

Monthly Progress Report 2023 No. 7

Former NuHart West Site
10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY
NYSDEC Site No. 224136
Reporting Period: July 1, 2023 – August 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from July 1 through August 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lots 1, 10, 12, 72, and 78 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. Investigation or Remedial Actions Relative to the Site during this Reporting Period

During this reporting period, Haley & Aldrich oversaw the installation of the negative pressure enclosure on the eastern portion of the Site, excavation, stockpiling, and loadout for offsite disposal of soil from 0 to 6 ft bgs, demolition of the concrete building slab and loadout of C&D material. Haley & Aldrich also observed the contractor uncover three underground storage tanks (USTs) including two USTs that were reported in the Spill #0601852 UST Closure Report for the Site by Advanced Site Restoration, LLC (ASR) dated July 2006. TK6 and TK7 were estimated at approximately 6,000-gallons in size, TK6 was mostly empty containing some foam and TK7 was

approximately half filled with rainwater and both reportedly formerly contained DINP/DOP. The third UST (herein labeled TK18) was not previously reported by ASR. TK18 was estimated at approximately 2,000-gallons in size, was mostly empty containing some unknown liquid and impacts to surrounding soil were not observed. TK18 was excavated and placed on poly within the negative pressure enclosure. Tanks will be cut, cleaned, and stored on Site pending approval of a contained-in determination. Haley & Aldrich performed the Community Air Monitoring Program in accordance with the approved Remedial Action Work Plan during ground intrusive activities at two upwind and two downwind locations measuring volatile organic compounds (VOCs) and dust particulates. Daily reports have been submitted the following business day to the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) case managers.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 28 July 2023. Gauging results are included in the attached table. On-site wells are inaccessible due to construction activities. Additionally, transducers are installed in MW-12, MW-14, MW-29, MW-30, and MW-38 and could not be gauged. The wells that could not be accessed are identified in the attached figure.

Due to LNAPL identified in MW-24 in previous reporting periods, an absorbent sock (New Pig) remains installed in MW-24 and is inspected on a weekly basis and replaced periodically, as needed.

4. Actions Relative to the Site Anticipated for the Next Reporting Period

- Continue remedy execution including removal of the slab and excavation and off-site disposal of soil on the eastern portion of the Site, under the negative pressure enclosure.
- Begin the full-scale LNAPL recovery demonstration test by recovering LNAPL from the offsite recovery wells.
- Cutting and cleaning of USTs and storage on site until a contained-in determination is received.

5. Approved Activity Modifications (changes of work scope and/or schedule)

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

Additional soil sampling for supplemental waste characterization was conducted at the Site on 17 July through 19 July 2023. Waste characterization analytical results will be presented in the Supplemental Contained-in Request 05. A sample of the contents of TK18 was collected on 26 July 2023. Results of the tank content sampling will be presented in a Contained-in Request.

7. <u>Deliverables Submitted During This Reporting Period</u>
No deliverables were submitted during this reporting period.
8. <u>Information Regarding Percentage of Completion</u>
The Remedial Action is approximately 5% complete.
9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and Mitigation Efforts</u>
None.
10. Community Participation (CP) Plan Activities during This Reporting Period
None.
11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:

None.

None.

3

Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136
280 Franklin Street
Brooklyn, NY

Readings taken 7/28/2023 between 8:00 am and 11:30 pm (high tide @ 5:33am and low tide @ 11:42am)

