

FEASIBILITY STUDY

WORK ASSIGNMENT D004433-14

KLIEGMAN BROTHERS SITE OU2 GLENDALE

SITE NO. 2-41-031 QUEENS (C) NY

Prepared for: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway, Albany, New York

Alexander B. Grannis, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation 77 Goodell Street Buffalo, New York 14203

> FINAL February 2008

FEASIBILITY STUDY

KLIEGMAN BROS. SITE OPERABLE UNIT NO. 2 SITE #2-41-031 QUEENS, NEW YORK

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D004433-14

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NEW YORK 14203

JANUARY 2008

TABLE OF CONTENTS

1.0	INTRODUCTION1-1				
	1.1	Scope			
	1.2	Site Description and History			
	1.3	Previous Investigations and Interim Remedial Measures			
	1.4	Site Hydrogeology			
	1.5	Extent of Contamination			
		1.5.1	Soil Gas	1-5	
		1.5.2	Groundwater	1-6	
	1.6	Exposur	e Pathways	1-8	
	1.7	Indicato	r Parameters	1-8	
2.0	DEVELOPMENT OF REMEDIAL ALTERNATIVES2-1				
	2.1	Remedial Action Objectives			
	2.2	General Response Actions			
	2.3	Identific	cation of Volumes or Areas of Media to be Addressed	2-3	
		2.3.1	Soil Gas	2-3	
		2.3.2	Groundwater	2-3	
	2.4	Identific	Identification of Technologies2-4		
		2.4.1	No Additional Action for Soil Gas and/or Groundwater	2-4	
		2.4.2	Exposure Point Mitigation	2-5	
		2.4.3	Containment Technologies	2-6	
		2.4.4	Treatment Technologies	2-9	
			2.4.4.1 Constructed Treatment System for Extracted Groundwater	:2-9	
			2.4.4.2 Off-site Treatment of Extracted Groundwater	2-11	
			2.4.4.3 In-well Treatment System	2-11	
			2.4.4.4 In Situ Biological Treatment	2-12	
		2.4.5	In Situ Chemical Oxidation Treatment	2-13	
		2.4.6	In Situ Physical/Thermal Treatment	2-23	
	2.5	Development of Alternatives			
		2.5.1	Alternative 1 – No Additional Action	2-24	
			Alternative 2A – Groundwater Extraction from Concentrated Plun ove-Ground Water Treatment		
			Alternative 2B – Groundwater Extraction from Expanded Plume A ove-Ground Water Treatment		
		2.5.4	Alternative 3A – In Situ Chemical Oxidation Treatment of Concer	ıtrated	
			Area		

		2.5.5 Plume	Alternative 3B – In Situ Chemical Oxidation Treatment of Exp Area		
		2.5.6 Plume	Alternative 4 - In Situ Chemical Oxidation Treatment of Conce Area with Induced Groundwater Gradient		
3.0	DETA	ILED D	ESCRIPTION AND ANALYSIS OF ALTERNATIVES	3-1	
	3.1	Descri	ption of Evaluation Criteria	3-1	
	3.2	Altern	ative 1 – No Additional Action	3-3	
		3.2.1	Description	3-3	
		3.2.2	Overall Protection of Human Health and the Environment	3-4	
		3.2.3	Compliance with SCGs	3-4	
		3.2.4	Short-Term Impacts and Effectiveness	3-5	
		3.2.5	Long-Term Effectiveness and Permanence	3-5	
		3.2.6	Reduction of Toxicity, Mobility, and Volume	3-5	
		3.2.7	Implementability	3-5	
		3.2.8	Cost	3-6	
	3.3 Above		ative 2A – Groundwater Extraction from Concentrated Plume And Water Treatment		
		3.3.1	Description	3-6	
		3.3.2	Overall Protection of Human Health and the Environment	3-7	
		3.3.3	Compliance with SCGs	3-8	
		3.3.4	Short-Term Impacts and Effectiveness	3-8	
		3.3.5	Long-Term Effectiveness and Permanence	3-8	
		3.3.6	Reduction of Toxicity, Mobility, and Volume	3-9	
		3.3.7	Implementability	3-9	
		3.3.8	Cost	3-10	
	3.4 Alternative 2B –Groundwater Extraction from Expanded Plume Area with Above-Ground Water Treatment				
		3.4.1	Description		
		3.4.2	Overall Protection of Human Health and the Environment	3-11	
		3.4.3	Compliance with SCGs		
		3.4.4	Short-Term Impacts and Effectiveness		
		3.4.5	Long-Term Effectiveness and Permanence		
		3.4.6	Reduction of Toxicity, Mobility, and Volume	3-13	
		3.4.7	Implementability	3-13	
		3.4.8	Cost	3-14	
	3.5 Area	ative 3A – In Situ Chemical Oxidation Treatment of Concentrate	d Plume		
		3.5.1	Description	3-14	
		3.5.2	Overall Protection of Human Health and the Environment	3-16	

		3.5.3	Compliance with SCGs	3-17	
		3.5.4	Short-Term Impacts and Effectiveness	3-17	
		3.5.5	Long-Term Effectiveness and Permanence	3-18	
		3.5.6	Reduction of Toxicity, Mobility, and Volume	3-19	
		3.5.7	Implementability	3-19	
		3.5.8	Cost		
	3.6	Alternative 3B – In Situ Chemical Oxidation Treatment of Expanded Plume Area3-20			
		3.6.1	Description	3-20	
		3.6.2	Overall Protection of Human Health and the Environment	3-23	
		3.6.3	Compliance with SCGs	3-23	
		3.6.4	Short-Term Impacts and Effectiveness	3-23	
		3.6.5	Long-Term Effectiveness and Permanence		
		3.6.6	Reduction of Toxicity, Mobility, and Volume		
		3.6.7	Implementability	3-26	
		3.6.8	Cost	3-26	
	3.7	Altern	ative 4 - In Situ Chemical Oxidation Treatment of Concentrated	Plume	
	Area	with Indu	aced Groundwater Gradient	3-26	
		3.7.1	Description	3-26	
		3.7.2	Overall Protection of Human Health and the Environment	3-30	
		3.7.3	Compliance with SCGs	3-31	
		3.7.4	Short-Term Impacts and Effectiveness	3-31	
		3.7.5	Long-Term Effectiveness and Permanence		
		3.7.6	Reduction of Toxicity, Mobility, and Volume	3-33	
		3.7.7	Implementability	3-34	
		3.7.8	Cost	3-34	
	3.8	Summ	ary	3-34	
4.0	COM	PARATI	VE ANALYSIS OF ALTERNATIVES	4-1	
	4.1	Overa	Il Protection of Human Health and the Environment	4-1	
	4.2	Comp	liance with SCGs	4-2	
	4.3	-	Term Impacts and Effectiveness		
	4.4	Long-	term Effectiveness and Permanence	4-2	
	4.5	_	tion of Toxicity, Mobility, and Volume		
	4.6		nentability		
	4.7	-	•		
5.0	RECO	OMMEN	DED REMEDIAL ALTERNATIVE	5-1	

TABLES

(Following Text)

- Table 1-1
 Summary of PCE Concentrations (ppb) in Groundwater Samples
- Table 2-1Technology Screening Summary
- Table 3-1Summary of Estimated Costs
- Table 3-2Summary of Air Stripping Requirements
- Table 3-3Evaluation of Alternatives

FIGURES

(Following Tables)

Figure 1-1 Site Location Map Figure 1-2 Site Plan Figure 1-3 IRM Site Plan Figure 1-4 PCE Concentrations in Shallow Groundwater Figure 1-5 PCE Concentrations in Deep Groundwater Figure 2-1 Groundwater Treatment Process Figure 3-1 Layout for Alternative 1 Figure 3-2 Conceptual Layout for Alternative 2A Figure 3-3 Conceptual Layout for Alternative 2B Figure 3-4 Conceptual Layout for Alternative 3A Figure 3-5 Conceptual Layout for Alternative 3B Figure 3-6 Conceptual Layout for Alternative 4

APPENDICES

- Appendix A Groundwater Calculations
- Appendix B Cost Estimates
- Appendix C New York City Department of Environmental Protection Discharge Limitations

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

1.0 INTRODUCTION

1.1 <u>Scope</u>

This Feasibility Study (FS) presents the evaluation of alternatives for the remediation of Operable Unit No. 2 (OU2) at the Kliegman Brothers Site (Site No. 2-41-031) in Queens County, New York. This work is being performed for the New York State Department of Environmental Conservation (NYSDEC) under Task 2 of Work Assignment D004433-14.

A Focused Feasibility Study for the remediation of Operable Unit No. 1 (OU1) at the Kliegman Brothers Site performed under Task 5 of Work Assignment D003825-37 resulted in a Record of Decision (ROD) issued in March 2006. The ROD remedy for OU1 addressed on-site soil and soil vapor contamination. These included the site impacts with respect to contaminated soils in the vadose zone soil, that is, soil above the water table and the perched water area located on the eastern portion of the site within the vadose zone, the release of contaminants from soil into groundwater, and the release of contaminants from soil vapor into indoor air through vapor intrusion.

This OU2 FS will address impacts to off-site soil gas and impacts to both on-site and offsite groundwater.

1.2 Site Description and History

The site is situated in a densely populated urban mixed-use residential/light-commercial setting. The Kliegman Brothers property is located at 76-01 77th Avenue in Queens County, New York (Figure 1-1) and is bordered to the north by the Long Island Railroad. The off-site area includes residences that are present to the east, west, and south; Public School (P.S.) 119 lies to the west of 75th street. The on-site property is approximately 37,000 square feet, of which 26,000 is occupied by a building (Figure 1-2). A basement exists under the western portion of the building.

Kliegman Bros Inc formerly owned the on-site property. This property was used as a warehouse and distribution center for laundry and dry-cleaning supplies from the 1950s through the 1990s. Two 6,000-gallon above-ground storage tanks (ASTs) were used to store tetrachloroethene (PCE) (Figure 1-2). The tanks have since been removed from the property. Although these tanks are the presumed source of contamination, it is unknown if, and when, product was released or, whether contamination was due to a single catastrophic release or a chronic leak problem. Kliegman Bros. ceased operation in 1999. The property was purchased in 2000 and is currently being used as a warehouse for an imported food distributor. Known contamination is unrelated to operations since 2000.

1.3 Previous Investigations and Interim Remedial Measures

Soil and/or soil gas sampling has been performed from 1997 through 2006 as part of the The initial investigations were performed by Tradewinds RI and continues in 2007. Environmental Restoration, Inc. and Advanced Cleanup Technologies (ACT) in 1997 and 1998, respectively. These investigations were comprised of soil gas collection and analysis in the area between the building and the railroad where the PCE storage tanks were located. Additional soil gas sampling was performed by EEA, Inc. (for a prospective property owner) and by URS (for NYSDEC) in 2000. All of these investigations revealed the presence of PCE, often at high concentrations. Enviroscience Consultants, Inc. performed an investigation in 2001 as part of a Voluntary Cleanup Plan (VCP) agreement with NYSDEC, and included soils and groundwater sampling as part of a Focused Remedial Investigation/Interim Remedial Measures (FRI/IRM). The objective of the FRI/IRM was to sufficiently delineate on-site soil contamination to enable the design of a soil vapor extraction (SVE) system to remediate on-site soil. As part of the study, Enviroscience Consultants, Inc. advanced nine borings, SVE-1 through SVE-5 and EB-1 through EB-4. Enviroscience also collected 26 soil samples from beneath the subfloor of the building, approximately 0-12 inches below the concrete floor/soil interface.

Between October 2000 and August 2001, the New York State Department of Health (NYSDOH) conducted ambient air sampling in 17 residences east, west, and south of the property. NYSDOH sampled on five occasions, although individual residences were sampled only one to three times each. Vapors were detected in 16 of the 17 residences tested.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

In September 2002, the property owner discontinued his participation in the VCP and thus responsibility for addressing on-site subsurface contamination reverted to NYSDEC. Because of documented ongoing PCE vapor exposures to adjacent residences, NYSDEC tasked URS to implement an SVE system as an interim remedial measure (IRM).

URS completed construction of an SVE system at site as an IRM in 2004. The system utilizes three extraction wells (SVE-1, SVE-6S and SVE-6D) as shown on Figure 1-3. SVE-1 is a one-inch diameter well screened from 5 to 25 feet below ground surface (bgs). Wells SVE-6S and 6D are two-inch diameter wells screened from 5 to 25 feet bgs (SVE-6S) and 30 to 65 feet bgs (SVE-6D). SVE-6S and SVE-6D are separate wells installed at the same location. Other wells (SVE-2 through 5), originally installed by Enviroscience as SVE wells, were not used for the IRM. The three wells are connected through a subsurface trench to the SVE system consisting of a moisture separator, an extraction blower, and vapor phase carbon vessels. The extraction blower is an approximately 250 standard cubic feet per minute (scfm), 5 horsepower regenerative blower, and the two carbon vessels each contain 1,000 pounds of carbon. Operation of the system began on August 23, 2004. Between August 23, 2004 and June 14, 2006 (the date of the last report) the SVE system removed approximately 35,800 pounds of PCE from the vadose zone.

Groundwater sampling has been performed since 2001. Enviroscience Consultants, Inc. performed groundwater sampling and analysis for VOCs as part of the FRI/IRM. Groundwater samples were obtained from each of the SVE borings except SVE-1. Samples were collected from the regional water table using a hydropunch sampler just below the water table (i.e., 70 feet deep) and approximately 30 feet below the water table.

URS included groundwater sampling results within the Remedial Investigation Report issued in February 2004. However, since the groundwater plume was not fully characterized, additional monitoring wells were installed in order to further delineate the extent of groundwater contamination. URS subsequently issued an RI Addendum Report in September 2005 summarizing the results of the additional fieldwork, which included the installation and sampling of 8 new monitoring wells, both on-site and off-site, as well as the sampling of 16 of the 18 existing wells. (MW-10D and MW-10H were not sampled because they were partially obstructed by new asphalt paving.)

URS conducted a residential air-sampling program during 2005 and 2006, which continues in 2007, as an additional part of the RI to determine if the PCE plume has resulted in soil vapor entering area residences. Results are presented in the 2006 URS report for NYSDEC entitled *Soil Vapor Intrusion Investigation Report*. Based on the findings of completed soil vapor intrusion pathways obtained during the initial (February 2005) sampling program, the indoor air-sampling program was expanded as part of the IRM. The extent of the full program included indoor air and sub-slab sampling at 70 residences and P.S. 119 based on their proximity to the site. Sampling followed the NYSDOH 2005 Draft Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Based on the analytical data collected, the NYSDEC in concurrence with the NYSDOH determined that 12 residences were eligible for installation of sub-slab depressurization systems.

1.4 <u>Site Hydrogeology</u>

Site-specific geology was obtained from boring logs. In general, beneath a fill layer (concrete or asphalt underlain by reworked native materials) of variable thickness (up to 2 feet), brown loose to dense, fine to coarse silty sand to sandy silt with localized sandy clay seams was observed to depths of approximately 10 feet bgs. This was underlain by brown loose to dense, fine to coarse sand with variable amounts of fine to coarse gravel to a depth of 148 feet bgs. This unit appears to correlate to the Upper Pleistocene glacial deposits and the more recent Holocene deposits. Beneath the eastern portion of the property a brown silty clay layer, with variable amounts of sand was present. This silty clay layer occurs at approximately 10 to 15 feet bgs and is approximately 5 feet thick until it appears to pinch out in the vicinity of MW-04D. Perched groundwater was observed above the silty clay layer at a depth of 10 to 12 feet bgs.

Measurements of groundwater elevations from the network of monitoring wells were used to develop groundwater contour maps and determine the site-specific direction of groundwater flow at three groundwater depths: perched groundwater, shallow groundwater at the water table, and deep groundwater approximately 30 to 40 feet below the water table.

The groundwater table occurs at the site at approximately 70 feet bgs within the upper glacial aquifer. No public water supplies draw water from this source. Horizontal hydraulic gradients in shallow groundwater are very gentle. Groundwater flow direction varied from northerly to southerly and therefore, in general, the groundwater flow direction in shallow groundwater was determined to be variable, possibly due to the very gentle horizontal hydraulic gradients and seasonal fluctuations in the water table. Slug test results conducted as part of the RI indicated an average hydraulic conductivity of approximately 5 x 10^{-2} cm/sec. However, the overall conductivity is probably much higher because data from several slug tests were not measurable due to a very fast recharge rate. Measured hydraulic conductivity values were generally one to two orders of magnitude higher in water table wells compared to wells in perched groundwater.

Deep groundwater is considered to be approximately 30 to 40 feet below the water table. The horizontal hydraulic gradient was nearly flat. There is little to no discernible vertical hydraulic gradient observed between the deep and shallow groundwater wells.

1.5 Extent of Contamination

1.5.1 Soil Gas

URS performed an extensive on-site soil gas survey in 2002 the results of which were summarized in the RI. High concentrations of PCE were detected at all locations on-site. As discussed above, between August 2004 and June 2007 the SVE system removed approximately 39,000 pounds of PCE from the vadose zone. The additional SVE treatment system and new extraction wells outlined in the OU1 ROD are anticipated to handle about three times the amount of extracted soil vapor as the current IRM.

VOCs have also migrated offsite in soil gas as evidenced by the detection of vapors in residences tested. Due to the depth of groundwater and the presence of lenses of relatively less permeable material within the aquifer, the source of the soil gas contamination is mainly contamination in vadose zone soil. A vapor intrusion mitigation program, comprising of the installation of the sub-slab depressurization systems at individual residences, has been implemented.

1.5.2 Groundwater

Perched groundwater is present on-site but is included in the OU1 portion of the site. This OU2 Feasibility Study addresses non-perched, water table, groundwater.

Groundwater sampling results from Enviroscience Consultants, Inc. and URS indicate that contamination has migrated offsite through groundwater in all directions. Reported concentrations of VOCs in groundwater are above New York State Class GA criteria. In most monitoring wells, PCE was by far the most common contaminant – detected most frequently and at the highest concentrations. Further, it is an appropriate indicator of contamination attributable to dry cleaning operations. Therefore, the following discussion on the extent of groundwater contamination will be generally based on the location and concentrations of PCE on- and off-site. Table 1-1 presents a summary of PCE concentrations detected in shallow and deep groundwater between 2001 and 2005. Sampling locations are shown on Figures 1-4 and 1-5.

Shallow Groundwater – PCE concentrations from shallow groundwater samples are shown on Figure 1-4.

- PCE concentrations generally decrease in all directions away from the property, but to a lesser degree to the south.
- North of the building, concentrations of PCE in MW-11 and MW-02 had decreased in 2005 to around 25% of their 2002 values after increasing in 2003. MW-10D (sampled in 2003) and hydropunch samples SVE-2 and SVE-3 (sampled in 2001 by a previous consultant during the installation of SVE wells) all exhibited high

concentrations (55,000 parts per billion [ppb], 45,000 ppb, and 30,000 ppb, respectively). No additional data is available to indicate whether concentrations in these three locations have been reduced since MW-10D was not accessible during the 2005 Phase 3 RI sampling (paved over and used exclusively/constantly for storage by the site owner), and the SVE-2 and SVE-3 boreholes had been completed as SVE wells in the vadose zone. Even assuming a 75% reduction, current concentrations at these locations would still be high.

- A groundwater contamination plume is reasonably well delineated east of the property, as the comparison of PCE results to total chlorinated VOCs shows a greater presence of breakdown products. However, 1,1,1-trichloroethane (1,1,1-TCA) is not a breakdown product related directly to PCE. The highest concentration of 1,1,1-TCA was detected at MW-07D. Concentrations of PCE in MW-16, east of MW-07D, did not decrease between April 2003 and June 2005.
- Concentrations of PCE in monitoring wells far west of the property (MW-15, MW-21, MW-22, and MW-20) from June 2005 sampling indicated relatively low concentrations similar to those detected in April 2003 in deep groundwater.
- Concentrations of PCE in MW-03, MW-04, and MW-05 show an increase in PCE concentration as a plume with PCE concentrations above 10,000 ppb migrates to the south and southwest. Concentrations in these monitoring wells had originally decreased between October 2002 and December 2003, but significantly increased by June 2005. The concentration of PCE another hundred feet to the south in MW-14 had yet to increase by June 2005, but may increase in the future if current observed trends continue.
- Further to the south, groundwater in MW-24, MW-17, MW-18, MS-19 and MW-23 has been sampled and analyzed once. Concentrations of PCE in the wells suggest migration beyond MW-19 and MW-23, potentially up to another two hundred feet.

Deep Groundwater – PCE concentrations from groundwater samples taken from greater depths below the water table are shown on Figure 1-5.

- PCE was detected during 2001 sampling at parts per million (ppm) levels at a depth of 96 feet bgs in the SVE hydropunch samples located on the property.
- During the June 2005 round of sampling, PCE was not detected at depth in MW-12H and MW-13H where it had been previously detected; only breakdown products were detected.

In general, PCE concentrations decreased with depth and time in wells sampled.

1.6 Exposure Pathways

A qualitative Human Health Risk Assessment was performed during the RI. Under the current land use scenario, soil gas was identified as a medium of concern because the pathway of exposure is complete for adjacent residents. Under the future use scenario, contaminated groundwater, and soil gas are media of concern for site residents, industrial/commercial workers or construction workers. Groundwater may potentially be used for potable or non-potable purposes, and the site may be subject to future construction activity. Ingestion, dermal absorption, and inhalation of VOCs detected in groundwater are the potential exposure pathways in the future, if groundwater is used at the site.

1.7 Indicator Parameters

Compounds detected at the site are potentially degradable in ground water. The bulk of the contamination is present as chlorinated hydrocarbons, especially PCE. As presented in the RI Report, the predominant mechanism for the degradation of these compounds is reductive dechlorination. The likelihood of the occurrence of reductive dechlorination can be assessed using the following indicators (after the *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water*, USEPA 1998):

• **pH** - The pH of groundwater has an effect on the presence and activity of microbial populations. Generally, microorganisms that are most efficient biodegraders prefer neutral pH values (6 to 8). The range of values allowing reductive dechlorination to

occur is between 5 and 9. Values of pH in groundwater were found to be between approximately 6 and 7 (neutral). All pH values are within the range in which the biodegradation of chlorinated solvents can take place.

- Nitrate Reductive dechlorination has been demonstrated to be favorable under nitrate-reducing conditions. The presence of nitrate-reducing conditions can be deduced by looking for zones in the plume where nitrate is at much lower concentrations than elsewhere in the groundwater. Nitrate concentrations in groundwater at the site are typically on the order of 10 mg/L. This is relatively elevated, and the pattern of contamination does not demonstrate a local zone of nitrate reduction. Therefore, nitrate-reducing conditions do not appear to be present.
- Sulfate and Sulfide Sulfate-reducing conditions are favorable for the dechlorination pathway. As with nitrate, locally-depressed sulfate concentrations indicate zones of active sulfate reduction. Sulfide is a reduced product whose presence indicates strongly reducing conditions that promote reductive dechlorination. Sulfate concentrations are mostly on the order of 100 mg/L, while sulfide has been generally noted as "not detected". Site results indicate that the conditions for dechlorination are not favorable.
- Dissolved Oxygen Dissolved oxygen is the most favored electron acceptor in hydrocarbon biodegradation. Levels of less than 1 mg/L indicate that aerobic degradation has occurred, oxygen has been largely utilized, and a shift to anaerobic processes has taken place. Reductive dechlorination takes place under anaerobic conditions, generally when the dissolved oxygen levels are less than 0.5 mg/L. Typically, an anaerobic environment is created by the degradation of non-chlorinated compounds, such as BTEX (benzene, toluene, ethylbenzene, and xylenes). Following that, the likelihood of degradation of chlorinated hydrocarbons becomes high. Dissolved oxygen levels at the site are generally between 1 and 10 mg/L. Levels of approximately 0.5 mg/L have been detected only at two locations in perched groundwater. It appears that anaerobic conditions required to support the reductive dechlorination are not present at the site.

- Ferrous Iron Iron-reducing conditions are favorable to the process of reductive dechlorination. Concentrations of ferrous iron higher than 1 mg/L suggest iron reduction is occurring, and thus oxidation/reduction (redox) conditions are suitable for reductive dechlorination. The ferrous iron distribution at the site shows concentrations that are generally in the range of "not detected" to 1 mg/L. Only one sampling point in perched water provided a higher value of approximately 3 mg/L. Therefore, the likelihood of conditions favoring reductive dechlorination is low.
- Oxidation/Reduction Potential (ORP) Reductive dechlorination becomes possible at levels of less than approximately +50 mV. The likelihood of its occurrence is significant for ORP values less than -100 mV. In perched and shallow groundwater, the ORP values are approximately +100 to +400 mV, with one exception of +15 mV. Therefore, conditions supporting reductive dechlorination are not present in perched and shallow groundwater where the bulk of contamination is present.
- Organic Carbon Organic carbon (TOC), either naturally occurring or anthropogenic, typically serves as the electron donor required to drive the dechlorination process. Levels above 20 mg/L are favorable. TOC levels in perched and shallow groundwater are generally on the order of 1 mg/L. In deep groundwater, monitoring points associated with the higher levels of hydrocarbons show TOC values greater than 20 mg/L. Therefore, TOC levels required for reductive dechlorination may occur in deep groundwater.
- Chloride Chloride levels two times higher than background may indicate that the compound has been produced as a dechlorination byproduct. Typically, high chloride levels occur within the downgradient portion of the plume. For this site, regional background levels of chloride are not available. Virtually all wells are located within the area where chlorinated hydrocarbons have been detected. In addition, as a result of the changing direction of the hydraulic gradient, the plume does not appear to display typical upgradient and downgradient portions. Chloride levels detected at the site are variable. Differences between chloride concentrations detected in monitoring wells screened in deep groundwater are negligible; for perched and shallow groundwater they range within an order of magnitude.

However, the variability does not correspond to any pattern of total chlorinated hydrocarbon concentration or relative concentrations of different chlorinated compounds. The occurrence of the process of reductive dechlorination can not be assessed based on chloride data.

Distribution of Chlorinated Species - Significant degradation of chlorinated solvents is marked by a shift in the relative concentrations of various compounds. As degradation progresses, the original compound released into the environment breaks down into the daughter product, where successively more chloride atoms are removed from the compound molecule and replaced with hydrogen. In this case, PCE would be converted to trichloroethene (TCE), then to dichloroethene (DCE) and finally to vinyl chloride (VC). Vinyl chloride is difficult to dechlorinate further (requiring very strong reducing conditions), but it is readily oxidized under aerobic conditions. There is little evidence of this process occurring at the site. With a few exceptions, PCE remains the dominant compound in most of the monitoring wells. Vinyl chloride has generally not been detected; although very high concentrations of PCE resulted in unusually high detection limits for VC (up to 200 ppb). In summary, the distribution of concentrations of various chlorinated hydrocarbons does not appear to indicate that significant dechlorination is taking place.

The following table summarizes the likelihood of the occurrence of reductive dechlorination of chlorinated hydrocarbons detected in groundwater at the site based upon indicator parameters. It appears that under natural conditions, reductive dechlorination is unlikely to occur on a large scale.

Indicator Parameter	Likelihood of reductive dechlorination
pH	Yes
Nitrate	No
sulfate/sulfide	No
Dissolved oxygen	No
ferrous iron	No
oxidation/reduction potential	No
total organic carbon	No – shallow groundwater
	Yes – deep groundwater
Chloride	Can not be assessed
distribution of chlorinated species	No

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

2.0 DEVELOPMENT OF REMEDIAL ALTERNATIVES

The approach of this FS is in accordance with NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) 4030 Selection of Remedial Actions at Inactive Hazardous Waste Sites, revised May 15, 1990 (excluding requirements for alternative scoring and ranking), TAGM 4025 "Guidelines for Remedial Investigations/Feasibility Studies", and "Draft DER-10 Technical Guidance for Site Investigation and Remediation" prepared by the NYSDEC, dated December 2002. The development of remedial alternatives includes the following elements:

- Development of Remedial Action Objectives
- Development of General Response Actions
- Identification of Volumes or Areas of Media to be Addressed
- Identification of Technologies
- Assembly of Remedial Alternatives.

2.1 <u>Remedial Action Objectives</u>

Remedial Action Objectives (RAOs) are goals for protection of human health and the environment. The remedy provided in the OU1 ROD addressed on-site soil and soil gas RAOs. For this FS, remedial technologies pertaining to off-site soil gas and the groundwater medium onand off-site will be addressed.

The RAO for soil gas is as follows:

• Reduce, control, or eliminate, to the extent practicable, exposure of VOCs in soil gas to adjacent residents.

Groundwater is not currently used for potable purposes in the vicinity of the site. However, under the future use scenario groundwater may potentially be used; therefore, in the RI N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc ingestion, dermal absorption, and inhalation of VOCs have been identified as the potential exposure pathways under the future use scenario. The RAOs for groundwater are as follows:

- Reduce, control, or eliminate human contact with contaminated groundwater at the site.
- Reduce, control, or eliminate, to the extent practicable, migration of PCE and its degradation products through groundwater.
- Attain to the extent practicable, ambient groundwater quality standards.

2.2 General Response Actions

General response actions are broad response categories capable of satisfying the remedial action objectives for the site.

- No Additional Action A no additional action response provides a baseline for comparison with other alternatives and includes: 1) the ongoing OU1 SVE IRM; 2) the ongoing vapor intrusion mitigation program; and 3) remediation proposed in the ROD for OU1.
- **Exposure Point Mitigation** Remedial measures may be implemented at the point of exposure to mitigate exposure to contaminated material and provide adequate protection to human health and the environment.
- **Containment** Containment measures are those remedial actions whose purpose is to contain and/or isolate contaminants. These measures prevent migration from, or direct human exposure to, contaminated media without treating, disturbing, or removing the contamination.
- **Treatment** Treatment and disposal measures include technologies whose purpose is to reduce the toxicity, mobility, or volume of contaminants by directly altering, isolating, or destroying those contaminants. The two groups of treatment

technologies that may be considered are those that are above ground (ex situ) and those that are below ground (in situ).

2.3 Identification of Volumes or Areas of Media to be Addressed

2.3.1 Soil Gas

To date, the NYSDEC and NYSDOH determined through a program of individual structure sampling that 12 residences were eligible for installation of sub-slab depressurization systems to mitigate exposures or potential exposures to contaminated soil gas. Of these 12 residences, 8 locations had the systems installed and the other 4 refused the installations. Holes were drilled through the basement slabs and PVC pipes were threaded through the holes to a depth of less than 1 foot. The pipes were extended through to the outside of the residence and vented above the rooflines. An electrical fan is located within each piping system encased on the outside of the residence. Soil gas is therefore extracted from beneath the slab of each residence and released to the atmosphere. The systems were installed by Radon Management of North Scituate, Rhode Island.

At the present time, the structure sampling suggests that the entire area potentially impacted by soil gas intrusion has been identified. However, as the vapor intrusion sampling program is ongoing, future monitoring results may indicate the need for additional installations.

2.3.2 Groundwater

Figure 1-4 identifies the plume of PCE contamination above 1,000 ppb. This portion of the plume extends over an area of approximately 700,000 ft². Within the plume a concentrated area of PCE (above 10,000 ppb) extends over an area estimated to be 180,000 ft². The depth of groundwater contamination is estimated at up to 30 feet bgs within the property area based on results from the SVE hydropunch samples and from well MW-10H. Groundwater contamination outside the property is estimated to be limited to the water table surface, as indicated through hydropunch sample taken at locations MW-12H and MW-13H

2.4 Identification of Technologies

The following were taken into consideration during the identification of technologies.

- An operating business is located on-site within a building that covers most of the property area leaving a limited amount of available space for technologies that require large areas for implementation.
- Further, many buildings and residences are present over much of the area contained within the plumes. This will also preclude the use of certain technologies that require a large area for implementation.
- The estimated depth of groundwater contamination is from the water table (approximately 70 feet bgs) to a depth of 100 feet bgs onsite, but limited to the near-surface off-site.

In the following subsections, technologies related to General Response Actions (GRA) developed in Section 2.2 are identified and screened prior to the development of remedial alternatives.

2.4.1 <u>No Additional Action for Soil Gas and/or Groundwater</u>

While the No Additional Action GRA for OU2 would include no additional action or groundwater treatment, the existing IRM SVE system would remain in place and continue to operate. Additionally, as part of the selected remedy in the ROD for OU1, new soil vapor extraction wells would be installed in well pairs (shallow and deep), and a new SVE treatment system with a carbon filter media would be installed for additional extraction wells which may result in some OU2 soil gas remediation as well. The ongoing vapor intrusion mitigation program would continue in residences affected by soil gas.

Effectiveness: The no additional action response is effective in addressing the exposure pathways affecting human health relating to the current use scenario, but not for possible future use and exposure scenarios.

Implementability: This combination of remedial measures has already been implemented at the site.

Cost: The cost of these measures is low to moderate.

Conclusion: This technology is already implemented.

2.4.2 Exposure Point Mitigation

Exposure point mitigation is used to mitigate exposure to contaminated media and provide protection to human health at the individual receptors. At this site, this includes installation and operation of sub-slab depressurization systems located at selected adjacent residences. By maintaining a slight vacuum below the basement slab, contaminant vapors are prevented from migrating through cracks and other openings in the basement slab and infiltrating into the indoor air.

Effectiveness: Sub-slab depressurization systems installed at the residences are effective in reducing and controlling exposure to contaminants within the adjacent residences (receptors).

Implementability: Sub-slab depressurization systems have already been implemented at individual residences impacted by soil gas.

Cost: The cost of individual units is relatively low.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

Conclusion: Sub-slab depressurization systems at individual residences are selected for use for soil gas exposure mitigation.

2.4.3 Containment Technologies

Containment methods are used to prevent or reduce the migration of contaminants and prevent exposure to the contaminants. Groundwater containment methods applicable to the site include vertical cutoff walls, vertical barriers, and active hydraulic controls.

Vertical cutoff walls are structures that include slurry walls, grout curtains, sheet pile walls, and geomembranes installed on the downgradient edge of the plume.

Effectiveness: Vertical cutoff walls may be effective for groundwater containment if properly installed. They have been utilized at numerous remediation projects.

Implementability: Given the 70-foot depth to shallow groundwater and the areal extent of the plume and its presence beneath residential neighborhoods, vertical cutoff walls would be difficult to construct within the site area.

Cost: Due to the anticipated depth and areal extent required, the relative cost of vertical cutoff walls is expected to be moderate to high.

Conclusion: Vertical cutoff walls are not considered to be feasible at this site.

A permeable reactor barrier wall, also known as a permeable reactive barrier (PRB), is a vertical barrier installed downgradient of a contaminant plume. As contaminated groundwater flows through the wall, contaminants react with the materials inside the wall and are either broken down into innocuous products or immobilized by precipitation or sorption. The advantage of this in situ technology is that it requires no pumping. The most common type of permeable barrier wall is an iron treatment wall made up of zero-valent iron or iron-bearing minerals that reduce

chlorinated contaminants such as TCE and PCE. As the iron is oxidized, a chlorine atom is removed from the compound using electrons supplied by the oxidation of iron. The chlorinated compounds are reduced to nontoxic by-products. A PRB can be installed using trenching, directional injection, or hydraulic fracturing methods. Different treatment depths and installation costs are associated with each installation method.

Effectiveness: A permeable reactor barrier wall may be effective for groundwater containment if properly installed. They have been utilized at remediation projects.

Implementability: Given the 70-foot depth to shallow groundwater, directional injection or hydraulic fracturing methods would be required. The areal extent of the plume and its presence beneath residential neighborhoods would make a permeable reactor barrier wall difficult to construct. Given the relatively flat hydraulic gradient at the site, groundwater may not flow through the PRB without hydraulic influence using extraction and/or injection wells within a reasonable amount of time.

Cost: Due to the anticipated depth and installation method, and the areal extent required, the relative cost of a permeable reactor barrier wall is expected to be moderate to high.

Conclusion: A permeable reactor barrier wall is not considered to be feasible at this site.

Active hydraulic control methods include wells and/or collection trenches that are used for the injection and/or extraction of fluids.

Effectiveness: A groundwater collection trench may be effective for groundwater containment if properly installed. They have been utilized at numerous remediation projects.

Implementability: Given the 70-foot depth to shallow groundwater and the areal extent of the plume and its presence beneath residential neighborhoods, a groundwater collection trench would be difficult to construct within the site area.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

Cost: Due to the anticipated depth and areal extent required, the relative cost of a groundwater collection trench is expected to be moderate to high.

Conclusion: A groundwater collection trench is not considered to be feasible at this site.

Vertical injection wells are considered feasible for use at this site since they can be individually located to any depth around existing structures.

Effectiveness: Given the relatively flat hydraulic gradient at the site, injection wells injecting clean water could be added to the groundwater system to create a positive gradient towards downgradient extraction wells. At this site, contaminant migration within shallow groundwater appears to be towards the south and southwest. Water injection could cause additional migration of contaminants into areas beyond the current migration patterns both radially and downward. For this reason, injection of clean water alone into the subsurface may not be effective. Injection of water amended with nutrients and/or chemicals will be considered under in situ treatment technologies.

Implementability: Installation of injection wells around existing residences would be implementable.

Cost: The relative cost of injection wells, which could be individually located to any depth around any existing structures, is low to moderate depending on the number and flow rate required.

Conclusion: Injection of clean water to the subsurface may promote additional migration of contaminants into areas beyond current migration patterns, therefore injection of clean water alone will not be considered further. Injection of water amended with nutrients and/or chemicals will be considered for use with in situ treatment technologies.

Groundwater could be extracted within and/or along the downgradient edge of the plume(s) through extraction wells individually located to any depth around existing structures.

Contaminated groundwater captured from within the plume would be subject to treatment as discussed in Section 2.3.5.

Effectiveness: Extraction wells could be located to control the contaminant migration in groundwater, as well as to extract groundwater for treatment. They have been utilized at numerous remediation projects. When combined with appropriate treatment, groundwater extraction would be effective at the site.

Implementability: Installation of extraction wells around existing residences would be implementable.

Cost: The relative cost of extraction wells, which could be individually located to any depth around any existing structures, is low to moderate depending on the number and flow rates required.

Conclusion: Extraction wells are considered feasible for use at the site.

2.4.4 Treatment Technologies

Treatment technologies may be used to reduce the toxicity of contaminants present at the site. Treatment technologies pertaining to contaminated extracted groundwater include pumping to either an above-ground treatment facility constructed specifically for use at this site, or an existing facility willing and capable to accept collected water. Groundwater could also be treated within an in-well treatment system and re-injected to the subsurface, or in-situ (i.e., in place without extraction) utilizing a number of chemical, biological, and/or physical processes.

2.4.4.1 Constructed Treatment System for Extracted Groundwater

An above-ground site-specific groundwater treatment system could be designed to accommodate the levels of contaminants and flow rates anticipated from groundwater extracted at

the site. The treatment facility is anticipated to minimally include: an extraction system (consisting of one or more extraction wells and submersible pumps), an air stripper for the removal of VOCs, and vapor phase carbon units to remove contaminants in the off-gas from the air stripper. Other potential components could include:

- An influent equalization tank in the event that multiple extraction pumps are utilized.
- A chemical feed system to prevent scaling of the air stripper and/or pH adjustment of the effluent water.
- Treatment of MTBE (detected in MW-24D within the concentrated plume area) requiring a larger air stripper and air flow than for any of the other contaminants detected. This would also raise the operation and maintenance cost due to the additional airflow.
- Conveyance of treated water through a force main to the local sewer system.

Effectiveness: A properly designed treatment system could effectively treat collected groundwater. Treatment would have to meet the rigorous and appropriate levels for subsequent discharge to the local sewer system. The air stripper would have to meet air emissions requirements.

Implementability: A treatment system would require a secure location for the air stripper and tanks, etc., preferably on the Kliegman Bros. property, and should consider the location of the nearest sewer. It is anticipated that while this may be logistically possible, it may not be implementable. The proximity to residences may require that the air discharge be through a tall stack that may visually impact the residents.

Cost: Relative costs are assumed to be moderate to high considering the quantity of groundwater expected, the fact that treatment of water and air will have to meet appropriate standards, and the unknowns associated with the need for the above-mentioned additional components.

Conclusion: An above-ground treatment facility designed and constructed for treatment of extracted groundwater will be retained.

2.4.4.2 Off-site Treatment of Extracted Groundwater

Extracted groundwater could be conveyed by direct discharge line, or tanker, to an appropriate water treatment facility capable and willing to accept the levels of contamination and volume of water without treatment.

Effectiveness: An appropriate off-site treatment system could effectively treat collected groundwater.

Implementability: Given the estimated flow rates and levels of contamination, it is expected that it may be difficult to locate an appropriate treatment facility capable and willing to accept collected water. Transporting such large quantities within tanker trucks would not be feasible through the residential neighborhoods.

Cost: The relative costs are assumed to be high considering the quantity of groundwater and levels of contamination expected.

Conclusion: Off-site treatment of extracted groundwater will not be retained since implementation would be difficult and the relative cost is anticipated to be high.

2.4.4.3 In-well Treatment System

With an in-well treatment system, as groundwater is pumped through the extraction well, it is passes through a reactor located within the extraction well. Within the reactor, a catalytic reductive dehalogenation process takes place. A reducing agent, such as dissolved hydrogen, in the presence of a palladium-on-alumina catalyst chemically would transform PCE into benign ethane without the accumulation of intermediate transformation product such as vinyl chloride. The reactor can be placed in a dual-screened well, allowing contaminated groundwater to be drawn from one zone, treated within the well, and discharged to another zone. This technology is potentially feasible for use at the site; however, it has yet to be demonstrated as effective on a large-scale project and for use with large flow rates.

Effectiveness: This technology has been found to be effective in treating PCE in groundwater. An appropriate in-well treatment system utilizing multiple extraction wells could be designed for use within multiple extraction wells (to lower individual extraction rates) at the site to effectively treat groundwater.

Implementability: This technology has yet to be demonstrated as effective on a largescale project or for use at sites with flow rates above 3 gallons per minute (gpm). The installation of multiple extraction wells within the residential area of the site may not be feasible.

Cost: The relative costs are assumed to be moderate considering the need for multiple extraction wells and the quantity of groundwater expected.

Conclusion: An in-well treatment system will not be retained since implementation would be difficult and the technology has not been proven on a project of this scale.

2.4.4.4 In Situ Biological Treatment

The majority of contamination at the site is present as chlorinated hydrocarbons. The predominant mechanism for the degradation of these compounds is reductive dechlorination. A review of the levels of indicator parameters presented in Section 1.5.4 indicates that existing conditions are not necessarily favorable towards reductive dechlorination of the chlorinated compounds present in groundwater at the site. As part of an in situ biological treatment system, amendments such as nutrients, electron donors, and microorganisms could be introduced into the groundwater system through injection wells in order to stimulate the existing or added microorganisms to grow and destroy the contaminants. Microorganisms (e.g., *Dehalococcoides*)

ethenogenes [DHC]) have been shown to effectively break down PCE, relying on hydrogen to power their metabolic needs, producing the non-toxic byproduct ethene.

Effectiveness: Given that naturally occurring conditions have been determined to not necessarily be favorable towards reductive dechlorination at this site, microorganisms and electron donors, along with necessary nutrients would have to be added to the groundwater to stimulate anaerobic degradation. The effectiveness of in situ biological treatment on the relatively high levels of PCE is considered somewhat innovative and has not been rigorously field tested.

Implementability: Injection of microorganisms and electron donors within the contaminant plume through a series of injection wells would be implementable. Proximity to residences located within the target treatment area must be considered in the location of injection wells and the type of mixing and injection system (e.g., stationary or mobile) to be implemented. Injection of bioamendments alone, or in addition to, an extraction system (e.g., recirculation system) could be used for treatment, potentially providing a more focused treatment area and/or additional hydraulic control.

Cost: The relative cost is anticipated to be moderate to high as an injection well system would have to be constructed along with the materials and facilities required for biological treatment of PCE levels present in groundwater at the site.

Conclusion: In situ biological treatment will not be further considered due to its unknown effectiveness and anticipated high relative cost for existing concentrations present at the site.

2.4.5 In Situ Chemical Oxidation Treatment

Groundwater treatment using in situ chemical oxidation (ISCO) is the delivery of chemical oxidant to contaminated media to destroy target contaminants and convert them to innocuous compounds. ISCO is effective both within a contaminant source area as well as a dissolved phase plume area. The rate and extent of degradation of chlorinated organics using chemical oxidation are dictated by the properties of the contaminant(s) and their susceptibility to oxidation. In addition, soil and groundwater matrix conditions (e.g., pH, temperature), and the concentration of other oxidant-consuming substances, such as natural organic matter and reduced minerals – the natural or soil oxidant demand (NOD/SOD) – affect the transport and reactions of both the oxidant and the target contaminant(s). Chemical oxidation is an aqueous reaction and therefore, reactions will only occur with dissolved phase contaminant mass. Residual and/or sorbed phase contaminant mass will transfer to the dissolved phase as delivered oxidants react with existing dissolved phase contamination. ISCO relies upon contact between oxidant and target contaminants with adequate residence time for complete oxidation of dissolved and sorbed phase contaminant mass. Thus, a primary design component of an ISCO application is achieving adequate subsurface distribution.

Typical chemical oxidants used for environmental remediation include Fenton's reagent, permanganate (MnO_4^-), ozone (O_3), and persulfate ($S_2O_8^{2^-}$). Oxidants are typically added to the subsurface through a series of temporary or permanent injection wells. Considering the depth to groundwater at this site, permanent injection wells may be required. Additionally, given the space limitations at this site, a mobile mixing and delivery system, versus a permanent injection system, may be required. Groundwater treatment using ISCO does not require groundwater extraction, but could be paired with an extraction system for additional contaminant removal, hydraulic control, or to induce a more pronounced hydraulic gradient.

For all chemical oxidants, bench-scale and/or field-scale pilot testing is recommended. Bench-scale pilot testing may include an analysis of the soil buffering capacity and/or the potential for metals leaching. During the application of ISCO materials, secondary effects to the aquifer such as a change in the oxidation-reduction potential or pH can contribute to a localized mobilization of metals (e.g., manganese, chromium, arsenic, selenium, and/or lead). Typically, due to the natural soil buffering capacity (e.g., ability of the aquifer to re-establish neutral conditions), these effects are transitory and very localized within the target treatment area. As influent groundwater enters, or treated groundwater leaves the treatment zone, metals will reprecipitate upon contact with neutral (or native) groundwater conditions. Any bench-scale testing will be compared to NOD/SOD analyses previously conducted for the site.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

Four types of chemical oxidants, Fenton's reagent, permanganate, ozone, and persulfate used for environmental remediation are evaluated below.

Fenton's Reagent

Conventional Fenton's chemistry reactions are produced when hydrogen peroxide (H_2O_2) is applied with an iron catalyst (Fe²⁺), creating a hydroxyl free radical ([•]OH) capable of oxidizing complex organic compounds including petroleum-related compounds (e.g., BTEX, MTBE) and chlorinated alkenes (e.g., PCE, TCE, DCE, and VC). The creation of the hydroxyl free radical ([•]OH) through Fenton's chemistry is shown in Equation 1 where H_2O_2 is hydrogen peroxide, Fe²⁺ is ferrous iron (i.e., the catalyst), [•]OH is the hydroxyl free radical, OH⁻ is an hydroxide ion, and Fe³⁺ is ferric iron.

$$H_2O_2 + Fe^{2+} \rightarrow {}^{\bullet}OH + OH + Fe^{3+}$$
 Equation 1

Residual hydrogen peroxide (H_2O_2) decomposes into water and oxygen in the subsurface and any remaining iron precipitates out of groundwater as ferric iron (Fe³⁺). In addition, the hydroxyl radical ([•]OH) reacts with natural organic material to form carbon dioxide and chloride.

There are two forms of Fenton's reagent applied in environmental remediation: traditional Fenton's reagent requires a step to acidify the aquifer (e.g., pH 3 to 6) and uses higher concentrations of liquid hydrogen peroxide (e.g., approximately 30%); and modified Fenton's reagent, which can be used under neutral groundwater conditions and uses a lower concentration of hydrogen peroxide (e.g., approximately 4% to 17%). For modified Fenton's applications, the use of a lower concentration of hydrogen peroxide minimizes heat generation and reduces the production of oxygen gas generated during the reaction. Modified Fenton's reagent formulas incorporate both liquid and solid peroxides. The use of solid peroxides has the potential to increase the longevity for oxidation from approximately one to three days with liquid peroxide to three to four weeks with solid peroxide.

Effectiveness: ISCO using traditional and modified Fenton's reagents has been proven effective for remediation of chlorinated and petroleum-related compounds in groundwater. The pH in the aquifer at the site was found to be between 6 and 7 (neutral). Traditional Fenton's reagent would require acidification of the aquifer prior to implementation. Modified Fenton's reagent would not require pH adjustment prior to implementation for effective treatment.

Implementability: Implementation of ISCO involves two components: introduction of adequate volumes of oxidant and subsurface distribution or target area coverage. Considering the lithology present at the site, traditional Fenton's might be implementable; however, the off-gassing associated with the traditional Fenton's reaction might prevent the injection of required oxidant quantities. Due to the reduced to no off-gassing associated with modified Fenton's reagent using liquid or solid peroxides, implementation via an injection well system would allow for adequate oxidant injection per location.

Proximity to residences located within the target treatment area must be considered in the location of injection wells and the type of mixing and injection system (e.g., stationary or mobile) to be implemented. Due to space limitations (e.g., highly developed neighborhood) at the site, implementation of any in situ remediation system would be difficult in terms of accessing the target treatment area via injection wells. Injection of chemical oxidants alone, or in addition to, an extraction system (e.g., recirculation system) could be used for treatment, potentially providing a more focused treatment area and/or additional hydraulic control.

Cost: The relative costs of all ISCO processes are assumed to be moderate. The costs associated with the modified Fenton's reagent (e.g., the combination of chelated iron and liquid peroxide, or specific formulas of chelated iron and solid peroxides) may require licensing or patent fees that would increase the overall cost of materials relative to other oxidants.

Conclusion: ISCO using modified Fenton's reagent (i.e., using liquid and solid peroxide based reagents) will be retained.

Permanganate

Permanganate is a common oxidant introduced to react with and oxidize organic compounds. Delivered either as potassium permanganate (KMnO₄) or sodium permanganate salts (NaMnO₄), KMnO₄ comes in a granular form that is then mixed with water in a low solubility (i.e., 2% to 4%) solution, and NaMnO₄ comes as a strongly oxidizing liquid (e.g., 40% solution). Permanganate destroys contaminants through an ionic reaction, versus the hydroxyl radical production described for Fenton's reagent. There is no gas production associated with the permanganate reaction, and therefore it can be easier to implement. Permanganate also has a longer reaction time, and therefore has the potential to be more persistent within the subsurface. However, in terms of oxidative strength, permanganate is a weaker oxidant as compared to other oxidants that create free radicals (e.g., Fenton's reagent, activated persulfate, and ozone). Permanganate has been widely used and can be used as a polishing step, introduced following more aggressive treatment using another oxidant, such as Fenton's reagent, etc.

The primary oxidation reaction for the permanganate ion over a pH range of 3 to 12 is shown in Equation 2, where MnO_4^- is the permanganate ion, H_2O is water, e^- is an electron, $MnO_{2(s)}$ is manganese dioxide solid, and OH⁻ is the hydroxyl ion.

$$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_{2(s)} + 4OH^-$$
 Equation 2

As shown in Equation 2, solid manganese dioxide (MnO_2) is a precipitate byproduct of permanganate oxidation. MnO_2 has a brown, rusty color that can form small colloids. Although there was early concern over aquifer permeability loss due to MnO_2 precipitation, by incorporating more site-specific data into the project design and implementation, precipitate production can be limited to discrete, micron-sized particles that are able to remain mobile in groundwater. Site-specific data may include NOD, naturally occurring minerals, concentrations of contaminants indicating the presence of a pooled dense non-aqueous phase liquid (DNAPL), and/or oxidant quantities required for complete treatment. Bench-scale pilot testing may be required to determine the existing NOD at this site.

Permanganate has demonstrated significant effectiveness in attacking and breaking the carbon-carbon bonds in chlorinated solvents such as PCE, TCE, DCE and VC. However, permanganate is not effective at treating petroleum-related compounds such as MTBE. In comparison to the other chemical oxidants available, permanganate is very persistent, and therefore can travel downgradient with groundwater from the point of injection. The longevity of permanganate, however, is directly associated with the oxidizable materials present within the subsurface, both naturally occurring compounds and contaminant mass.

Effectiveness: Permanganate is widely used and has been found to be a rapid and effective treatment for organics. Reactions are most effective in systems with a pH between 3 and 10. The pH in the aquifer at the site was found to be between 6 and 7 (neutral). Permanganate is relatively more stable (i.e., no off-gassing) than other ISCO processes and can be relatively more persistent in the subsurface.

Implementability: Implementation of ISCO involves two components: introduction of adequate volumes of oxidant and subsurface distribution or target area coverage. Considering the lithology present, ISCO implementation via an injection well system would allow for adequate permanganate injection per location. In terms of health and safety, the NaMnO₄ liquid form requires very strict handling requirements and therefore may not be suitable for use within a residential setting.

Proximity to residences located within the target treatment area must be considered in the location of injection wells and the type of mixing and injection system (e.g., stationary or mobile) to be implemented. Due to space limitations (e.g., highly developed neighborhood) at the site, implementation of any in situ remediation system would be difficult in terms of accessing the target treatment area via injection wells. Injection of chemical oxidants alone, or in addition to, an extraction system (e.g., recirculation

system) could be used for treatment, potentially providing a more focused treatment area and/or additional hydraulic control.

