PERIODIC REVIEW REPORT

Kliegman Brothers Site OU1 (On-Site Soils) Site No. 241031 Site Management

Town of Glendale Queens County, New York

Prepared for:
New York State Department of
Environmental Conservation

Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7017

Prepared by:

Camp Dresser McKee & Smith

11 British American Boulevard Suite 200

Latham, NY 12110

May 2013

Table of Contents

Section 1 - Executive Summary	
1.1 Site History and Remedial Program	1-1
1.2 Remedy Evaluation	
Section 2 – Site Overview	
2.1 Site History and Remedial Program	2-1
2.2 Site Location	2-1
2.3 Site History	2-2
2.3.1 Operational/Disposal History	2-2
2.3.2 Remedial History	2-2
2.4 Site Geology and Hydrogeology	2-4
Section 3 – Evaluate Remedy Performance, Effectiveness and Protectiveness	
3.1 Operation and Maintenance Plan	3-1
3.1.1 O&M Compliance Report	3-2
3.1.2 Evaluation of O&M Activities	3-2
3.1.2.1 Extraction Rates	3-2
3.1.2.2 SVE Well Sampling	3-3
3.1.2.3 SVE System Monitoring	
3.1.2.4 System Operation and Maintenance	
3.2 Monitoring Plan Compliance Report	
3.2.1 Soil Vapor Sampling	
3.2.2 Soil Vapor Sampling Results	
3.2.3 Confirm Compliance with Monitoring PlanPlan Plan Plan Plan Plan Plan Plan Plan	
3.2.4 Confirmation that Performance Standards are Being Met	
3.3 Institutional Controls/Engineering Controls Certification Plan Report	
3.3.1 IC/EC Requirements and Compliance	
3.3.2 IC/EC Certification Form	3-6
Section 4 – Evaluate Costs	
4.1 Summary of Costs	4-1
Section 5 - Conclusions and Recommendations	
5.1 Conclusions	5-1
5.1.1 Recommendations	5-1

i

List of Figures

```
Figure 1 - Site Location Map
```

Figure 2 – Soil Vapor and Monitoring Well Sample Locations

Figure 3 – SVE-6S PCE Concentrations

Figure 4 – SVE-6D PCE Concentrations

Figure 5 – SVE-1 PCE Concentrations

Figure 6 - SVE-9S PCE Concentrations

Figure 7 – SVE-10S PCE Concentrations

Figure 8 - SVE-8S PCE Concentrations

Figure 9 - SVE-7D PCE Concentrations

Figure 10 – SVE-8D PCE Concentrations

Figure 11 – SVE-7S PCE Concentrations

Figure 12 – GWTT Combined Influent PCE Concentrations

Figure 13 – URS Combined Influent PCE Concentrations

List of Tables

```
Table 1 -SVE System Run Time
```

Table 2 - SVE Monitoring Summary Data

Table 3 - Analytical Summary Results by SVE Well

Table 4 - SVE Systems - Effluent VOC Summary

Table 5 - VOC Removal Calculations

Table 6 – VOC Removal Calculation Summary

Table 7 – Overall VOC Removal Summary

List of Appendices

Appendix A - Operations and Maintenance Manual

Appendix B – SVE System Run Time Hour Summary

Appendix C - Preferred Monthly Progress Reports - January through December 2012

Appendix D – 2012 Analytical Summary Reports

Appendix E - Hurricane Project Status Report

Appendix F – Sub Slab Depressurization Systems (SSDS) Inspections

Appendix G – Kliegman Brothers Site Air Emissions Calculations Memo

Appendix H - Institutional Controls/Engineering Controls Certification Plan Report

Appendix I – Subcontractor Invoices

Appendix J - OU 2 Groundwater Sampling Data

Executive Summary

1.1 Site History and Remedial Program

The Kliegman Brothers site (the "Site") is located in an urban setting at 76-01 77th Avenue, Glendale, Queens County, New York (Site #2-41-031) as shown in Figure 1. The site is bounded to the north by the Long Island Railroad. Residences border the site to the east, west and south. The site is an area approximately 37,000 square feet of which 26,000 feet is occupied by building. Kliegman Bros. Inc. operated a warehouse and distribution center for laundry and dry-cleaning supplies from the 1950s through the 1990's. Two 6,000 gallon above ground storage tanks (ASTs) were located onsite containing tetrachloroethene (PCE). The Site was found to be contaminated with chlorinated solvents, primarily PCE. It is unknown if the contamination is associated with a chronic leak problem or a singly catastrophic release.

In November 2000, the New York State Department of Environmental Conservation (NYSDEC) listed the site as a Class 2 site in the Registry of Inactive Hazardous Waste Sites in New York. A Class 2 Site is a site where hazardous waste presents a significant threat to the public health or the environmental and action is required. Contamination was identified in the onsite soil, soil vapor and groundwater. Public water supplies all the residents in the area with potable water. The site is also covered by asphalt and the 26,000 square foot building restricting access to the contaminated soils onsite. The soil vapor poses the greatest threat to human health on and off site.

After completing the Focused Remedial Investigation/Interim Remedial Measure (FRI/IRM) the OU 1 Record of Decision (ROD) was signed in 2006. The selected Remedy includes continued operation of the existing soil vapor extraction system (SVE); installation of one additional SVE system and the associated vapor extraction wells; development of a site management plan to address residual contamination and any use restrictions; imposition of an environmental easement; periodic certification of the institutional and engineering controls; and long term monitoring.

1.2 Remedy Evaluation

This Periodic Review Report (PRR) will cover a 15-month time period between January 2012 and March 2013. The general configuration of the SVE system components at the Site are presented in Figure 2. The URS system was installed in 2003; it extracts soil gas through three (3) wells, SVE-1, -6S, and -6D. SVE-1 is a one-inch diameter well installed by a previous contractor to URS in anticipation of a future SVE system. The screened section of SVE-1 extends from 5 to 25 feet below ground surface (bgs). SVE-6S and -6D are both two inch diameter wells and were installed by URS as part of that SVE system. SVE-6D is screened from 5 to 25 feet bgs and SVE-6D is screened from 30 to 65 feet bgs.

The GWTT system was installed in 2007; it extracts soil gas through six (6) four-inch diameter wells including SVE-7S, 7D, 8S, 8D, 9S and 10S. SVE-7S and 8S are both screened from 5 to 25 feet bgs. SVE-9S is screened from 5 to 11 feet bgs and SVE-10S is screened from 5-12 feet bgs. Both the deep SVE wells (SVE-7D and 8D) are screened from 30 to 65 feet bgs. All of the GWTT wells are connected

through subsurface piping to a blower and from the extraction blower the vapors go through two 2000-lb carbon absorbers in a lead/lag configuration (in series). There are two 10-horsepower regenerative blowers installed for use with this system, one of which is a standby for emergency use.

The GWTT system was designed by URS to maintain a minimum flow of 520-standard cubic feet per minute (scfm) of soil gas with both regenerative blowers in operation. When the system is operating with both blowers on it will produce a minimum vacuum pressure of 10-inches of water column (IWC) in the wells.

A radius of influence test was completed in January 2008. During the test, vacuum levels were measured in all SVE wells and all vapor monitoring (VMP) wells during a series of tests in which certain wells were opened or closed. The goal of the test was to determine what impact the pumping on each well has on the other monitoring points and to make sure that the current soil vapor extraction systems are treating the entire site. The test showed that when SVE-7S and SVE-7D were opened and all others were closed, vacuum pressures could be measured in SVE-7S, SVE-7D, SVE-8D, VMP-1, and VMP-5 only. When SVE-8S and SVE-8D were opened and all others were closed, vacuum pressures could be measured in SVE-9S and SVE-10S were opened and all others were closed, vacuum pressures could be measured in SVE-9S, SVE-10S, and VMP-4, only. During these tests, vacuum pressures were not measured in VMP-2, VMP-3, SVE-1, SVE-2, or SVE-3. However, the test showed that when all SVE and VMP wells were open, vacuum pressure can be measured at each of the VMP and SVE wells on-site. Therefore, this test demonstrated that the soil vapor extraction systems are reaching all areas of the site. This test did not include readings from VMP-6 and VMP-7, which are located inside the building; however, monthly testing indicates that vacuum pressures can be measured at these wells.

The GWTT and URS systems are operating independently of each other, but work together at the site to remediate the soil vapor. If one of the systems is taken out of service, the piping has been configured for the blower from the other system to extract from the SVE wells of that system.

Both systems operated almost continuously during this period. Preferred Environmental Services (Preferred), under subcontract to CDM Smith, monitors the system remotely and performs monthly sampling. Preferred collects the systems influent and effluent during the monthly operation and maintenance (O&M) visits. Semiannual samples are also collected from all of the SVE wells in January and July.

During the 2012 operating period Preferred changed out the lead unit on the GWTT system once per month as opposed to bi-weekly, which was the previous procedure. Changing out the carbon once per month reduced the labor hours and carbon usage and still meets the permit limits. Following the carbon change out the carbon units are reconfigured so that the lag unit becomes the lead on the GWTT system. The lead carbon on the URS system is changed out bimonthly which is sufficient to prevent breakthrough.

Total costs for operation of the treatment system and completion of all required monitoring, sampling, and reporting during the reporting period through March 2013 was approximately \$219,825.

Concentrations of PCE measured in the combined influent samples from both the URS and GWTT systems remained fairly consistent through the operating period. Combined influent concentrations for the GWTT system generally varied from 59,000 to $240,000 \,\mu\text{g/m}^3$, with the exception of March

2012 when the concentration of PCE increased significantly to 470,000 $\mu g/m^3$. On the URS system, the combined influent concentrations varied from 36,000 to 100,000, spiking to 390,000 $\mu g/m^3$ in August 2012.

PCE concentrations detected in the SVE wells during the semiannual sampling events, completed in January and July 2012 and January 2013, were generally declining from previous events. Concentrations in all SVE wells except SVE-8D reached historical lows in 2012. The samples collected in July 2012 from SVE-6S, -6D, -8S, -9S, and -10S showed the lowest levels of PCE ever detected since sampling began in 2007, with levels bouncing back up somewhat in January 2013. Samples collected in January 2012 from SVE-7D, and -1 showed the lowest ever levels of PCE, with levels bouncing back up somewhat in the July sampling event. Samples collected in January 2013 from SVE-7S showed the lowest ever level of PCE. Concentrations in SVE-8D remained consistent with previous sampling events.

From May 1, 2008 to March, 2013, the URS system operated for a cumulative run time of approximately 40,671 hours out of 43,691 hours, or 93% and the GWTT system operated for approximately 41,628 hours or 95%. Over this time period the combined systems removed a total of 8,481 lbs of volatile organic compounds (VOCs). A total of approximately 12,938 pounds have been removed by both systems since December 2007.

Both systems have venturi flow meters providing the total vapor extraction rate at the blowers. Both systems' flows were fairly consistent over this time period with the URS system running between 154 cfm and 168 cfm and the GWTT system running between 231 cfm and 244 cfm. Using the observed vapor extraction rate, the URS system extracted a total volume of 9.05×10^7 cubic feet of vapor and the GWTT system extracted a total volume of about 1.54×10^8 cubic feet of vapor from the wells between January 2012 and March 2013 for a total volume of 2.45×10^8 cubic feet of vapor.

Site Overview

This PRR was prepared by CDM Smith for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment DCWA No. 7 of CDM Smith's standby contract D007621-4 with NYSDEC. The NYSDEC has assigned the site ID No. 241031.

2.1 Site History and Remedial Program

The periodic review (PR) process is used to determine if a remedy continues to be properly managed, as set forth in the Site Management Plan (SMP). The objectives of the PR for sites in the State Superfund Program (SSP) are as follows:

- Evaluate if chosen remedy is performing properly and effectively and is protective of public health and the environment;
- Determine compliance with the ROD, ESD and, if available, the SMP;
- Evaluate treatment system and recommend repairs, if necessary;
- Evaluate the condition of the remedy;
- Ascertain that the intent of the institutional controls (IC) continues to be met, the engineering controls remain in place, and both are effective and protect public human health and the environment; and
- Evaluate the O&M costs.

2.2 Site Location

The Site is located in an urban setting at 76-01 77th Avenue in Queens County, New York City (Figure 1). The Site is bordered to the north by the Long Island Railroad. Bordering the site to the east, west and south are residential properties. The site is an area approximately 37,000 square feet, of which 26,000 is occupied by a building. A basement exists under the western portion of the building.

Operable Unit (OU) No. 1, which is the subject of this document, consists of the on-site portion of the remedy and will address on-site contaminated soils and on-site soil vapor issues only. An operable unit represents a portion of the site remedy that for technical or administrative reasons can be addressed separately to eliminate or mitigate a release, threat of release or exposure pathway resulting from the site contamination.

The remaining operable unit (OU 2) for this site will address the groundwater both on-site and off-site as well as the potential for off-site soil vapor impacts.

2.3 Site History

2.3.1 Operational/Disposal History

The Site was formerly owned by Kliegman Brothers Inc. and used as a warehouse and distribution center for laundry and dry-cleaning supplies from the 1950s through the 1990s. The site contained two 6,000 gallon above ground storage tanks (ASTs) which were used to store tetrachloroethene (PCE) (Figure 2). PCE is also known as perchloroethylene, or PERC. The tanks have since been removed from the property and were presumed to be the source of contamination. It is unknown if, and when, product was released or, whether contamination was due to a singly catastrophic release or a chronic leak problem. Kliegman Brothers ceased operation in 1999. The site was purchased in 2000 by the Gourmet Factory until November 2012 was used as a warehouse to store imported food inventory. Currently the site is vacant.

2.3.2 Remedial History

In June 2000, the NYSDEC first listed the site as a Class 2a site in the Registry of Inactive Hazardous Waste Disposal Sites in New York (the Registry). Class 2a is a temporary classification assigned to a site that has inadequate and/or insufficient data for inclusion in any of the other classifications. In November 2000 the NYSDEC listed the site as a Class 2 site in the Registry. A Class 2 site is a site where hazardous waste presents a significant threat to the public health or the environment and action is required.

There were at least six previous investigations performed at the Site from 1997 through 2002. The initial investigations were performed in 1997 and 1998 and comprised soil vapor collection and analysis in the area between the building and the railroad, where the PCE storage tanks were located. Additional soil vapor sampling was later performed in 2000 for a prospective site owner and the NYSDEC. All of these investigations revealed the presence of PCE, often at high concentrations.

A fifth investigation was performed in 2001 as part of a voluntary cleanup program (VCP) agreement with NYSDEC and included soil and groundwater sampling as part of a Focused Remedial Investigation/Interim Remedial Measure (FRI/IRM). The objective of the FRI/IRM was to delineate on-site soil contamination to enable design of a soil vapor extraction system or systems to remediate on-site soil. As part of the study, nine borings, SVE-I through SVE-5 and EB-1 through EB-4 and 26 soil samples were collected from beneath the subfloor of the building.

Between October 2000 and August 2001, the New York State Department of Health (NYSDOH) conducted ambient air sampling in 17 residences east, west, and south of the facility. PCE vapors were detected in 16 of the 17 residences tested.

In September 2002, the site owner discontinued his participation in the VCP. Because of documented ongoing PCE vapor exposures to residents in adjacent structures, the NYSDEC tasked a consultant to do an interim remedial measure (IRM) and design and construct an on-site SVE system, which began operation in August 2004.

A remedial investigation (RI) at the site was conducted between April 2002 and April 2003 and the RI report was submitted in February 2004. The RI focused on both on-site and off-site areas, though this summary will generally focus on the OU 1 activities, the first phase of which included:

- Research of historic information;
- Geophysical survey to determine depth of bedrock;
- Installation of 9 soil borings and 4 monitoring wells for analysis of soils and groundwater as well as physical properties of soil and hydro geologic conditions;
- Sampling of 4 new monitoring wells;
- A survey of public and private water supply wells in the area around the site; and
- Collection of 35 indoor air samples from 17 different residences using PCE badge testing method.

The second phase of the RI field activities were conducted between February and April 2003 and included:

- Installation of 5 soil borings and 5 monitoring wells for soil and groundwater sampling, as well as characterization of subsurface soils and hydrogeologic conditions; and
- Sampling of 9 new and existing monitoring wells.

The RI soil, groundwater, and air analytical results were compared to the following SCGs:

- Groundwater, drinking water, and surface water SCGs are based on NYSDEC "Ambient Sanitary Code;"
- Soil SCGs are based on the NYSDEC "Technical and Administrative Guidance Memorandum (TAGM) 4046; determination of Soil Cleanup Objective and Cleanup Levels;" and
- Concentrations of PCE in were evaluated using the NYSDOH draft "Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated February 2005."

Based on the RI results, in comparison to the SCGs and potential public health and environmental exposure routes, certain media and areas of the site require remediation.

After completing a Remedial Investigation/Feasibility Study (RI/FS), the OU 1 ROD was signed in 2006. The NYSDEC has selected soil vapor extraction (SVE) for the site. The components of the remedy are as follows:

- A remedial design program will be necessary to provide the details required to implement the remedial program.
- The existing Interim Remedial Measure (IRM) SVE system will remain in place and continue to operate.
- New components will be added to the existing IRM remedial system including and additional vapor extraction and SVE treatment system.
- Development of a site management plan to address residual contamination and any use restrictions.

- Imposition of an environmental easement.
- Periodic certification of the institutional and engineering controls.
- Long term monitoring.

2.4 Site Geology and Hydrogeology

The regional geology of Queens County consists of Upper Cretaceous and Pleistocene sands, gravels, and clays which overlie southeasterly sloping bedrock. Bedrock in Queens County consists of Precambrian age, crystalline, igneous and metamorphic rocks with outcrop in northwestern Queens County, dip steeply to the southeast at a gradient of 40 to 80 feet per mile and is expected to occur at approximately 500 feet below grade at the site.

The site-specific geology was obtained from boring logs from previous subsurface investigations at the site and activities performed during this investigation. In general, beneath a fill layer (concrete or asphalt underlain by reworked native materials) of variable thickness (up to two feet), brown loose to dense, fine to coarse silty sand to sandy silt with localized sandy clay seams was observed to depths of approximately 10 feet below ground surface (bgs). This was underlain by brown loose to dense, fine to coarse sand with variable amounts of fine to coarse gravel to depths to 148 feet bgs. At some areas the layer could be described as an inter-bedded silty clay and silty fine sand.

There are six major hydro geologic units identified in the vicinity of the site. They are in ascending order: 1) the Lloyd aquifer; 2) the Raritan confining unit; 3) the Magothy aquifer; 4) the Jameco aquifer; 5) the Gardiners Clay; and 6) the upper glacial (i.e. Pleistocene) deposits. As part of the remedial investigation field activities, only the upper clacial deposits were penetrated. However, in general, the aquifers are laterally extensive and yield significant quantities of water. The most permeable units are the sands and gravels. The two clayey units represent confining units. These are several orders of magnitude less than the sands and gravels.

The regional groundwater table occurs at the site at approximately 70 feet bgs within the upper glacial aquifer. However, perched groundwater was observed in several wells above the clay layer in the eastern portion of the site. Measurements of groundwater elevations were used to develop groundwater contour maps and generally determine the site-specific direction of groundwater flow in the perched groundwater zone, the water table aquifer, and the deeper groundwater zone approximately 30 to 40 feet below the water table. Perched water is present in the eastern portion of the site at depths of 10-12 feet bgs. The flow direction in the perched zone was somewhat variable on other dates measured, possibly due to local fluctuations in the perched zone.

In the shallow regional groundwater zone, groundwater measurements indicate that the flow direction varies. The overall groundwater flow direction was generally towards the south at a very gentle horizontal hydraulic gradient. In general, the groundwater flow direction flow direction in the shallow groundwater zone was determined to be variable, possible due to the very gentle horizontal hydraulic gradients and seasonal fluctuations in the water table.

In the deeper groundwater zone (approximately 30 to 40 feet below the water table), the groundwater flow direction appears to be towards the southeast. There is little to no discernible vertical hydraulic gradient observed at the paired deep and shallow groundwater wells.

Evaluate Remedy Performance, Effectiveness and Protectiveness

The treatment system at the Site consists of the following primary elements:

- Two (2) SVE systems and the associated SVE wells and piping;
- Three (3) regenerative blowers for well vacuum and vapor extraction;
- Two (2) 40-gallon primary knock-out tank for air/moisture separation;
- Two (2) 1-Hp, 3-phase progressing cavity pump to drain the knock-out tanks; and
- Two (2) each of 1,000-pound and 2,000-pound vapor phase carbon adsorbers operated in series using interconnecting pipe and hose, all recently taken off-line in April 2013.

The URS and GWTT systems continue to remove contaminants of concern (COCs) from the soil vapor to address the contamination coming from the site to prevent air quality issues on and off site. The extraction wells are providing containment and have reduced COC concentrations in the soil vapor since start-ups, through the concentrations of COCs have leveled off.

An O&M Manual was prepared by GWTT in 2008 for both SVE systems; it is included as Appendix A.

3.1 Operation and Maintenance Plan

O&M activities are performed at the site monthly by Preferred and include monthly monitoring, maintenance, and carbon change outs on the SVE systems through March 2013. The carbon on the GWTT lead system carbon filter was changed out monthly while the lead system carbon on the URS system was changed out bimonthly. Following the carbon change outs the carbon vessels were reconfigured to make the lag unit the lead unit. Influent and effluent sampling was also conducted on a monthly basis for both systems. Semiannual soil vapor samples are collected from all of the SVE wells.

In situ readings are collected from the SVE well heads using a photoionization detector (PID) during the monthly O&M visits. Historically the PID was held directly to the sample port for testing, resulting in a reading of 0.0 ppm even though the laboratory samples indicated VOC detections. During the July 2012 site visit Preferred began using a Zefon diaphragm sampling pump to fill Tedlar® air bags for testing effluent air with a PID on both systems. Preferred continues to use this screening method.

Hour meters on the blowers for both systems record the actual run time for the system. This is noted in Table 1 and a table of the complete summary of run time hours from January 2008 through March 2013 is provided in Appendix B.

Based on conversations with NYSDEC, CDM Smith scaled back the frequency of sampling, starting in October 2010. Preferred now only samples the combined influent and effluent of each system monthly and does not sample each individual SVE well monthly. A full sampling round of all wells on-

site is performed every six months in January and July. Also, starting in November 2010, site visits and carbon change-outs were reduced to once per month. Preferred continues to record the velocity and temperature and measure the VOC concentration with a PID at each SVE well and both treatment systems' influent and effluent points during the monthly site visit. The monthly progress reports completed by CDM Smith for January 2012 through March 2013 are included in Appendix C.

During the winter months, typically between December and April, the knockout tanks on both systems fill up with condensate water, which causes the system to automatically shut down. NYSDEC has decided not to apply for a sewer discharge permit for the knockout tank water, which was previously discussed as a possible solution, but instead to continue to send Preferred out to the site to drain the tank as necessary. All of the water generated from both systems is drummed and disposed of off-site.

3.1.1 O&M Compliance Report

During the 2012 operating period, the SVE systems were in compliance with the permit to discharge to the air all months except April 2012, after which a double carbon change-out was performed on both carbon units on each system. The air permit discharge limit was 3 ppmv for each of the COCs, including DCE, TCE, vinyl Chloride, and PCE.

The following table provides a summary of required O&M activities for the Site along with the frequency of compliance during 2012 through March 2013.

a satuda .	Re	Compliance Bates		
Activity	Monthly	Bimonthly	Semi Annually	Compliance Dates
Preventive Maintenance	Х			1/2012-3/2013
SVE Influent & Effluent Sampling	Х			1/2012-3/2013
SVE Well Sampling			Х	1/2012-3/2013
GWTT Carbon Change Out	Х			1/2012-3/2013
URS Carbon Change Out		Х		1/2012-3/2013
SVE Well Maintenance	Х			1/2012-3/2013

Confirm Compliance with O&M Activities

3.1.2 Evaluation of O&M Activities

3.1.2.1 Extraction Rates

During monthly site visits the instantaneous vapor velocity and temperature were measured with an anemometer at the system manifold for the URS system and at both the manifolds and inside the well vaults for each of the SVE wells on the GWTT system. Monitoring results for 2012 are presented in Table 2. In general, the instantaneous maximum velocities alone don't give an accurate representation of the total vapor flow rate in the manifold cross-section due to the friction of the pipe walls and the turbulence caused at each fitting. However, these readings do provide a measurement of the relative amounts of gas extracted from each well. The manifold flow rates measured in feet per second were converted to volumetric velocities in cubic feet per minute (cfm) by multiplying by the cross section of the pipes.

Both systems have venturi flow meters that provide the total vapor extraction rate at the blowers. During the 2012 operation period vapor extraction rates on the URS system ranged from 154 cfm in November to 168 cfm in December. The GWTT system ranged from 231 in November to 256 in multiple months including July, August and September. Using the observed vapor extraction rate, the URS system extracted a total volume of about 7.44×10^7 cubic feet of vapor. During the same operation period the GWTT system extracted 3.97×10^8 cubic feet of vapor. A total of 4.72×10^8 cubic feet of vapor was removed from the two systems in 2012.

3.1.2.2 SVE Well Sampling

Soil vapor samples were collected semi-annually in January and July 2012 and January 2013 by Preferred from each of the SVE wells and Table 3 provides a summary of the sample results for each SVE well sample collected since December 2007. Under the new sampling procedures instituted in October 2010, each extraction well is sampled as part of the semi-annual sampling, which is done every January and July. Preferred collected a complete round of SVE well samples on January 25, 2012, July 25, 2012, and January 30, 2013. Copies of the analytical summary reports for 2012 are provided in Appendix D. Figures 3 through 11 provide a graphical representation of the PCE concentrations in the SVE wells since January 2008. There has been a significant decrease in the concentration of VOCs in all of the SVE wells from when the systems were started up 2007. However, in the recent sampling rounds the concentration of PCE has started to stabilize. A summary of SVE sampling results is included in Section 3.2.2.

3.1.2.3 SVE System Monitoring

During the 2012 and early 2013 operating period, samples were collected monthly by Preferred from the influent and effluent of both the GWTT and URS systems, with the exception of October 2012. Table 4 provides the analytical summary of the URS and GWTT Treatment system influent concentrations and effluent concentrations after the lag carbon units. Copies of the 2012 analytical summary reports are provided in Appendix D.

During the monthly site visits Preferred also collected readings from the SVE well heads and the system effluents using a PID and a Zefon diaphragm sampling pump. Run time hours were also recorded from the meters on the blowers for both systems and the velocity and temperature were measured at each system. Field screening results are presented in Table 2.

3.1.2.4 System Operation and Maintenance

In 2012 Preferred continued to make monthly 0&M visits to collect system SVE samples and biannual SVE well samples. During monthly visits, Preferred sampled the influent and effluent soil vapor from both the URS and GWTT systems. Both SVE systems were also inspected during these visits for obvious leaks, corrosion, other issues, such as fouling of the carbon vessels and pressure in the blowers. The carbon in the lead unit on the GWTT system continued to be changed monthly during the monthly site visits throughout the period and bimonthly in the URS system. Following the carbon change-outs, the granular activated carbon (GAC) units were reconfigured to make the lag the lead for the following month. Monthly status reports were provided by Preferred for the operating period and are included in Appendix C.

Hurricane Sandy hit the east coast on October 29, 2012. The Site did not experience flooding or power outage, but no system sampling or check was conducted during the month of October due to storm related access issues. Preferred inspected both systems on November 14, 2012 and restarted the GWTT system. The URS system was not restarted due to a damaged high water level float in the knockout tank, which was not related to the storm. The URS system high water level float was

replaced on November 28, 2012 and the system was restarted. Neither system was damaged from the storm. However, the GWTT effluent stack was slightly displaced due to a broken tree limb. The tree limb was removed and the stack was repositioned to its original location. As a result of Hurricane Sandy a Hurricane Project Status Report was generated and is included in Appendix E. Two offsite sub slab depressurization systems (SSDS) were also inspected and the reports are included in Appendix F.

At the request of NYSDEC, CDM Smith reviewed the system effluent rates to assess if the carbon filtration units could be removed from the SVE systems. The result of this review are summarized in a memo included as Appendix G. Based on the results of the assessment, the carbon vessels will be removed in spring 2013 and the effluent stacks will be modified accordingly to comply with discharge regulations.

3.2 Monitoring Plan Compliance Report

This PRR assesses whether the site has been managed as set forth in the O&M Plan prepared by GWTT in 2008 and the ROD (NYSDEC 2006).

3.2.1 Soil Vapor Sampling

The site includes a network of nine SVE wells installed at depths ranging from 11 to 65 feet bgs to service the two onsite SVE systems. These wells are used to reduce the accumulation of VOCs beneath the building and parking area and monitor the concentration of PCE and its associated degradation product contaminants. Preferred collected soil vapor samples from all nine SVE wells on January 25, July 25, 2012, and January 30, 2013. The locations of the SVE wells are shown in Figure 2. Preferred collected monthly influent and effluent samples from the two SVE systems in 2012 through March 2013, with the exception of October 2012 due to Hurricane Sandy. Table 2 includes sample dates and times and Table 3 includes the analytical summary results by SVE well while Appendix D includes the historical analytical summary reports.

Soil vapor samples were collected using 3-liter and 6-liter Summa canisters with a grab sample regulator to monitor pressure. The collection of the soil vapor was stopped after the pressure within the canister reached -5 and none of the samples were allowed to go to ambient pressure of 0. Samples were analyzed for VOCs by EPA method TO-15. No quality assurance quality control (QA/QC) samples were collected. The soil vapor samples were submitted to Con-test Analytical Laboratory of East Longmeadow, Massachusetts. Table 3 provides the analytical summary results by SVE well and Table 4 provides the SVE influent and effluent sampling results. Complete laboratory analytical reports for 2012 through March 2013 are included in Appendix D.

3.2.2 Soil Vapor Sampling Results

Table 3 provides a summary of the soil vapor sampling results for the January and July 2012 and January 2013 sampling events. There has been a significant decrease in the concentration of VOCs in all of the SVE wells from when the systems were started up 2007. However, in the recent sampling rounds the concentration of PCE has started to plateau.

With the exception of SVE-7S, -7D, 8D, and -1 all of the wells had a decrease in concentration of PCE between January and July 2012. The concentration of PCE in SVE-7S increased from 65,000 μ g/m³ to 450,000 μ g/m³, from 12,000 μ g/m³ to 170,000 μ g/m³ in SVE-7D, from 3,400 μ g/m³ to 12,000 μ g/m³ in SVE-8D and from 17,000 μ g/m³ 71,000 μ g/m³ in SVE-1. The remaining wells showed a decreasing trend in concentration of PCE between January and July 2012 from 14,000 μ g/m³ to 2.6 μ g/m³ in SVE-

6S, from 11,000 μ g/m³ to 880 μ g/m³ in SVE-6D, from 1,800 μ g/m³ to 1,200 μ g/m³ in SVE-9S, from 560 μ g/m³ to 3.8 μ g/m³ in SVE-10S, and from 1,600 μ g/m³ to 5.5 μ g/m³ in SVE-8S.

Preferred also collected a complete round of SVE well samples on January 30, 2013. The PCE concentration in all of the wells, with the exception of SVE-7D and -7S, increased from the July 25, 2012 sampling event. The PCE concentration increased from 2.6 $\mu g/m^3$ to 53,000 $\mu g/m^3$ in SVE-6S, from 880 $\mu g/m^3$ to 36,000 $\mu g/m^3$ in SVE-6D, from 71,000 $\mu g/m^3$ to 80,000 $\mu g/m^3$ in SVE-1, from 1,200 $\mu g/m^3$ to 13,000 $\mu g/m^3$ in SVE-9S, from 3.8 $\mu g/m^3$ to 10,000 $\mu g/m^3$ in SVE-10S, from 5.5 $\mu g/m^3$ to 3,700 $\mu g/m^3$ in SVE-8S, and from 12,000 $\mu g/m^3$ to 13,000 $\mu g/m^3$ in SVE-8D. The PCE concentration decreased from 450,000 $\mu g/m^3$ to 49,000 $\mu g/m^3$ in SVE-7S, and from 170,000 $\mu g/m^3$ to 29,000 $\mu g/m^3$ in SVE-7D.

As shown in Figures 3-11, despite some relatively small increases in concentrations during the 2012 operating period, the overall trend in concentrations is downward for all of the SVE wells. The scale on Figures 3-11 has been adjusted to show detail for the more recent data.

The influent system sample concentrations fluctuated throughout the 2012 operating period. The highest concentration of PCE observed in the GWTT system was observed in March 2012 with a concentration of 470,000 $\mu g/m^3$ and the lowest concentration was observed in November 2012 at a concentration of 59,000 $\mu g/m^3$. The highest concentration of PCE observed in the URS system was in August 2012 at a concentration of 390,000 $\mu g/m^3$ and the lowest concentration was in March 2013 at a concentration of 33,000 $\mu g/m^3$. Combined influent PCE concentrations are plotted in Figures 12 and 13.

The results for the effluent samples indicated minimal break-through during the 2012 operating period with the exemption of April for the URS system. During the month of April PCE was detected at a concentration of 5,100 μ g/m³ from the URS effluent sample port. For the rest of the operating period the URS effluent results ranged from non-detect to 200 μ g/m³. The GWTT system effluent had a smaller spike in the concentration of PCE in the sample collected during the April O&M visit with a concentration of 1,500 μ g/m³ detected. Normal levels of PCE were detected in the GWTT system effluent samples collected during the remainder of the 2012 operating period, ranging from non-detect to 29 μ g/m³.

3.2.3 Confirm Compliance with Monitoring Plan

The following table provides confirmation that the compliance monitoring is being performed in accordance with the monitoring plan.

Activity	Required	Frequency	Compliance Dates	
Activity	Monthly	Semi Annually	Compliance Dates	
SVE Well Sampling		x	2007-2013	
System Influent and Effluent Sampling	Х		March 2007-2013	

3.2.4 Confirm that Performance Standards are Being Met

Table 4 provides a summary of the sample results for the system influent and effluent sampling from December 2007 through March 2013 and Table 3 provides a summary of SVE well sampling from December 2007 through January 2013. A significant reduction in PCE concentrations is evident in the SVE well samples since system sampling began in December 2007. Between December 13, 2007 and

July 25, 2012 the PCE concentration decreased from 745,930 μ g/m³ to 2.6 μ g/m³ in SVE-6S, from 1,695,297 μ g/m³ to 880 μ g/m³ in SVE-6D, from 881,554 μ g/m³ to 71,000 μ g/m³ in SVE-1, from 3,119,345 μ g/m³ to 1,200 μ g/m³ in SVE-9S, from 6,577,751 μ g/m³ to 3.8 μ g/m³ in SVE-10S, from 8,815,542 μ g/m³ to 5.5 μ g/m³ in SVE-8S, from 650,994 μ g/m³ to 170,000 μ g/m³ in SVE-7D, from 1,152,801 μ g/m³ to 12,000 μ g/m³ in SVE-8D, and from 1,898,732 μ g/m³ to 450,000 μ g/m³ in SVE-7S.

These results show that the SVE systems, in coordination with groundwater treatment efforts covered by OU 2, are effectively removing PCE from the subsurface. The mass removal calculations for VOCs shown in Table 5 and summarized in Table 6 were calculated using analytical sample data and pumping rates for the URS and GWTT systems. A total of approximately 12,938 pounds have been removed by both systems between December 2007 and March 2013. Each system's contribution to the total mass of PCE removed is presented in Table 5. Prior to the operation of the new system beginning in October 2007, the URS system had removed 41,635 pounds of VOCs between August 2004 and October 2007. Approximately 54,329 pounds of VOCs have been removed through March 27, 2013. The total mass removed since the start-up of the URS system is summarized in Table 7.

3.3 Institutional Controls/Engineering Controls Certification Plan Report

A Site Management Plan (SMP) including the Institutional and Engineering Controls Plan is included as Appendix H. The SMP will be updated after planned system upgrades are completed in spring 2013, including removing the carbon units from the systems and raising the effluent stacks. Institutional Controls and Engineering Controls (IC/EC) at the site currently consist of:

- Maintaining the Asphalt and Concrete Cover System existing at the site to prevent direct contact with impacted materials;
- Operation and maintenance of Soil Vapor Extraction Systems at the site;
- Criteria for Completion of Remediation/Termination of Remedial Systems;
- Requirement that prior to any future intrusive work that will penetrate, encounter or disturb
 the remaining contamination, and any modifications or repairs to the existing cover system will
 be performed in compliance with the Excavation Plan.

3.3.1 IC/EC Requirements and Compliance

Determination of compliance with the IC/EC at the Site is made on the following criteria:

- The IC/EC(s) applied at the Site are in place and unchanged from the previous certification;
- Nothing has occurred that would impair the ability of such controls to protect the public health
 and the environment, or constitute a violation or failure to comply with any element of the SMP
 for such controls;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of such controls.

The Site IC/ECs are in compliance with the requirements stated above.

3.3.2 IC/EC Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No.	241031	Site Details	Во	x 1
Site	e Name	Kliegman Brothers			
City Cou			Zip Code: 11385		
Rep	oorting P	eriod: to March 31, 2013			
				YES	NO
1.		formation above correct? nclude handwritten above	or on a separate sheet.	•	
2.	Has sor tax map	me or all of the site proper amendment during this F	ty been sold, subdivided, merged, or undergone a Reporting Period?		•
3.		re been any change of us IYCRR 375-1.11(d))?	e at the site during this Reporting Period	•	
4.	Have a for or a	ny federal, state, and/or lo the property during this F	cal permits (e.g., building, discharge) been issued Reporting Period?		•
	If you a that do	nswered YES to questic cumentation has been p	ons 2 thru 4, include documentation or evidenc previously submitted with this certification form	e	
5.	Is the s	ite currently undergoing d	evelopment?		•
				Во	x 2
				YES	NO
6.	Is the c	urrent site use consistent	with the use(s) listed below?	•	
7.	Are all	Cs/ECs in place and func	tioning as designed?	•	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
Sig	nature of	Owner, Remedial Party or	Designated Representative Date		-

Description of Institutional Controls

Parcel

Owner

Section 20/Block 3803/Lots 91- 92 AIRMAX REALTY, LLC

Institutional Control

Ground Water Use Restriction Landuse Restriction

Soil Management Plan Monitoring Plan Site Management Plan O&M Plan

A series of ICs are required to implement, maintain and monitor ECs. The Environmental Easement (EE) requires compliance with these ICs, to ensure that:

1. All ECs must be operated and maintained as specified in the SMP;

- 2. All ECs on the Site must be inspected and certified at a frequency and in a manner defined in the SMP;
- 3. Soil vapor and other environmental or public health monitoring must be performed as defined in the
- 4. Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- 5. On-site environmental monitoring devices, including but not limited to, groundwater monitoring wells, soil vapor extraction wells, and vapor monitoring points must be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP.

In addition, the EE places the following restrictions on the property:

- 1. Required compliance with the approved SMP;
- 2. Restrict the use of groundwater as a source of potable water, without necessary water quality treatment as determined by the NYSDOH and/or the NYSDEC;
- 3. Vegetable gardens and farming, including cattle and dairy farming, on the property are prohibited;
- 4. All future activities on the property that will disturb remaining contaminated material are prohibited unless they are conducted in accordance with the SMP;
- 5. The potential for vapor intrusion must be evaluated for any buildings developed on the site, and any potential impacts that are identified must be mitigated;
- 6. The property may only be used for restricted residential, commercial and/or industrial uses provided that the long-term Els and ICs included in this SMP are employed.
- 7. The property may not be used for a less restrictive use, such as unrestricted residential, without additional remediation and amendment of the EE by the Commissioner of NYSDEC.
- 8. The owner of the Property shall provide information to the Department to assist it in carrying out its obligation to provide a periodic certification, prepared and submitted by a professional engineer or environmental professional acceptable to the Department or Relevant Agency, which will certify that the institutional and engineering controls put in place are unchanged from the previous certification, comply with the SMP, and have not been impaired.
- 9. The owner of the Property shall continue in full force and effect any institutional and engineering controls required for the Remedy and shall not, through any act or omission, interferewith the Department's maintenance and monitoring of such controls, unless the owner first obtains permission to discontinue such controls from the Department or Relevant Agency, in compliance with the approved SMP subject to modifications as approved by the Department or Relevant Agency.

The EE was recorded in Queens County on 03/06/12 - Document Identification Number 2011122101242001.

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

Box 4

Section 20/Block 3803/Lots 91- 92

Groundwater Treatment System Vapor Mitigation Air Sparging/Soil Vapor Extraction Cover System

Fencing/Access Control

Since contamination is present in the subsurface soils at this Site, ECs and ICs have been implemented to protect public health and the environment for the applicable future use. The Controlled Property has the following Engineering Controls:

- 1. A cover system consisting of asphalt pavement, concrete sidewalks, and concrete building slabs.
- 2. Site fencing to keep the public from coming into contact with the site contamination.
- 3. Both SVE systems continue to operate and treat soil contamination on-site.

Signature of Owner, Remedial Party or Designated Representative

Periodic Review Report (PRR) Certification Statements		
I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification; 	of, and	
b) to the best of my knowledge and belief, the work and conclusions described in this are in accordance with the requirements of the site remedial program, and generally a	certifica accepted	tion
	YES	NO
	•	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for ea or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that al following statements are true: 	ch Institu I of the	tional
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged Control was put in-place, or was last approved by the Department;	since the	date that the
(b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;	and	
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, evaluate the continued maintenance of this Control;	including	access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site Ma	anageme	nt Plan for this
(e) if a financial assurance mechanism is required by the oversight document for the site, the and sufficient for its intended purpose established in the document.	mechan	ism remains valid
	YES	NO
	•	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address these	issues.	
		<u></u>

Date

IC CERTIFICATIONS SITE NO. 241031

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal .Law.

Tohn P. Blaven at I British American Blad Latham, Ny print name print business address

tifying as Renedual Party am certifying as ____

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

5/20/13

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Tohn P. Blawn at 11British American Blod, Lather, N. J print name print business address

am certifying as a Professional Engineer for the

.....

Stamp (Required for PE) Date

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Evaluate Costs

4.1 Summary of Costs

Total costs for operation of the treatment system and completion of all the required monitoring, sampling, and reporting for January through December 2012 was approximately \$164,792.73 and an additional \$55,032.64 for January through March 2013. Invoices are includes as Appendix I. The breakdown of major costs for January through December 2012 and January through March 2013 is as follows:

Time Period	2012 January-December	2013 January-March
Plant O&M (Preferred)	\$15,215.67	\$8,401.17
Waste Disposal (AARCO)	\$36,008.71	\$3,170.44
Carbon Service (Siemens)	\$34,029.48	\$ -
Utilities (ConEd)	\$15,574.01	\$7,956.59
Phone Service (Verizon)	\$657.83	\$176.17
Long Term Monitoring and Reporting (CDM Smith)	\$49,938.28	\$32,147.02
Analytical Costs for Monthly Sampling (ConTest)	\$13,368.75	\$3,181.25
Total	\$164,792.73	\$55,032.64

The long-term monitoring and reporting costs, which are billed by CDM Smith, include costs associated with project management and monthly and annual periodic reporting throughout the year. This long-term monitoring and reporting cost is based on invoices billed to NYSDEC and includes all travel expenses, but does not include analytical costs or equipment costs.

The plant O&M costs are billed by Preferred and include labor and materials used to maintain and monitor the SVE systems. Preferred performs monthly site visits to maintain the SVE systems and collect system samples. Preferred also responds to system shut down alarms as needed. Utility and phone service costs associated with running the SVE systems are also listed in the table above. Waste disposal costs, billed by AARCO Environmental Services Corp. of Yaphank, NY, and carbon service costs, billed by Siemens Industry Inc. of Pittsburgh, PA, are associated with monthly carbon changeouts for the carbon filters on the SVE system effluents. AARCO also disposes of liquid waste that is generated from the knockout tanks of the SVE systems. The analytical costs, billed by ConTest Analytical Lab of East Longmeadow, MA, cover monthly sampling of the influents and effluents of the SVE systems as well as semi-annual sampling of the SVE wells. Enviro Trac performs maintenance on the SVE systems as needed and coordinates waste disposal and carbon change-outs. However, Enviro Trac's labor costs are not included in this section since most of their labor is spent on OU 2 activities.

Once the carbon units are removed from the SVE systems, it could save up to approximately \$70,038 per year in waste disposal and carbon change-out costs.

Conclusions and Recommendations

5.1 Conclusions

The SVE system continues to extract COCs from the soil to address the contamination source on site. As stated in Section 3.1.2.2, the GWTT system influent sampling results were consistent from January to March 2013, with the exception of March 2012 when a PCE concentration of 470,000 μ g/m³ was detected. A similar spike in the concentration of PCE was detected in the URS system during the month of August 2012 where a concentration of PCE was detected at 390,000 μ g/m³ was detected. Samples from the URS system influent were consistent for the reminder of the period.

A significant reduction in PCE concentrations is evident in the SVE well samples since system sampling began in December 2007. Between December 13, 2007 and January 30, 2013 the PCE concentration decreased from 745,930 $\mu g/m^3$ to 53,000 $\mu g/m^3$ in SVE-6S, from 1,695,297 $\mu g/m^3$ to 36,000 $\mu g/m^3$ in SVE-6D, from 881,554 $\mu g/m^3$ to 80,000 $\mu g/m^3$ in SVE-1, from 3,119,345 $\mu g/m^3$ to 13,000 $\mu g/m^3$ in SVE-9S, from 6,577,751 $\mu g/m^3$ to 10,000 $\mu g/m^3$ in SVE-10S, from 8,815,542 $\mu g/m^3$ to 3,700 $\mu g/m^3$ in SVE-8S, from 650,994 $\mu g/m^3$ to 29,000 $\mu g/m^3$ in SVE-7D, from 1,152,801 $\mu g/m^3$ to 13,000 $\mu g/m^3$ in SVE-8D, and from 1,898,732 $\mu g/m^3$ to 49,000 $\mu g/m^3$ in SVE-7S, which was the lowest concentration detected in SVE-7S. Despite some relatively small increases in concentrations during the 2012 operating period, the overall trend in concentrations is downward for all of the SVE wells.

Under OU 2, URS Corporation of New York, New York has been performing on-site and off-site groundwater sampling periodically since 2001, with the most recent sampling performed in February 2011. A figure summarizing PCE concentrations in groundwater during these years is included as Appendix J. Since 2001, PCE groundwater concentrations on-site and off-site have decreased significantly. The on-site PCE groundwater concentrations decreased from between 1,200 $\mu g/m^3$ and 30,000 $\mu g/m^3$ in 2001 to between 5 $\mu g/m^3$ and 51 $\mu g/m^3$ in 2011. The off-site PCE groundwater concentrations decreased from between 2,700 $\mu g/m^3$ and 49,000 $\mu g/m^3$ in 2002 to between 9.8 $\mu g/m^3$ and 8,200 $\mu g/m^3$ in 2011. These decreases can in part be attributed to the soil vapor extraction systems, which enhances volatilization of contaminants in the groundwater and augments desorption of contaminants from the surfaces of soil particles.

These results show that the SVE systems, in coordination with groundwater treatment efforts covered by OU 2, are effectively removing PCE from the subsurface. A total of approximately 12,938 pounds have been removed by both systems between December 2007 and March 2013. Prior to the operation of the new system beginning in October 2007, the URS system had removed 41,635 pounds of VOCs between August 2004 and October 2007. Approximately 54,329 pounds of VOCs have been removed through March 27, 2013. Concentrations in the SVE wells have leveled out somewhat in the past year.

5.1.1 Recommendations

Significant concentrations of PCE still exist in the soil vapor at the Site. Both the GWTT and URS SVE systems should continue to run to mitigate remaining soil vapor contamination. Monthly system influent and effluent sampling and system monitoring should continue in order to assess the status of

the SVE systems. Semi-annual SVE well sampling should continue in order to evaluate the effectiveness of the remedy.

At the request of NYSDEC, CDM Smith evaluated the possibility of removing the carbon units from both SVE systems, which may require modifying the effluent stacks. CDM Smith may also look into the possibility of injections at the Site to further reduce the PCE concentrations in the soil vapor.

