

Department of Environmental Conservation

Algonquin Middle School

PFAS INVESTIGATION (SPILL NO. 2105197)

POESTENKILL, NY

FEBRUARY 2022

Kathy Hochul, Governor | Basil Seggos, Commissioner

Table of Contents

1.0 Introduction	3
2.0 Location	3
2.1 Area of Interest	
2.2 Geology and Hydrogeology	3
2.3 Property Features and Use	4
2.4 Property History and Past Use	
2.5 Topography and Drainage	4
3.0 Investigation Activities	5
3.1 Surface Water and Sediment Sampling	5
3.1.1 Surface Water Sampling	5
3.1.2 Sediment Sampling	6
3.2 Surface and Subsurface Soil Investigation	
3.2.1 Private Utility Survey	6
3.2.2 Community Air Monitoring Plan	
3.2.3 Surface and Subsurface Soil Investigation	7
3.3 Groundwater Investigation	7
3.3.1 Temporary Monitoring Well Installation	7
3.3.2 Groundwater Sampling	8
4.0 Discussion of Results	8
4.1 Standards, Criteria, and Guidance	8
4.2 Surface Water Results	
4.3 Sediment Results	
4.4 Soil Results	
4.5 Groundwater Results1	0
5.0 Findings and Recommendations1	1
5.1 Findings Summary1	1
5.2 Recommendations	2
6.0 References	3
FIGURES 1	4
TABLES	0
APPENDIX A	2
APPENDIX B	8
APPENDIX C	1

1.0 Introduction

On August 26, 2020, NYS established maximum contaminant levels (MCL) in drinking water of 10 parts per trillion (ppt) for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) individually, and 1 part per billion (ppb) for 1,4-dioxane. As required by the State's public water supply regulations, public water systems across NYS began monitoring for PFOA, PFOS, and 1,4-dioxane.

The Algonquin Middle School, located in the Town of Poestenkill, is served by two drinking water supply wells located on the property. In accordance with public water supply regulations, initial sampling for PFOA, PFOS, and 1,4-dioxane was conducted by the Averill Park School District on January 7, 2021. Results showed levels of 13 ppt of PFOA in both wells, exceeding the MCL of 10 ppt. In consultation with Rensselaer County Department of Health (RCDOH), the Averill Park School District shut off the drinking water fountains at the school and provided bottled water to ensure students and staff were not exposed to contamination. Both supply wells were retested on February 1, 2021, which confirmed that PFOA was detected slightly above the MCL at 12 ppt.

Following up on the contamination detected at the Middle School, RCDOH coordinated with New York State Departments of Health (DOH) and Environmental Conservation (DEC) to gather information on private wells and to develop a private well sampling plan to assess and mitigate any potential exposures to contamination. In August 2021, DEC designated the apparent release of PFOA and PFOS as Spill No. 2105197. During the fall of 2021, DEC completed a preliminary investigation at the Middle School where contamination was initially identified. Field activities and subsequent environmental sample results are described herein.

2.0 Location

2.1 Area of Interest

The Algonquin Middle School is located in the Town of Poestenkill at the intersection of NYS Route 351 and NYS Route 66. The school property is bounded by NYS Route 66 to the north, NYS Route 351 to the east, and by a tributary of Newfoundland Creek to the south and west. The immediate surrounding area is primarily residential with a few commercial and industrial operations to the north and east: Hass Manufacturing, Waste Management Transfer Station, and the L J Valente Lumber Yard. A car wash and historic car racing speedway were reported to exist southeast and northeast of the intersection of Route 351 and NYS Route 66. A topographic map showing the Middle School and surrounding land features is provided on **Figure 1**.

2.2 Geology and Hydrogeology

According to the digitized (1:250,000) Surficial Geology of New York State – New York State Museum map (New York, 2003), surficial geology in the area consists of glacial till of variable thickness (1-50 meters), kame gravel and sand deposits (10-30 meters), and outwash sands and gravels.

According to the digitized (1: 250,000) Bedrock Geology – New York State Museum map (New York, 1999), bedrock geology underlying the immediate area consists of Cambrian age dark red and green soft shales interbedded with quartzite and sandstone.

A tributary of Newfoundland Creek, which is classified as a Class C stream, flows generally from the south to north along the southern and western extent of the Middle School property. Newfoundland Creek flows into Poesten Kill approximately 2 miles to the north. Poesten Kill flows towards the Hudson River, located approximately 7 miles to the west of the Middle School.

2.3 Property Features and Use

The Middle School property consists of a 52.57-acre parcel identified on Rensselaer County tax maps as parcel number 136.-9-28.1. The parcel consists of the Algonquin Middle School facilities, parking lots, and athletic fields. The main school building and parking lot is located on the northern half of the property. Athletic fields and a smaller parking lot are located on the south side of the school. The Middle School's septic system is located beneath the baseball and soccer fields to the immediate south of the main school building. The school's drinking water supply wells are located on the west side of the school near the main parking lot.

Areas to the west, east, and south on this parcel are wooded. A tributary of Newfoundland Creek, flowing generally south to north, roughly marks the furthest southerly and easterly extent of the parcel. The school property is accessible from two entrances located on the north and east side of the property along NYS Route 66 and NYS Route 351, respectively.

A map showing the Middle School and above-referenced features can be found on Figure 2.

2.4 Property History and Past Use

According to historical aerial imagery and from interviews with local and school officials, the Middle School was constructed in 1966. Prior to 1966, the land was undeveloped and was reported to be a low-lying wet area. An addition to the Middle School was constructed in 1997. Between 1994 and 2004, a portion of the forested area behind the school buildings was cleared to create the present-day football field.

During a reconnaissance visit by DEC staff, piles of historic household garbage and automotive debris were identified on the west side of property. The origin of the waste is unknown but consisted generally of empty cans, glass bottles, and two deteriorating car frames.

A spill on the Middle School property was reported to DEC on September 16, 2010, which cited the disposal of four 55-gallon drums with unknown contents. The material was found to be a waste solvent based on sampling results. Drums and impacted soils were removed for offsite disposal.

2.5 Topography and Drainage

The Middle School property generally grades from a topographic high point on the east towards lower elevations to the west. The northern half of the school property, including the front lawn, parking lot, and main school facility, are relatively flat. The baseball and soccer fields to the south of the school are at a higher elevation, comparatively. The adjacent football field is of similar elevation to the northern half of the school property, but grades downward significantly to the tree line where elevations become more gradual towards the adjacent stream which flows along the south and west sides of the property.

3.0 Investigation Activities

Investigation field activities described in this section were completed by Aztech Technologies, Inc (Aztech) in November 2021 in accordance with the scope of work (SOW) developed and provided by DEC.

The completed field activities included the following:

- Surface water sampling;
- Sediment sampling;
- Surface soil sampling;
- Direct-push soil borings and subsurface soil sampling;
- Temporary well installations;
- Groundwater sampling;

The SOW and associated field implementation methods are described in **Sections 3.1** through **3.3** below and are consistent with DEC Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021 guidance document (DEC, 2021). Equipment and materials compatible with DEC recommendations for the collection and sampling of PFAS were used for each sampled media (i.e., stainless steel, high-density polyethylene [HDPE], and poly-vinyl chloride [PVC]). Water used for equipment decontamination was verified to be PFAS-free through laboratory analysis completed in October 2021. A copy of the laboratory report has been included in **Appendix A**. A map showing the completed sample locations is presented on **Figure 2**.

Standard chain-of-custody (COC) procedures were followed for all collected samples. Laboratory quality assurance/quality control (QA/QC) samples including field duplicates and matrix spike/matrix spike duplicates (MS/MSDs), were collected where sample volume allowed at a minimum frequency of 1 per 20 samples. Field QA/QC samples including equipment blanks and trip blanks were collected at a frequency of one per day or cooler slated for VOC analysis, respectively. All collected samples were submitted to the DEC contract laboratory, Eurofins TestAmerica of Amherst, New York or South Burlington, Vermont (Eurofins). DEC Category B data deliverable packages were requested for all samples.

3.1 Surface Water and Sediment Sampling

Surface water and sediment sampling activities were completed by Aztech on November 16, 2021. Samples were collected at the most downstream location first and progressed upstream. Surface water samples were collected prior to sediment samples to avoid disturbing sediment which may impact the surface water results.

3.1.1 Surface Water Sampling

A total of 10 surface water samples were collected from the stream adjacent to the school property (SW-01 through SW-07), a ponded surface water feature on the east (SW-10), and from two surface water expressions identified in western forested area (SW-08 and SW-09). Sample locations are displayed on **Figure 2**.

No visual evidence of contamination was observed during the collection of any surface water sample. Surface water samples were collected directly into laboratory supplied sample bottles or by using a stainless-steel cup depending on field conditions. The stainless-steel cup, where used, was rinsed with stream water prior to the collection of the sample. Water was then transferred directly from the stainless-steel cup into laboratory supplied sample bottles. The stainless-steel cup was decontaminated between sampling locations using Alconox and clean, PFAS-free water. All samples were preserved in a cooler with ice and submitted to Eurofins for the analysis of PFAS (21 compound list) by USEPA Method 537 Modified.

3.1.2 Sediment Sampling

Aztech collected a total of 8 sediment samples (SED-1 through SED-7, SED-10), co-located with respective surface water samples. Sample locations are displayed on **Figure 2**.

No visual or olfactory evidence of contamination was observed during the collection of any sediment sample. Sediment samples were collected using a stainless-steel cup or stainless-steel trowel to remove the surficial layer of sediment. Sediment was transferred directly from the sampling device into the laboratory supplied sample bottles. The stainless-steel cup or trowel was decontaminated between sampling locations using detergent (Alconox) and clean, PFAS-free water rinse. All samples were preserved in a cooler with ice and submitted to Eurofins for the analysis of PFAS (21 compound list) by USEPA Method 537 Modified.

3.2 Surface and Subsurface Soil Investigation

3.2.1 Private Utility Survey

Prior to the commencement of ground-intrusive activities, Aztech confirmed that the drilling subcontractor, Clean Globe Environmental (CGE), contacted Dig Safely New York, received/reviewed confirmation receipts from each utility, and verified public mark-outs prior to intrusive work.

Between November 3 and November 4, 2021, a private utility survey was conducted by Chazen, a LaBella Company to identify any subsurface utilities or anomalies within a 10-foot radius around each of the proposed soil boring locations, underground utilities within 100 feet of the school building, and identify the septic system extent. Any detected subsurface structure within the investigated radius was identified on the ground surface with paint.

3.2.2 Community Air Monitoring Plan

In accordance with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP) (DER-10, Appendix 1A), air monitoring was conducted during all ground intrusive investigation activities. The CAMP included monitoring for both fugitive dust and organic vapors.

Two CAMP enclosures were deployed at the work site on a daily basis; one in the upwind direction and one in the downwind direction of the drill rig. Both enclosures contained a Dust Trak II unit for dust monitoring and MiniRae 3000 photo-ionization detector (PID) for organic vapor monitoring. Additionally, one handheld PID was utilized within the work area to field screen soil samples/drill cuttings and monitor breathing air vapor concentrations.

The action levels were not exceeded (for either fugitive dust or organic vapors) during any of the ground intrusive activities.

3.2.3 Surface and Subsurface Soil Investigation

Between November 10 and November 16, 2021, CGE installed 22 soil borings (SB-1 through SB-22) utilizing a Geoprobe® and direct-push techniques to terminal depths ranging from 1.5 to 25 feet below ground surface (bgs), the depth of drilling refusal or encountered groundwater table. As a precaution to ensure that subsurface utilities were not disturbed, each location was hand-cleared to 5 feet bgs using a hand-auger. Continuous soil cores were then collected from each boring location utilizing 2-inch diameter by 5-foot long PVC Macrocores®. The locations of the completed soil borings were targeted around the perimeter of the property and around the existing septic system (**Figure 2**). Soil cores were visually classified and screened for the visual, olfactory, and photo-ionic evidence of contamination by Aztech. The boring logs are provided in **Appendix B**.

Generally, dependent on boring depth and volume of soil recovered, two to three soil samples were collected from each boring location for laboratory analysis. Soil samples consisted of one surface soil sample collected just beneath the vegetative layer, a near surface soil sample collected in the top 12", and a subsurface soil sample just above the observed groundwater table, at evidence of contamination, or at terminal depth if groundwater was not encountered. Elevated PID readings, visual, or olfactory signs of contamination were not identified in any completed soil boring and as a result, soil samples were collected above the water table or at terminal depth. Boreholes that were not selected for temporary well installations were backfilled with soil cuttings and grouted to the surface.

During site reconnaissance, historic dumping piles were encountered in the western wooded portion of the property. Materials consisted of cans (including food, paint, and oil), glassware, and automotive parts, including two deteriorating car frames. An additional surface soil sample (SOIL-23) was collected near the debris for analysis.

From the 22 soil borings, a total of 61 soil samples were collected and transferred directly from the Macrocore® into laboratory-supplied bottles. The stand-alone surface soil sample was collected using a pre-cleaned stainless-steel trowel. Soil was deposited into a stainless-steel bowl and homogenized before placing into the laboratory supplied sampling container. All samples were preserved in a cooler with ice and submitted to Eurofins for the PFAS (21 compound list) by USEPA Method 537 Modified. Additional QA/QC samples collected included 3 duplicate samples, 3 matrix spike samples, and 3 matrix spike duplicate samples.

3.3 Groundwater Investigation

3.3.1 Temporary Monitoring Well Installation

Seven temporary groundwater monitoring wells (SB-4/MW-4, SB-5/MW-5, SB-10/MW-10, SB-12/MW-12, SB-18/M-18, SB-20/MW-20, and SB-22/MW-22) were installed immediately after the respective soil boring was installed, with the exception of SB-18/MW-18 which was installed with a hand auger on November 16, 2021. Temporary wells were constructed utilizing 1-inch ID PVC riser and 10-feet of 0.01-inch slot screen and solid riser to grade, except SB-18/MW-18 which was only installed to a depth of 4 feet below ground surface. The annulus between the well PVC and the borehole wall was backfilled with No. 1 well sand around the well screen, followed by approximately 1-foot of bentonite, and then soil cuttings obtained from that borehole. Final temporary well terminal depths ranged from 4 feet bgs (SB-18/MW-18) to 25 feet bgs (SB-20/MW-20). The locations of temporary monitoring wells can be found on **Figure 2**.

3.3.2 Groundwater Sampling

Groundwater grab samples were collected from seven temporary overburden groundwater wells (SB-4/MW-4, SB-5/MW-5, SB-10/MW-10, SB-12/MW-12, SB-18/M-18, SB-20/MW-20, and SB-22/MW-22) and one sample from an existing, abandoned irrigation well (OBS-MW) that was identified during field work. Samples from the temporary well locations were collected utilizing a peristaltic pump equipped with HDPE and silicone tubing. Groundwater parameters (pH, conductivity, ORP, DO, and turbidity) were noted at time of sampling if adequate sample volume was present; however, three-volume purge or purge until parameter stabilization was not conducted for these grab samples.

	Groundwater Parameters										
				Parameters							
Sample	Sample Date	Sample Time	Temperature (°C)	рН	pH (mV)	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)		
SB-4/MW-4*	11/16/2021	1145	-	-	-	-	-	-	-		
SB-5/MW-5*	11/15/2021	1330	-	-	-	-	-	-	-		
SB-10/MW-10	11/15/2021	1445	13.60	5.77	46	309	0.349	410	18.33		
SB-12/MW-12	11/16/2021	1259	13.71	6.06	29	187	0.294	585	47.1		
SB-18/MW-18	11/16/2021	1345	10.48	5.87	39	43	2.01	> 1000	11.67		
SB-20/MW-20	11/16/2021	1245	10.55	6.34	14	-10	0.191	361	11.71		
SB-22/MW-22	11/16/2021	1320	12.89	5.6	55	-17	0.522	> 1000	1.85		

* Location did not yield sufficient water for the collection of groundwater parameters

A grab sample from OBS-MW was collected using a PFAS-free bailer. Samples were collected in laboratory supplied bottles, placed on ice, and submitted to Eurofins for analysis of PFAS (21 compound list) by USEPA Method 537 Modified and for volatile organic compounds (VOCs) by EPA Method 8260C. SB-4/MW-4 was submitted for PFAS analysis only due to low volume yield. Additional QA/QC samples included a field duplicate, a matrix spike, and a matrix spike duplicate. Subsequent to groundwater sampling, temporary wells were removed and backfilled with bentonite to grade.

4.0 Discussion of Results

The following subsections discuss the regulatory standards, criteria, and guidance (SCGs) used to evaluate all field observations and sample analytical results. Data collected for this project has not been validated. The complete Category B reports provided by Eurofins TestAmerica are provided in **Appendix C**.

4.1 Standards, Criteria, and Guidance

The SCGs used to evaluate the surface water, sediment, soil, and groundwater analytical results are outlined below:

- Surface Water NYSDEC Guidelines for Sampling and Analysis of PFAS, June 2021
- **Sediment** There currently are no SCGs for PFAS in sediment. Results will be discussed as provided by the laboratory.

- Soil NYSDEC Guidelines for Sampling and Analysis of PFAS, June 2021.
- **Groundwater** NYSDEC TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Class GA, June 1998 / NYSDEC Guidelines for Sampling and Analysis of PFAS, June 2021.

4.2 Surface Water Results

A summary of the surface water analytical results is summarized below. PFOA and PFOS results for surface water samples can be found on **Figure 3**. A summary of the surface water sample analytical results can be found in **Table 1**.