Cost: The relative costs of all ISCO processes are assumed to be moderate. The costs associated with the NaMnO₄ are relatively higher than for KMnO₄. In general, the per pound cost of permanganate is lower compared to other oxidants; however due to the nature of the permanganate oxidation reaction, significantly greater quantities of permanganate may be required to equal the strength of other oxidants.

Conclusion: ISCO utilizing permanganate will be retained.

Ozone

Ozone gas (O₃) is a strong oxidant capable of destroying petroleum and chlorinated hydrocarbons contaminants directly or through the formation of hydroxyl radicals. The ozone direct oxidation and hydroxyl formation reactions are shown below in Equations 3 and 4, where O_3 is ozone, H⁺ is a proton, e^- is an electron, H₂O is water, O₂ is oxygen gas, and [•]OH is the hydroxyl radical.

$$O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$$
 (direct oxidation) Equation 3

 $O_3 + H_2O \rightarrow O_2 + 2^{\bullet}OH$ (hydroxyl formation) Equation 4

The oxidation potential from direct oxidation by ozone is lower than the hydroxyl radical (^oOH) from Fenton's reagent. Ozone is typically generated electrically on site and is immediately delivered to the subsurface through wells, eliminating the need for oxidant storage and handling. Treatment with ozone generally requires that the gas be generated in close proximity to the treatment area, and that wells are closely spaced. Ozone has a half-life of several hours in air at low concentration, and several minutes in water, however, the reaction rate of ozone is typically much faster than its decomposition rate.

Effectiveness: ISCO using ozone has been proven to be effective in lowering the toxicity and volume of chlorinated compounds in groundwater.

Implementability: Implementation of ISCO involves two components: introduction of adequate volumes of oxidant and subsurface distribution or target area coverage. Considering the lithology present, ISCO implementation via an injection well system would allow for adequate ozone injection per location. In addition, due to ozone's high reactivity and instability, ozone must be produced on site, and would require more closely spaced delivery points (i.e., injection wells) compared to other oxidants. The target depth range for oxidant injection at this site would require high-pressure compressors to inject the ozone.

Proximity to residences located within the target treatment area must be considered in the location of injection wells and the type of mixing and injection system (e.g., stationary or mobile) to be implemented. Typically, ozone injection systems are stationary, which would require a secure location to stage ozone generation and compressor equipment with below grade piping to nearby injection wells.

Due to space limitations (e.g., highly developed neighborhood) at the site, implementation of any in situ remediation system would be difficult in terms of accessing the target treatment area via injection wells. Injection of chemical oxidants alone, or in addition to, an extraction system (e.g., recirculation system) could be used for treatment, potentially providing a more focused treatment area and/or additional hydraulic control.

Cost: The relative costs of all ISCO processes are assumed to be moderate. Ozone will require more closely-spaced delivery points than other ISCO processes and may require onsite staging of ozone generation and injection equipment; therefore the relative cost compared to other ISCO processes may be higher over the length of the remedial action.

Conclusion: ISCO utilizing ozone will not be retained.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

Persulfate

Injection of persulfate solution for environmental remediation is an emerging technology for in situ oxidation of a wide range of organic compounds. Laboratory testing and limited field testing have shown that persulfate can oxidize a wide range of environmental contaminants including PCE, TCE and petroleum-related compounds, though the field application of activated persulfate does not yet appear to have been optimized. Persulfate has a very strong oxidation potential similar to that of modified Fenton's chemistry, but has the potential to be very persistent similar to permanganate.

Persulfate salts are water-soluble, crystalline solids that, when catalyzed, react to form persulfate radicals (SO^{$\frac{1}{4}$}). These radicals are strong oxidants that may react with contaminants as well as non-target compounds such as natural organic matter and other soil species susceptible to oxidation (e.g., NOD). The end product is sulfate, as shown below in Equations 5 and 6; the electron, e^{-} , in Equation 6 is a result of the oxidized contaminant.

$S_2O_8^{2-} \longrightarrow 2SO_4^{-\bullet}$	Equation 5
catalyst	
$\mathrm{SO}_4^{\bullet} + e^{-} \rightarrow \mathrm{SO}_4^{2-}$	Equation 6

Activation of persulfate may be accomplished with either heat or a transition metal-based catalyst, such as iron. An iron catalyst can be added with the persulfate solution, although it is possible that background transition metal concentrations could be sufficient for effective oxidation. Persulfate is effective at near-neutral pH, so acidification of the treatment solution or the aquifer is not necessary. In addition, there is no significant heat or off-gassing generated during the oxidation reaction with chlorinated organics.

Effectiveness: Activated persulfate is a very recently used oxidant for environmental purposes, although in laboratory studies it has been found to be a rapid and effective treatment for chlorinated organics including PCE. Activated persulfate has the potential as a strong oxidant as well as being relatively persistent within the subsurface. However, given the recent entrance of persulfate into the remediation market (i.e., less than five

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

years ago) it's application is considered somewhat innovative and has not been rigorously field tested. Alternative techniques for adequately activating persulfate in situ (i.e., liquid or solid peroxides, heat and/or chelated iron catalysis) may be required to refine ISCO using activated persulfate.

Implementability: Implementation of ISCO involves two components: introduction of adequate volumes of oxidant and subsurface distribution or target area coverage. Considering the lithology present, ISCO implementation via an injection well system would allow for adequate persulfate injection per location.

Proximity to residences located within the target treatment area must be considered in the location of injection wells and the type of mixing and injection system (e.g., stationary or mobile) to be implemented. Due to space limitations (e.g., highly developed neighborhood) at the site, implementation of any in situ remediation system would be difficult in terms of accessing the target treatment area via injection wells. Injection of chemical oxidants alone, or in addition to, an extraction system (e.g., recirculation system) could be used for treatment, potentially providing a more focused treatment area and/or additional hydraulic control.

Cost: The relative costs of all ISCO processes are assumed to be moderate. The costs associated with the activated persulfate (e.g., the combination of persulfate and chelated iron or liquid peroxide) may require licensing or patent fees that would increase the overall cost of materials relative to other oxidants.

Conclusion: Although activated persulfate may be effective on PCE, for the purposed of this FS, it will not be retained as modified Fenton's reagent and permanganate appear to be more established technologies.

2.4.6 In Situ Physical/Thermal Treatment

In situ physical/thermal treatment technologies potentially applicable for this site include air sparging and steam injection. Air sparging is the process of injecting air directly into groundwater to a depth below the desired depth of remediation. Air sparging remediates groundwater by volatilizing contaminants and enhancing biodegradation. As the air bubbles through the groundwater, contaminants are removed from the groundwater by physical contact with the air (i.e., stripping) and are carried up into the vadose zone. Air sparging must then be combined with an SVE system to remove vapors from the vadose zone.

Less mobile contaminants such as semi-volatiles would require the addition of heat to air sparging necessitating steam and/or hot water injection. While VOCs also can be treated by this technology, air sparging alone would be the more cost-effective process for this site.

Effectiveness: Air sparging may be effective in volatilizing VOCs from groundwater to the vadose zone. However, an extensive SVE system would have to be implemented to collect and treat vapors migrating to the vadose zone.

Implementability: Air sparging and SVE systems could be implemented to capture migrating contaminants through a series of injection and extraction wells within the plume area. However, given the space limitations for well installations across the site, this would be difficult. Additionally, there is concern for operating technologies that mobilize contaminants to the vapor phase when there are residences located above the treatment area as exposure through vapor intrusion could be increased.

Cost: The relative cost of installing and operating injection and extraction wells along with their treatment systems is expected to be high.

Conclusion: In situ physical/thermal treatment will not be retained.

N:\11171964.0000\WORD\Kliegman OU2 FS 0208.doc

2.5 <u>Development of Alternatives</u>

2.5.1 <u>Alternative 1 – No Additional Action</u>

The No Additional Action alternative was established by the National Contingency Plan and is used as a baseline to evaluate other alternatives. This alternative is included to fulfill the procedural requirements of 6NYCRR Part 375. Under this alternative, the existing IRM would remain in-place and continue to operate. In addition, individual sub-slab depressurization systems have been installed at 8 of the 12 residences identified by the NYSDEC and NYSDOH as currently or potentially exposed to contaminated soil vapor. The systems collect soil gasses from beneath the residences and vent them to the atmosphere. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed each year following indoor air sampling during the heating season.

A ROD has been issued for OU1 by NYSDEC. The No Additional Action alternative considers that the provisions of that ROD will be implemented creating a new baseline for the site. New components would be added to the remediation including the following and operate until the remedial objectives for OU1 have been achieved, or until the NYSDEC determines that continued operation is technically impracticable.

- Six new vapor extraction wells will be installed in the northern yard (parking lot) north of the existing building. A shallow and deep well pair will be installed at two of the three locations. Well/well pairs will be spaced about 80 feet apart based on an 80-foot radius of influence determined during the IRM. This spacing and radius of influence provides coverage for the entire OU1 area.
- 2. A new SVE treatment system will be installed for the additional extraction wells. The new SVE system will be designed to handle about 2.5 times the amount of

extracted soil gas as the current IRM. The system will include a moisture separator, two blowers at approximately 260 scfm each, and two 1,000-pound carbon vessels. Extraction wells will be connected to the SVE system by underground pipe.

- 3. Monitoring of the extracted soil vapor will continue to confirm the effectiveness of the remedy.
- 4. Yearly installation of three sub-slab depressurization systems.

2.5.2 <u>Alternative 2A – Groundwater Extraction from Concentrated Plume Area with</u> <u>Above-Ground Water Treatment</u>

Alternative 2A is a groundwater extraction and treatment alternative that addresses the most contaminated portion of the plume. Alternative 2A would include all components of Alternative 1 and additionally include a groundwater extraction well in the concentrated plume area (PCE concentrations >10,000 ppb) with subsequent above-ground water treatment. Calculations presented in Appendix A document the process followed to determine the optimal location of a single extraction well. A single extraction well is preferred due to the lack of open space for well location, the presence of numerous existing subsurface utilities, and the fact that additional equipment may be required for the treatment facility given multiple wells. Based on the evaluation of a variety of configurations as documented in Appendix A, the lowest extraction rate that would be effective in containing the 10,000 ppb plume is 150 gpm with one well, located approximately 100 feet from the southern limit of the 10,000 ppb area in the vicinity of existing monitoring well MW-24D. Components of this alternative are:

- 1. Installation of a single groundwater extraction well withdrawing 150 gpm from the water table groundwater located within the concentrated plume area.
- 2. Construction of a treatment system utilizing the treatment process shown on Figure 2-1 to treat extracted groundwater. The treatment system is anticipated to minimally include: an air stripper for the removal of VOCs and vapor phase carbon units to remove contaminants in off-gas from the air stripper. As mentioned in Section

2.4.4.1, other potential components could include: chemical feed system to prevent scaling of the air stripper, pH adjustment of the effluent water which may be increased by the air stripper, additional treatment for MTBE if the air stripper is not capable of treating to the discharge limitations, and an acid scrubber to remove HCl from the oxidizer discharge.

- 3. Conveyance of treated water to the local sewer system.
- 4. Operation and maintenance of the well and treatment system.

The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed each year following indoor air sampling during the heating season.

2.5.3 <u>Alternative 2B – Groundwater Extraction from Expanded Plume Area with Above-</u> <u>Ground Water Treatment</u>

Alternative 2B is a groundwater extraction and treatment alternative that addresses an expanded area of the groundwater plume. Alternative 2B would include all components of Alternative 1 and additionally include groundwater extraction from the plume area characterized by PCE concentrations greater than 1,000 ppb with subsequent above-ground water treatment. Calculations presented in Appendix A document the process followed to determine the optimal location of extraction wells. A minimum number of extraction wells is preferred due to the lack of open space for well locations, the presence of numerous existing subsurface utilities, and the fact that additional equipment (e.g., equalization tanks) may be required for the treatment facility given multiple wells. Based on the evaluation of a variety of configurations as documented in Appendix A, the lowest extraction rate that would be effective in containing the 1,000 ppb plume is 300 gpm with two wells located near the downgradient edge. Components of this alternative are:

- 1. Installation of two groundwater extraction wells withdrawing 300 gpm from the water table groundwater located within the plume area.
- 2. Construction of a treatment system utilizing the treatment process shown on Figure 2-1 to treat extracted groundwater. The treatment system is anticipated to minimally include: an air stripper for the removal of VOCs and vapor phase carbon units to remove contaminants in off-gas from the air stripper. As mentioned in Section 2.4.4.1, other potential components could include: chemical feed system to prevent scaling of the air stripper, pH adjustment of the effluent water which may be increased by the air stripper, and additional treatment for MTBE if the air stripper is not capable of treating to the discharge limitations.
- 3. Conveyance of treated water to the local sewer system.
- 4. Operation and maintenance of the wells and treatment system.
- 5. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed each year following indoor air sampling during the heating season.

2.5.4 <u>Alternative 3A – In Situ Chemical Oxidation Treatment of Concentrated Plume</u> <u>Area</u>

Alternative 3A is an ISCO alternative that addresses the source area (i.e., groundwater associated with OU1) and the most contaminated portion of the plume (i.e., within the 10 ppm [10,000 ppb] PCE concentration contour extending downgradient from the OU1 boundary). Alternative 3A would include all components of Alternative 1 and additionally include injection of chemical oxidants (modified Fenton's reagent and/or permanganate) into the groundwater to oxidize organic contaminants (e.g., PCE) to non-toxic compounds. Components of this alternative are:

- 1. Focused injection of chemical oxidants to reduce contaminant mass within the source area (roughly, groundwater associated with OU1) and concentrated plume area. (i.e., within the 10 ppm [10,000 ppb] contour extending downgradient from the OU1 boundary). Injection locations will be selected to best support subsurface distribution and therefore, surface contact between the chemical oxidant and the dissolved phase contaminant mass. A field-scale pilot test would be performed as part of the remedial design prior to remedy implementation to estimate oxidant quantities, injection flow rates, and subsurface distribution parameters. For the purposes of the FS, it is assumed that three ISCO applications utilizing modified Fenton's reagent followed by one ISCO application utilizing permanganate will be required for initial treatment. The initial three injections would provide the highest oxidation power to achieve the greatest initial contaminant destruction and to partially desorb PCE. The final injection of permanganate would provide longer-lasting continuing oxidation to treat zones of contamination not directly contacted with the initial three injections of Fenton's reagent
- 2. Monitoring of the PCE concentrations throughout the extent of the treatment area.
- 3. Based upon ISCO applications and performance monitoring, additional ISCO applications may be required to continue treatment of contaminant mass within the saturated zone. As dissolved phase contaminant mass is treated, sorbed and/or residual phase contaminant mass will desorb into the dissolved phase, and therefore may require additional oxidant mass for subsequent treatment. The need for additional ISCO applications will be evaluated based on ongoing performance groundwater monitoring. For the purposes of the FS, it is assumed that two additional permanganate injection events may be required for additional polishing, or finishing treatment.
- 4. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed each year following indoor air sampling during the heating season.

2.5.5 Alternative 3B – In Situ Chemical Oxidation Treatment of Expanded Plume Area

Alternative 3B is an ISCO alternative that addresses the source area and the groundwater plume downgradient of the source. Alternative 3B would include all components of Alternative 1 and additionally include injection of chemical oxidants (modified Fenton's reagent and/or permanganate) into the groundwater within a larger portion of the plume (i.e., within the 1 ppm [1,000 ppb] PCE concentration contour) to oxidize organic contaminants (e.g., PCE) to non-toxic compounds, therefore target treatment over the expanded plume area. Components of this alternative are:

- 1. Focused injection of chemical oxidants to reduce contaminant mass in the source area (i.e., groundwater associated with OU1), the concentrated plume area (i.e., within the 10 ppm [10,000 ppb] contour extending downgradient from the OU1 boundary), and additionally within the expanded plume (i.e., within the 1 ppm [1,000 ppb] PCE concentration contour). Injection locations will be selected to best support subsurface distribution and therefore, surface contact between the chemical oxidant and the dissolved phase contaminant mass. A field-scale pilot test would be performed as part of the remedial design prior to remedy implementation to estimate oxidant quantities, injection flow rates, and subsurface distribution parameters. For the purposes of the FS, it is assumed that three ISCO applications utilizing modified Fenton's reagent followed by one ISCO application utilizing permanganate will be required for initial treatment. The initial three injections would provide the highest oxidation power to achieve the greatest initial contaminant destruction and to partially desorb PCE. The final injection of permanganate would provide longerlasting continuing oxidation to treat zones of contamination not directly contacted with the initial three injections of Fenton's reagent
- 2. Monitoring of the PCE concentrations throughout the extent of the treatment area.
- 3. Based upon ISCO applications and performance monitoring, additional ISCO applications may be required to continue treatment of contaminant mass within the saturated zone. As dissolved phase contaminant mass is treated, sorbed and/or residual phase contaminant mass will desorb into the dissolved phase, and therefore

may require additional oxidant mass for subsequent treatment. The need for additional ISCO applications will be evaluated based on ongoing performance groundwater monitoring. For the purposes of the FS, it is assumed that two additional permanganate injection events may be required for additional polishing, or finishing treatment.

4. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed each year following indoor air sampling during the heating season.

2.5.6 <u>Alternative 4 - In Situ Chemical Oxidation Treatment of Concentrated Plume Area</u> with Induced Groundwater Gradient

Alternative 4 would include all components of Alternative 1 and additionally combines a similar ISCO approach as presented in Alternative 3A but coupled with a groundwater extraction well to induce a gradient within the saturated zone. This alternative includes injection of chemical oxidants (modified Fenton's reagent and/or permanganate) at the source area (i.e., groundwater associated with OU1) and a portion of the most contaminated portion of the plume (i.e., a portion of the area within the 10 ppm [10,000 ppb] PCE concentration contour extending downgradient from the OU1 boundary) into the groundwater to oxidize organic contaminants (e.g., PCE) to non-toxic compounds. In addition to the ISCO component, Alternative 4 incorporates an extraction well to generate a groundwater gradient that would promote migration of the injected regent over a larger portion of the plume, including beneath existing structures where access for injection may not be feasible. Alternative 4 would include all components of Alternative 1 and additionally include:

 Focused injection of chemical oxidants to reduce contaminant mass in the source area (i.e., groundwater associated with OU1) and portions of the concentrated plume area. (i.e., within the 10 ppm [10,000 ppb] contour extending downgradient from the OU1 boundary). Injection locations will be selected to best support subsurface distribution and therefore, surface contact between the chemical oxidant and the dissolved phase contaminant mass. A field-scale pilot test would be performed as part of the remedial design prior to remedy implementation to estimate oxidant quantities, injection flow rates, and subsurface distribution parameters For the purposes of the FS, it is assumed that three ISCO applications utilizing modified Fenton's reagent followed by one ISCO application utilizing permanganate will be required for initial treatment. The initial three injections would provide the highest oxidation power to achieve the greatest initial contaminant destruction and to partially desorb PCE. The final injection of permanganate would provide longer-lasting continuing oxidation to treat zones of contamination not directly contacted with the initial three injections of Fenton's reagent

- 2. Monitoring of the PCE concentrations throughout the extent of the treatment area.
- 3. Based upon ISCO applications and performance monitoring, additional ISCO applications may be required to continue treatment of contaminant mass within the saturated zone. As dissolved phase contaminant mass is treated, sorbed and/or residual phase contaminant mass will desorb into the dissolved phase, and therefore may require additional oxidant mass for subsequent treatment. The need for additional ISCO applications will be evaluated based on ongoing performance groundwater monitoring. For the purposes of the FS, it is assumed that two additional permanganate injection events may be required for additional polishing, or finishing treatment.
- 4. A single groundwater extraction well withdrawing 150 gpm located within the concentrated plume area (i.e., located within the 10 ppm [10,000 ppb] PCE concentration contour) to generate an increased hydraulic gradient in the water table. The increased hydraulic gradient from groundwater flow to the extraction well would potentially increase the area of the plume addressed by the ISCO injection wells, specifically targeting contaminant mass in groundwater located beneath a portion of the existing residences (i.e., along 77th Avenue and 78t Street).
- 5. Although groundwater extraction is included principally to generate an hydraulic gradient rather than serve as an extraction and treatment system, the extracted

groundwater will have to be treated. Therefore this alternative includes construction of a treatment system on Edsall Avenue utilizing the treatment process shown on Figure 2-1 to treat extracted groundwater. The treatment system is anticipated to minimally include: an air stripper for the removal of VOCs and vapor phase carbon units to remove contaminants in off-gas from the air stripper. As mentioned in Section 2.4.4.1, other potential components could include: chemical feed system to prevent scaling of the air stripper, pH adjustment of the effluent water which may be increased by the air stripper, additional treatment for MTBE if the air stripper is not capable of treating to the discharge limitations, and an acid scrubber to remove HCl from the oxidizer discharge.

- 6. Conveyance of treated water to the local combined sanitary/storm sewer system.
- 7. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed each year following indoor air sampling during the heating season.

3.0 DETAILED DESCRIPTION AND ANALYSIS OF ALTERNATIVES

This section includes a detailed description, plan view layout, and preliminary cost estimate for each alternative, and an analysis of the alternatives in accordance with the criteria for evaluating alternatives established in 6NYCRR Part 375.

3.1 Description of Evaluation Criteria

Each of the alternatives is subjected to a detailed analysis with respect to the evaluation criteria outlined in 6 NYCRR Part 375 and described below. This evaluation aids in the selection process for remedial actions in New York State.

Overall Protection of Human Health and the Environment

This criterion is an overall check to assess whether the alternative meets requirements that are protective of human health and the environment.

Compliance with New York State Standards, Criteria, and Guidance (SCGs)

This criterion determines how each alternative will meet environmental laws, regulations, and other standards and criteria, including that which NYSDEC has determined to be applicable on a case-specific basis.

Short-term Impacts and Effectiveness

This criterion assesses the effects of the alternative during the construction and implementation phase with respect to its effect on human health (community and workers) and the environment. The factors that are assessed include protection of the community and workers during remedial action, environmental impacts that result from the remedial action, and time required until the remedial action objectives are achieved.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

Long-term Effectiveness and Permanence

This criterion addresses the results of a remedial action in terms of its permanence and the quantity/nature of waste or residuals remaining at the site after remedial action objectives have been met. The primary focus of this evaluation is the extent and effectiveness of the controls that may be required to manage the residuals remaining at the site and the operation and maintenance systems necessary for the remedy to remain effective. Factors that are evaluated include magnitude of remaining risk, adequacy of controls used to manage residual contamination, and the reliability of those controls.

Reduction of Toxicity, Mobility and Volume

This criterion assesses the remedial alternative's use of technologies that permanently reduce toxicity, mobility, and volume (TMV) of contamination as their principal element. NYSDEC gives preference to alternatives that eliminate significant threats at the site through destruction of toxic contaminants, reduction of the total mass of toxic contaminants, irreversible reduction of contaminant mobility, or reduction of the total volume of contaminated media.

Implementability

This criterion addresses the technical and administrative feasibility of implementing the alternative and the availability of various services and materials required during implementation. The evaluation includes the feasibility of construction and operation, the reliability of the technology, the ease of undertaking additional remedial action, monitoring considerations, activities needed to coordinate with regulatory agencies, availability of adequate equipment, services and materials, off-site treatment, and storage and disposal services.

<u>Cost</u>

Capital costs, and operation, maintenance, and monitoring (OM&M) costs are estimated for each alternative and presented on a present worth basis based on a 5% discount rate. Cost estimates for each remedial alternative are presented in Appendix B and summarized on Table 3-1.

Community Acceptance

Concerns of the State and the community will be addressed after completion of a Proposed Remedial Action Plan (PRAP) that would be prepared and released to the public. Therefore, an evaluation of this criteria is not presented for each alternative within this FS.

3.2 <u>Alternative 1 – No Additional Action</u>

3.2.1 Description

A layout for Alternative 1 is shown on Figure 3-1. The existing IRM would remain inplace and continue to operate using SVE-1, SVE-6S and SVE-6D. In addition, individual subslab depressurization systems have been installed at 8 of the 12 residences identified by the NYSDEC and NYSDOH as currently or potentially exposed to contaminated soil vapor. The systems collect soil gasses from beneath the residences and vent them to the atmosphere. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system installations.

A ROD has been issued for OU1 by NYSDEC. The No Additional Action Alternative considers that the provisions of that ROD will be implemented creating a new baseline for the site. New components would be added to the remediation and operate until either the remedial objectives for OU1 have been achieved, or until the NYSDEC determines that continued operation is technically impracticable or not feasible. Components include:

 Six new vapor extraction wells (SVE-7S, SVE-7D, SVE-8S, SVE-8D, SVE-9S, SVE-10S) will be installed in the northern yard (parking lot) north of the existing building. A shallow and deep well pair will be installed at two of the three locations. Well/well pairs will be spaced about 80 feet apart based on an 80-foot radius of influence determined during the IRM. This spacing and radius of influence provides coverage for the entire OU1 area.

- 2. A new SVE treatment system will be installed for the six new vapor extraction wells. The new SVE system will be designed to handle about 2.5 times the amount of extracted soil gas as the current IRM. The system will include a moisture separator, two blowers at approximately 260 scfm each, and two 1,000-pound carbon vessels. Extraction wells will be connected to the SVE system by underground pipe.
- 3. Monitoring of the extracted soil vapor will continue to confirm the effectiveness of the remedy.
- 4. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed following indoor air sampling during the heating season.

3.2.2 Overall Protection of Human Health and the Environment

The SVE system will remove residual vadose zone PCE contamination that acts as the source of groundwater contamination. Concentrations of contaminants present within the plume area would be reduced over time by dispersion. Alternative 1 will not provide protection to human health and the environment from contaminants present in groundwater within the plume area.

The ongoing vapor intrusion mitigation program and SVE system at the Kliegman Bros. property will reduce the exposure of VOCs in soil gas to adjacent residents.

3.2.3 Compliance with SCGs

Alternative 1 will not meet SCGs in groundwater within the plume area.

3.2.4 Short-Term Impacts and Effectiveness

There are no short-term impacts to the community, workers, or the environment from the No Additional Action Alternative as it is assumed that construction of the SVE wells and treatment system are complete. Future installations of additional individual sub-slab depressurization systems would be subject to the health and safety plan(s) already in place for such installations and expected potential short-term impacts would be minimal.

3.2.5 Long-Term Effectiveness and Permanence

Alternative 1 would not be effective in reducing the concentrations of contaminants in the groundwater plume that would be reduced over time by dispersion. Residual contamination would continue to pose risks associated with groundwater at the site and remedial action objectives for groundwater would not be met.

RAOs for soil gas will be met with the ongoing vapor intrusion mitigation program and SVE system at the Kliegman Bros. property that will remove VOCs and reduce the exposure of VOCs in soil gas to adjacent residents.

3.2.6 Reduction of Toxicity, Mobility, and Volume

Alternative 1 would not reduce the toxicity, mobility, or volume of groundwater contaminants within the plume.

3.2.7 Implementability

There are limited implementation issues related to the No Additional Action Alternative as it is assumed that SVE components of this alternative are fully implemented and that construction is complete. Sub-slab depressurization systems have already been installed in residences adjacent to the site. Future installations are readily implementable.

3.2.8 <u>Cost</u>

The cost analysis for Alternative1 is presented in Appendix B. There is no capital cost associated with Alternative 1. It is assumed that three sub-slab depressurization systems will be installed yearly following indoor air sampling during the heating season for 30 years. Table 3-1 presents the annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate).

3.3 <u>Alternative 2A – Groundwater Extraction from Concentrated Plume Area With</u> <u>Above-Ground Water Treatment</u>

3.3.1 Description

A conceptual layout of Alternative 2A is shown on Figure 3-2. Alternative 2A would include all components of Alternative 1 and additionally include extraction of groundwater from the concentrated plume area (PCE concentrations >10,000 ppb) with subsequent above-ground treatment. Calculations presented in Appendix A document the process followed to determine the optimal location of a single extraction well. A single extraction well is preferred due to the lack of open space for well locations, the presence of numerous existing subsurface utilities, and the fact that additional equipment may be required for the treatment facility given multiple wells. Based on the evaluation of a variety of configurations as documented in Appendix A, the lowest extraction rate that would be effective in containing the 10,000 ppb plume is 150 gpm with one well located as shown on Figure 3-2. Components of this alternative are:

- 1. Installation of a single groundwater extraction well withdrawing 150 gpm from the water table groundwater located within the concentrated plume area.
- 2. A force main to convey extracted groundwater to the treatment system located on Edsall Avenue.
- 3. Construction of a treatment system to treat extracted groundwater. The treatment system is anticipated to minimally include: an air stripper for the removal of VOCs,

and vapor phase carbon units to remove contaminants in off-gas from the air stripper.

Table 3-2 summarizes the preliminary design criteria for an air stripper that should be able to treat groundwater to the New York City Department of Environmental Protection (NYCDEP) discharge limitations presented in Appendix C. Preliminary modeling by the vendor indicates that MTBE (detected in MW-24D within the concentrated plume area) removal should be feasible without increasing the air flow rate. As mentioned in Section 2.4.4.1, other potential components could include: chemical feed system to prevent scaling of the air stripper, pH adjustment of the effluent water which may be increased by the air stripper, and additional treatment for MTBE if the air stripper is not capable of treating to the discharge limitations,

- Conveyance of treated water to the local combined sanitary/storm sewer system. A 36" sewer line flows north along 76th Street to Edsall Avenue and connects to a 42" sewer line on Cooper Avenue. The NYCDEP sewer map is provided in Appendix C.
- 2. Operation and maintenance of the extraction well and treatment system.
- 3. Long-term sampling and analysis of 18 existing monitoring wells.

The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed yearly following indoor air sampling during the heating season.

3.3.2 Overall Protection of Human Health and the Environment

By extracting contaminated groundwater from within the concentrated plume area, Alternative 2A provides protection to human health and the environment. Concentrations of contaminants present within the remaining plume area beyond the 10,000 ppb contour would be reduced over time by dispersion. Long-term groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation would continue until monitoring results indicated an acceptable level of residual risk.

The ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property will reduce the exposure of VOCs in soil gas to adjacent residents.

3.3.3 Compliance with SCGs

Groundwater extraction from within the concentrated plume would improve groundwater quality in the aquifer. Remediation could continue until groundwater monitoring results indicated that remedial goals had been met. Discharge requirements for treated groundwater to the local sewer system would be SCGs. Air emissions from the groundwater treatment facility would have to meet appropriate SCGs.

3.3.4 Short-Term Impacts and Effectiveness

It is anticipated that construction of the groundwater extraction, treatment and discharge systems would be completed between 6 months to 1 year. Short-term impacts to workers and the community during this time period would not necessarily pose a risk to human health and/or the environment as the majority of drilling and subsurface activities would be performed outside the limits of the source area. Minimal impacts would be present once contaminated groundwater was encountered during drilling of the extraction well.

3.3.5 Long-Term Effectiveness and Permanence

Alternative 2A would be effective in reducing the contaminants in groundwater within the concentrated plume area. Concentrations of contaminants present within the remaining plume area beyond the 10,000 ppb contour would be reduced over time by dispersion. Long-term groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation would continue until monitoring results indicated an acceptable level of residual risk.

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

RAOs for soil gas will be met with the ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property that will reduce the exposure of VOCs in soil gas to adjacent residents.

3.3.6 Reduction of Toxicity, Mobility, and Volume

Extraction and treatment of groundwater from within the concentrated plume area will reduce the mobility of contaminants present in groundwater within this area. URS estimates there are about 1,100 lb (pounds) of PCE dissolved in the saturated zone to the extent of contamination defined by the 10,000 μ g/L isoconcentration line, and another 200 lb in the zone between the 10,000 μ g/L and the 1,000 μ g/L contours. With groundwater extraction and treatment, residual DNAPL in the saturated zone would only be partially removed. The mass of DNAPL present in the saturated zone can not be calculated. The magnitude of untreated residuals in the untreated downgradient plume would remain at 200 lb. Groundwater treatment will satisfy NYSDEC's preference for treatment and reduce the toxicity of the contaminants.

3.3.7 Implementability

Given the limitations on the amount of open space available for the facilities and the presence of numerous subsurface utilities, many considerations will have to be undertaken to locate the components of this alternative in acceptable areas. Construction of the extraction well, groundwater treatment system, and force main themselves would not be difficult. However, administrative issues such as traffic concerns and citing these in a residential area may make approvals difficult to obtain. Materials and services for construction and operation would be readily available. Regulations regarding construction and operation in a residential area would prevail throughout the remediation period that is expected to be over a long time period (i.e., 30 years).

3.3.8 <u>Cost</u>

The cost analysis for Alternative 2A is presented in Appendix B. Table 3-1 presents the capital cost, annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate). It is assumed that the systems will operate for 30 years after construction in order to complete remediation.

3.4 <u>Alternative 2B – Groundwater Extraction from Expanded Plume Area with Above-</u> <u>Ground Water Treatment</u>

3.4.1 Description

A conceptual layout for Alternative 2B is shown on Figure 3-3. Alternative 2B would include all components of Alternative 1 and additionally include groundwater extraction from the expanded plume area (PCE concentrations >1,000 ppb) with subsequent above-ground treatment. Calculations presented in Appendix A document the process followed to determine the optimal location of extraction wells. A minimum number of extraction wells is preferred due to the lack of open space for well locations, the presence of numerous existing subsurface utilities, and the fact that additional equipment (e.g., equalization tanks) may be required for the treatment facility given multiple wells. Based on the evaluation of a variety of configurations as documented in Appendix A, the lowest extraction rate that would be effective in containing the 1,000 ppb plume is 300 gpm with two wells located as shown on Figure 3-3. Components of this alternative are:

- 1. Installation of two groundwater extraction wells withdrawing a total of 300 gpm from the water table groundwater located within the expanded plume area.
- 2. A force main to connect the wells and convey extracted groundwater to the treatment system located on Edsall Ave.
- 3. Construction of a treatment system to treat extracted groundwater. The treatment system is anticipated to minimally include: an air stripper for the removal of VOCs, and vapor phase carbon units to remove contaminants in off-gas from the air stripper.

Table 3-2 summarizes the preliminary design criteria for an air stripper that should be able to treat groundwater to the NYCDEP discharge limitations presented in Appendix C. Preliminary modeling from the air stripper vendor indicates that MTBE (detected in MW-24D within the concentrated plume area) removal via air stripping significantly increases the air flow rate required at a groundwater flow rate of 300 gpm. As mentioned in Section 2.4.4.1, other potential components could include: chemical feed system to prevent scaling of the air stripper, pH adjustment of the effluent water which may be increased by the air stripper, additional treatment for MTBE if the air stripper is not capable of treating to the discharge limitations, and an acid scrubber to remove HCl from the oxidizer discharge.

- Conveyance of treated water to the local combined sanitary/storm sewer system. A 36" sewer line flows north along 76th Street to Edsall Ave. and connects to a 42" sewer line on Cooper Avenue. The NYCDEP sewer map is provided in Appendix C.
- 2. Operation and maintenance of the extraction well and treatment system.
- 3. Long-term sampling and analysis of 18 existing monitoring wells.

The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed yearly following indoor air sampling during the heating season.

3.4.2 Overall Protection of Human Health and the Environment

By extracting contaminated groundwater from within the expanded plume area, Alternative 2B provides protection to human health and the environment. Concentrations of contaminants present outside the anticipated capture zone would be reduced over time by dispersion. Long-term groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation would continue until monitoring results indicated an acceptable level of residual risk. The ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property will reduce the exposure of VOCs in soil gas to adjacent residents.

3.4.3 Compliance with SCGs

Groundwater extraction from within the expanded plume would improve groundwater quality in the aquifer. Remediation could continue until groundwater monitoring results indicated that remedial goals had been met. Discharge requirements for treated groundwater to the local sewer system would be SCGs. Air emissions from the groundwater treatment facility would have to meet appropriate SCGs.

3.4.4 Short-Term Impacts and Effectiveness

It is anticipated that construction of the groundwater extraction, treatment and discharge systems would be completed in less than 1 year. Short-term impacts to workers and the community during this time period would not necessarily pose a risk to human health and/or the environment as the majority of drilling and subsurface activities would be performed outside the limits of the source area. Minimal impacts would be present once contaminated groundwater was encountered during drilling of the extraction wells.

3.4.5 Long-Term Effectiveness and Permanence

Alternative 2B would be effective in reducing contaminants in groundwater within the expanded plume area. Concentrations of contaminants outside the anticipated capture zone would be reduced over time by dispersion. Long-term groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation would continue until monitoring results indicated an acceptable level of residual risk.

RAOs for soil gas will be met with the ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property that will reduce the exposure of VOCs in soil gas to adjacent residents.

3.4.6 <u>Reduction of Toxicity, Mobility, and Volume</u>

Extraction and treatment of groundwater from within the expanded plume area will reduce the mobility of contaminants present in groundwater within this area. URS estimates there are about 1,100 lb of PCE dissolved in the saturated zone to the extent of contamination defined by the 10,000 μ g/L isoconcentration line, and another 200 lb in the zone between the 10,000 μ g/L and the 1,000 μ g/L contours. With groundwater extraction and treatment, residual DNAPL in the saturated zone would only be partially removed. The mass of DNAPL present in the saturated zone can not be calculated. The magnitude of untreated residuals in the untreated downgradient plume would be less than 200 lb (i.e., less than for Alternative 2A). Groundwater treatment will satisfy NYSDEC's preference for treatment and reduce the toxicity of the contaminants.

3.4.7 Implementability

Given the limitations on the amount of open space available for the facilities and the presence of numerous subsurface utilities, many considerations will have to be undertaken to locate the components of this alternative in acceptable areas. Construction of the extraction wells, groundwater treatment system, and force mains themselves would not be difficult. However, administrative issues such as traffic concerns and citing these in a residential area may make approvals difficult to obtain. Materials and services for construction and operation would be readily available. Regulations regarding construction and operation in a residential area would prevail throughout the remediation period that is expected to be over a long time period (i.e., 30 years).

3.4.8 Cost

The cost analysis for Alternative 2B is presented in Appendix B. Table 3-1 presents the capital cost, annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate). It is assumed that the systems will operate for 30 years after construction in order to complete remediation.

3.5 <u>Alternative 3A – In Situ Chemical Oxidation Treatment of Concentrated Plume</u> <u>Area</u>

3.5.1 Description

A conceptual layout for Alternative 3A is shown on Figure 3-4. Alternative 3A would include all components of Alternative 1 and additionally include the use of chemical oxidants to address groundwater contamination in the source area (including groundwater associated with OU1) and within the 10,000 ppb PCE contour (i.e., the concentrated plume area). The selected oxidants will be delivered in four to six injection events implemented over a three-year time period.

For the purposes of the FS, it is assumed that three ISCO applications utilizing modified Fenton's reagent followed by one ISCO application utilizing permanganate will be required for initial treatment. Two additional permanganate injection events may be required for additional polishing, or finishing treatment. For costing purposes, it is assumed these two additional injections would be necessary. The focused treatment area incorporated in Alternative 3A is intended to oxidize contaminants within the source area and concentrated plume, thus reducing the overall contaminant mass within the plume. Bench- and/or field-scale pilot testing will be required to determine the appropriate oxidants and estimate oxidant quantities to be delivered during each injection event. Components of this alternative are:

1. Groundwater and soil samples would be collected for laboratory bench-scale testing to evaluate oxidant demand in addition to the target contaminants (e.g., PCE). Soil

buffering capacity (i.e., the ability of the aquifer to maintain a stable pH) and the potential for precipitate generation and/or metals leaching may also be evaluated.

- 2. Approximately four injection wells would be installed near groundwater monitoring well MW-02D, in the parking lot north of the Kliegman Bros. property (i.e., north of rail road) for field-scale pilot testing prior to full-scale implementation. The pilot test would evaluate injection flow rates, subsurface distribution, and other implementation parameters.
- 3. Three existing groundwater monitoring wells (e.g., MW-11D, MW-02D, and MW-10D) would be used to evaluate subsurface distribution and oxidant impact during the pilot test. Up to four rounds of groundwater monitoring would be conducted in the four months following the field-scale pilot test. This information would be used to complete the remedial design for the full-scale implementation.
- 4. Prior to beginning the implementation of the full-scale portion of this Alternative, a baseline groundwater monitoring event would be performed at the 18 existing area monitoring wells.
- 5. Approximately 85 injection locations would be installed on the OU1 and concentrated plume areas (Figure 3-4). Approximately 15 locations would be installed on the OU1 property on 15- to 20-foot centers, within the building yard as possible. Approximately 70 locations would be installed within the concentrated area of the plume on 30-foot centers in an effort to achieve adequate subsurface distribution providing surface contact between the injected oxidant and the dissolved phase contaminant mass. Due to the existing residential nature of the site, injection wells would be located in sidewalk areas and, if possible, a few additional spaces (e.g., driveways, etc.) to increase subsurface distribution (Figure 3-4). Each injection well would be constructed using 2-inch PVC piping with 10- to 15-foot length screens positioned across the treatment zone (e.g., between 70 and 100 feet bgs).
- 6. Each modified Fenton's reagent or permanganate ISCO injection event would be expected to last a few weeks to one month.

- 8. Following the third modified Fenton's reagent and the planned permanganate injection, two performance monitoring events would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of injection oxidant material.
- 9. If the monitoring events after the default injection events (three Fenton's reagent and one permanganate) show rebound occurs, additional injections of permanganate would be required. Following each of these injections, two performance monitoring events would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of injection oxidant material. For costing purposes, two such additional injection events are assumed.
- 10. Additional groundwater monitoring of the 18 existing monitoring wells would be conducted two times after the final injection event.
- 11. The ongoing vapor intrusion mitigation program would continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations would be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed yearly following indoor air sampling during the heating season.

3.5.2 Overall Protection of Human Health and the Environment

By chemically oxidizing (i.e., treating) the contaminants in groundwater within the source area and concentrated plume area with an injection material demonstrated to be effective by bench- and/or pilot-scale testing, Alternative 3A would provide protection to human health and the environment. Concentrations of contaminants (e.g., PCE) present within the remaining plume area outside the 10,000 ppb (i.e., 10 ppm) PCE concentration contour would be reduced over time by dispersion. Groundwater monitoring included with this alternative would aid in the

determination of the degree to which remediation is meeting remedial goals. Remediation may then be continued until monitoring results indicated an acceptable level of residual risk.

The ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property will reduce the exposure of VOCs in soil gas to adjacent residents.

3.5.3 Compliance with SCGs

Chemical oxidation within the source area and concentrated plume would improve groundwater quality regarding organic contaminants (i.e., PCE) within the aquifer.

3.5.4 Short-Term Impacts and Effectiveness

It is anticipated that implementation of this alternative would require about 3 years from well installation/initial injection through performance monitoring following the full-scale implementation. Bench- and field-scale pilot testing is expected to be performed during the design phase, including up to four rounds of performance monitoring following the pilot test. The estimated implementation timeframe for the initial baseline groundwater monitoring event, three modified Fenton's reagent injection events, three permanganate injection events, and 14 performance monitoring events is approximately 3 years with each ISCO injection event is expected to last a few weeks to one month, and each groundwater monitoring event to last approximately one week.

During ISCO injection events, site vehicles and equipment will be temporarily stored along the Kliegman Bros. property and/or parked/staged along city streets. Access to the north parking lot will be required for implementation of the pilot test and baseline and performance groundwater monitoring activities. Access to the Kliegman Bros. property yard will be required for baseline and performance groundwater monitoring activities and implementation of the pilot test and full-scale implementation. Other short-term impacts during the implementation of the field-scale pilot test and full-scale implementation are expected to be minimal. Short-term impacts to workers and the community during this time period would be mitigated through a site-specific health and safety plan (HASP). Intrusive activities (e.g., drilling) would be performed within the limits of the source area and concentrated plume (i.e., within the 10,000 ppb [10 ppm] PCE concentration contour); however, impacts would be mitigated with personal protective equipment (PPE) and other measures under the guidance of a site-specific HASP. Additional health and safety considerations to the community would have to be addressed as drilling may be conducted on residential property/properties. The risk from the materials required for the chemical injection is limited; safety and handling and storage requirement for chemical oxidants will be included in the site-specific HASP.

3.5.5 Long-Term Effectiveness and Permanence

Alternative 3A would be effective in reducing the concentrations of contaminants (e.g., PCE) in groundwater within the source area and concentrated plume area. Concentrations of contaminants outside the anticipated treatment zone would be reduced over time by dispersion. Groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation may then be continued until monitoring results indicated an acceptable level of residual risk.

If zones of DNAPL exist (this is likely based on observed groundwater concentrations), as dissolved phase contaminant mass is treated, residual or sorbed phase DNAPL will transfer to the dissolved phase. Due to the existing dissolved phase PCE concentrations, following the first two to three ISCO applications the mass transfer of DNAPL to the dissolved phase may occur after the delivered oxidant volume has been expended. Therefore, performance monitoring will be used to evaluate the level of overall contaminant mass removal compared to baseline PCE concentrations. Additional ISCO events will be implemented as needed based upon this evaluation of overall contaminant mass removal in comparison to site remedial goals.

RAOs for soil gas will be met with the ongoing vapor intrusion mitigation program and SVE system at the Kliegman Bros. property that will reduce the exposure of VOCs in soil gas to adjacent residents.

3.5.6 Reduction of Toxicity, Mobility, and Volume

Treatment utilizing ISCO within the source area and concentrated plume area will reduce the toxicity of contaminants present in groundwater within this area. This alternative will satisfy NYSDEC's preference for treatment. URS estimates there are about 1,100 lb of PCE dissolved in the saturated zone to the extent of contamination defined by the 10,000 μ g/L isoconcentration line, and another 200 lb in the zone between the 10,000 μ g/L and the 1,000 μ g/L contours. However, the mass near the source is likely much higher depending on the extent to which residual DNAPL is present. Based on the amount of PCE removed by the SVE IRM, there were tens of thousands of kilograms of PCE present in the vadose zone, suggesting the possibility of high DNAPL mass in the saturated zone as well. Assuming that ISCO destroys 95% of the PCE present, approximately 55 lb of dissolved PCE would remain within the 10,000 µg/L isoconcentraction line and an additional 200 lb or so would remain dissolved in the groundwater outside this contour. The remaining PCE would not be uniformly distributed, but would be present in localized areas where oxidant had not penetrated, such as localized low permeability zones or areas unreachable due to the presence of buildings and other limitations of the injection pattern. Outside the source area, wherever the injected oxidant reaches, PCE concentrations are expected to be reduced to levels near or below the SCG value. In the source area, where residual DNAPL may be present, concentrations may be above the SCG value, even after the additional follow-on injections to address rebound.

3.5.7 Implementability

Construction of the individual injection wells would not be difficult. However, the magnitude of the effort may be noticeable to the residents of the neighborhood. Given the limitations of the amount of open space available for the facilities, the active nature of the business at the Kliegman Bros. property, and the presence of numerous subsurface utilities, locating the injection wells in an effective and properly spaced grid pattern will be challenging. Materials and services for construction and operation would be readily available. Regulations regarding construction and operation in a residential area would prevail throughout the remediation considering that the on-site implementation (i.e., time required for installation of injection wells associated with pilot test and full-scale activities).

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

3.5.8 <u>Cost</u>

The cost analysis for Alternative 3A is presented in Appendix B. Table 3-1 presents the capital cost, annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate). Although the injection events will occur over the course of 3 years, the costs for all injection events are considered capital costs.

3.6 <u>Alternative 3B – In Situ Chemical Oxidation Treatment of Expanded Plume Area</u>

3.6.1 Description

A conceptual layout for Alternative 3B is shown on Figure 3-5. Alternative 3B would include all components of Alternatives 1 and 3A, and additionally include the use of chemical oxidants to address groundwater contamination within the within the expanded plume (i.e., within the 1 ppm [1,000 ppb] PCE concentration contour). The selected oxidants will be delivered in up to six injection events implemented over a 3-year time period. The overall treatment timeframe for Alternatives 3A and 3B are expected to be the same; however, Alternative 3B will be completed in a similar amount of time by increasing the number of field personnel and injection equipment for full-scale implementation.

For the purposes of the FS, it is assumed that three ISCO applications utilizing modified Fenton's reagent followed by one ISCO application utilizing permanganate would be required for initial treatment. Two additional permanganate injection events may be required for additional polishing, or finishing treatment. The treatment area incorporated in Alternative 3B is intended to oxidize contaminants within the source area (including groundwater associated with OU1), the concentrated plume area (i.e., within the 10 ppm [10,000 ppb] contour extending downgradient from the OU1 boundary), and within the expanded plume (i.e., within the 1 ppm [1,000 ppb] PCE concentration contour), thus reducing the overall contaminant mass within the plume. Benchand/or field-scale pilot testing would be required to determine the appropriate oxidants and estimate oxidant quantities to be delivered during each injection event. Components of this alternative are:

- 1. Groundwater and soil samples would be collected for laboratory bench-scale testing to evaluate oxidant demand in addition to the target contaminants (e.g., PCE). Soil buffering capacity (i.e., the ability of the aquifer to maintain a stable pH) and the potential for precipitate generation and/or metals leaching may also be evaluated.
- 2. Approximately four injection wells would be installed near groundwater monitoring well MW-02D, in the parking lot north of the Kliegman Bros. property (i.e., north of rail road) for field-scale pilot testing prior to full-scale implementation. The pilot test would evaluate injection flow rates, subsurface distribution, and other implementation parameters.
- 3. Three existing groundwater monitoring wells (e.g., MW-11D, MW-02D, and MW-10D) would be used to evaluate subsurface distribution and oxidant impact during the pilot test. Up to four rounds of groundwater monitoring would be conducted in the four months following the field-scale pilot test. This information would be used to complete the remedial design for the full-scale implementation.
- 4. Prior to beginning the implementation of the full-scale portion of this Alternative, a baseline groundwater monitoring event would be performed at the 18 existing area monitoring wells.
- 5. Approximately 155 injection locations would be installed on the OU1, concentrated, and expanded plume areas (Figure 3-5). Approximately 15 locations would be installed on the OU1 property on 15- to 20-foot centers, within the Kliegman Bros. property yard, as possible. In an effort to achieve adequate subsurface distribution providing surface contact between the injected oxidant and the dissolved phase contaminant mass, approximately 70 locations would be installed within the concentrated area of the plume on 30-foot centers, and approximately 70 locations would be installed within the expanded portion of the plume on 60-foot centers. Due to the existing residential nature of the site, injection wells would be located in sidewalk areas and, if possible, a few additional spaces (e.g., driveways, etc.) to increase subsurface distribution (Figure 3-5). Each injection well would be constructed using 2-inch PVC piping with 10- to 15-foot length screens positioned across the treatment zone (e.g., between 70 and 100 feet bgs).

- 6. Each modified Fenton's reagent or permanganate ISCO injection event is expected to last a few weeks to one month.
- 7. Following the first two modified Fenton's reagent injection events, one performance monitoring event would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of the injected oxidant material (i.e., oxidant impact).
- 12. Following the third modified Fenton's reagent and the planned permanganate injection, two performance monitoring events would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of injection oxidant material.
- 13. If the monitoring events after the default injection events (three modified Fenton's reagent and one permanganate) show rebound occurs, additional injections of permanganate would be required. Following each of these injections, two performance monitoring events would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of injection events are assumed.
- 14. Additional groundwater monitoring of the 18 existing monitoring wells would be conducted two times following the completion of ISCO injections.
- 15. The ongoing vapor intrusion mitigation program would continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations would be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed yearly following indoor air sampling during the heating season.

3.6.2 Overall Protection of Human Health and the Environment

By chemically oxidizing (i.e., treating) the contaminants in groundwater within the source area and expanded plume area with an injection material demonstrated to be effective by the bench- and/or pilot-scale testing, Alternative 3B would provide protection to human health and the environment. Concentrations of contaminants (e.g., PCE) present in the area outside the plume would be reduced over time by dispersion. Groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation may then be continued until monitoring results indicated an acceptable level of residual risk.

The ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property will reduce the exposure of VOCs in soil gas to adjacent residents.

3.6.3 Compliance with SCGs

Chemical oxidation within the source area and expanded plume would improve groundwater quality regarding organic contaminants (e.g., PCE) in the aquifer.

3.6.4 Short-Term Impacts and Effectiveness

It is anticipated that implementation of this alternative would require about 3 years from well installation/initial injection through performance monitoring following the full-scale implementation. Bench- and field-scale pilot testing is expected to be performed during the design phase, including up to four rounds of performance monitoring following the pilot test. The estimated implementation timeframe for the initial baseline groundwater monitoring event, three modified Fenton's reagent injection events, three permanganate injection events, and 14 performance monitoring events is approximately 3 years with each ISCO injection event is expected to last a few weeks to one month, and each groundwater monitoring event to last approximately one week.

During ISCO injection events, site vehicles and equipment will be temporarily stored along the Kliegman Bros. property and/or parked/staged along city streets. Access to the north parking lot will be required for implementation of the pilot test and baseline and performance groundwater monitoring activities. Access to the Kliegman Bros. property yard will be required for baseline and performance groundwater monitoring activities and implementation of the pilot test and full-scale implementation. Other short-term impacts during the implementation of the field-scale pilot test and full-scale implementation are expected to be minimal, although slightly more in comparison to Alternative 3A.

