

Monthly Progress Report 2023 No. 1

Former NuHart West Site 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY NYSDEC Site No. 224136

Reporting Period: January 1, 2023 – February 1, 2023

1. Introduction

In accordance with the reporting requirements for the Former NuHart West Site, located at 10-14 Clay Street, 55-57 Dupont Street & 280 Franklin Street, Brooklyn, NY (Site), Haley & Aldrich of New York (Haley & Aldrich), has prepared this monthly progress report, on behalf of Dupont Street Owner LLC, to summarize the work performed at the Site from January 1 through February 1, 2023.

The Former NuHart West Site is located in the Greenpoint neighborhood of Brooklyn, NY and is identified as Block 2487 Lots 1, 10, 12, 72, and 78 on the New York City tax map. The Site is listed in the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Registry as a Class 2 Site (Site No. 224136). The Site is underlain by sub-grade footings, utility networks, closed underground storage tanks (USTs), and piping and trench systems. The USTs and trench systems were cleaned out and the USTs were closed in accordance with applicable regulations in 2006. Former industrial operations at the Site have impacted onsite and offsite soil and groundwater with phthalates and lubricating oil (Hecla oil), most likely released from the tank and piping/trench systems. Phthalates and a phthalate/oil mixture are present in soil and as a light non-aqueous-phase liquid (LNAPL) plume floating on the groundwater surface primarily beneath Lots 1, 10, and 78 of the Site and extending somewhat offsite to the southwest. Groundwater is encountered at approximately 8 to 10 feet below ground surface (ft bgs). Currently, the site is a vacant 49,000-square foot lot with a concrete slab on grade.

Resource Conservation and Recovery Act (RCRA) closure activities were completed at the Site in May 2022. Interim remedial measure (IRM) activities are no longer being conducted at the Site since the product recovery systems were decommissioned as part of the RCRA Closure. IRM activities concluded in February 2022. Eastern Environmental Solutions, Inc. (Eastern) previously conducted waste management activities for disposal of product from the IBC tanks at the Site. Prior to 2022, Eastern has transported and disposed an estimated 2,116 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste. In January 2022, ACV Environmental Services Inc. (ACV) transported and disposed a total of 2,529 gallons of product at the CycleChem facility in Elizabeth, NJ as hazardous waste.

2. Investigation or Remedial Actions Relative to the Site during this Reporting Period

Installation of the OU-2 LNAPL barrier wall began on 7 November 2022 and is ongoing.
 Installation of the on-site (OU-1) LNAPL barrier walls began on 23 January 2023 and is ongoing.

3. Monthly On-Site and Off-Site Monitoring Well Gauging

Gauging of on-site and off-site monitoring wells associated with the Site was performed on 24 January 2023. Gauging results are included in the attached table. Monitoring wells MW-24, MW-36, MW-37, RW-1, RW-2, RW-3, RW-5, RW-6, RW-10, RW-12, and MW-21 were inaccessible due to storage of sheet piles or equipment. The wells that could not be accessed are identified in the attached figure.

4. Actions Relative to the Site Anticipated for the Next Reporting Period

- Continuing installation of the OU-2 LNAPL barrier wall.
- Continuing installation of the OU-1 LNAPL barrier walls.
- Submittal of the draft 100% Remedial Design Report.
- Submittal of the revised Request for Reuse of Material from the neighboring NuHart East Site.

5. Approved Activity Modifications (changes of work scope and/or schedule)

There have been no modifications to the work scope.

6. Results of Sampling, Testing and Other Relevant Data

Sampling was not conducted during this reporting period.

7. Deliverables Submitted During This Reporting Period

No deliverables were submitted during this reporting period. A request for reuse of material from the neighboring NuHart East Site was submitted to NYSDEC on 29 December 2022 and comments were received from NYSDEC on 4 January 2023. The 90% Remedial Design Report was submitted to NYSDEC on 30 November 2022 and comments were received from NYSDEC on 20 January 2023.

8. <u>Information Regarding Percentage of Completion</u>

Installation of the OU-2 LNAPL barrier wall is approximately 70% complete. Installation of the OU-1 LNAPL barrier wall is approximately 40% complete.

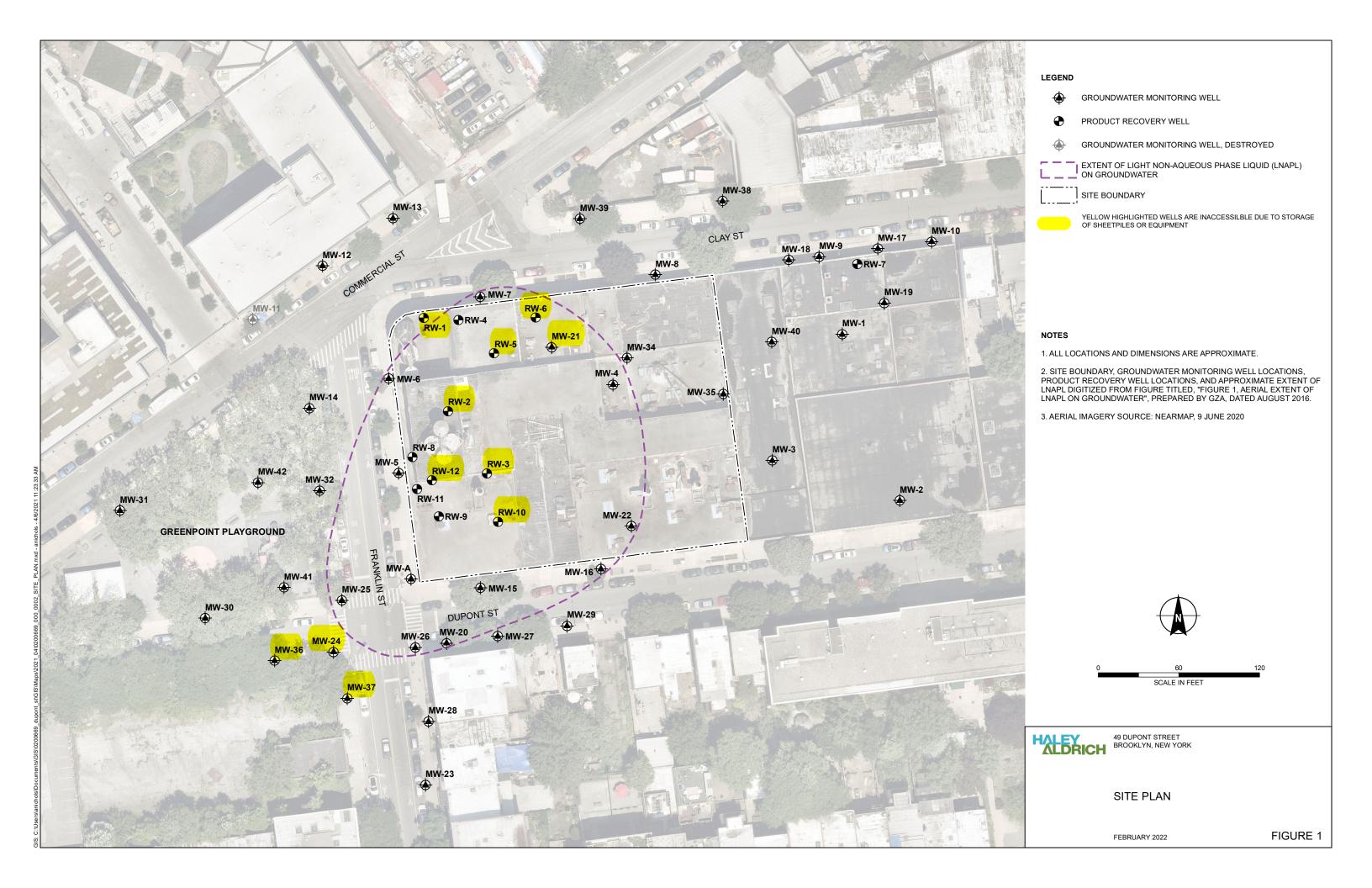
9. <u>Unresolved Delays Encountered or Anticipated That May Affect the Schedule and Mitigation Efforts</u>

