

SITE CHARACTERIZATION REPORT

Best-DDK Cleaners 38-68 13th Street, Long Island City, New York

Site Number 241126

Prepared For:

Mr. Jae Moon and Ms. Maryuhn Young Moon 38-68 13th Street Long Island City, New York

Prepared By:

Genesis Engineering & Redevelopment, Inc. 69-49 185th Street Fresh Meadows, New York 11365

March 9, 2012

Thomas L. deArth
Principal

Kenneth P. Wenz, Jr., CPG, PG, LEP Senior Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.2	Report Organization	2
	.1 Site Description and History	
	.2 Surrounding Area	
2.0	SCOPE OF WORK	. 6
	Pre-sampling Activities	
	Temporary Well Installation and Groundwater Sampling	7
2.6 2.7	Community Air Monitoring Plan Sample Handling and Laboratory Analysis Investigation-Derived Waste Data Review and Reporting	11 11
3.0	FINDINGS	13
	C	13 13
4.0	CONCLUSIONS AND RECOMMENDATIONS	15
	Conclusions	

TABLE OF CONTENTS (Continued)

FIGURES

- 1 Site Location Map
- 2 Site Vicinity Map
- 3 Historic Sampling Locations and Groundwater Sample Results
- 4 Sample Locations
- 5 Groundwater Elevation Contour Map
- 6 Historic and Current Sample Results
- 7 Soil Vapor Results Summary

TABLES

- 1 Summary of Historic Groundwater Data
- 2 Temporary Well Specification Summary
- 3 Soil Vapor Sample Purge Measurements
- 4 Soil Vapor Sample Measurement Summary
- 5 Sample Summary
- 6 Sampling Rationale
- 7 Groundwater Sample Analytical Results
- 8 Soil Vapor and Ambient Air Analytical Results

APPENDICES

- A Field Notes
- B Soil Boring Logs
- C Temporary Well Survey Information
- D Field Sampling Forms
- E Laboratory Data Sheets
- F Data Usability Summary Report

CERTIFICATION

I, Kenneth P. Wenz, Jr., certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Site Characterization Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Kenneth P. Wenz, Jr., CPG, PG, LEP

Kenneth P. Went J

March 9, 2012

Date

1.0 INTRODUCTION

This Site Characterization Report ("SC Report") was prepared on behalf of Mr. Jay Moon and Ms. Maryuhn Young Moon ("Owners") to fulfill the requirements of the Order on Consent and Administrative Settlement for Site Number 241126, dated November 22, 2010 ("Order on Consent"). The Order on Consent was executed between the Owners and the New York State Department of Environmental Conservation ("NYSDEC"), regarding the property located at 38-68 13th Street, Queens, New York ("Site"). This SC Report documents the results of a subsurface environmental investigation at the Site that was conducted in January and February 2012 to assess whether historic Site operations have impacted the quality of soil, groundwater, and/or soil vapor beneath the Site. The field investigation was conducted in accordance with the Site Characterization Work Plan ("Work Plan"), which was approved by the NYSDEC in a letter dated December 22, 2011. The Site location is shown on Figures 1 and 2.

1.1 Report Organization

The SC Report includes is divided into four sections:

- 1. Section 1.0 Introduction;
- 2. Section 2.0 Scope of Work A description of the sampling program that was implemented at the Site, including the sampling and analytical procedures that were used; and
- 3. Section 3.0 Findings The findings of the site characterization investigation program, including results of laboratory analyses; and
- 4. Section 4.0 Conclusions and Recommendations.

In addition, the following Appendices are included as a part of the SC Report:

Appendix A – $Field\ Notes$ – The field notes for the project;

Appendix B – *Soil Boring Logs* – The geologic information obtained from soil sampling conducted at temporary wells GER-1 and GER-2;

Appendix C – *Temporary Well Survey Information* – The top of casing and ground surface elevation information for the three temporary wells;

Appendix D – *Field Sampling Forms* – Field information during groundwater and air sampling activities;

Appendix E – *Laboratory Data Sheets* – The Form I sheets from the laboratory data packages for the project (the complete Analytical Services Protocol Category B data packages have been submitted separately in electronic format);

Appendix F – *Data Usability Summary Report* – The results of the independent data validation process.

1.2 Field Investigation Objective

The objective of the field investigation was to provide data to determine whether the relatively low levels of volatile organic compounds ("VOC") that were previously detected in groundwater immediately adjacent to the Site, are the result of Site operations. The scope of work that was designed and implemented to meet this objective included collection of soil samples, collection and laboratory analysis of groundwater samples, and collection and laboratory analysis of ambient air and sub-slab soil vapor samples. In addition, the localized groundwater flow direction was determined using surveyed temporary monitoring wells.

1.3 Background Information

The information in this section is a summary of previous environmental activities at the Site, based on review of documents provided to GE&R, which are assumed to be complete and factual. However, no assessment of the completeness or accuracy of the provided information has been made.

1.3.1 Site Description and History

The Site is located at 38-68 13th Street in Long Island City, New York, and includes property identified on the Queens tax map as Block 472, Lot 683. The Site is a 0.12-acre industrial property containing a 5,053 square foot building that has been used as a dry cleaning business since approximately 1996 (and has always used closed-loop, fourth-generation dry cleaning machinery). Prior to this time, the building was reportedly used for sheet metal fabrication (since the 1950s), and prior to that the Site was residential (from the 1890s).

The Site building is currently utilized for wet laundry and dry cleaning operations, which at present uses three dry cleaning machines, all located in rear-central portion of the building. According to information provided by the building owner and current occupant,

tetrachloroethene ("PCE") has never been stored at the Site, but has been brought to the Site and added to the dry cleaning machines by an outside vendor when needed. In addition, hazardous wastes generated by the dry cleaning process have always been removed from the Site by an outside vendor (Safety-Kleen from 1996 through 2004 and from 2008 through the present, and National Waste Clean, Inc. between 2004 and 2008). No floor drains were observed in the building during the April 20, 2011 Site inspection or the 2012 field program, but substantial cracking of the foundation was apparent on the main floor of the building.

According to the Phase I Environmental Site Assessment ("ESA") Report prepared in December 2004, the one-story building at the Site was built in 1953, and is constructed with brick or concrete block walls, a flat roof and a concrete slab foundation. The building covers the entire property, with the exception of a very small strip along 13th Street. During the Site inspection on April 20, 2011, it was noted that this strip was less than one foot wide, concrete-covered, and adjacent to the sidewalk along 13th Street. This report notes that there is partial basement under the eastern portion of the building, which can only be accessed from the sidewalk, via a near-vertical stairway. The basement area has a concrete floor throughout and contains a gas-fired boiler and an air compressor, as well as utility services (water, natural gas, and sanitary sewer). The sanitary sewer discharge pipe connects to the municipal sanitary sewer system that runs along 13th Street.

The Site elevation is approximately 15 feet above sea level and is relatively flat, as is the surrounding area. No storm drains were observed at the Site, but storm sewers are present along 13th Street. The Site is served by public utilities and the East River is located approximately 1,800 feet west of the Site. According to a June 2009 subsurface investigation report (see Section 1.3.2), brick fragments and gravel are present below the sidewalk to a depth of two feet. This material is underlain by brown, fine to medium sand to a depth of four feet, then brown to dark brown, fine silty sand to ten feet below grade (the terminal depth of the borings). According to the NYSDEC, bedrock outcrops are present in the Site vicinity, but bedrock was not observed during the April 20, 2011 Site inspection. During the February 2012 field investigation, bedrock was encountered in boring GER-2 at a depth of approximately 26.8 feet below grade (see Section 3.0).

In 2009, groundwater at the Site was reported to be encountered at seven to eight feet below grade (in 2012, groundwater was identified in GER-1 and GER-2 at approximately 10.5 feet below grade). Based on review of U.S. Geological Survey reports and the topography in the Site vicinity, it is expected that groundwater flow is toward the East River (a westerly flow direction was confirmed during the February 2012 field investigation).

1.3.2 Surrounding Area

The area surrounding the Site is occupied by various commercial/industrial establishments. The Queensbridge Houses, a public housing complex, is located approximately 700 feet south of the Site (on the south side of 40th Avenue), a public school (PS 111) is located approximately 1,200 feet north of the Site (on 13th Street north of 38th Avenue), and a private school (St. Rita's School) is located approximately 1,800 feet north of the Site (on 36th Avenue).

Immediately across 13th Street (upgradient) from the Site is a Pep Boys automobile repair facility. According to information from the facility manager (as reported by the Owner), the Pep Boys building was constructed in 1998 or 1999, on a previously-vacant lot with substantial illegal dumping. In addition, several other auto repair and/or auto body shops are located on 13th Street northeast of the Site, and along 21st Street, located southeast and east of the Site.

1.3.3 Previous Environmental Investigations

According to a December 2010 draft site characterization work plan (that was prepared by others), three soil vapor samples were collected from beneath the building foundation in July 2008. These samples reportedly contained PCE at concentrations ranging from 3,750 micrograms per cubic meter (" μ g/m³") to 8,270 μ g/m³ and trichloroethene ("TCE") at concentrations ranging from 11 μ g/m³ to 70.4 μ g/m³. Since the locations of these samples were not provided and no reference to these samples was found in any other document provided to GE&R, the validity of these data is questionable.

In June 2009, two soil probes were advanced through the sidewalk along 13th Street, in front of the Site (these locations, SB-1 and SB-2, are shown on Figure 3), and one groundwater sample was collected for laboratory analysis at each location. As shown in Table 1 and on Figure 3, PCE and cis-1,2-dichloroethene ("cis-1,2-DCE") were detected in both samples, and the sample from SB-2 also contained TCE. PCE has historically been used as a dry cleaning solvent, and TCE and cis-1,2-DCE are breakdown products of PCE. However, all three VOC are used as degreasing agents in industries other than dry cleaning. Both PCE concentrations and the cis-1,2-DCE concentration in the sample from SB-2 exceeded the New York State Class GA standards for these constituents.

Based on these results, the NYSDEC opened Spill Case Number 09-13336, even though a release from the Site was not documented. Correspondence from the NYSDEC dated March 29, 2010 required that the Owners submit a work plan to determine the groundwater flow

direction and delineate soil and groundwater impacts, as well as submit a Phase I ESA Report for the Site.

In November 2010, the Order on Consent was executed, and a draft site characterization work plan was submitted to the NYSDEC on behalf of the Owners in December 2010. In correspondence dated January 18, 2011, the NYSDEC rejected that work plan and required submittal of a revised work plan within 60 days. GE&R was subsequently contracted by the Owners, and a site characterization work plan was submitted to the NYSDEC on April 22, 2011. Based on comments received from the NYSDEC, a revised work plan was submitted on October 28, 2011. Approval of the Work Plan was received from the NYSDEC in a letter dated December 22, 2011.

In January 2011, three groundwater samples were collected at the property immediately northwest of the Site, as part of a property transaction investigation. As shown in Table 1 and on Figure 3, chloroform was detected in each of the samples, and cis-1,2-DCE and vinyl chloride were each detected in one sample.

Table 1. Summary of Historic Groundwater Data

Sample	Sample Date	Location	PCE (μg/l)	ΤCE (μg/l)	cis-1,2- DCE (μg/l)	Chloroform (µg/l)	Vinyl Chloride (μg/l)
SB-1	6/2/09	Site	9.8	< 1.0	4.4	< 1.0	< 1.0
SB-2	6/2/09	Site	25.6	3.1	62.7	< 1.0	< 1.0
GW-1	1/3/11	NW property	< 1.0	< 1.0	< 1.0	2.6	< 1.0
GW-2	1/3/11	NW property	< 1.0	< 1.0	5.3	2.6	1.7
GW-3	1/3/11	NW property	< 1.0	< 1.0	< 1.0	5.5	< 1.0

Note: Only detected compounds reported in Table.

2.0 SCOPE OF WORK

As approved by the NYSDEC, the scope of work for the Site Characterization program included soil characterization (and contingent laboratory analysis of soil samples) and determination of the depth to bedrock at one exterior location, installation of temporary monitoring wells at three exterior locations, assessment of Site-specific groundwater flow direction, collection and laboratory analysis of groundwater samples at three exterior locations, collection and laboratory analysis of sub-slab soil vapor samples at five interior locations, and collection and laboratory analysis of one exterior ambient air sample. The sample locations utilized during the field investigation are shown on Figure 4. Geophysical screening of the proposed sample locations was conducted on January 31, 2012, and the field program at the Site was implemented on February 8, 2012. The specific procedures associated with each of these activities are described below.

2.1 Pre-sampling Activities

Prior to initiation of the sampling program, GE&R's drilling subcontractor (Eastern Environmental Solutions, Inc., of Manorville, New York) contacted the One Call Center to request that subsurface utilities in the Site vicinity be marked, and submitted sidewalk use permit applications to the New York City Department of Transportation. Because of construction that closed the sidewalk at the planned location of temporary well GER-3, this well was relocated to the opposite side of 12th Street, and a new permit application was filed and approved.

On January 31, 2012, each of the soil vapor and temporary well locations was screened using a geophysical survey (magnetics and ground-penetrating radar) to identify any subsurface utilities or other obstructions that could impact the successful completion of the sampling program as proposed. These activities were conducted by NAEVA Geophysics of Congers, New York. No obstructions were identified at any of the planned sample locations.

2.2 Soil Sampling

Soil samples were collected at drilling locations GER-1 and GER-2, using the direct push method. At each location, the direct push rig was used to cut through the sidewalk, and the subsurface material was removed to a depth of five feet using a hand auger, to verify the absence of subsurface utilities. Soil samples were then collected, using new, dedicated disposable acetate sleeves, continuously from five feet below grade to the water table (GER-1) or to bedrock (GER-2). Upon retrieval, each sleeve was opened and the soil within scanned for total VOC using a photoionization detector ("PID") and geologically described using the Unified Soil Classification System, including documentation of observations regarding potential contamination such as odors, staining, etc. All descriptions and

observations were documented in a field notebook. Field notes are included in Appendix A and the soil boring logs are included in Appendix B.

The approved Work Plan included contingent soil sampling for laboratory analysis if elevated PID readings (relative to background) were detected in any of the unsaturated soil characterization samples. However, since PID readings for all soil samples were 0.0 parts per million, no soil samples were submitted for laboratory analysis.

2.3 Temporary Well Installation and Groundwater Sampling

As shown on Figure 4, one temporary well was located in the sidewalk on the west side of 12th Street, downgradient of the Site, and two temporary wells were located in the sidewalk on the western side of 13th Street, immediately outside of the Site. The temporary wells were installed using the direct push method, using 1-inch diameter PVC, with ten feet of screen installed to a depth of 18 feet below grade (approximately eight feet below the water table grade). Each temporary well was developed to establish a good connection between the well and the surrounding formation, by agitation using a check valve and new, dedicated tubing. Development water was contained for subsequent proper disposal. The temporary well specifications are summarized in Table 2.

Following completion of development at each temporary well, a New York State-licensed surveyor (Municipal Land Survey, PC of Middle Island, New York) measured the top of casing and ground surface elevations at each well location, relative to a common random datum established at the step for the door at the northeastern end of the Site building. The surveyor's report is included as Appendix C.

Table 2. Temporary Well Specification Summary

Well	Screen Zone ¹	Development Volume	Ground Surface Elevation ²	Ground Surface Elevation ²	Depth to Groundwater ³	Groundwater Elevation ²
GER-1	8-18	5 gallons	98.86	100.88	10.08	90.80
GER-2	8-18	8.5 gallons	98.97	100.93	10.12	90.81
GER-3	8-18	8 gallons	100.50	101.39	10.65	90.74

¹ Feet below grade.

² Feet relative to a common random datum established as 100.00 feet.

³ Feet below top of casing, after completion of development.

The depth to groundwater in each well was measured using an electronic water level indicator. As shown in Table 2, these measurements were used in conjunction with the top of casing elevations to calculate the groundwater elevation at each well location, to allow determination of the groundwater flow direction at the Site.

One groundwater sample was then collected from each temporary well. Purging and sampling were conducted in accordance with the U.S. Environmental Protection Agency ("USEPA") guidance document entitled, "Low Stress (Low Flow) Purging and Sampling Procedure for Collection of Groundwater Samples from Monitoring Wells", revised January 19, 2010. Because of the small diameter of the temporary wells, purging and sampling was conducted using a peristaltic pump and new dedicated Teflon-lined tubing. Samples were collected directly from the tubing into laboratory-supplied sample containers, which were immediately placed into an iced cooler for subsequent transport to the laboratory under chain-of-custody procedures. The purge water was collected for subsequent proper disposal with the development water. Purge parameters are summarized in the field forms contained in Appendix D.

Each groundwater sample was submitted to Alpha Analytical of Mahwah, New Jersey for analysis of VOC, using Method 8260B with a New York State Analytical Services Protocol ("ASP") Category B data package. Alpha Analytical is approved under the New York State Department of Health ("NYSDOH") Environmental Laboratory Approval Program ("ELAP") for the analyses performed. Quality assurance/quality control ("QA/QC") samples included one blind duplicate sample (collected from GER-2), one MS/MSD sample set (collected from GER-1), and one trip blank. Since dedicated equipment was utilized for sample collection, field blanks were not collected during this program.

Following completion of sampling at each location, the temporary wells were removed and each probe hole was backfilled with excess soil cuttings, clean sand, and/or cement/bentonite grout, and the sidewalk was restored with concrete.

2.4 Sub-slab Soil Vapor and Ambient Air Sampling

The five interior soil vapor samples were collected from temporary, sub-slab sample points in accordance with the NYSDOH document entitled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006. As shown on Figure 4, sample GER-SV5 was collected below the basement floor. At each location, a portable core drill was used to penetrate the concrete foundation for manual installation of the soil vapor sampling probe, which was comprised of a new, 6-inch stainless steel screen connected to 0.25-inch inside diameter Teflon tubing. For probes GER-SV1 through GER-SV4, the screen was installed from two to eight inches below the building foundation. The screen and

tubing was surrounded by glass beads to the bottom of the foundation, and the tubing was sealed to the foundation with bentonite. At location GER-SV5, groundwater was encountered at a depth of approximately 8 inches below the bottom of the foundation. As a result, this screen was installed to a depth of 5 inches below the foundation. All probes were installed by Eastern under GE&R supervision.

Prior to sampling, the ambient temperature and atmospheric pressure were recorded at each location. An overturned plastic container was sealed to the floor over the sample location, with the Teflon tubing penetrating the container wall. Helium was introduced into the container, the helium concentration within the container was measured using a helium detector and recorded, and the sample tubing was purged for three minutes, using an air sampling pump pre-set to a rate of 0.2 liters per minute. After purging, the air pump discharge was collected in a Tedlar® bag. The concentrations of total VOC and helium in the bag were measured using a PID and helium detector, respectively, and recorded. These readings are summarized in Table 3 (Note: As a result of elevated helium concentrations in several of the bag samples, as shown in Table 3, the ambient helium concentration was also measured, for comparison), as well as in the field sampling form in Appendix D.

After purging, the container was removed and the sample tubing was connected to a laboratory-supplied, pre-evacuated Summa canister equipped with a regulator calibrated to provide a 4-hour sample period (the serial numbers of each canister and regulator are included in the field sampling form in Appendix D). The ambient air temperature and atmospheric pressure at the sample location were measured and recorded, the canister valve was opened for sample collection, and the initial canister vacuum was recorded. These readings are summarized in Table 4 and in the field form in Appendix D.

Table 3. Soil Vapor Sample Purge Measurements

Sample Location	Helium in Container	Helium in Ambient Air	Helium in Sample Tubing After Purging	Total VOC in Ambient Air	Total VOC in Sample Tubing After Purging
GER-SV1	999,999	246	252	0.0	0.1
GER-SV2	535,000	880	580	0.0	0.4
GER-SV3	999,999	540	560	0.0	0.2
GER-SV4	999,999	2,020	1,510	0.3	3.5
GER-SV5	999,999	1,352	1,403	0.1	0.6

Helium and total VOC measurements are in parts per million.

Table 4. Soil Vapor Sample Measurement Summary

Comple			Start		End			
Sample Location	Time	Temp. 1	Atm. Pressure ²	Canister Pressure ³	Time	Temp. 1	Atm. Pressure ²	Canister Pressure ³
GER-SV1	09:30	63	30.45	-30.09	14:00	64	30.42	-5.36
GER-SV2	09:45	67	30.45	-30.53	13:55	61	30.42	-5.26
GER-SV3	10:00	74	30.57	-30.43	14:10	64	30.45	-5.93
GER-SV4	09:00	55	30.46	-30.30	13:17	61	300.42	-5.51
GER-SV5	10:15	58	30.57	-28.25	14:15	56	30.42	-3.87

¹ Ambient air temperature at sample location, in degrees Fahrenheit.

The ambient air sample was collected from an outdoor location adjacent to the basement access hatch in the sidewalk, and was also collected over a 4-hour period. The results from the ambient air sample were used in comparison to the sub-slab soil vapor samples. Since the Site is currently used as an active dry cleaner, indoor air sampling was not conducted during this program.

Upon completion of sampling, the final canister vacuum was recorded, the canister valve was closed, and the sampling apparatus was disassembled. At locations GER-SV1, GER-SV2, and GER-SV3, the Summa canisters appeared to have been moved slightly during the sample collection period, potentially affecting the integrity of the seal through the foundation.

Each tubing and screen was removed and the foundation was patched with concrete by Eastern. The canisters were packaged for delivery to the laboratory under chain-of-custody procedures, for analysis of VOC using Method TO-15.

Each air sample was submitted to Alpha Analytical of Mahwah, New Jersey for laboratory analysis of VOC, using Method TO-15 with an ASP Category B data package. Alpha Analytical is approved under the NYSDOH ELAP for the analyses performed.

2.5 Community Air Monitoring Plan

During outdoor intrusive activities associated with the field investigation (i.e., direct push soil sampling and temporary well installation), continuous monitoring for VOC was conducted at the work zone, using a PID. Background PID readings of 0.0 parts per million ("ppm") were measured at each temporary well locations prior to initiation of intrusive

² Atmospheric pressure at sample location, in inches of mercury.

³ Canister pressure shown on regulator, in inches of mercury.

activities, and no PID readings above this level were measured in ambient air at any of the direct push locations. In accordance with the approved Work Plan, particulate monitoring was not conducted during this investigation because of the low potential for dust generation by the direct push sampling equipment.

2.6 Sample Handling and Laboratory Analysis

Immediately after collection, each groundwater sample was placed into an iced cooler for subsequent delivery to the laboratory under chain-of-custody procedures. Soil vapor and ambient air samples were packaged in accordance with laboratory and shipping requirements for delivery to the laboratory under chain-of-custody procedures. All samples were picked up by the laboratory's courier on February 9, 2012.

As described above and summarized in Tables 5 and 6, the sampling program included collection of three groundwater samples (plus QA/QC samples), five soil vapor samples, and one ambient air sample for laboratory analysis of VOC. All samples collected during this program were analyzed by Alpha Analytical of Wyckoff, New Jersey, which is approved under the NYSDOH ELAP for the analyses performed. The analyses were conducted using the latest version of the ASP and the analytical results were provided with an ASP Category B data package and a 14-day turnaround time.

Table 5. Sample Summary

Medium	Number of Samples	Analysis	Analytical Method	Container
Groundwater	7 *	VOC	8260B	40-milliliter glass
Ambient Air	1	VOC	TO-15	6-liter Summa canister
Soil Vapor	5	VOC	TO-15	6-liter Summa canister

Includes three groundwater samples, one blind duplicate sample, one MS/MSD sample set, and one trip blank.

2.7 Investigation-Derived Waste

As described above, excess soil sample material was returned to the boring from which it was removed (i.e., GER-1 and GER-2). The temporary well development water (approximately 21.5 gallons) and the purge water generated during groundwater sampling (approximately five gallons) were contained in a drum and transported by Eastern to their facility for subsequent proper disposal as non-hazardous waste.

Table 6. Sampling Rationale

Sample	Medium/Sample Depth (feet)	Analysis/Method	Rationale
GER-1	Groundwater/18	VOC/8260B	Immediately outside of Site
GER-2	Groundwater/18	VOC/8260B	Immediately outside of Site
GER-3	Groundwater/18	VOC/8260B	Downgradient of Site
GER-SV1	Soil Vapor/0.7*	VOC/TO-15	Below building foundation
GER-SV2	Soil Vapor/0.7*	VOC/TO-15	Below building foundation
GER-SV3	Soil Vapor/0.7*	VOC/TO-15	Below building foundation
GER-SV4	Soil Vapor/0.7*	VOC/TO-15	Below building foundation
GER-SV5	Soil Vapor/0.5**	VOC/TO-15	Below building foundation
GER-AA	Ambient Air/NA	VOC/TO-15	Comparison to soil vapor sample results

Sample collected from depth of 8 inches beneath foundation

2.8 Data Review and Reporting

The ASP Category B data packages were validated by an independent data validation subconsultant (Data Validation Services of North Creek, New York, who have been approved by the NYSDEC for data validation). The laboratory data sheets for the groundwater and air samples are included in Appendix E, and the Data Usability Summary Report ("DUSR") summarizing the results of the data validation process is included in Appendix F. The complete data packages have also been submitted to the NYSDEC Environmental Information Management System ("EIMS") in the standardized electronic data deliverable format. The analytical results, qualified as necessary by the data validation and DUSR, are provided in Section 3.0 (Findings), in comparison to background concentrations and/or applicable New York State criteria:

- Groundwater Class GA groundwater standards and guidance values for groundwater (as listed in Technical Operational and Guidance Series ("TOGS") 1.1.1); and
- 2. *Soil Vapor* Ambient air sample results.

Sample collected from depth of 5 inches beneath foundation

3.0 FINDINGS

3.1 Geologic Characterization

Soil boring logs for GER-1 and GER-2 are included in Appendix B. As noted in the logs, the material encountered immediately below the sidewalk consisted of sand to depths of four feet at GER-1 and to seven feet at GER-2. Below this was silty sand, which ranged in color from black to gray-black to tan-brown to olive-brown to brown-gray. The silty sand continued to the deepest depth of sampling at GER-1 (15 feet below grade) and to a depth of 26.8 feet below grade in GER-2, at which point weathered bedrock was encountered. As shown in the logs, no staining or odors were observed in any of the collected soil samples, and PID readings for all soil samples were 0.0 parts per million. In accordance with the approved Work Plan, soil sampling was not conducted at location GER-3 on 12th Street.

Groundwater was encountered at a depth of approximately 10.5 feet below grade at both locations. Based on this information, in accordance with the approved Work Plan, temporary monitoring wells were installed at these locations (and GER-3) to total depths of 18 feet below grade, as described in Section 2.3 and shown in Table 2.

3.2 Groundwater Flow Direction

As described in Section 2.3, the top of casing elevation for each of the three was measured by a New York State-licensed surveyor, relative to a common random datum that was established at 100.00 feet. Using these elevations and the depth to groundwater measured in the temporary wells after completion of development (see Table 2), relative groundwater elevations were calculated for each of the temporary wells. As shown in Table 2, these elevations were 90.80 feet for GER-1, 90.81 feet for GER-2, and 90.74 feet for GER-3. As a result, the groundwater flow is at the Site in a westerly direction, toward the East River. Contours for the calculated groundwater elevations are shown on Figure 5.