Short-term impacts to workers and the community during this time period would be mitigated through a site-specific health and safety plan (HASP). Intrusive activities (e.g., drilling) would be performed within the limits of the source area, concentrated plume and expanded plume (i.e., within the 10,000 and 1,000 ppb [10 and 1 ppm] PCE concentration contours); however, impacts would be mitigated with personal protective equipment (PPE) and other measures under the guidance of a site-specific HASP. Additional health and safety considerations to the community would have to be addressed as drilling may be conducted on residential property/properties. The risk from the materials required for the chemical injection is limited; safety and handling and storage requirement for chemical oxidants will be included in the site-specific HASP.

3.6.5 Long-Term Effectiveness and Permanence

Alternative 3B would be effective in reducing the concentrations of contaminants in groundwater within the source, concentrated plume, and expanded plume areas. Concentrations of contaminants (e.g., PCE) outside the anticipated treatment zone would be reduced over time by dispersion. Groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation may then be continued until monitoring results indicated an acceptable level of residual risk.

If zones of DNAPL exist (this is likely based on observed groundwater concentrations), as dissolved phase contaminant mass is treated, residual or sorbed phase DNAPL will transfer to the dissolved phase. Due to the existing dissolved phase PCE concentrations, following the first two to three ISCO applications the mass transfer of DNAPL to the dissolved phase may occur after the delivered oxidant volume has been expended. Therefore, performance monitoring will be used to evaluate the level of overall contaminant mass removal compared to baseline PCE concentrations. Additional ISCO events will be implemented as needed based upon this evaluation of overall contaminant mass removal in comparison to site remedial goals.

RAOs for soil gas will be met with the ongoing vapor intrusion mitigation program and SVE system at the Kliegman Bros. property that will remove VOCs and reduce the exposure of VOCs in soil gas to adjacent residents.

3.6.6 <u>Reduction of Toxicity, Mobility, and Volume</u>

In situ chemical oxidation within the source, concentrated plume, and expanded plume area will reduce the toxicity of contaminants present in groundwater within these areas. URS estimates there are about 1,100 lb of PCE dissolved in the saturated zone to the extent of contamination defined by the 10,000 μ g/L isoconcentration line, and another 200 lb in the zone between the 10,000 μ g/L and the 1,000 μ g/L contours. However, the mass near the source is likely much higher depending on the extent to which residual DNAPL is present. Assuming that ISCO destroys 95% of the PCE present, approximately 65 lb of dissolved PCE would remain. The remaining PCE would not be uniformly distributed, but would be present in localized areas where oxidant had not penetrated, such as localized low permeability zones or areas unreachable due to the presence of buildings and other limitations on the injection pattern. Outside the source area, wherever the injected oxidant reaches, PCE concentrations are expected to be reduced to levels near or below the SCG value. In the source area, where residual DNAPL may be present, concentrations may be above the SCG value, even after the additional follow-on injections to address rebound. This alternative will satisfy NYSDEC's preference for treatment.

3.6.7 Implementability

Construction of the individual injection wells would not be difficult. However, the magnitude of the effort may be noticeable to the residents of the neighborhood. Given the limitations of the amount of open space available for the facilities, the active nature of the business at the Kliegman Bros. property, and the presence of numerous subsurface utilities, locating the injection wells in an effective and properly-spaced grid pattern will be challenging. Materials and services for construction and operation would be readily available. Regulations regarding construction and operation in a residential area would prevail throughout the remediation considering that the on-site implementation (i.e., time required for installation of injection wells associated with pilot test and full-scale activities.

3.6.8 <u>Cost</u>

The cost analysis for Alternative 3B is presented in Appendix B. Table 3-1 presents the capital cost, annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate). Although the injection events will occur over the course of 3 years, the costs for all injection events are considered capital costs.

3.7 <u>Alternative 4 - In Situ Chemical Oxidation Treatment of Concentrated Plume Area</u> with Induced Groundwater Gradient

3.7.1 Description

A conceptual layout for Alternative 4 is shown on Figure 3-6. Alternative 4 would include all components of Alternative 1 and additionally combines a similar ISCO approach presented in Alternative 3A with a groundwater extraction well to induce a gradient within the saturated zone. This alternative includes the use of chemical oxidants to address groundwater contamination in the source area (including groundwater associated with OU1) and within the concentrated plume area (i.e., within the 10,000 ppb [10 ppm] PCE concentration contour). The selected oxidants will be delivered in up to six injection events implemented over a 3-year time

period. In addition to the ISCO component, Alternative 4 incorporates an extraction well to generate a groundwater gradient that would promote migration of the injected regent over a larger portion of the plume, including beneath existing structures where access for injection may not be feasible.

For the purposes of the FS, it is assumed that three ISCO applications utilizing modified Fenton's reagent followed by one ISCO application utilizing permanganate will be required for initial treatment. Two additional permanganate injection events may be required for additional polishing, or finishing treatment. The focused treatment area incorporated in Alternative 4 is intended to oxidize contaminants within the source area and concentrated plume, thus reducing the overall contaminant mass within the plume. Bench- and/or field-scale pilot testing will be required to determine the appropriate oxidants and estimate oxidant quantities to be delivered during each injection event. Components of this alternative are:

- 1. Groundwater and soil samples would be collected for laboratory bench-scale testing to evaluate oxidant demand in addition to the target contaminants (e.g., PCE). Soil buffering capacity (i.e., the ability of the aquifer to maintain a stable pH) and the potential for precipitate generation and/or metals leaching may also be evaluated.
- 2. Approximately four injection wells would be installed near groundwater monitoring well MW-02D, in the parking lot north of the Kliegman Bros. property (i.e., north of rail road) for field-scale pilot testing prior to full-scale implementation. The pilot test would evaluate injection flow rates, subsurface distribution, and other implementation parameters.
- 3. Three existing groundwater monitoring wells (e.g., MW-11D, MW-02D, and MW-10D) would be used to evaluate subsurface distribution and oxidant impact during the pilot test. Up to four rounds of groundwater monitoring would be conducted in the four months following the field-scale pilot test. This information would be used to complete the remedial design for the full-scale implementation.

- 4. Prior to beginning the implementation of the full-scale portion of this Alternative, a baseline groundwater monitoring event would be performed at the 18 existing area monitoring wells.
- 5. Approximately 60 injection locations would be installed on the OU1 and within the concentrated plume areas (Figure 3-6). Approximately 15 locations would be installed on the OU1 property on 15- to 20-foot centers, within the building yard as possible. Approximately 45 locations would be installed within the concentrated area of the plume on 30-foot centers in an effort to achieve adequate subsurface distribution providing surface contact between the injected oxidant and the dissolved phase contaminant mass. In addition, injection wells would be located to support the migration of delivered oxidant from the injection well through the aquifer under existing structures (e.g., residential properties). Due to the existing residential nature of the site, injection wells would be located in sidewalk areas and, if possible, a few additional spaces (e.g., driveways, etc.) to increase subsurface distribution (Figure 3-6). Each injection well will be constructed using 2-inch PVC piping with 10- to 15-foot length screens positioned across the treatment zone (e.g., between 70 and 100 feet bgs).
- 6. Each modified Fenton's reagent or permanganate ISCO injection event is expected to last a few weeks to one month.
- 7. Following the first two modified Fenton's reagent injection events, one performance monitoring event would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of the injected oxidant material (i.e., oxidant impact).
- 8. Following the third modified Fenton's reagent and the planned permanganate injection, two performance monitoring events would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of injection oxidant material.

- 9. If the monitoring events after the default injection events (three modified Fenton's reagent and one permanganate) show rebound occurs, additional injections of permanganate would be required. Following each of these injections, two performance monitoring events would be performed four to eight weeks after completion of injection activities to determine contaminant mass reduction in comparison to baseline groundwater concentrations and subsurface distribution of injection oxidant material. For costing purposes, two such additional injection events are assumed.
- 10. Additional groundwater monitoring of the 18 existing monitoring wells would be conducted two times following the completion of ISCO injection.
- 11. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed yearly following indoor air sampling during the heating season.
- 12. A groundwater extraction well in the concentrated plume area (i.e., within the 10,000 ppb [10 ppm] PCE concentration contour) to generate an increased hydraulic gradient in the water table. The increased hydraulic gradient from groundwater flow to the extraction well would increase the area of the plume addressed by the limited access for injection well installation available due to the residential nature of the area. Calculations presented in Appendix A document the process to determine the optimal location of a single extraction well. A single extraction well is preferred due to the lack of open space for well location, the presence of numerous existing subsurface utilities, and the fact that additional equipment may be required for the treatment facility given multiple wells. Based on the evaluation of a variety of configurations as documented in Appendix A, the lowest extraction rate that would be effective in containing the 10,000 ppb plume is 150 gpm with one well located as shown on Figure 3-6.

- 13. Although groundwater extraction is included principally to generate an hydraulic gradient rather than serve as an extraction and treatment system, the extracted groundwater will have to be treated. Therefore the alternative includes construction of a treatment system on Edsall Ave. to treat extracted groundwater. The treatment system is anticipated to minimally include: an air stripper for the removal of VOCs and vapor phase carbon units to remove contaminants in off-gas from the air stripper.
- 14. Conveyance of treated water to the local combined sanitary/storm sewer system. A 36" sewer line flows north along 76th Street to Edsall Ave. and connects to a 42" sewer line on Cooper Avenue. The NYCDEP sewer map is provided in Appendix C.
- 15. Operation and maintenance of the extraction well and treatment system for a period of 3 years (i.e. throughout the period of ISCO treatment).
- 16. The ongoing vapor intrusion mitigation program will continue to monitor soil gas levels at adjacent residences and assess the need for additional system sub-slab depressurization installations. Additional system installations will be conducted as necessary in the future to provide mitigation. For the purposes of the FS, it is assumed that three such installations would be performed yearly following indoor air sampling during the heating season.

3.7.2 Overall Protection of Human Health and the Environment

Alternative 4 provides protection to human health and the environment by treating the contaminants in groundwater (e.g., PCE) via chemical oxidation with an injection material demonstrated to be effective. The increased hydraulic gradient from groundwater flow to the extraction well would increase the contact area and thus the effectiveness of the ISCO process. Contaminants mass (e.g., PCE) present within the remaining plume area beyond the 10,000 ppb contour would be reduced over time by dispersion. Groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals.

The ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property will remove VOCs and reduce the exposure of VOCs in soil gas to adjacent residents.

3.7.3 Compliance with SCGs

Chemical oxidation and groundwater extraction from within the source area and the concentrated plume would improve groundwater quality regarding organic contaminants (e.g., PCE) in the aquifer. Discharge requirements to the local sewer system for treated groundwater would be SCGs. Air emissions from the groundwater treatment facility would have to meet appropriate SCGs.

3.7.4 Short-Term Impacts and Effectiveness

It is anticipated that implementation of this alternative would require about 3 years from well installation/initial injection through performance monitoring following the full-scale implementation. Bench- and field-scale pilot testing is expected to be performed during the design phase, including up to four rounds of performance monitoring following the pilot test. The estimated implementation timeframe for the initial baseline groundwater monitoring event, three modified Fenton's reagent injection events, three permanganate injection events, and 14 performance monitoring events is approximately 3 years with each ISCO injection event is expected to last a few weeks to one month, and each groundwater monitoring event to last approximately one week.

During ISCO injection events, site vehicles and equipment will be temporarily stored along the Kliegman Bros. property and/or parked/staged along city streets. Access to the north parking lot will be required for implementation of the pilot test and baseline and performance groundwater monitoring activities. Access to the Kliegman Bros. property yard will be required for baseline and performance groundwater monitoring activities and implementation of the pilot test and full-scale implementation. Installation of the extraction system and construction of the treatment system on Edsall Avenue is anticipated to be completed in several weeks to one month and will increase equipment staging along Edsall Avenue and 76th Street during system construction and installation activities. Other short-term impacts during the implementation of the field-scale pilot test and full-scale implementation are expected to be minimal.

Short-term impacts to workers and the community during this time period would be mitigated through a site-specific health and safety plan (HASP). Intrusive activities (e.g., drilling) would be performed within the limits of the source area and concentrated plume (i.e., within the 10,000 ppb [10 ppm] PCE concentration contour); however, impacts would be mitigated with personal protective equipment (PPE) and other measures under the guidance of a site-specific HASP. Additional health and safety considerations to the community would have to be addressed as drilling may be conducted on residential property/properties. The risk from the materials required for the chemical injection is limited; safety and handling and storage requirement for chemical oxidants will be included in the site-specific HASP.

3.7.5 Long-Term Effectiveness and Permanence

Alternative 4 would be effective in reducing the concentrations of contaminants (e.g., PCE) in groundwater within the source area and concentrated plume area. The increased hydraulic gradient from groundwater flow to the extraction well would increase the contact area and support additional contact of the delivered oxidant with contaminant mass located below existing structures (i.e., residential properties) where surface access is limited. Concentrations of contaminants present outside the anticipated ISCO treatment and extraction capture zone would be reduced over time by dispersion. Groundwater monitoring included with this alternative would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation may then be continued until monitoring results indicate an acceptable level of residual risk.

If zones of DNAPL exist (this is likely based on observed groundwater concentrations), as dissolved phase contaminant mass is treated, residual or sorbed phase DNAPL will transfer to the dissolved phase. Due to the existing dissolved phase PCE concentrations, following the first two to three ISCO applications the mass transfer of DNAPL to the dissolved phase may occur

after the delivered oxidant volume has been expended. Therefore, performance monitoring will be used to evaluate the level of overall contaminant mass removal compared to baseline PCE concentrations. Additional ISCO events will be implemented as needed based upon this evaluation of overall contaminant mass removal in comparison to site remedial goals.

RAOs for soil gas will be met with the ongoing vapor intrusion mitigation program and SVE system at the Kliegman Bros. property that will remove VOCs and reduce the exposure of VOCs in soil gas to adjacent residents.

3.7.6 <u>Reduction of Toxicity, Mobility, and Volume</u>

Treatment utilizing ISCO within the source area and extraction and treatment of groundwater within the concentrated plume area will reduce the toxicity of contaminants present in groundwater within this area. This alternative will satisfy NYSDEC's preference for treatment. URS estimates there are about 1,100 lb of dissolved PCE in the saturated zone to the extent of contamination defined by the 10,000 μ g/L isoconcentration line. This mass is likely much higher depending on the extent to which residual DNAPL is present in the saturated zone. Based on the amount of PCE removed by the SVE IRM there were tens of thousands of kilograms of PCE present in the vadose zone, suggesting the possibility of high DNAPL mass in the saturated zone as well. Because of the induced groundwater gradient, more dissolved PCE would be treated with this alternative compared to Alternatives 3A and 3B. Therefore, assuming that ISCO destroys 98% of the PCE present, approximately 25 lb of dissolved PCE would remain within the 10,000 μ g/L isoconcentraction line, and an additional 200 lb or so would remain dissolved in the groundwater outside this contour. The remaining PCE would not be uniformly distributed, but would be present in localized areas where oxidant had not penetrated, such as localized low permeability zones or areas unreachable due to the presence of buildings and other limitations on the injection pattern. Outside the source area, wherever the injected oxidant reaches, PCE concentrations are expected to be reduced to levels near or below the SCG value. In the source area, where residual DNAPL may be present, concentrations may be above the SCG value, even after the additional follow-on injections to address rebound.

3.7.7 Implementability

Construction of the individual injection or extraction wells, groundwater treatment system, and force main are not anticipated to be difficult. The magnitude of the effort may be noticeable to the residents of the neighborhood. Given the limitations on the amount of open space available for the facilities, the active nature of the business at the Kliegman Bros. property, and the presence of numerous subsurface utilities, many considerations will have to be undertaken to locate the components of this alternative in acceptable and effective areas. Locating the injection wells in an effective and properly-spaced grid pattern will be challenging. For the groundwater extraction component, administrative issues such as traffic concerns and citing for the extraction well, force main, and groundwater treatment system housing in a residential area may make approvals difficult to obtain.

Materials and services for construction and operation would be readily available. Regulations regarding construction and operation in a residential area would prevail throughout the remediation considering that the on-site implementation (i.e., time required for installation of injection wells associated with pilot test and full-scale activities) is expected to be implemented over a short time period (i.e., about 3 years).

3.7.8 Cost

The cost analysis for Alternative 4 is presented in Appendix B. Table 3-1 presents the capital cost, annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate). Although the injection events will occur over the course of 3 years, the costs for all injection events are considered capital costs. It is assumed that the extraction well and groundwater treatment system will operate for 3 years during ISCO implementation.

3.8 <u>Summary</u>

The detailed analysis of alternatives is summarized in Table 3-3.

4.0 COMPARATIVE ANALYSIS OF ALTERNATIVES

4.1 <u>Overall Protection of Human Health and the Environment</u>

Alternatives 3A, 3B, and 4 potentially provide the greatest protection to human health by addressing the highest concentrations of the plume, with injection wells spaced across the source area (including groundwater associated with OU1) and concentrated plume (i.e., within the 10,000 ppb [10 ppm] PCE concentration contour). Alternative 4 includes the potential for increased effectiveness by enhancing the hydraulic gradient and increasing the contact (i.e., subsurface distribution) of the delivered chemical oxidants to groundwater beneath the residential buildings where direct injection is inaccessible. The enhanced hydraulic gradient included in Alternative 4 increases the ability and potential effectiveness of ISCO treatment in the highest concentration portion of the plume, thus potentially will treat the greatest amount of contaminant mass. Alternative 3B addresses the largest portion of the plume and includes injection at the source area, concentrated plume and within the expanded plume (i.e., within the 1 ppm [1,000 ppb] PCE concentration contour). Alternatives 3A, 3B, and 4 all include a minimum of four ISCO applications and provide more protection than Alternatives 2A and 2B due to the reduction in toxicity of contaminants through the ISCO process.

Alternative 1 provides limited protection. Concentrations of contaminants present within non-remediated areas of the plume would be reduced over time by dispersion. Groundwater monitoring included in all alternatives would aid in the determination of the degree to which remediation is meeting remedial goals. Remediation could then be continued until monitoring results indicated an acceptable level of residual risk.

The ongoing vapor intrusion mitigation program and the SVE system at the Kliegman Bros. property will reduce the exposure of VOCs in soil gas to adjacent residents for all alternatives.

4.2 <u>Compliance with SCGs</u>

Because Alternative 4 uses an induced groundwater gradient to draw injected oxidants through the plume, it results in the greatest reduction in contaminant concentrations and improvement in groundwater quality. Alternatives 3A and 3B improve groundwater quality over Alternative 1, and in a more rapid time frame than Alternatives 2A and 2B. Alternatives 2A and 2B include considerations relating to groundwater discharge and air emissions SCGs and require a longer time period for remediation than Alternatives 3A, 3B, and 4.

4.3 <u>Short-Term Impacts and Effectiveness</u>

As no construction is included with Alternative 1, it presents the shortest implementation time frame and fewest short-term impacts. Short-term impacts to workers, the community, and the environment and additional health and safety considerations for Alternatives 2A, 2B, 3A, 3B, and 4 would have to be addressed as drilling is included within the source area.

Construction for all alternatives is anticipated to be less than 1 year. ISCO for Alternatives 3A, 3B, and 4 would take place over about 3 years. The groundwater extraction and treatment for Alternative 4 would be performed during the 3 years of ISCO treatment. In contrast, groundwater extraction, treatment and monitoring for Alternatives 2A and 2B would continue over an anticipated 30-year period.

4.4 Long-term Effectiveness and Permanence

Alternatives 3A, 3B and 4 would be effective in oxidizing contaminants and reducing groundwater contaminant concentrations. Alternatives 3A, 3A, and 4 would impact the source and concentrated plume areas; Alternatives 2B and 3B would impact the source area and expanded plume area. Concentrations of contaminants present outside the capture zones and treatment areas would be reduced over time by dispersion. Groundwater monitoring included with the alternatives would aid in the determination of the degree to which remediation is meeting

remedial goals. Remediation for all alternatives could then be continued until monitoring results indicated an acceptable level of residual risk.

RAOs for soil gas will be met under all alternatives with the ongoing vapor intrusion mitigation program and SVE system at the Kliegman Bros. property that will reduce the exposure of VOCs in soil gas to adjacent residents.

4.5 <u>Reduction of Toxicity, Mobility, and Volume</u>

All alternatives except Alternative 1 satisfy NYSDEC's preference for treatment to reduce toxicity and mobility, although to varying degrees. Alternatives 2A and 2B, and to some extent 4, reduce the mobility of contaminants in groundwater through extraction. Alternatives 3A and 3B provide a significant reduction in toxicity through PCE destruction by oxidation in the source and concentrated areas (3A), and the source, concentrated and expanded plume areas (3B). Because Alternative 3B treats a larger area, there is a greater amount of contaminant destruction. Based on the dissolved concentrations (and assuming 95% treatment), 3B would destroy about 1,200 lb of PCE while 3A would destroy about 1,000 lb. However, the relative difference would be much less if the amount of DNAPL PCE present in the source area were known. It is known that the SVE IRM removed tens of thousands of kilograms of PCE present in the vadose zone. This suggests that DNAPL PCE may be present in the saturated zone to the extent of thousands of pounds as well. Both 3A and 3B would treat this DNAPL equally effectively, reducing the significance of the estimated additional 200 lb destruction potentially achievable with 3B compared to 3A.

Alternative 4 provides the greatest potential reduction in toxicity through treatment of contaminants by incorporating ISCO in the source area and concentrated areas of the plume with an enhanced hydraulic gradient, allowing for increased subsurface distribution beneath residential structures where injection is inaccessible.

4.6 <u>Implementability</u>

Alternative 1 would be the easiest to implement. Alternatives 2A, 2B and 4 would be difficult to implement given the limitations of the amount of open space available for the facilities and the presence of numerous subsurface utilities which may be impacted especially during installation of the force main. Alternatives 3A, 3B, and 4 pose similar implementation challenges in implementing an injection well system in an effective and properly-spaced grid pattern within the source area and residential area. Of these, Alternative 3B poses the greatest challenge due to the increased number of injection wells. The magnitude of the effort may be noticeable to some residents of the neighborhood. Materials and services for construction and operation would be readily available for all alternatives. Regulations regarding construction and operation in a residential area would prevail throughout the remediation which is expected to be over a shorter time frame for Alternatives 3A and 3B, and a longer time period for Alternative 4, and longest time period for Alternatives 2A and 2B.

4.7 <u>Cost</u>

The cost analysis for all alternatives is presented in Appendix B. Table 3-1 presents the capital cost, annual OM&M cost and total present worth of OM&M costs (based on a 5% discount rate).

5.0 RECOMMENDED REMEDIAL ALTERNATIVE

Alternative 1 is not recommended because while this alternative would meet RAOs for soil gas, it provides limited protection to human health and the environment, does not satisfy SCGs, and does not satisfy the RAOs for groundwater. It would leave contaminants in place in groundwater that would act as a continuing source to groundwater migrating offsite.

All alternatives are equally effective and provide protection with regard to soil vapors with the ongoing vapor intrusion mitigation program. Sub-slab depressurization systems will be installed as needed per the results of air monitoring efforts and an evaluation of the existing building conditions (e.g., positive pressure heating, ventilation and/or air conditioning systems).

Alternatives 3A, 3B, and 4 are more effective and provide more protection than Alternatives 2A and 2B due to the reduction in toxicity of contaminants from the ISCO process. Further, Alternatives 3A, 3B, and 4 improve groundwater quality in a more rapid time frame than Alternatives 2A and 2B. Therefore, Alternatives 3A, 3B, and 4 are preferred over Alternatives 2A and 2B.

Alternative 4 has the potential to be more effective than Alternatives 3A or 3B because the creation of a hydraulic gradient may increase the movement of the chemicals applied in situ and result in a greater volume of treated groundwater.

Compared to Alternatives 3A and 3B, Alternative 4 has difficulties involving short-term effectiveness and implementability. A groundwater extraction well and a force main to the proposed location of the groundwater treatment facility would require construction of the force main through the residential neighborhood. Also, there are limited locations for the proposed treatment facility.

Alternatives 3A, 3B and 4 all provide remediation within the source and concentrated plume areas. Alternative 3B additionally provides remediation within the remaining plume area.

Concentrations of contaminants outside the treatment zones for each alternative would be reduced over time by dispersion. Alternative 3B treats a larger area than Alternatives 3A or 4, and there would therefore be a greater amount of contaminant destruction. Based on the dissolved concentrations (and assuming 95% treatment), 3B would destroy about 1,200 pounds of PCE currently in the groundwater while 3A would destroy about 1,000 pounds. However, the majority of the contaminant mass resides in the source and concentrated plume areas, areas that would be addressed by Alternatives 3A and 4. It is known that the SVE IRM has removed tens of thousands of pounds of PCE present in the vadose zone. This suggests that nonaqueous phase PCE may be present in the saturated zone to the extent of thousands of pounds as well. Both 3A and 3B would treat this source area equally effectively, reducing the significance of the estimated additional 200-pound destruction potentially achievable with 3B compared to 3A.

The additional injections proposed in Alternative 3B provide limited overall benefit due to the lower concentrations present outside the source and concentrated plume areas. The additional injection area included in Alternative 3B increases impacts to the community during construction and ISCO implementation due to the increased number of injection wells distributed throughout the residential neighborhood. This results in much larger short-term impacts when compared to Alternative 3A.

The cost analysis for all alternatives is presented in Table 3-1, which details the capital cost, annual OM&M cost and total present worth of OM&M costs for each alternative (based on a 5% discount rate). With the exception of Alternative 3B, the costs of the alternatives that meet the threshold criteria do not vary greatly. Alternative 2A and Alternative 2B have similar costs, and Alternative 3A and 4 are somewhat more expensive. Alternative 3B is significantly more expensive than any other alternative.

On the basis of the rationale outlined in this section, In Situ Chemical Oxidation Treatment of the Concentrated Plume Area with Induced Groundwater Gradient (Alternative 4) is recommended. However, as detailed above, the density of the surrounding land use may ultimately cause installation of the extraction well, force main, and treatment facility included in Alternative 4 to be infeasible. If this is the case, then NYSDEC may elect to implement Alternative 3A - In Situ Chemical Oxidation Treatment of the Concentrated Plume Area. The feasibility determination will be made during the remedial design process.

The estimated present worth cost to implement Alternative 4 is \$ 7,600,000. The cost to construct the remedy is estimated to be \$ 7,300,000, the estimated average annual costs for system operation (three years total) is \$21,000, and the estimated average annual costs for monitoring (five years total) is \$43,000. Note the groundwater extraction and treatment costs for Alt. 4 are considered a capital cost since they would be of a short duration compared to a long term pump and treat approach. The present worth estimate includes sampling and construction costs associated with the ongoing vapor mitigation program.

The estimated present worth cost to implement Alternative 3A is \$ 8,000,000. The cost to construct the remedy is estimated to be \$ 7,700,000, the estimated average annual costs for system operation (three years total) is \$21,000, and the estimated average annual costs for monitoring (five years total) is \$43,000. The present worth estimate includes sampling and construction costs associated with the ongoing vapor mitigation program.

TABLES

	2001	October 2002	April 2003	December 2003	June 2005
MW-01		2,600	NS	NS	5,300
MW-01S		1,100	610	NS	320
MW-02D		9,500	15,000	NS	2,600
MW-03D		25,000	22,000	NS	43,000
MW-04D		49,000	69,000	45,000	75,000
MW-05D		17,000	15,000	15,000	31,000
MW-06S		NS	260	NS	200
MW-07D		2,700	1,100	NS	1,200
MW-08S		ND	6	NS	ND
MW-09S		ND	1	NS	ND
MW-10D			55,000	NS	NS
MW-11D			3,500	5,900	920
MW-14D			75,000	74,000	40,000
MW-15D			400	NS	310
MW-16D			350	NS	350
MW-17D					8,400
MW-18D					5,700
MW-19D					2,300
MW-20D					370
MW-21D					300
MW-22D					190
MW-23D					3,400
MW-24D					21,000
MW-10H			180 @ ~100'		NS
			24,800 @ 72'		NS @ ~100'
			75 @ 88'		
			11 @ 103'		
			540 @ 118'		
			ND @ 132'		
			16 @ 148'		
MW-12H			240 @ ~100'		ND @ ~100'
			51,200 @ 72'		
			3,790 @ 88'		
			51 @ 108'		
			16 @ 118'		
MW-13H			4 @ ~100'		ND @ ~100'
			809 @ 72'		
			ND @ 88'		
			1 @ 102'		
SVE2	45,000 @ 70' 2,200 @ 96'				
SVE3	30,000 @ 70'				
6419	2,800 @ 96'				
SVE4	1,200 @ 70'				
	1,200 @ 96'				
SVE5	22,0000 @ 14'				

TABLE 1-1 SUMMARY OF PCE CONCENTRATIONS (ppb) IN GROUNDWATER SAMPLES

NS – Not Sampled ND – Not Detected

TABLE 2-1 TECHNOLOGY SCREENING SUMMARY KLIEGMAN BROTHERS SITE OU2 QUEENS COUNTY, NEW YORK

MEDIA	GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY TYPE	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	RELATIVE COST	RETAINED
		Continue with IRM	SVE within property	Effective	Already implemented	Low	NA
All Media	No Additional Action	Implement OU1 ROD remediation	Additional SVE wells and treatment system	Effective	Readily implementable	Low – Moderate	NA
	Exposure Point Vapor intrusion m		Sub-slab depressurization at individual residences	Effective	Already implemented	Low	NA
Soil Gas	Exposure Point Mitigation	Vapor intrusion mitigation unit	Sub-slab depressurization at individual residences	Effective	Readily implementable	Low	Y
		Vertical Cutoff Walls	Downgradient slurry walls, grout curtains, sheet pile, geomembranes	Effective	Difficult due to depth and areal extent of plume	Moderate - High	N
		Permeable Reactor Barrier Wall	Vertical wall downgradient of plume reacts with containments	Potentially effective for PCE	Difficult due to depth, areal extent of plume, and lack of hydraulic gradient	Moderate - High	N
	Containment		Downgradient collection trench	Potentially effective	Difficult due to depth and areal extent of plume	High	N
	Containment	Hydraulic Controls	Injection Wells - vertical injection of clean water into upgradient wells	Injection of unamended water may create radial and/or downward contaminant migration; amended water combined with in situ treatment may be effective	Implementable but location(s) must minimize impacts to residences	Low – Moderate	Y
			Extraction Wells - vertical extraction wells within plume	Effective when combined with groundwater treatment	Implementable, but location(s) must minimize impacts to residences. Must be combined with groundwater treatment	Low - Moderate	Y
	Course deuxter Above-Grou		Treatment facility designed and constructed for this site	A facility designed specifically for site contaminants and flow rate would be effective.	Space limitations and flow rate make implementation difficult	Moderate – High	Y
Groundwater		Above-Ground Treatment	Off-site treatment facility	Effective at an appropriate facility	Flow rate may limit the number of facilities willing to accept extracted water	High	N
		In-well Treatment System	Reactor utilizing catalytic reductive dehalogenation within extraction well	Effective on PCE at low flow rates	Implementable with space limitation considerations	Moderate	N
	Treatment	In Situ Biological Treatment	Reductive dechlorination	Unknown effectiveness on PCE concentrations	Implementable with space limitation considerations	Moderate – High	N
			Modified Fenton's reagent	Potentially effective	Implementable with space limitation considerations	Moderate	Y
			Permanganate	Potentially effective	Implementable with space limitation considerations	Moderate	Y
		In Situ Chemical Treatment	Ozone	Potentially effective	Implementable with space limitation considerations	Moderate	N
			Persulfate	Potentially effective	Implementable with space limitation considerations	Moderate	N
		In Situ Physical/Thermal Treatment	Air Sparging	Effective when combined with SVE	Difficult to implement due to space limitations	High	N

NA - Not Applicable

Table 3-1

SUMMARY OF ESTIMATED COSTS KLIEGMAN BROTHERS OU2

Cost Component	Alternative 1	Alternative 2A	Alternative 2B	Alternative 3A	Alternative 3B	Alternative 4
<u>Capital Costs</u> Capital Costs	\$0	\$1,218,000	\$1,062,000	\$7,690,000	\$13,658,000	\$7,272,000
Annual OM&M Costs Annual System Operation Cost Annual Monitoring Cost	\$21,000 \$10,000	\$283,000 \$43,000	\$296,000 \$43,000	\$21,000 \$43,000	\$21,000 \$43,000	\$21,000 \$43,000
Present Worth OM&M Costs Present Worth System Operation Cost Present Worth Annual Monitoring Cost Present Worth OM&M Cost Years of System Operation Years of Monitoring	\$323,000 \$154,000 \$477,000 30 30	\$4,354,000 \$667,000 \$5,021,000 30 30	\$4,527,500 \$688,000 \$5,215,500 30 30	\$93,200 \$189,000 \$282,200 3 5	\$93,200 \$189,000 \$282,200 3 5	\$94,400 \$190,000 \$284,400 3 5
Total Present Worth Cost	\$477,000	\$6,239,000	\$6,278,000	\$7,972,000	\$13,940,000	\$7,557,000

Notes:

1) 2A/2B: 30 years of operation with 6 cycles each 3 years of groundwater pump and treat followed by 2 years no pump and treat

2) 5% discount rate used to determine Present Worth

3) The alternatives are as follows:

Alternative 1 - No Additional Action

Alternative 2A - Groundwater Extraction from Concentrated Plume Area with Above-Ground Water Treatment

Alternative 2B - Groundwater Extraction from Entire Plume Area with Above-Ground Water Treatment

Alternative 3A - In Situ Chemical Oxidation Treatment of Concentrated Plume Area

Alternative 3B - In Situ Chemical Oxidation Treatment of Entire Plume Area

Alternative 4 - In Situ Chemical Oxidation Treatment of Concentrated Plume Area with Induced Groundwater Gradient

TABLE 3-2

KLIEGMAN BROTHERS FS

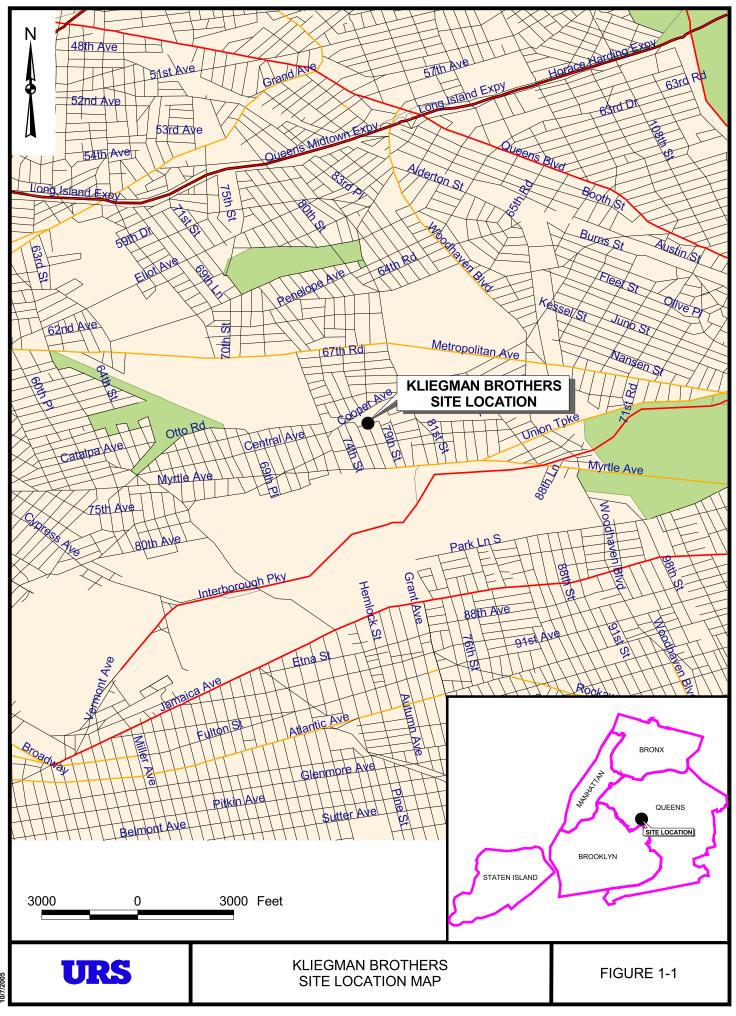
Water Flow Rate (gpm)	Air Flow Rate Without MTBE Treatment (scfm)	Air Flow Rate With MTBE Treatment (scfm)	
150	1800	1800	
300	2400	3600	

SUMMARY OF AIR STRIPPING REQUIREMENTS

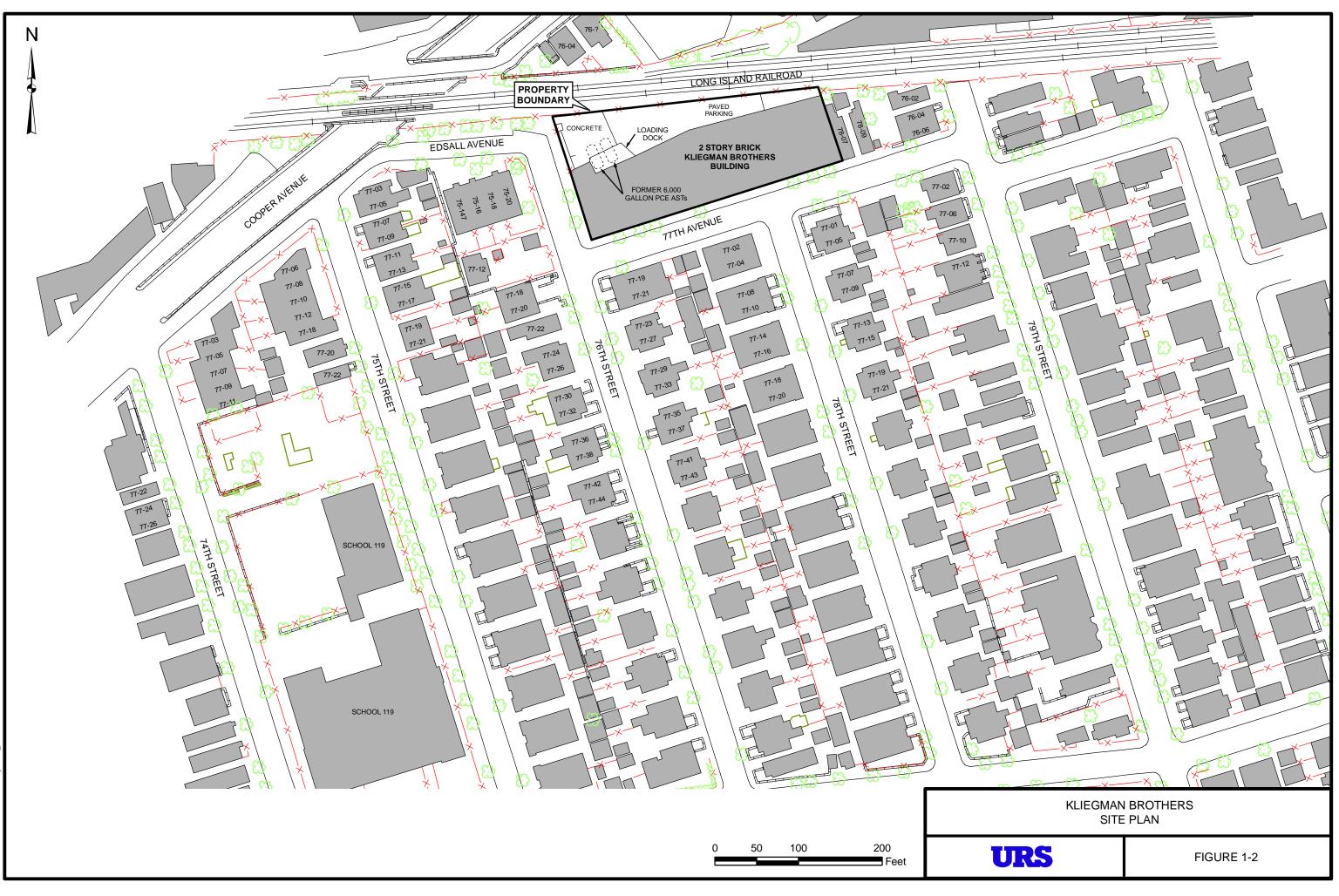
NOTE: This table is representative of the modeling provided by one particular vendor of air stripping equipment. Other manufacturers may indicate different results. Modeling is based on the latest results for monitoring well location MW-24D.

CRITERIA	Alternative 1: No Additional Action	Alternative 2A: Groundwater Extraction from Concentrated Plume Area with Above-Ground Water Treatment	Alternative 2B: Groundwater Extraction from Entire Plume Area with Above- Ground Water Treatment	Alternative 3A: In Situ Chemical Oxidation Treatment of Concentrated Plume Area	Alternative 3B: In Situ Chemical Oxidation Treatment of Entire Plume Area	Alternative 4: In Situ Chemical Oxidation Treatment of Concentrated Plume Area with Induced Ground- water Gradient
OVERALL PROTE	CTIVENESS					Γ
Protect Human Health and Environment	No reduction in contamination of soil or groundwater. SVI mitigation activities reduce exposure from vapors.	Most contaminated portion of GW plume treated over time. SVI mitigation activities reduce exposure from vapors.	Most of GW plume treated over time. SVI mitigation activities reduce exposure from vapors.	Most contaminated portion of GW plume treated. SVI mitigation activities reduce exposure from vapors.	Most of GW plume treated. SVI mitigation activities reduce exposure from vapors.	Most contaminated portion of GW plume treated. SVI mitigation activities reduce exposure from vapors.
COMPLIANCE WI	TH SCGS					
Soil and Ground- water Cleanup Criteria	Does not meet groundwater SCGs.	PCE in ground- water within treatment area gradually decreases towards SCGs.	PCE in ground- water within treatment area gradually decreases towards SCGs.	PCE in ground- water within treatment area decreases towards SCGs.	PCE in ground- water within treatment area decreases towards SCGs.	PCE in ground- water within treatment area decreases towards SCGs.
	PACTS AND EFFECT					
Community and Worker Protection	No impacts to community or workers.	Health and safety measures during implementation would be protective against short-term risks from volatiles.	Health and safety measures during implementation would be protective against short-term risks from volatiles.	Health and safety measures during implementation would be protective against short-term risks from volatiles and from oxidation agents.	Health and safety measures during implementation would be protective against short-term risks from volatiles and from oxidation agents.	Health and safety measures during implementation would be protective against short-term risks from volatiles and from oxidation agents.

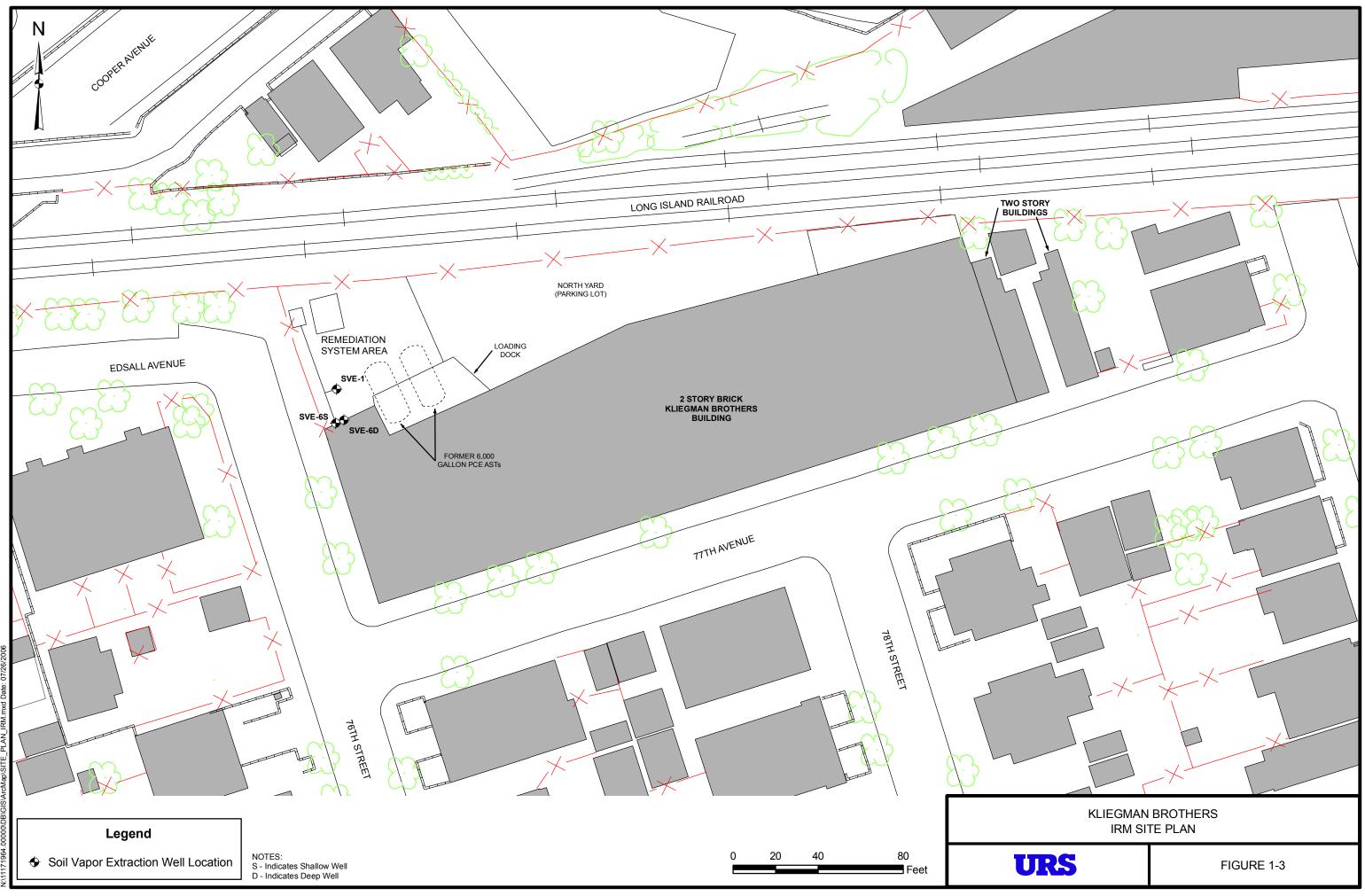
TABLE 3-3EVALUATION OF ALTERNATIVES

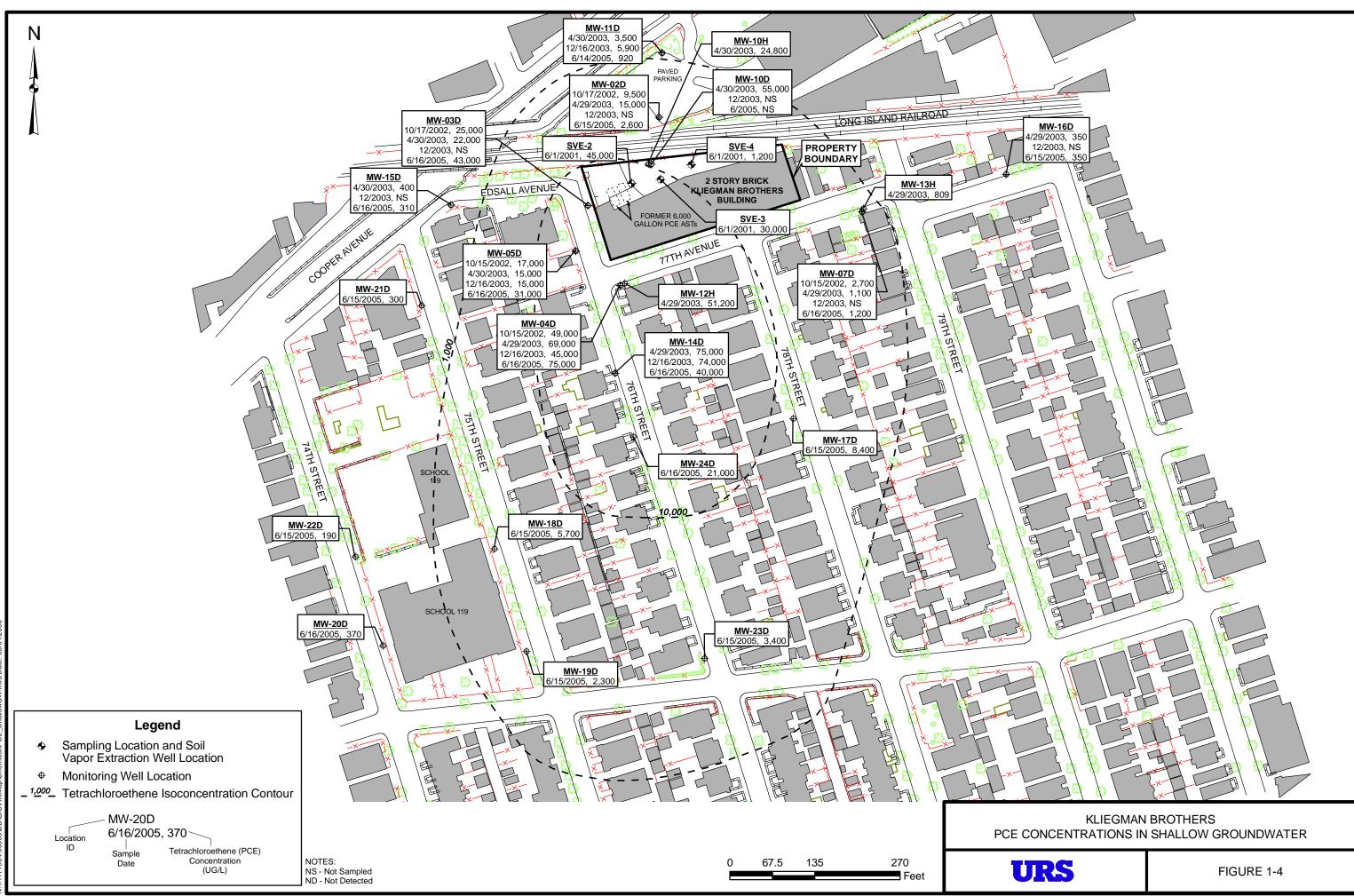

CRITERIA	Alternative 1: No Additional Action	Alternative 2A: Groundwater Extraction from Concentrated Plume Area with Above-Ground Water Treatment	Alternative 2B: Groundwater Extraction from Entire Plume Area with Above- Ground Water Treatment	Alternative 3A: In Situ Chemical Oxidation Treatment of Concentrated Plume Area	Alternative 3B: In Situ Chemical Oxidation Treatment of Entire Plume Area	Alternative 4: In Situ Chemical Oxidation Treatment of Concentrated Plume Area with Induced Ground- water Gradient
Environmental Impacts	Current conditions continue to exist.	Contaminant levels in groundwater reduced.				
Time Until Action is Complete	Not applicable.	Remediation will continue for decades.	Remediation will continue for decades.	Oxidation to require about three years. Monitoring of downgradient plume to continue for decades.	Oxidation to require about three years. Monitoring of downgradient plume to continue for decades.	Oxidation to require about three years. Monitoring of downgradient plume to continue for decades.
LONG-TERM EFF	ECTIVENESS AND P	ERMANENCE				
Magnitude of Residual Risk	Remains at current levels. Vapor exposure risks mitigated with SSD systems.	Groundwater to remain above 1 mg/L outside of treatment area, but no current groundwater use. Vapor exposure risks mitigated with SSD systems.	Groundwater to remain below 1 mg/L outside of treatment area, but no current groundwater use. Vapor exposure risks mitigated with SSD systems.	Groundwater to remain above 1 mg/L outside of treatment area, but no current groundwater use. Vapor exposure risks mitigated with SSD systems.	Groundwater to remain below 1 mg/L outside of treatment area, but no current groundwater use. Vapor exposure risks mitigated with SSD systems.	Groundwater to remain above 1 mg/L outside of treatment area, but no current groundwater use. Vapor exposure risks mitigated with SSD systems.
Adequacy and Reliability of Controls	SSD systems subject to OM&M program.	Periodic sampling of groundwater. SSD systems subject to OM&M program.	Periodic sampling of groundwater. SSD systems subject to OM&M program.	Periodic sampling of groundwater. SSD systems subject to OM&M program.	Periodic sampling of groundwater. SSD systems subject to OM&M program.	Periodic sampling of groundwater. SSD systems subject to OM&M program.

