

Monthly Progress Report 2023 No. 5

Former NuHart West Site
10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY
NYSDEC Site No. 224136
Reporting Period: May 1, 2023 – June 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from May 1 through June 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lots 1, 10, 12, 72, and 78 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. Investigation or Remedial Actions Relative to the Site during this Reporting Period

• Installation of the on-site (OU-1) LNAPL barrier walls began on 23 January 2023 and was completed on 5 May 2023.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 31 May 2023. Gauging results are included in the attached table. On-site wells are inaccessible due

1

to construction activities. The wells that could not be accessed are identified in the attached figure.

Due to LNAPL identified in MW-24 in previous reporting periods, an absorbent sock (New Pig) remains installed in MW-24 and is inspected on a weekly basis and replaced periodically, as needed.

4. Actions Relative to the Site Anticipated for the Next Reporting Period

 Begin installation of the Offsite LNAPL recovery wells as part of the 100% Remedial Design.

5. Approved Activity Modifications (changes of work scope and/or schedule)

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

Sampling was not conducted during this reporting period.

7. Deliverables Submitted During This Reporting Period

The final 100% Remedial Design Report was resubmitted to NYSDEC on 5 May 2023 and approved on 16 May 2023. The OU-1 LNAPL Barrier Installation Summary Letter was submitted to NYSDEC on 25 May 2023 and was revised and resubmitted based on comments from NYSDEC on 30 May 2023. No other deliverables were submitted during this reporting period. During the previous reporting period, a Request to Import was submitted to NYSDEC on 5 April 2023 to import 1,500 cubic yards of RCA from Clean Earth of Carteret. NYSDEC rejected the request to import on 6 April 2023, a revised request will be submitted in the next reporting period.

8. Information Regarding Percentage of Completion

Installation of the OU-1 LNAPL barrier wall is complete.

9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and Mitigation Efforts</u>

None.

10. Community Participation (CP) Plan Activities during This Reporting Period

The NYSDEC approved 100% Remedial Design Report was submitted to the document repositories on 17 May 2023. The letters of transmittal are attached.

11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:

Haley & Aldrich of New York File No.: 0203497

A Community Board Meeting to discuss the next steps in the remediation of the Site will be held in June.

12. Miscellaneous Information

None.

Attachment A: Apparent Thickness of LNAPL Former NuHart Plastic Manufacturing Site, NYSDEC #224136

280 Franklin Street

Brooklyn, NY

Readings taken 5/31/2023 between 8:00 am and 1:00 pm (high tide @ 7:12am and low tide @ 1:06pm)

