

Monthly Progress Report 2023 No. 4

Former NuHart West Site
10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY
NYSDEC Site No. 224136
Reporting Period: April 1, 2023 – May 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from April 1 through May 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lots 1, 10, 12, 72, and 78 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. Investigation or Remedial Actions Relative to the Site during this Reporting Period

• Installation of the on-site (OU-1) LNAPL barrier walls began on 23 January 2023 and is projected to be completed early in the coming reporting period.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 24 April 2023. Gauging results are included in the attached table. On-site wells are inaccessible due

1

to construction activities. The wells that could not be accessed are identified in the attached figure.

Due to LNAPL identified in MW-24 in previous reporting periods, an absorbent sock (New Pig) remains installed in MW-24 and is inspected on a weekly basis and replaced periodically, as needed.

4. Actions Relative to the Site Anticipated for the Next Reporting Period

• Complete installation of the OU-1 LNAPL barrier walls.

5. Approved Activity Modifications (changes of work scope and/or schedule)

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

Sampling was not conducted during this reporting period.

7. <u>Deliverables Submitted During This Reporting Period</u>

The final 100% Remedial Design Report was submitted to NYSDEC on 18 April 2023. A Request to Import was submitted to NYSDEC on 5 April 2023 to import 1,500 cubic yards of RCA from Clean Earth of Carteret. NYSDEC rejected the request to import on 6 April 2023, a revised request will be submitted in the next reporting period.

8. <u>Information Regarding Percentage of Completion</u>

Installation of the OU-1 LNAPL barrier wall is approximately 90% complete.

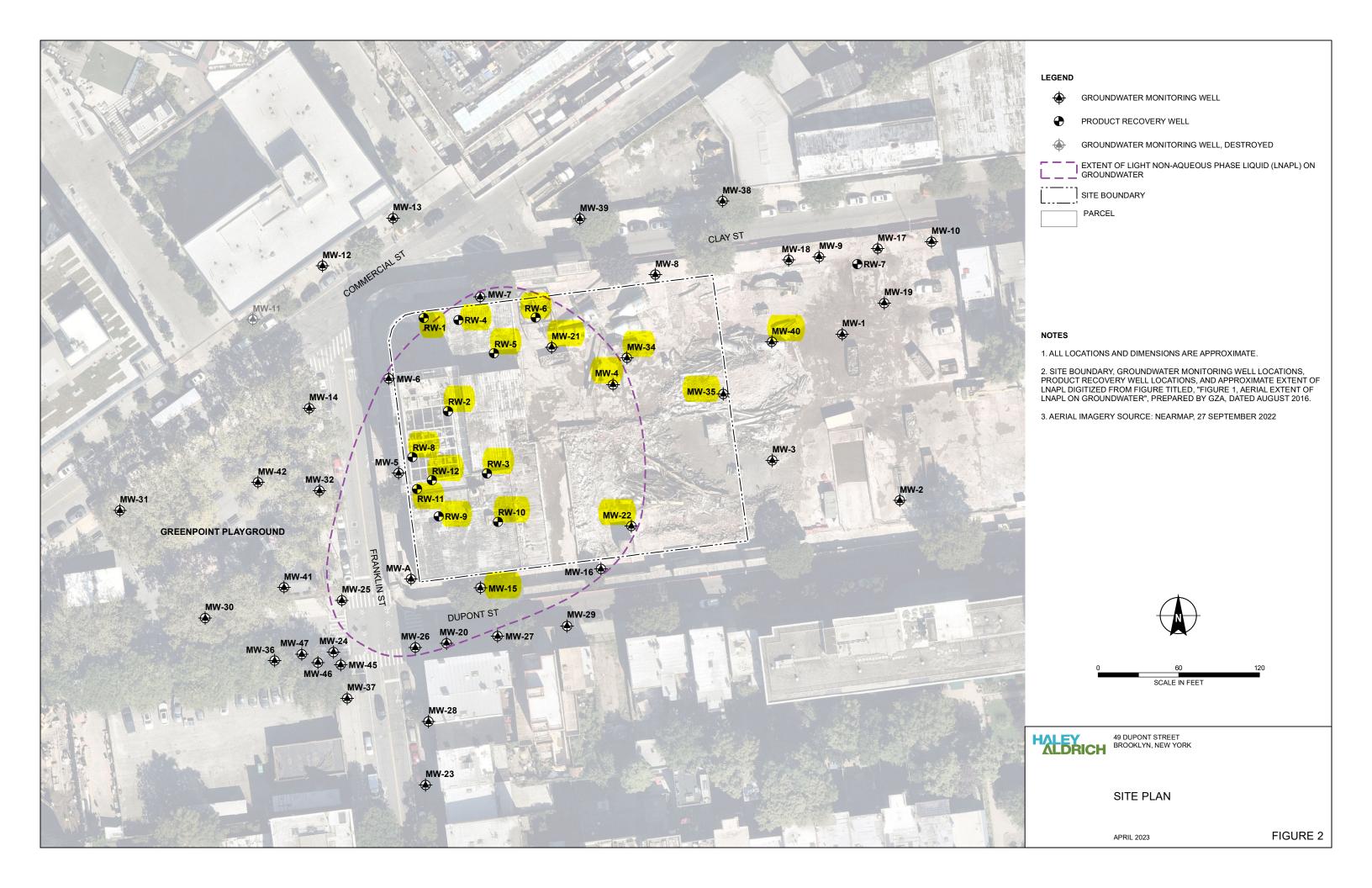
9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and</u> Mitigation Efforts

