First Half 2013 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

> Prepared for National Grid USA, Hicksville, New York October 2013

First Half 2013 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

Prepared for National Grid USA 175 East Old Country Road Hicksville, New York 11801

October 2013

Project Number: 142128.610.004

Brown and Caldwell Associates 2 Park Way, Suite 2A Upper Saddle River, New Jersey 07458

Table of Contents

App	pendices	i
Lis	t of Tables	ii
	t of Figures	
	Introduction	
	1.1 Background	
	Scope of Work	
3.	Results and Findings	
	3.1 Water Level Data	
	3.2 NAPL Gauging	
	3.3 Groundwater Quality Data	
4.	Summary and Conclusions	
5.	References	

Appendices

Appendix A	Field Sampling Sheets
Appendix B	Laboratory Reports (CD-ROM)
Appendix C	Data Usability Summary Report (DUSR)
Appendix D	Electronic Data Deliverable (CD-ROM)
Appendix C	Data Usability Summary Report (DUSF

List of Tables

- Table 1. Water Elevation and NAPL Monitoring Data
- Table 2. Groundwater Analysis Results
- Table 3. Summary of Historical BTEX Concentrations
- Table 4. Summary of Historical PAH Concentrations

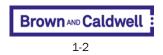
List of Figures

- Figure 1. Water Table Contour Map July 18, 2012
- Figure 2. Water Table Contour Map November 13, 2012

Section 1 Introduction

Brown and Caldwell Associates (BC) is pleased to submit this Semi-Annual Groundwater Monitoring Report to document the implementation and results of the groundwater monitoring activities conducted during the first half of 2013 (first and second quarters) at the Patchogue Former Manufactured Gas Plant (MGP) Site (hereinafter referred to as the "Site"). The groundwater monitoring events and the preparation of this deliverable are part of the routine groundwater monitoring program being conducted at the Site. This report has been prepared for submittal to the New York State Department of Environmental Conservation (NYSDEC) and includes the following:

- Description of the scope of the field activities, methods and procedures;
- Table summarizing results of the water level measurements and the gauging of the monitoring wells and piezometers for the presence of non-aqueous phase liquids (NAPLs) (see Table 1);
- Table summarizing the analytical results for groundwater samples obtained during the second quarter monitoring event including a comparison to the applicable groundwater quality criteria (see Table 2);
- Comparison of data from this monitoring period to data from previous periods (Tables 3 and 4);
- Discussion of the results and findings from the groundwater monitoring data;
- Potentiometric surface maps depicting generalized direction of groundwater flow based on groundwater elevation data from wells and piezometers, and surface water elevation data from staff gauges installed in the Patchogue River (Figures 1 and 2);
- Field Sampling Data Sheets (Appendix A);
- Laboratory Data Report (Appendix B);
- Data Usability Summary Report (Appendix C); and
- Electronic Data Deliverable (Appendix D).


1.1 Background

Groundwater monitoring events have been conducted at the Site since March 2008, including the two monitoring events conducted as part of the Remedial Investigation (RI) in March 2008 and July 2008. The March 2013 and June 2013 (first and second quarter 2013) groundwater monitoring events are the subject of this report. Up until the March 2010 monitoring event, the concentrations and areal distribution of constituents in groundwater had been fairly consistent. Site-related dissolved phase constituents [e.g., benzene, toluene, ethylbenzene, xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAH)] were detected at concentrations above the Class GA groundwater quality criteria (i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1) in a limited area near the center of the Site. These elevated concentrations did not extend downgradient to the wells closer to the Patchogue River. However, during the March 2010 and September 2010 monitoring events, detections of BTEX and PAH compounds were more widely distributed than during previous events. It was surmised that this change was the result of a temporary dewatering operation at a construction project at the wastewater treatment facility (WWTF) across the river from the Site. Based on the understanding of Site conditions, it was anticipated that when the dewatering operations had ceased, concentrations in groundwater would re-equilibrate with

steady-state (i.e., pre-dewatering) groundwater flow conditions, and eventually return to levels similar to those prior to dewatering. To confirm this, National Grid increased the frequency of the groundwater monitoring from semi-annually to quarterly. The subsequent six quarterly monitoring events did document the return of groundwater flow and groundwater quality to conditions consistent with those prior to the dewatering operations.

