

Monthly Progress Report 2023 No. 6

Former NuHart West Site
10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY
NYSDEC Site No. 224136
Reporting Period: June 1, 2023 – July 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from June 1 through July 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lots 1, 10, 12, 72, and 78 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. Investigation or Remedial Actions Relative to the Site during this Reporting Period

- Installation of the off-site LNAPL recovery wells began on 5 June 2023 and was completed on 22 June 2023.
- Relocation of the negative pressure enclosure to the eastern portion of the Site began on
 12 June 2023 and will continue early into the coming reporting period.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 29 June 2023. Gauging results are included in the attached table. On-site wells are inaccessible due to construction activities. The wells that could not be accessed are identified in the attached figure.

Due to LNAPL identified in MW-24 in previous reporting periods, an absorbent sock (New Pig) remains installed in MW-24 and is inspected on a weekly basis and replaced periodically, as needed.

4. Actions Relative to the Site Anticipated for the Next Reporting Period

- Begin remedy execution including removal of the slab and excavation and off-site disposal of soil on the eastern portion of the Site, under the negative pressure enclosure.
- Begin the full-scale LNAPL recovery demonstration test by recovering LNAPL from the offsite recovery wells.

5. Approved Activity Modifications (changes of work scope and/or schedule)

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

Additional soil sampling for supplemental waste characterization was conducted at the Site on 16 June 2023 through 21 June 2023. Waste characterization analytical results have been presented in the Supplemental Contained-in Request 03 and in subsequent Contained-in requests.

7. Deliverables Submitted During This Reporting Period

The OU-1 LNAPL Barrier Installation Summary Letter was resubmitted on 30 May 2023 and approved on 13 June 2023 addressing comments received from NYSDEC in the previous reporting period. A revised Request to Import was submitted to NYSDEC on 7 June 2023 to import 1,500 cubic yards of recycled concrete aggregate (RCA) from Clean Earth of Carteret and was approved by NYSDEC on 12 June 2023. The Supplemental Contained-in Request 03 was submitted to NYSDEC on 19 June 2023 and was approved on 21 June 2023. No other deliverables were submitted during this reporting period.

8. Information Regarding Percentage of Completion

Installation of the OU-1 LNAPL barrier wall is complete.

9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and</u> Mitigation Efforts

2

None.

10. Community Participation (CP) Plan Activities during This Reporting Period

A Community Board Meeting to discuss the next steps in the remediation of the Site was held on 26 June 2023.

11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:

None.

12. Miscellaneous Information

None.

Table 1:

Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136

280 Franklin Street Brooklyn, NY

Readings taken 6/30/2023 between 7:45 am and 2:30 pm (high tide @ 7:20am and low tide @ 1:10pm) 1 of 2