Of the seven surface water samples collected from tributary of the Newfoundland Creek, (SW-1/SED-1 through SW-7/SED-7), PFAS compounds were detected in all samples. PFOS was detected in three samples (SW-01/SED-01 through SW-03/SED-03) ranging from 3.7 ppt to 11 ppt, only exceeding the 10 ppt NYS drinking water standard at location SW-02/SED-02. PFOA was detected in all seven surface water samples with detections ranging from 1.9 ppt to 3.3 ppt. Other PFAS compounds that were detected, but do not have corresponding SCGs or MCLs include: PFUnA, PFDA, and PFHxA.

Surface water collected from the ponded area along NYS Route 351 (SW-10/SED-10) showed detections of 6 PFAS compounds: PFOS, PFOA, PFPeA, PFHxA, PFBA, and PFHpA. PFOS and PFOA were detected below 10 ppt at 3.2 ppt and 7.9 ppt, respectively.

Surface water collected from standing water in the western forested area (SW-8, SW-9) showed detections of 6 PFAS compounds at one or both locations: PFOS, PFOA, PFPeA, PFHxA, PFBA, and PFHpA. Detections of PFOA (up to 8.8 ppt) and PFOS (up to 3.6 ppt) were below the 10 ppt drinking water standard.

4.3 Sediment Results

A summary of the sediment analytical results is summarized below. PFOA and PFOS results for sediment samples can be found on **Figure 3**. A summary of the sediment sample analytical results is presented in **Table 2**.

No detections of any PFAS compound analyzed for was detected from samples collected within the tributary of Newfoundland Creek (SW-1/SED-1 through SW-7/SED-7).

PFOS was detected at 1.9 µg/kg in sample SW-10/SED-10 collected from the ponded water along NYS Route 351. No SCGs for PFAS in sediment have been established.

4.4 Soil Results

As observed from the 22 soil borings, soils primarily consisted of sand and silt, with varying amounts of clay and gravel. Overburden thickness was greatest in the central portion of the school property (>25 ft), in the vicinity of the septic system, and becomes more shallow moving to the east and west. On the east side of the property, in the secondary parking lot, there appears to be a depression of overburden material with exposed bedrock to the east and west. Drilling refusal, due to the presence of shallow green to grey shale bedrock, was encountered at 19 soil borings from 1.5 feet bgs (SB-8) to 18 feet bgs (SB-10 and SB-22). Soils and bedrock encountered during this investigation are consistent with regional surficial

and bedrock geology (as described above in **Section 2.2**). Shallow groundwater was detected in 10 borings and ranged from 1 feet bgs (SB-18/MW-18) to 17 feet bgs (SB-20/MW-20).

At all boring locations, screened soils did not exhibit any visual, olfactory, or photo-ionic evidence of contamination. PID measurements were less than 1.0 ppm for all field screened soils.

A summary of the soil analytical results is provided below. PFOA and PFOS soil samples results can be found on **Figure 4**. A summary of the soil sample analytical results is provided in **Table 3**.

Of the 41 surface and near surface soil samples submitted for analysis, 27 sampled intervals across 20 locations had one or more PFAS compounds detected. PFOA was detected at 6 intervals across 5 locations and ranged in concentration from 0.27 μ g/kg to 0.37 μ g/kg and were all below the Unrestricted Use guidance value of 0.66 μ g/kg. PFOS was detected at 26 sampled intervals across 20 locations and ranged in concentration from 0.23 μ g/kg. PFOS was detected slightly above the Unrestricted Use guidance value of 0.88 μ g/kg, but less than the Protection of Groundwater guidance value of 3.7 μ g/kg in samples SB-7 3-in, SB-7 12-in, and SB-1 12-in. Other PFAS compounds that were detected, but do not have corresponding guidance values include: PFDS, PFDA, PFDOA, PFNA, and PFUnA.

Of the 21 subsurface soil samples submitted for analysis, detections were limited to PFOA and PFOS. PFOA was detected at 2 locations below the Unrestricted Use guidance value and ranged in concentration from 0.26 μ g/kg (SB-14 108-in) to 0.30 μ g/kg (SB-13 84-in). PFOS was detected at 1 location (SB-7 96-in) below the Unrestricted Use guidance value with a concentration of 0.48 μ g/kg.

4.5 Groundwater Results

A summary of the groundwater analytical results is provided below. PFOA and PFOS results for groundwater samples can be found on **Figure 5**. A summary of the groundwater analytical results is presented in **Table 4 and Table 5**.

Eight groundwater grab samples were collected and of those, the 7 temporary well locations had one or more PFAS compounds detected. PFOS was detected in all 7 temporary wells, below the 10 ppt standard, with concentrations ranging from 1.9 ppt to 6.6 ppt. PFOA was detected in 6 temporary wells with concentrations ranging from 2.3 ppt to 47 ppt. Two locations, SB-4/MW-4 located on the southwestern side of the school property and SB-22/MW-22 located in the parking lot on the east side of the school property, exhibited concentrations above the 10 ppt drinking water standard at 22 ppt and 47 ppt, respectively. Other PFAS compounds that were detected, but do not have corresponding SCGs or MCLs include: PFBS, PFBA, PFHpA, PFHxS, PFHxA, and PFPeA. PFAS were not detected in the abandoned irrigation well (OBS-MW) grab sample.

VOCs were not detected in any samples above their respective laboratory reporting limits.

5.0 Findings and Recommendations

Based on the data collected during this preliminary investigation, it is not yet apparent that a highly concentrated or discrete contaminant source or sources exists on the school property which is contributing to levels of PFAS found in the school's drinking water supply wells, or in nearby private drinking water supply wells. Detections of PFAS in soil and groundwater at the Middle School are relatively low, and do not indicate an obvious source on the school property or from an off-site source. More data is needed, both on and off the school property, to determine the origin of PFAS concentrations in the Poestenkill study area.

The evolving conceptual site model indicates localities of exposed fractured and folded shale bedrock. Where bedrock is not exposed it is generally shallow and overlain with unconsolidated glacial sediments. The depth of overburden is not yet fully understood in the vicinity of the septic system. Continued subsurface explorations focused on the overburden and bedrock interface are warranted.

5.1 Findings Summary

Surface Water

- No physical evidence of contamination was observed in any surface water sample.
- One of seven samples collected from the adjacent stream exhibited a detection of PFOS above the 10 ppt guideline. PFOA was not detected in any sample from the stream above 10 ppt.
- Three additional surface water samples were collected onsite, none of which detected PFOA or PFOS above 10 ppt.

Sediment

- No physical evidence of contamination was observed in any sediment sample.
- PFAS were not detected in any sediment samples collected within the stream.
- PFOS was detected at 1.9 µg/kg in sample SW-10/SED-10 collected from the ponded water along NYS Route 351.

Soil

- Subsurface geology within the investigation area primarily consisted of sand and silt, with varying amounts of gravel and clay overlying green-grey shale. Refusal due to the presence bedrock, was encountered at 19 boring locations and ranged from 1.5 feet bgs (SB-8) to 18 feet bgs (SB-10 and SB-22).
- No physical evidence of contamination (visual, olfactory, or photo-ionic) was observed in any screened soil sample.
- Of the 41 surface and near surface soil samples submitted for analysis, PFOA was not detected above Unrestricted Use soil guidance values. PFOS was detected slightly above the Unrestricted Use guidance value of 0.88 µg/kg, but less than the Protection of Groundwater guidance of 3.7 µg/kg in samples SB-7 3-in, SB-7 12-in, and SB-1 12-in.

• Of the 21 subsurface soil samples submitted for analysis, PFOA and PFOS were not detected above Unrestricted Use guidance values of 0.66 µg/kg and 0.88 µg/kg, respectively.

Groundwater

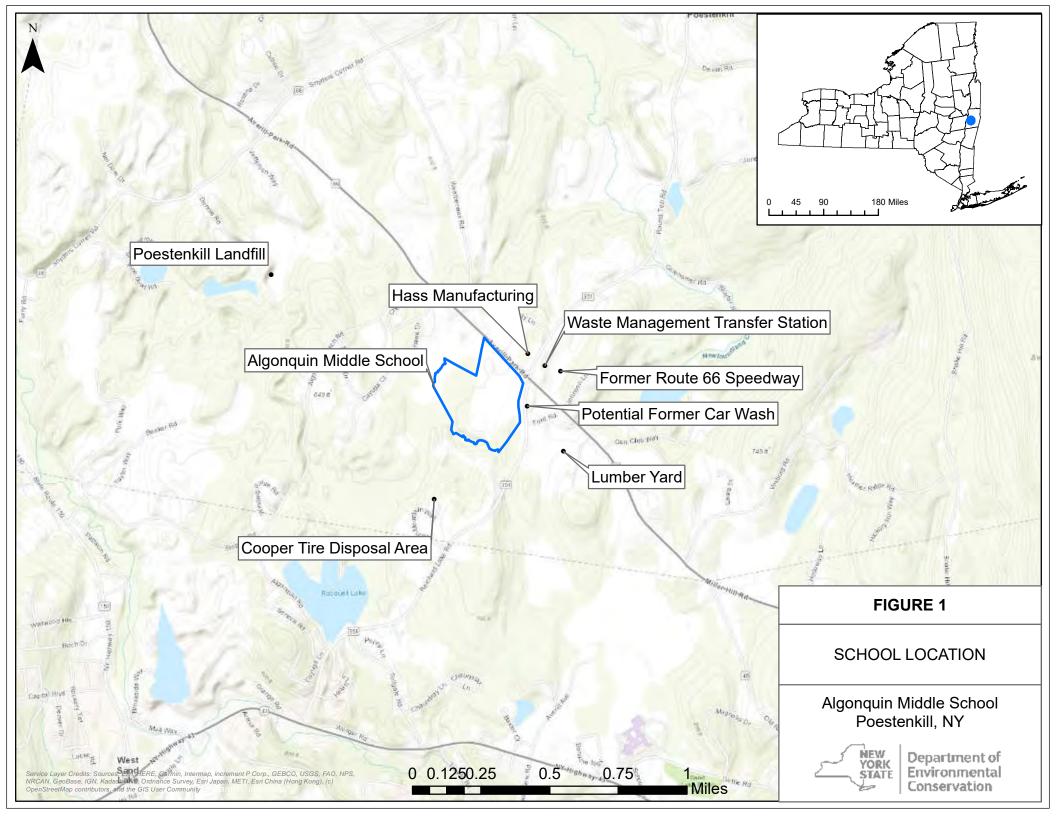
- No physical evidence of contamination was observed in any groundwater sample.
- Of the 8 groundwater samples collected (7 from temporary wells and 1 from an existing well), VOCs were not detected.
- PFOA was detected in two samples above the 10 ppt drinking water standard, SB-4/MW-4 and SB-22/MW-22, at concentrations of 22 ppt and 47 ppt, respectively. The highest detection at SB-22/MW-22 is located on the east side of the school.
- PFOS was detected in all seven temporary well samples; however, concentrations did not exceed 10 ppt.
- Temporary monitoring well results were used to screen potential locations for subsequent permanent monitoring wells.
- PFAS were not detected in the existing, abandoned irrigation well (OBS-MW).

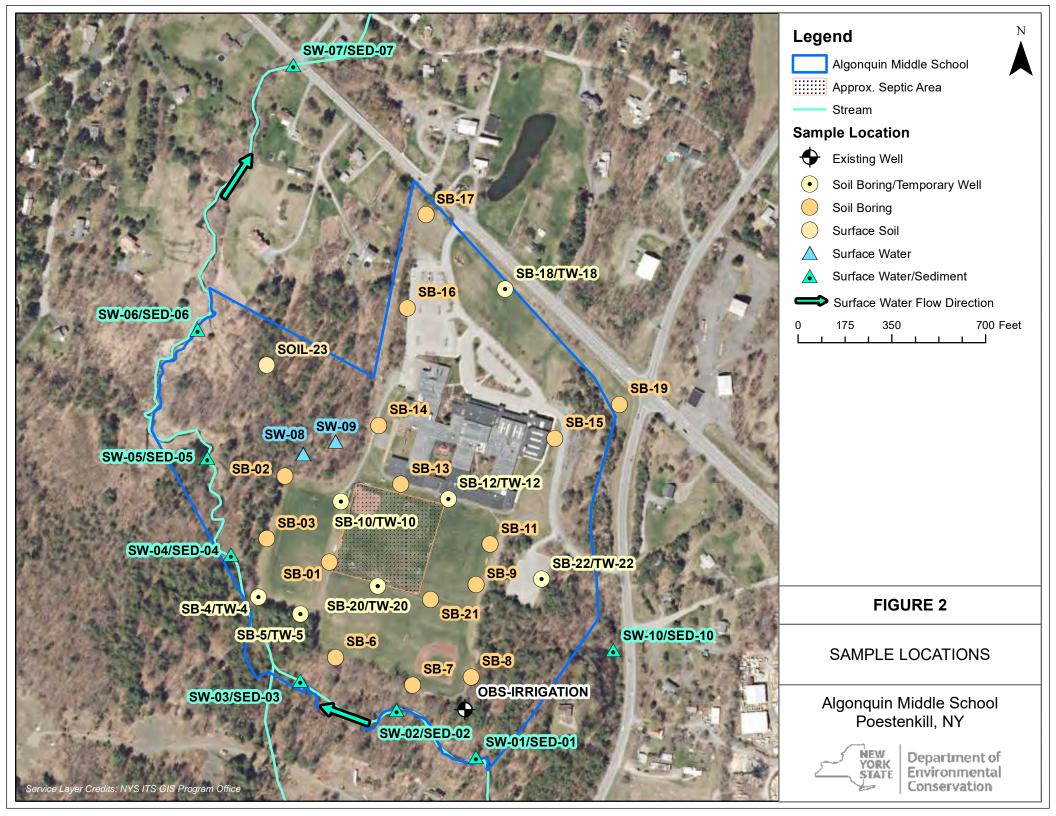
5.2 Recommendations

Based on the information gathered from this investigation, additional investigation is warranted to better understand local hydrology, geology, and potential sources of contamination. Next steps should include:

- Continued evaluation of overburden depth and composition through soil borings and monitoring well installations.
- Installation of permanent on-site monitoring wells to confirm the presence of PFOA detected in temporary wells points. Permanent wells will also allow for the determination of local overburden groundwater flow.
- Bedrock well drilling, including open borehole geophysics, packer testing, and installation of permanent wells at multiple depths. This work will be used to confirm low level PFAS concentrations found in school supply wells, understand what potential groundwater flow pathways exist between overburden and bedrock, and determine the predominant groundwater flow direction in bedrock fractures.
- Additional surface water and sediment sampling.

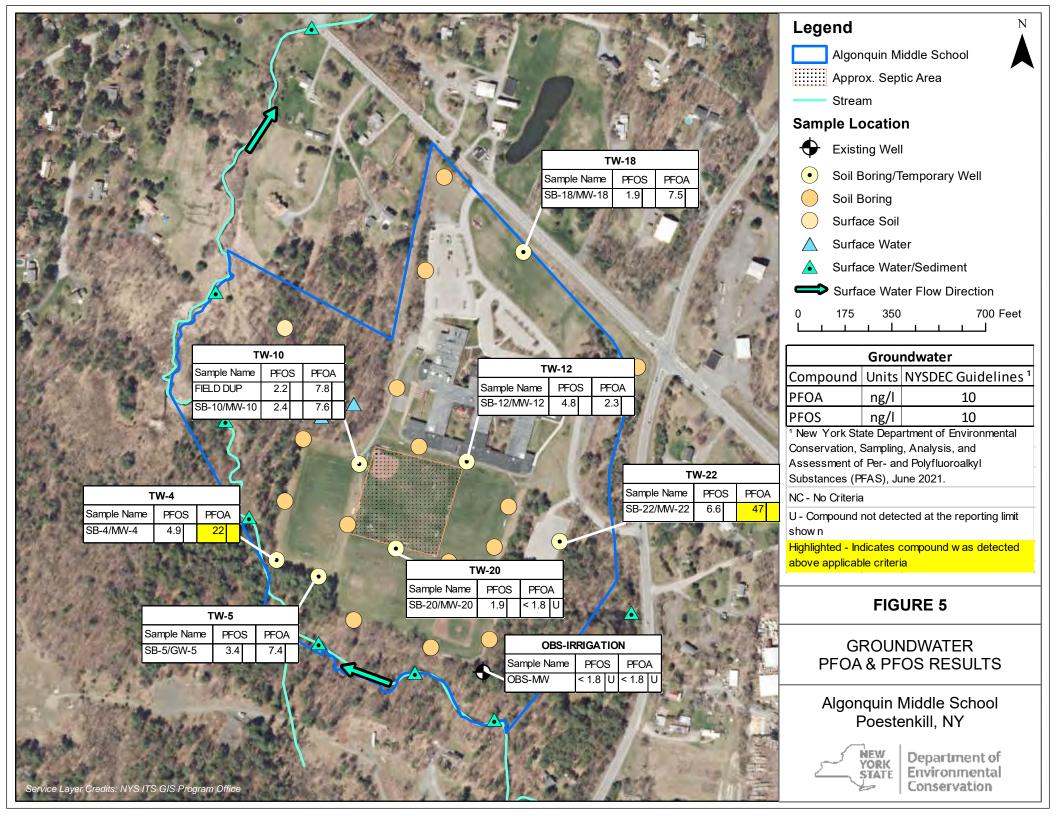
6.0 References


New York State Museum/New York State Geological Survey. Bedrock Geology – New York State [vector digital data]. Scale: 1:250,000. NYS Museum Technology Center, 1999.


