

Monthly Progress Report 2023 No. 3

Former NuHart West Site
10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY
NYSDEC Site No. 224136
Reporting Period: March 1, 2023 – April 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from March 1 through April 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lots 1, 10, 12, 72, and 78 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. Investigation or Remedial Actions Relative to the Site during this Reporting Period

- Installation of the OU-2 LNAPL barrier wall began on 7 November 2022 and was completed on 8 March 2023. All equipment was demobilized, and the temporary construction fencing was removed on 24 March 2023. Installation of the on-site (OU-1) LNAPL barrier walls began on 23 January 2023 and is ongoing.
- Three permanent groundwater monitoring wells were installed in OU-2 on 13 March 2023 in accordance with NYSDEC guidance and email correspondence on 8 March 2022.

- Activities were detailed in the Summary of Corrective Action Letter submitted to NYSDEC on 20 March 2023.
- A request was sent to NYSDEC via email on 21 March 2023 regarding sheet piles installed on the eastern boundary of NuHart West which did not meet target depth outlined in the Record of Decision due to the presence of weathered rock and/or dense clay material be deemed acceptable based on supporting documentation from the geotechnical engineer, JZN Engineering. On 24 March 2023 NYSDEC approved that the sheet piles provide an adequate barrier for LNAPL migration and comply with the intent of the barrier wall pursuant to the Record of Decision. The sheets were cut to uniform height in order to install the base plate component to anchor the tent.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 1 March 2023. Gauging results are included in the attached table. Monitoring wells MW-21, MW-22, MW-34, MW-35, MW-40, RW-1, RW-2, RW-3, RW-4, RW-5, RW-6, RW-8, RW-9, RW-10, RW-11, and RW-12 were inaccessible due to site work or equipment storage. The wells that could not be accessed are identified in the attached figure.

On 28 February 2023 during daily gauging of monitoring wells along Franklin and Dupont Street, Haley & Aldrich observed LNAPL in MW-24. LNAPL was observed at a depth of 13.70 ft bgs, and water was observed at 13.72 ft bgs. MW-24 has been gauged multiple times daily since 28 February 2023 and LNAPL has been recovered daily using a bailer. The amount of LNAPL removed from the well daily is recorded in the Site's daily reports. A total of 0.88 gallons of LNAPL was recovered from MW-24 during this reporting period. Upon removal of the temporary construction fencing, an absorbent sock (New Pig) was inserted into MW-24.

The three additional monitoring wells (MW-45, MW-46, and MW-47) installed as part of the Corrective Action were gauged following installation on 13 March 2023. LNAPL was not observed in any of the newly installed wells and daily gauging is ongoing, results of which are included in the daily reports.

4. Actions Relative to the Site Anticipated for the Next Reporting Period

Continuing installation of the OU-1 LNAPL barrier walls.

5. Approved Activity Modifications (changes of work scope and/or schedule)

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

Sampling was not conducted during this reporting period.

7. <u>Deliverables Submitted During This Reporting Period</u>

The Summary of Corrective Action Letter was submitted to NYSDEC on 20 March 2023. No other deliverables were submitted during this reporting period. During the previous reporting period, the 100% Remedial Design Report was submitted to NYSDEC on 16 February 2023 based on comments received from NYSDEC on 20 January 2023.

8. Information Regarding Percentage of Completion

Installation of the OU-2 LNAPL barrier wall has been completed. Installation of the OU-1 LNAPL barrier wall is approximately 90% complete.

9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and Mitigation Efforts</u>

None.

10. Community Participation (CP) Plan Activities during This Reporting Period

None.

11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:

A Community Board Meeting will be held at the Dupont Street Senior Housing Center on 3 April 2023 to discuss next steps in the remediation of the Site.

12. Miscellaneous Information

None.

3

File No.: 0203497

Attachment A: Apparent Thickness of LNAPL Former NuHart Plastic Manufacturing Site, NYSDEC #224136

280 Franklin Street

Brooklyn, NY

Readings taken 3/1/2023 between 7:00 am and 12:00 pm (low tide @ 11:16am and high tide @ 4:54am)