		Donth		Apparent Thickness of LNAI													NAPL (feet)								7.20am and low tide @ 1.10pm)																						
Well Number MW – 4	er Depth Water (1		t		2023			1						2022										2021	l							2020								2019							2018
	water ((feet)	Jun-23	May-23	Apr-23 Ma	r-23 Feb-2	3 Jan-23	Dec-22	Nov-22	Nov-22	Oct-22	Sept-22	Aug-22	Jul-22	Jun-22	May-22	Apr-22 M	Mar-22 I	eb-22 Jan	-22 Dec	c-21 Nov	v-21 Oct-21	Sep-21	Aug-21	Jul-21	Jun-21 Ma	ay-21 Apr-2	21 Mar-21	Nov-20	Oct-20	Jul-20 Jur	n-20 May-20	Apr-20	Mar-20 Feb-20	0 Jan-20	Dec-19 Nov-	19 Oct-19	Sep-19	Aug-19	Jul-19 J	Jun-19 N	May-19 Apr-19	Mar-19 Fe	eb-19 Jan-19	Dec-18 O	ct-18 Jun-18	May-18 Apr-18
MW – 4	ND*	* ND*	ND*	ND*	ND* N	D* ND	· ND*	ND*	ND*	NA	NA	NA	ND*	ND*	ND*	ND*	ND*	ND*	ND* N)* -		- ND*	ND*	ND*	ND*	ND* N	ID* ND*	* ND	ND	ND	ND N	ND ND	ND	ND ND*	ND*	ND* ND	* ND*	ND*	ND	ND*	ND*	## ND*	ND*	ND* ND*	ND*	ND* 0.12	1.13 0.65
MW – 5	12.24	4 9.82	2.42	2.80	0.80 4	24 5.02	0.59	5.22	6.94	NA	NA	NA	4.85	4.85	4.07	4.00	4.50	3.20	2.73 6.	38 3.	85 0.	71 4.27	2.17	3.52	0.78	0.10 0	0.78	3 0.29	3.59	4.76	2.94 5.	.43 3.71	4.18	4.46 4.21	3.44	4.47 4.6	1 5.65	5.18	1.30	3.73	5.15	2.89 2.46	2.26	3.28 2.62	2.83	4.12 1.66	1.83 2.77
MW – 6	9.85	9.37	0.48	ND	ND N	ID ND	0.74	0.99	1.55	NA	NA	NA	2.63	3.20	3.36	3.01	3.05	1.65	2.55 2.	51 2.	71 2.	83 2.42	2.90	3.45	2.74	3.17 0	0.28 3.03	3.18	3.00	2.78	2.48 0.	.99 3.00	2.20	2.29 2.39	2.98	0.85 ##	##	##	##	##	0.50	2.35 ##	##	## ##	##	ND 0.55	0.50 2.47
MW – 7	13.58	8 9.36	4.22	ND**	3.7 4	40 4.85	3.17	1.42	3.17	NA	NA	NA	0.40	1.10	3.35	2.13	2.82	1.00	1.00 2.)7 1.	59 0.	.67 0.88	0.37	0.42	0.46	2.26 0	0.54 1.76	5 1.28	1.15	1.56	2.10 3.	.89 2.81	3.85	3.53 1.59	0.99	1.67 1.5	9 1.63	1.96	0.84	0.45	1.30	0.14 0.35	0.26	1.54 1.14	0.93	J.54 1.89	1.99 1.80
MW – 8	9.34	ND	ND	ND	ND N	ID ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND	ND	ND	ND	ND	ND ND	_	ND ND	ND ,	ND ND	ND ND
MW – 12	7.60) ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ,	ND ND	ND ND
MW – 13	7.99) ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ,	ND ND	ND ND
MW – 14	9.25	5 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ,	ND ND	ND ND
MW – 15	12.3	5 10.88	1.47	NA	NA 0	.26 0.53	1.27	1.76	2.36	NA	NA	NA	0.85	1.30	0.85	1.30	3.05	4.43	0.38 1.)4 1.	05 0.	.10 0.48	0.38	0.83	0.46	0.57 0	0.61 2.44	4.46	0.29	1.30	1.00 3.	.13 2.36	2.75	3.29 2.66	0.83	0.85 1.0	3 1.99	0.18	0.03	0.11	0.87	0.08 0.08	1.08	1.00 0.84	0.26	J.12 0.04	0.04 0.07
MW – 16	16.2	7 11.44	4.83	3.90	2.70 0	.11 2.71	3.47	0.47	0.15	NA	NA	NA	0.1	ND	0.02	0.40	0.58	0.03	0.20 0.	56 0.	12 0.	.14 0.17	0.29	0.63	0.10	1.59 1	.17 1.80	0.04	0.35	0.85	0.85 0.	.41 0.22	0.84	0.36 ND	ND	ND 1.9	5 0.56	0.81	0.01	0.04	1.17	0.45 0.73	0.07	0.39 0.17	0.19	J.20 0.06	0.10 0.13
MW – 20	11.14	4 ND	ND	0.70	2.50 2	05 2.25	1.41	3.66	2.69	2.36	2.80	2.73	3.1	3.05	2.61	2.60	2.61	2.02	3.22 2.	29 1.	78 2.	78 2.36	3.03	3.05	2.95	3.08 2	2.06 2.71	1.09	2.66	3.71	1.23 2.	.92 2.91	1.01	3.12 2.18	2.75	2.82 3.7	3.37	3.25	2.29	2.09	3.66	1.45 1.47	2.17	2.43 2.77	3.49	2.51 1.4	1.55 2.52
MW – 21	NA	. NA	NA	NA	NA 1	IA NA	NA	NA	NA	NA	NA	NA	0.95	1.90	1.54	1.40	2.09	2.68	0.75 0.	36 1.	60 1.	.15 2.45	0.05	0.35	1.39	1.33 1	.06 1.91	2.61	1.33	3.13	2.98 5.	.44 4.29	4.29	4.57 3.63	1.11	2.88 3.0	7 3.13	1.99	1.51	1.41	1.84	0.52 1.25	1.01	1.57 1.48	2.81	1.73 1.43	1.42 1.62
