converte Treese	Location	PID	1,1-DCA	1,1-DCE	c-1,2-DCE	t-1,2-DCE	PCE	TCE
Location	Date	Sample Type	Description	ppbv	µg/m ³	$\mu g/m^3$				
SSV2027	1/15/14 16:27	Portable GC/MS - Subslab Vapor	Hallway	260	< 0.57	< 0.40	4.8	0.79	20	4.9 JL
SSV2027	1/22/14 14:40	Portable GC/MS - Subslab Vapor	Hallway	1,100	<3.1	< 0.40	2.0 JL	1.9 JL	1.4 JL	190 JL
SSV2027	3/12/14 16:08	Portable GC/MS - Subslab Vapor	Hallway	NA	<1.6	9.1	<1.6	<1.6	27	2,100 JL
SSV2028	1/17/14 9:24	Portable GC/MS - Subslab Vapor	Storage Room	2,900	<4,000	<4,000	<4,000	<4,000	<6,800	7,000
SSV2029	1/17/14 8:27	Portable GC/MS - Subslab Vapor	Loading Dock Area	42	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SSV2029	1/22/14 17:08	Portable GC/MS - Subslab Vapor	Loading Dock Area	42	1.5	0.56	<1.1	0.56	< 0.68	15
SSV2030	1/16/14 11:30	Portable GC/MS - Subslab Vapor	HVAC Room West	1,100	<4,000	<4,000	<4,000	<4,000	<6,800	5,200 J
SSV2030	1/21/14 15:50	Portable GC/MS - Subslab Vapor	HVAC Room West	2,000	<4,000	<4,000	<4,000	<4,000	<6,800	4,800 J
SSV2030	1/22/14 18:19	Portable GC/MS - Subslab Vapor	HVAC Room West	1,100	<2.4	<2.4	<2.9	<4.4	18	47 JL
SSV2030	1/23/14 11:20	Portable GC/MS - Subslab Vapor	HVAC Room West	1,100	<3.1	< 0.4	< 0.4	< 0.4	1.8 JL	320 JL
SSV2031	1/16/14 11:15	Portable GC/MS - Subslab Vapor	Former Tank Room	742	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SSV2031	1/22/14 17:58	Portable GC/MS - Subslab Vapor	Former Tank Room	834	<1.2	<1.2	<1.4	<2.1	4.6	590
SSV2032	1/16/14 11:07	Portable GC/MS - Subslab Vapor	Electrical Room East	16,000	<4,000	<4,000	<4,000	<4,000	<6,800	65,000
SSV2033	1/16/14 16:22	Portable GC/MS - Subslab Vapor	North Hallway	76	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SSV2033	1/22/14 17:44	Portable GC/MS - Subslab Vapor	North Hallway	76	1.3	0.83	0.67	0.83	2.8	35
SSV2034	1/16/14 9:04	Portable GC/MS - Subslab Vapor	Office Area	60,000	<8,100	<7,900	<7,900	<7,900	<14,000	360,000
SSV2035	1/16/14 9:24	Portable GC/MS - Subslab Vapor	Office Area	400,000	<36,000	<36,000	<36,000	<36,000	<61,000	2,100,000
SSV2036	1/16/14 16:28	Portable GC/MS - Subslab Vapor	North Hallway	120	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SSV2036	1/22/14 17:01	Portable GC/MS - Subslab Vapor	North Hallway	120	0.97	0.63	<1.1	0.63	< 0.68	21
SSV2037	1/16/14 9:09	Portable GC/MS - Subslab Vapor	Office Area	3,700	<4,000	<4,000	<4,000	<4,000	<6,800	12,000
SSV2037	1/21/14 14:39	Portable GC/MS - Subslab Vapor	Office Area	3,800	<4,000	<4,000	<4,000	<4,000	<6,800	15,000
SSV2038	1/16/14 16:39	Portable GC/MS - Subslab Vapor	Crib Area	2,900	<4,000	<4,000	<4,000	<4,000	<6,800	7,500
SSV2038	1/21/14 16:44	Portable GC/MS - Subslab Vapor	Crib Area	3,000	<4,000	<4,000	<4,000	<4,000	<6,800	5,900
SSV2039	1/17/14 8:35	Portable GC/MS - Subslab Vapor	Recycling Storage Area	359	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SSV2039	1/22/14 17:19	Portable GC/MS - Subslab Vapor	Recycling Storage Area	359	0.85	0.99	<1.1	0.99	11	590 JL
SSV2040	1/23/14 12:04	Portable GC/MS - Subslab Vapor	Crib Area	80,000	<8,100	<7,900	<7,900	<7,900	<14,000	240,000
SSV2041	1/23/14 11:40		Crib Area	3,900	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
SSV2041	1/24/14 10:34	Portable GC/MS - Subslab Vapor	Crib Area	3,900	21	<13	<27	<13	26	1,000
SSV2042	1/23/14 11:56	Portable GC/MS - Subslab Vapor	Office Area	5,800	<4,000	<4,000	<4,000	<4,000	<6,800	13,000
SSV2046	3/12/14 17:02	Portable GC/MS - Subslab Vapor	Print Room	500	<1.6	5.2	<1.6	<1.6	4.5	810
Equipment Blank	1/15/14 10:56	Nitrogen Blank	B003/B001	NA	0.53	< 0.40	5.6	< 0.40	1.4	4.1
Equipment Blank		Nitrogen Blank	B003/B001	NA	0.57	< 0.40	3.0	< 0.40	1.2	5.4
Equipment Blank		Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank		Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank	1/17/14 7:51	Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank	1/21/14 13:19	Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank	1/21/14 16:25	Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank		Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	1.1	< 0.40	<0.68	7.5
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	1.5	< 0.40	<0.68	11
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	1.4	< 0.40	<0.68	10
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	0.59	0.87	< 0.68	5.3
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	1.1	< 0.40	< 0.68	7.5
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	0.48	0.71	< 0.68	4.4
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	< 0.40	0.63	0.95	< 0.68	4.6
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.40	0.75	0.52	0.79	< 0.68	7.0
Equipment Blank	, ,	Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400
Equipment Blank		Nitrogen Blank	B003/B001	NA	<3.1	< 0.40	< 0.40	< 0.40	< 0.68	0.64 JL
Equipment Blank		Nitrogen Blank	B003/B001	NA	1.5	3.3	6.7	3.3	< 0.68	16
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.4	< 0.4	< 0.4	< 0.4	< 0.68	< 0.54
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.4	< 0.4	< 0.4	< 0.4	< 0.68	1.8
Equipment Blank		Nitrogen Blank	B003/B001	NA	< 0.4	< 0.4	< 0.4	< 0.4	< 0.68	7.5
Equipment Blank	3/12/14 8:55	Nitrogen Blank	B003/B001	NA	<4,000	<4,000	<4,000	<4,000	<6,800	<5,400

Notes:

1. This table summarizes data recorded during field screening subslab vapor samples using a HAPSITE Smart portable gas chromatograph/mass spectrometer (GC/MS), manufactured by Inficon. The instrument was calibrated to manufacturer prepared standards ranging from 0.1 part per billion on a volumetric basis (ppbv) to 50 ppbv and 1 part per million on a volumetric basis (ppmv) to 50 ppmv, for the following compounds: tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (c-1,2-DCE), trans-1,2-dichloroethene (t-1,2-DCE), 1,1-dichloroethene (1,1-DCE), and 1,1-dichloroethane (1,1-DCA). The field samples were collected by Sanborn Head personnel using a syringe and were transferred into Tedlar bags for portable GC/MS screening. Samples were collected from the location and on the dates noted in the table. Samples screened using the 0.1 to 50 ppbv range were screened using the portable GC/MS in selective ion monitoring (SIM) mode. Results were converted to micrograms per cubic meter (μ g/m³) assuming standard temperature (25 °C) and pressure (1 atmosphere) for the conversion. Results were rounded to two significant figures.

2. The portable GC/MS was used as a field screening tool; therefore, the data should be considered estimated and not suitable for final decision-making. The findings should be considered in conjunction with results of samples analyzed in accordance with USEPA TO-15 protocol.

3. "PID" indicates photoionization detector data presented in ppbv.

4. Legend / Flags

< - The analyte was not detected above the indicated reporting limit.

J - The analyte should be considered estimated.

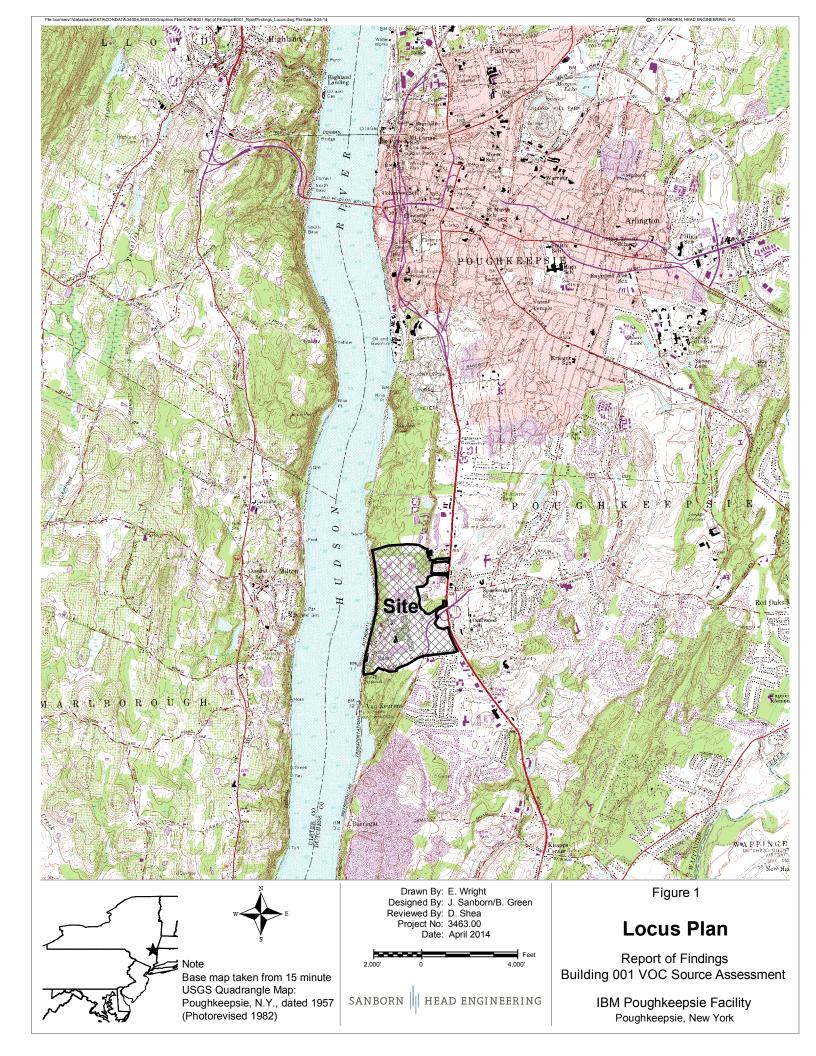
JL - The analyte should be considered estimated and biased low due to HAPSITE saturation and/or there was low recovery for the analyte during a calibration check.

NA - Not analyzed for this parameter.

ND - Not detected above the PID reporting limit.

Table 3 Summary of Subslab Vapor Extraction Pilot Test Results Report of Findings -- Building 001 VOC Source Assessment IBM Poughkeepsie Facility Poughkeepsie, New York

Sample Location	Collection Date	1,1-DCA ug/m3	1,1-DCE ug/m3	c-1,2-DCE ug/m3	t-1,2-DCE ug/m3	PCE ug/m3	TCE ug/m3	Total VOCs ug/m3
EP2001	NS							
EP2002	2/4/2014	<2.1	<2.0	70	<2.0	73	6,000	6,100
EP2003	2/3/2014	0.72	< 0.64	2.9	< 0.64	40	1,400	1,400
EP2004	2/3/2014	6.3	2.4	21	3.5	150	5,400	5,600
EP2005	NS							
EP2006	2/4/2014	<6.1	<5.9	14	<5.9	47	9,800	9,900
EP2007	2/4/2014	<1.1	<1.0	1.5	<1.0	18	3,000	3,000
EP2008	2/4/2014	<20	<20	49	<20	37	41,000	41,000
EP2009	2/4/2014	<96	<94	240	<94	180	440,000	440,000
EP2010	2/3/2014	< 0.70	<0.68	2.4	<0.68	12	1,300	1,300
EP2011	2/12/2014	<5.7	<5.6	19	<5.6	38	9,900	10,000
EP2012	2/3/2014	23	<11	260	<11	920	28,000	29,000
EP2013	2/12/2014	<1.0	<1.00	4.1	<1.00	13	2,400	2,400
EP2014	NS							
EP2015	NS							


Notes:


1. Samples were collected by Sanborn Head Engineering, PC on the dates indicated. Samples were grab samples collected in SUMMA canisters during subslab vapor extraction pilot testing, and were collected once the pilot test field parameters stabilized. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "1,1-DCA" is 1,1-dichloroethane, "1,1-DCE" is 1,1-dichloroethene, "c-1,2-DCE" is cis-1,2-dichloroethene, "t-1,2-DCE" is trans-1,2-dichloroethene, "PCE" is tetrachloroethene, and "TCE" is trichloroethene. Results were converted to micrograms per cubic meter (μ g/m³) assuming standard temperature (25 °C) and pressure (1 atmosphere) for the conversion. Results were rounded to two significant figures.

2. "<" indicates the analyte was not detected above the indicated laboratory reporting limit.

3. Total VOCs are the sum of the detected concentrations of VOCs, rounded to two significant figures.

FIGURES

Figure 2

Building 001 Location and VOC Extent in Overburden Groundwater

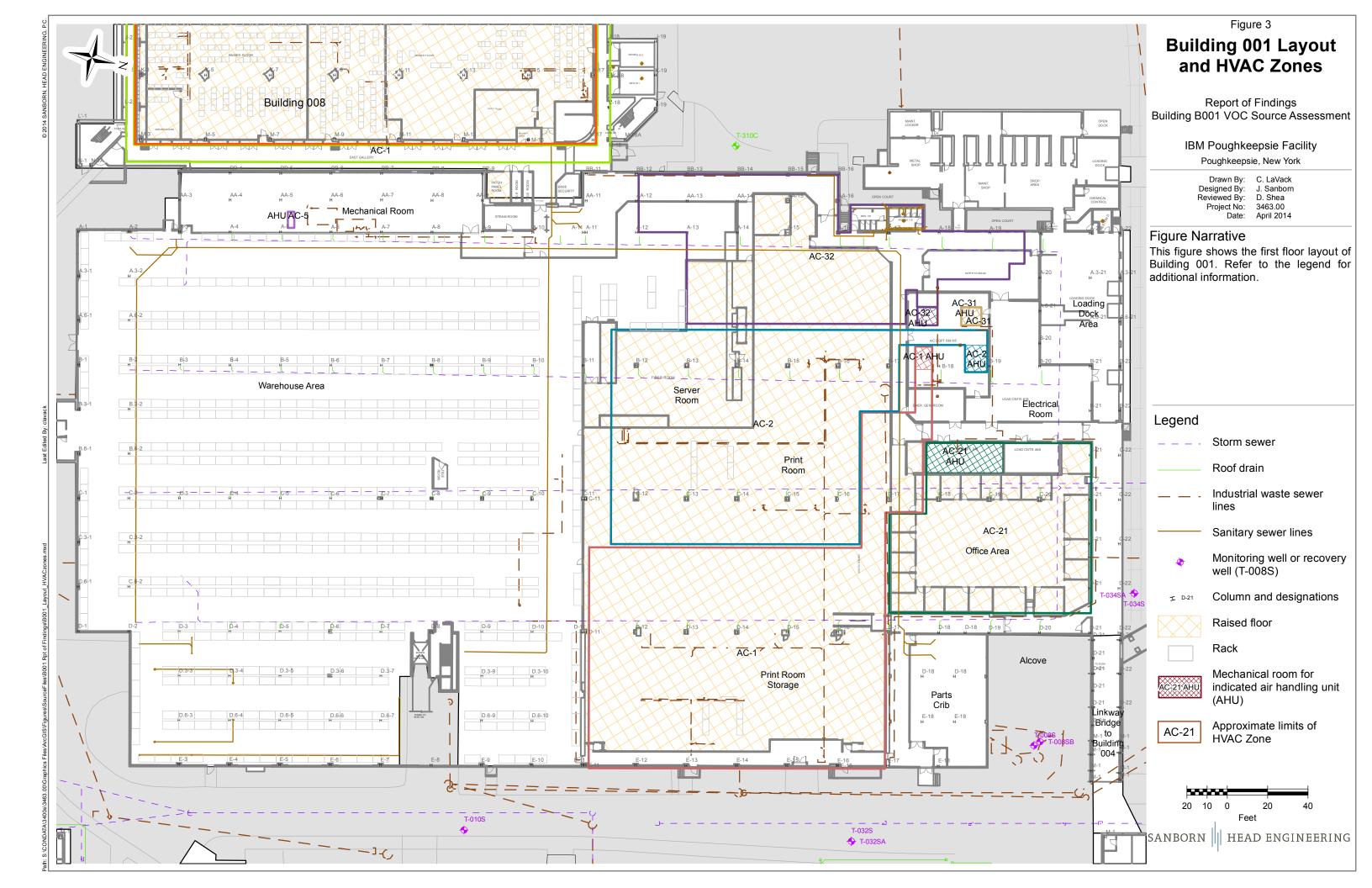
Report of Findings Building 001 VOC Source Assessment

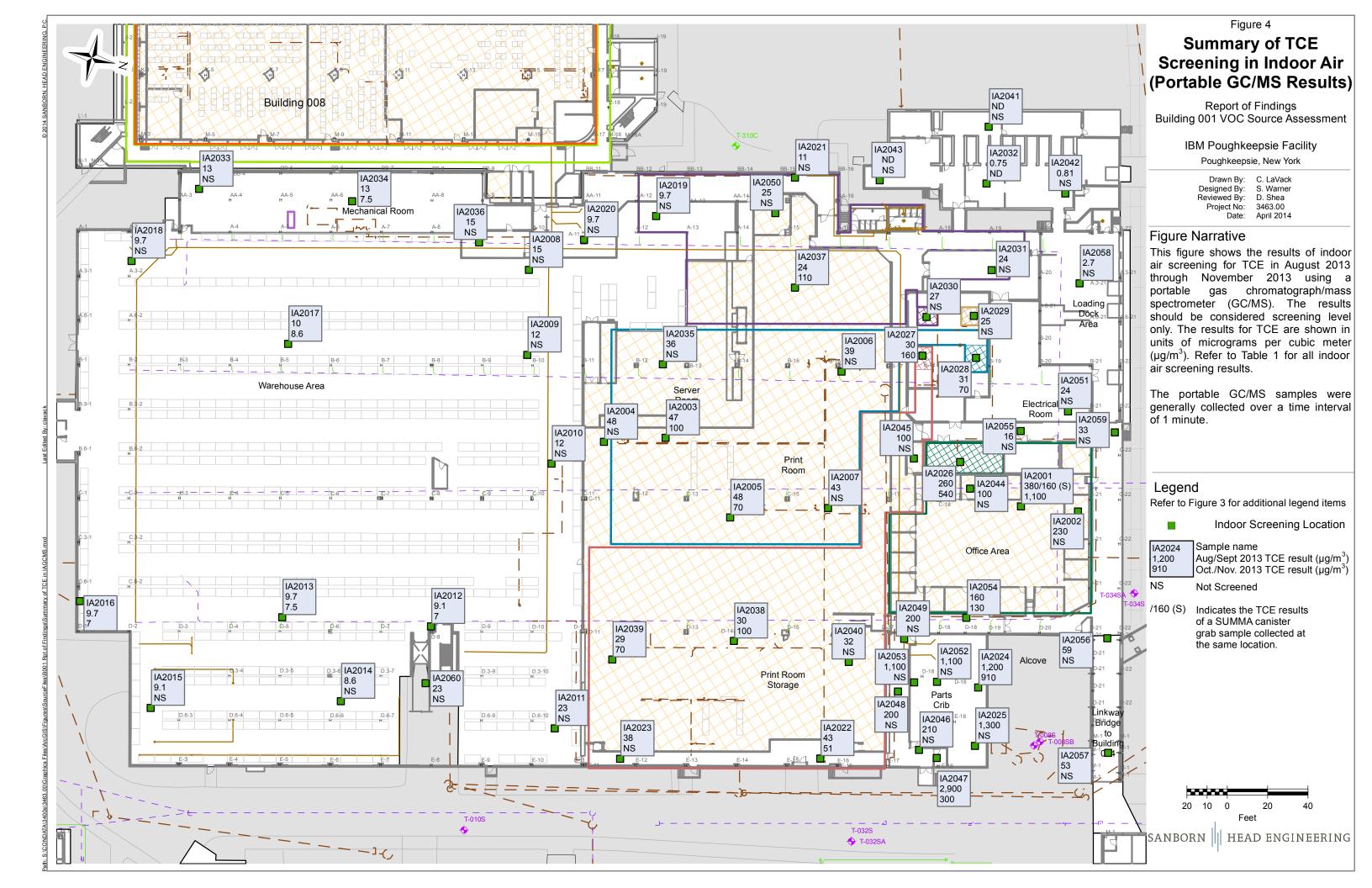
> IBM Poughkeepsie Facility Poughkeepsie, New York

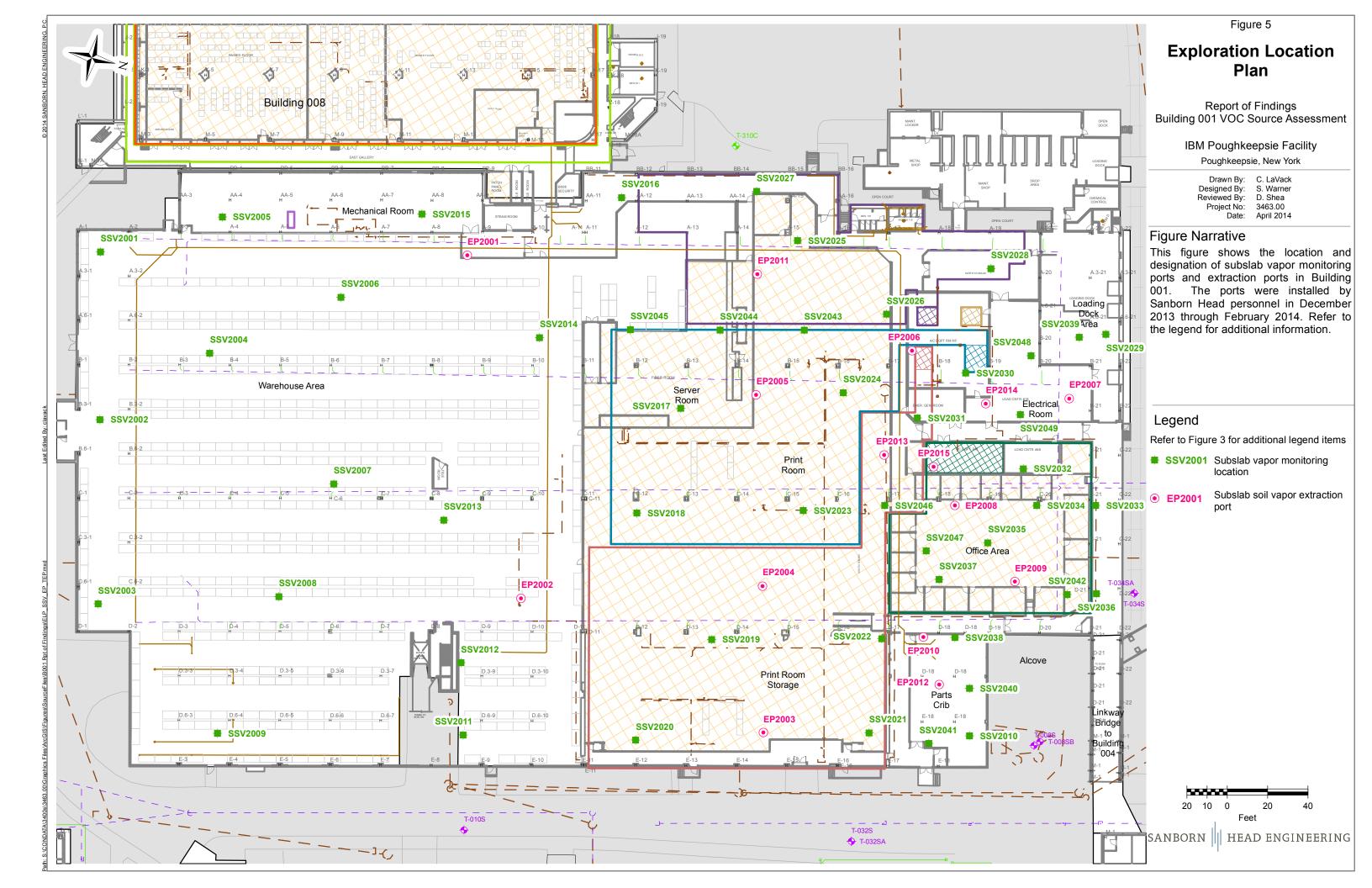
> > Drawn By: E. Wright Designed By: J. Sanborn / B. Green Reviewed By: D. Shea Project No: 3463.00 Date: April 2014

Figure Narrative

This figure shows the Building 001 location, other site buildings, and the inferred extent of total VOCs in overburden groundwater. It is based on the most recent sampling data at existing site overburden monitoring and extraction wells, as well as data and figures presented in the site's 2011 Annual Groundwater Monitoring Report prepared by Groundwater Sciences Corporation (GSC) dated April 26, 2012.