New York State Museum/New York State Geological Survey. Surficial Geology of New York State [vector digital data]. Scale: 1:250,000. NYS Museum Technology Center, 2003.

NYSDEC. 1998. Division of Water Technical and Operation Guidance Series (TOGS) – Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Guidelines (TOGS 1.1.1), June 1998.

NYSDEC. 2021. Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.


FIGURES

SW-07/SED-07	Legend N
Sample Name PFOS PFOA	Algonquin Middle School
SW-07 < 1.7 U 2.2	Approx. Septic Area
SED-07 < 0.25	Stream
	Sample Location
The set of the second of the s	+ Existing Well
State of the second	Soil Boring/Temporary Well
	Soil Boring
SW-06/SED-06 Sample Name PFOS PFOA	Surface Soil
$\frac{\text{Sample Name Pros ProA}}{\text{SW-06}} < 1.7 \text{ U} 2.2$	Surface Water
SED-06 < 0.79 U < 0.79 U	Surface Water/Sediment
	Surface Water Flow Direction
	0 175 350 700 Feet
SW-09	
SW-05/SED-05	Surface Water
Sample Name PFOS PFOA SW-05 < 1.8 U 2	CompoundUnitsNYSDEC Guidelines 1PFOAng/l10
SED-05 < 0.36	PFOS ng/l 10
	Sediment
SW-08	PFOA μg/kg NC
Sample Name PFOS PFOA	PFOS µg/kg NC ¹ New York State Department of Environmental
SW-08 2.3 5.2	Conservation, Sampling, Analysis, and Assessment of
SW-04/SED-04	Per- and Polyfluoroalkyl Substances (PFAS), June 2021.
Sample Name PFOS PFOA SW-10/SED-10	NC - No Criteria
SW-04 < 1.8 U 1.9	U - Compound not detected at the reporting limit show n Highlighted - Indicates compound w as detected above
SW-DUP < 1.7	applicable criteria
SED-04 < 0.37	-
SED-DUP < 0.29	FIGURE 3
	SURFACE WATER & SEDIMENT PFOA & PFOS RESULTS
	FI GA & FI GS RESUEIS
SW-02/SED-02 SW-01/SED-01	Algonquin Middle School
SW-02/SED-02 SW-01/SED-01 Sample Name PFOS PFOA	Poestenkill, NY
SW-02 11 2.2 SW-01 3.7 2.4	
SED-02 < 0.33	NEW YORK STATE Department of Environmental
Service Layer Credits: NYS ITS GIS Program Office	Conservation

SB-16	Legend
SB-14 Sample Name PFOS PFOA SB-16 SB-17 Sample Name PFOA SB-17 Sample Name SB-10 SB-11 Sample Name SB-10 Sample Name SB-10 Sample Name SB-10 Sample Name <	Algonquin Middle School
SB-14 12-IN 0.38 0.27 SB-16 72-IN < 0.23	Approx. Septic Area
SS-23 Sample Marge DEOS DEOA	Stream
SOIL-23 0.81 < 0.27	Sample Location
Sample Name PFOS PFOA Sample Name PFOS PFOA SB-18 3-IN 0.35 < 0.24 U SB-18 12-IN 0.4 < 0.24 U	Existing Well
SB-13 3-IN 0.42 0.37 SB-13 12-IN 0.34 0.37 SB-13 84-IN < 0.24 U 0.3	Soil Boring/Temporary Well
SB-19	Soil Boring
Sample Name PFOS PFOA SB-19 3-in 0.44 < 0.28 U	 Surface Soil Surface Water
SB-2 36-IN < 0.20 U < 0.20 U	Surface Water/Sediment
SB-3 Sample Name PFOS PFOA Sample Name PFOS PFOA 0.37L < 0.23LU	Surface Water Flow Direction
SB-3 3-IN 0.68 < 0.22 U	0 250 500 1.000 Feet
SB-3 60-N < 0.20 U	
Sample Name PFOS PFOA SB-4 3-IN < 0.23 U < 0.23 U < 0.24 U < 0.24 U	Soil
SB-4 12-IN 0.25 < 0.23	Guidance Value ¹ Unit PFOA PFOS
SB-4 72-IN < 0.24	Unrestricted Use µg/kg 0.66 0.88
SB-5 Sample Name PFOS PFOA	Protection of GWμg/kg1.13.7Residential Useμg/kg6.68.8
SB-53-IN < 0.23 U	¹ New York State Department of Environmental
SB-5 72-IN < 0.25 U	Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),
SB-10 SB-22 12-in < 0.20	June 2021.
SB-10 3-IN 0.27 < 0.24	NC - No Criteria U - Compound not detected at the reporting limit
SB-10 156-IN < 0.24	show n
SB-20 3-in 0.57 < 0.24	Highlighted - Indicates compound was detected above applicable criteria
Sample Name PFOA SB-20 192-in < 0.20 U	
SB-1 12-IN 1 0.27 Sample Name PFOS PFOA SB-6 3 in < 0.22 UI < 0.22 UI < 0.22 UI Sample Name PFOS PFOA	FIGURE 4
SB-1 72-IN < 0.21	SOIL
SB-6 156-in < 0.22	PFOA & PFOS RESULTS
Sample Name PFOS PFOA SB-7 3-in 0.97 < 0.23 U SB-7 10-in 0.97 < 0.23 U	
SB-712-in 1.2 0.29 SB-213-in 0.34 < 0.26 U	Algonquin Middle School
SB-7 90-III 0.40 < 0.23	Poestenkill, NY
	NEW YORK Department of
Service Layer Credits: NYS ITS GIS Program Office	STATE Environmental Conservation

TABLES

Table 1	- Surface	Water.	PFAS	Results
---------	-----------	--------	------	---------

		Client Sample ID:	SW-01	SW-02	SW-03	SW-04
		Lab Sample ID:	480-192646-60	480-192646-58	480-192646-56	480-192646-54
		Location ID:	SW-01	SW-02	SW-03	SW-04
		Sample Date:	11/16/2021	11/16/2021	11/16/2021	11/16/2021
		Sample Type Code:	Ν	N	N	N
Compound	Unit	NYSDEC Guidelines ¹				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/l	NC	< 4.5 U	< 4.7 U	< 4.6 U	< 4.5 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/l	NC	< 4.5 U	< 4.7 U	< 4.6 U	< 4.5 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/l	NC	< 4.5 U	< 4.7 U	< 4.6 U	< 4.5 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorobutanoic Acid	ng/l	NC	< 4.5 U	< 4.7 U	< 4.6 U	< 4.5 U
Perfluorodecanesulfonic acid (PFDS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorodecanoic acid (PFDA)	ng/l	NC	< 1.8 U	3.3	< 1.9 U	< 1.8 U
Perfluorododecanoic acid (PFDoA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluoroheptanesulfonic acid (PFHpS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluoroheptanoic acid (PFHpA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorohexanoic acid (PFHxA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorononanoic acid (PFNA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorooctane Sulfonamide (FOSA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	10	3.7	11	7.6	< 1.8 U
Perfluorooctanoic acid (PFOA)	ng/l	10	2.4	2.2	3.3	1.9
Perfluoropentanoic Acid (PFPeA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorotetradecanoic acid (PFTA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.8 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	NC	< 1.8 U	1.9	< 1.9 U	< 1.8 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighted - Indicates compound was detected above applicable criteria

Table 1	- Surface	Water.	PFAS	Results
---------	-----------	--------	------	---------

		Client Sample ID:	SW-DUP	SW-05	SW-06	SW-07
		Lab Sample ID:	480-192646-49	480-192646-52	480-192646-45	480-192646-43
		Location ID:	SW-04	SW-05	SW-06	SW-07
		Sample Date:	11/16/2021	11/16/2021	11/16/2021	11/16/2021
		Sample Type Code:	FD	Ν	N	N
Compound	Unit	NYSDEC Guidelines ¹				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/l	NC	< 4.4 U	< 4.4 U	< 4.3 U	< 4.3 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/l	NC	< 4.4 U	< 4.4 U	< 4.3 U	< 4.3 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/l	NC	< 4.4 U	< 4.4 U	< 4.3 U	< 4.3 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorobutanoic Acid	ng/l	NC	< 4.4 U	< 4.4 U	< 4.3 U	< 4.3 U
Perfluorodecanesulfonic acid (PFDS)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorodecanoic acid (PFDA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorododecanoic acid (PFDoA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluoroheptanesulfonic acid (PFHpS)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluoroheptanoic acid (PFHpA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorohexanoic acid (PFHxA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	1.7
Perfluorononanoic acid (PFNA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorooctane Sulfonamide (FOSA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	10	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorooctanoic acid (PFOA)	ng/l	10	2.4	2.0	2.2	2.2
Perfluoropentanoic Acid (PFPeA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorotetradecanoic acid (PFTA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.7 U	< 1.7 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighted - Indicates compound was detected above applicable criteria

Table 1	- Surface	Water.	PFAS	Results
---------	-----------	--------	------	---------

		Client Sample ID:	SW-08	SW-09	SW-10
		Lab Sample ID:	480-192646-48	480-192646-51	480-192646-62
		Location ID:	SW-08	SW-09	SW-10
		Sample Date:	11/16/2021	11/16/2021	11/16/2021
		Sample Type Code:	Ν	N	N
Compound	Unit	NYSDEC Guidelines ¹			
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/l	NC	< 4.7 U	< 4.2 U	< 4.8 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/l	NC	< 4.7 U	< 4.2 U	< 4.8 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/l	NC	< 4.7 U	< 4.2 U	< 4.8 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorobutanoic Acid	ng/l	NC	< 4.7 U	7.1	5.1
Perfluorodecanesulfonic acid (PFDS)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorodecanoic acid (PFDA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorododecanoic acid (PFDoA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluoroheptanesulfonic acid (PFHpS)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluoroheptanoic acid (PFHpA)	ng/l	NC	< 1.9 U	2.8	2.4
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorohexanoic acid (PFHxA)	ng/l	NC	6.4	18	2.1
Perfluorononanoic acid (PFNA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorooctane Sulfonamide (FOSA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	10	2.3	3.6	3.2
Perfluorooctanoic acid (PFOA)	ng/l	10	5.2	8.8	7.9
Perfluoropentanoic Acid (PFPeA)	ng/l	NC	4.1	21	2.0
Perfluorotetradecanoic acid (PFTA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	NC	< 1.9 U	< 1.7 U	< 1.9 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighted - Indicates compound was detected above applicable criteria

Table 2 - Sediment, PFAS Results

		Client Sample ID:	SED-01	SED-02	SED-03	SED-04
		Lab Sample ID:	480-192646-61	480-192646-59	480-192646-57	480-192646-55
		Location ID:	SED-01	SED-02	SED-03	SED-04
		Sample Date:	11/16/2021	11/16/2021	11/16/2021	11/16/2021
	:	Sample Type Code:	Ν	N	N	N
Compound	Unit	NYSDEC Guidelines ¹				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	< 5.0 U	< 3.3 U	< 3.6 U	< 3.7 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	< 5.0 U	< 3.3 U	< 3.6 U	< 3.7 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	< 5.0 U	< 3.3 U	< 3.6 U	< 3.7 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	< 5.0 U	< 3.3 U	< 3.6 U	< 3.7 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorobutanoic Acid	ug/kg	NC	< 1.3 U	< 0.83 U	< 0.91 U	< 0.92 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorooctanoic acid (PFOA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	< 0.50 U	< 0.33 U	< 0.36 U	< 0.37 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Table 2 - Sediment, PFAS Results

		Client Sample ID:	SED-DUP	SED-05	SED-06	SED-07
	Lab Sample ID:			480-192646-53	480-192646-46	480-192646-44
		Location ID:	SED-04	SED-05	SED-06	SED-07
		Sample Date:	11/16/2021	11/16/2021	11/16/2021	11/16/2021
	:	Sample Type Code:	FD	N	Ν	N
Compound	Unit	NYSDEC Guidelines ¹				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	< 2.9 U	< 3.6 U	< 7.9 U	< 2.5 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	< 2.9 U	< 3.6 U	< 7.9 U	< 2.5 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	< 2.9 U	< 3.6 U	< 7.9 U	< 2.5 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	< 2.9 U	< 3.6 U	< 7.9 U	< 2.5 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorobutanoic Acid	ug/kg	NC	< 0.73 U	< 0.89 U	< 2.0 U	< 0.64 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorooctanoic acid (PFOA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	< 0.29 U	< 0.36 U	< 0.79 U	< 0.25 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Table 2 - Sediment, PFAS Results

· · · · · ·			
		Client Sample ID:	SED-10
		Lab Sample ID:	480-192646-63
		Location ID:	SED-10
		Sample Date:	11/16/2021
		Sample Type Code:	Ν
Compound	Unit	NYSDEC	
Compound	Unit	Guidelines ¹	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	< 5.8 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	< 5.8 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	< 5.8 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	< 5.8 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	< 0.58 U
Perfluorobutanoic Acid	ug/kg	NC	< 1.4 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	< 0.58 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	< 0.58 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	< 0.58 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	< 0.58 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	< 0.58 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	< 0.58 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	< 0.62 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	< 0.58 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	< 0.58 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	NC	1.9
Perfluorooctanoic acid (PFOA)	ug/kg	NC	< 0.58 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	< 0.58 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	< 0.58 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	< 0.58 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	< 0.58 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

,										
			Clie	nt Sample ID:	SB-1 12-IN	SB-1 192-IN	SB-1 3-IN	SB-1 72-IN	SB-10 12-IN	SB-10 156-IN
			La	b Sample ID:	200-60972-29	200-60972-13	200-60972-11	200-60972-12	200-60972-26	200-60972-28
				Location ID:	SB-1	SB-1	SB-1	SB-1	SB-10	SB-10
			S	Sample Date:	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/11/2021	11/11/2021
			Sample	e Type Code:	Ν	N	N	N	Ν	Ν
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV ¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.4 U	< 2.1 U	< 2.2 U	< 2.4 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.4 U	< 2.1 U	< 2.2 U	< 2.4 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.4 U	< 2.1 U	< 2.2 U	< 2.4 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.4 U	< 2.1 U	< 2.2 U	< 2.4 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.55 U	< 0.57 U	< 0.60 U	< 0.53 U	< 0.56 U	< 0.60 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	0.31	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	1.0	< 0.23 U	0.43	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	0.27	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.24 U	< 0.21 U	< 0.22 U	< 0.24 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

			Clie	nt Sample ID:	SB-10 3-IN	DUPE 2	SB-11 12-in	SB-11 3-in	SB-11 84-in	SB-12 3-IN
			La	b Sample ID:	200-60972-25	480-192646-25	480-192646-24	480-192646-21	480-192646-26	200-60972-16
				Location ID:	SB-10	SB-11	SB-11	SB-11	SB-11	SB-12
			S	Sample Date:	11/11/2021	11/15/2021	11/15/2021	11/15/2021	11/15/2021	11/11/2021
			Sample	e Type Code:	N	FD	N	Ν	Ν	Ν
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.4 U	< 2.6 U	< 2.3 U	< 2.1 U	< 2.3 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.4 U	< 2.6 U	< 2.3 U	< 2.1 U	< 2.3 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.4 U	< 2.6 U	< 2.3 U	< 2.1 U	< 2.3 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.4 U	< 2.4 U	< 2.6 U	< 2.3 U	< 2.1 U	< 2.3 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.60 U	< 0.60 U	< 0.64 U	< 0.58 U	< 0.54 U	< 0.56 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	0.27	< 0.24 U	< 0.26 U	0.66	< 0.21 U	0.41
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.24 U	< 0.26 U	< 0.23 U	< 0.21 U	< 0.23 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

· · · · · · · · · · · · · · · · · · ·						1	1	•		
			Clier	nt Sample ID:	SB-12 72-IN	SB-13 12-IN	SB-13 3-IN	SB-13 84-IN	SB-14 108-IN	SB-14 12-IN
			La	b Sample ID:	200-60972-17	200-60972-19	200-60972-18	200-60972-23	200-60972-22	200-60972-21
				Location ID:	SB-12	SB-13	SB-13	SB-13	SB-14	SB-14
			S	Sample Date:	11/11/2021	11/11/2021	11/11/2021	11/11/2021	11/11/2021	11/11/2021
			Sample	Type Code:	N	N	N	N	N	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.1 U	< 2.3 U	< 2.4 U	< 2.2 U	< 2.3 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.1 U	< 2.3 U	< 2.4 U	< 2.2 U	< 2.3 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.1 U	< 2.3 U	< 2.4 U	< 2.2 U	< 2.3 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.4 U	< 2.1 U	< 2.3 U	< 2.4 U	< 2.2 U	< 2.3 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.60 U	< 0.51 U	< 0.58 U	< 0.59 U	< 0.55 U	< 0.57 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	1.2	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	0.23	< 0.24 U	< 0.22 U	< 0.23 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	0.47	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	< 0.24 U	0.34	0.42	< 0.24 U	< 0.22 U	0.38
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.24 U	0.37	0.37	0.30	0.26	0.27
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.21 U	< 0.23 U	< 0.24 U	< 0.22 U	< 0.23 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