MW – 22	NA	. NA	NA	NA	NA 1	NA NA	1.23	1.15	ND*	NA	NA	NA	0.78	1.20	5.13	1.30	1.55	ND*	ND* 0.	58 -		- 0.93	0.11	0.86	1.13	1.62 0	0.99	0.45	0.37	1.95	0.76 2.	.56 2.13	1.54	1.55 1.59	1.44	1.22 1.0	5 1.94	2.95	0.69	0.51	2.28	2.98 1.03	1.05	1.83 1.68	0.83	J.69 0.97	0.89 0.76
MW – 23	11.73	3 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ,	ND ND	ND ND
MW – 24	10.9	4 ND**	* ND***	ND***	ND*** 0	0.08	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ,	ND ND	ND ND
MW – 25	11.9	1 10.81	1.10	1.30	3.60 4	02 3.72	3.23	3.06	2.86	3.83	4.71	4.51	4.5	4.55	5.87	4.20	4.44	3.87	3.29 3.	78 3.	52 4.	49 3.78	3.81	3.90	3.08	4.37 3	3.63 3.81	3.24	3.28	4.35	4.23 3.	.68 0.98	3.79	6.72 4.57	4.89	4.66 4.9	3 4.31	3.18	3.38	3.83	4.61	3.76 3.81	4.19	4.77 3.86	3.89	3.44 2.85	2.89 4.03
MW – 26	11.6	5 10.84	0.81	1.45	0.61 4	00 4.93	0.61	4.09	4.01	3.76	4.84	3.78	3.4	3.50	4.02	3.40	4.39	3.02	1.90 4.	15 3.	24 3.	44 2.89	7.14	3.58	3.07	4.01 3	3.02 3.32	3.32	2.97	3.56	3.79 3.	.78 3.71	3.47	4.13 4.14	4.11	4.65 4.0	2 4.62	5.21	3.43	3.19	4.90	0.69 2.46	2.94	3.37 3.14	3.84	3.45 0.75	2.35 3.14
MW – 27	11.13	8 ND	ND	ND	ND N	ID ND	ND	ND	ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 28	11.5	1 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 29	11.4	6 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 30	10.43	2 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 31	9.73	ND ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 32	10.4	1 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 34	NA	NA NA	NA	NA	ND 1	NA NA	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND N	D -		- ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 35	NA	NA NA	NA	NA	ND N	ID ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND N	D -		- ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND '	ND ND	ND ND
MW – 36	11.2	1 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND 7	ND ND	ND ND
MW – 37	11.6	4 ND	ND	ND	ND N	ID ND	ND*	ND*	ND*	ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	D* ND	ND	ND ND	ND	ND NI	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND N	ID* ND	ND ND
MW – 38	10.23	2 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND !	ND ND	ND ND
MW – 39	8.38	ND ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND !	ND ND	ND ND
MW – 40	NA	. NA	NA	NA	NA N	IA ND	ND	ND	ND	NA	NA	NA	ND	ND	_	-	ND	ND	ND -	- N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND !	ND ND	ND ND
MW – 41	10.3	5 ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	_	_	_		_ _	_	- -	_		_	_	_	-	-					— ND	ND ND
MW – 42	9.64	ND ND	ND	ND	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND* N	ND* ND	ND ND
MW - 45	11.13	2 ND	ND	ND	ND N	ID -	-	-	-	-	-	-	-	-	-	-	-	-	- -	. .	- .	- -	-	-	-	-	- -	-	-	-	-	- -	-	- -	-	- -	-	-	-	-	-	- - '	-	- -		- -	1 - -
MW - 46	11.5	5 ND	ND	ND	ND N	ID -	-	-	-	-	-	-	-	-	-	-	-	-	-		- '	- -	-	-	-	-		-	-	-	-		-		-		-	-	-	-	-	- '	-		· -		
MW - 47	11.10	0 ND	ND	ND	ND N	ID -	-	-	-	-	-	-	-	-	-	-	-	-	-		- .		-	-	-	-		-	-	-	-		-		-		-	-	-	-	-	- - '	-		· -		