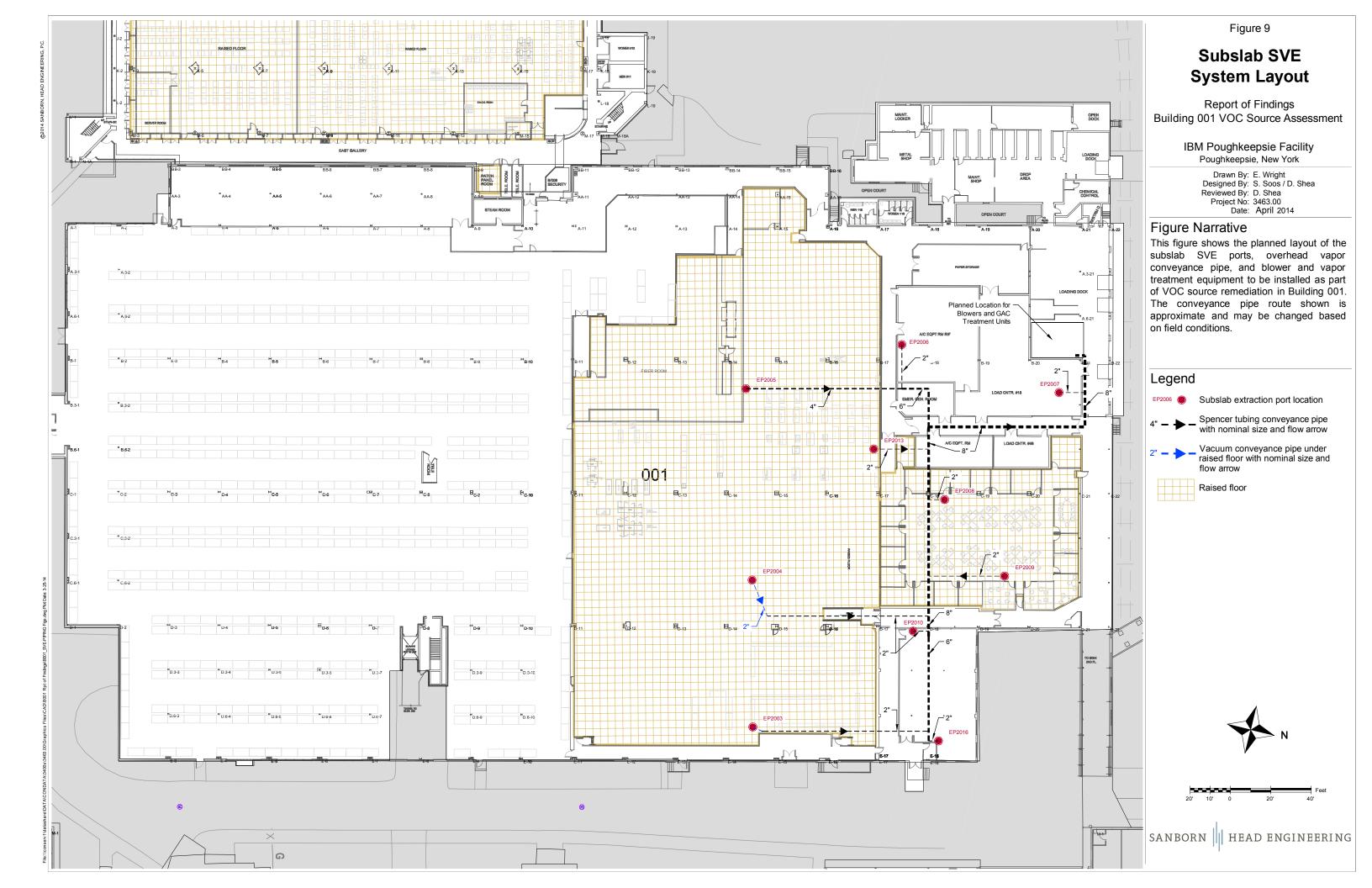

Notes


1. Base plan was prepared using AutoCAD files provided by Grubb & Ellis Management Services, Inc. (GEMS) in December 2009.


2. Groundwater analytical data was provided to Sanborn Head by GSC on August 14, 2012 via electronic file transfer.

3. The area of no saturated overburden was provided in GSC's 2011 Annual Groundwater Monitoring Report, Main Plant Site, dated April 26, 2012.

Site, dated April 26, 2012. Legend Approximate location of property line Inferred extent of VOCs in overburden groundwater Area of no saturated overburden Indicates building number 001 Indicates the location of Building 001 Unlabeled features include tanks, storage sheds, and other structures and features not intended for routine occupancy 175' 87.5' SANBORN || HEAD ENGINEERING



APPENDIX A

LIMITATIONS

APPENDIX A SHPC LIMITATIONS

- 1. The findings and conclusions described in this report are based in part on the data obtained from a finite number of samples from widely spaced locations. The figures are intended to depict inferred conditions during a given period of time, consistent with available information. The actual conditions will vary from that shown, both spatially and temporally. Other interpretations are possible. The nature and extent of variations between sampling locations may not become evident until further investigation is initiated. If variations or other latent conditions then appear evident, it may be necessary to re-evaluate the conclusions of this report.
- 2. The conclusions contained in this report are based in part upon various types of chemical data as well as historical and hydrogeologic information developed by previous investigators. While SHPC has reviewed that data available to us at the time the report was prepared and information as stated in this report, any of SHPC's interpretations and conclusions that have relied on that information will be contingent on its validity. SHPC has not performed an independent assessment of the reliability of the data; should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by SHPC and the interpretations and conclusions presented herein may be modified accordingly.
- 3. Sampling and quantitative laboratory testing was performed by others as part of the investigation as noted within the report. Where such analyses have been conducted by an outside laboratory, unless otherwise stated in the report, SHPC has relied upon the data provided, and has not conducted an independent evaluation of the reliability of these data. It must be noted that additional compounds not searched for during the current study may be present in vapor and indoor air at the site. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their distribution within the vapor and indoor air may occur due to the passage of time, seasonal water table fluctuations, recharge events, and other factors.
- 4. This report has been prepared for the exclusive use of the IBM Corporation for specific application to the IBM Poughkeepsie facility in accordance with generally accepted hydrogeologic and engineering practices. No warranty, expressed or implied, is made. The contents of this report should not be relied on by any other party without the express written consent of SHPC.
- 5. In preparing this report, SHPC has endeavored to conform to generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area. SHPC has attempted to observe a degree of care and skill generally exercised by the technical community under similar circumstances and conditions.

 $S:\CONDATA\3400s\3463.00\Source\ Files\B001\2014\ Source\ Investigation\ Report\App\ A\ -\ Limitations\Appendix\ A\ -\ Limitations.doc$

APPENDIX B

SUMMARY OF FIELD METHODS AND QA/QC

APPENDIX B SUMMARY OF FIELD METHODS AND QA/QC

B.1 INTRODUCTION

This appendix describes the field methods, and data quality assurance/quality control (QA/QC) evaluations and results, associated with Building 001 VOC source assessment work at IBM's Poughkeepsie facility. Field procedures and data QA/QC measures were conducted in general accordance with the standard operating procedures (SOPs) provided in IBM's VOC Source Assessment RFI Work Plan (RFI Work Plan).

Tabular summaries of the data described below are provided in Tables 1 through 3 of the main report. A subset of the Site-specific analyte list presented in the RFI Work Plan was used to serve as indicators during field screening of potential VOC vapor entry, including 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (c-1,2-DCE), trans-1,2-dichloroethene (t-1,2-DCE), tetrachloroethene (PCE), and trichloroethene (TCE).

B.2 INDOOR AIR AND TARGETED AIR SCREENING

B.2.1 Field Methods

Initial indoor air and targeted air screening in B001 was conducted using an Inficon HAPSITE Smart field portable gas chromatograph/mass spectrometer (GC/MS). The portable GC/MS was used as an air-screening instrument for six of the Site-specific list of VOCs¹. In addition, at two locations subject to portable GC/MS screening, a grab sample of indoor air was collected into a SUMMA® canister for laboratory analysis by USEPA Method TO-15. Indoor air and targeted air screening was conducted from August to November 2013.

The portable GC/MS was calibrated to manufacturer-prepared standards ranging from 0.1 to 50 parts per billion by volume (ppbv) for the target analytes, and the samples were screened in selective ion monitoring (SIM) mode. The lower calibration range of 0.1 ppbv was considered the method reporting limit for the portable GC/MS samples, as shown on Table 1 (after converting to micrograms per cubic meter $[\mu g/m^3]$). The instrument reports values based on the quality of fit of chromatograph peaks and ion pairs, both within and outside of the calibration range.

Portable GC/MS sample collection and analysis takes approximately 6 minutes. The line is purged for 1 minute to remove remnants of previous samples, and then the concentrator tube is filled for 1 minute. The mass collected in the concentrator is then pumped through the GC/MS for analysis. Total analysis time is approximately 4 minutes and is based on the elution time of the analytes. Prior to portable GC/MS screening, the indoor air and targeted air locations were screened at most locations with a photoionization detector (PID). Where

¹ The portable GC/MS was not calibrated for the Site-specific compounds chloroethane or vinyl chloride; therefore, chloroethane and vinyl chloride were not reported.

April 2014	Page 2
Appendix B.docx	3463.00

PID readings were relatively greater, the portable GC/MS screening was conducted by "diluting" the sample by reducing the concentrator fill time from the normal 1 minute down to either 30 or 15 seconds. A 30-second concentrator fill time is equivalent to a 50% dilution and a 15-second concentrator fill time is equivalent to a 75% dilution. Once the analysis is complete, the concentration results provided by the portable GC/MS are multiplied by either 2 or 4, respectively, to get the indoor air/targeted air concentrations.

During indoor air screening, grab SUMMA canister samples were collected at two locations and submitted to Alpha for analysis of the Site-specific VOCs using USEPA Method TO-15 in SIM mode. These data are provided in Table 1 and discussed below.

B.2.2 QA/QC Evaluation

The objective of portable GC/MS field screening was to obtain general, order-of-magnitude understanding of VOC concentrations to inform and adjust the focus of the field activities in real time. The portable GC/MS data is not intended to support final decisions. Nevertheless, the following QA/QC measures were taken to support evaluation of the field screening data.

Outside air blanks were collected through a carbon filter and into the portable GC/MS from an outside location at the beginning of each day. In the event that the blank analysis results indicated that one of the analytes (particularly TCE) had been detected, a "cleaning" method would be run on the portable GC/MS. This method runs a blank sample at high temperature to facilitate the removal of chemical traces from previous sampling rounds. The outside air blank was then repeated. This process was generally repeated until satisfactorily low concentrations in the outside air blank analysis had been achieved. Where outside air blank sample results were not reported as "non-detect", indoor air results similar to (and therefore not discernible from) those recorded for blanks were assumed to be associated with the portable GC/MS operating environment and/or residual VOC presence in the portable GC/MS column and were therefore considered to be less than the reporting limit of the instrument.

As noted above, two grab indoor air samples were collected into 1-liter pre-evacuated SUMMA canisters at indoor air screening locations IA2001 and IA2024 immediately after portable GC/MS screening was conducted. The purpose of these grab SUMMA samples was to obtain an understanding of the general comparability of the portable GC/MS screening results with the results of samples subject to laboratory analysis. Exhibit B.1 summarizes the relative percent difference (RPD) between the portable GC/MS and SUMMA canister results.

Sample	IA2001/H	IA2001/G	RPD	IA2024/H	IA2024/G	RPD
Date	9/13	/2013	IN D	10/29	KI D	
Units	µg/m ³	µg/m³	%	µg/m³	µg/m³	%
1,1-DCA	< 0.40	< 0.23	-	< 2.0	0.62	-
1,1-DCE	3.3	< 0.23	-	< 2.0	< 0.20	-
c-1,2-DCE	1.2	0.25	130	3.4	3	13
t-1,2-DCE	< 0.40	< 0.23	-	< 2.0	< 0.20	-
PCE	< 0.66	< 0.39	-	8.1	7.1	13
TCE	380	160	81	590	450	27

Notes:

 "/H" = HAPSITE Portable GC/MS sample "/S" or "/G "= 1-liter Summa canister grab sample

2. % RPD is the relative percent difference, calculated by the formula:

| Result1 - Result2 | / ((Result1 + Result2) / 2) * 100

3. "-" indicates the RPD can not be calculated because one or both of the results are non-detect.

Although the portable GC/MS and SUMMA data do not represent true field duplicate samples because the sample time intervals and volumes are different for each method, the portable GC/MS and SUMMA TCE results indicate order-of-magnitude agreement.

B.3 SUBSLAB VAPOR SCREENING

B.3.1 Field Methods

The initial group of 39 subslab vapor (SSV) monitoring ports and 12 extraction ports were installed in B001 between December 9, 2013 and January 1, 2014. The SSV monitoring ports were installed in accordance with Figure A.4.1 of the RFI Work Plan. The extraction ports were modified from the details provided in A.5.1 of the RFI Work Plan due to design revisions for improved air flow; the revised details are attached as Figure B.3.1.

To demonstrate the soundness of subslab port construction, integrity testing was conducted on a portion of the monitoring and extraction ports in accordance with the procedures described in the Subslab Vapor Sample Port Installation, Integrity Testing, and Sampling SOP included in Appendix A.4 of the RFI Work Plan. Further information on integrity testing is provided in Section B.3.2.

Subslab vapor screening was conducted during several field events from January through March 2014, as indicated on Table 2. Prior to collecting a sample, SSV monitoring ports and extraction ports were screened with a PID by attaching the sample probe directly to polyethylene tubing connected to the monitoring port. Samples were then collected by extracting 25 to 250 mL of subslab vapor with a syringe and transferring it to a Tedlar bag. Based on PID screening results, samples were diluted as needed by injecting a known

April 2014	Page 4
Appendix B.docx	3463.00

quantity of laboratory-grade nitrogen into the bag. Sample bags were then attached to the portable GC/MS probe and analyzed using either a low concentration analysis method (calibrated to the range 0.1 to 40 ppbv) or a high concentration analysis method (calibrated to the range of 1 to 50 ppmv). Subslab differential pressure measurements were collected from each SSV monitoring point and extraction port prior to sampling.

During subslab vapor screening, grab 1-liter SUMMA canister samples were collected from three SSV monitoring ports and one extraction port and submitted to Alpha for analysis of the Site-specific VOCs using USEPA Method TO-15 in SIM mode. These data are provided in Table 2 and discussed below.

B.3.2 QA/QC Evaluation

Integrity testing was conducted at four SSV monitoring ports and two extraction ports following the procedures outlined in Appendix A.4 of the RFI Work Plan. The results of the integrity tests indicated that the seal of the ports was adequate, and since all ports are constructed identically, all ports are expected to be sound. Integrity testing results are provided in Table B.3.1.

QA/QC measures in support of the evaluation of subslab screening with the portable GC/MS generally followed the same protocol as indoor air screening with the instrument. An outdoor air blank was collected through a carbon filter at the beginning of each day, and if the results of the blank analysis indicated that one of the analytes (particularly TCE) had been detected, a high-temperature "cleaning" method was run to facilitate the removal of chemical traces from previous screening runs. Where outside air blank sample results were not reported as "non-detect", subslab vapor results similar to (and therefore not discernible from) those recorded for blanks were assumed to be associated with the portable GC/MS operating environment and/or residual VOC presence in the portable GC/MS column, and were therefore considered to be less than the reporting limit of the instrument. In addition, subslab screening results were marked with the qualification "JL" when the instrument was saturated by high VOC presence during analysis, indicating the results were estimated and expected to be biased low.

As noted above, four SUMMA canister samples were collected during subslab vapor screening for data comparison purposes. Exhibit B.2 summarizes the RPD between the portable GC/MS and SUMMA canister results.

Sample	EP2005/H	EP2005/S	RPD	SSV2010/H	SSV2010/S	RPD	SSV2016/H	SSV2016/S	RPD	SSV2022/H	SSV2022/S	RPD
Date	1/16/	2014	KFD	1/16/	2014	KFD	1/22	/2014	KFD	3/12/	/2014	KF D
Units	µg/m³	µg/m ³	%	µg/m³	µg/m³	%	µg/m ³	µg/m³	%	µg/m ³	µg/m³	%
1,1-DCA	< 4,000	< 21	-	< 12,000	360	-	< 3.1	< 1.9	-	< 0.81	0.33	-
1,1-DCE	< 4,000	< 20	-	< 12,000	< 270	-	< 0.40	< 1.9	-	13	< 0.20	-
c-1,2-DCE	< 4,000	660	-	< 12,000	5,200	-	1.2 JL	2.9	83	< 0.79	1.9	-
t-1,2-DCE	< 4,000	< 20	-	< 12,000	< 270	-	1.2 JL	< 1.9	-	< 0.79	0.22	-
PCE	< 6,800	180	-	< 12,000	7,700	-	< 0.68	14	-	22	15	38
TCE	45,000	43,000	5.0	460,000	580,000	23	230 JL	4,800	180	860	430	67

Notes:

1. "/H" = HAPSITE Portable GC/MS sample

"/S" or "/G "= 1-liter Summa canister grab sample

2. % RPD is the relative percent difference, calculated by the formula:

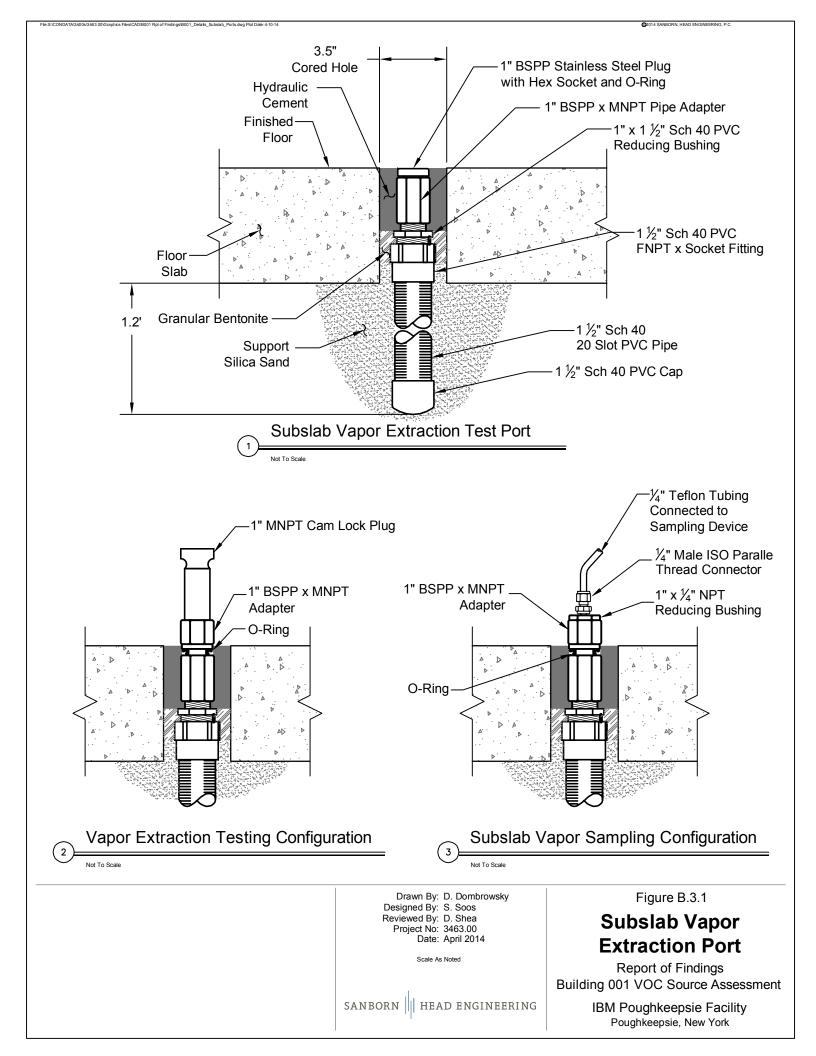
Result1 - Result2 / ((Result1 + Result2) / 2)*100

3. "-" indicates the RPD can not be calculated because one or both of the results are non-detect.

Exhibit B.2 - Summary of RPDs for Portable GC/MS Screening and SSV SUMMA Samples

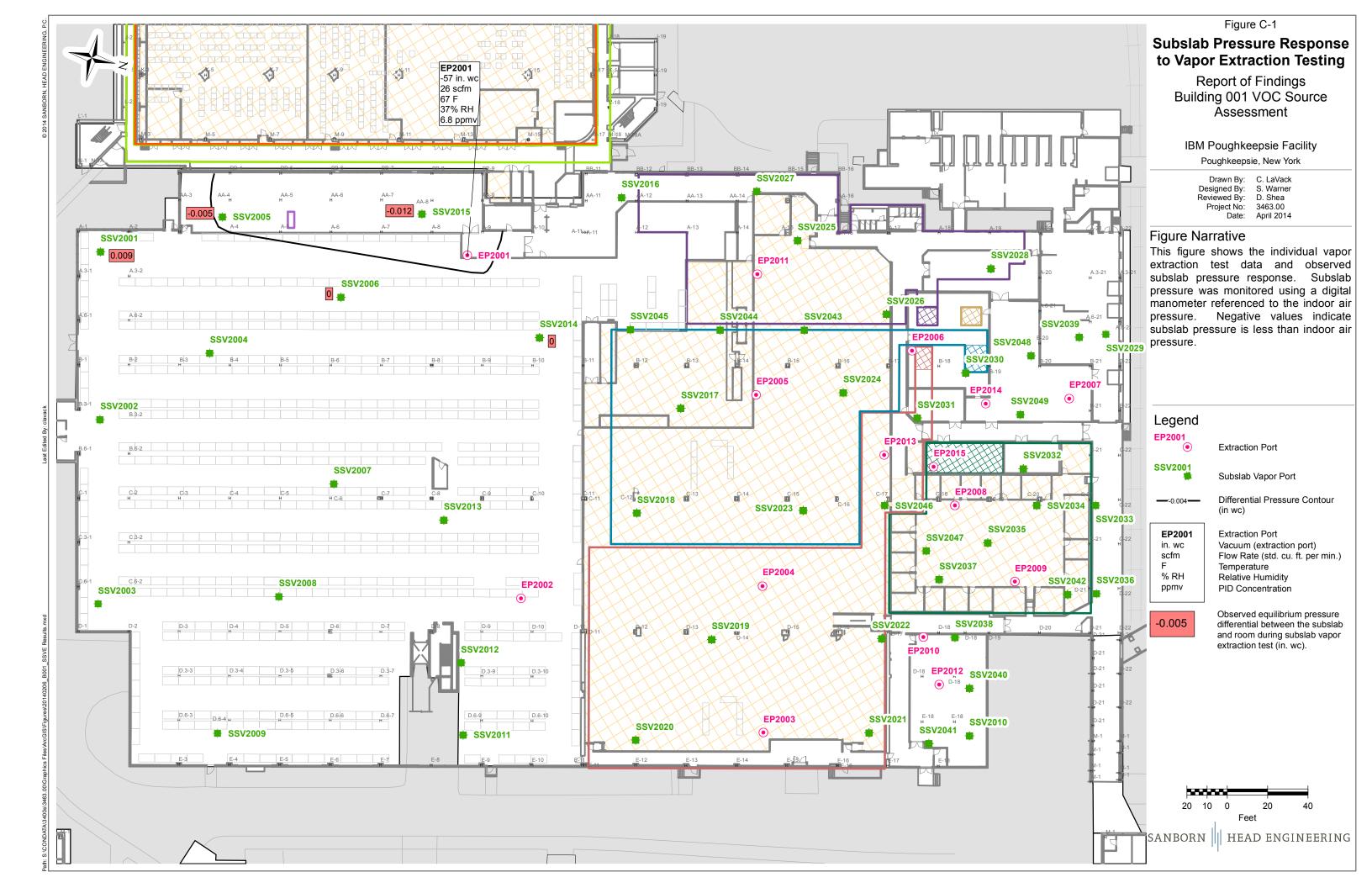
Although the portable GC/MS and SUMMA data do not represent true field duplicate samples because the sample time intervals and volumes are different for each method, the portable GC/MS and SUMMA TCE results compare very well for the samples at EP2005 and SSV2010, where RPDs were 5% for EP2005 and 23% for SSV2010. Data with an RPD of less than or equal to 30% are considered to be equivalent. At SSV2016, the RPD of 180% reflects that the portable GC/MS result may have been biased low due to instrument saturation while running the low-concentrations method. In addition, the portable GC/MS and SUMMA samples at this location were not collected at the same time. In aggregate, however, the portable GC/MS data quality is considered appropriate to support the objectives of subslab VOC source assessment and remediation design support.