· · · · · · · · · · · · · · · · · · ·										
			Clie	nt Sample ID:	SB-14 3-IN	SB-15 3-IN	SB-16 12-IN	SB-16 3-IN	SB-16 72-IN	SB-17 12-in
			La	ab Sample ID:	200-60972-20	200-60972-15	200-60972-34	200-60972-33	200-60972-35	480-192646-29
				Location ID:	SB-14	SB-15	SB-16	SB-16	SB-16	SB-17
			S	Sample Date:	11/11/2021	11/11/2021	11/11/2021	11/11/2021	11/11/2021	11/16/2021
			Sample	e Type Code:	N	N	N	N	Ν	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV ¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.3 U	< 2.3 U	< 2.2 U	< 2.3 U	< 2.3 U	< 2.3 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.3 U	< 2.3 U	< 2.2 U	< 2.3 U	< 2.3 U	< 2.3 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.3 U	< 2.3 U	< 2.2 U	< 2.3 U	< 2.3 U	< 2.3 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)) ug/kg	NC	NC	NC	< 2.3 U	< 2.3 U	< 2.2 U	< 2.3 U	< 2.3 U	< 2.3 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.57 U	< 0.59 U	< 0.55 U	< 0.58 U	< 0.57 U	< 0.57 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	0.39	< 0.23 U	< 0.23 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	0.30	< 0.23 U	< 0.23 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	0.26	< 0.23 U	< 0.23 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	0.25	0.37	0.62	0.33	< 0.23 U	< 0.23 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	0.28
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	< 0.23 U	< 0.23 U	< 0.23 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.23 U	< 0.22 U	0.37	< 0.23 U	< 0.23 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

· · · · · · · · · · · · · · · · · · ·										
			Clie	nt Sample ID:	SB-17 3-in	SB-17 72-in	SB-18 12-IN	SB-18 3-IN	SB-18 60-IN	SB-19 12-in
			La	ab Sample ID:	480-192646-28	480-192646-30	200-60972-31	200-60972-30	200-60972-32	480-192646-32
				Location ID:	SB-17	SB-17	SB-18	SB-18	SB-18	SB-19
			S	Sample Date:	11/16/2021	11/16/2021	11/11/2021	11/11/2021	11/11/2021	11/16/2021
	Sample Type Code:				N	N	N	N	Ν	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV ¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.1 U	< 2.4 U	< 2.4 U	< 2.9 U	< 2.2 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.1 U	< 2.4 U	< 2.4 U	< 2.9 U	< 2.2 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.1 U	< 2.4 U	< 2.4 U	< 2.9 U	< 2.2 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.2 U	< 2.1 U	< 2.4 U	< 2.4 U	< 2.9 U	< 2.2 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.56 U	< 0.53 U	< 0.60 U	< 0.59 U	< 0.71 U	< 0.54 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	0.29	< 0.21 U	0.40	0.35	< 0.29 U	< 0.22 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.21 U	< 0.24 U	< 0.24 U	< 0.29 U	< 0.22 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

						1	1	1	1	
			Clier	nt Sample ID:	SB-19 3-in	SB-2 2-IN	SB-2 36-IN	SB-20 12-in	SB-20 192-in	SB-20 3-in
			La	b Sample ID:	480-192646-31	200-60972-2	200-60972-3	480-192646-3	480-192646-4	480-192646-2
				Location ID:	SB-19	SB-2	SB-2	SB-20	SB-20	SB-20
			S	Sample Date:	11/16/2021	11/10/2021	11/10/2021	11/15/2021	11/15/2021	11/15/2021
			Sample	Type Code:	N	N	N	N	N	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.8 U	< 2.4 U	< 2.0 U	< 2.1 U	< 2.0 U	< 2.4 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.8 U	< 2.4 U	< 2.0 U	< 2.1 U	< 2.0 U	< 2.4 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.8 U	< 2.4 U	< 2.0 U	< 2.1 U	< 2.0 U	< 2.4 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.8 U	< 2.4 U	< 2.0 U	< 2.1 U	< 2.0 U	< 2.4 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.69 U	< 0.60 U	< 0.49 U	< 0.53 U	< 0.51 U	< 0.59 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.31 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	0.44	0.33	< 0.20 U	< 0.21 U	< 0.20 U	0.57
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.28 U	< 0.24 U	< 0.20 U	< 0.21 U	< 0.20 U	< 0.24 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

,										
			Clie	nt Sample ID:	SB-21 12-in	SB-21 138-in	SB-21 3-in	DUPE 3	SB-22 12-in	SB-22 168-in
			La	ab Sample ID:	480-192646-6	480-192646-7	480-192646-5	480-192646-36	480-192646-34	480-192646-35
				Location ID:	SB-21	SB-21	SB-21	SB-22	SB-22	SB-22
			S	Sample Date:	11/15/2021	11/15/2021	11/15/2021	11/16/2021	11/16/2021	11/16/2021
			Sample	e Type Code:	N	N	N	FD	N	Ν
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV ¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.1 U	< 2.1 U	< 2.6 U	< 2.0 U	< 2.0 U	< 2.2 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.1 U	< 2.1 U	< 2.6 U	< 2.0 U	< 2.0 U	< 2.2 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.1 U	< 2.1 U	< 2.6 U	< 2.0 U	< 2.0 U	< 2.2 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.1 U	< 2.1 U	< 2.6 U	< 2.0 U	< 2.0 U	< 2.2 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.52 U	< 0.53 U	< 0.66 U	< 0.51 U	< 0.51 U	< 0.55 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	< 0.21 U	< 0.21 U	0.34	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.21 U	< 0.21 U	< 0.26 U	< 0.20 U	< 0.20 U	< 0.22 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

,			Clie	nt Sample ID:	SB-22 3-in	SB-3 3-IN	SB-3 60-IN	SB-4 12-IN	SB-4 3-IN	SB-4 48-IN
				b Sample ID:	480-192646-33	200-60972-4	200-60972-5	200-60972-24	200-60972-6	200-60972-7
			E	Location ID:	SB-22	SB-3	SB-3	SB-4	SB-4	SB-4
			ç	Sample Date:	11/16/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
				Type Code:	N	N	N	N	N	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV ¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.3 U	< 2.2 U	< 2.0 U	< 2.3 U	< 2.3 U	< 2.1 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.3 U	< 2.2 U	< 2.0 U	< 2.3 U	< 2.3 U	< 2.1 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.3 U	< 2.2 U	< 2.0 U	< 2.3 U	< 2.3 U	< 2.1 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.3 U	< 2.2 U	< 2.0 U	< 2.3 U	< 2.3 U	< 2.1 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.57 U	< 0.55 U	< 0.51 U	< 0.56 U	< 0.57 U	< 0.54 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	< 0.23 U	0.68	< 0.20 U	0.25	< 0.23 U	< 0.21 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.23 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.23 U	< 0.21 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

						1	•	1	1	
				nt Sample ID:	SB-4 72-IN	SB-5 12-IN	SB-5 3-IN	SB-5 72-IN	SB-6 12-in	SB-6 156-in
			La	b Sample ID:	200-60972-8	200-60972-27	200-60972-9	200-60972-10	480-192646-9	480-192646-10
				Location ID:	SB-4	SB-5	SB-5	SB-5	SB-6	SB-6
			S	Sample Date:	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/15/2021	11/15/2021
			Sample	e Type Code:	N	N	N	N	N	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.0 U	< 2.3 U	< 2.5 U	< 2.1 U	< 2.2 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.0 U	< 2.3 U	< 2.5 U	< 2.1 U	< 2.2 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.4 U	< 2.0 U	< 2.3 U	< 2.5 U	< 2.1 U	< 2.2 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ug/kg	NC	NC	NC	< 2.4 U	< 2.0 U	< 2.3 U	< 2.5 U	< 2.1 U	< 2.2 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.61 U	< 0.51 U	< 0.57 U	< 0.62 U	< 0.53 U	< 0.56 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.24 U	< 0.20 U	< 0.23 U	< 0.25 U	< 0.21 U	< 0.22 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

			Clie	nt Sample ID:	SB-6 3-in	SB-7 12-in	SB-7 3-in	SB-7 96-in	DUPE	SB-8 12-in
			La	ab Sample ID:	480-192646-8	480-192646-13	480-192646-12	480-192646-14	480-192646-18	480-192646-16
				Location ID:	SB-6	SB-7	SB-7	SB-7	SB-8	SB-8
			S	Sample Date:	11/15/2021	11/15/2021	11/15/2021	11/15/2021	11/15/2021	11/15/2021
			Sample	e Type Code:	N	N	N	N	FD	N
Compound	Unit	Unrestricted Use GV ¹	Protection of Groundwater GV ¹	Residential Use GV ¹						
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.3 U	< 2.5 U	< 2.3 U	< 2.1 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.3 U	< 2.5 U	< 2.3 U	< 2.1 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.3 U	< 2.5 U	< 2.3 U	< 2.1 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)) ug/kg	NC	NC	NC	< 2.2 U	< 2.3 U	< 2.3 U	< 2.5 U	< 2.3 U	< 2.1 U
Perfluorobutanesulfonic acid (PFBS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorobutanoic Acid	ug/kg	NC	NC	NC	< 0.56 U	< 0.58 U	< 0.57 U	< 0.63 U	< 0.58 U	< 0.52 U
Perfluorodecanesulfonic acid (PFDS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorodecanoic acid (PFDA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorododecanoic acid (PFDoA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluoroheptanoic acid (PFHpA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorohexanoic acid (PFHxA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorononanoic acid (PFNA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorooctane Sulfonamide (FOSA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.88	3.7	8.8	< 0.22 U	1.2	0.97	0.48	0.23	< 0.21 U
Perfluorooctanoic acid (PFOA)	ug/kg	0.66	1.1	6.6	< 0.22 U	0.29	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluoropentanoic Acid (PFPeA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorotetradecanoic acid (PFTA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U
Perfluoroundecanoic Acid (PFUnA)	ug/kg	NC	NC	NC	< 0.22 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.21 U

Notes:

¹ New York State Department of Environmental Conservation, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighting - Exceeds Unrestricted Use guidance value

Highlighting - Exceeds Protection of Groundwater guidance value

		1	1			I
		Client Sample ID:	OBS-MW	FIELD DUP	SB-10 MW-10	SB-12 MW-12
		Lab Sample ID:	480-192646-42	480-192646-23	480-192646-22	480-192646-39
		Location ID:	OBS-IRRIGATION	TW-10	TW-10	TW-12
		Sample Date:	11/16/2021	11/15/2021	11/15/2021	11/16/2021
	:	Sample Type Code:	Ν	FD	N	N
Compound	Unit	NYSDEC				
Compound		Guidelines ¹				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/l	NC	< 4.4 U	< 4.8 U	< 4.7 U	< 4.3 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/l	NC	< 4.4 U	< 4.8 U	< 4.7 U	< 4.3 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/l	NC	< 4.4 U	< 4.8 U	< 4.7 U	< 4.3 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorobutanoic Acid	ng/l	NC	< 4.4 U	6.2	6.2	< 4.3 U
Perfluorodecanesulfonic acid (PFDS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorodecanoic acid (PFDA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorododecanoic acid (PFDoA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluoroheptanesulfonic acid (PFHpS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluoroheptanoic acid (PFHpA)	ng/l	NC	< 1.8 U	2.4	2.2	< 1.7 U
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorohexanoic acid (PFHxA)	ng/l	NC	< 1.8 U	23	21	4.9
Perfluorononanoic acid (PFNA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorooctane Sulfonamide (FOSA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	10	< 1.8 U	2.2	2.4	4.8
Perfluorooctanoic acid (PFOA)	ng/l	10	< 1.8 U	7.8	7.6	2.3
Perfluoropentanoic Acid (PFPeA)	ng/l	NC	< 1.8 U	16	16	6.6
Perfluorotetradecanoic acid (PFTA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	NC	< 1.8 U	< 1.9 U	< 1.9 U	< 1.7 U
						•

Notes:

¹ New York State Department of Environmental Conservation, *Sampling, Analysis, and*

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighted - Indicates compound was detected above applicable criteria

,,		Client Sample ID:	SB-18 MW-18	SB-20 MW-20	SB-22 WM-22	SB-4 MW-4
		Lab Sample ID:	480-192646-41	480-192646-38	480-192646-40	480-192646-37
		Location ID:	TW-18	TW-20	TW-22	TW-4
		Sample Date:	11/16/2021	11/16/2021	11/16/2021	11/16/2021
	5	Sample Type Code:	Ν	N	N	N
Compound	Unit	NYSDEC Guidelines ¹				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/l	NC	< 4.2 U	< 4.4 U	< 4.4 U	< 4.4 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/l	NC	< 4.2 U	< 4.4 U	< 4.4 U	< 4.4 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/l	NC	< 4.2 U	< 4.4 U	< 4.4 U	< 4.4 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	NC	< 1.7 U	< 1.8 U	5.0	< 1.8 U
Perfluorobutanoic Acid	ng/l	NC	< 4.2 U	< 4.4 U	28	< 4.4 U
Perfluorodecanesulfonic acid (PFDS)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluorodecanoic acid (PFDA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluorododecanoic acid (PFDoA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluoroheptanesulfonic acid (PFHpS)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluoroheptanoic acid (PFHpA)	ng/l	NC	< 1.7 U	< 1.8 U	13	6.6
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NC	< 1.7 U	< 1.8 U	4.1	< 1.8 U
Perfluorohexanoic acid (PFHxA)	ng/l	NC	1.9	< 1.8 U	15	2.6
Perfluorononanoic acid (PFNA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluorooctane Sulfonamide (FOSA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	10	1.9	1.9	6.6	4.9
Perfluorooctanoic acid (PFOA)	ng/l	10	7.5	< 1.8 U	47	22
Perfluoropentanoic Acid (PFPeA)	ng/l	NC	3.3	< 1.8 U	17	3.1
Perfluorotetradecanoic acid (PFTA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	NC	< 1.7 U	< 1.8 U	< 1.8 U	< 1.8 U

Notes:

¹ New York State Department of Environmental Conservation, *Sampling, Analysis, and*

Assessment of Per- and Polyfluoroalkyl Substances (PFAS), June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighted - Indicates compound was detected above applicable criteria

Table 4 - Groundwater, P	PFAS Results
--------------------------	--------------

		Client Sample ID:	SB-5/GW-5
		Lab Sample ID:	480-192646-11
		Location ID:	TW-5
		Sample Date:	11/15/2021
		Sample Type Code:	Ν
Compound	Unit	NYSDEC	
Compound		Guidelines ¹	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	ng/l	NC	< 2.0 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	ng/l	NC	< 5.1 U
N-ethyl perfluorooctanesulfonamidoacetic acid	ng/l	NC	< 5.1 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/l	NC	< 5.1 U
Perfluorobutanesulfonic acid (PFBS)	ng/l	NC	< 2.0 U
Perfluorobutanoic Acid	ng/l	NC	7.9
Perfluorodecanesulfonic acid (PFDS)	ng/l	NC	< 2.0 U
Perfluorodecanoic acid (PFDA)	ng/l	NC	< 2.0 U
Perfluorododecanoic acid (PFDoA)	ng/l	NC	< 2.0 U
Perfluoroheptanesulfonic acid (PFHpS)	ng/l	NC	< 2.0 U
Perfluoroheptanoic acid (PFHpA)	ng/l	NC	2.4
Perfluorohexanesulfonic acid (PFHxS)	ng/l	NC	< 2.0 U
Perfluorohexanoic acid (PFHxA)	ng/l	NC	< 2.0 U
Perfluorononanoic acid (PFNA)	ng/l	NC	< 2.0 U
Perfluorooctane Sulfonamide (FOSA)	ng/l	NC	< 2.0 U
Perfluorooctanesulfonic acid (PFOS)	ng/l	10	3.4
Perfluorooctanoic acid (PFOA)	ng/l	10	7.4
Perfluoropentanoic Acid (PFPeA)	ng/l	NC	< 2.0 U
Perfluorotetradecanoic acid (PFTA)	ng/l	NC	< 2.0 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	ng/l	NC	< 2.0 U
Perfluoroundecanoic Acid (PFUnA)	ng/l	NC	< 2.0 U

Notes:

¹ New York State Department of Environmental Conservation, *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS),* June 2021.