3.3 Groundwater Sample Results

Analytical results for the groundwater samples are summarized in Table 7. As shown in this table, several VOC were detected at concentrations exceeding New York State Class GA groundwater standards or guidance values. These included naphthalene and cis-1,2-DCE in the sample from GER-1, and chloroform, PCE, and cis-1,2-DCE in the sample from GER-2 (as well as in the duplicate sample "DUP" collected from GER-2). Chloroform and PCE were also detected in the samples from GER-1 and GER-3 at concentrations below their standards, and TCE was detected in the samples from GER-1 and GER-2 at concentrations below its standard. Low concentrations of other VOC were also detected in the sample from GER-1, including bromodichloromethane and naphthalene, and the sample from GER-2 also

contained low concentrations of vinyl chloride, toluene, ethylbenzene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1,4-diethylbenzene, and 4-ethyltoluene. The groundwater data are also summarized on Figure 6.

3.4 Soil Vapor and Air Sample Results

Analytical results for the soil vapor and ambient air samples are summarized in Table 8 and on Figure 7. As shown, many VOC were detected in the soil vapor samples at concentrations exceeding those detected in the ambient air sample. These compounds included propylene (GER-SV2), dichlorodifluoromethane (GER-SV1, GER-SV2 and GER-SV5), cyclohexane (GER-SV1 and GER-SV2), bromodichloromethane (GER-SV5), TCE (all five samples), heptane (GER-SV1 and GER-SV2), ethanol (GER-SV1), acetone (GER-SV2, GER-SV3, GER-SV4 and GER-SV5), methylene chloride (GER-SV5), PCE (all five samples), carbon disulfide (GER-SV1, GER-SV2 and GER-SV5), 2-butanone (GER-SV1 and GER-SV2), cis-1,2-DCE (GER-SV3, GER-SV4 and GER-SV5), ethylbenzene (GER-SV1 and GER-SV2), xylenes (GER-SV1, GER-SV2 and GER-SV5), ethyl acetate (GER-SV1 and GER-SV2), chloroform (all five samples), n-hexane (GER-SV2), 1,1,1-trichlorethane (GER-SV1 and GER-SV2), benzene (GER-SV1 and GER-SV2), carbon tetrachloride (GER-SV1 and GER-SV2), and 1,2,4-trimethylbenzene (GER-SV1, GER-SV2 and GER-SV5).

Compounds that were detected in the soil vapor samples at concentrations significantly (ten times or greater) above those in the ambient air sample, or were detected in soil vapor but not detected in the ambient air sample, included, cyclohexane (GER-SV1 and GER-SV2), bromodichloromethane (GER-SV5), TCE (all five samples), methylene chloride (GER-SV5), PCE (all five samples), carbon disulfide (GER-SV1, GER-SV2 and GER-SV5), cis-1,2-DCE (GER-SV3, GER-SV4 and GER-SV5), ethyl acetate (GER-SV1 and GER-SV2), chloroform (all five samples), 1,1,1-trichlorethane (GER-SV1 and GER-SV2), and carbon tetrachloride (GER-SV1 and GER-SV2).

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Based on the results of the field investigation conducted at the Site in January and February 2012, the following conclusions are drawn:

- 1. The results of the field screening and observations made during the soil sampling portion of this investigation program indicate that Site operations have not impacted shallow subsurface soil in the area immediately southeast of the Site building.
- 2. Based on the groundwater elevation measurements collected during this investigation, groundwater beneath the Site flows in a westerly direction, toward the East River. As a result, temporary wells GER-1 and GER-2 are upgradient of the Site building and dry cleaning operations, and temporary well GER-3 is cross-gradient to the Site.
- 3. The sample from upgradient temporary well GER-1 contained cis-1.2-DCE and naphthalene at concentrations above New York State Class GA standards/guidance values. In addition, low concentrations (below New York State Class GA standards/ guidance values) of other petroleum-related compounds (toluene, ethylbenzene, xylenes, and various substituted benzene compounds) and chlorinated VOC (chloroform, PCE, TCE, and vinyl chloride) were detected in this sample. The sample from upgradient temporary well GER-2 contained chloroform, PCE, and cis-1.2-DCE at concentrations above New York State Class GA standards/guidance values. This sample also contained low concentrations (below New York State Class GA standards/guidance values) of bromodichloromethane, TCE, and naphthalene. These results indicate a regional zone of impacted groundwater not related to Site operations, as these temporary wells are located upgradient of the Site building, approximately 80 feet upgradient of Site's dry cleaning equipment (which has always consisted of fourth-generation, closed-loop machines), and at least ten feet from the sanitary sewer line from the Site building.
- 4. The presence of PCE breakdown products TCE, cis-1,2-DCE, and vinyl chloride in the upgradient groundwater samples provides additional support for a source of groundwater impacts other than the Site, as these VOC are not used directly for dry cleaning operations and other potential sources of VOC are located upgradient of the Site. In addition, the presence of each of these PCE breakdown products indicates sufficient time from the release for the PCE to fully degrade to TCE, cis-1,2-DCE, and vinyl chloride.

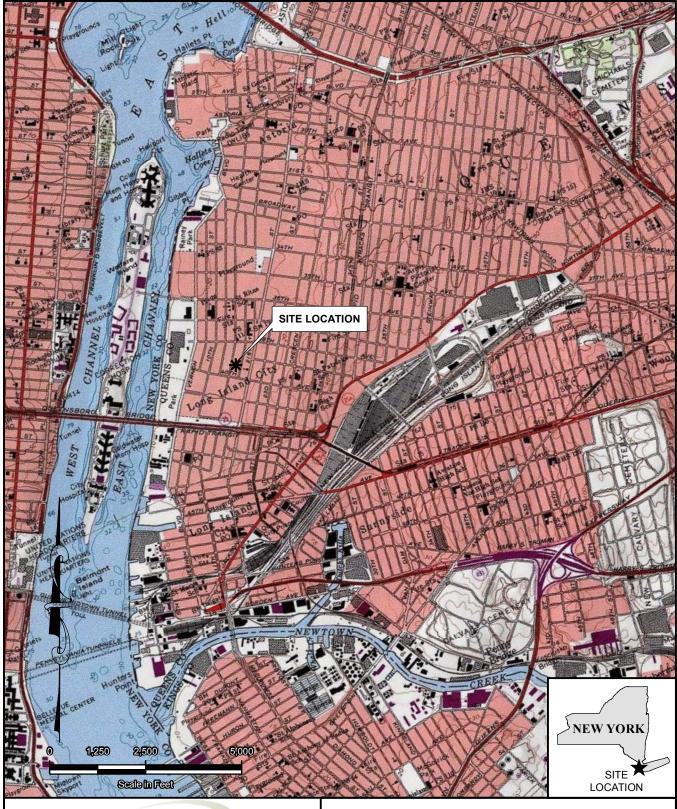
- 5. Based on the westerly groundwater flow direction that was determined during this investigation, temporary well GER-3 is not directly downgradient of the Site, yet the sample from this temporary well contained PCE at a concentration of 1.2 micrograms per liter (as well as chloroform at 0.62 micrograms per liter). This information, in conjunction with the absence of PCE in any of the groundwater samples collected at the property immediately northwest of the Site in January 2011 (see Section 1.3.3 and Figure 3), provides further evidence that the Site is not a contributor to the VOC identified in groundwater.
- 6. The sub-slab soil vapor results show the presence of PCE and TCE in all five samples, and cis-1,2-DCE was detected in three samples. Other VOC detected in all five samples were acetone and chloroform, and several VOC were detected in at least three of the sub-slab samples, including dichlorodifluoromethane, toluene, carbon disulfide, 2-butanone, xylenes, and 1,2,4-trimethylbenzene. In addition, cyclohexane, heptane, ethylbenzene, ethyl acetate, 1,1,1-trichloroethane, benzene, and carbon tetrachloride were each detected in two of the sub-slab soil vapor samples. Based on this information, it is concluded that there are many sources beyond dry cleaning that are contributing to the VOC detected in soil vapor.
- 7. The presence of the boiler in the basement beneath the front of the Site building may be inducing infiltration of indoor air containing VOC related to dry cleaning into the subsurface through the observed cracks in the building foundation.

4.2 Recommendations

The Site is located in a historically and currently industrial area. All dry cleaning operations, since opening the facility in approximately 1996, have been with closed-loop, fourthgeneration dry cleaning equipment and there has never been any on-Site storage of PCE. In addition, despite the open NYSDEC case associated with the Site, a release of dry cleaning chemicals from the Site has not been documented.

No sensory indications of contamination (such as staining or odors) were identified in any of the soil samples collected during this investigation. In addition, PID readings for all soil samples collected during this investigation in the Site vicinity were 0.0 ppm. This shows that Site operations have not adversely affected soil quality.

The groundwater flow direction determined during this investigation is toward the west, meaning that the groundwater samples collected at SB-1 and SB-2 in 2009, and at GER-1 and GER-2 during this investigation, are upgradient of the Site building and dry cleaning operations. Since these groundwater samples were located approximately 80 feet upgradient of Site's dry cleaning machinery and at least 10 feet from the sanitary sewer line from the


Site, it is apparent that the VOC detected in the groundwater are not the result of Site operations. Further confirmation of this is provided by the numerous VOC detected in groundwater that are not utilized for dry cleaning, such as chloroform and petroleum-related compounds. In addition, the presence of PCE in the sample from GER-3, which is not directly downgradient of the Site, and the absence of PCE in any of the three groundwater samples collected at the adjacent property in January 2011 (which is downgradient of the Site) shows that Site operations have not impacted groundwater. Based on these factors, it is apparent that VOC-contaminated groundwater exists in the Site vicinity and is migrating beneath the Site from upgradient areas.

Numerous VOC were detected in sub-slab soil vapor samples located throughout the Site building, including areas well distant from potential on-Site sources (e.g., dry cleaning machinery and sanitary sewer line); many VOC not related to dry cleaning were detected in the samples. This indicates the likelihood of sources other than the Site for the detected compounds. In addition, the presence of the Site's boiler in the basement and the numerous cracks in the foundation of the Site building suggest the possibility of induced airflow from the building interior through the foundation into the subsurface.

Based on the facts presented above, it is recommended that no further investigation of the Site be required, and that the open NYSDEC case associated with the Site be closed.

FIGURES

GENESIS ENGINEERING & REDEVELOPMENT

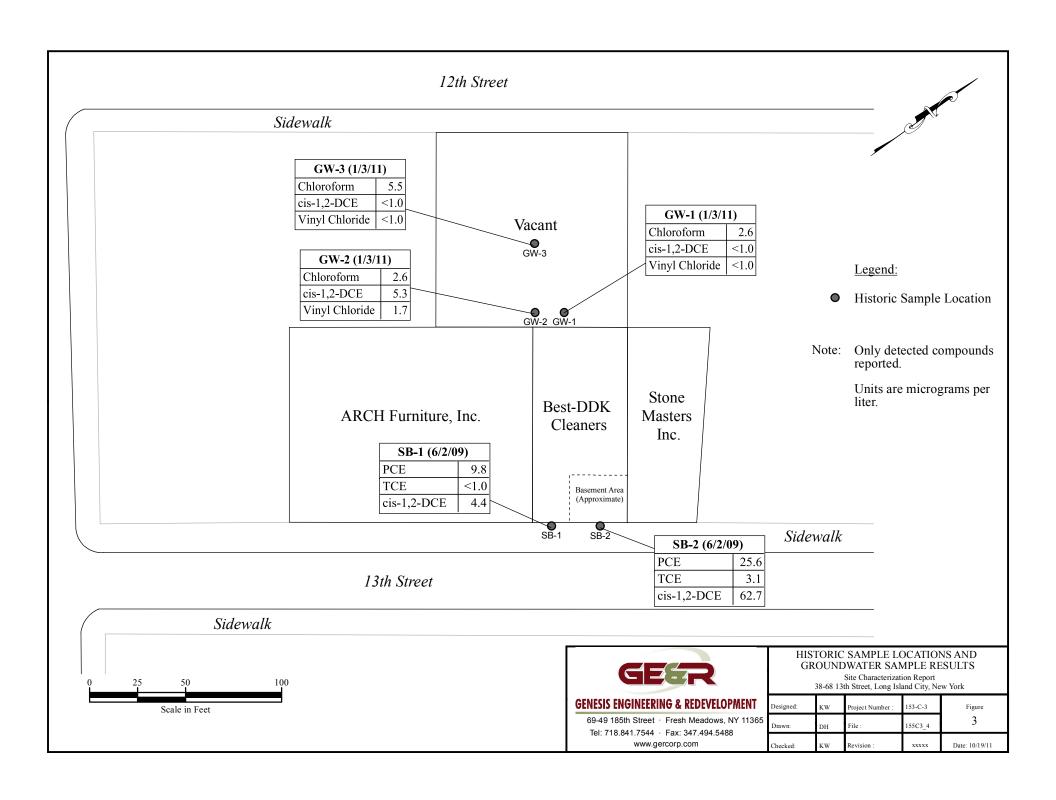
69-49 185th Street · Fresh Meadows, NY 11365 Tel: 718.841.7544 · Fax: 347.494.5488 www.gercorp.com

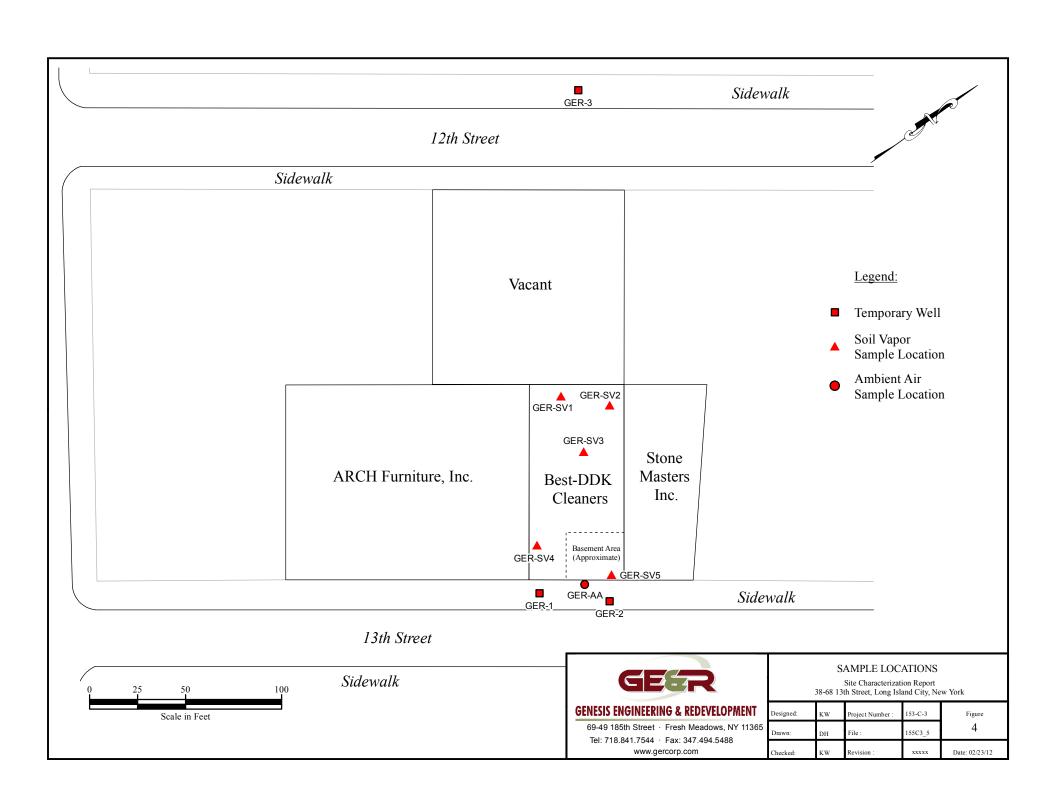
SITE LOCATION MAP

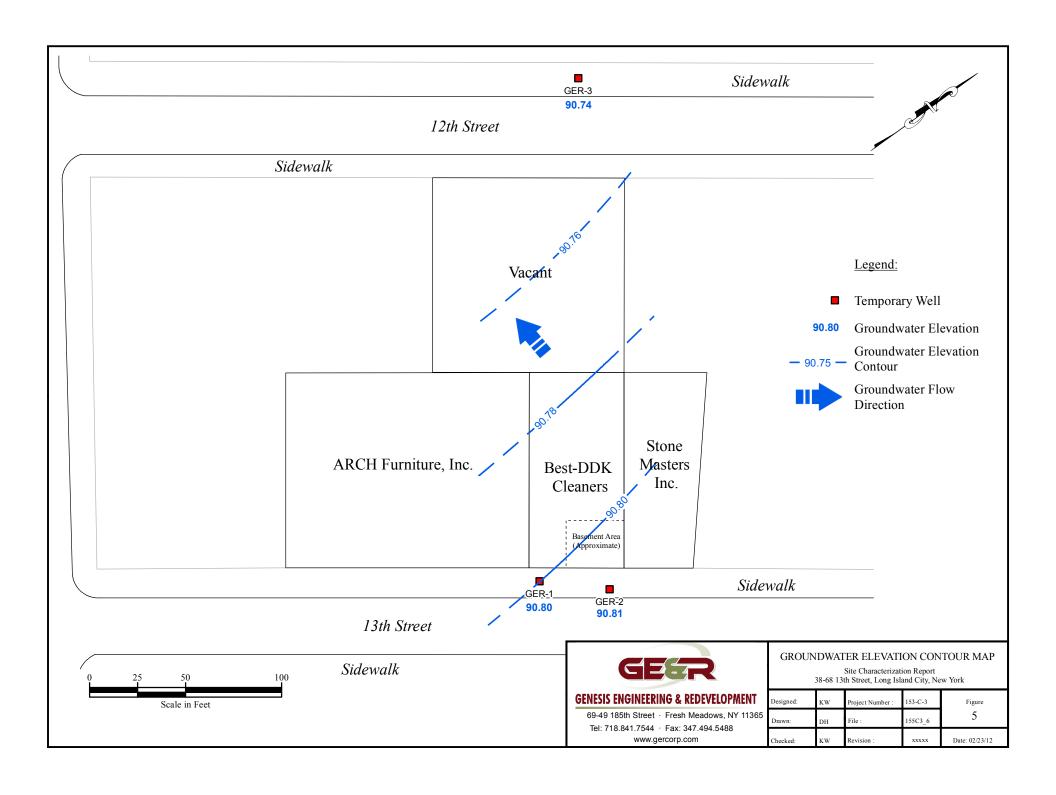
Site Characterization Report 38-68 13th Street, Long Island City, New York

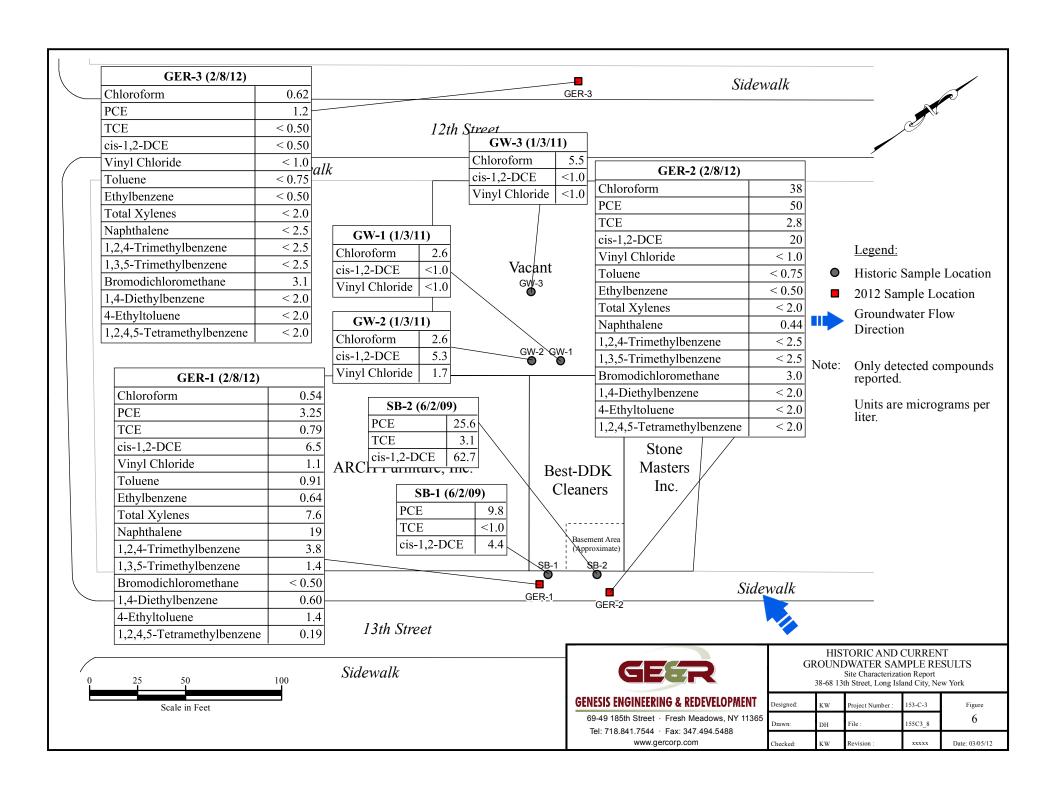
Designed:	DH	Project Number:	155-C-3	Figure
Drawn:	DH	File:	155C3_1	1
Checked:	KW	Revision:	xxxxx	Date: 04/18/11

Scale in Feet


GENESIS ENGINEERING & REDEVELOPMENT


69-49 185th Street · Fresh Meadows, NY 11365 Tel: 718.841.7544 · Fax: 347.494.5488 www.gercorp.com


SITE VICINITY MAP


Site Characterization Report 38-68 13th Street, Long Island City, New York

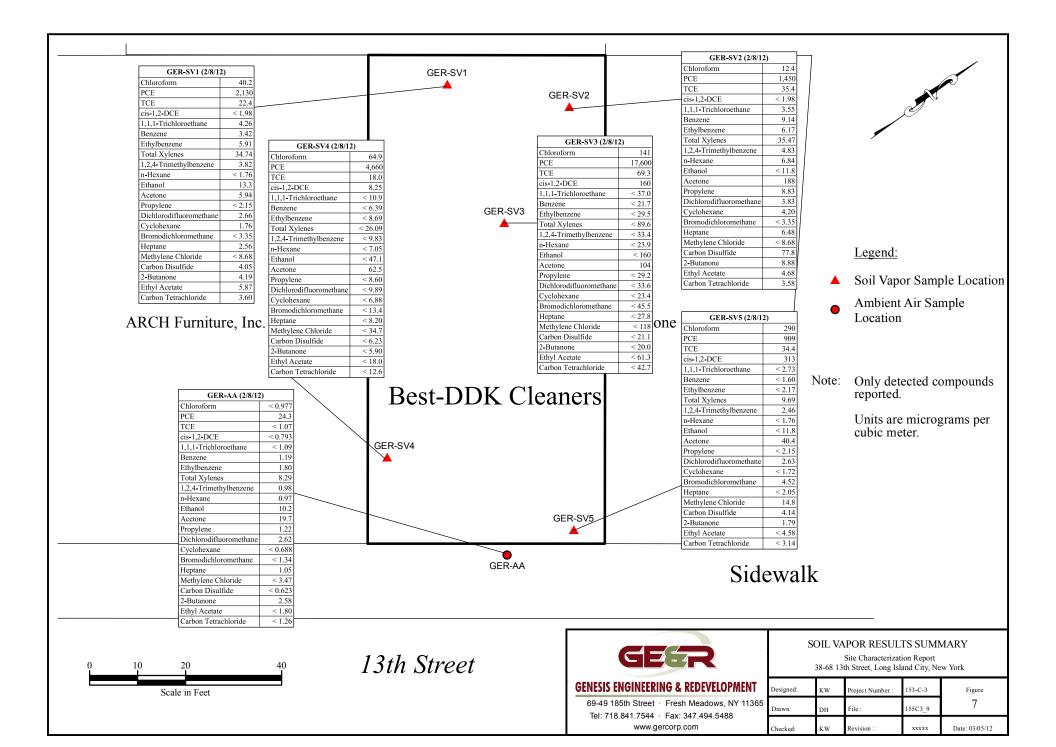

Designed:	KW	Project Number :	153-C-3	Figure
Drawn:	DH	File:	155C3_2	2
Checked:	KW	Revision :	xxxxx	Date: 04/18/11

TABLE 7

Groundwater Sample Analytical Results

Table 7 **Groundwater Sample Analytical Results** Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Methylene Chloride	1,1- Dichloroethane	Chloroform	Carbon Tetrachloride	1,2- Dichloropropane	Dibromochloro- methane
GER-1 (L1202347-01)	< 5.0	< 0.75	0.54 J	< 0.50	< 1.8	< 0.50
GER-2 (L1202347-02)	< 5.0	< 0.75	38	< 0.50	< 1.8	< 0.50
DUP (L1202347-04) *	< 5.0	< 0.75	38	< 0.50	< 1.8	< 0.50
GER-3 (L1202347-03)	< 5.0	< 0.75	0.62 J	< 0.50	< 1.8	< 0.50
Trip Blank (L1202347-05)	< 5.0	< 0.75	< 0.75	< 0.50	< 1.8	< 0.50
Class GA Groundwater Standard/Guidance Value	5	5	7	5	1	50 GV

Sample ID	1,2,3- Trichloropropane	Acrylonitrile	Styrene	Dichlorodifluoro- methane	Acetone	Carbon Disulfide
GER-1 (L1202347-1)	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0	< 5.0
GER-2 (L1202347-2)	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0	< 5.0
DUP (L1202347-4) *	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0	< 5.0
GER-3 (L1202347-3)	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0	< 5.0
Trip Blank (L1202347-5)	< 5.0	< 5.0	< 1.0	< 5.0	< 5.0	< 5.0
Class GA Groundwater Standard/Guidance Value	0.04	5	50	5	50 GV	60 GV

Bold indicates exceedance of standard or guidance value.

--: Not established.

<: Result less than the Reporting Limit shown.

*: Duplicate of GER-2.

J: Estimated.

J*: Estimated due to data validation criteria.

+: Applies to sum of isomers.

Table 7
Groundwater Sample Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	1,1,2- Trichloroethane	Tetrachloroethene	Chlorobenzene	Trichlorofluoro- methane	1,2- Dichloroethane	1,1,1- Trichloroethane
GER-1 (L1202347-01)	< 0.75	3.5	< 0.50	< 2.5	< 0.50	< 0.50
GER-2 (L1202347-02)	< 0.75	50	< 0.50	< 2.5	< 0.50	< 0.50
DUP (L1202347-04) *	< 0.75	48	< 0.50	< 2.5	< 0.50	< 0.50
GER-3 (L1202347-03)	< 0.75	1.2	< 0.50	< 2.5	< 0.50	< 0.50
Trip Blank (L1202347-05)	< 0.75	< 0.5	< 0.50	< 2.5	< 0.50	< 0.50
Class GA Groundwater Standard/Guidance Value	1	5	5	5	0.6	5

Sample ID	2-Butanone (Methyl-ethyl Ketone)	Vinyl Acetate	4-Methyl-2- Pentanone	2-Hexanone	Bromochloro- methane	2,2- Dichloropropane
GER-1 (L1202347-1)	< 5.0	< 5.0	< 5.0 J*	< 5.0	< 2.5	< 2.5
GER-2 (L1202347-2)	< 5.0	< 5.0	< 5.0 J*	< 5.0	< 2.5	< 2.5
DUP (L1202347-4) *	< 5.0	< 5.0	< 5.0 J*	< 5.0	< 2.5	< 2.5
GER-3 (L1202347-3)	< 5.0	< 5.0	< 5.0 J*	< 5.0	< 2.5	< 2.5
Trip Blank (L1202347-5)	< 5.0	< 5.0	< 5.0 J*	< 5.0	< 2.5	< 2.5
Class GA Groundwater Standard/Guidance Value	50 GV			50 GV	5	5

Bold indicates exceedance of standard or guidance value.