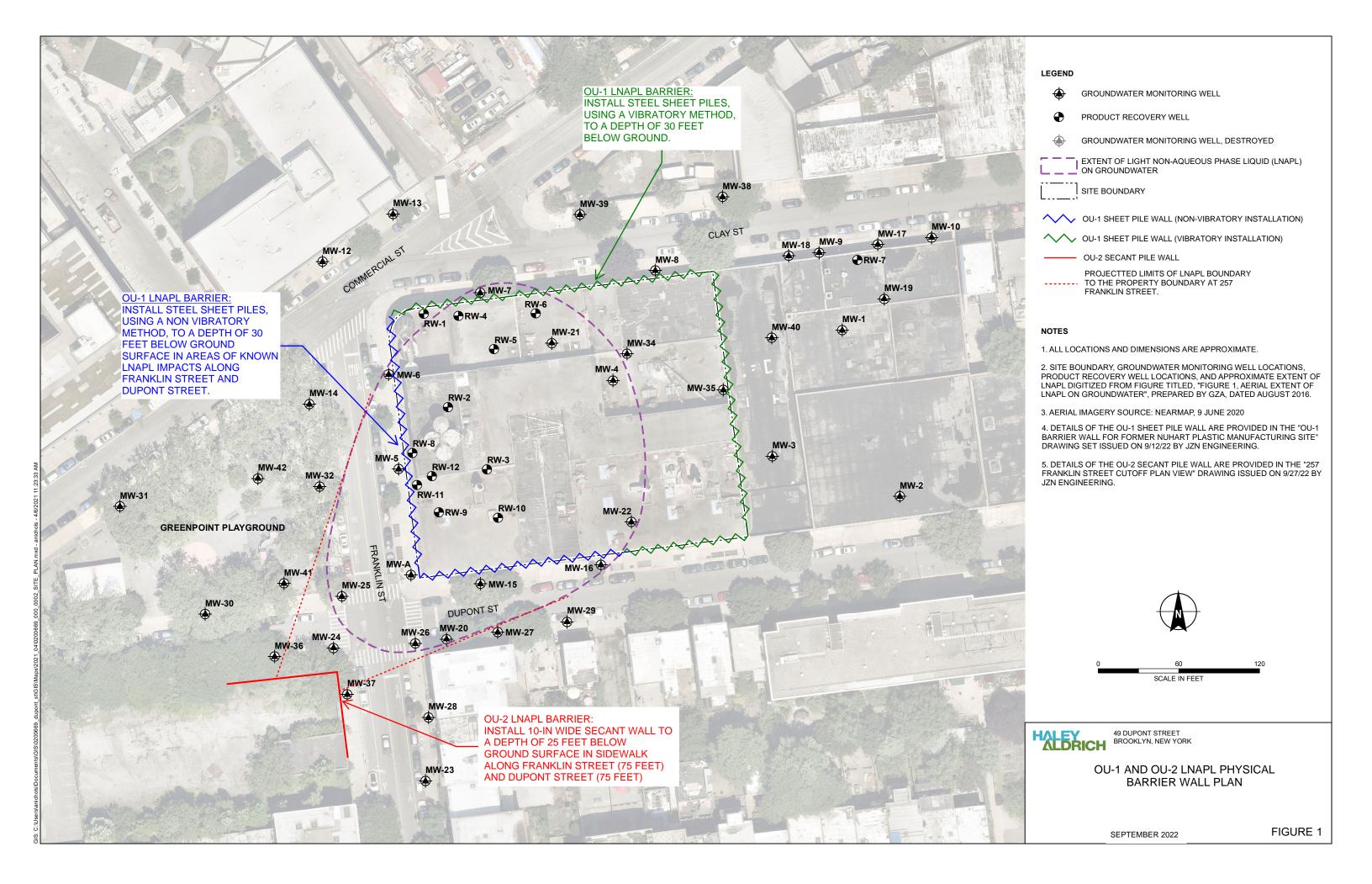
None.

10. Community Participation (CP) Plan Activities during This Reporting Period

None.

2




11. Activities Anticipated in Support of the CP Plan for the Next Reporting Period:

A Community Board Meeting is scheduled for 16 February 2023 to discuss next steps in the remediation of the Site.

12. Miscellaneous Information

None.