 					Apparent Thickness of LNAPL (feet) 2022 2020 2020																					11:16am and h	iigii tide @ 4:54	Halli)																	
Well Number Dep	oth to Pro		****	<u> </u>															2019 2018																										
Well Number Water	r (feet)	-4)	2023									1													<u> </u>						_														
	,	23-Mar					ov-22 Oc	ct-22 Sept				May-22					ec-21 No						May-21 Apr-21		+ +			-20 May-20	Apr-20 Mar-2	_	Jan-20		Nov-19 Oct-19	Sep 25		ul-19 Jun-19	May-19	_	Mar-19 Feb-19			8 Jun-18			8 Feb-18 Jan-18 Nov
	D* N		ND*	ND*	ND*	TVD I	NA N		171 111		ND*	ND*	ND*	ND*	ND*	ND*		– ND*	112	ND*	ND*	ND	ND* ND*	ND	ND	IVD.	ND NI) ND	ND ND	I\D	ND*	ND*	ND* ND*	ND*	ND N	ND* ND*	##	TVD	ND* ND*	ND*	ND* ND*			.65 0.73	ND* 0.92 2.1
MW – 5 16	5.91 12	67 4.24	5.02	0.59	5.22	6.94	NA N	NA NA	NA 4.85	35 4.85	4.07	4.00	4.50	3.20	2.73	6.88	3.85 0.	71 4.27	2.17	3.52	0.78	0.10	0.42 0.78	0.29	3.59	4.76	2.94 5.4	3.71	4.18 4.46	4.21	3.44	4.47	4.61 5.65	5.18	1.30	3.73 5.15	2.89	2.46	2.26 3.28	2.62	2.83 4.12	1.66	1.83 2	.77 2.19	2.21 4.65 5.8
MW – 6 11.	.08* N	D ND	ND	0.74	0.99	1.55	NA N	NA NA	NA 2.63	53 3.20	3.36	3.01	3.05	1.65	2.55	2.61 2	2.71 2.	83 2.42	2.90	3.45	2.74	3.17	0.28 3.03	3.18	3.00	2.78	2.48 0.9	9 3.00	2.20 2.29	2.39	2.98	0.85	## ##	##	##	## 0.50	2.35	##	## ##	##	## ND	0.55	0.50 2	47 0.74	## ## #
MW – 7 15	5.61 11	21 4.40	4.85	3.17	1.42	3.17	NA N	NA NA	NA 0.40	1.10	3.35	2.13	2.82	1.00	1.00	2.07	1.59 0.	67 0.88	0.37	0.42	0.46	2.26	0.54 1.76	1.28	1.15	1.56	2.10 3.8	9 2.81	3.85 3.53	1.59	0.99	1.67	1.59 1.63	1.96	0.84	0.45 1.30	0.14	0.35	0.26 1.54	1.14	0.93 0.54	1.89	1.99 1	80 2.03	2.55 3.32 4/
MW – 8 9.	.24 N	D ND	ND	ND	ND	ND I	NA N	NA NA	NA ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	- ND	ND	ND ND	ND	ND N	ID ND	ND ND N
MW – 12 8.	.95 N	D ND	ND	ND	ND	ND 1	ND N	ND NI	ND ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
MW – 13 8.	.96 N	D ND	ND	ND	ND	ND 1	ND N	ND NI	ND ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
MW – 14 12	2.27 N	D ND	ND	ND	ND	ND 1	ND N	ND NI	ND ND	D ND	ND	ND	ND	ND	ND	ND 1	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
MW – 15 13	3.79 13	53 0.26	0.53	1.27	1.76	2.36	NA N	NA N.	NA 0.85	35 1.30	0.85	1.30	3.05	4.43	0.38	1.04	1.05 0.	10 0.48	0.38	0.83	0.46	0.57	0.61 2.44	4.46	0.29	1.30	1.00 3.1	3 2.36	2.75 3.29	2.66	0.83	0.85	1.08 1.99	0.18	0.03	0.11 0.87	0.08	0.08	1.08 1.00	0.84	0.26 0.12	0.04	0.04 0	0.07	0.08 3.16 1.3
MW – 16 8.	.67 8.	56 0.11	2.71	3.47	0.47	0.15	NA N	NA N.	NA 0.1	1 ND	0.02	0.40	0.58	0.03	0.20	0.56	0.12 0.	14 0.17	0.29	0.63	0.10	1.59	1.17 1.80	0.04	0.35	0.85	0.85 0.4	1 0.22	0.84 0.36	i ND	ND	ND	1.95 0.56	0.81	0.01	0.04 1.17	0.45	0.73	0.07 0.39	0.17	0.19 0.20	0.06	0.10 0	.13	0.1 0.34 0.2
MW – 20 15	5.91 13	86 2.05	2.25	1.41	3.66	2.69 2	2.36 2.	2.80 2.7	2.73 3.1	1 3.05	2.61	2.60	2.61	2.02	3.22	2.29 1	1.78 2.	78 2.36	3.03	3.05	2.95	3.08	2.06 2.71	1.09	2.66	3.71	1.23 2.9	2.91	1.01 3.12	2.18	2.75	2.82	3.73 3.37	3.25	2.29	2.09 3.66	1.45	1.47	2.17 2.43	2.77	3.49 2.51	1.4	1.55 2	52 1.77	1.02 3.15 3
MW – 21 N	NA N	A NA	NA	NA	NA	NA I	NA N	NA N.	NA 0.95	95 1.90	1.54	1.40	2.09	2.68	0.75	0.86	1.60 1.	15 2.45	0.05	0.35	1.39	1.33	1.06 1.91	2.61	1.33	3.13	2.98 5.4	4.29	4.29 4.57	3.63	1.11	2.88	3.07 3.13	1.99	1.51	1.41 1.84	0.52	1.25	1.01 1.57	1.48	2.81 1.73	1.43	1.42 1	.62 1.38	2.29 3.83 4