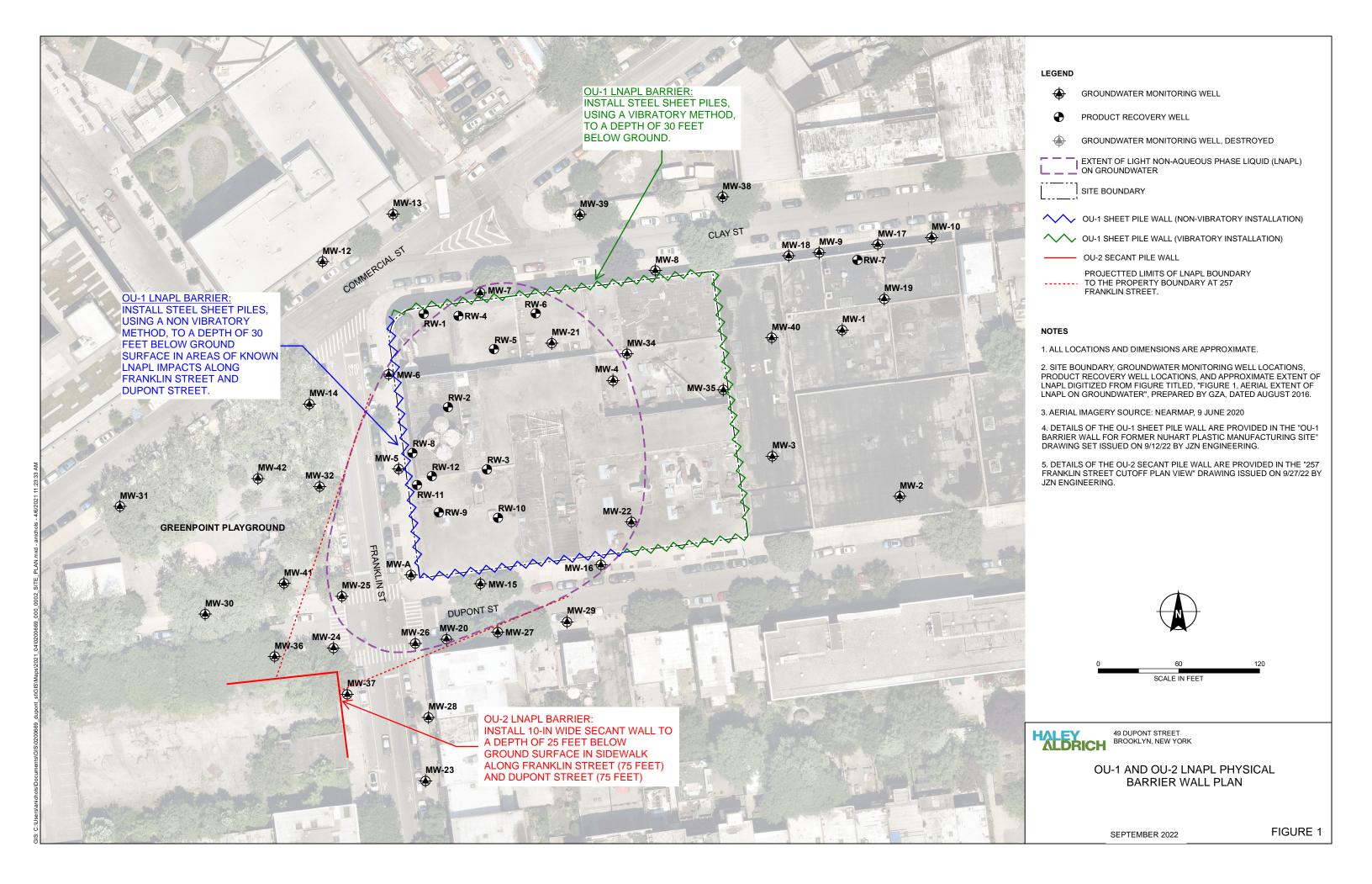
None.

10. Community Participation (CP) Plan Activities during This Reporting Period

A Community Board Meeting was held at the Dupont Street Senior Housing Center on 3 April 2023 to discuss next steps in the remediation of the Site.

11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:


None.


12. Miscellaneous Information

Haley & Aldrich of New York File No.: 0203497

None.

Attachment A: Apparent Thickness of LNAPL Former NuHart Plastic Manufacturing Site, NYSDEC #224136

280 Franklin Street Brooklyn, NY

Readings taken 4/24/2023 between 8:00 am and 1:00 pm (low tide @ 7:15am and high tide @ 1:51pm)