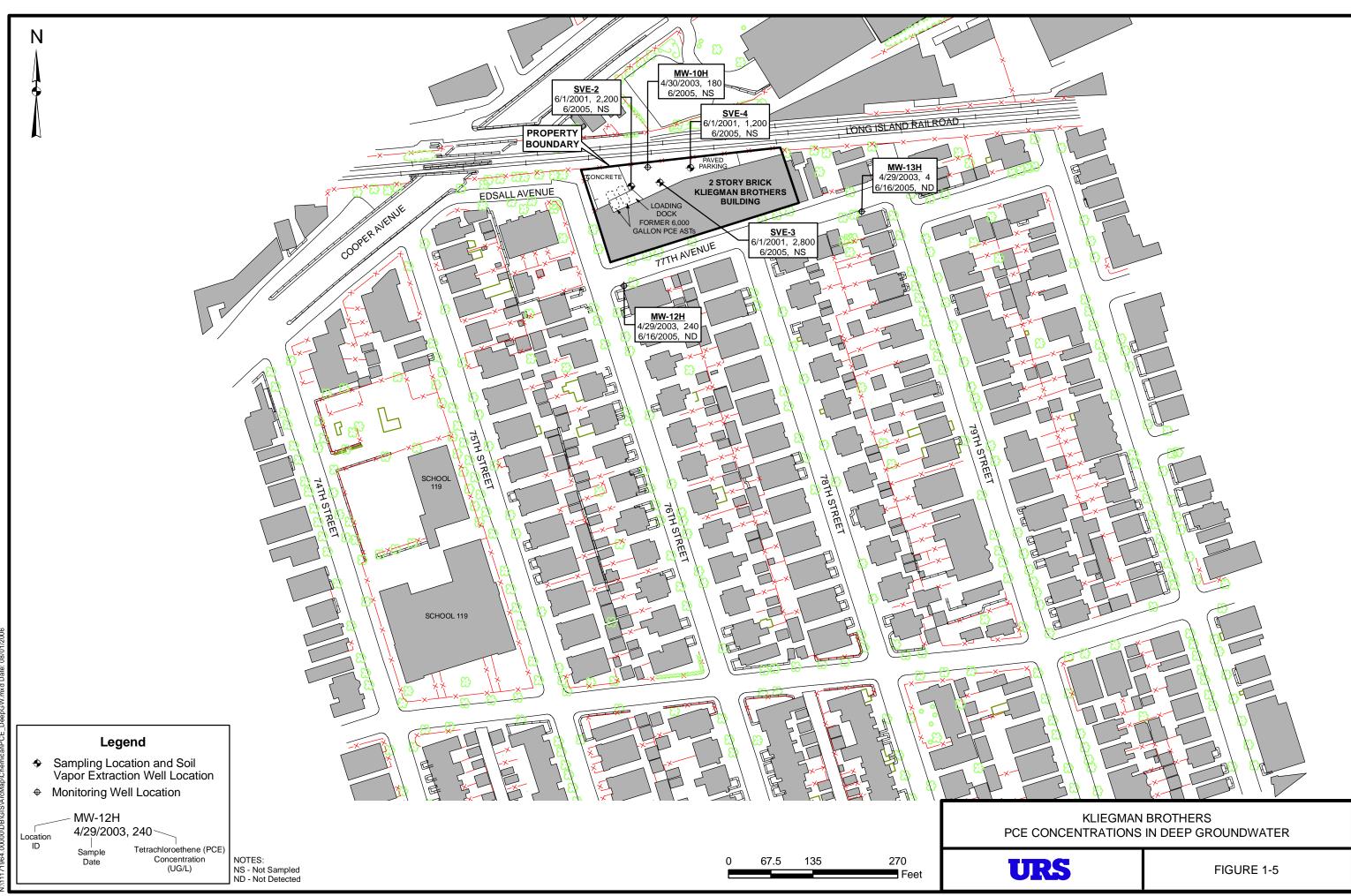
CRITERIA	Alternative 1: No Additional Action OXICITY, MOBILIT	Alternative 2A: Groundwater Extraction from Concentrated Plume Area with Above-Ground Water Treatment	Alternative 2B: Groundwater Extraction from Entire Plume Area with Above- Ground Water Treatment	Alternative 3A: In Situ Chemical Oxidation Treatment of Concentrated Plume Area	Alternative 3B: In Situ Chemical Oxidation Treatment of Entire Plume Area	Alternative 4: In Situ Chemical Oxidation Treatment of Concentrated Plume Area with Induced Ground- water Gradient
Treatment Process(es) Used	None	Groundwater contamination treated with above- ground treatment such as air stripping	Groundwater contamination treated with above- ground treatment such as air stripping	Groundwater and soil contamination treated in situ by oxidation.	Groundwater and soil contamination treated in situ by oxidation.	Groundwater and soil contamination treated in situ by oxidation. Extracted groundwater treated with above-ground treatment.
Reduction of TMV by Treatment	None	Treatment reduces VOC toxicity and reduces migration.	Treatment reduces VOC toxicity and reduces migration.	Treatment reduces VOC toxicity through destruction.	Treatment reduces VOC toxicity through destruction.	Treatment reduces VOC toxicity through destruction and reduces migration.
Types and Quantity of Residuals Remaining After Treatment	NA	No residuals after regeneration of vapor phase carbon. Untreated down- gradient plume on order of 90 kg PCE remains.	No residuals after regeneration of vapor phase carbon. Magnitude of untreated residual downgradient plume contaminants lower than Alt 2A.	Some limited residuals will remain in zone that is treated due to DNAPL on order of 25 kg PCE. Untreated down- gradient plume on order of 90 kg PCE remains.	Some limited residuals, on order of 30 kg PCE will remain in zone that is treated due to DNAPL. Magnitude of untreated residual downgradient plume contaminants lower than Alt 3A.	Some limited residuals, on order of 10 kg PCE, will remain in zone that is treated due to DNAPL. Untreated downgradient plume on order of 90 kg PCE remains.

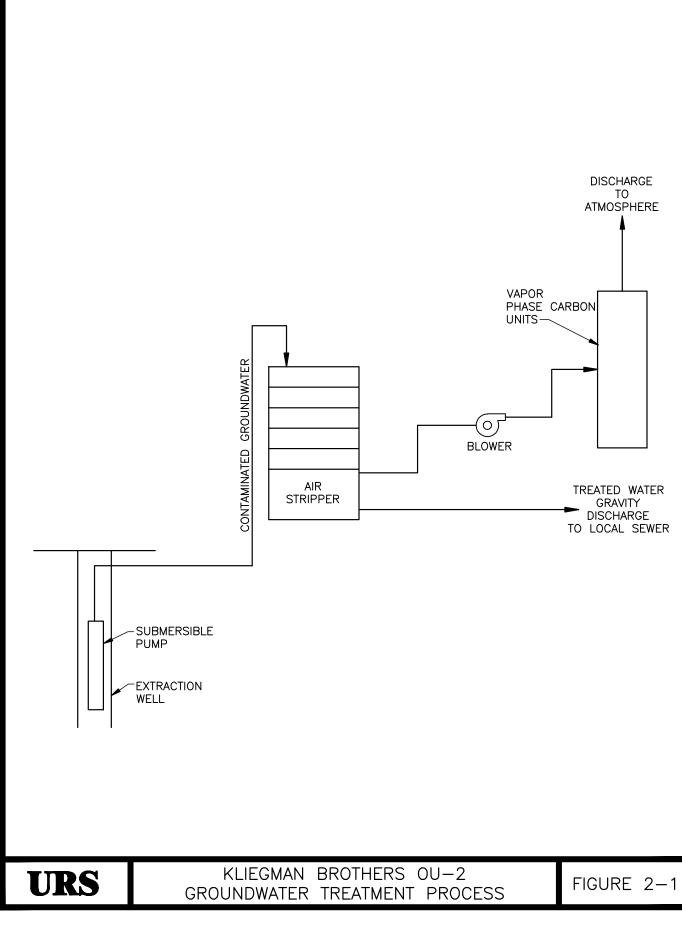

CRITERIA	Alternative 1: No Additional Action	Alternative 2A: Groundwater Extraction from Concentrated Plume Area with Above-Ground Water Treatment	Alternative 2B: Groundwater Extraction from Entire Plume Area with Above- Ground Water Treatment	Alternative 3A: In Situ Chemical Oxidation Treatment of Concentrated Plume Area	Alternative 3B: In Situ Chemical Oxidation Treatment of Entire Plume Area	Alternative 4: In Situ Chemical Oxidation Treatment of Concentrated Plume Area with Induced Ground- water Gradient
Statutory Preference For Treatment	Does not satisfy.	Satisfies preference for treatment.	Satisfies preference for treatment.	Satisfies preference for treatment.	Satisfies preference for treatment.	Satisfies preference for treatment.
IMPLEMENTABIL		1	1	1	t .	
Ability to Construct and Operate	SSD systems readily constructible.	Dearth of available space for treatment limits implementability. SSD systems readily constructible.	Dearth of available space for treatment limits implementability. SSD systems readily constructible.	Access to streets required for oxidant injection. SSD systems readily constructible.	Access to streets required for oxidant injection. SSD systems readily constructible.	Access to streets required for oxidant injection. Dearth of available space for treatment limits implementability. SSD systems readily constructible.
Ease of Undertaking Additional Action if Needed	NA	Duration of treatment is open- ended.	Duration of treatment is open- ended.	Injection wells installed for oxidation will remain in place allowing additional injections if necessary.	Injection wells installed for oxidation will remain in place allowing additional injections if necessary.	Injection wells installed for oxidation will remain in place allowing additional injections if necessary.
Ability to Monitor Effectiveness	SSD systems subject to OM&M program.	Groundwater monitoring readily implemented.	Groundwater monitoring readily implemented.	Groundwater monitoring readily implemented.	Groundwater monitoring readily implemented.	Groundwater monitoring readily implemented.

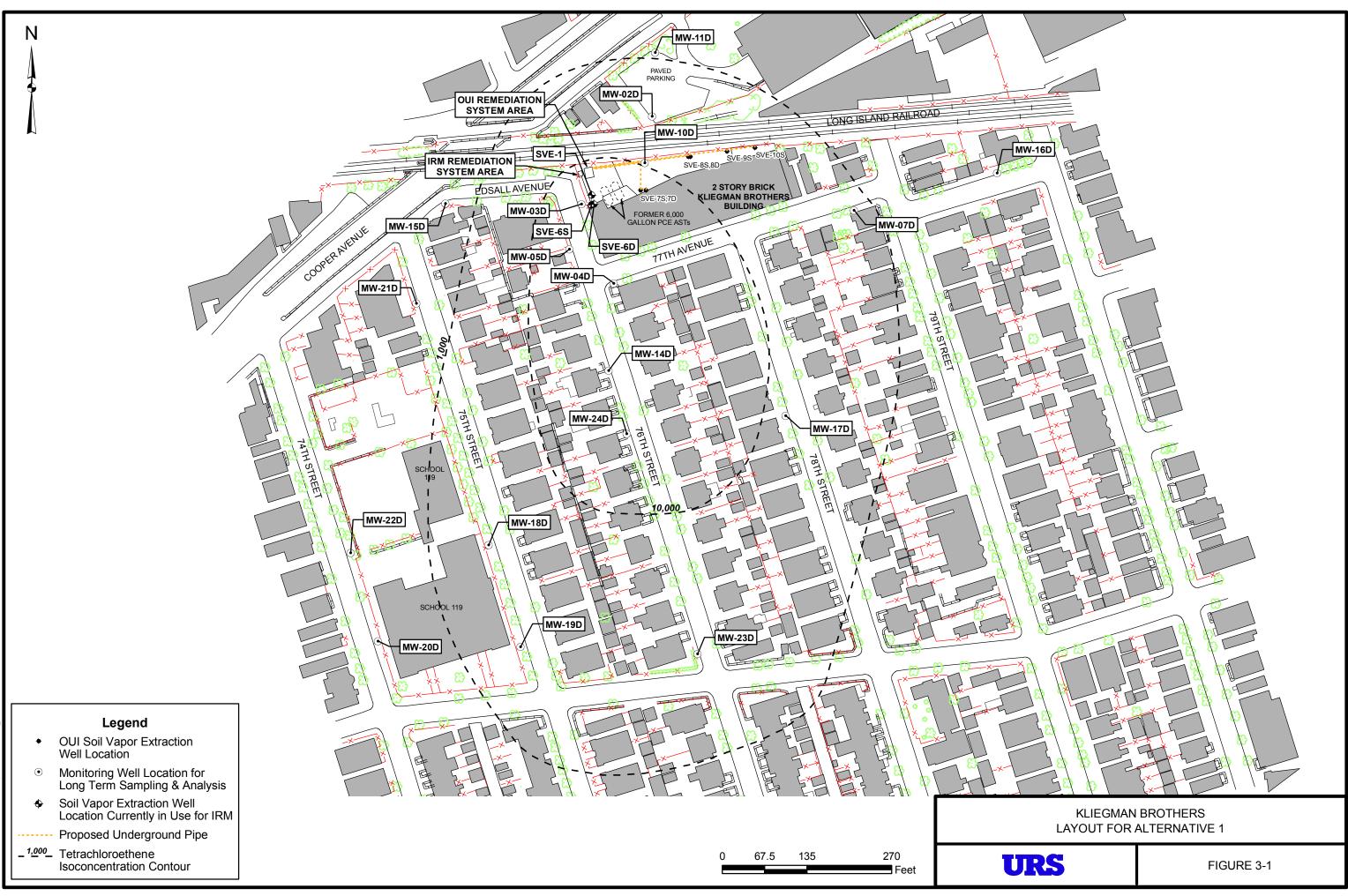
CRITERIA	Alternative 1: No Additional Action	Alternative 2A: Groundwater Extraction from Concentrated Plume Area with Above-Ground Water Treatment	Alternative 2B: Groundwater Extraction from Entire Plume Area with Above- Ground Water Treatment	Alternative 3A: In Situ Chemical Oxidation Treatment of Concentrated Plume Area	Alternative 3B: In Situ Chemical Oxidation Treatment of Entire Plume Area	Alternative 4: In Situ Chemical Oxidation Treatment of Concentrated Plume Area with Induced Ground- water Gradient
Ability to Obtain Approvals and Coordinate with Other Agencies	NA	Need to obtain discharge permit with NYSDEP. Street opening permits required.	Need to obtain discharge permit with NYSDEP. Street opening permits required.	Street opening permits required.	Street opening permits required.	Need to obtain discharge permit with NYSDEP. Street opening permits required.
Availability of Equipment, Specialists and Materials	SSD system installers readily available.	Mitigation and Remediation contractors readily available.	Mitigation and Remediation contractors readily available.	Mitigation and Remediation contractors readily available.	Mitigation and Remediation contractors readily available.	Mitigation and Remediation contractors readily available.
CAPITAL COST	\$0	\$1,218,000	\$1,062,000	\$7,690,000	\$13,658,000	\$7,272,000
Total Present Worth	\$477,000	\$6,239,000	\$6,148,000	\$7,972,000	\$13,940,000	\$7,557,000

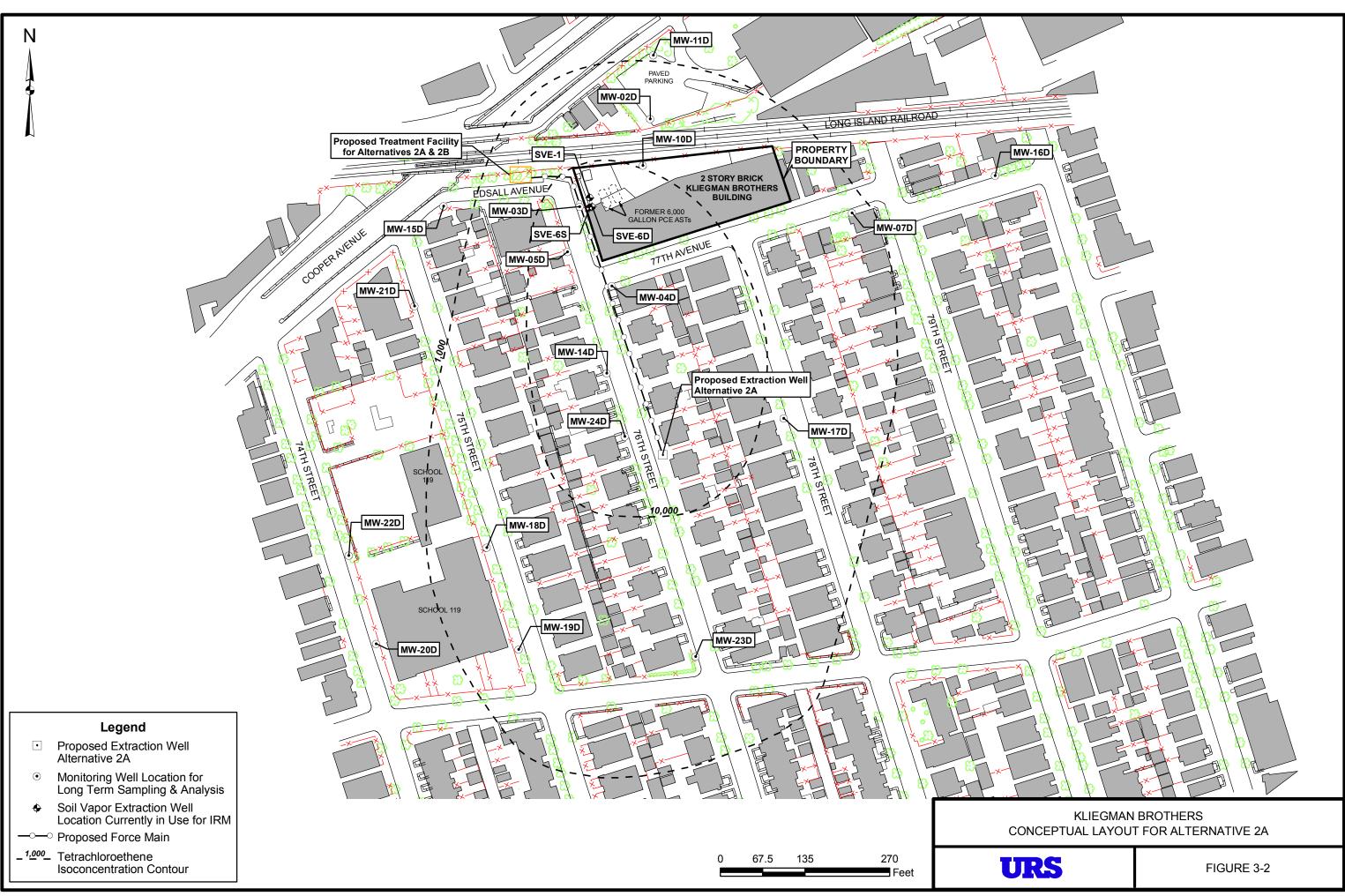

FIGURES

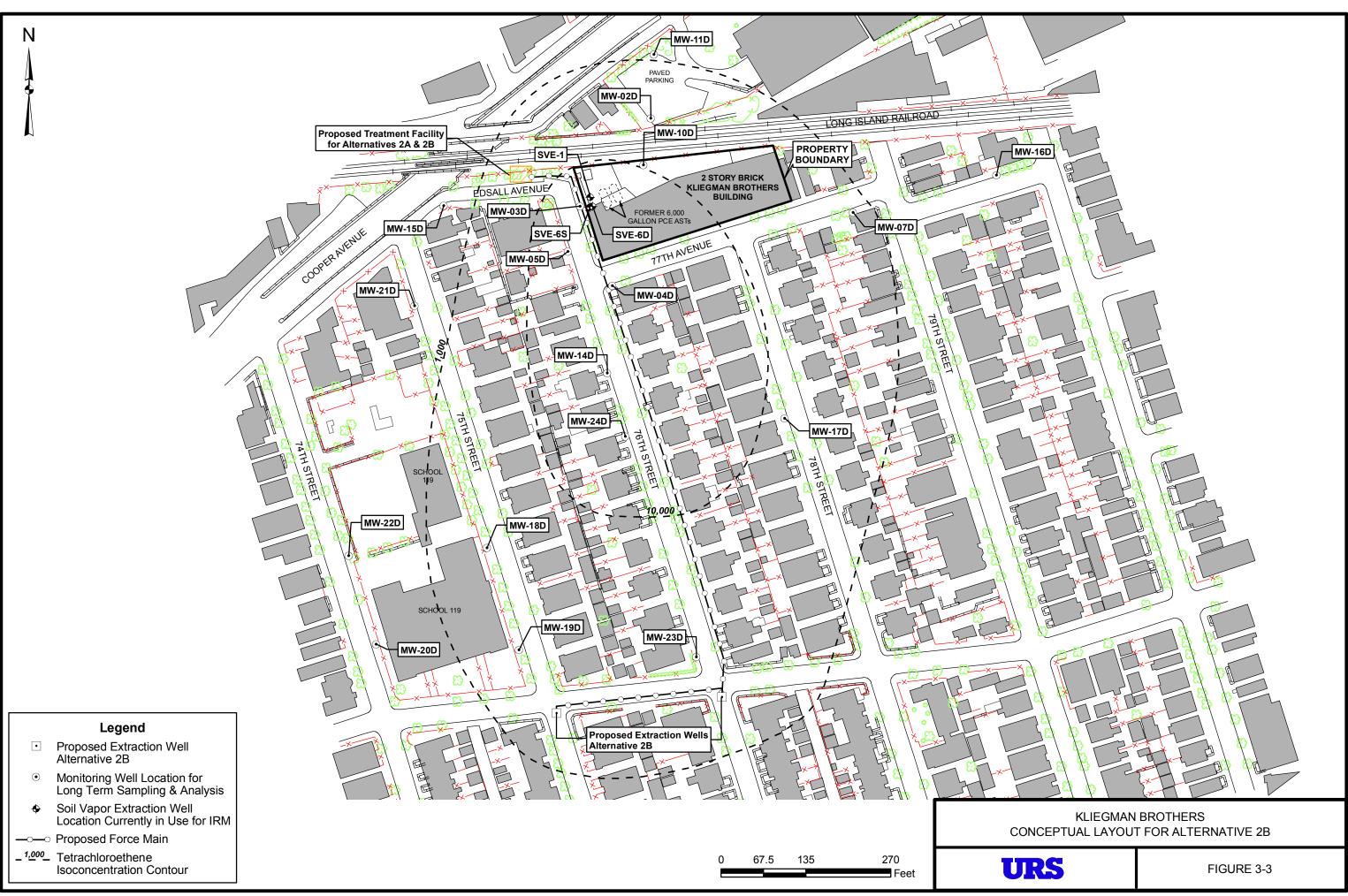


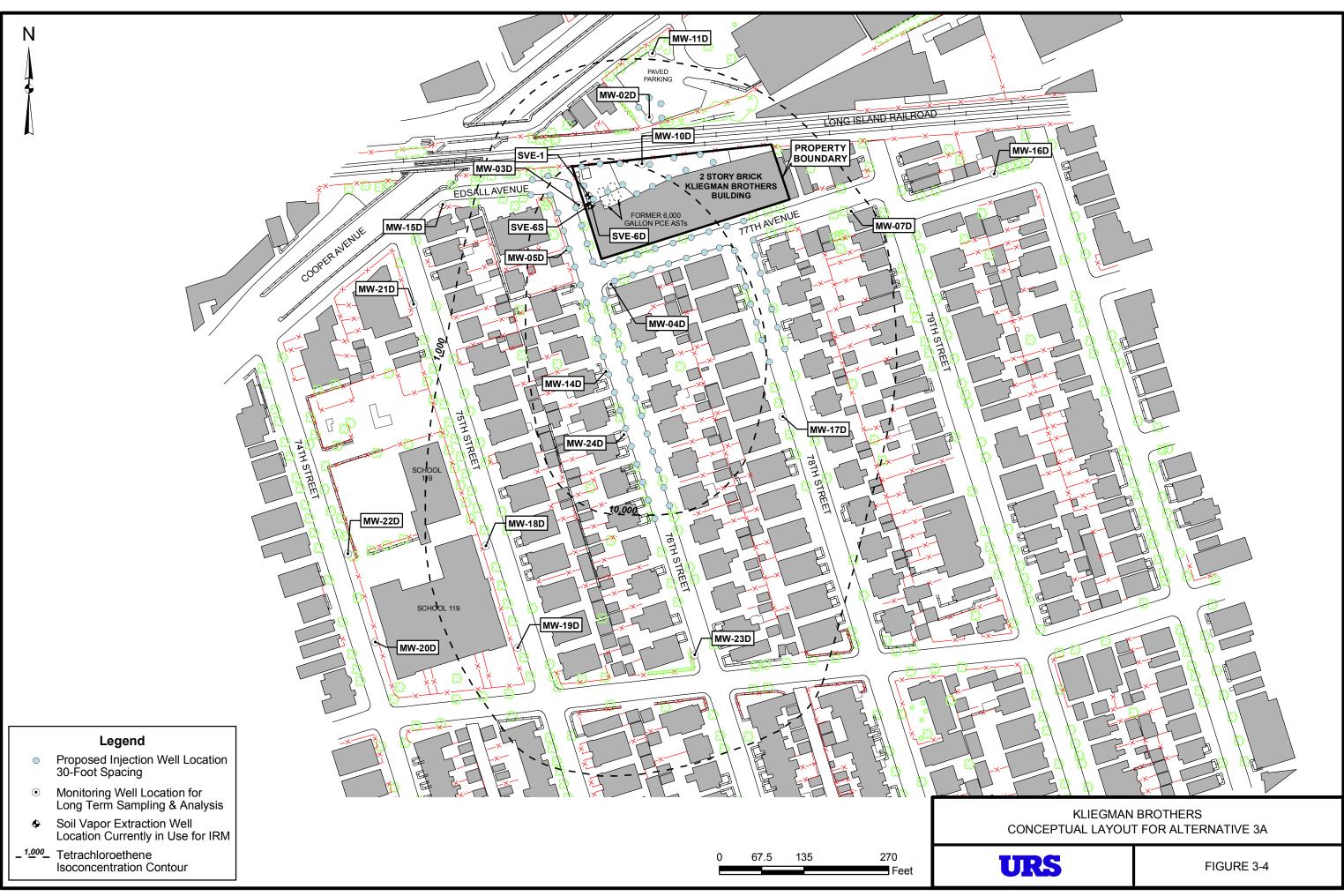

N:/11171964.00000/DB\GIS\site.apr SITE LOCATION 10/7/2005


:\11171964.00000\DB\GIS\ArcMap\SITE PLAN.mxd Date: 07/26/200

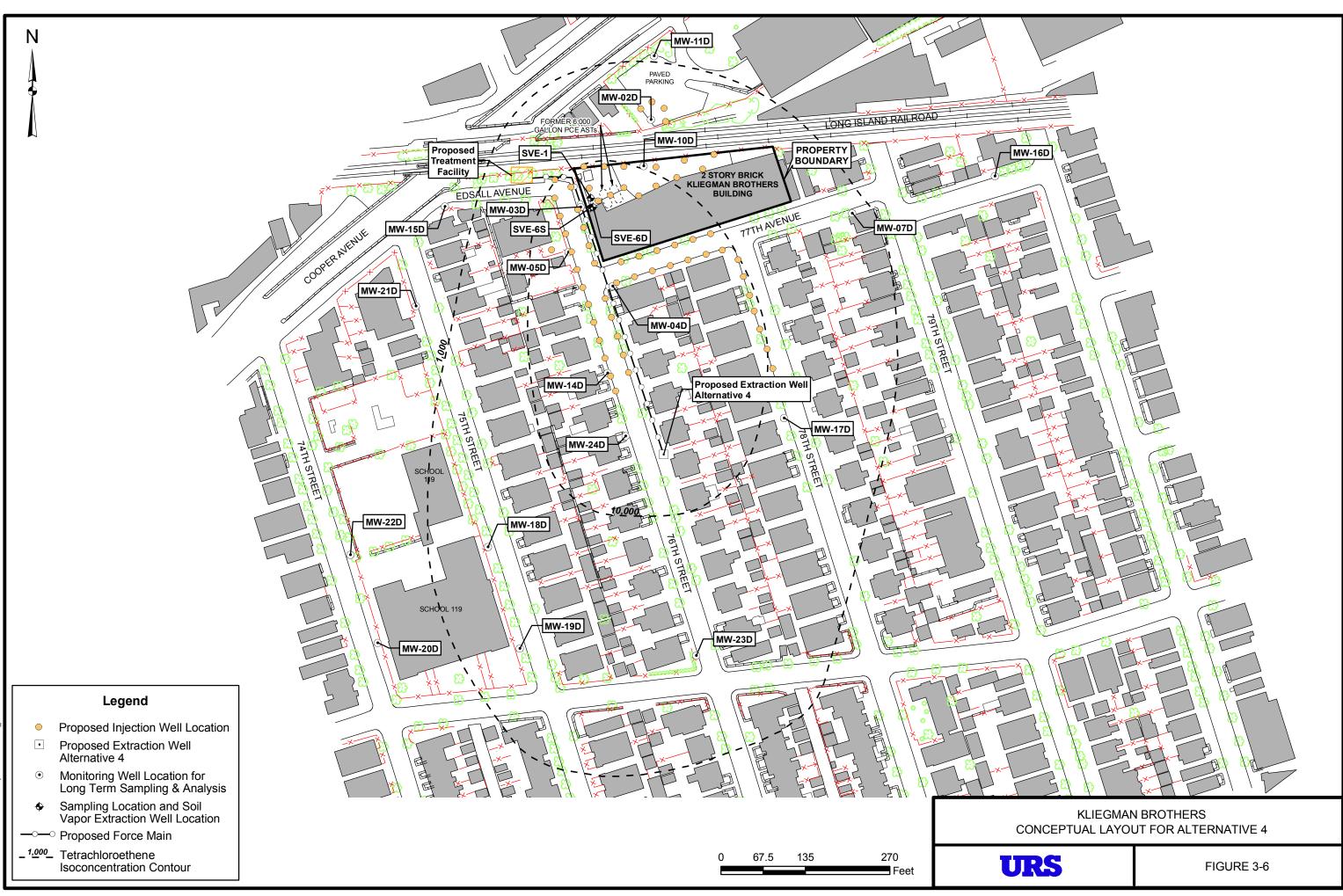












APPENDICES

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

APPENDIX A GROUNDWATER CALCULATIONS

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

URS

77 Goodell Street Buffalo, New York 14203

CALCULATION COVER SHEET

Ē

(716) 856-5636

Client: <u>NYSDEC</u>	Project Name:	Kliegman Bros
Project / Calculation Number: <u>111 74 770</u>		
Title: Hydraulic Containment of the Dissolved-Pha.	se PCE Contamination	- Part 1
Total number of pages (including cover sheet):	36 (35 + cover)	
Total number of computer runs:	0	_
Prepared by: Marek Ostrowst	ki	Date: Sep 21,208
Checked by: Amy Monti	· · · · · · · · · · · · · · · · · · ·	Date: <u>Sep 21,208</u> Date: <u>Sep 22,200</u>
Description and Purpose: <u>To evaluate the fea</u>	sibility of controlling the	dissolved-phase
contamination by means of hydraulic containment. For		
* Number of extraction wells, * Well locations, * Wel	ll penetration depth,	· · · ·
* Well diameter, * Extraction rate.	<u> </u>	
Design bases / references / assumptions:	Theory of wells in un	form flow is used. Aquifer
		ionn now is used. Aquiler
thickness and hydraulic conductivity estimated based		
thickness and hydraulic conductivity estimated based of gradient is not well defined, the regional value is used	on literature sources. Le	
thickness and hydraulic conductivity estimated based of gradient is not well defined, the regional value is used.	on literature sources. Le	
	on literature sources. Le	
	on literature sources. Le	
gradient is not well defined, the regional value is used.	on literature sources. Le	
gradient is not well defined, the regional value is used.	on literature sources. Lo RY for details. Containm	peal hydraulic
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be	peal hydraulic nent appears to be feasible.
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be	peal hydraulic nent appears to be feasible.
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp	peal hydraulic ment appears to be feasible. The required for the 10,000-ppb m (10,000-ppb and 1,000-ppb
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAF</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu plumes, respectively) if wells were placed near downgr	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes	peal hydraulic pent appears to be feasible. Prequired for the 10,000-ppb om (10,000-ppb and 1,000-ppb of Uncertainties exist
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAF</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu plumes, respectively) if wells were placed near downgr	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes	peal hydraulic pent appears to be feasible. Prequired for the 10,000-ppb om (10,000-ppb and 1,000-ppb of Uncertainties exist
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu plumes, respectively) if wells were placed near downgra regarding magnitude and direction of hydraulic gradient	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes	peal hydraulic pent appears to be feasible. Prequired for the 10,000-ppb om (10,000-ppb and 1,000-ppb of Uncertainties exist hydraulic conductivity.
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu plumes, respectively) if wells were placed near downgra regarding magnitude and direction of hydraulic gradient	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes	peal hydraulic pent appears to be feasible. Prequired for the 10,000-ppb om (10,000-ppb and 1,000-ppb of Uncertainties exist
gradient is not well defined, the regional value is used.	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes t, aquifer thickness and	ent appears to be feasible. required for the 10,000-ppb (10,000-ppb and 1,000-ppb) Uncertainties exist hydraulic conductivity. 10/2/26
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu plumes, respectively) if wells were placed near downgra regarding magnitude and direction of hydraulic gradient Calculation Approved by:	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes t, aquifer thickness and	ent appears to be feasible. e required for the 10,000-ppb om (10,000-ppb and 1,000-ppb . Uncertainties exist hydraulic conductivity. 10/2/26 Project Manager / Date
gradient is not well defined, the regional value is used. Remarks / conclusions: <u>See Section 7 SUMMAR</u> For wells placed at Kliegman property, rates of 1,000 a and 1,000-ppb plumes, respectively. This could be redu plumes, respectively) if wells were placed near downgra regarding magnitude and direction of hydraulic gradient Calculation Approved by:	on literature sources. Lo RY for details. Containm nd 2,000 gpm would be uced to 100 and 200 gp adient edges of plumes t, aquifer thickness and	ent appears to be feasible. e required for the 10,000-ppb om (10,000-ppb and 1,000-ppb . Uncertainties exist hydraulic conductivity. 10/2/26 Project Manager / Date

. .

PAGE <u>1</u> OF <u>35</u> JOB NO. 111 74 770

MADE BY: MO DATE: 8/21/06 CHKD. BY: AMM DATE: 9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site

SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1

1. PURPOSE

The purpose of this calculation is to investigate the feasibility of using hydraulic containment to control dissolved PCE contamination identified at the Kliegman Brothers site. Two plumes are considered, with boundaries defined by the 1,000-ppb and 10,000-ppb isoconcentration lines, respectively. The following issues are discussed:

- Number of extraction wells
- Well locations
- Well penetration depth
- Well diameter
- Extraction rate

2. GENERAL

Information about the site is based on reference 1. The site is located in the City of New York, Queens County, in a densely populated urban/commercial setting (Figure 1-1 of this FS report, reproduced on page <u>14</u>). The upper-most unit is the unconfined Upper Glacial aquifer, with the water table located approximately 70 feet below ground surface, although a perched water zone has been identified approximately 10 to 15 feet below ground surface in the eastern part of the site. The overall thickness of the water-bearing zone is not known. Wells were drilled to the maximum depth of approximately 150 ft. Hydraulic conductivity of the water-bearing zone deposits, as measured using slug tests, is very high, on the order of 10^{-2} to 10^{-1} cm/s. In the perched zone, the hydraulic conductivity appears to be much lower. The hydraulic gradient in the water-bearing zone is very low, to the point where the identification of the local flow direction across the site is not feasible with existing data.

A plume of dissolved contamination has been identified. The extent of the plume of PCE is shown on Figure 1-4 of this FS report, also reproduced page <u>15</u> of this calculation. There is an area of approximately 400 by 600 ft, where concentrations of PCE area greater than 10,000 micrograms per liter. The area with concentrations greater than 1,000 micrograms per liter is approximately 800 by 1,200 ft. Note that the 1,000-ppb area is well defined only to the west.

M:\NYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

URS

PAGE <u>2</u> OF <u>35</u> JOB NO. 111 74 770

MADE BY: 10 DATE: 9/21/06 CHKD. BY: AMM DATE: 9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site <u>SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1</u>

Because of the low hydraulic gradients, it is difficult to determine the local flow direction. The shape of the plume elongated in the north-south direction - appears to indicate the southerly flow. Also, the regional flow direction is to the south (reference 2).

3. METHODOLOGY

Ground water flowing through the designated containment area is to be captured by means of ground water extraction wells. The total extraction rate required to create a capture zone around that area will be calculated using the approximation of a well placed in the uniform flow of ground water. Terms used in this methodology are listed below in alphabetical order:

- d Downgradient extent of the capture zone, [m]
- H_0 Undisturbed saturated thickness, [m]
- h_w Saturated thickness at well face, [m]
- i Hydraulic gradient, [-]
- K Hydraulic conductivity, [m/s]
- Q Required total extraction rate, $[m^3/s]$
- Q_w Extraction rate of a single well, $[m^3/s]$
- R Well's radius of influence, [m]
- r_w Radius of the well, [m]
- s_w Drawdown in the well, [m]
- T Aquifer's transmissivity, [m²/s]
- W Width of the capture zone in the direction perpendicular to the flow, at the line passing through the well, [m]

The lateral extent of the capture at the line passing through the well can be estimated as (reference 3, Figure 12):

 $W = Q_w / 2 T i$

The downgradient extent of the capture zone of a single well, at the line parallel to the flow and passing through the well, can be calculated as (reference 3, Figure 12):

$$d = Q_w / 2\pi T i$$

M:\WYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

PAGE _3_ OF_35_

JOB NO. 111 74 770 MADE BY: MO DATE: 9/21/06

CHKD. BY: AMM DATE: 9122 106

PROJECT: NYSDEC, Kliegman Bros. Site <u>SUBJECT:</u> Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1

The lateral and sidegradient dimensions ("W" and "d", respectively) of the capture zone of a single well can be compared to the dimensions of capture zone required to achieve the containment of the plume. When the size of the capture zone of a single well is not sufficient, several wells must be used.

Note that the overall sidegradient dimension of the capture zone of a system of wells (W_{total}) is a linear function of the total extraction rate; and therefore, the linear function of the number "N" of wells in operation (reference 3, Table 5).

 $W_{total} = N W = N (Q_w / 2 T i)$

Therefore, knowing the required total width of the capture zone, the necessary number of wells can be calculated:

$$N = W_{total} / (Q_w / 2 T i)$$

The corresponding total extraction rate "Q" is:

 $Q = N Q_w$

The downgradient extent of the capture zone for the system of wells located along the line perpendicular to the flow direction is the same for one well and two wells, if the wells are spaced at optimum distance to maximize the widt of capture zone. This extent increases by a factor of 1.5 if three wells are used (reference 3, Table 5).

 $d_{one well} = Q_w / 2\pi T i$

d_{two wells} = Q_w / 2π T i

 $d_{\text{three wells}} = (3/2) (Q_w / 2\pi T i)$

Therefore, when wells are spaced to maximize the width of capture zone, unlike in the case of the lateral dimension (width), increasing the number of wells and the extraction rate does not necessarily produce a corresponding increase in the downgradient reach of the capture zone. The above does not apply when wells are spaced closer than the optimum distance for maximizing the width, where downgradient extent does increase with the increase in number of wells and total extraction rate.

M:\NYSDBC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

PAGE _4_ OF_35_

JOB NO. 111 74 770

MADE BY: 100 DATE: 9/21/06 CHKD. BY: AMM DATE: 9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1

The extraction rate of a given well pumping from an unconfined aquifer can be related to the drawdown in that well as (reference 4, Equations 8-23 and 8-12):

$$H_0^2 - h_w^2 = (Q_w/\pi K) \ln (R/r_w)$$

$$R = 575s_w (H_0 K)^{1/2}$$

$$s_w = H_0 - h_w$$

$$Q_w = (H_0^2 - h_w^2) \pi K / \ln [575 (H_0 - h_w) (H_0 K)^{1/2} / r_w]$$

However, wells are not fully efficient. Only some fraction "f" of the well drawdown $s_w = H_0 - h_w$ is the "effective" drawdown, affecting the aquifer. The rest is used up by well losses. The extraction rate corrected for the presence of well losses is:

$$\begin{split} s_{w-eff} &= f \ s_{w} = f \ (H_{0} - h_{w}) \\ h_{w-eff} &= H_{0} - s_{w-eff} = H_{0} - f \ s_{w} = \\ &= H_{0} - f \ (H_{0} - h_{w}) = (1 - f) \ H_{0} + f \ h_{w} \\ Q_{w} &= (H_{0}^{2} - h_{w-eff}^{2}) \ \pi \ K \ / \ \ln[575(H_{0} - h_{w-eff}) \ (H_{0}K)^{1/2}/r_{w}] \end{split}$$

Well capacity is the maximum extraction rate that can be achieved by a well. It corresponds to the maximum drawdown that can be developed in that well, i.e. the minimum saturated thickness that can be achieved in the well.

$$h_{w-eff-min} = (1 - f) H_0 + f h_{w-min}$$

$$Q_{w-max} = (H_0^2 - h_{w-eff-min}^2) \pi K / \ln[575(H_0 - h_{w-eff-min}) (H_0 K)^{1/2} / r_w]$$

When the capture zone developed by a well pumping at, or below, its capacity is sufficient to create the required containment, only one well is needed. Otherwise, wells must be added to increase the extraction and the size of the capture zone.

N:\NYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

		PAGE	5_0F_35_
MADE BY:	ΛØ		111 74 770 9/21/06 9/22/06
CHKD. BY:	Annm	DATE:	9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site

SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1

4. PARAMETERS

Thickness of saturated zone - Ho

Local data on aquifer depth are not available as the borings did not reach clay. Based on reference 5, the Gardiners Clay occurs at the elevation of approximately -150 ft in the study area. Water table occurs at an elevation of approximately +20 ft (reference 2). Therefore, the thickness of the waterbearing zone is approximately 170 ft. Use 200 ft. $H_0 = 200$ ft = 60 m

Hydraulic conductivity - K

Based on Table 1 of reference 6, hydraulic conductivity of the Upper Glacial aquifer is 20-80 ft/d or 200-300 ft/d, depending on the type of deposits. At the site, slug tests indicted very high conductivities, so the upper end values are more likely. Use:

 $K = 1*10^{-1} \text{ cm/s} = 1*10^{-3} \text{ m/s} = 283 \text{ ft/d}$

Hydraulic gradient - i

Local gradient is very low, and it has not been well defined. Use regional gradient, based on the gradient in the Upper Glacial aquifer (reference 2).

 $i \approx 10 \text{ ft} / 10,000 \text{ ft} = 0.001$

Well radius - rw

The required extraction rate per well is expected to be high, based on the high hydraulic conductivity of the water-bearing zone. Use 10-inch wells.

 $r_{w} = 5 \text{ in} = 0.13 \text{ m}$

Minimum saturated thickness at well - h_{w-min} Assume that at least 85% of the saturated zone has to remain in saturation.

 $h_{w-min} = 0.85 * H_0 = 0.85 * 60 = 51 m$

Well efficiency - f

Assume that the efficiency of the extraction wells will be 30%.

f = 0.30

M:\NYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Partl.doc 09/21/06 9:06 AM

URS

URS				PAGE	60F35
				JOB N	10. 111 74 770
		MADE BY:	MO	DATE:	8/21/06
		CHKD. BY:	Amm	DATE:	9122106
PROJECT:	NYSDEC, Kliegman Bros. Site				
SUBJECT:	Hydraulic Containment of the Dissol	ved-Phase PCE	Contamir	nation - Pa	rt 1

5. CALCULATIONS

Summary of parameters:

Calculate:

Calculations are performed by first developing the relationship between the well extraction rate and the size of the capture zone. Then, the extraction rate and corresponding capture zone size are evaluated with respect to the size of the plume and containment coverage.

Calculations of the extraction rate and dimensions of capture zone are performed in a spreadsheet table on page <u>12</u>. An example calculation is provided below. Saturated thickness at the extraction well for the example calculation is 56.4 m.

 $h_w = 56.4 \text{ m} (H_0 = 60 \text{ m} > h_w = 56.4 \text{ m} > h_{w-min} = 51 \text{ m})$

The effective saturated thickness at well is:

$$h_{w-eff} = (1 - f) H_0 + f h_w = (1 - 0.3) \times 60 + 0.3 \times 56.4 = 58.92 m$$

Calculate the extraction rate:

$$Q_{w} = (H_{0}^{2} - h_{w-eff}^{2}) \pi K / \ln[575(H_{0} - h_{w-eff})(H_{0}K)^{1/2}/r_{w}]$$

$$Q_{w} = (60^{2} - 58.92^{2})*\pi*0.001 / \ln[575*(60 - 58.92)(60*0.001)^{1/2}/0.13] = 128.43*\pi*0.001 / \ln[575*1.08*0.245/0.13] = 0.403 / \ln(1,170.3) = 0.403 / 7.07 = 0.057 m^{3}/s$$

$$(905 \text{ gpm})$$

M:\NYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

PAGE 7 OF 35 JOB NO. 111 74 770 MADE BY: A B DATE: 9/2//0/ CHKD. BY: A M DATE: 9/22/06

CHKD. BY: AMM DATE: 9122 PROJECT: NYSDEC, Kliegman Bros. Site SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1

The lateral extent of the capture zone is:

 $W = Q_w / 2 T i$ W = 0.057 / 2*0.06*0.001W = 475 m (1,560 ft)

The downgradient extent of the capture zone is:

 $d = Q_w / 2\pi T i$ $d = 0.0057 / 2*\pi*0.06*0.001$ d = 151 m (500 ft)

The extraction rate and the dimensions of capture zone are the same as those in the spreadsheet table.

The plots of capture zone dimensions as a function of the extraction rate is shown on page <u>13</u> of this calculation.

6. ANALYSIS

The 1,000-ppb Area

The Kliegman Bros. property is located approximately 900 ft north from the farthest location of the 1,000-ppb isoconcentration line (see page <u>15</u>). The most likely direction of ground water flow is to the south. Assume a target downgradient extent of 1,000 ft. A well placed on the property could create a capture zone with the downgradient extent of 1,000 ft - this would require an extraction rate of approximately 2,000 gpm (see plot on page <u>13</u>). The aquifer should be able to provide this rate without major problems.

With the flow of Q = 2,000 gpm (4.5 cfs), assuming an L = 100-ft long submerged screen, open screen area of $f_{op} = 10\%$ and the maximum allowable velocity through the screen of v = 0.1 ft/s, the required well diameter is:

 $D = Q / \pi L f v = 4.5 / \pi 100 * 0.10 * 0.10 = 1.4 ft (17 in)$

Either a very large diameter well, or several standard wells Would be required. M:\WYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc

		PAGE	3 OF35
MADE BY: CHKD. BY:	mo Amm	JOB NO. DATE: DATE:	111 74 770 9 121 / 06 9 122 106

PROJECT: NYSDEC, Kliegman Bros. Site <u>SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1</u>

Note that the lateral extent of the capture zone associated with the extraction of 2,000 gpm is much greater than the width of the plume – approximately 3,100 ft (page <u>13</u>) vs. the plume width approximately 800 ft (page <u>15</u>). Therefore, the lateral containment of the plume is feasible.

Moreover, at the extraction rate of 2,000 gpm, the direction of ground water flow does not matter, as every dimension of the plume is less than the lateral extent of the capture zone (plume is approximately 1,200 by 800 ft, lateral extent is approximately 3,100 ft).

The lateral width of the 1,000-ppb area is approximately 800 ft (page 15), say 1,000 ft for the purpose of this calculation. The 1,000-ft wide capture zone can be created by extracting approximately 600 gpm (page 13). This is the lowest extraction rate where the 1,000-ppb area can be contained. At that extraction rate, the downgradient extent of the capture zone is approximately 300 ft (page 13). Therefore, the most efficient containment of the 1,000-ppb are would require well, or wells, placed within 300 ft of the downgradient extent of the southerly flow direction.

The 10,000-ppb Area

The farthest distance from the property to the 10,000-ppb isoconcentration line is approximately 600 ft (page <u>15</u>). From the plot on page <u>13</u>, the extraction rate required to create the downgrdadient capture zone encompassing the 10,000-ppb line (i.e. 600 ft downgradient from the well), with the well or wells located at the Kliegman property, is approximately 1,000 gpm. The lateral extent of the capture zone associated with the extraction of 1,000 gpm is approximately 1,800 ft (page <u>13</u>), which is greater than the lateral dimension of both the 10,000- and 1,000-ppb areas.

With the flow of Q = 1,000 gpm (2.2 cfs), assuming the same parameters as those used before for the 2,000-gpm well:

 $D = Q / \pi L f v = 2.2 / \pi 100 * 0.10 * 0.10 = 0.7 ft (8.4 in)$

A 10- to 12-in diameter well would be sufficient.

PAGE __9_ OF__35_

JOB NO. 111 74 770 MADE BY: MO DATE: 8/21/06 CHKD. BY: AMM DATE: 9/22 (06

PROJECT: NYSDEC, Kliegman Bros. Site <u>SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1</u>

The lateral dimension of the 10,000-ppb area is approximately 400 ft, assuming southerly flow (page <u>15</u>). In order to contain it, extraction rate of approximately 200 gpm would be required (page <u>13</u>). This is the lowest extraction rate that would produce containment. The downgradient extent of the capture zone associated with that extraction, and therefore, the distance from the well to the leading edge of the plume, is approximately 150 ft (page <u>13</u>).

Overall Performance

As indicated earlier, the local flow direction is not well defined. Considering that, it would be informative to reiterate extraction requirements for well(s) located at the site, and able to provide hydraulic containment regardless of the flow direction.

For the 1,000-ppb area, a 2,000-gpm extraction rate would be required. The downgradient reach of capture zone is approximately 1,000 ft, the lateral extent is approximately 3,100 ft.

For the 10,000-ppb plume, the 1,000-gpm extraction provides a 600-ft downgradient extent of capture zone, and a 1,800-ft lateral extent.

In both cases, plume dimensions are lower than the dimensions of capture zones regardless of the flow direction.

Reduction in extraction rates could be accomplished by using wells placed near the leading edges of the plumes and targeting only the upper zone of the aquifer, where the dissolved contamination appears to be concentrated. Partially penetrating wells could be employed for that purpose. However, those wells would be effective only if placed in strategic locations near the downgradient edges of contaminated areas. Therefore, the local flow direction would have to be better defined.

Assuming a 50-ft deep containment zone, and the same gradient and conductivity as those employed in the previous calculations, the optimized extraction rates can be estimated as follows:

M:\NYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

URS				PAGE10	L_ OF_ <u>35</u> _
	M	IADE BY: HKD. BY:	pho		111 74 770 8/21/06 9 122 106
PROJECT:	NYSDEC, Kliegman Bros. Site		•		
SUBJECT:	Hydraulic Containment of the Dissolved-	Phase PCE	Contamin	ation - Part 1	

• For the 1,000-ppb area, largest dimension of 1,200 ft

 $W = Q_w / 2 T i \rightarrow Q_w = W 2 T i$ $Q_W = 1,200*2*(50*283)*0.001 =$ $= 34,000 \text{ ft}^3/\text{d} = 180 \text{ gpm}$

• For the 10,000-ppb area, largest dimension of 600 ft

 $Q_W = 600*2*(50*283)*0.001 =$ = 17,000 ft³/d = 90 qpm

It appears that, depending on the area that must be contained and the selected depth of containment, extraction rate on the order of few hundred gallons per minute could be used. This; however, would require a good understanding of the local flow directions and placement of several wells in strategic locations near the downgradient edges of the plumes.

7. SUMMARY

In summary, a 1,000-gpm or a 2,000-gpm system would be required to contain the 10,000-ppb and 1,000-ppb plumes, respectively, by means of extracting ground water from the Kliegman Bros. property. Relatively large-diameter, deep wells, either fully penetrating or penetrating most of the aquifer thickness, would be required. These systems would perform well regardless of the flow direction.

Reduction of the extraction rates to approximately 100 to 200 gallons per minute could be accomplished by targeting only the top part of the aquifer with partially penetrating wells and by locating wells near the downgradient edges of the plumes. To fully evaluate that option, a better definition of the local flow direction would be required. Based on current data, it appears that the local flow direction may be variable. If that were confirmed, designing a low extraction rate system that would maintain the containment at all times may be difficult. In addition, the downgradient edges of the 1,000-ppb and 10,000-ppb plumes are located in residential areas. It is not clear whether wells can be installed in locations that would be required for the optimized system.

M:\NYSDEC\KliegmanBros\Kliegman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM

UKS				PAGE	L1 OF35
				JOB NO.	. 111 74 770
		MADE BY:	pro	DATE:	3/21/06
		CHKD. BY:	Amm	DATE:	9122106
PROJECT:	NYSDEC, Kliegman Bros. Site				1100
SUBJECT:	Hydraulic Containment of the Dissol	ved-Phase_PCE	Contamir	nation - Part	1

8. REFERENCES

- Remedial Investigation Report Kliegmand Bros. Site URS Corporation Group Consultants, Final February 2004
- 2. Water-Table and Potentiometric-Surface Altitudes of the Upper glacial, Magothy, and Lloyd Aquifers on Long Island, New York, in March-April 200, with a Summary of Hydrogeologic Conditions U.S. Geological Survey Water-Resources Investigations Report 01-4165
- 3. Groundwater Contamination Optimal Capture and Containment S.M. Gorelick, R.A. Freeze, D. Donohue, J.F. Keely Lewis Publishers, 1993
- Hydraulics of Groundwater J. Bear McGraw-Hill, 1979
- 5. Hydrologic Framework of Long Island, New York D.A. Smolensky, H.T. Buxton, P.K. Shernoff U.S. Geological Survey, 1989
- 6. Simulation of Ground-Water Flow and Pumpage in Kings and Queens Counties, Long Island, New York U.S. Geological Survey Water-Resources Investigations Report 98-4071

URS

M:\NYSDEC\KlicgmanBros\Klicgman_hydraulic_containment_Part1.doc 09/21/06 9:06 AM Calculates extent of capture zone based on theory of wells in uniform flow. Wells extract from an unconfined aquifer.