MW – 22 N	NA N	A NA	NA	1.23	1.15	ND*	NA N	NA N.	NA 0.78	78 1.20	5.13	1.30	1.55	ND*	ND*	0.58	_ _	- 0.93	0.11	0.86	1.13	1.62	0.39 0.99	0.45	0.37	1.95	0.76 2.5	66 2.13	1.54 1.55	1.59	1.44	1.22	1.06 1.94	2.95	0.69	0.51 2.28	2.98	1.03	1.05 1.83	1.68	0.83 0.69	0.97	0.89 0	76 1.11	0.28 0.37 1.7
	1.72 N	D ND	ND	ND	ND	ND 1	ND N	ND NI	ND ND	D ND	ND	ND	ND	ND	ND	ND 1	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	D ND	ND ND	ND	ND	ND	ND ND	ND	ND I	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
		76 0.03	0.08	NA	NA	ND 1		ND N	ND ND	D ND	ND	ND	ND	ND	ND	ND 1	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
<u> </u>	7.64 13		3.72	3.23	3.06	2.86			.51 4.5	1,12	5.87	4.20	4.44	3.87	3.29	3.78	3.52 4	49 3.78	3.81	3.90	3.08	4.37	3.63 3.81	3.24	3.28	4.35	4.23 3.6	1.2	3.79 6.72	4 57	4.89	4.66	4.93 4.31	3.18	3.38	3.83 4.61	3.76	3.81	4.19 4.77	3.86	3.89 3.44	2.85	2.89 4	03 3.45	3.44 3.66 4
	7.42 13	42 4.00	4 93	0.61	4 09	4 01	3.76	184 33	78 3.4	4 3.50	4.02	3.40	4.39	3.02	1.90	4 45	3 24 3	44 2.80	7 14	3.58	3.07	4 01	3.02 3.32	3 32	2.97	3.56	3.79 3.7	8 3.71	3 47 4 13	4.14	4 11	4.65	402 462	5.21	3.43	3 19 4 90	0.69	2.46	2.94 3.37	3.14	3.84 3.45	0.75	2.35 3	14 2.48	3 19 3 95 5
	3.88 N	11.00	4.93 ND	ND	4.09 ND	ND*	ND N	ND NI	ND ND	D ND	4.02 ND	3.40 ND	4.39 ND	ND	ND	ND 1	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND NI) ND	ND ND	ND	ND	ND.	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND N	ID ND	ND ND N
	1.51 N		ND	ND	ND		ND N		ND ND	1,12	ND	ND ND	ND	ND	ND		ND N		ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
	3.39 N	D ND	ND	ND	ND	ND 1	ND N	ND NI	ND ND	D ND	ND	ND	ND	ND	ND	ND 1	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
	3.47 N		ND	ND	ND			ND NI			ND	ND	ND	ND	ND		ND N			ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N		ND ND N
<u> </u>	2.87 N		ND	ND	ND	ND 1		ND NI	ND ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
	3.48 N		ND	ND	ND	ND 1	1,12	ND NI	VD ND	D ND	ND	ND.	ND	ND	ND	ND 1	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
	NA N		NA NA	ND	NΔ	NA I	NA N		NA ND	112	ND	ND ND	ND	ND	ND	ND I		- ND		ND	ND	ND	ND ND	ND	ND	ND ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND N	ID ND	ND ND N
		D ND	ND	ND	ND				NA ND	D ND	ND	ND	ND	ND	ND	ND	_	- ND	- 112	ND	ND	ND	ND ND	ND	ND.	ND	ND NI) ND	ND ND	ND	ND.	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND.	ND N	ID ND	ND ND N
	1.44 N		ND	ND	ND			ND NI			ND	ND	ND	ND	ND		ND N			ND	ND	ND	ND ND	ND	ND	ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND		ND ND	ND	ND N		ND ND N
	1.74 N		ND	ND*	ND*	.,,,,		ND NI	VD ND	D ND	ND	ND	ND	ND	ND			D ND	.,,,	ND	ND	ND	ND ND	ND.	ND.	ND	ND NI)* ND	ND ND	ND.	ND.	ND	ND ND	ND.	ND 1	ND ND	ND.	ND	ND ND	ND	ND ND*	ND.	ND N		ND ND N
	.98 N		ND	ND	ND	ND 1	ND N		VD ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND N	ID ND	ND ND N
	.53 N		ND	ND	ND	ND 1	.,,,	ND NI	VD ND	D ND	ND	ND.	ND	ND	ND	ND 1	ND N	D ND	ND.	ND	ND	ND	ND ND	ND	ND	ND	ND NI) ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND.	ND	ND ND	ND	ND ND	ND.	ND N	ID ND	ND ND N
	NA N		ND	ND	ND			NA NA	112	112	1,12		ND	ND	ND		ND N	D ND	ND	ND	ND	ND	ND ND	ND.	ND.	ND	ND NI) ND	ND ND	ND	ND.	ND	ND ND	ND.	ND 1	ND ND	ND	ND	ND ND	ND	ND ND	ND.	ND N	ID ND	ND ND N
	3.46 N	D ND	ND	ND	ND	ND 1		ND NI	ID ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	- 112	- 10	-		- 115		- 112	- 110	-		-	_		-	_		-		ND.	ND N	ID ND	ND ND N
	2.84 N	D ND	ND	ND	ND	ND 1	ND N	ND NI	VD ND	D ND	ND	ND	ND	ND	ND	ND I	ND N	D ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	O ND	ND ND	ND	ND	ND	ND ND	ND	ND 1	ND ND	ND	ND	ND ND	ND 1	ND* ND*	ND	ND N	ID ND	ND ND N