Based on this finding, in a May 24, 2012 email, National Grid proposed to NYSDEC that the frequency of groundwater sampling and analysis return to a semi-annual schedule with the schedule for water level monitoring and NAPL gauging remaining on a quarterly basis. NYSDEC agreed with this proposal in a May 24, 2012 email. This report is the second semi-annual monitoring report submitted under this revised schedule. The report presents the results of the water level and NAPL gauging conducted during the first and second quarters of 2013 as well as the analytical results for the groundwater samples collected during the second quarter of 2013.

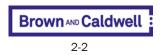
Section 2 Scope of Work

Field activities for the first and second quarter 2013 were conducted by BC on March 25, 2013 (first quarter) and June 26 and 27, 2013 (second quarter). The activities conducted during these monitoring events are described below. Locations of the monitoring wells, piezometers and staff gauges referenced below are depicted on Figure 1 and 2.

As described in Section 1, monitoring activities conducted during the March 2013 (first quarter) event consisted solely of NAPL gauging and water level measurements; no groundwater samples were collected. The NAPL gauging and water level measurements were conducted on accessible monitoring well and piezometers. The piezometers were those installed in March and May of 2012 as part of the remedial design investigation activities pursuant to the "Remedial Design Work Plan, Patchogue Former Manufactured Gas Plant Site" (Brown and Caldwell Associates, February 2012). Access to monitoring wells MW-9S and MW-9D, located on an adjacent property, was blocked by a roll-off dumpster placed by the property owner. MW-3, also located on the adjacent property was under a pile of construction scaffolding. The roll-off and scaffolding could not be moved at that time. The level of the Patchogue River was also measured at the two staff gauge locations.

Activities conducted during the second quarter 2013 event began on June 26, 2013 with the performance of water level measurements and NAPL gauging on the piezometers and monitoring wells associated with the Site prior to groundwater sampling. Monitoring wells MW-9D and MW-3, located on the adjacent property, were not accessible during this monitoring event. MW-9 was blocked by a sea box container and MW-3 was under a pile of construction materials (bricks, scaffolding etc.), both placed by the property owner. The level of the Patchogue River was also measured at the two staff gauges. Water level measurements were made using an electronic oil/water interface probe, and measured to the nearest 0.01 foot. If NAPL was detected using the oil/water interface probe, a two-foot long threaded rod attached to a nylon mason line was lowered into the monitoring well or piezometer to confirm the presence of the NAPL. The threaded rod was lowered to the water-NAPL interface to measure the approximate thickness of the NAPL accumulation (MGP-related NAPL typically adheres to grooves in the threaded rod).

After the water level and NAPL gauging activities were conducted, groundwater samples were collected from eight monitoring wells on June 26 and 27, 2013. As mentioned above, wells MW-3 and MW-9D were not accessible during this event; therefore, a groundwater sample was not collected from these monitoring well. Monitoring wells MW-5 and MW-6 were not sampled during this monitoring period due to the presence of NAPL in these wells. The presence of NAPL in these wells is consistent with observations during previous quarterly NAPL gauging activities. The standard protocol is that if NAPL is observed in a well during gauging or sampling, groundwater samples are not submitted for laboratory analyses. Groundwater sampling was conducted using low flow purging and sampling techniques in accordance with the United States Environmental Protection Agency (USEPA) protocol (USEPA, July 1996, Revised January 2010). Samples were submitted to eurofins Lancaster Laboratories, Inc. (Lancaster) located in Lancaster, Pennsylvania. Lancaster is certified (Certification No. 10670) through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).