Attachment A: Apparent Thickness of LNAPL Former NuHart Plastic Manufacturing Site, NYSDEC #224136

280 Franklin Street Brooklyn, NY

Readings taken 1/24/2023 between 7:00 am and 12:00 pm (low tide @ 4:52am and high tide @ 11:25am)

																											Annarar	nt Thickness of	I NADI (foot)	`										4.524111 4110	iu iligii tiue	@ 11:25am)								
Well Nu	Depth	to Depth Produc		1						2022										202	11						Apparei	it TillCkiless of	2020	,			1				2010					$\overline{}$			2019					201
Well Nul	Water (f	eet) Frout		D 22	3: 22 L	N; 22	0.122		. aa I	7 1 22	7 00 I	May-22		35 22	E 1 22		21 2	31	11	202		T	37 31 L			20 1 0 4	20 1 1 20	Jun-20	2020	4 20 3	Iar-20 Feb-20	Jan-20	D 10	N 10 0	10 0 10	1 10 1	2019	10 37 10	T	14 10 E	5 1 10 T	10 D 10	0 / 10	7 10 1	7 10 1	10 11 10	T = 10 :	Ian-18 Nov-17	15 0 . 15	Sep-17
207	ND*		Jan-23	Dec-22	Nov-22	Nov-22	Oct-22 Se	ept-22 A	Aug-22	Jul-22	Jun-22	May-22	Apr-22	Mar-22	Feb-22	Jan-22 Dec	c-21 No	ov-21 Oct	-21 Sep	-21 Aug-2)* ND*	1 Jul-21	Jun-21	May-21	Apr-21 N	Mar-21 Nov	V-20 Oct-	20 Jul-20	Jun-20	May-20		ND ND*	Jan-20	Dec-19	Nov-19 Oc	t-19 Sep-19	Aug-19	Jun-19 Jun-1	19 May-19	Apr-19	Mar-19 F	reb-19 Jan	.19 Dec-18	Oct-18	Jun-18 M	lay-18 Apr		Feb-18 Ja	an-18 Nov-17	.7 Oct-17	1.76
MW -		ND*	ND*	ND*	ND*	NA	NA .	NA NA	ND*	ND* -	05 0	— NI)* NI	D* ND*	ND*	ND*	ND*	ND*	ND N	D NL) ND	ND 5.42	ND 271	1.12	112	ND*	ND*	ND* N	D* ND*	ND 1.20	ND* ND*	7.00	ND*	ND*	ND* NI)* ND*	ND*	0.12	1.13 0.6	55 0.73	ND*	0.92 2.12	0.81							
MW -		11.55	0.59	5.22	6.94	NA	NA I	NA	4.85	4.85	4.07	4.00	4.50	3.20	2.73	6.88 3.8	.85 (0.71 4.2	2.	3.52	0.78	0.10	0.42	0.78	0.29 3.5	59 4.70	6 2.94	5.43	3./1	4.18	4.46 4.21	3.44	4.47	4.61 5.	65 5.18	1.30	3./3 5.13	2.89	2.46	2.26	3.28 2.6	2.83	4.12	1.00	1.83 2.7	77 2.19	2.21	4.65 5.83	2.19	4.44
MW -		* 10.54	0.74	0.99	1.55	NA	NA .	NA	2.63	3.20	3.36	3.01	3.05	1.65	2.55	2.61 2.	.71 2	2.83 2.4	2 2.9	90 3.45	2.74	3.17	0.28	3.03	3.18 3.0	00 2.78	8 2.48	0.99	3.00	2.20	2.29 2.39	2.98	0.85	## #	# ##	##	## 0.50	2.35	##	##	## #1	##	ND	0.55	0.50 2.4	17 0.74	##	## ##	1.22	3.19
MW –			3.17	1.42	3.17	NA	NA I	NA	0.40	1.10	3.35	2.13	2.82	1.00	1.00	2.07 1.5	.59 (0.67 0.8	38 0.3	37 0.42	0.46	2.26	0.54	1.76	1.28 1.1	15 1.50	6 2.10	3.89	2.81	3.85	3.53 1.59	0.99	1.67	1.59 1.	63 1.96	0.84	0.45 1.30	0.14	0.35	0.26	1.54 1.1	4 0.93	0.54	1.89	1.99 1.8	30 2.03	2.55	3.32 4.91	1.48	1.45
MW –		ND	ND	ND	ND	NA	NA I	NA	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND	ND	_	ND N) ND	ND	ND	ND NI	D ND	ND	ND ND		ND						
MW –		ND	ND	ND	ND	ND	ND 1	ND	ND	ND		ND	ND	ND	ND	ND N	ID 1	ND N	O N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND	ND N) ND	ND	ND	ND NI	D ND	ND	ND ND		ND
MW –	-	ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND	ND N) ND	ND	ND	ND NI	D ND	ND	ND ND	O ND	ND
MW –		ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	D ND	ND	ND ND	ND	ND	ND	ND N) ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW –		12.47	7 1.27	1.76	2.36	NA	NA	NA	0.85	1.30	0.85	1.30	3.05	4.43	0.38	1.04 1.0	.05	0.10	8 0.3	38 0.83	0.46	0.57	0.61	2.44	4.46 0.2	29 1.30	0 1.00	3.13	2.36	2.75	3.29 2.66	0.83	0.85	1.08	99 0.18	0.03	0.11 0.87	7 0.08	0.08	1.08	1.00 0.8	54 0.26	0.12	0.04	0.04 0.0	0.07	0.08	3.16 1.78	0.31	0.29
MW –		12.87	3.47	0.47	0.15	NA	NA	NA	0.1	ND	0.02	0.40	0.58	0.03	0.20	0.56 0.7	.12 0	0.14 0.1	7 0.2	29 0.63	0.10	1.59	1.17	1.80	0.04 0.3	35 0.8	5 0.85	0.41	0.22	0.84	0.36 ND	ND	ND	1.95 0.	56 0.81	0.01	0.04 1.17	7 0.45	0.73	0.07	0.39 0.1	.7 0.19	0.20	0.06	0.10 0.1	13 —	0.1	0.34 0.25	0.35	0.37
MW –	0 14.08	12.67	7 1.41	3.66	2.69	2.36	2.80	2.73	3.1	3.05	2.61	2.60	2.61	2.02	3.22	2.29 1.7	.78 2	2.78 2.3	3.0	03 3.05	2.95	3.08	2.06	2.71	1.09 2.0	66 3.7	1 1.23	2.92	2.91	1.01	3.12 2.18	2.75	2.82	3.73 3.	37 3.25	2.29	2.09 3.66	5 1.45	1.47	2.17	2.43 2.7	7 3.49	2.51	1.4	1.55 2.5	52 1.77	1.02	3.15 3.99	2.52	2.58