	1.06 N	D ND	- 110	-	-	-	-		- 112		-	-	-	-	-	-	-	- 10	-	- 110	- 110	-		- 112	- 110	-	- 10	- 115		- 112	- 112	-		-	-		-	-		- 1		- 110	-		
	1.76 N	D ND	+ _	 _ 			_					+ - +			_		_			+ -	+ - +			+ -	+ -				+ - + -		+ - 1					_ + _	+ -					+ - +		_	+
	1.21 N		+ -	+ - +	-		-				+	 	-		-	-	-			+ -	+ - +		- -	+ -	+ -	-			 	-	+ -				-	- -	+ -	-		+ - +	- -	+ - +			
	1.15 14		0.05	4.45							-	1		-						-	+ +			-	+ -			_	+ +		+ +			-		_	+			+		+			+ + +
	1.15 14 NA N		0.05 NA	4.45 NA	NA	NA S	NA N	NIA NI	IA NID	D MD	MD	NID.	- ND	- ND	- NID	ND 7	NID N	D NT	NID	NID.	NID.	ND.	ND ND	NID.	NID.	ND ND	ND N) ND	ND ND	NID.	NID.	- NID	ND ND	ND.	ND 2	NID NID	NID.	NID.	ND ND	NID.	NID NID	NID.	ND 3	ID NID	ND ND 3
	NA N		NA NA	NA NA	3.16	NA 4 55	NA N	NA N.	NA ND	5 3.10	5 67	ND 3.39	5.78	ND 5.25	ND 3.15	5.19 3	3.03 N	11 2.00	ND 2.16	2.12	2.02	02.15	174 220	2.44	3.91	2.00	ND NI	6 3.25	4.93 4.78	ND 4.59	3.21	ND 4.49	2.42 5.02	2.10	1/1 (0.66 4.08	ND 1.64	1.47	1 27 A 72	5.12	163 554	UUG	0.08 1	65 ND	5 52 4 01 5
	NA N		NA NA	NA NA	3.16 NA			NA N.		45 3.40 45 3.40	5.07	3.39		1.34	3.13		3.03 2.	70 2.79	2.10	3.67	4.61	05.02	1.74 3.28	2.44	1.99	2.90	3.75	3.25		1.07	3.31		4 30 4 03	4.09		3.25 3.96	1.01	2.11	2.26 4.71	3.12	2.63 3.77	2.08	-	52 2.12	3.03 ND 3.3
		A NA	NA NA	0.40			NA N			23 4.40		5.01											2.64 4.35											-		3.23		2.11			2.03			90 2.12	02.39 3.06 4.3
			NA NA									5.31			3.13 5.60		2.89 3.												3.55 2.46		_						_		2.85 ##						
	NA N		_															81 3.80			_		0.73 4.78		4.93			9 1.60		_	2.54		## ##	5.74 1.49		## ##	0.71				## ND*			0.34	
		A NA	NA NA								0.48	+	1.15		1.05	1.10		90 1.12	0.53	0.21	1.14	1.55	0.58 2.49	##	##	2.82	1.85 2.1	7 0.44	1.21 0.98	1.05	1.67	1.51	1.61 2.19	1.49	0.7	0.46 1.57	0.28	0.55	0.49 02.33	0.91 0	0.73 1.91	0.83			00.90 2.61 1.6
		A NA NA	NA NA	-							4.06			2.35	2.70	5.97	1.46		0.70	4.12	2.05	2 65	2.42	5.40	- C 45	161	120	10 4.65	4.22 5.01	5.27	4.08		4.37 5.59	4.23	200	3.55 4.57	2.22	1.72	2 22 2 20	1.52	2.45	0.02			0.96 1.99 — 2.88 4.32 5.5
												3.70					4.46 2.		_		_	_	3.42 4.39		6.45			0 4.65		_	4.08								2.23 3.79			0.11			
		A NA	NA NA		NA 2.48			NA N.			5.31	-					1.65 2.		_	2.90			3.1 4.32					2.93						3.99		3.04 3.92	3.23		3.24 4.53						
	NA N		NA NA					NA N.			3.48				2.85		4.78 4.	13 3.64	1.11	_	2.67	0.11	2.00 4.20	1.43	3.25	4.24	3.45 3.8	39 4.32	4.31 5.77	5.13	3.80	3.38	4.54 6.30	4.85	4.12	3.78 4.65	3.32	1.92	2.35 4.74	2.69	3.02 2.21	2.51			2.50 5.01 5.
		A NA	NA NG	_	5.42					17 4.7	_	+		3.50	-				-			-		-	-					-	-	—		-	-			-		$+$ $\overline{-}$ $+$		_		61 0.02	
	NG N		NG	NG	NG			NG NG	110		_	NG	NG	NG	NG		NG -	– NG					NG NG		NG		NG N		NG NG	_	NG		NG NG	NG		NG NG	NG		NG NG		NG NG		NG N		110 110 111
		G NG	NG		NG				NG NG			NG		NG				D NG		_			NG NG		NG		NG NO						NG NG			NG NG	NG		NG NG		NG NG			IG NG	
		G NG	NG	NG	NG				NG NG		_	NG		NG				D NG	_		+ +		NG NG		NG		NG N		+	_	NG		NG NG	NG	-	NG NG	_		NG NG		NG NG			IG NG	
<u> </u>	NG N		NG	NG	NG				NG NG			NG	NG	NG	NG			D NG		NG	NG		NG NG		NG		NG NO	_	NG NG		NG		NG NG	NG		NG NG	NG		NG NG		NG NG			IG NG	1.0 1.0
		G NG	NG	+	NG				NG NG		_	NG		NG			NG -				+ +		NG NG		NG		NG N		+		+		NG NG	-		NG NG	_		NG NG		NG NG	+		IG NG	
RW - 7 N	NG N	G NG	NG	NG	NG	NG I	NG N	NG NO	NG NG	G NG	NG	NG	NG	NG	NG	NG I	NG -	– NG	NG	NG	NG	NG	NG NG	NG	NG	NG	NG N	G NG	NG NG	NG	NG	NG	NG NG	NG	NG I	NG NG	NG	NG	NG NG		NG NG	NG	NG N	IG NG	NG NG N