--: Not established.

<: Result less than the Reporting Limit shown.

*: Duplicate of GER-2.

J: Estimated. J*: Estimated due to data validation criteria.

+: Applies to sum of isomers.

Table 7
Groundwater Sample Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Bromodichloro- methane	trans-1,3- Dichloropropene	cis-1,3- Dichloropropene	1,1,- Dichloropropene	Bromoform	1,1,2,2- Tetrachloroethane
GER-1 (L1202347-01)	< 0.50	< 0.50	< 0.50	< 2.5	< 2.0	< 0.50
GER-2 (L1202347-02)	3.0	< 0.50	< 0.50	< 2.5	< 2.0	< 0.50
DUP (L1202347-04) *	3.1	< 0.50	< 0.50	< 2.5	< 2.0	< 0.50
GER-3 (L1202347-03)	< 0.50	< 0.50	< 0.50	< 2.5	< 2.0	< 0.50
Trip Blank (L1202347-05)	< 0.50	< 0.50	< 0.50	< 2.5	< 2.0	< 0.50
Class GA Groundwater Standard/Guidance Value	50 GV	0.4 +	0.4 +	5	50 GV	5

Sample ID	1,2-Dibromo- methane	1,3- Dichloropropane	1,1,1,2- Tetrachloroethane	Bromobenzene	n- Butylbenzene	sec-Butylbenzene
GER-1 (L1202347-1)	< 2.0	< 2.5	< 0.50	< 2.5	< 0.50	< 0.50
GER-2 (L1202347-2)	< 2.0	< 2.5	< 0.50	< 2.5	< 0.50	< 0.50
DUP (L1202347-4) *	< 2.0	< 2.5	< 0.50	< 2.5	< 0.50	< 0.50
GER-3 (L1202347-3)	< 2.0	< 2.5	< 0.50	< 2.5	< 0.50	< 0.50
Trip Blank (L1202347-5)	< 2.0	< 2.5	< 0.50	< 2.5	< 0.50	< 0.50
Class GA Groundwater Standard/Guidance Value	5	5	5	5	5	5

Bold indicates exceedance of standard or guidance value.

--: Not established.

<: Result less than the Reporting Limit shown.

*: Duplicate of GER-2.

J: Estimated.

J*: Estimated due to data validation criteria.

+: Applies to sum of isomers.

Table 7
Groundwater Sample Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Benzene	Toluene	Ethylbenzene	Chloromethane	Bromomethane	Vinyl Chloride
GER-1 (L1202347-01)	< 0.50	0.91	0.64	< 2.5	< 1.0	1.1
GER-2 (L1202347-02)	< 0.50	< 0.75	< 0.50	< 2.5	< 1.0	< 1.0
DUP (L1202347-04) *	< 0.50	< 0.75	< 0.50	< 2.5	< 1.0	< 1.0
GER-3 (L1202347-03)	< 0.50	< 0.75	< 0.50	< 2.5	< 1.0	< 1.0
Trip Blank (L1202347-05)	< 0.50	< 0.75	< 0.50	< 2.5	< 1.0	< 1.0
Class GA Groundwater Standard/Guidance Value	1	5	5	5	5	2

Sample ID	tert-Butylbenzene	o-Chlorotoluene	p-Chlorotoluene	1,2-Dibromo-3- Chloropropane	Hexachloro- butadiene	Isopropylbenzene
GER-1 (L1202347-1)	< 2.5	< 2.5	< 2.5	< 2.5	< 0.60	< 0.50
GER-2 (L1202347-2)	< 2.5	< 2.5	< 2.5	< 2.5	< 0.60	< 0.50
DUP (L1202347-4) *	< 2.5	< 2.5	< 2.5	< 2.5	< 0.60	< 0.50
GER-3 (L1202347-3)	< 2.5	< 2.5	< 2.5	< 2.5	< 0.60	< 0.50
Trip Blank (L1202347-5)	< 2.5	< 2.5	< 2.5	< 2.5	< 0.60	< 0.50
Class GA Groundwater Standard/Guidance Value	5	5	5	0.04	0.5	5

Bold indicates exceedance of standard or guidance value.

--: Not established.

<: Result less than the Reporting Limit shown.

*: Duplicate of GER-2.

J: Estimated.

J*: Estimated due to data validation criteria.

+: Applies to sum of isomers.

J: Estimated.

Table 7 **Groundwater Sample Analytical Results** Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Chloroethane	1,1- Dichloroethene	trans-1,2- Dichloroethene	Trichloroethene	1,2- Dichlorobenzene	1,3- Dichlorobenzene
GER-1 (L1202347-01)	< 1.0	< 0.50	< 0.75	0.79	< 2.5	< 2.5
GER-2 (L1202347-02)	< 1.0	< 0.50	< 0.75	2.8	< 2.5	< 2.5
DUP (L1202347-04) *	< 1.0	< 0.50	< 0.75	2.8	< 2.5	< 2.5
GER-3 (L1202347-03)	< 1.0	< 0.50	< 0.75	< 0.50	< 2.5	< 2.5
Trip Blank (L1202347-05)	< 1.0	< 0.50	< 0.75	< 0.50	< 2.5	< 2.5
Class GA Groundwater Standard/Guidance Value	5	5	5	5	3	3

Sample ID	p- Isopropyltoluene	Naphthalene	n-Propylbenzene	1,2,3- Trichlorobenzene	1,2,4- Trichlorobenzene	1,3,5- Trimethylbenzene
GER-1 (L1202347-1)	< 0.50	19 J*	< 0.50	< 2.5	< 2.5	1.4 J
GER-2 (L1202347-2)	< 0.50	0.44 J	< 0.50	< 2.5	< 2.5	< 2.5
DUP (L1202347-4) *	< 0.50	< 2.5	< 0.50	< 2.5	< 2.5	< 2.5
GER-3 (L1202347-3)	< 0.50	< 2.5	< 0.50	< 2.5	< 2.5	< 2.5
Trip Blank (L1202347-5)	< 0.50	< 2.5	< 0.50	< 2.5	< 2.5	< 2.5
Class GA Groundwater Standard/Guidance Value	5	10 GV	5	5	5	5

Bold indicates exceedance of standard or guidance value.

--: Not established.

<: Result less than the Reporting Limit shown. J: Estimated.

*: Duplicate of GER-2.

J*: Estimated due to data validation criteria.

+: Applies to sum of isomers.

Table 7
Groundwater Sample Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	1,4- Dichlorobenzene	Methyl tert- Butyl Ether	m&p Xylene	o-Xylene	cis-1,2- Dichloroethene	Dibromomethane
GER-1 (L1202347-01)	< 2.5	< 1.0	4.1	3.5	6.5	< 5.0
GER-2 (L1202347-02)	< 2.5	< 1.0	< 1.0	< 1.0	20	< 5.0
DUP (L1202347-04) *	< 2.5	< 1.0	< 1.0	< 1.0	20	< 5.0
GER-3 (L1202347-03)	< 2.5	< 1.0	< 1.0	< 1.0	< 0.50	< 5.0
Trip Blank (L1202347-05)	< 2.5	< 1.0	< 1.0	< 1.0	< 0.50	< 5.0
Class GA Groundwater Standard/Guidance Value	3	10 GV	5	5	5	5

Sample ID	1,2,4- Trimethylbenzene	1,4- Diethylbenzene	4-Ethyltoluene	1,2,4,5-Tetramethyl- benzene	Ethyl Ether	trans-1,4-Dichloro- 2-Butene
GER-1 (L1202347-1)	3.8 J*	0.60 J	1.4 J	0.19 J	< 2.5	< 2.5 J*
GER-2 (L1202347-2)	< 2.5	< 2.0	< 2.0	< 2.0	< 2.5	< 2.5 J*
DUP (L1202347-4) *	< 2.5	< 2.0	< 2.0	< 2.0	< 2.5	< 2.5 J*
GER-3 (L1202347-3)	< 2.5	< 2.0	< 2.0	< 2.0	< 2.5	< 2.5 J*
Trip Blank (L1202347-5)	< 2.5	< 2.0	< 2.0	< 2.0	< 2.5	< 2.5 J*
Class GA Groundwater Standard/Guidance Value	5			5		5

Bold indicates exceedance of standard or guidance value.

--: Not established.

<: Result less than the Reporting Limit shown.

*: Duplicate of GER-2.

J: Estimated.

J*: Estimated due to data validation criteria.

+: Applies to sum of isomers.

TABLE 8

Soil Vapor and Ambient Air Sample Analytical Results

Table 8
Soil Vapor and Ambient Air Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Propylene	Dichloro- difluoromethane	Chloromethane	Freon 114	Vinyl Chloride	1,3-Butadiene	Bromoethene	Chloroethane
Sub-slab								
GER-SV1 (L1202360-01)	< 2.15	2.66	< 1.03	< 3.49	< 1.28	< 1.11	< 1.94	< 1.32
GER-SV2 (L1202360-02)	8.83	3.83	< 1.03	< 3.49	< 1.28	< 1.11	< 1.94	< 1.32
GER-SV3 (L1202360-03)	< 29.2	< 33.6	< 14.0	< 47.5	< 17.4	< 15.0	< 26.4	< 17.9
GER-SV4 (L1202360-04)	< 8.60	< 9.89	< 4.13	< 14.0	< 5.11	< 4.42	< 7.77	< 5.28
GER-SV5 (L1202360-05)	< 2.15	2.63	< 1.03	< 3.49	< 1.28	< 1.11	< 1.94	< 1.32
Ambient Air								
GER-AA (L1202360-06) 1.22		2.62	1.13	< 1.40	< 0.511	< 0.442	< 0.777	< 0.528

Sample ID (Laboratory ID)	Cyclohexane	1,2- Dichloropropane	Bromodichloro- methane	1,4-Dioxane	Trichloroethene	2,2,4- Trimethylpentane	Heptane	cis-1,3- Dichloropropene
Sub-slab								
GER-SV1 (L1202360-01)	1.76	< 2.31	< 3.35	< 1.80	22.4	< 2.34	2.56	< 2.27
GER-SV2 (L1202360-02)	4.20	< 2.31	< 3.35	< 1.80	35.4	< 2.34	6.48	< 2.27
GER-SV3 (L1202360-03)	< 23.4	< 31.4	< 45.5	< 24.5	69.3	< 31.7	< 27.8	< 30.8
GER-SV4 (L1202360-04)	< 6.88	< 9.24	< 13.4	< 7.21	18.0	< 9.34	< 8.20	< 9.08
GER-SV5 (L1202360-05)	< 1.72	< 2.31	4.52	< 1.80	34.4	< 2.34	< 2.05	< 2.27
Ambient Air								
GER-AA (L1202360-06)	< 0.688	< 0.924	< 1.34	< 0.721	< 1.07	< 0.934	1.05	< 0.908

D: Result from diluted sample.

NJ: Detection is tantative in identification and estimated in value, due to data validation criteria.

Table 8
Soil Vapor and Ambient Air Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Ethanol	Vinyl Bromide	Acetone	Trichloro- fluoromethane	Isopropanol	1,1- Dichloroethene	Methylene Chloride	3-Chloropropene
Sub-slab								
GER-SV1 (L1202360-01)	13.3	< 2.19	5.94	< 2.81	< 3.07	< 1.98	< 8.68	< 1.56
GER-SV2 (L1202360-02)	< 11.8	< 2.19	188	< 2.81	< 3.07	< 1.98	< 8.68	< 1.56
GER-SV3 (L1202360-03)	< 160	< 29.7	104	< 38.2	< 41.8	< 26.9	< 118	< 21.2
GER-SV4 (L1202360-04)	< 47.1	< 8.74	62.5	< 11.2	< 12.3	< 7.93	< 34.7	< 6.26
GER-SV5 (L1202360-05)	< 11.8	< 2.19	40.4	< 2.81	< 3.07	< 1.98	14.8	< 1.56
Ambient Air								
GER-AA (L1202360-06)	10.2	< 0.874	19.7	1.62	1.53	< 0.793	< 3.47	< 0.626

Sample ID (Laboratory ID)	4-Methyl-2- Pentanone	trans-1,3- Dichloropropene	1,1,2- Trichloroethane	Toluene	2-Hexanone	Dibromo- chloromethane	1,2- Dibromoethane	Tetrachloroethene
Sub-slab								
GER-SV1 (L1202360-01)	< 2.05	< 2.27	< 2.73	5.69 NJ	< 2.05	< 4.26	< 3.84	2,130 D
GER-SV2 (L1202360-02)	< 2.05	< 2.27	< 2.73	7.35 NJ	< 2.05	< 4.26	< 3.84	1,450 D
GER-SV3 (L1202360-03)	< 27.8	< 30.8	< 37.0	< 25.6	< 27.8	< 57.8	< 52.2	17,600
GER-SV4 (L1202360-04)	< 8.20	< 9.08	< 10.9	< 7.54	< 8.20	< 17.0	< 15.4	4,660
GER-SV5 (L1202360-05)	< 2.05	< 2.27	< 2.73	2.80	< 2.05	< 4.26	< 3.84	909
Ambient Air		-						
GER-AA (L1202360-06)	1.10	< 0.908	< 1.09	12.0	< 0.820	< 1.70	< 1.54	24.3

D: Result from diluted sample.

NJ: Detection is tantative in identification and estimated in value, due to data validation criteria.

Table 8
Soil Vapor and Ambient Air Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Carbon Disulfide	Freon 113	trans-1,2- Dichloroethene	1,1- Dichloroethane	Methyl tert- Butyl Ether	Vinyl Acetate	2-Butanone	cis-1,2- Dichloroethene
Sub-slab								
GER-SV1 (L1202360-01)	4.05	< 3.83	< 1.98	< 2.02	< 1.80	< 1.76	4.19	< 1.98
GER-SV2 (L1202360-02)	77.8	< 3.83	< 1.98	< 2.02	< 1.80	< 1.76	8.88	< 1.98
GER-SV3 (L1202360-03)	< 21.1	< 52.0	< 26.9	< 27.5	< 24.5	< 23.9	< 20.0	160
GER-SV4 (L1202360-04)	< 6.23	< 15.3	< 7.93	< 8.09	< 7.21	< 7.04	< 5.90	8.25
GER-SV5 (L1202360-05)	4.14	< 3.83	< 1.98	< 2.02	< 1.80	< 1.76	1.79	313
Ambient Air								
GER-AA (L1202360-06)	< 0.623	< 1.53	< 0.793	< 0.809	< 0.721	< 0.704	2.58	< 0.793

Sample ID (Laboratory ID)	Chlorobenzene	Ethylbenzene	m&p-Xylene	Bromoform	Styrene	1,1,2,2- Tetrachloroethane	o-Xylene	4-Ethyltoluene
Sub-slab								
GER-SV1 (L1202360-01)	< 2.30	5.91	26.1	< 5.17	< 2.13	< 3.43	8.64	< 2.46
GER-SV2 (L1202360-02)	< 2.30	6.17	26.0	< 5.17	< 2.13	< 3.43	9.47	< 2.46
GER-SV3 (L1202360-03)	< 31.3	< 29.5	< 59.1	< 70.2	< 28.9	< 46.6	< 29.5	< 33.4
GER-SV4 (L1202360-04)	< 9.21	< 8.69	< 17.4	< 20.7	< 8.52	< 13.7	< 8.69	< 9.83
GER-SV5 (L1202360-05)	< 2.30	< 2.17	7.12	< 5.17	< 2.13	< 3.43	2.57	< 2.46
Ambient Air								
GER-AA (L1202360-06)	< 0.921	1.80	6.38	< 2.07	0.94	< 1.37	1.91	< 0.983

D: Result from diluted sample.

NJ: Detection is tantative in identification and estimated in value, due to data validation criteria.

Table 8
Soil Vapor and Ambient Air Analytical Results
Samples Collected on February 8, 2012

Sample ID (Laboratory ID)	Ethyl Acetate	Chloroform	Tetrahydrofuran	1,2- Dichloroethane	n-Hexane	1,1,1- Trichloroethane	Benzene	Carbon Tetrachloride
Sub-slab								
GER-SV1 (L1202360-01)	5.87	40.2	< 1.47	< 2.02	< 1.76	4.26	3.42	3.60
GER-SV2 (L1202360-02)	4.68	12.4	< 1.47	< 2.02	6.84	3.55	9.14	3.58
GER-SV3 (L1202360-03)	< 61.3	141	< 20.0	< 27.5	< 23.9	< 37.0	< 21.7	< 42.7
GER-SV4 (L1202360-04)	< 18.0	64.9	< 5.90	< 8.09	< 7.05	< 10.9	< 6.39	< 12.6
GER-SV5 (L1202360-05)	< 4.50	290	< 1.47	< 2.02	< 1.76	< 2.73	< 1.60	< 3.14
Ambient Air								
GER-AA (L1202360-06)	< 1.80	< 0.977	< 0.590	< 0.809	0.97	< 1.09	1.19	< 1.26

Sample ID (Laboratory ID)	1,3,5-Trimethyl- benzene	1,2,4-Trimethyl- benzene	Benzyl Chloride	1,3- Dichlorobenzene	1,4- Dichlorobenzene	1,2- Dichlorobenzene	1,2,4- Trichlorobenzene	Hexachloro- butadiene
Sub-slab								
GER-SV1 (L1202360-01)	< 2.46	3.82	< 2.59	< 3.01	< 3.01	< 3.01	< 3.71	< 5.33
GER-SV2 (L1202360-02)	< 2.46	4.83	< 2.59	< 3.01	< 3.01	< 3.01	< 3.71	< 5.33
GER-SV3 (L1202360-03)	< 33.4	< 33.4	< 35.2	< 40.8	< 40.8	< 40.8	< 50.4	< 72.4
GER-SV4 (L1202360-04)	< 9.83	< 9.83	< 10.4	< 12.0	< 12.0	< 12.0	< 14.8	< 21.3
GER-SV5 (L1202360-05)	< 2.46	2.46	< 2.59	< 3.01	< 3.01	< 3.01	< 3.71	< 5.33
Ambient Air								
GER-AA (L1202360-06)	< 0.983	0.98	< 1.04	< 1.20	< 1.20	< 1.20	< 1.48	< 2.13

D: Result from diluted sample.

NJ: Detection is tantative in identification and estimated in value, due to data validation criteria.

APPENDIX A

Field Notes

Sest Cleaners #155 KW onsite 1005 NAEVA unsite 1010 Frank & Alee KW call to Castern 0945 - morner that semis one on administrative hold examply due to sonstruction an We will by to locate address on NW side of 12th Street, Castern will call montants in today GERSVS clocked at base of basenent steps Sower hie exits front of bly 134 South west of SW and of bosenait wood half 1/31/12 Best Cleaners 1/31/12 Best Clamus 38-60 12th street should be 1215 KW call to be Naphi, Esten acceptable substitute, on NW to privide 3860 12TH street Side of street address for minkents and pent He will check about SV snugling GER-1 supposed 5'8" from end of Best DDK (clean by WASVA) GER-2 supposed 7'6" from NE and of blog on 2/1/12, and will schedule For Wed, 2/8/12. Sidewalls in Front of 38-60 12th Sheet excurred for withher by Tide Ath & D. Whang (Genesis) on site NAEVA - no posed location OK, as maked Say Moon on-site 1038-1700 NAEVA offsite 1250 All other interior SV Jocations dead BW offsite 1300 by NASVA Demoit & Went on

Cloudy 35°F, 5 MPH 5 from SE KW on site 0550 - Best Comers closed Opened at 0610 detector not held calibratable in air- find reading 100 pom schippene Horiba calibrated Lay Moung on-site 0630-0640 Coisten onsite Falls, Ed Gallo, Box Coscinence Anthony Smith Ion Gas Check G2 Helpin Detector (#10-01/20) GIAir 5 Air Pump (420081101005) Mini RAE PID (#14600) (# 6007

2/8/12 Best Clemen

only Bob and Ed begin

installing GERSV-4

ohilling through file with vacuum

collecting dist

formulation of thick

b" screen attacked to 14" to Telion

I med tubing to p of screen

installed 2" be low toundation

sun and of blands and

Scaled of ben territe of blands and

cond 18" from the horse use

to core sidewalk at GER-2

7'/2 from N and of bland and

4' off away and 11 from blog.

Hand auger to 6"

2/8/12 Best Clames 2/2/12 Best Clemen Sil simpling at GG2-Z (PIDBG O.O) Hend cleaned heich to bern fe sond; 05' same fe grave (: dry: no odor, PIDUS 0745 5-10' (5' macrocore) But and Ed move to GERSV-3. ... located 67 from front of blog, 21' from N wall and 28 from S wall. 2:3.6' PIDOO Horangint 0-1.9' black to boun to sand; - GER-SVI lauted 6' from back 1.9-3.4 black for sand and twall and 16/2 from 5 wall 3.4-3.6 olive gray; same moist - GER-N2 located 10h from pack wall and 7/2 from N well bottom Out 0750 MOLIST RGC 1.8' GER-SV3 butted in baseming PID. O.O throughout groundwater emcountered at 8" below Same; Wet at NO.6 3 slab-probe installed 5" below betom of slab. 3 from front blog will 36h from 0755 45-20' REC 3.3' PIDOLO 5V-1,5V-2,5V-3,5V-4 irstilled usin same; tam to bown-gray, specifications as per GER-SVI

2/8/12 Best Cleanus GER-2 080020-25' REC 5' PID ao 25-30' REC1.5' PIDO.0 refusal at 26 iven thereof bedood samples will be condy and per hode plan TW in! water table), 10' of 1" PYC some 1030 DTW = 9.75 below TOC, Vennis Whing onesite 0830-1125

Sampling at 5V4

affer 3 mintes of pengers

PID 3.5 ppm. He 1510 ppm

(am biret 2020 ppm), RD 0.3

He in contained 999, 999 ppm pm

-30:30 vacuum (initial)

comster 1709, regulator 0735

spened at 0900

SSF, 30.46" Hz at sample

location

Godd 1317 Prend 5.57, 61° [344"

AA set up by susement Joor Edenale)

persone -30:12 [initial) - steated at

0915 96F 30:42" Ha

ended 1312 Pr Rmal 5.02;

41° F, 30:42" Ha

Ambient an sample amister 919 regulater 0048

Sumpling at 5V-2

He in Contained 535,000 ppm

Consister 1669 regulator 1317

Purged for 3 montes

PID 0.4 ppm (0.0 and)

He SEO ppm

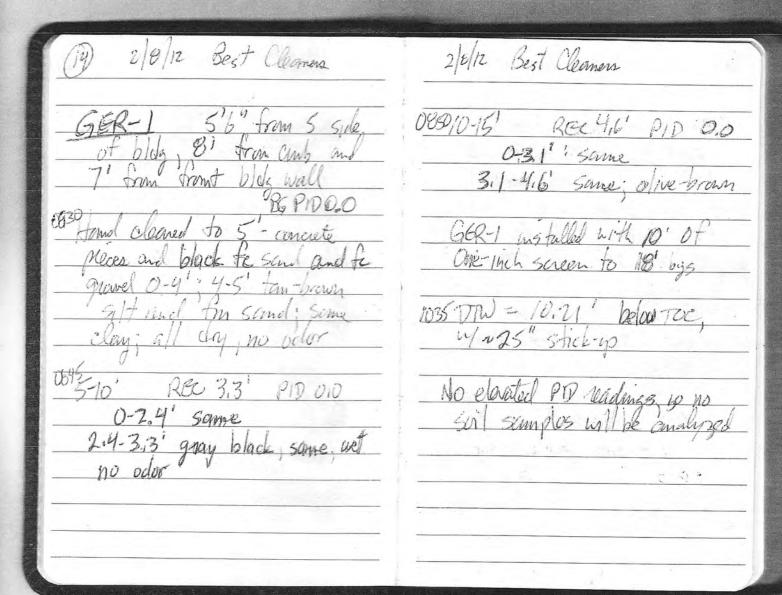
He ambient 1860 ppm

639, 30,45° Hz

Stricted at 930

Printial -30,53

Godes at 1255-Cariston assistance

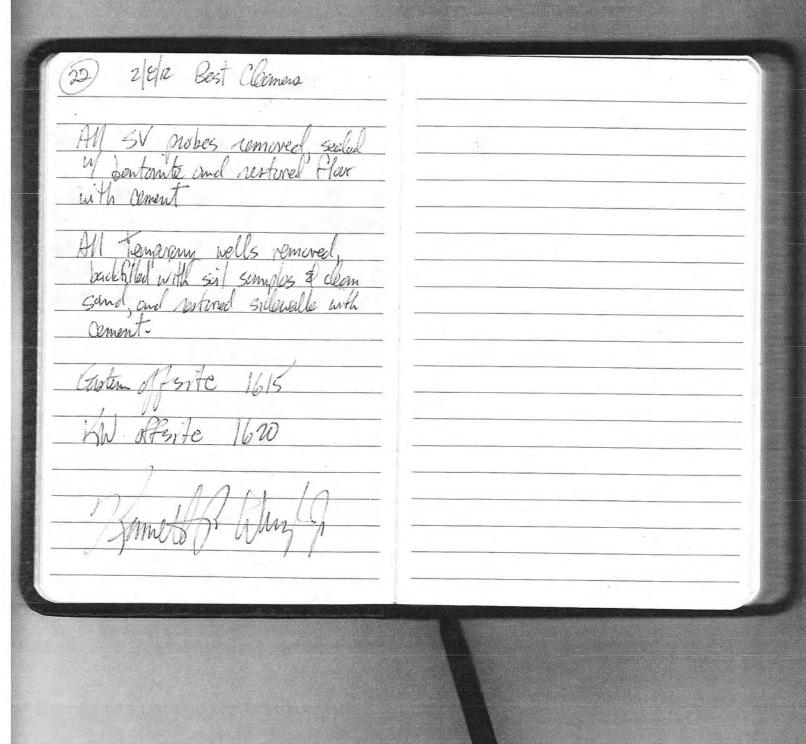

20,42° Hz

Samphy at 5VI

He in contamer 999999 ppm
He ambient 246 ppm
Canister 1648 popular 0189
He purp 252 ppm
PID purp 0.1 ppm (0.0 ambient)
purios Rs 3 minutes
Start at 0945
Pr mithal -30.09
67 30.45° Hz