MW-A	NA	. NA	NA	NA	0.05 0	0.05	4.45	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	-		-	-	-	-		-		-		-	-	-	-	-		-				
RW – 1	NA	. NA	NA	NA	NA N	NA NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND N	D N	ID N	ID ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND N	ND ND	ND	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND !	ND ND	ND ND
RW-2	NA	. NA	NA	NA	NA N	NA NA	NA	3.16	4.55	NA	NA	NA	3.45	3.10	5.67	3.39	5.78	5.25	3.15 5.	19 3.	03 2.	.11 2.00	2.16	2.12	2.92	02.15 1	.74 3.28	3 2.44	3.81	2.90	3.95 4.	.56 3.25	4.93	4.78 4.59	3.31	4.49 2.4	5.03	2.19	1.41	0.66	4.08	1.64 1.47	1.27	4.73 5.12	1.63	0.06	0.08 1.65
RW – 3	NA	. NA		NA		NA NA			2.51	NA	NA			3.40						20 0.			2.60			05.02 1										2.62 4.3	4.03	4.09	3.50	3.25	3.96	1.61 2.11	2.26 4	4.71 2.22	2.63	3.77 2.08	2.03 2.52
RW – 4	NA	. NA	NA	NA	NA N	NA NA	0.40	2.18	1.53	NA	NA	NA	3.23	4.40	4.97	4.01	4.40	2.97	3.13 1.	92 2.	89 3.	50 3.17	0.86	4.35	4.52	03.87 2	2.64 4.35	3.69	3.23	2.99	3.94 3.	.35 2.92	3.55	2.46 3.78	2.64	3.02 4.1	5 ##	4.21	3.56	3.07	4.72	1.13 0.53	2.85	## ##	03.37 7	2.85 2.96	2.97 3.80 0.33 0.65
RW – 5	NA	. NA			NA N			3.47		NA					5.02							81 3.80												4.91 5.18		## ##	##	5.74	##	##	##	0.71 ##	##	## ##	## N	√D* 0.44	0.33 0.65
RW – 6	NA	. NA	NA	NA	NA 1	NA NA	NA	0.40	ND*	NA					0.48				1.05 1.	- 10	- 0.	90 1.12	0.53	0.21	1.14	1.33 0	0.58 2.49	##	##	2.82	1.85 2.	.17 0.44	1.21	0.98 1.05	1.67	1.51 1.6	2.19	1.49	0.7	0.46	1.57	0.28 0.55	0.49 (0.91	00.73	.91 0.83	0.88 0.96 0.02 0.03
RW – 8 **	* NA	. NA	NA	NA	NA N	NA NA	0.36	0.88	1.52	NA	NA	NA	3.77	3.80	4.06	4.06	3.55	2.35			- -	- -	_	_						_									_								0.02 0.03
RW – 9	NA	. NA	NA	NA	NA N	NA NA	3.55	3.92		NA	NA	NA	4.07	6.65	4.02				3.70 5.	97 4.			0.78		2.95	3.65 3	3.42 4.39	5.42	6.45			.90 4.65		5.01 5.36			7 5.59			3.55	4.57	2.32 1.73				.52 0.11	2.38 2.28 1.60 3.70
RW – 10		. NA		NA	NA N				2.13	NA			3	4.2	5.31					51 1.		95 3.04					3.1 4.32			3.88		.31 2.93			4.58					3.04				4.53 3.80			1.60 3.70
RW – 11		. NA			NA N			2.48		NA			4.1	4.9	3.48				2.85 0.	58 4.	78 4.	13 3.64	1.11	4.48	2.67	6.11 2	2.00 4.20	1.43	3.25	4.24	3.45 3.	.89 4.32	4.31	5.77 5.13	3.80	5.58 4.5	6.30	4.85	4.12	3.78	4.65	3.32 1.92					2.52 4.34
RW- 12 **	* NA	. NA	NA	NA	NA 1	NA NA	NA	5.42	6.10	NA	NA	NA	4.17		7.02	3.86	3.30	3.50		- -	_	- -	_	_				_	_	<u> </u>			_	_ _	_		_	_		_						- 0.11	
MW - 1		NG			NG N			NG	_	NG	_		NG	NG		NG			NG N	G N		– NG	_					_	_					NG NG			_					NG NG					NG NG
MW - 9	NG	NG		NG	NG N	IG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	G N	IG N	ID NG	NG	NG	NG	NG 1	NG NG	NG NG	NG	NG	NG N	NG NG	NG	NG NG	NG	NG NO	G NG	NG	NG	NG				NG —	NG N	NG NG	NG NG
MW - 10	_	NG		NG	NG N					NG	_	_	_	NG					NG N			ID NG			_				_	NG		NG NG		NG NG		NG NO			NG			NG NG		NG ND		NG NG	
MW - 17		NG		NG	NG N					NG	NG	NG	NG	NG	NG		NG	NG	NG N	G N	IG N	ID NG	NG	NG		NG 1		NG NG	NG	NG		NG NG		NG NG		NG NO			NG	NG	NG	NG NG		NG ND		NG NG	NG NG
MW - 18		NG			NG N				NG	NG			_	NG				NG	N	G N	iG -	– NG	NG	NG		NG 1		NG NG	NG					NG NG	_							NG NG					
RW - 7	NG	NG	NG	NG	NG N	IG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	G N	IG -	– NG	NG	NG	NG	NG 1	NG NG	NG	NG	NG	NG N	NG NG	NG	NG NG	NG	NG NO	i NG	NG	NG	NG	NG	NG NG	NG	NG —	NG 1	NG NG	NG NG