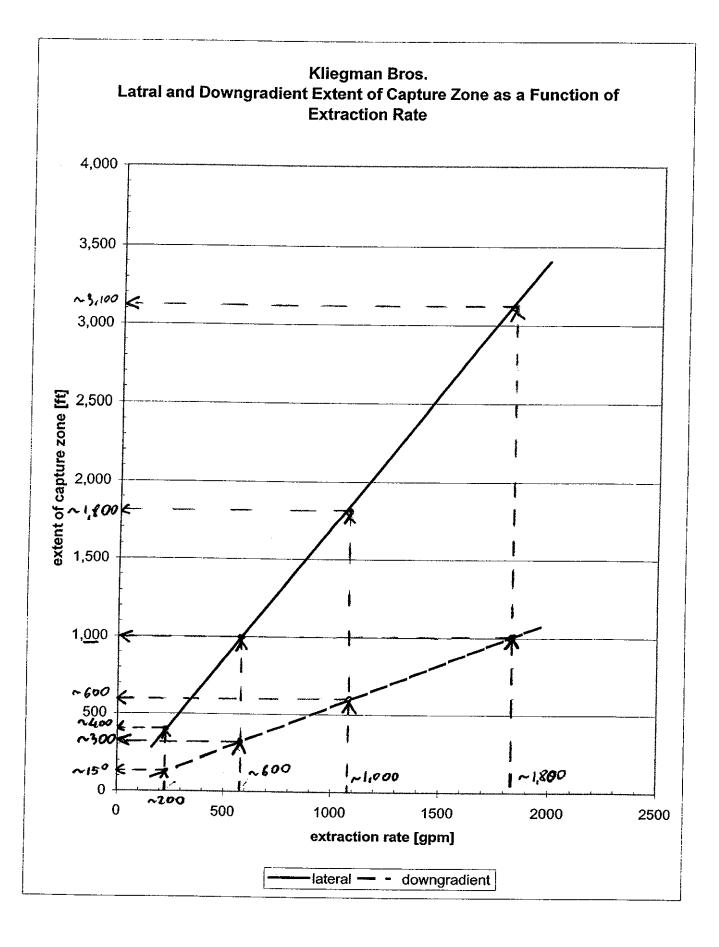
$$\begin{aligned} h_{w-eff} &= (1 - f) H_0 + f h_w \\ Q_w &= (H_0^2 - h_{w-eff}^2) \pi K / \ln[575(H_0 - h_{w-eff}) (H_0 K)^{1/2} / r_w] \\ W &= Q_w / 2 T i \\ d &= Q_w / 2 \pi T i \end{aligned}$$

pg 12 0. 9 35

Where:

- f well efficiency, [-]
- H₀ undisturbed saturated thickness, [m]
- hw saturated thickness in extraction well, [m]

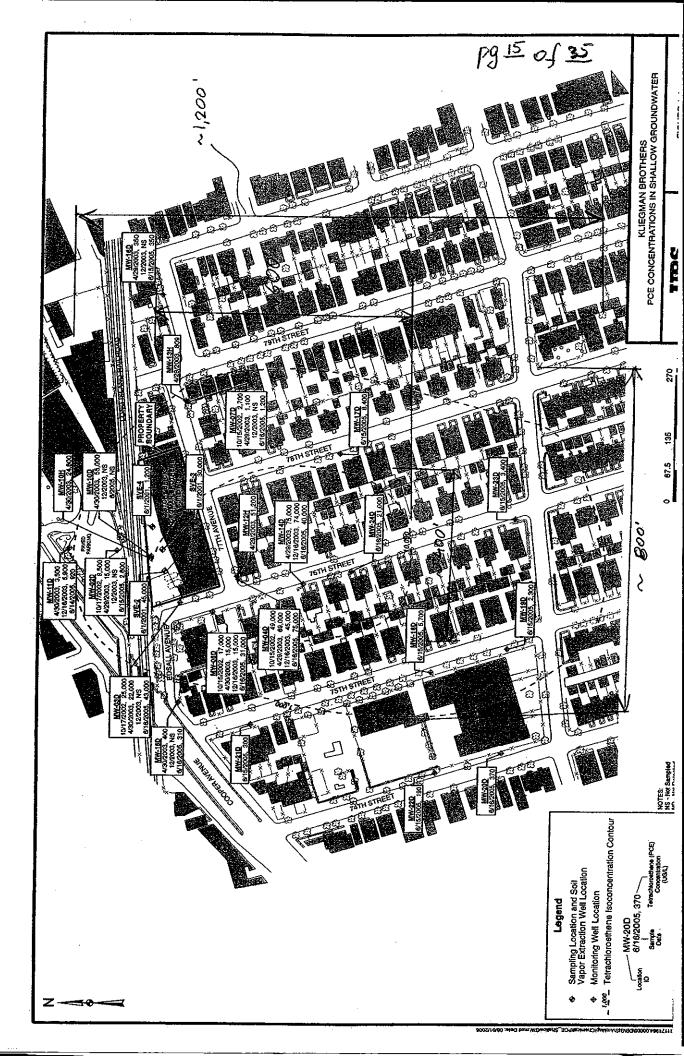
hweff - effective saturated thickness at extraction well, [m]


- i hydraulic gradient, [-]
- K hydraulic conductivity, [m]
- Q_w extraction rate, [m³/s]
- rw radius of extraction well, [m]
- T transmissivity of aquifer, [m²/s]

Data:

saturated thickness	$H_0 =$	60.0 m/s	
hydraulic conductivity	K =	1.0E-01 cm/s =	0.001 m/s
hydraulic gradient	i =	0.001	
well radius	r _w =	0.13 m	
well efficency	f =	0.3	
minimum sat. thick. at well	h _{w-min} =	51.0 m	

number	saturated	effective	extraction	dimen	sions of	extraction	dimen	sions of	7
	thickness	saturated	rate	captur	re zone	rate	captu	re zone	
	in well	thickness		lateral	downgr.]	lateral	downgr.	
1		at well				1			1
	h _w	h _{w-eff}	Q _w	W	d	Q _w	W	d	
	[m]	[m]	[m³/s]	[m]	[m]	[gpm]	[ft]	[ft]]
1	59.55	1	0.0102	85.0	27.0	162	279	89	
2	59.10		0.0179	149.0	47.4	283	489	156	1
3	58.65	59.60	0.0250	208.4	66.3	396	684	218	
4	58.20	59.46	0.0318	265.1	84.4	504	869	277	
5	57.75		0.0384	319.7	101.8	608	1,049	334	
6	57.30	59.19	0.0448	372.9	118.7	709	1,223	389	
7	56.85	59.06	0.0510	424.9	135.3	808	1,394	444	EXAMPLE
8	56.40	58.92	0.0571	475.9	151.5	905	1,561	497	EXAMPLE E- CALC.
9	55.95	58.79	0.0631	526.0	167.4	1,000	1,725	549	CALC.
10	55.50	58.65	0.0690	575.4	183.2	1,094	1,887	601	
11	55.05	58.52	0.0749	624.0	198.6	1,186	2,047	652	
12	54.60	58.38	0.0807	672.1	213.9	1,277	2,204	702	
13	54.15	58.25	0.0863	719.6	229.0	1,368	2,360	751	
14	53.70	58.11	0.0920	766.5	244.0	1,457	2,514	800	
15	53.25	57.98	0.0976	812.9	258.8	1,545	2,666	849	
16	52.80	57.84	0.1031	858.9	273.4	1,633	2,817		
17	52.35	57.71	0.1085	904.5	287.9	1,719	2,967	944	
18	51.90	57.57	0.1140	949.7	302.3	1,805	3,115	992	
19	51.45	57.44	0.1193	994.5	316.5	1,890	3,262	1,038	
20	51.00	57.30	0.1247	1,038.9	330.7	1,975	3,408	1,085	


pg 13 of 35

N:(11171364.000000B)G|S\#ite.apr SITE LOCATION 7/22/2005

PS 16 of 35

REMEDIAL INVESTIGATION REPORT

KLIEGMAN BROS. SITE SITE #2-41-031 **GLENDALE, NEW YORK**

Prepared For:

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF ENVIRONMENTAL REMEDIATION** WORK ASSIGNMENT D003825-37

Reference FINAL

Prepared By:

URS CORPORATION GROUP CONSULTANTS 640 ELLICOTT STREET **BUFFALO, NEW YORK 14203**

FEBRUARY 2004

N:\11171964.00000\WORD\Kliegman Final RI Report-1.doc 7/26/06 10:29 AM

pr 17 2135

3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

3.1 Surface Features

The primary surface feature at the site is a two-story brick building occupying 26,000 square feet. North of the building there is a paved parking area/storage yard. The site is located in Queens County within the Atlantic Coastal Lowland physiographic province. The topography of Queens County is the result of late Wisconsin stage glaciation. The east-west trending Harbor Hill terminal moraine ridge is located less than one mile south of the site. The grade at the site is generally flat with an elevation of approximately 100 feet above mean sea level (msl).

3.2 Demography and Land Use

Land uses near the site include limited industrial, general industrial, residential, neighborhood business, general business residential, and business.

3.3 <u>Soils</u>

Soils in the vicinity of the site have been mapped as urban lands which are characterized as miscellaneous areas greater than 80 percent covered by asphalt, concrete, buildings, or impervious structures (USDA-SCS, 1990).

3.4 Surface Water Hydrology

3.4.1 Site Drainage

The grade at the site is generally flat except for the Cooper Avenue underpass under the Long Island Public Railroad tracks northwest of the site. No surface water exists in the general vicinity of the site. Surface drainage is predominantly overland flow to nearby storm drains.

3.5 Geology and Hydrogeology

The hydrogeology and geology in the site vicinity were studied as part of this RI. Information obtained from other studies conducted near the site and from various literature N.\11171964.00000\WORD\Kliegman Final RI Report-1.doc 7/26/06 10:29 AM 3-1 sources also were used to help characterize the hydrogeology. The following subsections summarize the regional and site-specific geology and hydrogeology.

3.5.1 Geology

3.5.1.1 Regional Geology

The stratigraphy of Queens County consists of Upper Cretaceous and Pleistocene sands, gravels, and clays which overlie southeasterly sloping bedrock. Bedrock in Queens County consists of Precambrian age, crystalline, igneous and metamorphic rocks which outcrop in northwestern Queens County, dip steeply to the southeast at a gradient of 40 to 80 feet per mile and is expected to occur at approximately 500 feet below grade at the site.

The Cretaceous sediments directly overlying bedrock are divided into the Raritan and overlying Magothy formations. The Raritan formation is composed of the Lloyd sand member and a clay member. The Magothy formation consists of a great thickness of alternating fine sands, clays, silts, and some coarse beds of sand and gravel (USGS, 1992).

The Pleistocene deposits are divided into three units: the Jameco gravel, the Gardiners clay, and Upper Pleistocene glacial drift deposits. The oldest fluvial deposit, the Jameco gravel, is separated from the Upper Pleistocene drift by the Gardiners clay.

3.5.1.2 Site Geology

The site-specific geology was obtained from boring logs from previous subsurface investigations at the site and activities performed during this investigation. In general, beneath a fill layer (concrete or asphalt underlain by reworked native materials) of variable thickness (up to two feet), brown loose to dense, fine to coarse silty sand to sandy silt with localized sandy clay seams was observed to depths of approximately 10 feet bgs. This was underlain by brown loose to dense, fine to coarse sand with variable amounts of fine to coarse gravel to depths of 148 feet bgs. This unit appears to correlate to the Upper Pleistocene glacial deposits and the more recent Holocene deposits. Beneath the eastern portion of the site a brown silty clay layer, with variable

Pg 19 01 35

amounts of sand was penetrated in borings MW-01S, MW-06S, MW-07D/MW-13H, MW-16D. At some areas the layer could be described as an interbedded silty clay and silty fine sand. It was not present in MW-10H. The silty clay layer occurs at approximately 10-15 feet bgs and is approximately five feet thick until it appears to pinch out in the vicinity of MW-04D. A wet clayey sandy silt was observed there but at much less thickness than elsewhere on the site. As part of the FRI conducted by Enviroscience, a clay to silty clay layer was present in the upper 10 to 15 feet of overburden. In general, the clayey seams were typically 2- to 3- feet thick interstratified with sands and silt. The clay seams were identified in borings EB-3, EB-4, SVE-2, SVE-4 and SVE-5 (Figure 1-3). Perched groundwater is observed above the silty clay layer where it was encountered. Figure 2-2 depicts the locations of cross-sections A-A' and B-B' which are shown in Figures 3-1 and 3-2, respectively.

3.5.2 Hydrogeology

3.5.2.1 Regional Hydrogeology

There are six major hydrogeologic units identified in the vicinity of the site. They are in ascending order: 1) the Lloyd aquifer; 2) the Raritan confining unit; 3) the Magothy aquifer; 4) the Jameco aquifer; 5) the Gardiners Clay; and 6) the upper glacial (i.e., Pleistocene) deposits. As part of the remedial investigation field activities, only the upper glacial deposits were penetrated. However, in general, the aquifers are laterally extensive and yield significant quantities of water. The most permeable units are the sands and gravels. The two clayey units represent confining units with vertical hydraulic conductivities of 0.001 ft/day (USGS, 1995). These are several orders of magnitude less than the sands and gravels. Where present, the confining units restrict groundwater movement between the aquifers. Bedrock underlying the area is of low hydraulic conductivity with yields of only a few gallons per minute. The Lloyd aquifer reportedly yields as much as 1,600 gpm with rates more typically less than 1,000 gpm. The hydraulic conductivity of the Jameco-Magothy aquifer is estimated to range from 60 ft/day to 90 ft/day (USGS, 1995). Well yields are reported to be as high as 1,500 gpm. The upper glacial aquifer consists of sand and gravel beds deposited south of the terminal moraine. These deposits are capable of yielding large quantities of water. These soils were penetrated as part of the drilling program. Horizontal hydraulic conductivities have been estimated as high as 270

Pg <u>20</u>

ft/day. Wells yields reportedly are as high as 1,500 gpm. Water in the upper glacial aquifer is under unconfined conditions but may be confined locally between beds of clay and silt (USGS, 1995). The regional groundwater flow direction is south to south-southwest.

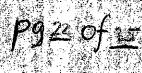
3.5.2.2 Site Hydrogeology

The regional groundwater table occurs at the site at approximately 70 feet bgs within the upper glacial aquifer. However, perched groundwater was observed in several wells above the clay layer in the eastern portion of the site. Measurements of groundwater elevations were used to develop groundwater contour maps and generally determine the site-specific direction of groundwater flow in the perched groundwater zone, the water table aquifer, and the deeper groundwater zone approximately 30- to 40-feet below the water table. The data are summarized in Table 3-1. Perched water is present in the eastern portion of the site at depths of 10-12 feet bgs. Water is perched on top of a silty clay layer of varying thickness, dipping slightly to the west and pinching out at a point east of well MW-04D. Figures 3-3 and 3-4 shows groundwater elevations and flow direction in the perched water zone is towards the southwest at a gentle gradient. The flow direction in the perched zone was somewhat variable on other dates measured, possibly due to local fluctuations in the perched zone. The data on April 29-30 and December 16, 2003 appear to be most reliable.

In the shallow regional groundwater zone, groundwater measurements indicate that the flow direction varies. Figures 3-5 through 3-8 show groundwater elevations and flow direction on October 15, 2002, March 12, 2003, April 29-30, 2003, and December 16, 2003. On October 15, 2002, groundwater flow direction was northerly at a very gentle horizontal hydraulic gradient. On March 12, 2003, the groundwater flow direction was northerly at a very gentle horizontal hydraulic gradient. The April 29-30, 2003 and December 16, 2003 figures have additional data from the wells installed during the second field effort. These show that while the gradient defined by the first phase wells (MW-02D, MW-03D, MW-04D, MW-05D, and MW-07D) points north, when taking into account all the wells, the overall groundwater flow direction was generally towards the south at a very gentle horizontal hydraulic gradient, with a curious local depression identified at MW-02). The local depression at MW-02 accounted for the

apparent northward gradient observed with only the first phase wells in the ground. In general, the groundwater flow direction in the shallow groundwater zone was determined to be variable, possibly due to the very gentle horizontal hydraulic gradients and seasonal fluctuations in the water table.

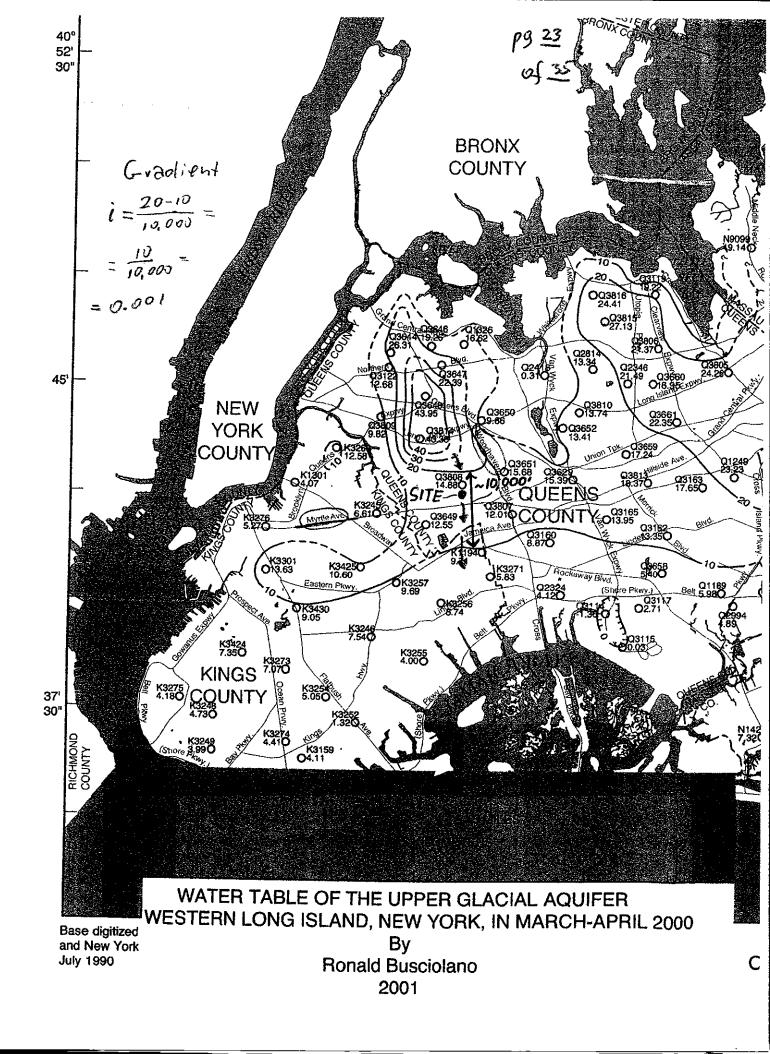
In the deeper groundwater zone (approximately 30- to 40-feet below the water table), the groundwater flow direction appears to be towards the southeast on April 29-30, 2003 (see Figure 3-9). However, the well screens in the deeper bedrock zone are at different depths, and as a result, the actual direction of groundwater flow cannot be determined with certainty. The horizontal hydraulic gradient was nearly flat.


There is little to no discernible vertical hydraulic gradient observed at the paired deep and shallow groundwater wells.

Hydraulic conductivity of the aquifer was estimated by conducting slug tests. Tests were performed by inserting (falling head test) or removing (rising head test) a stainless-steel slug of known volume and recording the rate of recovery of the water level in the well. The slug test data was analyzed using the methods of Bouwer and Rice (1976) and/or Bouwer (1989). Appendix E summarizes the hydraulic conductivity and presents the raw data.

The hydraulic conductivity ranged from greater than 1.85×10^{-1} in centimeters per second (cm/sec) in MW-02 to 1.45×10^{-4} cm/sec in MW-01. The data from several slug tests were not measurable due to a very fast recharge rate. The average hydraulic conductivity for the site is approximately 5×10^{-2} cm/sec. The overall average conductivity is actually much higher because the data from several slug tests were not measurable due to a very fast recharge rate. In general, measured hydraulic conductivity values were one to two orders of magnitude higher in the water-table wells compared to wells monitoring the perched groundwater.

In cooperation with New York City Department of Environmental Protection Suffolk County Department of Health Services Suffolk County Water Authority


Water-Table and Potentiometric-Surface Altitudes of the Upper Glacial, Magothy, and Lloyd Aquifers on Long Island, New York, in March-April 2000, with a Summary of Hydrogeologic Conditions

En 14 March Hunder

Reference

Water-Resources Investigations Report 01-4165.

U.S. Department of the Interior U.S. Geological Survey

Groundwater Contamination

Optimal Capture and Containment

Steven M. Gorelick R. Allan Freeze David Donohue Joseph F. Keely

pg 25 of 35

CAPTURE AND CONTAINMENT REMEDIAL SYSTEMS DESIGN 127

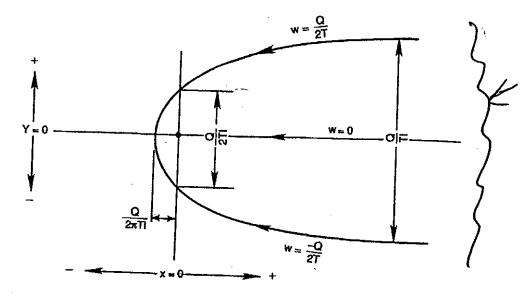


Figure 12. Equation for the dividing streamlines separating the capture zone of a single well from the rest of an aquifer.

and no flow tubes (or contaminants) can slip between the extraction wells. For two or three equally spaced wells, located along a line perpendicular to the regional gradient, and all pumping at the same rate, Javandel and Tsang provide the recommended spacings listed in the right-hand column of Table 5.

The design methodology for a one-, two-, or three-well extraction system using Table 5 involves a trial-and-error procedure with a set of alternative well-networks. One tries to identify the lowest cost network that will meet the following specifications, given measured values for aquifer transmissivity, T, and regional hydraulic gradient, I:

- 1. The capture-zone geometry, as indicated by the values given in Table 5 for the distance between dividing streamlines, must be adequate to encompass the known boundaries of the contaminant plume.
- 2. The pumping rate, Q, to be applied at each of the wells, must not create drawdowns in excess of any constraints on the available drawdown at the wells.
- 3. The distances between the wells must be equal to or less than the recommended distances given in Table 5.

It must be emphasized that use of Table 5 to design remedial well networks will *not* lead to an optimal design. The limitations on the analytical solutions on which the table is based are too severe. It will provide a design that works for a pre-specified number of wells, all on a

(62)

: then

(63)

ity at n well plots

ts are

(64)

)mpa-

r ma-

e used

5) use

s that

ie rest

(65)

ite the

ıd far

n dis-

0. For

[, and

, two-

They

Figure

el and

e that

nuous

Parameters for Design of Remedial Well Fields Based on Javandel and Tsang (1986) Capture-Zone Theory. For multiple-well systems, Q is the constant pumping rate applied to each well. Table 5.

GROUNDWATER CONTAMINATION

Number of Welis	Dividing Stream- lines at Line of Wells	Distance Between Dividing Stream- lines Far Upstream From Wells	Distance to Stagnation Point at Center Point of Capture Zone	Recommended Distance Between Each Pair of
-	2TI	0 F	0 2#TI	
0	σF	20	Q 2#Ti	σ
ю	<u>30</u> 2TI	30 T	<u>30</u> 4πTI	³ /20
	V			4 H

V

128

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogotá Hamburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

pg 27 0 35

Reference 4

JACOB BEAR

Department of Civil Engineering Technion—Israel Institute of Technology Haifa Israel

Hydraulics of Groundwater

River

s and

8-3 STEADY FLOW TO A WELL IN A PHREATIC AQUIFER 309

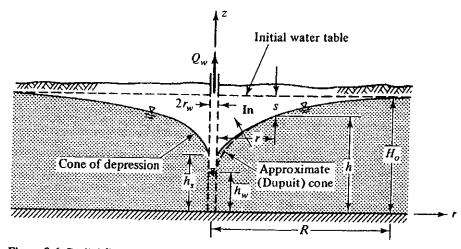


Figure 8-6 Radial flow to a well in a phreatic aquifer.

height of the phreatic surface, h, in the form of an equation which is solvable by iteration. His potential function is obtained by assuming that a certain fictitious flow exists in the region above the phreatic surface and below the horizontal plane at $z = H_0$, such that the boundary conditions on the phreatic surface are satisfied also by the potential of this flow.

Numerical methods have also been often applied to the solution of the problem as stated by (8-19) and (8-20).

By using the Dupuit assumptions, an easily integrable linear continuity equation can be derived. The results are accurate enough for distances r > 1.5h from a well. In this approach, the seepage face is neglected. Hansen (1949) gives graphs of Q/Kr_w^2 as a function of h_s/r_w and h_w/r_w (Fig. 8-7). Boulton (1951) suggests

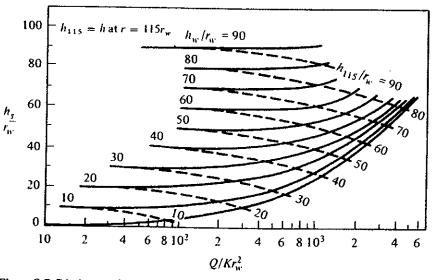


Figure 8-7 Discharge of a well in a phreatic aquifer (Hansen, 1949).

8-17)

3-18)

m in ever,

R

rate veen ntial

--19) tary

-20)

ace. ches difted)

•

irge

ral, the 306 HYDRAULICS OF GROUNDWATER

By integrating (8-1) from r_w to R, we obtain

$$s_w = H - h_w = \phi(R) - \phi(r_w) = (Q_w/2\pi T)\ln(R/r_w)$$
(8-4)

Between any two distances r_1 and $r_2(>r_1)$, we obtain

$$\phi(r_2) - \phi(r_1) = s(r_1) - s(r_2) = (Q_w/2\pi T)\ln(r_2/r_1)$$
(8-5)

Equation (8-5) is called the Thiem equation (Thiem, 1906). Between any two distances r and R, we obtain

$$s(r) = \phi(R) - \phi(r) = (Q_w/2\pi T)\ln(R/r)$$
(8-6)

By dividing (8-3) by (8-4), we obtain

$$\phi(r) - h_{w} = (H - h_{w}) \frac{\ln (r/r_{w})}{\ln (R/r_{w})}$$
(8-7)

showing that the shape of the curve $\phi = \phi(r)$, given h_w and H at r_w and R, respectively, is independent of Q_w and T.

The distance R in (8-4), (8-6), and (8-7), where the drawdown is zero, is called the radius of influence of the well. Since we have established above that steady flow cannot prevail in an infinite aquifer, the distance R should be interpreted as a parameter which indicates the distance beyond which the drawdown is negligible, or unobservable. In general, this parameter has to be estimated from past experience. Fortunately, R appears in (8-6) in the form of $\ln R$ so that even a large error in estimating R does not appreciably affect the drawdown determined by (8-6). The same observation is true also for another parameter-the radius of the well r, (Sec. 8-1).

Various attempts have been made to relate the radius of influence, R, to well, aquifer, and flow parameters in both steady and unsteady flow in confined and phreatic aquifers. Some relationships are purely empirical, others are semiempirical. For example (Bear, Zaslavsky, and Irmay, 1968).

Semi-empirical formulas are

Lembke (1886, 1887):	$R = H(K/2N)^{1/2},$	(8-8)
Weber (Schultze, 1924):	$R = 2.45 (HKt/n_e)^{1/2},$	(8-9)
Kusakin (Aravin and Numerov, 1953):	$R = 1.9 (HKt/n_e)^{1/2}$	(8-10)
pirical formulas are		

Empirical formulas are

Siechardt (Chertousov, 1962):	$R = 3000 s_w K^{1/2},$	(8-11)
Kusakin (Chertousov, 1949):	$R = 575 s_w (HK)^{1/2}$	(8-12)

where R, s_w (= drawdown in pumping well), and H are in meters and K in meters per second.

In phreatic aquifers (Sec. 8-3) N, H, and n, represent accretion from precipitation, the initial thickness of the saturated layer, and the specific yield (or effective porosity) of the aquifer, respectively. In confined aquifers, H and n_e have to be

310 HYDRAULICS OF GROUNDWATER

the relationship

$$h_s - h_w \approx (H_0 - h_w) - 3.75 Q_w / 2\pi K H_0$$
 (8-21)

where 3.75 is replaced by 3.5 if r_w/H_0 is of the order 0.25.

Consider a cylinder of radius r around the well. For the considered steady flow, the Dupuit assumptions lead to

$$Q_{\rm w} = 2\pi r h q_r = 2\pi r h K dh/dr = 2\pi r K \partial (h^2/2)/\partial r \qquad (8-22)$$

where q_r is the specific discharge in the radial direction. Integrating between $h = h_w$ at $r = r_w$ and $h = H_0$ at r = R, we obtain

$$H_0^2 - h_w^2 = \frac{Q_w}{\pi K} \ln \left(\frac{R}{r_w} \right)$$
 (8-23)

In this integration, we have completely neglected the seepage face and made h_s identical to h_w . By integrating from some distance r to the external boundary at R, we obtain

$$H_0^2 - h^2 = \frac{Q_w}{\pi K} \ln \left(\frac{R}{r} \right)$$
(8-24)

Dividing (8-24) by (8-23) gives

$$H_0^2 - h^2 = (H_0^2 - h_w^2) \frac{\ln (R/r)}{\ln (R/r_w)}$$
(8-25)

The dashed curve in Fig. 8-6 gives the phreatic surface elevations, h = h(r), as expressed by (8-25). It is interesting to note that neither Q_w nor K appear in (8-25). From (8-24), it follows that as $r \to \infty$, $h \to \infty$, which is obviously impossible. This means that steady flow is impossible in an infinite aquifer. The equation is, therefore, valid only in the vicinity of the well.

Equation (8-23) is known as the Dupuit-Forchheimer well discharge formula. It is an exact solution of the continuity equation (in polar coordinates) based on the Dupuit assumptions

$$\frac{\partial Q}{\partial r} = 0 = \frac{\partial (2\pi r h K \partial h / \partial r)}{\partial r} = \frac{\partial (\pi K r \partial h^2 / \partial r)}{\partial r}$$
(8-26)

or

$$\frac{\partial^2 (h^2)}{\partial r^2} + \frac{1}{r} \frac{\partial (h^2)}{\partial r} = 0$$
(8-27)

which is linear in h^2 .

Equation (8-24) may also be written as

$$H_0 - h = \frac{1}{(H_0 + h)} \frac{Q_w}{\pi K} \ln (R/r)$$
(8-28)

For a thick aquifer and small drawdown, $(H_0 - h) \ll H_0$, $H_0 + h \approx 2H_0$, and (8-24) may be approximated by

$$s = \frac{Q_w}{\pi K(H_0 + h)} \ln \frac{R}{r} \quad \text{or} \qquad s = \frac{Q_w}{2\pi T} \ln \frac{R}{r} \tag{8-29}$$

DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

HYDROLOGIC FRAMEWORK OF LONG ISLAND, NEW YORK

By D.A. Smolensky, H.T. Buxton, and P.K. Shernoff

Prepared in cooperation with the NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION, NASSAU COUNTY DEPARTMENT OF PUBLIC WORKS, SUFFOLK COUNTY WATER AUTHORITY and DEPARTMENT OF HEALTH SERVICES

Reference

The surface of this unit (sheet 3) probably id fluvial processes during interglacial periods. istocene are shown by several lagoonal and ominent of these is the Gardiners Clay (sheet aciation (Soren, 1971).

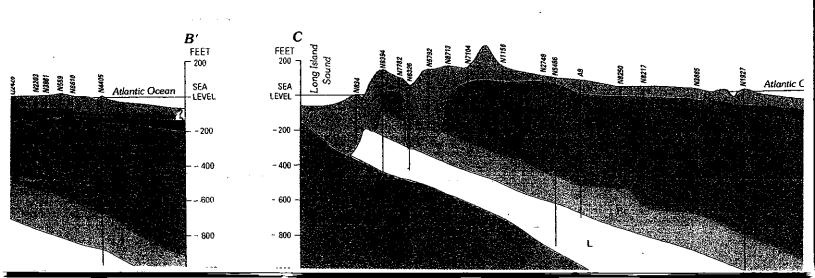
Il recent deposits, occurred in late Wisconsin rized by the Ronkonkoma and Harbor Hill plain south of the moraines.

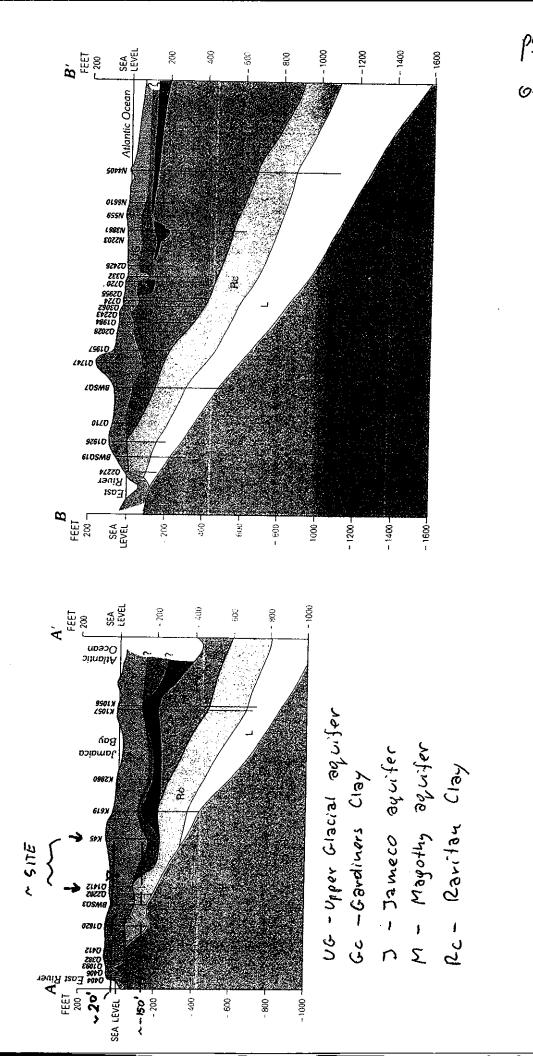
- County, Long Island, New York, 1972-80: U.S. Geological Survey Open-time Report 81-500, 27 p.
- Krulikas, R.K., Koszalka, E.J., and Doriski, T.P., 1983, Altitude of the top of the Matawan Group-Magothy Formation, Suffolk County, Long Island, New York U.S. Geological Survey Open-File Report 83–137, 1 sheet.
- Ku, H.F.H., Vecchioll, John, and Cerrillo, L.A., 1975, Hydrogeology along the proposed barrier-recharge-well alinement in southern Nassau County, Long Island, New York: U.S. Geological Survey Hydrologic Investigation Atlas HA-502, 1 sheet, scale 1:96,000.
- Leggette, R.M., 1938a, Record of wells in Nassau County, New York: New York State Water Power and Control Commission Bulletin GW-5, 140 p.
- 1938b, Record of wells in Suffolk County, New York: New York State Water Power and Control Commission Bulletin GW-4, 108 p.
- Lubke, E.R., 1964, Hydrogeology of the Huntington-Smithtown area, Suffolk County, New York, in U.S. Geological Survey Water-Supply Paper 1669–D, p. D1–D68.

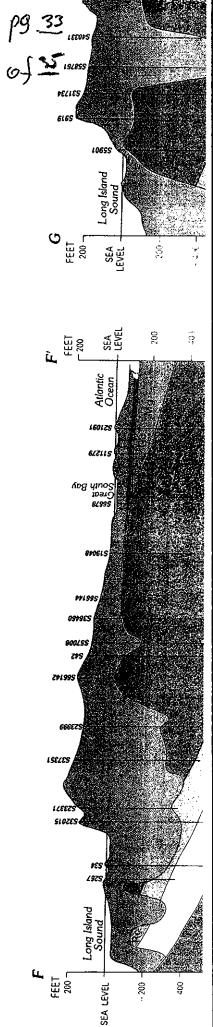
Veatch, A.C., Undergrou Profession Warren, M.A. Brookhave Geological Williams, S.J., continenta Center, Fc 1981, 1 Army Cor, Technical Zapecza. O.S.

Geologica

U.S. Geologic


Washingto


U.S. Geok


2

АТЬА

E С n L.ONG N384 C N4376 B N/8394 NZIIS N7782 N8326 S32015 0227 N\$792 NS520 531039 \$23371 Q412 BWSQ19 N8713 ど N7772 \$14675 01926 ñ Q1620 N7104 0710 \$37351 BWSQ3 N5677 \$13579 Q1412 W1156 BWSQ7 N9170 \$74585 S23999 OUEENS CO NA\$SAU CO N9488 **0195** N8778 N3355 N2748 0.702 N5486 \$66142 SITE Q1984 KINGS CO K619 **1**542 G 0 N L 3062 \$57008 0295 NAGOA N712 0720 N7523 S36460 N8250 02426 N8415 566144 N8217 N3861 N9173 N852 \$1904 N222 S6678 A Great So N841 N6657 ş11279 \$21091 B'E D С F

pg <u>34</u> vf <u>35</u>

Simulation of Ground-Water Flow and Pumpage in Kings and Queens Counties, Long Island, New York

By Paul E. Misut and Jack Monti, Jr.

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 98-4071

Reference 6

Prepared in cooperation with NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION

¢ Nj

Coram, New York 1999

pg <u>35</u> 05 <u>35</u>

.

Table 1. Hydrologic units underlying Kings and Queens Counties, N.Y., and their water-bearing properties as represented by the Long Island regional model

[gal/min, gallons per minute; ft, feet; ft/d, feet per day. Modified from Doriski and Wilde-Katz, 1983. Modeled hydraulic properties from Buxton and Smolensky, in press]

System			Stratigraphic unit (hydrologic unit names are in parentheses) Holocene (recent) deposits	Approx imate range in thick- ness (feet) 0-40		Water-bearing properties, modeled hydraulic conductivity, and anisotropy e Sandy beds of moderate to high per- meability beneath barrier beaches,
	Holocene	Post glacial	(upper glacial aquifer)		brown, and gray bay-bottom deposits of clay and silt; artifi- cial fill. Beach and dune deposits are mostly stratified and well sorted. Fill includes earth and rocks, concrete frag- ments, ashes, rubbish, and hydraulic fill.	 locally yield fresh or salty water from shallow depths. Clayey and silty beds beneath bays retard salt- water encroachment and confine underlying aquifers.
RY		Wisconsinan	Upper Pleistocene deposits (upper glacial aquifer)	0-300	Till composed of clay, sand, gravel, and boulders, forms Harbor Hill and Ronkonkoma terminal moraines. Outwash consisting mainly of brown fine to coarse sand and gravel, stratified. Interbedded with clays.	Till is poorly permeable. Sand and gravel part of outwash highly per- meable; yields of individual wells are as much as 1,700 gal/min. Spe- cific capacities of wells as much as 109 gal/min per foot of drawdown. Water fresh except near shorelines. Horizontal hydraulic conductivity: 20-80 ft/d (moraine), 200-300 ft/d (outwash). Horizontal to vertical anisotropy is 10:1. Specific yield is 0.25 (moraine), 0.3 (outwash).
QUATERNARY	Pleistocene		_unconformity	0-40	Clay and silt, gray and grayish green; some lenses of sand and gravel. Contains shells, fora- minifera, and peat. Altitude of top of unit about 20 ft below sea level. Interbedded with outwash in southern part of area.	Relatively impermeable confining unit. Retards saltwater encroach- ment in shallow depths. Confines water in underlying outwash deposits when present.
	c	Sangamon interglaciation	Gardiners Clay unconformity		Clay and silt, grayish-green; some lenses of sand and gravel. Contains lignitic mate- rial, shells, glauconite, fora- minifera, and diatoms. Interglacial deposit. Altitude of surface 50 ft or more below sea level.	Relatively impermeable confining layer above Jameco aquifer. Locally contains moderately to highly permeable sand and gravel lenses. Confines water in underly- ing Magothy aquifer. Vertical hydraulic conductivity is 0.001 - 0.0029 ft/d.
			Jameco Gravel Jameco aquifer)		Sand, coarse, granule to cobble gravel, generally dark brown and dark gray. A stream deposit in a valley cut in Matawan Group-Magothy For- mation undifferentiated depos- its. Buried valley of ancestral Hudson River.	Highly permeable. Yields as much as 1,500 gal/min to individual wells. Specific capacities as high as 135 gal/min per foot of drawdown. Contains water under artesian pres- sure. Water commonly has high iron content and is salty near shore- line. Horizontal hydraulic conduc- tivity is 200-300 ft/d. Horizontal to vertical anisotropy is 10:1. Specific storage is 1 x 10 ⁻⁶ per ft.

6 Simulation of Ground-Water Flow and Pumpage in Kings and Queens Counties, Long Island, New York

URS

.

77 Goodell Street Buffalo, New York 14203

CALCULATION COVER SHEET

(716) 856-5636

Client: <u>NYSDEC</u>			Project Name:	Kliegma	n Bros
Project / Calculation Nu	imber: <u>11</u>	1 74 770	· · · · · · · · · · · · · · · · · · ·		
Title: <u>Hydraulic Con</u>	tainment of the	e Dissolved-Ph	ase PCE Contamination	- Part 2	
Total number of pages			11 (10 + cover)		
Total number of compu			0	_	
· · · · · ·		Ostrows	L:	– Date:	a/22/06
Checked by:	any	mon	. کر :	Date:	9/22/06
	- J				1/22/06
Description and Purpos	e: To	present options	s for locations of extract	ion wells	
and corresponding extr					······································
···· ···		<u></u>	······		
					· · · · · · · · · · · · · · · · · · ·
Design bases / referend	es / assumptio	ons:	Method developed in	Part 1 calcul	ation
			mounda developed in		
	<u> </u>		······································	-,	· · · · · · · · · · · · · · · · · · ·
			······		
			······································		
			······································		
	See Su	ummany Soction	n 5 and plate on parso		
	See Su	ımmary, Sectioi	n 5, and plots on pages	8, 9 and 10.	
	See Su	ımmary, Sectioi	n 5, and plots on pages	8, 9 and 10.	
	See Su	ımmary, Sectior	n 5, and plots on pages	8, 9 and 10.	
	See Su	ımmary, Sectioi	n 5, and plots on pages	8, 9 and 10.	
	See Su	Immary, Section	n 5, and plots on pages	8, 9 and 10.	
Remarks / conclusions:		Immary, Section	n 5, and plots on pages		
Remarks / conclusions:		Immary, Section	n 5, and plots on pages		12/06 12/06
Remarks / conclusions:	/: /:	Jan du	n 5, and plots on pages	<i>l0,</i> Project M	lanager / Date
Remarks / conclusions:		Jan du	n 5, and plots on pages		lanager / Date
Remarks / conclusions:	/: 	Jan du	n 5, and plots on pages	<i>l0,</i> Project M	lanager / Date
Remarks / conclusions:	/: 	Jan du	n 5, and plots on pages	<i>l0,</i> Project M	lanager / Date
Remarks / conclusions:	/: 	Jan du	n 5, and plots on pages	<i>l0,</i> Project M Approved by	lanager / Date

063				PAGE <u>1</u> OF <u>10</u>	
				JOB NO. 111 74 770	
*		MADE BY:	mo	DATE: 8/22/06	
		CHKD. BY:	Imm	DATE: 9122/06	
PROJECT:	NYSDEC, Kliegman Bros. Site		A.m.s.	1122(06	
SUBJECT:	Hydraulic Containment of the Disso	ved-Phase PCF	- Contamir	nation - Part 2	

1. PURPOSE

In the calculation entitled Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1, a relationship was developed between the extraction rate of containment well(s) and the dimensions of the capture zone intended to control the plume identified at the Kliegman Brothers site. In this Part 2 of the calculation, several actual locations for the extraction well(s) will be selected, and the extraction rates required to control the plume will be estimated. Corresponding capture zones will be presented graphically.

2. GENERAL

See calculation Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1 for the description of the problem and the development of the method defining capture zones. Two targets for hydraulic containment are containment areas enclosed by 1,000-ppb and 10,000-ppb isoconcentration lines.

3. METHODOLOGY

Plot on page 13 of the Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1 shows the relationship between the extraction rate and the lateral and downgradient dimensions of the capture zone. The plot is reproduced here on page <u>7</u>.

In this calculation, the first step is to select locations of the containment well. The second step is to determine the downgradient distance from the well to the limit of the area to be contained (note: the distance is increased by 100 feet for the purpose of this calculation to provide a safety factor). This distance determines the minimum extraction rate that will achieve containment. Determination of this minimum extraction rate from the plot on page <u>7</u> is the third step of the process. In the fourth step, the lateral extent of the capture zone is determined based on the extraction rate established in step three. Finally, the well location and the capture zone are sketched on the map of the site.

URS

PAGE <u>2</u> OF <u>10</u> JOB NO. 111 74 770

MADE BY: NO DATE: 9/22/06 CHKD. BY: AMM DATE: 9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site

SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 2

When the location of the well that will contain the plume at the lowest possible extraction rate is to be determined, the lateral dimension of the capture zone is determined first, based on the plume width near the leading edge. From that, the downgradient extent of the capture zone is calculated, which determines the well location.

In this calculation it is assumed that 1,000 gpm is the upper limit of well capacity. Even though the aquifer should be able to provide higher flows to the well, turbulent losses at the well screen associated with these flow rates could be large. This may limit the actual well capacities. Therefore, if greater extraction rates greater than 1,000 gpm are needed, multiple wells are assumed.

4. CALCULATIONS

Well located at Kliegman property, containing the 1,000-ppb area

From the site map on page 8, the distance between the well and the downgradient limit of the 1,000-ppb area is approximately 900 ft. Use 1,000 ft. The extraction rate required to develop the downgradient extent of capture zone of 1,000 ft is 1,800 gpm (from the plot on page 7 of this calculation). The lateral extent of capture zone for the 1,800-gp extraction rate is 3,100 ft (plot on page 7).

Note that an extraction rate of 1,800 gpm is very high, and it may be not practical for a single well. Here, two wells are assumed, placed in close proximity.

- Two wells
- Wells at Kliegman Bros. property
- Total extraction rate 1,800 gpm
- Downgradient extent of capture zone of 1,000 ft
- Lateral extent of 3,100 ft
- See sketch on page <u>8</u>

PAGE _3_ OF_10_

JOB NO. 111 74 770

MADE BY: MO DATE: \$/22/06 CHKD. BY: AMM DATE: 9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site

SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 2

Well located at Kliegman property, containing the 10,000-ppb area

From the site map on page <u>8</u>, the distance between the well and the downgradient limit of the 10,000-ppb area is approximately 550 ft. Use 650 ft. The extraction rate required to develop the downgradient extent of capture zone of 650 ft is 1,200 gpm (from the plot on page <u>7</u> of this calculation). The lateral extent of capture zone for the 1,200-gp extraction rate is 2,000 ft (plot on page <u>7</u>).

Note that an extraction rate of 1,200 gpm is very high, and it may be not practical for a single well. Here, two wells are assumed, placed in close proximity.

- Two wells
- Wells at Kliegman Bros. property
- Total extraction rate 1,200 gpm
- Downgradient extent of capture zone of 650 ft
- Lateral extent of 2,000 ft
- See sketch on page <u>8</u>

Well location near Edsall Ave

This location is effectively the same with respect to the downgradient extent of capture zone as the location at the Kliegman property. Therefore, the same extraction rates are required. Because lateral extent of capture zones at those extraction rates is far greater than required, the fact that the Edsall Ave location is shifted laterally from the Kliegman location does not affect the analysis. Capture zones are essentially the same as those for the Kliegman location.

Well located near existing monitoring well MW-14D, containing the 1,000-ppb area

From the site map on page $\underline{9}$, the distance between the well and the downgradient limit of the 10,000-ppb area is approximately 700 ft. Use 800 ft. The extraction rate required to develop the downgradient extent of capture zone of 800 ft is 1,450 gpm (from the plot on page $\underline{7}$ of this calculation). The lateral extent of capture zone for the 1,450-gp extraction rate is 2,500 ft (plot on page $\underline{7}$).

PAGE _______ OF____O

JOB NO. 111 74 770 MADE BY: Mo DATE: 9/27/06 CHKD. BY: AMM DATE: 9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site

SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 2

Note that an extraction rate of 1,450 gpm is very high, and it may be not practical for a single well. Here, two wells are assumed, placed in close proximity.

- Two wells
- Wells near existing well MW-14D
- Total extraction rate 1,450 gpm
- Downgradient extent of capture zone of 800 ft
- Lateral extent of 2,500 ft
- See sketch on page <u>9</u>

Well located near existing monitoring well MW-14D, containing the 10,000-ppb area

From the site map on page $\underline{9}$, the distance between the well and the downgradient limit of the 10,000-ppb area is approximately 250 ft. Use 350 ft. The extraction rate required to develop the downgradient extent of capture zone of 350 ft is 600 gpm (from the plot on page $\underline{7}$ of this calculation). The lateral extent of capture zone for the 600gpm extraction rate is 1,000 ft (plot on page $\underline{7}$).

- One well
- Well near existing well MW-14D
- Extraction rate 600 gpm
- Downgradient extent of capture zone of 350 ft
- Lateral extent of 1,000 ft
- See sketch on page <u>9</u>

Lowest extraction rate containing the 1,000-ppb area

From the site map on page <u>10</u>, lateral dimension of the 1,000-ppb area near the leading edge is approximately 550 ft. Use 650 ft. The extraction rate required to develop the lateral extent of capture zone of 650 ft is 400 gpm (from the plot on page <u>7</u> of this calculation). The downgradient extent of capture zone for the 400-gp extraction rate is 200 ft (plot on page <u>7</u>). Therefore, this well must be placed less than 200 ft from the leading edge. Say, 100 ft.

PAGE <u>5</u> OF <u>10</u>

JOB NO. 111 74 770

MADE BY:	pro	DATE:	3/22/06
CHKD. BY:	Amm	DATE:	9/22/06

PROJECT: NYSDEC, Kliegman Bros. Site SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 2

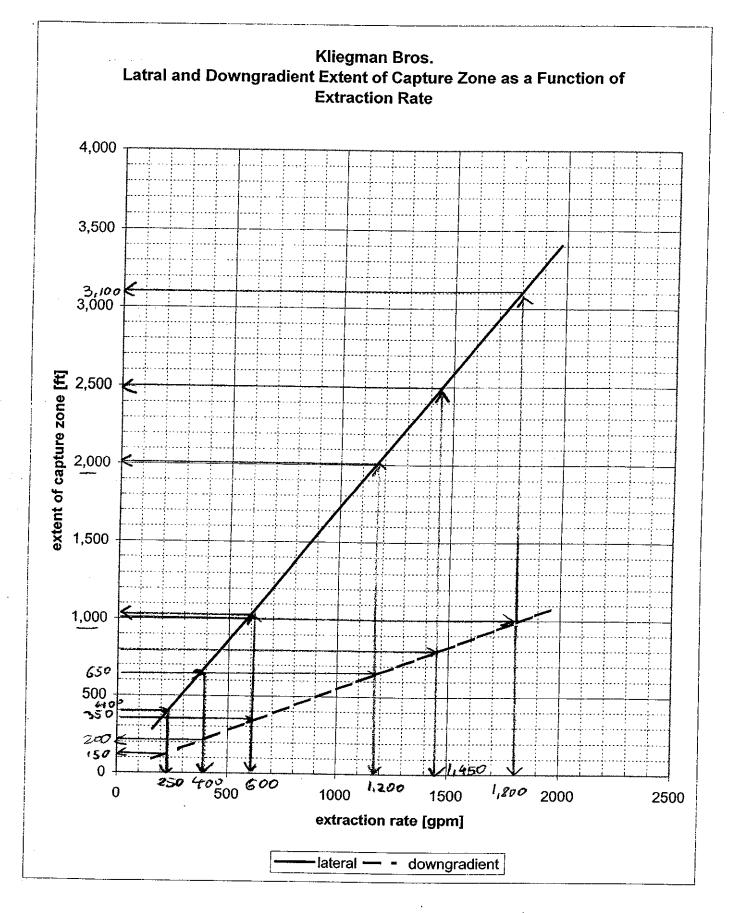
- One well
- Well location shown on page <u>10</u>
- Extraction rate 400 gpm
- Downgradient extent of capture zone of 200 ft
- Lateral extent of 650 ft

Lowest extraction rate containing the 10,000-ppb area

From the site map on page <u>10</u>, lateral dimension of the 10,000-ppb area near the leading edge is approximately 300 ft. Use 400 ft. The extraction rate required to develop the lateral extent of capture zone of 400 ft is 250 gpm (from the plot on page <u>7</u> of this calculation). The downgradient extent of capture zone for the 250-gp extraction rate is 150 ft (plot on page <u>7</u>). Therefore, this well must be placed less than 150 ft from the leading edge. Say, 100 ft.