Ended at 14W-canista possibly moreal
Pr final -5.36 640F, 30.42° Hz

2/2/12 Best Clamer 2/8/12 Best Cleaner Gimpling at 5V-3 (3 mute page) Sampling at SV-5 5 involtes of programmer 999,999 pm He am brout 540 ppm He contemme 999,999 He am blest 1352 ppm PD punge 0.6 ppm He punge (3 min) 560 ppm pung 1403 pm PID purge 0,2 ppm (0,0) Comister 1544 regulater 0299 Camester 629 regulator 016 Pr initial -28:25 Vac nums initial -20.43 Started at 1015 740F, 30,57" Hg 68 F 3057" HG Stanted at 1000 Pr fmal -3.87, 56°F, 30.42" 4 ancted at 1410 - Comister possibly Pr Fmal -5,93, 64°F 30145" Hg


2/2/2 Best Clamers 16) 2/2/12 Best Clamers GER-1 Veny turbed no sheer No odor Towafter removing 5 gallons (~15 casing volumes) Dowafter sevelepment = 10.08' below TOC. 0930 Eastern begins closure for GER-3, in front of 38-60 12th Street. Well completed to 18", using 10' of 1-wich

PVC screen. After development (8

gol), DTW = 10,65" below TOC. 1115 no order or sheen. Vareleged 8 1045 Elisten begnis decliping Onllons From well, slightly cloaver.
DTW after development = 10.65 blan Tox GER-1 and GER-2 using on-site. Off-ste 1405 tubing and check valve. GER-2 very tunbil no odor or sheen, developed for 1330 Pump annès from Pine 3.5 gillons (~15 caring Volumes). DTW after developing is 10.12' below Toc GER-3 is located 20 from N side of property and 8 from bldg (5' from bldg (5'

(18) Nel/2. Best Clamers.	1/2/12 Best Clamina
Punge GER-1 stanting at 1340	DTWinihal = 10,08
of Temp Tub SC ORP	TO DIW
1350 637 14.64 540 77.4 -168 1355 646 14.55 2790 79.8 -172	1.63 10.08 1.52 N.09
1400 651 14.60 1750 83.2 -176	1,54 10,09
1410 6.57 14.60 172.0 83.4 -176	1.56 10.10
Sample Collected 1415 MS/MSD.	Simples Iceal
	Total singed 7.5 liter
GER-1 9886 100.98	
GG2-2 98.97 100.93 GG2-3 100.50 101.39	
Top of step (grint/me) at Best Chemens=100.00	

(20) 2/6/12 Best Cleaners 2/8/12 Best Cleaners 1430 Begin surging GER-2 rate 200 ml/min DTW=10,12 1515 Bayer senser GER-3 DTW=10.65 Time of Cond Temp Tout DO ORP DOW Time of Temp Tinh (and DO ORP DIW) 1440 649 61.0 11.72 46 311 -140 1012 1525 614 12.60 57 93.9 277 -33 10.65 1445 6.48 617 1151 40 640 -135 90,13 1530 6,05 13,00 55 91,8 2,75 -40 10.66 1450 6,50 60:9 11.52 40 6.42 - 138 10,12 1535 6.06 12.98 56 91.9 272 -38 10.65 1455 651 60.8 11.51 41 641 -136 10:12 1540 6.06 12:48 57 91.9 2.73 -38 10:66 Total punged 6125 l Total purged 6, Ohter Sample collected at 1545 Sample collected at 1500 Samples red Puplicate "DUP" also collected here (time for DUP is 1440) Samples 1ced

APPENDIX B

Soil Boring Logs

			4 - 4				BORING LO	OG
GENE	SIS EN	GINEER	ING & R	EDEVE	LOPMEN	T	Page 1	of 2
Clie	nt Nam	16	Jay N	Moon			Boring Name GER-1	
Job/	Site N	ame	Best-	-DDK (Cleaners	i	Drilling Started 2/8/12 @ 08:30	
Loca	ation		38-68	3 13th	Street. L	ong Island		
	ect Nu	mber	155-0			· · · · · · · · · · · · · · · · · ·	Ground Surface Elevation 98.96'	
Drill					vironme	ntal Solutio		
		له م ط4						
	ing Me					irect Push	n to 18' Total Boring Depth 18'	
	ng Dia			5', 2" 1	10 18'			
1	ged By		K. W				Depth to Water (First Encountered) Approx. 10.5'	-V
Revi	iewed	Ву	K. W				Depth to Water (Static) 10.08'	T
Note	es		Insta	lled te	mporary	1" pvc wel	ell with screened interval of 8'-18' bgs	
Ď			_				Sample Condition	s)
) Jple	Time Sampled	PID (ppm)	Sample ID	اد ش	. <u>S</u>	ο.	the distance of Councils	bg ct
) jan	ime	g)	eld	Depth (ft bgs)	Graphic Log	U.S.C.S	Undisturbed Sample No Recovery	nta (#
(A)	Sal	흔	ащ	□ Ħ	يق	⊃.	Disturbed Sample	S €
Date Sampled		ъ.	(I)				Lithologic Description	Contact Depth (ft bgs)
				0	ZV_ZV			
					:.:.:	SW	(0.0'- 0.2') Concrete	8.2
				_	↓	300	(0.2'- 4.0') SAND: black, fine to coarse grained sand with fine to coarse gravel,	
							dry, no odor	
					• . • . • .			
		0.0		-	∤ `.``.			
					:-:-:			
]			
					• . • . • .			
					' . ' . ' .			
		0.0		-				
						SM	(4.0'- 15.0') Silty SAND: tan-brown, silt and fine to medium grained sand, some	4.0
				_			clay present, no odor	
				5-	1:1:1:1			
		0.0		-	4:1:1:1		Sample Recovery for core collected from 5' - 10' was 3.3'	
					$ \cdot \cdot \cdot $			
				-	1:1:1:1			
		0.0		-]: : :			
							@ 8.5' color change to gray-black	
				-	1:1:1:1		@ 6.5 Color change to gray-black	
		0.0		10 —]: : :		Sample Recovery for core collected from 10' 15' was 4.6'	
		0.0		10			Sample Recovery for core collected from 10' - 15' was 4.6'	
							∑ 40 Fl matarial hacaman wat	
				-			@ 10.5' material becomes wet	
		0.0		-	1:1:1:1			
				-	1:1:1:1			
							@ 13.5' color change to olive-brown	
		0.0		-	1:1:1:1		15.5 Soloi Gildingo to Gilve Brown	
				15 —				
				13			(15.0'- 18.0') soil samples not collected below depth of 15'	15.0
								_
				-	1			
					1			

BORING LOG

GENE	SIS EN	GINEER	RING & R	EDEVE	LOPMEN	T	Page	2 of 2
Proj	ect Nu	mber	155-C	-2			Boring Name GER-1	
Date Sampled	Time Sampled	PID (ppm)	Sample ID	Depth (ft bgs)	Graphic Log	U.S.C.S	Sample Condition Undisturbed Sample Disturbed Sample Lithologic Description	Contact Depth (ft bgs)
				_				
							Boring Terminated @ 18.0'	
							Additional Notes:	
							TOC Elevation @ 100.88'	
							Ground surface and TOC Elevation were referenced to a common, random benchmark established at 100.00'	
							A total of 5 gallons were removed during well development prior to sampling	
							Temporary well was abandoned after GW sample was collected	

			4 - 4						BO	DRING L	
GENE	SIS EN	GINEER	ING & R	EDEVE	LOPMEN	T				Page '	1 of 2
Clier	nt Nam	ie	Jay N	/loon				Boring Name	GER-2		
Job/	Site N	ame	Best-	DDK (Cleaners			Drilling Started	2/8/12 @ 07:20		
Loca	ation		38-68	3 13th	Street, L	ong Island	City, NY	Drilling Completed	2/8/12 @ 08:15		
Proje	ect Nu	mber	155-0	C-2				Ground Surface Elev	ration 98.97'		
Drille	er		Easte	ern En	vironme	ntal Solutio	ns, Inc.	Boring Location	In sidewalk near S	ite basement ac	cess
Drilli	ing Me	thod	Hand	Auge	r to 5', D	irect Push	to 26.8'	Total Boring Depth	26.8'		
Bori	ng Dia	meter	4" to	5', 2" t	o 26.8'						
Logg	ged By	,	K. We	enz				Depth to Water (First	Encountered)	Approx. 10.5'	∇
Revi	iewed	Ву	K. We	enz				Depth to Water (Stati	ic)	10.12'	_
Note	es		Instal	led ter	mporary	1" pvc wel	with screened interval of 8	8'-18' bgs			
b								Sample Cond	ition		ŝ
Date Sampled	Time Sampled	PID (ppm)	Sample ID	£ (ŝ	Graphic Log	S.S.	Undisturb	ed Sample	No Red	an voru	Contact Depth (ft bgs)
Sar	Lim	9	ldu	Depth (ft bgs)	rapl Log	U.S.O	Disturbed		No Rec	covery	onta h (ff
Ite (Sa	吕	Sar	l⊓ €	<u>5</u>	D.	Disturbed				g C
								Lithologic Des	cription		۵
				0			(0.0'- 0.2') Concrete				8:2
					• • • • • • • • • • • • • • • • • • •	SW	(0.01. 7.51) OAND, Islands				0.2
				-	:::::		(0.2'- 7.5') SAND: black coarse gravel, occasion:	to brown, tine to coars	se grained sand, so odor	me fine to	
					-::-::		graver, cocacions	ar briok proces, ary, ric	, 6461		
		0.0		-	¦∵.∵.						
					::::::						
				_	• : • : • :						
					:-:-:-						
		0.0		-	·:·:·:						
					:-:-:-						
				5-	::::::		Sample Recovery for co	re collected from 5' -	10' was 3.6'		
					• : • : • :						
		0.0		_	:-:-:-						
					-:-:-:						
]						
					:::::						
						SM	(7.5'- 26.5') Silty SAND:	black silt and fine to	medium grained sa	nd dry no	7.5
		0.0		-		OW	odor	black, out and line to	mediam gramed sa	na, ary, no	' .0
				-							
							@ 0.5' color change to	divo grav			
		0.0		10 —			@ 9.5' color change to d			•	
							@ 9.8' material become	s moist		¥ ¥	
							@ 10.5' material becom	es wet			
							Sample Recovery for co	re collected from 10' -	15' was 1.8'		
							,				
		0.0		-							
				-							
		0.0		-							
				45							
				15 —	1:1:1:1		@ 15' color change of ta	an to brown-gray			
					: : :		_		20' was 2 2'		
		0.0		-	<u> : : : </u>		Sample Recovery for co	ne conected from 15 -	20 Was 3.3		

BORING LOG

Page 2 of 2

	ect Nu		155-C		LOPMENT		Boring Name GER-2	
							Sample Condition	<u> </u>
Date Sampled	Time Sampled	PID (ppm)	Sample ID	Depth (ft bgs)	Graphic Log	U.S.C.S	Undisturbed Sample No Recovery	Contact Depth (ft bgs)
ate Sa	San	PID (Samp	De (ft b	Gra Lc	U.S	Disturbed Sample	Con
۵			0,	<u> </u>	 		Lithologic Description	
		0.0		_				
		0.0		20 —			Sample Recovery for core collected from 20' - 25' was 5.0'	
		0.0		_				
		0.0		25 —			Sample Recovery for core collected from 25' - 26.8' was 1.5'	
							(26.5'- 26.8') Weathered Bedrock	26.5
							Boring Terminated @ 26.8' due to refusal	/
							Additional Notes:	
							TOC Elevation @ 100.93'	
							Ground surface and TOC Elevation were referenced to a common, random benchmark established at 100.00'	
							A total of 8.5 gallons were removed during well development prior to sampling	
							Temporary well was abandoned after GW sample was collected	

APPENDIX C

Temporary Well Survey Information

Municipal Land Survey, P.C.

Land, Hydrographic and Engineering Surveys

March 23, 2012

Mr. Ken Wenz, P.E. Genesis Engineering & Redevelopment, Inc. 69-49 185th Street, Suite 1A Fresh Meadows, NY 11365

Re: Best Cleaners, Long Island City, NY

Dear Mr. Wenz

Pursuant to our survey of March 8, 2012 here are the elevations for the three monitoring wells:

Mon Well #	Sidewalk Elevation	Top of Casing Elev.
GER1	98.86	100.88
GER2	98.97	100.93
GER3	100.50	101.39

The above elevations are referenced to the first floor elevation of Best Cleaners being held at Elev. 100.00. If there are any questions, please do not hesitate to call me.

Thank you for the opportunity to be of assistance.

Very truly yours,

Robert W. Ott L.S.

President

APPENDIX D

Field Sampling Forms

FIELD SAMPLING DATA FORM

PROJECT NAME	Best-DDK Cleaner	rs	Well/Surfa	ace Station I.D. Gl				
LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT	38-68 13th Street Long Island City, 1 155-C-2 Jay Moon	New York	Samı	Date $\frac{Gl}{2/3}$				
WATER LEVEL M	EASUREMENTS:							
Water Level		Feet below re	ference elevation:	10.08	Date:	2/8/2012	Time:	13:40
WELL EVACUATION Dep	ON: Well Depth: 1 oth to Top of Screen:	8 feet 8 feet	Well Diameter:	1 inches	Casing Volun	0.103 g	ters	
Total No. of Casing Volumes: 19.2		Total Liters Remove	ed: 7.5	Elaps Tim	ed e: 30 minutes			ater Column nals Gallons er 2" Well
WELL EVACUATION METHOD: Non-Dedicated Equipment	Peristaltic pump _ X Identification Pun	Submersible rge rate 0.250	e Pump D liter/minute	Bailer	Other		0.653 1.469	4" Well 6" Well
FIELD WATER QU Casing Volume (total)	ALITY TESTS:	Specific Conductance (umhos/cm)	Temperature	Turbidity (NTU)	Dissolved Oxgen (DO)	Oxidation- Reduction Potential (ORP)	DTW (ft. below TOC)	Time
3.2 6.4 9.6	Not measured 6.37 6.46	Not measured 77.4 79.8	Not measured 14.64 14.55	Not measured 544.0 279.0	Not measured 1.63 1.52	Not measured -168 -172	Not measured 10.08 10.09	13:45 13:50 13:55
12.8 16.0 19.2	6.51 6.51 6.51	83.2 83.1 83.4	14.60 14.61 14.60	175.0 170.8 172.0	1.54 1.56 1.56	-176 -176 -176	10.09 10.08 10.10	14:00 14:05 14:10
SAMPLING:	Sample Analysis VOC VOC (MS) VOC (MSD)	Volume 40 ml 40 ml 40 ml	Container Type Glass Glass Glass	Number of Containers 3 3 3	Preservative HCl HCl HCl			
SAMPLING METHOD:	Stainless Steel Bailer _		Teflon Bailer		Grab	(Other: Peristal	tic Pump
EQUIPMENT DEC	ONTAMINATION	PROCEDUI	RES:					
DECONTAMINATION MI		fon Phosphatic de	etergent wash/distill	ed water rinse 🔲	Hot pressure wash	/steam cleaning		
NOTES:								

FIELD SAMPLING DATA FORM

PROJECT NAME	Best-DDK Clea	ners	Well/Surf	ace Station I.D. Gl	ER-2			
LOCATION/ADDRESS PROJECT NO. CLIENT/CONTACT	Sam	Sample Designation $\underline{\text{GER-2}}$ and $\underline{\text{DUP}}$ (duplicate) Date $\underline{2/8/2012}$						
WATER LEVEL M	EASUREMENT	S:						
Water Level	90.81'	Feet below re	ference elevation:	10.12	Date:	2/8/2012	Time:	14:30
WELL EVACUATION Dep	ON: Well Depth: pth to Top of Screen:	18 feet 8 feet	Well Diameter:	1 inches	Casing Volume	0.102 g 0.39 li	ters	
Total No. of Casing Volumes: 16.0 WELL EVACUATION		Total Liters Remov	red: 6.25	Elaps Tim	sed ne: 25 minutes			als Gallons er 2" Well 4" Well
METHOD: Non-Dedicated Equipment	Peristaltic pump Identification	X Submersible Purge rate 0.250	le Pump) liter/minute	Bailer	Other		1.469	6" Well
Casing Volume (total) 3.2 6.4 9.6 12.8 16.0 SAMPLING:	DALITY TESTS: pH Not measured 6.47 6.48 6.50 6.51 Date: 2/8/201 Sample Analys VOC VOC (DUP)		Temperature Not measured 11.72 11.51 11.52 11.51 15:00 (DUP tine Container Type Glass Glass	Turbidity (NTU) Not measured 46.0 40.0 40.0 41.0 Mumber of Containers 3 3	Dissolved Oxgen (DO) Not measured 6.11 6.40 6.42 6.41 Preservative HCl HCl	Oxidation- Reduction Potential (ORP) Not measured -140 -135 -138 -136	DTW (ft. below TOC) Not measured 10.12 10.13 10.13	Time 14:35 14:40 14:45 14:50 14:55
SAMPLING METHOD:	Stainless Steel Baile	er	Teflon Bailer _		Grab		Other: Peristal	tic Pump
EQUIPMENT DEC	ETHOD:	_	RES: letergent wash/distil	led water rinse 🔲	Hot pressure wash/s	steam cleaning		
NOTES:								

FIELD SAMPLING DATA FORM

Total No. of Casing Volumes: 13.9 Liters Removed: 5.0 Time: 30 minutes Height Equation Time: 30 minutes Time: 30	ER-3					PROJECT NO. Long Island City, New York 155-C-2		
Water Level: 90.74' Feet below reference elevation: 10.65 Date: 2.8/2012 Time:								
## WELL EVACUATION: Well Depth: 18 feet Well Diameter: 1 inches Casing Volume: 0.096 gallons					S:	EASUREMENTS	WATER LEVEL ME	
Depth to Top of Screen: 8 feet	Date: 2/8/2012 Time: 15:15	Date:	10.65	erence elevation:	Feet below re	90.74'	Water Level:	
Total	0.36 liters	s Casing Volu	1 inches	Well Diameter:				
METHOD:	e: 30 minutes	-		d: 5.0			Casing Volumes: 13.9	
Casing Volume (total)		r Other	Bailer			–	METHOD:	
EQUIPMENT DECONTAMINATION PROCEDURES: DECONTAMINATION METHOD: Non Phosphatic detergent wash/distilled water rinse Hot pressure wash/steam cleaning	Oxgen (DO) Reduction (Potential (ORP)) (ft. below TOC) Time Time Time ToC) Not measured Not measured 15:20 2.77 -33 10.65 15:25 2.75 -40 10.66 15:30 2.72 -38 10.65 15:35 2.73 -38 10.66 15:40	didity Oxgen (DO) assured Not measured 7 2.77 5 2.75 6 2.72 7 2.73 aber aber tainers Preservative	(NTU) Not measured 57 55 56 57 Number of Container	12.60 13.00 12.98 12.98 12.98 15:45 Container Type	Conductance (umhos/cm) Not measured 93.9 91.8 91.9 91.9 12 Time:	pH Not measured 6.14 6.05 6.06 6.06 Date: 2/8/201 Sample Analysi	Casing Volume (total) 2.8 5.6 8.3 11.1 13.9	
				RES:	ON PROCEDU	ONTAMINATIO	EQUIPMENT DECC	
NOTES:							NOTES:	

Page

Logged by: K. Wenz

Genesis Engineering & Redevelopment, LLC Soil Gas Log Sheet

Date: 2/8/2012 **GE&R Project No.:** 155-C-2

Project Name: Best-DDK Cleaners Project Location: 38-68 13th Street, Long Island City, New York

Sample Location	Depth ¹	Volume Purged (liters)	Canister SN/ Regulator SN	Start time/ Temp./ Pressure ²	End time/ Temp./ Pressure ²	Tracer	Canister Pressure (initial/final)	Notes
GER-SV1	2-8	0.6	1648/0189	09:30/63°/ 30.45"	14:00/64°/ 30.42"	helium	-30.09"/-5.36"	Canister moved during sampling.
GER-SV2	2-8	0.6	1669/0317	09:45/67°/ 30.45"	13:55/61°/ 30.42"	helium	-30.53"/-5.26"	Canister moved during sampling.
GER-SV3	2-8	0.6	629/0166	10:00/74°/ 30.57"	14:10/64°/ 30.45"	helium	-30.43"/-5.93"	Canister moved during sampling.
GER-SV4	2-8	0.6	1709/0735	09:00/55°/ 30.46"	13:17/61°/ 30.42"	helium	-30.30"/-5.51"	
GER-SV5	-1-5 ³	0.6	1544/0299	10:15/58°/ 30.57"	14:15/56°/ 30.42"	helium	-28.25"/-3.87"	
GER-AA			919/0048	09:15/46°/ 30.51"	13:12/41°/ 30.42"		-30.12"/-5.02"	

NOTES:

All regulators pre-set for a 4-hour sample collection time.

Purging performed at a rate of 0.2 liters per minute.

¹ Inches below foundation.

² Ambient temperature (°F) and atmospheric pressure (inches of mercury).

³ Groundwater encountered 8 inches below basement foundation, so this probe was installed to depth of 5 inches below foundation.

APPENDIX E

Laboratory Data Sheets

Groundwater Samples

Project Name: **BEST CLEANERS**

Project Number: 155-C-2

SAMPLE RESULTS

Lab Number: L1202347

Report Date: 02/16/12

Lab ID: L1202347-01

Client ID: GER-1 Sample Location: LIC, NY Matrix: Water Analytical Method: 1,8260B

Analytical Date: 02/14/12 13:45

Analyst: PD Date Collected: 02/08/12 14:15 Date Received: 02/09/12 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Facto
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	-1
Chloroform	0.54	J	ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	3.5		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane /	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	0.91		ug/l	0.75	0.23	1
Ethylbenzene	0.64		ug/l	0.50	0.26	1
Chloromethane 4	ND		ug/l	2.5	0.28	1
Bromomethane *	ND		ug/l	1.0	0.26	1
Vinyl chloride	1.1		ug/l	1.0	0.22	1
Chloroethane -	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/I	0.50	0.18	1
rans-1,2-Dichloroethene	ND		ug/l	0.75	0.21	1
Frichloroethene C	0.79		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

L1202347

Project Name: **BEST CLEANERS**

Project Number: 155-C-2

SAMPLE RESULTS

02/16/12

Report Date:

Lab Number:

Lab ID: L1202347-01 Client ID: GER-1

Sample Location: LIC, NY Date Collected: 02/08/12 14:15 Date Received: 02/09/12 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methyl tert butyl ether	ND		ug/l	1.0	0.16	Á
p/m-Xylene	4.1		ug/l	1.0	0.35	1
o-Xylene /	3.5		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	6.5		ug/l	0.50	0.19	1
Dibromomethane -	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile /	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	10
Dichlorodifluoromethane /	ND		ug/l	5.0	0.30	1
Acetone /	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/I	5.0	0.58	1
Bromochloromethane /	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene *	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	-1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene /	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/I	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene /	ND		ug/l	0.60	0.23	1
Isopropylbenzene	ND		ug/l	0.50	0.19	1
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1
Naphthalene	19		ug/l	2.5	0.22	1
n-Propylbenzene /	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene	1.4	J	ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene /	3.8		ug/l	2.5	0.27	1
1,4-Diethylbenzene	0.60	J	ug/l	2.0	0.11	1
4-Ethyltoluene	1.4	J	ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene	0.19	J	ug/l	2.0	0.10	1

Project Name: **BEST CLEANERS**

Project Number: 155-C-2 Lab Number:

L1202347

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

Parameter

L1202347-01

Date Collected:

02/08/12 14:15

Client ID: Sample Location: GER-1

Date Received:

02/09/12 Not Specified

Volatile Organics by GC/MS - Westborough Lab

Ethyl ether <

LIC, NY

Field Prep: Units RL

MDL **Dilution Factor**

ND ug/l 2.5 0.20 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.17 1

Qualifier

Result

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	123		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	123		70-130	

Project Name: BEST CLEANERS

Project Number: 155-C-2

SAMPLE RESULTS

Lab Number: L1202347

Report Date: 02/16/12

Lab ID: L1202347-02

Client ID: GER-2 Sample Location: LIC, NY Matrix: Water

Analytical Method: Analytical Date:

1,8260B 02/14/12 14:10

Analyst: PD

Date Collected: Date Received: Field Prep: 02/08/12 15:00 02/09/12 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Facto
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/I	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	38		ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/I	0.50	0.19	1
,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	50		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
richlorofluoromethane	ND		ug/l	2.5	0.27	1
,2-Dichloroethane	ND		ug/l	0.50	0.16	1
,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	3.0		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
is-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
oluene	ND		ug/l	0.75	0.23	1
thylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
romomethane	ND		ug/l	1.0	0.26	1
inyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
,1-Dichloroethene	ND		ug/l	0.50	0.18	1
ans-1,2-Dichloroethene	ND		ug/l	0.75	0.21	1
richloroethene	2.8		ug/l	0.50	0.17	1

ND

ND

ND

ug/l

ug/l

ug/l

2.5

2.5

2.5

1

0.18

0.19

0.22

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Project Name: BEST CLEANERS Lab Number: L1202347

Project Number: 155-C-2 Report Date: 02/16/12

SAMPLE RESULTS

 Lab ID:
 L1202347-02
 Date Collected:
 02/08/12 15:00

 Client ID:
 GER-2
 Date Received:
 02/09/12

 Sample Location:
 LIC, NY
 Field Prep:
 Not Specified

Sample Location. Lic, NT			rieia riep.		Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	20		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	t
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.13	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.18	1
Hexachlorobutadiene	ND		ug/l	0.60	0.33	1
Isopropylbenzene	ND			0.50	0.19	1
p-Isopropyltoluene	ND		ug/l ug/l	0.50	0.19	1
Naphthalene	0.44	J	ug/l	2.5	0.19	
n-Propylbenzene	ND.	3	ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.17	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5		
1,2,4-Trimethylbenzene	ND				0.21	1
1,4-Diethylbenzene	ND		ug/l ug/l	2.5	0.27	1
4-Ethyltoluene	ND		ug/l	2.0	0.11	1
1,2,4,5-Tetramethylbenzene	ND				0.42	1
1,2,7,0-1 Guarriculyidenzene	NU		ug/l	2.0	0.10	1

Project Name: BEST CLEANERS Lab Number: L1202347

Project Number: 155-C-2 Report Date: 02/16/12

SAMPLE RESULTS

 Lab ID:
 L1202347-02
 Date Collected:
 02/08/12 15:00

 Client ID:
 GER-2
 Date Received:
 02/09/12

 Sample Location:
 LIC, NY
 Field Prep:
 Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Ethyl ether ND 2.5 ug/l 0.20 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.17

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	119		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	121		70-130	

Project Name: BEST CLEANERS

Project Number: 155-C-2

SAMPLE RESULTS

Lab Number: L1202347

Report Date: 02/16/12

and the state of t

Lab ID: L1202347-03
Client ID: GER-3
Sample Location: LIC, NY
Matrix: Water
Analytical Method: 1,8260B

Analytical Date: 02/14/12 14:36

Analyst: PD

Date Collected: 02/08/12 15:45
Date Received: 02/09/12
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	0.62	J	ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	-1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	1.2		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	4
Chloroethane	ND		ug/l	1.0	0.23	4
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
rans-1,2-Dichloroethene	ND		ug/l	0.75	0.21	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Project Name: **BEST CLEANERS**