Notes:

Data recorded using an oil/water interface probe, measurements from the tops of well casings

NI = Not Installed ND = Not Detected NA= No Access

Wells MW-1, MW-2, MW-9, MW-10, MW-17, MW-18, MW-19, and RW-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation est= Estimated Value ** = Water not detected; well filled with sediment, value is the total depth of the well

* = Well was dry

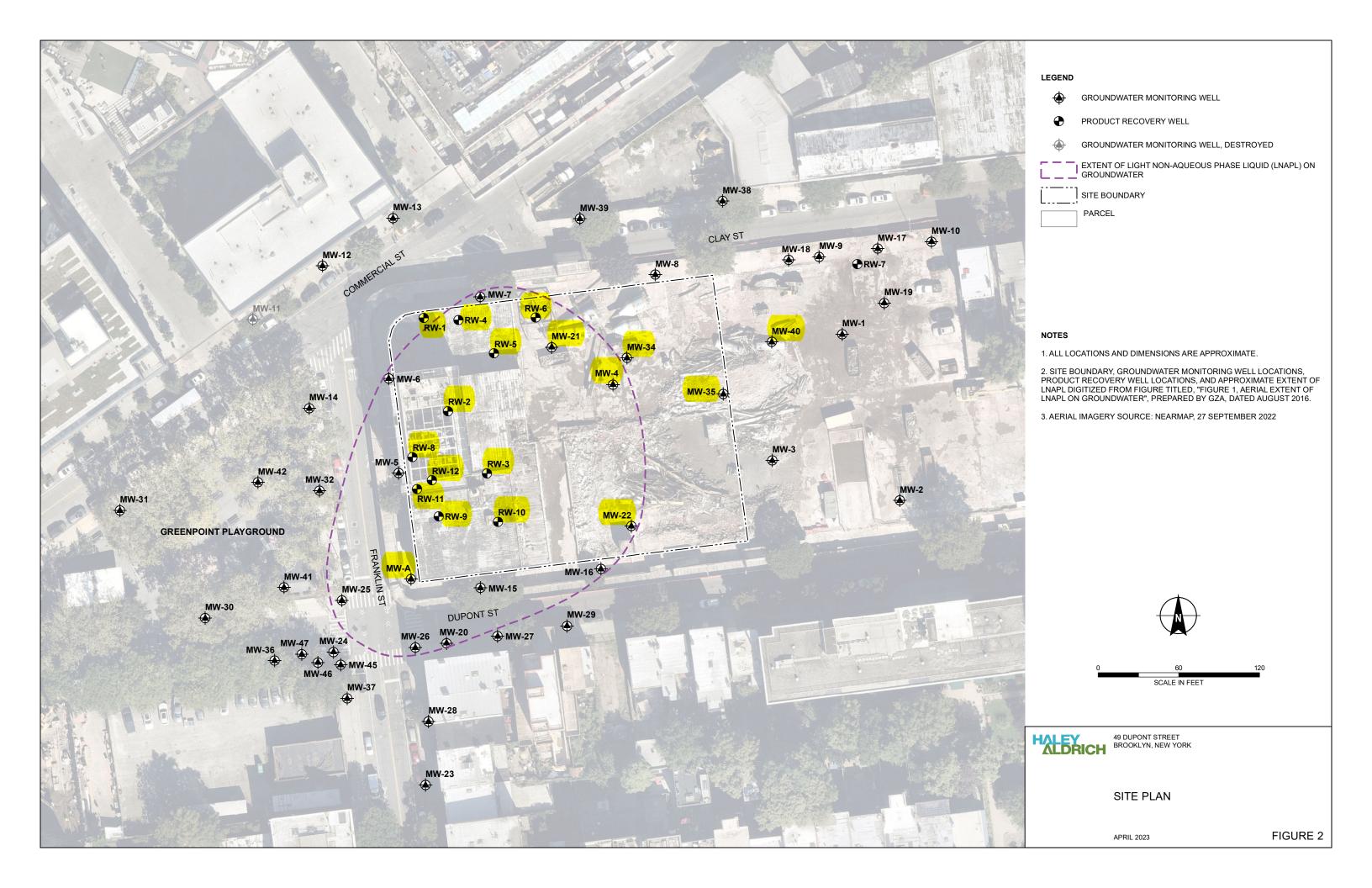
Wells MW-45, MW-46, and MW-47 installed on 13 March 2023