Notes:

Data recorded using an oil/water interface probe, measurements from the tops of well casings

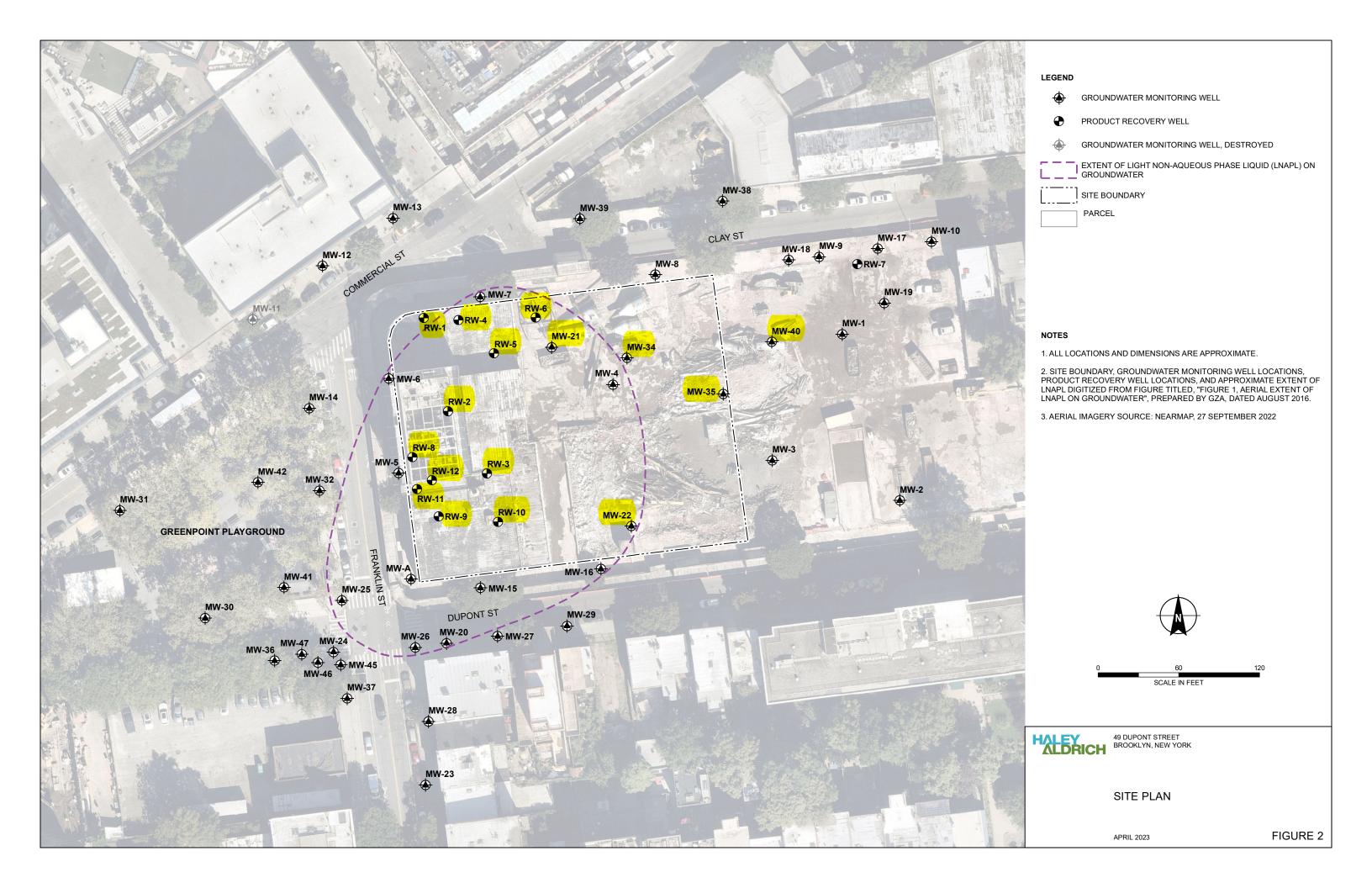
ess NG = Not Gauged

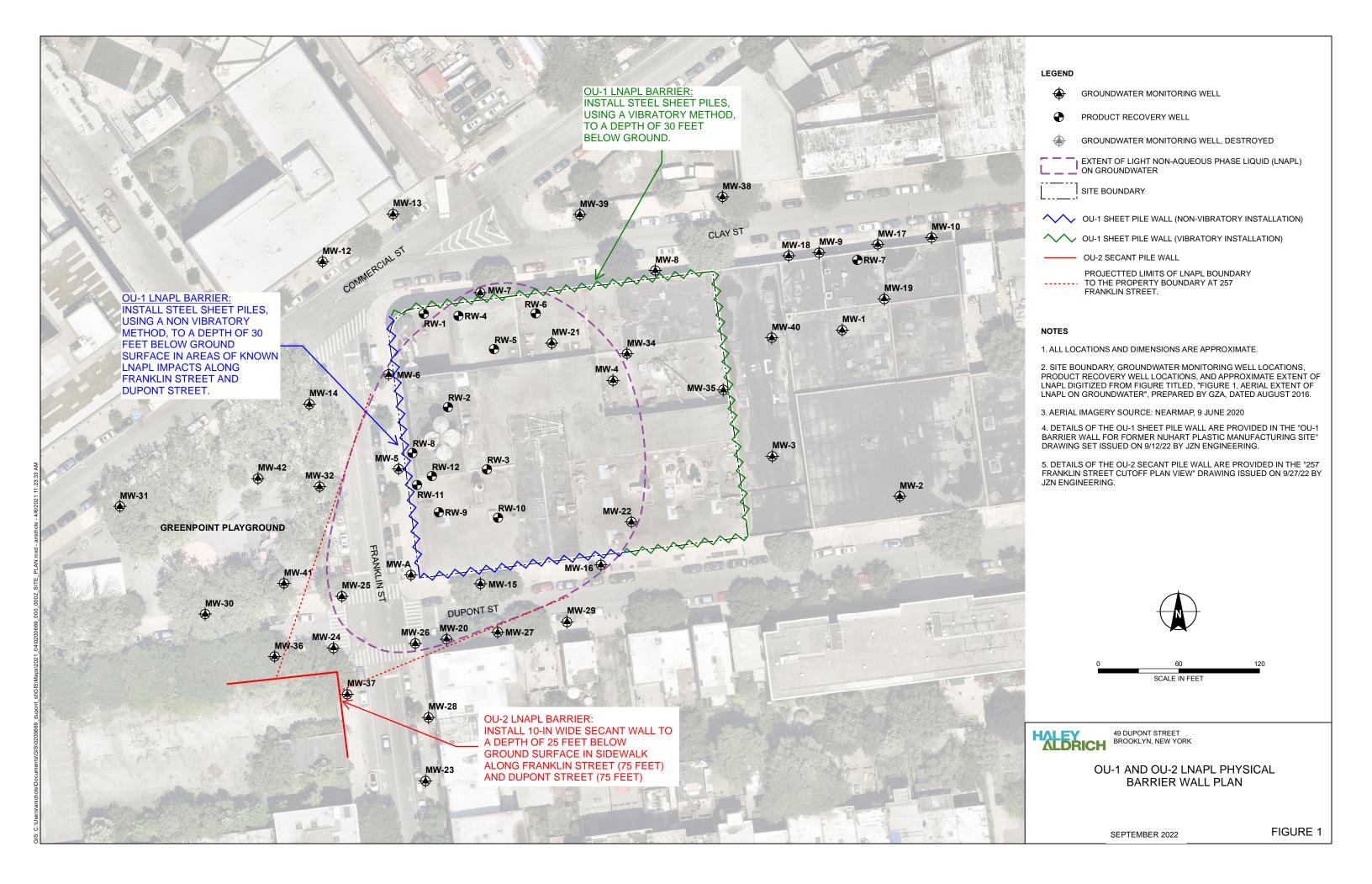
Wells MW-1, MW-2, MW-9, MW-10, MW-17, MW-18, MW-19, and RW-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation est= Estimated Value ** = Water not detected; well filled with sediment, value is the total depth of the well

* = Well was dry Wells MW-45, MW-46, and MW-47 installed on 13 March 2023

* = Well was dry Wells were gauged on 1 March 2023 Table 1:
Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136
280 Franklin Street
Brooklyn, NY