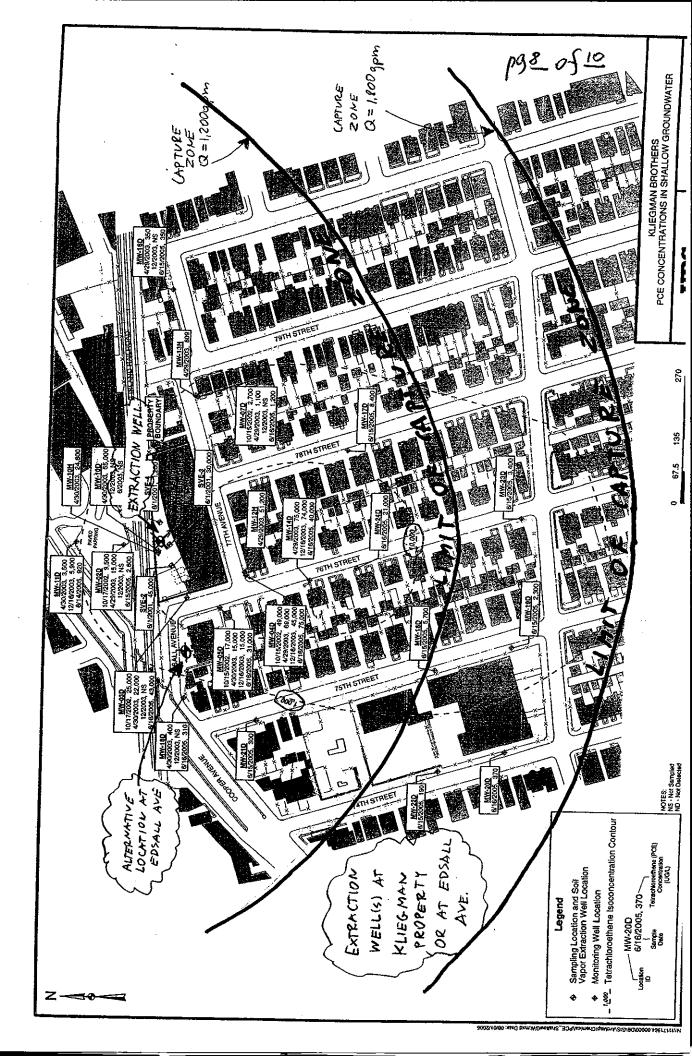
- One well
- Well location shown on page <u>10</u>
- Extraction rate 250 gpm
- Downgradient extent of capture zone of 150 ft
- Lateral extent of 400 ft

5. SUMMARY

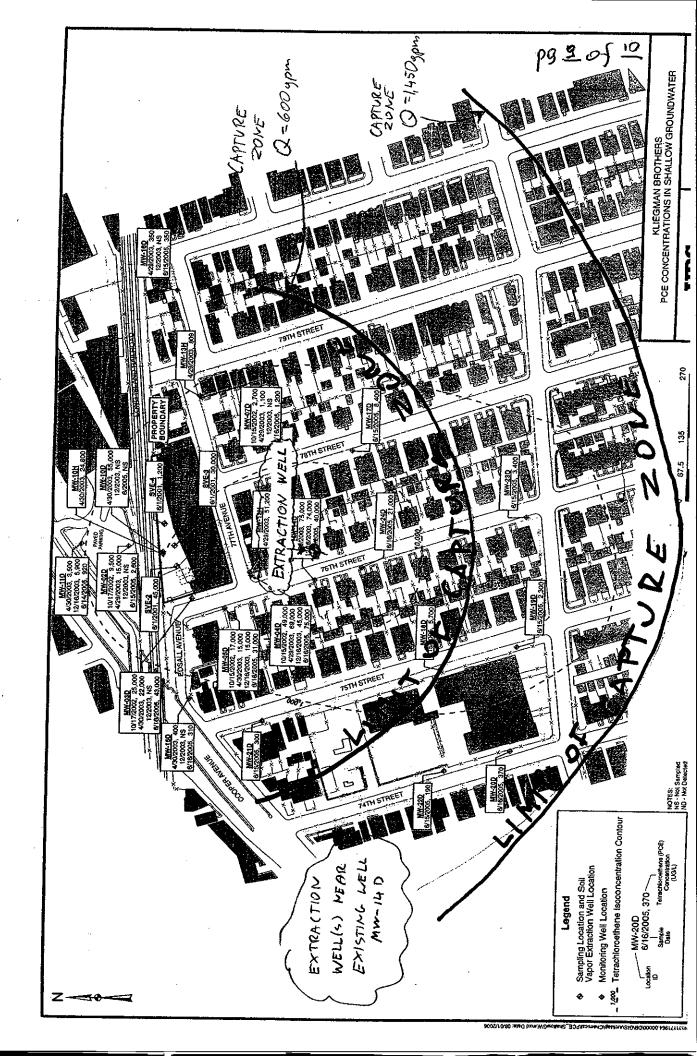

When extraction wells are located at the Kliegman Bros. Property, or at Edsall Ave, the total extraction rate required to contain the 1,000-ppb area is 1,800 gpm. Two wells would likely be required to obtain this extraction rate. When the 10,000-ppb area needs to be contained, two wells would be required, extracting total of 1,200 gpm.

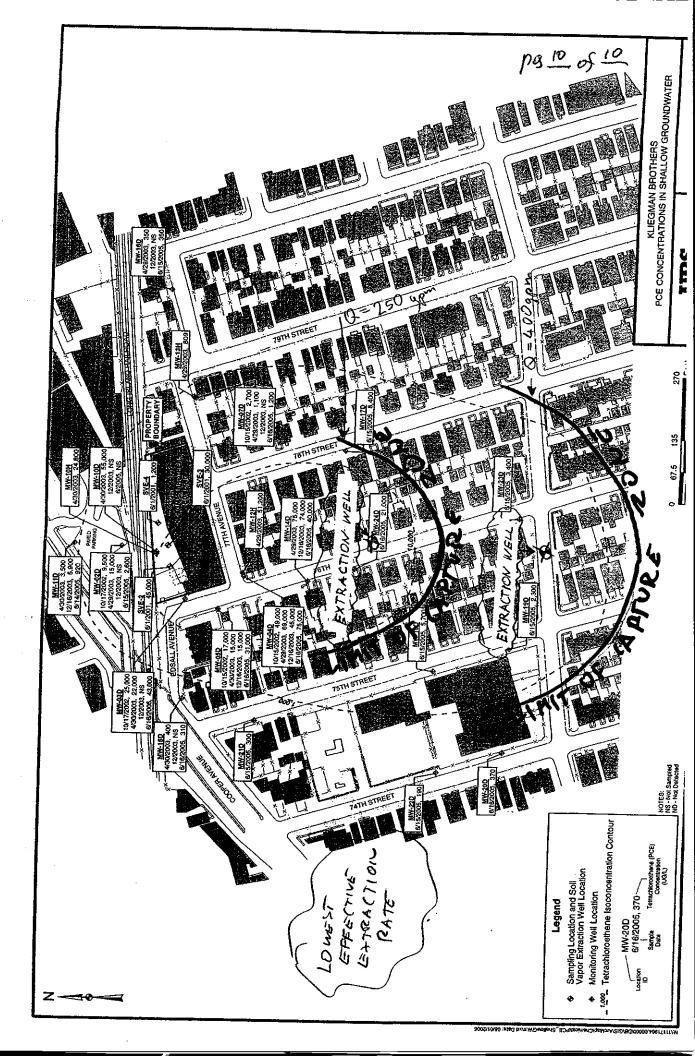
When extraction wells are located near the existing well MW-14D, the total extraction rate required to contain the 1,000ppb area is 1,450 gpm. Two wells would likely be required to obtain this extraction rate. When the 10,000-ppb area needs to be contained, one well would be required, extracting 600 gpm.

PAGE _6_ OF_10_ JOB NO. 111 74 770 MADE BY: mo DATE: 9122106 CHKD. BY: DATE: Amm 9122106 PROJECT: NYSDEC, Kliegman Bros. Site SUBJECT: Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 2


lowest extraction rate that would be The effective in containing the 1,000-ppb plume is 400 gpm. One well, located approximately 100 ft from the southern limit of the 1,000-ppb area would be required. Similarly, one well would be required to develop the lowest extraction rate effective in containing the 10,000-ppb area. The extraction rate of the well would be 250 gpm. The well would have to be located approximately 100 ft from the southern limit of the 10,000-ppb area.

Note that the above calculations pertain to wells that are fully penetrating, or penetrating a significant fraction of the saturated thickness of the aquifer, SO that they intercept the flow from the entire saturated thickness. The lowest effective extraction rates of 400 gpm and 250 gpm, respectively for the 1,000-ppb and 10,000-ppb areas, could be decreased by using partially penetrating wells, placed close to the leading edge of the plume. In Part 1 of the hydraulic containment calculation, these lowest effective rates were preliminarily estimated at approximately 200 gpm and 100 gpm, respectively for the 1,000-ppb and 10,000-ppb areas. This option will be investigated in more detail in a subsequent calculation.




MINKSDEC/Kliegman Bros/ Kliegman-hydraulic-containment

اراح

. . .

URS

77 Goodell Street Buffalo, New York 14203

CALCULATION COVER SHEET

(716) 856-5636

Project / Calculation Number: <u>111 74 770</u>	· · · · · · · · · · · · · · · · · · ·	
Title: Hydraulic Containment of the Dissolved	d-Phase PCE Contamination -	Part 3
Total number of pages (including cover sheet):	36 (35 + cover)	
Total number of computer runs:	0	
Prepared by: Marek Ostroz	wski	Date: $O_c f 4, 200$
Checked by: ROBECT PINZEA	<u>kski</u>	Date: $0cf4, 200$ Date: $10/4/06$
Description and Purpose: <u>To evaluate t</u>	he feasibility of controlling the	dissolved-phase
contamination by means of hydraulic containme		
extraction wells.		isa a an ing
	······································	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	<u> </u>
		······································
Design bases / references / assumptions:	Theory of wells in unit	form flow is used. Aquifer
thickness assumed to be infinite. Local hydraulic	gradient is not well defined, ti	he
	c gradient is not well defined, ti	he
	c gradient is not well defined, ti	he
	c gradient is not well defined, ti	he
	c gradient is not well defined, ti	he
regional value is used.		
regional value is used. Remarks / conclusions: <u>See Section 7 SU</u>	MMARY for details. See page	
regional value is used. Remarks / conclusions: <u>See Section 7 SUI</u> Fo contain the 10,000-ppb are, one well is sufficie	MMARY for details. See page ient, extracting 150 gpm.	7 for well locations.
regional value is used. Remarks / conclusions: <u>See Section 7 SUI</u> Fo contain the 10,000-ppb are, one well is sufficient Fo contain the 1,000-ppb are, two wells are requi	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm	7 for well locations. (total 300 gpm).
regional value is used. Remarks / conclusions: <u>See Section 7 SUI</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are requient Nells would have to placed approximately 100 ft	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm	7 for well locations. (total 300 gpm).
regional value is used. Remarks / conclusions: <u>See Section 7 SUI</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are requient Nells would have to placed approximately 100 ft	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm	7 for well locations. (total 300 gpm).
Remarks / conclusions: <u>See Section 7 SU</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are requient Nells would have to placed approximately 100 ft hat must be contained.	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm	7 for well locations. (total 300 gpm). areas
Remarks / conclusions: <u>See Section 7 SU</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are requient Wells would have to placed approximately 100 ft hat must be contained.	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm	7 for well locations. (total 300 gpm). areas [0/5/06
Remarks / conclusions: <u>See Section 7 SUI</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are required Wells would have to placed approximately 100 ft that must be contained. Calculation Approved by:	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm	7 for well locations. (total 300 gpm). areas
thickness assumed to be infinite. Local hydraulic regional value is used. Remarks / conclusions: See Section 7 SUL To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are required Wells would have to placed approximately 100 ft hat must be contained. Calculation Approved by: Revision No: Description of Revisions	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm from the downgradient limit of	7 for well locations. (total 300 gpm). areas [0/5/06
Remarks / conclusions: <u>See Section 7 SUI</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are required Wells would have to placed approximately 100 ft that must be contained. Calculation Approved by:	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm from the downgradient limit of	7 for well locations. (total 300 gpm). areas [0/5/06 Project Manager / Date
Remarks / conclusions: <u>See Section 7 SUI</u> To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are required Wells would have to placed approximately 100 ft that must be contained. Calculation Approved by:	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm from the downgradient limit of	7 for well locations. (total 300 gpm). areas [0/5/06 Project Manager / Date
regional value is used. Remarks / conclusions: See Section 7 SUL To contain the 10,000-ppb are, one well is sufficient To contain the 1,000-ppb are, two wells are required. Wells would have to placed approximately 100 ft hat must be contained. Calculation Approved by:	MMARY for details. See page ient, extracting 150 gpm. ired, each extracting 150 gpm from the downgradient limit of	7 for well locations. (total 300 gpm). areas [0/5/06 Project Manager / Date

ū

UNS				PAGE 1_OF 35
PROJECT:	A SDEC, Mieginan Bros. Site	•		16 4 06 10 4 06 10 4 66
SOBJECT.	Hydraulic Containment of the Dissolv	ed-Phase PCE Con	taminati	on – Part 3

1. PURPOSE

> Part 1 and Part 2 of this series of calculations describe the possible strategies for containing the plume of dissolved PCE contamination identified at the Kliegman Bros. site. Both Part 1 and Part 2 emphasize fully penetrating extraction wells, only briefly mentioning the partially penetrating wells. In this Part 3 of the calculation, partially penetrating wells are discussed in more detail. The purpose of this calculation is to evaluate locations and extraction rates of partially penetrating wells for the purpose of containing the plume.

2. GENERAL

Site features and extent of contamination are described in Hydraulic Containment of the Dissolved-Phase PCE Contamination - Part 1. Hydraulic containment is investigated for two target areas: an area encompassed within the 1,000-ppb isoconcentration line, and an area encompassed within the 10,000-ppb isoconcentration line. Shallow partially penetrating extraction wells are considered.

3. **METHOD**

The assessment is performed utilizing the approach of capture zones of wells placed in the uniform flow of ground water, as described in reference 1.

Terms used in calculations are defined below:

Α-	Anisotropy factor (K _{ven} /K), [-]
b -	Thickness of aquifer, [L]
d -	Depth from water table to top of screen, [L]
I -	Regional hydraulic gradient, [-]
K -	Horizontal hydraulic conductivity, [L/T]
L -	Length of screen, [L]
Q (or Q _w) -	Well extraction rate, $[L^3/T]$
S _W -	Drawdown at the face of extraction well, [L]
X _{cap} -	Downgradient extent of well capture zone, [L]
η-	Effective porosity of aquifer
θ-	Counterclockwise angle between positive x axis and flow direction, [-]

The velocity field created within the aquifer by the combination of the uniform flow and a group of M pumping wells is described by equations 17a through 17c of reference 1. In this calculation, the capture zones are investigated at the aquifer surface; therefore, z = 0 and only the first two equations are relevant. Only the surface extent of capture zone is of interest because the dissolvedphase contamination is believed to be very shallow within most of the plume (less than top 30 ft of the saturated thickness). All wells are assumed to be shallow, straddling the water table; therefore $d_i = 0$. The saturated thickness of the aquifer is approximately 200 ft, the wells are assumed to penetrate only on the order of 10% of that thickness. Therefore, the system is approximated as wells in an infinitely thick aquifer. This is conservative, as creating a given size capture zone in an infinitely thick aquifer requires a higher flow than creating the same capture zone in a finitethickness aquifer. For an infinitely thick aquifer, n = 0 (one real well and one image well reflected around the upper boundary).

20 22

Equations 17a and 17b are simplified to reflect this situation (see pages *it* to *it*). The resulting velocity field at the aquifer surface is:

$$v_{x} = \frac{KI}{\eta} \cos \theta - \frac{1}{2\pi \sqrt{A\eta}} \sum_{i=1}^{M} \frac{Q_{i}(x-x_{i})}{\sqrt{(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{L^{2}}{A} [(x-x_{i})^{2} + (y-y_{i})^{2}]}}$$
$$v_{y} = \frac{KI}{\eta} \sin \theta - \frac{1}{2\pi \sqrt{A\eta}} \sum_{i=1}^{M} \frac{Q_{i}(y-y_{i})}{\sqrt{(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{L^{2}}{A} [(x-x_{i})^{2} + (y-y_{i})^{2}]}}$$

Capture zones are delineated by tracking particles inserted in this velocity field. The same numerical tracking method is used as is outlined in reference 1, page 635. A spreadsheet table is used to perform the calculations. The spreadsheet is verified using two approaches.

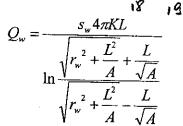
First, it is noted that the location of the stagnation point created by pumping from a single well can be calculated analytically. See pages to 1.18

$$X_{cap} = \sqrt{\frac{-\frac{L^2}{A} + \sqrt{\left(\frac{L^2}{A}\right)^2 + \left(\frac{Q_w}{\pi K I \sqrt{A}}\right)^2}}{2}}$$

For a given set of aquifer/well parameters, the location X_{cap} of the stagnation point is calculated as specified above. Then, the capture zone is plotted using the spreadsheet. The location of stagnation point obtained from the plot is compared to the calculated location X_{cap}. The two locations should be the same. This is the case – see page $\frac{12}{23}$.

Second, it is noted that for a single zero-penetration well (i.e. a point sink) in an isotropic aquifer, the half-width of the capture zone at the line of well can be calculated analytically. See equation 23 of reference 1.

$$r = \sqrt{\frac{Q}{\pi KI}}$$


The location of the stagnation point X_{cap} can also be calculated analytically, as shown above. Therefore, the capture zone of a zero-penetration well can be defined by two points, both calculated analytically. For a given set of aquifer/well parameters, the half-width "r" and the stagnation point "X_{cap}" are thus calculated. Then, for the same set of parameters, the spreadsheet is used to plot the capture zone. The half-width and the stagnation point of the plotted capture zone are compared to the calculated values. See page 13. Both sets of values match. Note that the penetration of 1 foot was used in the spreadsheet table to approximate a zero-penetration well.

$$\mathcal{J}_{\mathcal{X}}$$

M:\NYSDEC\KliegmanBros\Kliegman_capture_zone_partially_penetrating_wells.doc 9/28/06 1:14 PM

The two types of verification presented above apply to a single well. The spreadsheet; however, is constructed to handle up to seven wells. The workings of the superposition are verified on pages <u>12</u> and <u>14</u>. First, the capture zone of a single well is plotted (page <u>12</u>). Second, all seven wells are placed at the same location as the single well, and the sum of their discharges is made to be equal to the discharge of the single well. The capture zone of this system is plotted on page 14. If the superposition works correctly, the two capture zones on pages 12 and 14 should be identical, as they are.

An extraction rate of a well placed in an infinitely thick aquifer as a function of the well drawdown is derived on pages $\underline{\mathbf{RP}}$ to $\underline{\mathbf{RP}}$, using methods presented in reference 1.

4. PARAMETERS

The same parameters are used as those utilized in Parts 1 and 2 of this series of calculations. Only the thickness of the aquifer - approximately 200 ft - is not used, as in this calculation the aquifer is assumed to be of infinite vertical extent.

Aquifer Properties (K, A, I)

From page 5 of the Part 1 calculation:

$$K = 283 \text{ ft/d} (1*10^{-1} \text{ cm/s})$$

I = 0.001

Based on Table 1 of reference 6 from the Part 1 calculation, the typical anisotropy of the aquifer Khorizontal/Kvertical is 10:1. From that:

 $A = K_{vertical}/K_{horizontal} = 1/10 = 0.1$

However, the size of the capture zone is strongly influenced by this parameter. As "A" increases, the lateral extent of the capture zone decreases. The lateral extent of capture zone is lowest for an isotropic aquifer. Here, in addition to A = 0.1, the case of an isotropic aquifer is investigated.

Case 1: A = 0.1

Case 2: A = 1.0

Well Properties (d, L, r_w)

Wells are assumed to straddle the water table; therefore, d = 0. The well penetration depth is assumed to be P = 30 ft. The submerged screen length at the face of the well is equal to the difference between the penetration depth and well drawdown:

 $L = P - s_w$

The submerged screen length is variable. It depends on the drawdown developed at the face of the well.

The wells are assumed to be 10-inch diameter:

$$r_w = 10 / 2 = 5$$
 in

Assume that the depth of water column inside the well must remain at the value of at least 15 ft. This is to accommodate the pump. Based on the $L_{in-min} = 15$ ft minimum saturated screen length inside the well, well radius of 5 in (0.42 ft), screen open area fraction of fop = 0.1 and the maximum allowable flow velocity v= 0.1 ft/s, the maximum allowable flow rate for this well is:

$$Q_{\text{max}} = 2 \pi r_w L_{\text{in}} f_{\text{op}} v = 2 \pi (0.42) (15) (0.1) (0.1) = 0.4 \text{ ft}^3/\text{s} = 180 \text{ gpm}$$

Assume well efficiency of f = 30%. Therefore, the "L_{in}" saturated screen length inside the well indicates that the saturated screen length at the well face is as follows:

$$L_{in} = P - s_w / 0.3 \implies s_w = 0.3 (P - L_{in})$$
$$L = P - s_w \implies L = P - 0.3 (P - L_{in}) = 0.7 P + 0.3 L_{in}$$

The condition $L_{in-min} = 15$ ft defines the maximum drawdown that can be developed at the well face, and the minimum saturated thickness at the well face:

$$s_{w-max} = 0.3 (P - L_{in-min}) = 0.3 (30 - 15) = 4.5 \text{ ft}$$

 $L_{min} = 0.7 P + 0.3 L_{in-min} = 0.7*30 + 0.3*15 = 25.5 \text{ ft}$

Containment area

Required lateral extents of capture zones are the same as those used in Part 2 for the case of the lowest effective extraction rate (pages 4 and 5 of Part 2 calculation).

 $W_{1,000-ppb} = 650 \text{ ft}$

$$W_{10,000-ppb} = 400 \text{ ft}$$

5. CALCULATIONS

The highest extraction rate that can be developed by a well corresponds to the highest well drawdown.

$Q_{w-\max} = \frac{s_{w-\max} 4\pi K L_{\min}}{1 - \frac{s_{w-\max} 4\pi K L_{\max}}{1 - \frac{s_{w-\max} 4\pi K L_{\max}}{1 - \frac{s_{w-\max} 4\pi K L_{\max}}{1 - \frac{s_{w} 4\pi$	$=$ 4.5 · 4 π · 283 · 25.5		
$L_{r}^{2} + \frac{L_{min}^{2}}{L_{min}} + \frac{L_{min}}{L_{min}}$	$0.42^2 + \frac{25.5^2}{25.5} + 25.5$		
$\ln \frac{\sqrt{w}}{\sqrt{A}} = A \sqrt{\sqrt{A}}$	$\ln \frac{\sqrt{0.42}}{\sqrt{0.1}} = 0.1 + \sqrt{0.1}$		
$L_{r}^{2} + \frac{L_{min}^{2}}{2} - L_{min}$	$1042^2 + \frac{25.5^2}{25.5} = 25.5$		
$V'''' \overline{A} = \overline{\sqrt{A}}$	$\sqrt{0.42} + \frac{1}{0.1} - \frac{1}{\sqrt{0.1}}$		

 $Q_{w-max} = 408,083 / \ln(161.28/0.0010938) = 34,000 \text{ ft}^3/\text{d} = 180 \text{ gpm}$

The highest extraction rate that can be obtained from the well (180 gpm) is approximately the same as the highest extraction rate that can be handled by a 15-ft submerged screen (180 gpm). For the purpose of this calculation, assume that the maximum extraction ate from the well that will actually be utilized is 150 gpm.

Containment of the 10,000-ppb area

The extent of capture zone for a single well extracting Q = 150 gpm in an anisotropic aquifer (A = 0.1, Case 1) is shown on page <u>K</u>. Extent of capture zone for Q = 150 gpm and an isotropic aquifer (A = 1.0, Case 2) is shown on page \underline{N} . Results are as follows:

Case 1 Q = 150 gpm, $A = 0.1 \implies W_{\text{capture-}A=0.1} = 630$ ft

Case 2 Q = 150 gpm, $A = 1.0 \Rightarrow W_{capture-A=1} = 360$ ft

For the anticipated value of aquifer anisotropy of A = 0.1, the capture zone width of 630 ft at the 150gpm extraction rate would be sufficient to create a capture zone around the 10,000-ppb area, whose width is 400 ft.

In the conservative case of an isotropic aquifer, the width of the capture zone of a 150-gpm well would be approximately 360 ft, which is 10% less than the required width of 400 ft. This would make the 150-gpm extraction rate only marginally effective. However, a fully isotropic condition in the Upper Glacial aquifer is very unlikely.

A single well extracting 150 gpm appears to be capable of developing the lateral extent of the capture zone of between approximately 360 and 630 ft. The required extent to contain the 10,000-ppb area is 400 ft. The 360-ft capture zone occurs for the isotropic condition, which is much less likely to occur than the anisotropic condition. Therefore, the overall assessment is that a single extraction well pumping at 150 gpm would be sufficient to contain the 10,000-ppb area. The well should be placed approximately 100 ft from the downgradient limit of the 10,000-ppb area.

Containment of the 1,000-ppb area

G

For the anticipated value of aquifer anisotropy of A = 0.1, a single well extracting 150 gpm would create a 630-ft wide capture zone. This is shown o page 00. The required width of containment for the 1,000-ppb area is 650 ft. This would make the single well only marginally effective at the expected anisotropy condition.

URS		PAGE 6OF	5
PROJECT:	NYSDEC, Kliegman Bros. Site	MADE BY: 10 DATE: 10/4/06 CHKD BY: 01 DATE: 10/4/06	
PORIFCL:	Hydraulic Containment of the Disso	olved-Phase PCE Contamination - Part 3	

Two wells, each extracting a 150-gpm rate (300-gpm total), in the case of an anisotropic aquifer (A = 0.1) would create a 980-ft wide capture zone (page <u>RR</u>). This is sufficient to contain the 650-ft wide area of the 1,000-ppb concentration. The same two wells would create a 650-ft capture zone for the conservative case of the isotropic aquifer (A = 1, page $\frac{QQ}{15}$).

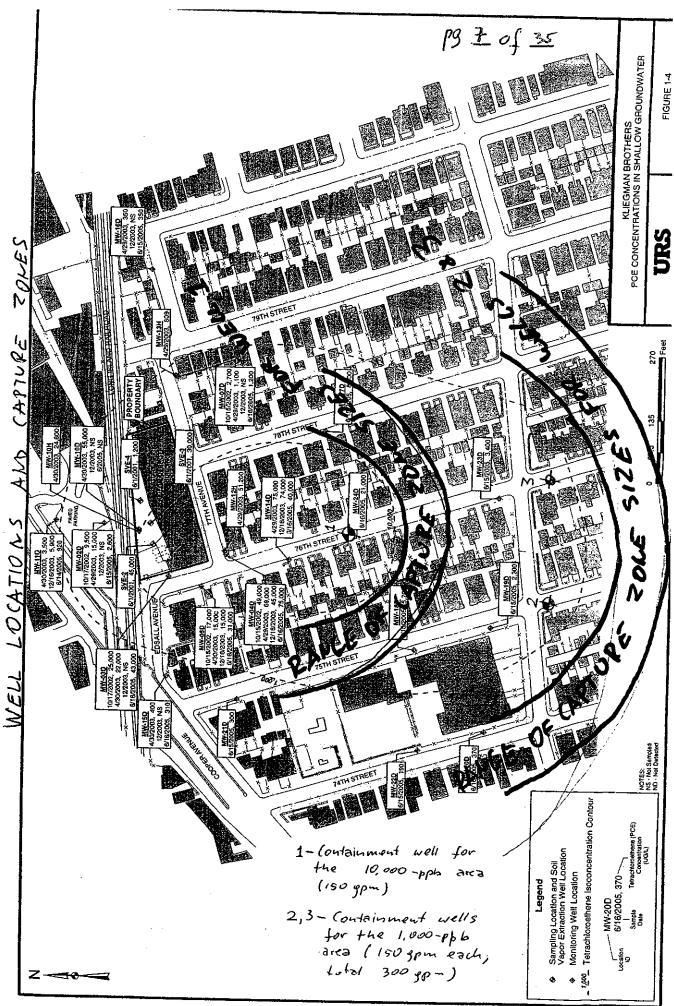
Case 1 Q = 300 gpm, $A = 0.1 \Rightarrow W_{capture-A=0.1} = 980$ ft

Case 2 Q = 300 gpm, $A = 1.0 \Rightarrow W_{capture-A=1} = 650$ ft

The overall assessment is that two extraction wells, each pumping at 150 gpm (300-gpm total), would be sufficient to contain the 1,000-ppb area. The spacing between the wells is approximately 280 ft. The wells should be placed approximately 100 ft from the downgradient limits of the 1,000-ppb area.

6. SUMMARY

URS


One partially-penetrating well, extracting 150-gpm, should be sufficient to create a capture zone required to contain the 10,000-ppb area of the dissolved PCE plume. The well would have to penetrate approximately 30 ft into the water table. Well drawdown would be approximately 5 ft. The well would have to be located within approximately 100 ft from the downgradient limit of the 10,000-ppb area (see page <u>bo</u>).

Two such wells should be sufficient to create a capture zone required to contain the 1,000-ppb area of the dissolved PCE plume. The total extraction rate would be 300 gpm (150 gpm each well). The wells would have to be located within approximately 100 ft from the downgradient limit of the 10,000-ppb area (see page <u>%)</u>. 1,200

7. REFERENCES

.1.

Determining 3D Capture Zones in Homogeneous Anisotropic Aquifers D. Schafer Ground Water, July-August 1996

.

This spreadsheet calculates pathlines of partickles inserted at the surface of the aquifer (z = 0) where sevearal wells are extracting ground water. Conditions are:

- * homogenous, anisotropic aquifer (K horiz conductivity, Kz vertical cond)
- * aquifer of infinite thickness (b = infinity)
 * uniform hydraulic gradient (i hydraulic gradient, theta angle between positive x axis and flow dimetty

positive x-axis and flow direction, measured counterclockwise)

- * seven extraction wells (Q_i extraction rates, L_i penetration depths)
- * wells straddle the aquifer surface $(d_i = 0)$
- * wells located at points (x_i, y_i)
- numerical parametrs: n_{eff} dummy aquifer porosity, del I distance which a partickle is allowed to move in one time step, x_{start} & y_{start} - initial position of a particle

Velocities calculated per "Determining Capture Zones in Homogeneous, Anisotropic Aquifers", Ground Water, July-August 1996, Vol. 34, No. 4.

 $v_x = (K \ i \ / \ n_{eff}) \ cos(theta) - [1 \ / \ 2 \ PI \ SQRT(A) \ n_{eff}] \ EPS \ \{Q_i \ (x - x_i) \ / \ [F(x,y)G(x,y)]\}$ $v_y = (K \ i \ / \ n_{eff}) \ sin(theta) \ - [1 \ / \ 2 \ PI \ SQRT(A) \ n_{eff}] \ EPS \ \{Q_i \ (y - y_i) \ / \ [F(x,y)G(x,y)]\}$ $v_z = 0 \ (pathlines \ on \ the \ surface \ of \ the \ aquifer)$

$$F(x,y) = SQRT\{(x-x_i)^2 + (y-y_i)^2 + L_i^2/A\}$$

$$G(x,y) = (x-x_i)^2 + (y-y_i)^2$$

- 1) Assume initial position (x,y)
- 2) Calculate velocities v_x and v_y at (x,y)
- Calculate the trial position:

$$x_{t} = x + (del i) [v_{x} / SQRT(v_{x}^{2} + v_{y}^{2})]$$

$$y_t = y + (del I) [v_y / SQRT(v_x^2 + v_y^2)]$$

4) Calculate velociites v_{xt} and v_{yt} at trial position (x_t, y_t)

5) Calculate final position:

$$\begin{aligned} x_{f} &= x + (del I) \{ (v_{x} + v_{xt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}] \} \\ y_{f} &= y + (del I) \{ (v_{y} + v_{yt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}] \} \end{aligned}$$

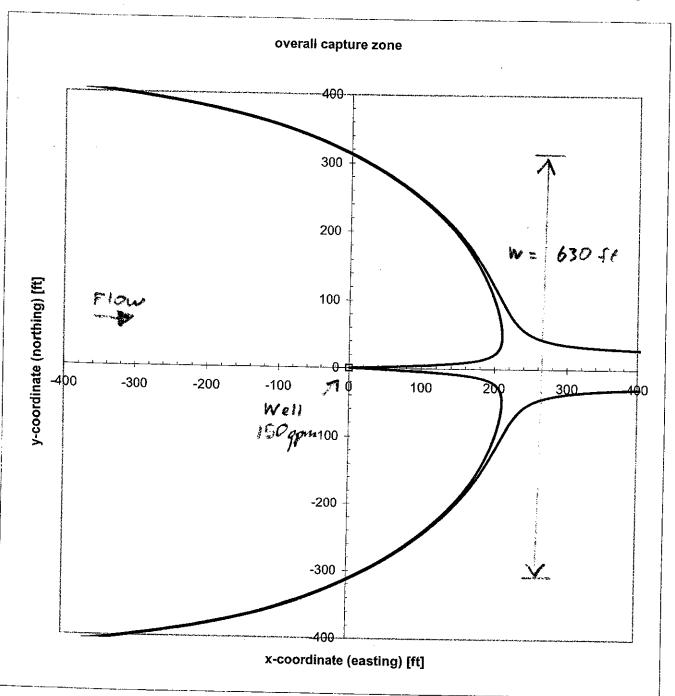
Wells:

Well #	Well ID	Q		L _i	Xi	Yi
1	EW-01	(gpm) 150	[ft ³ /d] 28,873	[ft] 25.5	[ft] 0	[ft] 0

Aquifer:

K =
 1.0E-01 cm/sec =
 283.46 ft/d

 A =
$$K_z/K =$$
 0.1 \leftarrow
 (356 1)
 12.000 - prob


 $n_{eff} =$
 0.15
 12.000 - prob
 31.02

 i =
 0.001
 0 deg =
 0 rad

Numerical:

pathline #	X _{start}	Y _{start}	del I
1	-500	418	0.6
2	-500	419	0.6
3	-500	-418	0.6
4	-500	-419	0.6

Pg <u>9</u> of <u>35</u>

This spreadsheet calculates pathlines of partickles inserted at the surface of the aquifer (z = 0) where sevearal wells are extracting ground water. Conditions are:

* homogenous, anisotropic aquifer (K - horiz conductivity, Kz - vertical cond)

- * aquifer of infinite thickness (b = infinity)
- * uniform hydraulic gradient (i hydraulic gradient, theta angle between positive x-axis and flow direction, measured counterclockwise)
- * seven extraction wells (Q_i extraction rates, L_i penetration depths)
- * wells straddle the aquifer surface $(d_i = 0)$
- * wells located at points (x_i, y_i)
- * numerical parametrs: n_{eff} dummy aquifer porosity, del I distance which a partickle is allowed to move in one time step, x_{start} & y_{start} initial position of a particle

Velocities calculated per "Determining Capture Zones in Homogeneous, Anisotropic Aquifers", Ground Water, July-August 1996, Vol. 34, No. 4.

 $v_x = (K \ i \ / \ n_{eff}) \ cos(theta) - [1 \ / \ 2 \ PI \ SQRT(A) \ n_{eff}] \ EPS \left\{ Q_i \ (x - x_i) \ / \ [F(x,y)G(x,y)] \right\}$ $v_y = (K \ i \ / \ n_{eff}) \ sin(theta) \ - [1 \ / \ 2 \ PI \ SQRT(A) \ n_{eff}] \ EPS \left\{ Q_i \ (y - y_i) \ / \ [F(x,y)G(x,y)] \right\}$ $v_z = 0 \ (pathlines \ on \ the \ surface \ of \ the \ aquifer)$

$$F(x,y) = SQRT\{(x-x_i)^2 + (y-y_i)^2 + L_i^2/A\}$$

G(x,y) = (x-x_i)^2 + (y-y_i)^2

- 1) Assume initial position (x,y)
- 2) Calculate velocities v_x and v_y at (x,y)
- 3) Calculate the trial position:

$$x_t = x + (del I) [v_x / SQRT(v_x^2 + v_y^2)]$$

$$y_t = y + (del I) [v_y / SQRT(v_x^2 + v_y^2)]$$

4) Calculate velociites v_{xt} and v_{yt} at trial position (x_t, y_t)

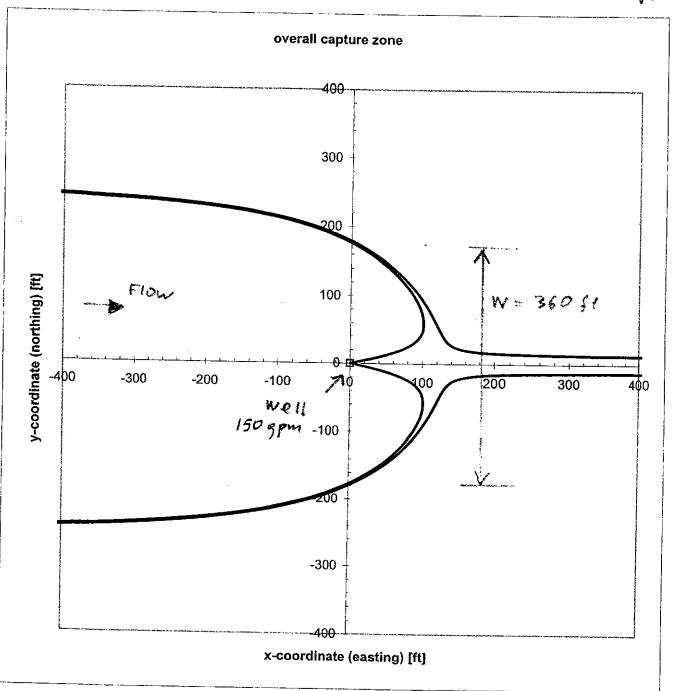
5) Calculate final position:

$$x_{f} = x + (del i) \{(v_{x} + v_{xt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}]\}$$

$$y_{f} = y + (del i) \{(v_{y} + v_{yt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}]\}$$

Wells:

Well #	Well ID	Qi		Li	Xi	Yi
1	EW-01	[gpm] 150	[ft ³ /d] 28,873	[ft] 25.5	(ft) 0	[ft] 0


Aquifer:

K =	1.0E-01 cm/sec =	283.46 ft/d	
A = K _z /K =	1 < ~ Cass		
n _{eff} =	0.15	2 , 10,000- ppb	arta
i =	0.001		
phi =	0 deg =	0 rad	

Numerical:

pathline #	X _{start}	Y start	del I
1	-500	245	0.5
2	-500	247	0.5
3	-500	-245	0.5
4	-500	-247	0.5

р<u>я 11</u> р<u>я 35</u>

Case 2, 10,000 - ppb avea Required lateral extent Warpana pris - 400 fr

This spreadsheet calculates pathlines of partickles inserted at the surface of the aquifer (z = 0) where sevearal wells are extracting ground water. Conditions are:

* homogenous, anisotropic aquifer (K - horiz conductivity, K_z - vertical cond)
 * aquifer of infinite thickness (b = infinity)

01 35

- * uniform hydraulic gradient (i hydraulic gradient, theta angle between positive x-axis and flow direction, measured counterclockwise)
- * seven extraction wells (Qi extraction rates, Li penetration depths)
- * wells straddle the aquifer surface $(d_i = 0)$
- * wells located at points (x_i, y_i)
- * numerical parametrs: n_{eff} dummy aquifer porosity, del I distance which a partickle is allowed to move in one time step, x_{start} & y_{start} initial position of a particle

Velocities calculated per "Determining Capture Zones in Homogeneous, Anisotropic Aquifers", Ground Water, July-August 1996, Vol. 34, No. 4.

 $v_x = (K i / n_{eff}) \cos(\text{theta}) - [1 / 2 PI SQRT(A) n_{eff}] EPS \{Q_i (x - x_i) / [F(x,y)G(x,y)]\}$ $v_y = (K i / n_{eff}) \sin(\text{theta}) - [1 / 2 PI SQRT(A) n_{eff}] EPS \{Q_i (y - y_i) / [F(x,y)G(x,y)]\}$ $v_z = 0 \text{ (pathlines on the surface of the aquifer)}$

$$F(x,y) = SQRT\{(x-x_i)^2 + (y-y_i)^2 + L_i^2/A\}$$

$$G(x,y) = (x-x_i)^2 + (y-y_i)^2$$

1) Assume initial position (x,y)

2) Calculate velocities v_x and v_y at (x,y)

3) Calculate the trial position:

$$x_{t} = x + (del I) [v_{x} / SQRT(v_{x}^{2} + v_{y}^{2})]$$

$$y_{t} = y + (del I) [v_{y} / SQRT(v_{x}^{2} + v_{y}^{2})]$$

4) Calculate velociites
$$v_{xt}$$
 and v_{yt} at trial position (x_t, y_t)

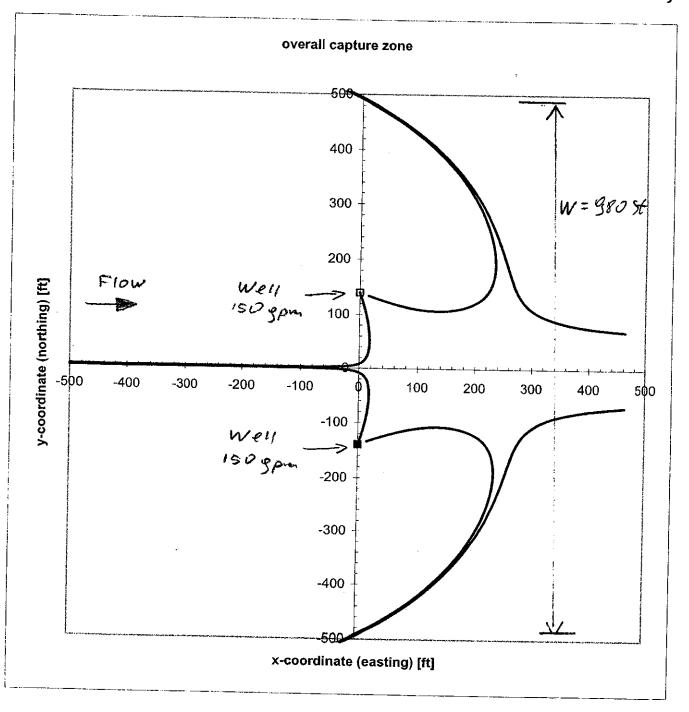
5) Calculate final position:

$$x_{f} = x + (del I) \{(v_{x} + v_{xt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}]\}$$

$$y_{f} = y + (del I) \{(v_{y} + v_{yt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}]\}$$

Wells:

Well #	Well ID	Qi		Li	x _i	y _i
1 2	EW-01 EW-02	[gpm] 150 150	[ft ³ /d] 28,873 28,873	[ft] 25.5 25.5	[ft] ([ft] 0 140 0 -140


Aquifer:

K =	1.0E-01 cm/sec	283 .	46 ft	/d	
A = K _z /K =	0.1 🧲	Case 1		1000	
n _{eff} =	0.15		J	1.000-ppb	stes.
i =	0.001				
phi =	0 deg =		0 ra	ad	

Numerical:

pathline #	X _{start}	y _{start}	del I
1	-500	620	0.6
2	-500	621.5	0.6
3	-500	-620	0.6
4	-500	-621.5	0.6

Pg 13 wf 35

(ase 1, 1,000-ppb area Required lateral estent of capture "some W1,000-ppb = 650 ft

This spreadsheet calculates pathlines of partickles inserted at the surface of the aquifer (z = 0) where sevearal wells are extracting ground water. Conditions are:

- * homogenous, anisotropic aquifer (K horiz conductivity,Kz vertical cond)
- * aquifer of infinite thickness (b = infinity)
- * uniform hydraulic gradient (i hydraulic gradient, theta angle between positive x-axis and flow direction, measured counterclockwise)
- * seven extraction wells (Q_i extraction rates, L_i penetration depths)
- * wells straddle the aquifer surface $(d_i = 0)$
- * wells located at points (x_i, y_i)
- numerical parametrs: n_{eff} dummy aquifer porosity, del I distance which a partickle is allowed to move in one time step, x_{start} & y_{start} - initial position of a particle

Velocities calculated per "Determining Capture Zones in Homogeneous, Anisotropic Aquifers", Ground Water, July-August 1996, Vol. 34, No. 4.

 $v_x = (K \ i \ / \ n_{eff}) \ cos(theta) - [1 \ / \ 2 \ PI \ SQRT(A) \ n_{eff}] \ EPS \left\{ Q_i \ (x - x_i) \ / \ [F(x,y)G(x,y)] \right\} \\ v_y = (K \ i \ / \ n_{eff}) \ sin(theta) \ - [1 \ / \ 2 \ PI \ SQRT(A) \ n_{eff}] \ EPS \left\{ Q_i \ (y - y_i) \ / \ [F(x,y)G(x,y)] \right\} \\ v_z = 0 \ (pathlines \ on \ the \ surface \ of \ the \ aquifer)$

$$F(x,y) = SQRT\{(x-x_i)^2 + (y-y_i)^2 + L_i^2/A\}$$

$$G(x,y) = (x-x_i)^2 + (y-y_i)^2$$

- 1) Assume initial position (x,y)
- 2) Calculate velocities v_x and v_y at (x,y)
- 3) Calculate the trial position:

4) Calculate velociites v_{xt} and v_{yt} at trial position (x_t , y_t)

5) Calculate final position:

$$\begin{aligned} x_{f} &= x + (del I) \left\{ (v_{x} + v_{xt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}] \right\} \\ y_{f} &= y + (del I) \left\{ (v_{y} + v_{yt}) / SQRT[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2}] \right\} \end{aligned}$$

Wells:

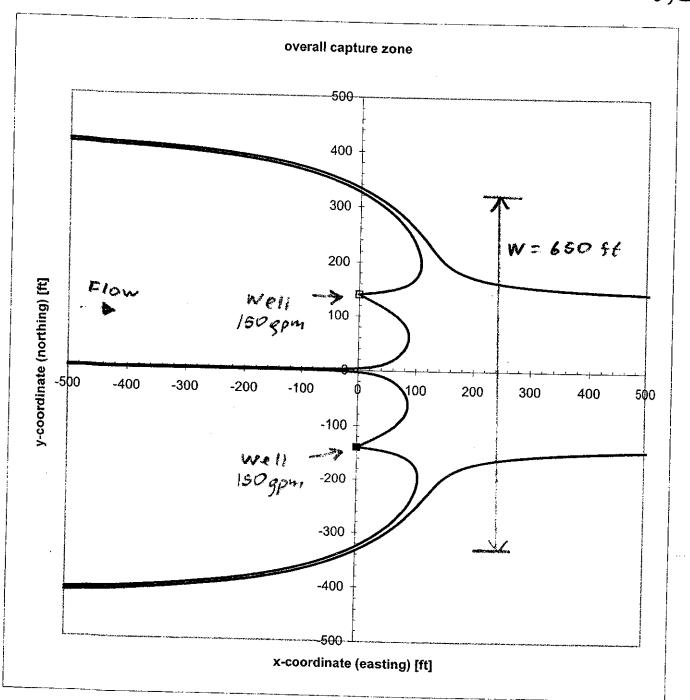
Well #	Well ID	Qi		Li	X _i	Yi
1 2	EW-01 EW-02	[gpm] 150 150	[ft ³ /d] 28,873 28,873	[ft] 25.5 25.5	[ft] 0 0	[ft] 140 -140

Aquifer:

$$K = 1.0E-01 \text{ cm/sec} = 283.46 \text{ ft/d}$$

$$A = K_z/K = 1 - 283.46 \text{ ft/d}$$

$$n_{eff} = 0.15 - 1.020 - 0.001$$


$$i = 0.001$$

$$phi = 0 \text{ deg} = 0 \text{ rad}$$

Numerical:

pathline #	X _{start}	Y start	del I
1	~500	410	0.6
2	-500	415	0.6
3	-500	-410	0.6
4	-500	-415	0.6

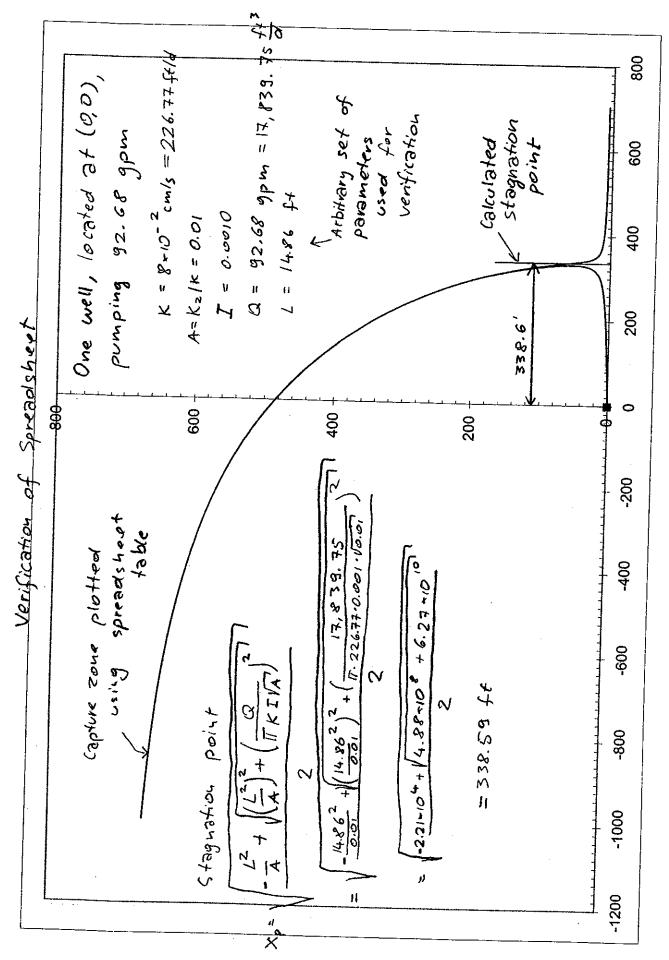
pg 15

Case 2, 1,000-ppb area Required tatival extent of capture zone Whoo-ppb = 65044

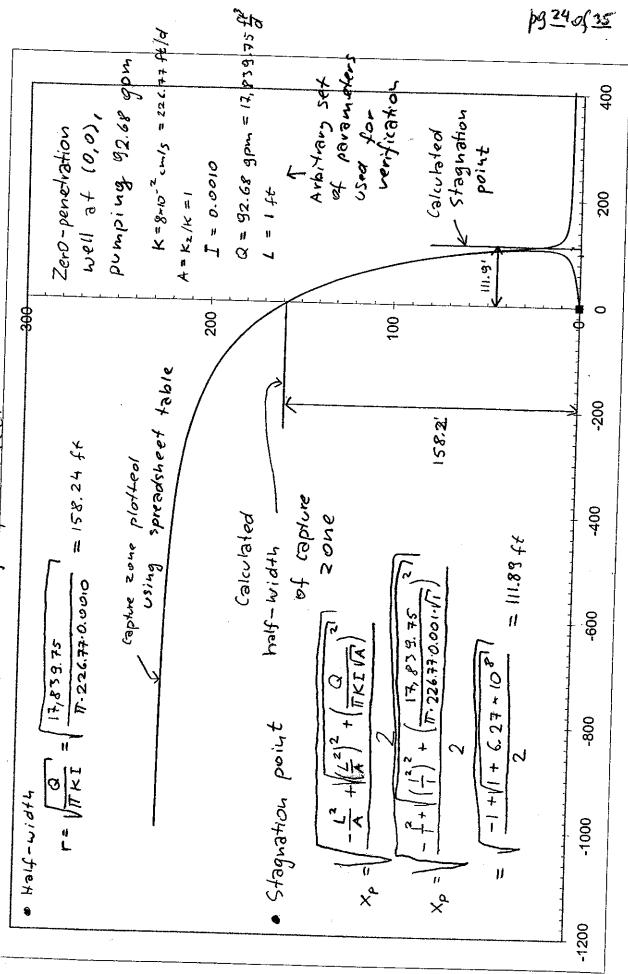
.