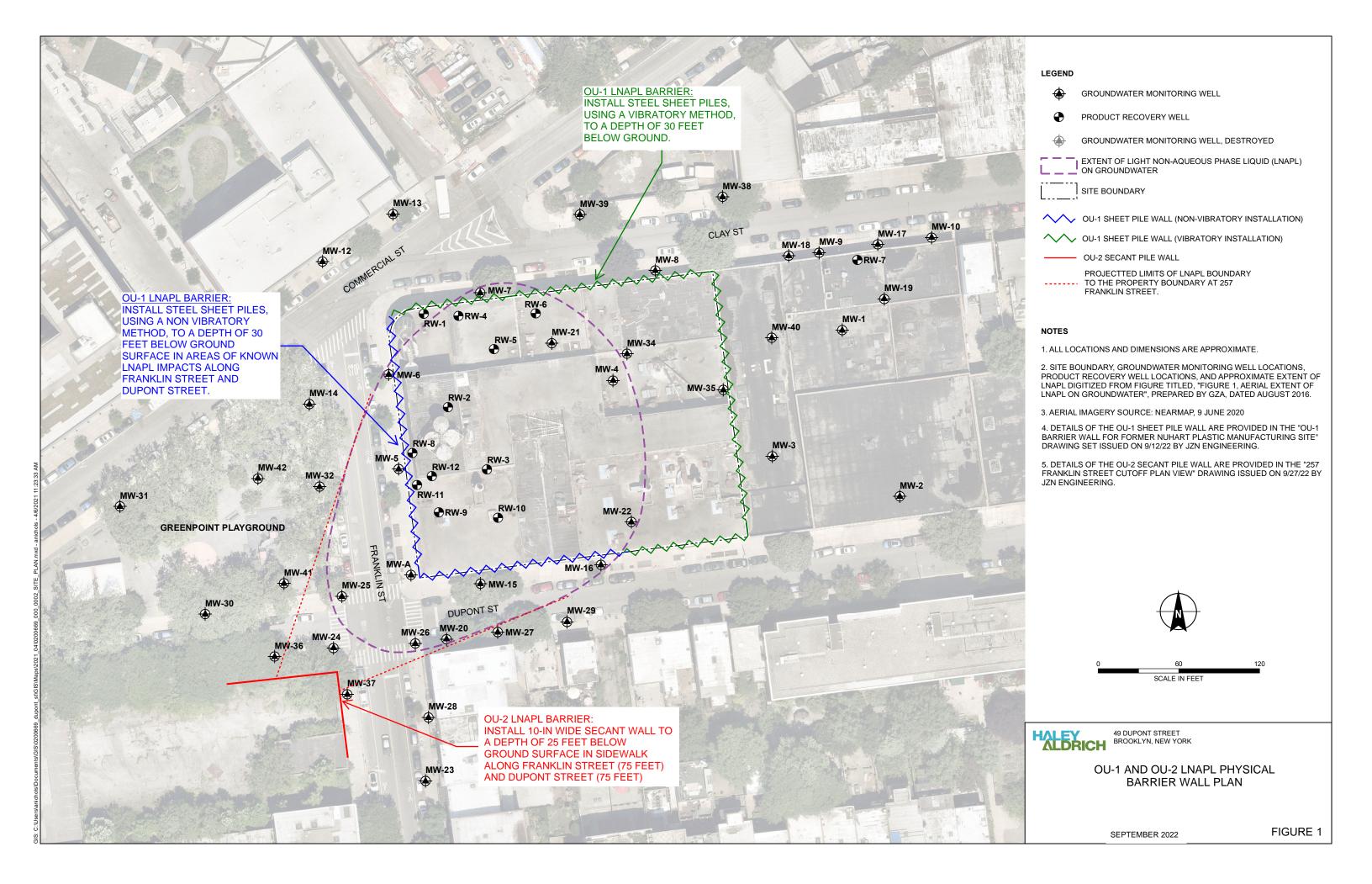
Wells were gauged on 30 June 2023

***MW-24 absorbent sock installed

Haley Aldrich, Inc.

Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136
280 Franklin Street


Brooklyn, NY


	Dox	th to																																																		
Well Number	Depth to Pro	duct				201	7				2017	7							016									2015								2014								2013						2012		
l "	ater (feet) (f	eet) Mar-18	Feb-18 J	an-18 Nov-	17 Oct-1	Sep-17	Aug-17	Jul-17 J	Jun-17 Ma	ay-17 Ap	r-17 Mar-	17 Feb-	-17 Jan-17	7 Dec-16	Nov-16	Oct-16 S	Sep-16 A	ug-16 J	ıl-16 Jun-1	6 May-1	6 Apr-16	Mar-16	Feb-16	Jan-16	Dec-15	Nov-15 Oc	oct-15 Sep-15	5 Aug-15	Jul-15	5 Jun-15 Ma	ay-15 Apr	r-15 Mar-1	15 Jan-15 S	Sep-14 Au	ug-14 Jul-14	Jun-14	May-14 A	pr-14 Mar-	-14 Feb-14	Jan-14	Dec-13	Nov-13	Oct-13	Sep-13	Aug-13 Ju	ul-13 Apr-1	3 Mar-13	Feb-13	Jan-13 Dec	c-12 Nov-12	2 Oct-12	Sep-12
MW – 4	ND* N	D* 0.73	ND*	0.92 2.1	2 0.81	1.76	1.73	1.23	1.77 N	ND* 1.	.32 1.6	1 1.13	13 1.31	1.30	1.00	1.18	1.35	1.71	.73 1.80	1.53	1.73	1.43	1.85	1.77	1.96	2.04 1	1.99 1.77	2.22	4.27	0.35	0.44 -	0.56	, –	1.75 1	1.90 1.24	Trace	_	0.01 Trac	ce 0.23	0.22	0.30	0.66	0.78	##	3.49 2	2.22 0.59	0.67	0.44	0.44 0.	0.80 0.31	0.33	3.13
MW – 5	12.24 9	.82 2.19	2.21	4.65 5.8	3 2.19	4.44	4.4	3.71	3.54 2	2.81 2.	2.80 3.13	3 4.03	05 3.00	3.55	4.43	3.64	3.22	4.31	1.03 4.29	3.07	3.18	3.14	1.85	3.24	4.83	5.41 4	4.16 4.26	4.45	4.22	2.30 2	2.41 2.	.55 3.10	4.40	4.79 5	5.03 1.97	3.39	_	3.14 2.80	0 2.98	_	6.46	7.17	5.54	##	5.08 3	3.92 3.00	2.39	4.32	3.00 4.	.11 3.50	3.41	5.58
MW – 6	9.85 9	.37 0.74	##	## ##	1.22	3.19	3.15	##	##	## #	## ##	##	# ##	##	##	##	##	##	## ##	##	##	##	##	##	##	##	## ##	##	##	2.30	## #	## ##	##	##	## ##	##	-	- 2.8	4 3.43	_	2.89	2.76	2.00	##	2.42 2	2.82 —	_	- 1			3.49	2.14
MW – 7	13.58 9	.36 2.03	2.55	3.32 4.9	1 1.48	1.45	1.41	0.9	0.00	1.50 1.	.92 2.53	3 3.7	71 1.28	0.78	1.73	0.91	0.04	1.89	.58 2.22	2.11	1.90	1.66	2.31	2.47	3.44	3.31 2	2.58 1.46	1.28	0.99	1.58	ND 1.	.94 1.79	##	2.01 2	2.16 0.60	0.01	-	0.17 0.1	7 —	_	4.78	4.70	4.00	##	2.77 1	1.06 1.92	4.92	5.45	1.30 1.	.36 2.00	1.84	1.83
MW – 8	9.34 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	T - T	ND N	ND ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND ND	ND	ND
MW – 12	7.60 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	_	_	<u> </u>	ND	ND		_	_	ND 1	ND N	ND ND	<u> </u>	ND ·	- ND	ND	_	ND NE) –	_	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND ND	ND	ND
MW – 13	7.99 N	ND ND	ND	ND NI) ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	_	_	ND	ND		_	_	ND 1	ND N	ND ND	<u> </u>	ND ·	- ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND ND	ND	ND
MW – 14	9.25 N	ID ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	_	ND NE) –	_	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND ND	ND	ND
MW – 15	12.35	0.88 0.07	0.08	3.16 1.7	3 0.31	0.29	0.26	0.26	0.24	0.12 0.	0.22 0.28	8 0.40	40 0.31	0.20	0.80	0.20	0.17	0.81	0.07 0.48	0.22	0.71	0.03	0.04	0.60	3.08	3.07 1	1.97 1.05	1.05	ND	1.24	1.21 1.	.56 1.67	1.71	2.19 2	2.32 ##	0.45	_	0.61 0.3	0.38	_	3.11	3.19	3.34	##	2.14	0.70 –	0.32	1.07	- 1.	.56 0.99	0.76	2.67
MW – 16	16.27	1.44 —	0.1	0.34 0.2	5 0.35	0.37	0.35	0.08	0.28	0.03 0.	0.10 0.23	3 0.20	20 0.31	ND	ND	ND	ND	ND	0.01 0.25	0.02	0.01	0.02	0.16	0.02	0.11	0.02	0.12 0.05	0.05	0.14	0.13	0.15 0.	.03 0.08	0.02	- 0	0.03 0.99	Trace	-	0.01 0.0	0.10	_	0.23	0.22	0.19	##	0.05	0.07 0.02	0.01	0.10	0.25 0.	.20 ND	0.24	0.20
MW - 20	11.14 N	ND 1.77	1.02	3.15 3.9	9 2.52	2.58	2.63	2.9	2.83 2	2.61 2.	.94 2.33	3 3.00	02 3.02	2.88	3.28	2.90	3.16	2.89	2.88 2.85	2.22	2.49	2.43	1.99	2.46	3.52	3.02 3	3.33 3.25	3.12	2.88	2.58 2	2.79 3.	.84 4.38	5.13	1.87 1	1.71 2.92	2.06	-	1.47 2.9	0 2.58	4.19	5.07	4.90	4.11	##	3.33 1	1.37 3.32	1.20	1.10	1.35 1.	.38 3.39	3.15	3.80
MW – 21	NA 1	NA 1.38	2.29	3.83 4.7	9 3.26	3.35	2.13	1.45	2.75	3.31 3.	3.04	4 3.62	52 7.59	3.27	3.32	1.25	2.39	3.61	2.96 2.95	2.63	4.18	2.68	2.42	2.97	4.46	3.85 4	4.51 3.63	3.32	2.97	2.53 2	2.77 2.	.98 3.46	3.23	3.62 4	4.64 4.90	1.99	-	2.69 2.4	7 2.48	3.37	3.13	3.72	4.66	##	4.37 3	3.66 3.38	3.43	3.75	4.10 4.	.23 2.89	2.04	4.15
MW – 22	NA 1	NA 1.11	0.28	0.37 1.7	7 1.25	1.24	1.21	0.75	0.66	0.66 0.	0.78	4 0.65	55 0.50	0.51	0.38	0.30	0.01	0.51	0.62	0.45	0.48	0.44	0.15	0.22	1.33	1.01	0.49 1.17	1.04	0.79	0.86	0.84 0.	.74 1.33	1.27	1.03 1	1.02 0.54	0.85	-	0.74 0.8	6 0.75	1.22	1.07	0.69	0.50	##	1.12	0.86 0.50	0.62	1.15	1.20 0.	0.18 0.21	0.18	1.80
MW – 23	11.73 N	ND ND	ND	ND NI) ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND ND	ND	ND
MW – 24	10.94 NI)*** ND	ND	ND NI	ND ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND ND	ND	ND
MW – 25	11.91 10	0.81 3.45	3.44	3.66 4.5	4.03	4.05	4.02	3.73	4.09	3.85 3.	3.74	4 3.4	47 3.89	3.62	3.60	4.20	3.79	3.65	1.01 3.75	3.55	3.33	3.42	3.32	3.43	3.68	3.53	3.63 3.53	3.68	3.53	2.81 3	3.24 3.	.36 1.07	1.03	3.16 4	4.02 3.65	3.48	-	3.91 3.73	'5 —	_	5.66	5.56	4.01	##	4.41 3	3.58 3.96	3.96	4.34	3.70 2.	82 7.86	4.40	3.96
MW – 26	11.65 10	0.84 2.48	3.19	3.95 5.5	3.81	3.82	3.79	3.65	3.42	3.29 3.	3.64	4 3.24	24 3.14	3.20	3.56	4.00	3.28	4.26	3.58 3.82	3.41	3.37	2.97	3.82	3.41	4.23	4.08	3.77 4.00	3.70	3.65	3.18	3.33 3.	.64 4.14	4.11	3.84 3	3.70 4.50	3.02	-	2.71 3.4	8 3.80	4.34	4.44	4.47	4.62	##	4.18	3.69 2.86	2.33	1.00	2.45 1.	.62 –	2.61	4.02