<u> </u>	T	Donth to																																														
Well Number	Depth to	Product			2017									2016									2015								2013										201	12						
	vater (feet)	(feet)	Oct-17 S	ep-17 Aug	-17 Jul-	-17 Jun-1	May-17	Apr-17	Mar-17	Feb-17	Jan-17	Dec-16	Nov-16	Oct-16 Sep-	6 Aug-16	Jul-16	Jun-16 May	-16 Apr-	16 Mar-1	6 Feb-16	Jan-16	Dec-15 N	ov-15 Oct	-15 Sep-	15 Aug-15	Jul-15 Jur	1-15 May-	15 Apr-1	15 Mar-15 Ja	n-15 Sep-14	4 Aug-14	Jul-14 Jun-	14 May-14	Apr-14 Mar-1	14 Feb-14	Jan-14	Dec-13	Nov-13 Oct-	13 Sep-13	3 Aug-13	Jul-13	Apr-13 M	Iar-13 F	Feb-13 Jan	an-13 Dec-	c-12 Nov-1	-12 Oct-12	Sep-12
MW – 4	ND*	ND*		1.76 1.	73 1.2	23 1.77	ND*	1.32	1.61	1.13	1.31	1.30	1.00	1.18 1.3	1.71	1.73	1.80 1.	53 1.7	3 1.43	1.85	1.77	1.96	2.04 1.9	99 1.7	7 2.22	4.27 0.	35 0.44	-	0.56	1.75	1.90	1.24 Trac	e –	0.01 Trace	e 0.23	0.22	0.30	0.66 0.78	8 ##	3,49	2.22	0.59	0.67	0.44	0.44 0.5	.80 0.31	31 0.33	3.13
MW – 5	16.91	12.67	2.19	4.44 4.	4 3.7	71 3.54	2.81	2.80	3.13	4.05	3.00	3,55	4.43	3.64 3.2	4.31	4.03	4.29 3.	07 3.1	8 3.14	1.85	3.24	4.83	5.41 4.	16 4.2	6 4.45	4.22 2.	30 2.41	2.55	3.10 4	.40 4.79	5.03	1.97 3.39	9 —	3.14 2.80	2.98		6.46	7.17 5.5	4 ##	5.08	3.92	3,00	2.39	4.32	3.00 4.7	.11 3.50	30 3.41	5.58
MW – 6	11.08*	ND	1.22	3.19 3.	5 #	# ##	##	##	##	##	##	##	##	## ##	##	##	## #	# ##	##	##	##	##	## #	# ##	# ##	## 2.	30 ##	##	##	# ##	##	## ##	_	- 2.84	3.43	- 1	2.89	2.76 2.0	0 ##	2.42	2.82		_				- 3.49	2.14
MW – 7	15.61	11.21	1.48	1.45	11 0.	9 0.00	1.50	1.92	2.53	3.71	1.28	0.78	1.73	0.91 0.0	1.89	1.58	2.22 2.	11 1.9	0 1.66	2.31	2.47	3.44	3.31 2.5	58 1.4	6 1.28	0.99 1.	58 ND	1.94	1.79	# 2.01	2.16	0.60 0.01	1 –	0.17 0.17	1 _	 	4.78	4.70 4.0	0 ##	2.77	1.06	1.92	4.92	5.45	1.30 1.7	36 2.00	00 1.84	1.83
MW – 8	9.24	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI) ND	ND N	D ND	ND	ND	– ND	ND	ND ND		ND ND	_	- 1	ND	ND NE) ND	ND	ND	ND	ND	ND N	ND NE	ND ND	D ND	ND
MW – 12	8.95	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) –			ND	ND -			_ N	D ND	ND	ND	– ND		ND ND		ND ND	 	 _ 	ND	ND NE) ND	ND	ND	ND	ND	ND .	ND N	JD ND	D ND	ND
MW – 13	8.96	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND.	ND	ND	ND NE	ND	ND.	ND N	D NI) ND	+_	+	ND	ND -	_		_ N	D ND	ND	ND ND	- ND	+ -	ND ND	<u> </u>	ND ND	+-	+ - +	ND	ND NE) ND	ND.	ND	ND	ND	ND :	ND N	ND ND	D ND	ND
MW – 14	12.27	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI) ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND		ND ND		 	ND	ND NE) ND	ND	ND	ND	ND	ND I	ND N	JD NE	D ND	ND
MW – 14	13.79	13.53	0.21	0.20	26 0.3	26 0.24	0.12	0.22	0.28	0.40	0.21	0.20	0.80	0.20 0.1	0.81	0.07	0.49	22 0.7	1 0.02	0.04	0.60	2.09	2.07	07 1.0	5 1.05	ND 1	24 1.21	1.56	ND 1	71 2.10	2 22	## 0.45	, –	0.61 0.20	0.38	-	2 11	2 10 2 2	/ ND	2.14	0.70	IND I	0.22	1.07	1/	56 0.00	00 0.76	2.67
MW – 15	8.67	8.56	0.31	0.29 0.	25 0.2	08 0.28	0.12	0.22	0.28	0.40	0.31	0.20 ND	ND.	0.20 0.1	0.61 ND	0.07	0.48 0.	22 0.7	1 0.03	0.04	0.00	0.11	0.02	12 0.0	5 0.05	0.14	13 0.15	1.50	0.09	./1 2.19	0.02	0.00 Trac	,	0.01 0.30	0.36	- 	0.22	0.22 0.19	0 ##	0.05	0.70	0.02	0.32	0.10 0.	0.25 0.20	.20 ND	0.70	0.20
MW – 10	15.91	0.30	0.55	0.57 0.	63 0.0	0.28	0.03	0.10	0.23	0.20	2.02	2.00	2.20	ND NL	2.00	0.01	0.25 0.5	0.0	0.02	1.00	0.02	0.11	2.02 2.0	22 2.2	5 0.03	0.14 0.	50 2.70	0.03	0.08	12 1.07	0.05	0.99 11ac	e _	0.01 0.01	0.10	4.10	0.23	0.22 0.1	1 44	0.03	1.27	3.32	1.20	1.10	1.25 0.2	20 ND	0.24	0.20
	15.91 NA	13.80	2.32	2.58 2.0	0.5 2.1	.9 2.83	2.01	2.94	2.33	3.02	3.02	2.88	3.28	2.90 3.10	2.89	2.88	2.85 2.	22 2.4	9 2.43	1.99	2.40	3.32	3.02 3	53 3.2	3.12	2.88 2.	58 2.79	3.84	4.38	.13 1.8/	1./1	2.92 2.00	0 –	1.47 2.90	2.38	4.19	3.07	4.90 4.1	1 ##	3.33	1.57	3.32	2.42	2.75	.33 1.3	38 3.39	3.15	3.80
MW – 21	NA NA	NΑ	3.20	3.33 2.	1.5 1.4	45 2.75	3.31	3.30	3.04	3.02	0.50	0.51	0.32	0.20 0.0	3.01	2.90	2.95 2.0	0.5 4.1	8 2.08	0.15	0.22	4.40	1.01 0.	3.0	7 1.04	2.97 2.	0.00	2.98	3.40	.23 3.02	4.04	4.90 1.99	-	2.09 2.47	2.48	3.37	3.13	3.72 4.0	0 ##	4.37	3.00	3.38	0.62	3.75 4	1.20 4.2	23 2.89	2.04	4.15