1 of 2

																										Annar	ent Thickness of L	API (fast)															5:33a	m and low	tide @ 11:42	.am)
Well Number	Depth to	Depth to Product			2023									2022										2021		дрраг	ent Tinckness of L	(AFL (leet)			2	020								201	19				$\overline{}$	
	Water (feet)		Jun.23	May-23		Mar.23	Feb.23 Ja	an-23 Dec-22	Nov-22	2 Nov.22	Oct-22	Sent-22	Δυσ.22		Jun-22	May-22 A	r-22 Ma	r-22 Feb	22 Ia	n-22 Dec-21	Nov-21	Oct-21	Sen-21		Jul-21 Jun-	21 May-21	Apr.21 M	r-21 Nov-20	Oct-20	Jul-20 J			Mar-20	Feb.20	Jan-20 1	Dec-19 No	w-19 Oct	19 Sep.19	Ano. 19			day-19 An	.19 Mar.19	Feb.19	Jan-19	Dec-18 Oct-18
MW – 4	ND+	ND* ND*		ND*	ND*	ND*		ND* ND*	ND*		NA.	NA	ND+	ND*	ND+	ND*		D* NE	_	D* -		ND*	ND*	ND*	ND+ ND			ND ND	ND.	ND ND	ND N		ND.				VD+ NI	* ND*	ND.	ND*		## N		_		ND* ND*
MW - 5	12.24	9.00 3.24	2.42	2.80	0.80	4.24	5.02	0.59 5.22	6.94	NA	NA	NA	4.85	4.85	4.07	4.00	.50 3	.20 2.7	3 6	.88 3.85	0.71	4.27	2.17	3.52	0.78 0.1	10 0.42	0.78	.29 3.59	4.76	2.94	5.43 3.	71 4.18	4.46	4.21	3.44	4.47 4	1.61 5.	5 5.18	1.30	3.73	5.15	2.89 2.	16 2.26	3.28	2.62	2.83 4.12
MW - 6	9.85	9.32 0.53	0.48	ND	ND	ND	ND (0.74 0.99	1.55	NA	NA	NA	2.63	3.20	3.36	3.01	.05 1	.65 2.5	5 2	.61 2.71	2.83	2.42	2.90	3.45	2.74 3.1	17 0.28	3.03	.18 3.00	2.78	2.48	0.99 3.	00 2.20	2.29	2.39	2.98	0.85	** *	***	**	##	0.50	2.35 #		**	##	## ND
MW - 7	13.58	9.36 4.22	4.22	ND**	3.7	4.40	4.85	3.17 1.42	3.17	NA	NA	NA	0.40	1.10	3.35	2.13	.82 1	.00 1.0	0 2	.07 1.59	0.67	0.88	0.37	0.42	0.46 2.2	26 0.54	1.76	.28 1.15	1.56	2.10	3.89 2.	81 3.85	3.53	1.59	0.99	1.67	1.59 1.5	3 1.96	0.84	0.45	1.30	0.14 0.	35 0.26	1.54	1.14	0.93 0.54
MW - 8	9.34	ND ND	ND	ND	ND	ND	ND	ND ND	ND	NA	NA	NA	ND	ND	ND	ND	ND 1	ND NI) :	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND	ND	ND N	D —	ND	ND	ND ND
MW-12	TD	TD N/A	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW-13	7.99	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW-14	TD	TD N/A	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW-15	12.35	9.88 2.47	1.47	NA	NA	0.26	0.53	1.27 1.76	2.36	NA	NA	NA	0.85	1.30	0.85	1.30	.05 4	.43 0.3	8 1	.04 1.05	0.10	0.48	0.38	0.83	0.46 0.5	57 0.61	2.44 4	.46 0.29	1.30	1.00	3.13 2.	36 2.75	3.29	2.66	0.83	0.85	1.08	9 0.18	0.03	0.11	0.87	0.08 0.	08 1.08	1.00	0.84	0.26 0.12
MW-16	16.27	10.20 6.07	4.83	3.90	2.70	0.11	2.71	3.47 0.47	0.15	NA	NA	NA	0.1	ND	0.02	0.40	.58 0	.03 0.2	0 0	.56 0.12	0.14	0.17	0.29	0.63	0.10 1.5	59 1.17	1.80	.04 0.35	0.85	0.85	0.41 0.	22 0.84	0.36	ND	ND	ND I	1.95 0.5	6 0.81	0.01	0.04	1.17	0.45 0.	73 0.07	0.39	0.17	0.19 0.20
MW - 20	11.14	9.90 1.24	ND	0.70	2.50	2.05	2.25	1.41 3.66	2.69	2.36	2.80	2.73	3.1	3.05	2.61	2.60	.61 2	.02 3.2	2 2	.29 1.78	2.78	2.36	3.03	3.05	2.95 3.0	08 2.06	2.71	.09 2.66	3.71	1.23	2.92 2.	91 1.01	3.12	2.18	2.75	2.82	3.73 3.	7 3.25	2.29	2.09	3.66	1.45 1.	17 2.17	2.43	2.77	3.49 2.51
MW - 21	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	0.95	1.90	1.54	1.40	.09 2	.68 0.7	5 0	.86 1.60	1.15	2.45	0.05	0.35	1.39 1.3	33 1.06	1.91 2	.61 1.33	3.13	2.98	5.44 4.	29 4.29	4.57	3.63	1.11	2.88	3.07	3 1.99	1.51	1.41	1.84	0.52 1.	25 1.01	1.57	1.48	2.81 1.73
MW - 22	NA	NA NA	NA	NA	NA	NA	NA	1.23 1.15	ND*	NA	NA	NA	0.78	1.20	5.13	1.30	.55 N	ID+ NE	۰ 0	.58 —	_	0.93	0.11	0.86	1.13 1.6	62 0.39	0.99	.45 0.37	1.95	0.76	2.56 2.	13 1.54	1.55	1.59	1.44	1.22	1.06	4 2.95	0.69	0.51	2.28	2.98 1.	1.05	1.83	1.68	0.83 0.69
MW - 23	10.80	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 24	10.00	ND*** ND**	ND***	ND***	ND***	0.03	0.08	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND P	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 25	11.91	9.00 2.91	1.10	1.30	3.60	4.02	3.72	3.23 3.06	2.86	3.83	4.71	4.51	4.5	4.55	5.87	4.20	.44 3	.87 3.2	9 3	.78 3.52	4.49	3.78	3.81	3.90	3.08 4.3	37 3.63	3.81	.24 3.28	4.35	4.23	3.68 0.	98 3.79	6.72	4.57	4.89	4.66	1.93 4.1	1 3.18	3.38	3.83	4.61	3.76 3.	31 4.19	4.77		3.89 3.44