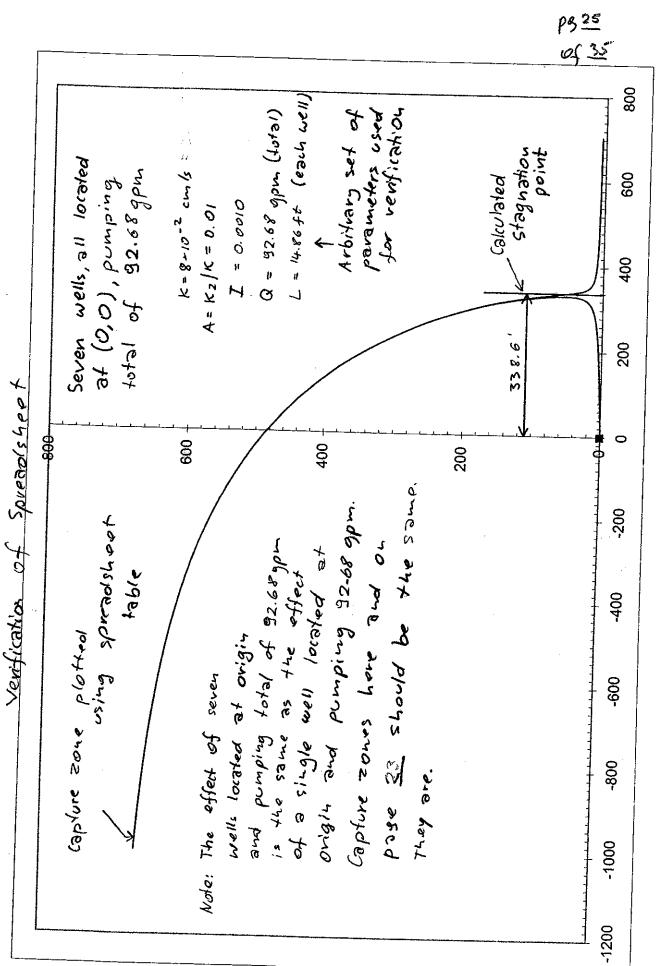
UNT Page 16 of 35 Job MYSDEC KLIEGMAN BROS Project No. <u>111 74 770</u> Sheet /___ of _____4 Description Computed by _ INO. Date 5/280 Location of Inflection Point Checked by RBP Date 10 Reference Sw Ya conductivity ilotropy foctor Kvert = Khoriz For an infinitely thick aquifer, gradient in the × direction and well starting for 2=0 (equation 16 of reference 1) the top; $S(x,y) = Ix + \frac{Q_{\omega}}{4\pi\kappa L} \ln \frac{1}{\sqrt{x^2 + y^2 + \frac{L}{A}}}$ 4 + 1/A 4 - 1 Eq 16 with . n=0 $\frac{ds}{dx} = I + \frac{Q_{w}}{4\pi K L} \left(\frac{1}{1 \times 2 + y^{2}} + \frac{L^{2}}{4} - \frac{L}{4\pi} + \frac{L^{2}}{4\pi K L} + \frac{L^{2}}{1 \times 2 + y^{2}} + \frac{L^{2}}{4} + \frac{L^{2}}{4\pi K L} + \frac{$ 0=0-76050=1 251+0=0 ~ O = O d = 0; $x_i = y_i = 0$ Rx (1x2+172+1/2) 2 1x2+192+1/20 $\frac{2 \times ([x^{2_{1}}y^{2} + \zeta_{2}^{2} + \zeta_{3}]}{2(x^{2} + y^{2} + \zeta_{4}^{2})}$ Z=0 1x2+y2+2 $I + \frac{Q_{n}}{417 \kappa L} \frac{\left[\chi^{2} + g^{2} + \frac{L^{3}}{4} \right]}{\left[\chi^{2} + g^{2} + \frac{L^{3}}{4} \right]}$ - 54 × (1/x2+12"- 4-1

Page 12 of 35 111 74 770 Sheet 2 of Description Computed by ____ Date 51 Intlection Point Checked by KBP Location of Date 10 Reference $= 1 + \frac{Q_{w}}{4\pi \kappa_{k}} + \frac{\chi (-2\frac{1}{4})}{\chi^{2} + y^{2} + \frac{L^{2}}{4}(\chi^{2} + \frac{L^{2}}{4})(\chi^{2} + \frac{L^{2}}{4})}$ $\frac{1 - Q_{M}}{2 \Pi K \sqrt{A}} = \frac{\chi^{2} + L^{2}}{(\chi^{2} + \eta^{2} + \frac{L^{2}}{A} - \frac{L^{2}}{A}) \sqrt{\chi^{2} + \eta^{2} + \frac{L^{2}}{A}}$ $= 1 - \frac{\omega_{w}}{2\pi \kappa \pi} \frac{1}{(\chi^{2} + \eta^{2}) \sqrt{\chi^{2} + \eta^{2} + \frac{1}{A}^{2}}}$ $\frac{ds}{dx} = i - \frac{Q_m}{2\pi k A} \frac{x}{x^2 \sqrt{x^2 + k^2}}$ For x>0 $\frac{ds}{dx}\Big|_{y=0} = \mathbf{I} - \frac{Q_{-}}{2\pi\kappa v_{A}} + \frac{\sqrt{\chi^{2} + L^{2}}}{\chi \sqrt{\chi^{2} + L^{2}}}$ Inflexion point . $\frac{ds}{dt} = 0 = 2I - \frac{Q_m}{2\pi \kappa \sqrt{A}} \cdot \frac{1}{x \sqrt{x^2 + \frac{L^2}{A}}} = 0$ $\times \sqrt{\chi^2 + \frac{L^2}{\Delta}} = \frac{Q_n}{2\pi \kappa \sqrt{\lambda}}$ $\times^{2}\left(\times^{2}+\frac{L^{2}}{A}\right)=\left(\frac{Q_{2}}{2\pi i}\right)^{2}$


URS Page 18 of 35 BAOS 74 770 Project No. Sheet 3 of 4 Description Computed by ____ 100 Date 5/28/02 of inflection Point Checked by RBP Location Date 10/4/06 Reference Substitute $\times -[t] => x^2 = t$ $t^{2} + \frac{L^{2}}{A} t - \left(\frac{Q_{\omega}}{2\pi \kappa V_{A}}\right)^{2} = 0$ $\Delta = \left(\frac{L^2}{A}\right)^2 + 4 \left(\frac{Q_{\perp}}{Z\overline{I}\overline{K}}\right)^2 = \left(\frac{L^2}{A}\right)^2 + \left(\frac{Q_{\perp}}{\overline{I}\overline{K}}\right)^2$ $-\frac{\zeta^2}{\pi} - \frac{1}{4} \leq 0$ $= \frac{1}{A} + \frac{1}{A} > 0 \quad \partial K$ $x = \sqrt{\frac{L^2}{4} + \sqrt{\Delta}}$ $\chi_{infl} = \sqrt{-\frac{L^2}{A} + \sqrt{\left(\frac{L^2}{A}\right)^2 + \left(\frac{Q_{\perp}}{\Pi K V A i}\right)^2}$ Relate Qu lo well draudour drandhour remains above aquifer top • IF $L = const \neq f(s_{-})$ · If draudoun is below aquifer top (unconfined apufor) L= f(s_w) = P-sw P-vell penetration at static conditions

UKD Page 19 of 35 Job Project No. 111 74 770 Sheet 4 of 4 Description Location of Computed by _____ Date 5/78/07 Inflation Point Checked by RBP Date 10/4/06 Reference IF diardor - i's beter top lor ar ite uncost. azvite-) in $= f(s_{J}) = f$ pendiction let web at Conditions State S. 411K (P-(P-5)27 (P- Su 1×-2+ (P (P-s~) From (1) on sheret 1, and for well face $\frac{\chi^2 + y^2 = V_{\omega}^2}{i_j \times -smell} => i_{\omega} \times i_{\omega} = s_{\omega}$ $= \frac{Q_{W}}{4\pi\kappa L} \frac{1}{16} \frac$ S. 4ITKL $Q_{w} = \frac{1}{10} \frac{\left(V_{u}^{2} + \frac{12}{4}\right) + \frac{1}{4}}{\left(V_{u}^{2} + \frac{12}{4}\right) - \frac{1}{4}}$


URAS Page 20 of 35 Jop NYSDEC KLIEGMAN BROS Project No. 111 74 770 Sheet 1 of 3 Description Copture Zone Computed by Dec 7.04 Date Checked by Ro Date 10 Reference Reference 1, equation 178. Substitute: - aquifer of infinite thickness - wells straddling the water table - pathlines on aquifer surface • h = 0 • d; =0 • Z = Ø $V_{x} = \frac{kI}{2} \cos \theta + \sum_{i=1}^{M} \frac{Qi(x=x_{i})}{4TL_{i}\eta}$ $\frac{1}{7} \sqrt{(x^{-x_{i}})^{2} + (y - y_{i})^{2} + \frac{L_{i}^{2}}{A} \left((x - x_{i})^{2} + (y - y_{i})^{2} + \frac{L_{i}^{2}}{A} \right)^{2}}$ $1(x-x_i)^2 + (y-y_i)^2 \cdot 1(x-x_i)^2 + (y-y_i)^2$ $((++)^2 + (y - y_1)^2 + (y - y_1)^2 + (y - y_1)^2 + (y - y_1)^2$ $[(x-x_i)^2 + (y-y_i)^2 + \frac{L^2}{A}] [(x-x_i)^2 + (y-y_i)^2 + \frac{L^2}{A}]$ () and () cancel out, (x-x:)2+(y-y:)2+ (2) be factored out.


URS Page 21 of 31 Job CLIE G-MAIN BROS Project No. <u>111 74</u> 770 Sheet 2. of 3 Description Capture Zone Computed by Date Dec 7,04 CRP Checked by Date (2 Reference $V_{x} = \frac{kI}{2}\cos\Theta + \sum_{i=1}^{M} \frac{Q_{i}(x-x_{i})}{4\pi L_{i} 2} \cdot \sqrt{(x-x_{i})^{2} + (y_{i})^{2} + \frac{L_{i}}{4}}$ $\left(\sqrt{(x-x_i)^2 + (y-y_i)^2 + \frac{L_i}{A}} + \frac{L_i}{A} \right)$ Term in the brackets can be expanded using the common denomitar $\left\{ \right\} = \frac{\left[(x - x_i)^2 + (y - y_i)^2 + \frac{L_i^2}{4} - \frac{L_i^2}{4} - \frac{L_i^2}{4} + \frac{$ $\frac{(++i)^{2} + (y - yi)^{2} + \frac{4i^{2}}{4} - \frac{4i}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - \frac{2i}{4} - \frac{1}{4} - \frac{1}{4}$ $-2\frac{4}{7\pi}$ $(+-+)^{2} + (y = y_{1})^{2}$ From this $V_{x} = \frac{KI}{h} \cos \theta + \sum_{i=1}^{M} \frac{R_{i}(x - x_{i})}{\frac{1}{2} \sqrt{(1 - x_{i})^{2} + (y - y_{i})^{2} + \frac{1}{2}}} - \frac{2\frac{1}{14}}{(1 - x_{i})^{2} + (y - y_{i})^{2} + \frac{1}{4}}$ $V_{x} = \frac{k F}{2} \cos \theta - \sum \frac{Q_{i}(x - x_{i})}{2 \pi n \sqrt{A}} \cdot \frac{1}{\left[(x - x_{i})^{2} + \frac{L}{2}\right]^{2} + \frac{L}{2}} \frac{1}{\left[(x - x_{i})^{2} + \frac{L}{2}\right]^{2}} \frac{1}{\left[(x - x_{i})^{2} + \frac{L}{2}\right]^{2} \frac{1}{\left[(x - x_{$

URS Page 22 of 35 NTSDEL FLIEGMAN BROS Project No. 111 74 770 Sheet 3 of 3 Description _ Capture Zone Computed by ____ Date <u>Dec 7,04</u> K6P Checked by Date 10/4/04 Reference $V_{x} = \frac{kI}{\eta} \cos \theta - \frac{1}{2\pi \sqrt{A} \eta} \sum_{i=1}^{M} \frac{Q_{i}(x - x_{i})}{\sqrt{(x - x_{i})^{2} + (y - y_{i})^{2} + \frac{L^{2}}{A} (x - x_{i})^{2} + (y - y_{i})^{2}}}$ Analogically, from equation 17ь $V_{y} = \frac{kI}{2} \sin \theta - \frac{1}{2\pi \pi} \sum_{i=1}^{M} \frac{Q_{i}(y-y_{i})^{2}}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{L_{i}^{2}}{4} + (y-y_{i})^{2}\right]}$ Substituting n=0, b;=0 and z=0 to equation 17c $V_{2} = \sum_{i=1}^{M} \frac{Q_{i} \forall A}{4 \pi L_{i} n} \left\{ \frac{1}{\sqrt{(4-x_{i})^{2} + (y-y_{i})^{2} + L_{i}^{2}}} \right\}$ $[(+-x_i)^2 + (y-y_i)^2] + [(+-x_i)^2 + (y-y_i)^2]$ (x-x, 32+(y-y; 12+ 4,2) $V_2 = \sum_{i=1}^{M} \frac{Q_i V_A}{4\pi L_i \eta} \cdot O$ $V_2 = 0$

Anisotropic Aquifers

by David C. Schafer^a

and the state of the

and a second second

Abstract

A method is presented for determining steady-state capture zones in three dimensions around horizontal drains and vertical wells in homogeneous, anisotropic aquifers in a uniform flow field. Equations are presented for determining drawdown and velocity vector components in three dimensions around drains and wells. Using these equations, a second-order Runge-Kutta particle tracking algorithm is applied to trace streamlines in three dimensions. By tracking a large number of particles, it is possible to determine areas where capture occurs and areas where particles escape capture. The resulting 3D capture zones are diagrammed as

Introduction

In designing remediation systems for contamination plumes, hydraulic analysis is required to determine appropriate flow rates and locations of extraction wells or trenches to achieve hydraulic containment of the contaminants. Determining capture zones in two dimensions is well understood and relatively straightforward (Javandel and Tsang, 1986). Simple, analytical equations can be used, for instance, to calculate discharge rates necessary to achieve hydraulic containment. Alternatively, several easy-to-use, analytical flow models are readily available to calculate and diagram capture zones for proposed recovery systems.

A limitation of 2D solutions, however, is the assumption that the capture zone fully penetrates the aquifer. Although this assumption might be valid for relatively thin aquifers, it could be inappropriate for thick aquifers in which the contaminant plume penetrates just a fraction of the aquifer thickness. In such systems, treating the problem as two-dimensional leads to unnecessarily high extraction rates, as well as expensive remediation system treatment and operating costs.

When a thick aquifer becomes contaminated, dissolved contaminants often exist only in the upper portions of the aquifer. Under these circumstances, the most economical hydraulic containment system is often one that captures only the shallow (contaminated) ground water, allowing deeper, clean water to pass beneath the extraction system. For these installations, existing 2D equations and flow models are not adequate for accurately describing capture zones and required flow rates and a 3D approach is required.

Methods

3D capture zone analysis is accomplished by tracing streamlines in three dimensions. Streamlines are traced from a large number of different starting points and a determination is made for each starting point as to whether or not the streamline reaches the extraction system or passes on downgradient. By tracking a sufficient number of particles, it is possible to deter-

All an problems within the spatisfer the second with the second s

and lacked, incontration

Geraghty & Miller, Inc., 105 Fifth Avenue South, Suite 350, Minneapolis, Minnesota 55401. Received December 1994, revised June 1995, accepted June 1995. mine those areas where capture is occurring and those areas where particles are escaping capture.

and the second second

Before particle tracking can be accomplished, it is first necessary to determine hydraulic head (or drawdown) in three dimensions around the extraction system. After the drawdown in three dimensions is known, it is possible to determine the extraction-induced gradients in three dimensions by differentiating the drawdown with respect to x, y, and z. Finally, velocities in the x, y, and z directions can be computed from these gradients. After this three-dimensional velocity field has been determined, a standard numerical integration technique is used to calculate the paths that particles would take moving through that field. If a particle path leads to the extraction system, the particle is assumed to have been captured, whereas a particle that bypasses the extraction system by a sufficient distance is assumed to have escaped.

In performing the analysis, it is most convenient to examine the capture zone "one slice at a time." The typical procedure is to fix a specific x coordinate and determine in section view the profile of the capture zone in a plane passing through that x coordinate and oriented perpendicular to the x axis. By repeating this process for a number of x coordinates, it is possible to gain an understanding of what the capture zone looks like in three dimensions.

At each x location, the calculated capture zone profile can be compared with the known position of the contaminant plume to judge whether complete plume capture will occur.

Theory

Drawdown Around a Point Sink

Drawdown around a line sink feature such as a horizontal drain or vertical well can be determined by representing the feature as an infinite number of point sinks, each with an infinitesimal discharge such that their combined discharge equals that of the drain or well. The drawdown for each point sink is determined and the cumulative drawdown is obtained by integrating along the length of the line sink. The first step is to determine the steady-state drawdown around a point sink in a homogeneous, anisotropic, infinitely thick aquifer. In this analysis, anisotropy is considered in the vertical direction because the horizontal deposition of most sediments tends to produce greater hydraulic conductivity in the horizontal direction (paral-

Vol. 34, No. 4-GROUND WATER-July-August 1996

いいのない、日本のにないとなるのである

lel to the bedding planes) and lower hydraulic conductivity in the vertical direction (perpendicular to the bedding planes).

Consider an anisotropic aquifer having horizontal hydraulic conductivity, K, and vertical hydraulic conductivity, K_z , with the anisotropy ratio, A, defined as K_z/K . According to Harr (1962) and Strack (1989), the anisotropic system can be transformed to an equivalent isotropic one by stretching the vertical z axis by the square root of the anisotropy ratio and assigning an isotropic hydraulic conductivity equal to K (A)^{1/2}. Thus, in the transformed system, indicated by the asterisk,

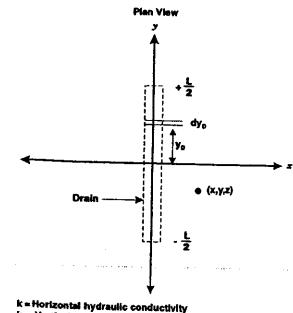
$$z^* = \frac{z}{(A)^{1/2}}$$
 (1a)

$$K^* = K(A)^{1/2}$$
 (1b)

In the isotropic aquifer, the point sink drawdown equation for steady-state conditions can be obtained from Darcy's law. Assuming an infinitely thick aquifer, flow toward point (x_p, y_p, z_p^*) through a spherical shell of radius r_D and thickness -dr (dr is taken to be negative, i.e., r_D is decreasing from infinity to zero) is, according to Darcy's law

$$Q = K^* \left(\frac{-ds}{dr_D}\right) 4\pi r_D^2$$
 (2)

In this equation, Q is flow rate, and s represents drawdown. Rearranging terms gives


$$-ds = \frac{Q}{4\pi K^*} \frac{dr_D}{r_D^2}$$
(3)

Integrating from infinity to r yields

$$-[\mathbf{s}(\mathbf{r}) - \mathbf{s}(\infty)] = \frac{Q}{4\pi K^*} \left[-\left(\frac{1}{\mathbf{r}} - \frac{1}{\infty}\right) \right] \qquad (4)$$

and, because the drawdown at infinity is zero,

$$s = \frac{Q}{4\pi K^* r} \tag{5}$$

k, = Vertical hydraulic conductivity

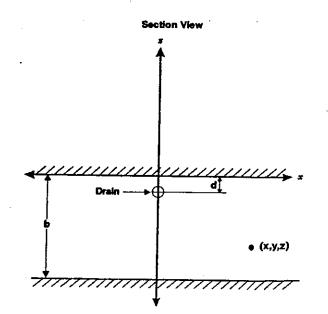
Fig. 1. Plan and section views of horizontal drain.

At a point (x, y, z*) located a distance r from (x_p, y_p, z_p^*) , w have

$$s = \frac{Q}{4\pi K^*} \frac{1}{\left[(x - x_p)^2 + (y - y_p)^2 + (z^* - z_p^*)^2\right]^{1/2}} \quad (\epsilon$$

Finally, in terms of the anisotropic aquifer,

$$s = \frac{Q}{4\pi K(A)^{1/2}} \frac{1}{\left[(x - x_p)^2 + (y - y_p)^2 + ((z - z_p)^2/A)\right]^{1/2}}$$
....(7)


Horizontal Drain

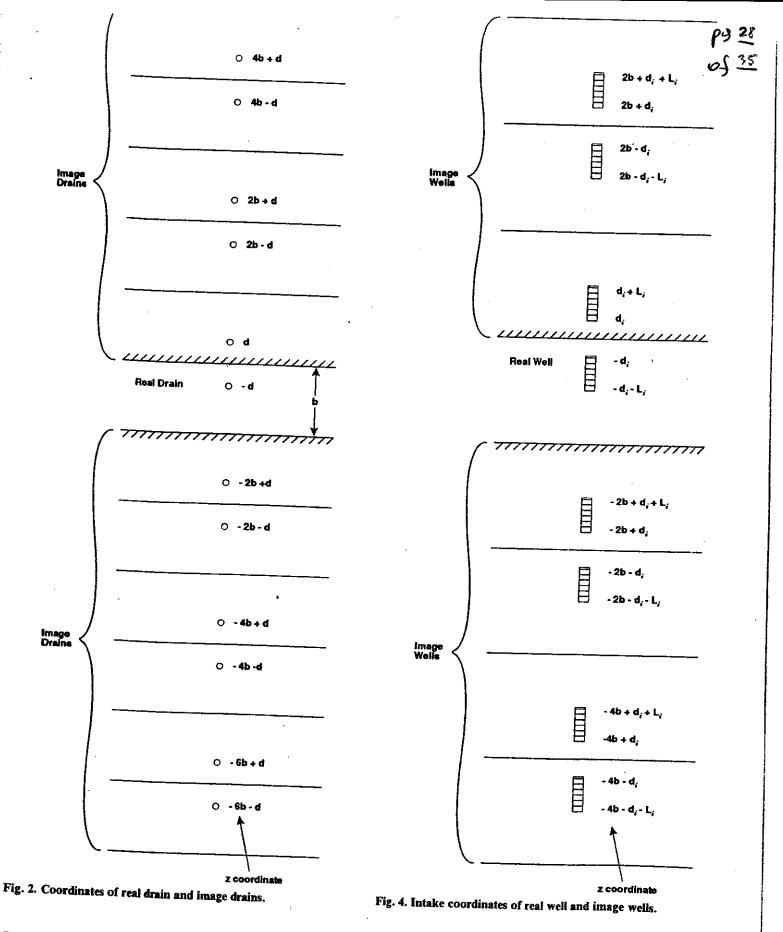
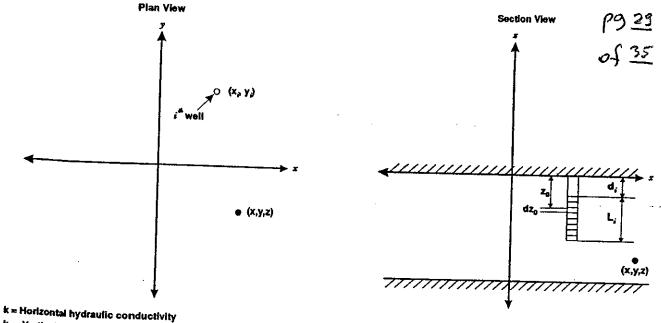

Ground-water extraction is frequently accomplished by pumping from shallow, horizontal trenches or drains con structed across the front of contaminant plumes. In addition horizontal wells are becoming popular for capturing contami nants because they can be used effectively to "skim" broad shallow plumes at the tops of thick aquifers. Special equations are required to calculate capture zones around these horizonta pumping features.

Figure 1 shows a horizontal drain of length L located at a depth d below the top of an aquifer of thickness b, centered at x = y = 0 and oriented parallel to the y axis. Because the aquifer is bounded at the top and bottom, the theory of images is used to transform it to an infinitely thick aquifer. Figure 2 shows images obtained by repeatedly reflecting the actual drain and subsequent image drains across the upper and lower aquifer boundaries. The resulting pattern of image drains is symmetric about both the upper and lower boundaries, thus assuring a no-flow condition at each boundary.

The drawdown around a drain is calculated by integrating the point sink equation. For a drain such as that shown in Figure 1 but at an arbitrary elevation, Z, the infinitesimal flow to a segment of length dy_D at position y_D is


$$dq = (Q/L) \, dy_D \tag{8}$$

Vertical Wells

The equation for drawdown around a system of partially penetrating extraction wells can be derived in the same manner as the one for the horizontal drain. Analysis of flow to vertical, partially penetrating wells has been treated by others for both water flow (Philip and Walter, 1992) and air flow in the vadose zone (Shan, Falta, and Javandel, 1992).

k, = Vertical hydraulic conductivity

Fig. 3. Plan and section views of partially penetrating well.

Figure 3 shows the intake for the ith extraction well (of a multiple well system), located at (x_i, y_i) , pumped at rate Q_i , and open to the aquifer between d_i and $d_i + L_i$ below the top of the aquifer. Using the point sink equation, the infinitesimal drawdown at point (x, y_i) caused by flow to a well segment of length dz_D at position z_D is

$$ds = \frac{(Q_i/L_i)}{4\pi K(A)^{1/2}} \frac{dz_D}{\left[(x-x_i)^2 + (y-y_i)^2 + ((z-z_D)^2/A)\right]^{1/2}}$$
(14)

For a well open to the aquifer between the arbitrary depths of Z_1 (bottom) and Z_2 (top), the total drawdown is obtained by integrating equation (14) from Z_1 to Z_2 as follows:

$$s = \frac{Q_{i}}{4\pi K L_{i}(A)^{1/2}} \int_{z_{1}}^{z_{2}} \frac{dz}{\left[(x - x_{i})^{2} + (y - y_{i})^{2} + \frac{(z - z_{D})^{2}}{A}\right]^{1/2}}$$

$$= \frac{Q_{i}}{4\pi K L_{i}} \ln \frac{\left[(x - x_{i})^{2} + (y - y_{i})^{2} + \frac{(z - Z_{1})^{2}}{A}\right]^{1/2} + \frac{z - Z_{1}}{(A)^{1/2}}}{\left[(x - x_{i})^{2} + (y - y_{i})^{2} + \frac{(z - Z_{2})^{2}}{A}\right]^{1/2} + \frac{z - Z_{2}}{(A)^{1/2}}}$$
(15)

Figure 4 shows image wells incorporated to simulate the upper and lower aquifer boundaries, along with the z coordinates of the tops and bottoms of the intake sections for each well. These coordinates are substituted into equation (15) for each image. For a system of M extraction wells, the principle of superposition is applied by adding together drawdown components for all wells in the extraction system and all of their images. Finally, the hydraulic gradient term is incorporated, yielding

$$s = Ix \cos\theta + Iy \sin\theta + \sum_{i=1}^{M} \frac{Q_i}{4\pi K L_i} \sum_{n=-\infty}^{\infty} \sum_{\substack{n=-\infty}}^{\infty} \left[\ln \frac{\left[(x-x_i)^2 + (y-y_i)^2 + \frac{(z-2nb+d_i+L_i)^2}{A} \right]^{1/2} + \frac{z-2nb+d_i+L_i}{(A)^{1/2}}}{\left[(x-x_i)^2 + (y-y_i)^2 + \frac{(z-2nb+d_i)^2}{A} \right]^{1/2} + \frac{z-2nb+d_i}{(A)^{1/2}}}{\left[(x-x_i)^2 + (y-y_i)^2 + \frac{(z-2nb-d_i)^2}{A} \right]^{1/2} + \frac{z-2nb-d_i}{(A)^{1/2}}}{\left[(x-x_i)^2 + (y-y_i)^2 + \frac{(z-2nb-d_i-L_i)^2}{A} \right]^{1/2} + \frac{z-2nb-d_i}{(A)^{1/2}}}{\left[(x-x_i)^2 + (y-y_i)^2 + \frac{(z-2nb-d_i-L_i)^2}{A} \right]^{1/2}} \right]$$
(16)

Summarizing the terms in this equation: s = distance of the water level at (x, y, z) below the static water level measured at the origin $of the coordinate system; I = magnitude of the regional gradient; <math>\theta = gradient direction$, measured from the positive x axis; $Q_i = flow$ rate of the ith well; K = horizontal hydraulic conductivity; A = anisotropy ratio = K_z/K (K_z = vertical hydraulic conductivity); x, y, z = coordinates of point where s is computed; b = aquifer thickness; M = number of wells; x_i, y_i = coordinates of ith well; d_i = distance from top of aquifer to top of intake in ith well; and L_i = length of intake in ith well.

The terms corresponding to n = 0 represent the real extraction well and one image reflected across the top of the aquifer. Terms corresponding to negative values of n represent image pairs below the aquifer, whereas terms corresponding to positive values of n represent image pairs below the aquifer.

As before, particle velocity vector components are computed by differentiating s with respect to x, y, and z and substituting into equations (12a), (12b), and (12c), yielding the following:

$$\begin{aligned} v_{x} &= \frac{KI}{\eta} \cos\theta + \sum_{i=1}^{M} \frac{Q_{i}(x-x_{i})}{4\pi L_{i}\eta} \cdot \sum_{n=-\infty}^{\infty} \\ & \left[\frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i}+L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i}+L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb+d_{i}+L_{i}}{(A)^{1/2}} \right) \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb+d_{i}}{(A)^{1/2}} \right) \\ & + \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right) \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right) \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right) \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right] \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \right]^{1/2} \\ & - \frac{1}{\left[(x-x_{i})^{2} + \frac{(x-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left[\left[(x-x_{i})^{2} + \frac{(x-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \\ & - \frac{1}{\left[(x-x_{i})^{2} + \frac{(x-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \\ & - \frac{1}{\left[(x-x_{i})^{2} + \frac{(x-2nb-d_{i}-L_{i})^{2}}{A$$

$$\begin{aligned} v_{y} &= \frac{KI}{\eta} \sin \theta + \sum_{i=1}^{M} \frac{Q_{i}(y-y_{i})}{4\pi L_{i}\eta} \cdot \sum_{n=-\infty}^{\infty} \\ & \int \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i}+L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i}+L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb+d_{i}+L_{i}}{(A)^{1/2}} \right)}{1} \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb+d_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb+d_{i}}{(A)^{1/2}} \right)} \\ & + \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right)} \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right)} \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right)} \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right)} \right] \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{z-2nb-d_{i}}{(A)^{1/2}} \right)} \right] \\ & - \frac{1}{\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \left(\left[(x-x_{i})^{2} + (y-y_{i})^{2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} + \frac{(z-2nb-d_{i}-L_{i})^{2}}{A} \right]^{1/2} \right]$$

634

to

in

As with the drain equation, the infinite sum is truncated, summing over n from -N to N, where N is selected based upon desired accuracy. Again, as N increases, s goes to infinity, but the velocity components converge.

Particle Tracking

Numerical integration techniques can be applied to trace particle paths in three dimensions by using the velocity vector equations. Starting with a particle at a known point (x, y, z), the velocities (v_x, v_y, v_z) are computed and the particle is moved to a new position. Using the coordinates of the new position, a new value for the velocity vector is computed and the particle is moved again. This process is continued until the particle either passes downgradient or is captured by the extraction system.

A second-order Runge-Kutta numerical integration method described by Strack (1989) provides an effective means of tracking particles in three dimensions. Using this two-step procedure to track a particle located at (x, y, z), first a *trial* estimate is made of the projected new position (x_t, y_t, z_t) , and then a second calculation is performed to determine a *final* position (x_t, y_t, z_t) . The procedure works as follows.

The coordinates of the trial position (x_t, y_t, z_t) are calculated using the following equations:

$$\mathbf{x}_{t} = \mathbf{x} + \Delta \mathbf{I} \frac{\mathbf{v}_{x}}{[\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}]^{1/2}}$$
(18a)

$$y_t = y + \Delta l \frac{v_y}{[v_x^2 + v_y^2 + v_z^2]^{1/2}}$$
 (18b)

$$z_{t} = z + \Delta l \frac{v_{z}}{[v_{x}^{2} + v_{y}^{2} + v_{z}^{2}]^{1/2}}$$
(18c)

In these equations, Δl is a predetermined incremental step length. This is the distance the particle moves in each step of the calculation. Satisfactory results are usually obtained when the step length is less than one percent of the scale of the problem being investigated (such as the plume size or the length of the streamline). For typical problem solving, a step length of 1 to 5 feet is used.

New particle velocities, v_{xt} , v_{yt} , and v_{zt} are then computed for the trial position (x_t, y_t, z_t) and a final position (x_f, y_f, z_f) is obtained using the following equations:

$$\mathbf{x}_{t} = \mathbf{x} + \Delta \mathbf{I} \frac{\mathbf{v}_{x} + \mathbf{v}_{xt}}{\left[(\mathbf{v}_{x} + \mathbf{v}_{xt})^{2} + (\mathbf{v}_{y} + \mathbf{v}_{yt})^{2} + (\mathbf{v}_{z} + \mathbf{v}_{zt})^{2} \right]^{1/2}}$$
(19a)

$$y_{f} = y + \Delta I \frac{v_{y} + v_{yt}}{\left[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2} + (v_{z} + v_{zt})^{2} \right]^{1/2}}$$
(19b)
$$v_{z} + v_{zt}$$

$$z_{t} = z + \Delta I \frac{v_{z} + v_{zt}}{\left[(v_{x} + v_{xt})^{2} + (v_{y} + v_{yt})^{2} + (v_{z} + v_{zt})^{2} \right]^{1/2}}$$
(19c)

The final position (x_t, y_t, z_t) is a distance, Δl , from the initia position (x, y, z). The entire calculation process is repeated, then using (x_t, y_t, z_t) as the starting point and the particle is stepped again. By repeating this process dozens or hundreds of times for a given particle, it is possible to determine its entire path and whether it escapes or is captured. By examining many particles in this manner, it is possible to determine areas where capture occurs, as well as areas outside the capture zone.

Calculations

Calculations of drawdown, velocity, and particle tracking described above were performed for drains and wells to illustrate the efficacy of this method. The solution was coded in Fortran 77. The procedure was to track a family of particles starting from the same x coordinate, i.e., particles in a single vertical plane perpendicular to the x axis, and determine their travel paths in three dimensions.

For each particle, a determination was made as to whether or not capture occurred. For those particles that were captured, the starting coordinates were saved to an output file for subsequent plotting. The output file was imported to a spreadsheet and a section view plot of the capture zone profile was made. By repeating this procedure for other x coordinates, it was possible to obtain capture zone information at several locations along the plume.

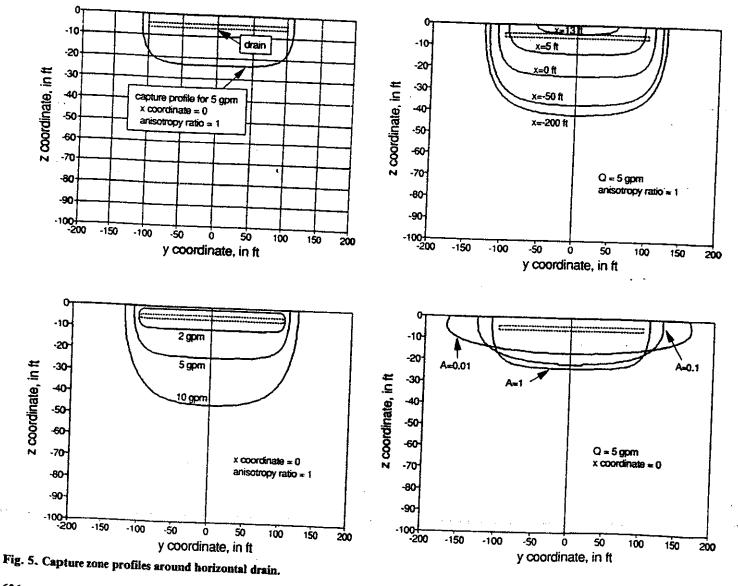
One approach involved tracking uniformly spaced particles covering a rectangular area of specified dimensions perpendicular to the x axis. The resulting output, when plotted, showed the profile of the capture zone as a solid, shaded area. This "gridding" approach was computationally intensive, because a large number of particles were tracked.

Another approach (used in the examples presented below) reduced run time by searching for points near the outer boundary of the capture profile and calculated the coordinates of just the outermost captured points. Run time was reduced because far fewer interior points were tracked. The output file, when plotted, traced the outer boundary of the capture zone profile in section view perpendicular to the x axis. The tracing algorithm sometimes did not perform well for complicated capture zone instances, gridding should be used instead of tracing.

Results

Example capture zones were computed for an idealized aquifer having a hydraulic conductivity of 10 ft/day and a uniform gradient of 0.01 in the positive x direction. Initial calculations were made for a 200-foot long drain 5 feet below the top of the aquifer, running parallel to the y axis as shown in Figure 1.

Results of the calculations are diagrammed in Figure 1. graph in the upper left shows the cross-sectional outline of the capture zone around the drain assuming a flow rate of 5 gpm and isotropic conditions. The capture zone outline is shown at an xcoordinate value of zero, that is, in a plane passing through the drain perpendicular to the x axis. It is clear that the discharge rate of 5 gpm would be adequate for recovering a contamination plume extending about 20 feet below the top of the aquifer.


The graph in the upper right shows the capture zone for the same flow rate and anisotropy ratio, but for several different x coordinate values. The downgradient limit of capture extended just beyond 13 feet and the cross-sectional area of capture increased steadily in the upgradient direction. The graph in the lower left shows the capture zone profile at x = 0 for flow rates of 2, 5, and 10 gpm. Note that at a flow rate of $p_1^{(2)}$ 2 gpm, the capture zone no longer extended to the top of the aquifer.

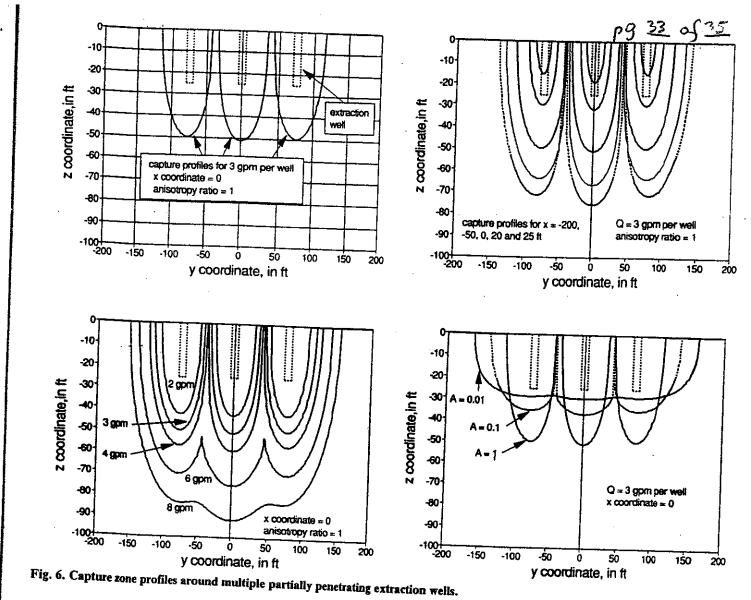

The graph in the lower right shows the effects of anisotropy ratio on the shape of the capture zone. As the anisotropy became more severe, the capture zone became shallower and wider.

Figure 6 shows the results of capture zone calculations for three vertical wells located along the y axis, completed to a depth of 25 feet, and spaced 75 feet apart. The graph in the upper left shows the capture zone for a flow rate of 3 gpm per well and isotropic conditions. The capture zone corresponds to an x coordinate of zero, that is, the plane passing through the wells, perpendicular to the x axis. Clearly this pumping scheme would not be adequate for plume capture because there were distinct gaps between the capture zones for each well.

The graph in the upper right shows additional capture profiles for other x coordinate values. The downgradient limit of capture extended a little past 25 feet and the gaps in the capture system extended upgradient.

The lower left graph shows how the capture zone profile changed with increasing discharge rate. At flow rates of 6 gpm

per well and greater, the leaks in the capture zone were eliminated.

: at

of

he

ру

ne

or

nth

eft

nd

Ls,

ıld

ict

ire of

are

ile

m

х

The lower right graph again shows that increasingly severe anisotropy ratio caused the capture zones to widen. Note that for an anisotropy ratio of 0.01, the leaks vanished.

As a check on the accuracy of this calculation method, it was used to compute capture zones that could be verified with simple analytical equations so that the results could be compared. First, capture zones were calculated for a fully penetrating well assuming a hydraulic conductivity of 10 ft/day, an aquifer thickness of 80 feet, a gradient of 0.01, and a discharge rate of 10 gpm (1,925 ft³/day). The applicable analytical equation is as follows (Javandel and Tsang, 1986):

$$W_0 = \frac{Q}{2KbI}$$
(20)

where $W_0 = \text{capture}$ width at the well, in ft; Q = discharge, in ft³/day; K = hydraulic conductivity, in ft/day; b = aquifer thickness, in ft; and I = hydraulic gradient. Using this equation, the expected capture width at the well is 120.3 feet, and thus should extend from y = -60.15 ft to y = 60.15 ft.

The left-hand graph in Figure 7 shows the capture zone prediction using the 3D method for assigned values of N of 2 and

10, where N represents the truncation of the summation term in equations (17a), (17b), and (17c). The calculated capture zone corresponding to N = 2 (solid line) underpredicted the capture zone by a few tenths of a foot. The predicted capture zone for N = 10 (dashed line) was highly accurate, predicting capture for points within 60.1 feet of the well and demonstrating noncapture for points 60.2 feet and farther from the well.

A second check was made on the 3D method by comparing its output to the expected capture zone around a point sink placed at the top of an infinitely thick aquifer. For isotropic conditions, the expected capture zone would be a half circle of area a where

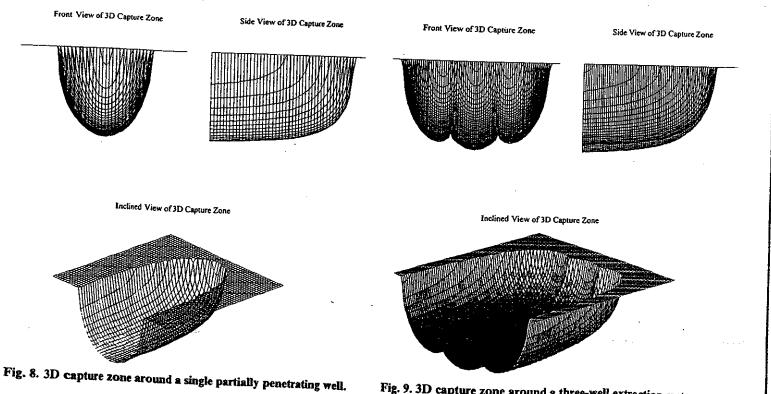
$$\mathbf{a} = \frac{1}{2}\pi \mathbf{r}^2 \tag{21}$$

where r = radius of the semicircle of capture. With the point sink at the origin of the coordinate system, the capture zone profile in the y, z plane (x = 0) would satisfy the following equation:

$$Q = 2KIa$$
 (22)

Combining equations (21) and (22), the expected radius of the semicircular capture profile is

$$\mathbf{r} = \left[\frac{\mathbf{Q}}{\pi \mathbf{K}\mathbf{I}}\right]^{1/2} \tag{23}$$


By using the same flow rate, hydraulic conductivity, and hydraulic gradient as in the previous example, the calculated value of r was 78.28 feet.

3D capture zone profiles were computed for these assumed conditions for a 1-foot long drain centered at the origin and a 1-foot deep well located at the origin. Calculations were performed by assigning N = 0 in equations (13a), (13b), (13c), (17a), (17b), and (17c), effectively truncating the infinite sum to a single term. This is mathematically equivalent to assuming that the aquifer is infinitely deep. The right-hand graph in Figure 7 shows plots of the capture zone for the short drain, the capture zone for the short well, and a semicircle of radius 78.28 feet. The three plots coincide, demonstrating the accuracy of the 3D method.

The section view profiles of the capture zones shown above are generally the most useful presentation for determining exact

dimensions of capture zones and establishing rigorous comparison to known plume dimensions. Occasionally, however, it is helpful to be able to visualize what the capture zone looks like using a three-dimensional plot. This is accomplished by computing the capture profile for a large number of x coordinate values and plotting them simultaneously using appropriate software. Figure 8 shows such a 3D plot for the capture zone of a single partially penetrating pumped well. By viewing the capture zone from the front, from the side, and at an angle, it is possible to get a clearer understanding of the area of contribution to the extraction system.

Figure 9 shows another 3D plot of the capture zone for a three-well system. This 3D plot was computed using the same inputs as those used for the 6 gpm graph shown in the lower left portion of Figure 6. Figure 9 provides a better overall under-

 Fort View of 3D Capture Zone
 Fort View of 3D Capture Zone
 Sub View of 3D Capture Zone

 Inclined View of 3D Capture Zone
 Fort View of 3D Capture Zone
 Sub View of 3D Capture Zone

 Inclined View of 3D Capture Zone
 Inclined View of 3D Capture Zone
 Inclined View of 3D Capture Zone

Fig. 10. 3D capture zone showing leaks between wells.

Fig. 11. 3D capture zone for two-well extraction system.

standing of the nature of the shape of the capture zone, whereas Figure 6 is more useful for determining specific dimensions.

Figure 10 shows the same three-well system but at a discharge rate of 3 gpm per well. Leaks in the capture zone are clearly evident. This 3D plot was computed with the same inputs as those used for the 3-gpm graphs shown in the left portion of Figure 6.

Figure 11 shows the 3D capture zone calculated for a twowell recovery system at a site in Southern California. The extraction system consisted of a 1-gpm well located 300 feet downgradient (and slightly cross gradient) from a 5-gpm well. The figure shows that the downgradient lobe of capture is smaller than the upgradient portion of the capture zone because of the difference in the flow rates of the two wells.

Conclusions

The method presented for determining capture zones in three dimensions is useful for guiding the design, placement, and operation of extraction systems for contaminant plumes that partially penetrate thick aquifers. 2D solutions assume the capture zones to be fully penetrating, and thus overestimate the quantity of flow necessary to achieve capture. 3D flow models on the other hand, are expensive to implement and suffer some loss of accuracy because the thick aquifer must be subdivided into a small number of discrete layers. Furthermore, depending on the grid spacing used, numerical 3D models can lack the sensitivity required to detect small leaks between components of the extraction system.

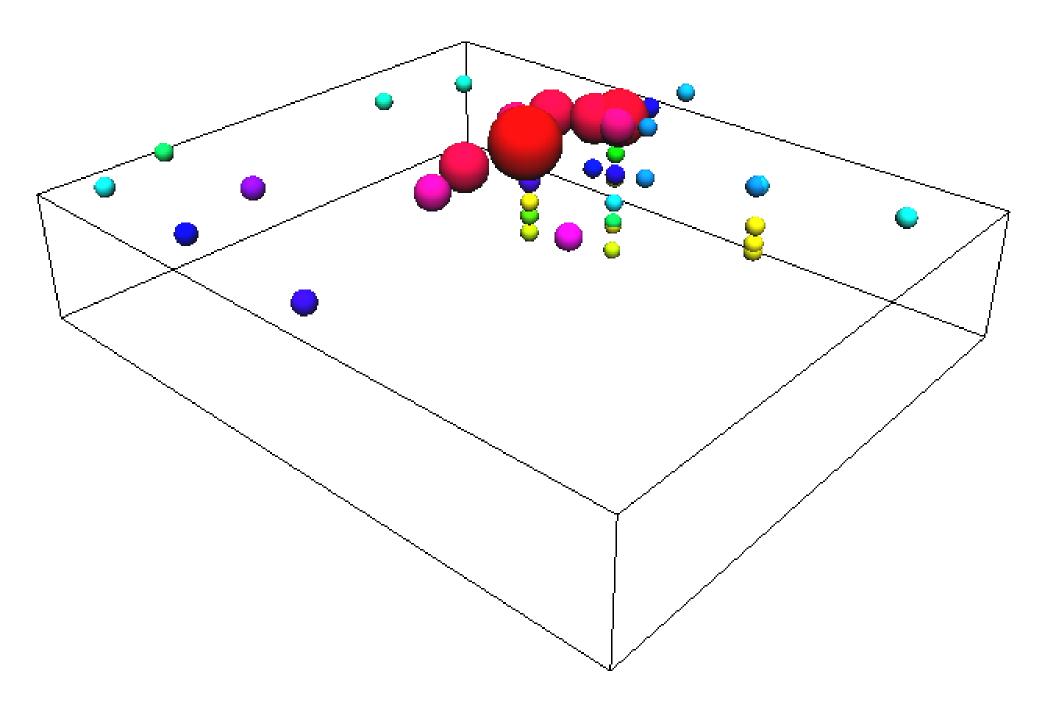
The 3D method described here provides an exact solution for determining 3D capture zones around wells and drains in homogeneous, anisotropic aquifers in a uniform flow field.

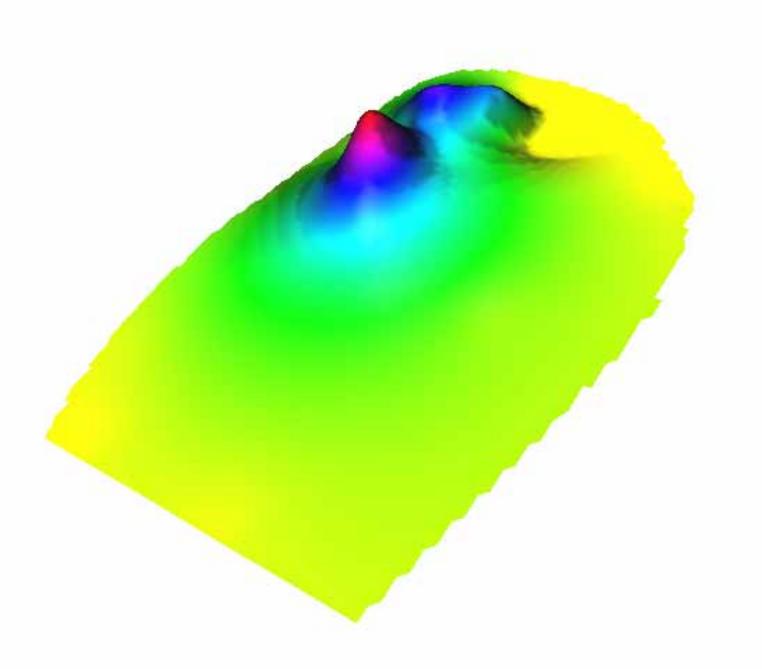
References

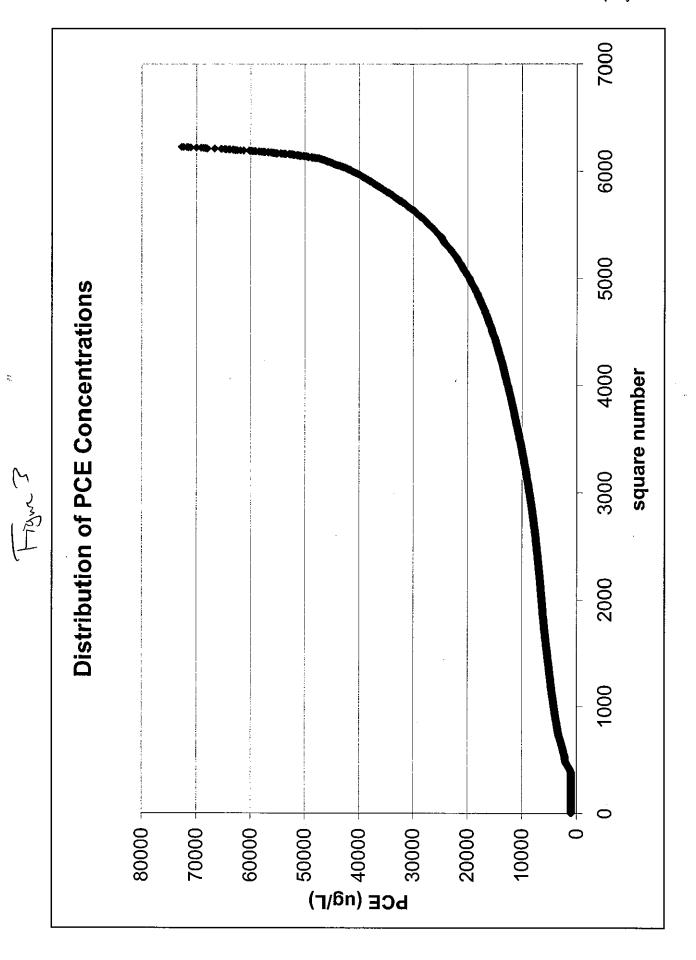
- Harr, M. E. 1962. Groundwater and Seepage. McGraw-Hill Book Company, New York.
- Javandel, Iraj and Chin-Fu Tsang. 1986. Capture-zone type curves: A tool for aquifer cleanup. Ground Water. v. 24, no. 5.
- Philip, Ross D. and Gary R. Walter. 1992. Prediction of flow and hydraulic head fields for vertical circulation wells. Ground Water. v. 30, no. 5.
- Shan, Chao, Ronald W. Falta, and Iraj Javandel. 1992. Analytical solutions for steady state gas flow to a soil vapor extraction well. Water Resources Research. v. 28, no. 4.
- Strack, Otto D. L. 1989. Groundwater Mechanics. Prentice Hall, Englewood Cliffs, NJ.

.i-

CALCULATION COVER SHEET


	Project Name: Kliegman OU2
Project/Calculation Number:	
Title: Estimate of PCE mass in plume	
Total Number of Pages (including cover sheet): 7	
Total Number of Computer Runs: 1	
Prepared by: Jon Sundquist	Date:
Checked by: 122	Date: <u>9/17/07</u>
Description and Purpose: Estimate amount of PCE in the Plume	
Design Basis/References/Assumptions Shallow Groundwater Well Concentrations Assumes 2-meter depth of plume.	
Remarks/Conclusions/Results: About 500 kg in the 10-ppm contour, up to about 600 kg	
	g out to 1-ppm contour
Calculation Approved by:	g out to 1-ppm contour Ø7 Project Manager/Date
Calculation Approved by: A 9/19/2 Revision No.: Description of Revision:	07
	Ø 7 Project Manager/Date


URS Page _1___ of ____ Job Klipgman OU2 Feasibility Study Project No. ///74770 Sheet _____ of _____ Description ______ Behingte of PCE Mass in Plane Computed by Jon Sundquist Date Checked by Date Reference Between the 1 mg/L and 10 mg/L contours. Objective: Roberance: GW. coulds in project totabuse Calculation : Plume is 3D, but interpolation using GRASS among 3D points available (see Former 2) over misleadinguesulds because thee just aren't enough points. Spec, trally, three are no bounding paints below or over an periphoy to provide sifficient differentiation. So instead, look at just the wolf Table concentrations dond interpolate on a 2D basis, the assume depth. The water Tible well date (latest available). The are pe wells with elevation of 82 fect on Table 1. The wor intopolated in GRASS. A 30 view of The interpolated surface, ropped masked to the 1,000 mg/L is chorn on Figue 2 (note, where the interpolation a signal regative values to portion of the plane worth of the site, a value of 1,000 mg/Lunce isrjud to those areas.) The concentration of the intopolated surface was outputed into discrete ~10 42 Squars, The distribution of concentrations A These squares is shown on figure 3. Osh 1'2 ->


Page <u>2</u> of <u>6</u> Job Kliegman OU2 Feasibility Study Project No. ///74770 Sheet _____ of _____ Description Estimate of PCE Massin Plance Computed by Jon Sunlquit Date Checked by _____ Date Reference The average concentration of these squares (calendaded by spreadshut) is 12,987 mg/L With on area of ~ 64,000 m2 and an assumed deph of plane of 2 meters and an assumed porosity of 30% Total dissolved massis (0.30) (12,984 un) (64,000 m2) (2 m deph) (1000 L) (2) (2) (0.1 Mg) 2 500 Kg However, my gut feeling is the distribution underestinate the source area mass because high concentrations are deeper here, and there may be some DNAPE mation intaccounted for by the dissolved phase concentrations. (rote, for comparison, 17,700 kg have been recored by SUE from valose zon) Non-respirate between 1,000 mg/L and 10,000 mg/L. Assume : corcentration in this zone is geometric average of 1,000 and 10, 200 eg/c depth of plane is 2 netors area of 10,000 is conform is ~16,400 m2 porosily = 0.80 So anonalus between the two is: 47,600 m2 Morsis: (V10,00 × 10.0 1/2 (47,600 m2) 2m) (1000L) ty (0.3)= 90Kg

.