Table 1 - SVE System Run Time 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

me Given in decimals of an hour		GWTT SYSTEM Time Given in decimals of an hour					
Date	Run Time (hours)	Run Time (cumulative)	% Run	Date	Run Time (hours)	Run Time (cumulative)	% Run
our Meters on Both Systems - Starti		(,			,,	(,	
5/1/2008		716.2		5/1/2008		713.7	
5/7/2008	142.3	858.5		5/7/2008	141.3	855.0	
5/14/2008	166.9 170.6	1,025.4		5/14/2008	113.3	968.3	
5/21/2008 5/28/2008	167.7	1,196.0 1,363.7		5/21/2008 5/28/2008	170.7 166.3	1,139.0 1,305.3	
otal hours May (27 days)	647.5	1,363.7	96%	0/20/2000	591.6	1,305.3	88%
6/4/2008	0.5	1,364.2		6/4/2008	1.6	1,306.9	
6/11/2008	165.4	1,529.6		6/11/2008	165.1	1,472.0	
6/18/2008	168.0	1,697.6		6/18/2008	168.1	1,640.1	
6/25/2008	168.8 502.7	1,866.4 1,866.4	75%	6/25/2008	168.0 502.8	1,808.1 1,808.1	75%
otal hours June (28 days) 7/2/2008	168.1	2,034.5	75%	7/2/2008	1.6	1,809.7	75%
7/9/2008	163.7	2,198.2		7/9/2008	164.4	1,974.1	
7/16/2008	168.6	2,366.8		7/16/2008	169.7	2,143.8	
7/23/2008	170.1	2,536.9		7/23/2008	165.5	2,309.3	
7/30/2008	167.8	2,704.7		7/30/2008	167.9	2,477.2	
otal hours July (35 days)	838.3	2,704.7	100%		669.1	2,477.2	80%
8/6/2008	164.6	2,869.3		8/6/2008	166.2	2,643.4	
8/13/2008	168.2	3,037.5		8/13/2008	169.4	2,812.8	
8/20/2008 8/27/2008	169.2	3,206.7		8/20/2008	165.0	2,977.8	-
8/27/2008	167.0	3,373.7	1000/	8/27/2008	169.1	3,146.9	1009
tal hours August (28 days)	669.0	3,373.7	100%	0/0/07	669.7	3,146.9	100%
9/3/2008	165.4	3,539.1		9/3/2008	165.7	3,312.6	<u> </u>
9/10/2008	169.2	3,708.3		9/10/2008	169.0	3,481.6	
9/17/2008	167.2	3,875.5		9/17/2008	165.6	3,647.2	
9/24/2008	168.0	4,043.5		9/24/2008	3.7	3,650.9	
tal hours September (28 days)	669.8	4,043.5	100%		504.0	3,650.9	75%
10/3/2008	108.9	4,152.4		10/3/2008	106.9	3,757.8	
10/8/2008	119.9	4,272.3		10/8/2008	121.0	3,878.8	
10/15/2008	169.1	4,441.4		10/15/2008	165.0	4,043.8	
10/22/2008	166.3	4,607.7		10/22/2008	168.6	4,212.4	
10/29/2008	168.1	4,775.8		10/29/2008	165.8	4,378.2	
Total hours October (35 days)	732.3	4,775.8	87%		727.3	4,378.2	8
11/5/2008	166.4	4,942.2		11/5/2008	168.8	4,547.0	
11/12/2008	170.4	5,112.6		11/12/2008	168.6	4,715.6	
11/19/2008	166.40*	5279.0*		11/19/2008	165.9	4,881.5	
11/26/2008	166.50*	5,445.5		11/26/2008	166.7	5,048.2	
Total hours November (28 days)	669.7	5,445.5	100%	11/20/2000	670.0	5,048.2	10
12/3/2008	167.3	5,612.8	10070	12/3/2008	166.3	5,214.5	- 10
12/10/2008	169.3	5,782.1		12/10/2008	167.3	5,381.8	
12/17/2008		5,949.7		12/10/2008	165.0		
	167.6					5,546.8	
12/24/2008	166.0	6,115.7		12/24/2008	76.2	5,623.0	
12/31/2008	166.7	6,282.4	222/	12/31/2008	164.0	5,787.0	_
Total hours December (35 days)	669.6	6,282.4	80%		738.8	5,787.0	8
1/8/2009	193.1	6,475.5		1/8/2009	57.7	5,844.7	ļ
1/14/2009	146.6	6,622.1		1/14/2009	84.5	5,929.2	
1/21/2009	166.9	6,789.0		1/21/2009	139.9	6,069.1	
1/28/2009	106.2	6,895.2		1/28/2009	189.8	6,258.9	
Total hours January (28 days)	612.8	6,895.2	91%		471.9	6,258.9	7
2/4/2009	144.2	7,039.4		2/4/2009	165.5	6,424.4	
2/11/2009	166.3	7,205.7		2/11/2009	166.3	6,590.7	
2/18/2009	166.2	7,371.9		2/18/2009	166.3	6,757.0	
2/25/2009	168.5	7,540.4		2/25/2009	168.5	6,925.5	
Total hours February (28 days)	645.2	7,540.4	96%		666.6	6,925.5	9
3/4/2009	166.0	7,706.4		3/4/2009	166.8	7,092.3	
3/11/2009	141.8	7,848.2		3/11/2009	165.6	7,257.9	†
3/18/2009	166.6	8,014.8		3/11/2009	166.4	7,424.3	
3/25/2009	167.2	8,182.0		3/25/2009	167.1	7,424.3	
Total hours March (28 days)	641.6	8,182.0	95%	3/23/2003	665.9	7,591.4	9
. , ,	1		95%	4/4/0000			+ 9
4/1/2009	167.1	8,349.1		4/1/2009	167.1	7,758.5	
4/8/2009	167.6	8,516.7		4/8/2009	167.7	7,926.2	
4/15/2009	167.0	8,683.7		4/15/2009	166.4	8,092.6	
4/22/2009	166.0	8,849.7		4/22/2009	168.2	8,260.8	
4/29/2009	167.7	9,017.4		4/29/2009	165.2	8,426.0	
Total hours April (35 days)	835.4	9,017.4	99%		834.6	8,426.0	9

Table 1 - SVE System Run Time 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

SYSTEM Given in decimals of an hour				GWTT SYSTEM Time Given in de	ecimals of an l	hour	
Date	Run Time (hours)	Run Time (cumulative)	% Run	Date	Run Time (hours)	Run Time (cumulative)	% Rı
5/6/2009	168.0	9,185.4	∕₀ Kuii	5/6/2009	167.6	8,593.6	/0 KI
5/13/2009	167.2	9,352.6		5/13/2009	167.5	8,761.1	
5/20/2009	167.7	9,520.3		5/20/2009	167.3	8,928.4	
5/27/2009	168.0	9,688.3		5/27/2009	167.0	9,095.4	
Total hours May (28 days)	670.9	9,688.3	100%	0.2.,2000	669.4	9,095.4	10
6/3/2009	166.8	9,855.1		6/3/2009	168.7	9,264.1	
6/10/2009	165.6	10,020.7		6/10/2009	163.7	9,427.8	
6/17/2009	167.6	10,188.3		6/17/2009	167.6	9,595.4	
6/24/2009	168.4	10,356.7		6/24/2009	166.7	9,762.1	
Total hours June (28 days)	668.4	10,356.7	99%		666.7	9,762.1	
7/1/2009	167.8	10,524.5		7/1/2009	167.7	9,929.8	
7/8/2009	166.9	10,691.4		7/8/2009	166.8	10,096.6	
7/15/2009	168.1	10,859.5		7/15/2009	168.2	10,264.8	
7/22/2009	167.7	11,027.2		7/22/2009	164.4	10,429.2	
7/29/2009	168.4	11,195.6		7/29/2009	167.9	10,597.1	
Total hours July (35 days)	838.9	11,195.6	100%		835.0	10,597.1	
8/5/2009	165.3	11,360.9		8/5/2009	165.8	10,762.9	
8/12/2009	170.2	11,531.1		8/12/2009	168.9	10,931.8	
8/19/2009	166.8	11,697.9		8/19/2009	167.0	11,098.8	
8/26/2009	168.2	11,866.1		8/26/2009	168.3	11,267.1	
Total hours August (28 days)	670.5	11,866.1	100%	0,20,200	670.0	11,267.1	1
9/2/2009	165.5	12,031.6		9/2/2009	165.1	11,432.2	
9/9/2009	168.4	12,200.0		9/9/2009	168.5	11,600,7	
9/16/2009	168.8	12,368.8		9/16/2009	167.7	11,768.4	
9/23/2009	166.0	12,534.8		9/23/2009	166.0	11,934.4	
9/30/2009	167.6	12,702.4		9/30/2009	167.3	12,101.7	
tal hours September (35 days)	836.3	12,702.4	100%		834.6	12,101.7	
10/7/2009	167.9	12,870.3		10/7/2009	168.0	12,269.7	
10/14/2009	168.8	13,039.1		10/14/2009	187.2	12,456.9	
10/21/2009	167.3	13,206.4		10/21/2009	147.7	12,604.6	
10/30/2009	214.7	13,421.1		10/30/2009	214.8	12,819.4	
otal hours October (30 days)	718.7	13,421.1	100%		717.7	12,819.4	1
11/4/2009	121.1	13,542.2		11/4/2009	121.0	12,940.4	
11/11/2009	167.3	13,709.5		11/11/2009	166.5	13,106.9	
11/18/2009	168.7	13,878.2		11/18/2009	168.5	13,275.4	
11/25/2009	165.2	14,043.4		11/25/2009	164.9	13,440.3	
tal hours November (26 days)	622.3	14,043.4	100%		620.9	13,440.3	1
12/2/2009	168.3	14,211.7		12/2/2009	168.5	13,608.8	
12/9/2009	169.0	14,380.7		12/9/2009	167.4	13,776.2	
12/16/2009	136.4	14,517.1		12/16/2009	165.6	13,941.8	
12/24/2009	83.3	14,600.4		12/24/2009	82.6	14,024.4	
12/30/2009	55.7	14,656.1		12/30/2009	0.0	14,024.4	
tal hours December (35 days)	612.7	14,656.1	73%		584.1	14,024.4	
1/6/2010	85.3	14,741.4		1/6/2010	0.3	14,024.7	
1/13/2010	78.4	14,819.8		1/13/2010	165.7	14,190.4	
1/20/2010	140.4	14,960.2		1/20/2010	166.5	14,356.9	
1/27/2010	141.9	15,102.1		1/27/2010	167.6	14,524.5	
otal hours January (28 days)	446.0	15,102.1	66%		500.1	14,524.5	
2/3/2010	129.8	15,231.9		2/3/2010	167.0	14,691.5	
2/12/2010	177.2	15,409.1		2/12/2010	215.9	14,907.4	
2/17/2010	110.8	15,519.9		2/17/2010	117.7	15,025.1	
2/24/2010	168.8	15,688.7		2/24/2010	168.8	15,193.9	
otal hours February (28 days)	586.6	15,688.7	87%		669.4	15,193.9	1
3/3/2010	166.0	15,854.7		3/3/2010	194.2	15,359.8	
3/10/2010	169.0	16,023.7		3/10/2010	168.5	15,528.3	
3/17/2010	165.3	16,189.0		3/17/2010	165.8	15,694.1	
3/24/2010	167.4	16,356.4		3/24/2010	167.4	15,861.5	
3/31/2010	168.4	16,524.8		3/31/2010	165.4	16,026.9	
Total hours March (35 days)	836.1	16,524.8	100%	5,5.,2010	861.3	16,055.2	1
4/7/2010	167.3	16,692.1	100/0	4/7/2010	167.6	16,194.5	
4/14/2010	167.3	16,692.1		4/1/2010	167.0	16,361.5	
4/14/2010	167.0	17,027.1		4/14/2010	167.0	16,528.6	
4/21/2010							
4/28/2010	167.8	17,194.9		4/28/2010	166.5	16,695.1	

Table 1 - SVE System Run Time 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

SYSTEM Given in decimals of an hour				GWTT SYSTEM Time Given in d	ecimals of an	hour	
	Run Time	Run Time	0/ 5		Run Time	Run Time	24.5
Date 5/5/0040	(hours)	(cumulative)	% Run	Date	(hours)	(cumulative)	% I
5/5/2010 5/12/2010	168.1 164.0	17,363.0 17,527.0		5/5/2010 5/12/2010	168.2	16,863.3	
5/19/2010	167.6	17,694.6		5/12/2010	163.8 168.0	17,027.1 17,195.1	
5/26/2010	167.3	17,861.9		5/26/2010	166.4	17,361.5	
Total hours May (28 days)	667.0	17,861.9	99%	0/20/2010	666.4	17,361.5	
6/2/2010	167.8	18,029.7		6/2/2010	168.0	17,529.5	
6/9/2010	167.2	18,196.9		6/9/2010	167.0	17,696.5	
6/16/2010	169.2	18,366.1		6/16/2010	169.3	17,865.8	
6/23/2010	166.7	18,532.8		6/23/2010	164.9	18,030.7	
6/30/2010	170.0	18,702.8		6/30/2010	169.8	18,200.5	
Total hours June (35 days)	840.9	18,702.8	100%		839.0	18,200.5	
7/8/2010	191.9	18,894.7		7/8/2010	190.1	18,390.6	
7/14/2010	179.2	19,073.9		7/14/2010	139.8	18,530.4	
7/21/2010	132.3	19,206.2		7/21/2010	167.4	18,697.8	
7/28/2010	166.7	19,372.9		7/28/2010	167.1	18,864.9	
Total hours July (28 days)	670.1	19,372.9	100%		664.4	18,864.9	
8/4/2010	167.6	19,540.5		8/4/2010	167.3	19,032.2	
8/11/2010	168.0	19,708.5		8/11/2010	167.7	19,199.9	
8/18/2010	168.1	19,876.6		8/18/2010	167.0	19,366.9	
8/25/2010	168.0	20,044.6	100%	8/25/2010	168.0	19,534.9	
Total hours August (28 days)	671.7 165.2	20,044.6 20,209.8	100%	0/4/2010	670.0 165.2	19,534.9 19,700.1	
9/1/2010 9/8/2010	165.2	20,209.8		9/1/2010 9/8/2010	167.6	19,700.1	
9/15/2010	167.5	20,544.9		9/15/2010	165.1	20,032.8	
9/22/2010	169.2	20,714.1		9/22/2010	169.2	20,202.0	
9/29/2010	165.0	20,879.1		9/29/2010	164.2	20,366.2	
tal hours September (35 days)	834.5	20,879.1	99%	0,20,20.0	831.3	20,366.2	
10/6/2010	169.3	21,048.4		10/6/2010	169.4	20,535.6	
10/13/2010	167.6	21,216.0		10/13/2010	167.3	20,702.9	
10/20/2010	167.2	21,383.2		10/20/2010	166.8	20,869.7	
10/27/2010	164.0	21,547.2		10/27/2010	164.4	21,034.1	
otal hours October (28 days)	668.1	21,547.2	99%		667.9	21,034.1	
November 2010 (28 days) *	672.0	22,219.2	100%	11/24/2010	671.3	21,705.4	
December 2010 (42 days)	1,141.8	23,361.0	113%	1/5/2011	860.8	22,566.2	
January 2011 (21 days)	290.7	23,361.6	58%	1/26/2011	504.9	23,071.1	
February 2011 (28 days)	584.8	23,946.4	87%	2/23/2011	662.9	23,734.0	
March 2011 (35 days)	837.8	24,784.2	100%	3/30/2011	521.7	24,255.7	
April 2011 (28 days)	671.5	25,455.7	100%	4/27/2011	669.0	24,924.7	
May 2011 (28 days)	670.9	26,126.6	100%	5/25/2011	670.7	25,595.4	
June 2011 (35 days)	839.9	26,966.5	100%	6/29/2011	838.1	26,433.5	
July 2011 (28 days)	664.4	27,630.9	99%	7/27/2011	666.0	27,099.5	
August 2011 (35 days)	840.0	28,470.9	100%	8/31/2011	835.3	27,934.8	
September 2011 (28 days)	670.2	29,141.1	100%	9/28/2011	669.9	28,604.7	
October 2011 (28 days)	672.0	29,813.1	100%	10/26/2011	667.7	29,272.4	
November 2011 (35 days)	838.4	30,651.5	100%	11/30/2011	837.0	30,109.4	
December 2011 (28 days)	647.1	31,298.6	96%	12/28/2011	670.7	30,780.1	
January 2012 (28 days)	572.6	31,871.2	85%	1/25/2012	649.4	31,429.5	
February 2012 (32 days)	716.4	32,587.6	85%	2/29/2012	818.1	32,247.6	<u> </u>
March 2012 (28 days)	669.5	33,257.1	100%	3/28/2012	669.6	32,917.2	
April 2012 (28 days)	672.7	33,929.8	100%	4/25/2012	670.6	33,587.8	
May 2012 (35 days)	837.6	34,767.4	100%	5/30/2012	837.2	34,425.0	
June 2012 (28 days)	670.3	35,437.7	100%	6/27/2012	670.4	35,095.4	
July 2012 (28 days)	668.7	36,106.4	100%	7/25/2012	669.0	35,764.4	
August 2012 (35 days)	564.1	36,670.5	67%	8/29/2012	833.9	36,598.3	
September 2012 (28 days)	671.4	37,341.9	100%	9/26/2012	668.8	37,267.1	
November 2012 (63 days)	1,047.9	38,389.8	69%	11/28/2012	1,503.9	38,771.0	1
December 2012 (28 days)	667.3	39,057.1	99%	12/26/2012	676.6	39,447.6	
January 2013 (35 days)	610.9	39,668.0	73%	1/30/2013	836.6	40,284.2	
February 2013 (28 days)	447.2	40,115.2	66%	2/27/2013	675.6	40,959.8	

^{*} Indicates value was estimated because correct value was not recorded

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table January 25, 2012

DATE: _January 25, 2012___

DAY: Wednesday

TECHNICIAN: Marc Morgenstern

Weather: Partly Cloudy 35°F

GWTT EQUIPMENT INFORMATION

3-201	STATUS:	ON

B-201	STAT	US: ON	OFF	но	URS: <u>31,42</u>	9.5 - run	27.06 day:	s total betv	een since la	ast monitori	ng 12-28				
	PI 201	PI 202	PI 203	FI 201	TI 201	FI 101	FI 102	FI 103	AP	101	AP ·	102	AP	103	
TIME	in w.c.	in. w.c.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity	Temp	Velocity	Temp	Velocity	Temp	Comment
	III W.C.	III. W.C.	III. W.C.	SCIIII	degi	Ca/TTIIIT	COTTINI	CI/IIIII	ft/min	deg F	ft/min	deg F	ft/min	deg F	
C-EO	00	64	00	0.47	404	70	70	440	0.040	50.7	4 000	FO C	F 00.4	55.4	ΔP 101 ΔP 102 and

2 202	OTATIIO.	ON	OFF	HOUDE: 400

	PI 204	PI 205	PI 206	FI 202	TI 202	FI 101	FI 102	FI 103	AP	101	AP ·	102	AP	103	
TIME	in w.c.	in. w.c.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

DATE: _January 25, 2012__

DAY: Wednesday

TECHNICIAN: Marc Morgenstern

Weather: Partly Cloudy 35°F

NEW VMP WELL INFORMATION

VIVIE-1		
TIME	WH VOC	WH VAC. In. w.c.
8:29	0.0	0.18

٧	M	IP	-:
Г			

TIME	WH VOC	WH VAC. In. w.c.
8:31	0.0	0.36
Comments:		

VMP-3

TIME	WH VOC	WH VAC. In. w.c.		
8:33	0.0	0.08		

VMP-4	VMP-4					
TIME	WH VOC ppm	WH VAC. In. w.c.				
8:34	0.0	0.01				

TIME	WH VOC	WH VAC. In. w.c.
8:30	0.0	0.30
·		

0.30	0.0	0.00
SS-2		
TIME	WH VOC	WH VAC In. W.C.
6:51	0.0	0.28

ПМЕ	WH VOC	WH VAC In. W.C.
3:51	0.0	0.19

IE	WH VOC	WH VAC In. W.C.	
1	0.0	0.28	

VMP-7		
TIME	WH VOC	WH VAC In. W.C.
6:52	0.0	0.20

30-3			
TIME	WH VOC	WH VAC In. W.C.	
6:53	0.0	0.20	Con

NYSDEC Work Assignment #D007621

DATE: January 25, 2012

DAY: Wednesday

TECHNICIAN: Marc Morgenstern

Weather: Partly Cloudy 35°F

NEW SVE WELL INFORMATION

	SVE-7S				
		WH VOC	14/11/40	WH AP	
	TIME	ppm	in. w.c.	VELOCITY	TEMP
		ppiii	III. W.C.	ft/min	deg F
	8:05	0.0	10	354	55.2

SVE-7D				
	WH VOC	WH VAC	WH AP	
TIME			VELOCITY	TEMP
	ppiii		ft/min	deg F
8:11	0.0	5	840	55.2
Comments: Valve at well head is open 10%.				

SVE-8S				
	WH VOC	WH VAC	WH A	\P
TIME	ppm	in. w.c.	VELOCITY	TEMP
	ppiii	III. W.C.	ft/min	deg F
8:01	0.0	12	215	51.2
Comments: Valve at well head is open 100%.				

SAE-OD				
	WH VOC WH VAC	14/111/40	WH AP	
TIME	ppm	in, w.c.	VELOCITY	TEMP
	ppiii	III. W.C.	ft/min	deg F
7:58	0.0	5	329	55.2
Comments: Valve at well head is open to 50%.				

SVE-9S				
	WH VOC	WH VAC	WH AP	
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F
7:55	0.0	20	442	51.8
Comments: Valve at well head is open 100%.				

SVE-10S					
	WH VOC	14/111/40	WH AP		
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F	
7:51	0.0	15	271	51.2	
Comments: Valve at well head is open 100%.					

Was sampling completed today: Yes

AIR SAMPLING INFORMATION

Time	Canister ID / Pressure Gauge ID	Sample ID / Canister Size	Start Pressure (*HG)	End Pressure ("HG)
7:44	1845/5029	GWTT Effluent/6L	-25	-4
7:36	1462/5030	URS Effluent/6L	-28	-5
7:51	1716/4001	SVE-10S/3L	-28	-5
7:55	1517/4002	SVE-9S/3L	-27	-5
7:58	1354/5032	SVE-8D/3L	-28	-5
8:01	1375/5008	SVE-8S/3L	-25	-5

Time	Canister ID / Pressure Gauge ID	Sample ID / Canister Size	Start Pressure	End Pressure
8:05	1894/5009	SVE-7S/3L	-24	-5
8:11	1378/5031	SVE-7D/3L	-18	-5
8:16	1682/5006	SVE-6S/3L	-30	-5
8:20	1905/5005	SVE-6D/3L	-30	-4
8:25	1100/5007	SVE-1/6L	-25	-5

NYSDEC Work Assignment #D007621

DATE: _January 25, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Partly Cloudy 35°F

URS EQUIPMENT INFORMATION

RB-1	STATUS:	ON OF	F	HOUR	S: <u>31,871.</u>	2 - run time	23.86 days	since last m	onitoring -	12/28		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
7:09	16	27	20	32	39	19.0	>15,000	1,252	1,222	103		SVE-1 velocity is consistently above 15,000 fpm, which is likely due to water infiltration.

EXISTING URS WELL INFORMATION

TIME	WH VOC ppm	WH VAC. In. w.c.
8:25	0.0	9-11

TIME	WH VOC	WH VAC. In. w.c.
8:20	0.0	16

URS SVE-6D

DAY: Wednesday

URS SVE-6S				
TIME	WH VOC	WH VAC. In. w.c.		
8:16	0.0	18		
Comments:		•		

DATE: _January 25, 2012_

TECHNICIAN: Marc Morgenstern

Weather: Partly Cloudy 35°F

GAC ADSORBERS

GWTT S	ystem						
TIME	TI 203 deg F	FI 203 cf/min	PI 210 in. w.c.	GAC LEAD INF ppm	GAC LEAD EFF ppm	GAC LAG EFF/STACK ppm	Comments:
7:41	121	280	<0	58.1	0.0	0.0	Readings taken directl from sample port
							nom dampio port
7:42				56.2	0.0	0.0	Readings taken from
							Tedlar air Bag

System Notes

GWTT system shut down at 9:00 for carbon change out on Lead GAC # 2. System restarted at 11:30. New Lead is GAC # 1.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
1/5/2012	1/6/2012	30,978.5	System Relay Tripped	NA

Cumulative Hours To Date :33,761.39 Hours Condensate in K/O Drum: ___0_ Gallons

Which is the Lead Absorber? GAC 1 or GAC 2 Dilution: Open or Closed __15__%

System Notes

URS Sys	stem			
TIME	GAC LEAD INF	GAC LEAD EFF ppm	GAC LAG EFF/STACK ppm	Comments:
7:28	71.8	1.1	0.0	Readings taken directly from sample port.
7:29	69.2	0.0	0.0	Readings taken from Tedlar Bag.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
1/4/2012	1/4/2012	31,458.8	High Water KO	10:42
1/14/2012	1/16/2012	31,685.1	High Water KO	10:00
1/19/2012	1/20/2012	31,770.5	High Water KO	12:05
1/22/2012	1/23/2012	31,829.2	High Water KO	13:12

verall log notes/comments INF: Influent EFF: Effluent WH VAC: Well Head Vacuum WH AP: Well Head Anemometer Point (Velocity) GAC: Granular Activated Carbon /OC: Volatile Organic Compound concentration cf/min: Cubic Feet Per Minute (flow rate) . w.c.: inches of water column ft/min: Feet per Minute (velocity) pm: parts per million deg F: degrees Fahrenheit SVE: Soil Vapor Extraction AP: Anemometer Point (at manifold)

Condensate in K/O Drum: _0_Gallons Which is the Lead Absorber? GAC 1 or GAC 2 Dilution: Open or <u>Closed</u>

Cumulative Hours To Date:34,030.52_Hours

Amount Condensate Collected in 55 gallon drums to date 226.5 Drums currently onsite for condensate collection; 5 Drums In Use: 3

* (1) one additional drum of spent carbon filters is currently onsite.

GWTT Blower Test Data for B-202				
Date	Test Length			
5/13/2009	18 Minutes			
12/9/2009	51 Minutes			
12/24/2009	In Operation			
1/6/2010	Out of Operation			
4/14/2010	48 Minutes			
9/22/2010	58 Minutes			
1/26/2011	60 Minutes			
10/26/2011	60 Minutes			

	GWTT Blower Lubrication Data (B-201)						
D	ATE	No. Pumps from Grease	Was N				
		Guil	Allevii				
10/7	7/2009	3	Ye				
10/2	1/2009	4	Υe				
11/1	8/2009	4	Ye				
12/9	9/2009	4	Υe				
1/6	/2010	8	N				
3/24	1/2010	8	Υe				
9/22	2/2010	5	Υe				
10/2	6/2011	5	Υe				
12/2	8/2011	3	Υe				
	10/2 11/1 12/5 1/6 3/24 9/22 10/2	DATE 10772009 10272009 10272009 11/18/2009 11/18/2009 15/2010 3/24/2010 8/22/2010 10/26/2011 11/28/2011	DATE No. Pumps from Grease 10/7/2009 3 10/21/2009 4 11/18/2009 4 12/9/2009 4 18/8/2010 8 9/2/2010 5 10/28/2011 5				

During Testing, Filters and KO Drum are checked on Both Systems

1/6/2010	8	No		
3/24/2010	8	Yes		
9/22/2010	5	Yes		
10/26/2011	5	Yes		
12/28/2011	3	Yes		
One nump from the grease gun delivers				

Yes Yes Yes

11 British American Boulevard, Suite 200, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566

Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table February 29, 2012

DATE: February 29. 2012 DAYWednesday TECHNICIANMarc Morgenstern

Weather: Cloudy 38°F

GWTT EQUIPMENT INFORMATION

B-201 STATUS: ON OFF HOURS: 32,247.6 - run 33.88 days total between since last monitoring 1-25-12

	PI 201	PI 202	DI 000	FI 201	TI 201	FI 101	FI 102	FI 103	AP	101	AP 1	102	AP	103	
TIME	in w.c.	in. w.c.	PI 203 in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
6:55	90	64	19	247	128	70	70	145	8,112	58.6	1,437	57.9	5,644	57.9	

B-202 STATUS: ON OFF HOURS: 198

	DI 204	חוממר	DI 200	EL 202	TI 202	EL 404	EL 400	EL 402	AP	101	AP '	102	AP	103	
TIME	PI 204 in w.c.	PI 205 in. w.c.	PI 206 in. w.c.	FI 202 scfm	TI 202 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

TECHNICIAN Marc Morgenstern DATE: February 29, 2012 DAYWednesday |

Weather: Cloudy 38°F

NEW VMP WELL INFORMATION

VMP-1

TIME	WH VOC ppm	WH VAC. In. w.c.
8:17	0.0	0.20

Comments:

VMP-2

A 1411 -7		
TIME	WH VOC ppm	WH VAC. In. w.c.
8:20	0.0	0.30

Comments:

VMP-3

TIME	WH VOC ppm	WH VAC. In. w.c.
8:21	0.0	0.10

Comments:

VMP-4

TIME	WH VOC ppm	WH VAC. In. w.c.
8:21	0.0	0.02
C		

VMP-5

V IVIP-0		
TIME	WH VOC	WH VAC.
TIIVIL	ppm	In. w.c.
8:19	0.0	0.24
Comments:		

SS-1

0.0	0.10
WH VOC	WH VAC
0.0	0.24
	WH VOC

SS-3			_
TIME	WH VOC	WH VAC	
7:04	0.0	0.20	Cor

VMP-6

TIME	WH VOC	WH VAC
7:02	0.0	0.15
VMP-7		
TIME	WH VOC	WH VAC
7:03	0.0	0.22

DATE: February 29, 2012 DAY<u>Wednesday</u> TECHNICIANMarc Morgenstern

Weather: Cloudy 38°F

NEW SVE WELL INFORMATION

SVE-7S

	WH VOC V	WH VAC	WH AP		
TIME	ppm	in. w.c.	VELOCITY	TEMP	
	ppiii	III. W.C.	ft/min	deg F	
7:34	0.0	10	481	43.3	

Comments: Valve at well head is open 100%.

20E-1D					
	WH VOC	WH VAC	WH AP		
TIME			VELOCITY	TEMP	
	ppm	in. w.c.	ft/min	deg F	
7:36	0.0	7	611	44.6	

Comments: Valve at well head is open 10%.

SVE-8S

					
	WH VOC	\A/I I \/AC	WH AP		
TIME			VELOCITY	TEMP	
	ppm	in. w.c.	ft/min	deg F	
7:33	0.0	12	200	46.9	

Comments: Valve at well head is open 100%.

SVE-8D

	WH VOC	WH VAC	WH	AP
TIME	mag	in. w.c.	VELOCITY	TEMP
	ppiii	III. W.C.	ft/min	deg F
7:29	0.0	5	404	42.8

Comments: Valve at well head is open to 50%.

SVE-9S

	WH VOC	WH VAC	WH AP		
TIME			VELOCITY	TEMP	
	ppm	in. w.c.	ft/min	deg F	
7:27	0.0	18	354	42.8	
					

Comments: Valve at well head is open 100%.

SVE-10S

	WH VOC	WH V/VC	WH AP		
TIME			VELOCITY	TEMP	
	ppm	in. w.c.	ft/min	deg F	
7:25	0.0	17	411	42.0	

Comments: Valve at well head is open 100%.

AIR SAMPLING INFORMATION

Was sampling completed today:

Time	Canister ID /	Sample ID / Canister	Start Pressure	End Pressure ("HG)
7:55	1164/5020	GWTT Effluent/6L	-28	-5
7:59	1683/5021	1683/5021 GWTT Influent/3L -26		-4
8:10	1004/5032	URS Effluent/6L	-28	-5
8:13	1371/5031	URS Influent/3L	-15	-5

Time	Canister ID / Pressure	Sample ID / Canister	Start Pressure	End Pressure

Comments:

DATE: February 29, 2012 DAYWednesday TECHNICIANMarc Morgenstern

Weather: Cloudy 38°F

URS EQUIPMENT INFORMATION

RB-1	STATUS:	<u>ON</u> OF	F	HOURS	6: <u>32,587.</u>	6 - run time	29.06 days	since last m	onitoring -	1-25-2012		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
7:08	16	25	20	32	40	18.8	>15,000	3,119	2,843	110		SVE-1 velocity is consistently above 15,000 fpm, which is likely due to water infiltration.

EXISTING URS WELL INFORMATION

URS SVE-1

TIME	WH VOC	WH VAC. In. w.c.	
7:12	0.0	9-11	

Comments: WH Vac is fluctuating due to water intake

URS SVE-6D

TIME	WH VOC ppm	WH VAC. In. w.c.
7:13	0.0	16

Comments:

URS SVE-6S

TIME	WH VOC ppm	WH VAC. In. w.c.	
7:13	0.0	17	

Comments:

DATE: February 29, 2012 DAYWednesday

TECHNICIAN Marc Morgenstern

Weather: Cloudy 38°F

GAC ADSORBERS

GWTT System

TIME	TI 203	FI 203	PI 210	GAC LEAD	GAC LEAD	GAC LAG	Comments:
THVIL	deg F	cf/min	in. w.c.	INF	EFF	EFF/STACK ppm	Comments.
7:40	120	280	<0	52.2	0.0	0.0	Readings taken
							directly from sample
7:40				51.0	0.0	0.0	Readings taken from
							Tedlar air Bag

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EEF/STACK ppm	Comments:
7:42	36.1	0.0	0.0	Readings taken directly from sample port.
7:42	38.4	0.0	0.0	Readings taken from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration in. w.c.: inches of water column ppm: parts per million	cf/min: Cubic Feet Per Minute (flow rate) ft/min: Feet per Minute (velocity) deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction VMP: Vapor Monitoring Point	AP: Anemometer Point (at manifold)

System Notes

GWTT system shut down at 9:35 for carbon change out on Lead GAC # 1. System restarted at 11:10. New Lead is GAC # 2.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
2/22/2012	2/24/2012	32,128.6	System Relay Tripped	7:55

Cumulative Hours To Date : 34,574.39_Hours

Condensate in K/O Drum: 0 Gallons
Which is the Lead Absorber? GAC 1 or

Which is the Lead Absorber? GAC 1_ or GAC 2

Dilution: Open or Closed 15 %

System Notes

URS system shut down at 9:35 for carbon change out on Lead GAC # 1. System restarted at 11:10. New Lead is GAC # 2.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
2/3/2012	2/6/2012	31,458.8	High Water KO	10:42
2/14/2012	1/16/2012	32,099.0	High Water KO	13:10
2/22/2012	2/24/2012	32,468.4	High Water KO	7:55

Cumulative Hours To Date: 34,728.01 Hours Condensate in K/O Drum: 0 Gallons

Which is the Lead Absorber? GAC 1 or GAC 2
Dilution: Open or Closed %

Amount Condensate Collected in 55 gallon drums to date: 726.5

Drums currently onsite for condensate collection: 5 Drums In Use: 3

* (1) one additional drum of spent carbon filters is currently onsite.

GWTT Blower Test Data for B-202							
Date	Test Length						
5/13/2009	18 Minutes						
12/9/2009	51 Minutes						
12/24/2009	In Operation						
1/6/2010	Out of Operation						
4/14/2010	48 Minutes						
9/22/2010	58 Minutes						
1/26/2011	60 Minutes						
10/26/2011	60 Minutes						

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201)										
DATE	Was Noise Alleviated?									
10/7/2009	3	Yes								
10/21/2009	4	Yes								
11/18/2009	4	Yes								
12/9/2009	4	Yes								
1/6/2010	8	No								
3/24/2010	8	Yes								
9/22/2010	5	Yes								
10/26/2011	5	Yes								
12/28/2011	3	Yes								

One pump from the grease gun delivers approximately 1 milliliter of grease

NYSDEC Work Assignment #D007621

11 British American Boulevard, Suite 200, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566

Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table March 28, 2012

DATE: _March 28, 2012_ DAYWednesday TECHNICIAN Marc Morgenstern

Weather: Partly Cloudy 52°F

GWTT EQUIPMENT INFORMATION

STATUS: ON HOURS: 32,917.2 - run 27.89 days total between since last monitoring 2-29-12 B-201

	PI 201	PI 202	PI 203	FI 201	TI 201	FI 101	FI 102	FI 103	AP	101	AP 1	02	AP	103	
TIME	in w.c.	in. w.c.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
7:10	90	66	19	247	126	70	70	150	>15,000	62.1	3,214	61.2	9,111		AP101 velocity is consistently above 15,000 fpm, which is likely
															due to the water infiltration.

B-202 STATUS: ON <u>OFF</u> HOURS: 198

	DI 204	DI 205	DI OOC	EL 202	TI 202	EL 404	EL 400	EL 402	AP	101	AP 1	102	AP	103	
TIME	PI 204	PI 205	PI 206	FI 202	TI 202	FI 101	FI 102	FI 103	Velocity	Temp	Velocity	Temp	Velocity	Temp	Comments
	in w.c.	in. w.c.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	ft/min	deg F	ft/min	deg F	ft/min	deg F	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

DATE: March 28, 2012 DAY<u>Wednesday</u> TECHNICIAN Marc Morgenstern

Weather: Cloudy 52°F

NEW VMP WELL INFORMATION

VMP-1

	TIME	WH VOC ppm	WH VAC. In. w.c.
Ī	7:40	0.0	0.26
I			

Comments:

VMP-2

V 1V11 -2		
TIME	WH VOC ppm	WH VAC. In. w.c.
7:50	0.0	0.31

Comments:

VMP-3

TIME	WH VOC ppm	WH VAC. In. w.c.
7:51	0.0	0.19

Comments:

VMP-4

TIME	WH VOC ppm	WH VAC. In. w.c.
7:52	0.0	0.08

Comments:

VMP-5

V IVIP-5		
TIME	WH VOC	WH VAC.
	ppm	In. w.c.
7:49	0.0	0.30
Comments:		

TIME 8:45	0.0	0.15
TIME 8:46	WH VOC	WH VAC 0.20

SS-3			
TIME	WH VOC	WH VAC	
8:47	0.0	0.26	C

VMP-6

VMP-7		
TIME	WH VOC	WH VAC
8:48	0.0	0.21

NYSDEC Work Assignment #D007621

DATE: March 28, 2012

TECHNICIAN Marc Morgenstern

Weather: Cloudy 52°F

NEW SVE WELL INFORMATION

SVE-7S

	WH VOC	WH VAC	WH	AP
TIME			VELOCITY	TEMP
	ppm	in. w.c.	ft/min	deg F
7:27	0.0	11	712	54.3

Comments: Valve at well head is open 100%.

DAY<u>Wednesday</u>

20E-1D				
	WH VOC	WH VAC	WH	AP
TIME			VELOCITY	TEMP
	ppm	in. w.c.	ft/min	deg F
7:28	0.0	5	769	57.9

Comments: Valve at well head is open 10%.

SVE-8S

	WH VOC	WHVAC	WH AP	
TIME			VELOCITY	TEMP
	ppm	in. w.c.	ft/min	deg F
7:26	0.0	12	460	56.9

Comments: Valve at well head is open 100%.

SVE-8D

	WH VOC WH VA	WH V/AC	WH	AP
TIME	ppm	in. w.c.	VELOCITY	TEMP
	ppiii	III. W.C.	ft/min	deg F
7:25	0.0	5	583	55.1

Comments: Valve at well head is open to 50%.

SVE-9S

	WH VOC WH VAC	WH	AP		
TIME		in. w.c.	VELOCITY	TEMP	
	ppm	III. W.C.	ft/min	deg F	
7:20	0.0	16	894	56.3	

Comments: Valve at well head is open 100%.

SVE-10S

	WH VOC	WH WAC	WH AP	
TIME			VELOCITY	TEMP
	ppm	in. w.c.	ft/min	deg F
7:19	0.0	17	681	56.2

Comments: Valve at well head is open 100%.

AIR SAMPLING INFORMATION

Was sampling completed today:

		N	c

Time	Canister ID /	Sample ID / Canister	Start Pressure	End Pressure ("HG)
8:10	1228/4001	GWTT Effluent/6L	-28	-5
8:15	1383/4002	GWTT Influent/3L	-28	-5
8:20	1467/5001	URS Effluent/6L	-28	-5
8:25	1682/5000	URS Influent/3L	-29	-5

Time	Canister ID / Pressure	Sample ID / Canister	Start Pressure	End Pressure

Comments:

DATE: March 28, 2012 DAYWednesday TECHNICIANMarc Morgenstern

Weather: Cloudy 52°F

URS EQUIPMENT INFORMATION

RB-1	STATUS:	<u>ON</u> OF	F	HOURS	6: <u>33,257.</u>	1- run time	27.9 days s	ince last mo	nitoring - 2-2	29-2012		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
7:35	14	24	20	32	40	19.1	>15,000	6,194	3,244	110		SVE-1 velocity is consistently above 15,000 fpm, which is likely due to water infiltration.

EXISTING URS WELL INFORMATION

u	ĸs	51	/⊢-

TIME	WH VOC	WH VAC. In. w.c.
7:41	0.0	12

Comments: WH Vac is fluctuating due to water intake

URS SVE-6D

TIME	WH VOC ppm	WH VAC. In. w.c.
7:42	0.0	16

Comments:

URS SVE-6S

TIME	WH VOC ppm	WH VAC. In. w.c.
7:43	0.0	18

Comments:

DATE: March 28, 2012

DAYWednesday |

TECHNICIANMarc Morgenstern

Weather: Cloudy 52°F

GAC ADSORBERS

GWTT System

••••	Will dystem								
TIME	TI 203 deg F	FI 203 cf/min	PI 210 in. w.c.	GAC LEAD INF ppm	GAC LEAD EFF ppm	GAC LAG EFF/STACK ppm	Comments:		
7:53	120	280	<0	55.3	0.0	0.0	Readings taken		
							directly from sample		
7:53				56.0	0.0	0.0	Readings taken from		
							Tedlar air Bag		

URS System

TIME	GAC LEAD INF ppm	GAC LEAD EFF ppm	GAC LAG EFF/STACK ppm	Comments:
7:55	39.2	0.0	0.0	Readings taken directly from sample port.
7:55	38.4	0.0	0.0	Readings taken from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration	cf/min: Cubic Feet Per Minute (flow rate)
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

GWTT system shut down at 9:30 for carbon change out on Lead GAC # 1. System restarted at 12:00. New Lead is GAC # 1.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date : 35,243.89 Hours Condensate in K/O Drum: ___0_ Gallons

Which is the Lead Absorber? GAC 1_ or Dilution: Open or Closed

System Notes

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 35,400.01_Hours Condensate in K/O Drum: __0_Gallons

Which is the Lead Absorber? GAC 1 Open or *Closed* GAC 2

Amount Condensate Collected in 55 gallon drums to date: 726.5

Drums currently onsite for condensate collection: 5 Drums In Use: 3
* (1) one additional drum of spent carbon filters is currently onsite.

GWTT Blower Test Data for B-202					
Date	Test Length				
5/13/2009	18 Minutes				
12/9/2009	51 Minutes				
12/24/2009	In Operation				
1/6/2010	Out of Operation				
4/14/2010	48 Minutes				
9/22/2010	58 Minutes				
1/26/2011	60 Minutes				
10/26/2011	60 Minutes				

During Testing, Filters and KO Drums are checked on Both Systems

GWTT	GWTT Blower Lubrication Data (B-201)					
DATE	No. Pumps from Grease Gun	Was Noise Alleviated?				
10/7/2009	3	Yes				
10/21/2009	4	Yes				
11/18/2009	4	Yes				
12/9/2009	4	Yes				
1/6/2010	8	No				
3/24/2010	8	Yes				
9/22/2010	5	Yes				
10/26/2011	5	Yes				
12/28/2011	3	Yes				

One pump from the grease gun delivers approximately 1 milliliter of grease

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table April 25, 2012

DATE: April 25, 2012 DAY: Wednesday TECHNICIAN: David Kahn

Weather: Sunny 55°F

GWTT EQUIPMENT INFORMATION

B-201	STATUS: ON	I OFF	HOURS: 33.587.8 - run 27.02 days total between since last monitoring 3-28-12

	_ PI 201	PI 202	PI 203	FI 201	TI 201	FI 101	FI 102	FI 103	AP	101	AP 1	102	AP	103	
TIN	in w.c.	in. w.c.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
8:0	0 32	52	20	255	140	120	150	140	4,018	53.0	1,002	50.3	1,558	51.2	

B-202 STATUS: ON OFF HOURS: 198

									AP	101	AP '	102	AP	103	
TIM	PI 204 in w.c.	PI 205 in. w.c.	PI 206 in. w.c.	FI 202 scfm	TI 202 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
N.A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

NEW VMP WELL INFORMATION

TIME	WH VOC ppm	WH VAC. In. w.c.
8:50	0.0	0.21

ν	M	-2

TIME	WH VOC ppm	WH VAC. In. w.c.
8:56	0.0	0.28

VMP-3		
TIME	WH VOC ppm	WH VAC. In. w.c.
8:59	0.0	0.05

VMP-4		
TIME	WH VOC ppm	WH VAC. In. w.c.
9:02	0.0	0.04

VMP-5		
TIME	WH VOC	WH VAC. In. w.c.
8:53	0.0	0.32
Comments:		

SS-1				
TIME	WH VOC	WH VAC In. W.C.		
11:02	0.0	0.07		

SS-2 WH VAC In. W.C. TIME WH VOC 11:04

SS-3

TIME	WH VOC	WH VAC	
11:10	0.0	0.14	Commer

ΓIME	WH VOC	
4 00	0.0	

VMP-7		
TIME	WH VOC	WH VAC In. W.C.
11:28	0.0	0.18

DATE: April 25, 2012 DAY: Wednesday TECHNICIAN: David Kahn

Weather: Sunny 55°F

NEW SVE WELL INFORMATION

SV	

O+L-10					
			WH AP		
TIME	WH VOC	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
8:39	0.0	9	417	55.2	

Comments: Valve at well head is open 100%.

SVE-7D					
			WH AP		
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
8:43	0.0	5	1,057	59.5	
Comments: Valve at well head is open 50%.					

SVE-8S					
			WH A	\ P	
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
8:35	0.0	7	249	57.5	
Comments: Valve at well head is onen 1009/					

Comments: Valve at well head is open 100%.

3VL-0D				
	WH VOC	WH VAC in. w.c.	WH	AP
TIME	ppm		VELOCITY ft/min	TEMP deg F
8:32	0.0	6	234	56.2

Comments: Valve at well head is open to 50%.

_	•	١c	

	WH VOC ppm	WH VAC in. w.c.	WH AP		
TIME			VELOCITY ft/min	TEMP deg F	
8:27	0.0	32	725	57.7	
mments:	Valve at wel	head is open	100%.		

SVE-10S

	WH VOC	WH VAC	WH AP		
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F	
8:22	0.0	22	622	56.8	

Comments: Valve at well head is open 100%.

AIR SAMPLING INFORMATION

Was sampling completed today: Yes

Time	Canister ID /	Sample ID / Canister	Start Pressure	End Pressure ("HG)
7:47	1384/5024	GWTT Influent/3L	-26	-4
7:50	1838/5029	URS Effluent/6L	-28	-5
7:55	1633/5030	GWTT Effluent/6L	-28	-5
7:58	1368/5023	URS Influent/3L	-28	-5

Time	Canister ID / Pressure	Sample ID / Canister	Start Pressure	End Pressure
				1

URS EQUIPMENT INFORMATION

RB-1	STATUS:	<u>on</u> or	FF	HOUR	S: <u>33,929</u>	.8 - run tim	e 27.01 day	s since last i	monitoring -	3-28-12		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
8:15	14	24	15	34	37	18.5	276	915	532	108	154	

EXISTING URS WELL INFORMATION

URS SVE-1

0110 012 1						
TIME	WH VOC ppm	WH VAC. In. w.c.				
11:15	0.0	14				

URS SVE-6D

ONO OVE-OD							
TIME	WH VOC ppm	WH VAC. In. w.c.					
11:15	0.0	13					

UKS SVE-6	UK9 94E-09							
TIME	WH VOC ppm	WH VAC. In. w.c.						
11:13	0.0	17						

Table 2 - SVE Monitoring Summary Data 2012 Periodic Review Report

Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

TECHNICIAN: David Kahn DATE: April 25, 2012 DAY: Wednesday

Weather: Sunny 55°F

GAC ADSORBERS

GWTT S	ystem						
TIME	TI 203	FI 203	PI 210	GAC LEAD	GAC	GAC LAG	Comments:
IIIVIE	deg F	cf/min	in. w.c.	INF	LEAD	EFF/STACK ppm	Comments.
9:12	140	276	<0	46.9	0.0	0.0	Readings taken
							directly from sample
9:12				44.1	0.0	0.0	Readings taken from Tedlar air Bag
							rediar air bag

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK ppm	Comments:
9:07	31.3	0.0	0.0	Readings taken directly from sample port.
9:07	29.6	0.0	0.0	Readings taken from
				Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration	cf/min: Cubic Feet Per Minute (flow rate)
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

GWTT system shut down at 9:15 for carbon change out on Lead GAC # 1. System restarted at 11:00. New Lead is GAC # 2.

Autodialer Call Received Response Date		System Counter Reading	Alarm Mode	Restart Time

GAC 2 Dilution: Open or <u>Closed</u>

<u>System Notes</u>
URS system shut down at 9:15 for carbon change out on Lead GAC # 2. System restarted at 10:40. New Lead Is GAC #1.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 36,070.59 Hours Condensate in K/O Drum: __0__Gallons

Which is the Lead Absorber? GAC 1

Dilution: Open or Closed GAC 2

Amount Condensate Collected in 55 gallon drums to date: 726.5

Drums currently onsite for condensate collection: 4 Drums in Use: 3

* (1) one additional drum of spent carbon filters is currently onsite.