The samples were analyzed for: BTEX compounds and methyl tertiary butyl ether (MTBE) using USEPA SW-846 Method 8260B; and PAHs using USEPA SW-846 Method 8270C. The groundwater samples were also analyzed in the field for pH, specific conductivity, temperature, turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (see Appendix A for field data sheets).

The laboratory report from Lancaster is provided in Appendix B. The laboratory analytical data were provided to BC in electronic form by Lancaster and have been incorporated into an environmental database for the Site.

In addition to the samples described above, quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included: trip blanks (one per cooler containing samples for BTEX and MTBE analysis), a field duplicate, and an equipment blank. Also, extra sample volume was collected from one location to provide for matrix spike/matrix spike duplicate (MS/MSD) analysis. The trip blanks were analyzed for BTEX and MTBE only. The other QA/QC samples were analyzed for BTEX, MTBE and PAHs.

Laboratory results for the groundwater sample analyses were forwarded to a data validator, Environmental Data Services, Inc. of Williamsburg, Virginia, for review and preparation of a Data Usability Summary Report (DUSR). The DUSR presents a summary of data usability including a discussion of qualified data. The DUSR is provided as Appendix C. As described in the DUSR, the data were considered by the validator to be valid and usable. An Electronic Data Deliverable (EDD) of the validated analytical data is provided in Appendix D.

Section 3 Results and Findings

3.1 Water Level Data

Table 1 provides the water level data and calculated water elevations from the March 25 and June 26, 2013 measurements. Figure 1 and 2 illustrate the elevation contours of the water table based on these data. The contours were developed using water level data from the shallow wells and piezometers at the Site (i.e., those with screens that straddle, or are just below, the water table), and the surface water staff gauges in the Patchogue River. These values are more representative of water table elevations than data from the deeper wells and piezometers. However, the groundwater elevation (hydraulic head) values for the wells and piezometers screened in deeper intervals are also posted on Figures 1 and 2. The water table is relatively shallow and is typically positioned in the fill that overlies the alluvial deposits and outwash deposits. The water table contours indicate that lateral groundwater flow is from northwest to southeast across the Site toward the Patchogue River. Comparisons of the groundwater elevations in the Site monitoring wells to the river elevations, as measured at the staff gauge locations, demonstrate that groundwater elevations are higher than the river level indicating that groundwater is discharging to the Patchogue River. The upward vertical hydraulic gradient measured at a well cluster adjacent to the river (MW-4S and D) provides further support to the conclusion that groundwater is discharging to the Patchogue River. The general configuration of the water table contours (as shown on Figure 1 and 2), developed using the March 25 and June 26, 2013 data, and the interpreted groundwater flow patterns, are consistent with those from previous rounds of water level measurements with one exception. The exception occurred during the March 2010 sampling event when the large-scale dewatering activities were being conducted on the WWTF site located east of the Site on the opposite side of the river (see discussion in Section 1.1). Operation of this dewatering system temporarily altered groundwater flow patterns and levels at the Site (see "Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event" [GEI, November 2010]).

3.2 NAPL Gauging

Table 1 presents the results of the NAPL gauging conducted during the March and June 2013 quarterly groundwater monitoring events. NAPL was identified in the following wells during the gauging activities:

MW-5

- March 2013: Brown-black dense NAPL (DNAPL) blebs on lower 0.4 feet of threaded rod, strong tarlike odor.
- June 2013: Brown-black tacky DNAPL blebs on lower 0.55 feet of threaded rod, strong tar-like odor.

MW-6

- March 2013: Black NAPL blebs on lower 0.1 ft. of threaded rod, strong tar-like odor.
- June 2013: Black NAPL blebs on lower 1/4 inch of threaded rod, strong tar-like odor.

NAPL had been observed in these two wells on occasion during previous gauging events.

3.3 Groundwater Quality Data

Table 2 provides the results of the laboratory analyses of the groundwater samples collected during the second quarter 2013 monitoring event and a comparison of the data to the New York State Class GA groundwater quality criteria, i.e., standards from the 6 NYCRR Part 703 Standards and guidance values from the Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. Comparisons of total BTEX and total PAH concentrations from this sampling event to previous sampling events are provided as Tables 3 and 4, respectively. As mentioned above, no groundwater samples were collected for laboratory analysis during the March (first quarter) 2013 groundwater monitoring event.