MW - 26	11.65	9.84 1.81	0.81	1.45	0.61	4.00	4.93	0.61 4.09	4.01	3.76	4.84	3.78	3.4	3.50	4.02	3.40	.39 3	.02 1.9	0 4	.45 3.24	3.44	2.89	7.14	3.58	3.07 4.0	01 3.02	3.32	.32 2.97	3.56	3.79	3.78 3.	71 3.47	4.13	4.14	4.11	4.65	1.02 4.0	2 5.21	3.43	3.19	4.90	0.69 2.	16 2.94	3.37	3.14	3.84 3.45
MW - 27	10.00	ND ND	ND	ND	ND	ND	ND	ND ND	ND+	ND	ND	ND	ND	ND	ND	ND	ND P	ND NI) 1	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 28	10.30	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI) 1	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 29	TD	TD N/A	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI) 1	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 30	TD	TD N/A	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ?	ND NI) 1	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 31	8.40	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ?	ND NI) 1	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 32	9.15	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 34	NA	NA NA	NA	NA	ND	NA	NA	ND NA	NA	NA	NA	NA	ND	ND	ND	ND	ND 1	ND NI) !	4D —		ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 35	NA	NA NA	NA	NA	ND	ND	ND	ND ND	ND	NA	NA	NA	ND	ND	ND	ND	ND I	ND NI) 1	ND —	_	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND		ND ND
MW - 36	10.10	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI		ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N		ND	ND	ND	ND	ND N) ND	ND	ND		ND N	D ND	ND		ND ND
MW - 37	11.50	ND ND	ND	ND	ND	ND	ND I	ND* ND*	ND*	ND*	ND	ND	ND	ND	ND	ND	ND ?	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND+ N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND		ND N		ND		ND ND+
MW - 38	TD	TD N/A	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ?	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND :	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND	ND	ND N	D ND	ND		ND ND
MW - 39	8.40	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ?	ND NI) 1	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW - 40	NA	NA NA	NA	NA	NA	NA	ND	ND ND	ND	NA	NA	NA	ND	ND	-	-	ND ?	ND NI)	- ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND ND
MW-41	9.10	ND ND		ND	ND	ND		ND ND	_		ND	ND	ND	ND	ND		-	ND NI	_	ND ND		ND	ND	ND	ND NI		ND		-				-	-	-	-			<u> </u>		-			_	- $+$	
MW - 42	8.20	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ?	ND NI) !	ND ND	ND	ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND N) ND	ND	ND	ND	ND N	D ND	ND	ND	ND+ ND+
MW - 45	10.20	ND ND	ND	ND	ND	ND	-			-	-	-	-	-	-	-	-	-			-	-	-	-			-		-	-	-		-	-	-	-	-	-	-	-	-	-		-	└	
MW - 46	10.10	ND ND	ND	ND	ND	ND	-		-	-	-	-	-	-	-	-	-				-	-	-	-			-		-	-	-		-	-	-	-		-	-	-	-	-		-	└ ┴	
MW - 47	10.40	ND ND	ND	ND	ND	ND	-		-	-	-		-	-	-	-	-				-		-	-			-		-	-	-		-	-	-	-			<u> </u>	-	-	-		-	- - +	
MW-A	NA	NA ND	NA	NA	0.05	0.04	0.05	4.45	-	-		-	•			-			_			-					-						-	-				-		-	-		-		\vdash	
RW - 1	NA	NA NA	NA	NA	NA	NA	NA	NA NA		_	NA	NA	ND	ND	ND			ND NI		ND ND		ND	ND	ND	ND NI			ND ND	ND	ND	ND N	D ND	ND	ND	ND	ND :	ND N) ND	ND	ND		ND N	D ND			ND ND
RW – 2	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA 3.16	4.55	NA NA	NA NA	NA NA	3.45	3.10	5.67	3.39	.78 5	.25 3.1	5 5	.19 3.03	2.11	2.00	2.16	2.12	2.92 02.	.15 1.74	3.28	.44 3.81	2.90	3.95	4.56 3.	25 4.93	4.78	4.59	3.31	4.49 2	2.42 53	3 2.19	1.41	0.66	4.08	1.64 1.	17 1.27	4.73		1.63 5.54
RW - 3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA 0.40 2.18	2.51		NA NA	NA NA	2.45	3.40	5.35	3.04	.90 1	.34 2.3	0 3	.20 0.67	2.70	2.79	2.60	3.67	4.61 05.0	02 1.45	3.85	.50 1.99	3.25	4.41	2.31 2.	05 3.82	3.85	3.48	3.24	2.62 4	1.30 4.3	3 4.09	3.50	3.25	3.96	1.61 2.	11 2.26	4.71		2.63 3.77