GWTT Blower Test Data for B-202				
Date	Test Length			
5/13/2009	18 Minutes			
12/9/2009	51 Minutes			
12/24/2009	In Operation			
1/6/2010	Out of Operation			
4/14/2010	48 Minutes			
9/22/2010	58 Minutes			
1/26/2011	60 Minutes			
10/26/2011	60 Minutes			

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201)					
DATE	No. Pumps from Grease Gun	Was Noise Alleviated?			
10/7/2009	3	Yes			
10/21/2009	4	Yes			
11/18/2009	4	Yes			
12/9/2009	4	Yes			
1/6/2010	8	No			
3/24/2010	8	Yes			
9/22/2010	5	Yes			
10/26/2011	5	Yes			
12/28/2011	3	Yes			

One pump from the grease gun delivers approximately 1 milliliter of grease

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table May 30, 2012

DATE: May 30, 2012 TECHNI CIAN: Marc Morgenstern

Weather: Overcast 80°F

GWTT EQUIPMENT INFORMATION

B-201	STAT	US: ON	OFF	н	OURS 34,42	25.0 - run	34.88 day	s total bet	ween since	last monitor	ing 4-25-12				
	DI 004	DLOGG	PI 203	El 204	TI 004	FI 101	EL 400	EL 400	AP	101	AP ·	102	AP	103	
TIME	PI 201 in w.c.	PI 202 in. w.c.	in. w.c.	FI 201 scfm	TI 201 deg F	cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
7:08	32	52	20	250	142	120	170	100	3,816	55.1	1,924	55.1	2,222	51.3	
															i

B-202 STATUS: ON OFF HOURS: 198

									AP	101	AP '	102	AP	103	
TIME	PI 204 in w.c.	PI 205 in. w.c.	PI 206 in. w.c.	FI 202 scfm	TI 202 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

NEW VMP WELL INFORMATION

v	M	P	-1
٧	IAI	г	

TIME	WH VOC ppm	WH VAC. In. w.c.
8:16	0.0	0.18

VMP-2

TIME	WH VOC ppm	WH VAC. In. w.c.
8:23	0.0	0.34

VMP-3		
TIME	WH VOC ppm	WH VAC. In. w.c.
8:25	0.0	0.09

/M	P-4	
IN		

4 1411		
TIME	WH VOC	WH VAC. In. w.c.
8:26	0.0	0.02
Comments:		

VMP-5		
TIME	WH VOC	WH VAC. In. w.c.
8:19	0.0	0.30
Comments:		

S-1		
TIME	WH VOC	WH VAC In. W.C.
8:40	0.0	0.10
~ ~		

S-2		
TIME	WH VOC	WH VAC
8:42	0.0	0.50

s	s	-3	

S-3			_
TIME	WH VOC	WH VAC	
8:50	0.0	0.13	Comments:

/MP-6		
TIME	WH VOC	WH VAC In. W.C.
8:45	0.0	0.17

VMP-7

TIME	WH VOC	WH VAC In. W.C.
8:51	0.0	0.15

NYSDEC Work Assignment #D007621

DATE: May 30, 2012

DAY: Wednesday

TECHNICIAN: Marc Morgenstern

Weather: Overcast, 80°F

NEW SVE WELL INFORMATION

015-70					
			WH	AP	
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
7:27	0.0	6	262	71.5	
Comments: Valve at well head is open 100%.					

SVE-7D				
			WH	AP
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F
7:29	0.0	5	981	70.2
Comments:	Valve at well	head is open	50%.	

3VE-03					
			WH A	\ P	
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
7:22	0.0	8	360	66.2	

Comments: Valve at well head is open 100%.

	WH VOC	WH VAC	WH	AP
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F
7:24	0.0	6	823	67.8

Comments: Valve at well head is open to 100%

SVE-9S

	WH VOC	WH VAC	WH AP				
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F			
7:23	0.0	24	702	71.2			
mments: Valve at well head is open 100%							

SVE-10S

	WH VOC	: WH VAC	WH AP		
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F	
7:22	0.0	20	681	68.4	

Comments: Valve at well head is open 100%

AIR SAMPLING INFORMATION

Was sampling completed today: Yes

Nο	

Time	Canister ID /	Sample ID / Canister	Start Pressure	End Pressure ("HG)
8:12	1369/5029	GWTT Influent/3L	-28	-5
7:52	1823/4028	URS Effluent/6L	-30	-5
8:00	1134/5030	GWTT Effluent/6L	-28	-5
8:05	1392/4018	URS Influent/3L	-28	-5

Time	Canister ID / Pressure	Sample ID / Canister	Start Pressure	End Pressure

URS EQUIPMENT INFORMATION

RB-1	STATUS:	<u>on</u> or	FF	HOUR	S: <u>34,767</u>	<u>.4 - run tim</u>	e 34.9 days	since last m	ionitoring -	4-25-12		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
7:15	12	24	15	34	35	18.9	655	1,251	842	120	154	

EXISTING URS WELL INFORMATION

URS SVE-1

TIME	WH VOC ppm	WH VAC. In. w.c.					
7:19	0.0	14					

ひんう うりこ・ひひ							
TIME	WH VOC ppm	WH VAC. In. w.c.					
7:19	0.0	14					

UK3 3VE-03					
TIME	WH VOC ppm	WH VAC. In. w.c.			
7:18	0.0	16			

Comments:

Table 2 - SVE Monitoring Summary Data 2012 Periodic Review Report

Kliegman Brothers Site OU1 - Site No. 2-41-031

NYSDEC Work Assignment #D007621

DATE: May 30, 2012

DAY: Wednesday

TECHNICIAN: Marc Morgenstern

Weather: Overcast 80°F

GAC ADSORBERS

GWIII	ysteili						
TIME	TI 203	FI 203	PI 210	GAC LEAD	GAC	GAC LAG	Comments:
IIIVIE	deg F	cf/min	in. w.c.	INF	LEAD	EFF/STACK ppm	Comments.
8:00	161	276	<0	27.5	0.0	0.0	Readings taken
							directly from sample
8:00				28.0	0.0	0.0	
0.00				20.0	0.0		Readings taken from
							Tedlar air Bag
							-

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK ppm	Comments:			
7:50	25.8	0.0	0.0	Readings taken directly from sample port.			
7:50	25.2	0.0	0.0	Readings taken from Tedlar Bag.			

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration	cf/min: Cubic Feet Per Minute (flow rate)
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

GWTT system shut down at 9:22 for carbon change out on Lead GAC # 2. System restarted at 13:05. New Lead is GAC # 1.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
5/23/2012	5/24/2012		None- system running properly upon arrival	-

Cumulative Hours To Date : 36,750.42_Hours

Condensate in K/O Drum: ___0_ Gallons
Which is the Lead Absorber? GAC 1_ or GAC 2 Open or Closed

System Notes

URS system shut down at 9:22 for a carbon change out on Lead GAC #1 and lag GAC #2. per CDM request. System restarted at 13:05. New Lead is GAC # 2.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
5/23/2012	5/24/2012		None- system running properly upon arrival	-

Cumulative Hours To Date: 36,070.59 Hours

Condensate in K/O Drum: __0_Gallons Which is the Lead Absorber? GAC 1

GAC 2

Open or <u>Closed</u>

Amount Condensate Collected in 55 gallon drums to date: 726.5

Drums currently onsite for condensate collection: 5 Drums In Use: 4

* (1) one additional drum of spent carbon filters is currently onsite.

GWTT Blower Test Data for B-202					
Date	Test Length				
5/13/2009	18 Minutes				
12/9/2009	51 Minutes				
12/24/2009	In Operation				
1/6/2010	Out of Operation				
4/14/2010	48 Minutes				
9/22/2010	58 Minutes				
1/26/2011	60 Minutes				
10/26/2011	60 Minutes				

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201)						
DATE	No. Pumps from Grease Gun	Was Noise Alleviated?				
10/7/2009	3	Yes				
10/21/2009	4	Yes				
11/18/2009	4	Yes				
12/9/2009	4	Yes				
1/6/2010	8	No				
3/24/2010	8	Yes				
9/22/2010	5	Yes				
10/26/2011	5	Yes				
12/28/2011	3	Yes				
E/20/2012	2	Voc				

One pump from the grease gun delivers

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table June 27, 2012

DATE: June 27, 2012 TECHNI CIAN: David Kahn

Weather: Sunny 80°F

GWTT EQUIPMENT INFORMATION

	B-201	STAT	US: ON	OFF	нс	HOURS 35,095.4 - run 28.09 days total between since last monitoring 5-30-12										
ſ		PI 201	PI 202	PI 203	FI 201	TI 201	FI 101	FI 102	FI 103	AP	101	AP '	102	AP	103	
	TIME	in w.c.	in. w.c.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
	8:20	40	61	20	249	148	110	180	90	1,609	76.2	3,335	75.0	2,195	75.9	
г																

B-202 STATUS: ON OFF HOURS: 198

									AP	101	AP '	102	AP	103	
TIME	PI 204 in w.c.	PI 205 in. w.c.	PI 206 in. w.c.	FI 202 scfm	TI 202 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

NEW VMP WELL INFORMATION

TIME	WH VOC	WH VAC. In. w.c.		
8:48	0.0	0.18		

VMP-2

TIME	WH VOC	WH VAC. In. w.c.		
8:42	0.0	0.34		

VMP-3							
TIME	WH VOC ppm	WH VAC. In. w.c.					
8:44	0.0	0.03					

VMP-4								
TIME	WH VOC	WH VAC. In. w.c.						
8:46	0.0	0.02						

VMP-5		
TIME	WH VOC	WH VAC. In. w.c.
8:40	0.0	0.32
Comments:		

TIME	WH VOC	In. W.C.				
9:25	0.0	0.15				
SS-2						
TIME	WH VOC	WH VAC				

T	M	F

VMP-6		
TIME	WH VOC	WH VAC In. W.C.
9:28	0.0	0.20

TIME	WH VOC	WH VAC In. W.C.
9:27	0.0	0.91
•		

S-3			_
TIME	WH VOC	WH VAC	
9:32	0.0	0.17	Comments:

MP-7					
TIME	WH VOC	WH VAC In. W.C.			
9:30	0.0	0.19			

DATE: June 27, 2012 DAY: Wednesday TECHNICIAN: David Kahn

Weather: Sunny, 80°F

NEW SVE WELL INFORMATION

3VL-73						
			WH	WH AP		
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F		
9:01	0.0	6	364	71.0		
Comments: Valve at well head is open 100%.						

VE-7D					
			WH	AP	
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
9:03	0.0	5	1,173	67.1	
mments: Valve at well head is open 50%.					

SVE-8S					
			WH AP		
TIME	WH VOC ppm	WH VAC in. w.c.	VELOCITY ft/min	TEMP deg F	
8:57	0.0	9	417	69.2	

Comments: Valve at well head is open 100%.

2AE-9D					
	WH VOC	WH VAC	WH AP		
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F	
8:57	0.0	6	2,088	64.5	
Comments: Valve at well head is open to 100%.					

/E-9S				
	WH VOC ppm	WH VAC in. w.c.	WH AP	
TIME			VELOCITY ft/min	TEMP deg F
8:55	0.0	18	1,157	74.1
mments: Valve at well head is open 100%.				

SVE-10S

	WH VOC	/H VOC WH VAC ppm in. w.c.	WH AP		
TIME			VELOCITY ft/min	TEMP deg F	
8:53	0.0	21	427	73.2	

Comments: Valve at well head is open 100%.

AIR SAMPLING INFORMATION

Was sampling completed today: Yes

Time	Canister ID /	Sample ID / Canister	Start Pressure	End Pressure ("HG)
7:55	1783/5008	URS Effluent/6L	-28	-5
8:08	1832/5009	GWTT Effluent/6L	-24	-5
8:10	1353/5013	GWTT Influent/3L	-25	-5
8:12	1513/5014	URS Influent/3:	-26	-5

Time	Canister ID / Pressure	Sample ID / Canister	Start Pressure	End Pressure

URS EQUIPMENT INFORMATION

RB-1	STATUS:	<u>ON</u> OF	F	HOUR	S: <u>35,437</u>	.7- run time	e 28.09 days	since last n	nonitoring -	5-30-12		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
8:30	12	24	15	32	36	18.9	567	2,984	1,072	119	158	

EXISTING URS WELL INFORMATION

URS SVE-1

OIG OVE-I						
TIME	WH VOC ppm	WH VAC. In. w.c.				
8:37	0.0	15				
Comments:						

URS SVE-6D

0110 011-00						
TIME	WH VOC ppm	WH VAC. In. w.c.				
8:35	0.0	13				

UKS SVE-68	UK9 94E-09					
TIME	WH VOC ppm	WH VAC. In. w.c.				
8:35	0.0	17				

NYSDEC Work Assignment #D007621

DATE: June 27, 2012 Weather: Sunny 80°F

DAY: Wednesday

TECHNICIAN: David Kahn

GAC ADSORBERS

GWTT S	ystem						
TIME	TI 203	FI 203	PI 210	GAC LEAD	GAC	GAC LAG	Comments:
TIIVIE	deg F	cf/min	in. w.c.	INF	LEAD	EFF/STACK ppm	Comments.
9:09	146	265	<0	38.4	0.0	0.0	Readings taken
							directly from sample
9:09				36.2	0.0	0.0	
							Readings taken from
			l				Tedlar air Bag

IIRS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG	Comments:
	mag	mag	EFF/STACK ppm	
9:14	23.3	0.0	0.0	Readings taken directly
				from sample port.
0.44				Dendings tolera form
9:14	20.4	0.0	0.0	Readings taken from
				Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration	cf/min: Cubic Feet Per Minute (flow rate)
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

GWTT system shut down at 10:00 for carbon change out on lead GAC#1. System restarted at 10:50. New lead GAC # 2.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date : 37,421.59_Hours

Condensate in K/O Drum: __0_ Gallons
Which is the Lead Absorber? GAC 1__ or GAC 2 Open or <u>Closed</u>

System Notes

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 37,578.88 Hours

Condensate in K/O Drum: __0_Gallons Which is the Lead Absorber? GAC 1

GAC 2

Open or <u>Closed</u>

Amount Condensate Collected in 55 gallon drums to date: <u>726.5</u>

Drums currently onsite for condensate collection: <u>5</u> Drums in Use: <u>4</u>

2 drums of drill cuttings and 1 drum of purge water staged on-site by EnviroTrac associated with well installation and groundwater sampling off-site.

GWTT Blower Test Data for B-202									
Date	Test Length								
5/13/2009	18 Minutes								
12/9/2009	51 Minutes								
12/24/2009	In Operation								
1/6/2010	Out of Operation								
4/14/2010	48 Minutes								
9/22/2010	58 Minutes								
1/26/2011	60 Minutes								
10/26/2011	60 Minutes								

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201)									
DATE	No. Pumps from Grease Gun	Was Noise Alleviated?							
10/7/2009	3	Yes							
10/21/2009	4	Yes							
11/18/2009	4	Yes							
12/9/2009	4	Yes							
1/6/2010	8	No							
3/24/2010	8	Yes							
9/22/2010	5	Yes							
10/26/2011	5	Yes							
12/28/2011	3	Yes							
5/30/2012	3	Yes							

One pump from the grease gun delivers

11 British American Boulevard, Suite 200, Airport Park, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table July 25, 2012

DATE: _July 25, 2012_ DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Sunny, 80°F

GWTT EQUIPMENT INFORMATION

STATUS: ON OFF HOURS: 35,764.4 - run 27.88 days total between since last monitoring 6-27-12 B-201

	PI 201	PI 202	PI 203	FI 201	TI 004	FI 101	1 FI 102	FI 102 FI 103	AP 101		AP 102		AP 103		
TIME	in w.c.	in. w.c.	in. w.c.	scfm	TI 201 deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
6:41	40	61	20	256	152	110	180	90	2,142	78.1	2,914	77.3	2,002	76.2	

B-202 STATUS: ON <u>OFF</u> HOURS: 198

	DI CO 4					FI 404	FI 400		AP 1		AP 102		AP 103		
TIME	PI 204 in w.c.	PI 205 in. w.c.	PI 206 in. w.c.	FI 202 scfm	TI 202 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

11 British American Boulevard, Suite 200, Airport Park, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table July 25, 2012

DATE: _July 25, 2012_ DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Sunny, 80°F

NEW VMP WELL INFORMATION

VMP-1

TIME	WH VOC ppm	WH VAC. In. w.c.
8:03	0.0	0.16

Comments:

VMP-4

TIME	WH VOC	WH VAC. In. w.c.
8:02	0.0	0.02
Comments		

Comments:

v	M	Р	_2

V	* IVII -			
TIME	WH VOC ppm	WH VAC. In. w.c.		
7:58	0.0	0.39		

Comments:

VMP-5		
TIME	WH VOC ppm	WH VAC. In. w.c.
7:56	0.0	0.39
Comments		

Comments:

VMP-3

TIME	WH VOC ppm	WH VAC. In. w.c.
8:00	0.0	0.01

VMP-6

TIME

8:17

VMP-7

8:20

WH VAC

0.20

WH VAC

In. W.C.

0.18

WH VOC

0.0

WH VOC

0.0

Comments:

SS-1

00-1			
TIME	WH VOC	WH VAC	ln.
8:15	0.0	0.13	

SS-2		
TIME	WH VOC	WH VAC In. W.C.
8:16	0.0	1.04
SS-3		

00-0			
TIME	WH VOC	WH VAC In.	ĺ
8:22	0.0	0.14	

Comments:

11 British American Boulevard, Suite 200, Airport Park, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table July 25, 2012

DATE: July 25, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Sunny, 80°F

NEW SVE WELL INFORMATION

SVE-7S

	WH VOC	WH VAC	WH	AP
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F
7:45	210	6	402	74.6

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

	WH VOC	WH VAC	WH	AP
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F
7:50	71.8	6	817	64.4

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

CVE OC

3VE-03						
	WH VOC	WH VAC	WH AP			\ P
TIME	ppm	in. w.c.	VELOCITY ft/min	TEMP deg F		
7:34	112	8	332	74.3		

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVF-8D

012 05							
	WILLY (0.0	14/1111/40	WH AP				
TIME		WH VAC in. w.c.	VELOCITY	TEMP			
	ppm i		ft/min	deg F			
7:28	37.9	6	1,091	64.9			

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-9S

SVE-7D

	WH VOC	WH VAC	WH AP		
TIME			VELOCITY	TEMP	
	ppm	in. w.c.	ft/min	deg F	
7:25	102	18	17	74.2	

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVF-10S

01-100					
	WILLY00	14/111/40	WH AP		
TIME		WH VOC WH VAC	VELOCITY	TEMP	
	ppm	in. w.c.	ft/min	deg F	
7:20	86.2	15	591	74.1	
	ĺ		l .		

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

AIR SAMPLING INFORMATION

Was sampling completed today: No

Time	Canister ID /	Sample ID / Canister	Start Pressure ("HG)	End Pressure ("HG)
6:59	1783/4002	GWTT Effluent/6L	-23	-5
6:57	1074/4001	URS Effluent/6L	-28	-5
7:20	1370/5021	SVE-10S/3L	-19	-5
7:25	1361/5020	SVE-9S/3L	-28	-5
7:28	1480/5013	SVE-8D/3L	-28	-5
7:34	1352/5014	SVE-8S/3L	-20	-5

Comments:

Time	Canister ID / Pressure	Sample ID / Canister	Start Pressure	End Pressure
7:45	1363/5017	SVE-7S/3L	-26	-5
7:51	1368/5016	SVE-7D/3L	-29	-5
7:10	1378/5006	SVE-6S/3L	-28	-5
7:12	1518/5005	SVE-6D/3L	-22	-4
7:02	1222/4035	SVE-1/6L	-18	-5

11 British American Boulevard, Suite 200, Airport Park, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table July 25, 2012

DATE: July 25, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Sunny, 80°F

URS EQUIPMENT INFORMATION

RB-1	STATUS:	<u>ON</u> OF	F	HOURS	S: <u>36,106.4</u>	- run 27.86	days total s	since last mo	nitoring - 6-	<u>-27-12</u>		
TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
6:46	12	24	17	32	39	18.2	1,004	2,413	962	122	158	

EXISTING URS WELL INFORMATION

URS SVE-1

TIME	WH VOC ppm	WH VAC. In. w.c.	
7:02	16.8	16	

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6D

TIME	WH VOC ppm	WH VAC. In. w.c.
7:09	14.2	13

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6S

0110 012 00							
TIME	WH VOC ppm	WH VAC. In. w.c.					
7:09	47.6	16					

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

11 British American Boulevard, Suite 200, Airport Park, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table July 25, 2012

DATE: July 25, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Sunny, 80°F

GAC ADSORBERS

GWIII	ystein						
TIME	TI 203	FI 203	PI 210	GAC LEAD	GAC LEAD	GAC LAG	Comments:
I IIVIE	deg F	cf/min	in. w.c.	INF	EFF	EFF/STACK ppm	Comments.
6:50	146	274	<0	36.3	0.0	0.0	Readings taken
							directly from sample
6:50				34.2	0.0	0.0	Readings taken from
							Tedlar air Bag

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK ppm	Comments:
6:53	25.8	0.0	0.0	Readings taken directly from sample port.
6:53	23.8	0.0	0.0	Readings taken from
0.00	20.0	0.0	0.0	Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration	cf/min: Cubic Feet Per Minute (flow rate)
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

GWTT system shut down at 8:30 for carbon change out on Lead GAC # 2. System effluent piping was noted to be cracked and was subsequently repaired. System restarted at 15:00.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 38,087.09 Hours Condensate in K/O Drum: ____0_ Gallons

Which is the Lead Absorber? GAC 1 Dilution:

Open or Closed

GAC 2

System Notes

GWTT system shut down at 8:30 for carbon change out on Lead GAC # 2. System restarted at 10:36. New Lead is GAC # 1.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 38,248.78 Hours

Condensate in K/O Drum: __0_Gallons Which is the Lead Absorber? GAC 1

Open or Closed

GAC 2

Amount Condensate Collected in 55 gallon drums to date: 726.5

Drums currently onsite for condensate collection: 5 Drums In Use:

2 drums of drill cuttings and 1 drum of purge water staged on-site by EnviroTrac associated with well

GWTT Blower Test Data for B-202							
Date	Test Length						
5/13/2009	18 Minutes						
12/9/2009	51 Minutes						
12/24/2009	In Operation						
1/6/2010	Out of Operation						
4/14/2010	48 Minutes						
9/22/2010	58 Minutes						
1/26/2011	60 Minutes						
10/26/2011	60 Minutes						

Dilution:

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201)								
DATE	No. Pumps from Grease Gun	Was Noise Alleviated?						
10/7/2009	3	Yes						
10/21/2009	4	Yes						
11/18/2009	4	Yes						
12/9/2009	4	Yes						
1/6/2010	8	No						
3/24/2010	8	Yes						
9/22/2010	5	Yes						
10/26/2011	5	Yes						
12/28/2011	3	Yes						
5/30/2012	3	Yes						

One pump from the grease gun delivers approximately 1 milliliter of grease

11 British American Boulevard, Airport Park, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table August 29, 2012

DATE: August 29, 2012 DAYWednesday TECHNICIAN; Marc Morgenstern

Weather: Sunny, 80°F

GWTT EQUIPMENT INFORMATION

B-201 STATUS: ON OFF HOURS: 36.598.3 - run 34.75 days total between since last monitoring 7-25-12

			DI 202							AP	101	AP	102	AP	103	
-	IIN∕I⊫ I	PI 201 in w.c.	in. W.C.	PI 203 in. w.c.	FI 201 scfm	TI 201 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocit y ft/min	Temp deg F		Temp deg F	Velocit y ft/min	Temp deg F	Comments
	7:05	40	60	20	256	159	115	180	100	1,308	77.8	1,221	78.2	2,461	77.4	
F																
H																
H																
F																

B-202 STATUS: ON OFF HOURS: 198

		PI 204 in w.c.	PI 205 in.	PI 206 in. w.c.	FI 202 scfm	TI 202 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	AP Velocit		AP Velocit	Temp	AP Velocit		Comments
Ī	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
ŀ																
F																
Ī																
ţ																

TECHNICIAN:Marc Morgenstern DATE: _August 29, 2012__ DAY<u>Wednesday</u>

Weather: Sunny, 80°F

NEW VMP WELL INFORMATION

VMP-1		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
7:52	0.0	0.10
	_	

C	44.

VMP-2		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
7:47	0.0	0.40

Λ.	 	 _	

VMP-3		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
7:50	0.0	0.01

Comments:

VMP-4									
TIME	WH VOC ppm	WH VAC. In. w.c.							
7:52	0.0	0.01							

l							
I							
ı							
	Comments:						

VMP-5		
TIME	WH VOC ppm	WH VAC. In. w.c.
7:55	0.0	0.46
Commen	ts:	

SS-1				VMP-6		
TIME	WH VOC	WH VAC In. W.C.		TIME	WH VOC	WH VAC In. W.C.
6:52	0.0	0.09		6:53	0.0	0.14
SS-2				VMP-7		
TIME	WH VOC	WH VAC In. W.C.		TIME	WH VOC	WH VAC In. W.C.
6:53	0.0	0.83		6:55	0.0	0.14
SS-3]			
TIME	WH VOC	WH VAC In. W.C.	Commen	ts:		
6:56	0.0	0.13				
6:56	0.0					

DATE: August 29, 2012 DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Sunny, 80°F

NEW SVE WELL INFORMATION

SVE-7S

	WH	WH	WH	AP
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
7:12	184	6	573	72.1

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-7D									
	WH	WH	WH	AP					
TIME	VOC	VAC	VELO	TEMP					
	ppm	in. w.c.	CITY	deg F					
7:10	94.5	6	960	68.5					

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8S

	WH			AP
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
7:16	8.6	9	422	74.8

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8D

	WH	WH	WH	AP	
TIME	VOC	VAC	VELO	TEMP	
	ppm	in. w.c.	CITY	deg F	
7:14	16.4	6	817	72.9	

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-9S

	WH	WH	WH	AP
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
7:18	11.2	17	286	74.6
·				

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-10S

	WH	WH	WH	AP
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
7:20	10.6	15	420	72.8

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

AIR SAMPLING INFORMATION

Was sampling completed today:

No

Time	Canister ID /	Sample ID /	Start Pressure	End Pressure	
8:05	1681/5042	GWTT Influent	-28	-5	
8:08	1884/5017	GWTT Effluent	-29	-5	
8:10	1379/5041	URS Influent	-30	-4	
8:15	1294/5016	URS Effluent	-28	-5	

Yes

ı	Time	Canister ID /	Sample ID /	Start Pressure	End Pressure
l					
ı					

Comments:

DATE: August 29, 2012 DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Sunny, 80°F

URS EQUIPMENT INFORMATION

RB-1	STAT		<u>ON</u>	OFF		HOURS: 36,670.5 - run 23.50 days total since last monitoring - 7-25						
TIME	SVE-1	SVE-	SVE-	P-101	P-102	P-103	SVE-1	SVE-	SVE-	T-1	F-1	Comments:
	in wc	6D	6S in	in wc	in wc	in w.c	ft/min	6D	65	dea F	scfm	
7:39	12	26	17	32	39	17.8	998	1,843	969	113	158	

EXISTING URS WELL INFORMATION

URS S\	URS SVE-1											
	WH	WH										
TIME	VOC	VAC.										
	ppm	In. w.c.										
7:30	28.1	16										

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SV	E-6D

TIME	WH VOC ppm	WH VAC. In. w.c.
7:32	25.9	13

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6S

TIME	WH VOC ppm	WH VAC. In. w.c.
7:33	43.8	16

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

DATE: August 29, 2012 DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Sunny, 80°F

GAC ADSORBERS

GWTT System

					GAC LEAD	GAC LAG EFF/STACK	Comments:
7:55	146	274	<0	44.5	0.6	0.0	Readings
							taken directly
7:56				43.1	0.1	0.0	Readings taken from
							Tedlar air Bag

URS System

TIME	GAC LEAD	GAC LEAD EFF	GAC LAG	Comments:
7:59	98.2	0.0	0.0	Readings taken directly from sample port.
7:59	96.3	0.0	0.0	Readings taken from Tedlar Bag.
				-

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Ve	elocit GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concen-	tratio cf/min: Cubic Feet Per Minute (flow r
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

GWTT system shut down at 8:50 for carbon change out on Lead GAC # 1. System restarted at 11:40. New Lead is GAC #

Autodialer Call Received	Respons e Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date : <u>38,924.26</u> Hours Condensate in K/O Drum: <u>0</u> Gallons

Which is the Lead Absorber? GAC 1 or GAC 2
Dilution: Open or Closed ______%

System Notes

System had repeated high KO alarms starting August 17, 2012. After three (3) alarms, per CDM, the system remained off until

Autodialer Call Received	Respons e Date	System Counter Reading	Alarm Mode	Restart Time
8/17/2012	######	36,663.9	High KO Alarm	15:14
8/20/2012	######	36,666.2	High KO Alarm	10:51
8/21/2012	######	36,669.8	High KO Alarm	6:50

Cumulative Hours To Date: <u>38,248.78</u> Hours Condensate in K/O Drum: <u>3.5</u> Gallons

Which is the Lead Absorber? GAC 1
Dilution: Open or Closed 9

PREFERRED ENVIRONMENTAL SERVICES

Merrick Avenue - North Merrick, New York 11566

Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table September 26, 2012

DATE: September 26, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Overcast, 65°F

GWTT EQUIPMENT INFORMATION

B-201 STATUS: ON HOURS: 37,267.1 - run 27.87 days total between since last monitoring 8-29-12

		DI 000							AF	P 101	AP	102	AF	P 103	
	PI 201 in w.c.		PI 203 in. w.c.			FI 101 cf/min				Temp deg F	Velocit y ft/min	Temp deg F	Velocit y ft/min	Temp deg F	Comments
6:50	40	60	22	256	160	120	180	110	1,737	77.3	1,014	78.0	3,411	78.2	

B-202 STATUS: ON <u>OFF</u> HOURS: 198

	PI 204	PI 205	PI 206	FI 202	TI 202	FI 101	FI 102	FI 103	AF	101	AP	102	AF	103	_
TIME	in w.c.	in.	in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocit	7 101 Temp	Velocit	Temp	Velocit	Temp	Comments
NA	NA	WA.	NA	NA	NA	NA	NA	NA	ΝA	degal	ΝÃ	deg F	ΝÃ	deg F	

DATE: September 26, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Overcast, 65°F

NEW VMP WELL INFORMATION

VMP-1										
	WH	WH								
TIME	VOC	VAC.								
	ppm	In. w.c.								
7:40	0.0	0.15								
Commen	Comments:									

VMP-2						
	WH	WH				
TIME	VOC	VAC.				
	ppm	In. w.c.				
7:30	0.0	0.46				
Comments:						

VMP	-3				
TIM	Е	WH VOC ppm	WH VAC. In. w.c.		
7:3	2	0.0	0.03		
Comments:					

VMP-4	VMP-4						
	WH	WH					
TIME	VOC	VAC.					
	ppm	In. w.c.					
7:34	0.0	0.01					
Comments:							

	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c
7:36	0.0	0.31

SS-1			_
TIME	WH VOC	WH	
8:30	0.0	0.1	
SS-2			_
TIME	WH VOC	WH VAC In.	
		W.C.	
8:31	0.0	0.92	
SS-3			='
TIME	WH VOC	WH VAC	
		In. W.C.	Comments
8:35	0.0	0.36	

VMP-6		
TIME	WH VOC	WH
8:32	0.0	0.16
VMP-7		
		WH
TIME	WH VOC	In.
		W.C.
8:33	0.0	0.1

DATE: September 26, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Overcast, 65°F

NEW SVE WELL INFORMATION

SVE-7S

	WH	WH	WH	AP	
TIME	VOC	VAC	VELO	TEMP	
	ppm	in. w.c.	CITY	deg F	
7:11	102	6	733	69.4	

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-7E)			
	WH	WH	WH AP	
TIME	VOC	VAC	VELOCIT	TEMP
	ppm	in. w.c.	Y ft/min	deg F
7:10	71.3	5	497	67.2
Comments: Valve at well head is open 100%				

Comments: Valve at well head is open 10 VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8S

	WH VOC	WH	WH AP		
TIME		VAC	VELO	TEMP	
	ppm	in. w.c.	CITY	deg F	
7:15	2.1	10	329	68.7	

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8D

	WH	WH	WH AP	
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
7:13	10.2	6	401	69.2

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-9S

	WH	WH	WH AP	
TIME	VOC	VAC	VELOCIT	TEMP
	ppm	in. w.c.	Y ft/min	deg F
7:17	12.6	15	399	68.9

Comments: Valve at well head is open 100%.
VOC screening conducted utilizing Zefon
diaphragm sampling pump.

SVE-10S

ſ		WH VOC	WH	WH	AP
	TIME	ppm	VAC	VELO	TEMP
l		ppiii	in. w.c.	CITY	deg F
ſ	7:20	10.1	16	289	69.3

Comments: Valve at well head is open 100%.
VOC screening conducted utilizing Zefon
diaphragm sampling pump.

AIR SAMPLING INFORMATION

Was sampling completed today: Yes

Time	Canister ID /	Sample ID /	Start Pressure	End Pressure
8:10	1480/5041	GWTT Influent	-30	-5
8:14	1098/5024	GWTT Effluent	-28	-4
8:17	1518/5042	URS Influent	-28	-5
8:20	1621/5023	URS Effluent	-29	-4

Time	Canister ID /	Sample ID /	Start Pressure	End Pressure

Comments:

DATE: September 26, 2012 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Overcast, 65°F

URS EQUIPMENT INFORMATION

RB-1	STAT	rus:	<u>ON</u>	OFF	HOURS: 37,341.9 - run 27.98 days total since last monitoring - 8-29-12							
TIME	SVE-1	SVE-	SVE-	P-101	P-102	P-103	SVE-1	SVE-6D	SVE-	T-1	F-1	Comments:
	in w.c	6D	6S in	in w.c	in w.c	in w.c	ft/min	ft/min	68	dea F	scfm	
7:00	14	24	17	33	38	19.1	1,212	1,844	1,129	120	154	

EXISTING URS WELL INFORMATION

URS SVE-1

TIME	VOC	WH VAC.
	ppm	In. w.c.
7:05	10.2	16

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6D

TIME	WH VOC ppm	WH VAC. In. w.c.
7:06	24.3	14
~	to: VOC	

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6S

TIME	WH VOC ppm	WH VAC. In. w.c.
7:07	16.1	18

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

DATE: September 26, 2012 Weather: Overcast, 65°F

GAC ADSORBERS

DAY: Wednesday

GWIIS	ystem						
TIME	TI 203	FI 203	PI 210	GAC		GAC LAG	0
TIME			in. w.c.	LEAD	LEAD	EFF/STACK	Comments:
	ucg i	01/111111	III. W.O.	INF	EFF	ppm	
7:50	146	274	<0	37.2	0.0	0.0	Readings
							taken directly
7:50				38.1	0.0	0.0	Readings
							taken from
							Tedlar air Bag

URS System

0.10 0,0				
TIME	GAC LEAD INF	GAC LEAD FFF	GAC LAG FFF/STACK	Comments:
7:53	31.5	0.0	0.0	Readings taken directly from sample port.
7:54	30.1	0.0	0.0	Readings taken from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point	(VelocitGAC: Granular Activated Carbon
VOC: Volatile Organic Compound conc	entratiocf/min: Cubic Feet Per Minute (flow
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold
VMP: Vapor Monitoring Point	

System Notes

Autodialer Call Received	Respon se Date	System Counter Reading	Alarm Mode	Restart Time

TECHNICIAN: Marc Morgenstern

Cumulative Hours To Date : 39,594.26 Hours
Condensate in K/O Drum: ___0 _ Gallons
Which is the Lead Absorber? _ GAC 1 _ Olution: Open or _ Closed

GAC 2

System Notes

Autodialer Call Received	Respon se Date	Alarm Mode	Restart Time

Cumulative Hours To Date: 39,485.95 Hours Condensate in K/O Drum: __0__Gallons Which is the Lead Absorber? GAC 1

Open or <u>Closed</u>

GAC 2

Amount Condensate Collected in 55 gallon drums to date: 726

Drums currently onsite for condensate collection: <u>5</u> Drums In Use: <u>4</u>

GWTT Blower Test Data for B-202			
Date	Test Length		
5/13/2009	18 Minutes		
12/9/2009	51 Minutes		
12/24/2009	In Operation		
1/6/2010	Out of Operation		
4/14/2010	48 Minutes		
9/22/2010	58 Minutes		
1/26/2011	60 Minutes		
10/26/2011	60 Minutes		

Dilution:

During Testing, Filters and KO Drums are checked on

GWTT Blower Lubrication Data (B-201)							
DATE	No. Pumps from Grease Gun	Was Noise					
10/7/2009	3	Yes					
10/21/2009	4	Yes					
11/18/2009	4	Yes					
12/9/2009	4	Yes					
1/6/2010	8	No					
3/24/2010	8	Yes					
9/22/2010	5	Yes					
10/26/2011	5	Yes					
12/28/2011	3	Yes					
5/30/2012	3	Yes					

One pump from the grease gun delivers approximately 1 milliliter of

11 British American Boulevard, Suite 200, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

PREFERRED ENVIRONMENTAL SERVICES

323 Merrick Avenue - North Merrick, New York 11566 Tel: (516) 546-1100 Fax: (516) 213-8156

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table November 28, 2012

DATE: November 28, 2012 DAY:Wednesday TECHNICIAN: Dave Kahn

Weather: Partly Cloudy, 37°F

GWTT EQUIPMENT INFORMATION

B-201 STATUS: ON OFF HOURS: 38,771 - run 62.2 days total between since last monitoring 9-26-12

		DI 000								AP 101		AP 1	02	AP	103	
TIME	PI 201 in w.c.	in. w.c.	PI 203 in. w.c.	FI 201 scfm	TI 201 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp	deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
7:30	52	68	22	231	128	70	160	120	>15,000	50.1		>15,000	49.2	>15,000	46.7	

B-202 STATUS: ON <u>OFF</u> HOURS: 198

		PI 205	B	=:						AP 101		AP 1	02	AP	103	
TIME	PI 204	in.	PI 206	FI 202	11 202	FI 101	FI 102	FI 103	Velocity	Tomp	dog F	Velocity	Temp	Velocity	Temp	Comments
	III W.C.	w.c.	III. W.C.	SCIIII	deg F	CI/IIIIII	Ci/IIIIII	Ci/IIIIII	ft/min	AP 101 Temp	deg F	ft/min	deg F	ft/min	deg F	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	

DATE: November 28, 2012

DAY:Wednesday

TECHNICIAN: Dave Kahn

Weather: Partly Cloudy, 37°F

NEW VMP WELL INFORMATION

VMP-1		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
8:27	0.0	0.16

VMP-2		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
8:35	0.0	0.19
Commer	its:	

VMP-3		
TIME	WH VOC ppm	WH VAC. In. w.c.
8:39	0.0	0.02
Comments	:	

VMP-4		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c
8:41	0.0	0.03
Commen	ts:	

VMP-5							
	WH	WH					
TIME	VOC	VAC.					
	maa	In. w.c.					
8:32	0.0	0.32					
Comments:							

SS-1			
TIME	WH VOC	WH VAC	
0.44583	0.0	0.13	
SS-2			
TIME	WH VOC	WH VAC In. W.C.	
7:23	0.0	0.97	
SS-3			<u>.</u>
TIME	WH VOC	WH VAC In. W.C.	
7:28	0.0	0.27	Comments:

VIVIP-6		
TIME	WH VOC	WH
7:25	0.0	0.1
VMP-7		
TIME	WH VOC	WH VAC In. W.C.
7:27	0.0	0.1

DATE: November 28, 2012 TECHNICIAN: Dave Kahn DAY:Wednesday

Weather: Partly Cloudy, 37°F

NEW SVE WELL INFORMATION

SVE-7S

	WH	WH	WH				
TIME	VOC	VAC	VELO	TEMP			
	ppm	in. w.c.	CITY	deg F			
8:16	426	11	1,219	41.8			

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

- 1	SVE-/L	,				
ſ		WH W		WH WH AP		
	TIME	VOC	VAC	VELOCITY ft/min	TEMP	
ı		ppm	in. w.c.	VELOCITI IVIIIII	deg F	
ſ	8:19	91.5	5	753	51.9	
ı						
I						
ı						

Comments: Valve at well head is open 25%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8S

012-00									
	WH VOC	WH	WH						
TIME		VAC	VELO	TEMP					
	ppm	in. w.c.	CITY	deg F					
8:13	3.2	6	877	44.7					

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8D

	WH	WH	WH	H AP		
TIME	VOC	VAC	VELO	TEMP		
	ppm	in. w.c.	CITY	deg F		
8:10	16.4	5	540	51.2		

Comments: Valve at well head is open 100%.
VOC screening conducted utilizing Zefon
diaphragm sampling pump.

SVE-9S

	WH	WH	WH AP	
TIME	VOC	VAC	VELOCITY ft/min	TEMP
	ppm	in. w.c.	VELOCITY IVMIN	deg F
8:07	7.2	12	295	44

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-10S

	WH VOC	WH	WH	AP
TIME	VAC:		VELO	TEMP
	ppm	in. w.c.	CITY	deg F
8:02	16.2	14	289	43.6
1				

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

AIR SAMPLING INFORMATION

Was sampling completed today:

No

Time	Canister ID /	Sample ID /	Start Pressure	End Pressure
7:07	1147/4012	GWTT Effluent	-29	-5
7:13	1882/4017	URS Effluent	-29	-4
7:17	1397/4001	URS Influent	-27	-5
7:20	1524/4002	GWTT Influent	-22	-4

Yes

Comments:

	,			
Time	Canister ID /	Sample ID /	Start Pressure	End Pressure

DATE: November 28, 2012 DAY: Wednesday TECHNICIAN: Dave Kahn

Weather: Partly Cloudy, 37°F

URS EQUIPMENT INFORMATION

RB-1	STA	rus:	<u>ON</u>	OFF	HOURS: 38,389.8 - run 43.66 days total since last monitoring - 9-26-12							
TIME	SVE-1	SVE-	SVE-	P-101	P-102	P-103	SVE-1	SVE-6D ft/min	SVE-6S	T-1	F-1	Comments:
	in. w.c.	6D	6S in.	in. w.c.	in. w.c.	in. w.c.	ft/min	012 02 1011111	ft/min	dea F	scfm	
7:35	15	25	16	34	38	18.8	>15,000	7,844	602	96	154	SVE-1

EXISTING URS WELL INFORMATION

URS SVE-1	

TIME	WH VOC ppm	WH VAC. In. w.c.
8:47	7.3	8-11
-		

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6D

UKSSI	/ L-0D	
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
8:45	37.4	15
_		

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-65

WH	WH
VOC	VAC.
ppm	In. w.c.
22.4	18
	VOC ppm 22.4

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

TECHNICIAN: Dave Kahn DATE: November 28, 2012 DAY:Wednesday

Weather: Partly Cloudy, 37°F

GAC ADSORBERS

GWTT System

TIME			PI 210 in. w.c.		GAC LEAD EFF	GAC LAG EFF/STACK ppm	Comments:
7:41	120	265	<0	72.1	0.0	0.0	Readings taken
							directly from
							sample port
7:55	-	-	-	64.9	0.0	0.0	Readings taken from Tedlar air
							Bag

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK	Comments:
7:51	20.1	0.0	0.0	Readings taken directly from sample port.
7:55	22.4	0.0	0.0	Readings taken from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point	(VelocitGAC: Granular Activated Carbon
VOC: Volatile Organic Compound cond	centratic of/min: Cubic Feet Per Minute (flow
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction VMP: Vapor Monitoring Point	AP: Anemometer Point (at manifole

System Notes

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date : 39.594.26 Hours
Condensate in K/O Drum: 11 Gallons
Which is the Lead Absorber? GAC 1 GAC 2 Dilution: Open or <u>Closed</u>

System Notes

Carbon c/o on lead GAC#2, new lead is GAC#1- System restarted at 2.40

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 39,485.95_Hours

Condensate in K/O Drum: __0_Gallons
Which is the Lead Absorber? GAC 1
Dilution: Open or <u>Closed</u>

GAC 2

Amount Condensate Collected in 55 gallon drums to date: 726.5 Drums currently onsite for condensate collection: _5 Drums In Use: _

GWTT Blower Test Data for B-202						
Date Test Length						
5/13/2009	18 Minutes					
12/9/2009	51 Minutes					
12/24/2009	In Operation					
1/6/2010	Out of Operation					
4/14/2010	48 Minutes					
9/22/2010	58 Minutes					
1/26/2011	60 Minutes					
10/26/2011	60 Minutes					

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201							
DATE	No. Pumps from Grease Gun	Was Noise					
10/7/2009	3	Yes					
10/21/2009	4	Yes					
11/18/2009	4	Yes					
12/9/2009	4	Yes					
1/6/2010	8	No					
3/24/2010	8	Yes					
9/22/2010	5	Yes					
10/26/2011	5	Yes					
12/28/2011	3	Yes					
5/30/2012	3	Yes					

One pump from the grease gun delivers approximately 1 milliliter of

KLIEGMAN BROTHERS OU #1 Contract No. D007621, Site No. 2-41-031 Monitoring Table December 26, 2012

DATE: December 26, 2012 DAYWednesday TECHNICIAN:Dave Kahn

Weather: Partly Cloudy, 39°F

GWTT EQUIPMENT INFORMATION

B-201 STATUS: ON OFF HOURS: 39,447.1 - run 28.1 days total between since last monitoring 11-28-12

		D								AP 101		AP 1	02	AP	103	
TIME	PI 201 in w.c.	in. w.c.	PI 203 in. w.c.	FI 201 scfm	TI 201 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocity ft/min	Temp	deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
8:20	50	66	23	244	128	60	120	135	1,289	Ę	50.5	11,391	43.8	3,782	47.6	

B-202 STATUS: ON OFF HOURS: 198

	D1 004	PI 205	D	E1 000	T 1 000			E. 400		AP 10	1	AP 1	02	AP	103	
TIME	PI 204 in w.c.	in. w.c.	PI 206 in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	Velocity ft/min	Temp	deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	

DATE: Decmeber 26, 2012 DAYWe

DAY<u>Wednesday</u>

TECHNICIAN:Dave Kahn

Weather: Partly Cloudy, 39°F

NEW VMP WELL INFORMATION

VMP-1		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
8:34	0.0	0.16
Commen	its:	

VMP-2						
	WH	WH				
TIME	VOC	VAC.				
	ppm	In. w.c.				
8:40	0.0	0.21				
Comments:						

VMP-3		
TIME	WH VOC ppm	WH VAC. In. w.c
8:43	0.0	0.04

V	MP-4		
		WH	WH
1	IME	VOC	VAC.
		mag	In. w.c.
- 1	8:46	0.0	0.02
Co	ommen	its:	

VMP-	5		
T13.41	_ [WH	WH
TIM	=	VOC	VAC.
	_	ppm	In. w.c.
8:37	7	0.0	0.32
Comm	ent	s:	

SS-1		
TIME	WH VOC	WH VA
NA	NA	NA
SS-2		
TIME	WH VOC	WH VA
TIIVIL	WIT VOC	In. W.C
NA	NA	NA
SS-3		
TIME	WH VOC	WH VA

TIME	WH VOC	WH VAC
NA	NA	NA
VMP-7		
TIME	WH VOC	WH VAC
TIIVIL	WIII VOC	In. W.C.
NA	NA	NA
	•	

TIME	WH VOC	WH VAC In. W.C.	Comments:
NA	NA		as tenants h

Comments: No access to interior of building as tenants have moved out.

VMP-6

DATE: December 26, 2012 DAYWednesday TECHNICIAN:Dave Kahn

Weather: Partly Cloudy, 39°F

NEW SVE WELL INFORMATION

SVE-7S	

	WH	WH	WH	AP
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
9:11	355	9	216	45.3

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-7D

	WH	WH	WH AP	
TIME	VOC	VAC in.	VELOCITY Masia	TEMP
	ppm	w.c.	VELOCITY ft/min	deg F
9:18	84.3	4	2,837	50.8

Comments: Valve at well head is open 25%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8S

TIME	WH VOC	WH VAC in. w.c.	VELO CITY	H AP TEMP deg F
9:04	0.5	6	973	42.2

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-8D

	WH	WH	WH	AP
TIME	VOC	VAC	VELO	TEMP
	ppm	in. w.c.	CITY	deg F
9:00	10.0	4	387	51.6

Comments: Valve at well head is open 100%.
VOC screening conducted utilizing Zefon
diaphragm sampling pump.

SVE-9S

	WH	WH	WH AP	
TIME	VOC	VAC in.	VELOCITY ft/min	TEMP
	ppm	w.c.	VELOCITY IVIIIII	deg F
8:55	5.5	14	449	42.4

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-10S

		WH VOC	WH		'H AP
T	IME	ppm	VAC	VELO	TEMP
		ppiii	in. w.c.	CITY	deg F
8	3:50	13.1	16	224	43.1

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling

AIR SAMPLING INFORMATION

Was sampling completed today: Yes

No

Time	Canister ID /	Sample ID /	Start Pressure	End Pressure
8:03	1353/5046	GWTT Influent	-25	-4
8:05	1362/5047	URS Influent	-25	-4
8:07	1123/5049	GWTT Effluent	-26	-4
8:10	1119/5048	URS Effluent	-26	-4

Comments:

Ti	me	Canister ID /	Sample ID /	Start Pressure	End Pressure

DATE: December 26, 2012 DAYWednesday TECHNICIAN:Dave Kahn

Weather: Partly Cloudy, 39°F

URS EQUIPMENT INFORMATION

RB-1	STAT	US:	<u>ON</u>	OFF		HOUR	S: <u>39,057</u>	'.1 - run 27.8 days t	otal since	last mo	onitoring	<u>- 11-28-12</u>
TIME	SVE-1	SVE-	SVE-	P-101	P-102	P-103	SVE-1	SVE-6D ft/min	SVE-6S	T-1	F-1	Comments:
	in. w.c.	6D	6S in.	in. w.c.	in. w.c.	in. w.c.	ft/min	OVE OF TOTAL	ft/min	dea F	scfm	
8:28	15	24	17	34	39	18.9	>15,000	1,547	3,905	99	168	SVE-1 Flow >15,000 ft/min due to water
												intake.
				1								

EXISTING URS WELL INFORMATION

URS SV	URS SVE-1					
	WH	WH				
TIME	VOC	VAC.				
	ppm	In. w.c.				
9:29	33.0	8-11				

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump. WH VAC. 8-11 in W.C. due to water intake.