As previously stated, NAPL was identified in two of the 10 monitoring wells, MW-5 and MW-6. These two wells are located in the central part of the Site in the area of former MGP operations (refer to Figures 1 and 2). Therefore, groundwater samples were not collected from these two wells. Groundwater samples were also not collected from wells MW-3 and MW-9D (located on an adjacent property) as access to these wells was impeded by the presence of a sea box container and construction materials. Groundwater samples were collected from the remaining eight monitoring wells and submitted to the laboratory for analysis.

In general, the constituent concentrations in groundwater samples collected during the second quarter 2013 were consistent with those measured during previous monitoring events. In samples from most wells, no BTEX compounds were detected. However, benzene was detected in in groundwater sample collected at MW-4S and MW-7S, although these concentrations were below the Class GA groundwater quality criterion for benzene (1 μ g/L). During the previous sampling round (November 2012), benzene was also detected in these same two monitoring wells, MW-4S and MW-7S, at concentrations greater than and equal to the Class GA groundwater quality criterion, respectively. No MGP-related structures or NAPL have been identified in the area hydraulically upgradient of these two monitoring wells. Additionally, none of the low molecular weight PAHs that have usually been associated with MGP-related dissolved phase impacts at this site (e.g., naphthalene, acenaphthene, acenaphthylene, and fluorene) were detected. Thus, the benzene detected at these two monitoring wells is not likely associated with MGP-related impacts. The concentration of these constituents will be further evaluated through continued groundwater monitoring.

At most locations, PAH compounds were either not detected or were detected at concentrations below the Class GA groundwater quality criteria. However, in samples collected from monitoring wells MW-1, MW-4D, MW-7S, MW-7D, MW-8D, and MW-9S, one or more PAH compounds were detected at low concentrations (i.e., slightly above the laboratory method detection limit) but above the Class GA groundwater quality criteria. The PAH compounds that were identified in the groundwater samples from these monitoring wells at concentrations above the Class GA groundwater quality criteria are: benzo(a)anthracene; benzo(b)fluoranthene; benzo(k)fluoranthene; benzo(a)pyrene; chrysene; and indeno(1,2,3-cd)pyrene. These constituents have very low aqueous solubilities, are not readily mobile in groundwater, and are unlikely to have migrated from the on-site source area. The presence of these constituents in upgradient wells MW-1 and MW-7S further supports that they are not related to former MGP operations. The criteria that were exceeded for five of these six PAHs are unpromulgated guidance values rather than Part 703 standards. The criteria for the sixth PAH, benzo(a)pyrene, is a Part 703 standard. The standard for benzo(a)pyrene was exceeded at concentrations below the method quantitation limit. The guidance value for the five PAHs, 0.002 µg/L, is nearly two orders of magnitude below the method detection limit. The standard for benzo(a)pyrene is "non-detect". Therefore, any detection of these compounds in groundwater will result in an exceedance. The concentrations of these constituents will be further evaluated through continued groundwater monitoring.

Section 4 Summary and Conclusions

As noted in previous monitoring events, NAPL was identified in two of the monitoring wells, MW-5 and MW-6 during the first quarter (March) and second quarter (June) 2013. Both MW-5 and MW-6 are located in the center of the Site in the area of former MGP operations. BTEX compounds were not detected, consistent with previous monitoring periods, in most of the Site monitoring wells. However, benzene was detected in samples from MW-4S and upgradient well MW-7S at concentrations below the Class GA groundwater quality criteria. MW-4S is located adjacent to the Patchogue River and south of the area of the former MGP operations. No MGP-related structures or NAPL have been identified in the area hydraulically-upgradient of MW-4S. MW-7S is positioned upgradient of MW-4S on the upgradient side of the Site. Additionally, none of the low molecular weight PAHs that have usually been associated with MGP-related dissolved phase impacts at this site (e.g., naphthalene, acenaphthene, acenaphthene, and fluorene) were detected. Thus, these benzene detections are not considered to be associated with MGP-related impacts.