1 of 2

																																						7	7:12am and lo	ow tide @ 1:0	J6pm)			
_ Depth to																							Appa	rent Thicknes	ss of LNAPL (fe	eet)										*	-	-	-			*		
Well Number Depth to Product		2023		1						2022										2021								2020								2019				$\overline{}$			2018	
Water (feet) (feet)	23-May 23-Ap	r 23-Mar	Feb-23 Jan-23	Dec-22	Nov-22	Nov-22	Oct-22	Sept-22	Aug-22	Jul-22	Jun-22	May-22 An	r-22 Mar	r-22 Feb-2	2 Jan-22	Dec-21	Nov-21	Oct-21	Sep-21	Aug-21	Jul-21 J	Jun-21 May	-21 Apr-21	Mar-21	Nov-20	Oct-20 Inl	-20 Jun-20	May-20	Apr-20 Mar	-20 Feb-20	Jan-20 D	c-19 Nov-19	Oct-19 S	en-19 Aı	ng.19 Inl	l-19 Jun-19	9 May-19	Apr-19 M	Jar-19 Feb-1	19 Ian-19	Dec-18 Oct-1	Inn-18	May-18 Apr-18	Mar-18
MW – 4 ND* ND*	ND* ND*		ND* ND*	ND*	ND*	NA	NA	NA	ND*	ND*	ND*		D* NI			Dec-21	1101-21	ND*	ND*	ND*	ND*	ND* ND	* ND*	ND.	ND.	ND N		ND	ND N	_	+	D* ND*		•		D* ND*			ND* ND*		ND* ND*		1.13 0.65	_
			ND ND	110	ND		11/1		ND			112	D 111	1115		_			ND		ND	IVD IVD	D* ND*	112	112	IVD IV	D ND	1,12				D 11D		.,,,,				11,5	110					
MW – 5 13.84 11.04	2.80 0.80	4.24	5.02 0.59	5.22	6.94	NA	NA	NA	4.85	4.85	4.07	4.00 4	.50 3.2	20 2.73	6.88	3.85	0.71	4.27	2.17	3.52	0.78	0.10 0.4	12 0.78	0.29	3.59	4.76 2.5	94 5.43	3.71	4.18 4.4	46 4.21	3.44	.47 4.61	5.65	5.18	1.30 3.	.73 5.15	2.89	2.46 2.	2.26 3.28	2.62	2.83 4.12	1.66	1.83 2.77	2.19
MW – 6 7.96 ND	ND ND	ND	ND 0.74	0.99	1.55	NA	NA	NA	2.63	3.20	3.36	3.01 3	.05 1.0	65 2.55	2.61	2.71	2.83	2.42	2.90	3.45	2.74	3.17 0.2	28 3.03	3.18	3.00	2.78 2.4	48 0.99	3.00	2.20 2.3	29 2.39	2.98	.85 ##	##	##	## #	## 0.50	2.35	## #	## ##	##	## ND	0.55	0.50 2.47	0.74
MW – 7 ND*** 12.50	ND** 3.7	4.40	4.85 3.17	1.42	3.17	NA	NA	NA	0.40	1.10	3.35	2.13 2	.82 1.0	00 1.00	2.07	1.59	0.67	0.88	0.37	0.42	0.46	2.26 0.5	1.76	1.28	1.15	1.56 2.	10 3.89	2.81	3.85 3.	53 1.59	0.99	.67 1.59	1.63	1.96	0.84 0.	45 1.30	0.14	0.35	0.26 1.54	1.14	0.93 0.54	1.89	1.99 1.80	2.03
MW – 8 8.90 ND	ND ND	ND	ND ND	ND	ND	NA	NA	NA	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND	- ND	ND	ND ND	ND	ND ND	ND
MW – 12 7.95 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND 7	ND ND	ND	ND ND	ND	ND ND	ND
MW – 13 8.00 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	JD ND	ND	ND	ND N	ID ND	ND	ND 7	ND ND) ND	ND ND	ND	ND ND	ND
	ND ND		ND ND	ND	ND	ND	ND	ND	ND	ND			JD N		- 112	ND	ND	ND	ND ND	ND	ND	ND NE	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ID ND	ND	NID.		ID ND	ND	ND I	ND ND		ND ND	ND		ND
					ND	ND	112		112		ND					112	112	1.2		ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND .	ND N	J ND	ND	ND N	ND ND	ND		ND	ND ND	ND
MW – 15 NA NA	NA NA	0.26	0.53 1.27	1.76	2.36	NA	NA	NA	0.85	1.30	0.85	1.30 3	.05 4.4	43 0.38	1.04	1.05	0.10	0.48	0.38	0.83	0.46	0.57 0.6	51 2.44	4.46	0.29	1.30 1.0	00 3.13	2.36	2.75 3.	29 2.66	0.83	.85 1.08	1.99	0.18	0.03 0.	1 0.87	0.08	0.08 1	1.08 1.00	0.84	0.26 0.12	0.04	0.04 0.07	0.07
MW – 16 16.30 12.40	3.90 2.70	0.11	2.71 3.47	0.47	0.15	NA	NA	NA	0.1	ND	0.02	0.40 0	.58 0.0	0.20	0.56	0.12	0.14	0.17	0.29	0.63	0.10	1.59 1.1	1.80	0.04	0.35	0.85 0.3	85 0.41	0.22	0.84 0.3	36 ND	ND	ND 1.95	0.56	0.81	0.01 0.	J4 1.17	0.45	0.73 0	0.39	0.17	0.19 0.20	0.06	0.10 0.13	_
MW – 20 12.90 12.20	0.70 2.50	2.05	2.25 1.41	3.66	2.69	2.36	2.80	2.73	3.1	3.05	2.61	2.60 2	.61 2.0	02 3.22	2.29	1.78	2.78	2.36	3.03	3.05	2.95	3.08 2.0	06 2.71	1.09	2.66	3.71 1.5	23 2.92	2.91	1.01 3.	12 2.18	2.75	.82 3.73	3.37	3.25	2.29 2.	3.66	1.45	1.47 2	2.17 2.43	2.77	3.49 2.51	1.4	1.55 2.52	1.77
MW – 21 NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	0.95	1.90	1.54	1.40 2	.09 2.0	68 0.75	0.86	1.60	1.15	2.45	0.05	0.35	1.39	1.33 1.0	06 1.91	2.61	1.33	3.13 2.5	98 5.44	4.29	4.29 4.3	57 3.63	1.11	.88 3.07	3.13	1.99	1.51 1.	.41 1.84	0.52	1.25 1	1.01 1.57	1.48	2.81 1.73	1.43	1.42 1.62	1.38