Sample Type Code: N - Normal, FD - Field Duplicate

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

Bold - Indicates compound was detected

Highlighted - Indicates compound was detected above applicable criteria

	Table 5 - Groundwater,	Volatile Organic	Compounds	(VOCs) Results
--	------------------------	------------------	-----------	----------------

Table 5 - Groundwater, Volatile Org		ent Sample ID:	FIELD DUP	OBS-MW	SB-10 MW-10	SB-12 MW-12
		ab Sample ID:	480-192646-23	480-192646-42	480-192646-22	480-192646-39
		Location ID:	400-192040-23 TW-10	OBS-IRRIGATION	400-192040-22 TW-10	TW-12
		Sample Date:	15 Nov 2021	16 Nov 2021	15 Nov 2021	16 Nov 2021
	Same	le Type Code:	FD	N	N	N
		NYS CLASS		IN IN	IN	IN IN
Compound	Unit	GA 1				
1,1,1-Trichloroethane (TCA)	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 UT	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-Chloropropane	ug/l	0.04	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane (Ethylene Dibromide)	ug/l	0.0006	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	0.6	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
2-Hexanone	ug/l	50	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	50	< 10 U	< 10 U	< 10 U	< 10 U
Benzene	ug/l	1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	50	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	50	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Disulfide	ug/l	60	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 UT	< 1.0 U
Chlorobenzene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	7	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cis-1,2-Dichloroethylene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cis-1,3-Dichloropropene	ug/l	0.4	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	NC	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	50	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethylbenzene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
lsopropylbenzene (Cumene)	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 UT	< 1.0 U
Methyl Acetate	ug/l	NC	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
Methyl Ethyl Ketone (2-Butanone)	ug/l	50	< 10 U	< 10 U	< 10 U	< 10 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/l	NC	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Methylcyclohexane	ug/l	NC	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 UT	< 1.0 U
Styrene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tert-Butyl Methyl Ether	ug/l	10	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tetrachloroethylene (PCE)	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 UT	< 1.0 U
Toluene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trans-1,2-Dichloroethene	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trans-1,3-Dichloropropene	ug/l	0.4	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichloroethylene (TCE)	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes	ug/l	5	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U

Notes: ¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

T - Indicates that a quality control parameter has exceeded laboratory limits

Table 5 - Groundwater, Volatile Organic Compounds

		ent Sample ID:	SB-18 N			MW-20	SB-22		SB-5/0	
	I	ab Sample ID:	480-1920			2646-38	480-192		480-192	
		Location ID:	TW-	18	TW	-20	TW	-22	TW	-5
		Sample Date:	16 Nov	2021	16 No	v 2021	16 Nov	v 2021	15 Nov	2021
	Samp	le Type Code:	N		1	N	١	N	N	
Compound	Unit	NYS CLASS GA ¹								
1,1,1-Trichloroethane (TCA)	ug/l	5	< 2.0 l	U	< 1.0	U	< 1.0	U	< 1.0	U
1,1,2,2-Tetrachloroethane	ug/l	5	< 2.0 l	U	< 1.0	U	< 1.0	U	< 1.0	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	5	< 2.0 l	U	< 1.0	U	< 1.0	U	< 1.0	U
1,1,2-Trichloroethane	ug/l	1	< 2.0 l	U	< 1.0	U	< 1.0	U	< 1.0	U
1,1-Dichloroethane	ug/l	5	< 2.0 เ	U	< 1.0	U	< 1.0	U	< 1.0	U
1,1-Dichloroethene	ug/l	5	< 2.0 เ	U	< 1.0	U	< 1.0	U	< 1.0	U
1,2,4-Trichlorobenzene	ug/l	5	< 2.0 l	U	< 1.0	U	< 1.0		< 1.0	U
1,2-Dibromo-3-Chloropropane	ug/l	0.04	< 2.0 เ	U	< 1.0	U	< 1.0	U	< 1.0	U
1,2-Dibromoethane (Ethylene Dibromide)	ug/l	0.0006	< 2.0 เ	U	< 1.0		< 1.0	U	< 1.0	U
1,2-Dichlorobenzene	ug/l	3	< 2.0 l		< 1.0		< 1.0	-	< 1.0	
1,2-Dichloroethane	ug/l	0.6	< 2.0 l		< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane	ug/l	1	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
1,3-Dichlorobenzene	ug/l	3	< 2.0 เ		< 1.0	-	< 1.0	-	< 1.0	
1,4-Dichlorobenzene	ug/l	3	< 2.0 เ		< 1.0		< 1.0		< 1.0	
2-Hexanone	ug/l	50	< 10 เ	-	< 5.0	-	< 5.0	-	< 5.0	
Acetone	ug/l	50	< 20 เ		< 10		< 10		< 10	
Benzene	ug/l	1	< 2.0 เ		< 1.0			U	< 1.0	
Bromodichloromethane	ug/l	50	< 2.0 เ		< 1.0		< 1.0		< 1.0	
Bromoform	ug/l	50	< 2.0 เ	-	< 1.0	-	< 1.0		< 1.0	
Bromomethane	ug/l	5	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
Carbon Disulfide	ug/l	60	< 2.0 เ		< 1.0		< 1.0		< 1.0	
Carbon Tetrachloride	ug/l	5	< 2.0 l	-	< 1.0	-	< 1.0	-	< 1.0	-
Chlorobenzene	ug/l	5	< 2.0 เ		< 1.0		< 1.0		< 1.0	
Chloroethane	ug/l	5	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
Chloroform	ug/l	7	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
Chloromethane	ug/l	5	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
Cis-1,2-Dichloroethylene	ug/l	5	< 2.0 l		< 1.0		< 1.0		< 1.0	
Cis-1,3-Dichloropropene	ug/l	0.4	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
Cyclohexane	ug/l	NC	< 2.0 l	-	< 1.0	-	< 1.0	-	< 1.0	-
Dibromochloromethane	ug/l	50	< 2.0 l		< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane	ug/l	5	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	
Ethylbenzene	ug/l	5	< 2.0 l		< 1.0	-	< 1.0	-	< 1.0	-
Isopropylbenzene (Cumene)	ug/l ug/l	5 NC	< 2.0 l < 5.0 l		< 1.0 < 2.5		< 1.0 < 2.5		< 1.0 < 2.5	
Methyl Acetate	<u> </u>		< 5.0 l		< 2.5	-	< 2.5 < 10	-	< 2.5	
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ug/l ug/l	50 NC	< 20 l	-	< 10		< 10		< 10	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylcyclohexane	ug/l	NC	< 2.0 l		< 5.0		< 5.0		< 5.0	
Methylene Chloride	ug/l	5	< 2.0 l		< 1.0	-	< 1.0		< 1.0	
Styrene	ug/l	5	< 2.0 l		< 1.0	-	< 1.0		< 1.0	
Tert-Butyl Methyl Ether		1.0	< 2.0 l		< 1.0		< 1.0		< 1.0	
Tetrachloroethylene (PCE)	ug/l ug/l	10 5	< 2.0 l		< 1.0		< 1.0		< 1.0	
Toluene	ug/l	5	< 2.0 l		< 1.0		< 1.0		< 1.0	
Trans-1,2-Dichloroethene	ug/i ug/i	5	< 2.0 l		< 1.0		< 1.0		< 1.0	
Trans-1,3-Dichloropropene	ug/i ug/i	0.4	< 2.0 l		< 1.0		< 1.0	-	< 1.0	
Trichloroethylene (TCE)	ug/l	5	< 2.0 l		< 1.0	-	< 1.0		< 1.0	
Trichlorofluoromethane	ug/l	5	< 2.0 l		< 1.0		< 1.0		< 1.0	
Vinyl Chloride	ug/i ug/i	2	< 2.0 l	-	< 1.0		< 1.0		< 1.0	
Xylenes	ug/l	5	< 4.0 l		< 2.0		< 2.0		< 2.0	
Notes:	- ag/i	5	- 4.0	-	\$2.0	5	- 2.0	5	- 2.0	5

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

NC - No criteria currently exists

U - Compound not detected at the reporting limit shown

T - Indicates that a quality control parameter has exceeded laboratory limit

APPENDIX A

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

October 18, 2021

Tom Fox Dvirka & Bartilucci 330 Crossways Park Drive Woodbury, NY 11797

RE: Project: SOUTH HAMPTON DAMASCAS 10/11 Pace Project No.: 70190658

Dear Tom Fox:

Enclosed are the analytical results for sample(s) received by the laboratory on October 11, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Elizabeth Harrison

Elizabeth Harrison betty.harrison@pacelabs.com (631)694-3040 Project Manager

Enclosures

cc: Donna Brown, Dvirka & Bartilucci

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: Pace Project No.:

Method: Description: Client: Date:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

90658	EMH	c acid, (4) sodium hydroxide, (5) zinc acetate, (A) accordic acid, (B) ammonium sulfate, (C) A confile // LC (C) A confile // LC	Receipt Checklist: .ls Present/Intact *	Custody Signatures Present ON WA Collector Signature Present ON WA Bottles Intact	Correct Bottles Sufficient Volume Samples Received on Ice	ble	nt		Lab Sample # / Comments:	1.04	100	16 (A) 1	neces	l ab Samole Temberature Info:	Temp Blank Received: Y N NA	Cooler 1 Therm Corr. Factor: 0C Cooler 1 Therm Corr. Factor: 0C Cooler 1 Corrected Temp: 200	Comments:	Trip Blank Received: Y (N NA HCL MeOH TSP Other	Non Conformance(s): Page: 1 YES / (NO)
LAB USE ONLY- AFF WO林: 70190658	ALL S Container Preserva 70190658	** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) accordic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other TEE STEP (15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	<u> </u>	Custo	Corre Suffi	VOA - VOA - USDA USDA	Resic CI St Sampl PH St Sulf	Lead LAB (Lab 3						214	Samples received via:	7h:h1	Date/Time: Accuration: Template Prelogin:	Date/Time: PM: PB: PB:
CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information: Billing SAMC.		State: County/City: Time Zone Collected:	Site/Facility D #Clera Llobe Environmentance Monitoring?		Immediately Packed on Ice: It Yes [] No	[] Next Day [] Next Day [] 4 Day [] 4 Day [] 4 Day [] 4 Day [] 5 Day Analysis:		Collected (or Composite End Res # of C	Time Date Time	+ +			find the first Mana	An All	Radchem sample(s) screened (<500 cpm): Y N (MA)	Date/Time: Received by/Company: (Signature)	rime: Received by/Company: (Signature)	Time: Received by/Company: (Signature)
Pace Analytical Chain-of-Custody is a	Company: D+B Engineer and Architects Address: 320 ctossage Part North Divertury		5405/114	Phone: 516-364-9890 Site/Facility 10 #. Clern 6.	Collected By (print): / Purchase Order #: 564 2 20 M Lagodyd Cf Quote #:	Collected By (signature): / Turnaround Date Required:	Sample Disposal: M Dispose as appropriate [] Return [] Archive: [] Hold: [] Hold: [] Hold: [] Hold: [] Hold: [] Hold: [] Same Day [] Next Day [] Same Day [] A Day []	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID Matrix * Grab	. Validation in	Farcet-1 Murable were c 10				Hazards:	taxiel bouted 34 cain brivel	Jana Lagures	Relignuished by Company: (Signature) Date/Time	Relinquished by/Company: (Signature) Date/Time:

October 18, 2021

Elizabeth Harrison Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747

Project Location: South Hampton Damascas 10/11 Client Job Number: Project Number: 70190658 Laboratory Work Order Number: 21J0702

Enclosed are results of analyses for samples as received by the laboratory on October 13, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

and the second

Kaitlyn A. Feliciano Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
21J0702-01	5
Sample Preparation Information	6
QC Data	7
Semivolatile Organic Compounds by - LC/MS-MS	7
B292345	7
Flag/Qualifier Summary	8
Certifications	9
Chain of Custody/Sample Receipt	10

Pace Analytical Services - Long Island, NY 575 Broad Hollow Road Melville, NY 11747 ATTN: Elizabeth Harrison

REPORT DATE: 10/18/2021

SUB LAB

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 70190658

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21J0702

The results of analyses performed on the following samples submitted to Con-Test, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: South Hampton Damascas 10/11

FIELD SAMPLE # Faucet-1

21J0702-01 Drinking Water

MATRIX

LAB ID:

SAMPLE DESCRIPTION

EPA 537.1

TEST

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

Work Order: 21J0702

Project Location: South Hampton Damascas 10/11 Date Received: 10/13/2021

Field Sample #: Faucet-1

Tiena Sampie #1 Taucce

d5-NEtFOSAA

Sample ID: 21J0702-01 Sample Matrix: Drinking Water Sampled: 10/11/2021 14:15

Sample Description:

88.5

			Semiv	olatile Organ	ic Compoun	ds by - LC/	MS-MS				
				MCL/SMCL					Date	Date/Time	
Analyte	Results	RL	DL	MA ORSG	Units	DF	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.72		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.84		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.61		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.64		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorooctanoic acid (PFOA)	ND	1.9	0.88		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.81		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorononanoic acid (PFNA)	ND	1.9	0.83		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorodecanoic acid (PFDA)	ND	1.9	0.69		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
N-EtFOSAA	ND	1.9	0.65		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.64		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
N-MeFOSAA	ND	1.9	0.61		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.59		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	1.9	0.56		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Perfluorotetradecanoic acid (PFTA)	ND	1.9	0.48		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	1.9	0.83		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
11Cl-PF3OUdS (F53B Minor)	ND	1.9	0.72		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
9Cl-PF3ONS (F53B Major)	ND	1.9	0.86		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.77		ng/L	1		EPA 537.1	10/14/21	10/18/21 14:12	BLH
Surrogates		% F	Recovery	Recover	y Limits		Flag/Qual				
13C-PFHxA		91.	0	70-	130					10/18/21 14:12	
M3HFPO-DA		98.	9	70-	130					10/18/21 14:12	
13C-PFDA		85.	7	70-	130					10/18/21 14:12	

70-130

10/18/21 14:12

Sample Extraction Data

Prep Method: EPA 537.1-EPA 537.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21J0702-01 [Faucet-1]	B292345	266	1.00	10/14/21

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
a mina y to	Kesun	Liillit	DL	Units	Level	result	JUNEU	Limits	ΛΓŬ	LIIIII	notes
Batch B292345 - EPA 537.1											
Blank (B292345-BLK1)					Prepared: 10)/14/21 Analy	yzed: 10/18/2	21			
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.74	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.86	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.63	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	1.9	0.65	ng/L							
erfluorooctanoic acid (PFOA)	ND	1.9	0.91	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	1.9	0.84	ng/L							
erfluorononanoic acid (PFNA)	ND	1.9	0.85	ng/L							
erfluorodecanoic acid (PFDA)	ND	1.9	0.71	ng/L							
-EtFOSAA	ND	1.9	0.67	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	1.9	0.65	ng/L							
-MeFOSAA	ND	1.9	0.63	ng/L							
erfluorododecanoic acid (PFDoA)	ND	1.9	0.60	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	1.9	0.57	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	1.9	0.50	ng/L							
exafluoropropylene oxide dimer acid	ND	1.9	0.85	ng/L							
HFPO-DA)				-							
Cl-PF3OUdS (F53B Minor)	ND	1.9	0.74	ng/L							
Cl-PF3ONS (F53B Major)	ND	1.9	0.88	ng/L							
8-dioxa-3H-perfluorononanoic acid DONA)	ND	1.9	0.79	ng/L							
urrogate: 13C-PFHxA	36.1			ng/L	38.6		93.5	70-130			
urrogate: M3HFPO-DA	39.2			ng/L	38.6		102	70-130			
urrogate: 13C-PFDA	33.7			ng/L	38.6		87.3	70-130			
urrogate: d5-NEtFOSAA	146			ng/L	154		94.6	70-130			
CS (B292345-BS1)					Prepared: 10)/14/21 Analy	yzed: 10/18/2	21			
erfluorobutanesulfonic acid (PFBS)	2.37	1.9	0.74	ng/L	1.70		139	50-150			
erfluorohexanoic acid (PFHxA)	2.53	1.9	0.85	ng/L	1.92		132	50-150			
erfluorohexanesulfonic acid (PFHxS)	2.48	1.9	0.62	ng/L	1.75		141	50-150			
erfluoroheptanoic acid (PFHpA)	2.41	1.9	0.65	ng/L	1.92		126	50-150			
erfluorooctanoic acid (PFOA)	2.37	1.9	0.90	ng/L	1.92		124	50-150			
erfluorooctanesulfonic acid (PFOS)	2.39	1.9	0.83	ng/L	1.78		135	50-150			
erfluorononanoic acid (PFNA)	2.11	1.9	0.85	ng/L	1.92		110	50-150			
erfluorodecanoic acid (PFDA)	2.40	1.9	0.70	ng/L	1.92		125	50-150			
EtFOSAA	2.30	1.9	0.67	ng/L	1.92		120	50-150			
erfluoroundecanoic acid (PFUnA)	2.07	1.9	0.65	ng/L	1.92		108	50-150			
-MeFOSAA	2.27	1.9	0.62	ng/L	1.92		118	50-150			
erfluorododecanoic acid (PFDoA)	2.22	1.9	0.60	ng/L	1.92		116	50-150			
erfluorotridecanoic acid (PFTrDA)	1.96	1.9	0.57	ng/L	1.92		102	50-150			
erfluorotetradecanoic acid (PFTA)	2.06	1.9	0.49	ng/L	1.92		107	50-150			
exafluoropropylene oxide dimer acid IFPO-DA)	2.48	1.9	0.85	ng/L	1.92		129	50-150			
ICI-PF3OUdS (F53B Minor)	2.21	1.9	0.73	ng/L	1.81		122	50-150			
Cl-PF3ONS (F53B Major)	2.26	1.9	0.87	ng/L	1.79		126	50-150			
,8-dioxa-3H-perfluorononanoic acid ADONA)	2.16	1.9	0.79	ng/L	1.81		119	50-150			
urrogate: 13C-PFHxA	41.4			ng/L	38.3		108	70-130			
urrogate: M3HFPO-DA	45.3			ng/L	38.3		118	70-130			
urrogate: 13C-PFDA	36.9			ng/L	38.3		96.3	70-130			
urrogate: d5-NEtFOSAA	152			ng/L	153		98.9	70-130			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit
- DL Method Detection Limit
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 537.1 in Drinking Water	
Perfluorobutanesulfonic acid (PFBS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanoic acid (PFHxA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorohexanesulfonic acid (PFHxS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroheptanoic acid (PFHpA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorooctanoic acid (PFOA)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH
Perfluorooctanesulfonic acid (PFOS)	VT-DW,NJ,CT,ME,PA,MI,MA,NY,NH
Perfluorononanoic acid (PFNA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorodecanoic acid (PFDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-EtFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluoroundecanoic acid (PFUnA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
N-MeFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorododecanoic acid (PFDoA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotridecanoic acid (PFTrDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Perfluorotetradecanoic acid (PFTA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
11Cl-PF3OUdS (F53B Minor)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
9Cl-PF3ONS (F53B Major)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
СТ	Connecticut Department of Publilc Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

Interi	Internal Transfer Chain of Custody	r Chain e	of Cus	todv		arkinteksinan kurantun kurantun sikate	đ	TOLLE	ß	4) N	\cap	;
			Sa	mples Pro	Samples Pre-Logged into eCOC.	nto eCO(Ó	State Of Origin: NY Cert Needed: X	f Origin eded	: NY Xes		2	T	Pace Analytical" www.pacelabs.com	Analytícal " www.pacelabs.com
Workord	Workorder: 70190658	Workorder Name:	- a	SOUTH HA	SOUTH HAMPTON DAMSACAS 10/11	MSAC/	1	Owner Received Date:	Receive	d Date:	9		Results Requested By:		10/15/2021
Elizabeth Pace Ane 575 Broa Melville, I	Elizabeth Harrison Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747			Pace New England 39 Spruce St. East Longmeadow, Phone (413)525-23	Pace New England 39 Spruce St. East Longmeadow, MA 01028 Phone (413)525-2332	A 01028									
Phone (6	Phone (631)694-3040								265 19 31	۲ <u>5 م</u> ط 23					
							Preserve	Preserved Containers							
Item Sam	Sample ID	Sample Type	Collect Date/Time	E Constant The Constant The Constant	Lab ID	Matrix	EOZSZAN							LAB U	LAB USE ONLY
1 FAUCET-1	ET-1	PS	10/11/2021 14:15		70190658001	Drinking	.			×					
2															
e e															
4															
2								_					Comments		
Transfers	Released By		Date/	Date/Time	Received By	(۲		ŏ	Date/Time	Plea	se report	PFAS 21	Please report PFAS 21-compound NYSDEC list	EC list.	
+	E all all and	286 2	21/01	10/12/hr 15:00		R		959 10101	61210	Τ			-		<u></u>
2	der an	,					-			<u> </u>					
3										7				ł	
Cooler]	Cooler Temperature on Receipt	eceipt <u>}</u> , <u>v</u> °C	ູ່	Custody Seal	y Seal Y	or /N		Receiv	Received on Ice	se 🕅 or	L N		Samples Intact	act Y or	Z
***In ord¢ This c	**In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.	t confidentiality considered cor	/, location/ mplete as .	hame of t is since th	he samplir nis informa	ng site, se	ampler's n ailable in t	ame ano the owne	l signatu er labora	ire may n itory.	ot be pro	vided or	this COC docu	ment.	