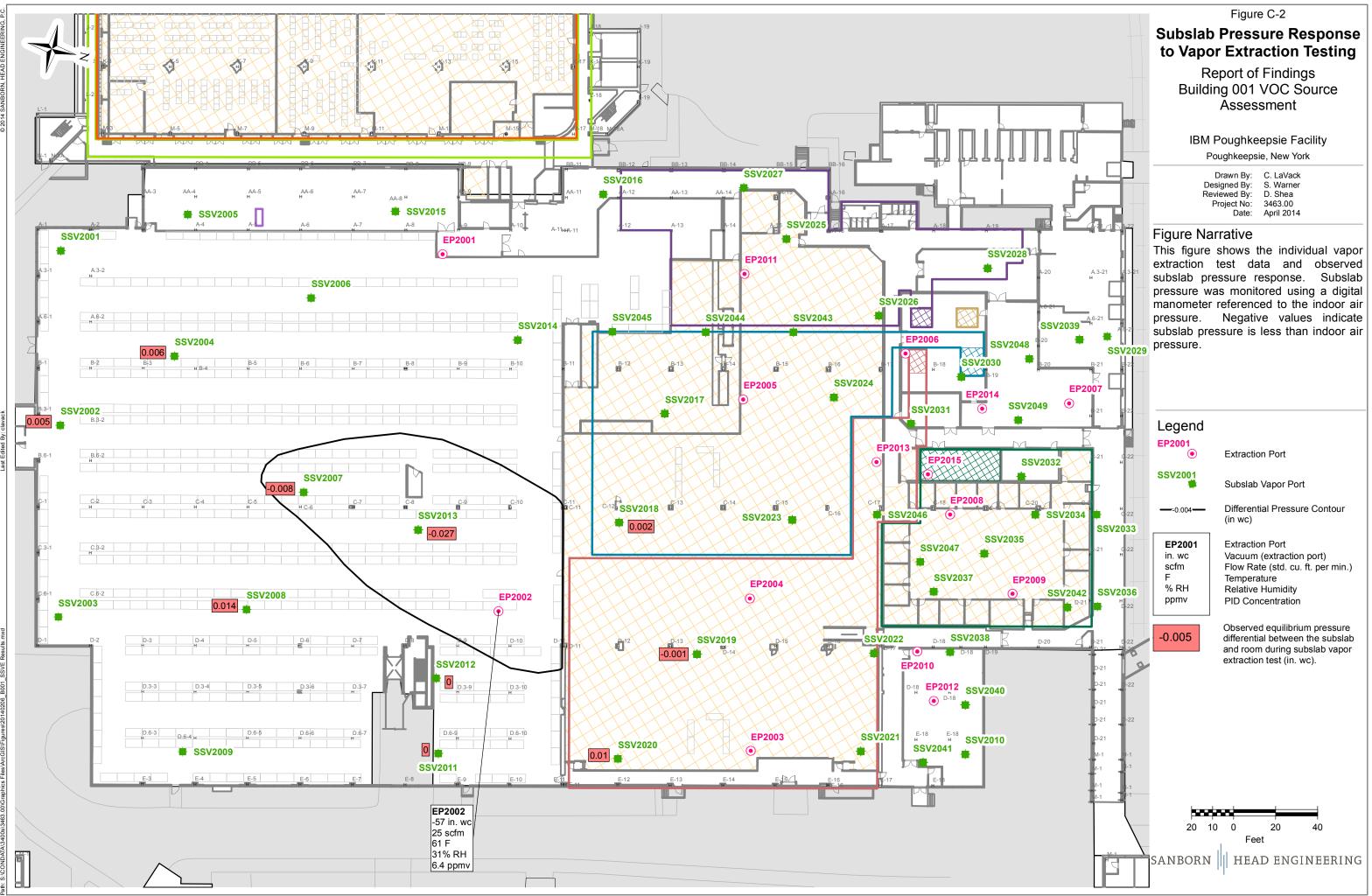
S:\CONDATA\3400s\3463.00\Source Files\B001\2014 Source Investigation Report\Appendix B\Appendix B.docx

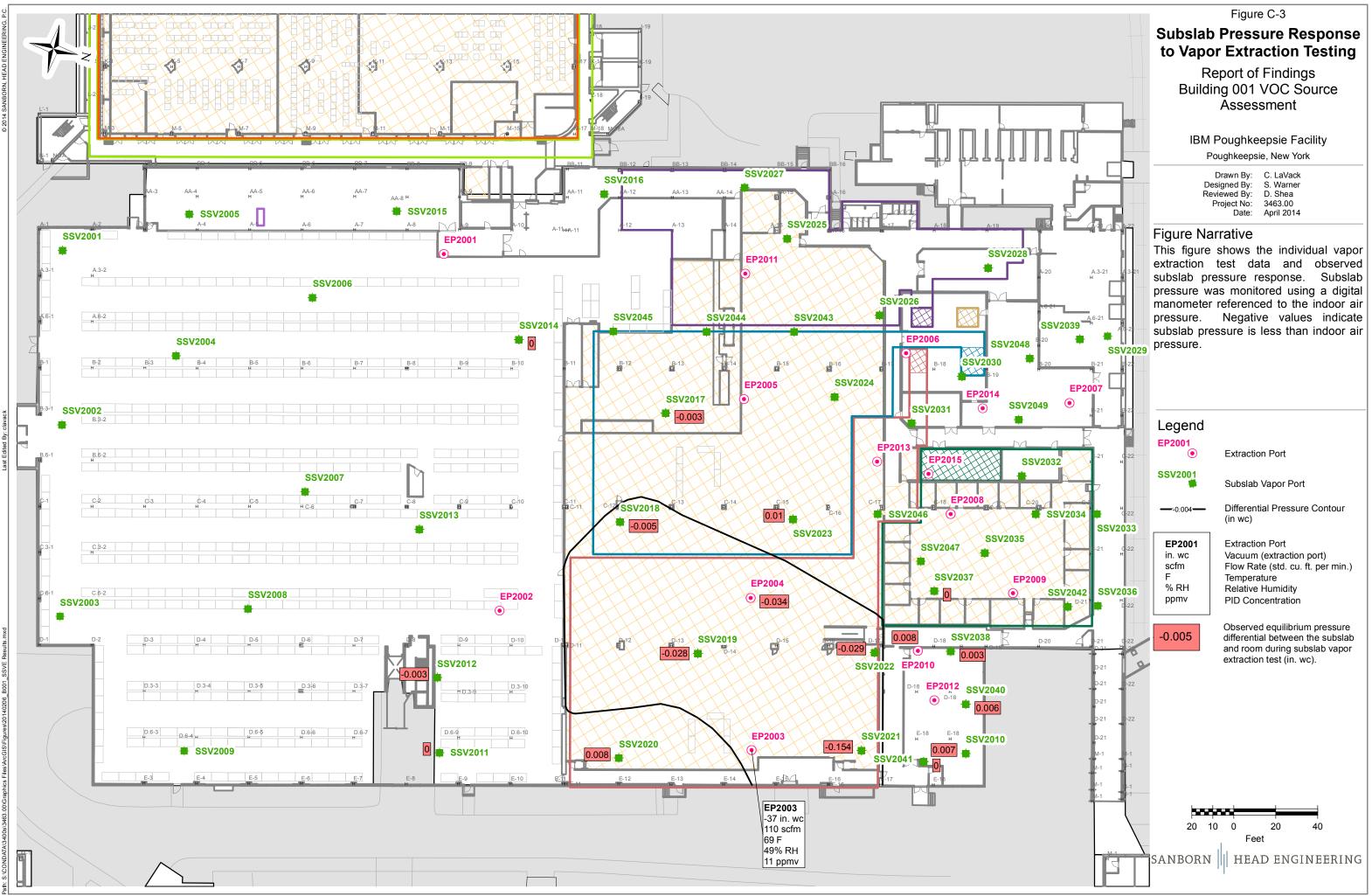

TABLE B.3.1 S±bslab Vapor Port Integrity Testing Summary Report of Findings - Building 001 VOC Source Assessment IBM Poughkeepsie Facility Poughkeepsie, New York

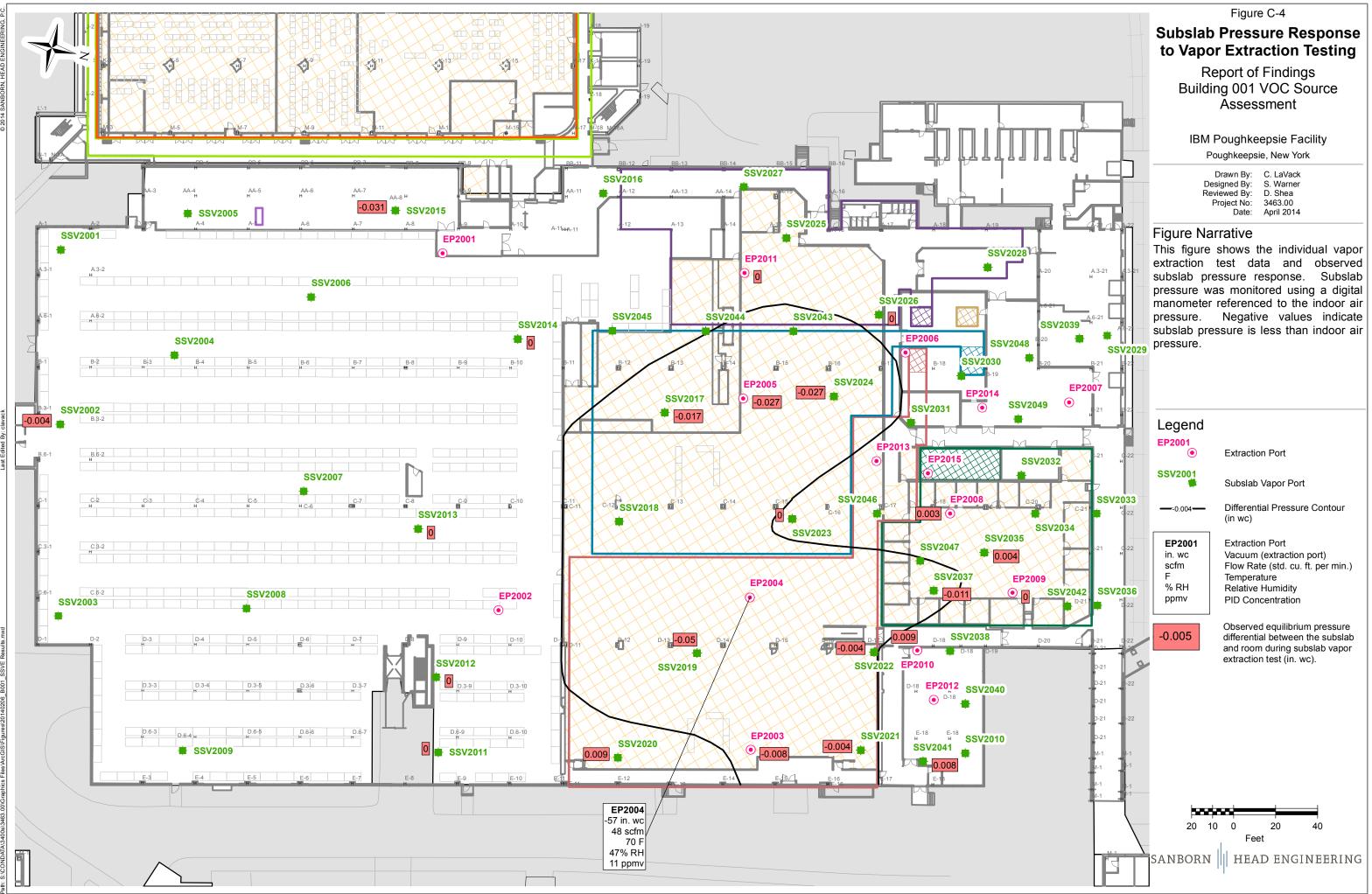
Location	SSV2035	SSV2028	SSV2020	EP2005	EP2012	SSV2007
Sanborn Head Field Representative	M. Stein	M. Stein	M. Stein	M. Stein	M. Stein	M. Stein
Vacuum (H2O)	0.03	0.1	0.03	0.04	0.02	0.03
Pressure Differential	0.009	0.000	0.010	0.009	0.018	0.006
Start Time	12:07	12:59	13:20	13:40	15:15	15:32
Stop Time	12:10:15	13:02	13:23	13:43	15:17:45	15:34:30
Time to fill 0.5 liter bag (min:sec)	3:15	3:00	3:00	3:00	2:45	2:30
Approx. Flow Rate (L/min)	0.15	0.17	0.17	0.17	0.18	0.2
Helium Tracer gas applied?	Yes	Yes	Yes	Yes	Yes	Yes
Helium Concentration (ppmv)	ND	ND	ND	ND	ND	ND
02 (%)	20.1	19.9	20.4	18.3	19.7	20.2
CH4 (%)	0.0	0.0	0.0	0.0	0.0	0.0
CO2 (%)	0.5	0.5	0.5	1.2	0.9	0.4
PID (ppbv)	234	3,498	4,974	44.5	4,118	1,095
Date	1/9/2014	1/9/2014	1/9/2014	1/9/2014	1/9/2014	1/9/2014
Screen Interval Depth (ft bgs)	0.55	0.79	0.83	0.84 - 1.84	0.4 - 1.4	2.4
Ambient Air Temp. (°F)	67	74	71	71	72	67

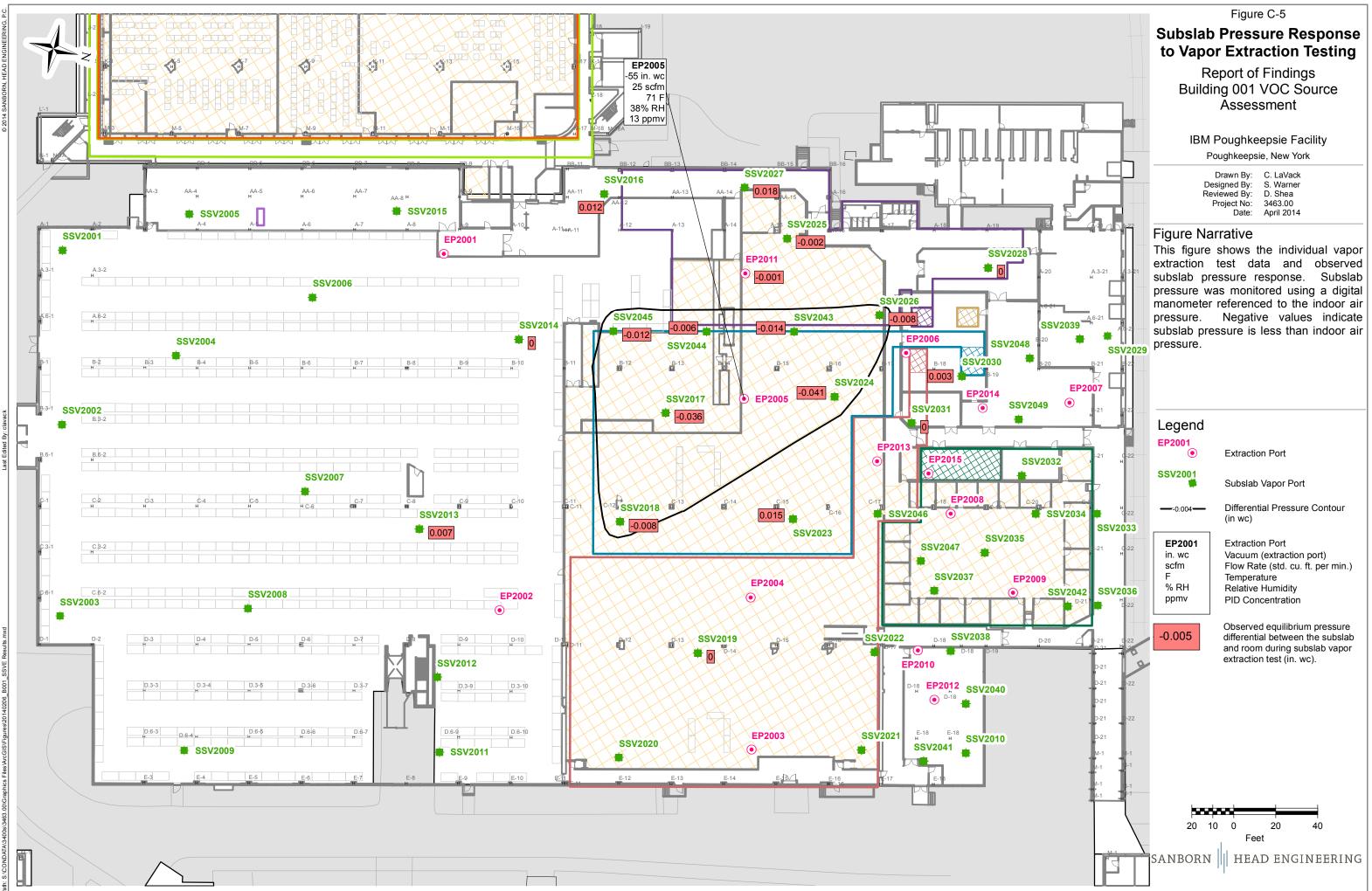
Notes:

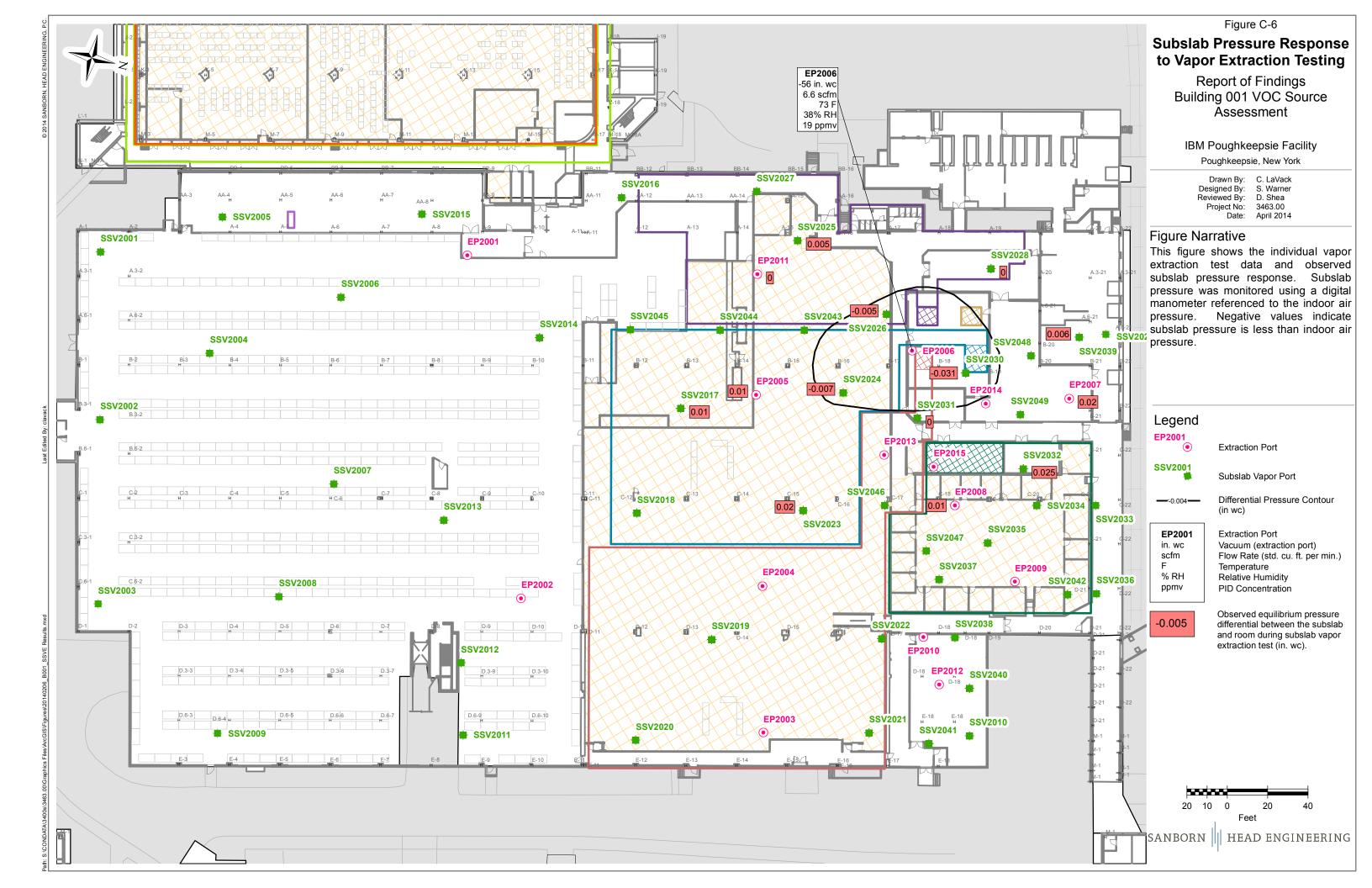

1. Meters used: PID: MiniRAE 3000 or ppbRAE 02/CH4/C02 Meter: Landtec GEM 2000 Helium Meter: Dielectric MGD-2002 Other: Dwyer Series 475 Mark III Digital Manometer

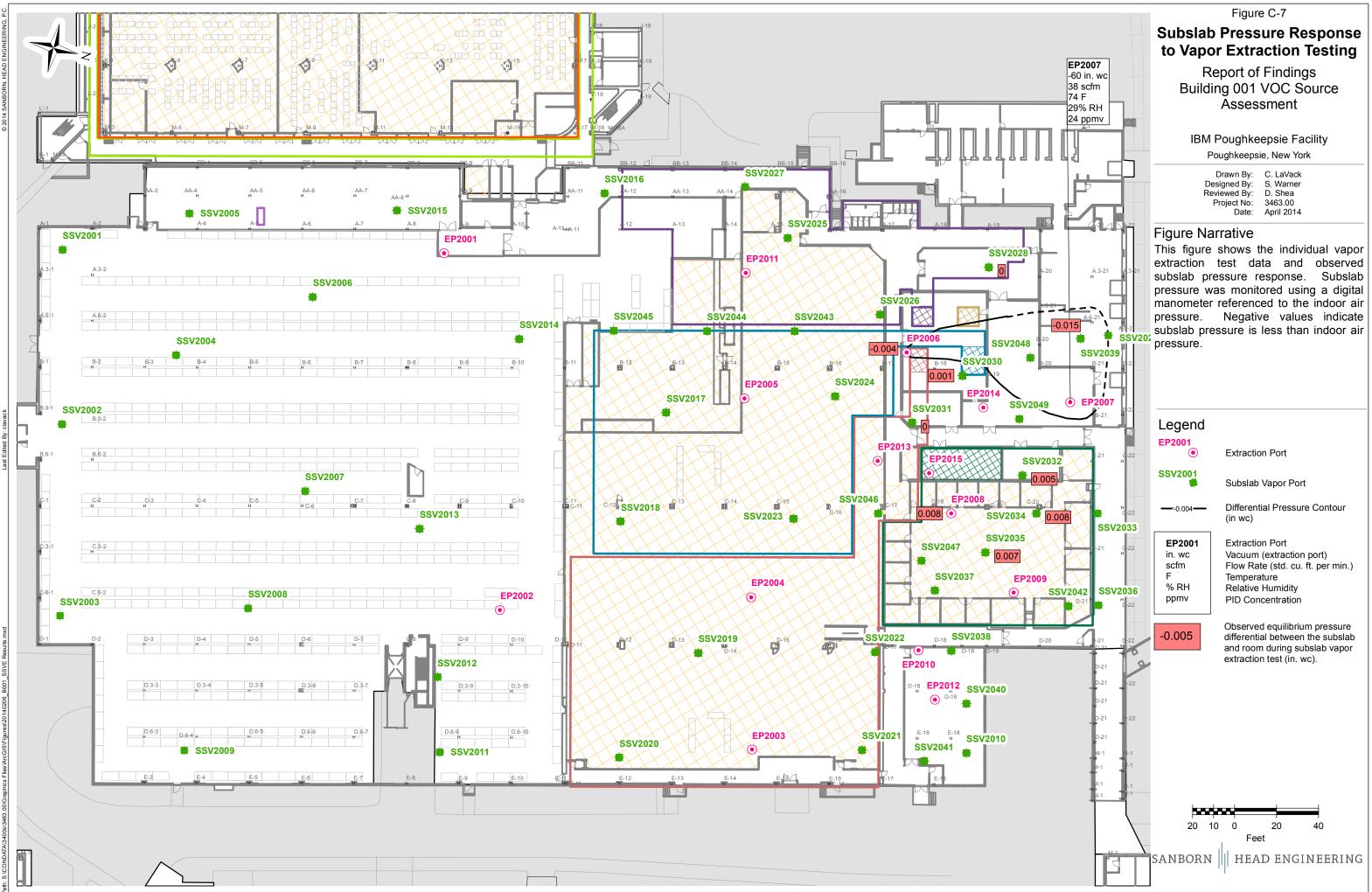

2. "ND" indicates not detected."ppmv" indicates parts per million by volume."ppbv" indicates parts per billion by volume.