TIME	WH	WH VAC.
	ppm	In. w.c.
9:25	14.9	13

URS SVE-6D

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6S		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
9:26	35.7	18

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

DATE: December 26, 2012 DAYWednesday TECHNICIAN:Dave Kahn

Weather: Partly Cloudy, 39°F

GAC ADSORBERS

GWTT System

TIME	TI 203 deg F	FI 203 cf/min	PI 210 in. w.c.		GAC LEAD EFF	GAC LAG EFF/STACK ppm	Comments:
9:40	114	270	<0	61.4	0.0	0.0	Readings taken
							directly from
							sample port
9:44	-	-	-	58.7	0.0	0.0	Readings taken from Tedlar air
							Bag

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK	Comments:
9:48	25	0.0	0.0	Readings taken directly from sample port.
9:51	24.1	0.0	0.0	Readings taken
		0.0	0.0	from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point	(Velocit GAC: Granular Activated Carbon
VOC: Volatile Organic Compound cond	entratio cf/min: Cubic Feet Per Minute (flow
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold
VMP: Vapor Monitoring Point	,

System Notes

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

 Cumulative Hours To Date : 41,772,94
 Hours To Date : 41,772,94

GAC 2

<u>System Notes</u>
System shut down at 9:55 to drain knockout drum. System restarted at 10:05

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date: 41.213.99 Hours
Condensate in K/O Drum: 6 Gallons
Which is the Lead Absorber? GAC 1
Dilution: Open or Closed

GAC 2

Amount Condensate Collected in 55 gallon drums to date: 743.5

Drums currently onsite for condensate collection: _5 Drums In Use: _

GWTT Blower Test Data for B-202					
Date	Test Length				
5/13/2009	18 Minutes				
12/9/2009	51 Minutes				
12/24/2009	In Operation				
1/6/2010	Out of Operation				
4/14/2010	48 Minutes				
9/22/2010	58 Minutes				
1/26/2011	60 Minutes				
10/26/2011	60 Minutes				

During Testing, Filters and KO Drums are checked on Both Systems

GWTT Blower Lubrication Data (B-201)						
DATE	No. Pumps from Grease Gun	Was Noise Alleviated?				
10/7/2009	3	Yes				
10/21/2009	4	Yes				
11/18/2009	4	Yes				
12/9/2009	4	Yes				
1/6/2010	8	No				
3/24/2010	8	Yes				
9/22/2010	5	Yes				
10/26/2011	5	Yes				
12/28/2011	3	Yes				
5/30/2012	3	Yes				
12/26/2012	2	Yes				

One numn from the grease gun delivers

11 British American Boulevard, Suite 200, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

Contract No. D006547, Site No. 2-41-031 Monitoring Table January 30, 2013

DATE: January 30, 2013 DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Overcast, 52°F

GWTT EQUIPMENT INFORMATION

HOURS: 40,284.2 - run 34.9 days total between since last monitoring 12-26-12 B-201 STATUS: ON OFF

		DI 000					_		Al	P 101	AP 102		AP ·	103	
TIME	PI 201 in w.c.	in. w.c.	PI 203 in. w.c.	FI 201 scfm	TI 201 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocit y ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
6:05	50	68	25	256	125	60	110	120	2,114	55.0	6,532	52.6	4,197	55.3	
-															

B-202 STATUS: ON OFF HOURS: 198

	DI 004	PI 205	DI 000	FI 000	TI 000	EL 404	EL 400	EL 400	, Al	P 101	AP 102		AP	103	
TIME	PI 204 in w.c.		in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	AF Velocit y		Velocity ft/min	Temp	Velocity	Temp	Comments
		W.C.			_				ft/min	deg F	· ·	deg F	ft/min	deg F	
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

DATE: January 30, 2013 DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Overcast, 52°F

NEW VMP WELL INFORMATION

VMP-1				
	WH	WH		
TIME	VOC	VAC.		
	ppm	In. w.c.		
6:40	0.0	0.14		
Comments:				

VMP-2				
	WH	WH		
TIME	VOC	VAC.		
	ppm	In. w.c.		
6:50	0.0	0.16		
Comments:				

VMP-3		
TIME	WH VOC	WH VAC. In. w.c.
6:55	0.0	0.05
Comments:		

VMP-4				
TIME	WH VOC ppm	WH VAC. In. w.c.		
6:44	0.0	0.01		
Comments:				

VMP-5		
TIME	WH VOC ppm	WH VAC. In. w.c.
6:46	0.0	0.40
Commen	ts:	

SS-1		
TIME	WH VOC	WH VAC In. W.C.
6:32	0.0	0.24
SS-2		
TIME	WH VOC	In W.C
6:30	0.0	0.43
SS-3		
TIME	WH VOC	WH VAC In. W.C.
6:25	0.0	0.10

VMP-6		
TIME	WH VOC	WH VAC In. W.C.
6:28	0.0	0.08
VMP-7		
TIME	WH VOC	V/AC
6:34	0.0	0.16
0.54		
0.54	0.0	0.10
0.34	0.0	0.10

DATE: <u>January 30, 2013</u> DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Overcast, 52°F

NEW SVE WELL INFORMATION

SVE-7S	;			
	WH	WH	\~WH	
TIME	VOC	VAC	CITY	TEMP
	ppm	in. w.c.	ft/min	deg F
7:59	108	9	433	50.4

Comments: Valve at well head is open 100%
VOC screening conducted utilizing Zefon
diaphraam compling nump

WH VOC ppm WH VAC WH AP TIME VELOCIT TEMP deg F Y ft/min 51.8 7:48 61.4 5 3,116

Commenter	Makin	at mall baa	dia anaa	2E0/	1/00	
Comments:	valve	at well flea	u is open	25%.	VUC	screening
conducted u	tilizina	Zefon diap	hraam sa	mpline	mua c	D.

SVE-8S				
TIME	WH VOC ppm	WH VAC in. w.c.	CITY ft/min	AP TEMP deg F
7:40	0.9	6	1,236	50.4

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

3 V E-0 D									
	WH	WH							

SVE-8D)						
	WH	WH	\″-₩H	AP			
TIME	VOC	VAC	CITY	TEMP			
	ppm	in. w.c.	ft/min	deg F			
7:34	8.6	4	202	51.9			
Comments: Valve at well head is open 100%.							

VOC screening conducted utilizing Zefon diaphragm sampling pump.

SVE-9S

SVE-7D

	WH	WH	WH AP			
TIME	VOC	VAC	VELOCIT	TEMP	deg F	
	ppm	in. w.c.	Y ft/min	I EIVIF	ueg r	
7:28	4.6	13	550	51	.8	

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

SV/	F-1	ne

TIME	WH VOC ppm	WH VAC in. w.c.	VELO CITY	AP TEMP deg F
7:22	14.4	16	503	51.6

Comments: Valve at well head is open 100%. VOC screening conducted utilizing Zefon diaphragm sampling pump.

AIR SAMPLING INFORMATION

Was sampling completed today: Yes

No

	0	EI D
	Start Pressure	Ena Plessure
Ц	("HC)	("HC)
	\-26'	-5
_	-26	-4
	-26	-5

		. —		
	Canister ID /	Onmole ID /	Olari Brassa	EI D
Time		Sample ID /	Start Pressure	End Pressure
	Pressure	CANTIFIER SIZAL	("HG) -26	("HG)
8:10	1013/5033	/ 61	`-26 ′	`-5'
8:15	1162/5034	URS Effluent /	-26	-4
7:10	1330/5037	SVE-1 / 6L	-26	-5
7:15	1354/5050	SVE-6D/3L	-25	-5
7:18	1351/5051	SVE-6S / 3L	-28	-5
7:22	1366/5049	SVE-10S / 3L	-26	-4
Commer	nte:			

	Conjutor ID / Drossouro	Complet ID / Conjeter		
Time	Cause ID	Sizo	Start Pressure	End Pressure
7:28	137175048	SVE-95 / 3L	-25	-5
7:34	1369/5047	SVE-8D / 3L	-25	-4
7:46	1363/5046	SVE-8S / 3L	-25	-4
7:48	1379/5053	SVE-7D / 3L	-26	-4
7:59	1374/5052	SVE-7S / 3L	-25	-4

DATE: January 30, 2013 DAYWednesday TECHNICIAN:Marc Morgenstern

Weather: Overcast, 52°F

URS EQUIPMENT INFORMATION

RB-1	STAT	US:	ON	OFF		HOUR	RS: 39,66	88.0 - run 2	5 days total since I	ast monit	oring - 12-2	<u>26-12</u>
TIME	SVE-1 in. w.c.	SVE- 6D					SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
6:15	15	25	15	34	40	18.6	>15,000	5,154	8,926	105	168	SVE-1 Flow >15,000 ft/min due to water
												intake

EXISTING URS WELL INFORMATION

URS SVE-1						
	WH	WH				
TIME	VOC	VAC.				
	ppm	In. w.c.				
7:10	24.0	8-11				
-						

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump. WH VAC.

URS S\	/E-6D	
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
7:15	20.1	12
Camman	to: VOC	

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-	6S	
TIME	WH VOC ppm	WH VAC. In.
		W.C.
7:18	32.4	18
Commente:	VOC ecreening conduc	naizilitu hat

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

DATE: <u>January 30, 2013</u> DAYWednesday

TECHNICIAN:Marc Morgenstern

Weather: Overcast, 52°F

011110	11 Oystem												
TIME			PI 210 in. w.c.		GAC LEAD EFF	GAC LAG EFF/STACK ppm	Comments:						
			_										
8:10	116	270	<0	45.4	0.0	0.0	Readings						
							taken directly						
							from sample						
8:12				43.0	0.0	0.0	Readings						
0.12	-	-	-	43.0	0.0	0.0	taken from						
							Tedlar air Bag						

URS System

ORO Oya	eteini .			
TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK	Comments:
8:15	14.3	0.0	0.0	Readings taken directly from sample port.
8:18	14.8	0.0	0.0	Readings taken
0.10	14.0	0.0	0.0	from Tedlar Bag.

WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentratio	cf/min: Cubic Feet Per Minute (flow r
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

GAC ADSORBERS

System Notes
System shut down at 9:00 for carbon change out on Lead GAC # 1. System restarted at 11:10. New Lead is GAC # 2.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

 $\begin{array}{lll} \text{Cumulative Hours To Date}: & \underline{42.610.78}_\text{Hours} \\ \text{Condensate in K/O Drum:} & \underline{5}_\text{ Gallons} \\ \text{Which is the Lead Absorber?} & \text{GAC 1} & \text{Condensate in K/O Drum:} \\ \end{array}$

GAC 2 Open or <u>Closed</u>

 $\label{eq:SystemNotes} \underline{\text{System Notes}}$ System shut down at 9:00 for carbon change out on Lead GAC # 1. System restarted at 11:10. New Lead is GAC # 2.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
12/31/2013	1/2/2013	39,188.7	Level	13:00
1/5/2013	1/7/2013	39,257.6	Level	11:35
1/17/2013	1/19/2013	39,491.8	Level	8:22
1/23/2013	1/24/2013	39,580.2	Level	10:35
1/26/2013	1/28/2013	39,625.3	Level	11:56

 Cumulative Hours To Date:
 41,823.63
 Hours

 Condensate in K/O Drum:
 6
 Gallons

 Which is the Lead Absorber?
 GAC 1
 Object

 Dilution:
 Open
 or
 Closed

GAC 2

Amount Condensate Collected in 55 gallon drums to date: 993.5

Drums currently onsite for condensate collection: _5 Drums In Use: __1_

GWTT Blower Test Data for B-202							
Date	Test Length						
5/13/2009	18 Minutes						
12/9/2009	51 Minutes						
12/24/2009	In Operation						
1/6/2010	Out of Operation						
4/14/2010	48 Minutes						
9/22/2010	58 Minutes						
1/26/2011	60 Minutes						

GWTT Blower Lubrication Data (B-201)								
DATE	No. Pumps from Grease Gun	Was Noise Alleviated						
10/7/2009	3	Yes						
10/21/2009	4	Yes						
11/18/2009	4	Yes						
12/9/2009	4	Yes						
1/6/2010	8	No						
3/24/2010	8	Yes						
9/22/2010	5	Yes						

11 British American Boulevard, Suite 200, Latham, NY 12110 tel: (518) 782-4500 fax: (518) 786-3810

KLIEGMAN BROTHERS OU #1 Contract No. D006547, Site No. 2-41-031 Monitoring Table February 27, 2013

DATE: February 27, 2013_ DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Rain, 45° F

GWTT EQUIPMENT INFORMATION

B-201 STATUS: ON OFF HOURS: 40,959.8 - run 28.15 days total between since last monitoring 1-30-2012

		DI 000							AF	P 101	AP 102		AP	103	
	PI 201 in w.c.	in. w.c.	PI 203 in. w.c.	FI 201 scfm	TI 201 deg F	FI 101 cf/min	FI 102 cf/min	FI 103 cf/min	Velocit y ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
11:55	50	66	25	256	128	80	120	140	6,154	53.9	10,306	53.2	4,007	55.1	

B-202 STATUS: ON OFF HOURS: 198

	DI 004	PI 205	DI 000	EL 000	TI 000	EL 404	EL 400	EL 400	, Al	² 101	AP 102		AP	103	
TIME	PI 204 in w.c.	in. w.c.	PI 206 in. w.c.	scfm	deg F	cf/min	cf/min	cf/min	y ft/min	Temp deg F	Velocity ft/min	Temp deg F	Velocity ft/min	Temp deg F	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

DATE: February 27, 2013 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Rain, 45° F

NEW VMP WELL INFORMATION

VMP-1		
	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
12:55	0.0	0.16

	WH	WH	
TIME	VOC	VAC.	
	ppm	In. w.c.	
12:55	0.0	0.16	
Comments:			

VMP-2		
TIME	WH VOC	WH VAC.
	ppm	In. w.c.
13:00	0.0	0.19
Commen	ts:	

VMP-3		
TIME	WH VOC	WH VAC. In. w.c.
13:05	0.0	0.05
Comments:		

WH VAC In. W.C. NA

NA

VMP-4	

TIME	WH VOC ppm	WH VAC. In. w.c.
12:58	0.0	0.03

mm	

R A	_

A IAIL -2		
TIME	WH VOC ppm	WH VAC. In. w.c.
13:02	0.0	0.48

nents:

SS-1			
	TIME	WH VOC	
	NA	NA	Ī
SS-2			
SS-2	TIME	WH VOC	
SS-2	TIME NA	WH VOC	L
SS-2			
SS-2 SS-3			

SS-3		
TIME	WH VOC	WH VAC In. W.C.
NA	NA	NA

VMP-6

• • • •		
		WH
TIME	WH VOC	VAC
IIIVIE	WH VOC	ln.
		W.C.
NA	NA	NA

VMP-/		
TIME	WH VOC	V/AC
NA	NA	NA

Comments: Interior vapor points were not accessible as access to building was not provided during O&M activities.

Table 2 - SVE Monitoring Summary Data 2012 Periodic Review Report

Kliegman Brothers Site OU1 - Site No. 2-41-031

TEMP dea F 53.7

DAY: What DEC Work Assignment #DQEZGANICIAN: Marc Morgenstern DATE: _February 27, 2013__ Weather: Rain, 45° F **NEW SVE WELL INFORMATION** SVE-7S SVE-7D

	WH	WH	WH	AP
TIME 12:50	VOC PIPOM	VAC in. s v.c.	CITY ft/min	TEMP 534 deg F

WH

in. w.c. 4

diaphragm sampling pump.

WH

VOC

	WH	WH	
TIME 12:44		VAC in. 5 y.c.	Y ft/min 4,892

s: Valve at well head is open 25%. VOC screening

			VE W H	AP
TIME	WH VOC	WH VAC	CITY	TEMP
12:40	ppm 1.9	in. w.c.	ft/804	deg F 52.9
		,	.,	
Comments:	alve at well h	lead is open	00%. VC	C
-corouning cor	luucted UtiliZi i	ту догоп агар	maym se	mpiing

pump.

SVE-8D

12:36

01/	_ ^	
s۷	E-9	ĸ

WH.	WH	

₩	
gF	
9	
00%.	

WH AP

VFLO

CI1976

ft/min

diaphragm sampling pump.

	WH	WH		WH AP
TIME	VOC	VAC		
12:28		in. 1/8 .c.	VELOCIT Y ft/min	ТЕМ Б 3.6deg F
Commer	ts: Valve	at well h	ead is open 1	00%. VOC screening

SVE-10S

			WH	AP
TIME		WH VAC	VELO	
12:20	ppm 19.6	in. w.c. 10	₩81v	TÆM₽
12.20	13.0	10	ft/min	deg F
			10111111	
				_
Comments:	/alve at well h	lead is open	00%. VC	C
screening cor	iducted utilizi	ig Zefon diap	hragm sa	mpling

pump.

AIR SAMPLING INFORMATION

Was sampling completed today: No

eleu louay.	162	

. Time .	Canister ID /	Sample ID /	Start Pressure	End Pressure
11110	Gauge ID	Canister Size GWTT Effluent	("HG)	("HG)
13:40 13:45	1237/5049	/ 6L	-26	-4
13:50	1517/5047	GW11 Influent	-26	-4
13:52	1225/5048 1354/5050	URS Effluent /	-26 -25	-5 -4
Commer	ts:			

-Time			Ctart Draggura	End Dressure
Timo	Canister ID / Pressure Gauge ID	Sample ID / Canister Size	Jian Fressure	End 1 1955ulf

DATE: February 27, 2013_ DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Rain, 45° F

URS EQUIPMENT INFORMATION

RB-1	STAT	TUS:	<u>ON</u>	OFF		HOU	RS: <u>40,</u> 1	<u> 115.2 - run</u>	18.6 days total sind	ce last mo	onitoring -	<u>1-30-2013</u>
TIME	SVE-1		_	-	-		_	SVE-6D	SVE-6S ft/min	T-1	_	Comments:
	in. w.c.	6D	6S in.	in. w.c.	in. w.c.	in. w.c.	ft/min	ft/min		deg F	scfm	
12:00	13	25	18	34	40	18.5	>15,000	>15,000	12,109	102	100	SVE-1 and SVE-6D Flow >15,000 ft/min due
												to water intake

EXISTING URS WELL INFORMATION

URS SVE-1

	WH	WH
TIME	VOC	VAC.
	ppm	In. w.c.
12:15	26.2	8-11

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump. WH VAC. 8-11 in W.C. due to water

URS SVE-6D

01100	OKS SVE-OD				
TIME	WH	WH VAC.			
	ppm	ln. w.c.			
12:13	6.2	13			

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

URS SVE-6S

	01001200						
TIME	WH VOC ppm	WH VAC. In. w.c.					
12:11	34.8	16					
	1/00	to I dil to a					

Comments: VOC screening conducted utilizing Zefon diaphragm sampling pump.

DATE: February 27, 2013_ DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Rain, 45° F

GWTT System

GWIIS	ystem						
TIME			PI 210 in. w.c.	LEAD	GAC LEAD	GAC LAG EFF/STACK	Comments:
	Ŭ			INF	EFF	ppm	
13:15	118	270	<0	36.2	0.0	0.0	Readings
							taken directly
							from sample
13:17	_	_	_	34.9	0.0	0.0	Readings
				0 110			taken from
							Tedlar air Bag

URS System

TIME	GAC LEAD INF	GAC LEAD EFF	GAC LAG EFF/STACK	Comments:
13:29	8.9	0.0	0.0	Readings taken directly from sample port.
13:30	8.8	0.0	0.0	Readings taken from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point	(VelocitGAC: Granular Activated Carbon
VOC: Volatile Organic Compound cond	centratiocf/min: Cubic Feet Per Minute (flow r
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

GAC ADSORBERS

System Notes

No Carbon Changeout Conducted.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time

Cumulative Hours To Date : <u>43,282.78</u> Hours Condensate in K/O Drum: <u>10</u> Gallons

Which is the Lead Absorber? GAC 1 or GAC 2

Dilution: Open or Closed %

System Notes

No Carbon Changeout Conducted.

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time
2/3/2013	2/4/2013	39,772.5	High KO	11:55
2/7/2013	2/7/2013	39,841.2	High KO	12:20
2/10/2013	2/11/2013	39,841.2	High KO	12:55
2/21/2013	2/22/2013	40,029.8	High KO	10:30
2/25/2013	2/27/2013	40,114.6	High KO	11:32

Cumulative Hours To Date: 42.254.83 Hours
Condensate in K/O Drum: 8 Gallons

Which is the Lead Absorber? GAC 1 or GAC 2
Dilution: Open or Closed %

Amount Condensate Collected in 55 gallon drums to date: $\underline{993.5}$

Drums currently onsite for condensate collection: 5 Drums In Use: ___1_

Date	Test Length
5/13/2009	18 Minutes
12/9/2009	51 Minutes
12/24/2009	In Operation
1/6/2010	Out of Operation
4/14/2010	48 Minutes
9/22/2010	58 Minutes
1/26/2011	60 Minutes
10/26/2011	60 Minutes
During Tes	ting, Filters and KO Drums are seked on Both Systems

GWTT Blower Lubrication Data (B-201)

DATE	No. Pumps from Grease Gun	Noise
10/7/2009	3	Yes
10/21/2009	4	Yes
11/18/2009	4	Yes
12/9/2009	4	Yes
1/6/2010	8	No
3/24/2010	8	Yes
9/22/2010	5	Yes
10/26/2011	5	Yes
12/28/2011	3	Yes
5/30/2012	3	Yes
12/26/2012	2	Yes
	irom the grease gun	
.,,,,	,	

323 Merrick Appropriate Magnick Wey York 11560 Nier 1510 745 H100 Francisco Se 150815

Monitoring Table March 27, 2013

DATE:	_March 27,	2013				DAY: V	Vednesday			TECHNICIAN:	Marc Morgen	stern			
Weathe	: Partly Cle	oudy, 48°F				_									
								GWTT EC	UIPMENT I	NFORMATIC	ON				
B-201	STAT	US: ON	OFF	F	HOURS: 41,6	627.6 - rı	un 27.83 da	ays total be	etween sinc	e last monit	oring 2-27-2	013			
	PI 201	PI 202_	PI 203	FI 201	TI 201	FI 101	FI 102	FI 103		101	AP			103	
TIME		in. w.c.		sefm	deg F		ef/min	cf/min	Velocity ft/min	Temp	Velocity ft/min	Temp	Velocity ft/min	Temp	Comments
8:40	50	66	25	256	130	80	120	150	1,294	deg F 56.6	6,433	deg F 55.9	5,014	deg F 56.2	Velocity readings for AP 101 and AP 102 lower than prior events.
															Will monitor closely.
															_
															_
															_
															-
B-202	STAT	US: ON	OFF	F	OURS: 198										
	PI 204	PI 205	PI 206	FI 202	TI 202	FI 404	FI 102	FI 103	AP	101	AP	102	AP	103	J
TIME	PI 204	PI 205	in. w.c.	ecfm	11 202 deg F	- FI 101 1 cf/min		ri 103 cf/min	Velocity	Temp	Velocity	Temp	Velocity	Temp	Comments
NA	NA	NA	NA	NA	NA	NA	NA	NA	ft/min NA	deg F NA	ft/min NA	deg F NA	ft/min NA	deg F NA	
INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	
															_
															_
															-
															-
							1								1

DATE: March 27, 2013 TECHNICIAN: Marc Morgenstern DAY: Wednesday

Weather: Partly Cloudy, 48°F

NEW VMP WELL INFORMATION

TIME	WH VOC ppm	WH VAC. In. w.c.
8:53	0.0	0.18
Comments:		

"	_	•	

VIVIP-2		
TIME	WH VOC ppm	WH VAC. In. w.c.
8:59	0.0	0.10
Comments:		

VMP-3		
TIME	WH VOC ppm	WH VAC. In. w.c.
9:05	0.0	0.03

Comments:

VMP-4

TIME	WH VOC	WH VAC. In. w.c.
8:55	0.0	0.01
0		

١.	,,		
V	41	V	

VMP-5			
TIME	WH VOC ppm	WH VAC. In. w.c.	
9:01	0.0	0.32	
Comments:			

Comments:

SS-1

TIME	WH VOC	WH VAC In. W.C.	
9:17	0.0	0.08	
SS-2			
		WH VAC	

WH VAC In. W.C. TIME WH VOC 9:15 0.0 0.22

55-3

33-3			
TIME	WH VOC	WH VAC In. W.C.	
9:11	0.0	0.22	

VMP-6

VIVII -O			
TIME	WH VOC	WH VAC In. W.C.	
9:13	0.0	0.15	

VMP-7				
TIME	WH VOC	WH VAC In. W.C.		
9:10	0.0	0.10		

Comments:

DATE: _March 27, 2013	DAY:	Wednesday	TECHNICIAN: I	Marc Morgenstern
Neather: Partly Cloudy, 48°F			<u>-</u>	
			NEW SVE WELL INFORMATION	

	WH VOC WH VA		WH	AP
TIME	DDM NOC	in. w.c.	VELOCITY	TEMP
	ppiii	III. W.O.	ft/min	deg F
9:54	143	8	1,222	63.1
			100%. VOC s	reening
conducted u	tilizing Zefon	diaphragm s	ampling pump.	

SVE-7D

	14/111/00	14/111/40	WH	AP
TIME	DDM DDM	WH VAC	VELOCITY	TEMP
	ppiii	III. W.O.	ft/min	deg F
9:50	49.5	6	1,575	62.2
			100%. VOC sc	reening
conducted u	tilizing Zefon	diaphragm sa	mpling pump.	
	•		•	

SVE-8S

	14/11/100	14/11/40	WH A	λP
TIME			VELOCITY	TEMP
	ррін	III. W.G.	ft/min	deg F
9:45	6.2	7	584	61.3
				ening
conducted ut	ilizing Zefon o	liaphragm sa	mpling pump.	
	9:45 Comments:	9:45 6.2 Comments: Valve at well	9:45 6.2 7 Comments: Valve at well head is open	TIME ppm in. w.c. VELOCITY ft/min

SVE-8D

	WILLY00	WH VOC WH VAC		AP
TIME		in. w.c.	VELOCITY	TEMP
	ppm	III. W.C.	ft/min	deg F
9:40	9.1	4	228	62.3
Comments:	Valve at wel	head is oper	100%. VOC s	reening
			ampling pump.	

SVE-9S

	WILLY00	WH VOC WH VAC		AP
TIME		in. w.c.	VELOCITY	TEMP
	ppm	III. W.C.	ft/min	deg F
9:33	10	10	843	61.9
			100%. VOC sc	eening
conducted u	tilizing Zefon	diaphragm sa	mpling pump.	

SVE-10S

	WILLY00	WH VOC WH VAC		AΡ
TIME			VELOCITY	TEMP
	ppm	in. w.c.	ft/min	deg F
9:25	20.2	20.2 10		62.8
Comments:	Valve at well	head is open	100%. VOC scre	ening
conducted ut	ilizing Zefon o	liaphragm sa	mpling pump.	

AIR SAMPLING INFORMATION

Was sampling completed today:

. .

Time	Canister ID / Pressure Gauge ID	Sample ID / Canister Size	Start Pressure ("HG)	End Pressure ("HG)
10:55	1247/5048	GWTT Effluent / 6L	-26	-5
11:00	1383/5047	GWTT Influent / 3L	-25	-5
11:10	1615/5049	URS Effluent / 6L	-28	-5
11:21	1378/5046	URS Influent / 3L	-28	-5
Commer	its:			

Time	Canister ID / Pressure Gauge ID	Sample ID / Canister Size	Start Pressure	End Pressure

DATE: _March 27,	2013				DAY: W	ednesday		-	FECHNICIAN:	Marc Morgen	stern		
Weather: Partly Cl	oudy, 48°F				_								
<u> </u>							URS EC	QUIPMENT IN	FORMATION				
	RB-1	STATUS:	ON O	FF	HOUF	RS: 40,670).5 - run 23	.14 days to	al since last	monitoring	- 2-27-201	3	
	TIME	SVE-1 in. w.c.	SVE-6D in. w.c.	SVE-6S in. w.c.	P-101 in. w.c.	P-102 in. w.c.	P-103 in. w.c.	SVE-1 ft/min	SVE-6D ft/min	SVE-6S ft/min	T-1 deg F	F-1 scfm	Comments:
	10:05	13	25	16	34	40	18.8	>15,000	>15,000	11,431	104	168	SVE-1 and SVE-6D Flow >15,000 ft/min due to water intake
							EXISTING	URS WELL I	NEORMATION	ļ			

IRS	

TIME	WH VOC	WH VAC.
10:30	21.8	10
		ng conducted
utilizing Zefo	n diaphragm	sampling

URS SVE-6D

TIME		WH VAC.
10:22	11.3	12
C		
conducted	s: VOC scre utilizing Zef sampling p	on

URS SVE-6S

TIME	WH VOC	WH VAC.
10:18	33.2	16
Comments: V	DC screening	conducted
utilizing Zefon		

DATE: March 27, 2013 DAY: Wednesday TECHNICIAN: Marc Morgenstern

Weather: Partly Cloudy, 48°F

GAC ADSORBERS

-	•		
GWTT	51	/S	ten

GWII3	ystein						
TIME	TI 203 deg F	FI 203 cf/min	PI 210 in. w.c.	GAC LEAD INF ppm	GAC LEAD EFF ppm	GAC LAG EFF/STACK ppm	Comments:
10:40	120	270	<0	39.4	0.0	0.0	Readings taken directly from sample
							port
10:41	-	-	-	38.3	0.0	0.0	Readings taken from
							Tedlar air Bag

URS System

UKO OY	010111			
TIME	GAC LEAD INF ppm	GAC LEAD EFF ppm	GAC LAG EFF/STACK ppm	Comments:
10:45	13.8	0.1	0.0	Readings taken directly from sample port.
10:47	13.0	0.0	0.0	Readings taken from Tedlar Bag.

Overall log notes/comments	
WH: Well Head	INF: Influent
WH VAC: Well Head Vacuum	EFF: Effluent
WH AP: Well Head Anemometer Point (Velocity)	GAC: Granular Activated Carbon
VOC: Volatile Organic Compound concentration	cf/min: Cubic Feet Per Minute (flow rate)
in. w.c.: inches of water column	ft/min: Feet per Minute (velocity)
ppm: parts per million	deg F: degrees Fahrenheit
SVE: Soil Vapor Extraction	AP: Anemometer Point (at manifold)
VMP: Vapor Monitoring Point	

System Notes

No carbon change out conducted

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time		

Cumulative Hours To Date : 43,954.78 Hours

Condensate in K/O Drum: ___10_ Gallons

Which is the Lead Absorber? GAC 1 or GAC 2

Dilution: Open or <u>Closed</u> _____%

System Notes

No carbon change out conducted

Autodialer Call Received	Response Date	System Counter Reading	Alarm Mode	Restart Time			
3/5/2013	3/5/2013	40,252.2	High KO	12:31			
3/8/2013	3/11/2013	40,335.8	High KO	10:20			
3/19/2013	3/21/2013	40,526.8	High KO	10:20			

Cumulative Hours To Date: 42,781.60 Hours

Condensate in K/O Drum: __4_Gallons

Which is the Lead Absorber? GAC 1 or GAC 2

Dilution: Open or <u>Closed</u> ______%

Amount Condensate Collected in 55 gallon drums to date: 993.5

GWTT Blower Test Data for B-202

Date	Test Length
5/13/2009	18 Minutes
12/9/2009	51 Minutes
12/24/2009	In Operation
1/6/2010	Out of Operation
4/14/2010	48 Minutes
9/22/2010	58 Minutes
1/26/2011	60 Minutes
10/26/2011	60 Minutes
	ing, Filters and KO Drums
are che	cked on Both Systems

GWTT Blower Lubrication Data (B-201)

DATE	No. Pumps from Grease Gun	Was Noise Alleviated?					
10/7/2009	3	Yes					
10/21/2009	4	Yes					
11/18/2009	4	Yes					
12/9/2009	4	Yes					
1/6/2010	8	No					
3/24/2010	8	Yes					
9/22/2010	5	Yes					
10/26/2011	5	Yes					
12/28/2011	3	Yes					
5/30/2012	3	Yes					
12/26/2012	2	Yes					
One pump from the grease gun delivers approximately 1 milliliter of grease							

								Conce	ntration (ug/n	n³) in system U	RS-SVE-6S									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane (Freon 11)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.00	820.00	ND	39.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	257.71	63.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	617.62	261.30	466.00	29.00	0.00	1,300.00	480.00	2,200.00	2,700.00	170.00	63.00	2,200.00	1,400.00	6,400.00	710.00	1,500.00	1,200	1,500	720	500
Carbon Tetrachloride	1,824.21	81.78	0.00	0.00	0.00	0.00	0.00	330.00	0.00	ND	47.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.00	0.00	0.00	0.00	0.00	0.00	0.00	140.00	0.00	ND	51.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	818.40	818.41	0.00	52.00	0.00	270.00	0.00	1,300.00	130.00	ND	150.00	120.00	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	2,418.40	1,934.72	0.00	34.00	0.00	0.00	0.00	2,900.00	130.00	ND	680.00	270.00	ND	ND	130.00	ND	ND	ND	ND	ND
Toluene	0.00	94.21	0.00	0.00	0.00	1,400.00	0.00	89.00	430.00	ND	0.00	130.00	ND	2,900.00	740.00	1,000.00	ND	440	ND	ND
Tetrachloroethylene (Tetrachloroethene)	745,930.47	230,560.33	362,000.00	94,000.00	470,000.00	480,000.00	360,000.00	320,000.00	350,000.00	330,000.00	64,000.00	310,000.00	220,000.00	180,000.00	170,000.00	210,000.00	290,000	260,000	240,000	200,000
1,1-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	130.00	0.00	ND	25.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	370.00	0.00	ND	29.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	0.00	14.00	0.00	0.00	0.00	710.00	150.00	ND	110.00	ND	ND	ND	59.00	ND	ND	ND	ND	ND
Methylene Chloride	0.00	0.00	500.00	78.00	0.00	940.00	0.00	0.00	8,400.00	1,600.00	0.00	5,700.00	880.00	2,700.00	860.00	1,100.00	2,500	3,700	ND	1,000
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	760.00	0.00	0.00	510.00	ND	0.00	ND	ND	ND	190.00	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	310.00	0.00	0.00	200.00	ND	0.00	ND	ND	ND	90.00	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	766.81	0.00	0.00	0.00	0.00	0.00	0.00	120.00	210.00	ND	0.00	190.00	ND	ND	130.00	ND	ND	ND	ND	ND
Tetrahydrofuran	4,031.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	300.00	ND	0.00	ND	ND	ND	110.00	ND	ND	ND	ND	ND
Vinyl Chloride	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	180.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	700.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	260.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	24.00	0.00	2,500.00	0.00	0.00	890.00	300.00	0.00	390.00	ND	950.00	180.00	ND	ND	1,100	ND	ND
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	0.00	0.00	21,000.00	0.00	410.00	1,800.00	ND	0.00	690.00	ND	2.600.00	560.00	2,100.00	ND	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	1,400.00	250.00	920.00	580.00	ND	0.00	2,800.00	490.00	5.100.00	360.00	ND	ND	ND	ND	ND
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND.	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	270.00	0.00	0.00	150.00	ND	0.00	ND	ND ND	ND ND	73.00	ND ND	ND ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND
Styrene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.00	ND	0.00	160.00	ND	ND	84.00	ND	ND.	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	970.00	480.00	0.00	220.00	ND ND	ND ND	48.00	ND ND	560	430	ND ND	ND ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
1.1.2.2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
1,4-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl Acetate	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Napthalene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1.2-Trichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-111011010ethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	טא

								Conce	ntration (ug/n	³) in system U	RS-SVE-6D									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane Freon 11)	0.00	140.49	0.00	54.00	0.00	0.00	73.00	83.00	0.00	ND	74.00	1,100.00	ND	ND	ND	ND	280	140	ND	ND
1,1-Dichloroethene	376.66	91.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	225.67	0.00	494.00	0.00	0.00	2,800.00	460.00	54.00	1,600.00	140.00	5,400.00	2,900.00	1,700.00	2,300.00	2,700.00	1,100.00	750	780	520	260
Carbon Tetrachloride	4,529.08	125.81	218.00	65.00	0.00	0.00	0.00	75.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.00	175.80	0.00	82.00	0.00	0.00	0.00	81.00	280.00	ND	0.00	110.00	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	2,182.41	523.78	208.00	380.00	0.00	0.00	150.00	350.00	650.00	160.00	160.00	ND	ND	ND	100.00	ND	ND	ND	130	ND
Trichloroethylene (Trichloroethene)	5,911.66	1,934.72	860.00	1,100.00	0.00	300.00	470.00	1,700.00	1,700.00	660.00	250.00	420.00	ND	480.00	500.00	290.00	370	590	470	ND
Toluene	0.00	94.21	0.00	0.00	0.00	3,300.00	0.00	0.00	83.00	130.00	130.00	330.00	ND	ND	2,900.00	960.00	180	460	430	ND
Tetrachloroethylene (Tetrachloroethene)	1,695,296.52	250,903.89	174,000.00	110,000.00	89,000.00	85,000.00	100,000.00	100,000.00	88,000.00	71,000.00	220,000.00	41,000.00	64,000.00	59,000.00	68,000.00	60,000.00	130,000	61,000	84,000	28,000
1,1-Dichloroethane	0.00	0.00	0.00	55.00	0.00	0.00	0.00	36.00	390.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	29.00	0.00	0.00	0.00	47.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	309.00	170.00	0.00	87.00	95.00	460.00	280.00	85.00	130.00	ND	ND	ND	72.00	ND	92	190	150	ND
Methylene Chloride	0.00	0.00	556.00	19.00	0.00	1,500.00	340.00	0.00	1,700.00	480.00	3,900.00	7,600.00	760.00	1,600.00	1,300.00	740.00	2,600	2,700	450	720
m,p-Xylene	0.00	0.00	418.00	0.00	0.00	1,600.00	0.00	0.00	220.00	ND	0.00	320.00	ND	ND	510.00	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	418.00	0.00	0.00	650.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	240.00	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	0.00	0.00	0.00	0.00	0.00	250.00	0.00	0.00	150.00	48.00	330.00	200.00	ND	ND	460.00	180.00	ND	ND	ND	ND
Tetrahydrofuran	1,511.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	130.00	ND	700	ND	ND	ND
Vinyl Chloride	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	52.00	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	0.00	0.00	0.00	28.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	290.00	ND	ND	ND	ND	470	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	96.00	0.00	0.00	0.00	ND	54.00	110.00	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	290.00	77.00	260.00	610.00	ND	520.00	1,300.00	270.00	460	ND	360	190
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	0.00	0.00	2,800.00	44.00	0.00	230.00	ND	1,500.00	590.00	ND	ND	4,800.00	2,000.00	150	ND	180	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	2,400.00	160.00	0.00	1,200.00	ND	360.00	3,000.00	1,100.00	1,200.00	1,500.00	240.00	210	160	280	100
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	0.00	0.00	0.00	0.00	0.00	72.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	570.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	220.00	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	270.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	100	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	310.00	0.00	0.00	0.00	72.00	0.00	ND	ND	ND	85.00	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	180.00	44.00	0.00	140.00	77.00	12,000.00	2,000.00	ND	ND	46.00	ND	540	350	210	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	310.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	290	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	1,900.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	120.00	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

									Concent	ration (ug/m³) in	n system URS-SV	'E-6S											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	81	0.63	1.5
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	630	310	330	570	ND	ND	ND	ND	ND	ND	ND	ND	ND	410	1,200	820	22.0	860	450	ND	ND	ND	11
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	120	ND	4.6
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	710	ND	860	ND	4.0								
Trichloroethylene (Trichloroethene)	ND	110.00	ND	ND	ND	ND	ND	ND	ND	94	2,600	ND	ND	73	84	120	17.0	93	ND	60	1600	ND	30
Toluene	160	230	ND	ND	190.00	ND	890	ND	ND	9	ND	ND	ND	ND	ND	83	3.6	78	46	ND	ND	1.4	9.3
Tetrachloroethylene (Tetrachloroethene)	51,000	180,000	190,000	200,000	180,000	130,000	180,000	230,000	200,000	17,000	210,000	140,000	120,000	120,000	130,000	150,000	14,000.0	140,000	120,000	54,000	96,000	2.6	53,000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	87	ND	130	ND	ND								
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	350	ND	ND
cis-1,2-Dichloroethylene	ND	75.00	ND	ND	ND	ND	ND	ND	ND	ND	160	ND	ND	48	48	71	10.0	48	ND	37	550	ND	20
Methylene Chloride	6,000	470	2,200	2,900	940	ND	ND	4,500.00	ND	ND	1,900	1,100	ND	810	240	1,100	ND	2,300	660	ND	ND	ND	3.8
m,p-Xylene	170.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.72
2-Butanone (Methyl ethyl ketone)	51.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7	37	ND	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	140.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	38.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.37	0.50
Dichlorodifluoromethane (Freon 12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	66	1.2	2.7
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23	ND	2.2	ND	ND	ND	ND	0	ND
Ethanol	220	ND	ND	ND	ND	ND	ND	ND	ND	ND	310	ND	ND	ND	7,400	320	15.0	360	ND	ND	ND	9.7	31
Heptane	790.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	300.00	ND	ND	ND	ND	ND	470.00	ND	ND	ND	ND	ND	ND	33	ND	ND	1.4	36	ND	ND	ND	ND	ND
Propylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	330.00	120.00	ND	470	300	500	260	230	ND	ND	240	230	300	270	390	540	ND	ND	130	ND	ND	ND	ND
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	33
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	1,300	ND	ND	ND	ND
Ethylbenzene	110.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.52
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	82	ND	ND	ND	ND	ND	ND	ND	ND	8.7	540	ND	ND	130	ND	120	ND	320	440	ND	ND	ND	ND
1,3,5-Trimethylbenzene	150.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		•		•			•		Concent	ration (ug/m³) i	n system URS-SV	E-6D	•	•				•	•			•	
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	69	ND	99	11	ND	16	16	23	ND	16	7.5	1.9	6.4
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	530	680	320	ND	700.00	ND	860.00	1,400	ND	590	290	430	2,700	ND	ND	ND	21	ND	ND	ND	ND	46	11
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND	18	13	13	ND	11	ND	ND	4.8
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	31	26	42	25	32	ND	39	31	1.7	31
1,1,1-Trichloroethane	ND	ND	ND	ND	1,800.00	ND	ND	ND	ND	ND	ND	ND	ND	42	36	47	35	95	ND	37	19	0.7	18
Trichloroethylene (Trichloroethene)	220.00	240.00	210.00	200	2,300	190	140	250	190	200	180	150	130	200	200	270	190	280	12	210	150	5.1	220
Toluene	ND	ND	ND	160	ND	ND	360	330	ND	170	ND	ND	38	ND	ND	ND	ND	ND	ND	4.3	4.3	17	1.7
Tetrachloroethylene (Tetrachloroethene)	53,000	74,000	80,000	66,000	54,000	61,000	61,000	77,000	110,000	39,000	54,000	55,000	39,000	48,000	53,000	37,000	35,000	8600	17,000	48,000	73,000	880	36000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	ND	ND	4.50	10	ND	ND	ND	ND	2.4
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	25	ND	ND	ND	ND	1.3
cis-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	22	33	23	28	ND	31	35	0.79	21
Methylene Chloride	18,000	1,100	1,100	1,500	500	ND	1,200	4,400	ND	1,500	2,200	670	6,000	ND	15	14	ND	8.5	ND	ND	69	8.2	5
m,p-Xylene	910.00	ND	ND	ND	ND	590	310	2,400	ND	53	98	ND	3.4	ND									
o-Xylene	ND	ND	ND	ND	ND	160	100	920	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND
2-Butanone (Methyl ethyl ketone)	ND	220.00	ND	ND	ND	ND	ND	79	ND	1,900	ND	ND	ND	ND	ND	ND	4	ND	3	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	210	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	0.68
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	150.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	790	ND	ND	ND	ND	ND	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	0.35
Dichlorodifluoromethane (Freon 12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	65	ND	100	10	11	12	10	10	6	17	8.5	2.8	7.2
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	54	ND	1.3	ND							
Ethanol	120	320	ND	ND	390	ND	320.00	ND	ND	620	680	230	230	ND	200	ND							
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	600	ND	0.99	ND							
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75	ND
Isopropyl Alcohol	180.00	ND	ND	1,300	ND	ND	240.00	ND	ND	ND	ND	ND	59	ND	ND	ND	2	ND	ND	ND	ND	ND	ND
Propylene	ND	ND	ND	98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	130	ND	280	920	240	540	770	660	73	73	220	190	350	ND									
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	150	2.5
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	53	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	390	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	530	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND
Hexane	110.00	ND	ND	1,700	ND	ND	210.00	160	ND	190	860	ND											
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.77	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.56	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.76
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

								Concentr	ation (ug/m3)	in system SVE-	-9S									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2008	3/18/2009
Trichlorofluoromethane	674.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	3,647.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	2,137.91	5,701.10	0.00	0.00	0.00	5,000.00	3,200.00	1,400.00	2,000.00	310.00	2,500.00	1,800.00	1,800.00	11,000.00	380.00	3,400.00	1,800	2,800	ND	380
Carbon Tetrachloride	16,355.01	61,016.77	41,800.00	20,000.00	8,200.00	6,300.00	3,500.00	3,100.00	2,500.00	1,800.00	1,300.00	1,700.00	1,300.00	ND	580.00	ND	ND	ND	220	240
Chloroform	976.69	8,301.84	0.00	5,100.00	0.00	720.00	410.00	260.00	200.00	ND	0.00	ND	ND	ND	100.00	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	10,912.07	0.00	0.00	0.00	0.00	0.00	0.00	360.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	16,122.70	42,993.87	30,500.00	9,500.00	5,700.00	2,900.00	1,800.00	2,300.00	1,500.00	1,400.00	1,900.00	2,000.00	1,400.00	ND	910.00	ND	ND	ND	270	430
Toluene	0.00	0.00	0.00	0.00	0.00	4,600.00	200.00	0.00	1,300.00	ND	0.00	ND	ND	ND	110.00	2,100.00	ND	ND	430	ND
Tetrachloroethylene (Tetrachloroethene)	3,119,345.60	6,713,374.23	11,300,000.00	3,400,000.00	2,100,000.00	1,100,000.00	1,200,000.00	900,000.00	820,000.00	670,000.00	720,000.00	740,000.00	610,000.00	330,000.00	420,000.00	150,000.00	130,000	130,000	130,000	110,000
1,1-Dichloroethane	1,011.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	110.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	48,800.00	16,000.00	8,300.00	4,100.00	2,900.00	2,400.00	2,100.00	2,200.00	2,500.00	3,300.00	2,700.00	1,800.00	ND	ND	ND	ND	480	540
Methylene Chloride	0.00	0.00	0.00	1,900.00	0.00	1,600.00	0.00	130.00	4,700.00	1,000.00	1,800.00	2,900.00	920.00	ND	510.00	1,800.00	2,400	6,100	3,700	750
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	960.00	0.00	0.00	1,500.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	390.00	0.00	0.00	600.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	5,013.78	0.00	0.00	0.00	0.00	220.00	200.00	0.00	120.00	ND	330.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	17,635.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	590.00	0.00	0.00	630.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	409.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	0.00	0.00	3,600.00	1,800.00	0.00	210.00	ND	520.00	ND	ND	5,200.00	ND	ND	ND	ND	240	270
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	0.00	0.00	120,000.00	1,200.00	170.00	140.00	ND	5,900.00	ND	ND	2,200.00	140.00	3,700.00	ND	ND	180	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	67.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	4,000.00	1,600.00	610.00	530.00	140.00	970.00	1,800.00	530.00	2,900.00	210.00	ND	ND	ND	330	87
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	370.00	0.00	0.00	380.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	350.00	190.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	240.00	0.00	220.00	330.00	250.00	ND	ND	ND	ND	ND	ND	760	ND	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	120.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

1								Concentrat	tion (ug/m3) ir	system URS-S	VE-1									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	297.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	570.11	59.39	3,160.00	1500.00	0.00	0.00	610.00	2,600.00	2,500.00	ND	3,000.00	1,500.00	1,900	11000.00	810.00	3,300.00	1,900.00	2,300.00	1,400	ND
Carbon Tetrachloride	2,264.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.00	19.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	1,200.33	267.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	3,009.57	1,289.82	0.00	0.00	0.00	0.00	220.00	250.00	240.00	430.00	790.00	880.00	630	ND	730.00	ND	ND	ND	ND	ND
Toluene	0.00	0.00	0.00	0.00	0.00	0.00	560.00	610.00	450.00	ND	160.00	1,300.00	ND	2900.00	620.00	1,700.00	ND	ND	ND	ND
Tetrachloroethylene (Tetrachloroethene)	881,554.19	678,118.61	922,000.00	1300000.00	810,000.00	430,000.00	830,000.00	280,000.00	790,000.00	540,000.00	780,000.00	640,000.00	680,000	440000.00	650,000.00	520,000.00	510,000.00	500,000.00	440,000	340,000
1,1-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	310.00	120.00	190.00	500.00	510.00	440	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	0.00	0.00	4,060.00	2600.00	0.00	1,800.00	0.00	240.00	2,300.00	ND	1,200.00	3,800.00	1,000	3900.00	910.00	2,700.00	2,400.00	3,100.00	ND	2,600
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	540.00	0.00	570.00	ND	0.00	1,300.00	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	190.00	0.00	220.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	530.87	0.00	0.00	0.00	0.00	0.00	0.00	5,800.00	310.00	ND	250.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	3,401.23	0.00	0.00	0.00	0.00	0.00	0.00	840.00	88.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	250.00	190.00	220.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	140.59	51.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	111.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	690.00	0.00	0.00	240.00	330.00	540.00	ND	0.00	ND	ND	ND	450.00	ND	ND	ND	ND	ND
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	180.00	0.00	21,000.00	0.00	8,900.00	2,500.00	ND	1,300.00	ND	ND	3000.00	550.00	4,400.00	ND	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	720.00	0.00	1,300.00	190.00	1,500.00	1,700.00	270.00	920.00	1,100.00	740	4500.00	330.00	ND	ND	ND	ND	ND
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	350.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	180.00	0.00	130.00	ND	9,400.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	3,700.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
1.4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
пареналене	NO	ND	ND	140	140	140	140	110	NU	110	NU	110	ND	NU	NU	IND	140	140	NU	140