		Donth to													Apparent Tl	ickness of LN	NAPL (feet)													/															
Well Number	Depth to	Product		2023							2022										2021				••				2020								2019							2018	
	Water (feet	(feet)	23-Apr 23	-Mar Feb-23	Jan-23	Dec-22 Nov	-22 Nov-	22 Oct-22	Sept-22	Aug-22	Jul-22	Jun-22	May-22 An	r-22 Mar-22	Feb-22	Jan-22	Dec-21	Nov-21	Oct-21	Sep-21	Aug-21	Inl-21 Ju	un-21 May	v-21 Apr-2	1 Mar-21	Nov-20	Oct-20 Ju	ul-20 Jun-2	20 May-20	Apr-20 N	Mar-20 Feb-2	20 Ian-20	Dec-19	Nov-19 Oct-	9 Sep-19	Aug-19	Jul-19 Jun-1	9 May-19	Apr-19	Mar-19 Feb-1	19 Jan-19 D	ec-18 Oct-18	Jun-18	May-18 Apr-18	18 Mar-18 Feb-18
MW 4	ND*	ND*	ND* N	JD* ND*	ND*	ND* NE	* NA	NA	NA	ND*	ND*	ND*	ND* N	D* ND*	ND*	ND*	Bec-21	1107-21	ND*	ND*	ND*	ND* N	ND* NI	D* ND*	ND.	ND.	ND 3	ND ND	ND.	ND.	ND ND:	ND*	ND*	ND* ND:	ND*	ND.	ND* ND*	##	ND*	ND* ND	* ND*	ND* ND*	0.12	1 12 06	5 0.72 ND*
MW – 5	14.4	12.60	0.80	1.24 5.02	0.59	522 69	M NA	NA NA	NA NA	4.85	1 95	4.07	4.00	50 3.20	2.72	600	2 95	0.71	A 27	2.17	2.52	0.78	0.10	42 0.78	0.20	2.50	A76 1	2.04 5.42	2 71	4.18	4 46 4 21	3.44	1 17	161 565	5 19	1.20	2 72 5 15	2.80	2.46	2.26 3.2	262	2.83 4.12	1.66	1.13 0.03	7 2.10 2.21
	10.55	15.00	0.80	4.24 3.02	0.39	3.22 0.9	74 NA	NA NA	NA NA	4.63	4.63	2.26	4.00 4	.50 5.20	2.73	0.00	3.83	0.71	4.27	2.17	3.32	0.76	0.10 0.4	20 2.02	0.29	3.39	4.76	2.94 3.43	3.71	4.16	2.20 2.20	3.44	4.47	4.01 3.03	3.16	1.30	3.73 3.13	2.09	2.40	2.20 3.20	2.02 2	03 4.12	1.00	1.63 2.77	2.19 2.21
MW – 6	10.55	ND	ND .	ND ND	0.74	0.99 1.5	5 NA	NA	NA	2.63	3.20	3.36	3.01 3	.05 1.65	2.55	2.61	2.71	2.83	2.42	2.90	3.45	2.74	3.1/ 0.2	.28 3.03	3.18	3.00	2.78 2	2.48 0.99	3.00	2.20	2.29 2.39	2.98	0.85	## ##	##	##	## 0.50	2.35	##	## ##	##	## ND	0.55	0.50 2.47	0.74 ##
MW – 7	14.8	11.1	3.7	1.40 4.85	3.17	1.42 3.1	.7 NA	NA	NA	0.40	1.10	3.35	2.13 2	.82 1.00	1.00	2.07	1.59	0.67	0.88	0.37	0.42	0.46	2.26 0.5	54 1.76	1.28	1.15	1.56 2	2.10 3.89	2.81	3.85	3.53 1.59	0.99	1.67	1.59 1.63	1.96	0.84	0.45 1.30	0.14	0.35	0.26 1.54	1.14	0.54	1.89	1.99 1.80	2.03 2.55
MW – 8	9.09	ND	ND	ND ND	ND	ND NI	D NA	NA	NA	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	_ ND	ND P	ND ND	ND	ND ND	ND ND
MW – 12	8.70	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND '	ND ND	ND	ND ND	ND ND
MW – 13	8.80	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND '	ND ND	ND	ND ND	ND ND
MW – 14	11.93	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND :	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND 7	ND ND	ND	ND ND	ND ND
MW – 15	NA	NA	NA	0.26 0.53	1.27	1.76 2.3	B6 NA	NA	NA	0.85	1.30	0.85	1.30 3	.05 4.43	0.38	1.04	1.05	0.10	0.48	0.38	0.83	0.46	0.57 0.6	.61 2.44	4.46	0.29	1.30 1	1.00 3.13	2.36	2.75	3.29 2.66	0.83	0.85	1.08 1.99	0.18	0.03	0.11 0.87	0.08	0.08	1.08 1.00	0.84	0.12	0.04	0.04 0.07	0.07 0.08
MW – 16	16.35	13.65	2.70	0.11 2.71	3.47	0.47 0.1	15 NA	NA	NA	0.1	ND	0.02	0.40	.58 0.03	0.20	0.56	0.12	0.14	0.17	0.29	0.63	0.10	1.59 1.1	.17 1.80	0.04	0.35	0.85	0.85 0.41	0.22	0.84	0.36 ND	ND	ND	1.95 0.56	0.81	0.01	0.04 1.17	0.45	0.73	0.07 0.39	0.17	0.20	0.06	0.10 0.13	
MW-20	16.50	14.00	2.50	2.05 2.25	1.41	3.66 2.6	59 2.30	2.80	2.73	3.1	3.05	2.61	2.60 2	.61 2.02	3.22	2.29	1.78	2.78	2.36	3.03	3.05	2.95	3.08 2.0	.06 2.71	1.09	2.66	3.71 1	1.23 2.92	2.91	1.01	3.12 2.18	2.75	2.82	3.73 3.37	3.25	2.29	2.09 3.66	1.45	1.47	2.17 2.47	2.77	3.49 2.51	1.4	1.55 2.52	1.77 1.02
MW – 21	NA	NA	NA	NA NA	NA	NA NA	A NA	NA	NA	0.95	1.90	1.54	1.40 2	.09 2.68	0.75	0.86	1.60	1.15	2.45	0.05	0.35	1.39	1.33 1.0	.06 1.91	2.61	1.33	3.13 2	2.98 5.44	4.29	4.29	4.57 3.63	1.11	2.88	3.07 3.13	1.99	1.51	1.41 1.84	0.52	1.25	1.01 1.57	1.48	2.81 1.73	1.43	1.42 1.62	1.38 2.29