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1474	0.40 2.18 NA 3.47	0.86		NA NA	NA NA	3.23 5.85	4.40	4.97	4.01	.40 2	.97 3.1	, .	.92 2.89	3.30	3.17	0.86	4.35	4.52 03.1	87 2.64	4.55	.69 3.23	2.99	3.94	3.35 2.	92 3.55	2.46	5.18	2.64	3.02 4	#	4.21	3.56	3.07	4.72	0.71	53 2.85	17.0		03.37 2.85 ## ND*
RW – 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 3.47	U.86	NA NA	NA NA	NA NA	5.85	5.85	5.02	5.31	.40 5	.18 5.6	0 2	.81 0.51	5.81	3.80	1.10	6.45	1.15 5.9	0.73	4.78	.67 4.93	5.30	6.32	4.59 1.	00 2.91	4.91	5.18	2.54	161	***	5.74	99	0.46	1.67	0.71 #	" "#	02.25		
RW - 6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.40	ND*	NA NA	NA NA	NA NA	0.7	1.30	0.48	1.20	.15 0	.35 1.0	5 1	.10 —	0.90	1.12	0.53	0.21	1.14 1.3	53 0.58	2.49	**	2.82	1.85	2.17 0.	44 1.21	0.98	1.05	1.67	1.51	1.61 2.	9 1.49	0.7	0.46	1.57	0.28 0.	0.49	02.33	0.91	00.73 1.91
RW - 8 *** RW - 9	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.36 0.88 3.55 3.92	4.46	NA NA	NA NA	NA NA	3.77	3.80 6.65	4.06	3.70	.55 2	.35 -		97 4.46		2.70	0.78		205	65 3.42	4 30 4	42 645	4 64	4 30	490 4			5 36	4.08	-	137 5		2.00	2.55				3 70		3.45 4.52
RW - 10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	2.13	_	NA NA	NA NA	4.07	4.2	5.31	5.74		.50 3.7		.97 4.46		2.70	0.78	2.90	2.95 3.6	3.42	4.37	.42 6.45 38 5.96			4.90 4.		3.80	5.50	4.08	4.00	1.37 5.3	9 4.23	0.76	3.33	3.92	2.32 1.	73 2.23	3.17		4.06 2.46
RW - 10 RW - 11	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.02 2.40	2.13	NA NA	NA NA	NA NA	3	4.2	5.31	5.74 4	.02 3	3.3	5 6	.01 1.65	2.95	3.04	0.70	2.90	3:30 4.7	71 3.1	4.32	.38 5.96	3.88	3.59	4.31 2.	93 2.86	3.80	3.59	4.58	3.04 4	1.41 4.	3.99	0.76	3.04	3.92	3.25 3.	3.24	4.53	3.80	3.02 2.21
RW-11 RW-12 ***	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA .	2.92 2.48 NA 5.42	6.10	NA NA	NA NA	NA NA	4.17	4.9	3.48	2.04	20 2	.55 2.8	, (.00 4.78	4.13	3.04	1.11	4.48	2.07 6.1	2.00	4.20	.43 3.25	4.24	3.43	3.09 4.	32 4.31	3.77	5.13	3.80	3.38 4	0	4.85	4.12	3.70	4.03	3.32 1.	2.35	4.74	2.09	3.02 2.21
MW - 1	N/C	NG NG	N/C	NA NC	N/C	NG.	NC NC	NG NG	0.10	N/C	N/C	N/C	4.17	4./	7.02 NC	3.60	.50 3	JC N	, ,	oc NC	+-	N/C	NC NC	- NC	NC N	C NC	NC NC	ic NC	NG NG	- NC	NC N	C NC	NC NC	- NC	- NC	NC .	MC N	NC NC	NC.	- NC	NC NC	NG N	c NC	NG NG	-	NG NG
MW - 1	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG P	NG NO	, ,	NG NG	ND.	NG NG	NG NG	NG NG	NG NO	G NG	NG NG	NG NG	NG NG	NG NG	NG N	G NG	NG NG	NG NG	NG NG	NC .	NG N	i NG NG	NG NG	NG NG		NG N	G NG			NG NG
MW - 9	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	110	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	110		NG NO	_	iG NG	ND ND	NG NG	NG NG	NG NG	NG NG	G NG	NG NG	IC NG	NG NG	NG NG	NG N		NG NG		NG NG	NC .	NG N	i NG	NG NG	NG NG		NG N	G NG	NG NG		NG NG
MW - 10	NG NG	NG NG		NG NG	NG NG	NG	.10	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG NG	110		NG NO		iG NG		NG NG	NG NG	NG NG	NG NO	G NG	NG NG	NG NG	NG NG	NG	NG N	0 110	NG NG		NG NG	NG :	NG N	NG NG	NG NG	NG NG		NG N	0			NG NG
MW - 18	NG NG	NG NG	NG NG	NG NG	NG NG	NG	NO	NG NG	NO		NG NG	NG NG	NG	NG NG	NG NG	NG NG		NG NO		iG NG	- 140	NG NG	NG NG	NG NG	NG N	G NG	NO .	NG NG	NG NG	NG NG	NG N	0 110	NG NG	.10	NG	.10	NG N	,	.00	.10		NG N	0	.110	.42	NG NG
RW - 7	NG NG	NG NG	NC NC	NG NG	NG	NG	NG NG	NG NG	NG NG	NG NG	NG NG	NG	NG	NG NG	NG	NG		NG NO		iG NG	+=	NG	NG NG	NG	NG N	G NC	NG NG	IG NG	NG NG	NG	NG N	G NC	NG	NG	NG NG	NG NG	NG N	NG NG	NG NG	NG NG		NG N	G NG			NG NG
K.W = /	NG	AG NG	ING.	NO	ING	NO	M	NG NG	NG	NO	NO	NO	NO	NO	NO			NO NO	<u> </u>	NG NG		NO	NO	NO	AG NO	o no	NO .	NO NO	NO	NO		o no	NO	NO		and .	N	, NO	NO	NO	AU.	N	G 146	NO		110