									Conce	ntration (ug/m3) in system SVE-	9S											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	1.1
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	520	920	340	1,000	ND	ND	ND	ND	ND	460	ND	ND	39	100	230	ND	ND	1000	ND	ND	ND	14	17
Carbon Tetrachloride	190	200	ND	ND	ND	ND	340	ND	ND	110	240	110	140.00	210	630	850	97	ND	46	160	13	2.7	17
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	59	24	36	71	130	210	25	ND	21	90	13	5.8	18
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	550	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	340	520	680	1,100	980	1,100	710	3,200	310	310	670	380	610	860	3,200	2,900	290	630	180	1,300	120	28	300
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	120.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	0.39
Tetrachloroethylene (Tetrachloroethene)	110,000	100,000	210,000	190,000	200,000	190,000	200,000	170,000	51,000	39,000	950,000	45,000	77,000	110,000	220,000	290,000	26,000	86000	20,000	51,000	9,000	1,200	13,000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	1,100.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	2,000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.54
cis-1,2-Dichloroethylene	610	ND	1,300	2,700	ND	2,000	1,100	1,700	840	520	1,200	780	1,000	2,000	4,900	4,100	400	910	360	2,400	250	60	780
Methylene Chloride	13,000	1,300	2,300	2,900	880	ND	ND	3,100	ND	4,200	33	ND	ND	ND	ND	ND	ND	2300	ND	ND	ND	4.7	ND
m,p-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	13	ND	ND	ND	ND	ND	ND	2.0
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	45	ND	ND	ND	8	11	ND	ND	ND	ND	ND	ND	0.66	0.65
Dichlorodifluoromethane (Freon 12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	2.2
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND
Ethanol	ND	250	ND	ND	ND	ND	ND	ND	ND	660	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.5	ND
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	98	640	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	100	430	250	500	210	460	260	260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	1.5	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.83	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.50	ND
Ethylbenzene	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	0.58	ND
4-Ethyl Toluene	ND			ND	ND	ND	ND		ND	ND	ND ND		ND	ND ND	ND	ND							
Styrene	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND 450	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND 200	ND ND	ND	ND ND	ND	ND ND
Hexane	110 ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	150 ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	290 ND		ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene	ND ND		ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND	ND ND	ND		ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND		ND ND	ND ND
4-Methyl-2-Pentanone (MIBK)	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND 14			ND ND	ND ND	ND ND	ND ND		0.81
1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND	20 ND	ND ND			ND ND	ND ND	ND ND	0.81 ND
1,1,2,2-Tetra chloroethane 1,4-Dichlorobenzene		ND ND					ND ND	ND ND			ND ND	ND						ND ND	ND			ND ND	
-	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND	ND ND	ND ND							
Vinyl Acetate		ND ND	ND	ND	ND		ND ND		ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	
Napthalene	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

									Concen	,	in system URS-S												
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
richlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	82	64	ND	ND	ND	ND	ND
,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	510	3,800	950	820	ND	ND	ND	2,700	ND	ND	ND	ND	ND	660	1,900	730	1,600	550	1,100	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	31	ND	25	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	ND
richloroethylene (Trichloroethene)	ND	ND	ND	710	ND	ND	ND	ND	ND	ND	ND	170	ND	230	440	600	270	220	ND	740	130	240	86
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	78	1,400	0	69	ND	110	ND	ND	ND	ND
Fetrachloroethylene (Tetrachloroethene)	320,000	390,000	470,000	460,000	440,000	350,000	300,000	400,000	240,000	190,000	350,000	820,000	410,000	360,000	400,000	410,000	150,000	210,000	150,000	220,000	110,000	71,000	80,000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	240	220	260	130	130	ND	380	77	400	42
Methylene Chloride	15,000	7,300	4,500	5,100	1,700	ND	2,100	7,100	ND	11,000	1,800	330	ND	1,200	290	930	1,100	240	870	ND	ND	ND	ND
m,p-Xylene	8,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	2,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	44	ND	70	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	2.4
Ethanol	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	6,300	400	340	210	ND	ND	ND	ND	ND
Heptane	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
2-Hexanone	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Isopropyl Alcohol	ND	6,000	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	48	32	59	ND	ND	ND	ND
Propylene	ND ND	ND	ND	350	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
Tertiary Butyl Alcohol	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND
Carbon Disulfide	ND ND	1,300	690	540	370	520	320	890	ND ND	450	240	260	320	700	360	480	440	ND	350	ND	ND ND	ND ND	ND
Ethyl Acetate	ND ND	1,500 ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
1,2,4-Trichlorobenzene	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Chloroethane	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
Cyclohexane				ND	ND					ND		ND	ND		ND				ND	ND			ND
Ethylbenzene	810	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND
4-Ethyl Toluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 200	ND	ND	ND	ND 450	ND 454	ND	ND 570	ND	87 ND	ND	ND	ND	ND
Hexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	290	660	ND	ND	150	151	152	570	930	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
rans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.6	ND	ND	ND	ND	ND	ND	8.7	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

								Concentra	tion (ug/m3) ii	n system SVE-10	S									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane (Freon 11)	280.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	900.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	4,361.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	1,425.28	0.00	0.00	0.00	0.00	0.00	2,400.00	2,300.00	0.00	ND	2,900.00	1,500.00	1,300.00	21,000.00	4,500.00	ND	3,200	5,500.00	3,600	ND
Carbon Tetrachloride	10,693.66	14,467.89	0.00	10,000.00	3,700.00	6,300.00	2,700.00	3,000.00	1,900.00	1,700.00	1,200.00	1,300.00	650.00	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	6,001.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	10,748.47	2,257.18	0.00	0.00	0.00	0.00	0.00	0.00	560.00	630.00	920.00	1,100.00	610.00	ND	750.00	ND	ND	ND	ND	ND
Toluene	0.00	0.00	0.00	0.00	0.00	2,100.00	0.00	0.00	400.00	ND	0.00	ND	ND	15,000.00	850.00	1,800.00	ND	ND	ND	ND
Tetrachloroethylene (Tetrachloroethene)	6,577,750.51	6,103,067.49	9,490,000.00	11,000,000.00	3,100,000.00	3,000,000.00	3,000,000.00	2,200,000.00	390,000.00	1,200,000.00	1,800,000.00	1,600,000.00	970,000.00	870,000.00	810,000.00	280,000.00	280,000	240,000.00	1,100,000	240,000
1,1-Dichloroethane	323.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	1,100.00	1,300.00	2,000.00	2,800.00	1,400.00	ND	920.00	ND	ND	ND	ND	ND
Methylene Chloride	0.00	0.00	0.00	1,900.00	0.00	2,100.00	0.00	0.00	4,500.00	530.00	850.00	4,900.00	740.00	16,000.00	8,500.00	ND	3,500	ND	ND	ND
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	350.00	ND	0.00	ND	ND	ND	1,800.00	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	120.00	ND	0.00	ND	ND	ND	1,200.00	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	2,654.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	180.00	ND	280.00	ND	ND	ND	420.00	ND	ND	ND	ND	ND
Tetrahydrofuran	38,421.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	110.00	ND	0.00	ND	ND	ND	1,600.00	ND	ND	ND	ND	ND
Vinyl Chloride	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	240.00	ND	0.00	ND	ND	8,500.00	7,700.00	ND	ND	ND	ND	ND
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	0.00	0.00	30,000.00	0.00	0.00	2,200.00	ND	1,200.00	ND	ND	15,000.00	1,900.00	3,000.00	ND	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	3,200.00	0.00	0.00	440.00	ND	490.00	1,100.00	730.00	17,000.00	4,000.00	ND	ND	ND	ND	ND
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	120.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	5,800.00	ND	ND	ND	390.00	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	500.00	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	2,200.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

								Concentr	ation (ug/m3) i	n system SVE-85	;									ı
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/08	9/17/08	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane (Freon 11)	0.00	0.00	0.00	0.00	0.00	0.00	230.00	800.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,1-Dichloroethene	6,740.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Acetone	522.60	18,053.50	0.00	4,800.00	0.00	0.00	3,200.00	2,200.00	1,900.00	1,200.00	1,400.00	1,600.00	2,900.00	8,100.00	700.00	1,500.00	NS	1,800	910	310
Carbon Tetrachloride	5,032.31	8,806.54	0.00	0.00	0.00	0.00	0.00	1,900.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Chloroform	0.00	0.00	0.00	0.00	0.00	0.00	0.00	460.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,1,1-Trichloroethane	17,459.30	3,273.62	0.00	0.00	0.00	0.00	0.00	7,100.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Trichloroethylene (Trichloroethene)	50,517.79	53,742.33	0.00	6,900.00	4,800.00	2,400.00	1,200.00	17,000.00	740.00	820.00	1,900.00	1,600.00	980.00	ND	840.00	ND	NS	ND	130	180
Toluene	0.00	0.00	0.00	0.00	0.00	3,800.00	210.00	170.00	260.00	ND	0.00	ND	ND	2,600.00	ND	1,100.00	NS	710	160	ND
Tetrachloroethylene (Tetrachloroethene)	8,815,541.92	12,884,253.58	9,150,000.00	13,000,000.00	5,500,000.00	3,000,000.00	2,100,000.00	990,000.00	430,000.00	500,000.00	600,000.00	600,000.00	340,000.00	170,000.00	190,000.00	100,000.00	NS	69,000	37,000	37,000
1,1-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	850.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2,600.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	52,700.00	30,000.00	19,000.00	10,000.00	5,500.00	7,400.00	3,400.00	3,500.00	8,500.00	8,100.00	4,500.00	4,300.00	3,200.00	810.00	NS	940	530	670
Methylene Chloride	0.00	0.00	0.00	3,900.00	0.00	1,900.00	0.00	760.00	3,300.00	210.00	530.00	3,600.00	1,000.00	4,300.00	270.00	1,100.00	NS	4,400	460	810
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	420.00	0.00	220.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	180.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	162.21	0.00	0.00	0.00	0.00	0.00	0.00	200.00	0.00	ND	230.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Tetrahydrofuran	23,934.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	300.00	120.00	ND	0.00	ND	ND	ND	ND	ND	NS	950	ND	ND
Vinyl Chloride	2,147.24	1,687.12	0.00	0.00	0.00	0.00	0.00	88.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	0.00	130.00	110.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	0.00	0.00	0.00	0.00	0.00	0.00	230.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Ethanol	0.00	0.00	0.00	2,100.00	2,000.00	0.00	3,200.00	370.00	0.00	ND	0.00	ND	ND	2,200.00	220.00	ND	NS	950	320	440
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	0.00	0.00	28,000.00	0.00	470.00	260.00	ND	4,400.00	ND	ND	2,900.00	ND	2,300.00	NS	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	2,400.00	1,000.00	1,300.00	670.00	220.00	380.00	1,400.00	710.00	6,800.00	71.00	ND	NS	ND	200	ND
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	180.00	100.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	210.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	350.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	500	500	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	210.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	89.00	0.00	ND	0.00	ND	ND	ND	ND	ND	NS	ND	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND
· · · · · · · · · · · · · · · · · · ·		.,,,		1						.,,,						1				

									Conce	ntration (ug/m3) in system SVE-:	105											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	1.3
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	2,800	340	750	ND	ND	ND	ND	ND	250	ND	ND	ND	ND	ND	ND	1,100	910	1,300	ND	ND	160	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	96	170	220	ND	ND	ND	52	ND	ND	3.3
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	14	18	ND	ND	ND	15	ND	1.4	2.4
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88
Trichloroethylene (Trichloroethene)	ND	ND	ND	ND	660	2,600	ND	ND	ND	170	190	150	230	570	1,200	1,100	550	660	220	930	57	0.99	220
Toluene	ND	ND	ND	530	ND	ND	ND	ND	ND	130	ND	ND	ND	ND	ND	ND	ND	ND	130	ND	ND	80	5.7
Tetrachloroethylene (Tetrachloroethene)	250,000	190,000	250,000	290,000	330,000	340,000	290,000	260,000	91,000	70,000	100,000	71,000	85,000	140,000	230,000	230,000	140,000	170,000	67,000	84,000	3,800	3.8	10,000.0
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	ND	ND	510	890	1,100	2,300	770	700	440	450	560	400.00	620.00	1,800	2,900	2,400	890	1,200	260	1,500	70	ND	290
Methylene Chloride	7,600	4,100	2,400	5,000	1,800	ND	ND	7,100	ND	4,800	3,000	350	ND	ND	ND	ND	ND	2,000	1,200	ND	ND	220	4.4
m,p-Xylene	ND	ND	ND	950	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	0.98
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	58	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	0.48
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	1.0
Dichlorodifluoromethane (Freon 12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	2.3
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND
Ethanol	ND	1,400	ND	ND	ND	ND	1,100	ND	ND	530	860.00	ND	140	33									
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	1
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.57
Isopropyl Alcohol	ND	7,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	74	ND	ND	180	ND
Propylene	ND	ND	ND	360	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	690	190	420	510	340	450	ND	ND	ND	ND	160	280	ND	ND	ND	360	ND	1,600	ND	ND	ND	ND
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	62	2,400	900
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,700	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	92	ND	ND	ND	ND
Hexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	150	1,800	ND	ND	ND	ND	ND	87	260	92	ND	ND	78	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	1.4	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	47	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

									Conce	entration (ug/m	3) in system SVE	88											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Frichlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	58.00	ND	ND	ND	ND	1.7	1.2
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	700	1,300	230	890	ND	ND	ND	3,000	ND	ND	76	44	110	150	130	240	1,300	1,000	ND	ND	ND	94	18
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	5.8	10	12	19	30	51	ND	ND	ND	34	8.8	0.64	4.9
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	150	ND	ND	ND	37	5.5	8.2	17.0	29.0	ND	ND	ND	15	ND	ND	0.57
Frichloroethylene (Trichloroethene)	170	710	570	1,400	1,200	980	ND	570	250	710	160	360	420	780	1,700	2,300	840	550	13	1,100	120		34
Toluene	120	ND	ND	ND	ND	ND	ND	99	ND	ND	ND	ND	ND	ND	ND	ND	ND	75.00	ND	ND	ND	43	1.7
Tetrachloroethylene (Tetrachloroethene)	40,000	67,000	86,000	110,000	110,000	86,000	66,000	47,000	29,000	18,000	29,000	31,000	40,000	59,000	130,000	170,000	120,000	47,000	1,200	81,000	11,000	6	3,700
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	83	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	880	ND	3,100	1,700	4,800	ND	1,100	940	1,200	710	830	1,500	1,800	2,500	6,100	7,800	2,400	1,900	28	2,300	690		150
Methylene Chloride	14,000	1,400	940	1,900	890	ND	ND	5,200	ND	ND	18	ND	ND	ND	ND .	23	1,400	2,800	ND	ND	ND	26	3.7
m,p-Xylene	ND	ND	350	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.7	ND
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	ND
2-Butanone (Methyl ethyl ketone)	ND	170	ND	ND	ND	ND	ND	68	ND	ND	ND	ND	ND	ND	ND	ND	ND	42.00	ND	ND	ND	31	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND
1,2,4-Trimethylbenzene	ND	ND	290	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.1	3.8	4.3	3	8	19	16	ND	ND	ND	4.9	ND	ND	0.36
Benzene	66	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.5	5.0	ND	11.0	ND	ND	ND	ND	ND	2.1	0.81
Dichlorodifluoromethane (Freon 12)	130	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	2.7	2.1
Chloromethane	ND	ND	ND	ND	ND	ND	ND	58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	0.76
Ethanol	ND ND	430	ND	230	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	260	460	ND	ND	ND	500	ND
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	0.42
2-Hexanone	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	0.93	ND
Isopropyl Alcohol	140	ND	ND ND	100	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	38.00	33.00	ND	ND	ND	76	ND
	ND	ND ND	ND ND	82	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	33.00 ND	ND ND	ND	ND ND	ND	ND
Propylene Tertiary Butyl Alcohol	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
						410	ND ND	1,500	98	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Disulfide	140 ND	120 ND	130 ND	560 ND	300 ND	ND	ND ND	1,500 ND	98 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	300 ND	ND ND	ND ND	ND ND	ND ND		ND ND
Ethyl Acetate						ND ND				ND ND							ND ND					490	
1,2,4-Trichlorobenzene	ND	ND	ND	ND ND	ND		ND ND	ND ND	ND ND		ND	ND ND	ND	ND ND	ND	ND		ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	120	ND	89	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	ND
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.8	ND
Hexane	140	ND	ND	86	ND	ND	ND	230	ND	ND	ND	ND	ND	ND	ND	ND	340	370	ND	ND	ND	15	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	ND
I-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.70	14.00	ND	ND	ND	10	ND	6.7	ND
rans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.66
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND

								Conc	entration (ug/r	m3) in system S	SVE-7D									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane (Freon 11)	0.00	0.00	0.00	270.00	0.00	400.00	0.00	0.00	700.00	440.00	450.00	550.00	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	0.00	8,076.56	0.00	2,400.00	0.00	3,400.00	1,300.00	1,100.00	4,800.00	ND	1,200.00	2,600.00	2,900.00	2,600.00	ND	1,600.00	1,300	2,000	910	640
Carbon Tetrachloride	0.00	0.00	0.00	350.00	0.00	0.00	0.00	0.00	330.00	600.00	390.00	430.00	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.00	0.00	140.00	110.00	240.00	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	1,145.77	4,255.71	0.00	570.00	280.00	380.00	350.00	140.00	400.00	3,500.00	2,500.00	3,000.00	ND	ND	ND	ND	ND	1,800	ND	ND
Trichloroethylene (Trichloroethene)	0.00	21,496.93	7,420.00	2,800.00	1,900.00	2,800.00	1,400.00	100.00	2,500.00	6,800.00	5,400.00	4,600.00	1,200.00	280.00	580.00	ND	ND	2,800	830	980
Toluene	0.00	0.00	0.00	0.00	0.00	5,100.00	830.00	0.00	240.00	250.00	58.00	130.00	ND	ND	290.00	970.00	ND	780	ND	ND
Tetrachloroethylene (Tetrachloroethene)	650,993.87	2,034,355.83	71,900.00	520,000.00	380,000.00	220,000.00	570,000.00	120,000.00	240,000.00	230,000.00	150,000.00	180,000.00	190,000.00	180,000.00	320,000.00	380,000.00	120,000	250,000	250,000	240,000
1,1-Dichloroethane	0.00	0.00	506.00	0.00	0.00	0.00	0.00	0.00	0.00	290.00	220.00	260.00	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	698.00	0.00	0.00	0.00	0.00	0.00	140.00	1,100.00	940.00	1,300.00	ND	ND	ND	ND	ND	880	ND	ND
cis-1,2-Dichloroethylene	872.26	0.00	1,500.00	1,100.00	690.00	1,100.00	820.00	690.00	810.00	970.00	840.00	600.00	550.00	ND	ND	ND	ND	450	ND	ND
Methylene Chloride	0.00	0.00	0.00	1,800.00	0.00	1,500.00	0.00	0.00	3,400.00	400.00	1,300.00	5,200.00	1,700.00	1,400.00	1,000.00	1,000.00	2,700	4,600	800	960
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	1,200.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	460.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	7,078.28	0.00	0.00	0.00	0.00	230.00	0.00	31.00	190.00	ND	170.00	230.00	ND	260.00	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	15,746.42	0.00	0.00	0.00	0.00	0.00	0.00	110.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	294.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	160.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	85.00	420.00	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	350.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	140.00	ND	52.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	330.00	0.00	3,700.00	710.00	0.00	550.00	ND	230.00	450.00	ND	570.00	ND	ND	ND	950	ND	ND
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	220.00	0.00	76,000.00	16,000.00	87.00	1,600.00	ND	2,200.00	820.00	ND	620.00	ND	1,700.00	ND	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	1,100.00	0.00	2,900.00	1,400.00	0.00	1,900.00	ND	270.00	2,500.00	820.00	1,300.00	ND	ND	ND	ND	ND	ND
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270.00	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	430.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	390.00	0.00	0.00	0.00	ND	61.00	160.00	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	810.00	590.00	470.00	220.00	ND	ND	ND	ND	610	570	ND	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	210.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	620.00	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

								Conc	entration (ug/r	n3) in system s	SVE-8D									
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/08	9/17/08	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane (Freon 11)	786.75	0.00	663.00	2.10	0.00	1,700.00	680.00	820.00	1,300.00	NS	0.00	140.00	ND	280.00	400.00	310.00	ND	ND	470	200
1,1-Dichloroethene	9,119.10	3,568.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	2,375.46	1,852.86	938.00	29.00	0.00	3,300.00	1,300.00	0.00	1,300.00	NS	880.00	2,100.00	1,700.00	2,400.00	2,500.00	1,300.00	1,100	980	630	270
Carbon Tetrachloride	3,019.39	0.00	1,480.00	0.00	0.00	1,600.00	1,100.00	2,300.00	2,200.00	NS	370.00	420.00	670.00	440.00	580.00	420.00	ND	ND	530	360
Chloroform	0.00	0.00	557.00	0.00	0.00	460.00	350.00	460.00	350.00	NS	0.00	ND	ND	ND	140.00	ND	ND	ND	170	150
1,1,1-Trichloroethane	24,006.54	7,092.84	11,800.00	0.00	0.00	4,800.00	3,000.00	8,400.00	10,000.00	NS	600.00	840.00	4,100.00	2,700.00	3,500.00	2,600.00	ND	ND	3,600	2,700
Trichloroethylene (Trichloroethene)	20,422.09	18,809.82	23,200.00	0.00	0.00	1,500.00	8,000.00	23,000.00	15,000.00	NS	1,400.00	1,200.00	6,800.00	5,600.00	5,800.00	4,900.00	700	410	6,200	6,200
Toluene	0.00	0.00	0.00	1.70	0.00	7,100.00	360.00	0.00	230.00	NS	42.00	ND	ND	1,300.00	2,300.00	1,200.00	ND	640	ND	160
Tetrachloroethylene (Tetrachloroethene)	1,152,801.64	630,650.31	396,000.00	63.00	230,000.00	180,000.00	300,000.00	170,000.00	330,000.00	NS	99,000.00	95,000.00	98,000.00	84,000.00	110,000.00	81,000.00	94,000	75,000	74,000	67,000
1,1-Dichloroethane	890.44	0.00	1,930.00	0.00	0.00	870.00	560.00	820.00	780.00	NS	53.00	ND	520.00	300.00	290.00	260.00	ND	ND	380	340
1,1-Dichloroethylene	0.00	0.00	4,120.00	0.00	0.00	2,100.00	1,400.00	3,100.00	3,700.00	NS	300.00	440.00	1,900.00	1,000.00	1,400.00	1,100.00	ND	ND	1,900	1,200
cis-1,2-Dichloroethylene	0.00	0.00	1,700.00	0.00	0.00	1,700.00	1,700.00	2,700.00	1,500.00	NS	170.00	170.00	810.00	650.00	810.00	560.00	490	370	570	520
Methylene Chloride	0.00	0.00	0.00	2.20	0.00	1,900.00	0.00	0.00	1,800.00	NS	600.00	4,400.00	1,100.00	1,400.00	1,300.00	890.00	2,200	3,600	4,600	770
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	1,600.00	0.00	0.00	250.00	NS	0.00	ND	ND	ND	400.00	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	620.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	170.00	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	1,091.24	0.00	0.00	4.20	0.00	280.00	0.00	0.00	200.00	NS	150.00	ND	ND	ND	470.00	190.00	ND	ND	ND	ND
Tetrahydrofuran	3,527.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	290.00	0.00	110.00	NS	0.00	ND	ND	ND	120.00	ND	ND	ND	ND	ND
Vinyl Chloride	0.00	0.00	0.00	0.51	0.00	0.00	0.00	38.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.70	0.00	150.00	0.00	33.00	0.00	NS	0.00	ND	ND	ND	56.00	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	0.00	0.00	0.00	2.60	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	51.00	ND	360	ND	160	ND
Chloromethane	0.00	0.00	0.00	0.83	0.00	0.00	0.00	0.00	0.00	NS	34.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	11.00	0.00	0.00	700.00	0.00	270.00	NS	110.00	320.00	ND	680.00	1,100.00	400.00	460	ND	ND	210
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	2.30	0.00	6,200.00	4,000.00	35.00	2,300.00	NS	1,000.00	ND	ND	1,000.00	4,900.00	2,000.00	ND	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	3,000.00	1,700.00	0.00	610.00	NS	340.00	3,300.00	850.00	2,300.00	1,100.00	310.00	250	210	370	71
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	580.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	170.00	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	470.00	0.00	0.00	200.00	NS	100.00	ND	ND	ND	86.00	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	250.00	0.00	97.00	NS	56.00	ND	ND	ND	59.00	ND	490	430	ND	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	240.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NS	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.00	0.00	NS	0.00	ND	ND	ND	140.00	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

									Conce	ntration (ug/m3) in system SVE-7	7D											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/20/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane (Freon 11)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	37	ND	ND	ND	74	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	400	4,500	350	660	ND	ND	ND	ND	ND	ND	190	350	ND	ND	1,700	830	2,700	950	610	420	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	74	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	51	ND	ND	50	ND	ND	ND	ND	ND	14	92	75	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	69	ND	62	58	ND	ND	ND	ND	ND	11	760	14	ND
Trichloroethylene (Trichloroethene)	460	ND	390	560	380	280	ND	ND	ND	380	690	470	310	410	250	260	56	540	210	140	1,300	250	89
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130	ND	ND	ND	ND	ND	20.00	1,300	56.00	ND	ND	ND	ND
Tetrachloroethylene (Tetrachloroethene)	210,000	190,000	210,000	170,000	210,000	200,000	220,000	270,000	280,000	160,000	220,000	210,000	200,000	230,000	310,000	250,000	22,000	160,000	120,000	100,000	81,000	170,000	29,000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	120	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	310	ND	ND
cis-1,2-Dichloroethylene	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	270	140	78	100	0	78	30	150	83	230	240	62	41
Methylene Chloride	4,100	6,900	2,200	2,700	840	ND	ND	7,200	ND	5,200	1,200	530	ND	280	280	1,000	480	2,100	940	ND	ND	ND	ND
m,p-Xylene	ND	4,400.00	ND	440	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	ND	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	74	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	ND	1,100.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	56	35	ND	320	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	450	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	ND	270	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	98	ND	ND	ND	59	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23	0	42	ND	ND	ND	ND	ND	ND
Ethanol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	140	ND	ND	ND	19,000	310	470	490	ND	ND	ND	ND	ND
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	36	61	ND	110	27	33	ND	ND	ND	ND
Propylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	76.00	ND	170	410	280	450	250	470	ND	ND	240	210	280	180	320	540	910	ND	500	ND	ND	ND	ND
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30	ND	17
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	91	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,800	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	190	47	ND	ND	69	ND	110	860	280	50	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	69	ND							
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,300	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

									Conce	ntration (ug/m3) in system SVE-8	BD											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/20/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane (Freon 11)	200	220	220	270	170	130	ND	170	ND	250	260	160.00	140	230	160	210	150	140	23	ND	14	75	100
1,1-Dichloroethene	ND	ND	ND	72	ND	190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	610	560	290	420	ND	ND	ND	2,700	ND	650	150	550	140	ND	ND	ND	1,000	26	27	180	ND	ND	ND
Carbon Tetrachloride	280	290	280	290	200	200	160	250	ND	320	370	230	210	390	230	350	280	300	33	72	240	110	150
Chloroform	110	140	110	150	ND	ND	ND	110	ND	150	230	130	120	170	130	200	130	220	19	54	100	130	150
1,1,1-Trichloroethane	2,500	2,900	2,500	3,000	2,300	2,200	1,800	9,400	140	5,100	5,300	2,900	2,500	4,300	3,400	4,600	4,000	3,700	360	130	490	1,100	1,800
Trichloroethylene (Trichloroethene)	4,900	5,600	4,400	5,000	4,400	3,800	3,000	16,000	640	5,000	6,100	4,800	3,700	3,700	5,400	6,500	4,300	4,300	440	960	570	2,400	3,000
Toluene	83	ND	ND	ND	130	ND	ND	300	ND	110	45	82	ND	5.4	ND								
Tetrachloroethylene (Tetrachloroethene)	62,000	76,000	55,000	56,000	44,000	42,000	46,000	76,000	46,000	27,000	49,000	39,000	38,000	41,000	44,000	200,000	37,000	34,000	3,200	43,000	23,000	12,000	13,000
1,1-Dichloroethane	260	280	220	290	220	ND	150	710	ND	350	480	260	210	350	270	420	290	470	37	19	62	170	260
1,1-Dichloroethylene	1,200	920	1,100	1,500	890	830	750	1,000	ND	1,700	1,900	960	830	1,500	1,200	1,800	1,300	1,800	150	44	260	520	790
cis-1,2-Dichloroethylene	520	640	420	530	450	410	270	730	210	360	560	340	400	670	510	810	320	510	55	1,300	68	360	280
Methylene Chloride	20,000	1,100	1,000	1,500	430	ND	ND	4,200	ND	5,700	2,500	640	640	16	17	23	360	24	ND	ND	ND	ND	ND
m,p-Xylene	170	ND	230	ND	ND	ND	ND	ND	ND	87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	650	ND	ND	ND	ND	160	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	130	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	190	ND	ND	ND
1,2,4-Trimethylbenzene	390	ND	ND	ND	ND	ND	ND	ND	ND	52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9	7	7	ND	7	ND	ND	ND	ND	2.7
Benzene	ND	ND	ND	ND	ND	ND	ND	160	ND	54	ND	ND	ND	9	7	12	ND	10	ND	ND	ND	3.6	5.2
Dichlorodifluoromethane (Freon 12)	150	ND	ND	ND	ND	ND	ND	ND	ND	110	100	ND	53	73	44	61	ND	48	12	ND	6	47	110
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	ND	200	ND	180	ND	ND	ND	ND	ND	640	790	ND											
Heptane	ND	ND	ND	ND	ND	ND	ND	2,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	140	ND	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	57	ND	ND	ND	ND	ND	3	ND	ND	ND	ND
Propylene	ND	ND	ND	ND	ND	ND	ND	520	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	140	170	220	310	180	370	190	790	72	ND	190	370	210	ND	ND	ND	220	ND	ND	ND	ND	ND	ND
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	37	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30	ND	ND	35	31	33	ND	41	4	ND	5	24	40
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	160	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	160	ND	ND	ND	ND	ND	ND	2,000	ND	220	1,700	ND											
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16	13	19	ND	10	ND	5.3	ND	7.4	4.1
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.3	ND	6	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

								Concer	tration (ug/m3)	in system SVE-7S										
Compounds	12/13/07	12/20/07	1/4/08	1/9/08	1/23/08	2/6/08	2/20/08	3/6/08	3/20/08	5/21/08	6/18/08	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008	1/21/2009	2/18/2009	3/18/2009
Trichlorofluoromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	4,513.37	2,280.44	0.00	0.00	0.00	0.00	2,700.00	2,600.00	0.00	ND	5,500.00	2,700.00	2,000.00	47,000.00	7,700.00	13,000.00	11,000	13,000	ND	2,500
Carbon Tetrachloride	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	1,309.45	5,237.79	0.00	4,800.00	2,500.00	3,000.00	2,600.00	0.00	2,300.00	ND	0.00	1,400.00	1,300.00	ND	5,800.00	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	1,504.79	4,191.90	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	2,400.00	1,900.00	ND	18,000.00	ND	ND	ND	ND	ND
Toluene	0.00	0.00	0.00	0.00	0.00	3,300.00	0.00	0.00	0.00	ND	0.00	ND	ND	80,000.00	6,900.00	6,800.00	ND	ND	ND	ND
Tetrachloroethylene (Tetrachloroethene)	1,898,732.11	6,781,186.09	10,500,000.00	22,000,000.00	11,000,000.00	5,000,000.00	7,300,000.00	3,700,000.00	3,600,000.00	2,900,000.00	4,800,000.00	5,600,000.00	4,900,000.00	3,500,000.00	3,900,000.00	940,000.00	690,000	1,800,000	2,000,000	710,000
1,1-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.00	0.00	0.00	5,400.00	6,300.00	7,900.00	5,700.00	4,500.00	7,700.00	4,000.00	4,900.00	5,700.00	4,900.00	ND	5,600.00	ND	ND	ND	ND	ND
Methylene Chloride	312.66	0.00	0.00	1,900.00	0.00	1,800.00	0.00	0.00	3,100.00	8,600.00	0.00	8,100.00	1,100.00	8,300.00	13,000.00	9,000.00	15,000	21,000	10,000	6,300
m,p-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	15,000.00	1,900.00	ND	ND	ND	ND	ND
o-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	6,900.00	890.00	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	17,105.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	5,400.00	1,200.00	ND	ND	ND	ND	ND
Tetrahydrofuran	55,427.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	319.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	5,100.00	ND	ND	ND	ND	ND	ND
Vinyl Chloride	319.55	2,811.86	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	490.00	540.00	ND	ND	ND	ND	ND	ND	ND
Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	0.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	2,500.00	0.00	ND	ND	29,000.00	3,800.00	ND	ND	ND	ND	ND
Heptane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.00	0.00	0.00	0.00	0.00	280,000.00	0.00	0.00	0.00	ND	3,900.00	ND	ND	26,000.00	5,200.00	24,000.00	ND	ND	ND	ND
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.00	0.00	0.00	0.00	0.00	2,000.00	0.00	0.00	0.00	3,300.00	0.00	3,300.00	980.00	16,000.00	4,400.00	ND	6,000	ND	ND	ND
Ethyl Acetate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	6,700.00	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,600.00	0.00	ND	ND	ND	1,200.00	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ND	0.00	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Page 18 of 20

									Conce	ntration (ug/m3) in system SVE-7	7 S											
Compounds	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	1/26/2011	7/27/2011	1/25/2012	7/25/2012	1/30/2013
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	680	7,600	2,300	6,200	ND	ND	ND	ND	ND	ND	ND	3,000	2,400	ND	4,000	1,400	ND	9000	ND	1,900	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	320	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	340.00	ND	1400	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	520	ND	ND	ND	4,000	ND	ND	ND	ND	ND	570	ND	ND	ND	890	1,700	570	1900	ND	960	150	580	22
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	700	ND	ND	260	340	ND ND
Tetrachloroethylene (Tetrachloroethene)	1,900,000	1,800,000	1.800.000	1,800,000	5,000,000	1.600.000	1.500.000	1,700,000	1,200,000	740,000	1,200,000	830.000	490,000	860.000	1,300,000	1.600.000	990,000	680,000	700,000	760,000	440.000	450,000	49,000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
cis-1,2-Dichloroethylene	890	ND	1,600	ND	7,700	ND	ND	ND	ND ND	ND	1,200	ND	640	990	ND	4,000	1,000	980	ND ND	1.800	170	780	24
Methylene Chloride	4.900	13,000	11,000	48.000	8,000	ND ND	23,000	31.000	ND ND	3,600	20,000	4,700	ND	ND.	ND ND	1,700	ND	25000	970	1,000	3,200	1,000	ND ND
m,p-Xylene	4,900 ND	13,000 ND	ND	10,000	ND	ND ND	ND	ND	ND ND	ND	20,000 ND	4,700 ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	220	250	ND ND
o-Xylene	ND ND	ND ND	ND ND	10,000 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	310	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone (Methyl ethyl ketone) Tetrahydrofuran	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,000 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND 85	ND ND	ND ND
1,2,4-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND
														ND ND							400		
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND								
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	ND	4,400	ND	ND	ND	ND	ND	ND	ND	ND	6,100	ND	ND	ND	7,200	0	ND	6100	ND	ND	ND	ND	ND
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl Alcohol	ND	ND	ND	ND	ND	ND	9,600	ND	ND	ND	ND	ND	3,100	ND									
Propylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	2,100	ND	ND	ND	19,000	1,900	ND	ND	1,300	1,700	2,300	900	ND	850	370	ND	420	ND	ND	ND	ND
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	98	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexne	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3400	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	160	100	ND
4-Ethyl Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	500	270	ND
Hexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11,000	ND	ND	ND	ND	ND	ND	3000	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,900.00	0.00	ND	ND	ND	ND	170	ND	ND
1,1,2,2-Tetra chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	120	ND ND
1.1.2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	160	ND

									URS Syste	m Effluent Co	ncentration (u	g/m³)											
Compounds	12/13/2007	12/20/2007	1/4/2008	1/9/2008	1/15/2008	1/23/2008	1/30/2008	2/6/2008	2/15/2008	2/20/2008	2/29/2008	3/6/2008	3/13/2008	3/20/2008	4/16/2008	5/21/2008	6/18/2008	7/23/2008	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008
Trichlorofluoromethane	0.0	0.0	0.0	0.0	0.0	0.0	8.3	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.0	5947.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Acetone	297.0	0.0	0.0	74.0	30.9	7.0	11.0	0.0	22.0	60.0	55.0	240.0	3100.0	1800.0	9.9	0.0	14.0	15.0	4.3	86.0	5.4	4.8	1.6
Carbon Tetrachloride	0.0	0.0	0.0	0.0	0.0	0.8	3.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Chloroform	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.0	16368.1	0.0	22.0	0.0	1.1	5.9	5.9	0.0	0.0	0.0	77.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Trichloroethylene (Trichloroethene)	0.0	21496.9	0.0	30.0	1.1	15.0	5.9	3.3	0.0	0.0	0.0	170.0	0.0	0.0	1.9	0.0	0.0	ND	1.3	ND	ND	1.5	ND
Toluene	0.0	0.0	0.0	0.0	0.0	0.0	1.2	1.1	0.0	0.0	2.3	0.0	200.0	410.0	0.2	0.0	0.0	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (Tetrachloroethene)	57676.0	352621.7	121.0	15000.0	745.9	3800.0	140.0	3900.0	320.0	1100.0	130.0	60000.0	2100.0	7600.0	570.0	2000.0	1300.0	160.0	79.0	2800.0	530.0	2.6	1900.0
1,1-Dichloroethane	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.0	0.0	0.0	0.0	0.0	0.0	3.9	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.0	0.0	0.0	0.0	0.0	3.4	6.6	3.4	0.0	0.0	0.0	170.0	0.0	0.0	0.2	0.0	0.0	ND	1.0	ND	ND	ND	ND
Methylene Chloride	0.0	0.0	10.0	180.0	13.2	1.8	6.3	3.3	0.0	0.0	0.0	0.0	5200.0	10000.0	0.5	7.5	6.3	8.6	7.2	ND	1.9	2.8	6.4
m,p-Xylene	0.0	0.0	8.7	0.0	1.3	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	430.0	0.6	0.0	0.0	ND	ND	ND	ND	ND	ND
o-Xylene	0.0	0.0	8.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	180.0	0.3	0.0	0.0	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	0.0	0.0	3.8	0.0	1.8	3.0	1.6	87.0	0.0	0.0	12.0	0.0	170.0	210.0	2.8	0.0	2.5	4.2	ND	ND	1.2	0.4	ND
Tetrahydrofuran	147.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	200.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.0	0.0	0.0	0.0	0.8	4.6	1.9	2.6	130.0	0.0	0.9	0.0	0.0	0.0	0.3	0.0	8.3	2.2	1.1	ND	0.4	ND	ND
Benzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.8	0.0	0.0	0.0	0.0	70.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.0	0.0	0.0	0.0	2.5	9.5	8.6	7.4	0.0	0.0	6.8	0.0	0.0	0.0	6.1	12.0	7.1	6.8	9.5	ND	12.0	10.0	8.3
Chloromethane	0.0	0.0	0.0	0.0	0.0	0.8	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	ND	ND	ND	ND	ND	ND
Ethanol	0.0	0.0	15.0	190.0	0.0	1.3	4.0	0.0	0.0	0.0	31.0	0.0	0.0	350.0	2.9	0.0	3.8	4.7	ND	42.0	ND	0.9	1.6
Heptane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
2-Hexanone	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.8	ND	ND	ND	ND	ND
Isopropyl Alcohol	0.0	0.0	5.2	0.0	0.0	3.3	0.7	1.2	0.0	0.0	2.7	26.0	1000.0	3400.0	0.2	0.0	0.0	1.7	ND	ND	0.6	0.3	ND
Propylene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3700.0	1300.0	0.0	0.0	0.0	ND	ND	ND	ND	1.6	ND
Ethyl Acetate	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	1.9	ND	ND
1,2,4-Trichlorobenzene	0.0	0.0	0.0	0.0	3.0	1.5	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	ND	ND	ND	ND	ND	ND
Chloroethane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Cyclohexane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	190.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Hexane	0.0	0.0	0.0	0.0	0.0	0.0	0.9	82.0	0.0	0.0	0.0	0.0	140.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	2.2	ND
Ethylbenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	110.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Styrene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	220.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Chlorobenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Bromoform	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Bromomethane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	ND	ND	ND	ND	ND	ND
1,4 Dichlorobenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND

Trichlorofluoromethane 1,1-Dichloroethene Acetone	21/2009 5.0 ND	2/18/2009 ND	3/18/2009	4/15/2009	- / / : :																					
1,1-Dichloroethene Acetone		ND		7/13/2003	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009	10/14/2009	11/25/2009	12/24/2009	1/20/2010	2/24/2010	3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	10/27/2010	11/24/2010	1/26/2011	1/5/2011	2/23/2011
Acetone	ND		1.2		0.0	0.0	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.0	ND
		ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	3.1	5.4	23.0	1.8	14.0	16.0	8.8	39.0	9.7	3.8	3.5	ND	4.0	15.0	18.0	43.0	6.9	17.0	9.1	9.9	5.9	8.6	5.0	5.0	2.8	7.4
	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND
1,1,1-Trichloroethane	0.4	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	2.9	ND
Trichloroethylene (Trichloroethene)	ND	1.0	1.0	ND	4.9	0.0	ND	5.0	ND	ND	ND	0.6	ND	ND	4.1	ND	ND	1.0	0.0	ND	ND	ND	5.8	ND	0.9	ND
Toluene	0.5	ND	32.0	0.7	1.3	12.0	ND	3.9	ND	ND	ND	ND	6.3	0.6	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (Tetrachloroethene) 1	100.0	600.0	150.0	140.0	350.0	410.0	520.0	5200.0	ND	360.0	850.0	1900.0	540.0	650.0	510.0	950.0	240.0	880.0	8.5	67.0	39.0	2.0	1600.0	1.6	ND	7.9
1,1-Dichloroethane	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND
1,1-Dichloroethylene	0.6	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND
cis-1,2-Dichloroethylene	ND	ND	ND	ND	0.0	0.0	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93	ND	0.87	ND
Methylene Chloride	14.0	2.8	3.0	5.9	3.2	3.5	5.4	4.5	ND	ND	4.9	ND	3.1	4.0	ND	ND	6.6	8.5	10.0	7.6	4.2	1.9	11.0	0.7	7.9	3.2
m,p-Xylene	ND	ND	4.0	ND	57.0	1.5	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	1.3	ND	4.1	ND	ND	ND	ND	ND
o-Xylene	ND	ND	1.6	ND	12.0	0.5	0.5	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9	ND	1.8	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	0.2	1.1	2.8	ND	1.8	4.8	2.8	7.5	3.1	1.4	0.5	0.7	1.2	3.4	1.4	26.0	0.7	2.8	2.0	2.6	1.0	1.1	0.44	0.92	ND	0.83
Tetrahydrofuran	ND	ND	1.2	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	6.5	ND	7.9	0.8	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	1.0	0.7	ND	ND	0.7	0.0	ND	ND	ND	ND	ND	ND	0.3	0.9	1.0	3.3	ND	ND	0.5	0.4	ND	2.0	ND	ND	ND	0.9
Benzene	ND	ND	1.5	ND	0.0	0.3	ND	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	8.9	5.7	2.0	4.0	8.1	5.4	8.9	1.2	9.1	10.0	8.0	8.0	8.8	7.7	5.8	15.0	9.4	7.4	9.2	7.6	8.8	17.0	7.6	2.8	5.5	16.0
Chloromethane	ND	ND	1.0	ND	0.0	0.0	ND	1.2	ND	ND	ND	ND	ND	ND	ND	0.7	ND	ND	ND	ND	ND	0.9	ND	1.1	ND	ND
Ethanol	2.7	2.4	230.0	1.7	3.2	19.0	3.7	28.0	3.8	ND	2.0	ND	2.3	6.3	3.2	7.4	3.3	4.7	2.4	2.2	ND	4.2	5.8	2.2	ND	21.0
Heptane	ND	ND	1.4	3.1	1.3	0.3	ND	0.7	ND	ND	ND	ND	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	0.8	ND	0.0	0.8	0.5	1.3	1.1	0.5	ND	ND	ND	0.5	ND	8.8	ND	1.0	ND	0.6	ND	0.5	ND	ND	ND	ND
Isopropyl Alcohol	0.5	ND	18.0	ND	0.0	2.8	0.9	3.1	ND	ND	ND	ND	ND	ND	0.7	ND	1.0	1.0	0.6	0.5	ND	0.8	0.73	0.26	ND	0.90
Propylene	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.6	ND	ND	ND	0.0	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Acetate	ND	ND	11.0	ND	0.0	31.0	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5
Cyclohexane	ND	ND	3.0	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.8	ND	2.6	0.9	0.0	0.0	ND	0.2	ND	ND	ND	ND	5.2	ND	ND	0.4	1.1	0.0	0.8	ND	ND	ND	3.3	ND	ND	1.2
Ethylbenzene	0.2	ND	1.8	ND	11.0	0.6	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND
4-Ethyl Toluene	ND	ND	2.1	ND	7.2	0.0	ND	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	0.8	ND	0.0	0.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	2.4	ND	4.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	0.5	ND	0.4	ND	0.0	0.4	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4 Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.67	ND	ND	ND							
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

										URS Sv	vstem Effluen	t Concentration	n (ug/m3)												
Compounds	3/30/2011	4/27/2011	5/25/2011	6/29/2011	7/27/2011	8/31/2011	9/28/2011	10/26/2011	11/30/2011	12/28/2011	1/25/2012	2/29/2012	3/28/2012	4/25/2012	5/30/2012	6/27/2012	7/25/2012	8/29/2012	9/26/2012	11/28/2012	12/26/2012	1/30/2013	2/27/2013	3/27/2013	4/27/2013
Trichlorofluoromethane	ND	ND	0.9	ND	ND	7.9	ND	3.1	0.83	8.00	2.10	3.10	ND	1.70	ND	ND	ND	1.20	ND	ND	0.67	ND	ND	ND	3.00
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Acetone	7.7	5.6	16.0	34.0	22.0	14.0	15.00	ND	11.0	ND	ND	ND	16.0	ND	ND	ND	ND	ND	28	ND	ND	ND	12.00	12.00	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,8							
Chloroform	ND	ND	ND	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17.00							
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	2.20	ND	ND	ND	ND	ND	ND	4.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.00
Trichloroethylene (Trichloroethene)	ND	ND	ND	ND	0.9	ND	ND	ND	0.9	1.1	ND	ND	ND	21.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	98.00
Toluene	ND	ND	1.3	0.6	4.3	0.4	ND	0.7	1.1	ND	0.9	ND	0.5	ND	4.9	ND	0.7	7	0.6	ND	ND	1.3	1.50	1.40	2.10
Tetrachloroethylene (Tetrachloroethene)	ND	0.7	5.4	27.0	1500	ND	61	13	820	670	200	47	59	5100	7.8	ND	ND	ND	4.2	11.0	1.5	ND	1.90	2.40	59000.00
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.10							
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.85							
cis-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25.00							
Methylene Chloride	5.9	5.0	5.7	3	4	11	35	26	83	150	92	52	52	35	33	7.3	11.0	ND	6.8	2.0	ND	8.4	ND	8.80	6.20
m,p-Xylene	ND	ND	0.9	3.2	7.5	ND	ND	1.6	1.9	ND	2.1	ND	0.9	ND	10	ND	1.6	15	2.4	ND	ND	2.1	2.10	1.50	2.50
o-Xylene	ND	ND	ND	1.9	2.8	ND	ND	0.6	0.6	ND	0.8	ND	ND	ND	4.2	ND	0.6	4.9	1.5	ND	ND	0.72	0.86	0.58	0.63
2-Butanone (Methyl ethyl ketone)	1.20	ND	ND	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	27.0	0.81	ND	ND	ND	ND	ND	2.1	ND	ND	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	0.6	0.7	3.8	5.5	ND	ND	1.5	ND	ND	2.5	ND	1.1	ND	11.0	ND	1.5	6.4	3.5	ND	ND	1.1	1.40	0.68	1.30
Vinyl Chloride	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.73	ND	ND	ND	ND						
Benzene	ND	ND	0.6	0.9	ND	ND	0.36	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	0.4	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane (Freon 12)	21.0	4.8	3.3	5.4	7.1	7.7	8.10	11	7.8	8.6	7.2	4.4	5.6	5.5	5.8	4.1	6.5	3.2	7.2	1.5	22	1.9	5.30	7.00	3.60
Chloromethane	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	0.6	0.5	ND	1.10	ND	ND
Ethanol	3.3	ND	7.8	7.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	16.0	ND	ND	ND	ND	ND
Heptane	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	0.5	ND	ND	ND	ND	1.50	ND	ND							
2-Hexanone	ND	ND	ND	5.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.1	ND	ND	ND	0.98	ND	0.42
Isopropyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Propylene	ND	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Ethyl Acetate	ND	ND	ND	ND	ND	30	ND	ND	ND	0.9	ND	ND	ND	ND	1.8	2.80	ND	8.90							
1,2,4-Trichlorobenzene	ND	ND	ND	7.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	8.3	ND	ND	ND	ND	ND	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.2	ND	ND	ND	ND
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Hexane	ND	ND	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	0.5	1.2	1.6	ND	ND	ND	ND	ND	0.5	ND	ND	ND	2.2	ND	ND	3.8	0.5	ND	ND	0.45	0.52	ND	0.47
4-Ethyl Toluene	ND	ND	ND	2.7	0.97	ND	ND	ND	ND	ND	0.5	ND	ND	ND	1.8	ND	ND	1.8	0.5	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND	0.61	ND	ND	ND	ND	ND	ND	ND	ND	1.3	1.7	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	3.1	1.3	ND	ND	ND	1.3	ND	0.6	ND	ND	ND	2.8	ND	ND	1.7	0.9	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Bromoform	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,4 Dichlorobenzene	ND	ND	ND	4.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND	ND							
Naphthalene	ND	ND	ND	1.5	ND	0.8	ND	6.7	ND	1.4	2	2	ND	ND	ND	0.64	ND	0.61							