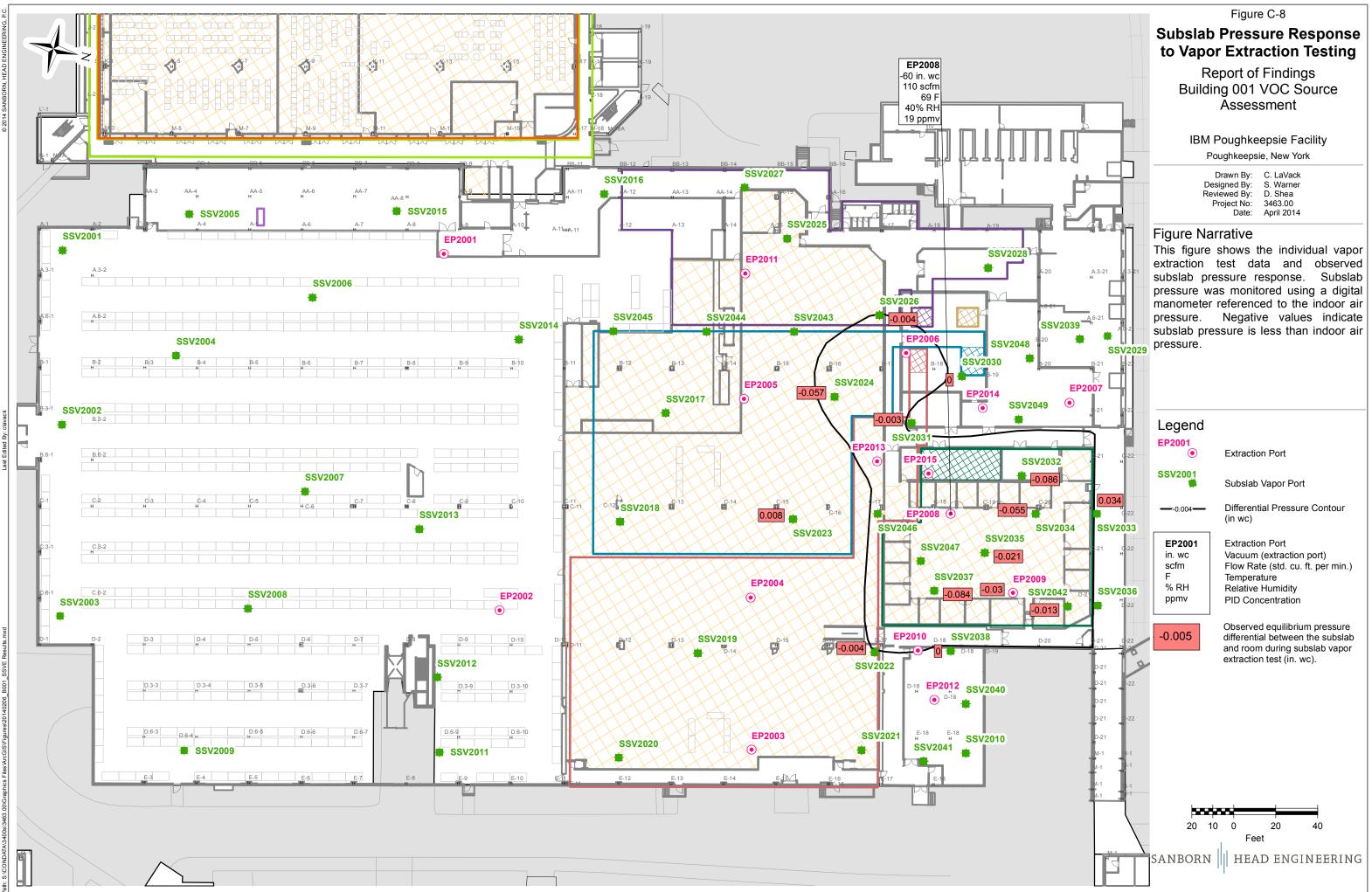


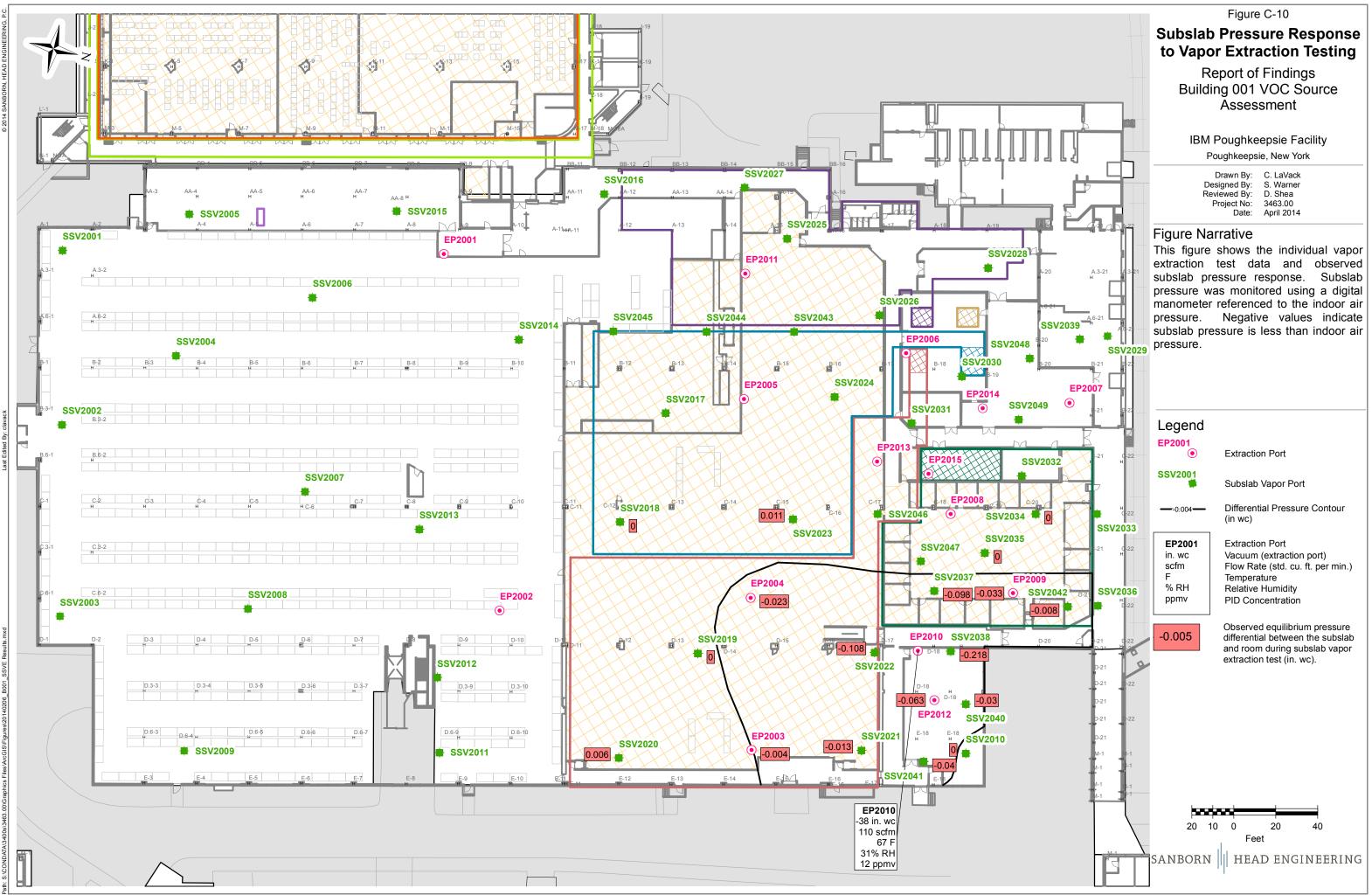

APPENDIX C

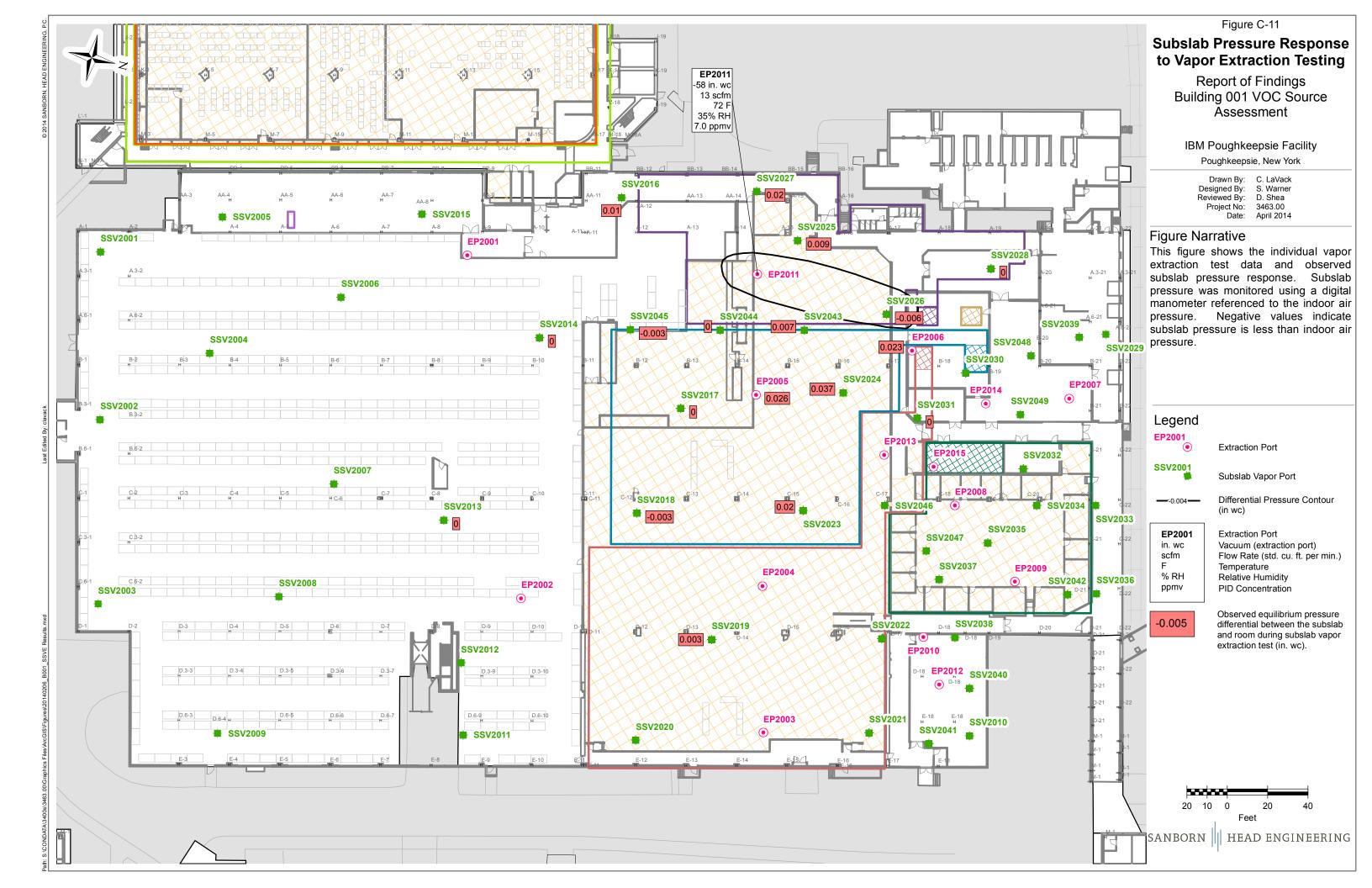

SUPPLEMENTAL FIGURES SUBSLAB PRESSURE RESPONSE TO VAPOR EXTRACTION TESTING

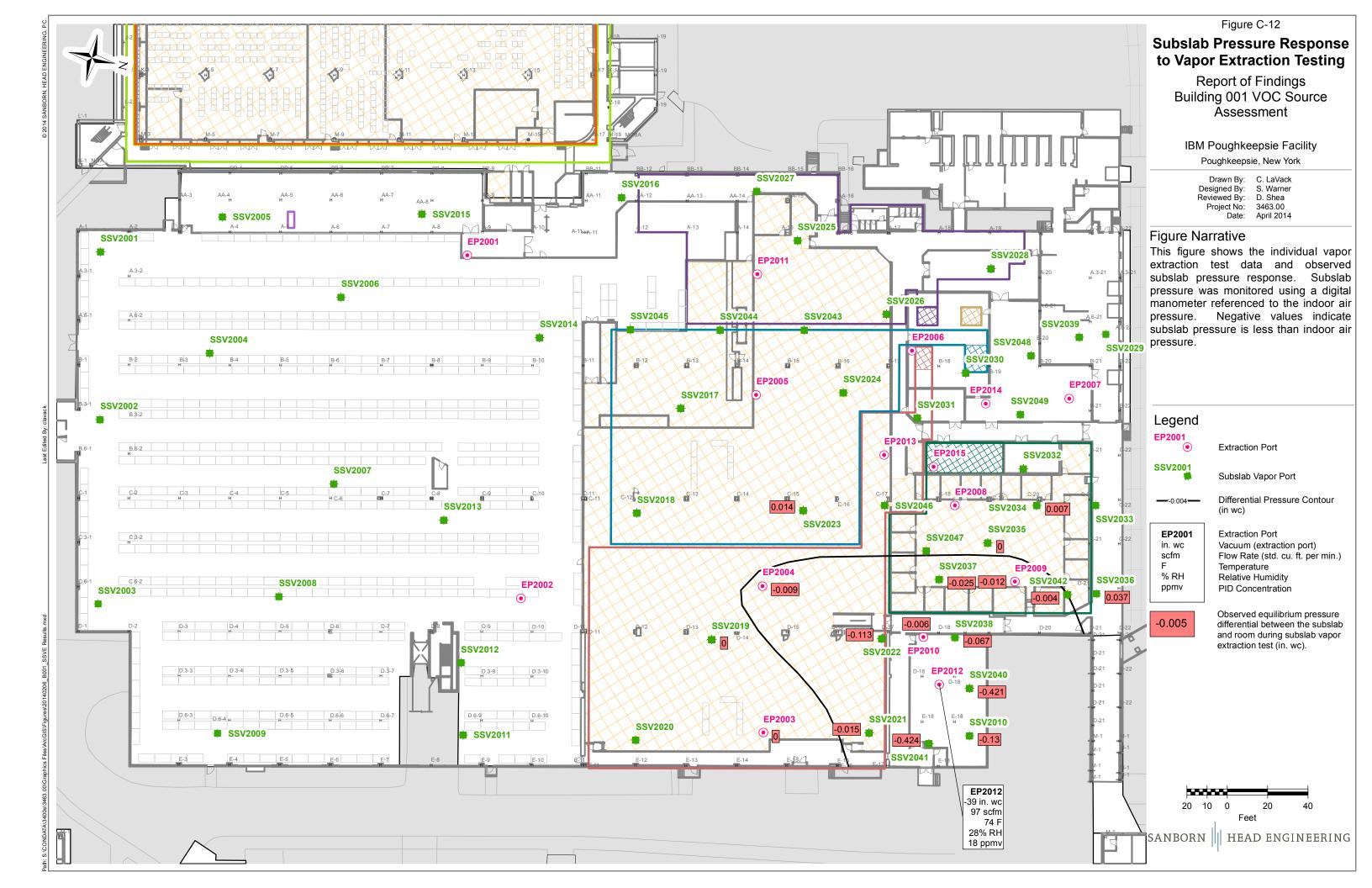


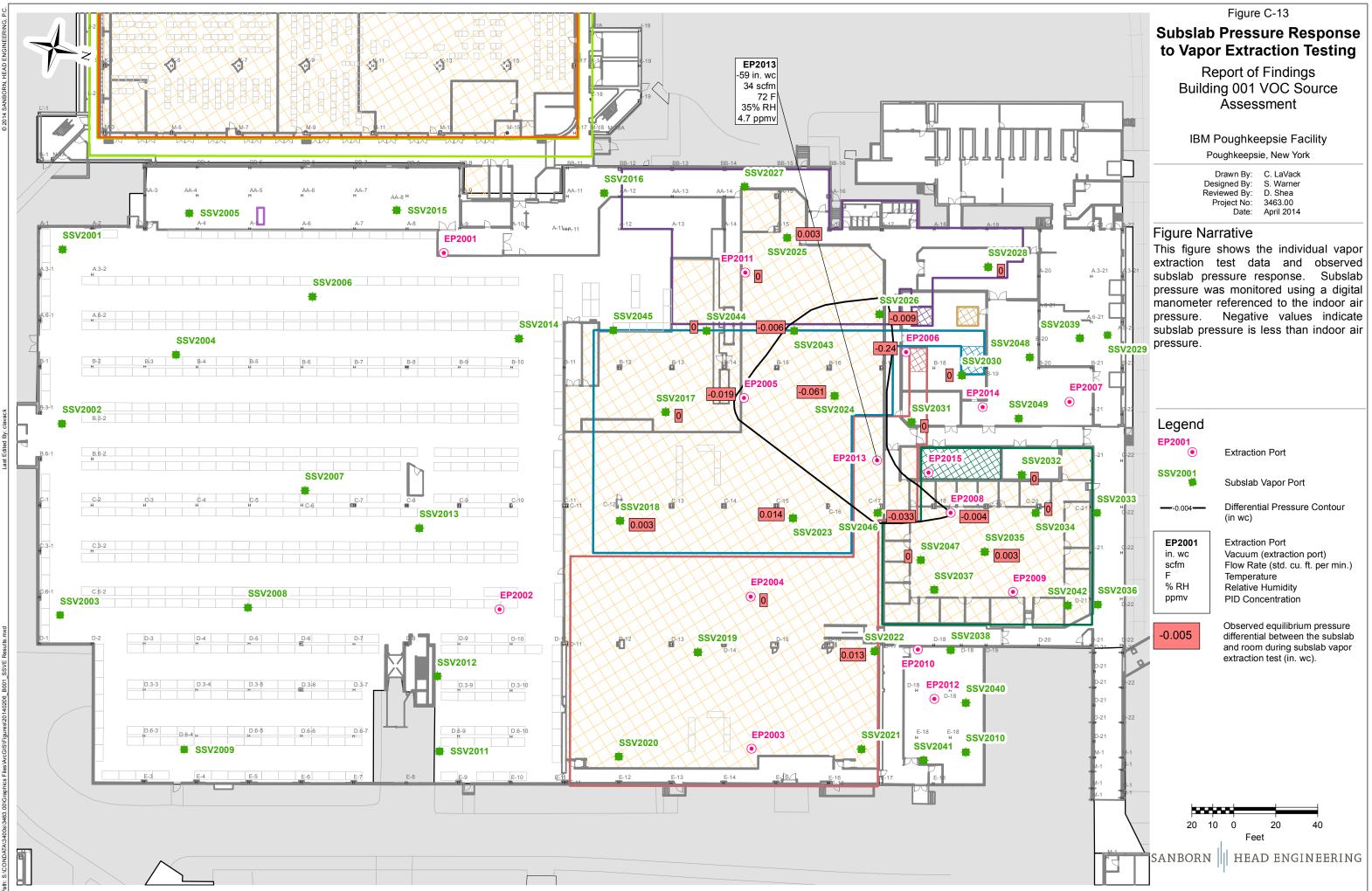


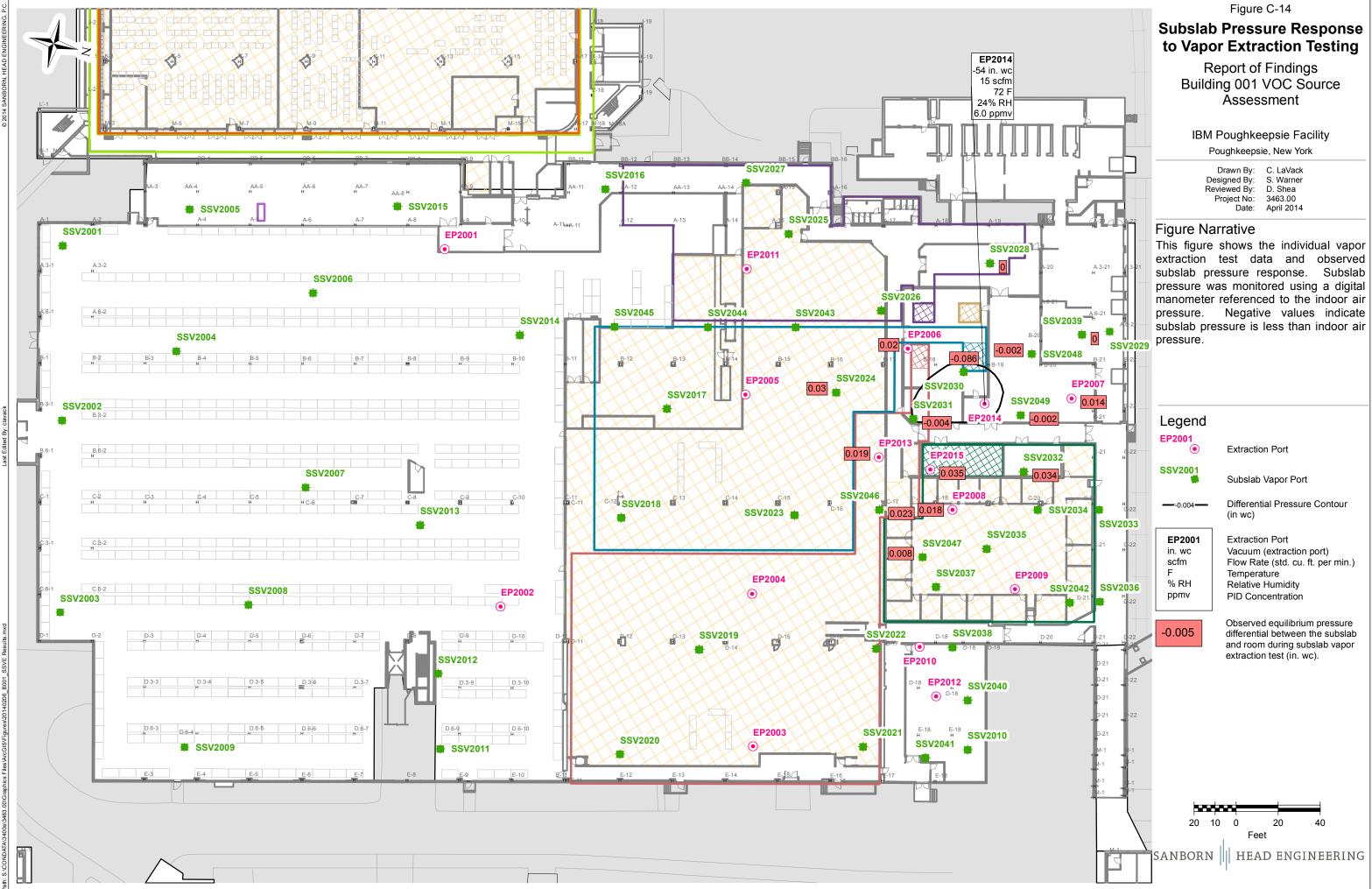


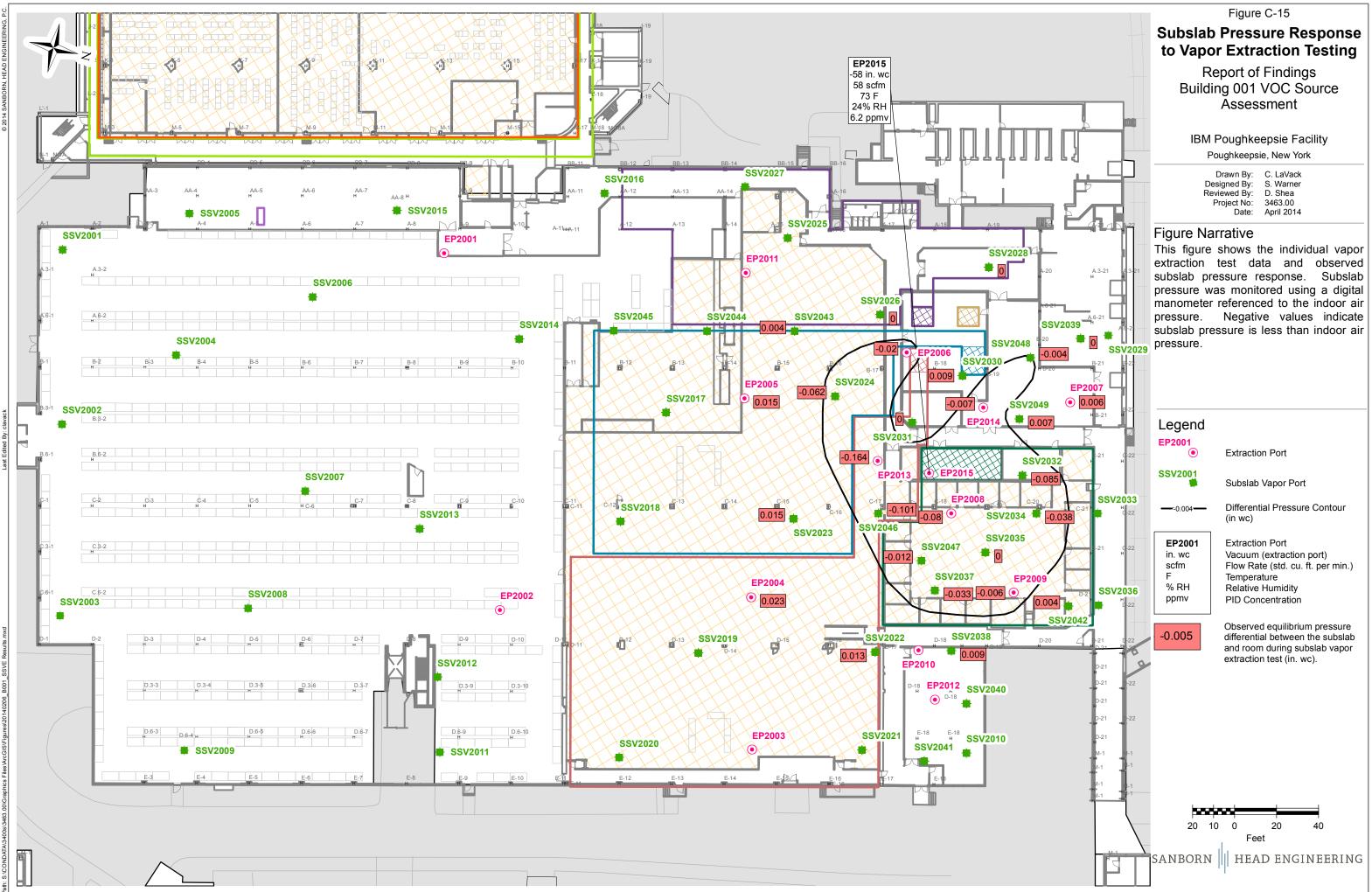












APPENDIX D

LABORATORY ANALYTICAL REPORTS

(LOCATED ON ENCLOSED CD)

SANBORN || HEAD ENGINEERING

INDOOR AIR GRAB SAMPLING

ANALYTICAL REPORT

Lab Number:	L1318300
Client:	Sanborn, Head & Associates, Inc. 20 Foundry Street Concord, NH 03301
ATTN: Phone:	Jennifer Sanborn (603) 415-6137
Project Name:	IBM-POK
Project Number:	3463.00
Report Date:	09/23/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name Project Numl			Lab Number: Report Date:	L1318300 09/23/13
Sample fr different b removed t report.	building			
Alpha Sample ID	Client ID	Sample Location	Colle Date/	
•	Client ID IA7001/G	•	Date/	
Sample ID		Location	Date/ 09/1	Time

Project Name: IBM-POK Project Number: 3463.00

 Lab Number:
 L1318300

 Report Date:
 09/23/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: IBM-POK Project Number: 3463.00

 Lab Number:
 L1318300

 Report Date:
 09/23/13

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on September 13, 2013. The canister certification results are provided as an addendum.

Samples L1318300-01 and -02 : Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 09/23/13

AIR

 Lab Number:
 L1318300

 Report Date:
 09/23/13

Project Name:IBM-POKProject Number:3463.00

SAMPLE RESULTS

Lab ID:	L1318300-02 D	Date Collected:	09/13/13 13:58
Client ID:	IA2001/G	Date Received:	09/17/13
Sample Location:	POUGHKEEPSIE, NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	09/20/13 17:41		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	A - Mansfield Lab							
Vinyl chloride	ND	0.058		ND	0.147			2.874
Chloroethane	ND	0.058		ND	0.152			2.874
1,1-Dichloroethene	ND	0.058		ND	0.228			2.874
trans-1,2-Dichloroethene	ND	0.058		ND	0.228			2.874
1,1-Dichloroethane	ND	0.058		ND	0.233			2.874
cis-1,2-Dichloroethene	0.063	0.058		0.251	0.228			2.874
Trichloroethene	30.2	0.058		162	0.309			2.874
Tetrachloroethene	ND	0.058		ND	0.390			2.874

Serial_No:09231315:07

 Project Name:
 IBM-POK
 Lab Number:
 L1318300

 Project Number:
 3463.00
 Report Date:
 09/23/13

SAMPLE RESULTS

Lab ID:	L1318300-02	D				Date	Collecte	ed:	09/13/13 13:58
Client ID:	IA2001/G					Date	Receive	ed:	09/17/13
Sample Location:	POUGHKEEPS	SIE, NY				Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Volatile Organics in Air by SIM - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
	// Receivery	Quanter	
1,2-Dichloroethane-d4	95		70-130
Bromofluorobenzene	108		70-130
Toluene-d8	109		70-130
Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 09/20/13 15:26

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM - M	lansfield Lab f	or sample	(s): 01-02	Batch: W	/G637853	-5		
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: IBM-POK Project Number: 3463.00

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 09/20/13 15:26

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab fo	or sample	e(s): 01-0	2 Batch: WC	G63785	3-5		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	92		70-130
Bromofluorobenzene	103		70-130
Toluene-d8	105		70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1318300 Report Date: 09/23/13

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	v Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lal	b Associated s	ample(s):	01-02	Batch:	WG637853-3	WG637853-4				
Vinyl chloride	99			99		70-130	0		20	
Chloroethane	98			100		70-130	2		20	
1,1-Dichloroethene	99			99		70-130	0		20	
trans-1,2-Dichloroethene	89			86		70-130	3		20	
1,1-Dichloroethane	99			100		70-130	1		20	
cis-1,2-Dichloroethene	106			106		70-130	0		20	
Trichloroethene	100			99		70-130	1		20	
Tetrachloroethene	115			115		70-130	0		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	91		90		70-130	
Toluene-d8	105		105		70-130	
Bromofluorobenzene	107		105		70-130	

Lab Duplicate Analysis Batch Quality Control

Project Name:IBM-POKProject Number:3463.00

Lab Number: Report Date:

r: L1318300 e: 09/23/13

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG63	7853-6 QC S	Sample: L131	8300-01	Client ID: IA7001/G
Vinyl chloride	ND	ND	ppbV	NC		20
Chloroethane	ND	ND	ppbV	NC		20
1,1-Dichloroethene	ND	ND	ppbV	NC		20
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		20
1,1-Dichloroethane	ND	ND	ppbV	NC		20
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		20
Trichloroethene	0.586	0.571	ppbV	3		20
Tetrachloroethene	0.138	0.135	ppbV	2		20

			Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	97	96	70-130	
Toluene-d8	109	109	70-130	
Bromofluorobenzene	110	108	70-130	

Project Name: IBM-POK

Project Number: 3463.00

Serial_No:09231315:07 Lab Number: L1318300

Report Date: 09/23/13

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1318300-01	IA7001/G	1505	1.0L Can	09/13/13	93045	L1317854-04	Pass	-29.3	-4.4	-	-	-	-
L1318300-02	IA2001/G	681	1.0L Can	09/13/13	93045	L1317854-01	Pass	-29.3	-9.5	-	-	-	-
L1318300-03	UNUSED CAN 844	844	1.0L Can	09/13/13	93045	L1317854-03	Pass	-29.3	-3.5	-	-	-	-

Project Number: Not Specified

Serial_No:09231315:07 Lab Number: L1317854

Report Date: 09/23/13

Lab ID:	L1317854-01	Date Collected:	09/11/13 17:42
Client ID:	CAN 681 FC 1	Date Received:	09/11/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	09/11/13 18:10		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	109		60-140
bromochloromethane	109		60-140
chlorobenzene-d5	105		60-140

Project Number: Not Specified

Serial_No:09231315:07 Lab Number: L1317854

Report Date: 09/23/13

Lab ID:	L1317854-03	Date Collected:	09/11/13 17:42
Client ID:	CAN 844 FC 3	Date Received:	09/11/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	09/11/13 19:11		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	125		60-140
bromochloromethane	109		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified

Serial_No:09231315:07 Lab Number: L1317854

Report Date: 09/23/13

Lab ID:	L1317854-04	Date Collected:	09/11/13 17:42
Client ID:	CAN 1505 FC 4	Date Received:	09/11/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	09/11/13 19:41		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	125		60-140
bromochloromethane	108		60-140
chlorobenzene-d5	100		60-140

Serial_No	:09231315:07
-----------	--------------

Lab Number: L1318300 Report Date: 09/23/13

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

IBM-POK

Cooler Information Custody Seal Cooler

N/A

Project Name:

Project Number: 3463.00

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1318300-01A	Canister - 1 Liter	N/A	N/A		Y	Absent	NYSDEC-TO15-SIM(30)
L1318300-02A	Canister - 1 Liter	N/A	N/A		Υ	Absent	NYSDEC-TO15-SIM(30)
L1318300-03A	Canister - 1 Liter	N/A	N/A		Y	Absent	CLEAN-FEE()

Serial_No:09231315:07

Project Name: IBM-POK

Project Number: 3463.00

Lab Number: L1318300

Report Date: 09/23/13

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: Data Usability Report

Serial_No:09231315:07

Project Name: IBM-POK

Project Number: 3463.00

Lab Number: L1318300 Report Date: 09/23/13

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: IBM-POK Project Number: 3463.00

 Lab Number:
 L1318300

 Report Date:
 09/23/13