Notes:

Data recorded using an oil/water interface probe, measurements from the tops of well casings

= NATL observed, apparent thickness not determined

11 = Not Installed

ND = Not Detected

Wells MIVL_MW-2, MIV-9, MIV-10, MIV-17, MIV-18, MIV-19, and RIV-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation

est= Estimated Value

*** Water not detected; well filled with sediment, value is the total depth of the well

**Wells water Spill 06-01852 and are under a separate investigation

est= Estimated Value

***White MIV-14, MIV-16, and MIV-47 installed on 13 March 2023

Wells were gauged on 28 July 2023

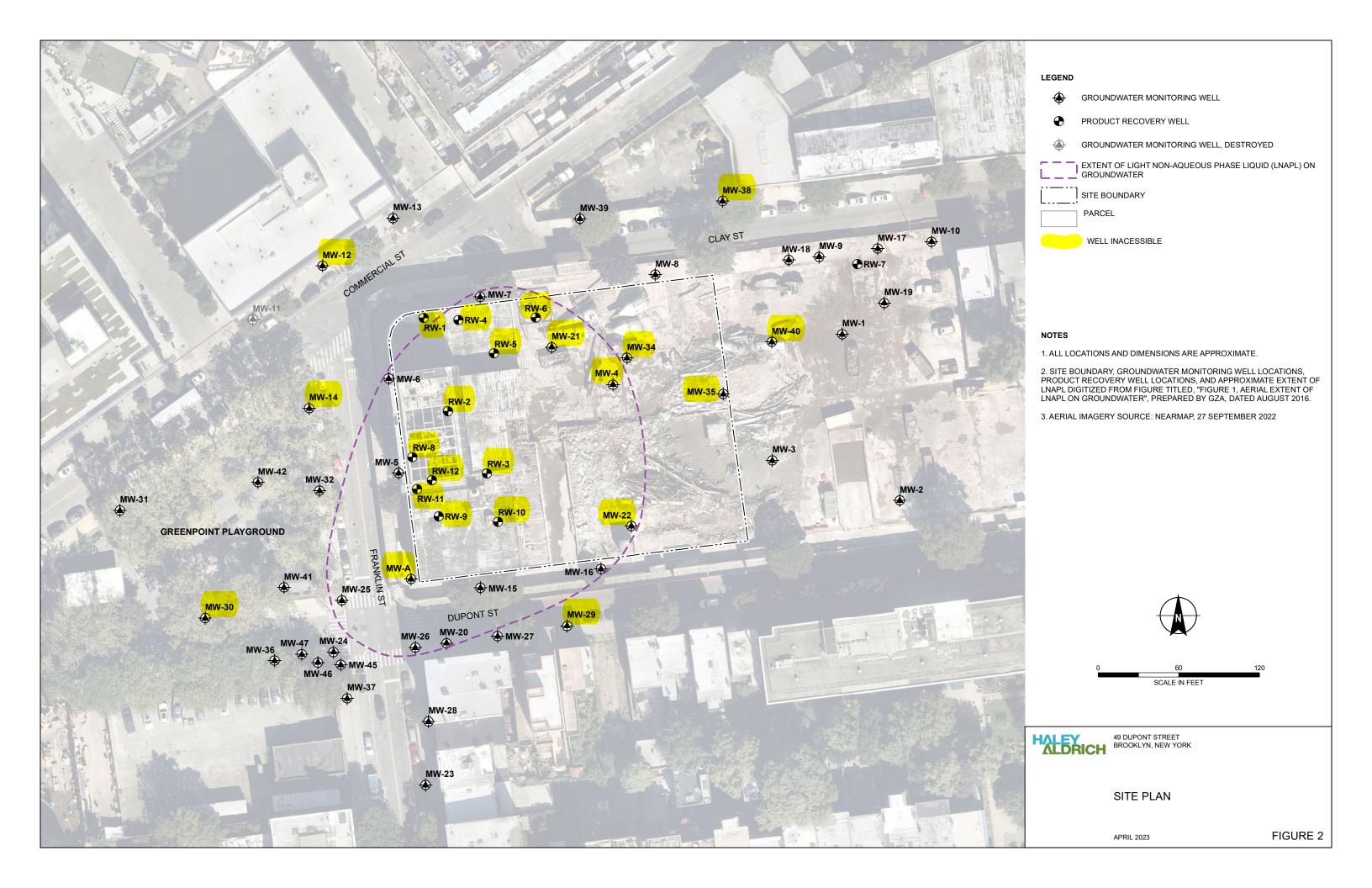

 $NG = \ Not\ Gauged \qquad \qquad TD = Transducer\ installed$

Table 1: 1 of 2

Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136
280 Franklin Street
Brooklyn, NY