Dabe 12, 2021 11:44:45 AM 12, 2021 11:44:45 AM

Page 1 of 1

TRACK ANOTHER SHIPMENT

541547018020

公 目 ⑦

ADD NICKNAME

Delivered Wednesday, October 13, 2021 at 9:59 am

¢------¢-------¢

DELIVERED Signed for by: R.PIETRIAS get status updates obtain proof of delivery

FROM

MELVILLE, NY US

TO EAST LONGMEADOW, MA US

Travel History

TIME ZONE

Local Scan Time

Wednesday, October 13, 2021

9:59 AM	EAST LONGMEADOW, MA	Delivered
8:07 AM	WINDSOR LOCKS, CT	On FedEx vehicle for delivery
7:56 AM	WINDSOR LOCKS, CT	At local FedEx facility
3:14 AM	NEWARK, NJ	Departed FedEx hub

Tuesday, October 12, 2021

10:14 PM	NEWARK, NJ	Departed FedEx hub
10:1 3 P M	NEWARK, NJ	Arrived at FedEx hub
9:13 PM	MELVILLE, NY	Left FedEx origin facility
5:56 PM	MELVILLE, NY	Picked up
4:30 PM		Shipment information sent to FedEx

Shipment Facts

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client <u>Pace</u>	-104		<u> </u>	······			~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····
Received By	- KLF		Date	10/13	191	Time	<u>959</u>	
How were the samples	In Cooler	T	No Cooler		On Ice	7	No Ice	
received?	Direct from Samp	oling			Ambient		Melted Ice	••••••
Were samples within		By Gun #	3		Actual Tem	p- 2.44		
Temperature? 2-6°C	7	By Blank #			Actual Tem	Ď		
Was Custody S	eal Intact?		We		Tampered		A.	•
Was Costoly C				-	ee With Sa		<u> </u>	•
Are there broken/	•							•
Is COC in ink/ Legible?	-	on any cam		nles receiv	ed within h	olding time?	7	
Did COC include all	Client	·	Analysis	-T		er Name		•
pertinent Information?	Project		ID's	r		Dates/Times	s	•
Are Sample labels filled	•			<u></u>				•
Are there Lab to Filters?	•			Who was	notified?			
Are there Rushes?		T	•	Who was	notified?	Bne		•
Are there Short Holds?		<u>'</u>			notified?	<u></u>		•
Is there enough Volume	<u>م</u>							•
Is there Headspace whe		N		MS/MSD?				
Proper Media/Container				-	samples rec	juired?	F	
Were trip blanks receive				On COC?				•
Do all samples have the		T	Acid	IA.		Base	10	
-	1470,000	#	-		#			#
Vials #	Containe 1 Liter Amb.	# *	1 Liter	Plastic	π	16 0	z Amb.	
Unp- HCL-	500 mL Amb.		500 mL			<u> </u>	nb/Clear	
Meoh-	250 mL Amb.		250 mL		3	1	nb/Clear	
Bisulfate-	Flashpoint		Col./Ba				nb/Clear	
DI-	Other Glass		Other I				core	
Thiosulfate-	SOC Kit		Plastic			Frozen:		<u></u>
Sulfuric-	Perchlorate		Ziple	and a state of the second				
			Unused I	Media				
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.		1 Liter	Plastic			z Amb.	
HCL-	500 mL Amb.		500 mL	Plastic			nb/Clear	
Meoh-	250 mL Amb.		250 mL				nb/Clear	ļ
Bisulfate-	Col./Bacteria		Flash				mb/Clear	
DI-	Other Plastic		Other				ncore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Zipl	ock				
Comments:								

APPENDIX B

MONI	TORING WELL / BOR	ING NO. SB -	-1		_
Site N	ame: NYSDEC - Algonquin	Middle School Date	e Drilled	November 10, 2021	📙 LaBella
Locati	on: 333 RT 351, Poestenkill, N	^{NY} Drill	ling Co.:	Clean Globe Environmental	Powered by partnership.
Client:	NYSDEC	Drill	ler: ^M	ario Pineda	Soil Samples Collected:
Phone	• No.:N/A	Log	iged by:	T. Rollend	SB-1 @ 3-IN SB-1 @ 12-IN
Drilling	g Method: Geoprobe 7822	DT(Dia):2"S	ampling	J Method: Macro Core (Dia): 2"	SB-1 @ 72-IN
				TD: <u>20'</u> (Dia):	SB-1 @ 192-IN
Well T	D:	(Dia): V	Vell Typ	e: No Well Installed	
Scree	n Interval:S	lot Size:		Diameter:	
Cased	Interval:T	уре:		Diameter:	
Sand I	Pack Interval:	Туре:		Wellhead Prot:	
Bentor	nite Seal Interval:	Туре:		_Grouted Interval:	
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Descriptio	I on / Soil Classification
□ 0					
		S-1: 0 - 5.0'		0" - 8" Brown, dry, organics, fine 8" - 11" Gray, dry, small - medium	SAND and SILT (topsoil) angular GRAVEL (shale fragments)
4		Rec: 3.0'/5.0'	< 1.0		
5				11" - 20' Brown, dry, fine SAND an	d SILT
-		S-2: 5.0' - 10' Rec: 5.0'/5.0'	< 1.0		
4					
		S-3: 10' - 15' Rec: 5.0'/5.0'	< 1.0		
15					
					SAND, increasing silt with depth, trace clay
		S-4: 15' - 20' Rec: 5.0'/5.0'	< 1.0	⊻	
4					(f SAND and silt)
20 -				End of Boring @ 20'	20'
				No monitoring well installed	
25 -					
30 -					
35					
Monito	ring Well Completion / Boring L	og drafted by LaBella	Associate	s, D.P.C.	PAGE

	L / BORING NO. SB	-2	
	Algonquin Middle School Da		d: November 10, 2021
	oestenkill, NY Dri		Developed by a perturbative
	Dri	-	
			,. T. Rollend SB-2 @ 2-IN
			g Method: <u>Macro Core</u> (Dia): 2"
	(Dia):	-	d TD: <u>3.0'</u> (Dia):
			Diameter:
			Diameter:
			Wellhead Prot:
			Grouted Interval:
Bentonite Sear Interv	aiiype_		
Depth Monitoring (Feet) Construct	Nell Recovery;	PID (ppm):	Description / Soil Classification
	S-1: 0 - 3.0' Rec: 3.0'/5.0'	< 1.0	0" - 1.0' Brown, dry, organics, coarse to fine SAND and SILT (topsoil) 1.0' - 3.0' Brown, dry, coarse - fine SAND and silt to refusal at 3.0'. Gray shale fragments in sampler shoe
5 1 10 1 1 1 1 1 1 1 1 1 1			End of Boring @ 3.0' 3 No monitoring well installed

MONI	TORING WELL / BOR	ING NO. SB	-3		
	ame:			November 10, 2021	📙 LaBella
				Clean Globe Environmental	Powered by partnership.
Client;	NYSDEC	Dril	ler: ^M	ario Pineda	Soil Samples Collected:
Phone	• No.:NA	Log	iged by:	T. Rollend	SB-3 @ 3-IN SB-3 @ 60-IN
				Method: Macro Core (Dia): 2"	
				TD: <u>5.0'</u> (Dia):	
				e: No Well Installed	
Scree	n Interval:S	lot Size:		_ Diameter:	
Cased	Interval:T	ype:		_ Diameter:	
Sand I	Pack Interval:	Type:		_Wellhead Prot:	
Bentor	nite Seal Interval:	Туре:		_Grouted Interval:	
	I	1	1		
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Descripti	on / Soil Classification
° –				0" - 1.0' Black, dry, organics, coa	rse to fine SAND and SILT (topsoil)
-		S-1: 0 - 3.0' Rec: 3.0'/5.0'	< 1.0	1.0' - 5.0' Becomes brown, dry, coa	arse - fine SAND and silt to refusal at 5.0'.
-				Gray and green shale fra	
5					5.0'
				End of Boring @ 5.0' No monitoring well installed	5.0
-					
10					
-					
15					
-					
20 -					
-					
-					
25					
-					
30 -					
35					
Monito	ring Well Completion / Boring L	og drafted by LaBella	Associate	s, D.P.C.	PAGE 3 of 22

MONITORING WELL / BO	RING NO. SB-	4 / N	1W-4	
Site Name: Algonquin Middle S	^{chool} Date	Drilled	November 10, 2021	LaBella
Location: ^{333 RT. 351 Poestenkill}	^{, NY} Drilli	ng Co.;	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Drille	er: ^M	ario Pineda	Soll Samples Collected:
Phone No.: N/A	Logo	ged by:	T. Rollend	SB-4 @ 3-IN
Drilling Method: Geoprobe 782	2 DT(Dia):2"Sa	ampling	Method: Macro Core (Dia): 2"	SB-4 @ 12-IN SB-4 @ 48-IN
Drilled TD: ^{12'}	(Dia): <u>2"</u> Sa	ampled	TD:12'(Dia):	SB-4 @ 72-IN
Well TD: ^{12'}	(Dia): <u>1"</u> W	ell Type	e: Temporary	
Screen Interval: 12'-2'	Slot Size: 0.010	0 Slot	Diameter:1.0"	
Cased Interval: <u>0'-2'</u>	Type: Sch 40 P	VC	_ Diameter: ^{1.0"}	
Sand Pack Interval: 2'-12	<u>2'</u> Type:_#1	Well Sand	⊔_Wellhead Prot: _{N/A}	
Bentonite Seal Interval:	^{)'-1'} Type: ^B	Benchips	_Grouted Interval:	
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Description	on / Soil Classification
0 1 2 Native Soil &				
Well Sand	S-1: 0 - 5.0'			ne SAND and SILT (topsoil)
Bentonite	Rec: 2.5'/5.0'	< 1.0	 2.0' - 11' Brown, dry to wet at 7.0	O', coarse to fine SAND and silt
<u>1" PVC Rise</u> r			-	
10 Slot	S-2: 5.0' - 10' Rec: 4.0'/5.0'	< 1.0	⊥ Wet at 7.0'	
PVC Screen				
	S-3: 10' - 12' Rec: 2.0'/5.0'	< 1.0	11' - 12' Gray, dry, shale fragm	(f-c SAND and silt) ents to sampler refusal at 12'
[End of Boring @ 12'	
				xpendable drive point to 12' below grade. Installed m 2' to 12' and solid riser to grade. Well removed
			and abandoned 11/16/2021.	12'
30 -				
35]				
	Log drafted by LaBella	A I - 4		PAGE 4 of 22

MONITORING WELL / BOR	ING NO. <u>SB-5 / N</u>	<u>MW-5</u>
Site Name: Algonquin Middle Sch		
Location: 333 RT. 351 Poestenkill, N	^{√Y} Drilling Co	D.: Clean Globe Environmental Powered by partnership.
Client: NYSDEC	Driller:	Mario Pineda Soll Samples Collected:
Phone No.:	Logged by	Y. T. Rollend SB-5 @ 3-IN
		ng Mothod: Marro Core (Dio): 2"
		ed TD: 15' (Dia): SB-5 @ 72-IN
Well TD: ^{15'}	(Dia)1" Well Ty	/pe:Temporary
Screen Interval: 15'-5.0' S	lot Size: 0.010 Slot	Diameter:1.0"
Cased Interval: <u>0' - 5.0'</u> T	ype:Sch 40 PVC	Diameter:1.0"
Sand Pack Interval: 5.0' - 1	5.0' Type: #1 Well Sa	and Wellhead Prot: N/A
Bentonite Seal Interval: 5.0	"-4.0' Type: Benchips	sGrouted Interval: ^{NA}
Depth Monitoring Well (Feet) Construction	Recovery; PID	
Native Soil & Well Sand		0.0' - 0.5' Brown, dry, organics, fine SAND and SILT (topsoil)
1" PVC Riser	S-1: 0 - 5.0' Rec: 5.0'/5.0' < 1.0	0 0.5' - 14' Brown, dry, wet at 7.0', fine SAND and SILT
Bentonite		0.5 - 14 BIOWH, dry, wet at 7.0, line SAND and Sich
	S-2: 5.0' - 10' Rec: 5.0'/5.0' < 1.0)
- 10 Slot PVC Screen		
#1 Well Sand	S-3: 10' - 15' Rec: 5.0'/5.0' < 1.0	
	Rec. 5.075.0	(f SAND and silt) 14' - 15' Gray, dry, shale fragments to sampler refusal at 15'
		End of Boring @ 15' Advanced 3.0" flush casing with expendable drive point to 15' below grade. Installed 10' of 1.0" ID screen (#10-slot) from 5' to 15' and solid riser to grade. Well removed and abandoned 11/16/2021.
4		
30 -		
		5.00
Monitoring Well Completion / Boring Lo	og drafted by LaBella Associa	ates, D.P.C. PAGE <u>5</u> of <u>22</u>

MONITORING WELL	/ BORING NO. SB	-6	
Site Name: ^{NYSDEC - A}			B: November 15, 2021
Location: 333 RT 351, Poe	estenkill, NY Dril	ling Co.:	Clean Globe Environmental Powered by partnership.
Client: NYSDEC	Dril	ler: ^M	Aario Pineda Soll Samples Collected:
			T. Rollend SB-6 @ 3-IN SB-6 @ 12-IN
			g Method: <u>Macro Core (Dia): 2"</u> SB-6 @ 156-IN
-			I TD:13'(Dia):
			e:No Well Installed
			Diameter:
Cased Interval:	Type:		Diameter:
Sand Pack Interval:	Type:		Wellhead Prot:
Bentonite Seal Interva	l:Type:		Grouted Interval:
Depth Monitoring W (Feet) Construction	ell Recovery;	PID (ppm):	Description / Soil Classification
° _			0" - 1.0' Black, Dry, organics, coarse to fine SAND and SILT (topsoil)
	S-1: 0 - 3.0' Rec: 3.0'/5.0'	< 1.0	
			1.0' - 13' Brown, dry, coarse - fine SAND, silt, some fine angular gravel some fine rounded gravel, poorly sorted (fill) to sampler refusal at 13'
5			
	S-2: 5.0' - 10'		
-	Rec: 5.0'/5.0'	< 1.0	Moist at 8.0'
10 —			-
	S-3: 10'-13' Rec: 1.0'/5.0'	< 1.0	(f Sand and silt) Gray and green shale fragments in sampler shoe
			End of Boring @ 13'
15 _			No monitoring well installed
20 -			
25			
-			
30 -			
35 –			
	Boring Log drafted by LaBella		PAGE 6 of 22

MONITORING WELL / BORING NO. SB-7	— • • • •
Site Name: NYSDEC - Algonquin Middle School Date Drilled: November 15, 2021	LaBella
Location: 333 RT 351, Poestenkill, NY Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soll Samples Collected: SB-7 @ 3-IN
Phone No.: N/A Logged by: T. Rollend	SB-7 @ 12-IN
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	SB-7 @ 96-IN
Drilled TD: <u>10'</u> (Dia): <u>2"</u> Sampled TD: <u>10'</u> (Dia):	
Well TD: N/A (Dia): 1" Well Type: No Well Installed	
Screen Interval: N/A Slot Size: 0.010 Slot Diameter: 1.0"	
Cased Interval: <u>N/A</u> Type: <u>Sch 40 PVC</u> Diameter: <u>1.0"</u>	
Sand Pack Interval: N/A Type: #1 Well Sand Wellhead Prot: N/A	
Bentonite Seal Interval: N/A Type: Benchips Grouted Interval: NA	