MW – 22 NA NA	NA NA	NA	NA 1.23	1.15	ND*	NA	NA	NA	0.78	1.20	5.13	1.30 1	.55 NI	D* ND*	0.58	_	_	0.93	0.11	0.86	1.13	1.62 0.3	39 0.99	0.45	0.37	1.95 0.	76 2.56	2.13	1.54 1.	55 1.59	1.44	.22 1.06	1.94	2.95	0.69 0.	.51 2.28	2.98	1.03	1.05 1.83	3 1.68	0.83 0.69	0.97	0.89 0.76	1.11
MW – 23 12.84 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	JD N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	JD ND	ND	ND	ND N	/D ND	ND	ND ,	ND ND	ND	ND ND	ND	ND ND	ND
MW – 24 ND*** ND***	ND*** ND**		0.08 NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND N	JD N		ND	ND	ND	ND	ND ND	ND	ND.	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ID ND	ND	ND.	ND N	D ND	ND	ND :	ND ND	ND	ND ND	ND	ND ND	ND
	NB NB				ND	ND	ND		ND		1,12				_	ND 2.52		1.2	_	112	ND	ND NI	D ND	ND	ND 2.20	ND N	D ND	ND	ND N	D ND	1.12	ND ND	ND	ND .	ND N	J ND	ND	ND N	ND ND	ND	112	ND		
MW – 25 13.30 12.00	1.30 3.60		3.72 3.23	3.06	2.86	3.83	4.71	4.51	4.5	4.55	5.87			87 3.29	3.70		4.49	3.78	3.81	3.90	3.08	4.37 3.6	3.81	3.24	3.28	4.35 4.3	23 3.68	0.98	3.79 6.	72 4.57	4.89	.66 4.93	4.31	3.18	3.38 3.	.83 4.61	3.76	3.81 4	4.19 4.77	7 3.86	3.89 3.44	2.85	2.89 4.03	
MW – 26 13.40 11.95	1.45 0.61	4.00	4.93 0.61	4.09	4.01	3.76	4.84	3.78	3.4	3.50	4.02	3.40 4	.39 3.0	02 1.90	4.45	3.24	3.44	2.89	7.14	3.58	3.07	4.01 3.0)2 3.32	3.32	2.97	3.56 3.	79 3.78	3.71	3.47 4.	13 4.14	4.11	.65 4.02	4.62	5.21	3.43 3.	.19 4.90	0.69	2.46 2	2.94 3.37	3.14	3.84 3.45	0.75	2.35 3.14	2.48
MW – 27 12.15 ND	ND ND	ND	ND ND	ND	ND*	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND 1	ND ND	ND	ND ND	ND	ND ND	ND
MW – 28 12.67 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND 1	ND ND	ND	ND ND	ND	ND ND	ND
MW – 29 12.08 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ?	ND ND	ND	ND ND	ND	ND ND	ND
MW - 30 11.62 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND 7	ND ND) ND	ND ND	ND	ND ND	ND
MW – 31 10.96 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND 2	ND ND) ND	ND ND	ND	ND ND	ND
	ND ND		ND ND	ND	ND	ND	ND		ND	ND.	ND	ND 1	ID N	D 11D	ND	ND	ND	ND	ND	ND	ND	ND NE	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ID ND	ND	ND :	ND N	7 ND	ND	ND I	ND ND	ND	ND ND	ND	ND ND	ND
1111 32 11.00 110	ND ND	TAD	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND		ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND .	ND N) ND	ND	ND N	ND ND	ND	115 115	ND	112	ND
MW – 34 NA NA	NA ND		NA ND	NA	NA	NA	NA	NA	ND	ND	ND		ND N		ND			ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND .	ND N	3 ND	ND	ND N	ND ND	ND	ND ND	ND	ND ND	ND
MW – 35 NA NA	NA ND	ND	ND ND	ND	ND	NA	NA	NA	ND	ND	ND	ND N	ND N	D ND	ND			ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND .	ND N	ID ND	ND	ND N	ND ND	ND	ND ND	ND	ND ND	ND
MW – 36 12.44 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND .	ND N	ID ND	ND	ND 1	ND ND) ND	ND ND	ND	ND ND	ND
MW – 37 12.87 ND	ND ND	ND	ND ND*	ND*	ND*	ND*	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND*	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND 1	ND ND	ND	ND ND*	ND	ND ND	ND
MW – 38 7.96 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND 1	ND ND	ND	ND ND	ND	ND ND	ND
MW – 39 8.81 ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND 7	ND ND	ND	ND ND	ND	ND ND	ND
MW – 40 NA NA	NA NA		ND ND	_	ND	NA	NA	NA	ND	ND	_		ID N	D ND		ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	JD ND	ND	ND	ND N	ID ND	ND	ND	ND ND) ND	ND ND	ND	ND ND	ND
MW – 41 11.55 ND	ND ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND		ID N		ND		ND	ND	ND.	ND	ND	ND NI	D ND	1.2	1		- 1.5	1.2	1,5		1,2		1.2				+	(- 1.0 <u>-1.1</u>	113	+	11.5	ND	ND ND	
	ND ND		ND ND		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND			D ND		ND	ND ND	ND ND	ND ND	ND ND	ND	ND NI	D ND		ND	ND N		ND			ND		-	NID.		ID ND	+ -		ND ND		ND* ND*	ND		ND
			ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND F	ND N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND .	ND N	J ND	ND	ND N	ND ND	ND	ND* ND*	ND	ND ND	ND
MW - 45 12.20 ND	ND ND	ND		-	-	-	-	-	-	-	-	-	- -		-	-	-		-	-	-		· -	-	-			-			-		-	-		<u> </u>						-		-