									GWTT Syste	em Effluent Co	ncentration (ıg/m³)											
Compounds	12/13/2007	12/20/2007	1/4/2008	1/9/2008	1/15/2008	1/23/2008	1/30/2008	2/6/2008	2/15/2008	2/20/2008	2/29/2008	3/6/2008	3/13/2008	3/20/2008	4/16/2008	5/21/2008	6/18/2008	7/23/08	8/20/2008	9/17/2008	10/15/2008	11/26/2008	12/24/2008
Trichlorofluoromethane	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	330.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Acetone	8825.0	0.0	5.7	120.0	92.6	55.0	0.0	940.0	46.0	30.0	3.2	1800.0	2700.0	0.0	25.0	0.0	35.0	25.0	29.0	120.0	11.0	4.2	21.0
Carbon Tetrachloride	0.0	0.0	0.0	0.0	0.0	3.7	0.0	0.0	0.0	0.0	0.0	2800.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Chloroform	0.0	0.0	0.0	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	370.0	5700.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	0.0	0.0	0.0	0.0	0.0	4.2	0.0	0.0	0.0	0.0	0.0	3400.0	0.0	0.0	0.0	0.0	0.0	0.6	ND	ND	ND	ND	ND
Trichloroethylene	0.0	1612.3	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	0.6	6500.0	0.0	0.0	0.0	0.0	1.4	1.5	ND	ND	1.0	1.0	ND
Toluene	0.0	0.0	0.0	0.0	1.5	0.0	0.0	840.0	0.0	0.0	0.0	170.0	5300.0	120.0	1.3	0.0	0.0	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	87990.0	250903.9	140.0	2100.0	3.4	54.0	1200000.0	5600.0	280.0	2800.0	36.0	790000.0	4600.0	1700.0	22.0	4500.0	1800.0	900.0	390.0	4900.0	2200.0	0.8	260.0
1,1-Dichloroethane	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	280.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	0.0	0.0	0.0	0.0	0.0	3.9	0.0	0.0	0.0	0.0	0.0	780.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	0.0	0.0	0.0	0.0	0.0	13.0	0.0	0.0	0.0	0.0	0.5	6100.0	0.0	0.0	0.0	0.0	0.0	2.3	1.3	ND	ND	ND	ND
Methylene Chloride	0.0	0.0	5.9	2.5	6.3	1.2	0.0	920.0	0.0	0.0	0.0	270.0	4900.0	800.0	0.7	0.0	5.7	3.7	1.8	ND	4.1	1.9	1.9
m,p-Xylene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	430.0	430.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
o-Xylene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	180.0	180.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
2-Butanone (Methyl ethyl ketone)	677.0	0.0	0.0	4.0	8.6	3.8	0.0	120.0	0.0	0.0	0.8	120.0	180.0	0.0	5.7	0.0	8.8	10.0	14.0	20.0	8.3	1.0	4.6
Tetrahydrofuran	1119.0	0.0	0.0	0.0	1.9	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	350.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.0	0.0	9.5	260.0	186.6	320.0	0.0	82.0	0.0	0.0	48.0	56.0	0.0	0.0	20.0	81.0	140.0	86.0	71.0	110.0	44.0	14.0	ND
Benzene	1787.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0.0	0.0	0.0	14.0	10.9	11.0	0.0	0.0	0.0	0.0	5.9	0.0	310.0	0.0	5.1	16.0	11.0	10.0	12.0	23.0	23.0	33.0	2.5
Chloromethane	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.6	0.0	0.0	0.7	ND	ND	ND	0.4	1.4
Ethanol	0.0	0.0	0.0	4.0	0.0	26.0	0.0	1200.0	0.0	0.0	2.2	250.0	530.0	0.0	2.9	0.0	9.9	8.6	5.4	64.0	6.8	2.0	8.3
Heptane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	1.6	3.6	ND	1.2	ND	ND
2-Hexanone	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	3.1	4.2	5.5	ND	4.3	ND	1.3
Isopropyl Alcohol	0.0	0.0	0.0	1.1	0.0	1.9	0.0	8800.0	0.0	0.0	0.7	460.0	9300.0	3500.0	0.3	0.0	2.2	1.3	1.0	ND	1.0	0.4	0.9
Propylene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	7.8	ND	ND	ND	ND
Tertiary Butyl Alcohol	0.0	0.0	0.0	0.0	28.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Carbon Disulfide	0.0	0.0	0.0	0.0	0.0	5.1	0.0	560.0	0.0	0.0	0.0	1400.0	3400.0	420.0	0.0	0.0	0.0	ND	ND	ND	ND	1.5	ND
Ethyl Acetate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	ND	ND	ND	ND	ND	ND
Chloroethane	0.0	0.0	0.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	4.6	0.0	0.0	0.0	0.0	0.0	10.0	1.4	3.3	ND	ND	ND	ND
Cyclohexane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Hexane	351.7	527.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Ethylbenzene	312.2	476.0	0.0	0.0	0.8	0.0	0.0	160.0	0.0	0.0	0.0	0.0	140.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	0.0	441.0	0.0	0.0	0.7	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Styrene	1063.4	1573.0	0.0	0.0	2.6	0.0	0.0	130.0	0.0	0.0	0.0	0.0	530.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	687.1	1030.0	0.0	0.0	1.7	0.0	0.0	110.0	0.0	0.0	0.0	0.0	0.0	120.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MIBK)	818.0	1226.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Chlorobenzene	462.2	693.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Bromoform	652.8	951.0	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
Bromomethane	0.0	543.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND
1,4 Dichlorobenzene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND

Companels											GW	/TT System Ef	fluent Concen	ntration (ug/m	3)												
Continue	Compounds	1/21/2009	2/18/2009	3/18/2009	4/15/2009	5/13/2009	6/10/2009	7/8/2009	8/5/2009	9/2/2009				, 0,		3/17/2010	4/21/2010	5/26/2010	6/30/2010	7/21/2010	8/18/2010	9/15/2010	10/27/2010	11/24/2010	1/5/2011	1/26/2011	2/23/2011
Some Many Control of the Control of	Trichlorofluoromethane	ND	ND	ND	ND	0.0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0	0.6	0.6	ND	ND	ND	ND	ND	ND
Same Same	1,1-Dichloroethene	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Caree Machandrache	Acetone	4.0	12.0	20.0	6.8		34.0	27.0	53.0	25.0	38.0	15.0	15.0	6.4	170.0	31.0	ND	89.0	76.0	41.0	20.0	12.0	8.4	15.0	17.0	31.0	4.9
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Carbon Tetrachloride	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Li Li Trisposimente de la 10 No 10 N	Chloroform	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.50
France 1.2 1.2 1.5 1	1,1,1-Trichloroethane	ND	ND	ND	ND		0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Marie Configuration Sap Sant Sap Sant Sap Sant Sap	Trichloroethylene	0.8	0.6	ND	ND	0.0	0.4	0.8	0.8	1.7	ND	ND	ND	ND	0.8	0.8	1.3	ND	4.2	ND	0.6	ND	ND	ND	33.0	ND	ND
Standarding 15	Toluene	1.2	ND	ND	ND	0.0	37.0	0.5	0.5	0.6	ND	0.6	ND	0.5	0.7	0.6	ND	0.8	1.0	3.8	1.2	0.5	ND	0.48	ND	0.41	ND
Secondar	Tetrachloroethylene	58.0	530.0	240.0	130.0	690.0	260.0	1100.0	740.0	2400.0	770.0	940.0	250.0	510.0	1500.0	1600.0	3300.0	1500.0	5700.0	18.0	210.0	72.0	5.7	19.0	130.0	ND	5.2
	1,1-Dichloroethane	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi-procedure 2 2 Mo 12	1,1-Dichloroethylene	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
The properties of the control of the	cis-1,2-Dichloroethylene	ND	ND	ND	ND	0.0	0.0	ND	ND	0.7	ND	ND	ND	ND	ND	ND	0.4	ND	1.0	ND	ND	ND	ND	ND	0.8	ND	ND
Sygene Mo	Methylene Chloride	1.2	ND	1.9	4.6	3.0	4.0	4.8	1.6	ND	ND	10.0	ND	ND	2.0	ND	ND	ND	1.0	4.1	ND	ND	1.7	8.2	1.7	0.7	2.0
Sylvene Mo	m,p-Xylene	ND	ND	ND	ND	0.0	3.4	ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-bit interview (which with yellow (which y		ND	ND	ND	ND		1.2	ND	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12.4 Franchiphotenese Mo		1.3	5.1	9.2	2.8			16.0	31.0	9.1	12.0	4.9	7.6	4.6	31.0	5.6	0.8	52.0	47.0	15.0	8.1	5.4	1.3	13.0	3.5	14.0	0.7
1.2.4 Trensphenement (10.1 No.	Tetrahydrofuran	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Series Mo		ND	ND	ND	ND		1.4	0.6	0.8	ND	ND	ND	ND	ND	ND	ND	ND	0.9	1.3	1.4	ND	ND	ND	ND	ND	ND	ND
Section Mode	Vinyl Chloride	ND	2.2	5.1	5.5	21.0	10.0	11.0	15.0	11.0	5.8	5.1	ND	4.8	5.4	4.5	ND	7.5	10.0	6.1	4.9	0.6	ND	2.0	2.5	2.5	0.7
Constructance Constructanc		ND												ND			ND										
Constructance Constructanc	Dichlorodifluoromethane (Freon 12)	14.0	32.0	32.0	25.0	32.0	26.0	26.0	24.0	24.0	17.0	21.0	0.7	28.0	27.0	25.0	4.6	25.0	18.0	11.0	11.0	2.4	8.8	13.0	26.0	24.0	2.4
Inspiration No																											
Inspiration No	Ethanol	2.8	ND	12.0	2.0	5.5	44.0	13.0	21.0	6.2	6.7	12.0	11.0	4.9	14.0	4.5	ND	15.0	29.0	14.0	8.4	4.3	3.1	6.5	24.0	5.0	2.6
24/seamone MAG 1.0	Heptane	ND	ND	1.1	1.1	4.4	1.5	2.3	6.7	2.0	1.9	0.5	1.0	0.6	4.0	1.1	ND	10.0	7.5	2.3	0.8	0.5	ND	1.2	ND	1.9	ND
Proprieme NO N		ND	1.0	1.9	0.9	8.1	2.7	4.5	8.7	0.9	4.2	2.3	1.9	1.9	2.2	1.1	ND	15.0	22.0	6.2	2.8	2.0	ND	5.9	ND	3.4	ND
Terting below Alkehole ND	Isopropyl Alcohol	ND	ND	0.7	0.7	0.0	6.6	1.2	1.2	ND	0.6	1.0	0.6	ND	ND	1.3	ND	ND	1.6	2.5	0.8	0.4	0.8	0.49	2.80	ND	ND
Tertary gluty Alkcholo ND ND ND ND ND ND ND N		ND	ND	ND	ND		0.0	ND	ND	7.9	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	1.0	ND	ND	ND	ND
Etyl-Acteate ND		ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12,4-FT(ch)probenzene	Carbon Disulfide	ND	0.7	ND	ND	0.0	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	ND	ND
Chloresthane ND ND ND ND ND ND ND N	Ethyl Acetate	ND	ND	ND	ND	0.0	68.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	1,2,4-Trichlorobenzene	ND	ND	ND	ND	3.4	0.0	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	Chloroethane	ND	ND	ND	ND	5.2	3.5	5.5	1.1	3.3	ND	ND	ND	ND	0.9	0.7	ND	6.6	22.0	5.3	2.1	ND	ND	7.1	9.2	4.4	2.1
Ethylbranee ND ND ND ND ND ND ND	Cyclohexane	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyl Toluene	Hexane	0.3	ND	ND	0.6	0.0	0.0	ND	0.5	1.2	ND	1.3	ND	ND	ND	ND	ND	0.6	1.0	2.5	0.4	ND	ND	1.1	ND	ND	0.90
Styrene ND ND ND ND ND ND ND N	Ethylbenzene	ND	ND	ND	ND	0.0	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	4-Ethyl Toluene	ND	ND	ND	ND	0.0	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone (MBK) ND	Styrene	ND	ND	ND	ND	0.0	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene ND	1,3,5-Trimethylbenzene	ND	ND	ND	ND	0.0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform ND ND ND ND ND ND ND N	4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	ND	0.0	0.8	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	Chlorobenzene	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4 Dichlorobenzene ND	Bromoform	ND	ND	ND	ND	0.0	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4 Dichlorobenzene ND	Bromomethane	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	ND	ND	ND	ND						
1,2-Dichloroethane ND		ND	ND	ND	ND		ND	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0	1.0	1.0	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane ND	Vinyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	2.5	ND	ND	ND						
1,2-Dichloropropane ND	1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
									ND				ND														
1,1,2-Trichloroethane ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114) ND													ND				ND										
							ND		ND				ND				ND					ND					
INVARIATION OF AND A PARTY OF AND A	Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

										GWTT S	ystem Effluen	t Concentration	on (ug/m3)												
Compounds	3/30/2011	4/27/2011	5/25/2011	6/29/2011	7/27/2011	8/31/2011	9/28/2011	10/26/2011	11/30/2011	12/28/2011	1/25/2012	2/29/2012	3/28/2012	4/25/2012	5/30/2012	6/27/2012	7/25/2012	8/29/2012	9/26/2012	11/28/2012	12/26/2012	1/30/2013	2/27/2013	3/27/2013	4/27/2013
Trichlorofluoromethane	ND	1.10	ND	ND	1.30	ND	1.3	ND	ND	ND	ND	ND	0.79	ND	ND	ND	1.2	ND	0.6	1.4	ND	1.6	0.87	0.96	42.00
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	78.00
Acetone	75.0	6.6	1100	30	560	10.0	22.0	ND	16	18	ND	ND	9.6	ND	ND	12	9.7	ND	16	17	ND	ND	18.00	25.00	71.00
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	76.00
Chloroform	ND	ND	9.00	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	68.00
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	580.00
Trichloroethylene	ND	0.59	15	ND	2.1	ND	ND	ND	4.4	8.4	0.8	ND	ND	3.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1300.00
Toluene	ND	0.87	41	ND	7.60	ND	3.2	0.4	0.7	1.1	0.7	ND	2.4	ND	ND	ND	2.7	8.2	ND	ND	0.58	0.88	4.40	2.30	3.00
Tetrachloroethylene	1.0	1.3	830	14	2100	ND	6.6	ND	940	810	4.5	ND	29	1500	ND	ND	25	0.8	ND	ND	ND	7.1	11.00	8.00	97000.00
1,1-Dichloroethane	ND	ND	29	0.44	6.30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	78.00
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	230.00
cis-1,2-Dichloroethylene	ND	ND	5.40	ND	1.30	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	2.9	1.6	45	8.0	6.4	5.9	19.0	4.4	6.7	7.8	ND	ND	ND	ND	2.6	7.3	ND	11	15	ND	3.7	9.7	4.00	8.70	10.00
m,p-Xylene	ND	ND	11	ND	6.10	ND	ND	0.9	1.1	1.0	1.4	ND	3.1	ND	2.6	ND	2.2	17	ND	ND	ND	0.99	1.80	3.30	2.70
o-Xylene	ND	ND	4.90	ND	2.4	ND	ND	ND	0.5	0.5	0.6	ND	1.1	ND	1.1	ND	0.78	5.80	ND	ND	ND	ND	0.96	1.30	0.76
2-Butanone (Methyl ethyl ketone)	2.4	ND	1300	27	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	6.3	ND	ND	ND	ND	ND	0.9	ND	ND	ND	5.6	ND	0.4	0.3	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	ND	ND	19	0.72	3.10	ND	ND	0.8	1.1	1.5	1.6	ND	2.8	ND	12.0	ND	1.4	8.1	ND	ND	ND	ND	0.69	2.10	1.10
Vinyl Chloride	1.3	ND	29	3.1	2.6	3.8	0.6	2.1	1.9	2.1	2.5	1.8	1	2.1	2.4	2.6	ND	2.3	1.3	1	ND	0.72	0.82	0.87	1.10
Benzene	ND	0.47	ND	ND	0.71	ND	0.5	ND	ND	ND	ND	ND	0.5	ND	ND	ND	0.5	ND	ND	ND	ND	0.6	1.50	0.38	2.20
Dichlorodifluoromethane (Freon 12)	3.1	2.2	420	33	2.6	43	11	51.0	51	46	63	35	15	33	41	22	2.5	25	23	25	7	17	19.00	22.00	26.00
Chloromethane	ND	0.88	ND	2.70	5.70	ND	1	0.3	0.4	ND	ND	0.4	0.7	ND	ND	ND	0.96	ND	0.99	1	ND	0.85	0.41	0.97	ND
Ethanol	5.3	5.5	200	16	59	ND	28	ND	ND	12.0	ND	ND	ND	ND	ND	ND	22	ND	ND	13	10	8.2	13.00	ND	ND
Heptane	ND	ND	210	3.30	49	ND	ND	ND	0.4	ND	ND	ND	ND	ND	0.59	ND	ND	0.6	ND	ND	ND	ND	3.30	ND	ND
2-Hexanone (MBK)	0.5	ND	540	23	14	ND	ND	ND	2.8	2.4	1.7	ND	ND	ND	ND	ND	ND	0.5	0.6	ND	ND	ND	0.48	ND	ND
Isopropyl Alcohol	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylene	ND	ND	75	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Acetate	ND	ND	13	ND	17	ND	1	ND	ND	0.9	2.9	ND	0.8	ND	ND	ND	12.0	1.6	ND	ND	1.2	ND	180.00	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	3.2	ND	240	12	38	12	2.3	6.9	11	9.7	14	15	7.7	18	21	19	ND	18	8.5	11	ND	7.0	10.00	7.00	9.50
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0.99	ND	ND
Hexane	1.1	0.5	20	ND	ND 4.5	ND	ND	ND	ND	ND	ND	ND	ND 0.6		ND	ND		ND	ND	ND	ND	ND	16.00	ND	ND
Ethylbenzene	ND ND	ND ND	ND ND	ND ND	1.6 0.79	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	0.6 0.6	ND ND	2.5 2.2	ND ND	0.6 ND	4.3	ND ND	ND	ND ND	ND ND	0.86 ND	0.81 0.54	0.56 ND
4-Ethyl Toluene	ND ND	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND ND		ND ND	ND	ND ND	ND	ND ND		2.1	ND ND	ND	ND ND	ND ND	ND ND	0.54 ND	ND ND
Styrene 1,3,5-Trimethylbenzene	ND ND	ND ND	5.50	ND ND	ND 0.09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.6	ND ND	3.1	ND ND	2.5 ND	ND 2	ND ND	ND ND	ND ND	ND ND	0.75	0.56	ND ND
4-Methyl-2-Pentanone (MIBK)	ND ND	ND ND	ND	ND ND	0.98 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	0.75 ND	ND	ND ND
Chlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.10
Bromoform	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Bromomethane	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4 Dichlorobenzene	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl Acetate	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ND ND	ND ND	25	0.45	1.40	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3.50
1,2-Dichloropropane	ND	ND	17	0.43	2.60	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
trans-1,3-Dichloropropene	ND ND	ND	6.70	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane	ND ND	ND ND	21	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	2.8	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	1.1	ND	0.74	ND	6.70	ND	1.0	2.9	ND	ND	ND ND		0.65	0.69	1.10
Naphthalene	ND	ND	ND	ND	NU	ND	ND	ND	ND	ND	1.1	ND	0.74	ND	6.70	ND	1.0	2.9	ND	ND	ND	ND	0.65	0.69	1.10

									URS Syster	m Influent Co	ncentration (u	ıg/m³)											
Compounds	10/27/2010	11/24/2010	1/5/2011	1/26/2011	2/23/2011	3/30/2011	4/27/2011	5/25/2011	6/29/2011	7/27/2011	8/31/2011	9/28/2011	10/26/2011	11/30/2011	12/28/2011	1/25/2012	2/29/2012	3/28/2012	4/25/2012	5/30/2012	6/27/2012	7/25/2012	8/29/2012
Trichlorofluoromethane	ND	6.0	ND	NS	21.0	16.0	ND	ND	7.2	NS	ND	12.0	120.0	ND	ND	NS	ND	ND	ND	6.10	ND	NS	ND
1.1-Dichloroethene	ND	ND	ND	NS	35.0	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Acetone	ND	ND	ND	NS	150.0	ND	ND	ND	ND	NS	1,800.0	25.0	3,700.0	1,700.0	2,100.0	NS	ND	ND	ND	ND	ND	NS	ND
Carbon Tetrachloride	ND	6.9	ND	NS	34.0	31.0	ND	ND	ND	NS	ND	5.3	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Chloroform	15	17	ND	NS	31	24	22	28	ND	NS	330	30	ND	ND	ND	NS	19	27	29	33	22	NS	24
1,1,1-Trichloroethane	23	30	ND	NS	370	400	20	20	24	NS	1400	23	ND	ND	ND	NS	ND	19	17	15	18	NS	160
Trichloroethylene (Trichloroethene)	140	190	7.1	NS	700	500	160	170	220	NS	9,900	210	310	560	1,800	NS	160	160	170	160	190	NS	300
Toluene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	4,800.0	2.1	340.0	220.0	860.0	NS	ND	ND	ND	3.9	ND	NS	52.0
Tetrachloroethylene (Tetrachloroethene)	92,000	130.000	5,300	NS	88.000	120,000	110,000	100.000	130.000	NS	88.000	90,000	75,000	77,000	62,000	NS	54,000	100,000	97,000	85,000	98.000	NS	390,000
1,1-Dichloroethane	ND	ND	ND	NS	35	31	ND	ND	ND	NS	190	2	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,1-Dichloroethylene	ND	ND	ND	NS	150	140	ND	ND	ND	NS	460	2	ND	ND	62	NS	ND	ND	ND	ND	ND	NS	ND
cis-1,2-Dichloroethylene	26	30	ND	NS	120	94	32	52	81	NS	3400	61	ND	ND	390	NS	24	34	46	50	51	NS	94
Methylene Chloride	ND	ND	ND	NS	ND	24	8.1	ND	ND	NS	3,900	63	31,000	8,700	2,100	NS	52.0	ND	ND	ND	ND	NS	ND
m,p-Xylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	2,400	ND	330	230	920	NS	ND	ND	ND	ND	ND	NS	44
o-Xylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	710	ND	99	64	260	NS	ND	ND	ND	ND	ND	NS	16
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	NS	20.0	ND	ND	ND	3.5	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Tetrahydrofuran	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	120	ND	ND	ND	95	NS	ND	ND	ND	ND	ND	NS	ND
1,2,4-Trimethylbenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	110	ND	ND	ND	87	NS	ND	ND	ND	5.5	ND	NS	19
Vinyl Chloride	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	38	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Benzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	180	0.4	86	ND	59	NS	ND	ND	ND	ND	ND	NS	ND
Dichlorodifluoromethane	ND	7.5	ND	NS	16.0	11.0	ND	5.6	6.4	NS	ND	8.2	ND	ND	ND	NS	5.2	ND	ND	6.4	ND	NS	13.0
Chloromethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	23	ND	NS	ND	ND	ND	ND	ND	NS	ND
Ethanol	ND	ND	29	NS	ND	ND	ND	ND	ND	NS	30,000	ND	ND	ND	2,800	NS	ND	ND	ND	ND	ND	NS	ND
Heptane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
2-Hexanone	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.7	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Isopropyl Alcohol	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Propylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Tertiary Butyl Alcohol	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Carbon Disulfide	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Ethyl Acetate	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	290	340	NS	ND	26	ND	ND	ND	NS	ND
1,2,4-Trichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	120	ND	ND	270	230	NS	ND	ND	ND	ND	ND	NS	ND
Chloroethane	ND	ND	ND	NS	3.3	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Cyclohexane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Hexane	ND	ND	ND	NS	ND	22.0	ND	ND	ND	NS	ND	ND	5,800	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Ethylbenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	4,900	ND	200	220	940	NS	ND	ND	ND	ND	ND	NS	11.0
4-Ethyl Toluene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	95	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Styrene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	6,800	ND	360	910	1,300	NS	ND	ND	ND	ND	ND	NS	ND
1,3,5-Trimethylbenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Chlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	2,000	ND	ND	300	980	NS	ND	ND	ND	ND	ND	NS	ND
Bromoform	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Bromomethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,4 Dichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	76	NS	ND	ND	ND	ND	ND	NS	ND
Bromodichloromethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.9	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,3-Butadiene	ND	ND	ND	NS	ND	ND	6.1	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,2-Dichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	320	ND	ND	240	960	NS	ND	ND	ND	ND	ND	NS	ND
1,2-Dichloroethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	1,100	ND	ND	ND	89	NS	ND	ND	ND	ND	ND	NS	ND
1,1,2-Trichloroethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	220	ND	ND	ND	94	NS	ND	ND	ND	ND	ND	NS	ND
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	180	0.9	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Trans-1,2-Dichloroethylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	1.4	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Methyl tert-Butyl Ether (MTBE)	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.57	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND

Table 4 - SVE Systems- Effluent VOC Summary 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

UR	S System Influe	nt Concentrat	ion (ug/m3)			
Compounds	9/26/2012	11/28/2012	12/26/2012	1/30/2013	2/272013	3/27/2013
Trichlorofluoromethane	ND	ND	ND	NS	ND	ND
1,1-Dichloroethene	ND	ND	ND	NS	ND	ND
Acetone	ND	ND	ND	NS	ND	ND
Carbon Tetrachloride	ND	ND	ND	NS	ND	ND
Chloroform	25	ND	25.0	NS	15.00	21.00
1,1,1-Trichloroethane	25	ND	19.0	NS	24.00	ND
Trichloroethylene (Trichloroethene)	210	30	140.0	NS	89.00	100.00
Toluene	ND	ND	ND	NS	ND	ND
Tetrachloroethylene (Tetrachloroethene)	95,000	36000	65000.0	NS	34000.00	33000.00
1,1-Dichloroethane	ND	ND	ND	NS	ND	ND
1,1-Dichloroethylene	ND	ND	ND	NS	ND	ND
cis-1,2-Dichloroethylene	68	16	24	NS	21.00	24.00
Methylene Chloride	ND	ND	ND	NS	ND	ND
m,p-Xylene	ND	ND	ND	NS	ND	ND
o-Xylene	ND	ND	ND	NS	ND	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	NS	ND	ND
Tetrahydrofuran	ND	ND	ND	NS	ND	ND
1,2,4-Trimethylbenzene	ND	ND	ND	NS	ND	ND
Vinyl Chloride	ND	ND	ND	NS	ND	ND
Benzene	ND	ND	ND	NS	ND	ND
Dichlorodifluoromethane	ND	ND	ND	NS	10.00	ND
Chloromethane	ND	ND	ND	NS	ND	ND
Ethanol	ND	ND	ND	NS	ND	ND
Heptane	ND	ND	ND	NS	ND	ND
2-Hexanone	ND	ND	ND	NS	ND	ND
Isopropyl Alcohol	ND	ND	ND	NS	ND	ND
Propylene	ND	ND	ND	NS	ND	ND
Tertiary Butyl Alcohol	ND	ND	ND	NS	ND	ND
Carbon Disulfide	ND	ND	ND	NS	ND	ND
Ethyl Acetate	ND	ND	ND	NS	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	NS	ND	ND
Chloroethane	ND	ND	ND	NS	ND	ND
Cyclohexane	ND	ND	ND	NS	ND	ND
Hexane	ND	ND	ND	NS	ND	ND
Ethylbenzene	ND ND	ND ND	ND ND	NS NS	ND	ND ND
4-Ethyl Toluene	ND	ND	ND	NS	ND	ND
Styrene	ND	ND	ND	NS NS	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	NS	ND	ND
4-Methyl-2-Pentanone (MIBK)	ND ND	ND ND	ND ND	NS NS	ND	ND ND
Chlorobenzene	ND	ND	ND	NS	ND	ND
Bromoform	ND ND	ND ND	ND ND	NS NS	ND	ND ND
Bromomethane	ND	ND	ND	NS NS	ND	ND ND
1.4 Dichlorobenzene	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
Bromodichloromethane	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
1,3-Butadiene	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
1,3-Butadiene 1.2-Dichlorobenzene	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
				-		
1,2-Dichloroethane 1.1.2-Trichloroethane	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
				-		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ND	ND	NS	ND	ND
Trans-1,2-Dichloroethylene	ND	ND	ND	NS	ND	ND
Methyl tert-Butyl Ether (MTBE)	ND	ND	ND	NS	ND	ND

									GWTT Syste	em Influent Co	oncentration (ug/m³)											
Compounds	10/27/2010	11/24/2010	1/5/2011	1/26/2011	2/23/2011	3/30/2011	4/27/2011	5/25/2011	6/29/2011	7/27/2011	8/31/2011	9/28/2011	10/26/2011	11/30/2011	12/28/2011	1/25/2012	2/29/2012	3/28/2012	4/25/2012	5/30/2012	6/27/2012	7/25/2012	8/29/2012
Trichlorofluoromethane (Freon 11)	69	37	31	NS	ND	ND ND	50	2000	97	NS	90	64	160	140	69	NS	36	64	76	68	41	NS	50
1,1-Dichloroethene	ND	ND	ND	NS	ND	ND	150	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Acetone	ND	36	ND	NS	35	ND	ND	ND	29	NS	1400	31	2900	3000	1300	NS	ND	ND	ND	ND	ND	NS	ND
Carbon Tetrachloride	160	110	70	NS	8	ND	150	4800	150	NS	89	130	ND	94	88	NS	100	110	100	100	100	NS	82
Chloroform	87	61	26	NS	5	ND	110	4100	130	NS	81	130	110	83	99	NS	63	ND	120	130	98	NS	150
1,1,1-Trichloroethane	1400	980	760	NS	8	14	1000	39000	1100	NS	780	750	720	1100	1100	NS	940	950	640	820	930	NS	730
Trichloroethylene (Trichloroethene)	2600	1900	ND	NS	130	46	2300	77000	1900	NS	1700	1600	2000	4100	1800	NS	1600	1800	1800	2000	2300	NS	1800
Toluene	ND	30.0	ND	NS	20.0	ND	ND	ND	ND	NS	150.0	5.0	420.0	180.0	190.0	NS	ND	ND	ND	4.2	ND	NS	10.0
Tetrachloroethylene (Tetrachloroethene)	180000	190000	100000	NS	150000	74000	120000	140	260000	NS	100000	110000	84000	82000	120000	NS	86000	470000	170000	94000	100000	NS	240000
1,1-Dichloroethane	110	76	39	NS	ND	ND	ND	5100	120	NS	80	110	89	110	120	NS	90	140	130	140	110	NS	100
1,1-Dichloroethylene	420	320	230	NS	ND	ND	360	16000	450	NS	320	340	310	290	390	NS	260	390	280	350	330	NS	320
cis-1,2-Dichloroethylene	590	470	180	NS	240	89	630	23000	1100	NS	410	630	460	390	540	NS	450	690	650	660	620	NS	930
Methylene Chloride	ND	8	ND	NS	ND	ND	14	ND	12	NS	1200	20	25000	19000	1400	NS	ND	ND	ND	ND	ND	NS	ND
m,p-Xylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	170	2	720	280	ND	NS	ND	ND	ND	ND	ND	NS	ND
o-Xylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	44	1	200	79	ND	NS	ND	ND	ND	ND	ND	NS	ND
2-Butanone (Methyl ethyl ketone)	ND	ND	ND	NS	ND	ND	ND	ND	4.5	NS	2,000	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Tetrahydrofuran	ND	4.1	ND	NS	ND	ND	5.7	ND	ND	NS	150	0.6	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,2,4-Trimethylbenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.9	140.0	ND	ND	NS	ND	ND	ND	5.6	ND	NS	ND
Vinyl Chloride	ND	2.7	ND	NS	ND	ND	ND	ND	3	NS	ND	2.0	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Benzene	ND	3.5	ND	NS	ND	ND	4.2	170	41	NS	ND	4.2	82.0	ND	ND	NS	ND	ND	ND	3.4	ND	NS	ND
Dichlorodifluoromethane (Freon 12)	24	15	14	NS	5.2	ND	44	1,700	37	NS	ND	48.0	ND	110.0	53.0	NS	34.0	41.0	44.0	42.0	31.0	NS	35.0
Chloromethane	ND	ND	ND	NS	ND	ND	ND	ND	3	NS	ND	0.7	ND	29.0	ND	NS	ND	ND	ND	ND	ND	NS	ND
Ethanol	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	11,000	ND	ND	ND	1,800.0	NS	ND	ND	ND	ND	ND	NS	ND
Heptane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
2-Hexanone	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.7	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Isopropyl Alcohol	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Propylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Tertiary Butyl Alcohol	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Carbon Disulfide	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Ethyl Acetate	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	600	180	NS	ND	ND	ND	ND	ND	NS	ND
1,2,4-Trichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	180	0.9	ND	1,400	140	NS	ND	ND	ND	ND	ND	NS	ND
Chloroethane	15	11	ND	NS	ND	ND	11	380	13	NS	ND	12	ND	ND	ND	NS	14	18	16	16	23	NS	19
Cyclohexane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	3.2	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	17.0
Hexane	ND	22	ND	NS	8.6	ND	ND	ND	ND	NS	ND	ND	5,100	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Ethylbenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	190	0.5	460	200	300	NS	ND	ND	ND	ND	ND	NS	ND
4-Ethyl Toluene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Styrene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	1,100	ND	520	620	370	NS	ND	ND	ND	ND	ND	NS	ND
1,3,5-Trimethylbenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
4-Methyl-2-Pentanone (MIBK)	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.5	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Chlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	200	1.7	480	350	390	NS	ND	ND	ND	ND	ND	NS	ND
Bromoform	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Bromomethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,4 Dichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
Bromodichloromethane	28	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	1.1	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,3-Butadiene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,2-Dichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	160	1.8	250	350	570	NS	ND	ND	ND	ND	ND	NS	ND
1,2-Dichloroethane	ND	4.5	ND	NS	ND	ND	7.0	250.0	8.2	NS	ND	6.0	ND	ND	ND	NS	4.3	ND	ND	6.3	ND	NS	ND
1,1,2-Trichloroethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	0.9	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	2.0	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
trans-1,2-Dichloroethylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	4.5	ND	ND	ND	NS	ND	ND	ND	4.30	ND	NS	ND
Methyl tert-Butyl Ether (MTBE)	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	2.4	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,3-Dichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	3.4	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND
1,4-Dichlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND	1.3	ND	ND	ND	NS	ND	ND	ND	ND	ND	NS	ND

Table 4 - SVE Systems- Effluent VOC Summary 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

Compounds	TT System Influ 9/26/2012	11/28/2012	12/26/2012	1/30/2013	2/27/2013	3/27/2013
Trichlorofluoromethane (Freon 11)	44	29	55	NS	78	35
1,1-Dichloroethene	110	180	ND	NS	ND	NS NS
Acetone	ND ND	ND	ND ND	NS NS	ND ND	ND
Carbon Tetrachloride	91	45	97	NS NS	120	48
Chloroform	110	57	77	NS NS	120	88
1,1,1-Trichloroethane	780	440	830	NS NS	1100	470
Trichloroethylene (Trichloroethene)	1900	940	1400	NS NS	2100	1200
Toluene	ND	ND	ND	NS NS	ND	13.0
Tetrachloroethylene (Tetrachloroethene)	170000	59000	140000	NS NS	220000	88000
1.1-Dichloroethane	170000 ND	55	81	NS NS	140	96
1,1-Dichloroethylene	320	ND	270	NS NS	410	240
cis-1,2-Dichloroethylene	720	340	300	NS NS	450	360
Methylene Chloride	ND	ND	ND	NS NS	ND	ND
n,p-Xylene	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
o-Xylene		ND ND	ND ND	NS NS		ND
2-Butanone (Methyl ethyl ketone)	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
Tetrahydrofuran						
1,2,4-Trimethylbenzene	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND
Vinyl Chloride	ND ND		ND ND			ND ND
Vinyi Chioride Benzene	ND 8	ND 11		NS NS	ND	46.0
	_		ND		ND 50.0	
Dichlorodifluoromethane (Freon 12)	37	22	35	NS	59.0	38.0
Chloromethane	ND	ND	ND	NS	ND	ND
Ethanol	ND	ND	ND	NS	ND	ND
Heptane	ND	ND	ND	NS	ND	ND
2-Hexanone	ND	ND	ND	NS	ND	ND
sopropyl Alcohol	ND	ND	ND	NS	ND	ND 450.0
Propylene	ND	ND	ND	NS	ND	160.0
Fertiary Butyl Alcohol	ND	ND	ND	NS	ND	NS
Carbon Disulfide	ND	ND	ND	NS	ND	ND
Ethyl Acetate	ND	ND	ND	NS	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	NS	ND	ND
Chloroethane	14	7.4	13	NS	22	12
Cyclohexane	ND	ND	ND	NS	ND	ND
Hexane	ND	ND	ND	NS	ND	ND
Ethylbenzene	ND	ND	ND	NS	ND	ND
4-Ethyl Toluene	ND	ND	ND	NS	ND	ND
Styrene	ND	ND	ND	NS	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	NS	ND	ND
1-Methyl-2-Pentanone (MIBK)	ND	ND	ND	NS	ND	ND
Chlorobenzene	ND	ND	ND	NS	ND	ND
Bromoform	ND	ND	ND	NS	ND	ND
Bromomethane	ND	ND	ND	NS	ND	ND
I,4 Dichlorobenzene	ND	ND	ND	NS	ND	ND
Bromodichloromethane	ND	ND	ND	NS	ND	ND
1,3-Butadiene	ND	ND	ND	NS	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	NS	ND	ND
1,2-Dichloroethane	ND	ND	ND	NS	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	NS	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ND	ND	NS	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	NS	ND	ND
Methyl tert-Butyl Ether (MTBE)	ND	ND	ND	NS	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	NS	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	NS	ND	ND

Page 10 of 10

Table 5 - VOC Removal Calculations 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621

1/25/2012	U	RS System Run Time Interval	572.60	hours	GV	VTT System Run Time Inte	rval 649.4	hours	-		-										
		URS System Run Time Total	31,871.2	hours		GWTT System Run Time T	otal 31,429.5	hours													
Well ID			i		URS-SVE-6S URS-SVE-6D			URS-SVE-1				/E-10S SVE-8S				/E-7D	SVE-8D		SVE-7S		
		1		Flow Rate	51.67	Flow Rate	51.67	Flow Rate	51.67	Flow Rate	41.17	Flow Rate	41.17	Flow Rate	41.17	Flow Rate	41.17	Flow Rate	41.17	Flow Rate	41.17
		Cummulative Mass Extracted	Cummulative Mass	_				I .	Mass (lbs.)		Mass (lbs.)		Mass (lbs.)		Mass (lbs.)	1	Mass (lbs.)	_	Mass (lbs.)		Mass (lbs.)
Compounds	MW	(lbs.)	Extracted (ug/m3)	Conc. (ug/m³)	Mass (lbs.) Extracted	Conc. (ug/m³)	Mass (lbs.) Extracted	Conc. (ug/m ⁴)	Extracted	Conc. (ug/m²)	Extracted	Conc. (ug/m²)	Extracted	Conc. (ug/m²)	Extracted	Conc. (ug/m ⁴)	Extracted	Conc. (ug/m ⁴)	Extracted	Conc. (ug/m²)	Extracted
Trichlorofluoromethane (Freon 11)	137.40	0.0032	30.70	14	0.00	1.3	0.00		0.00		0.00		0.00		0.00	13	0.00	2	0.00		0.00
1,1-Dichloroethene	96.94	0.0000	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Acetone	58.10	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Carbon Tetrachloride	153.80	0.0071	69	17	0.00		0.00		0.00	2	0.00		0.00		0.00	12	0.00	38	0.00		0.00
Chloroform	99.00	0.0079	76	25	0.00	6.4	0.00		0.00	3	0.00		0.00	1.8	0.00	19	0.00	21	0.00		0.00
1,1,1-Trichloroethane	119.40	0.0410	392.5	160 290	0.02	3.5	0.00		0.00		0.00		0.00		0.00	140	0.01	89	0.01		0.00
Trichloroethylene (Trichloroethene)	133.40	0.0813	775	290	0.03	29	0.00	24	0.00	22	0.00	11	0.00	22	0.00	240	0.02	110	0.01	27	0.00
Toluene	131.40 92.10	0.0071	71.1	44000	0.00	1.1	0.00	47000	0.00	4.000	0.00	550	0.00	4500	0.00	42.000	0.00	2.400	0.00	70 65,000	0.01
Tetrachloroethylene (Tetrachloroethene)	92.10 165.80	13.1004	126,360 77	14000	1.55	11000	1.22	17000	1.88	1,800	0.18	560	0.06	1600	0.16	12,000	1.20	3,400	0.34	65,000	6.51
1,1-Dichloroethane		0.0081		33	0.00		0.00		0.00		0.00		0.00		0.00	29	0.00	15	0.00		0.00
1,1-Dichloroethylene	98.96 96.94	0.0241 0.0559	231 539.9	89 140	0.01 0.02	8.9	0.00	19	0.00	62	0.00	18	0.00	170	0.00	78	0.01	64 17	0.01	43	0.00
cis-1,2-Dichloroethylene	96.94	0.0559	950	140	0.02	20	0.00	19	0.00	62	0.01	18	0.00	1/0	0.02	62	0.01	17			0.00
Methylene Chloride	84.94	0.0953	950 51		0.00	20	0.00		0.00		0.00		0.00		0.00		0.00		0.00	930 51	0.09
m,p-Xylene	106.20	0.0001	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	31	0.00
o-Xylene	106.20	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
2-Butanone (Methyl ethyl ketone) Tetrahydrofuran	72.11	0.0029	29		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	29	0.00
1.2.4-Trimethylbenzene	154.00	0.0029	81		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	81	0.01
Vinyl Chloride	120.20	0.0001	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	01	0.00
Benzene	62.50	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Dichlorodifluoromethane (Freon 12)	78.11	0.0030	27.9	13	0.00	1.7	0.00		0.00		0.00		0.00		0.00	12	0.00	1	0.00		0.00
Chloromethane	120.90	0.0000	0	15	0.00	1.7	0.00		0.00		0.00		0.00		0.00	12	0.00		0.00		0.00
Ethanol	50.49	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Heptane	46.07	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
2-Hexanone	100.20	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Isopropyl Alcohol	100.20	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Propylene	60.10	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Tertiary Butyl Alcohol	42.00	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Carbon Disulfide	74.12	0.000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Ethyl Acetate	76.14	0.0072	72		0.00		0.00		0.00	10	0.00	17	0.00		0.00	8	0.00	10	0.00	27	0.00
1,2,4-Trichlorobenzene	88.00	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Chloroethane	181.50	0.0007	6.8	5	0.00		0.00		0.00		0.00		0.00		0.00		0.00	2	0.00		0.00
Cyclohexane	0.00	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Ethylbenzene	64.52	0.0038	38		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	38	0.00
4-Ethyl Toluene	84.18	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Styrene	64.52	0.0120	120		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	120	0.01
Hexane	0.00	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
1,3,5-Trimethylbenzene	0.00	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
4-Methyl-2-Pentanone (MIBK)	0.00	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
1,2-Dichloroethane	0.00	0.0041	41		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	41	0.00

D = Reported value is from secodary analysis with dilution factor. Origional analysis exceeded calibration range. B = I Oicates analyte found in associated method blank

2/29/2012 URS System Run Time Interval GWTT System Run Time Interval hours hours 32.587.6 URS System Run Time Total GWTT System Run Time Total 32.247.6 hours

Well ID **GWTT INFLUENT** Flow Rate (cfm) 155 Flow Rate (cfm) 247 Cummulative Mass Cummulative Mass Mass (lbs.) Compounds Extracted (lbs.) Extracted (ug/m3) Conc. (ug/m3) Mass (lbs.) Extracted Conc. (ug/m3) Extracted Trichlorofluoromethane 0.0223 36.00 0.00 36.00 0.02 1,1-Dichloroethene 0.0000 0.00 0.00 0.00 Acetone 0.0000 0.00 0.00 0.00 Carbon Tetrachloride 0.0620 100.00 100.00 0.00 0.06 Chloroform 19.00 0.0461 82 00 63.00 0.04 0.01 1.1.1-Trichloroethane 0.5832 940.00 0.00 940.00 0.58 Trichloroethylene (Trichloroethene) 1.0520 1,760.00 160.00 0.06 1,600.00 0.99 0.00 0.00 0.00 Toluene 0.0000 140,000.00 54,000.00 Tetrachloroethylene (Tetrachloroethene) 73.3781 20.02 86,000.00 53.36 1.1-Dichloroethane 0.0558 90.00 0.00 90.00 0.06 1,1-Dichloroethylene 0.1613 260.00 260.00 0.16 cis-1,2-Dichloroethylene 0.2881 474.00 24.00 0.01 450.00 0.28 Methylene Chloride 0.0193 52.00 52.00 0.02 0.00 m,p-Xylene 0.0000 0.00 0.00 0.00 o-Xylene 0.0000 0.00 0.00 0.00 2-Butanone (Methyl ethyl ketone) 0.0000 0.00 0.00 0.00 Tetrahydrofuran 0.0000 0.00 0.00 0.00 1,2,4-Trimethylbenzene 0.0000 0.00 0.00 0.00 Vinyl Chloride 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Dichlorodifluoromethane 5.20 0.0230 39.20 34.00 0.02 0.00 Chloromethane 0.0000 0.00 0.00 0.00 Ethanol 0.0000 0.00 0.00 0.00 Heptane 0.0000 0.00 0.00 0.00 2-Hexanone 0.0000 0.00 0.00 0.00 Isopropyl Alcohol 0.0000 0.00 0.00 0.00 Propylene 0.0000 0.00 0.00 0.00 Tertiary Butyl Alcohol 0.0000 0.00 0.00 0.00 Carbon Disulfide 0.0000 0.00 0.00 0.00 Ethyl Acetate 0.0000 0.00 0.00 0.00 1,2,4-Trichlorobenzene 0.0000 0.00 0.00 0.00 Chloroethane 0.0087 14.00 0.00 14.00 0.01 Cyclohexane 0.0000 0.00 0.00 0.00 Hexane 0.0000 0.00 0.00 0.00 Ethylbenzene 0.0000 0.00 0.00 0.00 4-Ethyl Toluene 0.0000 0.00 0.00 0.00 Styrene 0.0000 0.00 0.00 0.00 1,3,5-Trimethylbenzene 0.0000 0.00 0.00 0.00 4-Methyl-2-Pentanone (MIBK) 0.0000 0.00 0.00 0.00 Chlorobenzene 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Bromomethane 0.0000 0.00 0.00 0.00 1,4 Dichlorobenzene 0.0000 0.00 0.00 0.00 Bromodichloromethane 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1,2-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0027 4.30 0.00 4.30 0.00 1.1.2-Trichloroethane 0.0000 0.00 0.00 0.00 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 0.0000 0.00 0.00 0.00 trans-1,2-Dichloroethylene 0.0000 0.00 0.00 0.00 Methyl tert-Butyl Ether (MTBE) 0.0000 0.00 0.00 0.00 1.3-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,4-Dichlorobenzene 0.0000 0.00 0.00 0.00 TOTAL VOC REMOVAL (Interval Total) 75.7 lbs. TOTAL VOC REMOVAL (OVERALL TOTAL) 11065 lbs.