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Description / Soil Classification	
		S-1: 0 - 3.0' Rec: 3.0'/5.0'	< 1.0	0" - 1.0' Black, dry, organics, coarse to fine SAND and SILT (topsoil) 1.0' - 10' Brown, dry, coarse - fine SAND, silt, some fine angular gravel some fine rounded gravel, poorly sorted (fill) to sampler refusal at 10'	
		S-2: 5.0' - 10' Rec: 3.0'/5.0'	< 1.0	Moist at 9.0' Gray and green shale fragments in sampler shoe (f Sand and silt)	
				End of Boring @ 10' No monitoring well installed	10'
Monito	ring Well Completion / Boring Lo	og drafted by LaBella	Associate	s, D.P.C. PAGE 7 of 2	22

MONITORING WELL / BO	RING NO. SB	-8		
Site Name: NYSDEC - Algonqu			November 15, 2021	LaBella
Location: 333 RT 351, Poestenki				Powered by partnership.
	Dril			Soil Samples Collected:
Phone No.: N/A				
			g Method: Macro Core (Dia): 2"	SB-8 @ 12-IN
-			TD: <u>1.5'</u> (Dia):	
Well TD:				
			Diameter:	
			Diameter:	
			Wellhead Prot:	
			Grouted Interval:	
Depth (Feet) Monitoring Well Construction	Recovery;	PID (ppm):	Descrip	tion / Soil Classification
	S-1: 0 - 1.5' Rec: 1.0'/5.0'	< 1.0	0" - 1.0' Black, Dry, organics, co 1.0' - 1.5' Gray, dry, shale bedroo End of Boring @ 1.5' No monitoring well installed	par <u>se to fine SAND and SILT (topsoil)</u>

MONITORING WELL / BC	DRING NO. SB-9		_
Site Name: NYSDEC - Algonq		d: November 15, 2021	LaBella
Location: 333 RT 351, Poestenki	^{III, NY} Drilling Co.	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Driller:	Mario Pineda	Soil Samples Collected:
Phone No.:	Logged by	T. Rollend	SB-9 @ 3-IN SB-9 @ 12-IN
Drilling Method: Geoprobe 78	22 DT (Dia): 2" Samplin	g Method: Macro Core (Dia): 2"	0
Drilled TD: 7.0'	(Dia):2"_ Sampled	d TD:7.0' (Dia):	
Well TD:	(Dia) <u>1"</u> Well Typ	De: No Well Installed	
Screen Interval:	_Slot Size:	Diameter:	
Cased Interval:	_Туре:	Diameter:	
Sand Pack Interval:	Туре:	Wellhead Prot:	
Bentonite Seal Interval:	Туре:	Grouted Interval:	
Depth Monitoring Well (Feet) Construction	Recovery; PID (ppm):	Descrip	tion / Soil Classification
ا _ ۱ _		0" - 1.0' Black, dry, organics, co	parse to fine SAND and SILT (topsoil)
	S-1: 0 - 5.0' < 1.0 Rec: 3.0'/5.0'	1.0' - 7.0' Brown, dry, coarse to fi (fill material), poorly so	ne SAND, shale fragments, some fine rounded gravel rted
	S-2: 5.0' - 7.0' Rec: 2.0'/5.0' < 1.0	7.0' End of boring (refusal), No monitoring well insta	gray shale fragments in sampler shoe @ 7.0' alled
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		No monitoring well insta	7.0'

MONITORING WELL / BOR	ING NO. SB- '	10 / N	<u>//W-1</u> 0	_
Site Name: Algonquin Middle Sch	^{ool} Date	Drilled	November 11, 2021	📙 LaBella
Location: 333 RT. 351 Poestenkill, N	[∖] Y Drilliı	ng Co.:	Clean Globe Environmental	Powered by partnership.
Client: NYSDEC	Drille	er:M	ario Pineda	Soll Samples Collected:
Phone No.: N/A	Logg	jed by:_	T. Rollend	SB-10 @ 3-IN SB-10 @ 12-IN
Drilling Method: Geoprobe 7822	DT (Dia) <u>2"</u> Sa	ampling	Method: Macro Core (Dia): 2"	SB-10 @ 156-IN
			TD: <u>18' (</u> Dia):	0
Well TD: ^{18'}				
			Diameter:1.0"	
Cased Interval: <u>0'-8.0'</u> T	ype:	/C	Diameter:1.0"	
Sand Pack Interval: 8.0' - 1	<u>8.0'</u> Type:_#1	Well Sand	⊻_Wellhead Prot:N/A	
Bentonite Seal Interval: 7.0	<u>'-8.0'</u> Туре <u>В</u>	enchips	_Grouted Interval:NA	
	1			
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descriptio	n / Soil Classification
0 1 7.2 Native Soil &			0.0' - 0.2' Brown, dry, organics, fir	ne SAND and SILT (topsoil)
Well Sand	S-1: 0 - 5.0'			
1" PVC Riser	Rec: 5.0'/5.0'	< 1.0	0.2' - 18' Brown, dry, fine SAND a	and SILT
5				
	S-2: 5.0' - 10'			
Bentonite	Rec: 5.0'/5.0'	< 1.0		
10 Slot				
PVC Screen	0.0.401.451		10' - 15' Brown, dry, wet at 14', fir	ne SAND and SILT trace clay with depth
HI Well Sand	S-3: 10' - 15' Rec: 4.0'/5.0'	< 1.0	₩ Wet at 14'	
	S-2: 15' - 18'	< 1.0		(f SAND and silt)
	Rec: 3.0'/5.0'	-	18' Gray, dry, shale fragments to	o sampler refusal at 18'
20			End of Boring @ 18'	unandable drive point to 101 below evode . Unatellad
			10' of 1.0" ID screen (#10-slot) fror	<pre>kpendable drive point to 18' below grade. Installed n 8' to 18' and solid riser to grade. Well removed</pre>
			and abandoned 11/16/2021.	
35 J	og draffed by LeBelle /	Associator		PAGE 10 of 22
Monitoring Well Completion / Boring L	og drafted by LaBella A	ASSOCIATES	5, U.F.G.	

MONITORING WELL	/ BORING NO. SB-1	1	
	Algonquin Middle School Date [LaBella
	estenkill, NY Drilling		Powered by partnership.
Client: NYSDEC	Driller	Mario Pineda	Soil Samples Collected:
		ed by: ^{T. Rollend}	SB-11 @ 3-IN
Drilling Method: Geopre	obe 7822 DT(Dia); 2" Sar	npling Method: <u>Macro Core (</u> Dia) <u>:</u> 2"	SB-11 @ 12-IN SB-11 @ 84-IN
-		npled TD:	
		II Type: ^{No Well Installed}	
		Diameter:	
Cased Interval:	Type:	Diameter:	
Sand Pack Interval:	Туре:	Wellhead Prot:	
Bentonite Seal Interva	ll:Type:	Grouted Interval:	
Depth Monitoring W (Feet) Constructio	/ell Recovery; (PID ppm): Descript	ion / Soil Classification
₀ _ 		0" - 1.0' Black, dry, organics, co	arse to fine SAND and SILT (topsoil)
	S-1: 0 - 5.0' < Rec: 3.0'/5.0'	1.0 1.0' - 7.0' Brown, dry, coarse to fin (fill material), poorly sort	e SAND, shale fragments, some fine rounded gravel ted
5	S-2: 5.0' - 7.0' Rec: 2.0'/5.0' <	1.0	
		7.0' End of boring (refusal), No monitoring well insta	
10			7.0'
15 -			
20 -			
-			
25 — —			
-			
30 -			
35 _			44
Monitoring Well Completion /	Boring Log drafted by LaBella As	ssoclates, D.P.C.	PAGE <u>11</u> of <u>22</u>

MONITORING WELL / BOR	ING NO. SB-12 /	<u>MW-1</u> 2
Site Name: Algonquin Middle Sch		
Location: 333 RT. 351 Poestenkill, I		
Client: NYSDEC		
Phone No.: N/A		SB-12 @ 3-N
		Ig Method: Macro Core (Dia): 2"
		d TD: <u>17'</u> (Dia):
		pe:Temporary
		Diameter:1.0"
Cased Interval: <u>0'-5.0'</u> T	ype: Sch 40 PVC	Diameter:1.0"
Sand Pack Interval: 5.0' - ^	15.0' Type: #1 Well Sa	nd_Wellhead Prot:N/A
Bentonite Seal Interval: 5.0)'-4.0' Type: Benchips	Grouted Interval:
	1	
Depth Monitoring Well (Feet) Construction	Recovery; PID (ppm)	: Description / Soil Classification
0 1 2 2 Native Soil &		0.0' - 0.5' Brown, dry, organics, fine SAND and SILT (topsoil)
Well Sand	S-1: 0 - 5.0'	
1" PVC Riser	Rec: 5.0'/5.0' < 1.0	0.5' - 17' Brown, dry , wet at 7.0', fine SAND and silt, trace fine gravel
5 Bentonite		_
	S-2: 5.0' - 10'	₩et at 7.0'
10 Slot	Rec: 5.0'/5.0' < 1.0	
10 - V. V. El PVC Screen		As above, fine SAND and increasing silt, trace clay
	S-3: 10' - 15'	
→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Rec: 5.0'/5.0' < 1.0	
		(f SAND and silt)
	S-4: 15' - 17' Rec: 2.0'/5.0' < 1.0	17' End of boring at refusal. Gray, dry, shale fragments to sampler refusal at 17'
		End of Boring @ 17'
20 -		Advanced 3.0" flush casing with expendable drive point to 15' below grade. Installed 10' of 1.0" ID screen (#10-slot) from 5' to 15' and solid riser to grade. Well removed
		and abandoned 11/16/2021.
30 -		
35		
Monitoring Well Completion / Boring L	og drafted by LaBella Associat	Les, D.P.C. PAGE <u>12</u> of <u>22</u>

MONITORING WELL / BORI	NG NO. SB	-13	
Site Name:	Middle School Date	e Drilled	November 11, 2021
Location: 333 RT 351, Poestenkill, N	Y Drill	ling Co.:	Clean Globe Environmental Powered by partnership.
Client: NYSDEC	Drill	ler: ^M	ario Pineda Soil Samples Collected:
Phone No.: N/A	Log	ged by:	T. Rollend SB-13 @ 3-IN SB-13 @ 12-IN
Drilling Method: Geoprobe 7822 D	^{)T} (Dia) <u>2"</u> S	ampling	Method: <u>Macro Core</u> (Dia): <u>2</u> " SB-13 @ 84-IN
Drilled TD: ^{13'}	(Dia) <u>:2"</u> S	ampled	TD: <u>13'</u> (Dia):
Well TD:	(Dia): V	Vell Typ	e:No Well Installed
Screen Interval:Slo	ot Size:		_ Diameter:
Cased Interval:Ty	/pe:		_ Diameter:
Sand Pack Interval:	Туре:		_Wellhead Prot:
Bentonite Seal Interval:	Туре:		Grouted Interval:
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Description / Soil Classification
			0" - 1.0' Black, dry, organics, coarse to fine SAND and SILT (topsoil)
	S-1: 0 - 5.0'	< 1 <u>.</u> 0	1.0' - 13' Brown, moist, fine SAND and silt. Silt increasing with depth,
	Rec: 3.0'/5.0'		trace clay
5			
	S-2: 5.0' - 10' Rec: 2.0'/5.0'	< 1.0	▲ Wet at 8.0'
	S-3: 10' - 13' Rec: 3.0'/5.0'	< 1.0	13' End of boring (refusal), gray shale fragments in sampler shoe @ 13' No monitoring well installed
15 -			
			13'
20			
25 —			
30 —			
Monitoring Well Completion / Boring Lo	g drafted by LaBella	Associate	s, d.p.c. Page <u>13</u> of <u>22</u>

MONITORING WELL / BO	RING NO. SB-14		_
Site Name:		ed: November 11, 2021	LaBella
Location: 333 RT 351, Poestenkil	I, NY Drilling Co	O.:Clean Globe Environmental	Powered by partnership.
Client: NYSDEC			Soll Samples Collected:
		Y:T. Rollend	SB-14 @ 3-IN SB-14 @ 12-IN
Drilling Method: Geoprobe 782	22 DT (Dia): 2" Sampli	ng Method: Macro Core (Dia): 2"	-
		ed TD: ^{10'} (^{Dia):}	
		ype:No Well Installed	
Screen Interval:	Slot Size:	Diameter:	
Cased Interval:	Type:	Diameter:	
Sand Pack Interval:	Туре:	Wellhead Prot:	
Bentonite Seal Interval:	Туре:	Grouted Interval:	
Depth Monitoring Well (Feet) Construction	Recovery; PID		l tion / Soil Classification
° – –		0' - 1.0' Black, dry, organics, c	oarse to fine SAND and SILT (topsoil)
	S-1: 0 - 5.0' < 1.0	1.0' - 3.0' Brown, dry, coarse to fragments (fill material	fine SAND, fine to medium GRAVEL, SILT, trace brick)
	Rec: 5.0'/5.0'		
5 -		3.0' - 10' Brown, dry, moist at 9'	, fine SAND and slit
	S-2: 5.0' - 10' Rec: 5.0'/5.0' < 1.0	Moist at 9' 10' End of boring (refusal)	, gray shale fragments in sampler shoe @ 10'
		No monitoring well inst	
			10'
-			
20 -			
25 -			
- - 30 -			
~ _			
35 J	Log drafted by LaBella Ascod	ates DPC	PAGE 14 of 22
mentioning weil completion / boring	Log uraneu by Labella ASSOCI	aico, D.F.O.	

MONITORING WELL / BORING NO. SB-15	
Site Name: NYSDEC - Algonquin Middle School Date Drilled: November 11, 2021	LaBella
Location: 333 RT 351, Poestenkill, NY Drilling Co. Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soll Samples Collected:
Phone No.: N/A Logged by: T. Rollend	SB-15 @ 3-IN -
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	
Drilled TD: 2.5' (Dia): 2" Sampled TD: 2.5' (Dia):	
Well TD:	
Screen Interval:Slot Size:Diameter:	
Cased Interval:Type:Diameter:	
Sand Pack Interval:Type:Wellhead Prot:	
Bentonite Seal Interval:Type:Grouted Interval:	

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):		Description / Soil Classification	
Depth (Feet)	Monitoring Well Construction	Recovery;	<pre>PID (ppm): < 1.0</pre>	0' - 0.9' 0.9' - 2.5' 2.5'	Description / Soil Classification Black, dry, organics, coarse to fine SAND and SILT (topsoil) Black, dry, fine SAND and SILT End of boring (refusal), gray shale fragments in sampler shoe @ 2.5' No monitoring well installed	2.5'
35 J	ng Well Completion / Boring Lo	og drafted by LaBella	Associate	s, D.P.C	PAGE 15 of	22

MONI	TORING WELL / BOR	ING NO. SB -	-16					
	ame: NYSDEC - Algonquin			November 11, 2021	LaBella			
Locati	on: 333 RT 351, Poestenkill, I	NY Drill	ing Co.:	Clean Globe Environmental	Powered by partnership.			
	Client: NYSDEC Driller: Mario Pineda Soll Samples Collected:							
	Phone No : N/A Logged by: ^{T. Rollend} SB-16 @ 3-IN							
				Method: Macro Core (Dia): 2"	SB-16 @ 12-IN SB-16 @ 72-IN			
	-			TD: <u>6.0'</u> (Dia):				
				e: No Well Installed				
				Diameter:				
Cased	l Interval:T	ype:		_Diameter:				
				_Wellhead Prot:				
				_Grouted Interval:				
	I							
Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):	Descriptio	on / Soil Classification			
°]				0' - 0.5' Dark brown, moist, orga	anics, coarse to fine SAND, trace fine gravel,			
-		S-1: 0 - 5.0'	< 1.0	silt, trace clay (topsoil)	rse to fine SAND, trace fine gravel,			
-		Rec: 1.0'/5.0'		unsorted silt and clay (fil				
5		S-2: 5.0' - 6.0'						
		Rec: 1.0'/5.0'	< 1.0	6.0' End of boring (refusal)), gray shale fragments in sampler shoe @ 6.0'			
-				No monitoring well inst				
-								
-								
-								
20								
-								
25								
30 -								
35 J								
Monito	ring Well Completion / Boring L	og drafted by LaBella	Associate	s, D.P.C.	page <u>16</u> of <u>22</u>			