MW –		NA	NA	NA	NA	NA	NA	NA	0.95	1.90	1.54	1.40	2.09	2.68	0.75	0.86 1./	.60 1	.15 2.4	5 0.0	0.35	1.39	1.33	1.06	1.91	2.61 1.3	33 3.13	3 2.98	5.44	4.29	4.29	4.57 3.63	1.11	2.88	3.07 3.	13 1.99	1.51	1.41 1.84	4 0.52	1.25	1.01	1.57 1.4	48 2.81	1.73	1.43	1.42 1.6	52 1.38	2.29	3.83 4.79	9 3.26	3.35
MW –	2 15.04	13.81	1.23	1.15	ND*	NA	NA	NA	0.78	1.20	5.13	1.30	1.55	ND*	ND*	0.58	-	- 0.9	0.	11 0.86	1.13	1.62	0.39	0.99	0.45 0.3	37 1.9:	5 0.76	2.56	2.13	1.54	1.55 1.59	1.44	1.22	1.06	94 2.95	0.69	0.51 2.28	3 2.98	1.03	1.05	1.83 1.6	58 0.83	0.69	0.97	0.89 0.7	76 1.11	0.28	0.37 1.77	1.25	1.24
MW –		ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID I	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N) ND	ND	ND	ND NI	D ND	ND	ND ND) ND	ND
MW –	4 NA	NA	NA	NA	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND N	(D)	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW –	5 15.75	12.52	3.23	3.06	2.86	3.83	4.71	4.51	4.5	4.55	5.87	4.20	4.44	3.87	3.29	3.78 3./	.52 4	1.49 3.7	8 3.5	3.90	3.08	4.37	3.63	3.81	3.24 3.2	28 4.3	5 4.23	3.68	0.98	3.79	6.72 4.57	4.89	4.66	4.93 4.	31 3.18	3.38	3.83 4.61	3.76	3.81	4.19	4.77 3.8	36 3.89	3.44	2.85	2.89 4.0	03 3.45	3.44	3.66 4.54	4.03	4.05
MW –	6 12.98	12.37	0.61	4.09	4.01	3.76	4.84	3.78	3.4	3.50	4.02	3.40	4.39	3.02	1.90	4.45 3.7	.24 3	3.44 2.8	39 7.	14 3.58	3.07	4.01	3.02	3.32	3.32 2.9	97 3.50	6 3.79	3.78	3.71	3.47	4.13 4.14	4.11	4.65	4.02 4.	62 5.21	3.43	3.19 4.90	0.69	2.46	2.94	3.37 3.1	14 3.84	3.45	0.75	2.35 3.1	14 2.48	3.19	3.95 5.59	3.81	3.82
MW –	7 12.81	ND	ND	ND	ND*	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	(D)	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW –	8 13.24	ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND) ND	ND
MW –	9 12.74	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW –	0 12.02	ND ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW -	1 11.49	ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW –	2 12.08	ND ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW-	4 NA	NA	ND	NA	NA	NA	NA	NA	ND	ND -	_	— N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND) ND	ND						
MW –	5 12.07	ND	ND	ND	ND	NA	NA	NA	ND	ND -	_	— N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND						
MW-	6 NA	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID I	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND) ND	ND
MW-	7 ND*	ND*	ND*	ND*	ND*	ND*	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND*	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND*	ND	ND NI	D ND	ND	ND ND	ND	ND
MW-	8 9.65	ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW-	9 8.97	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID I	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW-	9.88	ND	ND	ND	ND	NA	NA I	NA	ND	ND	-	_	ND	ND	ND	_ N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND
MW –	1 12.11	ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	_ -	_	- -	_	_	_			_		- -	_			_	_			_	ND	ND NI	D ND	ND	ND ND) ND	ND
MW-	2 11.34	ND	ND	ND	ND	ND	ND 1	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND*	ND*	ND	ND NI	D ND	ND	ND ND	ND	ND
MW-	17.30	12.85	4.45	-	-	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-		-	-	-	-	-	-			-	-	-	-		-	-	-		-		-	-	-			-	-		-	-			-
RW –	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND N	ID 1	ND N) N	D ND	ND	ND	ND	ND	ND N	D NE) ND	ND	ND	ND	ND ND	ND	ND	ND N	ID ND	ND	ND ND	ND	ND	ND	ND N	D ND	ND	ND	ND NI	D ND	ND	ND ND	ND	ND						