TOTAL VOC REMOVAL (Overall Total) from January 2011 10989 lhs

 3/28/2012
 URS System Run Time Interval
 669.50
 hours
 GWTT System Run Time Interval
 669.6
 hours

 URS System Run Time Total
 33,257.1
 hours
 GWTT System Run Time Total
 32,917.2
 hours

Well ID **GWTT INFLUENT** Flow Rate (cfm) 155 Flow Rate (cfm) 247 Cummulative Mass Cummulative Mass Mass (lbs.) Compounds Extracted (lbs.) Extracted (ug/m3) Conc. (ug/m3) Mass (lbs.) Extracted Conc. (ug/m3) Extracted Trichlorofluoromethane 0.0396 64.00 0.00 64.00 0.04 1,1-Dichloroethene 0.0000 0.00 0.00 0.00 Acetone 0.0000 0.00 0.00 0.00 Carbon Tetrachloride 0.0681 110.00 110.00 0.07 0.00 Chloroform 27.00 0.0105 27.00 0.00 0.01 1.1.1-Trichloroethane 0.5958 969.00 19.00 0.01 950.00 0.59 Trichloroethylene (Trichloroethene) 1.1771 1,960.00 160.00 0.06 1,800.00 1.11 0.0000 0.00 0.00 Toluene 0.00 570,000.00 100,000.00 Tetrachloroethylene (Tetrachloroethene) 329.9804 38.86 470,000.00 291.12 1.1-Dichloroethane 0.0867 140.00 0.00 140.00 0.09 1,1-Dichloroethylene 0.2416 390.00 390.00 0.24 cis-1,2-Dichloroethylene 0.4406 724.00 34.00 0.01 690.00 0.43 Methylene Chloride 0.0000 0.00 0.00 0.00 m,p-Xylene 0.0000 0.00 0.00 0.00 o-Xylene 0.0000 0.00 0.00 0.00 2-Butanone (Methyl ethyl ketone) 0.0000 0.00 0.00 0.00 Tetrahydrofuran 0.0000 0.00 0.00 0.00 1,2,4-Trimethylbenzene 0.0000 0.00 0.00 0.00 Vinyl Chloride 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Benzene Dichlorodifluoromethane 0.0254 41.00 41.00 0.03 0.00 Chloromethane 0.0000 0.00 0.00 0.00 Ethanol 0.0000 0.00 0.00 0.00 Heptane 0.0000 0.00 0.00 0.00 2-Hexanone 0.0000 0.00 0.00 0.00 Isopropyl Alcohol 0.0000 0.00 0.00 0.00 Propylene 0.0000 0.00 0.00 0.00 Tertiary Butyl Alcohol 0.0000 0.00 0.00 0.00 Carbon Disulfide 0.0000 0.00 0.00 0.00 26.00 Ethyl Acetate 0.0101 26.00 0.01 0.00 1.2.4-Trichlorobenzene 0.0000 0.00 0.00 0.00 Chloroethane 0.0111 18.00 0.00 18.00 0.01 Cyclohexane 0.0000 0.00 0.00 0.00 Hexane 0.0000 0.00 0.00 0.00 Ethylbenzene 0.0000 0.00 0.00 0.00 4-Ethyl Toluene 0.0000 0.00 0.00 0.00 Styrene 0.0000 0.00 0.00 0.00 1,3,5-Trimethylbenzene 0.0000 0.00 0.00 0.00 4-Methyl-2-Pentanone (MIBK) 0.0000 0.00 0.00 0.00 Chlorobenzene 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Bromomethane 0.0000 0.00 0.00 0.00 1,4 Dichlorobenzene 0.0000 0.00 0.00 0.00 Bromodichloromethane 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1,2-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1.1.2-Trichloroethane 0.0000 0.00 0.00 0.00 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 0.0000 0.00 0.00 0.00 trans-1,2-Dichloroethylene 0.0000 0.00 0.00 0.00 Methyl tert-Butyl Ether (MTBE) 0.0000 0.00 0.00 0.00 1,3-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,4-Dichlorobenzene 0.0000 0.00 0.00 0.00 TOTAL VOC REMOVAL (Interval Total) 332.7 lbs. TOTAL VOC REMOVAL (OVERALL TOTAL) 11412 lbs. TOTAL VOC REMOVAL (Overall Total) from February

lhs

11080

2011

4/25/2012 URS System Run Time Interval GWTT System Run Time Interval hours hours GWTT System Run Time Total 33.587.8 URS System Run Time Total 33.929.8 hours

Well ID **GWTT INFLUENT** Flow Rate (cfm) 154 Flow Rate (cfm) 255 Cummulative Mass Cummulative Mass Mass (lbs.) Compounds Extracted (lbs.) Extracted (ug/m3) Conc. (ug/m3) Mass (lbs.) Extracted Conc. (ug/m3) Extracted Trichlorofluoromethane 0.0487 76.00 0.00 76.00 0.05 1,1-Dichloroethene 0.0000 0.00 0.00 0.00 Acetone 0.0000 0.00 0.00 0.00 Carbon Tetrachloride 0.0640 100.00 100.00 0.00 0.06 Chloroform 29.00 0.0881 149.00 0.01 120.00 0.08 1.1.1-Trichloroethane 0.4165 657.00 17.00 0.01 640.00 0.41 Trichloroethylene (Trichloroethene) 1.2187 1,970.00 170.00 0.07 1,800.00 1.15 0.00 0.00 Toluene 0.0000 0.00 146.5037 97,000.00 Tetrachloroethylene (Tetrachloroethene) 267,000.00 37.63 170,000.00 108.87 1.1-Dichloroethane 0.0833 130.00 0.00 130.00 0.08 1,1-Dichloroethylene 0.1793 280.00 280.00 0.18 cis-1,2-Dichloroethylene 0.4341 696.00 46.00 0.02 650.00 0.42 Methylene Chloride 0.0000 0.00 0.00 0.00 m,p-Xylene 0.0000 0.00 0.00 0.00 o-Xylene 0.0000 0.00 0.00 0.00 2-Butanone (Methyl ethyl ketone) 0.0000 0.00 0.00 0.00 Tetrahydrofuran 0.0000 0.00 0.00 0.00 1,2,4-Trimethylbenzene 0.0000 0.00 0.00 0.00 Vinyl Chloride 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Benzene Dichlorodifluoromethane 0.0282 44.00 0.00 44.00 0.03 Chloromethane 0.0000 0.00 0.00 0.00 Ethanol 0.0000 0.00 0.00 0.00 Heptane 0.0000 0.00 0.00 0.00 2-Hexanone 0.0000 0.00 0.00 0.00 Isopropyl Alcohol 0.0000 0.00 0.00 0.00 Propylene 0.0000 0.00 0.00 0.00 Tertiary Butyl Alcohol 0.0000 0.00 0.00 0.00 Carbon Disulfide 0.0000 0.00 0.00 0.00 Ethyl Acetate 0.0000 0.00 0.00 0.00 1.2.4-Trichlorobenzene 0.0000 0.00 0.00 0.00 Chloroethane 0.0102 16.00 0.00 16.00 0.01 Cyclohexane 0.0000 0.00 0.00 0.00 Hexane 0.0000 0.00 0.00 0.00 Ethylbenzene 0.0000 0.00 0.00 0.00 4-Ethyl Toluene 0.0000 0.00 0.00 0.00 Styrene 0.0000 0.00 0.00 0.00 1,3,5-Trimethylbenzene 0.0000 0.00 0.00 0.00 4-Methyl-2-Pentanone (MIBK) 0.0000 0.00 0.00 0.00 Chlorobenzene 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Bromomethane 0.0000 0.00 0.00 0.00 1,4 Dichlorobenzene 0.0000 0.00 0.00 0.00 Bromodichloromethane 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1,2-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1.1.2-Trichloroethane 0.0000 0.00 0.00 0.00 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 0.0000 0.00 0.00 0.00 trans-1,2-Dichloroethylene 0.0000 0.00 0.00 0.00 Methyl tert-Butyl Ether (MTBE) 0.0000 0.00 0.00 0.00 1.3-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,4-Dichlorobenzene 0.0000 0.00 0.00 0.00 TOTAL VOC REMOVAL (Interval Total) 149.1 lbs. TOTAL VOC REMOVAL (OVERALL TOTAL) 11561 lbs.

TOTAL VOC REMOVAL (Overall Total) from March 2012 11412 lhs

 5/30/2012
 URS System Run Time Interval URS System Run Time Interval URS System Run Time Total
 837.60 hours
 hours
 GWTT System Run Time Interval GWTT System Run Time Interval A4,425.0
 hours

Trichloroffuoromethane	Flow Rate (cfm) Conc. (ug/m³) 6.10 33.00 15.00 160.00 3.90 85,000.00	154 Mass (lbs.) Extracted 0.00 0.00 0.00 0.00 0.02 0.01 0.08 0.00 41.06 0.00	Flow Rate (cfm) Conc. (ug/m²) 68.00 100.00 130.00 820.00 2,000.00 4.20	250 Mass (lbs. Extracted 0.05 0.00 0.00 0.08 0.10 0.64 1.57
Compounds Extracted (lbs.) Extracted (ug/m3) Trichiorofluoromethane 0.0562 74.10 1,1-Dichioroethene 0.0000 0.00 Acetone 0.0000 0.00 Carbon Tetrachloride 0.0784 100.00 Chioroform 0.1178 163.00 1,1,1-Trichioroethane 0.6500 835.00 Trichioroethylene (Trichioroethene) 1.6450 2,160.00 Toluene 0.052 8.10 Tetrachioroethylene (Tetrachioroethene) 114.7423 179,000.00 1,1-Dichioroethylene 0.1097 140.00 1,1-Dichioroethylene 0.2743 350.00 16:-1,2-Dichioroethylene 0.5415 710.00 0.5415 710.00 0.00 whethylene Chloride 0.0000 0.00 0.000 0.00 0.00 whylene 0.0000 0.00 -Sylene 0.0000 0.00 -Sylene 0.0000 0.00 -Eutanone (Methyl ethyl ketone) 0.0000 0.00 <	33.00 15.00 160.00 3.90 85,000.00	0.00 0.00 0.00 0.00 0.02 0.01 0.08 0.00 41.06	100.00 130.00 820.00 2,000.00 4.20	0.05 0.00 0.00 0.00 0.08 0.10 0.64
Trichloroffuoromethane	33.00 15.00 160.00 3.90 85,000.00	0.00 0.00 0.00 0.00 0.02 0.01 0.08 0.00 41.06	100.00 130.00 820.00 2,000.00 4.20	0.05 0.00 0.00 0.08 0.10 0.64
1,1-Dichloroethene	33.00 15.00 160.00 3.90 85,000.00	0.00 0.00 0.00 0.02 0.01 0.08 0.00 41.06	100.00 130.00 820.00 2,000.00 4.20	0.00 0.00 0.08 0.10 0.64
Acctone 0.0000 0.00 Carbon Tetrachloride 0.0784 100.00 L1,1-1-Tichloroethane 0.6500 835.00 Tichloroform 0.1178 163.00 L1,1-1-Tichloroethylene (Tichloroethene) 1.6450 2,160.00 Tolluene 0.0052 8.10 Tetrachloroethylene (Tetrachloroethene) 114,7423 179,000.00 L1,1-Dichloroethylene (Tetrachloroethene) 1.14,7423 179,000.00 L1,1-Dichloroethylene 0.1097 140.00 L1,1-Dichloroethylene 0.2743 350.00 Lis-1,2-Dichloroethylene 0.5415 710.00 Methylene Chloride 0.0000 0.00 m,p-Xylene 0.0000 0.00 m,p-Xylene 0.0000 0.00 -Xylene 0.0000 0.00 -Xylene 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Dichlorodifloromethane 0.0000 0.00 Dichlorodifloromethane 0.0000 0.00 Dichlorodifloromethane 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Eterahydrofuran 0.0000 0.00 Dichlorodifloromethane 0.0000 0.00 Eterahydrofuran	15.00 160.00 3.90 85,000.00	0.00 0.00 0.02 0.01 0.08 0.00 41.06 0.00	130.00 820.00 2,000.00 4.20	0.00 0.08 0.10 0.64
Carbon Tetrachloride	15.00 160.00 3.90 85,000.00	0.00 0.02 0.01 0.08 0.00 41.06 0.00	130.00 820.00 2,000.00 4.20	0.08 0.10 0.64
Chloroform 0.1178 163.00 1,1,1-Trichloroethane 0.6500 835.00 1,1,1-Trichloroethane 0.6500 835.00 1,1,1-Trichloroethane 1.6450 2,160.00 100.00 1.6450 2,160.00 100.00 1.6450 2,160.00 100.00 1.6450 2,160.00 100.00 1.6450 1,1-Dichloroethylene (Tetrachloroethene) 114,7423 179,000.00 1,1-Dichloroethylene 0.1097 140.00 1,1-Dichloroethylene 0.2743 350.00 1.651,2-Dichloroethylene 0.5415 710.00 100.00 1.651,2-Dichloroethylene 0.5415 710.00 1.651,2-Dichloroethylene 0.0000 0.000 0.00	15.00 160.00 3.90 85,000.00	0.02 0.01 0.08 0.00 41.06 0.00	130.00 820.00 2,000.00 4.20	0.10 0.64
1,1-Trichloroethane	15.00 160.00 3.90 85,000.00	0.01 0.08 0.00 41.06 0.00	820.00 2,000.00 4.20	0.64
Trichloroethylene (Trichloroethene) 1.6450 2,160.00	160.00 3.90 85,000.00	0.08 0.00 41.06 0.00	2,000.00 4.20	
Toluene 0.0052 8.10	3.90 85,000.00	0.00 41.06 0.00	4.20	1.57
Tetrachloroethylene (Tetrachloroethene) 114.7423 179,000.00 -1Dichloroethane 0.1097 140.00 -1Dichloroethylene 0.2743 350.00 -1Dichloroethylene 0.5415 710.00 -1Dichloroethylene 0.5415 710.00 -1Dichloroethylene 0.5415 710.00 -1Dichloroethylene 0.0000 0.00 -1Dichloroethylene 0.0000 0.00 -1Dichloroethylene 0.0000 0.00 -1Dichloroethylene 0.0000 0.00 -2Dichloroethylene 0.0000 0.00 -2Dichl	85,000.00	41.06 0.00		
,1-Dichloroethane 0.1097 140.00 ,1-Dichloroethylene 0.2743 350.00 is-1,2-Dichloroethylene 0.5415 710.00 Aethylene Chloride 0.0000 0.000 Aethylene 0.0000 0.00 -Butanone (Methyl ethyl ketone) 0.0000 0.00 -Ethyl forder 0.0000 0.00 -2,4-Trimethylbenzene 0.0000 0.00 -1,10 forde 0.0000 0.00 -1,10 forde 0.0000 0.00 -1,10 forder 0.0000 0.00 -1,10		0.00	04.000.00	0.00
,3-Dichloroethylene 0.2743 350.00 is-1,2-Dichloroethylene 0.5415 710.00 is-1,2-Dichloroethylene 0.5415 710.00	50.00		94,000.00	73.68
is-1,2-inchloroethylene	50.00		140.00	0.11
Methylene Chloride 0.0000 0.00 N.pXylene 0.0000 0.00 -Butanone (Methyl ethyl ketone) 0.0000 0.00 1myl Chloride 0.0000 0.00 enzene 0.0027 3.40 inklorodifluoromethane 0.0360 48.40 hloromethane 0.0000 0.00 thanol 0.0000 0.00 they path 0.0000 0.00 than	50.00	0.00	350.00	0.27
n.p-xylene 0.0000 0.00 -Xylene 0.0000 0.00 -Xylene 0.0000 0.00 -Xylene 0.0000 0.00 Butanone (Methyl ethyl ketone) 0.0000 0.00 ethaltanore 0.0000 0.000 inyl Chloride 0.0000 0.00 inyl Chloride 0.0000 0.00 enzene 0.0027 3.40 ichlorodfiluoromethane 0.0360 48.40 ichlorodfiluoromethane 0.0000 0.00 ichlorodfilane 0.0000 0.00 ichlorodfilane 0.0000 0.00 ichlorodfilane 0.0000 0.00 ertary Butyl Alcohol 0.0000 0.00 orbitalide 0.0000 0.00 ertary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 intyl Acetate 0.0000 0.00 0.000 0.00 0.00 intyl Acetate 0.0000 0.00		0.02	660.00	0.52
-Xylene 0.0000 0.00 -Butanone (Methyl ethyl ketone) 0.0000 0.00 -Butanone (Methyl ethyl ketone) 0.0000 0.00 0.0000 0.000 0.00 2,4-Trimethylbenzene 0.0070 11.10 inyl Chloride 0.0000 0.00 enzene 0.0027 3.40 ichlordiffluoromethane 0.0360 48.40 hloromethane 0.0000 0.00 thanol 0.0000 0.00 eptane 0.0000 0.00 -Hexanone 0.0000 0.00 oproppl Alcohol 0.0000 0.00 ropylene 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arton Disuffide 0.0000 0.00 thyl Acetate 0.0000 0.00 thyl Acetate 0.0000 0.00 2,24-Trichlorobenzene 0.0000 0.00 pydohexane 0.0000 0.00 exane 0.0000 0.00		0.00		0.00
Xylene 0.0000 0.00		0.00		0.00
-Butanone (Methyl ethyl ketone) 0.0000 0.00 etrahydrofuran 0.0000 0.00 0.00 ctrahydrofuran 0.0000 0.00 0.00 0.00 0.00 0.00 0.00		0.00		0.00
etrahydrofuran 0.0000 0.00 2,4-Trimethylbenzene 0.0070 11.10 myl Chloride 0.0000 0.00 enzene 0.0027 3.40 ichlorodifluoromethane 0.0360 48.40 hloromethane 0.0000 0.00 thanol 0.0000 0.00 eptane 0.0000 0.00 Hexanone 0.0000 0.00 opropyl Alcohol 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 2,4-Trichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 ydohexane 0.0000 0.00 exane 0.0000 0.00 ethyl Toluene 0.0000 0.00		0.00		0.00
2,2,4-Trimethylbenzene 0.0070 11.10 inyl Chloride 0.0000 0.00 enzene 0.0027 3.40 ichlorodifluoromethane 0.0360 48.40 hloromethane 0.0000 0.00 thanol 0.0000 0.00 eptane 0.0000 0.00 -Hexanone 0.0000 0.00 opropyl Alcohol 0.0000 0.00 ropylene 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 2,24-Trichlorobenzene 0.0000 0.00 hloromethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 Ethyl Toluene 0.0000 0.00		0.00		0.00
inyl Chloride 0.0000 0.00 enzene 0.0027 3.40 invlictorodifuluromethane 0.0360 48.40 hloromethane 0.0000 0.00 thanol 0.0000 0.00 eptane 0.0000 0.00 Hexanone 0.0000 0.00 opropyl Alcohol 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 thyl Acetate 0.0000 0.00 thyl Acetate 0.0000 0.00 cyl-firitoropetane 0.0000 0.00 exane 0.0000 0.00 e-Ethyl Toluene 0.0000 0.00 e-Ethyl Toluene 0.0000 0.00	5.50	0.00	5.60	0.00
enzene 0.0027 3.40 chickorodifloromethane 0.0056 48.40 hiboromethane 0.0360 48.40 hiboromethane 0.0000 0.000 thanol epitane 0.0000 0.000 0.00 epitane 0.0000 0.000	3.30	0.00	3.00	0.00
ichlorodiffuoromethane 0.0360 48.40 hloromethane 0.0000 0.00 thanol 0.0000 0.00 eptane 0.0000 0.00 Hexanone 0.0000 0.00 oppopyl Alcohol 0.0000 0.00 ropylene 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 2,4-Trichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 Ethyl Toluene 0.0000 0.00			3.40	
hloromethane 0.0000 0.00 hloromethane 0.0000 0.00 hloromethane 0.0000 0.		0.00		0.00
thanol 0.0000 0.00 eptane 0.0000 0.00 Hexanne 0.0000 0.00 opropyl Alcohol 0.0000 0.00 propyl Alcohol 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 tylyl Acetate 0.0000 0.00 bloroethane 0.0000 0.00 hloroethane 0.0125 16.00 wcholexane 0.0000 0.00 exane 0.0000 0.00 exane 0.0000 0.00 ethylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00	6.40	0.00	42.00	0.03
eptane 0.0000 0.00 -Hexanone 0.0000 0.00 opropyl Alcohol 0.0000 0.00 ropylene 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 thyl Acetate 0.0000 0.00 horoethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 Ethyl Toluene 0.0000 0.00		0.00		0.00
Hexanone 0.0000 0.00 0		0.00		0.00
opropyl Alcohol 0.0000 0.00 ropylene 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 2,4-Trichlorobenzene 0.0000 0.00 hlororethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 Ethyl Toluene 0.0000 0.00		0.00		0.00
propylene 0.0000 0.00 ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 2,4-Trichlorobenzene 0.0000 0.00 hlororethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbrenzene 0.0000 0.00 Ethyl Toluene 0.0000 0.00		0.00		0.00
ertiary Butyl Alcohol 0.0000 0.00 arbon Disulfide 0.0000 0.00 .000 0.000 .000 0.000 .2,4-Trichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 ethyl Toluene 0.0000 0.00		0.00		0.00
arbon Disulfide 0.0000 0.00 thyl Acetate 0.0000 0.00 2,4-4 Frichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00		0.00		0.00
thyl Acetate 0.0000 0.00 _2,4-Trichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00		0.00		0.00
2,4-Trichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 ydohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00		0.00		0.00
2,4-Trichlorobenzene 0.0000 0.00 hloroethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00		0.00		0.00
hloroethane 0.0125 16.00 yclohexane 0.0000 0.00 exane 0.0000 0.00 thylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00		0.00		0.00
yclohexane 0.0000 0.00 exane 0.0000 0.00 thyllenzene 0.0000 0.00 Ethyl Toluene 0.0000 0.00		0.00	16.00	0.01
exane 0.0000 0.00 thylbenzene 0.0000 0.00 Ethyl Toluene 0.0000 0.00		0.00		0.00
thylbenzene 0.0000 0.00 -Ethyl Toluene 0.0000 0.00		0.00		0.00
-Ethyl Toluene 0.0000 0.00		0.00		0.00
, and the same and		0.00		0.00
		0.00		0.00
tyrene 0.0000 0.00 3,5-Trimethylbenzene 0.0000 0.00		0.00		0.00
Methyl-2-Pentanone (MIBK) 0.0000 0.00		0.00		0.00
hlorobenzene 0.0000 0.00		0.00		0.00
romoform 0.0000 0.00		0.00		0.00
romomethane 0.0000 0.00		0.00		0.00
4 Dichlorobenzene 0.0000 0.00		0.00		0.00
romodichloromethane 0.0000 0.00		0.00		0.00
,2-Dichloroethane 0.0049 6.30		0.00	6.30	0.00
2-Dichlorobenzene 0.0000 0.00		0.00		0.00
2-Dichloroethane 0.0000 0.00		0.00		0.00
1,2-Trichloroethane 0.0000 0.00		0.00		0.00
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 0.0000 0.00		0.00		0.00
ans-1,2-Dichloroethylene 0.0034 4.30		0.00	4.30	0.00
ethyl tert-Butyl Ether (MTBE) 0.0000 0.00		0.00		0.00
3-Dichlorobenzene 0.000 0.00		0.00		0.00
4-Dichlorobenzene 0.0000 0.00		0.00		0.00
0.0000		0.00		0.00
OTAL VOC REMOVAL (Interval Total) 118.3 lbs.	_			
OTAL VOC REMOVAL (OVERALL TOTAL) 11679 lbs.				
TOTAL VOC REMOVAL (Overall Total) from April 2012 11561 lbs				

 6/27/2012
 URS System Run Time Interval
 670.30
 hours
 GWTT System Run Time Interval
 670.4
 hours

 URS System Run Time Total
 35,437.7
 hours
 GWTT System Run Time Total
 35,095.4
 hours

Well ID **GWTT INFLUENT** Flow Rate (cfm) 158 Flow Rate (cfm) 249 Cummulative Mass Cummulative Mass Mass (lbs.) Compounds Extracted (lbs.) Extracted (ug/m3) Conc. (ug/m3) Mass (lbs.) Extracted Conc. (ug/m3) Extracted Trichlorofluoromethane 0.0256 41.00 0.00 41.00 0.03 1,1-Dichloroethene 0.2063 330.00 0.00 330.00 0.21 Acetone 0.0000 0.00 0.00 0.00 Carbon Tetrachloride 0.0625 100.00 100.00 0.00 0.06 Chloroform 22.00 0.0700 120.00 0.01 98.00 0.06 1,1,1-Trichloroethane 0.5885 948.00 18.00 0.01 930.00 0.58 Trichloroethylene (Trichloroethene) 1.5132 2,490.00 190.00 0.08 2,300.00 1.44 0.00 Toluene 0.0000 0.00 0.00 98,000.00 Tetrachloroethylene (Tetrachloroethene) 101.3855 198,000.00 38.87 100,000.00 62.52 1.1-Dichloroethane 0.0688 110.00 0.00 110.00 0.07 1,1-Dichloroethylene 0.0000 0.00 0.00 cis-1,2-Dichloroethylene 0.4078 671.00 51.00 0.02 620.00 0.39 Methylene Chloride 0.0000 0.00 0.00 0.00 m,p-Xylene 0.0000 0.00 0.00 0.00 o-Xylene 0.0000 0.00 0.00 0.00 2-Butanone (Methyl ethyl ketone) 0.0000 0.00 0.00 0.00 Tetrahydrofuran 0.0000 0.00 0.00 0.00 1,2,4-Trimethylbenzene 0.0000 0.00 0.00 0.00 Vinyl Chloride 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Benzene Dichlorodifluoromethane 0.0194 31.00 31.00 0.02 0.00 Chloromethane 0.0000 0.00 0.00 0.00 Ethanol 0.0000 0.00 0.00 0.00 Heptane 0.0000 0.00 0.00 0.00 2-Hexanone 0.0000 0.00 0.00 0.00 Isopropyl Alcohol 0.0000 0.00 0.00 0.00 Propylene 0.0000 0.00 0.00 0.00 Tertiary Butyl Alcohol 0.0000 0.00 0.00 0.00 Carbon Disulfide 0.0000 0.00 0.00 0.00 Ethyl Acetate 0.0000 0.00 0.00 0.00 1,2,4-Trichlorobenzene 0.0000 0.00 0.00 0.00 Chloroethane 0.0144 23.00 0.00 23.00 0.01 Cyclohexane 0.0000 0.00 0.00 0.00 Hexane 0.0000 0.00 0.00 0.00 Ethylbenzene 0.0000 0.00 0.00 0.00 4-Ethyl Toluene 0.0000 0.00 0.00 0.00 Styrene 0.00 0.00 0.00 1,3,5-Trimethylbenzene 0.0000 0.00 0.00 0.00 4-Methyl-2-Pentanone (MIBK) 0.0000 0.00 0.00 0.00 Chlorobenzene 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Bromomethane 0.0000 0.00 0.00 0.00 1,4 Dichlorobenzene 0.0000 0.00 0.00 0.00 Bromodichloromethane 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1,2-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1.1.2-Trichloroethane 0.0000 0.00 0.00 0.00 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 0.0000 0.00 0.00 0.00 trans-1,2-Dichloroethylene 0.00 0.00 0.0000 0.00 Methyl tert-Butyl Ether (MTBE) 0.0000 0.00 0.00 0.00 1.3-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,4-Dichlorobenzene 0.0000 0.00 0.00 0.00 TOTAL VOC REMOVAL (Interval Total) 104.4 lbs. TOTAL VOC REMOVAL (OVERALL TOTAL) 11783 lbs.

Page	1	of	1

lhs

11679

TOTAL VOC REMOVAL (Overall Total) from May 2012

7/25/2012		URS System Run Time Interval URS System Run Time Total		hours hours		NTT System Run Time Int GWTT System Run Time		hours													
Well ID				- ***	SVE-6S		SVE-6D	-	RS-SVE-1	s	VE-9S	SVE-	-10S	SI	/E-8S	SV	VE-7D	SI	VE-8D	sv	VE-7S
				Flow Rate	52.67	Flow Rate	52.67	Flow Rate	52.67	Flow Rate	42.67	Flow Rate	42.67								
				Tiow nate	52.07	TIOW NATE	1	1 1000 1000	32.07	Thom have	1	Tiow nate	42.07	THOM HATE	42.07	TIOW MALE	12.07	Tiow nate	12.07	TION Hate	12.07
		Cummulative Mass Extracted							Mass (lbs.)		Mass (lbs.)										
Compounds	MW	(lbs.)	(ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m ³)	Extracted
Trichlorofluoromethane (Freon 11)	137.40	0.0091	84.53	0.63	0.00	1.9	0.00	0	0.00	1.4	0.00	3.9	0.00	1.7	0.00	0	0.00	75	0.01	0	0.00
1,1-Dichloroethene	96.94	0.0000	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0.00	0.00	0	0.00	0	0.00
Acetone	58.10	0.0347	314	0	0.00	46	0.01	0	0.00	14	0.00	160	0.02	94	0.01	0	0.00	0	0.00	0	0.00
Carbon Tetrachloride	153.80	0.0120	113	0	0.00	0	0.00	0	0.00	2.7	0.00	0	0.00	0	0.00	0	0.00	110	0.01	0	0.00
Chloroform	99.00	0.0263	239.54	0	0.00	1.7	0.00	25	0.00	5.8	0.00	1.4	0.00	0.64	0.00	75	0.01	130	0.01	0	0.00
1,1,1-Trichloroethane	119.40	0.1192	1114.7	0	0.00	0.7	0.00	0	0.00	0	0.00	0	0.00	0	0.00	14	0.00	1,100	0.12	0	0.00
Trichloroethylene (Trichloroethene)	133.40	0.3807	3504.09	0	0.00	5.1	0.00	240	0.03	28	0.00	0.99	0.00		0.00	250	0.03	2,400	0.26	580	0.06
Toluene	131.40	0.0526	488.2	1.4	0.00	17	0.00	0	0.00	1.4	0.00	80	0.01	43	0.00	0.00	0.00	5.4	0.00	340	0.04
Tetrachloroethylene (Tetrachloroethene)	92.10	77.1701	705,092	2.6	0.00	880	0.12	71,000	9.36	1,200	0.13	3.8	0.00	6	0.00	170,000	18.17	12,000	1.28	450,000	48.10
1,1-Dichloroethane	165.80	0.0182	170	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	170	0.02	0	0.00
1,1-Dichloroethylene	98.96	0.0556	520	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	520	0.06	0	0.00
cis-1,2-Dichloroethylene	96.94	0.1878	1662.79	0	0.00	0.79	0.00	400	0.05	60	0.01	0	0.00		0.00	62	0.01	360	0.04	780	0.08
Methylene Chloride	96.94	0.1348	1258.9	0	0.00	8.2	0.00	0	0.00	4.7	0.00	220	0.02	26	0.00	0	0.00	0	0.00	1,000	0.11
m,p-Xylene	84.94	0.0283	264	0	0.00	3.4	0.00	0	0.00	2.3	0.00	1.6	0.00	6.7	0.00	0.00	0.00	0	0.00	250	0.03
o-Xylene	106.20	0.0005	4.7	0	0.00	1.3	0.00	0	0.00	0.8	0.00	0	0.00	2.6	0.00	0	0.00	0	0.00	0	0.00
2-Butanone (Methyl ethyl ketone)	106.20	0.0095	89	0	0.00	0	0.00	0	0.00	0	0.00	58	0.01	31	0.00	0.00	0.00	0	0.00	0	0.00
Tetrahydrofuran	72.11	0.0045	41	0	0.00	4	0.00	0	0.00	0	0.00	26	0.00	11	0.00	0	0.00	0	0.00	0	0.00
1,2,4-Trimethylbenzene	154.00	0.0006	5.6	0	0.00	2	0.00	0	0.00	0	0.00	0	0.00	3.6	0.00	0.00	0.00	0	0.00	0	0.00
Vinyl Chloride	120.20	0.0000	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Benzene	62.50	0.0018	16.23	0.37	0.00	1.1	0.00	0	0.00	0.66	0.00	8.4	0.00	2.1	0.00	0.00	0.00	3.6	0.00	0	0.00
Dichlorodifluoromethane (Freon 12)	78.11	0.0064	58.8	1.2	0.00	2.8	0.00	0	0.00	2.6	0.00	2.5	0.00	2.7	0.00	0	0.00	47	0.01	0	0.00
Chloromethane	120.90	0.0007	5.77	0	0.00	1.3	0.00	0	0.00	1.2	0.00	1.7	0.00	1.3	0.00	0.00	0.00	0	0.00	0	0.00
Ethanol	50.49	0.0971	859.2	9.7	0.00	200	0.03	0	0.00	9.5	0.00	140	0.01	500	0.05	0	0.00	0	0.00	0	0.00
Heptane	46.07	0.0005	4.19	0	0.00	0.99	0.00	0	0.00	0	0.00	1	0.00	2.2	0.00	0.00	0.00	0	0.00	0	0.00
2-Hexanone	100.20	0.0002	1.68	0	0.00	0.75	0.00	0	0.00	0	0.00	0	0.00	0.93	0.00	0	0.00	0	0.00	0	0.00
Isopropyl Alcohol	100.20	0.0274	256	0	0.00	0	0.00	0	0.00	0	0.00	180	0.02	76	0.01	0.00	0.00	0	0.00	0	0.00
Propylene	60.10	0.0000	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Tertiary Butyl Alcohol	42.00	0.0000	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0.00	0.00	0	0.00	0	0.00
Carbon Disulfide	74.12	0.0000	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Ethyl Acetate	76.14	0.3292	3044.1	2.6	0.00	150	0.02	0	0.00	1.5	0.00	2,400	0.26	490	0.05	0	0.00	0	0.00	0	0.00
1,2,4-Trichlorobenzene	88.00	0.0001	0.83	0	0.00	0	0.00	0	0.00	0.83	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Chloroethane	181.50	0.0026	24	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	24	0.00	0	0.00
Cyclohexane	0.00	0.0000	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Ethylbenzene	64.52	0.0113	105.28	0	0.00	1.1	0.00	0	0.00	0.58	0.00	1.2	0.00	2.4	0.00	0.00	0.00	0	0.00	100	0.01
4-Ethyl Toluene	84.18	0.0002	1.42	0	0.00	0.49	0.00	0	0.00	0	0.00	0	0.00	0.93	0.00	0	0.00	0	0.00	0	0.00
Styrene	64.52	0.0293	274	0	0.00	1.2	0.00	0	0.00	0	0.00	0	0.00	2.8	0.00	0.00	0.00	0	0.00	270	0.03
Hexane	0.00	0.0099	93	0	0.00	0	0.00	0	0.00	0	0.00	78	0.01	15	0.00	0	0.00	0	0.00	0	0.00
1,3,5-Trimethylbenzene	0.00	0.0003	2.37	0	0.00	0.77	0.00	0	0.00	0	0.00	0	0.00	1.6	0.00	0.00	0.00	0	0.00	0	0.00
4-Methyl-2-Pentanone (MIBK)	0.00	0.0003	3.36	0	0.00	0.56	0.00	0	0.00	0	0.00	1.4	0.00	1.4	0.00	0.00	0.00	0	0.00	0	0.00
1,2-Dichloroethane	0.00	0.0050	45.7	0	0.00	2.6	0.00	0	0.00	0	0.00	29	0.00	6.7	0.00	0.00	0.00	7.4	0.00	0	0.00
1,2 Diction decilatio	0.00	0.0050	73.7		0.00	2.0	0.00	·	0.00		0.00	- 23	0.00	0.7	0.00	0.00	0.00	1 /	0.00		0.00

TOTAL VOC REMOVAL (Interval Total)	79	lbs.
TOTAL VOC REMOVAL (OVERALL TOTAL)	11862	lbs.
TOTAL VOC REMOVAL (Overall Total) from June 2012	11783	lbs

D = Reported value is from secodary analysis with dilution factor. Origional analysis exceeded calibration range. B = I0icates analyte found in associated method

8/29/2012 URS System Run Time Interval 564.10 hours GWTT System Run Time Interval 833.9 hours
URS System Run Time Total 36,670.5 hours GWTT System Run Time Total 36,598.3 hours

Well ID			URS IN	FLUENT	GWTT INFLUENT			
			Flow Rate (cfm)	158	Flow Rate (cfm)	249		
	Cummulative Mass	Cummulative Mass				Mass (lbs.)		
Compounds	Extracted (lbs.)	Extracted (ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m ³)	Extracted		
Trichlorofluoromethane	0.0389	50.00		0.00	50.00	0.04		
1,1-Dichloroethene	0.0000	0.00		0.00		0.00		
Acetone	0.0000	0.00		0.00		0.00		
Carbon Tetrachloride	0.0638	82.00		0.00	82.00	0.06		
Chloroform	0.1247	174.00	24.00	0.01	150.00	0.12		
1,1,1-Trichloroethane	0.6211	890.00	160.00	0.05	730.00	0.57		
Trichloroethylene (Trichloroethene)	1.4999	2,100.00	300.00	0.10	1,800.00	1.40		
Toluene	0.0251	62.00	52.00	0.02	10.00	0.01		
Tetrachloroethylene (Tetrachloroethene)	316.8076	630,000.00	390,000.00	130.18	240,000.00	186.63		
1,1-Dichloroethane	0.0778	100.00		0.00	100.00	0.08		
1,1-Dichloroethylene	0.2488	320.00		0.00	320.00	0.25		
cis-1,2-Dichloroethylene	0.7546	1,024.00	94.00	0.03	930.00	0.72		
Methylene Chloride	0.0000	0.00		0.00		0.00		
m,p-Xylene	0.0147	44.00	44.00	0.01		0.00		
o-Xylene	0.0053	16.00	16.00	0.01		0.00		
2-Butanone (Methyl ethyl ketone)	0.0000	0.00		0.00		0.00		
Tetrahydrofuran	0.0000	0.00		0.00		0.00		
1,2,4-Trimethylbenzene	0.0063	19.00	19.00	0.01		0.00		
Vinyl Chloride	0.0000	0.00		0.00		0.00		
Benzene	0.0000	0.00		0.00		0.00		
Dichlorodifluoromethane	0.0316	48.00	13.00	0.00	35.00	0.03		
Chloromethane	0.0000	0.00		0.00		0.00		
Ethanol	0.0000	0.00		0.00		0.00		
Heptane	0.0000	0.00		0.00		0.00		
2-Hexanone	0.0000	0.00		0.00		0.00		
Isopropyl Alcohol	0.0000	0.00		0.00		0.00		
Propylene	0.0000	0.00		0.00		0.00		
Tertiary Butyl Alcohol	0.0000	0.00		0.00		0.00		
Carbon Disulfide	0.0000	0.00		0.00		0.00		
Ethyl Acetate	0.0000	0.00		0.00		0.00		
1,2,4-Trichlorobenzene	0.0000	0.00		0.00		0.00		
Chloroethane	0.0148	19.00		0.00	19.00	0.01		
Cyclohexane	0.0132	17.00		0.00	17.00	0.01		
Hexane	0.0000	0.00		0.00		0.00		
Ethylbenzene	0.0037	11.00	11.00	0.00		0.00		
4-Ethyl Toluene	0.0000	0.00		0.00		0.00		
Styrene	0.0000	0.00		0.00		0.00		
1,3,5-Trimethylbenzene	0.0000	0.00		0.00		0.00		
4-Methyl-2-Pentanone (MIBK)	0.0000	0.00		0.00		0.00		
Chlorobenzene	0.0000	0.00		0.00		0.00		
Bromoform	0.0000	0.00		0.00		0.00		
Bromomethane	0.0000	0.00		0.00		0.00		
1,4 Dichlorobenzene	0.0000	0.00		0.00		0.00		
Bromodichloromethane	0.0000	0.00		0.00		0.00		
1,2-Dichloroethane	0.0000	0.00		0.00		0.00		
1,2-Dichlorobenzene	0.0000	0.00		0.00		0.00		
1,2-Dichloroethane	0.0000	0.00		0.00		0.00		
1,1,2-Trichloroethane	0.0000	0.00		0.00		0.00		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0000	0.00		0.00		0.00		
trans-1,2-Dichloroethylene	0.0000	0.00		0.00		0.00		
Methyl tert-Butyl Ether (MTBE)	0.0000	0.00		0.00		0.00		
1,3-Dichlorobenzene	0.0000	0.00		0.00		0.00		
1,4-Dichlorobenzene	0.0000	0.00		0.00		0.00		

 TOTAL VOC REMOVAL (Interval Total)
 320.4
 lbs.

 TOTAL VOC REMOVAL (OVERALL TOTAL)
 12182
 lbs.

 TOTAL VOC REMOVAL (Overall Total) from July 2012
 11862
 lbs

9/26/2012URS System Run Time Interval671.40hoursGWTT System Run Time Interval668.8hoursURS System Run Time Total37,341.9hoursGWTT System Run Time Total37,267.1hours

Well ID			URS IN	NFLUENT	GWTT INFLUENT			
			Flow Rate (cfm)	158	Flow Rate (cfm)	249		
	Cummulative Mass	Cummulative Mass				Mass (lbs.)		
Compounds	Extracted (lbs.)	Extracted (ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m ³)	Extracted		
Trichlorofluoromethane	0.0274	44.00		0.00	44.00	0.03		
1,1-Dichloroethene	0.0686	110.00		0.00	110.00	0.07		
Acetone	0.0000	0.00		0.00		0.00		
Carbon Tetrachloride	0.0568	91.00		0.00	91.00	0.06		
Chloroform	0.0785	135.00	25.00	0.01	110.00	0.07		
1,1,1-Trichloroethane	0.4964	805.00	25.00	0.01	780.00	0.49		
Trichloroethylene (Trichloroethene)	1.2684	2,110.00	210.00	0.08	1,900.00	1.18		
Toluene	0.0000	0.00		0.00		0.00		
Tetrachloroethylene (Tetrachloroethene)	143.7650	265,000.00	95,000.00	37.74	170,000.00	106.02		
1,1-Dichloroethane	0.0000	0.00		0.00		0.00		
1,1-Dichloroethylene	0.1996	320.00		0.00	320.00	0.20		
cis-1,2-Dichloroethylene	0.4761	788.00	68.00	0.03	720.00	0.45		
Methylene Chloride	0.0000	0.00		0.00		0.00		
m,p-Xylene	0.0000	0.00		0.00		0.00		
o-Xylene	0.0000	0.00		0.00		0.00		
2-Butanone (Methyl ethyl ketone)	0.0000	0.00		0.00		0.00		
Tetrahydrofuran	0.0000	0.00		0.00		0.00		
1,2,4-Trimethylbenzene	0.0000	0.00		0.00		0.00		
Vinyl Chloride	0.0000	0.00		0.00		0.00		
Benzene	0.0052	8.30		0.00	8.30	0.01		
Dichlorodifluoromethane	0.0231	37.00		0.00	37.00	0.02		
Chloromethane	0.0000	0.00		0.00		0.00		
Ethanol	0.0000	0.00		0.00		0.00		
Heptane	0.0000	0.00		0.00		0.00		
2-Hexanone	0.0000	0.00		0.00		0.00		
Isopropyl Alcohol	0.0000	0.00		0.00		0.00		
Propylene	0.0000	0.00		0.00		0.00		
Tertiary Butyl Alcohol	0.0000	0.00		0.00		0.00		
Carbon Disulfide	0.0000	0.00		0.00		0.00		
Ethyl Acetate	0.0000	0.00		0.00		0.00		
1,2,4-Trichlorobenzene	0.0000	0.00		0.00		0.00		
Chloroethane	0.0087	14.00		0.00	14.00	0.01		
Cyclohexane	0.0000	0.00		0.00		0.00		
Hexane	0.0000	0.00		0.00		0.00		
Ethylbenzene	0.0000	0.00		0.00		0.00		
4-Ethyl Toluene	0.0000	0.00		0.00		0.00		
Styrene	0.0000	0.00		0.00		0.00		
1,3,5-Trimethylbenzene	0.0000	0.00		0.00		0.00		
4-Methyl-2-Pentanone (MIBK)	0.0000	0.00		0.00		0.00		
Chlorobenzene	0.0000	0.00		0.00		0.00		
Bromoform	0.0000	0.00		0.00		0.00		
Bromomethane	0.0000	0.00		0.00		0.00		
1,4 Dichlorobenzene	0.0000	0.00		0.00		0.00		
Bromodichloromethane	0.0000	0.00		0.00		0.00		
1,2-Dichloroethane	0.0000	0.00		0.00		0.00		
1,2-Dichlorobenzene	0.0000	0.00		0.00		0.00		
1,2-Dichloroethane	0.0000	0.00		0.00		0.00		
1,1,2-Trichloroethane	0.0000	0.00		0.00		0.00		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0000	0.00		0.00		0.00		
trans-1,2-Dichloroethylene	0.0000	0.00		0.00		0.00		
Methyl tert-Butyl Ether (MTBE)	0.0000	0.00		0.00		0.00		
1,3-Dichlorobenzene	0.0000	0.00		0.00		0.00		
1,4-Dichlorobenzene	0.0000	0.00		0.00		0.00		

 TOTAL VOC REMOVAL (Interval Total)
 146.5
 lbs.

 TOTAL VOC REMOVAL (OVERALL TOTAL)
 12329
 lbs.