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised August 3, 2012 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable). <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Titanium, Vanadium, Zinc, Total Organic Carbon, Corrosivity, TCLP 1311, SPLP 1312. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, SM2540G.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: 6020, 7470, 7471, 9045. <u>Organic Parameters</u>: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 180.1, 245.7, 1631E, 3020A, 6020A, 7470A, 9040, 9050A, SM2320B, 2540D, 2540G, 4500H-B, <u>Organic Parameters</u>: EPA 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 5030B, 8015D, 3570, 8081B, 8082A, 8260B, 8270C, 8270D.)

Solid & Chemical Materials (Inorganic Parameters: EPA 1311, 3050B, 3051A, 3060A, 6020A, 7196A, 7470A, 7471B, 7474, 9040B, 9045C, 9060. <u>Organic Parameters</u>: EPA 3540C, 3570, 3580A, 3630C, 3640A, 3660, 3665A, 5035, 8015D, 8081B, 8082A, 8260B, 8270C, 8270D.)

Biological Tissue (Inorganic Parameters: EPA 6020A. Organic Parameters: EPA 3570, 3510C, 3610B, 3630C, 3640A, 8270C, 8270D.)

Air & Emissions (EPA TO-15.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 180.1, 1631E, 6020A, 7470A, 9040B, 9050A, SM2540D, 2540G, 4500H+B, 2320B, 3020A, . <u>Organic Parameters</u>: EPA 3510C, 3630C, 3640A, 3660B, 8081B, 8082A, 8270C, 8270D, 8015D.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 1311, 3050B, 3051A, 6020A, 7471B, 9040B, 9045C. <u>Organic Parameters</u>: SW-846 3540C, 3580A, 3630C, 3640A, 3660B, 3665A, 8270C, 8015D, 8082A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3020A, SM2320B, SM2540D, 2540G, 4500H-B, EPA 180.1, 1631E, SW-846 7470A, 9040C, 6020A, 9050A. <u>Organic Parameters</u>: SW-846 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 8015D, 8081B, 8082A, 8270C, 8270D)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 1311, 1312, 3050B, 3051A, 6020A, 7471B, 7474, 9040B, 9040C, 9045C, 9045D, 9060. <u>Organic Parameters</u>: SW-846 3540C, 3570, 3580A, 3630C, 3640A, 3660B, 3665A, 8081B, 8082A, 8270C, 8270D, 8015D.)

Atmospheric Organic Parameters (EPA 3C, TO-15, TO-10A, TO-13A-SIM.)

Biological Tissue (Inorganic Parameters: SW-846 6020A. <u>Organic Parameters</u>: SW-846 8270C, 8270D, 3510C, 3570, 3610C, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SM2320B, SM2540D, 6020A, 1631E, 7470A, 9050A, EPA 180.1, 3020A. <u>Organic Parameters</u>: EPA 8270C, 8270D, 8081B, 8082A, 3510C.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 6020A, 7471B, 7474, 9040C, 9045D. Organic Parameters: EPA 8270C, 8270D, 8081B, 8082A, 1311, 3050B, 3580A, 3570, 3051A.)

Air & Emissions (EPA TO-15, TO-10A.)

Pennsylvania Certificate/Lab ID: 68-02089 NELAP Accredited

Non-Potable Water (<u>Inorganic Parameters</u>: 1312, 1631E, 180.1, 3020A, 6020A, 7470A, 9040B, 9050A, 2320B, 2540D, 2540G, SM4500H+-B. <u>Organic Parameters</u>: 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 8015D, 8081B, 8082A, 8270C, 8270D.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1311, 3051A, 6020A, 7471B, 7474 9040B, 9045C, 9060. <u>Organic Parameters</u>: EPA3050B, 3540C, 3570, 3580A, 3630C, 3640A, 3660B, 3665A, 8270C, 8270D, 8081B, 8015D, 8082A.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via NJ-DEP.

Refer to NJ-DEP Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID:460194. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>:EPA 3020A, 6020A, 245.7, 9040B. <u>Organic Parameters</u>: EPA 3510C, 3640A, 3660B, 3665A, 8270C, 8270D, 8082A, 8081B, 8015D.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: EPA 6020A,7470A,7471B,9040B,9045C,3050B,3051, 9060. <u>Organic Parameters</u>: EPA 3540C, 3580A, 3630C, 3640A, 3660B, 3665A, 3570, 8270C, 8270D, 8081B, 8082A, 8015D.)

Washington State Department of Ecology <u>Certificate/Lab ID</u>: C954. *Non-Potable Water* (Inorganic <u>Parameters</u>: SM2540D, 180.1, 1631E.)

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 7474, 9045C, 9050A, 9060. <u>Organic Parameters</u>: EPA 8081, 8082, 8015, 8270.)

U.S. Army Corps of Engineers

Department of Defense, L-A-B Certificate/Lab ID: L2217.01.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 6020A, SM4500H-B. <u>Organic Parameters</u>: 3020A, 3510C, 8270C, 8270C, 8270C-ALK-PAH, 8270D-ALK-PAH, 8082A, 8081B, 8015D-SHC, 8015D.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1311, 3050B, 6020A, 7471A, 9045C, 9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580A, 3570, 3540C, 8270C, 8270D, 8270C-ALK-PAH, 8270D-ALK-PAH 8082A, 8081B, 8015D-SHC, 8015D.

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **8270C**: Biphenyl. **TO-15**: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 2-Methylnaphthalene, 1-Methylnaphthalene.

· · · · · · · · · · · · · · · · · · ·														Se	erial_	_No:0923131	5:07
	AIR AI	VALYS	SIS	PA	GE	OF	Date R	ec'd in La	b:				AI	_PH/	A Jol	¤#: ∠13	18300
320 Forbes Blvd, Ma		Project In	nformatio	on			Repo	rt Informa	ation - D	Data D	elivera	bles	В	illing	Info	rmation	
	FAX: 508-822-3288	Project Nan	ne: IBM	-POK				x					X	Same	as Cli	ent info PO #	3463.00
Client Informatio	n	Project Loc						Ex Criteria Che	ockor				<u> </u>				
Client: Sanborn	Head + Assoc	Project #:	34163.0	50				(Default base	d on Regula		ria Indicate	d)					
Address: 20 For		Project Mar	ager:	bnSi	inbor	2		Other Form AIL (stand		port)			R	egula	atory	Requirement	s/Report Limits
	NH 03301	ALPHA Que					-	ditional Del					Sta	ate/Fe	d	Program	Criteria
	229-19W	Turn-Arc	und Tim	е			Repor	t to: (if different	t than Project M	lanager)							
Fax:	,		•										-				
Email: iSanbor	n@sanbornhead, com	Standard		RUSH (only a	onfirmed if pre-ap	pproved!)								А	NAL	YSIS	
	re been previously analyzed by Alpha	Date Due:			Time:									77		7 7 7 7	
	pecific Requirements/Comr	nents:												' /	.	' / / /	
	* Site - s	ipecific	ana	lyte l	ふ七								24.0.	×/	ES	10	
		olum				st Be	Fill	ed O	ut			4 by			ซี		
ALPHA Lab ID (Lab Use Only)	Sample ID	Date S		End Time	Initial	Final Vacuum	Sample Matrix*	Sampler's Initials		ID Can	l D - Flow Controller	70-14	70-15	APH WILL Har		P P P Sample Co	omments (i.e. PID)
1318300-1	TA7001 \G	9-13-13	1120	<i>G</i> гаь	18	2.5	AA	HDE	14	5 <i>0</i> 5	4		X				
2	IA 2001/6	9-13-13	1358	\checkmark	20	3	AĄ	HOE	ILE	581	١		X				
											r				•		
	· · ·																
	· · · · · · · · · · · · · · · · · · ·														-		

	A contract of the second of th	A = Ambient A						, mini di cara cara			_		+			A P	
"SAMPLE		/ = Soil Vapor her = Please S		as/SVE		·	98 (s. s.	C	ontainer 1	Гуре			CS			completely. S	learly, legibly and amples can not be
		Relinquish	ed By:		Date	e/Time		Receiv	ved By:				Date/T	ime:	<u> </u>	clock will not	turnaround time start until any ambi- solved. All samples
	Re	w				3 10 10		FED				+					subject to Alpha's
For മാസിനു പ്രവാഹം പാഹം വ	9)	(20)	\sim		9/17/13	30936	1A	onif	1-2-			9/1	7/17	3		See reverse s	A 15
ForPage 025 01-250							1										<u> </u>

ANALYTICAL REPORT

Lab Number:	L1321975
Client:	Sanborn, Head & Associates, Inc. 20 Foundry Street Concord, NH 03301
ATTN: Phone:	Jennifer Sanborn (603) 415-6137
Project Name:	IBM-POK
Project Number:	3463.00
Report Date:	11/05/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Project Number:	IBM-POK 3463.00 Samples from different buildings removed from lab		Lab Number: Report Date:	L1321975 11/05/13
Alpha Sample ID	Client ID	Sample Location	Collect Date/T	
L1321975-01	IA1025\G	NY	10/22/	13 16:23
L1321975-02	IA5031\G	NY	10/23/	13 13:59
L1321975-03	IA6009\G	NY	10/24/	13 14:54
L1321975-04	IA4018\G	NY	10/25/	13 10:47
L1321975-05	IA2024\G	NY	10/29/	13 14:24
L1321975-06	UNUSED CAN 458	NY		

Project Name:IBM-POKProject Number:3463.00

 Lab Number:
 L1321975

 Report Date:
 11/05/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:IBM-POKProject Number:3463.00

 Lab Number:
 L1321975

 Report Date:
 11/05/13

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on October 22, 2013. The canister certification results are provided as an addendum.