	$\overline{}$	T	1																																					
Well Number	Depth to	Product		2018				2017				2017					2016								2015			1		2014						2013			\neg	2012
	Water (feet	(feet)	Jun-18 May-1	Apr-18	Mar-18 Feb-18	Jan-18 Nov-17	Oct-17	Sep-17 Aug-17	7 Jul-17	Jun-17 M	fav-17 Apr	-17 Mar-17	Feb-17	Jan-17 Dec-16	Nov-16 Oct-1	6 Sep-16	Aug-16 Jul-16	Jun-16 M	fav-16 Apr-	16 Mar-16	Feb-16 Ja	an-16 Dec-15	Nov-15 Oct-1	5 Sep-15	Aug-15 Jul-15 Jun-	-15 May-15	Apr-15 Mar-15	Jan-15 Sep-14	4 Aug-14	Jul-14 Jun-14	May-14 Apr-14	Mar-14	Feb-14 Jan-14	Dec-13	Nov-13 Oct-13	3 Sep-13 A	ug-13 Jul-13 A	pr-13 Mar-13 Fel	a-13 Jan-13 Dr	c-12 Nov-12 Oct-12 Sep
MW-4	ND*	ND*	0.12 1.13	0.65	0.73 ND+	0.92 2.12	0.81	1.76 1.73	1.23	1.77	ND* 1.3	32 1.61	1.13	1.31 1.30		1.35	1.71 1.73	1.80	1.53 1.73	1.43	1.85	1.77 1.96	2.04 1.99	1.77	2.22 4.27 0.3	5 0.44	- 0.56	- 1.75		1.24 Trace	- 0.01		0.23 0.22	0.30	0.66 0.78	***	3.49 2.22 (0.59 0.67 0.	44 0.44 0	80 0.31 0.33 7
MW - 5	12.24	9.00	1.66 1.83	2.77	2.19 2.21	4.65 5.83	2.19	4.44 4.4	3.71	3.54	2.81 2.8	80 3.13	4.05	3.00 3.55	4.43 3.64	3.22	4.31 4.03	4.29	3.07 3.11	3.14	1.85	3.24 4.83	5.41 4.16	4.26	4.45 4.22 2.3	0 2.41	2.55 3.10	4.40 4.79	5.03	1.97 3.39	- 3.14	2.80	2.98	6.46	7.17 5.54	## :	5.08 3.92 3	3.00 2.39 4.	32 3.00 4	.11 3.50 3.41 5.
MW-6	9.85	9.32	0.55 0.50	2.47	0.74 ##	** **	1.22	3.19 3.15	##	##	** **		**	** **	** **	##	**	##	** **	**	##	** **	** **	**	## ## 2.3	0 ##	** **	** **	**	**		2.84	3.43	2.89	2.76 2.00	## :	2.42 2.82	_ _		- 3.49 2
MW - 7	13.58	9.36	1.89 1.99	1.80	2.03 2.55	3.32 4.91	1.48	1.45 1.41	0.9	0.00	1.50 1.5	92 2.53	3.71	1.28 0.78	1.73 0.91	0.04	1.89 1.58	2.22	2.11 1.90	1.66	2.31	2.47 3.44	3.31 2.58	1.46	1.28 0.99 1.5	i8 ND	1.94 1.79	## 2.01	2.16	0.60 0.01	- 0.17	0.17		4.78	4.70 4.00	## :	2.77 1.06	1.92 4.92 5.	45 1.30 1	.36 2.00 1.84 1.
MW-8	9.34	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	- ND	ND	ND ND	- ND	ND		ND	ND ND	ND	ND ND	ND ND N	D ND ?	D ND ND
MW - 12	TD	TD	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	- 1	-	- ND	ND —	_	- NI	O ND	ND ND	- ND	_	ND ND	- ND	ND		ND	ND ND	ND	ND ND	ND ND N	.D ND ?	D ND ND
MW - 13	7.99	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	_	- ND	ND —	_	NI	O ND	ND ND	- ND	_	ND ND	- ND	ND		ND	ND ND	ND	ND ND	ND ND N	D ND 1	ND ND ND N
MW - 14	TD	TD	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND		ND	ND ND	ND	ND ND	ND ND N	D ND 1	D ND ND ?
MW - 15	12.35	9.88	0.04 0.04	0.07	0.07 0.08	3.16 1.78	0.31	0.29 0.26	0.26	0.24	0.12 0.2	22 0.28	0.40	0.31 0.20	0.80 0.20	0.17	0.81 0.07	0.48	0.22 0.7	0.03	0.04	0.60 3.08	3.07 1.97	1.05	1.05 ND 1.2	4 1.21	1.56 1.67	1.71 2.19	2.32	## 0.45	- 0.61	0.30	0.38	3.11	3.19 3.34	## :	2.14 0.70	- 0.32 1.	J7 - 1	.56 0.99 0.76 2.
MW - 16	16.27	10.20	0.06 0.10	0.13	0.1	0.34 0.25	0.35	0.37 0.35	0.08	0.28	0.03 0.1	10 0.23	0.20	0.31 ND	ND ND	ND	ND 0.01	0.25	0.02 0.0	0.02	0.16	0.02 0.11	0.02 0.12	0.05	0.05 0.14 0.1	3 0.15	0.03 0.08	0.02 —	0.03	0.99 Trace	- 0.01	0.01	0.10	0.23	0.22 0.19	## (0.05 0.07 0	0.02 0.01 0.	0 0.25 0	.20 ND 0.24 0.
MW - 20	11.14	9.90	1.4 1.55	2.52	1.77 1.02	3.15 3.99	2.52	2.58 2.63	2.9	2.83	2.61 2.5	94 2.33	3.02	3.02 2.88	3.28 2.90	3.16	2.89 2.88	2.85	2.22 2.49	2.43	1.99	2.46 3.52	3.02 3.33	3.25	3.12 2.88 2.5	8 2.79	3.84 4.38	5.13 1.87	1.71	2.92 2.06	- 1.47	2.90	2.58 4.19	5.07	4.90 4.11	##	3.33 1.37 3	3.32 1.20 1.	10 1.35 1	38 3.39 3.15 3
MW - 21	NA	NA	1.43 1.42	1.62	1.38 2.29	3.83 4.79	3.26	3.35 2.13	1.45	2.75	3.31 3.3	3.04	3.62	7.59 3.27	3.32 1.25	2.39	3.61 2.96	2.95	2.63 4.11	2.68	2.42	2.97 4.46	3.85 4.51	3.63	3.32 2.97 2.5	3 2.77	2.98 3.46	3.23 3.62	4.64	4.90 1.99	- 2.69	2.47	2.48 3.37	3.13	3.72 4.66	**	4.37 3.66 3	3.38 3.43 3.	/5 4.10 4	.23 2.89 2.04 4.
MW - 22	NA	NA	0.97 0.89	0.76	1.11 0.28	0.37 1.77	1.25	1.24 1.21	0.75	0.66	0.66 0.7	78 0.64	0.65	0.50 0.51	0.38 0.30	0.01	0.51 0.87	0.62	0.45 0.41	0.44	0.15	0.22 1.33	1.01 0.49	1.17	1.04 0.79 0.8	6 0.84	0.74 1.33	1.27 1.03	1.02	0.54 0.85	- 0.74	0.86	0.75 1.22	1.07	0.69 0.50	##	1.12 0.86	0.50 0.62 1.	5 1.20 0	.18 0.21 0.18 1.
MW - 23	10.80	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND N	O ND N	D ND ND ?