MW – 22		11/1	1.25 ND	1.24 1.	0.7	D ND	0.00 ND	0.78 ND	0.04 ND	0.65 ND	0.50 ND	0.51 ND	0.58 ND	0.30 0.0	0.51	0.87 ND	0.02 0.0 ND N	D NI	8 0.44 ND	0.15	0.22	1.33	ND N	49 1.1) I.04	0.79 0.	D ND	0.74	ND 1	ID ND	1.02 ND	0.54 0.83 ND ND	<u> </u>	0.74 0.80 ND ND	0.75 ND	1.22 ND	1.07 ND	0.69 0.50 ND NE	0 ##	1.12	0.80	0.50	0.02	1.15 1. ND N	.20 0.1	JD ND	D ND	1.80 ND
MW – 23	14.72	ND	ND	ND N	11	D ND	112	ND	ND		ND	ND	ND	ND NE	ND	ND	ND N	- 111		- 112	ND	ND	ND N	D NI) ND	ND N	D ND	ND	ND I	ID ND	1,12	112 112		110 110	ND	ND	ND	ND NL) ND	ND	ND	ND	ND	ND N	ND NL	ND ND	.,,,	112
MW – 24	13.79	13.76	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND 2.62	ND	ND NL	ND 2.67	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND I	D ND	ND	ND ND) –	ND ND	_		ND	ND NL) ND	ND	ND 2.50	ND	ND	ND N	ND NI	ND ND	.,,,	- 1-
MW – 25	17.64	13.62	4.03	4.05 4.0)2 3.7	/3 4.09	3.85	3.70	3.74	3.47	3.89	3.62	3.60	4.20 3.7	3.65	4.01	3.75 3.	5 3.3	3 3.42	3.32	3.43	3.68	3.53 3.0	63 3.5	3 3.68	3.53 2.	81 3.24	3.36	1.07	.03 3.16	4.02	3.65 3.48	8 –	3.91 3.75) —	_	5.66	5.56 4.0	1 ##	4.41	3.58	3.96	3.96	4.34 3	2.8	.82 7.86		3.96
MW – 26	17.42	13.42	3.81	3.82 3.	79 3.6	65 3.42	3.29	3.73	3.64	3.24	3.14	3.20	3.56	4.00 3.2	4.26	3.58	3.82 3.	11 3.3	7 2.97	3.82	3.41	4.23	4.08 3.	77 4.0	3.70	3.65 3.	18 3.33	3.64	4.14 4	.11 3.84	3.70	4.50 3.02	2 –	2.71 3.48	3.80	4.34	4.44	4.47 4.6	2 ##	4.18	3.69	2.86	2.33	1.00 2	45 1.6	52 –		4.02
MW – 27	13.88	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NL	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND I	ID ND	ND	ND ND) –	ND ND	_		ND	ND NL) ND	ND	ND	ND	ND	ND N	ND NI	D 0.99	99 ND	ND
MW – 28	14.51	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	ND	ND	ND	ND NE) ND	ND	ND	ND	ND	ND N	ND NI	I NI	II NI	141
MW – 29	13.39	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	D ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	ND	ND	ND	ND NE) ND	ND	ND	ND	ND	ND N	ND NI	I NI	II NI	
MW – 30	13.47	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI) ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	_	-	ND	ND NE) ND	ND	NI	NI	NI	NI 1	NI N	I NI	II NI	
MW – 31	12.87	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	-	_			ND	ND N	D NI) ND	ND	ND	ND	- N	D NI) ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	_	_	ND	ND NE) ND	ND	NI	NI	NI	NI '	NI N	I NI		NI
MW – 32	13.48	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	_	-	ND	ND NE) ND	ND	NI	NI	NI	NI '	NI N	I NI		NI
MW – 34	NA	NA	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	ND	ND	ND	ND NE) ND	ND	NI	NI	NI	NI '	NI N	NI NI	ı NI	NI
MW – 35	NA	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	ND	ND ND) –	ND ND	ND	ND	ND	ND NE) ND	ND	NI	NI	NI	NI '	NI N	I NI	II NI	NI
MW – 36	14.44	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	ND	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI NI	NI	NI	NI	NI	NI '	NI N	(I NI	II NI	NI
MW – 37	14.74	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	ND	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI '	NI N	I NI	II NI	NI
MW – 38	8.98	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND					ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND	– ND	NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI '	NI N	(I NI	II NI	NI
MW – 39	8.53	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI '	NI N'	NI NI	II NI	NI
MW – 40	NA	NA	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	— N	D NI	O ND	ND N	D ND	ND	ND 1	ID ND	NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI '	NI N	(I NI	II NI	NI
MW – 41	13.46	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID NI	NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI '	NI N'	I NI	II NI	NI
MW – 42	12.84	ND	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	ND N	D NI	O ND	ND N	D ND	ND	ND 1	ID NI	NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI '	NI N'	I NI	II NI	NI
MW - 45	14.06	ND	-	- -	· -	- -	-	-	-	-	-	-	-	- -	-	-	- -	· -	-	-	-	-	- -	- -	-	- -	- -	-	-	- -	-	- -	-	- -	-	-	-	- -	-	-	-	-	-	-	- -	- -	-	-