MW - 46 12.79 ND	ND ND	ND		-	-	-	-	-	-	-	-	-	- -	- -	-	-	-	-	-	-	-			-	-	- -	- -	-		- -	-		-	-	-		- 1			-		-		-
MW - 47 12.34 ND	ND ND	ND		-	-	-	-	-	-	- 1	-	-	- -	- -	-	-	-	-	- 1	-	-	- -	· -	-	1 - 1	- -	- -	-	- -	- -	-	- -	-	-	-		 - 	, -	- -	-	- -	- 1	- -	1 -
MW-A NA NA	NA 0.05	0.04	0.05 4.45	-	-	-	-	-	-	-	-	-	- -		-	-	-	-	-	-	- 1		-	-	-			-			-		-	-	-			-		-		-		1 -
RW-1 NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	ND	ND	ND	ND N	JD N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NI	D ND	ND	ND	ND N	D ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ,	ND ND) ND	ND ND	ND	ND ND	ND
RW – 2 NA NA	NA NA		NA NA		4.55	NA	NA	NA	3.45	3.10	5.67		.78 5.2		5.19		2.11	2.00	2.16	2.12	2.92	02.15 1.7	74 3.28	2.44	3.81	2.90	95 4.56	3.25	4.93 4.		3.31	.49 2.42	5.03	2.19	1.41	.66 4.08	1.64	1.47	1.27 4 73	5.12	1.63 5.54	0.06	0.08 1.65	0.08
RW-3 NA NA	NA NA		NA NA		2.51	NA NA	NA NA	NA NA	2.45		0.01			34 2.30	,		2.70	2.79	2.60	2.12	4.61	05.02	15 2.05	2.50	1.00	2.25		2.05	3.82 3.		3.24	62 4.20	4.02	4.00	2.50	25 2.06	1.61	2.11	2.26 4.71	2.22	2.63 2.77	2.08	2.03 2.52	2.12
					-	_		+						_		_		+			4.61			-	_			_																
101 4 101 101	NA NA				1.53	NA	NA	NA	3.23	4.40				97 3.13					0.86				54 4.35				94 3.35		3.55 2.			.02 4.15		4.21						##		2.96		
RW – 5 NA NA	NA NA		NA NA				NA	NA					.40 5.1				5.81				1.15				_				2.91 4.										## ##				0.33 0.65	
RW – 6 NA NA	NA NA	NA	NA NA	0.40	ND*	NA	NA	NA	0.7	1.30		1.20 1	.15 0.3	35 1.05	1.10	_	0.90	1.12	0.53	0.21	1.14	1.33 0.5	58 2.49	##	##	2.82 1.	85 2.17	0.44	1.21 0.9	98 1.05	1.67	.51 1.61	2.19	1.49	0.7 0.	1.57	0.28	0.55 0	02.33	5 0.91	00.73 1.91	0.83	0.88 0.96	
RW – 8 *** NA NA	NA NA	NA	NA 0.36	0.88	1.52	NA	NA	NA	3.77	3.80	4.06	4.06 3	.55 2.3	35 —	_					_	<u></u>		<u> </u>	_	<u> </u>					- -	<u> </u>		<u> </u>				<u> </u>	<u>. – l</u> 7			- -	0.02	0.02 0.03	0.03
RW-9 NA NA	NA NA	NA	NA 3.55	3.92	4.46	NA	NA	NA	4.07	6.65	4.02	3.70 6	.55 2.5	50 3.70	5.97	4.46	2.54	2.70	0.78	4.12	2.95	3.65 3.4	4.39	5.42	6.45	4.64 4.	30 4.90	4.65	4.22 5.	01 5.36	4.08	.65 4.37	5.59	4.23	2.99 3.	.55 4.57	2.32	1.73 2.	2.23 3.79	1.53	3.45 4.52	0.11	2.38 2.28	1.51
RW – 10 NA NA	NA NA	NA	NA NA	NA	2.13	NA	NA	NA	3	4.2			.02 3.0	00 3.30	3.61	1.65	2.95		0.70	2.90	3.30	4.71 3.1		_	+ +		59 4.31				4.58	.64 4.41	4.37	3.99	0.76 3.	.04 3.92			3.24 4.53	3 3.80	4.06 2.46	1.52	1.60 3.70	0.66
RW – 11 NA NA	NA NA		NA 2.92	_	3,76	NA	NA	NA	4.1	4.9				35 2.85		_	_	_	1.11		2.67		00 4.20						4.31 5.			.58 4.54					3.32		2.35 4.74				2.52 4.34	
RW-12*** NA NA	NA NA		NA NA			NA NA	NA	NA		4.7				50 —	-		-			-						- J		-						_									0.02 2.61	
						_		+									-				NC NC			NG.	+ +					_														
	NG NG	_	NG NG		NG	NG	NG	NG	NG	NG	NG		NG N				_	NG	NG	NG		NG NO			NG		G NG	_		_	+			NG		NG NG		 	NG NG		NG NG		NG NG	
MW - 9 NG NG	NG NG		NG NG		NG	NG	NG	NG	NG	NG	NG		NG N		_	_	_	NG	NG	NG		NG NO	G NG	NG	NG		G NG	_	NG N	_		NG NG				IG NG			NG NG		NG NG		NG NG	
MW - 10 NG NG	NG NG	NG	NG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	NG N	IG NG	NG	NG	ND	NG	NG	NG	NG	NG NO	G NG	NG	NG	NG N	G NG	NG	NG N	G NG				NG	NG N	NG NG	NG		NG NG	ND	NG NG	NG	NG NG	
MW - 17 NG NG	NG NG	NG	NG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	NG N	IG NG	NG	NG	ND	NG	NG	NG	NG	NG NO	G NG	NG	NG	NG N	G NG	NG	NG N	G NG	NG	NG NG	NG			NG NG		NG N	NG NG	ND	NG NG		NG NG	
MW - 18 NG NG	NG NG	NG	NG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	NG N	IG	NG	NG	_	NG	NG	NG	NG	NG NO	G NG	NG	NG	NG N	G NG	NG	NG N	G NG	NG	NG NG	NG	NG	NG N	NG NG	NG	NG N	NG NG	ND	NG NG	NG	NG NG	
RW - 7 NG NG	NG NG	NG	NG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	NG N	IG NG	NG	NG	T -	NG	NG	NG	NG	NG NO	G NG	NG	NG	NG N	G NG	NG	NG N	G NG	NG	NG NG	NG	NG	NG N	NG NG	NG	NG '	NG NG	, — —	NG NG	NG	NG NG	NG
				_				-											-									•								-			$\overline{}$				$\overline{}$	