MONITORING WELL / BORING NO. SB-17 Site Name: WYSDEC - Agonçan Middi School Date Dilled: November 16. 2021 Location: 333 RT 351, Poestenilli, NY Drilling Co.: Client: Dirling Co.: Client: Main Pineda Phone No.: N/A Logged by: Enc Drivesii Set 7 @ 3.4N Drilled TD:: 14' Client: Main Pineda Set 7 @ 3.4N Bentonite Scall Interval: 2' Sampled TD: 14' Bentonite': Set 7 @ 3.4N Set 7 @ 724N Vell TD: (0ac;: Well Type: Diameter: Diameter: Diameter: Diameter: Set 7 @ 724N Set 7 @ 724N Sand Pack Interval: Type: Diameter: Diameter: Diameter: Diameter: Set 7 @ 724N Set 7 @ 724N Sand Pack Interval: Type: Diameter: Diameter: Set 7 @ 724N Set 7 @ 724N Set 7 @ 724N Sand Pack Interval: Type: Grouted Interval: Type: Diameter: Set 7 @ 710' Set 7 @ 710' Set 7 @ 710' Set 7 @ 710' Set 7 @ 710' <th>ΜΟΝΙΤ</th> <th></th> <th></th> <th>-17</th> <th></th>	ΜΟΝΙΤ			-17							
Location: 33 RT 351, Poestenkii, NY Drilling Co.: Clean Globe Environmental Client: Mario Pinada Seil Samples Collected Phone No.: NA Logged by: Ent Orbowski Drilling Method: Geoprobe 7822 DT (clay:_2*) Sampled TD: 14 Drilled TD: .costy. Well TD: .costy. Well Type: No Well Installed Screen Interval: Slot Size: Diameter: Diameter: .costy. Well Type: No Well Installed Sand Pack Interval: Type: Diameter: .costy. Well Interval: Type: .costy. Well Interval: .costy. Well Interval: .costy. Soil Classification Creent Interval: Type: .costy. Well Interval: .costy. Soil Classification Bentonite Seal Interval: Type: .costy. Well provide the costruction .costy. .costy. <td></td> <td></td> <td></td> <td></td> <td>d: November 16, 2021</td>					d: November 16, 2021						
Client: Involution Driller: Mario Prineda Phone No.: N/A Logged by: Eric Ontwesi Drilling Method: Geoprobe 7822 DT (Disy. 2') Sampled TD: 4 Drilled TD: 14' (Disy. 2') Sampled TD: 14' Well TD: (Disy. 2') Sampled TD: 14' SB-17 @ 34N Screen Interval: Slot Size: Diameter: Cased Interval: Type: Diameter: Sand Pack Interval: Type: Oral Method: Interval: Bentonite Seal Interval: Type: Grouted Interval: Bentonite Seal Interval: Type: Grouted Interval: Creet Monitoring Well Recovery: PID Creet S-1: 0 - 5.0' <1.0											
Phone No: <u>NA</u> Logged by: <u>Eric Orlowski</u> SB-17 @ 3-IN Drilling Method: <u>Geoprobe 7822 DT</u> (Oliv); <u>2*</u> Sampling Method: <u>Macro Core</u> (Dia); <u>2*</u> Sampled TD: <u>14*</u> (Oliv); <u>2*</u> Drilled TD: <u>14*</u> (Oliv); <u>2*</u> Sampled TD: <u>14*</u> (Oliv); <u>2*</u> Sampled TD: <u>14*</u> (Oliv); <u>2*</u> Screen Interval: <u>Stot Size</u> : Diameter: Cased Interval: <u>Type</u> : Diameter: Sand Pack Interval: <u>Type</u> : Diameter: Grouted Interval: Bentonite Seal Interval: <u>Type</u> : Bentonite Seal Interval: <u>Type</u> : Grouted Interval: Description / Soil Classification 0* <u>6* 0* 1.0*</u> Brown, dry to moist, fine SAND and SILT (topsoil) 0* <u>5*1: 0* 5.0*</u> <1.0											
Drilling Method: Geoprobe 7822 DT (Die):_2* Sampling Method: Macro Core (Die):_2* SB-17 @ 12-IN Drilled TD: 14' (Die):_2* Sampled TD: 14' (Die):_2* SB-17 @ 12-IN Well TD: (Die):_2* Sampled TD: 14' (Die):_2* SB-17 @ 12-IN SB-17 @ 12-IN Well TD: (Die):_2* Sampled TD: 14' (Die):_2* SB-17 @ 72-IN Well TD: (Die):_2* Well Type: No Well Installed SB-17 @ 72-IN SB-17 @ 72-IN Screen Interval: Type: Diameter: Diameter: Diameter: SB-17 @ 72-IN SB-17 @ 72-IN Sand Pack Interval: Type: Diameter: Diameter: Diameter: SB-17 @ 72-IN Bentonite Seal Interval: Type: Grouted Interval: SB-10' SOI Classification 0 S-1: 0 - 5.0' <1.0											
Drilled TD: 14' (Die): 2' Sampled TD: 14' (Die): Well Type: No Well Installed SS-17 @ 724N Well TD: (Die): Well Type: No Well Installed Screen Interval: Slot Size: Diameter: Diameter: Diameter: Bentonite Seal Interval: Type: Grouted Interval: Grouted Interval: Type: Grouted Interval: Type: Grouted Interval: Sol Classification Sol Classification Depth Monitoring Well Recovery: PID (ppm): Description / Soli Classification Description / Soli Classification 0		SB-17 @ 12-IN									
Well TD: (Dia) Well Type: No Well Installed Screen Interval: Slot Size: Diameter: Cased Interval: Type: Diameter: Sand Pack Interval: Type: Or - 1.0' Bentonite Seal Interval: Type: Grouted Interval: Depth Monitoring Well Recovery: PID (ppm): Description / Soll Classification 0	_	SB-17@72-IN									
Screen Interval: Slot Size: Diameter: Cased Interval: Type: Diameter: Sand Pack Interval: Type: Grouted Interval: Bentonite Seal Interval: Type: Grouted Interval: Depth Construction Recovery; (PD) Performance Recovery; (PD) Sold Size: Type: Grouted Interval: 0 Sold Size: Sold Size: 0 Sold Size: (PD) 10 Sold Size: (PD)											
Sand Pack Interval: Type: Wellhead Prot: Bentonite Seal Interval: Type: Grouted Interval: Depth Construction Recovery: PID (ppm): Description / Soil Classification 0	Screen	Interval:S	lot Size:		Diameter:						
Bentonite Seal Interval: Type: Grouted Interval: Depth (Feet) Monitoring Well Construction Recovery; PID (ppm): Description / Soil Classification 0	Cased	Interval:T	ype:		Diameter:						
Depth (Feet) Monitoring Well Construction Recovery: PID (ppm): Description / Soll Classification 0	Sand P	ack Interval:	Туре:		Wellhead Prot:						
Instruction Recovery; (ppm): Description / Soil Classification 0	Benton	ite Seal Interval:	Туре:		Grouted Interval:						
Instruction Recovery; (ppm): Description / Soil Classification 0				1							
5 0" - 1.0' Brown, dry to moist, organics, coarse to fine SAND and SILT (topsoil) 5 S-1: 0 - 5.0' Rec: 4.5'/5.0' < 1.0		Monitoring Well Construction	Recovery;		Description / Soil Classification						
5 0" - 1.0' Brown, dry to moist, organics, coarse to fine SAND and SILT (topsoil) 5 S-1: 0 - 5.0' Rec: 4.5'/5.0' < 1.0											
 Rec: 4.575.0' Rec: 4.575.0' S-2: 5.0' - 10' Rec: 5.075.0' S-3: 10' - 14' Rec: 3.075.0' S-3: 10' - 14' Rec: 3.075.0' End of boring (refusal), gray shale fragments in sampler shoe @ 14' No monitoring well installed 					0" - 1.0' Brown, dry to moist, organics, coarse to fine SAND and SILT (topsoil)						
$\begin{array}{c} 5 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				< 1.0							
10 Rec: 5.0'/5.0' < 1.0	5										
10 Rec: 5.0'/5.0' < 1.0											
10 S-3: 10' - 14' Rec: 3.0'/5.0' < 1.0				< 1.0							
S-3: 10' - 14' Rec: 3.0'/5.0' < 1.0 14' End of boring (refusal), gray shale fragments in sampler shoe @ 14' No monitoring well installed 14'											
Rec: 3.0//5.0' 14' End of boring (refusal), gray shale fragments in sampler shoe @ 14' No monitoring well installed 14'			0.0-401-441	. 1.0							
No monitoring well installed				< 1.0							
					14						
	20 -										
	25										
	30										

MONITORING WELL / BORING NO. SB-18								
Site Name: NYSDEC - Algonquin Middle School Date Drilled: November 11, 2021								
Location: 333 RT 351, Poestenkill, NY Drilling Co.: Clean Globe Environmental Powered by partnership.								
Client: NYSDEC Driller: Mario Pineda Soll Samples Collected:								
Phone No.: N/A Logged by: T. Rollend SB-18 @ 3-IN								
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2" SB-18 @ 12-IN								
Drilled TD: 14' (Dia): 2" Sampled TD: 14' (Dia): 2"								
Well TD: 4' (Dia): 2" Well Type: Temporary								
Screen Interval:4'Slot S	Screen Interval: <u>4'</u> Slot Size: <u>0.10 Slot</u> Diameter: <u>1.0 "</u>							
Cased Interval: <u>N/A</u> Type	<u>N/A</u>		_ Diameter: ^{N/A}					
Sand Pack Interval: 4'	Type:_#	1 Well San	^d Wellhead Prot: <u>N/A</u>					
Bentonite Seal Interval:	Туре:	N/A	_Grouted Interval:					
Depth Monitoring Well (Feet) Construction	Recovery;	PID (ppm):	Descripti	on / Soil Classification				
			0" - 1.0' Brown, moist, organics, o	coarse to fine SAND and silt (topsoil),				
	S-1: 0 - 5.0'	< 1.0	some shale fragments, s	some fine rounded gravel (fill material)				
-	Rec: 4.5'/5.0'							
			4.5' - 11' Gray, moist, CLAY, some	SIIT				
	S-2: 5.0' - 10' Rec: 5.0'/5.0'	< 1.0						
10 -								
	S-3: 10' - 14'	< 1.0						
	Rec: 3.0'/5.0'							
			14' End of boring (refusal), g No monitoring well install	ray shale fragments in sampler shoe @ 14' led November 11, 2021*				
			*Note: At the request of the NYSDE	EC on November 16, 2021 a hand auger was				
			advanced adjacent to the previous	borehole and to a depth of four (4) feet below reen was installed and a groundwater sample				
			obtained.					
35 J				40				
Monitoring Well Completion / Boring Log dr	rafted by LaBella	Associates	s, D.P.C.	PAGE <u>18</u> of <u>22</u>				

MONITORING WELL / BORING NO. SB-19	
Site Name:	LaBella
Location: 333 RT 351, Poestenkill, NY Drilling Co.: Clean Globe Environmental	Powered by partnership.
Client: NYSDEC Driller: Mario Pineda	Soil Samples Collected:
Phone No.: N/A Logged by: Eric Orlowski	SB-19 @ 3-IN SB-19 @ 12-IN
Drilling Method: Geoprobe 7822 DT (Dia): 2" Sampling Method: Macro Core (Dia): 2"	3D-13 @ 12-IN
Drilled TD: 2.5' (Dia): 2" Sampled TD: 2.5' (Dia):	
Well TD:(Dia): Well Type:No Well Installed	
Screen Interval:Slot Size:Diameter:	
Cased Interval:Type:Diameter:	
Sand Pack Interval:Type:Wellhead Prot:	
Bentonite Seal Interval:Type:Grouted Interval:	

Depth (Feet)	Monitoring Well Construction	Recovery;	PID (ppm):		Description / Soil Classification	
Depth (Feet)	Monitoring Well Construction	Recovery; S-1: 0 - 5.0' Rec: 1.0'/5.0'	PID (ppm): < 1.0	0' - 0.3' 0.3' - 2.0' 2.5'	Description / Soil Classification Dark brown, moist, organics, coarse to fine SAND and silt, trace fine gravel (topsoil) Gray - brown, wet, fine SAND, some silt and shale fragments End of boring (refusal), gray shale fragments in sampler shoe @ 2.5' No monitoring well installed	2.5'
35 J	ng Well Completion / Boring Lo	og drafted by LaBella	Associate	s, D.P.C.	PAGE 19 of 2	22

MONITORING WELL / BOR								
Site Name: Algonquin Middle Sch								
Location. 333 RT. 351 Poestenkill, I	^{NY} Drill	ing Co.:	Clean Globe Environmental	Powered by partnership.				
Client: NYSDEC	Soil Samples Collected:							
Phone No.: N/A	Log	ged by:_	T. Rollend	SB-20 @ 3-IN SB-20 @ 12-IN				
Drilling Method: Geoprobe 7822	DT(Dia) <u>2"</u> S	ampling	Method: Macro Core (Dia): 2"	SB-20 @ 12-IN				
Drilled TD:								
Well TD: 25' (Dia): 1" Well Type: Temporary								
Screen Interval: 15' - 25' S	lot Size 0.01	0 Slot	_Diameter:1.0"					
Cased Interval: <u>0' - 15'</u> T	ype:Sch 40 F	PVC	Diameter:1.0"					
Sand Pack Interval: 15' - 2	<u>5'</u> Type <u>:</u> #	1 Well Sand	Wellhead Prot: N/A					
Bentonite Seal Interval: 14	^{'-15'} Type:	Benchips	_Grouted Interval:					
	T							
Depth (Feet) Monitoring Well Construction	Recovery;	PID (ppm):	Descripti	ion / Soil Classification				
0 - 1 ^{1" cap}								
Native Soil & Well Sand	S-1: 0 - 5.0' Rec: 5.0'/5.0'	< 1.0	0.0' - 1.0' Brown, dry, organics, t 1.0' - 12' Brown, dry, medium to	fine SAND and SILT (topsoil) fine SAND and SILT				
5 T T T PVC Riser	S-2: 5.0' - 10' Rec: 5.0'/5.0'	< 1.0						
10 T T T Bentonite	S-3: 10' - 15' Rec: 4.0'/5.0'	< 1.0		(f SAND and SILT)				
13	S-4: 15' - 20' Rec: 5.0'/5.0'	< 1.0	⊻ wet at 17'	(cmf SAND and SILT)				
	S-5: 20' - 25' Rec: 5.0'/5.0'	< 1.0	20' - 25' Brown , wet, fine SAN	D, silt, trace to some clay				
				25' expendable drive point to 25' below grade. Installed om 15' to 25' and solid riser to grade. Well removed				
35 Honitoring Well Completion / Boring L	og drafted by LaBella	Associates	s, D.P.C.	PAGE 0f22				

Site Name:	RING NO. <u>SB</u> ^{in Middle School} Dat		• November 15, 2021	
Location: ^{333 RT 351, Poestenkill}				Powered by partnership.
Client: NYSDEC				Soll Samples Collected:
Phone No.:				SB-21 @ 3-IN
				SB-21 @ 12-IN
			Method: <u>Macro Core</u> (Dia): 2"	SB-21 @ 138-IN
			TD: <u>20'</u> (Dia):	
Well TD:			Diameter:	
			Diameter:	
			_ Wellhead Prot:	
	iype			
Depth (Feet) Monitoring Well Construction	Recovery;	PID (ppm):	Descript	ion / Soil Classification
	S-1: 0 - 5.0' Rec: 5.0'/5.0' S-2: 5.0' - 10' Rec: 5.0'/5.0' S-3: 10' - 15' Rec: 5.0'/5.0'	< 1.0		arse to fine SAND and silt (topsoil), fine unsorted SAND and SILT

- | - | -

35 J

MONITORING WELL / BOF	RING NO. SB-22	<u>MW-2</u> 2	_					
Site Name: Algonquin Middle Sci	^{hool} Date Drill	ed: November 16, 2021	LaBella					
Location: 333 RT. 351 Poestenkill,			Powered by partnership.					
Client: NYSDEC Driller: Mario Pineda Soil Samples Collected:								
Phone No.: N/A Logged by: Eric Orlowski SB-22 @ 3-IN								
Drilling Method: Geoprobe 7822 DT (Dia): 3" Sampling Method: Macro Core (Dia): 2" SB-22 @ 168-IN								
Drilled TD: 18' (Dia): 3" Sampled TD: 18' (Dia): 18'								
Well TD:(Dia): Well Type:								
Screen Interval: 8.0' - 18' Slot Size: 0.010 Slot Diameter: 1.0"								
Cased Interval: <u>0'-8.0'</u> T	ype: Sch 40 PVC	Diameter:1.0"						
Sand Pack Interval: 8.0' -	18'Type: #1 Well S	and_Wellhead Prot:N/A						
Bentonite Seal Interval	0'-8.0' Type: Benchip	s Grouted Interval: ^{NA}						
	1 1							
Depth Monitoring Well (Feet) Construction	Recovery; PID (ppm		ion / Soil Classification					
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.0' - 4.0' Dark Brown to Grav-bro	own, moist, organics, coarse to fine SAND					
Well Sand	S-1: 0 - 5.0'	and fine GRAVEL (ang	ular shale fragments), some Silt					
1" PVC Riser	Rec: 2.0'/5.0' < 1.0							
5	4.0	4.0' - 17' Light Brown, moist to w little angular shale frag	ist to wet at 14', fine SAND and SILT,					
	S-2: 5.0' - 10'							
Bentonite	Rec: 5.0'/5.0' < 1.0)						
10 Slot PVC Screen		_						
	S-3: 10' - 15'							
- Contraction of the second se	Rec: 5.0'/5.0'							
			o fine SAND and SILT, some rounded fine gravel					
	S-4: 15' - 18' Rec: 3.0'/5.0' < 1.0		D and SILT some weathered gray shale to refusal					
	Nec. 3.075.0							
		End of Boring @ 18'	expendable drive point to 15' below grade. Installed					
		10' of 1.0" ID screen (#10-slot) fr	om 8' to 18' and solid riser to grade. Well removed					
		and abandoned 11/16/2021.						
25 -								
30 -								
4								
35 J Monitoring Well Completion / Boring I	_og drafted by LaBella Associa	ates. D.P.C.	page 22 of 22					
	5	,						

APPENDIX C