Project Number: 155-C-2

SAMPLE RESULTS

Lab Number: L1202347

Report Date: 02/16/12

Lab ID: Date Collected: L1202347-03 02/08/12 15:45 Client ID: Date Received: 02/09/12 GER-3 Sample Location: LIC, NY Field Prep: Not Specified

Campic Education.			1 101	a i icp.	1100	opeomea
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methyl tert butyl ether	ND		ug/l	1.0	0.16	á
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene	ND		ug/l	0.60	0.23	1
Isopropylbenzene	ND		ug/l	0.50	0.19	1
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	4
n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/I	2.5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
4-Ethyltoluene	ND		ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

MDL

Project Name: **BEST CLEANERS**

Project Number: 155-C-2

SAMPLE RESULTS

Qualifier

Lab Number:

L1202347

Report Date:

02/16/12

Lab ID: Client ID:

Sample Location:

Parameter

L1202347-03

GER-3 LIC, NY Date Collected: Date Received: 02/08/12 15:45

Field Prep:

RL

02/09/12 Not Specified

Volatile Organics by GC/MS - Westborough Lab

Ethyl ether

trans-1,4-Dichloro-2-butene

ND ND

Result

ug/l ug/l

Units

2.5 2.5

0.20 0.17

Dilution Factor

Acceptance Surrogate % Recovery Qualifier Criteria 1,2-Dichloroethane-d4 124 70-130 Toluene-d8 100 70-130 4-Bromofluorobenzene 94 70-130 Dibromofluoromethane 70-130 120

Project Name: BEST CLEANERS Lab Number: L1202347

Project Number: 155-C-2 Report Date: 02/16/12

SAMPLE RESULTS

Lab ID: L1202347-04 Date Collected: 02/08/12 14:40

Client ID: DUP Date Received: 02/09/12
Sample Location: LIC, NY Field Prep: Not Specified
Matrix: Water
Analytical Method: 1,8260B

Analyst: PD

02/14/12 15:02

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	5.0	0.54	4
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	38		ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	48		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	3.1		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	-1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
/inyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
,1-Dichloroethene	ND		ug/l	0.50	0.18	1
rans-1,2-Dichloroethene	ND		ug/l	0.75	0.21	1
richloroethene	2.8		ug/l	0.50	0.17	1
,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Project Name: BEST CLEANERS Lab Number: L1202347

Project Number: 155-C-2 Report Date: 02/16/12

SAMPLE RESULTS

 Lab ID:
 L1202347-04
 Date Collected:
 02/08/12 14:40

 Client ID:
 DUP
 Date Received:
 02/09/12

Sample Location: LIC, NY Field Prep: Not Specified

Sample Location. Lic, NY			riela Piep.		Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	20		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/I	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene	ND		ug/l	0.60	0.23	1
Isopropylbenzene	ND		ug/l	0.50	0.19	1
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
4-Ethyltoluene	ND		ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

Project Name: BEST CLEANERS Lab Number: L1202347

Project Number: 155-C-2 Report Date: 02/16/12

SAMPLE RESULTS

 Lab ID:
 L1202347-04
 Date Collected:
 02/08/12 14:40

 Client ID:
 DUP
 Date Received:
 02/09/12

Sample Location: LIC, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Ethyl ether	ND		ug/l	2.5	0.20	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	124		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	123		70-130	

Project Name: BEST CLEANERS Lab Number: L1202347

Project Number: 155-C-2 Report Date: 02/16/12

SAMPLE RESULTS

02/14/12 15:27

PD

Analytical Date:

Analyst:

 Lab ID:
 L1202347-05
 Date Collected:
 02/08/12 00:00

 Client ID:
 TRIP BLANK
 Date Received:
 02/09/12

Sample Location: LIC, NY Field Prep: Not Specified Matrix: Water

Analytical Method: 1,8260B

Parameter Qualifier MDL Result Units RL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND 5.0 0.54 ug/l 1 1,1-Dichloroethane ND 0.75 0.22 ug/l Chloroform ND ug/l 0.75 0.20 Carbon tetrachloride ND 0.50 0.16 ug/l 1,2-Dichloropropane ND ug/l 1.8 0.30 Dibromochloromethane ND 0.50 ug/l 0.19 1 1,1,2-Trichloroethane ND ug/l 0.75 0.26 1 Tetrachloroethene ND 0.50 0.18 ug/l 1 Chlorobenzene ND ug/l 0.50 0.19 1 Trichlorofluoromethane ND 2.5 0.27 ug/l 1 1,2-Dichloroethane ND ug/l 0.50 0.16 1 1,1,1-Trichloroethane ND 0.50 0.16 ug/l Bromodichloromethane ND 0.50 0.19 ug/l 1 trans-1,3-Dichloropropene ND 0.50 ug/l 0.16 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1,1-Dichloropropene ND ug/l 2.5 0.26 1 Bromoform ND 2.0 ug/l 0.25 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.19 1 Benzene ND 0.50 0.19 1 ug/l Toluene ND 0.75 0.23 ug/l 1 Ethylbenzene ND 0.50 0.26 ug/l 1 Chloromethane ND 2.5 0.28 ug/l 1 Bromomethane ND 1.0 ug/l 0.26 1 Vinyl chloride ND 1.0 ug/I 0.22 4 Chloroethane ND ug/l 1.0 0.23 1 1,1-Dichloroethene ND ug/l 0.50 0.18 1 trans-1,2-Dichloroethene ND ug/l 0.75 0.21 1 Trichloroethene ND 0.50 ug/l 0.17 1 1,2-Dichlorobenzene ND 2.5 0.18 ug/l 1 1,3-Dichlorobenzene ND ug/l 2.5 0.19 1 1,4-Dichlorobenzene ND ug/l 2.5 0.22 1

Project Name: BEST CLEANERS

Project Number: 155-C-2

SAMPLE RESULTS

Lab Number: L1202347

Report Date: 02/16/12

 Lab ID:
 L1202347-05
 Date Collected:
 02/08/12 00:00

 Client ID:
 TRIP BLANK
 Date Received:
 02/09/12

 Sample Location:
 LIC, NY
 Field Prep:
 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
ert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene	ND		ug/l	0.60	0.23	1
sopropylbenzene	ND		ug/l	0.50	0.19	1
o-Isopropyltoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	Ť
,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
-Ethyltoluene	ND		ug/l	2.0	0.42	4
1,2,4,5-Tetramethylbenzene	ND		ug/I	2.0	0.10	1

Project Name: BEST CLEANERS

Project Number: 155-C-2

SAMPLE RESULTS

Report Date:

02/16/12

Lab ID: L1202347-05 Client ID: TRIP BLANK Sample Location: LIC, NY

Date Collected: Date Received:

Lab Number:

02/08/12 00:00 02/09/12

L1202347

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Ethyl ether	ND		ug/I	2.5	0.20	10
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	124		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	121		70-130	

Soil Vapor and Air Samples

Lab Number:

L1202360

Project Number: Not Specified Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-01 D

Client ID:

GER-SV1

Sample Location:

LIC, NY

Matrix:

Soil_Vapor

Anaytical Method:

48,TO-15

Analytical Date:

02/11/12 00:01

Analyst:

RY

Date Collected: Date Received:

02/08/12 14:00

Field Prep:

02/09/12 Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield	Lab						
Propylene	ND	1.25		ND	2.15	- O -1		2.5
Dichlorodifluoromethane	0.538	0.500		2.66	2.47	4		2.5
Chloromethane	ND	0.500	1-4	ND	1.03	4		2.5
Freon-114	ND	0.500	-	ND	3.49	F 8		2.5
/inyl chloride	ND	0.500	-	ND	1.28	-		2.5
,3-Butadiene	ND	0.500	-	ND	1.11	-		2.5
Bromomethane	ND	0.500	-	ND	1.94	-		2.5
Chloroethane	ND	0.500	-	ND	1.32			2.5
Ethanol	7.07	6.25	221	13.3	11.8	8		2.5
/inyl bromide	ND	0.500	-	ND	2.19	-		2.5
Acetone	32.2	2.50	+	76.5	5.94	-		2.5
richlorofluoromethane	ND	0.500	-	ND	2.81	-		2.5
sopropanol	ND	1.25	**	ND	3.07	-		2.5
,1-Dichloroethene	ND	0.500		ND	1.98	-		2.5
Methylene chloride	ND	2.50	-	ND	8.68			2.5
-Chloropropene	ND	0.500	0	ND	1.56			2.5
Carbon disulfide	1.30	0.500	4-0	4.05	1.56	-		2.5
reon-113	ND	0.500	-	ND	3.83	-4		2.5
rans-1,2-Dichloroethene	ND	0.500	4	ND	1.98	4		2.5
,1-Dichloroethane	ND	0.500	-	ND	2.02	-		2.5
Methyl tert butyl ether	ND	0.500	4	ND	1.80	-2		2.5
'inyl acetate	ND	0.500	-	ND	1.76	-		2.5
-Butanone	1.42	0.500	2	4.19	1.47	9		2.5
is-1,2-Dichloroethene	ND	0.500	-	ND	1.98	-		2.5

Lab Number:

L1202360

Project Number: Not Specified Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-01 D

Client ID:

Date Collected:

02/08/12 14:00

Sample Location:

GER-SV1 LIC, NY

Date Received: Field Prep:

02/09/12 Not Specified

campio Essation.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air (Low Leve	el) - Mansfield							
Ethyl Acetate	1.63	1.25	-	5.87	4.50	-		2.5
Chloroform	8.24	0.500	94.	40.2	2.44	_		2.5
Tetrahydrofuran	ND	0.500	-	ND	1.47	-		2.5
1,2-Dichloroethane	ND	0.500	4	ND	2.02	i ÷o		2.5
n-Hexane	ND	0.500	-	ND	1.76	-		2.5
1,1,1-Trichloroethane	0.780	0.500	b-:	4.26	2.73	-		2.5
Benzene	1.07	0.500	- 4	3.42	1.60	-		2.5
Carbon tetrachloride	0.572	0.500	-	3.60	3.14	-		2.5
Cyclohexane	0.512	0.500		1.76	1.72	- 4		2.5
1,2-Dichloropropane	ND	0.500	2	ND	2.31			2.5
Bromodichloromethane	ND	0.500	**	ND	3.35	77		2.5
1,4-Dioxane	ND	0.500	_	ND	1.80	100		2.5
Trichloroethene	4.16	0.500	-	22.4	2.69	-		2.5
2,2,4-Trimethylpentane	ND	0.500	-	ND	2.34			2.5
Heptane	0.625	0.500	144	2.56	2.05	-		2.5
cis-1,3-Dichloropropene	ND	0.500	-	ND	2.27	-		2.5
4-Methyl-2-pentanone	ND	0.500	-2	ND	2.05	-		2.5
trans-1,3-Dichloropropene	ND	0.500	-	ND	2.27	-		2.5
1,1,2-Trichloroethane	ND	0.500	-	ND	2.73	-		2.5
Toluene	1.51	0.500	÷	5.69	1.88	-		2.5
2-Hexanone	ND	0.500	+	ND	2.05	-		2.5
Dibromochloromethane	ND	0.500	- -	ND	4.26	192		2.5
1,2-Dibromoethane	ND	0.500	-	ND	3.84	-		2.5
Tetrachloroethene	264	0.500		1790	3.39	-	E	2.5
Chlorobenzene	ND	0.500	4	ND	2.30	-		2.5
Ethylbenzene	1.36	0.500	-	5.91	2.17	-		2.5
p/m-Xylene	6.00	1.00	14	26.1	4.34	-		2.5
Bromoform	ND	0.500	-	ND	5.17	1000		2.5
	253	1.751			30 11			

Not Specified

Lab Number:

L1202360

Project Number:

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-01 D

Date Collected:

02/08/12 14:00

Client ID:

GER-SV1

Date Received:

02/09/12

Sample Location:

LIC, NY

Field Prep:

어린 경기 가지를 다 한 경기를 내려가 되었다면 되었다.								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low I	Level) - Mansfield	Lab						
Styrene	ND	0.500	+	ND	2.13	÷		2.5
1,1,2,2-Tetrachloroethane	ND	0.500	-	ND	3.43	_		2.5
o-Xylene	1.99	0.500		8.64	2.17	ů.		2.5
4-Ethyltoluene	ND	0.500	÷	ND	2.46	(-		2.5
1,3,5-Trimethybenzene	ND	0.500	-	ND	2.46	-		2.5
1,2,4-Trimethylbenzene	0.778	0.500	+	3.82	2.46			2.5
Benzyl chloride	ND	0.500	-	ND	2.59	-		2.5
1,3-Dichlorobenzene	ND	0.500	4.	ND	3.01			2.5
1,4-Dichlorobenzene	ND	0.500	4	ND	3.01	-32		2.5
1,2-Dichlorobenzene	ND	0.500	-	ND	3.01	-		2.5
1,2,4-Trichlorobenzene	ND	0.500	- 5	ND	3.71	-		2.5
Hexachlorobutadiene	ND	0.500	-	ND	5.33	-		2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108	- Lauring	60-140
Bromochloromethane	104		60-140
chlorobenzene-d5	126		60-140

Project Number: Not Specified Lab Number:

L1202360

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-01 D2

Date Collected:

02/08/12 14:00

Client ID: Sample Location: GER-SV1

Date Received:

02/09/12

Matrix:

LIC, NY

Anaytical Method:

Soil_Vapor 48,TO-15

Field Prep:

Not Specified

Analytical Date:

02/11/12 09:53

Analyst:

RY

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low L	evel) - Mansfield	Lab						
Tetrachloroethene	314	1.00	H	2130	6.78	=		5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		60-140
Bromochloromethane	107		60-140
chlorobenzene-d5	106		60-140

L1202360

Project Name: **BEST CLEANERS**

Lab Number: Not Specified

Report Date: 02/16/12

SAMPLE RESULTS

Lab ID: L1202360-02 D

GER-SV2 Client ID: Sample Location: LIC, NY Matrix: Soil_Vapor

48,TO-15 Anaytical Method: Analytical Date: 02/11/12 00:36

Analyst: RY

Project Number:

Date Collected: 02/08/12 13:55 Date Received: 02/09/12

Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield	Lab						
Propylene	5.13	1.25	<u>-</u>	8.83	2.15			2.5
Dichlorodifluoromethane	0.775	0.500	-	3.83	2.47	~		2.5
Chloromethane	ND	0.500	7	ND	1.03	(2.5
Freon-114	ND	0.500	2.	ND	3.49	-		2.5
Vinyl chloride	ND	0.500		ND	1.28	-		2.5
1,3-Butadiene	ND	0.500	-	ND	1.11	-		2.5
Bromomethane	ND	0.500	-	ND	1.94	-		2.5
Chloroethane	ND	0.500	-	ND	1.32	-		2.5
Ethanol	ND	6.25	4	ND	11.8	=		2.5
/inyl bromide	ND	0.500		ND	2.19	-		2.5
Acetone	79.3	2.50		188	5.94	-		2.5
richlorofluoromethane	ND	0.500	4	ND	2.81	1544		2.5
sopropanol	ND	1.25		ND	3.07	-		2.5
1,1-Dichloroethene	ND	0.500	-	ND	1.98	÷		2.5
Methylene chloride	ND	2.50		ND	8.68	-		2.5
3-Chloropropene	ND	0.500	-	ND	1.56	-		2.5
Carbon disulfide	25.0	0.500	14	77.8	1.56	-		2.5
Freon-113	ND	0.500	-	ND	3.83	4		2.5
rans-1,2-Dichloroethene	ND	0.500	-	ND	1.98	-		2.5
,1-Dichloroethane	ND	0.500	-	ND	2.02	-		2.5
Nethyl tert butyl ether	ND	0.500	=	ND	1.80	7		2.5
/inyl acetate	ND	0.500	-	ND	1.76	-		2.5
-Butanone	3.01	0.500	()	8.88	1.47	-		2.5
sis-1,2-Dichloroethene	ND	0.500	-	ND	1.98			2.5

L1202360

Project Name: **BEST CLEANERS**

Lab Number: Not Specified

Report Date: 02/16/12

SAMPLE RESULTS

Lab ID: L1202360-02 D

Client ID: GER-SV2 Sample Location: LIC, NY

Project Number:

Date Collected: 02/08/12 13:55

Date Received: 02/09/12

Field Prep: Not Specified

		ppbV		ug/m3		D	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield	Lab						
Ethyl Acetate	1.30	1.25	÷	4.68	4.50	-		2.5
Chloroform	2.53	0.500	æ.	12.4	2.44	-		2.5
Tetrahydrofuran	ND	0.500	-	ND	1.47	-		2.5
1,2-Dichloroethane	ND	0.500	14	ND	2.02	_		2.5
n-Hexane	1.94	0.500	-	6.84	1.76	-		2.5
1,1,1-Trichloroethane	0.650	0.500	14	3.55	2.73	-		2.5
Benzene	2.86	0.500	-	9.14	1.60	-		2.5
Carbon tetrachloride	0.570	0.500	-	3.58	3.14	4		2.5
Cyclohexane	1.22	0.500	44	4.20	1.72	14		2.5
1,2-Dichloropropane	ND	0.500		ND	2.31			2.5
Bromodichloromethane	ND	0.500	-	ND	3.35	77		2.5
,4-Dioxane	ND	0.500	-	ND	1.80	-		2.5
richloroethene	6.59	0.500	-	35.4	2.69	-		2.5
2,2,4-Trimethylpentane	ND	0.500	++	ND	2.34	0		2.5
Heptane	1.58	0.500	-	6.48	2.05	-		2.5
is-1,3-Dichloropropene	ND	0.500	-	ND	2.27			2.5
-Methyl-2-pentanone	ND	0.500	22	ND	2.05	4		2.5
rans-1,3-Dichloropropene	ND	0.500	- 2	ND	2.27	2		2.5
,1,2-Trichloroethane	ND	0.500		ND	2.73	-		2.5
oluene	1.95	0.500		7.35	1.88	-		2.5
-Hexanone	ND	0.500	-	ND	2.05	100		2.5
Dibromochloromethane	ND	0.500	-	ND	4.26	-		2.5
,2-Dibromoethane	ND	0.500	+	ND	3.84	-		2.5
etrachloroethene	292	0.500		1980	3.39		E	2.5
Chlorobenzene	ND	0.500	1 2	ND	2.30	4		2.5
thylbenzene	1.42	0.500	-	6.17	2.17	-		2.5
/m-Xylene	5.98	1.00	-	26.0	4.34	-		2.5
Bromoform	ND	0.500	-	ND	5.17	-		2.5

Not Specified

Lab Number:

L1202360

Project Number:

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-02 D

Date Collected:

02/08/12 13:55

Client ID: Sample Location:

GER-SV2 LIC, NY

Date Received:

02/09/12

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield	Lab						
Styrene	ND	0.500	€.	ND	2.13	-		2.5
1,1,2,2-Tetrachloroethane	ND	0.500	-	ND	3.43	-		2.5
o-Xylene	2.18	0.500		9.47	2.17	-		2.5
4-Ethyltoluene	ND	0.500	-	ND	2.46	-		2.5
1,3,5-Trimethybenzene	ND	0.500	-	ND	2.46	-		2.5
1,2,4-Trimethylbenzene	0.982	0.500	-	4.83	2.46	-		2.5
Benzyl chloride	ND	0.500		ND	2.59	-		2.5
1,3-Dichlorobenzene	ND	0.500		ND	3.01	=		2.5
1,4-Dichlorobenzene	ND	0.500	-	ND	3.01	12		2.5
1,2-Dichlorobenzene	ND	0.500	220	ND	3.01			2.5
1,2,4-Trichlorobenzene	ND	0.500	-	ND	3.71			2.5
Hexachlorobutadiene	ND	0.500		ND	5.33	2		2.5

% Recovery	Qualifier	Acceptance Criteria
105		60-140
86		60-140
109		60-140
	105 86	105 86

Lab Number:

L1202360

Project Number: Not Specified

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-02 D2

Client ID:

GER-SV2 LIC, NY

Sample Location: Matrix:

Soil_Vapor

Analytical Method: Analytical Date: 48,TO-15 02/11/12 10:28

Analyst:

RY

Date Collected:

02/08/12 13:55

Date Received:

02/09/12

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Lo	w Level) - Mansfield	Lab						
Tetrachloroethene	214	1.00	-	1450	6.78	-		5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	105		60-140
Bromochloromethane	107		60-140
chlorobenzene-d5	107		60-140

Lab Number:

L1202360

Project Number:

Not Specified

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-03 D

Client ID:

GER-SV3 LIC, NY

Sample Location: Matrix:

Anaytical Method: Analytical Date:

Soil_Vapor 48,TO-15 02/11/12 01:11

Date Collected:

02/08/12 14:10

Date Received:

02/09/12

Field Prep:

Analyst:	RY			
		auty.	un/m2	

	ppbV			ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air (Low	Level) - Mansfield I	_ab							
Propylene	ND	17.0	+	ND	29.2	+		33.97	
Dichlorodifluoromethane	ND	6.79	-	ND	33.6	-		33.97	
Chloromethane	ND	6.79	+	ND	14.0	+		33.97	
Freon-114	ND	6.79	-	ND	47.5	4		33.97	
/inyl chloride	ND	6.79	-	ND	17.4			33.97	
,3-Butadiene	ND	6.79	+	ND	15.0	i e		33.97	
Bromomethane	ND	6.79	-	ND	26.4			33.97	
Chloroethane	ND	6.79	-	ND	17.9	-		33.97	
Ethanol	ND	84.9	-	ND	160	100		33.97	
/inyl bromide	ND	6.79	*-	ND	29.7	-		33.97	
Acetone	43.8	34.0	-	104	80.8	÷		33.97	
richlorofluoromethane	ND	6.79	-	ND	38.2	4		33.97	
sopropanol	ND	17.0	-	ND	41.8			33.97	
,1-Dichloroethene	ND	6.79	2 -	ND	26.9			33.97	
Methylene chloride	ND	34.0	+	ND	118	-		33.97	
-Chloropropene	ND	6.79	-	ND	21.2	-		33.97	
Carbon disulfide	ND	6.79	- 	ND	21.1	(33.97	
Freon-113	ND	6.79	-	ND	52.0	-		33.97	
rans-1,2-Dichloroethene	ND	6.79		ND	26.9			33.97	
,1-Dichloroethane	ND	6.79		ND	27.5	(+-)		33.97	
Methyl tert butyl ether	ND	6.79	-	ND	24.5	-		33.97	
/inyl acetate	ND	6.79	-	ND	23.9			33.97	
-Butanone	ND	6.79	4	ND	20.0	-		33.97	
is-1,2-Dichloroethene	40.4	6.79	-	160	26.9	-		33.97	

Lab Number:

L1202360

Project Number: Not Specified Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-03 D

Client ID: Sample Location: GER-SV3

LIC, NY

Date Collected:

02/08/12 14:10

Date Received:

02/09/12

Field Prep:

	ppbV			ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air (Low	Level) - Mansfield I	Lab							
Ethyl Acetate	ND	17.0	44	ND	61.3	104		33.97	
Chloroform	28.8	6.79	-	141	33.2	-		33.97	
Tetrahydrofuran	ND	6.79	150	ND	20.0	*		33.97	
1,2-Dichloroethane	ND	6.79	1	ND	27.5	-		33.97	
n-Hexane	ND	6.79	-	ND	23.9	-		33.97	
1,1,1-Trichloroethane	ND	6.79	-	ND	37.0	34		33.97	
Benzene	ND	6.79	-	ND	21.7	-		33.97	
Carbon tetrachloride	ND	6.79	e-	ND	42.7	(75)		33.97	
Cyclohexane	ND	6.79	-	ND	23.4	-		33.97	
1,2-Dichloropropane	ND	6.79		ND	31.4	+		33.97	
Bromodichloromethane	ND	6.79	4	ND	45.5	-		33.97	
1,4-Dioxane	ND	6.79	-	ND	24.5	100		33.97	
Trichloroethene	12.9	6.79	-	69.3	36.5	-		33.97	
2,2,4-Trimethylpentane	ND	6.79	-	ND	31.7	-		33.97	
Heptane	ND	6.79	-	ND	27.8	-		33.97	
cis-1,3-Dichloropropene	ND	6.79	100	ND	30.8	-		33.97	
4-Methyl-2-pentanone	ND	6.79	-	ND	27.8	-		33.97	
rans-1,3-Dichloropropene	ND	6.79	_	ND	30.8	-		33.97	
1,1,2-Trichloroethane	ND	6.79	2	ND	37.0	4		33.97	
Toluene	ND	6.79		ND	25.6			33.97	
2-Hexanone	ND	6.79	-	ND	27.8	1.2		33.97	
Dibromochloromethane	ND	6.79	-	ND	57.8	+		33.97	
1,2-Dibromoethane	ND	6.79	-	ND	52.2			33.97	
Tetrachloroethene	2600	6.79	4	17600	46.0	-		33.97	
Chlorobenzene	ND	6.79	-	ND	31.3	124		33.97	
Ethylbenzene	ND	6.79	9	ND	29.5	_		33.97	
n/m-Xylene	ND	13.6	Ε.Δ.	ND	59.1	~		33.97	
Bromoform	ND	6.79	144	ND	70.2	~		33.97	

Lab Number:

L1202360

Project Number: Not Specified

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-03 D

Client ID: Sample Location: GER-SV3 LIC, NY Date Collected:

02/08/12 14:10

Date Received: Field Prep:

02/09/12 Not Specified

ppbV				ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
evel) - Mansfield I	Lab						
ND	6.79	-	ND	28.9	-		33.97
ND	6.79	-	ND	46.6	-		33.97
ND	6.79	(4)	ND	29.5	2		33.97
ND	6.79	2	ND	33.4	-		33.97
ND	6.79		ND	33.4			33.97
ND	6.79	e	ND	33.4	+		33.97
ND	6.79	-	ND	35.2	-		33.97
ND	6.79	-	ND	40.8	-		33.97
ND	6.79	-	ND	40.8	ė.		33.97
ND	6.79	-	ND	40.8			33.97
ND	6.79	-	ND	50.4	•		33.97
ND	6.79	-	ND	72.4	-		33.97
	evel) - Mansfield I ND ND ND ND ND ND ND ND ND N	Results RL	Results RL MDL evel) - Mansfield Lab ND 6.79 ND 6.79	Results RL MDL Results evel) - Mansfield Lab ND 6.79 ND ND 6.79 ND	Results RL MDL Results RL evel) - Mansfield Lab ND 6.79 ND 28.9 ND 6.79 ND 46.6 ND 6.79 ND 29.5 ND 6.79 ND 33.4 ND 6.79 ND 33.4 ND 6.79 ND 35.2 ND 6.79 ND 40.8 ND 6.79 ND 50.4	Results RL MDL Results RL MDL evel) - Mansfield Lab ND 6.79 - ND 28.9 - ND 6.79 - ND 46.6 - ND 6.79 - ND 29.5 - ND 6.79 - ND 33.4 - ND 6.79 - ND 33.4 - ND 6.79 - ND 35.2 - ND 6.79 - ND 40.8 - ND 6.79 - ND 50.4 -	Results RL MDL Results RL MDL Qualifier

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	106		60-140

L1202360

02/08/12 13:17

Not Specified

02/09/12

Project Name: **BEST CLEANERS**

Not Specified

Lab Number:

Report Date: 02/16/12

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1202360-04 D

Client ID: GER-SV4 Sample Location: LIC, NY Soil_Vapor 48,TO-15 Matrix:

Anaytical Method: Analytical Date: 02/11/12 01:46

Analyst: RY

Project Number:

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield	Lab						
Propylene	ND	5.00	-2	ND	8.60	-		10
Dichlorodifluoromethane	ND	2.00	4	ND	9.89	-		10
Chloromethane	ND	2.00	-	ND	4.13	-		10
reon-114	ND	2.00	ω.	ND	14.0	-		10
/inyl chloride	ND	2.00	+	ND	5.11	-		10
1,3-Butadiene	ND	2.00		ND	4.42	-		10
Bromomethane	ND	2.00	-	ND	7.77	-		10
Chloroethane	ND	2.00	+	ND	5.28	-		10
Ethanol	ND	25.0	= A =	ND	47.1			10
/inyl bromide	ND	2.00	9+	ND	8.74	-		10
Acetone	26.3	10.0	-	62.5	23.8	-		10
Frichlorofluoromethane	ND	2.00	-	ND	11.2	~		10
sopropanol	ND	5.00	-	ND	12.3	-		10
1,1-Dichloroethene	ND	2.00	4	ND	7.93	-		10
Methylene chloride	ND	10.0	-	ND	34.7	-		10
3-Chloropropene	ND	2.00	44	ND	6.26	-		10
Carbon disulfide	ND	2.00		ND	6.23	()		10
Freon-113	ND	2.00		ND	15.3	-		10
rans-1,2-Dichloroethene	ND	2.00	-	ND	7.93	_		10
,1-Dichloroethane	ND	2.00	-	ND	8.09	-		10
Methyl tert butyl ether	ND	2.00		ND	7.21	÷		10
/inyl acetate	ND	2.00	175	ND	7.04	-		10
2-Butanone	ND	2.00	-	ND	5.90	i e		10
sis-1,2-Dichloroethene	2.08	2.00	3	8.25	7.93	1.2		10

Project Number: Not Specified Lab Number:

L1202360

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-04 D

Client ID: Sample Location:

GER-SV4 LIC, NY

Date Collected:

02/08/12 13:17

Date Received:

02/09/12

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low L	.evel) - Mansfield I	ab						
Ethyl Acetate	ND	5.00	-	ND	18.0	-		10
Chloroform	13.3	2.00	-	64.9	9.77	-		10
Tetrahydrofuran	ND	2.00	-	ND	5.90	+		10
1,2-Dichloroethane	ND	2.00	2	ND	8.09	-		10
n-Hexane	ND	2.00		ND	7.05	-		10
1,1,1-Trichloroethane	ND	2.00	÷	ND	10.9	-		10
Benzene	ND	2.00	-	ND	6.39	-		10
Carbon tetrachloride	ND	2.00	-	ND	12.6	4		10
Cyclohexane	ND	2.00	-	ND	6.88	-		10
1,2-Dichloropropane	ND	2.00	-	ND	9.24	_		10
Bromodichloromethane	ND	2.00	T e -	ND	13.4	77		10
1,4-Dioxane	ND	2.00		ND	7.21	£.		10
Frichloroethene	3.35	2.00	-	18.0	10.7	-		10
2,2,4-Trimethylpentane	ND	2.00	-	ND	9.34			10
Heptane	ND	2.00	-	ND	8.20	-		10
cis-1,3-Dichloropropene	ND	2.00	÷	ND	9.08	÷		10
1-Methyl-2-pentanone	ND	2.00	-	ND	8.20	~		10
rans-1,3-Dichloropropene	ND	2.00		ND	9.08	-		10
1,1,2-Trichloroethane	ND	2.00		ND	10.9	-60		10
Foluene	ND	2.00	-	ND	7.54			10
2-Hexanone	ND	2.00	-	ND	8.20	70		10
Dibromochloromethane	ND	2.00	24	ND	17.0	4		10
1,2-Dibromoethane	ND	2.00	-	ND	15.4	9		10
Fetrachloroethene	688	2.00	102	4660	13.6	4		10
Chlorobenzene	ND	2.00	1	ND	9.21	-		10
Ethylbenzene	ND	2.00	-	ND	8.69	-		10
n/m-Xylene	ND	4.00	+	ND	17.4	2		10
Bromoform	ND	2.00	-	ND	20.7	~		10

Project Number: Not Specified

Lab Number:

L1202360

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-04 D

Client ID: GER-SV4 Sample Location: LIC, NY Date Collected:

02/08/12 13:17

Date Received:

02/09/12

Field Prep:

			2000 1 200 1200				
	PpbV			ug/m3	Dilution		
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
evel) - Mansfield I	Lab						
ND	2.00	4	ND	8.52	-		10
ND	2.00	-	ND	13.7	-		10
ND	2.00	-	ND	8.69	-		10
ND	2.00	14.0	ND	9.83			10
ND	2.00	-	ND	9.83			10
ND	2.00	-	ND	9.83	=		10
ND	2.00		ND	10.4			10
ND	2.00	77	ND	12.0	-		10
ND	2.00	-	ND	12.0	-		10
ND	2.00		ND	12.0	-		10
ND	2.00	9	ND	14.8	÷		10
ND	2.00	-	ND	21.3	-		10
	evel) - Mansfield I ND ND ND ND ND ND ND ND ND N	Results RL	Results RL MDL	Results RL MDL Results Revel - Mansfield Lab	Results RL MDL Results RL	Results RL MDL Results RL MDL Revel - Mansfield Lab ND 2.00 ND 8.52 ND 13.7 ND 2.00 ND 8.69 ND 2.00 ND 9.83 ND 2.00 ND 9.83 ND 2.00 ND 9.83 ND 2.00 ND 9.83 ND 2.00 ND 10.4 ND 2.00 ND 12.0 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 14.8 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00	Results RL MDL Results RL MDL Qualifier

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	107		60-140
Bromochloromethane	104		60-140
chlorobenzene-d5	105		60-140

Not Specified

Lab Number:

L1202360

Project Number:

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-05 D

Client ID:

GER-SV5 LIC, NY

Sample Location: Matrix:

Anaytical Method:

Soil_Vapor 48,TO-15

Analytical Date:

02/11/12 02:20

Analyst:

RY

Date Collected:

02/08/12 14:15

Date Received: Field Prep:

02/09/12

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield	Lab						
Propylene	ND	1.25	4	ND	2.15	-		2.5
Dichlorodifluoromethane	0.532	0.500	œ.,	2.63	2.47			2.5
Chloromethane	ND	0.500	10	ND	1.03	-		2.5
Freon-114	ND	0.500	-	ND	3.49	-		2.5
/inyl chloride	ND	0.500	(4)	ND	1.28	4		2.5
,3-Butadiene	ND	0.500	0=	ND	1.11			2.5
Bromomethane	ND	0.500	14-1	ND	1.94	-		2.5
Chloroethane	ND	0.500	-	ND	1.32	-		2.5
Ethanol	ND	6.25	per	ND	11.8	112		2.5
'inyl bromide	ND	0.500	-	ND	2.19	-		2.5
cetone	17.0	2.50	4	40.4	5.94	-		2.5
richlorofluoromethane	ND	0.500	-	ND	2.81	-		2.5
sopropanol	ND	1.25	+	ND	3.07	-		2.5
,1-Dichloroethene	ND	0.500	- 22	ND	1.98	4		2.5
Methylene chloride	4.26	2.50	1.00	14.8	8.68	-		2.5
-Chloropropene	ND	0.500	-	ND	1.56	-		2.5
Carbon disulfide	1.33	0.500	-	4.14	1.56	-		2.5
reon-113	ND	0.500	-	ND	3.83	Per-		2.5
ans-1,2-Dichloroethene	ND	0.500	-	ND	1.98	_		2.5
,1-Dichloroethane	ND	0.500	4	ND	2.02	-		2.5
lethyl tert butyl ether	ND	0.500	· +	ND	1.80	-		2.5
inyl acetate	ND	0.500		ND	1.76	-		2.5
-Butanone	0.608	0.500	-	1.79	1.47	-		2.5
is-1,2-Dichloroethene	79.0	0.500	-	313	1.98	-		2.5

Lab Number:

L1202360

Project Number: Not Specified Report Date:

02/16/12

SAMPLE RESULTS

ppbV

Lab ID:

L1202360-05 D

GER-SV5

Date Collected:

02/08/12 14:15

Client ID: Sample Location:

LIC, NY

Date Received: Field Prep:

02/09/12 Not Specified

- aller	B 11	nı	 0 00	Factor	
		ug/m3		Dilution	
				News of the proper	

		ppuv			ug/iiis			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air (Low I	Level) - Mansfield	Lab							
Ethyl Acetate	ND	1.25	-	ND	4.50			2.5	
Chloroform	59.4	0.500	-	290	2.44	-		2.5	
Tetrahydrofuran	ND	0.500	-	ND	1.47	~		2.5	
1,2-Dichloroethane	ND	0.500	-	ND	2.02	-		2.5	
n-Hexane	ND	0.500	-	ND	1.76	-		2.5	
1,1,1-Trichloroethane	ND	0.500	4	ND	2.73	N-E-C		2.5	
Benzene	ND	0.500	-	ND	1.60	-		2.5	
Carbon tetrachloride	ND	0.500	-	ND	3.14	8		2.5	
Cyclohexane	ND	0.500	n 2 n	ND	1.72	-		2.5	
1,2-Dichloropropane	ND	0.500	-	ND	2.31	-		2.5	
Bromodichloromethane	0.675	0.500	-	4.52	3.35	· •		2.5	
,4-Dioxane	ND	0.500		ND	1.80	-		2.5	
richloroethene	6.40	0.500	77	34.4	2.69	-		2.5	
2,2,4-Trimethylpentane	ND	0.500		ND	2.34	-		2.5	
Heptane	ND	0.500	324	ND	2.05	-		2.5	
sis-1,3-Dichloropropene	ND	0.500	5	ND	2.27	-		2.5	
1-Methyl-2-pentanone	ND	0.500	4	ND	2.05	-		2.5	
rans-1,3-Dichloropropene	ND	0.500		ND	2.27	_		2.5	
,1,2-Trichloroethane	ND	0.500	24	ND	2.73	_		2.5	
oluene	0.742	0.500	-	2.80	1.88	-		2.5	
-Hexanone	ND	0.500	-	ND	2.05	344		2.5	
Dibromochloromethane	ND	0.500		ND	4.26	_		2.5	
,2-Dibromoethane	ND	0.500	+	ND	3.84	-		2.5	
etrachloroethene	134	0.500	-	909	3.39	-		2.5	
Chlorobenzene	ND	0.500	-	ND	2.30	~		2.5	
thylbenzene	ND	0.500		ND	2.17	-		2.5	
/m-Xylene	1.64	1.00	-	7.12	4.34	-		2.5	
Bromoform	ND	0.500	1.00	ND	5.17	-		2.5	

Project Number: Not Specified Lab Number:

L1202360

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-05 D

Client ID: Sample Location:

GER-SV5 LIC, NY

Date Collected:

02/08/12 14:15

Date Received:

02/09/12

Field Prep:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low I	_evel) - Mansfield	Lab						
Styrene	ND	0.500	(22)	ND	2.13	2		2.5
1,1,2,2-Tetrachloroethane	ND	0.500	-	ND	3.43	140		2.5
o-Xylene	0.592	0.500	-	2.57	2.17	-		2.5
4-Ethyltoluene	ND	0.500	_	ND	2.46	2		2.5
1,3,5-Trimethybenzene	ND	0.500	-	ND	2.46	-		2.5
1,2,4-Trimethylbenzene	0.500	0.500	<	2.46	2.46	-		2.5
Benzyl chloride	ND	0.500	4	ND	2.59	4		2.5
1,3-Dichlorobenzene	ND	0.500	-	ND	3.01	-		2,5
1,4-Dichlorobenzene	ND	0.500	2	ND	3.01	4		2.5
1,2-Dichlorobenzene	ND	0.500	=	ND	3.01	-		2.5
1,2,4-Trichlorobenzene	ND	0.500	-	ND	3.71	94		2.5
Hexachlorobutadiene	ND	0.500	-	ND	5.33	-		2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	105		60-140
chlorobenzene-d5	107		60-140

Project Number: Not Specified

Lab Number:

L1202360

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID: L1202360-06 Client ID: GER-AA

Sample Location:

LIC, NY

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15

Analyst:

02/10/12 21:38 RY Date Collected:

02/08/12 13:12

Date Received:

02/09/12

Field Prep:

Not Specified

ep: Not Sp

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield	Lab						
Propylene	0.709	0.500	+	1.22	0.860	6		1
Dichlorodifluoromethane	0.530	0.200	-	2.62	0.989			1
Chloromethane	0.549	0.200	-	1.13	0.413			1
Freon-114	ND	0.200	-	ND	1.40	-		1
rinyl chloride	ND	0.200	-	ND	0.511	-		1
,3-Butadiene	ND	0.200	-2	ND	0.442	140		1
Bromomethane	ND	0.200	-	ND	0.777	=		1
Chloroethane	ND	0.200	-	ND	0.528	+		1
Ethanol	5.44	2.50	-	10.2	4.71			1
/inyl bromide	ND	0.200	+	ND	0.874	22		1
cetone	8.31	1.00		19.7	2.38	-		1
richlorofluoromethane	0.289	0.200		1.62	1.12	14		1
sopropanol	0.624	0.500	- -	1.53	1.23	-		9
,1-Dichloroethene	ND	0.200	- Ω	ND	0.793	4		1
Methylene chloride	ND	1.00	14	ND	3.47	~		1
-Chloropropene	ND	0.200) H	ND	0.626	-		1
Carbon disulfide	ND	0.200	-	ND	0.623	-		1
Freon-113	ND	0.200	-	ND	1.53	-		1
rans-1,2-Dichloroethene	ND	0.200	2	ND	0.793			1
,1-Dichloroethane	ND	0.200	-	ND	0.809	()		1
Methyl tert butyl ether	ND	0.200	+	ND	0.721			1:
finyl acetate	ND	0.200	-	ND	0.704	-		1
-Butanone	0.874	0.200	-	2.58	0.590	_		1
is-1,2-Dichloroethene	ND	0.200	44	ND	0.793	-		1

Lab Number:

L1202360

Project Number: Not Specified

Report Date:

02/16/12

SAMPLE RESULTS

Lab ID: L1202360-06 Client ID: GER-AA Date Collected:

02/08/12 13:12

Date Received: Field Prep:

02/09/12 Not Specified

Sample Location: LIC, NY					Field	Prep:		Not Specified	
Parameter	ppbV			ug/m3			Dilution		
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air (Low Leve	I) - Mansfield	Lab							
Ethyl Acetate	ND	0.500	14	ND	1.80			1	
Chloroform	ND	0.200	-	ND	0.977	-		1	
Tetrahydrofuran	ND	0.200	10	ND	0.590	95		1	
1,2-Dichloroethane	ND	0.200	2	ND	0.809	0		1	
n-Hexane	0.275	0.200	-	0.969	0.705	-		1	
1,1,1-Trichloroethane	ND	0.200	1	ND	1.09	24		1	
Benzene	0.373	0.200	-	1.19	0.639	-		1	
Carbon tetrachloride	ND	0.200		ND	1.26	-		1	
Cyclohexane	ND	0.200	(4)	ND	0.688	-		1	
1,2-Dichloropropane	ND	0.200	ç.	ND	0.924	-		3	
Bromodichloromethane	ND	0.200	9	ND	1.34	- 42		1	
1,4-Dioxane	ND	0.200	-	ND	0.721	-		1	
Trichloroethene	ND	0.200	-	ND	1.07	-		1	
2,2,4-Trimethylpentane	ND	0.200	2	ND	0.934	Ω.		1	
Heptane	0.256	0.200	44	1.05	0.820	-		1	
cis-1,3-Dichloropropene	ND	0.200	4	ND	0.908	III 64		1	
4-Methyl-2-pentanone	0.268	0.200	-	1.10	0.820	\approx		1	
trans-1,3-Dichloropropene	ND	0.200	_	ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200	-	ND	1.09	8		1	
Toluene	3.20	0.200	-	12.0	0.754	144		1	
2-Hexanone	ND	0.200	-	ND	0.820	-		1	
Dibromochloromethane	ND	0.200	+	ND	1.70	~		1	
1,2-Dibromoethane	ND	0.200	+	ND	1.54	-		1	
Tetrachloroethene	3.58	0.200	2	24.3	1.36			1	
Chlorobenzene	ND	0.200	-	ND	0.921	-		1	
Ethylbenzene	0.414	0.200	14	1.80	0.869	-		1	
p/m-Xylene	1.47	0.400	4	6.38	1.74	-		1	
Bromoform	ND	0.200	-	ND	2.07	-		1	

Lab Number:

L1202360

Project Number: Not Specified Report Date:

02/16/12

SAMPLE RESULTS

Lab ID:

L1202360-06

Date Collected:

02/08/12 13:12

Client ID:

GER-AA

Date Received:

02/09/12

Sample Location:

LIC, NY

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low L	evel) - Mansfield	Lab						
Styrene	0.220	0.200	4	0.937	0.852	=		1
1,1,2,2-Tetrachloroethane	ND	0.200	-	ND	1.37	-		1
o-Xylene	0.440	0.200		1.91	0.869	-		1
4-Ethyltoluene	ND	0.200	12.0	ND	0.983	-		1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983	-		1
1,2,4-Trimethylbenzene	0.200	0.200	**	0.983	0.983	÷		1
Benzyl chloride	ND	0.200	-	ND	1.04	-		1
1,3-Dichlorobenzene	ND	0.200	-	ND	1.20	-		1.
1,4-Dichlorobenzene	ND	0.200	-	ND	1.20	-		1
1,2-Dichlorobenzene	ND	0.200	-	ND	1.20	-		1
1,2,4-Trichlorobenzene	ND	0.200	+	ND	1.48			1
Hexachlorobutadiene	ND	0.200	-	ND	2.13	-		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	90		60-140

APPENDIX F

Data Usability Summary Report

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

March 3, 2012

Kenneth Wenz GEER 69-49 185th St. Suite 1A Fresh Meadows, NY 11365

RE: Best -DDK Cleaners Analytical Data

Data Usability Summary Report (DUSR)

Alpha Analytical SDG Nos. 1202347 And 1202360

Dear Mr. Wenz:

Review has been completed for the data packages generated by Alpha Analytical that pertains to collected on 02/08/12 at the Best DDK Cleaners site. Six 6-L summa canister air samples, three aqueous samples and an aqueous field duplicate were analyzed for full lists of volatile analytes using USEPA method TO-15 and USEPA method 8260B.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Organic Data Review, as affects the usability of the sample data. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate Recoveries
- * Matrix Spike Recoveries
- * Laboratory and Blind Field Duplicate Correlations
- * Internal Standard Recoveries
- * Method and Canister Blanks
- * Laboratory Control Samples (LCSs)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with project requirements.

In summary, sample processing was conducted in compliance with analytical project requirements. All sample results are usable either as reported, or with minor qualification. No data are rejected.

Copies of the laboratory case narratives are attached to this text, and should be reviewed in conjunction with this report. Also attached are the laboratory sample result forms edited to reflect the validation qualifiers noted within this report.

Volatile Analyses by USEPA Method TO-15

The results for toluene in GER-SV1 and GER-SV2 have been qualified as tentative in identification and estimated in value due to interferences in the mass spectra.

The result for tetrachloroethene in GER-SV1, initially reported with the "E" laboratory flag, has been derived from the dilution analysis of the sample, thus reflecting response within the established instrument linear range.

Holding times and instrument tunes meet requirements. Internal standard recoveries are acceptable. Method and canister blanks show no contamination.

The laboratory duplicate correlation of GER-SV5 shows acceptable correlations. While 2-butanone exhibited an elevated %RPD value, the variance was within the allowance of ±CRDL applicable to values close to the reporting limit.

An elevated recovery observed in the LCS does not affect reported results, as the samples show no detection of that compound.

Initial and continuing calibration standard responses were acceptable, with all response factors (RRFs) above 0.05, linearity within the 30%RSD limit, and continuing responses not above 30%D.

Several of the samples were processed at initial dilution due to detected target analyte concentrations. Therefore, reporting limits for the compounds that were not detected are elevated in those samples.

TCL Volatile Analyses by USEPA Method 8260B

Matrix spikes of GER-1 show acceptable accuracy and precision, with the following exceptions, results for which are qualified as estimated in the parent sample:

- o 1,2,4-trimethylbenzene (139% and 154%)
- o naphthalene (262% and 348%)
- o trans-1,4-dichloro2-butene (52% and 51%)

The blind field duplicate of GER-2 shows acceptable correlations.

The LCSs show low recoveries for trans-1,4-dichloro-2-butene (67% and 68%). Therefore, results for that compound in the samples have been qualified as estimated, with a possible low bias.

Initial calibrations standards showed responses within analytical protocol and validation guidelines, with the exception of that for 4-methyl-2-pentanone in the lowest concentration standard (low RRF). The results for that compound in the project samples are qualified as estimated in value.

Continuing calibration standards show several elevated responses for analytes not detected in the samples; reported results are unaffected.

Holding times were met. Surrogate and internal standard responses are within required ranges. Blanks show no contamination.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Gerolg Harry

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- UJ The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDS and CASE NARRATIVES

Serial_No:02161211:19

Project Name:

BEST CLEANERS

For additional information, please contact Client Services at 800-624-9220.

Project Number:

155-C-2

Lab Number:

L1202347

Report Date:

02/16/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1202347-04: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

The WG518579-1/-2 LCS/LCSD recoveries, associated with L1202347-01 through -05, are below the individual acceptance criteria for trans-1,4-Dichloro-2-butene (67%/66%), but within the overall method allowances. The results of the associated samples are reported.

The WG518579-4/-5 MS/MSD recoveries, performed on L1202347-01, were outside the acceptance criteria for Carbon tetrachloride (136%/133%), Naphthalene (262%/348%), 1,3,5-Trimethylbenzene (MSD at 132%),

Senal_No:02161211:19

Project Name:

BEST CLEANERS

Project Number: 155-C-2

Lab Number:

L1202347

Report Date:

02/16/12

Case Narrative (continued)

1,2,4-Trimethylbenzene (139%/154%) and trans-1,4-Dichloro-2-butene (52%/51%) The WG518579-4/-5 MS/MSD RPDs, performed on L1202347-01, are above the acceptance criteria for Chloromethane (22%) and Bromomethane (29%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Morris

Title: Technical Director/Representative

Date: 02/16/12

Project Name:

BEST CLEANERS

Project Number: Not

Not Specified

Lab Number:

L1202360

Report Date:

02/16/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.							

Volatile Organics in Air

Canisters were released from the laboratory on January 30, 2012.

The canister certification results are provided as an addendum.

L1202360-01, -02, -03, -04, -05 and WG517910-5 Duplicate have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

L1202360-01 and -02 were re-analyzed on dilution in order to quantitate the samples within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound that exceeded the calibration range.

Serial_No:02161216:20

Project Name:

BEST CLEANERS

Project Number:

Not Specified

Lab Number:

L1202360

Report Date:

02/16/12

Case Narrative (continued)

The WG517910-3 LCS recovery for 1,2,4-Trichlorobenzene (133%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

WG517910-5: The relative percent difference for 2-Butanone (28%) is above the RPD limit of 25%. This compound represented less than 10% of the compounds detected, therefore no further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 02/16/12

QUALIFIED LABORATORY RESULTS FORMS

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-01 **Date Collected** : 02/08/12 14:15 Client ID : GER-1 **Date Received** : 02/09/12 Sample Location : LIC, NY **Date Analyzed** : 02/14/12 13:45

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260BAnalyst: PDLab File ID: 0214A11Instrument ID: VOA101.ISample Amount: 10.0 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A

Soil Extract Volume: -- Injection Volume :

			ug/L_		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	0.54	U
75-34-3	1,1-Dichloroethane	ND	0.75	0.22	U
67-66-3	Chloroform	0.54	0.75	0.20	J
56-23-5	Carbon tetrachloride	ND	0.50	0.16	U
78-87-5	1,2-Dichloropropane	ND	1.8	0.30	U
124-48-1	Dibromochloromethane	ND	0.50	0.19	U
79-00-5	1,1,2-Trichloroethane	ND	0.75	0.26	U
127-18-4	Tetrachloroethene	3.5	0.50	0.18	
108-90-7	Chlorobenzene	ND	0.50	0.19	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.27	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.16	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.26	U
75-25-2	Bromoform	ND	2.0	0.25	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U
71-43-2	Benzene	ND	0.50	0.19	υ
108-88-3	Toluene	0.91	0.75	0.23	
100-41-4	Ethylbenzene	0.64	0.50	0.26	
74-87-3	Chloromethane	ND	2.5	0.28	U
74-83-9	Bromomethane	ND	1.0	0.26	U
75-01-4	Vinyl chloride	1.1	1.0	0.22	
75-00-3	Chloroethane	ND	1.0	0.23	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.18	U
156-60-5	trans-1,2-Dichloroethene	ND	0.75	0.21	U

: Genesis Engineering & Redevelopment Lab Number Client : L1202347 **Project Name** : BEST CLEANERS **Project Number** : 155-C-2 Lab ID Date Collected : L1202347-01 : 02/08/12 14:15 Client ID : GER-1 Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 13:45 Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A11 Instrument ID : VOA101.I Sample Amount : 10.0 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A Soil Extract Volume: --Injection Volume

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	0.79	0.50	0.17		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.18	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.19	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.22	U	
1634-04-4	Methyl tert butyl ether	ND	1.0	0.16	U	
106-42-3/108-38-3	p/m-Xylene	4.1	1.0	0.35	· ·	
95-47-6	o-Xylene	3.5	1.0	0.33		
156-59-2	cis-1,2-Dichloroethene	6.5	0.50	0.19		
74-95-3	Dibromomethane	ND	5.0	0.36	U	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.43	U	
107-13-1	Acrylonitrile	ND	5.0	0.43	U	
100-42-5	Styrene	ND	1.0	0.36	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.30	U	
67-64-1	Acetone	ND	5.0	1.6	U	
75-15-0	Carbon disulfide	ND	5.0	0.30	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-05-4	Vinyl acetate	ND	5.0	0.31	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	0.42	u UJ	
591-78-6	2-Hexanone	ND	5.0	0.58	U	
74-97-5	Bromochloromethane	ND	2.5	0.33	U	
594-20-7	2,2-Dichloropropane	ND	2.5	0.40	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.19	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.21	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.16	U	
108-86-1	Bromobenzene	ND	2.5	0.18	U	
104-51-8	n-Butylbenzene	ND	0.50	0.20	U	
135-98-8	sec-Butylbenzene	ND	0.50	0.18	U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-01 **Date Collected** : 02/08/12 14:15 Client ID : GER-1 **Date Received** : 02/09/12 Sample Location : LIC, NY : 02/14/12 13:45 Date Analyzed Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A11 Instrument ID : VOA101.I Sample Amount GC Column : 10.0 ml : RTX-502.2

Level: LOW %Solids: N/A

Soil Extract Volume: -- Injection Volume :