Data recorded using an oil/water interface probe, measurements from the tops of well casings

= NAPL observed, apparent thickness not determined

NA= No Access NG = Not Gauged

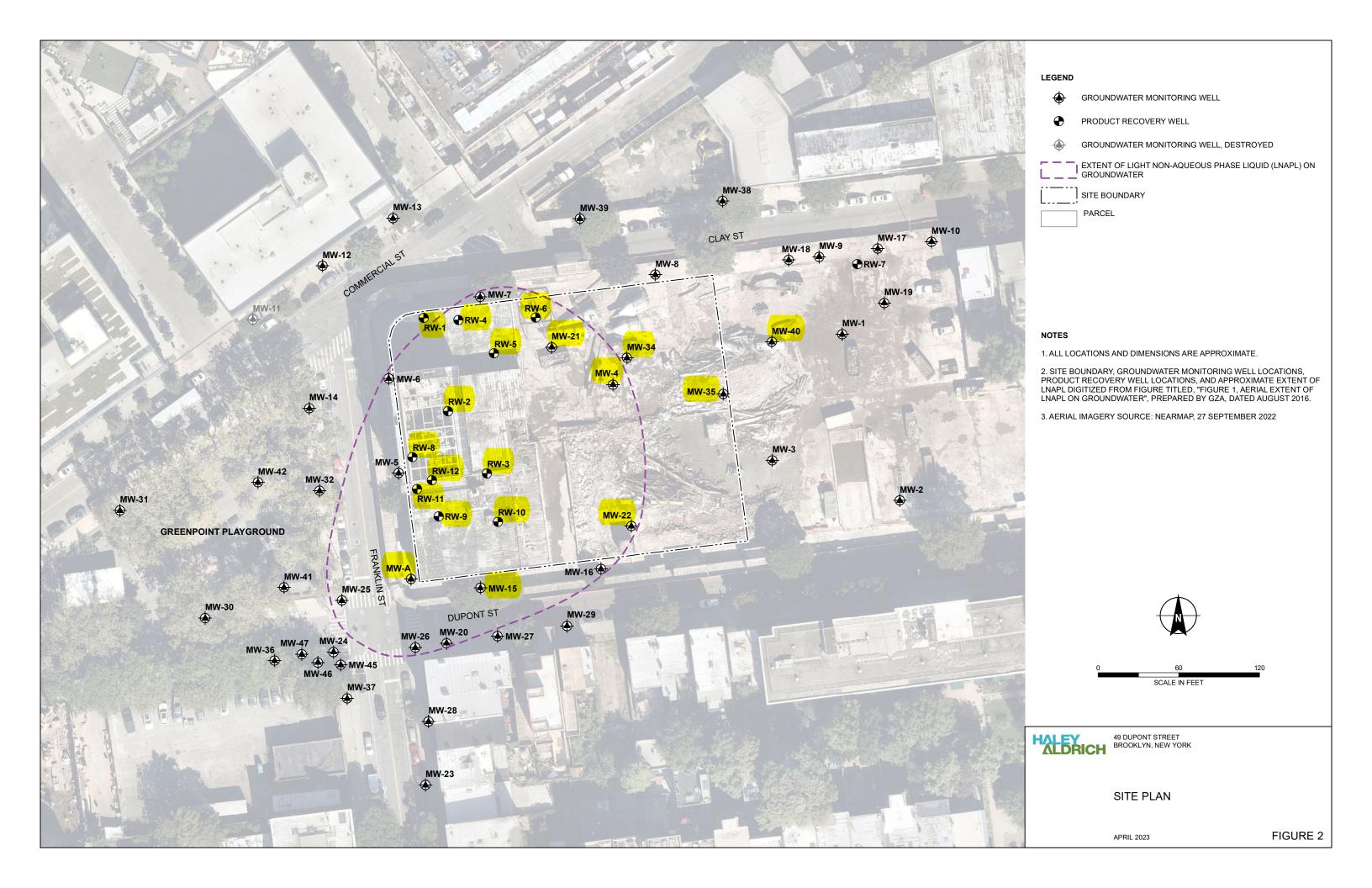
Wells MW-1, MW-2, MW-9, MW-10, MW-17, MW-18, MW-19, and RW-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation est= Estimated Value ** = Water not detected; well filled with sediment, value is the total depth of the well