MW – 22	NA	NA	NA	NA NA	1.23	1.15 NI)* NA	NA	NA	0.78	1.20	5.13	1.30 1	.55 ND*	ND*	0.58	_	-	0.93	0.11	0.86	1.13	1.62 0.3	39 0.99	0.45	0.37	1.95	0.76 2.56	5 2.13	1.54	1.55 1.59	1.44	1.22	1.06 1.94	2.95	0.69	0.51 2.28	2.98	1.03	1.05 1.87	1.68	0.83 0.69	0.97	0.89 0.76	5 1.11 0.28
MW – 23	14.57	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND NC	ND	ND ND	ND	ND ND	ND ND
MW – 24	13.75	ND***	ND***	0.03	NA	NA N	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND NI	ND	ND ND	ND	ND ND	ND ND
MW – 25	17.40	13.80	3.60	1.02 3.72	3.23	3.06 2.8	3.83	4.71	4.51	4.5	4.55	5.87	4.20 4	44 3.87	3.29	3.78	3.52	4.49	3.78	3.81	3.90	3.08	4.37 3.6	63 3.81	3.24	3.28	4.35 4	4.23 3.68	0.98	3.79	6.72 4.57	4.89	4.66	4.93 4.31	3.18	3.38	3.83 4.61	3.76	3.81	4.19 4.7	3.86	3.89 3.44	2.85	2.89 4.07	3.45 3.44
MW – 26	18.01	17 40	0.61	1.00 4.93	0.61	4.09 4.0)1 3.76	4 84	3.78	3.4	3.50	4.02	3.40	39 3.02	1 90	4.45	3.24	3.44	2.89	7.14	3.58	3.07	4.01 3.0	02 3.32	3 32	2.97	3.56	3.79 3.78	3.71	3.47	4.13 4.14	4 11	4.65	4.02 4.63	5.21	3.43	3.19 4.90	0.69	2.46	2.94 3.3	3.14	3.84 3.45	0.75	2.35 3.1/	4 2.48 3.19
MW – 27	13.78	ND	ND .	ND ND	ND	ND NE)* NID	ND	ND	ND	ND	ND.	ND 2	ID ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND.	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND NF	ND	ND ND	ND	ND ND	ND ND
MW – 28	14.24	ND	ND	ND ND	ND	ND NI) ND	ND	ND	ND	ND	ND	ND I	ID ND	ND	ND	ND.	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND NE	ND I	ND ND	ND	ND ND	ND ND
	12.20	ND	ND .	ND ND	ND	ND NI) ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND I	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND I	ND ND	ND	ND ND	ND ND
MW – 29	13.20	ND	ND	ND ND	ND	ND NI) ND	ND	ND	ND	ND	ND	ND I	ID ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND N	ID ND	ND	ND	ND I	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND I	ND ND	ND	ND ND	ND ND
MW – 30	13.14	ND	ND .	ND ND	ND	ND NI) ND	ND	ND	ND	ND	ND	ND I	(D ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND N	ID ND	ND	ND	ND I	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND I	ND ND	ND	ND ND) ND ND
MW – 31	12.51	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND P	ND ND	ND	ND ND) ND ND
MW – 32	13.19	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND :	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ?	ND ND	ND	ND ND	ND ND
MW – 34	NA	NA	ND	NA NA	ND	NA N.	A NA	NA	NA	ND	ND	ND	ND 1	ID ND	ND	ND		-	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ?	ND ND	ND	ND ND	ND ND
MW – 35	NA	NA	ND	ND ND	ND	ND NI	D NA	NA	NA	ND	ND	ND	ND 1	ID ND	ND	ND	_	-	ND	ND	ND	ND :	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND 7	ND ND	ND	ND ND	ND ND
MW – 36	14.08	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND 7	ND ND	ND	ND ND	ND ND
MW – 37	14.51	ND	ND	ND ND	ND*	ND* NE)* ND:	· ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND*	* ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND 7	ND ND*	ND	ND ND	ND ND
MW - 38	8.95	ND	ND	ND ND	ND	ND NI	D ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ,	ND ND	ND	ND ND	ND ND
MW – 39	8.19	ND	ND	ND ND	ND	ND NI	O ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND	ND	ND	ND I	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND
MW-40	NA	NA	ND	NA ND	ND	ND NI	D NA	NA	NA	ND	ND	_	- 1	ID ND	ND	_	ND	ND	ND	ND	ND	ND	ND N	ID ND	ND	ND	ND I	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND
MW – 41	13.16	ND	ND	ND ND	ND	ND NI	O ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND :	ND N	ID ND	_	_	_		_	-	- -	_	_			_		_			_		ND	ND ND	ND ND
MW – 42	12.38	ND	ND	ND ND	ND	ND NI	O ND	ND	ND	ND	ND	ND	ND 1	ID ND	ND	ND	ND	ND	ND	ND	ND	ND :	ND N	ID ND	ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND 1	ND* ND*	ND	ND ND	ND ND