RW –	NA	NA	NA	3.16	4.55	NA	NA	NA	3.45	3.10	5.67	3.39	5.78	5.25	3.15	5.19 3./	.03 2	2.11 2.0	0 2.	16 2.12	2.92	02.15	1.74	3.28	2.44 3.8	81 2.9	0 3.95	4.56	3.25	4.93	4.78 4.59	3.31	4.49	2.42 5	03 2.19	1.41	0.66 4.08	3 1.64	1.47	1.27	4.73 5.1	12 1.63	5.54	0.06	0.08 1.6	65 0.08	5.52	4.01 5.19	0.56	0.58
RW –	NA	NA	NA	NA	2.51	NA	NA	NA	2.45	3.40	5.35	3.04	3.90	1.34	2.30	3.20 0.	.67 2	2.70 2.7	9 2.0	50 3.67	4.61	05.02	1.45	3.85	2.50 1.9	99 3.2:	5 4.41	2.31	2.05	3.82	3.85 3.48	3.24	2.62	4.30 4.	03 4.09	3.50	3.25 3.96	5 1.61	2.11	2.26	4.71 2.2	22 2.63	3.77	2.08	2.03 2.5	52 2.12	3.03	ND 3.31	3.17	3.15
RW –	14.02	13.62	0.40	2.18	1.53	NA	NA	NA	3.23	4.40	4.97	4.01	4.40	2.97	3.13	1.92 2.	.89 3	3.50 3.1	7 0.3	36 4.35	4.52	03.87	2.64	4.35	3.69 3.2	23 2.9	9 3.94	3.35	2.92	3.55	2.46 3.78	2.64	3.02	4.15 #	# 4.21	3.56	3.07 4.72	1.13	0.53	2.85	## #:	# 03.37	2.85	2.96	2.97 3.8	3.01	02.39	3.06 4.32	4.33	4.17
RW –	NA	NA	NA	3.47	0.86	NA	NA	NA	5.85	5.85	5.02	5.31	5.40	5.18	5.60	2.81 0.5	.51 5	5.81 3.8	30 1.	10 6.45	1.15	5.91	0.73	4.78	0.67 4.9	93 5.3	0 6.32	4.59	1.60	2.91	4.91 5.18	2.54	##	## #	# 5.74	##	## ##	0.71	##	##	## #:	# ##	ND*	0.44	0.33 0.6	55 0.34	4.64	0.49 4.49	5.28	5.27
RW –	NA	NA		0.40	ND*	NA	NA	NA	0.7	1.30		1.20	1.15	0.35	1.05	1.10	_ 0	0.90 1.3	2 0.5	53 0.21	1.14	1.33	0.58	2.49	## #	## 2.83	2 1.85	2.17	0.44	1.21	0.98 1.05	1.67	1.51	1.61 2	19 1.49	0.7	0.46 1.57	7 0.28	0.55	0.49	02.33 0.9	.91 00.73			0.88 0.9		00.90			
RW - 8	** 13.57*	* 13.21	0.36	0.88	1.52	NA	NA	NA	3.77	3.80	4.06	4.06	3.55	2.35	_		_				_	_	-	-		- -		_	_			_	_			-		_	_						0.02 0.0	0.03	0.96	1.99 —	1.15	2.2
RW –	17.01	13.46	3.55	3.92	4.46	NA	NA	NA	4.07	6.65	4.02	3.70	6.55	2.50	3.70	5.97 4.4	.46 2	2.54 2.7	0.	78 4.12	2.95	3.65	3.42	4.39							5.01 5.36			4.37 5.	59 4.23	2.99	3.55 4.57	2.32	1.73	2.23	3.79 1.5	53 3.45	4.52	0.11	2.38 2.2	28 1.51	2.88	4.32 5.58		
RW –) NA	NA	NA	NA	2.13	NA	NA	NA	3	4.2	5.31	5.74	4.02	3.00	3.30	3.61 1.6	.65 2	2.95 3.0	0.	70 2.90	3.30	4.71	3.1	4.32	1.38 5.9	96 3.8	8 3.59	4.31	2.93	2.86	3.80 3.59	4.58	3.64	4.41 4.	37 3.99	0.76	3.04 3.92	3.25	3.11	3.24	4.53 3.8	.80 4.06	2.46	1.52	1.60 3.7	70 0.66	3.48	4.64 4.28	3.65	3.67
RW –	14.74	11.82	2.92	2.48	3.76	NA	NA	NA	4.1	4.9	3.48	4.01	5.22	3.35	2.85	0.68 4.7	.78 4	3.0	54 1.	11 4.48	2.67	6.11	2.00	4.20	1.43 3.2	25 4.2	4 3.45	3.89	4.32	4.31	5.77 5.13	3.80	5.58	4.54 6.	30 4.85	4.12	3.78 4.65	3.32	1.92	2.35	4.74 2.6	3.02	2.21	2.51	2.52 4.3	34 2.41	2.50	5.01 5.5	2.97	4.57
RW- 12	** NA	NA	NA	5.42	6.10	NA	NA	NA	4.17	4.7	7.02	3.86	3.30	3.50	- [-]				_	_	-	- [- -	-	_	_	-		_	_	_ -		_			_	-			-	0.11	0.02 2.6	0.02	1.12	1.5 5.96	3.65	5.4
MW -	NG	NG	NG	NG	NG	NG	NG I	NG	NG	NG	NG	NG	NG	NG	NG	NG N	lG	— N	G N	G NG	NG	NG	NG	NG	NG N	IG NO	G NG	NG	NG	NG	NG NG	NG	NG	NG N	IG NG	NG	NG NG	NG	NG		NG -	- NG	NG		NG NO	G NG	NG	NG NG	G NG	
MW -	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	lG 1	ND N	G N	G NG	NG	NG	NG	NG		IG NO					NG NG		NG		IG NG	NG	NG NG				NG -	– NG			NG NO			NG NG		
MW -) NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	lG 1	ND N	G N	G NG	NG	NG	NG	NG	NG N	IG NO	G NG	NG	NG	NG	NG NG	NG	NG	NG N	IG NG	NG	NG NG	NG	NG	NG	NG N	D NG	NG	NG	NG NO	G NG	NG	NG NG	NG	NG
MW -	7 NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	lG 1	ND N	G N	G NG	NG	NG	NG	NG	NG N	IG NO	G NG	NG	NG	NG	NG NG	NG	NG	NG N	IG NG	NG	NG NG	NG	NG	NG	NG N	D NG	NG	NG	NG NO	G NG	NG	NG NG	NG	NG
MW -	NG NG	NG	NG	NG	NG	NG	NG I	NG	NG	NG	NG	NG	NG	NG		NG N	NG .	— N	G N	G NG	NG	NG	NG	NG	NG N	IG NO	G NG	NG	NG	NG	NG NG	NG	NG	NG N	IG NG	NG	NG NG	NG	NG	NG	NG N	ID NG	NG	NG	NG NO	G NG	NG	NG NG	NG	NG
RW -	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG N	lG .	- N	G N	G NG	NG	NG	NG	NG	NG N	IG NO	G NG	NG	NG	NG	NG NG	NG	NG	NG N	IG NG	NG	NG NG	NG	NG	NG	NG -	- NG	NG	NG	NG NO	G NG	NG	NG NG	NG	NG