MW – 24	10.00	ND***	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI) ND	ND ND	ND ND	ND	ND ND	- ND	ND		ND	ND ND	ND	ND ND	ND ND N) ND N	D ND ND 1
MW - 25	11.91		2.85 2.89	4.03	3.45 3.44	3.66 4.54	4.03	4.05 4.02	3.73	4.09	3.85 3.7	70 3.74	3.47	3.89 3.62	3.60 4.20	3.79	3.65 4.01	3.75	3.55 3.33	3.42	3.32	3.43 3.68	3.53 3.63	3.53	3.68 3.53 2.8	3.24	3.36 1.07	1.03 3.16	4.02	3.65 3.48	- 3.91	3.75		5.66	5.56 4.01	## 4	4.41 3.58 3	3.96 3.96 4.	j4 3.70 2.	.82 7.86 4.40 3.
MW – 26	11.65	9.84	0.75 2.35	3.14	2.48 3.19	3.95 5.59	3.81	3.82 3.79	3.65	3.42	3.29 3.7	73 3.64	3.24	3.14 3.20	3.56 4.00	3.28	4.26 3.58	3.82	3.41 3.3	2.97	3.82	3.41 4.23	4.08 3.77	4.00	3.70 3.65 3.1	8 3.33	3.64 4.14	4.11 3.84	3.70	4.50 3.02	- 2.71	3.48	3.80 4.34	4.44	4.47 4.62	## .	4.18 3.69 2	2.86 2.33 1.	0 2.45 1.	.62 - 2.61 4.
MW – 27	10.00	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND		ND	ND ND	ND	ND ND	ND ND N) ND N	D 0.99 ND N
MW – 28	10.30	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	D ND	ND ND	ND ND	ND	ND ND	— ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND N) ND !	i NI NI
MW – 29	TD	TD	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND N) ND P	I NI NI I
MW – 30	TD	TD	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND			ND	ND ND	ND	ND NI	NI NI I	i Ni h	I NI NI I
MW = 31	8.40 9.15	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND —			- ND ND	ND	ND ND	ND	ND	ND ND	- ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND		ND	ND ND	ND	ND NI	NI NI I	i NI N	NI NI NI I
MW - 32	9.15	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND		ND	ND ND	ND	ND NI	NI NI I	i NI N	I NI NI I
MW - 34 MW - 35	NA NA	NA NA	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI) ND	ND ND	ND ND	ND	ND ND	- ND	ND	ND ND	ND	ND ND	ND	ND NI	NI NI I	I NI N	I NI NI I
MW - 36	10.10	NA ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI) ND	ND ND	ND ND	ND ND	ND ND	- ND	ND NI	ND ND	ND	NU NU	ND NI	ND NI	NI NI I	I NI P	NI NI NI I
MW - 37	11.50	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI) ND	ND ND	ND ND	ND ND	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI I	T NI	NI NI NI
MW - 38	TD.	TD	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND	ND ND	ND NI	D ND	ND ND	ND —	- ND	ND -	— ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND	ND ND NI) ND	ND ND	— ND	NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI I	I NI	NI NI NI
MW - 39	8.40	ND.	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI) ND	ND ND	ND ND	NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI I	el Ni	AI NI NI
MW - 40	NA NA	NA NA	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	- ND	ND	ND ND NI) ND	ND ND	ND ND	NI NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI I	d NI	NI NI NI
MW - 41	9.10	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND NI	NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI I	I NI	NI NI NI
MW - 42	8.20	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND NI	O ND	ND ND	ND NI	NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI I	i NI	NI NI NI
MW - 45	10.20	ND		-			-		-	-			-			-		-		-	-			-		-			-			-		-		-				
MW - 46	10.10	ND		-			-		-	-			-			-		-		-	-			-		-			-			-		-		-				
MW - 47	10.40	ND		-			-		-	-			-			-		-		-	-			-		-			-			-		-		-				
MW-A	NA	NA		-																-				- 1		-			-			-								
RW - 1	NA	NA	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND NI	D ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	- ND	ND	ND ND NI	O ND	ND ND	ND ND	ND	ND ND	- ND	ND	ND ND	ND	ND ND	ND	ND ND	- ND N	.D ND ?	D ND ND
RW-2	NA	NA	0.06 0.08	1.65	0.08 5.52	4.01 5.19	0.56	0.58 0.53	6.09	6.25	0.42 1.1	13 2.90	3.09	3.53 1.65	1.18 1.26	1.35	1.88 2.05	2.41	3.02 2.11	3.34	2.70	2.83 4.28	- 2.64	2.97	3.41 5.54 5.2	8 5.44	2.82 4.19	4.52 4.52	4.53	4.52 0.11	- 1.30	3.05	2.31 2.80	3.19	5.09 3.86	## 4	4.07 2.96	2.92 3.48 3.	75 4.20 2	.52 1.92 1.50 5.
RW-3	NA	NA	2.08 2.03	2.52	2.12 3.03	ND 3.31	3.17	3.15 3.22	2.28	3.44	2.85 2.7	71 3.46	2.98	3.10 1.91	3.95 2.40	2.50	3.08 1.97	2.49	1.64 2.17	2.09	1.64	2.37 4.27	2.92 4.14	1.39	2.14 4.31 2.2	2.23	1.81 3.28	3.41 3.50	3.45	3.56 4.12	- 1.58	2.90	2.28 4.60 (est	t) 3.60	3.33 1.68	## :	2.96 1.44 3	3.90 3.20 3.	3.70 3	58 2.84 3.50 3