MW - 45	13.92	ND	ND	ND -	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-	-		-	-		-	-		-	-		-	-	- -	-		T - T		
MW - 46	14.70	ND	ND	ND -	-		_	-	-	-	-		-		-	-	- 1	-	-	-	-	-	- -	- -	-	-	-		-	-	- -	-	-		-	-		-	 - 	- + -	-		+-+		 - -
MW - 47	13.93	ND	ND	ND -	-		-	-	+ -	+ -	+ -	+ - +	-	- + -	+ -	-	 	-		-	-	- +	- -	-	+-	-		- -	+ -		- -	-	-	- + -		-	- + -	+ -	+-+	- + -	+-+		+-+	- + -	
MW-A	14 20	14.15	0.05	0.04	4 45		_	+ -	+ -	+ -	+ -	+ . +			+ -	<u> </u>	 			 		_ +	. 	_	+ -		 	_ _	+ -	 		_	-	_	+ .			+ -	+ + +		+		+ - +		+ + + + + + + + + + + + + + + + + + + +
RW – 1	NA	NA	NA NA	NA NA	NA.	NA N	Δ ΝΙΑ	NA.	NΑ	ND	ND	ND	ND ,	ID ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID ND	ND	ND	ND ,	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND NE	ND	ND ND	ND	ND ND	ND ND
RW – 1	NA NA	NA NA	NA NA	NA NA	NA NA	316 A	S NIA	NA NA	NA NA	2.45	2 10	5.67	3 39 5	.78 5.25	3.15	5 10	3.02	2.11	2.00	216	2.12	2 02 0	11D N	7/ 2.29	2.44	3 91	200 2	ND ND	2.25	A 93	4 78 4 50	2 21	110	2.42 5.03	2.10	1.41	0.66 4.00	1.64	1.47	1.27 4.7	5.12	1.63 5.54	0.06	0.08 1.6	5 0.08 5.52
	NA NA		NA NA	NA NA	NA NA	3.16 4.3 NA 2.5	INA	NA NA	NA NA	2.45	2.40	5.07			2.20	2.20	0.67	2.11	2.70	2.10	2.12	4.61	05.02	15 2.05	2.44	1.00	2.50	3.73	, 3.23	4.73	4.70	3.31	2.62	4.20 4.00	4.00	2.50	2.25	1.04	2.11	2.26	3.12	2.63	2.00	2.03	2 12 2 02
RW – 3			NA NA	NA NA	NA						_	5.35													_												3.25 3.90	1.01	2.11	2.26 4.71	2.22 2	2.03 3.77	2.08	2.03 2.52	0 3.01 02.39
RW – 4	NA					2.18 1.5		_			_	4.97																	_			_					3.07 4.72			2.85 ##		03.37 2.85	2.96		
RW – 5		NA																																											5 0.34 4.64
RW - 6	_	NA																									2.82									0.7									6 0.91 00.90
RW – 8 ***	_	NA				0.88 1.5										_															_ _														3 0.03 0.96
RW – 9	_	NA			3.55	3.92 4.4									_															4.22					_			_			9 1.53 3				
RW – 10		NA				NA 2.1						5.31								0.70											3.80 3.59		3.64		3.99		3.04 3.92			3.24 4.53		4.06 2.46			0 0.66 3.48
RW – 11	NA	NA	NA	NA NA	2.92	2.48 3.7	76 NA	NA	NA	4.1	4.9	3.48	4.01 5	.22 3.35	2.85	0.68	4.78	4.13	3.64	1.11	4.48	2.67	6.11 2.0	.00 4.20	1.43	3.25	4.24 3	3.45 3.89	4.32	4.31	5.77 5.13	3.80	5.58	4.54 6.30	4.85	4.12	3.78 4.65	3.32	1.92	2.35 4.74	2.69	3.02 2.21	2.51	2.52 4.34	4 2.41 2.50
RW- 12 ***	NA	NA	NA	NA NA	NA	5.42 6.1	10 NA	NA	NA	4.17	4.7	7.02	3.86 3	.30 3.50	_	_	_	_	_	_	_	-			_	_	_		_	_		_	_		_	_		_	-		_		0.11	0.02 2.61	1 0.02 1.12
MW - 1	NG	NG	NG	NG NG	NG	NG NO	G NG	NG	NG	NG	NG	NG	NG 1	NG NG	NG	NG	NG	_	NG	NG	NG	NG	NG N	IG NG	NG	NG	NG 1	NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG NG	. — 1	NG NG	NG	NG NG	G NG NG
MW - 9	NG	NG	NG	NG NG	NG	NG NO	G NG	NG	NG	NG	NG	NG	NG 1	NG NG	NG	NG	NG	ND	NG	NG	NG	NG	NG N	IG NG	NG	NG	NG 1	NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG NG	i — i	NG NG	NG	NG NG	G NG NG
MW - 10	NG	NG	NG	NG NG	NG	NG NO		NG	_			NG	NG 1		NG	NG	NG		NG			NG		IG NG		NG	NG 1			NG	NG NG				NG	NG		NG		NG NG		NG NG			G NG NG
MW - 17	NG	NG	NG			NG NO			_			NG								NG		NG								NG	NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG NC	ND	NG NG	NG	NG NG	G NG NG
MW - 18	_					NG NO			_							NG				NG											NG NG	NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG NC	ND	NG NG	NG	NG NG	G NG NG
RW - 7						NG NG														NG											NG NG						NG NG								G NG NG
KW-/	NO	140	110	NO NO	110	ING IN	J NO	NO	NO	NO	NO	110	110	NO NO	.10	110	110		110	110	110	.10	N	NO NO	NU	110	110	110	NO	110	NO NO	NO	110	NO	NO	110	110 110	NO	110	110 110	'	10 110	110	110 110	110 110