Data recorded using an oil/water interface probe, measurements from the tops of well casings

= NAPL observed, apparent thickness not determined NI = Not Installed ND = Not Detected NA= No Access

Wells MW-1, MW-2, MW-9, MW-10, MW-17, MW-18, MW-19, and RW-7 are associated with NYSDEC Spill 06-01852 and are under a separate investigation est= Estimated Value ** = Water not detected; well filled with sediment, value is the total depth of the well

Wells were gauged on 24 January 2023

NG = Not Gauged

Table 1:
Attachment A: Apparent Thickness of LNAPL
Former NuHart Plastic Manufacturing Site, NYSDEC #224136
280 Franklin Street
Brooklyn, NY

		Depth to			T		Apparent Thickness of LNAPL (feet) 2017 2016 2015 2014																																									
Well Number	Depth to Water (feet)	Product	7				201	7							2016									20	15								2014							2013	3						2012	
	water (reet)	(feet)	Aug-17	Jul-17	Jun-17 M	ay-17 Ap	r-17 Mar	-17 Feb-	17 Jan-17	7 Dec-16	6 Nov-1	6 Oct-16	Sep-16	Aug-16	Jul-16	un-16 May	16 Apr-16	Mar-16	Feb-16	Jan-16	Dec-15	Nov-15 O	ct-15 Se	p-15 Au	-15 Jul-15	Jun-15	May-15	Apr-15	Mar-15 Jan-1	15 Sep-14	Aug-14	Jul-14 Ju	un-14 May-14	Apr-14	Mar-14	Feb-14 Jan-14	Dec-13	Nov-13	Oct-13	Sep-13	Aug-13	Jul-13	Apr-13 Mar-13	Feb-13	Jan-13	Dec-12 N	Nov-12 Oct	-12 Sep-12
MW-4	ND*	ND*	1.73	1.23	1.77	ND* 1	.32 1.6	1.13	3 1.31	1.30	1.00	1.18	1.35	1.71	1.73	1.80 1.5	1.73	1.43	1.85	1.77	1.96	2.04	1.99 1	.77 2	2 4.27	0.35	0.44	-	0.56 —	1.75	1.90	1.24 T	Ггасе —	0.01	Trace	0.23 0.22	0.30	0.66	0.78	##	3.49	2.22	0.59 0.67	0.44	0.44	0.80	0.31 0.3	3.13
MW - 5	12.14	11.55	4.4	3.71	3.54	2.81 2	.80 3.1	3 4.05	3.00	3.55	4.43	3.64	3.22	4.31	4.03	4.29 3.0	3.18	3.14	1.85	3.24	4.83	5.41	4.16 4	1.26 4	5 4.22	2.30	2.41	2.55	3.10 4.40	4.79	5.03	1.97	3.39 —	3.14	2.80	2.98 —	6.46	7.17	5.54	##	5.08	3.92	3.00 2.39	4.32	3.00	4.11	3.50 3.4	5.58
MW-6	11.28**	10.54	3.15	##	##	## :	## #:	##	##	##	##	##	##	##	##	## ##	##	##	##	##	##	##	## :	## #	##	2.30	##	##	## ##	##	##	##	## —	_	2.84	3.43 —	2.89	2.76	2.00	##	2.42	2.82		_	_	_	— 3./	19 2.14
MW-7	14.04	10.87	1.41	0.9	0.00	1.50	92 2.5	3.7	1.28	0.78	1.73	0.91	0.04	1.89	1.58	2.22 2.1	1.90	1.66	2.31	2.47	3.44	3.31	2.58 1	.46 1	0.99	1.58	ND	1.94	1.79 ##	2.01	2.16	0.60	0.01 —	0.17	0.17		4.78	4.70	4.00	##	2.77	1.06	1.92 4.92	5.45	1.30	1.36	2.00 1.8	1.83
MW - 8	10.15	ND	ND	ND	ND	ND N	ID N	O NE	ND	ND	ND	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND	ND N	ND N	O ND	ND	ND	ND	ND —	ND	ND	ND I	ND —	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	D ND
MW – 12	7.78	ND	ND	ND	ND	ND N	ID N	O NE	ND	ND	ND	ND	ND	ND	ND	ND NI	ND	_	_	_	ND	ND	_		- -	ND	ND	ND	ND —	ND	_	ND 1	ND —	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	D ND
MW-13	8.02	ND	ND	ND	ND	ND N	ID N	O NE	ND	ND	ND	ND	ND	ND	ND	ND NI	ND	ND	_	_	ND	ND		_ -	- -	ND	ND	ND	ND —	ND	_	ND	ND —	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	D ND
MW-14	10.81	ND	ND	ND	ND	ND N	ID N	O NE	ND	ND	ND	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND	ND N	ND N	O ND	ND	ND	ND	ND ND	ND	ND	ND	ND —	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	D ND
MW – 15	13.74	12.47	0.26	0.26	0.24	0.12 0	22 0.2	8 0.40	0.31	0.20	0.80	0.20	0.17	0.81	0.07	0.48 0.2	0.71	0.03	0.04	0.60	3.08	3.07	1.97 1	.05 1)5 ND	1.24	1.21	1.56	1.67 1.71	2.19	2.32	## (0.45	0.61	0.30	0.38	3.11	3.19	3.34	##	2.14	0.70	- 0.32	1.07	-	1.56	0.99 0.7	76 2.67
MW – 16	16.34	12.87	0.35	0.08	0.28	0.03 0	.10 0.2	3 0.20	0.31	ND	ND	ND	ND	ND	0.01	0.25 0.0	0.01	0.02	0.16	0.02	0.11	0.02	0.12 0	0.05	0.14	0.13	0.15	0.03	0.08 0.02	2 –	0.03	0.99 T	Ггасе —	0.01	0.01	0.10	0.23	0.22	0.19	##	0.05	0.07	0.02 0.01	0.10	0.25	0.20	ND 0.2	24 0.20
MW – 20	14.08	12.67	2.63	2.9	2.83	2.61 2	.94 2.3	3.02	3.02	2.88	3.28	2.90	3.16	2.89	2.88	2.85 2.2	2.49	2.43	1.99	2.46	3.52	3.02	3.33 3	3.25 3	2 2.88	2.58	2.79	3.84	4.38 5.13	1.87	1.71	2.92	2.06	1.47	2.90	2.58 4.19	5.07	4.90	4.11	##	3.33	1.37	3.32 1.20	1.10	1.35	1.38	3.39 3.1	3.80