. . . .

page 5.f6

Table 1 - Latest GW wells, their coordinates, screen elevations, PCE concentrations, and names.

1019259	196889.3	82	2600	MW-02D	
1019146	196749.4	82	43000	MW-03D	
1019197	196622.7	82	75000	MW-04D	
1019127	196677.5	82	17000	MW-05D	
1019127	196677.5	82	31000	MW-05D	
1019580	196739.6	82	1200	MW-07D	
1019247	196815.1	82	55000	MW-10D	
1019242	196814.8	82	24800	MW-10H	
1019264	196990.7	82	920	MW-11D	
1019205	196625.9	82	51200	MW-12H	
1019583	196744.3	82	809	MW-13H	
1019189	196483.6	82	40000	MW-14D	
1018929	196750.2	82	310	MW-15D	
1019808	196798.9	82	350	MW-16D	
1019472	196411.9	82	8400	MW-17D	
1018998	196205.5	82	5700	MW-18D	
1019049	196043.4	82	2300	MW-19D	
1018822	196052.4	82	370	MW-20D	
1018883	196590.9	82	300	MW-21D	
1018778	196193	82	190	MW-22D	
1019331	196031.9	82	3400	MW-23D	
1019218	196382.8	82	21000	MW-24D	
1019215	196784.6	82	45000	SVE-2	
1019215	196784.6	82	2200	SVE-2	
1019261	196790.7	82	30000	SVE-3	
1019261	196790.7	82		SVE-3	
1019310	196814.1	82		SVE-4	
1019310	196814.1	82		SVE-4	
1019242	196814.8	60		MW-10H	
1019242	196814.8	45		MW-10H	
1019242	196814.8	30		MW-10H	
1019242	196814.8	16		MW-10H	
1019242	196814.8	0		MW-10H	
1019205	196625.9	60		MW-12H	
1019205	196625.9	40		MW-12H	
1019205	196625.9	30		MW-12H	
1019583	196744.3	60		MW-13H	
1019583	196744.3	46		MW-13H	
1019242	196814.8	18		MW-10H	
1019205	196625.9	48		MW-12H	
1019583	196744.3	50		MW-13H	
1019215	196784.6	52		SVE-2	
1019261	196790.7	52		SVE-3	
1019310	196814.1	52	1200	SVE-4	

Water table wells

APPENDIX B COST ESTIMATES

N:\11171964.00000\WORD\Kliegman OU2 FS 0208.doc

NYSDEC KLIEGMAN BROTHERS SITE FEASIBILITY STUDY ENGINEER'S COST ESTIMATE

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:	11174770 AMM	Date:	2-Jul-07	
Description:	Alternative 1 - No Additional Action	Checked By:	J. Sundquist	Date:	2-Jul-07	

SUMMARY

DESCRIPTION	ESTIMATED COST				
SUBTOTAL					

STANDARD SUPPLEMENTAL PROJECT COSTS					
Overhead and Profit 25.00%					
SUBTOTAL					
Contingency 30.00%					
SUBTOTAL CONSTRUCTION COSTS					
Engineering Design 10%					
TOTAL CAPITAL COST					
Annual Operation and Maintenance Cost	\$488,200				
ALTERNATIVE 2A - TOTAL COST	\$488,200				
TOTAL BUDGETARY COST	\$489,000				

URS CORPORATION ENGINEER'S COST ESTIMATE ESTIMATED UNIT COST

	NYSDEC Kliegman Bros. Site	Project Number: Calculated By:		Date: 2-Jul-07
Title:	Alternative 1 - Annual Operation and Maintenance - 30 Year Period	Checked By:	J. Sundquist	Date: 2-Jul-07

ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Air monitoring - Labor 2 days/event * 2 events /yr	40	manhour	\$60.00	\$2,400
2	Sub-slab depressurization installation	3	yr	\$3,500.00	\$10,500
3	Reports	1	ls	\$2,500.00	\$2,500
4					
5					
6					
7					
8					
9					
10				SUBTOTAL	\$15,400
11	LOCATION COST ADJUSTMENT FACTOR - Q	UEENS, NY		1.269	\$19,543
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					440 5 15
28				Subtotal	\$19,543
29	Contr	ractors Overh	ead and Profit	25%	\$4,886
30			<i>a</i>	Subtotal	\$24,428
31		1	Contingency	30%	\$7,328
32				Subtotal	\$31,757
33	Present Wo	orth (30 yr. @	5% discount)	15.373	\$488,196
34					
	TOTAL COST:				\$488,200

NYSDEC KLIEGMAN BROTHERS SITE FEASIBILITY STUDY ENGINEER'S COST ESTIMATE

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:	11174770 P. Baker	Date:	2-Jul-07
Description:	Alternative 2A - Concentrated Plume Extraction and Treatment	Checked By:	J. Sundquist	Date:	2-Jul-07

SUMMARY

DESCRIPTION	ESTIMATED COST
Mobilization and Demobilization	\$46,769
Extraction Well Installation	\$140,925
Ground Water Treatment System	\$493,493
SUBTOTAL	\$681,187

STANDARD SUPPLEMENTAL PROJECT COSTS					
Overhead and Profit 25.00%	\$170,297				
SUBTOTAL	\$851,483				
Contingency 30.00%	\$255,445				
SUBTOTAL CONSTRUCTION COSTS	\$1,106,928				
Engineering Design 10%	\$110,693				
TOTAL CAPITAL COST	\$1,217,621				
Annual Operation and Maintenance Cost	\$5,020,700				
ALTERNATIVE 2A - TOTAL COST	\$6,238,321				
TOTAL BUDGETARY COST	\$6,239,000				

Client: Project:	NYSDEC Project Nur Kliegman Brothers Site - OU2 Calculated		11174770 P. Baker		Date:	29-Oct-06
Title:			J. Sundquist			2-Nov-06
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL COST
1	Submittals					
2	Health and Safety Plan		1	ls	\$2,500.00	\$2,500
3	Shop drawings		1	ls	\$2,500.00	\$2,500
4	Schedules		1	ls	\$3,000.00	\$3,000
5	Record drawings		1	ls	\$2,500.00	\$2,500
6	Survey		2	day	\$1,186.00	\$2,372
7	Security fence		250	lf	\$53.94	\$13,485
8	Permits and easements - Allowance		1	ls	\$20,000.00	\$20,000
9	Portable toilet		2	mo	\$206.00	\$412
10						
11						
12						
13						
14						
15						
16 17						
17						
18						
20						
20						
22						
23						
24						
25						
26						
27						
27						
29						
30						
31						
32						
33						
34						
35						
36						
	TOTAL CO	DST:				\$46,769

Client:		roject Number:	11174770			
Project:		Calculated By:	P. Baker		Date:	29-Oct-06
Title:	Alternative 2A - Ground Water Recovery Well	Checked By:	I Sundauist		Data	2-Nov-06
Thie.	Installation	Checked By.	5. Sundquist		Date.	2-100-00
·						
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL
						COST
1	Sawcut pavement		1100	lf	\$2.02	\$2,222
2	Excavation - trench and vault		1100	lf	\$9.60	\$10,560
3	Extraction well installation		80	vlf	\$186.00	\$14,880
4	Precast concrete vault with road cover - 6' x 6' x 6'		1	ea	\$4,875.00	\$4,875
5	Pipe bedding		2,200	lf	\$1.79	\$3,938
6	Discharge line - 4" HDPE pipe		550	lf	\$9.50	\$5,225
7	Pump - 10 HP, 150 gpm , 80' head		1	ea	\$4,800.00	\$4,800
8	Electrical conduit - 2" PVC		550	lf	\$20.00	\$11,000
9	Pump - electric and controls - Allowance:		1	ls	\$13,000.00	\$13,000
10	Pump - pipe, valves, fittings - Allowance:		1	ls	\$3,000.00	\$3,000
11	Pavement restoration		300	sy	\$25.84	\$7,752
12	Traffic control - Allowance		4	wk	\$7,000.00	\$28,000
13	Drill cuttings disposal		6	drum	\$300.00	\$1,800
14					SUBTOTAL	\$111,052
15	LOCATION COST A	DJUSTMENT I	FACTOR - QU	JEENS, NY	1.269	\$140,925
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
20						
27						
28						
23	TT /	TAL COST				¢140.027
	10	OTAL COST:				\$140,925

Title:Alterr1Air strip2Vapor p2Activate3System4Electrica5Electrica6Natural7Sanitary8Installat9System10Concrete11121314151617181920	Classical active 2A - Ground Water Treatment System DESCRIPTION per - horiz.tray , 300 GPM w / blower and controls nase carbon adsorber unit d carbon - initial charge and yr 1 changeouts controls l power drop - 230V - 3 phase within 50' l installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance:	culated By: P. hecked By: J.	. Sundquist QTY. 1 1 76,500 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UNITS ea ea lb ea ls ls ls ls ls ls ls ls ls ls	UNIT COST \$54,000.00 \$15,483.00 \$2.60 \$20,000.00 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	29-Oct-06 2-Nov-06 TOTAL COST \$54,000 \$15,483 \$198,900 \$20,000 \$20,000 \$20,000 \$13,000 \$15,000
ITEM 1 Air strip 2 Vapor p Activate 3 3 System 4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	DESCRIPTION per - horiz.tray , 300 GPM w / blower and controls hase carbon adsorber unit d carbon - initial charge and yr 1 changeouts controls ll power drop - 230V - 3 phase within 50' ll installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup	hecked By: J.	QTY. 1 1 76,500 1 1 1 1 1 1 1 1 1 1 1 1 1	ea lb ls ls ls ls ls ls ls	UNIT COST \$54,000.00 \$15,483.00 \$2.60 \$20,000.00 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	TOTAL COST \$54,000 \$15,483 \$198,900 \$20,000 \$13,000
1 Air strip 2 Vapor p Activate 3 3 System 0 4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concreta 11 12 13 14 15 16 17 18 19 20	per - horiz.tray , 300 GPM w / blower and controls nase carbon adsorber unit d carbon - initial charge and yr 1 changeouts controls il power drop - 230V - 3 phase within 50' il installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 76,500 1 1 1 1 1 1 1 1 1 1 1 1 1	ea lb ls ls ls ls ls ls ls	\$54,000.00 \$15,483.00 \$2.60 \$20,000.00 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	COST \$54,000 \$15,483 \$198,900 \$20,000 \$20,000 \$13,000
1 Air strip 2 Vapor p Activate 3 3 System 0 4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concreta 11 12 13 14 15 16 17 18 19 20	per - horiz.tray , 300 GPM w / blower and controls nase carbon adsorber unit d carbon - initial charge and yr 1 changeouts controls il power drop - 230V - 3 phase within 50' il installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 76,500 1 1 1 1 1 1 1 1 1 1 1 1 1	ea lb ls ls ls ls ls ls ls	\$54,000.00 \$15,483.00 \$2.60 \$20,000.00 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	COST \$54,000 \$15,483 \$198,900 \$20,000 \$20,000 \$13,000
2 Vapor p Activate 3 3 System 4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	hase carbon adsorber unit d carbon - initial charge and yr 1 changeouts controls il power drop - 230V - 3 phase within 50' il installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 76,500 1 1 1 1 1 1 1 1 1 1 1	ea Ib ea Is Is Is Is Is Is Is	\$15,483.00 \$2.60 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	\$15,483 \$198,900 \$20,000 \$20,000 \$13,000
Activate 3 System 4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concreto 11 12 13 14 15 16 17 18 19 20	d carbon - initial charge and yr 1 changeouts controls Il power drop - 230V - 3 phase within 50' Il installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		76,500 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lb ea ls ls ls ls ls	\$2.60 \$20,000.00 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	\$198,900 \$20,000 \$20,000 \$13,000
3 System of 4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concreto 11 12 13 14 15 16 17 18 19 20	controls al power drop - 230V - 3 phase within 50' al installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 1 1 1 1 1 1 1 1	ea ls ls ls ls ls	\$20,000.00 \$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	\$20,000 \$20,000 \$13,000
4 Electrica 5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	l power drop - 230V - 3 phase within 50' l installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 1 1 1 1 1 1	ls ls ls ls ls	\$20,000.00 \$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	\$20,000 \$13,000
5 Electrica 6 Natural 7 Sanitary 8 Installat 9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	l installation gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 1 1 1 1	ls ls ls ls	\$13,000.00 \$15,000.00 \$15,000.00 \$14,000.00	\$13,000
6 Natural 7 Sanitary 8 Installat 9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	gas connection (within 50') sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 1 1 1	ls ls ls	\$15,000.00 \$15,000.00 \$14,000.00	
7 Sanitary 8 Installat 9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	sewer discharge connection (within 50') on, including pipe, valves, fittings - Allowance: startup		1 1 1	ls ls	\$15,000.00 \$14,000.00	\$15,000
8 Installat 9 System 10 Concrete 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 20	on, including pipe, valves, fittings - Allowance: startup		1 1	ls	\$14,000.00	\$15,000
9 System 10 Concrete 11 12 13 14 15 16 17 18 19 20	startup		1			\$15,000
10 Concrete 11 12 13 14 15 16 17 18 19 20				15		\$14,000
11 12 13 14 15 16 17 18 19 20	e pad - 25' x 10' x 1'			10	\$20,000.00	\$20,000
12 13 14 15 16 17 18 19 20			10	су	\$350.00	\$3,500
13 14 15 16 17 18 19 20				-	SUBTOTAL	\$388,883
14 15 16 17 18 19 20						
15 16 17 18 19 20						
16 17 18 19 20	LOCATION COST ADJU	STMENT FA	CTOR - QU	EENS, NY	1.269	\$493,493
17 18 19 20						
18 19 20						
19 20						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
						\$493,493

URS CORPORATION ENGINEER'S COST ESTIMATE ESTIMATED UNIT COST

Client:NYSDECProject:Kliegman Bros. SiteTitle:Alternative 2A - Annual Operation and
Maintenance - 30 Year Period

Project Number: 11174770 Calculated By: PB

Date: 2-Jul-07

Checked By: J. Sundquist

Date: 2-Jul-07

_						
ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST	
1	Monitoring Well Sampling - Labor: 4 wells / day @ 20 mhr	180	man hour	\$60.00	\$10,800	
2	Sample Analysis: Annual	36	each	\$150.00	\$5,400	
3	Air monitoring - Labor 2 days/event * 2 events/yr	40	man hour	\$60.00	\$2,400	
4	Sub-slab depressurization installation	3	yr	\$3,500.00	\$10,500	
5	Reports	1	ls	\$2,500.00	\$2,500	
6	Repair Security Fence - Allowance	1	ls	\$250.00	\$250	
7	Groundwater treatment plant operation - Allow:	12	month	\$5,500.00	\$66,000	
8	Pumping system repairs / maintenance - Allow	1	ls	\$5,000.00	\$5,000	
9	Utilities - Electricity: Allowance	1	year	\$8,841.00	\$8,841	
10	Activated carbon, including changeout and regeneration	14,000	lb/yr	\$2.05	\$28,684	
11	Sanitary sewer discharge	12	month	\$1,500.00	\$18,000	
10				SUBTOTAL	\$158,375	
11	LOCATION COST ADJUSTMENT FACTOR - Q	UEENS, NY	\$158,375	1.269	\$200,978	
12						
13						
14						
15						
16						
17						
18 19						
20 21						
21						
22						
23						
24						
25						
20						
27				Subtotal	\$200,978	
28	Contr	actors Overh	ead and Profit	25%	\$50,244	
30	Cont			Subtotal	\$251,222	
30	Contingency 30%				\$75,367	
31	Subtotal					
33	Present Worth (30 yr. @ 5% discount) 15.373					
33	Tresent we		c /o uiscount)	13.373	\$5,020,654	
	TOTAL COST:					

NYSDEC KLIEGMAN BROTHERS SITE FEASIBILITY STUDY ENGINEER'S COST ESTIMATE

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:		Date:	2-Jul-07
Description:	Alternative 2B - Expanded Plume Extraction and Treatment	Checked By:	J. Sundquist	Date:	30-Jan-08

SUMMARY

DESCRIPTION	ESTIMATED COST
Mobilization and Demobilization	\$46,769
Extraction Well Installation	\$198,758
Ground Water Treatment System	\$348,319
SUBTOTAL	\$593,846

STANDARD SUPPLEMENTAL PROJECT COSTS						
Overhead and Profit 25.00%	\$148,462					
SUBTOTAL	\$742,308					
Contingency 30.00%	\$222,692					
SUBTOTAL CONSTRUCTION COSTS	\$965,000					
Engineering Design 10%	\$96,500					
TOTAL CAPITAL COST	\$1,061,500					
Annual Operation and Maintenance Cost	\$5,215,537					
ALTERNATIVE 2B - TOTAL COST	\$6,277,037					
TOTAL BUDGETARY COST	\$6,278,000					

Client: Project:	NYSDEC Project N Kliegman Brothers Site - OU2 Calculat		11174770 P. Baker		Date:	29-Sep-06
Title:			J. Sundquist			2-Nov-06
	Alemative 2B - Mobilization/Demobilization					
	DESCRIPTION		OTV	LINUTES	UNIT COST	TOTAL
ITEM			QTY.	UNITS	UNIT COST	COST
1	Submittals				#2 5 00.00	#2 5 00
2	Health and Safety Plan		1	ls	\$2,500.00	\$2,500
3	Shop drawings		1	ls	\$2,500.00	\$2,500
4	Schedules		1	ls	\$3,000.00	\$3,000
5	Record drawings		1	ls	\$2,500.00	\$2,500
6	Survey		2	day	\$1,186.00	\$2,372
7	Security fence		250	lf	\$53.94	\$13,485
8	Permits and easements - Allowance		1	ls	\$20,000.00	\$20,000
9	Portable toilet		2	mo	\$206.00	\$412
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27 28						
29						
30						
31						
32						
33						
34						
35						
36	τοτάι ο	·05T·				\$16760
TOTAL COST:					\$46,769	

Client:	NYSDEC	Project Number:	11174770			
Project:	Kliegman Brothers Site - OU2	Calculated By:	P. Baker		Date:	29-Sep-06
Title:	Alternative 2B - Ground Water Recovery Well Installation	Checked By:	J. Sundquist		Date:	2-Jul-07
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL COST
1	Sawcut pavement		2650	lf	\$2.02	\$5,353
2	Excavation - trench and vault		1325	lf	\$9.60	\$12,720
3	Extraction well installation		160	vlf	\$186.00	\$29,760
4	Precast concrete vault with road cover - 6' x 6' x 6'		2	ea	\$5.00	\$10
5	Pipe bedding		2,650	lf	\$1.79	\$4,744
6	Discharge line - 4" HDPE pipe		1,325	lf	\$9.50	\$12,588
7	Pump - 10 HP, 150 gpm , 80' head		2	ea	\$4,800.00	\$9,600
8	Electrical conduit - 2" PVC		1325	lf	\$20.00	\$26,500
9	Pump - electric and controls - Allowance:		1	ls	\$13,000.00	\$13,000
10	Pump - pipe, valves, fittings - Allowance:		1	ls	\$3,000.00	\$3,000
11	Pavement restoration		300	sy	\$25.84	\$7,752
12	Traffic control - Allowance		4	wk	\$7,000.00	\$28,000
13	Drill cuttings disposal		12	drum	\$300.00	\$3,600
14					SUBTOTAL	\$156,626
15	LOCATION COS	ST ADJUSTMENT	FACTOR - QU	JEENS, NY	1.269	\$198,758
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
		TOTAL COST:				\$198,758

Project: Kliegman Brothers Site - OU2 Calculated By: P. Baker Date: 29-Sep-06 Title: Alternative 2B - Ground Water Treatment System Checked By: J. Sundquist Date: 2-Jul-07 Image: Description of the system OTY - UNITS UNIT cost TOTAL Cost 1 Air stripper - horiz.tray , 300 GPM w/ blower and controls 1 ea \$54,000,00 \$54,000 2 Vapor Phase Carbon Adsorber 1 ea \$15,483,00 \$15,483 Activated carbon including initial charge and yr 1 regeneration 37,500 Ib \$2,20 \$20,000,00 3 System controls 1 ea \$15,000,00 \$20,000 4 Electrical installation 1 Is \$15,000,00 \$15,000 6 Sanitary sever discharge connection (within 50') 1 Is \$14,000,00 \$14,000 7 Installation, including pipe, valves, fittings - Allowance: 1 Is \$14,000,00 \$20,000 9 Concrete pad - 25' x 10' x 1' 10 cy \$350,00 \$3,500 10 Cy \$350,00 \$3,500 \$3,500 \$3,500 11 Is LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 </th <th>Client:</th> <th>NYSDEC Project Number:</th> <th>11174770</th> <th></th> <th></th> <th></th>	Client:	NYSDEC Project Number:	11174770			
Image: Number of the second state of the se	Project:	Kliegman Brothers Site - OU2 Calculated By:	P. Baker		Date:	29-Sep-06
ITEM DESCRIPTION QTV. UNITS UNIT COST COST 1 Air stripper - horiz.tray, 300 GPM w / blower and controls 1 ea \$\$54,000.00 \$\$54,000.00 \$\$54,000.00 \$\$54,000.00 \$\$15,483.00 \$\$15,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$15,000.00 \$\$15,000.00 \$\$15,000.00 \$\$15,000.00 \$\$14,000.00 \$\$14,000.00 \$\$14,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 <td>Title:</td> <td>Alternative 2B - Ground Water Treatment System Checked By:</td> <td>J. Sundquist</td> <td></td> <td>Date:</td> <td>2-Jul-07</td>	Title:	Alternative 2B - Ground Water Treatment System Checked By:	J. Sundquist		Date:	2-Jul-07
ITEM DESCRIPTION QTV. UNITS UNIT COST COST 1 Air stripper - horiz.tray, 300 GPM w / blower and controls 1 ea \$\$54,000.00 \$\$54,000.00 \$\$54,000.00 \$\$54,000.00 \$\$15,483.00 \$\$15,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$15,000.00 \$\$15,000.00 \$\$15,000.00 \$\$15,000.00 \$\$14,000.00 \$\$14,000.00 \$\$14,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 \$\$20,000.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>ΤΟΤΑΙ</td>						ΤΟΤΑΙ
2 Vapor Phase Carbon Adsorber 1 ea \$15,483.00 \$15,483 Activated carbon including initial charge and yr 1 regeneration 37,500 lb \$2.60 \$97,500 3 System controls 1 ea \$20,000.00 \$20,000 4 Electrical power drop - 230V - 3 phase within 50' 1 ls \$20,000.00 \$20,000 5 Electrical installation 1 ls \$15,000.00 \$15,000 6 Sanitary sever discharge connection (within 50') 1 ls \$14,000.00 \$14,000.00 7 Installation, including pipe, valves, fittings - Allowance: 1 ls \$14,000.00 \$20,000.00 8 System startup 1 ls \$14,000.00 \$35,000 \$35,000 10 cy \$350.00 \$35,000 \$32,000.00 \$22,0400 \$22,0400 \$22,0400 12 10 cy \$350.00 \$35,500 \$35,500 \$35,500 11 10 cy \$3248,319 \$14,000 \$14,000 <t< td=""><td>ITEM</td><td></td><td>QTY.</td><td>UNITS</td><td>UNIT COST</td><td></td></t<>	ITEM		QTY.	UNITS	UNIT COST	
Activated carbon including initial charge and yr I regeneration 37,500 lb \$2.60 \$97,500 3 System controls 1 ea \$52,000.00 \$20,000.01 4 Electrical power drop - 230V - 3 phase within 50' 1 ls \$20,000.00 \$20,000.01 5 Electrical installation 1 ls \$15,000.00 \$515,000 6 Sanitary sever discharge connection (within 50') 1 ls \$15,000.00 \$15,000 7 Installation, including pipe, valves, fittings - Allowance: 1 ls \$14,000.00 \$20,000.00 8 System startup 1 ls \$15,000.00 \$20,000.00 9 Concrete pad - 25' x 10' x 1' 10 cy \$350.00 \$35,000 10 cy S350.00 \$32,000 \$20,000.00 \$274,483 11 ls LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14	1	Air stripper - horiz.tray, 300 GPM w / blower and controls	1	ea	\$54,000.00	\$54,000
3 System controls 1 ea \$20,000.00 \$20,000 4 Electrical power drop - 230V - 3 phase within 50' 1 1s \$20,000.00 \$20,000 5 Electrical installation 1 1s \$15,000.00 \$\$15,000 6 Sanitary sever discharge connection (within 50') 1 1s \$15,000.00 \$\$15,000 7 Installation, including pipe, valves, fittings - Allowance: 1 1s \$14,000.00 \$\$14,000 8 System startup 1 1s \$20,000.00 \$\$20,000 9 Concrete pad - 25'x 10'x 1' 10 cy \$350.00 \$33,500 10 cy \$350.00 \$327,483 \$27,483 11 12 \$27,483 11 \$27,483 12 13 LOCATION COST ADJUSTMENT FACT	2	Vapor Phase Carbon Adsorber	1	ea	\$15,483.00	\$15,483
4 Electrical power drop - 230V - 3 phase within 50' 1 1s \$20,000 \$20,000 5 Electrical installation 1 1s \$15,000,000 \$15,000 6 Sanitary sewer discharge connection (within 50') 1 1s \$15,000,000 \$14,000 7 Installation, including pipe, valves, fittings - Allowance: 1 1s \$14,000,00 \$14,000 8 System startup 1 1s \$20,000,00 \$\$20,000 \$20,000 9 Concrete pad - 25' x 10' x 1' 10 cy \$350,00 \$35,000 10 Cy \$350,00 \$33,500 \$30,000 \$14,000 11 1s \$20,000,00 \$21,000 \$24,483 11 1c 10 cy \$350,00 \$33,500 10 Cy \$350,00 \$33,500 \$348,319 \$14 12 LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 15 LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319		Activated carbon including initial charge and yr 1 regeneration	37,500	lb	\$2.60	\$97,500
5 Electrical installation 1 1s \$15,000.00 \$15,000 6 Sanitary sewer discharge connection (within 50') 1 1s \$15,000.00 \$15,000 7 Installation, including pipe, valves, fittings - Allowance: 1 1s \$14,000.00 \$14,000 8 System startup 1 1s \$20,000.00 \$20,000 9 Concrete pad - 25' x 10' x 1' 10 cy \$35,000 \$33,500 10 cy \$35,000 \$35,500 \$33,500 10 cy \$35,000 \$35,600 11 1s \$UBTOTAL \$274,483 11 10 cy \$35,600 12 10 cy \$35,600 13 LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 1 1 1.269 \$348,319 15 1 1 1.269 \$348,319 16 1 1 1.269 \$348,319 18 1 1 1.269 \$14,000 20 1 1 <td>3</td> <td></td> <td>1</td> <td>ea</td> <td>\$20,000.00</td> <td>\$20,000</td>	3		1	ea	\$20,000.00	\$20,000
6 Sanitary sever discharge connection (within 50') 1 1s \$15,000.00 \$15,000 7 Installation, including pipe, valves, fittings - Allowance: 1 1s \$14,000.00 \$14,000 8 System startup 1 1s \$14,000.00 \$20,000 9 Concrete pad - 25' x 10' x 1' 10 cy \$330.00 \$33,500 10 Cy \$330.00 \$22,000.00 \$20,000 \$20,000 9 Concrete pad - 25' x 10' x 1' 10 cy \$330.00 \$33,500 10 Cy \$330.00 \$274,483 \$274,483 11 LocATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 LocATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 LocATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 LocATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 LocATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$24 17 LocATION COST ADJUSTMENT FACTOR - QUEENS, NY<	4		1	ls	\$20,000.00	\$20,000
7 Installation, including pipe, valves, fittings - Allowance: 1 Is \$14,000. \$14,000. 8 System startup 1 Is \$20,000.0 \$20,000. 9 Concrete pad - 25' x 10' x 1' 10 cy \$350.00 \$3,500 10 cy \$350.00 \$3,500 \$3,500 10 cy \$350.00 \$3,500 10 cy \$350.00 \$3,500 10 cy \$350.00 \$3,500 10 cy \$350.00 \$3,500 11 cy \$274,483 cy cy 12 cy cy \$348,319 cy 14 cy cy system startup cy 15 cy cy cy system startup 16 cy cy cy cy cy 17 cy cy cy cy cy cy 18 cy cy cy cy cy cy 20 cy cy cy cy cy	5	Electrical installation	1	ls	\$15,000.00	\$15,000
8 System startup 1 1s \$20,000 \$20,000 9 Concrete pad - 25' x 10' x 1' 10 cy \$3500 \$3,500 10 cy \$350.00 \$27,4,483 \$27,4,483 11 concrete pad - 25' x 10' x 1' 10 cy \$350.00 \$3,500 10 cy \$350.00 \$27,4,483 500 \$27,4,483 11 concrete pad - 25' x 10' x 1' concrete pad - 25' x 10' x 1' 10 cy \$348,319 12 concrete pad - 25' x 10' x 1' concrete pad - 25' x 10' x 1' concrete pad - 25' x 10' x 1' 10 concrete pad - 25' x 10' x 1' concrete pad - 20'	6	Sanitary sewer discharge connection (within 50')	1	ls	\$15,000.00	\$15,000
9 Concrete pad - 25' x 10' x 1' 10 cy \$350.00 \$\$3,500 10 SUBTOTAL \$274,483 11 12 13 LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 15 16 18	7	Installation, including pipe, valves, fittings - Allowance:	1	ls	\$14,000.00	\$14,000
10 SUBTOTAL \$274,483 11 III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	8	System startup	1	ls	\$20,000.00	\$20,000
11 Image: constraint of the second secon	9	Concrete pad - 25' x 10' x 1'	10	су	\$350.00	\$3,500
12 Image: constraint of the symbol is and the symbol is	10				SUBTOTAL	\$274,483
13 LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY 1.269 \$348,319 14 <td< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td></td<>	11					
14 Image: state of the s	12					
15 Image: Constraint of the second secon	13	LOCATION COST ADJUSTMENT	FACTOR - Q	UEENS, NY	1.269	\$348,319
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14					
17 Image: state of the s	15					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16					
19 Image: Constraint of the second secon	17					
20 <	18					
21 Image: Constraint of the second secon	19					
22 23 24 26 27 28 28 29 30 27 28 29 20 <td< td=""><td>20</td><td></td><td></td><td></td><td></td><td></td></td<>	20					
23 <	21					
24 <	22					
25 Image: Constraint of the second secon	23					
26 27 28 29 30	24					
27 28 29 30	25					
28 29 30	26					
28 29 30	27					
29						
30						
	-					
101AL COS1: \$348.319		TOTAL COST:		1	1	\$348,319

Client:NYSDECProject:Kliegman Bros. SiteTitle:Alternative 2B - Annual Operation and
Maintenance - 30 Year Period

Project Number: 11174770 Calculated By: PB

Date: 2-Jul-07

Checked By: J. Sundquist

Date: 10-Oct-07

					TOTAL
ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Monitoring Well Sampling - Labor: 4 wells / day @ 20 mhr	180	man hour	\$60.00	\$10,800
2	Sample Analysis: Annual	36	each	\$150.00	\$5,400
3	Reports	1	ls	\$2,500.00	\$2,500
4	Air Monitoring - Labor 2 days/event * 2 events/yr	40	man hour	\$60.00	\$2,400
5	Sub-slab depressurizations installation	3	year	\$3,500.00	\$10,500
6	Repair Security Fence - Allowance	1	ls	\$250.00	\$250
7	Groundwater treatment plant operation - Allow:	12	month	\$5,500.00	\$66,000
8	Pumping system repairs / maintenance - Allow	1	ls	\$5,000.00	\$5,000
9	Utilities - Electricity: Allowance	1	year	\$17,682.00	\$17,682
10	Activated carbon including changeout and regeneration	3,900	lb/yr	\$2.05	\$7,991
11	Sanitary sewer discharge	12	month	\$3,000.00	\$36,000
10				SUBTOTAL	\$164,523
11	LOCATION COST ADJUSTMENT FACTOR - QU	EENS, NY on	\$164,523	1.269	\$208,779
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28				Subtotal	\$208,779
29	Contract	ors Overhead	l and Profit	25%	\$52,195
30				Subtotal	\$260,974
31			Contingency	30%	\$78,292
32				Subtotal	\$339,266
33	Present Worth	n (30 yr. @ 5%	% discount)	15.373	\$5,215,537
34					
	TOTAL COST:				\$5,215,537
B					

NYSDEC KLIEGMAN BROTHERS SITE FEASIBILITY STUDY ENGINEER'S COST ESTIMATE

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:	11174770 P. Baker/BBV	Date:	7/2/07&9/07
Description:	Alternative 3A - In Situ Chemical Oxidation of Concentrated Plume Area	Checked By:	J. Sundquist	Date:	7/2/07&9/07

SUMMARY

DESCRIPTION	ESTIMATED COST
Mobilization and Demobilization	\$38,284
Well Installation and Chemical Treatment	\$4,533,900
SUBTOTAL	\$4,572,184

STANDARD SUPPLEMENTAL PR	ROJECT COSTS
Overhead and Profit 25.00%	\$1,143,046
SUBTOTAL	\$5,715,230
Contingency 30.00%	\$1,714,569
SUBTOTAL CONSTRUCTION COSTS	\$7,429,799
Engineering Design 3.5%	\$260,043
TOTAL CAPITAL COST	\$7,689,842
Annual Operation and Maintenance Cost	\$282,200
ALTERNATIVE 3A - TOTAL COST	\$7,972,042
BUDGETARY TOTAL COST	\$7,973,000

Client:	NYSDEC Project Number:			-	2 0 G 0 C
Project:	Kliegman Brothers Site - OU2 Calculated By:	P. Baker		Date:	29-Sep-06
Title:	Alternative 3A Mobilization/Demobilization Checked By:	J. Sundquist		Date:	1-Nov-06
·		1			
ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Submittals				
2	Health and Safety Plan	1	ls	\$2,500	\$2,500
3	Shop drawings	1	ls	\$2,500	\$2,500
4	Schedules	1	ls	\$3,000	\$3,000
5	Record drawings	1	ls	\$2,500	\$2,500
6	Survey	2	day	\$1,186	\$2,372
7	Permits and easements - Allowance	1	ls	\$20,000	\$20,000
8	Portable toilet	2	mo	\$206	\$412
9	Drill rig mobe/demobe	1	ls	\$5,000	\$5,000
10					
11					
12					
13					
14					
15					
16		_			
17		_			
18					
19					
20					
21 22					
22					
23					
24					
23					
20					
28		_			
		_			
29 30		_			
31		_			
31					
32					
34		_			
35			<u> </u>		
	TOTAL COST:			l	\$38,284

Client: Project: Title:	NYSDECProject Number:Kliegman Brothers Site - OU2Calculated By:Alternative 3A - Injection Well with In Situ Chemical OxidationChecked By:		r	Date: Date:	13-Sep-07 13-Sep-07
ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Core concrete sidewalk - Allow:	85	ea	\$150	\$12,750
2	Injection well installation	89	ea	\$3,500	\$311,500
3	Well head modifications	89	ea	\$422	\$37,558
4	Chemical reagent injection - 3 modified Fenton's + 3 KMnO_4	1	ls	\$3,177,000	\$3,177,000
5	Traffic control - Allowance	4	wk	\$2,500	\$10,000
6	Drill cuttings disposal	80	drum	\$300	\$24,000
7				SUBTOTAL	\$3,572,808
8					
9					
10	LOCATION COST ADJUSTMENT	FACTOR - Q	UEENS, NY	1.269	\$4,533,893
	TOTAL COST:				\$4,533,900

Client: Project:	NYSDEC Kliegman Bros. Site	Project Number: Calculated By:		Date:	2-Jul-07
Title:	Alternative 3A - Annual Operation and Maintenance - 5 Year Period	Checked By:	J. Sundquist	Date:	2-Jul-07

ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Monitoring Well Sampling - Labor: 4 wells / day @ 20 mhr	180	man hour	\$60	\$10,800
2	Sample Analysis: Annually for 5 years	36	each	\$150	\$5,400
3	Air Monitoring - Labor 2 days/event * 2 events/yr	40	man hour	\$60	\$2,400
4	Sub-slab depresurrization installation	3	ls	\$3,500	\$10,500
5	Reports	1	each	\$2,500	\$2,500
4				SUBTOTAL	\$31,600
5	LOCATION COST ADJUSTMENT F	ACTOR - Q	UEENS, NY	1.269	\$40,100
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20 21					
21				Subtotal	\$40,100
22	Contract	ors Overhead	d and Profit	25%	\$40,100 \$10,025
23	Contract	ors Overnea	u anu r rollt	25% Subtotal	\$10,025
24		<i>(</i>	Contingency	Subtotal 30%	\$50,126 \$15,038
25		, 	Jonungency	Subtotal	\$15,038
26	Present Wort	th (5 un @ 50	discourt)	4.330	
27	Present wor	un (5 yr. @ 5`	/o uiscount)	4.330	\$282,156
20	TOTAL COST:		I		\$282,200

NYSDEC KLIEGMAN BROTHERS SITE FEASIBILITY STUDY ENGINEER'S COST ESTIMATE

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:		Date:	2-Jul-07
Description:	Alternative 3B - In Situ Chemical Oxidation of Expanded Plume Area	Checked By:	J. Sundquist	Date:	30-Jan-08

SUMMARY

DESCRIPTION	ESTIMATED COST
Mobilization and Demobilization	\$58,696
Well Installation and Chemical Treatment	\$8,181,558
SUBTOTAL	\$8,240,254

STANDARD SUPPLEMENTAL PRO	JECT COSTS
Overhead and Profit 25.00%	\$2,060,063
SUBTOTAL	\$10,300,317
Contingency 30.00%	\$3,090,095
SUBTOTAL CONSTRUCTION COSTS	\$13,390,412
Engineering Design 2%	\$267,808
TOTAL CAPITAL COST	\$13,658,221
Annual Operation and Maintenance Cost	\$282,200
ALTERNATIVE 3B - TOTAL COST	\$13,940,421
TOTAL BUDGETARY COST	\$13,941,000
IOTAL BUDGETART COST	\$15,941,000

Client: Project: Title:	NYSDECProject Number:Kliegman Brothers Site - OU2Calculated By:Alternative 3B Mobilization/DemobilizationChecked By:			Date: Date:	26-Sep-07 1-Nov-06
ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Submittals				
2	Health and Safety Plan	1	ls	\$2,500	\$2,500
3	Shop drawings	1	ls	\$2,500	\$2,500
4	Schedules	1	ls	\$3,000	\$3,000
5	Record drawings	1	ls	\$2,500	\$2,500
6	Survey	2	day	\$1,186	\$2,372
7	Permits and easements - Allowance	1	ls	\$40,000	\$40,000
8	Portable toilet	4	mo	\$206	\$824
9	Drill rig mobe/demobe	1	ls	\$5,000	\$5,000
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28]
29					
30	TOTAL COST:			<u> </u>	\$58,696

Client: Project: Title:	Kliegman Brothers Site - OU2 Calcu Alternative 3B Injection Well with In Situ	•	11174770 BBV/P. Bake J. Sundquist	r	Date: Date:	13-Sep-07 13-Sep-07
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL
						COST
1	Core concrete sidewalk - Allow:		155	ea	\$150	\$23,250
2	Injection well installation Well head modifications		159	ea	\$3,500	\$556,500
3	Chemical reagent injection - 3 modified Fenton's + 3 KMnO_4		159	ea	\$422	\$67,098
4	Traffic control - Allowance		1	ls	\$5,736,000	\$5,736,000
5	Drill cuttings disposal		8	wk	\$2,500	\$20,000
6	Drill cuttings disposal		148	each	\$300	\$44,400
7				EENIC NIX	SUBTOTAL	\$6,447,248
8	LOCATION COST ADJUST	IMENT F.	ACTOR - QU	EENS, NY	1.269	\$8,181,558
-						
]
			ļ]
	ΤΟΤΑΙ	L COST:				\$8,181,558

Client:	NYSDEC	During Neuriter	11174770			
Project:	Kliegman Bros. Site	Project Number: Calculated By:			Data	29-Sep-06
Floject.		Calculated by.	гD		Date.	29-Sep-00
Title:	Alternative 3B - Annual Sampling, Analysis and Reporting - 5 Year Period	Checked By:	J. Sundquist		Date:	2-Jul-07
r						
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL COST
1	Monitoring Well Sampling - Labor: 4 wells / day @ 20) mhr	180	man hour	\$60	\$10,800
2	Sample Analysis: Annually for 5 years		36	each	\$150	\$5,400
3	Air Monitoring - Labor 2 days/event * 2 events/yr		40	man hour	\$60	\$2,400
4	Sub-slab depressurization installation		3	yr	\$3,500	\$10,500
5	Reports		1	each	\$2,500	\$2,500
4					SUBTOTAL	\$31,600
5	LOCATION COST	ADJUSTMENT I	FACTOR - QU	JEENS, NY	1.269	\$40,100
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18 19						
20						
20						
21					Subtotal	\$40,100
22		Contros	tors Overhead	and Profit	25%	\$10,025
23		Contrac	ors over neat	anu 1 1 011t	25% Subtotal	\$10,025
24			<u>ا</u>	Contingency	Subtotal 30%	\$15,038
25				Jonungency	Subtotal	\$15,058
20		Present War	th (5 yr. @ 5%	(discount)	4.330	\$05,105
27		I resent wor	un (5 yr. @ 57		4.330	\$202,150
28		TOTAL COST:				\$282,200
L						

NYSDEC KLIEGMAN BROTHERS SITE FEASIBILITY STUDY ENGINEER'S COST ESTIMATE

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:	11174770 P. Baker	Date:	2-Jul-07
Description:	Alternative 4 - In Situ Chemical Treatment of Concentrated Plume Area with Induced Groundwater Gradient	Checked By:	J. Sundquist	Date:	13-Sep-07

SUMMARY

DESCRIPTION	ESTIMATED COST
Mobilization and Demobilization	\$36,769
Extraction Well Installation	\$64,182
Ground Water Treatment System	\$964,500
In Situ Chemical Treatment	\$3,237,737
SUBTOTAL	\$4,303,188

STANDARD SUPPLEMENTAL PROJE	CCT COSTS
Overhead and Profit 25.00%	\$1,075,797
SUBTOTAL	\$5,378,985
Contingency 30.00%	\$1,613,695
SUBTOTAL CONSTRUCTION COSTS	\$6,992,680
Engineering Design 4%	\$279,707
TOTAL CAPITAL COST	\$7,272,388
Annual Operation and Maintenance Cost	\$284,400
ALTERNATIVE 4 - TOTAL COST	\$7,556,788
ALTERNATIVE 4 - BUDGETARY COST	\$7,557,000

Client: Project:	NYSDEC Kliegman Brothers Site - OU2	Project Number: Calculated By:	11174770 P. Baker		Date:	29-Oct-06
Title:	Alternative 4 - Mobilization/Demobilization	Checked By:			Date:	1-Nov-06
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL COST
1	Submittals					
2	Health and Safety Plan		1	ls	\$2,500	\$2,500
3	Shop drawings		1	ls	\$2,500	\$2,500
4	Schedules		1	ls	\$3,000	\$3,000
5	Record drawings		1	ls	\$2,500	\$2,500
6	Survey		2	day	\$1,186	\$2,372
7	Security fence		250	lf	\$54	\$13,485
8	Permits and easements - Allowance		1	ls	\$10,000	\$10,000
9	Portable toilet		2	mo	\$206	\$412
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
		TOTAL COST:			•	\$36,769

Client:	NYSDEC	Project Number:	11174770			
Project:	Kliegman Brothers Site - OU2	Calculated By:	P. Baker		Date:	29-Oct-06
Title:	Alternative 4 - Ground Water Recovery Well Installation	Checked By:	J. Sundquist		Date:	1-Nov-06
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL COST
1	Sawcut pavement		1100	lf	\$2.02	\$2,222
2	Excavation - trench and vault		1100	lf	\$9.60	\$10,560
3	Extraction well installation		80	vlf	\$186.50	\$14,920
4	Precast concrete vault with road cover - 6' x 6' x 6'		1	ea	\$4,875	\$4,875
5	Pipe bedding		2,200	lf	\$1.79	\$3,938
5	Discharge line - 4" HDPE pipe		550	lf	\$9.50	\$5,225
6	Pump - 10 HP, 150 gpm , 80' head		1	ea	\$4,800	\$4,800
7	Electrical conduit - 2" PVC		550	lf	\$20	\$11,000
8	Pump - electric and controls - Allowance:		1	ls	\$6,500	\$6,500
9	Pump - pipe, valves, fittings - Allowance:		1	ls	\$1,500	\$1,500
10	Pavement restoration		300	sy	\$25.84	\$7,752
11	Traffic control - Allowance		4	wk	\$3,000	\$12,000
12	Dispose of drill cuttings		6	drums	\$300	\$1,800
13					SUBTOTAL	\$50,577
14	LOCATION C	OST ADJUSTMENT I	FACTOR - QU	JEENS, NY	1.269	\$64,182
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
		TOTAL COST:				\$64,182

Client:	NYSDEC Project Number:	11174770 D. Dolvor		Datas	12 Sep 07
Project:	Kliegman Brothers Site - OU2 Calculated By:	P. Daker		Date:	13-Sep-07
Title:	Alternative 4 - Ground Water Treatment System Checked By:	J. Sundquist		Date:	13-Sep-07
ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Air stripper - horiz.tray , 150 GPM w / blower and controls	1	ea	\$45,000	\$45,000
2	Vapor phase carbon adsorber unit	1	ea	\$15,483	\$15,483
3	Activated carbon including initial charge and yr 1 regeneration	76,500	lb	\$2.60	\$198,900
4	System controls	1	ea	\$20,000	\$20,000
5	Electrical power drop - 230V - 3 phase within 50'	1	ls	\$20,000	\$20,000
6	Electrical installation	1	ls	\$15,000	\$15,000
7					
8	Sanitary sewer discharge connection (within 50')	1	ls	\$15,000	\$15,000
9	Installation, including pipe, valves, fittings - Allowance:	1	ls	\$14,000	\$14,000
10	System startup	1	ls	\$20,000	\$20,000
11	Security fence	250	lf	\$53.94	\$13,485
12	Concrete pad - 25' x 10' x 1'	10	cy	\$350	\$3,500
13	*			SUBTOTAL	\$380,368
14					1
15					
	Groundwater Treatment Plant Operation - 3 yrs				
17	Groundwater treatment plant operation - Allow:	36	month	\$5,500.00	\$198,000
18	Pumping system repairs / maintenance - Allow	1	ls	\$15,000.00	\$15,000
19	Utilities Electricity Allowance	3	year	\$8,841.00	\$26,523
20	Activated carbon including changeout and regeneration	42,000	lb	\$2.05	\$86,100
21	Sanitary sewer discharge	36	month	\$1,500	\$54,000
22				SUBTOTAL	\$379,623
23					+
24				SUBTOTAL	\$759,991
25	LOCATION COST ADJUSTMENT FACTOR - QUEENS, NY			1.269	\$964,429
26					
20					
28					
20					
30					
30					
31					
32	TOTAL COST:				\$964,500

Client:	NYSDEC	Project Number:	11174770			
Project:	Kliegman Brothers Site - OU2	Calculated By:	P. Baker		Date:	29-Oct-06
Title:	Alternative 4 - Injection Wells with In Situ	Checked By:	I Sundavist		Date	13-Sep-07
The.	Chemical Treatment	Checked by.	J. Sunaquist		Date.	15-5ep-07
ir						
ITEM	DESCRIPTION		QTY.	UNITS	UNIT COST	TOTAL COST
1	Core concrete sidewalk		60	ea	\$150	\$9,000
2	Injection well installation		64	ea	\$3,500	\$224,000
3	Well head modifications		64	ea	\$422	\$27,008
4	Chemical reagent injection		1	ls	\$2,264,000	\$2,264,000
5	Traffic control - Allowance		4	week	\$2,500	\$10,000
6	Drill cuttings disposal		58	drum	\$300	\$17,400
7					Subtotal	\$2,551,408
8		Location Cost Adjust	nent Factor -	Queens, NY	1.269	\$3,237,737
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26			1			
27						
28						
29						
30						
		TOTAL COST:		1		\$3,237,737

Client:	NYSDEC	Project Number:	11174770		
Project:	Kliegman Bros. Site	Calculated By:	PB	Date:	2-Jul-07
Title:	Alternative 4 - Annual Operation and Maintenance - 5 Year Period	Checked By:	J. Sundquist	Date:	2-Jul-07

ITEM	DESCRIPTION	QTY.	UNITS	UNIT COST	TOTAL COST
1	Monitoring Well Sampling - Labor: 4 wells / day @ 20 mhr	180	man hour	\$60	\$10,800
2	Sample Analysis: Annual	36	each	\$150	\$5,400
3	Air Monitoring - Labor 2 days/event * 2 events/yr	40	man hour	\$60	\$2,400
4	Sub-slab depressurization system installations	3	yr	\$3,500	\$10,500
5	Reports	1	ls	\$2,500	\$2,500
6	Repair Security Fence - Allowance	1	ls	\$250	\$250
7					
8					
9					
10					
11					
10					
11					
12				SUBTOTAL	\$31,850
13	Location Factor Adjustment -	Queens, NY		1.269	\$40,418
14					
15					
16					
17					
18 19					
20					
20					
21					
22					
23					
25					
26					
20					
28					
29					
30				Subtotal	\$40,418
31	Contra	ctors Overhe	ad and Profit	25%	\$10,104
32				Subtotal	\$50,522
33		L	Contingency	30%	\$15,157
34			0. 4	Subtotal	\$65,679
35	Present We	orth (5yr. @ 5	5% discount)	4.330	\$284,389
					<i>2</i> =0.,207
	TOTAL COST:				\$284,400
					φ 2 0-τ,+00

APPENDIX C NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION DISCHARGE LIMITATIONS

NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WASTEWATER TREATMENT

Parameter	Daily Limit	Units	Sample Type	Monthly Limit
Oil & Grease	15	mg/l	Instantaneous	
pH (range)	6.5-8.5	SU's	Instantaneous	
Benzene	134	ppb	Instantaneous	57
Ethylbenzene	380	ppb	Instantaneous	142
Toluene	74	ррь	Instantaneous	28
Xylenes (Total)	74	ppb	Instantaneous	28
Temperature	<150	degrees F	Instantaneous	
Cadmium	2 0.69	mg/l mg/l	Instantaneous Composite	
Chromium (VI)	5	mg/l	Instantaneous	-
Copper	5	mg/l	Instantaneous	
Lead	2	mg/l	Instantaneous	
Mercury	0.05	mg/l	Instantaneous	
Nickel	3	mg/l	Instantaneous	
Zinc	5	mg/l	Instantaneous	
Flash Point	>140	degrees F	Instantaneous	
Total Suspended Solids	No Limit		Instantaneous	
PCB's (Total)*	1	ppb	Composite	
Perc (Tetrachloroethylene)	20	ppb	Instantaneous	
MTBE (Methyl-Tert- Butyl-Ether)	10	ppb	Instantaneous	10
Naphthalene	47	ppb	Composite	19
Other				

LIMITATIONS FOR EFFLUENT TO STORM SEWERS

* Analysis for PCB's are requested *only* if *both* conditions listed below are met: 1) if proposed discharge> 10,000 gpd;

2) if duration of a discharge > 10 days.

Analysis for PCB's must be done by method 608 by EPA only with MDL=65 ppt

NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WASTEWATER TREATMENT

Parameter	Daily Limit	Units	Sample Type	Monthly Limit
Total Petroleum Hydrocarbons	50	mg/l	Instantaneous	
pH (range)	5 - 11	SU's	Instantaneous	1
Benzene	134	ppb	Instantaneous	57
Ethylbenzene	380	ррЬ	Instantaneous	142
Toluene	74	ppb	Instantaneous	28
Xylenes (Total)	74	ppb	Instantaneous	28
Temperature	<150	degrees F	Instantaneous	1
Cadmium	2 0.69	mg/l mg/l	Instantaneous Composite	
Chromium (VI)	5	mg/l	Instantaneous	
Соррег	5	mg/l	Instantaneous	
Lead	2	mg/l	Instantaneous	
Mercury	0.05	mg/l	Instantaneous	
Nickel	3	mg/l	Instantaneous	
Zinc	5	mg/l	Instantaneous	
Flash Point	>140	degrees F	Instantaneous	
Total Suspended Solids	No Limit		Instantaneous	
PCB's (Total)*	1	ppb	Composite	··
Perc (Tetrachloroethylene)	20	ppb	Instantaneous	
MTBE (Methyl Tert Butyl-Ether)	10	ррь	Instantaneous	10
Naphthaiene	47	ppb	Composite	19
Dther -				

LIMITATIONS FOR EFFLUENT TO SANITARY OR COMBINED SEWERS

* Analysis for PCB's are requested only if both conditions listed below are met:

1) if proposed discharge> 10,000 gpd;

2) if duration of a discharge > 10 days.

Analysis for PCB's must be done by method 608 by EPA only with MDL=65 ppt

Ÿſ 175 5. 93 Aye Aye 60 Ű. 0 ŝ 80 P.D. RNSC PL 2 ž 183 0 69 Φ **60** Ē \odot P. D. 20 47-302 Mar# 80 NO. 12 ١١ 8 (Ĵ E9 2 0 Ś ja R AVE n O 9 2 a ġ. le 3