MW - 46	14.76	ND	-				-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- -	- -	-	-		-	-		-		-		-	-	-		-	-	-	-	-	-				-
MW - 47	14.21	ND	-		-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-			-	-		-	-		-		-		-	-	-		-	-	-	-	-	-			-	-
MW-A	14.15	14.11	-		-		-	-	-	-	-	-	-		-	-		-	-	-	-	-			-	-		-	-		-		-		-	-	-		-	-	-	-	-	-			-	-
RW – 1	NA	NA	ND	ND N	D N	D ND	ND	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND N	D NI) ND	ND	ND	ND	- N	D NI	O ND	ND N	D ND	ND	ND 1	ND ND	ND	ND ND	_	ND ND	ND	ND	ND	ND NE) ND	ND	ND		ND	ND !	ND NI	ND ND	D ND	ND
RW – 2	NA	NA	0.56	0.58 0	6.0	09 6.25	0.42	1.13	2.90	3.09	3.53	1.65	1.18	1.26 1.3	1.88	2.05	2.41 3.)2 2.1	2 3.34	2.70	2.83	4.28	- 2.0	64 2.9	7 3.41	5.54 5.	28 5.44		2 4.19 4	.52 4.52	4.53	4.52 0.11	1	1.30 3.05	2.31	2.80	3.19	5.09 3.8	6 ##	4.07	2.96	2.92	3.48	3.75	4.20 2.5	52 1.92	2 1.50	5.85
RW – 3	NA	NA	3.17	3.15 3.	22 2.2	28 3.44	2.85	2.71	3.46	2.98	3.10	1.91	3.95	2.40 2.5	3.08	1.97	2.49 1.	54 2.1	7 2.09	1.64	2.37	4.27	2.92 4.	14 1.3	9 2.14	4.31 2.	23 2.23	1.81	3.28	.41 3.50	3.45	3.56 4.12	2 –	1.58 2.90	2.28	4.60 (est)	3.60	3.33 1.66	8 ##	2.96	1.44	3.90	3.20	3.34 3.	3.70 3.50	.58 2.84		
RW – 4	NA	NA	4.33	4.17 4.	18 3.	.1 4.1	03.69	3.65	3.69	3.67	3.05	3.80	2.80	2.77 3.3	2.73	2.65	2.32 2.)2 2.2	2 2.93	2.03	2.51	2.82	2.31 1.9	99 1.0	9 2.02	3.65 3.	66 3.53	3.53	3 1.43 1	.35 2.78	2.88	## 2.86	6 —	1.81 3.25	3.27	2.45	2.67	2.30 1.4	6 ##	2.75	1.08	3.06	3.15	3.00	3.05 2.9	95 —	3.45	3.35
RW - 5	NA	NA	5.28	5.27 5.3	26 5.4	42 3.75	5.00	5.44	5.10	0.70	2.95	1.55	3.05	0.42 0.3	0.50	4.97	2.76 2.	17 2.6	6 3.21	2.53	1.92	1.96	5.64 4.	18 2.0	3 5.79	4.87 4.	69 4.75	0.70	0.85	.91 0.85	0.43	0.17 0.17	7 —	0.12 0.93	0.43	0.52	0.60	0.79 0.54	4 ##	0.69	0.51	2.62	_		- 2.3	.35 3.00	00 1.88	-
RW - 6			0.73				_																						1.19 1					0.45 1.28	0.96	0.41	0.94	1.30 0.6	7 ##	0.10	0.08	0.45	0.50	0.21	0.40 0.1	.15 0.90	90 0.22	0.06
RW - 8 ***	NA			2.2 3.			0.02	-		T -	_	_	_	_ _		-						_						_				## 2.95		0.65 1.47			2.46	3.92 4.13	3 ##	4.59	3.64		_	_				_
RW – 9	NA	NA	3.72	3.77 3.	59 2.8	84 3.25	2.70	2.69	3.50	3.66	2.47	3.09	3.57	2.45 2.3	3.19	2.15	3.18 2.	75 3.0	9 3.81	2.42	3.46	4.62	4.37 3	52 2.6	3.23	3.04 4.	82 4.79	4.28	5.68 5	.65 4.81				1.02 2.90	2.71	4.34	5.25	4.88 3.00	8 ##	4.09	2.37	4.40	2.62	3.11	3.50 3.6	.08 3.8?	83 2.98	5.33
RW – 10	NA	NA	3.65	3.67 3.	71 3.6	67 3.78	4.07	3.79	4.27	4.70	4.15	3.86	3.45	3.80 3.3	4.44	3.91	3.69 3.	74 3.6	6 3.67		4.77									.04 3.93				3.38 3.89	3.48		3.81	3.99 4.1			_		_				- -	_
RW – 11	NA		2.97										2.04	2.43 2.1															3.87						2.59		4.27	5.48 2.6	5 ##	3.91	3.49	3.15	2.67	3.11	3.50 2.9	.93 4.49	9 2.58	4.40
RW- 12 ***	NA		3.65							3.89		_	_	_ _						 		_					- -	_		- -					_		_			_	T -		_				- -	_
MW - 1			NG				NG				NG	NG	NG	NG NO	NG	NG			G NG	NG	NG	NG	NG N	G NO	G NG					iG NG	NG	NG NG	_	NG NG	NG	NG	NG		_	NG	NG	NG	NG	NG N	NG N	NG NG		NG
MW - 9			NG							NG		_	NG					_	G NG	_	NG		NG N						NG 1			NG NG	_				NG	NG NO		NG	_			NG N		NG NG	G NG	NG
MW - 10	NG	NG			G NO		_		NG	NG	NG	NG	NG	NG NO				G NO	_						G NG		G NG	_		iG NG	_	NG NG	_	NG NG	_	NG	NG	NG NO		_	_					NG NG		NG
MW - 17	NG	NG		NG N			NG		NG	_			NG	NG NO	_				G NG	_	_		NG N		G NG		G NG	_		IG NG	_	NG NG			_	_	NG	NG NC		_	_					NG NG		NG
MW - 18	NG	NG			G NO				NG	NG	NG	NG	NG	NG NO	NG	_		G NO					NG N	_	G NG		G NG			IG NG		NG NG	_	NG NG	-	NG	NG	NG NC	_	_	_					NG NG		NG
RW - 7			NG							NG			NG		_	NG			G NG		NG								NG 1			NG NG	_	+	_		NG	NG NC		_	_			NG N		NG NG		NG
144 - /	110	110	110		- IN	. 110	110	.10	110	110	110	110	110	110 110	110	110	110 N	_ N(. 110	110	.10			_ N	110			.10	1.0	110	110	110 110	. 110	110 110	110	110	110	110 110	, 110	110	110	1,0	.,0		.5 110	5 110	. 110	


Notes


Data recorded using an oil/water interface pro

= NAPL observed, apparent thickness not c
NI = Not Installed ND = Not Det
Wells MW-1, MW-2, MW-9, MW-10, MW-1

est= Estimated Value ** = Water n

* = Well was dry Wells were gauged on 1 March 2023