Data recorded using an oil/water interface probe, measurements from the tops of well casings

= NAPL observed, apparent thickness not determined
NI = Not Installed ND = Not Detected NA= No Access

NG = Not Gauged Wells MW-1, MW-2, MW-9, MW-10, MW-17, MW-18, MW-19, and RW-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation est= Estimated Value ** = Water not detected; well filled with sediment, value is the total depth of the well

* = Well was dry

Wells MW-45, MW-46, and MW-47 installed on 13 March 2023 Wells were gauged on 24 April 2023 ***MW-24 absorbent sock installed

Table 1:
Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136
280 Franklin Street
Brooklyn, NY

		. 1																																												
Well Number	Depth to Depth	to let			2017		1		2	2017							2016				1				2015				Т			201	4			1				2013				1	2012	
Well Number	Water (feet) (fee	Jan-18	Nov-17	Oct-17 Sen	-17 Aug-	.17 Jul-17	Jun-17	May-17	Apr-17 M	far-17 F	Feb-17 .1	Ian-17 D	c-16 Nov-	16 Oct-	16 Sep-16	Aug-16	Jul-16 Jun-1	6 May-16	Apr-16	Mar-16	Feb-16	Jan-16 Dec-	15 Nov-15	Oct-15 S	en-15 Aug-1	5 Jul-15 Ju	15 May-1	Apr-15 N	Mar-15	Jan-15 Sep-14	Aug-14	Jul-14 Jun-1	4 May-14	Apr-14	Mar-14 Feb-1	4 Ian-14	Dec-13	Nov-13	Oct-13 Sen-	13 Ang.13	Jul-13	Apr.13 N	Mar-13 Feb-13	Ian-13 Dec	c-12 Nov-12	2 Oct-12 Sep-12
MW – 4	ND* ND		2.12		76 1.7	17 Gul 17	Juli 17	ND*	1.32	1.61	1 13	131	30 10	0 11	8 135	1.71	173 180	1.53	1.73	1.43	1.85	177 19		1	1 77 2 22	4.27			0.56	_ 175	1 90	1.24 Trace	- May-14	•	Trace 0.23		200 10	1107 20	0.78 ##	3 49		p. 10	0.67 0.44	Juli 10 Bec	.80 0.31	
MW - 5	14.4 13.6	0.52	5.83	2 19 4	14 44	1 3.71	3 54	2.81	2.80	3 13	4.05	3.00	3.55 4.4	3 36	4 3.22	4 31	4.03 4.29	3.07	3.18	3.14	1.85	3.24 4.8	3 5.41	416	4.26 4.45	4.27	0 241	2.55	3.10	4.40 4.79	5.03	1.27 11000	_	3 14	2.80 2.98	0.22	6.46	7 17	5.54 ##	5.49	3.92	3.00	2 39 4 32		.11 3.50	3.41 5.58
MW – 6	10.55 ND	##	##	1 22 3	19 3.1	5 ##	##	##	##	##	##	##	## ##	3 3.0	# ##	##	## ##	##	##	##	##	## ##	##	##	## ##	## 2	0 ##	##	##	## ##	##	## ##	_		2.84 3.43	_	2.89	2.76	2.00 ##	2.42	2.82	_				3.49 2.14
MW – 7	14.8 11	3 32	4 01	1.48 1.	15 1.4	1 00	0.00	1.50	1 92	2.53	3.71	1 28	78 17	3 0.0	1 0.04	1 80	1.58 2.22	2 11	1.00	1.66	2.31	2.47 3.4	4 3 31	2.58	1.46 1.28	0.00 1	8 ND	1.94	1 70	## 2.01	2.16	0.60 0.01	_	0.17	0.17		178	4.70	4.00 ##	2.77	1.06	1.02	192 545	130 13	.36 2.00	1.84 1.83
MW – 8	9.00 ND	ND	ND.	ND N	7.5 1.4 D NI	ND	ND	ND.	ND.	ND.	ND.	ND.	ND NI) NI) ND	ND.	ND ND	ND.	ND.	ND.	ND.	ND NE	ND	ND.	ND ND	ND 2) ND	ND	ND.	## 2.01	ND.	ND ND		ND.	ND —	 	ND.	ND.	ND ND	ND	ND.	ND.	ND ND	ND N	(D ND	ND ND
MW – 12	8.70 NE	ND ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	-	-	NI) ND	- ND		_ ND 1) ND	ND	ND	ND	- 110	ND ND	+ -	ND	ND —	 	ND	ND	ND ND) ND	ND	ND	ND ND	ND N	ID ND	ND ND
MW – 13	8.80 NE	1.12	ND	ND N	D NI) ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND -		— NE) ND	+ - +	- -) ND	ND ND	ND	_ ND	+ -	ND ND	+ -	ND	ND —	+ -	ND.	ND	ND ND) ND	ND	ND	ND ND	110 11	ID ND	ND ND
MW – 13	11.02 NE	ND ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND -	ND NE) ND	ND ND	ND ND	ND 2) ND	ND	ND	ND ND	ND -	ND ND	+-	ND	ND —	+-	ND	ND	ND ND) ND	ND	ND	ND ND	ND N	D ND	ND ND
MW – 14	NA NA	2.16	1.70	0.21	20 0.2	0.26	0.24	0.12	0.22	0.20	0.40	0.21	120 0.0	0 02	0 0.17	0.91	0.07 0.49	0.22	0.71	0.02	0.04	0.60 2.0	0 2.07	1.07	1.05 1.05	ND 1	4 1.21	1.56	1.67	1.71 2.10	2.22	## 0.45	_	0.61	0.20 0.29	_	2.11	2.10	ND NE	2.14	0.70	ND	0.22 1.07	ND N	56 0.00	0.76 2.67
MW – 15	16.35 13.6	5.10	0.25	0.31 0.	29 0.2	5 0.00	0.24	0.12	0.22	0.28	0.40	0.31	0.0 U.0	0 0.2	0 0.17	0.61 ND	0.07 0.48	0.22	0.71	0.03	0.04	0.00 3.0	1 0.02	0.12	0.05	0.14	2 0.15	0.02	0.00	0.02	0.02	## 0.43	_	0.01	0.30 0.38	_	0.22	0.22	0.10 ##	2.14	0.70	0.02	0.32 1.07	- 1	0 0.99	0.76 2.87
MW – 10	16.50 14.0	0.34	0.23	0.55 0.	57 0.3	2 20	0.28	0.03	0.10	0.23	2.02	2.02	ND NI	9 20	0 216	2.90	0.01 0.23	0.02	0.01	0.02	1.00	0.02 0.1	2 2.02	0.12	0.03 0.03	0.14	0.13	0.03	4.20	5.12 1.07	0.03	0.99 11ace	_	0.01	0.01 0.10	4.10	0.23	4.00	0.19 ##	0.03	1.27	2.22	1.20 1.10	0.23 0.2	0 ND	0.24 0.20