MW – 27	11.18 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	ND 0.99	ND	ND
MW – 28	11.51 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	_	ND NE	O ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	NI NI	NI	NI
MW – 29	11.46 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE	O ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND N	NI NI	NI	NI
MW - 30	10.42 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 31	9.73 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	_	_	_	-	-	ND ND	ND	ND	ND	ND	ND	ND	— l	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 32	10.41 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) –	_	ND	ND	ND	ND	ND	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 34	NA 1	NA ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) ND	ND	ND	ND	ND	ND	ND	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 35	NA I	NA ND	ND	ND NE	ND ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) ND	ND	ND	ND	ND	ND	ND	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 36	11.21 N	ND ND	ND	ND NE	ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 37	11.64 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 38	10.22 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND		_	_	_		ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND		ND I	NI NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 39	8.38 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND I	NI NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 40	NA N	NA ND	ND	ND NE) ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	- 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND I	NI NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 41	10.35 N	ND ND	ND	ND NI	ND ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	NI I	NI NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW – 42	9.64 N	ND ND	ND	ND NI) ND	ND	ND	ND	ND 1	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	NI I	NI NI	NI	NI	NI NI	I NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI N	NI NI	NI	NI
MW - 45	11.12 N	ID -	-		-	-	-	-	-	-		-		-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-		-	-		-	-	-	-	-	-	-		-	-	-		-	-
MW - 46	11.55 N	1D -	-		-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-		-	-		-	-	-	-	-	-	-		-	-	-		-	-
MW - 47	11.10 N	1D -	-		-	-	-	-	-	-		-		-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-		-	-		-	-	-	-	-	-	-		-	-	-		-	-
MW-A	NA N	NA -	-		-	-	-	-	-	-		-	- -	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-		-	-		-	-	-	-	-	-	-		-	-	-		-	-
RW – 1	NA 1	NA ND	ND	ND NI	ND ND	ND	ND	ND	ND I	ND N	ND ND) NE	D ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	- 1	ND ND	ND	ND	ND 1	ND N	ND ND	ND	ND N	ND ND	ND	-	ND NE) ND	ND	ND	ND	ND	ND	ND I	ND –	ND	ND	ND N	ND ND	ND	ND
RW – 2	NA 1	NA 0.08	5.52	4.01 5.1	0.56	0.58	0.53	6.09	6.25	0.42	.13 2.90	0 3.09	09 3.53	1.65	1.18	1.26	1.35	1.88	2.05 2.41	3.02	2.12	3.34	2.70	2.83	4.28	_ 2	2.64 2.97	3.41	5.54	5.28	5.44 2.	.82 4.19	4.52	4.52 4	4.53 4.52	0.11	-	1.30 3.0	5 2.31	2.80	3.19	5.09	3.86	##	4.07	2.96 2.92	3.48	3.75	4.20 2.	1.92	1.50	5.85
RW – 3		NA 2.12			_								98 3.10			2.40				_								_	_	2.23 2								1.58 2.9		_ ` `					2.96			3.34		5.58 2.84		
RW – 4		NA 3.01		3.06 4.3			4.18			3.69		9 3.6		3.80		2.77				2.02			2.03			2.31 1		2.02							2.88 ##			1.81 3.2		2.45		2.30						3.00		95 —	3.45	
																														4.69 4																				3.00		
RW – 6												2 0.90	90 0.90	0.85	0.68	0.87	0.92	1.46	.29 0.81	0.67	0.73	0.74	0.76	0.74	0.77	0.65	0.66 0.65	0.61	0.78	1.96 2																	0.50	0.21	0.40 0.	0.15 0.90	0.22	0.06
RW – 8 ***			0.96					1.2							_	_			_ _						_								2.92					0.65 1.4														
RW – 9		NA 1.51																																													2.62	3.11	3.50 3.	3.83	2.98	5.33
RW – 10		NA 0.66		4.64 4.2							3.79 4.2			3.86																3.80					3.74 3.57			3.38 3.89				3.99			4.11 3				_ -		 -	
RW – 11														1.90		2.43			2.98 3.43	3.08	2.94	3.05		_	4.65	4.39 3	3.59 3.24	3.62	3.43	3.66		.00 3.87	3.97			3.87	-	2.03 2.5		3.66	4.27	5.48		##	3.91	3.49 3.15	2.67	3.11	3.50 2.	.93 4.49		
RW- 12 ***				1.5 5.9							0.02 0.80				_	-		_	- -			-		-	_	-					_ -	- -	 - 			 - 	_		· -		-	_	_	_	-				_ -			
MW - 1																														NG 1											_									NG NG		
MW - 9				NG NO	_									_		NG				_		_	NG	+ +					_	NG 1		_			NG NG			NG NO			_							NG			NG	
MW - 10		NG NG	NG				NG			NG N		G NO		NG						NG		_	NG				NG NG				NG N				NG NG			NG NO			_	NG						NG			_	_
MW - 17		NG NG		NG NO				NG			NG NG	_		NG			NG		NG NG			_	NG	_						NG 1			NG	_	NG NG			NG NO			_	_				NG NG		_		NG NG		NG
MW - 18		NG NG	NG				NG			NG N					NG				NG NG					_			NG NG				NG N				NG NG			NG NO		_		NG				NG NG				NG NG		NG
RW - 7	NG N	NG NG	NG	NG NO	NG	NG	NG	NG	NG I	NG N	NG NG	G NC	G NG	NG	NG	NG	NG	NG	NG NG	NG	NG	NG	NG	NG	NG	NG I	NG NG	NG	NG	NG 1	NG N	NG NG	NG	NG N	NG NG	NG	NG	NG NO	G NG	NG	NG	NG	NG	NG	NG	NG NG	NG	NG	NG N	NG NG	NG	NG

Notes:

Data recorded using an oil/water interface prol
= NAPL observed, apparent thickness not c
NI = Not Installed ND = Not Del
Wells MW-1, MW-2, MW-9, MW-10, MW-1
est= Estimated Value ** = Water n

* = Well was dry
Wells were gauged on 30 June 2023