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
98-06-6	tert-Butylbenzene	ND	2.5	0.30	U
95-49-8	o-Chlorotoluene	ND	2.5	0.18	U
106-43-4	p-Chlorotoluene	ND	2.5	0.18	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.33	U
87-68-3	Hexachlorobutadiene	ND	0.60	0.23	U
98-82-8	Isopropylbenzene	ND	0.50	0.19	U
99-87-6	p-Isopropyltoluene	ND	0.50	0.19	U
91-20-3	Naphthalene	19	2.5	0.22	J
103-65-1	n-Propylbenzene	ND	0.50	0.17	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.23	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.22	U
108-67-8	1,3,5-Trimethylbenzene	1.4	2.5	0.21	J
95-63-6	1,2,4-Trimethylbenzene	3.8	2.5	0.27	J
105-05-5	1,4-Diethylbenzene	0.60	2.0	0.11	J
622-96-8	4-Ethyltoluene	1.4	2.0	0.42	J
95-93-2	1,2,4,5-Tetramethylbenzene	0.19	2.0	0.10	J
60-29-7	Ethyl ether	ND	2.5	0.20	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.17	u UJ

: Genesis Engineering & Redevelopment Lab Number Client : L1202347 **Project Name** : BEST CLEANERS Project Number : 155-C-2 Lab iD : L1202347-02 Date Collected : 02/08/12 15:00 Client ID : GER-2 Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 14:10 Sample Matrix : WATER **Dilution Factor** : 1

Analytical Method : 1,8260B Analyst : PD
Lab File ID : 0214A12 Instrument ID : VOA101.I

Sample Amount : 10.0 ml GC Column : RTX-502.2

Level: LOW %Solids: N/A

Soil Extract Volume : -- Injection Volume :

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	0.54	U
75-34-3	1,1-Dichloroethane	ND	0.75	0.22	U
67-66-3	Chloroform	38	0.75	0.20	
56-23-5	Carbon tetrachloride	ND	0.50	0.16	U
78-87-5	1,2-Dichloropropane	ND	1.8	0.30	U
124-48-1	Dibromochloromethane	ND	0.50	0.19	U
79-00-5	1,1,2-Trichloroethane	ND	0.75	0.26	U
127-18-4	Tetrachloroethene	50	0.50	0.18	
108-90-7	Chlorobenzene	ND	0.50	0.19	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.27	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.16	U
75-27-4	Bromodichloromethane	3.0	0.50	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.26	U
75-25-2	Bromoform	ND	2.0	0.25	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U
71-43-2	Benzene	ND	0.50	0.19	U
108-88-3	Toluene	ND	0.75	0.23	U
100-41-4	Ethylbenzene	ND	0.50	0.26	U
74-87-3	Chloromethane	ND	2.5	0.28	U
74-83-9	Bromomethane	ND	1.0	0.26	U
75-01-4	Vinyl chloride	ND	1.0	0.22	U
75-00-3	Chloroethane	ND	1.0	0.23	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.18	υ
156-60-5	trans-1,2-Dichloroethene	ND	0.75	0.21	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS Project Number : 155-C-2 Lab ID : L1202347-02 Date Collected : 02/08/12 15:00 Client ID : GER-2 Date Received 02/09/12 Sample Location : LIC, NY Date Analyzed 02/14/12 14:10 Sample Matrix : WATER **Dilution Factor** 1 Analytical Method : 1,8260B Analyst PD Lab File ID : 0214A12 Instrument ID VOA101.I Sample Amount : 10.0 mi GC Column RTX-502.2 Level : LOW %Solids N/A Soil Extract Volume: --Injection Volume

ug/L CAS NO. **Parameter** Results MDL RL Qualifier 79-01-6 Trichloroethene 2.8 0.50 0.17 95-50-1 1,2-Dichlorobenzene ND 2.5 0.18 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.19 U 106-46-7 1,4-Dichlorobenzene ND 2.5 0.22 U 1634-04-4 Methyl tert butyl ether ND 1.0 0.16 U 106-42-3/108-38-3 p/m-Xylene ND 1.0 0.35 U 95-47-6 o-Xylene ND 1.0 0.33 U 156-59-2 cis-1,2-Dichloroethene 20 0.50 0.19 74-95-3 Dibromomethane ND 5.0 0.36 U 96-18-4 1,2,3-Trichloropropane ND 5.0 0.43 U 107-13-1 Acrylonitrile ND 5.0 0.43 U 100-42-5 Styrene ND 1.0 0.36 U 75-71-8 Dichlorodifluoromethane ND 5.0 0.30 U 67-64-1 Acetone ND 5.0 1.6 U 75-15-0 Carbon disulfide ND 5.0 0.30 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-05-4 Vinyl acetate ND 5.0 0.31 U 108-10-1 UJ 4-Methyl-2-pentanone ND 5.0 U 0.42 591-78-6 2-Hexanone ND 5.0 0.58 U 74-97-5 Bromochloromethane ND 2.5 0.33 U 594-20-7 2,2-Dichloropropane ND 2.5 0.40 U 106-93-4 1,2-Dibromoethane ND 2.0 0.19 U 142-28-9 1,3-Dichloropropane ND 2.5 0.21 U 630-20-6 1,1,1,2-Tetrachloroethane ND 0.50 0.16 U 108-86-1 Bromobenzene ND 2.5 0.18 U 104-51-8 n-Butylbenzene ND 0.50 0.20 U 135-98-8 sec-Butylbenzene ND 0.50 0.18 U

: Genesis Engineering & Redevelopment Lab Number Client : L1202347 **Project Name** : BEST CLEANERS Project Number : 155-C-2 Lab ID : L1202347-02 Date Collected : 02/08/12 15:00 Client ID : GER-2 **Date Received** : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 14:10

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260B Analyst : PD
Lab File ID : 0214A12 Instrument ID : VO

Lab File ID: 0214A12Instrument ID: VOA101.ISample Amount: 10.0 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A

Soil Extract Volume: -- Injection Volume

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
98-06-6	tert-Butylbenzene	ND	2.5	0.30	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.18	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.18	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.33	U	
87-68-3	Hexachlorobutadiene	ND	0.60	0.23	υ	
98-82-8	Isopropylbenzene	ND	0.50	0.19	U	
99-87-6	p-Isopropyltoluene	ND	0.50	0.19	U	
91-20-3	Naphthalene	0.44	2.5	0.22	J	
103-65-1	n-Propylbenzene	ND	0.50	0.17	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.23	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.22	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.21	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.27	U	
105-05-5	1,4-Diethylbenzene	ND	2.0	0.11	U	
622-96-8	4-Ethyltoluene	ND	2.0	0.42	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.10	U	
60-29-7	Ethyl ether	ND	2.5	0.20	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.17	U UJ	
					-	

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-03 Date Collected : 02/08/12 15:45 Client ID : GER-3 Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 14:36 Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260B Analyst : PD

 Lab File ID
 : 0214A13
 Instrument ID
 : VOA101.I

 Sample Amount
 : 10.0 ml
 GC Column
 : RTX-502.2

Level: LOW: %Solids: N/A

Soil Extract Volume: -- Injection Volume :

		. <u> </u>	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	0.54	U
75-34-3	1,1-Dichloroethane	ND	0.75	0.22	U
67-66-3	Chloroform	0.62	0.75	0.20	J
56-23-5	Carbon tetrachloride	ND	0.50	0.16	U
78-87-5	1,2-Dichloropropane	ND	1.8	0.30	U
124-48-1	Dibromochloromethane	ND	0.50	0.19	U
79-00-5	1,1,2-Trichloroethane	ND	0.75	0.26	U
127-18- 4	Tetrachloroethene	1.2	0.50	0.18	
108-90-7	Chlorobenzene	ND	0.50	0.19	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.27	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.16	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.26	U
75-25-2	Bromoform	ND	2.0	0.25	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U
71-43-2	Benzene	ND	0.50	0.19	U
108-88-3	Toluene	ND	0.75	0.23	U
100-41-4	Ethylbenzene	ND	0.50	0.26	U
74-87-3	Chloromethane	ND	2.5	0.28	υ
74-83-9	Bromomethane	ND	1.0	0.26	U
75-01-4	Vinyl chloride	ND	1.0	0.22	U
75-00-3	Chloroethane	ND	1.0	0.23	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.18	U
156-60-5	trans-1,2-Dichloroethene	ND	0.75	0.21	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS Project Number : 155-C-2 Lab ID : L1202347-03 **Date Collected** : 02/08/12 15:45 Client ID : GER-3 Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 14:36 : WATER

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260B
Lab File ID : 0214A13 Dilution Factor : 1
Instrument ID : VO

Lab File ID: 0214A13Instrument ID: VOA101.ISample Amount: 10.0 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A

Soil Extract Volume : -- Injection Volume :

		***	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
79-01-6	Trichloroethene	ND	0.50	0.17	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.18	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.19	U
106- 4 6-7	1,4-Dichlorobenzene	ND	2.5	0.22	U
1634-04-4	Methyl tert butyl ether	ND	1.0	0.16	U
106-42-3/108-38-3	p/m-Xylene	ND	1.0	0.35	U
95-47-6	о-Хујепе	ND	1.0	0.33	U
156-59-2	cis-1,2-Dichloroethene	ND	0.50	0.19	U
74-95-3	Dibromomethane	ND	5.0	0.36	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.43	U
107-13-1	Acrylonitrile	ND	5.0	0.43	U
100-42-5	Styrene	ND	1.0	0.36	U
75-71-8	Dichlorodifluoromethane	ND	5.0	0.30	U
67-64-1	Acetone	ND	5.0	1.6	U
75-15-0	Carbon disulfide	ND	5.0	0.30	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	0.31	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	0.42	u ut
591-78-6	2-Hexanone	ND	5.0	0.58	U
74-97-5	Bromochloromethane	ND	2.5	0.33	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.40	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.19	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.21	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.16	U
108-86-1	Bromobenzene	ND	2.5	0.18	U
104-51-8	n-Butylbenzene	ND	0.50	0.20	υ
135-98-8	sec-Butylbenzene	ND	0.50	0.18	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-03 Date Collected : 02/08/12 15:45 Client ID : GER-3 **Date Received** : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 14:36 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A13 Instrument ID : VOA

 Lab File ID
 : 0214A13
 Instrument ID
 : VOA101.I

 Sample Amount
 : 10.0 ml
 GC Column
 : RTX-502.2

Level: LOW %Solids: N/A

Soil Extract Volume: -- Injection Volume :

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
98-06-6	tert-Butylbenzene	ND	2.5	0.30	U
95-49-8	o-Chlorotoluene	ND	2.5	0.18	U
106-43-4	p-Chlorotoluene	ND	2.5	0.18	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.33	U
87-68-3	Hexachlorobutadiene	ND	0.60	0.23	U
98-82-8	Isopropylbenzene	ND	0.50	0.19	U
99-87-6	p-Isopropyltoluene	ND	0.50	0.19	U
91-20-3	Naphthalene	ND	2.5	0.22	U
103-65-1	n-Propylbenzene	ND	0.50	0.17	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.23	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.22	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.21	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.27	U
105-05-5	1,4-Diethylbenzene	ND	2.0	0.11	U
622-96-8	4-Ethyltoluene	ND	2.0	0.42	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.10	U
60-29-7	Ethyl ether	ND	2.5	0.20	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.17	u 45

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 Project Name : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-04 Date Collected : 02/08/12 14:40 Client ID : DUP Date Received : 02/09/12 Sample Location : LIC, NY : 02/14/12 15:02 Date Analyzed Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A14 Instrument ID : VOA101.I Sample Amount : 10.0 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A

Soil Extract Volume : -- Injection Volume :

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Mothydone obleside	ND	• •		
	Methylene chloride	ND	5.0	0.54	U
75-34-3	1,1-Dichloroethane	ND	0.75	0.22	U
67-66-3	Chloroform	38	0.75	0.20	
56-23-5	Carbon tetrachloride	ND	0.50	0.16	U
78-87-5	1,2-Dichloropropane	ND	1.8	0.30	U
124-48-1	Dibromochloromethane	ND	0.50	0.19	U
79-00-5	1,1,2-Trichloroethane	ND	0.75	0.26	υ
127-18 -4	Tetrachloroethene	48	0.50	0.18	
108-90-7	Chlorobenzene	ND	0.50	0.19	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.27	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.16	U
75-27-4	Bromodichloromethane	3.1	0.50	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.26	U
75-25-2	Bromoform	ND	2.0	0.25	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U
71-43-2	Benzene	ND	0.50	0.19	U
108-88-3	Toluene	ND	0.75	0.23	U
100-41-4	Ethylbenzene	ND	0.50	0.26	U
74-87-3	Chloromethane	ND	2.5	0.28	U
74-83-9	Bromomethane	ND	1.0	0.26	U
75-01-4	Vinyl chloride	ND	1.0	0.22	U
75-00-3	Chloroethane	ND	1.0	0.23	U
75-35 -4	1,1-Dichloroethene	ND	0.50	0.18	U
156-60-5	trans-1,2-Dichloroethene	ND	0.75	0.21	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 **Project Name** : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-04 **Date Collected** : 02/08/12 14:40 Client ID : DUP Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 15:02 Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A14 Instrument ID : VOA101.I Sample Amount : 10.0 ml

Soil Extract Volume: -- Injection Volume :

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
79-01-6	Trichloroethene	2.8	0.50	0.17	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.18	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.19	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.22	U
1634-04-4	Methyl tert butyl ether	ND	1.0	0.16	U
106-42-3/108-38-3	p/m-Xylene	ND	1.0	0.35	U
95-47-6	o-Xylene	ND	1.0	0.33	U
156-59-2	cis-1,2-Dichloroethene	20	0.50	0.19	•
74-95-3	Dibromomethane	ND	5.0	0.36	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.43	υ
107-13-1	Acrylonitrile	ND	5.0	0.43	U
100-42-5	Styrene	ND	1.0	0.36	U
75-71-8	Dichlorodifluoromethane	ND	5.0	0.30	U
67-64-1	Acetone	ND	5.0	1.6	υ
75-15-0	Carbon disulfide	ND	5.0	0.30	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	0.31	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	0.42	U // 1
591-78-6	2-Hexanone	ND	5.0	0.58	U
74-97-5	Bromochloromethane	ND	2.5	0.33	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.40	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.19	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.21	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.16	U
108-86-1	Bromobenzene	ND	2.5	0.18	U
104-51-8	n-Butylbenzene	ND	0.50	0.20	U
135-98-8	sec-Butylbenzene	ND	0.50	0.18	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 Project Name : BEST CLEANERS Project Number : 155-C-2 Lab ID : L1202347-04 Date Collected : 02/08/12 14:40 Client ID : DUP Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 15:02 : WATER Sample Matrix Dilution Factor : 1 Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A14

Lab File ID: 0214A14Instrument ID: VOA101.ISample Amount: 10.0 mlGC Column: RTX-502.2

Level: LOW %Solids: N/A

Soil Extract Volume: -- Injection Volume

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
98-06-6	tert-Butylbenzene	ND	2.5	0.30	U
95-49-8	o-Chlorotoluene	ND	2.5	0.18	U
106-43-4	p-Chlorotoluene	ND	2.5	0.18	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.33	U
87-68-3	Hexachlorobutadiene	ND	0.60	0.23	U
98-82-8	Isopropylbenzene	ND	0.50	0.19	U
99-87-6	p-Isopropyltoluene	ND	0.50	0.19	U
91-20-3	Naphthalene	ND	2.5	0.22	U
103-65-1	n-Propylbenzene	ND	0.50	0.17	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.23	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.22	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.21	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.27	U
105-05-5	1,4-Diethylbenzene	ND	2.0	0.11	U
622-96-8	4-Ethyltoluene	ND	2.0	0.42	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.10	U
60-29-7	Ethyl ether	ND	2.5	0.20	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.17	· UJ

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 Project Name : BEST CLEANERS **Project Number** : 155-C-2 Lab ID : L1202347-05 Date Collected : 02/08/12 00:00 Client ID : TRIP BLANK Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 15:27 Sample Matrix : WATER **Dilution Factor** : 1

Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A15 Instrument ID : VOA101.I

Sample Amount : 10.0 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A

Soil Extract Volume: -- Injection Volume :

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	5.0	0.54	U
75-34-3	1,1-Dichloroethane	ND	0.75	0.22	U
67-66-3	Chloroform	ND	0.75	0.20	U
56-23-5	Carbon tetrachloride	ND	0.50	0.16	U
78-87-5	1,2-Dichloropropane	ND	1.8	0.30	U
124-48-1	Dibromochloromethane	ND	0.50	0.19	U
79-00-5	1,1,2-Trichloroethane	ND	0.75	0.26	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	0.50	0.19	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.27	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U
71-55-6	1,1,1-Trichloroethane	ND	0.50	0.16	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.26	U
75-25-2	Bromoform	ND	2.0	0.25	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U
71-43-2	Benzene	ND	0.50	0.19	U
108-88-3	Toluene	ND	0.75	0.23	U
100-41-4	Ethylbenzene	ND	0.50	0.26	U
74-87-3	Chloromethane	ND	2.5	0.28	U
74-83-9	Bromomethane	ND	1.0	0.26	U
75-01-4	Vinyl chloride	ND	1.0	0.22	U
75-00-3	Chloroethane	ND	1.0	0.23	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.18	U
156-60-5	trans-1,2-Dichloroethene	ND	0.75	0.21	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 Project Name : BEST CLEANERS Project Number : 155-C-2 Lab ID L1202347-05 **Date Collected** : 02/08/12 00:00 Client ID : TRIP BLANK **Date Received** : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 15:27 Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,8260B Analyst : PD Lab File ID : 0214A15 Instrument ID : VOA101.I Sample Amount : 10.0 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A

Soil Extract Volume: -- Injection Volume :

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
79-01-6	Trichloroethene	ND	0.50	0.17	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.18	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.19	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.22	U
1634-04-4	Methyl tert butyl ether	ND	1.0	0.16	U
106-42-3/108-38-3	p/m-Xylene	NĎ	1.0	0.35	U
95-47-6	o-Xylene	ND	1.0	0.33	U
156-59-2	cis-1,2-Dichloroethene	ND	0.50	0.19	U
74-95-3	Dibromomethane	ND	5.0	0.36	U
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.43	U
107-13-1	Acrylonitrile	ND	5.0	0.43	U
100-42-5	Styrene	ND	1.0	0.36	U
75-71-8	Dichlorodifluoromethane	ND	5.0	0.30	U
67-64-1	Acetone	ND	5.0	1.6	υ
75-15-0	Carbon disulfide	ND	5.0	0.30	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	0.31	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	0.42	u UJ
591-78-6	2-Hexanone	ND	5.0	0.58	U
74-97-5	Bromochloromethane	ND	2.5	0.33	U
594-20-7	2,2-Dichloropropane	ND	2.5	0.40	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.19	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.21	υ
630-20-6	1,1,1,2-Tetrachloroethane	ND	0.50	0.16	U
108-86-1	Bromobenzene	ND	2.5	0.18	U
104-51-8	n-Butylbenzene	ND	0.50	0.20	U
135-98-8	sec-Butylbenzene	ND	0.50	0.18	U

Client : Genesis Engineering & Redevelopment Lab Number : L1202347 Project Name : BEST CLEANERS Project Number : 155-C-2 Lab ID : L1202347-05 Date Collected : 02/08/12 00:00 Client ID : TRIP BLANK Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/14/12 15:27 Sample Matrix : WATER **Dilution Factor** : 1

Analytical Method : 1,8260B Analyst : PD
Lab File ID : 0214A15 Instrument ID : VOA101.I
Sample Amount : 10.0 ml GC Column : RTX-502.2

Level: LOW %Solids: N/A

Soil Extract Volume: -- Injection Volume

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
98-06-6	tert-Butylbenzene	ND	2.5	0.30	U
95-49-8	o-Chlorotoluene	ND	2.5	0.18	U
106-43-4	p-Chlorotoluene	ND	2.5	0.18	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.33	U
87-68-3	Hexachlorobutadiene	ND	0.60	0.23	U
98-82-8	Isopropylbenzene	NĎ	0.50	0.19	U
99-87-6	p-Isopropyltoluene	ND	0.50	0.19	U
91-20-3	Naphthalene	ND	2.5	0.22	U
103-65-1	n-Propylbenzene	ND	0.50	0.17	ប
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.23	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.22	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.21	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.27	U
105-05-5	1,4-Diethylbenzene	ND	2.0	0.11	U
622-96-8	4-Ethyltoluene	ND	2.0	0.42	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.10	U
60-29-7	Ethyl ether	ND	2.5	0.20	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.17	u UJ
					• • •

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-01D
 Date Collected
 : 02/08/12 14:00

 Client ID
 : GER-SV1
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 00:01

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219114 Instrument ID : AIRPIANO2
Sample Amount : 100 ml GC Column : RTX-1

ppbV

ug/m3

			Phn A			ug/mo			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	**************************************
115-07-1	Propylene	ND	1.25		ND	2.15		U	
75-71-8	Dichlorodifluoromethane	0.538	0.500		2.66	2.47		•	
74-87-3	Chloromethane	ND	0.500		ND	1.03		U	
76-14-2	Freon-114	ND	0.500		ND	3.49		U	
75-01-4	Vinyl chloride	ND	0.500		ND	1.28		U	
106-99-0	1,3-Butadiene	ND	0.500		ND	1.11		U	
74-83-9	Bromomethane	ND	0.500		ND	1.94		U	
75-00-3	Chloroethane	ND	0.500		ND	1.32		U	
64-17-5	Ethanol	7.07	6.25		13.3	11.8			
593-60-2	Vinyl bromide	ND	0.500		ND	2.19		U	
67-64-1	Acetone	32.2	2.50		76.5	5.94			
75-69-4	Trichlorofluoromethane	ND	0.500		ND	2.81		U	
67-63-0	Isopropanol	ND	1.25		ND	3.07		U	
75-35-4	1,1-Dichloroethene	ND	0.500		ND	1.98		U	
75-09-2	Methylene chloride	ND	2.50		ND	8.68		U	
107-05-1	3-Chloropropene	ND	0.500		ND	1.56		U	
75-15-0	Carbon disulfide	1.30	0.500		4.05	1.56			
76-13-1	Freon-113	ND	0.500		ND	3.83		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.500		ND	1.98		U	
75-34-3	1,1-Dichloroethane	ND	0.500		ND	2.02		U	
1634-04-4	Methyl tert butyl ether	ND	0.500		ND	1.80		U	
108-05-4	Vinyl acetate	ND	0.500		ND	1.76		U	
78-93-3	2-Butanone	1.42	0.500		4.19	1.47			
156-59-2	cis-1,2-Dichloroethene	ND	0.500		ND	1.98		U	
141-78-6	Ethyl Acetate	1.63	1.25		5.87	4.50			
67-66-3	Chloroform	8.24	0.500		40.2	2.44			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.500		ND	2.02		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-01D
 Date Collected
 : 02/08/12 14:00

 Client ID
 : GER-SV1
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 00:01

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219114 Instrument ID : AIRPIANO2 Sample Amount : 100 ml GC Column : RTX-1

ppbV

ug/m3

010110			ppst			ug/iiio			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	and the state of t
110-54-3	n-Hexane	ND	0.500		ND	1.76		U	
71-55-6	1,1,1-Trichloroethane	0.780	0.500		4.26	2.73			
71-43-2	Benzene	1.07	0.500		3.42	1.60			
56-23-5	Carbon tetrachloride	0.572	0.500		3.60	3.14			
110-82-7	Cyclohexane	0.512	0.500		1.76	1.72			
78-87-5	1,2-Dichloropropane	ND	0.500	••	ND	2.31		U	
75-27-4	Bromodichloromethane	ND	0.500		ND	3.35		U	
123-91-1	1,4-Dioxane	ND	0.500		ND	1.80		U	
79-01-6	Trichloroethene	4.16	0.500		22.4	2.69			
540-84-1	2,2,4-Trimethylpentane	ND	0.500		ND	2.34		U	
142-82-5	Heptane	0.625	0.500		2.56	2.05			
10061-01-5	cis-1,3-Dichloropropene	ND	0.500		ND	2.27		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.500		ND	2.27		U	
79-00-5	1,1,2-Trichloroethane	ND	0.500		ND	2.73		U	
108-88-3	Toluene	1.51	0.500		5.69	1.88		N	1
591-78-6	2-Hexanone	ND	0.500		ND	2.05		U	
124-48-1	Dibromochloromethane	ND	0.500		ND	4.26		U	
106-93-4	1,2-Dibromoethane	ND	0.500		ND	3.84		U	
127-18-4	Tetrachloroethene 314	264	0.500	اد -	30 -1790-	3.39		E	
108-90-7	Chlorobenzene	ND	0.500		ND	2.30		U	
100-41-4	Ethylbenzene	1.36	0.500		5.91	2.17			
106-42-3/108-38	3p/m-Xylene	6.00	1.00		26.1	4.34			
75-25-2	Bromoform	ND	0.500		ND	5.17		U	
100-42-5	Styrene	ND	0.500		ND	2.13		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.500		ND	3.43		U	
95-47-6	o-Xylene	1.99	0.500		8.64	2.17			
622-96-8	4-Ethyltoluene	ND	0.500		ND	2.46		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-01D
 Date Collected
 : 02/08/12 14:00

 Client ID
 : GER-SV1
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 00:01

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219114 Instrument ID : AIRPIANO2
Sample Amount : 100 ml GC Column : RTX-1

·			ppb∨			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
									The state of the s
108-67-8	1,3,5-Trimethybenzene	ND	0.500		ND	2.46		U	
95-63-6	1,2,4-Trimethylbenzene	0.778	0.500		3.82	2.46			
100-44-7	Benzyl chloride	ND	0.500		ND	2.59		U	
541-73-1	1,3-Dichlorobenzene	ND	0.500		ND	3.01		U	
106-46-7	1,4-Dichlorobenzene	ND	0.500		ND	3.01		U	
95-50-1	1,2-Dichlorobenzene	ND	0.500		ND	3.01		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.500		ND	3.71		U	
87-68-3	Hexachlorobutadiene	ND	0.500		ND	5.33		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

107-06-2

1,2-Dichloroethane

ND

0.500

ND

2.02

 Lab ID
 : L1202360-02D
 Date Collected
 : 02/08/12 13:55

 Client ID
 : GER-SV2
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 00:36

 Sample Metrix
 : SOIL VAPOR
 Dilution Footes
 : 0.5

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5
Analytical Method : 48,TO-15 Analyst : RY

ppbV ug/m3 CAS NO. **Parameter** Results RL MDL Results MDL RL Qualifier 115-07-1 Propylene 5.13 1.25 8.83 2.15 75-71-8 Dichlorodifluoromethane 0.775 0.500 3.83 2.47 74-87-3 Chloromethane ND 0.500 ND 1.03 U Freon-114 76-14-2 ND 0.500 ND 3.49 U 75-01-4 Vinyl chloride ND 0.500 ND U 1.28 106-99-0 1,3-Butadiene ND 0.500 ND U 1.11 74-83-9 Bromomethane ND 0.500 ND 1.94 U 75-00-3 Chloroethane ND 0.500 ND 1.32 U 64-17-5 Ethanol ND 6.25 --ND 11.8 U 593-60-2 Vinvl bromide ND 0.500 ND 2.19 U 67-64-1 Acetone 79.3 2.50 188 5.94 75-69-4 Trichlorofluoromethane ND 0.500 ND 2.81 U 67-63-0 Isopropanol ND 1.25 ND 3.07 U 75-35-4 1,1-Dichloroethene ND 0.500 ND 1.98 U 75-09-2 Methylene chloride ND 2.50 ND 8.68 U 107-05-1 3-Chloropropene ND 0.500 ND 1.56 U 75-15-0 Carbon disulfide 25.0 0.500 77.8 1.56 76-13-1 Freon-113 ND 0.500 ND 3.83 U 156-60-5 trans-1,2-Dichloroethene ND 0.500 ND 1.98 U 75-34-3 1,1-Dichloroethane ND 0.500 ND 2.02 U 1634-04-4 Methyl tert butyl ether ND 0.500 ND 1.80 U 108-05-4 Vinyl acetate ND 0.500 ND 1.76 U 78-93-3 2-Butanone 3.01 0.500 8.88 1.47 156-59-2 cis-1,2-Dichloroethene ND 0.500 ND 1.98 U 141-78-6 Ethyl Acetate 1.30 1.25 4.68 4.50 67-66-3 Chloroform 2.53 0.500 12.4 2.44 109-99-9 Tetrahydrofuran ND 0.500 ND 1.47 U