MW – 20	10.50 14.0	3.13	3.99	2.32 2.	2.0	2 1.45	2.03	2.01	2.94	2.33	3.02	7.50	3.2	0 2.9	5.10	2.09	2.06 2.05	2.22	4.19	2.43	2.42	2.40 3.3	2 3.02	3.33	3.23 3.12	2.00 2	2.19	3.04	2.46	3.13 1.67	1./1	2.92 2.00	_	2.60	2.47 2.48	2.27	2.12	2.72	4.11 ##	3.33	2.66	2.20	2.42 2.75	1.55 1.5	3.39	3.13 3.60
	NA NA	3.83	4.79	3.20 3.	33 2.1	3 1.43	2.75	3.31	0.79	3.04	3.02	0.50	0.27 0.3	2 1.2	2.39	0.51	2.96 2.95	2.03	4.18	2.08	0.15	2.97 4.4	0 3.83	4.51	3.03 3.32	2.97	3 2.11	2.98	3.40	3.23 3.02	1.02	4.90 1.99		2.09	2.47 2.48	3.37	3.13	3.72	4.00 ##	4.37	3.00	3.38	3.43 3.75	4.10 4.2	.3 2.89	2.04 4.15
MW – 22	14 57 NE	0.37	1.//	1.25 1.	24 1.2	1 0.75	0.00	0.00	0.78	0.04	0.05	0.50	0.51 0.5	8 0.3	0.01	0.51	0.87 0.02	0.45	0.48	0.44	0.15	0.22 1.3	3 1.01	0.49	1.1/ 1.04	0.79	0 0.84	0.74	1.55	1.27 1.03	1.02	0.54 0.85		0.74 ND	0.80 0.75	1.22 ND	1.07	0.09	0.50 ##	1.12	0.80	0.50	0.02 1.15	1.20 0.1	8 0.21	0.18 1.80
MW – 23	14.57	TID	ND	ND N	D NI	O ND	ND ND	ND	ND ND	ND	ND	ND ND	ND NI	NI) ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND NL	ND	ND	ND ND	ND I	ND	ND	ND	ND ND	ND	ND ND	+-	ND	ND ND	ND	ND ND	ND	ND ND) ND	ND ND	ND ND	ND ND	ND N	J ND	ND ND
MW – 24	13.75 ND*	** ND	ND 4.54	ND N	D NI	ND ND	ND 4.00	ND 2.05	ND 2.70	ND 2.74	ND 2.47	ND 2.90	ND NI	NI 0 to	ND ND	ND 2.65	ND ND	ND 2.55	ND	ND 2.42	ND 2-22	ND NE	ND ND	ND 2.62	ND ND	ND I	ND ND	ND 2.26	ND	ND ND	ND 4.02	ND ND	_	ND 2.01	ND —	_	ND	ND E.S.C	ND ND	ND	ND 2.50	ND 2.00	ND ND	ND N	ND ND	
MW – 25	17.40 13.8	0 3.00	4.54	4.05 4.	33 4.0	3./3	4.09	3.83	3.70	3.74	3.47	3.89	3.6	4.2	0 3.79	3.65	4.01 3.75	3.33	3.33	3.42	3.52	3.43 3.6	0 5.53	3.03	3.33 3.68	3.55 2	5.24	3.30	1.07	1.03 3.16	4.02	3.03 3.48	_	3.91	3./3 —	- 121	5.66	3.36	4.01 ##	4.41	3.38	3.90	3.90 4.34	3.70 2.8	7.86	4.40 3.96
MW – 26	18.01 17.4	3.95	5.59 ND	3.81 3.	3.7	9 3.65	5.42 ND	5.29	5./5	3.04 ND	3.24 ND	5.14	3.5	0 4.0	3.28	4.26	3.58 3.82	3.41	3.37	2.97	5.82	3.41 4.2	3 4.08	5.//	4.00 3.70	5.65 3	8 3.33	5.64	4.14 ND	4.11 3.84	3.70	4.50 3.02	_	2./I	3.48 3.80	4.34	4.44	4.4/	4.62 ##	4.18	5.09 ND	2.80 ND	2.55 1.00	2.45 1.0	D 0.00	2.01 4.02
MW – 27 MW – 28	15./8 ND	ND	ND	ND N	ν NI	ND ND	ND	ND	ND	ND	ND	ND.	ND NI	NI	ND ND	ND	ND ND	ND	ND	ND	ND	ND NE	, ND	ND	ND ND	ND I	ND	ND	ND	ND ND	ND	ND ND	+-	ND	ND -	-	ND	ND	ND ND	ND	ND	ND	ND ND	ND N	ID 0.99	ND ND
	14.34 NL	ND	ND	ND N	D NI) ND	ND	ND ND	ND ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NE) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND	+ -	ND	ND ND	ND	ND	ND	ND ND) ND	ND	ND	ND ND	ND N	I NI	NI NI
MW – 29	13.20 NE	ND	ND	ND N	D NI	O ND	ND	ND	ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NE) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND	_	ND	ND ND	ND	ND	ND	ND ND) ND	ND	ND	ND ND	ND N	I NI	NI NI
MW – 30	13.14 NL	ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND .	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NL) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND	+-	ND	ND —	+-	ND	ND	ND NL) ND	NI	NI	NI NI	NI N	I NI	NI NI
MW – 31	12.51 NL	ND	ND	ND N	D NI	O ND	ND	ND	ND	ND	ND	ND		· -		-	ND ND	ND	ND	ND	ND	ND NL) –	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND	+-	ND	ND —	+-	ND	ND	ND NE) ND	NI	NI	NI NI	NI N	I NI	NI NI
MW – 32	13.19 NL	ND	ND	ND N	D NI	O ND	ND	ND	ND	ND	ND	ND	ND NI) NI	O ND	ND	ND ND	ND	ND	ND	ND	ND NL) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND	+-	ND	ND —		ND	ND	ND ND) ND	NI	NI	NI NI	NI N	I NI	NI NI
MW – 34	NA NA	ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND	ND NI) NI	O ND	ND	ND ND	ND	ND	ND	ND	ND NL) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND		ND	ND ND	ND	ND	ND	ND NL) ND	NI	NI	NI NI	NI N	1 NI	NI NI
MW – 35	NA NA		ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NI) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	ND ND	-	ND	ND ND	ND	ND	ND	ND ND) ND	NI	NI	NI NI	NI N	I NI	NI NI
MW – 36	14.08 NE	ND	ND	ND N	D NI	O ND	ND	ND	ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NE) ND	ND	ND ND	ND I	O ND	ND	ND	ND ND	ND	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	NI NI	NI	NI	NI NI	NI N	I NI	NI NI
MW – 37	14.51 ND	ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND .	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NI) ND	ND	ND ND	ND I) ND	ND	ND	ND ND	ND	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	l NI	NI	NI	NI NI	NI N	I NI	NI NI