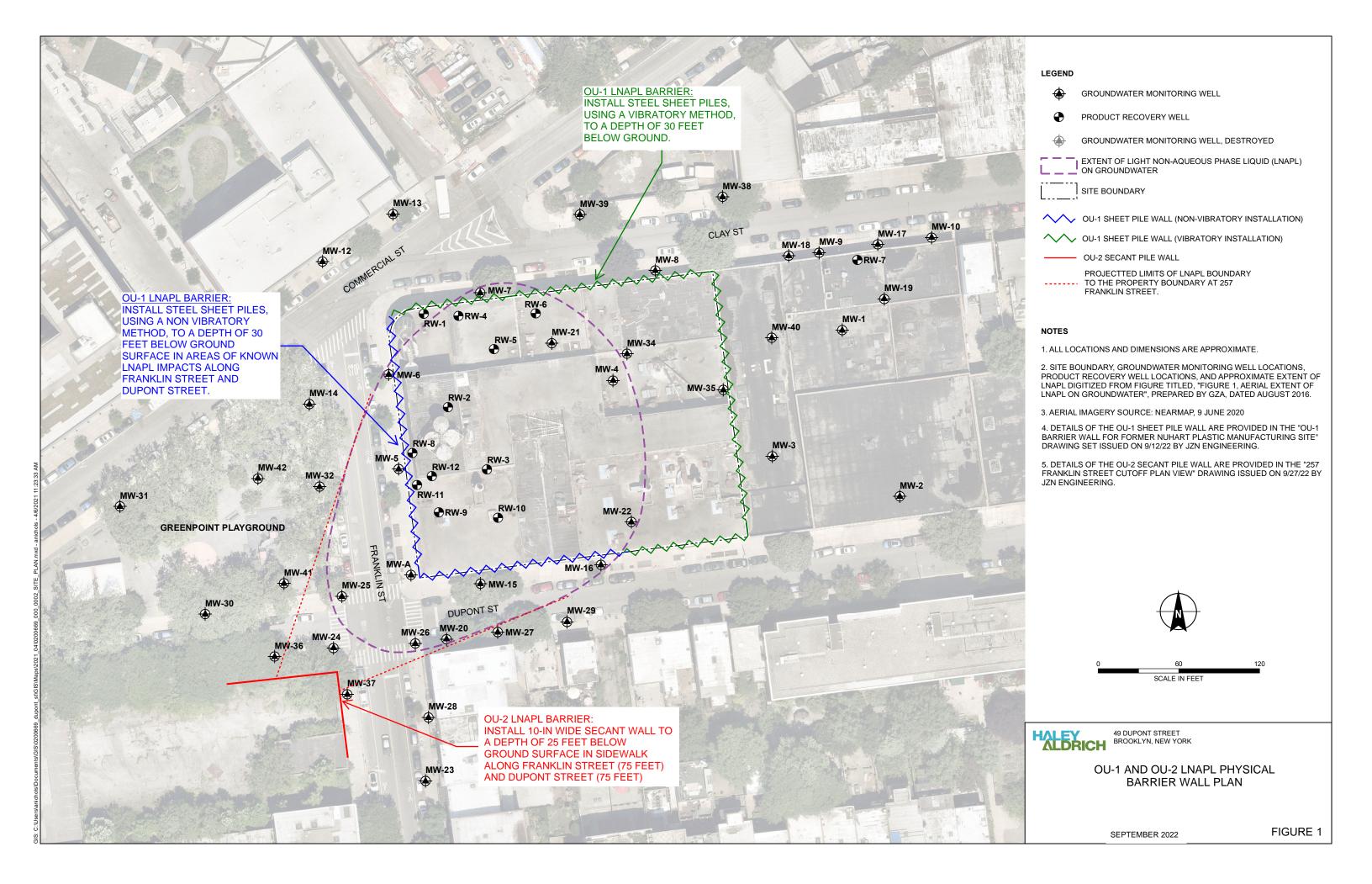
Wells MW-45, MW-46, and MW-47 installed on 13 March 2023

* = Well was dry Wells were gauged on 31 May 2023

***MW-24 absorbent sock installed

Attachment A: Apparent Thickness of LNAPL Former NuHart Plastic Manufacturing Site, NYSDEC #224136 280 Franklin Street