Sample L1321975-05 and WG649314-6 Duplicate have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

d Signatura:

Christoph J Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 11/05/13

AIR

 Lab Number:
 L1321975

 Report Date:
 11/05/13

SAMPLE RESULTS

Lab ID:	L1321975-05 D	Date Collected:	10/29/13 14:24
Client ID:	IA2024\G	Date Received:	10/30/13
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	11/04/13 18:58		
Analyst:	MB		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	N - Mansfield Lab							
Vinyl chloride	ND	0.050		ND	0.128			2.5
Chloroethane	ND	0.050		ND	0.132			2.5
1,1-Dichloroethene	ND	0.050		ND	0.198			2.5
trans-1,2-Dichloroethene	ND	0.050		ND	0.198			2.5
1,1-Dichloroethane	0.152	0.050		0.615	0.202			2.5
cis-1,2-Dichloroethene	0.760	0.050		3.01	0.198			2.5
Trichloroethene	84.3	0.050		453	0.269			2.5
Tetrachloroethene	1.04	0.050		7.05	0.339			2.5

Serial_No:11051314:19

 Project Name:
 IBM-POK
 Lab Number:
 L1321975

 Project Number:
 3463.00
 Report Date:
 11/05/13

SAMPLE RESULTS

Lab ID:	L1321975-05	D				Date	Collecte	ed:	10/29/13 14:24
Client ID:	IA2024\G					Date	Receive	ed:	10/30/13
Sample Location:	NY					Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Volatile Organics in Air by SIM - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	109		70-130
Bromofluorobenzene	87		70-130
Toluene-d8	89		70-130
Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 11/04/13 13:40

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	RL MDL Results RL		MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - N	lansfield Lab f	or sample	(s): 01-05	Batch: W	/G649314	-5		
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: IBM-POK Project Number: 3463.00

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 11/04/13 13:40

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab f	or sample	e(s): 01-0	5 Batch: WO	G649314	4-5		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	110		70-130
Bromofluorobenzene	86		70-130
Toluene-d8	91		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: IBM-POK Project Number: 3463.00

Lab Number: L1321975 Report Date: 11/05/13

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	' Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield Lat	o Associated s	ample(s):	01-05	Batch:	WG649314-3	WG649314-4			
Vinyl chloride	124		1.1	128		70-130	3		20
Chloroethane	115			118		70-130	3		20
1,1-Dichloroethene	113			118		70-130	4		20
trans-1,2-Dichloroethene	95			96		70-130	1		20
1,1-Dichloroethane	102			103		70-130	1		20
cis-1,2-Dichloroethene	114			115		70-130	1		20
Trichloroethene	119			117		70-130	2		20
Tetrachloroethene	108			108		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	112		112		70-130	
Toluene-d8	92		92		70-130	
Bromofluorobenzene	94		94		70-130	

Lab Duplicate Analysis Batch Quality Control

Project Name:IBM-POKProject Number:3463.00

Lab Number:

 Lab Number:
 L1321975

 Report Date:
 11/05/13

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-05	QC Batch ID: WG649	9314-6 QC	Sample: L132	21975-05	Client ID: IA2024
Vinyl chloride	ND	ND	ppbV	NC		20
Chloroethane	ND	ND	ppbV	NC		20
1,1-Dichloroethene	ND	ND	ppbV	NC		20
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		20
1,1-Dichloroethane	0.152	0.152	ppbV	0		20
cis-1,2-Dichloroethene	0.760	0.718	ppbV	6		20
Trichloroethene	84.3	85.6	ppbV	2		20
Tetrachloroethene	1.04	1.06	ppbV	2		20

			Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	109	108	70-130	
Toluene-d8	89	87	70-130	
Bromofluorobenzene	87	87	70-130	

Project Name: IBM-POK

Project Number: 3463.00

Serial_No:11051314:19 Lab Number: L1321975

Report Date: 11/05/13

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1321975-01	IA1025\G	1740	2.7L Can	10/22/13	94539	L1321059-02	Pass	-29.7	-5.5	-	-	-	-
L1321975-02	IA5031\G	323	2.7L Can	10/22/13	94539	L1321059-01	Pass	-29.8	-7.3	-	-	-	-
L1321975-03	IA6009\G	135	2.7L Can	10/22/13	94539	L1321059-06	Pass	-29.8	-4.3	-	-	-	-
L1321975-04	IA4018\G	149B	2.7L Can	10/22/13	94539	L1321059-07	Pass	-29.7	-5.2	-	-	-	-
L1321975-05	IA2024\G	419	2.7L Can	10/22/13	94539	L1321059-05	Pass	-29.8	-4.2	-	-	-	-
L1321975-06	UNUSED CAN 458	458	2.7L Can	10/22/13	94539	L1321059-03	Pass	-29.7	-29.4	-	-	-	-

Project Number: Not Specified

Serial_No:11051314:19 Lab Number: L1321059

Report Date: 11/05/13

Lab ID:	L1321059-01	Date Collected:	10/18/13 17:50
Client ID:	CAN 323 FC A	Date Received:	10/18/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	10/18/13 18:17		
Analyst:	MB		

		ppbV Results RL MDL		ug/m3				Dilution
Parameter	Results			Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	100		60-140
chlorobenzene-d5	99		60-140

Project Number: Not Specified

Serial_No:11051314:19 Lab Number: L1321059

Report Date: 11/05/13

Lab ID:	L1321059-02	Date Collected:	10/18/13 17:50
Client ID:	CAN 1740 FC B	Date Received:	10/18/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	10/18/13 18:49		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	96		60-140

Project Number: Not Specified

Serial_No:11051314:19 Lab Number: L1321059

Report Date: 11/05/13

Lab ID:	L1321059-03	Date Collected:	10/18/13 17:50
Client ID:	CAN 458 FC C	Date Received:	10/18/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	10/18/13 19:21		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	96		60-140

Project Number: Not Specified

Serial_No:11051314:19 Lab Number: L1321059

Report Date: 11/05/13

Lab ID:	L1321059-05	Date Collected:	10/18/13 17:50
Client ID:	CAN 419 FC E	Date Received:	10/18/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	10/18/13 20:25		
Analyst:	MB		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

Project Number: Not Specified

Serial_No:11051314:19 Lab Number: L1321059

Report Date: 11/05/13

Lab ID:	L1321059-06	Date Collected:	10/18/13 17:50
Client ID:	CAN 135 FC F	Date Received:	10/18/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	10/18/13 20:57		
Analyst:	MB		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mansf	ield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

Project Number: Not Specified

Serial_No:11051314:19 Lab Number: L1321059

Report Date: 11/05/13

Lab ID:	L1321059-07	Date Collected:	10/18/13 17:50
Client ID:	CAN 149B FC G	Date Received:	10/18/13
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	10/18/13 21:29		
Analyst:	MB		

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	- Mansfield Lab								
Vinyl chloride	ND	0.020		ND	0.051			1	
Chloroethane	ND	0.020		ND	0.053			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
Trichloroethene	ND	0.020		ND	0.107			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	93		60-140

Serial_No:11051314:19

Lab Number: L1321975 Report Date: 11/05/13

Project Name: IBM-POK Project Number: 3463.00

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A Present/Intact

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1321975-01A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	NYSDEC-TO15-SIM(30)
L1321975-02A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	NYSDEC-TO15-SIM(30)
L1321975-03A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	NYSDEC-TO15-SIM(30)
L1321975-04A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	NYSDEC-TO15-SIM(30)
L1321975-05A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	NYSDEC-TO15-SIM(30)
L1321975-06A	Canister - 2.7 Liter	N/A	N/A		Y	Present/Intact	CLEAN-FEE()

Serial_No:11051314:19

Project Name: IBM-POK

Project Number: 3463.00

Lab Number: L1321975

Report Date: 11/05/13

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: Data Usability Report

Serial_No:11051314:19

Project Name: IBM-POK

Project Number: 3463.00

Lab Number: L1321975

Report Date: 11/05/13

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: IBM-POK Project Number: 3463.00

 Lab Number:
 L1321975

 Report Date:
 11/05/13

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised October 1, 2013 – Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable). <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Titanium, Vanadium, Zinc, Total Organic Carbon, Corrosivity, TCLP 1311, SPLP 1312. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, SM2540G.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 180.1, 245.7, 1631E, 3020A, 6020A, 7470A, 9040, 9050A, SM2320B, 2540D, 2540G, 4500H-B, <u>Organic Parameters</u>: EPA 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 5030B, 8015D, 3570, 8081B, 8082A, 8260B, 8270C, 8270D.)

Solid & Chemical Materials (Inorganic Parameters: EPA 1311, 3050B, 3051A, 3060A, 6020A, 7196A, 7470A, 7471B, 7474, 9040B, 9045C, 9060. <u>Organic Parameters</u>: EPA 3540C, 3570, 3580A, 3630C, 3640A, 3660, 3665A, 5035, 8015D, 8081B, 8082A, 8260B, 8270C, 8270D.)

Biological Tissue (Inorganic Parameters: EPA 6020A. Organic Parameters: EPA 3570, 3510C, 3610B, 3630C, 3640A, 8270C, 8270D.)

Air & Emissions (EPA TO-15.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 180.1, 1631E, 6020A, 7470A, 9040B, 9050A, SM2540D, 2540G, 4500H+B, 2320B, 3020A, . <u>Organic Parameters</u>: EPA 3510C, 3630C, 3640A, 3660B, 8081B, 8082A, 8270C, 8270D, 8015D.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 1311, 3050B, 3051A, 6020A, 7471B, 9040B, 9045C. <u>Organic Parameters</u>: SW-846 3540C, 3580A, 3630C, 3640A, 3660B, 3665A, 8270C, 8015D, 8082A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3020A, SM2320B, SM2540D, 2540G, 4500H-B, EPA 180.1, 1631E, SW-846 7470A, 9040C, 6020A, 9050A. <u>Organic Parameters</u>: SW-846 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 8015D, 8081B, 8082A, 8270C, 8270D)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 1311, 1312, 3050B, 3051A, 6020A, 7471B, 7474, 9040B, 9040C, 9045C, 9045D, 9060, 9060A. <u>Organic Parameters</u>: SW-846 3540C, 3570, 3580A, 3630C, 3640A, 3660B, 3665A, 8081B, 8082A, 8270C, 8270D, 8015D.)

Atmospheric Organic Parameters (EPA 3C, TO-15, TO-10A, TO-13A-SIM.)

Biological Tissue (Inorganic Parameters: SW-846 6020A. <u>Organic Parameters</u>: SW-846 8270C, 8270D, 3510C, 3570, 3610C, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, 6020A, 1631E, 7470A, 9050A, EPA 180.1, 3020A. <u>Organic Parameters</u>: EPA 8270C, 8270D, 8081B, 8082A, 3510C.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 6020A, 7471B, 7474, 9040C, 9045D, 9060A. <u>Organic Parameters</u>: EPA 8270C, 8270D, 8081B, 8082A, 1311, 3050B, 3580A, 3570, 3051A.)

Air & Emissions (EPA TO-15, TO-10A.)

Pennsylvania Certificate/Lab ID: 68-02089 NELAP Accredited

Non-Potable Water (<u>Inorganic Parameters</u>: 1312, 1631E, 180.1, 3020A, 6020A, 7470A, 9040B, 9050A, 2320B, 2540D, 2540G, SM4500H+-B. <u>Organic Parameters</u>: 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 8015D, 8081B, 8082A, 8270C, 8270D.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 3051A, 6020A, 7471B, 7474 9040B, 9045C, 9060. Organic Parameters: EPA3050B, 3540C, 3570, 3580A, 3630C, 3640A, 3660B, 3665A, 8270C, 8270D, 8081B, 8015D, 8082A.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via NJ-DEP.

Refer to NJ-DEP Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID:460194. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 3020A, 6020A, 245.7, 9040B. Organic Parameters: EPA 3510C, 3640A, 3660B, 3665A, 8270C, 8270D, 8082A, 8081B, 8015D.)

Solid & Chemical Materials (Inorganic Parameters: EPA 6020A,7470A,7471B,9040B,9045C,3050B,3051, 9060. Organic Parameters: EPA 3540C, 3580A, 3630C, 3640A, 3660B, 3665A, 3570, 8270C, 8270D, 8081B, 8082A, 8015D.)

Washington State Department of Ecology <u>Certificate/Lab ID</u>: C954. Non-Potable Water (Inorganic <u>Parameters</u>: SM2540D, 180.1, 1631E.)

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 7474, 9045C, 9050A, 9060. Organic Parameters: EPA 8081, 8082, 8015, 8270.)

U.S. Army Corps of Engineers

Department of Defense, L-A-B Certificate/Lab ID: L2217.01.

Non-Potable Water (Inorganic Parameters: EPA 6020A, SM4500H-B. Organic Parameters: 3020A, 3510C, 8270C, 8270C, 8270C-ALK-PAH, 8270D-ALK-PAH, 8082A, 8081B, 8015D-SHC, 8015D.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1311, 3050B, 6020A, 7471A, 9045C, 9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580A, 3570, 3540C, 8270C, 8270D, 8270C-ALK-PAH, 8270D-ALK-PAH 8082A, 8081B, 8015D-SHC, 8015D.

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **8270C**: Biphenyl. **TO-15**: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 2-Methylnaphthalene, 1-Methylnaphthalene.

· · · · · · · · · · · · · · · · · · ·														Ser	<u>ial N</u>	<u>lo:1105131</u>	4:19	
	A CHAIN OF CUS	IR ANAL	YSIS	Ρ	AGE		Date R	ec'd in La	b:				A	LPHA	Job	#: L132	1975	
320 Forbes Blvd, Ma		Proje	ct Informat	ion			Repo	rt Inform	ation -	Data 🛙	eliveral	oles	E	Billing I	nforn	nation		
	FAX: 508-822-3288	Projec	t Name: [B]	1-POK		-	D FA	x					9	Same a	s Clier	nt info PO #	3463.0	0
Client Informatio	n		t Location: N					Ex Criteria Ch	ecker:									
Client: Sanborn, H	tead + Assoc.	Projec	1#: 3463.	OD				(Default base	ed on Regi	ulatory Crit	eria Indicate	1)						
Address: 20 Fou			t Manager:		antor			Other Form IAIL (stand		report)			R	Regulat	ory R	Requirement	s/Report Lin	nits
	, NH 03301		A Quote #:	•				ditional De					St	ate/Fed		Program	Criteria	
	3-229-1900	Turr	-Around Tir	ne			Repor	t to: (if differen	t than Projec	ct Manager)					•			
Fax:																<u>.</u>		
Email: Sanborr	Csanborn head. U	om Star	idard 🗆	RUSH (only	confirmed if pre-a	pproved!)								AN	ALY	ISIS		
	e been previously analyze		Due:		Time:													
Other Project S	pecific Requiremer						_							/ / /	. /			
	}	k Site-spec	ific anal	yk list	:. Cull	Jenn	Santo	m with	th qu	uestio	ns		5-12	/*/	2	0		
		All Colu	mns E	Belov	v Mu	st Be	Fill	ed O	ut			- à			A SS	70-1		
ALPHA Lab ID (Lab Use Only)	Sample ID	Date		llecti	Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	can Size	I D Can	I D - Flow Controller	10. 14	70.15	APH SIM	70-134 10-134	Sample Co	omments (i.e. F	ID)
21975-01	TA10251			Grab	-29,5		SV	REW	2,7	1740	B		X					
02	TA5031\(- 10 23	3 13:59	Grab	-295	-7	Sγ	REW	2.7	3:23	Ą		X					
	TA600916	r io 24	B 14:54	Grab	-29,5	-5.5	SV	REW	27	135	F		Х					
V -04	TA 4018/0	y 10/25)	3 10:47	Grab	-29.5	-5.5	SV	REW	2.7	149B	G		X					
- 25	IA2024 \	6- 10/29	13 14:24	600	-30	-4.5	S٧	REW	2.7	419	E		X					
	_																	
*SAMPLE	E MATRIX CODES	SV = Soil	ient Air (Indoo Vapor/Landfill ase Specify				2011 - 1 P	<u>с</u>	ontaine	r Type			cS			completely.	learly, legibly and Samples can not turnaround time	X
		Relin	quished By:		Dat	e/Time	- 1-	Recei	ved By:			[)ate/	Time:		clock will not guities are re-	start until any am solved. All samp	es
		Ken	r m	etube	1430/1	<u>3 WW</u>	St	alul	TW	2W	m 1	ol	30	113	2.00		subject to Alpha	
<u>Foppade 0342019-344-0</u>	9)	Aban	$\leq \lambda$	WINSC	7 10-30	15 1130 13 ON:57			\rightarrow			0/31/1	72 36	17:30 D:30	/	_ See reverse s	side.	
		Bar			10/51/1	3 000	ma	nefiel	dle	5	10	5/31/1	3 6	500				

SUBSLAB VAPOR SAMPLING

ANALYTICAL REPORT

Lab Number:	L1402051
Client:	Sanborn, Head & Associates, Inc.
	20 Foundry Street
	Concord, NH 03301
ATTN:	Jennifer Sanborn
Phone:	(603) 415-6137
Project Name:	IBM-POK V001 SSV
Project Number:	3463.00
Report Date:	01/29/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:IBM-POK V001 SSVProject Number:3463.00

 Lab Number:
 L1402051

 Report Date:
 01/29/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1402051-01	EP2005/S	POUGHKEEPSIE, NY	01/16/14 14:29
L1402051-02	SSV2010/S	POUGHKEEPSIE, NY	01/16/14 16:53
L1402051-03	SSV2016/S	POUGHKEEPSIE, NY	01/22/14 13:05

Project Name: IBM-POK V001 SSV Project Number: 3463.00
 Lab Number:
 L1402051

 Report Date:
 01/29/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: IBM-POK V001 SSV Project Number: 3463.00

 Lab Number:
 L1402051

 Report Date:
 01/29/14

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on January 15, 2014. The canister certification results are provided as an addendum.

Samples L1402051-01 through -03: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

Samples L1402051-01 through -03 and WG667030-6 Duplicate have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 01/29/14

AIR

L1402051

01/29/14

Lab Number:

Report Date:

Project Name:IBM-POK V001 SSVProject Number:3463.00

SAMPLE RESULTS

Date Collected:	01/16/14 14:29
Date Received:	01/23/14
Field Prep:	Not Specified

Lab ID:	L1402051-01 D
Client ID:	EP2005/S
Sample Location:	POUGHKEEPSIE, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15-SIM
Analytical Date:	01/27/14 17:38
Analyst:	MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	5.09		ND	13.0			254.4
Chloroethane	ND	5.09		ND	13.4			254.4
1,1-Dichloroethene	ND	5.09		ND	20.2			254.4
trans-1,2-Dichloroethene	ND	5.09		ND	20.2			254.4
1,1-Dichloroethane	ND	5.09		ND	20.6			254.4
cis-1,2-Dichloroethene	167	5.09		662	20.2			254.4
Trichloroethene	7970	5.09		42800	27.4			254.4
Tetrachloroethene	26.2	5.09		178	34.5			254.4

Project Name:	IBM-POK V001 SSV	Lab Number:	L1402051
Project Number:	3463.00	Report Date:	01/29/14

SAMPLE RESULTS

Lab ID:	L1402051-01	D				Date	Collecte	ed:	01/16/14 14:29
Client ID:	EP2005/S					Date	Receive	ed:	01/23/14
Sample Location:	POUGHKEEPS	SIE, NY				Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Volatile Organics in Air by SIM - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	124		70-130
Bromofluorobenzene	85		70-130
Toluene-d8	88		70-130
Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	104		60-140
bromochloromethane	120		60-140
chlorobenzene-d5	102		60-140

L1402051

01/29/14

Lab Number:

Report Date:

Project Name:IBM-POK V001 SSVProject Number:3463.00

SAMPLE RESULTS

Date Collected:	01/16/14 16:53
Date Received:	01/23/14
Field Prep:	Not Specified

Lab ID:	L1402051-02 D
Client ID:	SSV2010/S
Sample Location:	POUGHKEEPSIE, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15-SIM
Analytical Date:	01/27/14 17:08
Analyst:	MB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	N - Mansfield Lab							
Vinyl chloride	ND	67.8		ND	173			3392
Chloroethane	ND	67.8		ND	179			3392
1,1-Dichloroethene	ND	67.8		ND	269			3392
trans-1,2-Dichloroethene	ND	67.8		ND	269			3392
1,1-Dichloroethane	88.2	67.8		357	274			3392
cis-1,2-Dichloroethene	1300	67.8		5150	269			3392
Trichloroethene	108000	67.8		580000	364			3392
Tetrachloroethene	1140	67.8		7730	460			3392

Project Name:	IBM-POK V001 SSV		Lab Number:	L1402051		
Project Number:	3463.00		Report Date:	01/29/14		

SAMPLE RESULTS

Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
			ppbV			ug/m3			Dilution
Sample Location:	POUGHKEEPS	IE, NY				Field	Prep:		Not Specified
Client ID:	SSV2010/S					Date	Receive	ed:	01/23/14
Lab ID:	L1402051-02	D				Date	Collecte	ed:	01/16/14 16:53

Volatile Organics in Air by SIM - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	119		70-130
Bromofluorobenzene	82		70-130
Toluene-d8	83		70-130
Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	112		60-140
chlorobenzene-d5	96		60-140

L1402051

01/29/14

Lab Number:

Report Date:

Project Name:IBM-POK V001 SSVProject Number:3463.00

SAMPLE RESULTS

Date Collected:	01/22/14 13:05
Date Received:	01/23/14
Field Prep:	Not Specified

Lab ID:	L1402051-03 D
Client ID:	SSV2016/S
Sample Location:	POUGHKEEPSIE, NY
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15-SIM
Analytical Date:	01/27/14 15:14
Analyst:	MB

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Mansfield Lab							
ND	0.471		ND	1.20			23.57
ND	0.471		ND	1.24			23.57
ND	0.471		ND	1.87			23.57
ND	0.471		ND	1.87			23.57
ND	0.471		ND	1.91			23.57
0.731	0.471		2.90	1.87			23.57
888	0.471		4770	2.53			23.57
2.03	0.471		13.8	3.19			23.57
	Mansfield Lab ND ND ND ND 0.731 888	Results RL Mansfield Lab ND 0.471 ND 0.471 0.471 888 0.471 0.471	Results RL MDL Mansfield Lab ND 0.471 888 0.471	Results RL MDL Results Mansfield Lab ND 0.471 ND ND 0.471 ND ND ND 0.471 ND 0.731 0.471 2.90 888 0.471 4770	Results RL MDL Results RL Mansfield Lab ND 0.471 ND 1.20 ND 0.471 ND 1.20 ND 0.471 ND 1.24 ND 0.471 ND 1.87 888 0.471 2.90 1.87	Results RL MDL Results RL MDL Mansfield Lab ND 0.471 ND 1.20 ND 0.471 ND 1.24 ND 0.471 ND 1.87 ND 0.471 ND 1.91 ND 0.471 ND 1.87 888 0.471 4770 2.53	Results RL MDL Results RL MDL Qualifier Mansfield Lab ND 0.471 ND 1.20 ND 0.471 ND 1.24 ND 0.471 ND 1.87 ND 0.471 ND 1.91 0.731 0.471 2.90 1.87 888 0.471 4770 2.53

Project Name:	IBM-POK V001 SSV		Lab Number:	L1402051			
Project Number:	3463.00		Report Date:	01/29/14			

SAMPLE RESULTS

Lab ID:	L1402051-03	D				Date	Collecte	ed:	01/22/14 13:05
Client ID:	SSV2016/S					Date	Receive	ed:	01/23/14
Sample Location:	POUGHKEEPS	SIE, NY				Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

60-140

60-140

Volatile Organics in Air by SIM - Mansfield Lab

bromochloromethane

chlorobenzene-d5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	116		70-130
Bromofluorobenzene	79		70-130
Toluene-d8	81		70-130
Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140

108

100

Report Date: 01/29/14

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 01/27/14 13:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab f	or sample	e(s): 01-03	Batch: W	/G667030	-5		
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 01/27/14 13:57

	ppbV			ug/m3			Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mansfield Lab for sample(s): 01-03 Batch: WG667030-5									

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	122		70-130
Bromofluorobenzene	82		70-130
Toluene-d8	85		70-130

Lab Control Sample Analysis Batch Quality Control

Project Number: 3463.00 Lab Number: L1402051 Report Date: 01/29/14

Parameter	LCS %Recovery	Qual	LCSD %Recover	ry Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-03 Batch:	WG667030-3	WG667030-4		
Vinyl chloride	100		102		70-130	2	20
Chloroethane	101		100		70-130	1	20
1,1-Dichloroethene	112		109		70-130	3	20
trans-1,2-Dichloroethene	99		96		70-130	3	20
1,1-Dichloroethane	108		106		70-130	2	20
cis-1,2-Dichloroethene	121		119		70-130	2	20
Trichloroethene	101		100		70-130	1	20
Tetrachloroethene	85		84		70-130	1	20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	119		116		70-130	
1,2-Dichloroethane-04	119		110		70-130	
Toluene-d8	84		85		70-130	
Bromofluorobenzene	87		87		70-130	

Lab Duplicate Analysis Batch Quality Control

Project Name:IBM-POK V001 SSVProject Number:3463.00

Lab Number: Report Date:

L1402051

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
platile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG667	7030-6 Q	C Sample: L140	2051-03	Client ID: S	3SV2016/S
Vinyl chloride	ND	ND	ppbV	NC		20	
Chloroethane	ND	ND	ppbV	NC		20	
1,1-Dichloroethene	ND	ND	ppbV	NC		20	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		20	
1,1-Dichloroethane	ND	ND	ppbV	NC		20	
cis-1,2-Dichloroethene	0.731	0.731	ppbV	0		20	
Trichloroethene	888	959	ppbV	8		20	
Tetrachloroethene	2.03	2.17	ppbV	7		20	

Surrogate	%Recovery	Qualifier %Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	123	70-130	
Toluene-d8	81	84	70-130	
Bromofluorobenzene	79	82	70-130	

Project Name: IBM-POK V001 SSV

Project Number: 3463.00

Serial_No:01291410:06 Lab Number: L1402051

Report Date: 01/29/14

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1402051-01	EP2005/S	0167	#90 SV	01/15/14	97613		-	-	-	Pass	162	169	4
L1402051-01	EP2005/S	829	1.0L Can	01/15/14	97613	L1401246-01	Pass	-29.2	-5.1	-	-	-	-
L1402051-02	SSV2010/S	0230	#90 SV	01/15/14	97613		-	-	-	Pass	157	162	3
L1402051-02	SSV2010/S	730	1.0L Can	01/15/14	97613	L1401246-03	Pass	-29.2	-4.8	-	-	-	-
L1402051-03	SSV2016/S	0353	#90 SV	01/15/14	97613		-	-	-	Pass	162	172	6
L1402051-03	SSV2016/S	751	1.0L Can	01/15/14	97613	L1401246-02	Pass	-29.2	-2.9	-	-	-	-

Project Number: Not Specified

Serial_No:01291410:06 Lab Number:

L1401246

Report Date: 01/29/14

Lab ID:	L1401246-01	Date Collected:	01/13/14 16:26
Client ID:	CAN 829 FC 167	Date Received:	01/13/14
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	01/13/14 17:41		
Analyst:	MB		

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	sfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	105		60-140
chlorobenzene-d5	101		60-140

Project Number: Not Specified

Serial_No:01291410:06 Lab Number:

L1401246

Report Date: 01/29/14

Lab ID:	L1401246-02	Date Collected:	01/13/14 16:26
Client ID:	CAN 751 FC 353	Date Received:	01/13/14
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	01/13/14 18:12		
Analyst:	MB		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	113		60-140
chlorobenzene-d5	105		60-140

Project Number: Not Specified

Serial_No:01291410:06 Lab Number:

L1401246

Report Date: 01/29/14

Lab ID:	L1401246-03	Date Collected:	01/13/14 16:26
Client ID:	CAN 730 FC 230	Date Received:	01/13/14
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	01/13/14 18:42		
Analyst:	MB		

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	108		60-140
chlorobenzene-d5	97		60-140

Serial_	_No:01291410:06
---------	-----------------

Lab Number: L1402051 Report Date: 01/29/14

Project Name: IBM-POK V001 SSV Project Number: 3463.00

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1402051-01A	Canister - 1 Liter	N/A	N/A		Y	Absent	NYSDEC-TO15-SIM(30)
L1402051-02A	Canister - 1 Liter	N/A	N/A		Y	Absent	NYSDEC-TO15-SIM(30)
L1402051-03A	Canister - 1 Liter	N/A	N/A		Y	Absent	NYSDEC-TO15-SIM(30)

Serial_No:01291410:06

Project Name: IBM-POK V001 SSV

Project Number: 3463.00

Lab Number: L1402051

Report Date: 01/29/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: Data Usability Report

Serial_No:01291410:06

Project Name: IBM-POK V001 SSV

Project Number: 3463.00

Lab Number: L1402051

Report Date: 01/29/14

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: IBM-POK V001 SSV Project Number: 3463.00
 Lab Number:
 L1402051

 Report Date:
 01/29/14

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

		IR ANAL	YSIS	PÆ	AGE	OF	Date F	tec'd in La	b: []	23/	14		ALF	PHA Jo	b #:]	1402	•51	
	CHAIN OF CU	STODY Proje	ct Informat	ion				ort Inform				bles	Bill	ing Info	ormatio	n		
	ansfield, MA 02048) FAX: 508-822-3288		t Name: iBi		- BOU	SS√	D FA	Х					₽ \$ sa	me as C	lient info	PO #: (3463.00	
lient Informatio	Dn		t Location:				920	Ex Criteria Che	ecker					_				
lient: Sanbo	rn Head + Ass	SC Project	t#: 3463,	00,2	05	1.5.	_	(Default base	ed on Regu	latory Crit	eria Indicate	ed)						
			t Manager:					Other Form 1AIL (stand		report)	<u>.</u>		Reg	julatory	/ Requi	rements	/Report Limi	ts
Conco	oundry St.	307 ALPH	A Quote #:		-		☐ Ad	ditional Del	liverable)S: -			State	e/Fed	Progr	am	Criteria	
^{none:} 603-	229-1900		-Around Tir	ne			Repor	t to: (If differen	t than Projec	t Manager)								
ax:		Xsta	ndard 🗆	RUSH (only a	confirmed if pre-ar	proved!)												
	orn@sanbornt	read.10m	Due: 1/2	•									_		LYSIS			
-	ve been previously analyze pecific Requirement		Due: $1/2$	117	Time:								//	//	//,	/ /		
	• •		use list	-								/	15		' / /	/		
	* Sile-spe											×		FIXED GASES	01-2	/		
		All Colu		Below		st Be				I		TO-14A by	TO-15 TO-15 SIM	FIXED GL	104/10-10		,	
ALPHA Lab ID Lab Use Only)	Sample ID	Date					Sample Matrix*	Sampler's	s Can Size	I D Can	I D - Flow Controller		70-75		5 /2 / _{Sa}	mple Cor	nments (i.e. Pli	D)
2051.01	872005/5		14:25				SV	REW	16	829	167		X	_				
<u>.</u>	SSV 2010/	'S 1/16/	14 16:48	16:53	-29.8	-5	SV	REW	16	730	230		X		ltig	h concer	nhadions ex	(pec
.3	SSV2016		119 13:00		1		SV	MTS	12	751	353		X					
																		-
																		_
	a a																	
							1											
*SAMPL	E MATRIX CODES	S SV = Soil	pient Air (Indoo Vapor/Landfill ease Specify						i Containe	r Type			CS		com	pletely. Sam	ly, legibly and bles can not be	
	<u>2017 E. 1888</u>		quisher By		Dat	e/Time			ivong By:	2			Date/Tin	ne:	cloc		around time until any ambi- ed. BY EXECUTING	
		Matthe	Sta		1/23/	14/10	55 _	the	Da	\mathcal{U}_{\parallel}	23/14	10	55		тн	S COC, THE	CLIENT HAS READ	
	-			23/14														

ANALYTICAL REPORT

Lab Number:	L1405566
Client:	Envirotest Laboratories Inc.
	20 Foundry Street
	Concord, NH 03301
ATTN:	lannifar Canharn
ATTN:	Jennifer Sanborn
Phone:	(603) 415-6137
Project Name:	B/003 VAPOR EXTRACTION
Project Number:	3463.01
Report Date:	03/21/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:B/003 VAPOR EXTRACTIONProject Number:3463.01

 Lab Number:
 L1405566

 Report Date:
 03/21/14

Alpha Sample ID

L1405566-01

Client ID SV2022/S Sample Location

POUGHKEEPSIE, NY

Collection Date/Time

03/12/14 14:17

Project Name:B/003 VAPOR EXTRACTIONProject Number:3463.01

 Lab Number:
 L1405566

 Report Date:
 03/21/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: B/003 VAPOR EXTRACTION Project Number: 3463.01
 Lab Number:
 L1405566

 Report Date:
 03/21/14

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 25, 2014. The canister certification results are provided as an addendum.

Sample L1405566-01: Prior to sample analysis, the canister was pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 03/21/14

AIR

Project Name:	B/003 VAPOR EXTRACTION
Project Number:	3463.01

 Lab Number:
 L1405566

 Report Date:
 03/21/14

SAMPLE RESULTS

Lab ID:	L1405566-01 D	Date Collected:	03/12/14 14:17
Client ID:	SV2022/S	Date Received:	03/12/14
Sample Location:	POUGHKEEPSIE, NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	03/21/14 02:12		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	N - Mansfield Lab							
Vinyl chloride	ND	0.050		ND	0.128			2.504
Chloroethane	ND	0.050		ND	0.132			2.504
1,1-Dichloroethene	ND	0.050		ND	0.199			2.504
trans-1,2-Dichloroethene	0.055	0.050		0.218	0.199			2.504
1,1-Dichloroethane	0.083	0.050		0.334	0.203			2.504
cis-1,2-Dichloroethene	0.488	0.050		1.93	0.199			2.504
Trichloroethene	80.0	0.050		430	0.269			2.504
Tetrachloroethene	2.19	0.050		14.9	0.340			2.504

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	114		60-140
chlorobenzene-d5	99		60-140

03/21/14

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 03/20/14 13:45

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab f	or sample	(s): 01 E	Batch: WG6	76797-4			
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Batch Quality Control

Project Number: 3463.01

Lab Number: L1405566 Report Date: 03/21/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG676797-3 Propylene 127 70-130 25 --Dichlorodifluoromethane 107 70-130 25 --Chloromethane 70-130 25 111 --25 1,2-Dichloro-1,1,2,2-tetrafluoroethane 119 -70-130 -Vinyl chloride 117 70-130 25 --1.3-Butadiene 70-130 25 129 --25 Bromomethane 119 70-130 --Chloroethane 115 70-130 25 --Ethyl Alcohol 70-130 25 115 --Vinyl bromide 123 70-130 25 --116 70-130 25 Acetone --Trichlorofluoromethane 119 70-130 25 -iso-Propyl Alcohol 130 70-130 25 --108 70-130 25 Acrylonitrile --1,1-Dichloroethene 70-130 25 114 --Methylene chloride 107 70-130 25 --3-Chloropropene 117 70-130 25 --Carbon disulfide 111 70-130 25 --1,1,2-Trichloro-1,2,2-Trifluoroethane 70-130 25 115 --Halothane 108 70-130 25 -trans-1.2-Dichloroethene 106 70-130 25 --

Batch Quality Control

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number: L1405566 Report Date: 03/21/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG676797-3 1,1-Dichloroethane 110 70-130 25 --Methyl tert butyl ether 115 70-130 25 --Vinyl acetate Q 70-130 25 138 --25 70-130 2-Butanone 100 -cis-1.2-Dichloroethene 114 70-130 25 --Ethyl Acetate 70-130 25 112 --25 Chloroform 100 70-130 --Tetrahydrofuran 125 70-130 25 --1.2-Dichloroethane 70-130 25 118 _ -70-130 25 n-Hexane 78 --1,1,1-Trichloroethane 97 70-130 25 --Benzene 95 70-130 25 --Carbon tetrachloride 98 70-130 25 --Cyclohexane 70-130 25 97 --70-130 25 1,2-Dichloropropane 98 --Bromodichloromethane 70-130 25 98 --1,4-Dioxane 101 70-130 25 --70-130 25 Trichloroethene 100 --2,2,4-Trimethylpentane 70-130 25 98 --108 70-130 25 cis-1,3-Dichloropropene --4-Methyl-2-pentanone 108 70-130 25 --

Batch Quality Control

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number: L1405566 Report Date: 03/21/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG676797-3 trans-1,3-Dichloropropene 96 70-130 25 --1,1,2-Trichloroethane 101 70-130 25 --Toluene 104 70-130 25 --25 70-130 2-Hexanone 117 --Dibromochloromethane 103 70-130 25 --1,2-Dibromoethane 70-130 25 109 --25 Tetrachloroethene 106 70-130 --1,1,1,2-Tetrachloroethane 101 70-130 25 --Chlorobenzene 70-130 25 106 --Ethylbenzene 70-130 25 107 --108 70-130 25 p/m-Xylene --Bromoform 99 70-130 25 --Styrene 70-130 25 117 --1.1.2.2-Tetrachloroethane 106 70-130 25 -o-Xylene 70-130 25 107 --Isopropylbenzene 105 70-130 25 --4-Ethyltoluene 102 70-130 25 --1,3,5-Trimethylbenzene 70-130 25 108 --1,2,4-Trimethylbenzene 70-130 25 111 --Benzyl chloride 102 70-130 25 --1.3-Dichlorobenzene 113 70-130 25 --

Batch Quality Control

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number: L1405566 Report Date: 03/21/14

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG676797-3 1,4-Dichlorobenzene 109 70-130 25 --70-130 25 sec-Butylbenzene 105 -p-Isopropyltoluene 100 70-130 25 --1,2-Dichlorobenzene 70-130 25 111 -n-Butylbenzene 112 70-130 25 --1,2,4-Trichlorobenzene 127 70-130 25 --70-130 25 Naphthalene 121 --1,2,3-Trichlorobenzene 122 70-130 25 --Hexachlorobutadiene 117 70-130 25 _ -

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	96				70-130	
Toluene-d8	104				70-130	
Bromofluorobenzene	104				70-130	

Project Name: **B/003 VAPOR EXTRACTION**

Project Number: 3463.01

Lab Number: L1405566 03/21/14 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
blatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG676797-	5 QC Sa	mple: L14053	38-01 C	ient ID: DUP Sample
Dichlorodifluoromethane	0.501	0.637	ppbV	24		25
Chloromethane	0.595	0.619	ppbV	4		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	0.130	0.131	ppbV	1		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	0.031	0.034	ppbV	9		25
Ethyl Alcohol	1200E	1240E	ppbV	3		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	9.38	9.62	ppbV	3		25
Trichlorofluoromethane	3.49	3.62	ppbV	4		25
iso-Propyl Alcohol	50.3E	51.7E	ppbV	3		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
Methylene chloride	24.1	24.9	ppbV	3		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.063	0.066	ppbV	5		25
trans-1,2-Dichloroethene	0.274	0.317	ppbV	15		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number:

 Lab Number:
 L1405566

 Report Date:
 03/21/14

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG676797-	5 QC Sampl	le: L1405338	3-01 Client ID: DUP Sample
Methyl tert butyl ether	ND	ND	ppbV	NC	25
2-Butanone	5.28	5.36	ppbV	2	25
cis-1,2-Dichloroethene	0.060	0.062	ppbV	3	25
Ethyl Acetate	4.38	4.52	ppbV	3	25
Chloroform	0.100	0.104	ppbV	4	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	0.335	0.307	ppbV	9	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	0.392	0.356	ppbV	10	25
Carbon tetrachloride	0.076	0.071	ppbV	7	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	0.322	0.298	ppbV	8	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	0.575	0.526	ppbV	9	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

 Lab Number:
 L1405566

 Report Date:
 03/21/14

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
platile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG676797-5	QC Sample:	L1405338-01	Client ID: DUP Sample
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	1.81	1.76	ppbV	3	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	0.056	0.054	ppbV	4	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	0.318	0.311	ppbV	2	25
p/m-Xylene	1.20	1.18	ppbV	2	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	0.081	0.081	ppbV	0	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	0.493	0.478	ppbV	3	25
4-Ethyltoluene	0.051	0.049	ppbV	4	25
1,3,5-Trimethylbenzene	0.060	0.060	ppbV	0	25
1,2,4-Trimethylbenzene	0.192	0.187	ppbV	3	25
Benzyl chloride	ND	ND	ppbV	NC	25

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number:

 Lab Number:
 L1405566

 Report Date:
 03/21/14

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
/olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG676797-	5 QC Sample:	L1405338-0	1 Client ID: DUP Sample
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG676797-	5 QC Sample:	L1405338-0	1 Client ID: DUP Sample
Ethyl Alcohol	1340	1370	ppbV	13	25
iso-Propyl Alcohol	45.6	47.1	ppbV	7	25

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Serial_No:03211414:17 Lab Number: L1405566

Report Date: 03/21/14

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1405566-01	SV2022/S	0524	SV200	02/25/14	98953		-	-	-	Pass	214	220	3
L1405566-01	SV2022/S	778	1.0L Can	02/25/14	98953	L1403274-01	Pass	-28.9	-3.9	-	-	-	-

		Serial_No:03	3211414:17
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1403274
Project Number:	CANISTER QC BAT	Report Date:	03/21/14
	Air Canister Certification Results		

Lab ID:	L1403274-01	Date Collected:	02/11/14 17:04
Client ID:	CAN 778 SHELF 8	Date Received:	02/12/14
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	02/12/14 16:13		
Analyst:	MB		

		ррьV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1403274 Report Date: 03/21/14

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	.F 8				Date Collected: Date Received: Field Prep: ug/m3			02/11/14 17:04 02/12/14 Not Specified	
Parameter		Results	ppbV RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	Air - Mansfield Lab								
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	9	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.200		ND	0.590			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1403274 Report Date: 03/21/14

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	ent ID: CAN 778 SHE			_F 8 ppbV			Collecte Receive Prep:	02/11/14 17:04 02/12/14 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	ug/m3 RL	MDL	Qualifie	F 4
Volatile Organics in A	Air - Mansfield Lab)							
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.200		ND	0.820			1
trans-1,3-Dichloroproper	ie	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1403274 Report Date: 03/21/14

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1403274-01 CAN 778 SHEL	_F 8				Date Collected: Date Received: Field Prep:			02/11/14 17:04 02/12/14 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in	Air - Mansfield Lab	1							
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

							Serial_	_No:0321	1414:17
Project Name:	BATCH CANIST	ER CERT	IFICATION	1		La	b Num	ber: L	.1403274
Project Number:	CANISTER QC E	ВАТ				Re	eport D	ate: 0	3/21/14
		Air Car	nister Ce	rtificati	on Results				
Lab ID:	L1403274-01					Date (Collecte	d:	02/11/14 17:04
Client ID:	CAN 778 SHEL	F 8				Date F	Receive	d:	02/12/14
Sample Location:						Field F	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	79		60-140
Bromochloromethane	84		60-140
chlorobenzene-d5	82		60-140

		Serial_No:03	3211414:17
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1403274
Project Number:	CANISTER QC BAT	Report Date:	03/21/14

Air Canister Certification Results

Lab ID:	L1403274-01	Date Collected:	02/11/14 17:04
Client ID:	CAN 778 SHELF 8	Date Received:	02/12/14
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/12/14 16:13		
Analyst:	MB		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1403274 Report Date: 03/21/14

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1403274-01 CAN 778 SHE	LF 8	_F 8			Date Collected: Date Received: Field Prep:			02/11/14 17:04 02/12/14 Not Specified	
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor	
Volatile Organics in A	Air by SIM - Mansi		RL	MDL	Nesuits	KL.	MDL	Quaime		
Bromodichloromethane		ND	0.020		ND	0.134			1	
1,4-Dioxane		ND	0.020		ND	0.134			1	
Trichloroethene		ND			ND				1	
cis-1,3-Dichloropropene			0.020			0.107				
4-Methyl-2-pentanone		ND	0.020		ND	0.091			1	
		ND	0.500		ND	2.05			1	
trans-1,3-Dichloroprope	ne	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1	
Toluene		ND	0.050		ND	0.188			1	
Dibromochloromethane		ND	0.020		ND	0.170			1	
1,2-Dibromoethane		ND	0.020		ND	0.154			1	
Tetrachloroethene		ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroetha	ne	ND	0.020		ND	0.137			1	
Chlorobenzene		ND	0.020		ND	0.092			1	
Ethylbenzene		ND	0.020		ND	0.087			1	
p/m-Xylene		ND	0.040		ND	0.174			1	
Bromoform		ND	0.020		ND	0.207			1	
Styrene		ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethai	ne	ND	0.020		ND	0.137			1	
o-Xylene		ND	0.020		ND	0.087			1	
Isopropylbenzene		ND	0.500		ND	2.46			1	
4-Ethyltoluene		ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1	
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1	
sec-Butylbenzene		ND	0.500		ND	2.74			1	
p-lsopropyltoluene		ND	0.500		ND	2.74			1	
1,2-Dichlorobenzene										
		ND	0.020		ND	0.120			1	

Serial_No:03211414:17 Lab Number: L1403274

Report Date: 03/21/14

Air Canister Certification Results

Dilution
Factor
1
1
1
1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	83		60-140

Project Name: Project Number	B/003 VAPOR EXTRACT 3463.01	ION					Lab Number: L1405566 Report Date: 03/21/14
	San	ple Rece	ipt an	d Conta	iner In	formation	
Were project spe	ecific reporting limits specifie	d?	Y	ES			
Reagent H2O P	reserved Vials Frozen on:	NA					
Cooler Informat	ion Custody Seal						
N/A	Absent						
Container Infor Container ID	mation Container Type	Cooler	рН	Temp deg C	Pres	Seal	Analysis(*)

N/A

Y Absent

N/A

Serial_No:03211414:17

TO15-SIM(30)

L1405566-01A

Canister - 1 Liter

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number: L1405566

Report Date: 03/21/14

Acronyms

GLOSSARY

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: Data Usability Report

Project Name: B/003 VAPOR EXTRACTION

Project Number: 3463.01

Lab Number: L1405566

Report Date: 03/21/14

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name:B/003 VAPOR EXTRACTIONProject Number:3463.01

 Lab Number:
 L1405566

 Report Date:
 03/21/14

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

						L1405560
	NALYSIS	AGE_2_OF2	Date Rec'd in Lab: 3/13/1	1	ALPHA Job #	21405229
320 Forbes Blvd, Mansfield, MA 02048	Project Information		Report Information - Data D	eliverables	Billing Informa	ation
TEL: 508-822-9300 FAX: 508-822-3288	Project Name: IBM-PC	r	□ FAX		Same as Client	info PO#: 3463,00
Client Information	Project Location: Poughle	DOSIE NY	ADEx Criteria Checker:			
Client: Sanborn Head + ASSOC	Project #: 3463.00		(Default based on Regulatory Crit	eria Indicated)		
Address: 20 Faundry St.	Project Manager: Jenn &	anborn	Other Formats:		Regulatory Re	quirements/Report Limits
Carrord MP 63361	ALPHA Quote #:		Additional Deliverables:		State/Fed P	rogram Criteria
Phone: 603-229-1900	Turn-Around Time		Report to: (if different than Project Manager)			
Fax:		confirmed il pre-approved!)				
Email: JSanborn@ Sanbornhead. con		continnea il pre-approveoi)		·	ANALYS	SIS
I hese samples have been previously analyzed by Alpha		Time:				
Other Project Specific Requirements/Comr		N ()		4	./////	' / /
*	Site-specific an	alyte list(3003)	LO LO	ES T	01
	olumns Below	v Must Be	Filled Out	Aby	S CA	
ALPHA Lab ID (Lab Use Only) Sample ID	Collecti Date Start Time End Time	Initial Final	Sample Sampler's Can I D Matrix* Initials Size Can	ID-Flow O Controller A	10.13 2011 55111 1 10.13 10.134	Sample Comments (i.e. PID)
- pri IDA7003/S	311114 11:52 18:14		AA HDE 2.7 236	374	X	
FD7003/S	311/14 11:52 18:14			491		
AA7001/S	3/11/14/12:05 20:34		334	445		
55V2022/G	3/12/14 14:12 14:17		···· ·····	524	X	
A second se						
1.11111111111111111111111111111111111						
4. 実施業(())、()、()、()、()、()、()、()、()、()、()、()、()						
						· · · · · · · · · · · · · · · · · · ·
anna <u>diananana</u> 1930 - Julia Balanan 1930 - Julia Balanan 1930 - Julia Dalaman						
n na sense sen na sense s						
*SAMPLE MATRIX CODES S	A = Ambient Air (Indoor/Outdoor) V = Soil Vapor/Landfill Gas/SVE ther = Please Specify	<u> </u>	Container Type		۷۲	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time
	Relinquished By:	Date/Time	Received By:	D	ate/Time:	clock will not start until any ambi-
Re		3 12 14 143	Stevel many	3/12/	14 14:38	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY
Form No: 101-02 (19-Jun-09)	Tall 1	37274182	S Jom Jacov	3-13-14	9 1825	ALPHA'S TERMS & CONDITIONS. (See reverse side.)

PILOT TEST SAMPLING

ANALYTICAL REPORT

Lab Number:	L1403575
Client:	Sanborn, Head & Associates, Inc.
	20 Foundry Street
	Concord, NH 03301
ATTN:	Seth Soos
Phone:	(603) 229-1900
Project Name:	IBM-POK
Project Number:	3463.00.206
Report Date:	02/21/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), PA (68-02089), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), DOD (L2217.01), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Lab Number:	L1403575
Report Date:	02/21/14

Project Name:	IBM-POK
Project Number:	3463.00.206

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1403575-01	EP2012/G	NY	02/03/14 14:20
L1403575-02	EP2010/G	NY	02/03/14 15:40
L1403575-03	EP2003/G	NY	02/03/14 19:20
L1403575-04	EP2004/G	NY	02/03/14 20:50
L1403575-05	EP2002/G	NY	02/04/14 10:20
L1403575-06	EP2008/G	NY	02/04/14 12:20
L1403575-07	EP2009/G	NY	02/04/14 13:40
L1403575-08	EP2007/G	NY	02/04/14 15:00
L1403575-09	EP2006/G	NY	02/04/14 16:05
L1403575-10	EP2011/G	NY	02/12/14 20:56
L1403575-11	EP2013/G	NY	02/12/14 21:55

Project Name: IBM-POK Project Number: 3463.00.206

Lab Number: L1403575 Report Date: 02/21/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:IBM-POKProject Number:3463.00.206

 Lab Number:
 L1403575

 Report Date:
 02/21/14

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 3, 2014. The canister certification results are provided as an addendum.