 TOTAL VOC REMOVAL (Overall Total) from August 2012
 12182
 lbs

 11/28/2012
 URS System Run Time Interval
 1047.90
 hours
 GWTT System Run Time Interval
 1,503.9
 hours

 URS System Run Time Total
 38,389.8
 hours
 GWTT System Run Time Total
 38,771.0
 hours

37.267.10 URS INFLUENT **GWTT INFLUENT** Well ID Flow Rate (cfm) Flow Rate (cfm) 154 231 Cummulative Mass Cummulative Mass Mass (lbs. Compounds Extracted (lbs.) Extracted (ug/m3) (lbs.) Extracte Conc. (ug/m³) Extracted 1.1-Dichloroethene 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Acetone Carbon Tetrachloride 0.0585 45.00 45.00 0.00 0.06 Chloroform 0.0742 57.00 0.00 57.00 0.07 1.1.1-Trichloroethane 0.5725 440.00 0.00 440.00 0.57 Trichloroethylene (Trichloroethene) 30.00 940.00 1.2411 970.00 1.22 0.02 0.0000 Toluene 0.00 0.00 0.00 Tetrachloroethylene (Tetrachloroethene) 98.5180 95,000.00 36,000.00 21.76 59,000.00 76.76 1,1-Dichloroethane 0.0716 55.00 0.00 55.00 0.07 180.00 180.00 1.1-Dichloroethylene 0.2342 0.00 0.23 340.00 cis-1,2-Dichloroethylene 0.4520 356.00 16.00 0.01 0.44 Methylene Chloride 0.0000 0.00 0.00 0.00 m,p-Xylene 0.0000 0.00 o-Xylene 0.0000 0.00 0.00 0.00 2-Butanone (Methyl ethyl ketone) 0.0000 0.00 0.00 0.00 Tetrahydrofuran 0.0000 0.00 0.00 0.00 1,2,4-Trimethylbenzene 0.0000 0.00 0.00 0.00 Vinyl Chloride 0.0000 0.00 0.00 0.00 11 00 Benzene 0.0143 11 00 0.00 0.01 Dichlorodifluoromethane 0.0286 22.00 0.00 0.03 22.00 Chloromethane 0.0000 0.00 0.00 0.00 Ethanol 0.0000 0.00 0.00 0.00 Heptane 0.0000 0.00 0.00 0.00 2-Hexanone 0.0000 0.00 0.00 0.00 Isopropyl Alcohol 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 Propylene Tertiary Butyl Alcohol 0.0000 0.00 0.00 0.00 0.0000 Carbon Disulfide 0.00 0.00 0.00 Ethyl Acetate 0.0000 0.00 0.00 0.00 1,2,4-Trichlorober 0.0000 0.00 0.00 0.00 Chloroethane 0.0096 7.40 0.00 7 40 0.01 0.0000 Cyclohexane 0.00 0.00 0.00 Hexane 0.0000 0.00 0.00 0.00 Ethylbenzene 0.0000 0.00 0.00 0.00 4-Ethyl Toluene 0.0000 0.00 0.00 0.00 Styrene 1,3,5-Trimethylbenzene 0.0000 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 I-Methyl-2-Pentanone (MIBK) 0.0000 0.00 0.00 0.00 0.0000 0.00 Bromoform 0.0000 0.00 0.00 0.00 Bromomethane 0.0000 0.00 0.00 0.00 1,4 Dichlorobenzene 0.0000 0.00 0.00 0.00 . Bromodichloromethane 0.00 1,2-Dichloroethane 0.0000 0.00 0.00 0.00 1,2-Dichlorobenzene 0.0000 0.00 0.00 0.00 1.2-Dichloroethane 0.0000 0.00 0.00 0.00 1,1,2-Trichloroethane 0.0000 0.00 0.00 0.00 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 0.0000 0.00 0.00 0.00 trans-1,2-Dichloroethylene 0.0000 0.00 0.00 0.00 Methyl tert-Butyl Ether (MTBE) 0.0000 0.00 0.00 0.00 1,3-Dichlorobenzene 0.0000 0.00 0.00 0.00 1,4-Dichlorobenzene 0.0000

TOTAL VOC REMOVAL (Interval Total)	101.3	lbs.
TOTAL VOC REMOVAL (OVERALL TOTAL)	12430	lbs.
TOTAL VOC REMOVAL (Overall Total) from September		
2012	12329	lbs

URS System Run Time Interval URS System Run Time Total GWTT System Run Time Interval GWTT System Run Time Total 12/26/2012 667.30 676.6 hours hours 39,057.1 hours

Well ID	LIRS INFLLIENT	GWTT INFILIENT

Well ID				FLUENT	GWTT INFLUENT			
			Flow Rate (cfm)	168	Flow Rate (cfm)	244		
	Cummulative Mass	Cummulative Mass				Mass (lbs.)		
ompounds	Extracted (lbs.)	Extracted (ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m3)	Extracted		
richlorofluoromethane	0.0340	55.00		0.00	55	0.03		
.,1-Dichloroethene	0.0000	0.00		0.00		0.00		
Acetone	0.0000	0.00		0.00		0.00		
Carbon Tetrachloride	0.0600	97.00		0.00	97	0.06		
Chloroform	0.0581	102.00	25	0.01	77	0.05		
1,1,1-Trichloroethane	0.5211	849.00	19	0.01	830	0.51		
Trichloroethylene (Trichloroethene)	0.9244	1,540.00	140	0.06	1,400	0.87		
Toluene	0.0000	0.00		0.00	·	0.00		
Fetrachloroethylene (Tetrachloroethene)	113.85	205,000.00	65,000	27.29	140,000	86.56		
1,1-Dichloroethane	0.0501	81.00		0.00	81	0.05		
,1-Dichloroethylene	0.1669	270.00		0.00	270	0.17		
is-1,2-Dichloroethylene	0.1956	324.00	24	0.01	300	0.19		
Methylene Chloride	0.0000	0.00		0.00		0.00		
n,p-Xylene	0.0000	0.00		0.00		0.00		
o-Xylene	0.0000	0.00		0.00		0.00		
!-Butanone (Methyl ethyl ketone)	0.0000	0.00		0.00		0.00		
etrahydrofuran	0.0000	0.00		0.00		0.00		
L,2,4-Trimethylbenzene	0.0000	0.00		0.00		0.00		
/inyl Chloride	0.0000	0.00		0.00		0.00		
Benzene	0.0000	0.00		0.00		0.00		
Dichlorodifluoromethane	0.0216	35.00		0.00	35	0.02		
Chloromethane	0.0000	0.00		0.00	33	0.00		
Ethanol	0.0000	0.00		0.00		0.00		
Heptane	0.0000	0.00		0.00		0.00		
!-Hexanone	0.0000	0.00		0.00		0.00		
sopropyl Alcohol	0.0000	0.00		0.00		0.00		
Propylene	0.0000	0.00		0.00		0.00		
Fertiary Butyl Alcohol	0.0000	0.00		0.00		0.00		
Carbon Disulfide	0.0000	0.00		0.00		0.00		
thyl Acetate	0.0000	0.00		0.00		0.00		
,2,4-Trichlorobenzene	0.0000	0.00		0.00		0.00		
Chloroethane	0.0080	13.00		0.00	13	0.01		
Cyclohexane	0.0000	0.00		0.00	15	0.00		
Hexane	0.0000	0.00		0.00		0.00		
Ethylbenzene	0.0000	0.00		0.00		0.00		
I-Ethyl Toluene	0.0000	0.00		0.00		0.00		
ityrene	0.0000	0.00		0.00		0.00		
•								
L,3,5-Trimethylbenzene	0.0000 0.0000	0.00		0.00		0.00		
1-Methyl-2-Pentanone (MIBK)								
Chlorobenzene	0.0000	0.00		0.00		0.00		
Bromoform	0.0000	0.00		0.00		0.00		
Bromomethane	0.0000	0.00		0.00		0.00		
1,4 Dichlorobenzene	0.0000	0.00		0.00		0.00		
Bromodichloromethane	0.0000	0.00		0.00		0.00		
1,2-Dichloroethane	0.0000	0.00		0.00		0.00		
1,2-Dichlorobenzene	0.0000	0.00		0.00		0.00		
,2-Dichloroethane	0.0000	0.00		0.00		0.00		
,1,2-Trichloroethane	0.0000	0.00		0.00		0.00		
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0000	0.00		0.00		0.00		
rans-1,2-Dichloroethylene	0.0000	0.00		0.00		0.00		
Methyl tert-Butyl Ether (MTBE)	0.0000	0.00		0.00		0.00		
1,3-Dichlorobenzene	0.0000 0.0000	0.00		0.00		0.00		
I,4-Dichlorobenzene		0.00		0.00		0.00		

TOTAL VOC REMOVAL (Interval Total)	115.9	lbs.
TOTAL VOC REMOVAL (OVERALL TOTAL)	12546	lbs.
TOTAL VOC REMOVAL (Overall Total) from November 2012	12430	lbs

1/30/2013	URS System Run Time Interval	610.90	hours	GWTT System Run Time Interval	836.6	hours
	URS System Run Time Total	39,668.0	hours	GWTT System Run Time Total	40,284.2	hours

Well ID			URS	-SVE-6S	URS-S	VE-6D	UF	S-SVE-1	sv	/E-9S	sv	E-10S	sv	E-8S	S	VE-7D	SV	E-8D	sv	VE-7S
			Flow Rate	168.00	Flow Rate	168.00	Flow Rate	168.00	Flow Rate	256.00	Flow Rate	256.00	Flow Rate	256.00	Flow Rate	256.00	Flow Rate	256.00	Flow Rate	256.00
		Cummulative Mass Extracted			,		2	Mass (lbs.)		Mass (lbs.)	2	Mass (lbs.)	,	Mass (lbs.)	2	Mass (lbs.)	2	Mass (lbs.)	2	Mass (lbs.)
Compounds	(lbs.)	(ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m³)	Mass (lbs.) Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m ³)	Extracted	Conc. (ug/m³)	Extracted	Conc. (ug/m ³)	Extracted	Conc. (ug/m ³)	Extracted
Trichlorofluoromethane (Freon 11)	0.0861	111.50	1.5	0.00	6.4	0.00		0.00	1.1	0.00	1.3	0.00	1.2	0.00		0.00	100	0.08		0.00
1,1-Dichloroethene	0.0000	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Acetone	0.0365	57	11	0.00	11	0.00		0.00	17	0.01		0.00	18	0.01		0.00		0.00		0.00
Carbon Tetrachloride	0.1384	175		0.00	5	0.00		0.00	17	0.01	3.3	0.00		0.00		0.00	150	0.12		0.00
Chloroform	0.1543	210.9	4.6	0.00	31.0	0.01		0.00	18	0.01	2.4	0.00	4.9	0.00		0.00	150	0.12		0.00
1,1,1-Trichloroethane	1.4534	1823.45	4.0	0.00	18.0	0.01		0.00		0.00	0.88	0.00	0.57	0.00		0.00	1,800	1.44		0.00
Trichloroethylene (Trichloroethene)	3.0688	4001	30	0.01	220	0.08	86	0.03	300	0.24	220	0.18	34	0.03	89	0.07	3,000	2.41	22	0.02
Toluene	0.0105	18.79	9.3	0.00	1.7	0.00		0.00	0.39	0.00	5.7	0.00	1.7	0.00		0.00		0.00		0.00
Tetrachloroethylene (Tetrachloroethene)	159.3610	286,700	53,000	20.37	36,000	13.84	80,000	30.75	13,000	10.43	10,000.0	8.02	3,700	2.97	29,000	23.26	13,000	10.43	49,000	39.30
1,1-Dichloroethane	0.2095	262		0.00	2	0.00		0.00		0.00		0.00		0.00		0.00	260	0.21		0.00
1,1-Dichloroethylene	0.6346	791.84		0.00	1	0.00		0.00	0.54	0.00		0.00		0.00		0.00	790	0.63		0.00
cis-1,2-Dichloroethylene	1.2872	1648	20	0.01	21	0.01	42	0.02	780	0.63	290	0.23	150	0.12	41	0.03	280	0.22	24	0.02
Methylene Chloride	0.0099	16.9	3.8	0.00	5.0	0.00		0.00		0.00	4.4	0.00	3.7	0.00		0.00		0.00		0.00
m,p-Xylene	0.0015	2.78	1.8	0.00		0.00		0.00		0.00	0.98	0.00		0.00		0.00		0.00		0.00
o-Xylene	0.0003	0.72	0.72	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
2-Butanone (Methyl ethyl ketone)	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Tetrahydrofuran	0.0006	1.16		0.00	1	0.00		0.00		0.00	0.48	0.00		0.00		0.00		0.00		0.00
1,2,4-Trimethylbenzene	0.0003	0.74	1	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Vinyl Chloride	0.0041	5.06		0.00		0.00		0.00	2.0	0.00		0.00	0.36	0.00		0.00	2.7	0.00		0.00
Benzene	0.0064	8.47	0.50	0.00	0.35	0.00		0.00	0.65	0.00	1.0	0.00	0.81	0.00		0.00	5.2	0.00		0.00
Dichlorodifluoromethane (Freon 12)	0.0973	126.5	2.7	0.00	7.2	0.00		0.00	2.2	0.00	2.3	0.00	2.1	0.00		0.00	110	0.09		0.00
Chloromethane	0.0015	3.16		0.00		0.00	2.4	0.00		0.00		0.00	0.76	0.00		0.00		0.00		0.00
Ethanol	0.0384	64	31	0.01		0.00		0.00		0.00	33	0.03		0.00		0.00		0.00		0.00
Heptane	0.0018	3.12	1.7	0.00		0.00		0.00		0.00	1	0.00	0.42	0.00		0.00		0.00		0.00
2-Hexanone	0.0005	0.57		0.00		0.00		0.00		0.00	0.57	0.00		0.00		0.00		0.00		0.00
Isopropyl Alcohol	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Propylene	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Tertiary Butyl Alcohol	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Carbon Disulfide	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Ethyl Acetate	0.7491	952.5	33	0.01	3	0.00		0.00		0.00	900	0.72		0.00	17	0.01		0.00		0.00
1,2,4-Trichlorobenzene	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Chloroethane	0.0321	40		0.00		0.00		0.00		0.00		0.00		0.00		0.00	40	0.03		0.00
Cyclohexane	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Ethylbenzene	0.0002	0.52	0.52	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
4-Ethyl Toluene	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Styrene	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Hexane	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
1,3,5-Trimethylbenzene	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
4-Methyl-2-Pentanone (MIBK)	0.0000	0		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
1,2-Dichloroethane	0.0039	4.91		0.00		0.00		0.00	0.81	0.00		0.00		0.00]	0.00	4.1	0.00		0.00

TOTAL VOC REMOVAL (Interval Total)	167	lbs.
TOTAL VOC REMOVAL (OVERALL TOTAL)	12714	lbs.
TOTAL VOC REMOVAL (Overall Total) from December 2012	12546	lbs
TOTAL VOC REMOVAL (Overall Total) from December 2012	12346	IDS

D = Reported value is from secodary analysis with dilution factor. Origional analysis exceeded calibration range. B = 10icates analyte found in associated method blank

2/27/2013	URS System Run Time Interval	447.20	hours	GWTT System Run Time Interval	675.6	hours
	URS System Run Time Total	40,115.2	hours	GWTT System Run Time Total	40,959.8	hours

Well ID URS INFLUENT GWTT INFLUENT

Well ID				IFLUENT	GWTT INFLUENT		
			Flow Rate (cfm)	168	Flow Rate (cfm)	256	
	Cummulative Mass	Cummulative Mass				Mass (lbs.)	
Compounds	Extracted (lbs.)	Extracted (ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m ³)	Extracted	
Trichlorofluoromethane	0.0505	78.00		0.00	78	0.05	
1,1-Dichloroethene	0.0000	0.00		0.00		0.00	
Acetone	0.0000	0.00		0.00		0.00	
Carbon Tetrachloride	0.0777	120.00		0.00	120	0.08	
Chloroform	0.0819	135.00	15.0	0.00	120	0.08	
1,1,1-Trichloroethane	0.7192	1,124.00	24	0.01	1,100	0.71	
Trichloroethylene (Trichloroethene)	1.3853	2,189.00	89	0.03	2,100	1.36	
Toluene	0.0000	0.00		0.00		0.00	
Tetrachloroethylene (Tetrachloroethene)	152.06	254,000.00	34,000	9.57	220,000	142.50	
1,1-Dichloroethane	0.0227	35.00		0.00	35	0.02	
1,1-Dichloroethylene	0.2656	410.00		0.00	410	0.27	
cis-1,2-Dichloroethylene	0.2974	471.00	21.0	0.01	450	0.29	
Methylene Chloride	0.0000	0.00		0.00		0.00	
m,p-Xylene	0.0000	0.00		0.00		0.00	
o-Xylene	0.0000	0.00		0.00		0.00	
2-Butanone (Methyl ethyl ketone)	0.0000	0.00		0.00		0.00	
Tetrahydrofuran	0.0000	0.00		0.00		0.00	
1,2,4-Trimethylbenzene	0.0000	0.00		0.00		0.00	
Vinyl Chloride	0.0000	0.00		0.00		0.00	
Benzene	0.0000	0.00		0.00		0.00	
Dichlorodifluoromethane	0.0410	69.00	10.00	0.00	59	0.04	
Chloromethane	0.0000	0.00	10.00	0.00	33	0.00	
Ethanol	0.0000	0.00		0.00		0.00	
Heptane	0.0000	0.00		0.00		0.00	
2-Hexanone	0.0000	0.00		0.00		0.00	
Isopropyl Alcohol	0.0000	0.00		0.00		0.00	
Propylene	0.0000	0.00		0.00		0.00	
Tertiary Butyl Alcohol	0.0000	0.00		0.00		0.00	
Carbon Disulfide	0.0000	0.00		0.00		0.00	
Ethyl Acetate	0.0000	0.00		0.00		0.00	
1,2,4-Trichlorobenzene	0.0000	0.00		0.00		0.00	
Chloroethane	0.0142	22.00		0.00	22.0	0.00	
Cyclohexane	0.0000	0.00		0.00	22.0	0.00	
Hexane	0.0000	0.00		0.00		0.00	
Ethylbenzene	0.0000	0.00		0.00		0.00	
4-Ethyl Toluene	0.0000	0.00		0.00		0.00	
Styrene	0.0000	0.00		0.00		0.00	
1,3,5-Trimethylbenzene	0.0000	0.00		0.00		0.00	
4-Methyl-2-Pentanone (MIBK)	0.0000	0.00		0.00		0.00	
Chlorobenzene	0.0000	0.00		0.00		0.00	
Bromoform	0.0000	0.00		0.00		0.00	
Bromomethane				0.00			
1,4 Dichlorobenzene	0.0000 0.0000	0.00		0.00		0.00 0.00	
Bromodichloromethane	0.0000	0.00		0.00		0.00	
1,2-Dichloroethane	0.0000	0.00		0.00		0.00	
1,2-Dichlorobenzene							
·	0.0000 0.0000	0.00		0.00 0.00		0.00	
1,2-Dichloroethane				_		0.00	
1,1,2-Trichloro 1 3 3 trifluoroothana (From 113)	0.0000	0.00		0.00		0.00	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0000	0.00		0.00		0.00	
trans-1,2-Dichloroethylene	0.0000	0.00		0.00		0.00	
Methyl tert-Butyl Ether (MTBE)	0.0000	0.00		0.00		0.00	
1,3-Dichlorobenzene	0.0000	0.00		0.00		0.00	
1,4-Dichlorobenzene	0.0000	0.00		0.00		0.00	

3/27/2013 URS System Run Time Interval 555.30 hours GWTT System Run Time Interval 667.8 hours URS System Run Time Total 40,670.5 hours GWTT System Run Time Total 41,627.6 hours

Well ID URS INFLUENT **GWTT INFLUENT**

Well ID			URS INI	FLUENT	GWTT INFLUENT		
			Flow Rate (cfm)	168	Flow Rate (cfm)	256	
	Cummulative Mass	Cummulative Mass				Mass (lbs.)	
Compounds	Extracted (lbs.)	Extracted (ug/m3)	Conc. (ug/m ³)	Mass (lbs.) Extracted	Conc. (ug/m ³)	Extracted	
Trichlorofluoromethane	0.0224	35.00	(-8/)	0.00	35	0.02	
1,1-Dichloroethene	0.0000	0.00		0.00		0.00	
Acetone	0.0000	0.00		0.00		0.00	
Carbon Tetrachloride	0.0307	48.00		0.00	48	0.03	
Chloroform	0.0637	109.00	21.0	0.01	88	0.06	
1,1,1-Trichloroethane	0.3009	470.00	21.0	0.00	470	0.30	
Trichloroethylene (Trichloroethene)	0.8032	1,300.00	100	0.03	1,200	0.30	
		· ·	100		13		
Toluene	0.0083	13.00	22.000	0.00		0.01	
Tetrachloroethylene (Tetrachloroethene)	67.87	121,000.00	33,000	11.53	88,000	56.34	
1,1-Dichloroethane	0.0615	96.00		0.00	96	0.06	
1,1-Dichloroethylene	0.1537	240.00		0.00	240	0.15	
cis-1,2-Dichloroethylene	0.2389	384.00	24.0	0.01	360	0.23	
Methylene Chloride	0.0000	0.00		0.00		0.00	
m,p-Xylene	0.0000	0.00		0.00		0.00	
o-Xylene	0.0000	0.00		0.00		0.00	
2-Butanone (Methyl ethyl ketone)	0.0000	0.00		0.00		0.00	
Tetrahydrofuran	0.0000	0.00		0.00		0.00	
1,2,4-Trimethylbenzene	0.0000	0.00		0.00		0.00	
Vinyl Chloride	0.0000	0.00		0.00		0.00	
Benzene	0.0295	46.00		0.00	46	0.03	
Dichlorodifluoromethane	0.0243	38.00		0.00	38	0.02	
Chloromethane	0.0000	0.00		0.00		0.00	
Ethanol	0.0000	0.00		0.00		0.00	
Heptane	0.0000	0.00		0.00		0.00	
2-Hexanone	0.0000	0.00		0.00		0.00	
Isopropyl Alcohol	0.0000	0.00		0.00		0.00	
Propylene	0.1024	160.00		0.00	160	0.10	
Tertiary Butyl Alcohol	0.0000	0.00		0.00	100	0.00	
Carbon Disulfide	0.0000	0.00		0.00		0.00	
Ethyl Acetate	0.0000	0.00		0.00		0.00	
1,2,4-Trichlorobenzene	0.0000	0.00		0.00		0.00	
					12.0		
Chloroethane	0.0077	12.00		0.00	12.0	0.01	
Cyclohexane	0.0000	0.00		0.00		0.00	
Hexane	0.0000	0.00		0.00		0.00	
Ethylbenzene	0.0000	0.00		0.00		0.00	
4-Ethyl Toluene	0.0000	0.00		0.00		0.00	
Styrene	0.0000	0.00		0.00		0.00	
1,3,5-Trimethylbenzene	0.0000	0.00		0.00		0.00	
4-Methyl-2-Pentanone (MIBK)	0.0000	0.00		0.00		0.00	
Chlorobenzene	0.0000	0.00		0.00		0.00	
Bromoform	0.0000	0.00		0.00		0.00	
Bromomethane	0.0000	0.00		0.00		0.00	
1,4 Dichlorobenzene	0.0000	0.00		0.00		0.00	
Bromodichloromethane	0.0000	0.00		0.00		0.00	
1,2-Dichloroethane	0.0000	0.00		0.00		0.00	
1,2-Dichlorobenzene	0.0000	0.00		0.00		0.00	
1,2-Dichloroethane	0.0000	0.00		0.00		0.00	
1,1,2-Trichloroethane	0.0000	0.00		0.00		0.00	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.0000	0.00		0.00		0.00	
trans-1,2-Dichloroethylene	0.000	0.00		0.00		0.00	
Methyl tert-Butyl Ether (MTBE)	0.0000	0.00		0.00		0.00	
1,3-Dichlorobenzene	0.0000	0.00		0.00		0.00	
1,4-Dichlorobenzene	0.0000	0.00		0.00		0.00	
,							
TOTAL VOC REMOVAL (Interval Total)	69.7	lbs.	_				
TOTAL VOC REMOVAL (INTERVAL TOTAL)	12938	_ lbs.					
TOTAL VOC REIVIOVAL (OVERALL TOTAL)	12330	- ID5.					
TOTAL VOC DEMOVAL (Overall Tatal) from Eak, was							
TOTAL VOC REMOVAL (Overall Total) from Feburary	13000	lha					
2013	12869	lbs -					

Date - 12/13/2007	URS System Run Time Interval 20.00 hours URS System Run Time Total 20.00 hours	GWTT System Run Time Interval 20.00 hours GWTT System Run Time Total 20.00 hours
OTAL VOC REMOVAL (INTERVAL TOTAL)	75.76 lbs.	
OTAL VOC REMOVAL (OVERALL TOTAL)	75.76 lbs.	
ate - 12/20/2007	URS System Run Time Interval 66.58 hours	GWTT System Run Time Interval 66.58 hours
	URS System Run Time Total 86.58 hours	GWTT System Run Time Total <u>86.58</u> hours
OTAL VOC REMOVAL (Interval Total)	482.96 lbs.	
OTAL VOC REMOVAL (OVERALL TOTAL)	558.72 lbs.	
ate - 1/4/2008	URS System Run Time Interval 76.25 hours URS System Run Time Total 162.83 hours	GWTT System Run Time Interval 76.75 hours GWTT System Run Time Total 163.33 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	502.34 lbs. 1061.06 lbs.	
ate - 1/9/2008	URS System Run Time Interval 117.00 hours URS System Run Time Total 279.83 hours	GWTT System Run Time Interval 120.00 hours GWTT System Run Time Total 283.33 hours
OTAL VOC REMOVAL (Interval Total)	720.83 lbs.	
OTAL VOC REMOVAL (OVERALL TOTAL)	1781.89 lbs.	
ate - 1/23/2008	URS System Run Time Interval 333.33 hours	GWTT System Run Time Interval 311.50 hours
	URS System Run Time Total 613.17 hours	GWTT System Run Time Total 594.83 hours
OTAL VOC REMOVAL (Interval Total)	795.60 lbs.	
OTAL VOC REMOVAL (OVERALL TOTAL)	2577.49 lbs.	
ate - 2/6/2008	URS System Run Time Interval 260.00 hours	GWTT System Run Time Interval 285.25 hours GWTT System Run Time Total 880.08 hours
	URS System Run Time Total 873.17 hours	GWTT System Run Time Total <u>880.08</u> hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	638.05 lbs. 3215.55 lbs.	
	UDC Contain Due Time Internal 225 00 hours	GWTT System Run Time Interval 235.50 hours
ate - 2/20/2008	URS System Run Time Interval 235.00 hours URS System Run Time Total 1108.17 hours	GWTT System Run Time Interval 235.50 hours GWTT System Run Time Total 1115.58 hours
TAL VOC REMOVAL (Interval Total)	852.87 lbs.	
OTAL VOC REMOVAL (OVERALL TOTAL)	4068.42 lbs.	
ate - 3/6/2008	URS System Run Time Interval 360.00 hours	GWTT System Run Time Interval 355.00 hours
	URS System Run Time Total 1468.17 hours	GWTT System Run Time Total 1470.58 hours
OTAL VOC REMOVAL (Interval Total)	479.86 lbs.	
OTAL VOC REMOVAL (OVERALL TOTAL)	4548.28 lbs.	
ate - 3/20/2008	URS System Run Time Interval 336.00 hours	GWIT System Run Time Interval 332.50 hours
	URS System Run Time Total 1804.17 hours	GWTT System Run Time Interval 332.50 hours GWTT System Run Time Total 1803.08 hours
DTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs.	· · · · · · · · · · · · · · · · · · ·
DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL)	URS System Run Time Total 1804.17 hours 136.15 lbs. 4684.43 lbs.	GWTT System Run Time Total 1803.08 hours
DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL)	URS System Run Time Total 1804.17 hours 136.15 lbs.	· · · · · · · · · · · · · · · · · · ·
DTAL VOC REMOVAL (Interval Total) TTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008	URS System Run Time Total 1804.17 hours 136.15 lbs. 4684.43 lbs. URS System Run Time Interval 647.50 hours URS System Run Time Total 1363.70 hours	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 OTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs. 4684.43 lbs. URS System Run Time Interval 647.50 hours	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs. 4684.43 lbs. URS System Run Time Interval 647.50 hours URS System Run Time Total 1363.70 hours 224.39 lbs.	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs. 4684.43 lbs. URS System Run Time Interval 647.50 hours URS System Run Time Total 1363.70 hours 224.39 lbs.	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 6/18/2008 OTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs. 1684.43 lbs. URS System Run Time Interval 647.50 hours URS System Run Time Total 1363.70 hours 224.39 lbs. URS System Run Time Interval 502.70 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1866.40 hours	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours GWTT System Run Time Interval 502.80 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 6/18/2008 OTAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 1804.17 hours 136.15 lbs. 4684.43 lbs. URS System Run Time Interval 1363.70 hours URS System Run Time Total 1363.70 hours 224.39 lbs. URS System Run Time Interval 502.70 hours URS System Run Time Interval 1866.40 hours	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours GWTT System Run Time Interval 502.80 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 6/18/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs. 1684.43 lbs. URS System Run Time Interval 647.50 hours URS System Run Time Total 1363.70 hours 224.39 lbs. URS System Run Time Interval 502.70 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1866.40 hours 320.29 lbs. 5229.11 lbs. URS System Run Time Interval 838.30 hours	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Total 1808.10 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) STE - 5/21/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL) ate - 6/18/2008 OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 647.50 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1363.70 hours 224.39 lbs. URS System Run Time Interval 502.70 hours URS System Run Time Interval 1866.40 hours 320.29 lbs. 5229.11 lbs.	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Interval 1808.10 hours
DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) ate - 6/18/2008 DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) 23/2008 DTAL VOC REMOVAL (Interval Total)	URS System Run Time Total 1804.17 hours 136.15 lbs.	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Total 1808.10 hours
DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) 223/2008 DTAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 1804.17 hours URS System Run Time Interval 1647.50 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1870.70 hours	GWTT System Run Time Interval 591.60 hours GWTT System Run Time Interval 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Interval 1808.10 hours GWTT System Run Time Interval 669.10 hours GWTT System Run Time Interval 2477.20 hours
TAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (INTERVAL TOTAL)	URS System Run Time Total 1804.17 hours 136.15 lbs.	GWTT System Run Time Total 1803.08 hours GWTT System Run Time Interval 591.60 hours GWTT System Run Time Total 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Total 1808.10 hours
DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) 23/2008 DTAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 1866.40 URS System Run Time Interval 1870.70 URS System Run Time Interval 187	GWTT System Run Time Interval 591.60 hours GWTT System Run Time Interval 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Interval 1808.10 hours GWTT System Run Time Interval 669.10 hours GWTT System Run Time Interval 2477.20 hours GWTT System Run Time Interval 669.70 hours GWTT System Run Time Interval 669.70 hours
DTAL VOC REMOVAL (Interval Total) TAL VOC REMOVAL (OVERALL TOTAL) ate - 5/21/2008 DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) 2723/2008 DTAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 4647.50 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1366.40 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1870.70 hours	GWTT System Run Time Interval 591.60 hours GWTT System Run Time Interval 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Interval 1808.10 hours GWTT System Run Time Interval 669.10 hours GWTT System Run Time Interval 2477.20 hours GWTT System Run Time Interval 669.70 hours GWTT System Run Time Interval 669.70 hours
DTAL VOC REMOVAL (Interval Total) TAL VOC REMOVAL (Interval Total) STAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 1804.17	GWTT System Run Time Interval 591.60 hours GWTT System Run Time Interval 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Interval 1808.10 hours GWTT System Run Time Interval 2477.20 hours GWTT System Run Time Interval 669.10 hours GWTT System Run Time Interval 669.70 hours GWTT System Run Time Interval 669.70 hours GWTT System Run Time Interval 3146.90 hours
DTAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (OVERALL TOTAL) STAL VOC REMOVAL (Interval Total) DTAL VOC REMOVAL (Interval Total)	URS System Run Time Interval 647.50 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 1363.70 hours URS System Run Time Interval 502.70 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1866.40 hours URS System Run Time Interval 1870.70 hours	GWTT System Run Time Interval 591.60 hours GWTT System Run Time Interval 1305.30 hours GWTT System Run Time Interval 502.80 hours GWTT System Run Time Interval 1808.10 hours GWTT System Run Time Interval 669.10 hours GWTT System Run Time Interval 2477.20 hours GWTT System Run Time Interval 669.70 hours GWTT System Run Time Interval 669.70 hours

		ork Assignment #D007621	
10/15/2008	URS System Run Time Interval URS System Run Time Total		GWTT System Run Time Interval 727.30 hours GWTT System Run Time Total 4378.20 hours
TOTAL VOC REMOVAL (Interval Total) TOTAL VOC REMOVAL (OVERALL TOTAL)	270.70 lbs. T 6461.00 lbs.	otal Both Systems Run Time Interval	1459.60
11/26/2008	URS System Run Time Interval URS System Run Time Total		GWTT System Run Time Interval 670.00 hours GWTT System Run Time Total 5048.20 hours
TOTAL VOC REMOVAL (Interval Total) TOTAL VOC REMOVAL (OVERALL TOTAL)	108 lbs. T 6569 lbs.	otal Both Systems Run Time Interval	1339.70
12/24/2008	URS System Run Time Interval URS System Run Time Total	669.60 hours 6282.4 hours	GWTT System Run Time Interval 738.80 hours GWTT System Run Time Total 5787.00 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	73 lbs. T 6635 lbs.	otal Both Systems Run Time Interval	1408.40
1/21/2009	URS System Run Time Interval URS System Run Time Total	612.80 hours 6895.2 hours	GWTT System Run Time Interval 471.90 hours GWTT System Run Time Total 6258.90 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	91 lbs. T 6708 lbs.	otal Both Systems Run Time Interval	1084.70
2/18/2009	URS System Run Time Interval URS System Run Time Total	645.20 hours 7540.4 hours	GWTT System Run Time Interval 666.60 hours GWTT System Run Time Total 6258.90 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	164 lbs. T 6897 lbs.	otal Both Systems Run Time Interval	1311.80
/18/2009	URS System Run Time Interval URS System Run Time Total	641.60 hours 8182 hours	GWTT System Run Time Interval 665.90 hours GWTT System Run Time Total 7591.40 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	74 lbs. T 6897 lbs.	otal Both Systems Run Time Interval	1307.50
/15/2009	URS System Run Time Interval URS System Run Time Total	835.40 hours 9017.4 hours	GWTT System Run Time Interval 834.60 hours GWTT System Run Time Total 8426.00 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	156 lbs. T 7127 lbs.	otal Both Systems Run Time Interval	1670.00
:/13/2009	URS System Run Time Interval URS System Run Time Total	670.90 hours 9688.3 hours	GWTT System Run Time Interval 669.40 hours GWTT System Run Time Total 9095.40 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	119 lbs. T 7246 lbs.	otal Both Systems Run Time Interval	1340.30
/10/2009	URS System Run Time Interval URS System Run Time Total	668.40 hours 10356.7 hours	GWTT System Run Time Interval 667.50 hours GWTT System Run Time Total 9762.10 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	127 lbs. T 7373 lbs.	otal Both Systems Run Time Interval	1335.90
/8/2009	URS System Run Time Interval URS System Run Time Total	838.90 hours 11195.6 hours	GWTT System Run Time Interval 835.00 hours GWTT System Run Time Total 0.00 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	159 lbs. T 7532 lbs.	otal Both Systems Run Time Interval	1673.90
/5/2009	URS System Run Time Interval URS System Run Time Total	670.50 hours 11866.1 hours	GWTT System Run Time Interval 670.00 hours GWTT System Run Time Total 11267.1 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	267 lbs. T 7799 lbs.	otal Both Systems Run Time Interval	1340.50
/2/2009	URS System Run Time Interval URS System Run Time Total	836.30 hours 12702.4 hours	GWTT System Run Time Interval 834.60 hours GWTT System Run Time Total 12101.7 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	147 lbs. T	otal Both Systems Run Time Interval	1670.90
0/14/2009	URS System Run Time Interval URS System Run Time Total	718.70 hours 13421.10 hours	GWTT System Run Time Interval 717.70 hours GWTT System Run Time Total 12819.40 hours
OTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTAL)	123 lbs. T 8069 lbs.	otal Both Systems Run Time Interval	1436.40
.1/25/2009	URS System Run Time Interval URS System Run Time Total	622.30 hours 14043.40 hours	GWTT System Run Time Interval 620.90 hours GWTT System Run Time Total 13440.30 hours
TOTAL VOC REMOVAL (Interval Total)	119 lbs. T	otal Both Systems Run Time Interval	1243.20

TABLE 6 - VOC Removal Calculation Summary 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031

NYSDEC Work Assignment #D007621
URS System Run Time Interval 612.70 hours GWTT System Run Time Interval 584.10 hours URS System Run Time Total 14656.10 hours GWTT System Run Time Total 14024.40 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1196.80 lbs. URS System Run Time Interval 446.00 hours GWTT System Run Time Interval 500.10 hours URS System Run Time Total 15102.10 hours GWTT System Run Time Total 14524.50 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 946.10 OTAL VOC REMOVAL (OVERALL TOT URS System Run Time Interval 586.60 hours GWTT System Run Time Interval 669.40 hours URS System Run Time Total 15688.70 hours GWTT System Run Time Total 15193.90 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1256.00 URS System Run Time Interval 836.10 hours GWTT System Run Time Interval <u>861.30</u> hours URS System Run Time Total 16524.80 hours GWTT System Run Time Total 16026.90 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1697.40 URS System Run Time Interval 670.10 hours GWTT System Run Time Interval 668.20 hours URS System Run Time Total 17194.90 hours GWTT System Run Time Total 16666.80 hours lbs. Total Both Systems Run Time Interval 1338.30 TOTAL VOC REMOVAL (Interval Total) URS System Run Time Interval 667.00 hours GWTT System Run Time Interval 666.40 hours URS System Run Time Total 17861.90 hours GWTT System Run Time Total 17361.50 hours lbs. TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1333.40 URS System Run Time Interval 840.90 hours
URS System Run Time Total 18702.80 hours GWTT System Run Time Interval 839.00 hours
GWTT System Run Time Total 18200.50 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1679.90 URS System Run Time Interval 670.10 hours GWTT System Run Time Interval 664.40 hours URS System Run Time Total 19372.90 hours GWTT System Run Time Total 18864.90 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1334.50 lbs. URS System Run Time Interval 671.70 hours
URS System Run Time Total 20044.60 hours GWTT System Run Time Interval 670.00 hours GWTT System Run Time Total 19534.90 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1341.70 GWTT System Run Time Interval 831.30 hours
GWTT System Run Time Total 20366.20 hours URS System Run Time Interval 834.50 hours
URS System Run Time Total 20879.10 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1665.80 GWTT System Run Time Interval 667.90 hours
GWTT System Run Time Total 21034.10 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1336.00 GWTT System Run Time Interval 671.30 hours ${\sf URS\,System\,Run\,Time\,Total}\underline{\quad 22219.20\quad} {\sf hours}$ GWTT System Run Time Total 21705.40 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 1343.30 URS System Run Time Interval 290.70 hours GWTT System Run Time Interval 504.90 hours URS System Run Time Total 23361.00 hours GWTT System Run Time Total 22566.20 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 795.60 GWTT System Run Time Interval 504.90 hours
GWTT System Run Time Total 23071.10 hours URS System Run Time Interval 290.70 hours
URS System Run Time Total 23361.60 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 795.60 URS System Run Time Interval 584.80 hours
URS System Run Time Total 23946.40 hours GWTT System Run Time Interval 662.90 hours
GWTT System Run Time Total 23734.00 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 1247.70 GWTT System Run Time Interval 521.70 hours GWTT System Run Time Total 24255.70 hours URS System Run Time Total 24784.20 hours lbs. Total Both Systems Run Time Interval 1359.50 TOTAL VOC REMOVAL (Interval Total) URS System Run Time Interval 671.50 hours GWTT System Run Time Interval 669.00 hours URS System Run Time Total 25455.70 hours GWTT System Run Time Total 24924.70 hours

Total Both Systems Run Time Interval 1340.50

TOTAL VOC REMOVAL (Interval Total)

TABLE 6 - VOC Removal Calculation Summary 2012 Periodic Review Report Kliegman Brothers Site OU1 - Site No. 2-41-031

NYSDEC Work Assignment #D007621
URS System Run Time Interval 670.90 hours GWTT System Run Time Interval 670.70 hours URS System Run Time Total 26126.60 hours GWTT System Run Time Total 25595.40 hours TOTAL VOC REMOVAL (Interval Total) 129 lbs. Total Both Systems Run Time Interval 1341.60 URS System Run Time Interval 839.90 hours GWTT System Run Time Interval 838.10 hours URS System Run Time Total 26966.50 hours GWTT System Run Time Total 26433.50 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1678.00 OTAL VOC REMOVAL (OVERALL TO /27/2011 URS System Run Time Interval 664.40 hours GWTT System Run Time Interval 666.00 hours GWTT System Run Time Total 27099.50 hours URS System Run Time Total 27630.90 hours Total Both Systems Run Time Interval 1330.40 TOTAL VOC REMOVAL (Interval Total) OTAL VOC REMOVAL (OVERALL TOTA /31/2011 URS System Run Time Interval 840.00 hours GWTT System Run Time Interval 835.30 hours URS System Run Time Total 28470.90 hours GWTT System Run Time Total 27934.80 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1675.30 URS System Run Time Interval 670.20 hours GWTT System Run Time Interval 669.9 hours URS System Run Time Total 29,141.10 hours GWTT System Run Time Total 28,604.7 hours lbs. Total Both Systems Run Time Interval 1340.10 TOTAL VOC REMOVAL (Interval Total) URS System Run Time Interval 672.00 hours GWTT System Run Time Interval 668.0 hours GWTT System Run Time Total 29,272.4 hours URS System Run Time Total 29,813.1 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval ________1,340.00 URS System Run Time Interval 838.40 hours
URS System Run Time Total 30,651.5 hours GWTT System Run Time Interval 837.00 hours
GWTT System Run Time Total 30,109.4 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1,675.40 12/28/2011 GWTT System Run Time Interval 670.7 hours
GWTT System Run Time Total 30,780.1 hours URS System Run Time Interval 647.10 hours URS System Run Time Total 31,298.6 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1,317.80 76 lbs.

URS System Run Time Interval 572.60 hours

URS System Run Time Total 31,871.2 hours GWTT System Run Time Interval 649.4 hours
GWTT System Run Time Total 31,429.5 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1.222.00 GWTT System Run Time Interval 818.1 hours
GWTT System Run Time Total 32,247.6 hours URS System Run Time Interval 716.40 hours
URS System Run Time Total 32,587.6 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval URS System Run Time Interval 669.50 hours
URS System Run Time Total 33,257.1 hours GWTT System Run Time Interval 669.6 hours
GWTT System Run Time Total 32,917.2 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1,339.10 GWTT System Run Time Interval 670.6 hours URS System Run Time Total 33,929.8 hours GWTT System Run Time Total 33,587.8 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 1.343.30 149 URS System Run Time Interval 837.60 hours GWTT System Run Time Interval 837.2 hours URS System Run Time Total 34,767.4 hours GWTT System Run Time Total 34,425.0 hours TOTAL VOC REMOVAL (Interval Total) 118 lbs. Total Both Systems Run Time Interval 1,674.80 URS System Run Time Interval 670.30 hours
URS System Run Time Total 35,437.7 hours GWTT System Run Time Interval 670.4 hours
GWTT System Run Time Total 35,095.4 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 1,340.70 URS System Run Time Interval 668.70 hours
URS System Run Time Total 36,106.4 hours GWTT System Run Time Interval 669.0 hours
GWTT System Run Time Total 35,764.4 hours TOTAL VOC REMOVAL (Interval Total) lbs. Total Both Systems Run Time Interval 1,337.70 GWTT System Run Time Interval 833.9 hours
GWTT System Run Time Total 36,598.3 hours URS System Run Time Interval 564.10 hours URS System Run Time Total 36,670.5 hours lbs. Total Both Systems Run Time Interval TOTAL VOC REMOVAL (Interval Total) 1,398.00 URS System Run Time Interval 671.40 hours GWTT System Run Time Interval 668.8 hours GWTT System Run Time Total 37,267.1 hours URS System Run Time Total 37,341.9 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1,340.20 OTAL VOC REMOVAL (OVERALL TOTA 1/28/2012 URS System Run Time Interval 1047.90 hours GWTT System Run Time Interval 1,503.9 hours
GWTT System Run Time Total 38,771.0 hours URS System Run Time Total 38,389.8 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval GWTT System Run Time Interval 676.6 hours
GWTT System Run Time Total 39,447.6 hours URS System Run Time Interval 667.30 hours URS System Run Time Total 39,057.1 hours Total Both Systems Run Time Interval 1,343.90 TOTAL VOC REMOVAL (Interval Total) lbs. URS System Run Time Interval 610.90 hours GWTT System Run Time Interval 836.6 hours URS System Run Time Total 39,668.0 hours GWTT System Run Time Total 40,284.2 hours TOTAL VOC REMOVAL (Interval Total) Total Both Systems Run Time Interval 1,447.50 2/27/2013 URS System Run Time Interval 447.20 hours GWTT System Run Time Interval 675.6 hours

TABLE 6 - VOC Removal Calculation Summary 2012 Periodic Review Report Kliegman Brothers Site 0U1 - Site No. 2-41-031 NYSDEC Work Assignment #D007621 URS System Run Time Total 40,115.2 hours

GWTT System Run Time Total 40,9	959.8	hours
---------------------------------	-------	-------

TOTAL VOC REMOVAL (Interval Total) 155 lbs.		Total Both Systems Run Time Interval	1,122.80	
TOTAL VOC REMOVAL (OVERALL TOTAL)	12869	lbs.		
3/27/2013	URS Sy	stem Run Ti	me Interval 555.30 hours	GWTT System Run Time Interval 667.8 hours
URS System Run Time Total 40,670.5 hours				GWTT System Run Time Total 41,627.6 hours
TOTAL VOC REMOVAL (Interval Total)	70	lbs.	Total Both Systems Run Time Interval	1,223.10
TOTAL VOC REMOVAL (OVERALL TOTAL)	12938	lbs.		

Month					Run Time %		Lbs VOCs Removed	Carbon Saturated (in 1000	Lbs VOCs Removed per Hr.	
	From	To	GWTT	URS	GWTT	URS				
1	8/23/2004	9/24/2004		537		69.7%	15,200	13	28.305	
2	9/24/2004	10/25/2004		669		89.4%	6023	11	9.003	
3	10/25/2004	11/22/2004		443		66.1%	2587	5	5.840	
4	11/22/2004	12/24/2004		444		58.6%	1779	6	4.007	
5	12/24/2004	1/25/2005		498		63.3%	1986	3	3.988	
5	1/25/2005	2/23/2005		419		57.5%	1300	2	3.103	
8	2/23/2005	3/29/2005		466		56.7%	843	2 2	1.809	
0	3/30/2005 4/22/2005	4/21/2005 6/3/2005		390 696		71.9% 67.2%	681 1199	2	1.746 1.723	
10	6/3/2005	6/27/2005		287		66.8%	582	1	2.028	
11	6/27/2005	8/1/2005		774		78.1%	1114	2	1.439	
12	8/1/2005	9/2/2005		485		63.4%	720	2	1.485	
13	9/2/2005	10/6/2005		579		71.0%	671	2	1.159	
14	10/6/2005	11/1/2005		362		58.0%	307	1	0.848	
15	11/1/2005	12/8/2005		736		83.0%	508	2	0.690	
16-18	12/8/2005	3/13/2006		1340		58.8%	756	2	0.564	
19-21	3/13/2006	6/14/2006		1561		73.3%	942	3	0.603	
22-24	6/14/2006	8/7/2006		1176		99.5%	719	2	0.611	
25-27	8/7/2006	12/14/2006		1278		39.8%	878	3	0.687	
28-30	12/14/2006	3/5/2007		1767		91.1%	706	3	0.400	
31-33	3/5/2007	6/1/2007		1869		88.3%	903	3	0.483	
34-36	6/1/2007	9/12/2007		1801		72.8%	1231	3	0.684	
37	12/12/2007	12/31/2007	99	99	22%	22%	558.7	2	2.822	
38	1/1/2008	1/31/2008	675	688	91%	92%	2019	5	1.481	
39	2/1/2008	2/29/2008	552	537	74%	72%	616	5	0.566	
40	3/1/2008	3/31/2008	741	744	100%	100%	795.6	5	0.536	
41	4/1/2008	4/30/2008	717	714	96%	96%	224	2	0.157	
42	5/1/2008	5/31/2008	591	647.5	79%	87%	224	2	0.181	
43	5/31/2008	6/25/2008	503	502.7	75%	75%	320	3	0.318	
44 45	6/25/2008	7/30/2008	669.10	838.30	80% 100%	100%	394 320.42	10 5	0.261	
	7/30/2008	8/27/2008	669.70	669.00				5	0.239	
46 47	8/27/2008	9/24/2008	504.00 727.30	669.80	75% 87%	100% 87%	320.42 270.70	5	0.273 0.185	
48	9/24/2008	10/29/2008	670.00	732.30 669.70	80%	80%	108	5	0.081	
49	11/27/2008	12/31/2008	738.80	669.60	80%	88%	73	7	0.052	
50	1/1/2009	1/28/2009	471.90	612.80	70%	91%	91	5	0.032	
51	1/29/2009	2/25/2009	666.60	645.20	99%	96%	164	5	0.125	
52	2/26/2009	3/25/2009	665.90	641.60	99%	95%	74	5	0.057	
53	3/26/2009	4/29/2009	834.6	835.4	99%	99%	156	5	0.094	
54	4/30/2009	5/27/2009	669.40	670.90	100%	100%	119	5	0.089	
55	5/28/2009	6/24/2009	667.50	668.40	99%	99%	127	5	0.095	
56	6/25/2009	7/29/2009	835.00	838.90	99%	100%	159	8	0.095	
57	7/30/2009	8/26/2009	670.00	670.50	100%	100%	267	5	0.200	
58	8/27/2009	9/30/2009	834.60	836.30	99%	100%	147	5	0.088	
59	10/1/2009	10/30/2009	0.00	0.00	0%	0%	123	5	0.000	
60	10/31/2009	11/25/2009	620.90	622.30	100%	100%	119	5	0.096	
61	11/26/2009	12/30/2009	584.10	612.70	70%	73%	77	5	0.065	
62	12/31/2009	1/27/2010	500.10	446.00	66%	74%	42	5	0.044	
63	1/28/2010	2/24/2010	669.40	586.60	100%	87%	89	5	0.070	
64	2/25/2010	3/31/2010	861.30	836.10	100%	100%	86	5	0.051	
65	4/1/2010	4/28/2010	668.20	670.10	95%	100%	77	5	0.058	
66	4/29/2010	5/26/2010	666.40	667.00	99%	99%	73	5	0.055	
67	5/27/2010	6/30/2010	839.00	840.90	100%	100%	300	8	0.179	
68 69	7/1/2010	7/28/2010	664.40	670.10 671.70	100% 100%	99% 100%	133	5	0.100 0.045	
70	7/29/2010	8/25/2010	670.00 831.30	6/1./0 834.50	99%	99%	63	5	0.045	
71	8/26/2010 9/30/2010	9/29/2010 10/27/2010	667.90	668.10	99%	99%	154	6		
72	10/28/2010	11/24/2010	671.30	672.00	100%	100%	70	2	0.115 0.052	
73	11/25/2010	1/5/2011	860.80	1141.80	85%	113%	97	4	0.048	
74	1/6/2011	1/26/2011	504.90	290.70	100%	58%	96	2	0.121	
75	1/27/2011	2/23/2011	662.90	584.80	99%	87%	126	3	0.101	
76	2/23/2011	3/30/2011	521.70	837.80	62%	100%	90	2	0.067	
77	3/31/2011	4/27/2011	669.00	671.50	100%	100%	130	3	0.097	
78	4/27/2011	5/25/2011	670.70	670.90	100%	100%	129	2	0.097	
79	5/25/2011	6/29/2011	838.10	839.90	100%	100%	300	3	0.179	
80	6/29/2011	7/27/2011	666.00	664.40	99%	99%	62	2	0.046	
81	7/27/2011	8/31/2011	835.30	840.00	99%	100%	190	3	0.113	
82	8/31/2011	9/28/2011	669.90	670.20	100%	100%	117	2	0.087	
83	9/29/2011	10/26/2011	668.0	672.00	99%	100%	135	3	0.101	
84	10/27/2011	11/30/2011	837.0	838.40	100%	100%	133	2	0.079	
85	12/1/2011	12/28/2011	670.7	647.10	100%	96%	110	4	0.084	
86	12/29/2011	1/25/2012	649.4	572.60	97%	85%	13	2	0.011	
87	1/26/2012	2/29/2012	818.1	716.40	97%	85%	90	3	0.059	
88	3/1/2012	3/28/2012	669.6	669.50	100%	100%	333	2	0.248	
89	3/29/2012	4/25/2012	670.6	672.70	100%	100%	149	3	0.111	
90 91	4/26/2012	5/30/2012	837.2 670.3	837.60	100%	100%	118	4	0.070	
91 92	5/31/2012 6/28/2012	6/27/2012	669.0	670.40 668.70	100% 100%	100% 100%	104 79	2 3	0.078 0.059	
93	7/26/2012	7/25/2012 8/29/2012	833.9	564.10	99%	67%	320	2	0.059	
94	8/30/2012	9/26/2012	668.8	671.40	100%	100%	146	3	0.229	
95	9/26/2012	11/28/2012	1,503.9	1047.90	99%	69%	101	2	0.109	
96	11/28/2012	12/26/2012	676.6	667.30	99%	100%	116	2	0.040	
96	12/27/2012	1/30/2013	836.6	610.90	100%	73%	167	3	0.086	
98	1/31/2013	2/27/2013	675.6	447.20	100%	66%	155	0	0.138	
99	2/28/2013	3/27/2013	667.8	555.30	100%	82%	70	0	0.057	
	2/20/2013	TOTALS:	43,008.90	60,718	10070	02/0	54,329	321	0.057	