Brooklyn, NY


		tenth to																																																	
Well Number	Depth to Water (feet)	Product			2	2017				2017	,							2016										2015								2014							2013	3						2012	
	water (feet)	(feet) Feb-1	8 Jan-18	Nov-17 Oc	-17 Sep-17	Aug-17	Jul-17 Ju	ın-17 May	ny-17 Apr	r-17 Mar-	17 Feb-17	17 Jan-17	7 Dec-16	Nov-16	Oct-16	Sep-16	Aug-16	Jul-16 J	un-16 Ma	ay-16 Ap	or-16 Mar-	16 Feb-	16 Jan-	16 Dec-1:	5 Nov-1	5 Oct-15	Sep-15	Aug-15	Jul-15 J	ın-15 May-1	15 Apr-15	Mar-15 Ja	n-15 Sep-	-14 Aug-14	Jul-14 Ju	ın-14 May-1	4 Apr-14	Mar-14 Feb-	14 Jan-1	4 Dec-13	3 Nov-13	Oct-13	Sep-13	Aug-13	Jul-13 Ap	r-13 Mar-	-13 Feb-13	Jan-13	Dec-12 N	Nov-12 Oct-	t-12 Sep-12
MW – 4	ND*	ND* ND*	0.92	2.12	81 1.76	1.73	1.23 1	1.77 NI	ID* 1.3	.32 1.61	1.13	3 1.31	1.30	1.00	1.18	1.35	1.71	1.73	1.80 1	1.53	1.73 1.43	3 1.83	5 1.77	7 1.96	2.04	1.99	1.77	2.22	4.27	0.35 0.44	_	0.56	- 1.73	75 1.90	1.24 T	race —	0.01	Trace 0.2	3 0.22	0.30	0.66	0.78	##	3.49	2.22 0.	.59 0.6	67 0.44	0.44	0.80	0.31 0.7	33 3.13
MW – 5	13.84	11.04 2.21	4.65	5.83 2	19 4.44	4.4	3.71 3	3.54 2.5	.81 2.8	80 3.13	3 4.05	3.00	3.55	4.43	3.64	3.22	4.31	4.03	4.29 3	3.07	3.18 3.14	4 1.83	5 3.24	4 4.83	5.41	4.16	4.26	4.45	4.22	2.30 2.41	2.55	3.10	4.40 4.79	9 5.03	1.97	3.39 —	3.14	2.80 2.90	8 –	6.46	7.17	5.54	##	5.08	3.92 3.	.00 2.3	39 4.32	3.00	4.11	3.50 3.4	41 5.58
MW - 6	7.96	ND ##	##	## 1	22 3.19	3.15	##	## #	## #:	## ##	##	##	##	##	##	##	##	##	##	##	## ##	##	##	##	##	##	##	##	##	2.30 ##	##	##	## ##	# ##	##	## —	_	2.84 3.4	3 —	2.89	2.76	2.00	##	2.42	2.82 -			_	_	— 3./	49 2.14
MW - 7	ND***	12.50 2.55	3.32	4.91 1	48 1.45	1.41	0.9	0.00 1.3	.50 1.9	92 2.53	3.71	1.28	0.78	1.73	0.91	0.04	1.89	1.58	2.22 2	2.11	.90 1.66	6 2.3	1 2.47	7 3.44	3.31	2.58	1.46	1.28	0.99	1.58 ND	1.94	1.79	## 2.0	2.16	0.60	0.01 —	0.17	0.17	_	4.78	4.70	4.00	##	2.77	1.06 1.	.92 4.9	2 5.45	1.30	1.36	2.00 1.84	84 1.83
MW – 8	8.90	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	- ND	D ND	ND	ND —	ND	ND —	_	ND	ND	ND	ND	ND	ND N	ND NI	D ND	ND	ND	ND N'	D ND
MW – 12	7.95	ND ND	ND	ND I	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND —	_	_	ND	ND	+ -	+-	 	_	ND ND	ND	ND	- ND) –	ND	ND —	ND	ND —	_	ND	ND	ND	ND	ND	ND N	ND NI	D ND	ND	ND	ND NE	D ND
MW – 13	8.00	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) –	<u> </u>	ND	ND	+-	+-	 	_	ND ND	ND	ND	- ND) –	ND	ND —	ND	ND —	_	ND	ND	ND	ND	ND	ND N	ND NI	D ND	ND	ND	ND NE	D ND
MW – 14	10.37	ND ND	ND	ND I	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	D ND	ND	ND —	ND	ND —	_	ND	ND	ND	ND	ND	ND N	ND NI	D ND	ND	ND	ND NE	D ND
MW – 15	NA	NA 0.08	3,16	1.78	31 0.29	0.26	0.26	0.24 0.	.12 0.2	22 0.28	3 0.40	0.31	0.20	0.80	0.20	0.17	0.81	0.07	0.48).22 (0.71 0.03	3 0.0	4 0.60	0 3.08	3.07	1.97	1.05	1.05	ND	1.24 1.21	1.56	1.67	1.71 2.19	9 2.32	## (0.45 —	0.61	0.30 0.3	8 –	3.11	3.19	3.34	##	2.14	0.70	- 0.3	32 1.07	_	1.56	0.99 0.7	76 2.67
MW – 16	16.30	12.40 0.1	0.34	0.25	35 0.37	0.35	0.08	0.28 0.0	.03 0.1	10 0.23	3 0.20	0.31	ND	ND	ND	ND	ND	0.01	0.25).02	0.01 0.02	2 0.10	6 0.02	2 0.11	0.02	0.12	0.05	0.05	0.14	0.13 0.15	0.03	0.08	0.02 —	- 0.03	0.99 T	race —	0.01	0.01 0.10	0 –	0.23	0.22	0.19	##	0.05	0.07 0.	.02 0.0	0.10	0.25	0.20	ND 0.7	24 0.20
MW – 20	12.90	12.20 1.02	3,15	3.99 2	52 2.58	2.63	2.9 2	2.83 2.0	.61 2.9	94 2.33	3 3.02	2 3.02	2.88	3.28	2.90	3.16	2.89	2.88	2.85 2	2.22 2	2.49 2.43	3 1.9	9 2.40	6 3,52	3.02	3,33	3.25	3.12	2.88	2.58 2.79	3.84	4.38	5.13 1.8	37 1.71	2.92	2.06 —	1.47	2.90 2.50	8 4.19	5.07	4.90	4.11	##	3,33	1.37 3.	.32 1.2	20 1.10	1.35	1.38	3.39 3./	15 3.80
MW – 21	NA	NA 2.29	3.83	4.79	26 3.35	2.13	1.45 2	2.75 3.1	.31 3.3	30 3.04	3.62	7.59	3.27	3.32	1.25	2.39	3.61	2.96	2.95 2	2.63	1.18 2.68	8 2.4	2 2.97	7 4.46	3.85	4.51	3.63	3.32	2.97	2.53 2.77	2.98	3.46	3.23 3.60	2 4.64	4.90	1.99 —	2.69	2.47 2.4	8 3.37	3.13	3.72	4.66	##	4.37	3.66 3.	.38 3.4	3.75	4.10	4.23	2.89 2.6	04 4.15
MW – 22	NA	NA 0.28	0.37	1.77	25 1.24	1.21	0.75	0.66 0.0	.66 0.3	78 0.64	1 0.65	0.50	0.51	0.38	0.30	0.01	0.51	0.87	0.62).45 (0.48 0.44	4 0.1	5 0.22	2 1.33	1.01	0.49	1.17	1.04	0.79	0.86 0.84	0.74	1.33	1.27 1.0	3 1.02	0.54	0.85	0.74	0.86 0.7	5 1.22	1.07	0.69	0.50	##	1.12	0.86 0.	.50 0.6	32 1.15	1.20	0.18	0.21 0./	18 1.80
MW – 23	12.84	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	D ND	ND	ND —	ND	ND NE) ND	ND	ND	ND	ND	ND	ND N	ND NI	D ND	ND	ND	ND NE	D ND
MW – 24	ND***	ND*** ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND	ND —	ND	ND —		ND	ND	ND	ND	ND	ND N	JD NI	D ND	ND	ND	ND N	D ND
MW – 25	13.30	12.00 3.44	3 66	4 54 4	03 4.05	4.02	3 73 4	4.09 3.1	85 33	70 3.74	1 3.47	7 3.89	3.62	3.60	4.20	3.79	3.65	4.01	3.75 3	3.55	333 342	2 33	2 34	3 3.68	3.53	3.63	3.53	3.68	3 53	2.81 3.24	3 36	1.07	1.03 3.16	6 402	3.65	3 48 —	3.91	3.75		5.66	5 56	4.01	##	4 41	3 58 3	96 39	06 434	3.70	2.82	7.86 4.40	40 3.96
MW – 26		11.95 3.19	3.95	5,59	81 3.82	3.79	3,65	3.42	.29 3.1	73 3.64	3.24	3.14	3.20	3,56	4.00	3.28	4.26	3.58	3.82	3.41	3.37 2.97	7 3.8	2 3.41	1 4.23	4.08	3.77	4.00	3.70	3.65	3.18 3.33	3.64	4.14	4.11 3.84	3.70	4.50	3.02 —	2.71	3.48 3.8	0 4.34	4.44	4.47	4.62	##	4.18	3.69 2	.86 2.3	3 1.00	2,45	1.62	- 2/	61 4.02
MW – 27	12.15	ND ND	ND	ND I	D ND	ND	ND 1	ND N	ND N	ID ND	ND.	ND	ND.	ND	ND	ND.	ND	ND	ND 1	ND I	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	D ND	ND :	ND —	ND	ND —		ND	ND	ND	ND	ND	ND N	ND NI	D ND	ND	ND.	0.99 N	D ND
MW – 28	12.67	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND	ND —	ND	ND NE) ND	ND	ND	ND	ND	ND	ND N	JD NI	D ND	ND	NI	NI N	JI NI
MW – 29	12.08	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND	ND —	ND	ND NE) ND	ND	ND	ND	ND	ND	ND N	JD NI) ND	ND	NI	NI N	JI NI
MW – 30	11.62	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND	ND —	ND	ND —		ND	ND	ND	ND	ND	NI N	NI NI	I NI	NI	NI	NI N	II NI