Samples L1403575-01 through -11: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

Samples L1403575-01 through -11 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

Samples L1403575-05 and -07 were diluted and re-analyzed to quantify the samples within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound that that exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 02/21/14

AIR

 Lab Number:
 L1403575

 Report Date:
 02/21/14

SAMPLE RESULTS

Lab ID:	L1403575-01 D	Date Collected:	02/03/14 14:20
Client ID:	EP2012/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 23:11		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	VI - Mansfield Lab							
Vinyl chloride	ND	2.84		ND	7.26			142.2
Chloroethane	ND	2.84		ND	7.49			142.2
1,1-Dichloroethene	ND	2.84		ND	11.3			142.2
trans-1,2-Dichloroethene	ND	2.84		ND	11.3			142.2
1,1-Dichloroethane	5.69	2.84		23.0	11.5			142.2
cis-1,2-Dichloroethene	65.0	2.84		258	11.3			142.2
Trichloroethene	5110	2.84		27500	15.3			142.2
Tetrachloroethene	135	2.84		915	19.3			142.2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	94		60-140

Project Name: IBM-POK Project Number: 3463.00.206

Lab ID:	L1403575-02 D	Date Collected:	02/03/14 15:40
Client ID:	EP2010/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 19:28		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	N - Mansfield Lab							
Vinyl chloride	ND	0.172		ND	0.440			8.626
Chloroethane	ND	0.172		ND	0.454			8.626
1,1-Dichloroethene	ND	0.172		ND	0.682			8.626
trans-1,2-Dichloroethene	ND	0.172		ND	0.682			8.626
1,1-Dichloroethane	ND	0.172		ND	0.696			8.626
cis-1,2-Dichloroethene	0.595	0.172		2.36	0.682			8.626
Trichloroethene	244	0.172		1310	0.924			8.626
Tetrachloroethene	1.81	0.172		12.3	1.17			8.626

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	99		60-140

Lab ID:	L1403575-03 D	Date Collected:	02/03/14 19:20
Client ID:	EP2003/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 20:32		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.162		ND	0.414			8.076
Chloroethane	ND	0.162		ND	0.427			8.076
1,1-Dichloroethene	ND	0.162		ND	0.642			8.076
trans-1,2-Dichloroethene	ND	0.162		ND	0.642			8.076
1,1-Dichloroethane	0.178	0.162		0.720	0.656			8.076
cis-1,2-Dichloroethene	0.743	0.162		2.95	0.642			8.076
Trichloroethene	264	0.162		1420	0.871			8.076
Tetrachloroethene	5.94	0.162		40.3	1.10			8.076

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

 Project Name:
 IBM-POK

 Project Number:
 3463.00.206

Lab ID:	L1403575-04 D	Date Collected:	02/03/14 20:50
Client ID:	EP2004/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 21:04		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	N - Mansfield Lab							
Vinyl chloride	ND	0.533		ND	1.36			26.67
Chloroethane	ND	0.533		ND	1.41			26.67
1,1-Dichloroethene	0.613	0.533		2.43	2.11			26.67
trans-1,2-Dichloroethene	0.880	0.533		3.49	2.11			26.67
1,1-Dichloroethane	1.55	0.533		6.27	2.16			26.67
cis-1,2-Dichloroethene	5.33	0.533		21.1	2.11			26.67
Trichloroethene	1010	0.533		5430	2.86			26.67
Tetrachloroethene	22.2	0.533		151	3.61			26.67

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

 Project Name:
 IBM-POK

 Project Number:
 3463.00.206

Lab ID:	L1403575-05 D	Date Collected:	02/04/14 10:20
Client ID:	EP2002/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 21:36		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results RL	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIN	/I - Mansfield Lab							
Vinyl chloride	ND	0.508		ND	1.30			25.38
Chloroethane	ND	0.508		ND	1.34			25.38
1,1-Dichloroethene	ND	0.508		ND	2.01			25.38
trans-1,2-Dichloroethene	ND	0.508		ND	2.01			25.38
1,1-Dichloroethane	ND	0.508		ND	2.06			25.38
cis-1,2-Dichloroethene	17.6	0.508		69.8	2.01			25.38
Trichloroethene	1360	0.508		7310	2.73		Е	25.38
Tetrachloroethene	10.8	0.508		73.2	3.44			25.38

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	90		60-140

Lab Number: Report Date:

L1403575

 Project Name:
 IBM-POK

 Project Number:
 3463.00.206

Lab ID:	L1403575-05 D2	Date Collected:	02/04/14 10:20
Client ID:	EP2002/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/20/14 09:19		
Analyst:	RY		
-			

		ppbV		ug/m3			Dil	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Trichloroethene	1120	1.02		6020	5.48			50.87

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	93		60-140

Lab ID:	L1403575-06 D	Date Collected:	02/04/14 12:20
Client ID:	EP2008/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 23:43		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIN	/I - Mansfield Lab							
Vinyl chloride	ND	4.94		ND	12.6			247.2
Chloroethane	ND	4.94		ND	13.0			247.2
1,1-Dichloroethene	ND	4.94		ND	19.6			247.2
trans-1,2-Dichloroethene	ND	4.94		ND	19.6			247.2
1,1-Dichloroethane	ND	4.94		ND	20.0			247.2
cis-1,2-Dichloroethene	12.4	4.94		49.2	19.6			247.2
Trichloroethene	7600	4.94		40800	26.5			247.2
Tetrachloroethene	5.44	4.94		36.9	33.5			247.2

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	92		60-140

Lab ID:	L1403575-07 D	Date Collected:	02/04/14 13:40
Client ID:	EP2009/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/20/14 00:15		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	M - Mansfield Lab							
Vinyl chloride	ND	23.6		ND	60.3			1181
Chloroethane	ND	23.6		ND	62.3			1181
1,1-Dichloroethene	ND	23.6		ND	93.6			1181
trans-1,2-Dichloroethene	ND	23.6		ND	93.6			1181
1,1-Dichloroethane	ND	23.6		ND	95.5			1181
cis-1,2-Dichloroethene	61.4	23.6		243	93.6			1181
Trichloroethene	82200	23.6		442000	127		Е	1181
Tetrachloroethene	27.2	23.6		184	160			1181

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	93		60-140

Lab Number: Report Date:

02/21/14

L1403575

Project Name: IBM-POK Project Number: 3463.00.206

Lab ID:	L1403575-07 D2	Date Collected:	02/04/14 13:40
Client ID:	EP2009/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/20/14 09:51		
Analyst:	RY		
-			

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Trichloroethene	82700	47.3		444000	254			2363

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Lab ID:	L1403575-08 D	Date Collected:	02/04/14 15:00
Client ID:	EP2007/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 22:08		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL I	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	/I - Mansfield Lab							
Vinyl chloride	ND	0.261		ND	0.667			13.03
Chloroethane	ND	0.261		ND	0.689			13.03
1,1-Dichloroethene	ND	0.261		ND	1.03			13.03
trans-1,2-Dichloroethene	ND	0.261		ND	1.03			13.03
1,1-Dichloroethane	ND	0.261		ND	1.06			13.03
cis-1,2-Dichloroethene	0.378	0.261		1.50	1.03			13.03
Trichloroethene	550	0.261		2960	1.40			13.03
Tetrachloroethene	2.71	0.261		18.4	1.77			13.03

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	93		60-140

Lab ID:	L1403575-09 D	Date Collected:	02/04/14 16:05
Client ID:	EP2006/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/20/14 00:47		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	1.50		ND	3.83			75.25
Chloroethane	ND	1.50		ND	3.96			75.25
1,1-Dichloroethene	ND	1.50		ND	5.95			75.25
trans-1,2-Dichloroethene	ND	1.50		ND	5.95			75.25
1,1-Dichloroethane	ND	1.50		ND	6.07			75.25
cis-1,2-Dichloroethene	3.46	1.50		13.7	5.95			75.25
Trichloroethene	1820	1.50		9780	8.06			75.25
Tetrachloroethene	6.92	1.50		46.9	10.2			75.25

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	93		60-140

Lab ID:	L1403575-10 D	Date Collected:	02/12/14 20:56
Client ID:	EP2011/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/20/14 01:19		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL I	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	1.42		ND	3.63			71.1
Chloroethane	ND	1.42		ND	3.75			71.1
1,1-Dichloroethene	ND	1.42		ND	5.63			71.1
trans-1,2-Dichloroethene	ND	1.42		ND	5.63			71.1
1,1-Dichloroethane	ND	1.42		ND	5.75			71.1
cis-1,2-Dichloroethene	4.83	1.42		19.2	5.63			71.1
Trichloroethene	1850	1.42		9940	7.63			71.1
Tetrachloroethene	5.62	1.42		38.1	9.63			71.1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	90		60-140

Lab ID:	L1403575-11 D	Date Collected:	02/12/14 21:55
Client ID:	EP2013/G	Date Received:	02/17/14
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	02/19/14 22:39		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Vinyl chloride	ND	0.252		ND	0.644			12.61
Chloroethane	ND	0.252		ND	0.665			12.61
1,1-Dichloroethene	ND	0.252		ND	0.999			12.61
trans-1,2-Dichloroethene	ND	0.252		ND	0.999			12.61
1,1-Dichloroethane	ND	0.252		ND	1.02			12.61
cis-1,2-Dichloroethene	1.03	0.252		4.08	0.999			12.61
Trichloroethene	449	0.252		2410	1.35			12.61
Tetrachloroethene	1.87	0.252		12.7	1.71			12.61

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 02/19/14 15:59

		ppbV			ug/m3		Qualifier	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air by SIM - N	lansfield Lab f	or sample	(s): 01-11	Batch: W	G671245	j -4		
Vinyl chloride	ND	0.020		ND	0.051			1
Chloroethane	ND	0.020		ND	0.053			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1403575 Report Date: 02/21/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield La	ab Associated sa	ample(s):	01-11 Batch: WO	671245-3				
Dichlorodifluoromethane	94		-		70-130	-		25
Chloromethane	90		-		70-130	-		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	99		-		70-130	-		25
Vinyl chloride	87		-		70-130	-		25
1,3-Butadiene	87		-		70-130	-		25
Bromomethane	92		-		70-130	-		25
Chloroethane	83		-		70-130	-		25
Acetone	112		-		70-130	-		25
Trichlorofluoromethane	113		-		70-130	-		25
Acrylonitrile	84		-		70-130	-		25
1,1-Dichloroethene	87		-		70-130	-		25
Methylene chloride	101		-		70-130	-		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	100		-		70-130	-		25
Halothane	101		-		70-130	-		25
trans-1,2-Dichloroethene	81		-		70-130	-		25
1,1-Dichloroethane	94		-		70-130	-		25
Methyl tert butyl ether	84		-		70-130	-		25
2-Butanone	82		-		70-130	-		25
cis-1,2-Dichloroethene	102		-		70-130	-		25
Chloroform	104		-		70-130	-		25
1,2-Dichloroethane	100		-		70-130	-		25

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1403575

 Report Date:
 02/21/14

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-11 Batch: WG671245-3 1,1,1-Trichloroethane 117 70-130 25 --Benzene 79 70-130 25 --Carbon tetrachloride 127 70-130 25 --25 70-130 1,2-Dichloropropane 100 --Bromodichloromethane 110 70-130 25 --1,4-Dioxane 70-130 25 87 --25 Trichloroethene 87 70-130 -cis-1,3-Dichloropropene 100 70-130 25 --4-Methyl-2-pentanone 70-130 25 97 _ -70-130 25 trans-1,3-Dichloropropene 90 --1,1,2-Trichloroethane 121 70-130 25 --Toluene 88 70-130 25 --Dibromochloromethane 105 70-130 25 --1.2-Dibromoethane 104 70-130 25 --Tetrachloroethene 70-130 25 99 --1.1.1.2-Tetrachloroethane 102 70-130 25 --Chlorobenzene 97 70-130 25 --70-130 25 Ethylbenzene 93 -p/m-Xylene 70-130 25 97 --Bromoform 106 70-130 25 --Styrene 95 70-130 25 --

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1403575 Report Date: 02/21/14

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated sa	ample(s): 01-11	Batch: WC	G671245-3					
1,1,2,2-Tetrachloroethane	112		-		70-130	-		25	
o-Xylene	98		-		70-130	-		25	
Isopropylbenzene	93		-		70-130	-		25	
4-Ethyltoluene	88		-		70-130	-		25	
1,3,5-Trimethylbenzene	102		-		70-130	-		25	
1,2,4-Trimethylbenzene	104		-		70-130	-		25	
1,3-Dichlorobenzene	107		-		70-130	-		25	
1,4-Dichlorobenzene	105		-		70-130	-		25	
sec-Butylbenzene	92		-		70-130	-		25	
p-Isopropyltoluene	89		-		70-130	-		25	
1,2-Dichlorobenzene	107		-		70-130	-		25	
n-Butylbenzene	96		-		70-130	-		25	
1,2,4-Trichlorobenzene	112		-		70-130	-		25	
Naphthalene	99		-		70-130	-		25	
1,2,3-Trichlorobenzene	102		-		70-130	-		25	
Hexachlorobutadiene	113		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: IBM-POK Project Number: 3463.00.206 Lab Number:

L1403575 02/21/14 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-11	QC Batch ID: WG67	1245-5 QC S	ample: L140	03575-02	Client ID: EP2010/0
Vinyl chloride	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	0.595	0.552	ppbV	7		25
Trichloroethene	244	236	ppbV	3		25
Tetrachloroethene	1.81	1.76	ppbV	3		25

Project Name: IBM-POK

Project Number: 3463.00.206

Serial_No:02211414:04 Lab Number: L1403575

Report Date: 02/21/14

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1403575-01	EP2012/G	679	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.5	-8.2	-	-	-	-
L1403575-02	EP2010/G	573	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.5	-5.5	-	-	-	-
L1403575-03	EP2003/G	733	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.5	-3.8	-	-	-	-
L1403575-04	EP2004/G	722	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.8	-6.5	-	-	-	-
L1403575-05	EP2002/G	670	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.6	-5.0	-	-	-	-
L1403575-06	EP2008/G	1498	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.5	-4.8	-	-	-	-
L1403575-07	EP2009/G	846	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.5	-2.9	-	-	-	-
L1403575-08	EP2007/G	715	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.5	-5.6	-	-	-	-
L1403575-09	EP2006/G	827	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.6	-8.2	-	-	-	-
L1403575-10	EP2011/G	799	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.8	-5.2	-	-	-	-
L1403575-11	EP2013/G	563	1.0L Can	02/03/14	98135	L1402221-02	Pass	-29.4	-6.0	-	-	-	-

		Serial_No:02	2211414:04
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1402221
Project Number:	CANISTER QC BAT	Report Date:	02/21/14
	Air Canister Certification Results		
Lab ID:	L 1402221-02	Date Collected:	01/27/14 19:45

	01/28/14
Client ID: CAN 776 SHELF 17 Date Received:	01/20/11
Sample Location: Field Prep:	Not Specified
Matrix: Air	
Anaytical Method: 48,TO-15	
Analytical Date: 01/29/14 18:17	
Analyst: RY	

	_	ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
I,1-Dichloroethene	ND	0.200		ND	0.793			1
Fertiary butyl Alcohol	ND	0.500		ND	1.52			1

Serial_No:02211414:04 Lab Number: L1402221

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1402221 Report Date: 02/21/14

Lab ID: Client ID: Sample Location:	L1402221-02 CAN 776 SHEL	_F 17	.F 17 ppbV				Collecte Receive Prep:		01/27/14 19:4 01/28/14 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	F 4
Volatile Organics in A	Air - Mansfield Lab)							
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene)	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.200		ND	0.590			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1402221 Report Date: 02/21/14

Lab ID: Client ID: Sample Location:	.F 17 ррьv				Date Collected: Date Received: Field Prep: ug/m3			01/27/14 19:4 01/28/14 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	F 4
Volatile Organics in A	vir - Mansfield Lab								
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.200		ND	0.820			1
trans-1,3-Dichloropropen	e	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethan	е	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Serial_No:02211414:04 Lab Number: L1402221

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1402221 Report Date: 02/21/14

Lab ID: Client ID: Sample Location:	L1402221-02 CAN 776 SHEL	_F 17					Collecte Receive Prep:		01/27/14 19:45 01/28/14 Not Specified
-			ppbV		Desults	ug/m3		Qualifia	Dilution Factor
Parameter	Air Manafield Lab	Results	RL	MDL	Results	RL	MDL	Qualifie	
Volatile Organics in	Ali - Mansheid Lab								
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
Cyclotrisiloxane, Hexamethyl-	1.0	NJ	ppbV		1

Parameter		Results	RL	MDL	Results	RL MD	L Qualifier	Factor
			ppbV			ug/m3	_	Dilution
Sample Location:						Field Prep:	:	Not Specified
Client ID:	CAN 776 SHEL	F 17				Date Rece	ived:	01/28/14
Lab ID:	L1402221-02					Date Colle	cted:	01/27/14 19:45
		Air Can	ister Ce	rtificatio	on Results			
Project Number:	CANISTER QC E	ЗАТ				Repor	t Date:	02/21/14
Project Name:	BATCH CANIST	ER CERTI	FICATION	l		Lab Nu	umber:	L1402221
						Ser	ial_No:022	11414:04

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	76		60-140
chlorobenzene-d5	91		60-140

		Serial_No:02	2211414:04
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1402221
Project Number:	CANISTER QC BAT	Report Date:	02/21/14
	Air Canister Certification Results		

Lab ID:	L1402221-02	Date Collected:	01/27/14 19:45
Client ID:	CAN 776 SHELF 17	Date Received:	01/28/14
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	01/29/14 18:17		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1402221 Report Date: 02/21/14

Lab ID: Client ID: Sample Location:	L1402221-02 CAN 776 SHE	LF 17				Date Field	Collecte Receive Prep:		01/27/14 19:4 01/28/14 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	Air by SIM - Mans			MDL	noouno		mee	quanto	
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ne	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethar	1e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
			-			-			

Report Date: 02/21/14

Lab ID: Client ID: Sample Location:	L1402221-02 CAN 776 SHEL	-F 17	ppbV				Collecte Receive Prep:		01/27/14 19:45 01/28/14 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air by SIM - Mansf	ield Lab							
n-Butylbenzene		ND	0.500		ND	2.74			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	76		60-140
chlorobenzene-d5	92		60-140

Lab Number: L1403575 Report Date: 02/21/14

Project Name: IBM-POK Project Number: 3463.00.206

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1403575-01A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-02A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-03A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-04A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-05A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-06A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-07A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-08A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-09A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-10A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)
L1403575-11A	Canister - 1 Liter	N/A	N/A		Y	Absent	TO15-SIM(30)

Project Name: IBM-POK

Project Number: 3463.00.206

Lab Number: L1403575

Report Date: 02/21/14

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

GLOSSARY

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: Data Usability Report

Project Name: IBM-POK

Project Number: 3463.00.206

Lab Number: L1403575 Report Date: 02/21/14

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: IBM-POK Project Number: 3463.00.206

 Lab Number:
 L1403575

 Report Date:
 02/21/14

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 11, 2013

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial No:02211414.04

	AIR A	NALY	SIS	P/	AGE	OF 2	Date R	tec'd in La	b: Z-17	- 14					L140	3575
	CHAIN OF CUSTODY	Project	Informatio	on			Repo	rt Inform	ation - Data	Deliver	ables	Billi	ng Inf	formati	ion	
320 Forbes Blvd, Ma TEL: 508-822-9300	FAX: 508-822-3288	Project N	ame: BN	-POK			D FA	х			-	Sa	ne as (Client in	fo PO #:	
Client Informatio	n		ocation:				- FAD	Ex Criteria Che	acker:							
Client: Sanbry	tead & Assoc.	Project #	3463	00.2	26			(Default base	ed on Regulatory	Criteria Indica	ted)					
Address: 20 FOU			lanager: S					Other Form IAIL (stand	nats: ard pdf repor	t)		Reg	ulator	ry Req	uirements	s/Report Limit
	NH 03301	ALPHA (ditional Del				State	/Fed	Pro	gram	Criteria
Phone: 603-2	29-1900	Turn-A	round Tim	e			Repor	t to: (if differen	t than Project Manag	er)						·
Fax:	······································	Y														
Email	ahbomhead.com	A Standa	ard 🖸	RUSH (only	confirmed if pre-a	pproved!)							ANA	LYSIS	5	
	ve been previously analyzed by Alpha	Date Du	e:		Time:								//	/ /	7.7	
Other Project S	pecific Requirements/Com				s						,			/ /	/ /	
	*	Sile-sp	ewfic	analy	fe W.	st (B	003)							s / /		
		•	nns B	<u> </u>	,				ut		1	C TO-15 -15 APH SIM	34.55		2	
				llecti		Final		Sampler's	I I		-144	1.15 S		74/1	/	
(Lab Use Only)	Sample ID		Start Time			Vacuum	Matrix*	Initials	Size Ca	Controll	_{sr} /2 /2			₹/ ≈ /₹	Sample Co	mments (i.e. PID
3575 - 21	2.00.0	2/3/14	14:20	Grab	-29	-8.5	1	REW	1 L 679) NA		X				
	EP 2010/G		15:40		-29.5	-6	SV	REM	57.	3 NA		X				
783	EP2003/G	2/3/14	19:20		-30	-4,5			73	3		X				
No	EP 2004 /G	2/3/14	20,50		-30	-7			72	2 /		X				
ے ہے	EP2002/6-	2/4/14	10:20		-29	-6			670			X				
			12:20		- 30	-5.5			149			X				
- 07			13:40		-30	-3,5			84			X				
- ði			15:00		-29.5				71			X				
- 6	EP2006/G	2/4/14			-30	-8.5			82			X				
to the second second The second se The second se The second	EP2011/G	2/12/14			- 30	-5,5			79			X				
*SAMPLI	E MATRIX CODES		nt Air (Indoor/ por/Landfill G e Specify		,				ontainer Type			cs		0	mpletely. S	early, legibly and amples can not be turnaround time
	Roa	Relinqu	ished By:	-		te/Time 4 <i>13</i> :(50	Recei	ived By:	2-	17-[]		e: 7-'0		ock will not s uities are res ubmitted are	tart until any ambi- olved. All samples subject to Alpha's
Faage: 3@-@f(39un-0	D9)	en	5		2-11-1	Y1514	SAK	2	X		2.17-1	4	1545		erms and Co ee reverse si	

													1		Ser	ial_N	lo:02211414	:04 — —
	AIR AI	NALY	SIS	Pł	AGE_2_	OF 2	Date Re	ec'd in La	b: Z-	17-1	14		A				#: L140:	
220 Earbos Blud		Project	Informati	on			Repor	t Inform	ation -	Data I	Delivera	bles		Billi	ng l	nforn	nation	
320 Forbes Blvd, Ma TEL: 508-822-9300	FAX: 508-822-3288	Project N	ame: IB	M-POK	<u> </u>		🗆 FAX	<					Y	(Sar	ne a	s Cliei	nt info PO #:	
Client Information	n		ocation:					Ex Criteria Che	ecker									
^{Client:} Sanborn	Head & Assoc.		3463		206			(Default base	d on Regu	latory Crit	eria Indicate	ed)	. –					
ddress: 20 Fr	bunden St		lanager: Se					Other Form AIL (stand	_	report)				Reg	ulat	ory F	Requirements	/Report Lin
Conci	ord, NH 03301	ALPHA (-	litional Del					S	State/	/Fed		Program	Criteria
Phone: 603 -	oundry St ord, NH 03301 415-1900	Turn-A	round Tin	ne			Report	to: (if different	t than Projec	t Manager)			-					
ax:													·					
Email: SSOOSC	2 Sanbornhead.com	Standa	nd 🗆	RUSH (only o	confirmed if pre-a	oproved!)									AN	IALY	SIS	
	e been previously analyzed by Alpha	Date Du	e:		Time:									/ .		/ /		
	pecific Requirements/Com	ments:			·		<u> </u>						/	/ /		' /		
		*	Site-s	specific	anal	دا مان	t (B	(200				,	¹ 0.15					
-						<u> </u>							2/	*		1SES	2-10	
		olun	nns E	llecti		st Be		ed O	ut		ł	446	2	28	00	3 8	L'i	
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	Start Time		Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	I D Can	ID-Flow Controller		10.15 7 10.1	Har	FIXE	TO-134	Sample Cor	nments (i.e. P
575 _11	EP2013/6		21:55				SY	REW	11_	563	NA		X					
													-					
				- 														
																_		
														+	-			
			<u> </u>			 								+		_		
														-				
											· · · · · · · · · · · · · · · · · · ·							
*SAMPLE	MATRIX CODES S		nt Air (Indoor por/Landfill (e Specify		4 ³ - 11 - 12 - 13	e e e e e e e e e e e e e e e e e e e	. 18 ⁴	c	ontaine	r Type			cs				Please print clear completely. Sam	les can not be
		Relinqui	shed By:		Dat	e/Time		Recei	ved p y:				Date	/Time	э:		clock will not start guities are resolve	until any ambi-
	Res	mi 1			2/17/1	4 13:0	S Of	ton	Je -	Ŷ	7-17-	Ŋ	1	3/0	25	5	THIS COC, THE	LIENT HAS REA
ັດສອງ No: 101-02 (19-ມມາ-0)	Ste	m		2	11-14	1 16 2	p.		\geq			z-17-	14	15	545)	_ ALPHA'S TERMS	

For No: 10102 (19-10)