U

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-02D
 Date Collected
 : 02/08/12 13:55

 Client ID
 : GER-SV2
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 00:36

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219115 Instrument ID : AIRPIANO2 Sample Amount : 100 ml GC Column : RTX-1

	. 100 mm		mmh\/	00	Column	. 1\1	/\- I	
CAS NO.	Parameter	Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier
Militar Europe Control of the Control of the Control of	онивання на начина при при при на при на На при на при	Ph. After Ph. 18. Will Hold State Co. 2012 - Violence Co. 2012 - After Ph. 18. Co. 2012 - After Ph. 18. Co. 2012			THE LATER THAT SECURE THE STATE OF THE LATER THAT THE LATER THE LA	CONTRACTOR OF THE SECTION OF THE SEC	1801-1844 (Salari dag Baragore 1945) ke salari sarago sara g	erren var en seu entre entre en entre de la company de la
110-54-3	n-Hexane	1.94	0.500		6.84	1.76		
71-55-6	1,1,1-Trichloroethane	0.650	0.500		3.55	2.73		
71-43-2	Benzene	2.86	0.500		9.14	1.60		
56-23-5	Carbon tetrachloride	0.570	0.500		3.58	3.14		
110-82-7	Cyclohexane	1.22	0.500		4.20	1.72		
78-87-5	1,2-Dichloropropane	ND	0.500		ND	2.31		U
75-27-4	Bromodichloromethane	ND	0.500		ND	3.35		U
123-91-1	1,4-Dioxane	ND	0.500		ND	1.80		U
79-01-6	Trichloroethene	6.59	0.500		35.4	2.69		
540-84-1	2,2,4-Trimethylpentane	ND	0.500	-	ND	2.34	_	U
142-82-5	Heptane	1.58	0.500		6.48	2.05		
10061-01-5	cis-1,3-Dichloropropene	ND	0.500		ND	2.27		U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.500		ND	2.27		U
79-00-5	1,1,2-Trichloroethane	ND	0.500		ND	2.73		U
108-88-3	Toluene	1.95	0.500		7.35	1.88		NS
591-78-6	2-Hexanone	ND	0.500		ND	2.05		U
124-48-1	Dibromochloromethane	ND	0.500		ND	4.26		U
106-93-4	1,2-Dibromoethane	ND	0.500		ND	3.84		U
127-18-4	Tetrachloroethene	292	0.500		1980	3.39		Ε
108-90-7	Chlorobenzene	ND	0.500		ND	2.30		U
100-41-4	Ethylbenzene	1.42	0.500		6.17	2.17		
106-42-3/108-38	3-3p/m-Xylene	5.98	1.00		26.0	4.34		
75-25-2	Bromoform	ND	0.500		ND	5.17		U
100-42-5	Styrene	ND	0.500		ND	2.13		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.500		ND	3.43		U
95-47-6	o-Xylene	2.18	0.500		9.47	2.17		
622-96-8	4-Ethyltoluene	ND	0.500		ND	2.46		U

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-02D
 Date Collected
 : 02/08/12 13:55

 Client ID
 : GER-SV2
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 00:36

 Sample Matrix
 : SOIL MARCH
 Dilution Footon
 : 2.5

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5
Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219115 Instrument ID : AIRPIANO2 Sample Amount : 100 ml GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
108-67-8	1,3,5-Trimethybenzene	ND	0.500		ND	2.46		U	
95-63-6	1,2,4-Trimethylbenzene	0.982	0.500		4.83	2.46			
100-44-7	Benzyl chloride	ND	0.500		ND	2.59		U	
541-73-1	1,3-Dichlorobenzene	ND	0.500	-	ND	3.01		U	
106-46-7	1,4-Dichlorobenzene	ND	0.500		ND	3.01		U	
95-50-1	1,2-Dichlorobenzene	ND	0.500		ND	3.01		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.500		ND	3.71		U	
87-68-3	Hexachlorobutadiene	ND	0.500		ND	5.33		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS **Project Number**

Lab ID : L1202360-02D2 **Date Collected** 02/08/12 13:55 Client ID : GER-SV2 Date Received 02/09/12 Sample Location : LIC, NY : 02/11/12 10:28 Date Analyzed

: SOIL_VAPOR Sample Matrix Dilution Factor : 5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219122 Instrument ID : AIRPIANO2 Sample Amount : 50.0 ml GC Column : RTX-1

			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
						***************************************	de Street and a construction of the second	
127-18-4	Tetrachloroethene	214	1.00		1450	6.78		

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-03D
 Date Collected
 : 02/08/12 14:10

 Client ID
 : GER-SV3
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 01:11

 Sample Matrix
 : SOIL_VAPOR
 Dilution Factor
 : 33.97

Sample Matrix : SOIL_VAPOR Dilution Factor : 33.97 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219116 Instrument ID : AIRPIANO2 Sample Amount : 7.36 ml GC Column : RTX-1

ppbV

ug/m3

CAS NO. Parameter MDL Results RL Results RL MDL Qualifier 115-07-1 Propylene ND 17.0 ND U 29.2 75-71-8 Dichlorodifluoromethane ND 6.79 ND 33.6 U 74-87-3 Chloromethane ND 6.79 ND 14.0 U 76-14-2 Freon-114 ND 6.79 ND 47.5 U 75-01-4 Vinyl chloride ND 6.79 ND 17.4 U 106-99-0 1,3-Butadiene ND 6.79 ND 15.0 υ 74-83-9 Bromomethane ND 6.79 ND 26.4 Ų 75-00-3 Chloroethane ND 6.79 ND 17.9 U 64-17-5 Ethanol ND 84.9 ND 160 U 593-60-2 Vinyl bromide ND 6.79 ND 29.7 U 67-64-1 Acetone 43.8 34.0 104 80.8 75-69-4 Trichlorofluoromethane ND 6.79 ND 38.2 U 67-63-0 Isopropanol ND 17.0 ND 41.8 U 75-35-4 1,1-Dichloroethene ND 6.79 ND 26.9 U 75-09-2 Methylene chloride ND 34.0 ND 118 U 107-05-1 3-Chloropropene ND 6.79 ND 21.2 U 75-15-0 Carbon disulfide ND ND 6.79 21.1 U Freon-113 76-13-1 ND 6.79 --ND 52.0 U 156-60-5 trans-1,2-Dichloroethene ND 6.79 ND 26.9 U 75-34-3 1,1-Dichloroethane ND 6.79 ND 27.5 U 1634-04-4 Methyl tert butyl ether ND 6.79 ND 24.5 U 108-05-4 Vinyl acetate ND ND 6.79 23.9 U 78-93-3 2-Butanone ND 6.79 ND 20.0 U 156-59-2 cis-1,2-Dichloroethene 40.4 6.79 160 26.9 141-78-6 **Ethyl Acetate** ND 17.0 ND 61.3 U Chloroform 67-66-3 28.8 6.79 141 33.2 109-99-9 Tetrahydrofuran ND 6.79 ---ND 20.0 υ 107-06-2 1,2-Dichloroethane ND 6.79 ND 27.5 U

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-03D
 Date Collected
 : 02/08/12 14:10

 Client ID
 : GER-SV3
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 01:11

Sample Matrix : SOIL_VAPOR Dilution Factor : 33.97 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219116 Instrument ID : AIRPIANO2

Sample Amount : 7.36 ml GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	nadanomine ameny sambanda ny disembera di
440.54.0									
110-54-3	n-Hexane	ND	6.79		ND	23.9		U	
71-55-6	1,1,1-Trichloroethane	ND	6.79	-	ND	37.0		U	
71-43-2	Benzene	ND	6.79		ND	21.7		U	
56-23-5	Carbon tetrachloride	ND	6.79	-	ND	42.7		U	
110-82-7	Cyclohexane	ND	6.79		ND	23.4		U	
78-87-5	1,2-Dichloropropane	ND	6.79		ND	31.4		U	
75-27-4	Bromodichloromethane	ND	6.79		ND	45.5		υ	
123-91-1	1,4-Dioxane	ND	6.79		ND	24.5		U	
79-01-6	Trichloroethene	12.9	6.79		69.3	36.5			
540-84-1	2,2,4-Trimethylpentane	ND	6.79		ND	31.7		U	
142-82-5	Heptane	ND	6.79		ND	27.8		U	
10061-01-5	cis-1,3-Dichloropropene	ND	6.79	-	ND	30.8		U	
108-10-1	4-Methyl-2-pentanone	ND	6.79		ND	27.8		υ	
10061-02-6	trans-1,3-Dichloropropene	ND	6.79		ND	30.8		U	
79-00-5	1,1,2-Trichloroethane	ND	6.79	_	ND	37.0		U	
108-88-3	Toluene	ND	6.79		ND	25.6		U	
591-78-6	2-Hexanone	ND	6.79		ND	27.8		U	
124-48-1	Dibromochloromethane	ND	6.79		ND	57.8	<u></u>	U	
106-93-4	1,2-Dibromoethane	ND	6.79		ND	52.2		U	
127-18-4	Tetrachloroethene	2600	6.79		17600	46.0			
108-90-7	Chlorobenzene	ND	6.79		ND	31.3		U	
100-41-4	Ethylbenzene	ND	6.79	-	ND	29.5	**	U	
106-42-3/108-38	-3p/m-Xylene	ND	13.6		ND	59.1		U	
75-25-2	Bromoform	ND	6.79		ND	70.2		U	
100-42-5	Styrene	ND	6.79		ND	28.9		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.79		ND	46.6		U	
95-47-6	o-Xylene	ND	6.79		ND	29.5	**	U	
622-96-8	4-Ethyltoluene	ND	6.79		ND	33.4		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name BEST CLEANERS Project Number

 Lab ID
 : L1202360-03D
 Date Collected
 : 02/08/12 14:10

 Client ID
 : GER-SV3
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 01:11

nnh\/

Sample Matrix : SOIL_VAPOR Dilution Factor : 33.97 Analytical Method : 48,TO-15 Analyst : RY

			ppov			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	euro na constante currents é sime és
108-67-8	1,3,5-Trimethybenzene	ND	6.79		ND	33.4		U	
95-63-6	1,2,4-Trimethylbenzene	ND	6.79		ND	33.4		U	
100-44-7	Benzyl chloride	ND	6.79		ND	35.2		U	
541-73-1	1,3-Dichlorobenzene	ND	6.79		ND	40.8		U	
106-46-7	1,4-Dichlorobenzene	ND	6.79		ND	40.8		U	
95-50-1	1,2-Dichlorobenzene	ND	6.79		ND	40.8		U	
120-82-1	1,2,4-Trichlorobenzene	ND	6.79		ND	50.4		U	
87-68-3	Hexachlorobutadiene	ND	6.79		ND	72.4		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-04D
 Date Collected
 : 02/08/12 13:17

 Client ID
 : GER-SV4
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 01:46

 Sample Matrix
 : SOIL VAPOR
 Dilution Footes
 : 40

Sample Matrix : SOIL_VAPOR Dilution Factor : 10
Analytical Method : 48,TO-15 Analyst : RY

ppbV

ug/m3

			PPD T			ugriiis			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	F
115-07-1	Propylene	ND	5.00		ND	8.60		U	
75-71-8	Dichlorodifluoromethane	ND	2.00		ND	9.89		U	
74-87-3	Chloromethane	ND	2.00		ND	4.13		U	
76-14-2	Freon-114	ND	2.00		ND	14.0		U	
75-01 -4	Vinyl chloride	ND	2.00		ND	5.11		U	
106-99-0	1,3-Butadiene	ND	2.00		ND	4.42		U	
74-83-9	Bromomethane	ND	2.00		ND	7.77	_	U	
75-00-3	Chloroethane	ND	2.00		ND	5.28		U	
64-17-5	Ethanol	ND	25.0		ND	4 7.1		U	
593-60-2	Vinyl bromide	ND	2.00		ND	8.74		U	
67-64-1	Acetone	26.3	10.0		62.5	23.8			
75-69-4	Trichlorofluoromethane	ND	2.00		ND	11.2		U	
67-63-0	Isopropanol	ND	5.00		ND	12.3		U	
75-35-4	1,1-Dichloroethene	ND	2.00		ND	7.93		U	
75-09-2	Methylene chloride	ND	10.0		ND	34.7		U	
107-05-1	3-Chloropropene	ND	2.00		ND	6.26		U	
75-15-0	Carbon disulfide	ND	2.00		ND	6.23		U	
76-13-1	Freon-113	ND	2.00		ND	15.3		U	
156-60-5	trans-1,2-Dichloroethene	ND	2.00		ND	7.93		U	
75-34-3	1,1-Dichloroethane	ND	2.00		ND	8.09		U	
1634-04-4	Methyl tert butyl ether	ND	2.00		ND	7.21		U	
108-05-4	Vinyl acetate	ND	2.00		ND	7.04		U	
78-93-3	2-Butanone	ND	2.00		ND	5.90		U	
156-59-2	cis-1,2-Dichloroethene	2.08	2.00		8.25	7.93			
141-78-6	Ethyl Acetate	ND	5.00		ND	18.0		U	
67-66-3	Chloroform	13.3	2.00		64.9	9.77			
109-99-9	Tetrahydrofuran	ND	2.00		ND	5.90		U	
107-06-2	1,2-Dichloroethane	ND	2.00		ND	8.09		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-04D
 Date Collected
 : 02/08/12 13:17

 Client ID
 : GER-SV4
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 01:46

Sample Matrix : SOIL_VAPOR Dilution Factor : 10 Analytical Method : 48,TO-15 Analyst : RY

ppbV

ug/m3

			hhna			ug/ms			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
				٠					
110-54-3	n-Hexane	ND	2.00		ND	7.05		U	
71-55-6	1,1,1-Trichloroethane	ND	2.00		ND	10.9		U	
71-43-2	Benzene	ND	2.00		ND	6.39		U	
56-23-5	Carbon tetrachloride	ND	2.00		ND	12.6		U	
110-82-7	Cyclohexane	ND	2.00		ND	6.88		U	
78-87-5	1,2-Dichloropropane	ND	2.00		ND	9.24		U	
75-27-4	Bromodichloromethane	ND	2.00		ND	13.4		U	
123-91-1	1,4-Dioxane	ND	2.00		ND	7.21		U	
79-01-6	Trichloroethene	3.35	2.00		18.0	10.7			
540-84-1	2,2,4-Trimethylpentane	ND	2.00		ND	9.34		U	
142-82-5	Heptane	ND	2.00		ND	8.20		U	
10061-01-5	cis-1,3-Dichloropropene	ND	2.00		ND	9.08		U	
108-10-1	4-Methyl-2-pentanone	ND	2.00		ND	8.20		U	
10061-02-6	trans-1,3-Dichloropropene	ND	2.00		ND	9.08		U	
79-00-5	1,1,2-Trichloroethane	ND	2.00		ND	10.9		U	
108-88-3	Toluene	ND	2.00		ND	7.54		U	
591-78-6	2-Hexanone	ND	2.00		ND	8.20		U	
124-48-1	Dibromochloromethane	ND	2.00		ND	17.0		U	
106-93-4	1,2-Dibromoethane	ND	2.00		ND	15.4		U	
127-18-4	Tetrachloroethene	688	2.00		4660	13.6			
108-90-7	Chlorobenzene	ND	2.00		ND	9.21		U	
100-41-4	Ethylbenzene	ND	2.00		ND	8.69		U	
106-42-3/108-38-	-3p/m-Xylene	ND	4.00		ND	17.4		U	
75-25-2	Bromoform	ND	2.00		ND	20.7	_	U	
100-42-5	Styrene	ND	2.00		ND	8.52		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7		U	
95-47-6	o-Xylene	ND	2.00		ND	8.69		U	
622-96-8	4-Ethyltoluene	ND	2.00		ND	9.83		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-04D
 Date Collected
 : 02/08/12 13:17

 Client ID
 : GER-SV4
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 01:46

Sample Matrix : SOIL_VAPOR Dilution Factor : 10
Analytical Method : 48,TO-15 Analyst : RY

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
									AND A STATE OF THE PROPERTY OF
108-67-8	1,3,5-Trimethybenzene	ND	2.00	-	ND	9.83		U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.00		ND	9.83		U	
100-44-7	Benzyl chloride	ND	2.00		ND	10.4		U	
541-73-1	1,3-Dichlorobenzene	ND	2.00		ND	12.0		U	
106-46-7	1,4-Dichlorobenzene	ND	2.00		ND	12.0		U	
95-50-1	1,2-Dichlorobenzene	ND	2.00		ND	12.0		U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.00		ND	14.8	***	U	
87-68-3	Hexachlorobutadiene	ND	2.00		ND	21.3		U	

: L1202360

Client : Genesis Engineering & Redevelopment Lab Number

Project Name : BEST CLEANERS

Project Number Lab ID : L1202360-05D **Date Collected** 02/08/12 14:15 Client ID : GER-SV5 Date Received : 02/09/12 Sample Location : LIC, NY Date Analyzed : 02/11/12 02:20

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219118 Instrument ID : AIRPIANO2 Sample Amount : 100 ml GC Column : RTX-1

							Λ-1		
CAS NO.	Parameter	Results	RL	MDL	Results	ug/m3 RL	MDL	Qualifier	
AND SECURITY OF THE PROPERTY O	######################################				THE PARTY OF THE P	Orabido ello ello ello especia de servicio de la constanta de		Millions for the state of the state of the state of the transmission of the constant of the state of the stat	ANTICONOMICA DE LA CASA ANTICA DEL CASA ANTICA DE LA CASA ANTICA DE LA CASA ANTICA DEL CASA ANTICA DE LA CASA ANTICA DE LA CASA ANTICA DEL CASA ANTICA DE LA CASA ANTICA DEL CASA ANTICA DEL CASA ANTICA DE LA CASA ANTICA DEL CASA ANTICA D
115-07-1	Propylene	ND	1.25		ND	2.15		U	
75-71-8	Dichlorodifluoromethane	0.532	0.500		2.63	2.47			
74-87-3	Chloromethane	ND	0.500		ND	1.03		U	
76-14-2	Freon-114	ND	0.500		ND	3.49		U	
75-01-4	Vinyl chloride	ND	0.500		ND	1.28		U	
106-99-0	1,3-Butadiene	ND	0.500		ND	1.11		U	
74-83-9	Bromomethane	ND	0.500	_	ND	1.94		U	
75-00-3	Chloroethane	ND	0.500		ND	1.32		U	
64-17-5	Ethanol	ND	6.25		ND	11.8		U	
593-60-2	Vinyl bromide	ND	0.500		ND	2.19		U	
67-64-1	Acetone	17.0	2.50		40.4	5.94			
75-69-4	Trichlorofluoromethane	ND	0.500		ND	2.81		U	
67-63-0	Isopropanol	ND	1.25		ND	3.07		U	
75-35-4	1,1-Dichloroethene	ND	0.500		ND	1.98		U	
75-09-2	Methylene chloride	4.26	2.50		14.8	8.68			
107-05-1	3-Chloropropene	ND	0.500		ND	1.56		U	
75-15-0	Carbon disulfide	1.33	0.500		4.14	1.56			
76-13-1	Freon-113	ND	0.500		ND	3.83		U	
156-60-5	trans-1,2-Dichloroethene	ND	0.500		ND	1.98		υ	
75-34-3	1,1-Dichloroethane	ND	0.500	-	ND	2.02		υ	
1634-04-4	Methyl tert butyl ether	ND	0.500		ND	1.80		U	
108-05-4	Vinyl acetate	ND	0.500		ND	1.76		U	
78-93-3	2-Butanone	0.608	0.500		1.79	1.47			
156-59-2	cis-1,2-Dichloroethene	79.0	0.500		313	1.98			
141-78-6	Ethyl Acetate	ND	1.25		ND	4.50		U	
67-66-3	Chloroform	59.4	0.500		290	2.44			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		υ	
107-06-2	1,2-Dichloroethane	ND	0.500		ND	2.02		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-05D
 Date Collected
 : 02/08/12 14:15

 Client ID
 : GER-SV5
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 02:20

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5 Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219118 Instrument ID : AIRPIANO2
Sample Amount : 100 ml GC Column : RTX-1

Sample Amount : 100 ml GC Column : RTX-1

ppbV ug/m3

			hhna			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Secretaria de composições de composi
110-54-3	n-Hexane	ND	0.500		ND	1.76		U	
71-55-6	1,1,1-Trichloroethane	ND	0.500	****	ND	2.73		U	
71-43-2	Benzene	ND	0.500		ND	1.60		U	
56-23-5	Carbon tetrachloride	ND	0.500	-	ND	3.14		U	
110-82-7	Cyclohexane	ND	0.500		ND	1.72		U	
78-87-5	1,2-Dichloropropane	ND	0.500		ND	2.31		U	
75-27-4	Bromodichloromethane	0.675	0.500		4.52	3.35			
123-91-1	1,4-Dioxane	ND	0.500		ND	1.80	_	U	
79-01-6	Trichloroethene	6.40	0.500	-	34.4	2.69			
540-84-1	2,2,4-Trimethylpentane	ND	0.500		ND	2.34		U	
142-82-5	Heptane	ND	0.500		ND	2.05		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.500		ND	2.27		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.500		ND	2.27		U	
79-00-5	1,1,2-Trichloroethane	ND	0.500	_	ND	2.73		υ	
108-88-3	Toluene	0.742	0.500		2.80	1.88			
591-78-6	2-Hexanone	ND	0.500		ND	2.05		U	
124-48-1	Dibromochloromethane	ND	0.500	_	ND	4.26		U	
106-93-4	1,2-Dibromoethane	ND	0.500	-	ND	3.84		U	
127-18-4	Tetrachloroethene	134	0.500		909	3.39			
108-90-7	Chlorobenzene	ND	0.500		ND	2.30		U	
100-41-4	Ethylbenzene	ND	0.500		ND	2.17		υ	
106-42-3/108-38	-3p/m-Xylene	1.64	1.00		7.12	4.34			
75-25-2	Bromoform	ND	0.500		ND	5.17		U	
100-42-5	Styrene	ND	0.500		ND	2.13		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.500		ND	3.43		U	
95-47-6	o-Xylene	0.592	0.500		2.57	2.17			
622-96-8	4-Ethyltoluene	ND	0.500		ND	2.46		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-05D
 Date Collected
 : 02/08/12 14:15

 Client ID
 : GER-SV5
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/11/12 02:20

Sample Matrix : SOIL_VAPOR Dilution Factor : 2.5
Analytical Method : 48,TO-15 Analyst : RY

Lab File ID : R219118 Instrument ID : AIRPIANO2
Sample Amount : 100 ml GC Column : RTX-1

ample Amount : 100 ml GC Column : RTX-1

		ppu				ugnno			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	ki mengelakakan menapanganan palaban pakan palaban
108-67-8	1,3,5-Trimethybenzene	ND	0.500		ND	2.46		U	
95-63-6	1,2,4-Trimethylbenzene	0.500	0.500	_	2.46	2.46			
100-44-7	Benzyl chloride	ND	0.500		ND	2.59		U	
541-73-1	1,3-Dichlorobenzene	ND	0.500		ND	3.01		U	
106-46-7	1,4-Dichlorobenzene	ND	0.500		ND	3.01		U	
95-50-1	1,2-Dichlorobenzene	ND	0.500		ND	3.01		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.500		ND	3.71	-	U	
87-68-3	Hexachlorobutadiene	ND	0.500		ND	5.33		U	

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-06
 Date Collected
 : 02/08/12 13:12

 Client ID
 : GER-AA
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/10/12 21:38

 Sample Matrix
 : AIR
 Dilution Footes
 : 02/10/12 21:38

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : RY

ppbV

ug/m3

			PPD V			agriio		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
115-07-1	Propylene	0.709	0.500		1.22	0.860		
75-71-8	Dichlorodifluoromethane	0.530	0.200		2.62	0.989	_	
74-87-3	Chloromethane	0.549	0.200		1.13	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	5.44	2.50		10.2	4.71		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U
67-64-1	Acetone	8.31	1.00		19.7	2.38		
75-69 -4	Trichlorofluoromethane	0.289	0.200		1.62	1.12		
67-63-0	Isopropanol	0.624	0.500		1.53	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U
75-09-2	Methylene chloride	ND	1.00		ND	3.47		υ
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
108-05-4	Vinyl acetate	ND	0.200		ND	0.704		U
78-93-3	2-Butanone	0.874	0.200		2.58	0.590		
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		U
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.200		ND	0.590		U
107-06-2	1,2-Dichloroethane	ND	0.200	-	ND	0.809		U

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-06
 Date Collected
 : 02/08/12 13:12

 Client ID
 : GER-AA
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/10/12 21:38

 Sample Matrix
 : AIR
 Dilution Factor
 : 1

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : RY

ppbV

ug/m3

			pppv			ug/ms		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
110-54-3	n-Hexane	0.275	0.200		0.969	0.705		
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		U
71-43-2	Benzene	0.373	0.200		1.19	0.639		
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34	-	U
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
79-01-6	Trichloroethene	ND	0.200		ND	1.07		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U
142-82-5	Heptane	0.256	0.200		1.05	0.820		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	0.268	0.200		1.10	0.820		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U
108-88-3	Toluene	3.20	0.200		12.0	0.754		
591-78-6	2-Hexanone	ND	0.200		ND	0.820	-	U
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70	-	U
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
127-18-4	Tetrachloroethene	3.58	0.200		24.3	1.36		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	0.414	0.200		1.80	0.869		
106-42-3/108-38-	-3p/m-Xylene	1.47	0.400		6.38	1.74		
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	0.220	0.200		0.937	0.852		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	0.440	0.200		1.91	0.869	~~	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U

Client : Genesis Engineering & Redevelopment Lab Number : L1202360

Project Name : BEST CLEANERS Project Number

 Lab ID
 : L1202360-06
 Date Collected
 : 02/08/12 13:12

 Client ID
 : GER-AA
 Date Received
 : 02/09/12

 Sample Location
 : LIC, NY
 Date Analyzed
 : 02/10/12 21:38

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : RY

		4,	ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
108-67-8	1,3,5-Trimethybenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	0.200	0.200		0.983	0.983			
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200	_	ND	1.20		υ	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	