MW – 31	10.96	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND		_	_			ND	ND 1	ND 1	ND ND) NE	ND	ND		ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND	ND —	ND	ND —		ND	ND	ND	ND	ND	NI N	NI NI	I NI	NI	NI	NI N	л NI
MW – 32		ND ND	ND.	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND .	ND —	ND	ND —	_	ND	ND	ND	ND	ND	NI N	NI NI	I NI	NI	NI	NI N	JI NI
MW – 34	11.00	NA ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND I	ND —	ND	ND NE) ND	ND	ND	ND	ND	ND	NI N	NI NI	I NI	NI	NI	NI N	л NI
MW – 35	NA NA	NA ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	ND .	ND —	ND	ND NE) ND	ND	ND	ND	ND	ND	NI N	NI NI	I NI	NI	NI	NI N	л NI
MW – 36		ND ND	ND.	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND	ND	ND	ND	ND	ND.	ND	ND ND	ND	ND	ND ND) ND	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI NI	JI NI
MW – 37	12	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND) ND	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI N	JI NI
MW – 38	7.96	ND ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND		_	_			ND	ND 1	ND 1	ND ND) NE	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	_ ND) NI	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI N	л NI
MW – 39	8.81	ND ND	ND.	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND	ND	ND	ND	ND	ND.	ND	ND ND	ND	ND	ND ND) NI	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI N	JI NI
MW – 40	NA	NA ND	ND	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND) ND		ND	ND	ND	ND	ND ND	ND	ND	ND ND) NI	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI N	JI NI
MW – 41	11.55	ND ND	ND.	ND 1	D ND	ND	ND 1	ND N	VD N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND NI	I NI	NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI N	JI NI
MW – 42		ND ND	ND	ND 1	D ND	ND	ND 1	ND N	ND N	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND ND) NE) ND) ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND NI	I NI	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI N	NI NI	I NI	NI	NI	NI N	JI NI
MW - 45	12.20	ND -		-								 		-	-			-	-	-					 		+		-			-			 					 		 	- ``						-		_
MW - 46	12.79	ND -	+-	+ - +	. .	+ - +	_	. .	_	. .		+ -	+ -	_	_		-	-	_	_	. .	+ -	+ -	+-	+ -	+ -	+-	+ - 1	_	. .	+ -	+ - +	+ - +	. .	+ -	_ + _	+ -	+-	+ -	+-			_	. 		+ - +	_	- + -	
MW - 47	12.79	ND -	-	+ - +	. _	+ - +	-	. .	_ .	- 		 	+ -	_	_			-		_	- 	+-	+ -	+-	+ -	+-	+-	+ - +	_		+	+ - +	- 		+ - +	- 	+ -	- 	+	-	+ -	+	-		_	- 	_		_	- + -	
MW-A	NA	NA -		+ +	_	+ +		_		_			+					-	_			+	+	-	+	+	+	+ +	-	_	+	+ +	-	-	+ +		_		+	-	-	+	+ +	+			-			$\overline{}$	$\overline{}$
RW – 1		NA ND	ND	ND 1	D ND	ND	NID 2	NID N	JD N	ID NID	ND	ND	ND	ND	ND	ND	ND	ND	ND 2	NID 1	ND ND) NE	NID.	ND.	+	ND	ND	ND	ND	ND ND	ND	ND	NID NID) ND	ND	NID.	ND	ND NE) ND	ND	ND	ND	ND	ND	ND	NIT) ND	ND	ND	ND ND	D ND
RW – 1		NA 5.52	4.01	5 10	56 0.58	0.53	6.00	6.25	1/2 11	13 2 90	3.00	3 53	1.65	1 18	1.26	1.35	1 88	2.05	2.41 3	3.02	112 3 3/	4 2.7	0 283	3 4.28		2.64	2.07	3.41	5.54	5 28 5 44	2.82	A 10	152 45	2 453	A 52 (111 -	1 30	3.05 2.3	1 2.80	3 10	5.00	3.86	##	4.07	206 2	02 3.4	18 3.75	4.20	2.52	1.92	50 5.85
RW – 3			4.01	3.19	17 2.15	2.22	2.28	2.44 2.9	95 27	71 2.46	3.09	2 2 10	1.00	2.05	2.40	2.50	2.09	1.07	2.40	1.64	2.12 3.34	0 16	1 2.0.	7 4.20	2.02	4.14	1.20	2.14	J.J4 4 21	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 91	2.29	2.41 2.50	0 2.45	2.56	1.12	1.50	2.90 2.2	2.00	3.19 (ct) 2.60	2 22	1.69	##	2.06	1.44 2	00 2.2	00 2.73	2.70	2.52	2.84 3.50	50 3.83
RW – 4					_	4.18		_		.65 3.69											2.22 2.93									3.66 3.53	_	1.43			## 2						2.30				1.08 3.						45 3.35
																																	0.01	0 2.00	0.17	2.80 —	0.12	0.93 0.4												3.00 1.80	
RW - 5				1.64																																														0.90 0.22	
RW - 6			1.99				1.2 2				2 0.90	0.90	0.85	0.68	0.87	0.92	1.46).6/ (0.74	4 0.70	0.74	4 0.77	0.65	0.00	0.65	0.61	0.78		_				## 2			1.28 0.9 1.47 0.8		2.46			##		0.08 0.	.45 0.5	0.21	0.40	0.15	0.90 0.2	2 0.06
RW - 8 ***				5.58 3							2.66	- 247	2.00	2.57	2.45	2.25	2.10			75		1 24	2 24		4.27	2.52	2.60	202	2.04									2.90 2.7							2.37 4.	40 26	2 211	3.50	2.00		
RW – 9										79 4.27		_												_	_					3.80 3.95		4.96			3.57					3.25			_			.40 2.6	5.11	3.30	3.08	3.83 2.98	8 5.33
RW – 10													3.86		3.80		4.44				3.66 3.67					4.45												3.89 3.4 2.54 2.5							3.55 -	15 0 0	7 211	2.50	2.02	140	50 4.40
RW - 11																						_				_																_	##					3.50		4.49 2.58	
RW- 12 ***				5.96 3 NG 1		2.68 NG													NG 1		_ NG NG																					-									
MW - 1			_		_			_	_				NG		_							_	_	_	_	_					_	NG			NG		_		_	NG	_						G NG	+			IG NG
MW - 9		NG NG				NG NG				IG NG			NG NG	NG		NG NG	NG NG				NG NG		_							NG NG			NG NG	_	NG NG	NG NG		NG NO					NG			NG NO		NG			IG NG
MW - 10				NG I					NG N						NG				NG I		NG NG		G NG							NG NG					NG NG			NG NO					NG								IG NG
MW - 17																						_		_	_							NG					_				NG				NG N		_			NG NG	
MW - 18		NG NG		NG 1		NG				IG NG			NG	NG		NG					NG NG									NG NG		NG				NG NG		NG NO	_				NG			NG NO		NG			IG NG
RW - 7	NG	NG NG	NG	NG 1	G NG	NG	NG 1	NG N	NG N	NG NG	NG	NG	NG	NG	NG	NG	NG	NG	NG 1	NG	NG NG	J NO	y NG	nG NG	NG	NG	NG	NG	NG	NG NG	NG	NG	NG NC	J NG	NG	NG NG	NG	NG NO	G NG	NG	NG	NG	NG	NG	NG N	NG NO	G NG	NG	NG	NG NC	IG NG

Data recorded using an oil/water interface probe, measurements from the tops of well casings

= NAPL observed, apparent thickness not determined NI = Not Installed ND = Not Detected NA= No Access NG = Not Gauged Wells MW-1, MW-2, MW-9, MW-10, MW-17, MW-18, MW-19, and RW-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation

est= Estimated Value ** = Water not detected; well filled with sediment, value is the total depth of the well * = Well was dry Wells MW-45, MW-46, and MW-47 installed on 13 March 2023 Wells were gauged on 31 May 2023 ***MW-24 absorbent sock installed