MW – 21	NA	NA	2.13	1.45	2.75	3.31 3	.30 3.0	4 3.62	2 7.59	3.27	3.32	1.25	2.39	3.61	2.96	2.95 2.6	4.18	2.68	2.42	2.97	4.46	3.85	4.51 3	3.63 3	2.97	2.53	2.77	2.98	3.46 3.23	3.62	4.64	4.90	1.99 —	2.69	2.47	2.48 3.37	3.13	3.72	4.66	##	4.37	3.66	3.38 3.43	3.75	4.10	4.23	2.89 2.0	4.15
MW – 22	15.04	13.81	1.21	0.75	0.66		.78 0.6	0.65	0.50	0.51		0.50	0.01	0.51	0.87	0.62 0.4	0.10	0.44	0.15	0.22	1.33	1.01		/	0.79	0.86	0.84	0.74	1.33 1.27	1.03	1.02	0.54	0.85	0.74	0.86	0.75 1.22	1.07	0.69	0.50	##	1.12	0.86	0.50 0.62	1.15	1.20			1.80
MW – 23	13.45	ND	ND	ND	ND	110 1	ID N	7 112	, IND	ND		ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND		ND N	O ND	ND	ND	ND	ND ND	ND	ND	ND :	ND —	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND NI	
MW – 24	NA	NA	ND	ND	ND	ND N	ID N) NE	ND	ND	ND	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND	ND N	ND N	O ND	ND	ND	ND	ND ND	ND	ND	ND :	ND —	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND		D ND
MW – 25	15.75	12.52	4.02	3.73	4.09	3.85	70 3.7	4 3.4	7 3.89	3.62	3.60	4.20	3.79	3.65	4.01	3.75 3.5	3.33	3.42	3.32	3.43	3.68	3.53	3.63 3	3.53	3.53	2.81	3.24	3.36	1.07 1.03	3.16	4.02	3.65	3.48	3.91	3.75	_	5.66	5.56	4.01	##	4.41	3.58	3.96 3.96	4.34	3.70	2.82	7.86 4.4	10 3.96
MW – 26	12.98	12.37	3.79	3.65	3.42	3.29 3	73 3.6	3.24	3.14	3.20	3.56	4.00	3.28	4.26	3.58	3.82 3.4	3.37	2.97	3.82	3.41	4.23	4.08	3.77 4	1.00	0 3.65	3.18	3.33	3.64	4.14 4.11	3.84	3.70	4.50	3.02	2.71	3.48	3.80 4.34	4.44	4.47	4.62	##	4.18	3.69	2.86 2.33	1.00	2.45	1.62	- 2.0	51 4.02
MW – 27	12.81	ND	ND	ND	ND	ND N	ID N) NE	- 112	ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND	.,,,,	ND N) ND	ND	ND	ND	ND ND	ND	ND	ND :	ND —	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	0.99 NI	
MW – 28	13.24	ND	ND	ND	112	110 1	ID N	, ,,,,	.,,,,	ND		ND	ND	ND	ND	ND NI	1.12	ND	ND	ND	ND	ND		ND N) ND	ND	ND	ND	ND ND	ND	ND	ND	ND —	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	NI		I NI
MW – 29	12.74	ND	ND	ND			ID N						ND	ND	ND	ND NI	ND	ND	ND		ND			-) ND	ND	ND	ND	ND ND	_	ND	112	ND —	ND	ND	ND ND			ND	ND	ND	ND	ND ND	ND	ND	NI	NI N	I NI
MW – 30	12.02	ND	ND	ND	1112	ND N	ID N			ND	ND	ND	ND	ND	ND	ND NE	ND	ND	ND	ND	ND	ND		ND N) ND	ND	ND	ND	ND ND	1,12	ND	ND :	ND —	ND	ND		ND		ND	ND	ND	NI	NI NI	NI	NI	NI	NI N	
MW – 31	11.49	ND	ND	ND	ND	ND N	ID N	, ,,,,		-			_	_	ND	ND NE	ND	ND	ND	ND	ND			ND N	O ND	ND	ND	ND	ND ND	ND	ND	ND :	ND —	ND	ND		ND	ND	ND	ND	ND	NI	NI NI	NI	NI	NI		I NI
MW – 32	12.08	ND	ND	ND	ND	ND N	ID N	O NE		ND	1,12	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND		ND N	O ND	ND	ND	ND	ND ND	ND	ND	ND 1	ND —	ND	ND		ND	ND	ND	ND	ND	NI	NI NI	NI	NI	NI	NI N	
MW – 34	NA	NA	ND	ND			ID N	7 112	ND		ND	ND	ND	ND	ND	ND NI		ND	ND	ND	ND	ND		ND N	O ND	ND	ND	ND	ND ND	ND	ND	ND :	ND —	ND	ND	ND ND	ND	ND	ND	ND	ND	NI	NI NI	NI	NI	NI		I NI
MW – 35	12.07	ND	ND	ND	112	ND N	ID N	7 112	ND	ND	ND	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND		ND N) ND	ND	ND	ND	ND ND	ND	ND	ND .	ND —	ND	ND	ND ND	ND	ND	ND	ND	ND	NI	NI NI	NI	NI	NI	NI N	
MW – 36	NA	ND	ND	ND	1112	ND N	ID N	7 112		ND	112	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	ND		ND N	O ND	ND	ND	ND	ND ND	ND	ND	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	
MW – 37	ND*	ND*	ND	ND			ID N			ND	ND	ND	ND	ND	ND	ND NI	ND	ND	ND	ND	ND	I (L)		ND N	O ND	ND	ND	ND	ND ND	112	ND	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI		I NI
MW – 38	9.65	ND	ND	ND	112		ID N	7 112				-	-	-	ND	ND NI	1.12	ND	ND	ND	ND	I (I)		ND N	O ND	ND	ND	ND	ND —	ND	NI	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI		I NI
MW – 39	8.97	ND	ND	ND			ID N					П	ND	ND	ND	ND NE		ND		ND				ND N	3 112	ND	ND	ND	ND ND		NI	141	NI NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI		I NI