MW – 38	8.95 NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND		<u> </u>	· -	 -	ND ND	ND	ND	ND	ND	ND NI) ND	ND	ND ND	ND I) ND	ND	ND	— ND	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	l NI	NI	NI	NI NI	NI N	I NI	NI NI
MW – 39	8.19 NE	ND	ND	ND N	D NI	O ND	ND	ND	ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NE) ND	ND	ND ND	ND I	O ND	ND	ND	ND ND	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	NI NI	NI	NI	NI NI	NI N	I NI	NI NI
MW – 40	NA NA	. ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NL) –	ND	ND ND	ND I) ND	ND	ND	ND ND	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	l NI	NI	NI	NI NI	NI N	I NI	NI NI
MW – 41	13.16 NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND	ND NI) NI	O ND	ND	ND ND	ND	ND	ND	ND	ND NL) ND	ND	ND ND	ND I) ND	ND	ND	ND NI	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	I NI	NI	NI	NI NI	NI N	I NI	NI NI
MW – 42	12.38 NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND	ND	ND .	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND	ND NL) ND	ND	ND ND	ND I) ND	ND	ND	ND NI	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	l NI	NI	NI	NI NI	NI N	1 NI	NI NI
MW - 45	13.92 NE		-		· -		-	-	-	-	-	-				-			 -	-	-			─ ──			 -	- -	-		-			-				-		-	-	-				
MW - 46	14.70 NE	_	-		· -		-	-	-	-	-	-				-			 -	-	-	-		─ ──			 -	- -	-		-		<u> </u>	- -			<u> </u>	-		-	-	-				
MW - 47	13.93 NE			- '	·		-		-		-	-				<u> </u>		<u> </u>	├ -		-			─ - ─		 -	 -	 	-		<u> </u>	- -		 -			 -	-			-	-				
MW-A	14.20 14.1	5 -	-		-	-	-	-	-	-	-	-			-	-		-	<u> </u>	-	-	- -		-		 	<u> </u>	+ - +	-		-	- -	-	 	- -	-	-			-		-			-	
RW – 1	NA NA	ND	ND	ND N	D NI) ND	ND	ND c. tz	ND	ND 200	ND 2.00	ND 2.52	ND NI) NI) ND	ND	ND ND	ND	ND	ND	ND 0.70	ND NI) —	ND	ND ND	ND 1) ND	ND	ND	ND ND	ND	ND ND	+-	ND 1.00	ND ND	ND	ND	ND 5.00	ND ND	ND ND	ND	- 2.62	ND ND	ND N	J ND	ND ND
RW – 2	NA NA		5.19	0.56 0.	0.5	6.09	6.25	0.42	1.13	2.90	3.09	3.53	.65 1.1	8 1.2	1.35	1.88	2.05 2.41	3.02	2.12	3.34	2.70	2.83 4.2	8 –	2.64	2.97 3.41	5.54 5	8 5.44	2.82	4.19	4.52 4.52	4.53	4.52 0.11	_	1.30	3.05 2.31	2.80	3.19	5.09	3.86 ##	4.07	2.96	2.92	3.48 3.75	4.20 2.5	1.92	1.50 5.85
RW – 3	NA NA					2 2.28																										3.56 4.12														3.50 3.88
RW – 4		3.06																														## 2.86											3.15 3.00			0.10
RW - 5																																0.17 0.17				_	_								.35 3.00	
RW – 6		2.61								1.22	0.90	0.90	0.85	8 0.8			1.29 0.81		0.73	0.74	0.76	0.74 0.7	0.65	0.66	0.65 0.61	0.78						0.78 0.79										0.45	0.50 0.21	0.40 0.1	5 0.90	0.22 0.06
RW - 8 ***	NA NA					1.2										_	_ _							 - 	_ _		·					## 2.95		0.65		2.37	_			4.59			_ _			
RW – 9		4.32																_									_					4.92 4.14			2.90 2.71	_						4.40	2.62 3.11	3.50 3.0	3.83	2.98 5.33
RW – 10		4.64									4.70				0 3.36																	3.57 3.18				3.80	_	3.99				_	_ _			
RW – 11	NA NA					3 2.33		2.92		3.55			.90 2.0	4 2.4		 	2.98 3.43			3.05	2.45	3.07 4.6	5 4.39	3.59	3.24 3.62	3.43 3			3.87	3.97 4.43	4.42	4.46 3.87	_	2.03	2.54 2.59	3.66	4.27	5.48	2.65 ##	3.91	3.49	3.15	2.67 3.11	3.50 2.9	.93 4.49	2.58 4.40
RW- 12 ***		1.5			_		_					_	_ _	· -	· -	-	_ _		 -		_			 - 	<u> </u>	_ -	·		_	_ _	_	- -		 - 			_		_ _	· -	-	_	_ _	- -		
MW - 1	NG NO		NG	NG N			NG	NG	NG					3 NO			NG NG			NG		NG NO			NG NG				NG	NG NG		NG NG			NG NG			NG					NG NG		NG NG	
MW - 9		NG									NG					_	NG NG		_				_				_					NG NG	_		NG NG		NG					NG		NG N		
MW - 10		NG									NG							_	-				_									NG NG		+ +		_						NG		NG N		NG NG
MW - 17	NG NO			NG N			_	NG						3 NO			NG NG			NG	NG				NG NG					NG NG		NG NG			NG NG	_		NG		_			NG NG		NG NG	
MW - 18		NG									NG			_	_					_											_	NG NG	_	_	NG NG		NG		NG NG			NG		NG N		
RW - 7	NG NO	NG	NG	NG N	G NO	G NG	NG	NG	NG	NG	NG	NG	NG NO	3 NO	G NG	NG	NG NG	NG	NG	NG	NG	NG NO	G NG	NG	NG NG	NG 1	G NG	NG	NG	NG NG	NG	NG NG	NG	NG	NG NG	NG	NG	NG	NG NG	G NG	NG	NG	NG NG	NG N	NG NG	NG NG

Notes:

Data recorded using an oil/water interface prol
= NAPL observed, apparent thickness not c
NI = Not Installed ND = Not Del
Wells MW-1, MW-2, MW-9, MW-10, MW-1
est= Estimated Value ** = Water n

* = Well was dry Wells were gauged on 24 April 2023