RW-4	NA	NA	2.96 2.97	3.80	3.01 02.39	3.06 4.32	4.33	4.17 4.18	3.1	4.1 (03.69 3.6	65 3.69	3.67	3.05 3.80	2.80 2.77	3.30	2.73 2.65	2.32	2.02 2.23	2.93	2.03	2.51 2.82	2.31 1.99	1.09	2.02 3.65 3.6	i6 3.53	3.53 1.43	1.35 2.78	2.88	## 2.86	- 1.81	3.25	3.27 2.45	2.67	2.30 1.46	##	2.75 1.08 3	3.06 3.15 3.	JO 3.05 2	95 — 3.45 3
RW - 5	NA	NA	0.44 0.33	0.65	0.34 4.64	0.49 4.49	5.28	5.27 5.26	5.42	3.75	5.00 5.4	44 5.10	0.70	2.95 1.55	3.05 0.42	0.36	0.50 4.97	2.76	2.47 2.60	3.21	2.53	1.92 1.96	5.64 4.18	2.03	5.79 4.87 4.6	9 4.75	0.70 0.85	0.91 0.85	0.43	0.17 0.17	- 0.12	0.93	0.43 0.52	0.60	0.79 0.54	## (0.69 0.51 2	2.62 —	- 2	35 3.00 1.88
RW-6	NA	NA	0.83 0.88	0.96	0.91 00.90	2.61 1.64	0.73	0.6 1.61	0.93	5.35	1.05 1.2	27 1.22	0.90	0.90 0.85	0.68 0.87	0.92	1.46 1.29	0.81	0.67 0.73	0.74	0.76	0.74 0.77	0.65 0.66	0.65	0.61 0.78 1.9	6 2.35	0.71 1.19	1.14 0.71	0.64	0.78 0.79	- 0.45	1.28	0.96 0.41	0.94	1.30 0.67	## (0.10 0.08 0	0.45 0.50 0.	21 0.40 0	.15 0.90 0.22 0.
RW-8 ***	NA	NA	0.02 0.02	0.03	0.03 0.96	1.99	1.15	2.2 3.62	1.2	2.34	0.02 0.0	01 —						<u> </u>			-	- -			_ _ _		2.14 2.93	2.92 4.01	4.48	## 2.95	- 0.65	1.47	0.86 2.37	2.46	3.92 4.13	## -	4.59 3.64			_ _ _
RW-9	NA	NA	0.11 2.38	2.28	1.51 2.88	4.32 5.58	3.72	3.77 3.69	2.84	3.25	2.70 2.6	59 3.50	3.66	2.47 3.09	3.57 2.45	2.35	3.19 2.15	3.18	2.75 3.09	3.81	2.42	3.46 4.62	4.37 3.52	2.68	3.23 3.04 4.8	2 4.79	4.28 5.68	5.65 4.81	4.59	4.92 4.14	- 1.02	2.90	2.71 4.34	5.25	4.88 3.08	## 4	4.09 2.37	1.40 2.62 3.	.1 3.50 3	J8 3.83 2.98 5
RW - 10	NA	NA	1.52 1.60	3.70	0.66 3.48	4.64 4.28	3.65	3.67 3.71	3.67	3.78	4.07 3.7	79 4.27	4.70	4.15 3.86	3.45 3.80	3.36	4.44 3.91	3.69	3.74 3.60	3.67	4.69	4.77 4.46	5.32 4.45	4.12	4.12 5.71 3.8	0 3.95	3.65 4.96	5.04 3.93	3.74	3.57 3.18	- 3.38	3.89	3.48 3.80	3.81	3.99 4.11	## 4	4.11 3.55	_ _ .		<u>- - - - - - - - - - </u>
RW - 11	NA	NA	2.51 2.52	4.34	2.41 2.50	5.01 5.5	2.97	4.57 3.93	2.33	3.00	2.92 3.0	00 3.55	3.73	2.65 1.90	2.04 2.43	2.12	3.66 2.98	3.43	3.08 2.94	3.05	2.45	3.07 4.65	4.39 3.59	3.24	3.62 3.43 3.6	6 3.67	3.00 3.87	3.97 4.43	4.42	4.46 3.87	- 2.03	2.54	2.59 3.66	4.27	5.48 2.65	##	3.91 3.49 3	3.15 2.67 3.	1 3.50 2.	.93 4.49 2.58 4.
RW-12 ***	NA	NA	0.11 0.02	2.61	0.02 1.12	1.5 5.96	3.65	5.4 2.68	0.01	0.03	0.01 0.0	0.80	3.89					 - 		\perp			- -	<u> </u>		- -		- -	 - 			1 - 1		1 - 1			_ _			- - - -
MW - 1	NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG	NG N	G NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG	NG NG	NG NG	NG	NG NG NG	G NG	NG NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG NG	NG NG N	J NG N	3 NG NG N
MW - 9	NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG	NG N	G NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG	NG NG	NG NG	NG	NG NG NG	G NG	NG NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG NG	NG NG N	j NG N	J NG NG N
MW - 10	NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG	NG N	G NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG	NG NG	NG NG	NG	NG NG NG	G NG	NG NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG NG	NG NG N	j NG N	NG NG NG N
MW - 17	NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG	NG N	G NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG	NG NG	NG NG	NG	NG NG NG	G NG	NG NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG NG	NG NG N	J NG N	NG NG NG N
MW - 18	NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG	NG N	G NG	NG	NG NG	NG NG	NG NG	NG NG	NG	NG NG	NG	NG	NG NG	NG NG	NG	NG NG NG	j NG	NG NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG NG	NG NG N	j NG N	NG NG NG N
RW - 7	NG	NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG	NG N	G NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG	NG NG	NG NG	NG	NG NG NG	i NG	NG NG	NG NG	NG	NG NG	NG NG	NG	NG NG	NG	NG NG	NG	NG NG	NG NG N	j NG N	NG NG NG N

Notes:
Data recorded using an oil/water interface prol
= NAPL observed, apparent thickness not d
= NAPL observed, apparent thickness not d
= NaPL of thickness on the NaPL of the