MW – 40 MW – 41	9.88	ND ND	ND ND	ND		ND N	ID N			ND ND		ND ND	ND ND	ND	ND	ND NE		ND ND	ND ND	ND ND	ND ND			ND N	O ND	ND	ND	ND	ND ND	ND	NI	NI	NI NI	NI	NI NI	NI NI	NI	NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI N	I NI
MW – 41 MW – 42	12.11 11.34	ND ND	ND ND	ND ND	112		ID N	7 112				ND ND	ND ND	ND ND	ND ND	ND NE		ND ND	ND ND	ND ND	ND ND	112			O ND	ND	ND ND	ND ND	ND ND	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI NI		I NI I NI
MW-A	17.30	12.85	ND	ND	ND	ND 1	ID N) NL	ND	ND	ND	ND	ND	ND	ND	ND NL	ND	ND	ND	ND	ND	ND	ND I	ND I	J ND	ND	ND	ND	ND ND	INI	INI	INI	NI NI	INI	INI	NI NI	INI	INI	NI	INI	INI	INI	NI NI	INI	INI	INI	INI IN	INI
RW – 1	17.30 NA	NA	ND	ND	ND	ND N	ID N) NE	ND	ND	ND	ND.	ND	ND	ND.	ND NI	ND	ND	ND	ND	ND.	-	ND N	ND N) ND	ND	ND.	ND.	ND ND	ND	ND	ND	ND —	ND	ND	ND ND	ND	ND	ND.	ND	ND	ND	- ND	ND.	ND.	ND	ND NI	D ND
RW – 2	NA NA	NA NA	0.53	6.09	625	0.42 1	13 20	0 300		1.65	1 18	1.26	1 35	1.88	2.05	241 30	2 12	3 34	2.70	2.83	4 28	_	264 2	97 3	1 5 54	5.28	5.44	2.82	4.19 4.52		4 53	4.52	0.11	1.30	3.05	2 31 2 80	3 19	5.09	3.86	##	4.07	2.96	2 92 3 48	3.75	4.20	2.52		50 5.85
RW – 3	NA	NA	3.22	2.28	3.44	2.85	71 34	6 29	3.10	1.03	3 95	2.40	2.50	3.08	1.97	2.41 3.6	2.12	2.09	1.64	2.03	4.20	2 92	1 14 1	39 2	4 431	2.23	2 23	1.81	3.28 3.41	3.50	3.45	3.56	4 12	1.58	2 90	2.28 4.60 (es	3.17	3.33	1.68	##	2.96	1.44	3.90 3.20	3.73	3.70	3.58		50 3.88
RW – 4	14.02	13.62	4.18	3.1	4.1	3.69	.65 3.6	9 3.6	7 3.05	3.80	2.80	2.77	3.30	2.73	2.65	2.32 2.0	2.17	2.93	2.03	2.51	2.82	2.31	1 99 1	.09 2	2 3.65	3.66	3.53	3.53	1.43 1.35	5 2.78	2.88		2.86	1.81	3.25	3.27 2.45	2.67	2.30	1.46	##	2.75	1.08	3.06 3.15	3.00	3.05	2.95		15 3.35
RW – 5	NA	NA		5.42				0 0.70		1.55		0.42	0.36	0.50	4.97	2.76 2.4	7 2.66	3.21	2.53		1.96	5.64		-	9 4.87	4.69	4.75		0.85 0.91		_		0.17 —	0.12		0.43 0.52	0.60	_		##	0.69	0.51	2.62		_		3.00 1.8	
RW – 6	1	NA		0.93			27 1.2	2 0.90		_		_	0.92		1.29	0.81 0.6				0.74		0.65							1.19 1.14						1.28		_			##	0.10	0.08	0.45 0.50	0.21	0.40	0.15	0.90	2 0.06
RW – 8 ***	13.57**	13.21		1.2			01 -			_	_	_	_	_	_		_	_	_	_	_	_				_	_			2 4.01			2.95 —		-		_		_	##		3.64			_	_		-
RW – 9	17.01	13.46	3.69					0 3.60	5 2,47	3.09	3,57	2,45	2,35	3.19	2.15	3.18 2.7	3.09	3.81	2,42	3.46	4.62	4.37	3.52 2	2.68 3	3.04	4.82	4.79		5.68 5.65				4.14 —			2.71 4.34	_	4.88					4.40 2.62	3.11	3,50	3.08	3.83 2	98 5.33
RW – 10	NA	NA			3.78		79 4.2			3.86	_	3.80		_		3.69 3.74	_			4.77			1.45 4		2 5.71	_	3.95		4.96 5.04						3.89			3.99				3.55		_	_	_		
RW – 11																3.43 3.0				3.07		4.39							3.87 3.97				3.87 —		2.54		_	5.48	_				3.15 2.67	3.11	3.50	2.93	4.49 2	58 4.40
RW- 12 ***	+ +		2.68	_					_	_	_		_		_					-	_					_	_	_		_		_			_			_		_	_	_		_	_	_		
MW - 1	NG	NG						G NO		NG			NG		NG		_	NG		NG			NG 1		G NG	NG	_		NG NG	_		NG	NG NG			NG NG	NG			NG		NG	NG NG	NG	_	NG	NG N	G NG
MW - 9	NG	NG	NG				_	G NO		NG		_	NG	_	NG		_			NG					G NG	_	NG		NG NG	_			NG NG			NG NG	_	_	_	NG		NG	NG NG	_	_	NG		G NG
MW - 10	NG	NG						G NO		NG		_	NG		NG			_		NG			NG 1		G NG		NG		NG NG	_			NG NG			NG NG	_			NG		NG	NG NG	_	_	NG		G NG
MW - 17	NG	NG			NG				NG			NG				NG NO									G NG								NG NG					NG			NG		NG NG			NG		G NG
MW - 18	NG	NG			NG		IG N			NG		_		NG			_					NG			G NG				NG NG				NG NG			NG NG			NG		NG		NG NG			NG		G NG
RW - 7	NG	NG	_	NG				G NO		NG		_	NG		NG			_		NG			NG 1		G NG		NG			NG			NG NG		NG	NG NG	_			NG			NG NG			NG		G NG
								.,,,	.,,5		.,0	.,,	,,			110				-,,													1.0			110	.,,5	.,,					1.0	1,10				

Notes:

Data recorded using an oil/water interface prol
= NAPL observed, apparent thickness not c
NI = Not Installed ND = Not De
Wells MW-1, MW-2, MW-9, MW-10, MW-1
est= Estimated Value ** = Water n
* = Well was dry *** = Well re

Wells were gauged on 24 January 2023