At two of the eight wells, PAH compounds were either not detected or were detected at concentrations below the Class GA groundwater quality criteria. However, in samples collected from monitoring wells, MW-1, MW-4D, MW-7S, MW-7D, MW-8D, and MW-9S, one or more PAH compounds were detected at low concentrations (i.e., slightly above the method detection limit) but above the Class GA groundwater quality criteria. The criteria for these compounds are extremely low, approximately two orders of magnitude below the laboratory method detection limit. The six PAH compounds that were identified at concentrations above the Class GA groundwater quality criteria have very low aqueous solubilities, are not readily mobile in groundwater, and are unlikely to have migrated from the on-site source area. The presence of these constituents in upgradient wells further supports that they are not related to former MGP operations. The detections of low level concentrations of these low solubility PAHs has occurred in previous monitoring events at various wells locations at the Site. This will continue to be evaluated through continued groundwater monitoring.

In the monitoring events since the September 2010 event, the concentrations of BTEX and PAHs in the shallow groundwater and the areal distribution of these concentrations are generally similar to those from monitoring events which occurred prior to March 2010. This indicates that constituent concentrations in groundwater have decreased and have generally re-equilibrated with the steady state groundwater flow conditions that existed prior to the operation of the large scale temporary construction dewatering system (see Section 1.1) that affected the results of the March and September 2010 monitoring events, as anticipated. No dissolved phase impacts are identified in groundwater downgradient of the MGP-impacts identified in the soil in the area of former MGP operations. Monitoring will continue in order to confirm these conditions.

Section 5 References

- Brown and Caldwell Associates, December 2012, Construction Completion Report Utility Corridor Work Plan Implementation, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- Brown and Caldwell Associates, February 2012. Remedial Design Work Plan, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- GEI, November 2010. Groundwater Monitoring Report, Second Semiannual 2010 Sampling Event, Patchogue Former MGP Site, Town of Brookhaven, Suffolk County, Long Island, New York, Site ID No. 1-52-182.

NYSDEC, November 2009. CP-43: Groundwater Monitoring Wells Decommissioning Policy.

USEPA, July 1996; Revised January 2010. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

Tables

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA FIRST HALF 2013 PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

			<u>3/25</u> ,	/2013		
Well ID	Top of Casing Elevation ^(a)	Depth to Water	Water Elevation	Depth to NAPL	Total Depth of Well	Remarks
	(ft., NAVD)	(ft., BTOC)	(ft., NAVD)	(ft., BTOC)	(ft., BGS)	
MW-1	11.47	6.07	5.40	ND	15.29	
MW-3	5.56					No access to monitoring well
MW-4S	7.97	5.22	2.75	ND	12.24	
MW-4D	7.79	5.01	2.78	ND	26.79	
MW-5	8.13	1.19 ^(b)	3.71	16.25	16.65	0.4' of NAPL on bottom of threaded rod.
MW-6	5.01	0.75	4.26	21.78	21.8	NAPL blebs on bottom 0.1' of threaded rod.
MW-7S	8.45	4.66	3.79	ND	12.52	
MW-7D	8.31	4.51	3.80	ND	28.28	
MW-8S	5.08	1.05	4.03	ND	10.08	
MW-8D	4.98	0.95	4.03	ND	25.26	
MW-9S	4.47					No access to monitoring well
MW-9D	4.66					No access to monitoring well
SG-1	5.23	4.08	1.15		NA	
SG-2	5.17	3.83	1.34		NA	
PZ-1A	8.05		4.21			
		3.84		ND	10.01	
PZ-1B	8.91	4.75	4.16	ND	22.57	
PZ-2A	8.77	4.63	4.14	ND	5.14	
PZ-2B	8.29	4.11	4.18	ND	18.12	
PZ-3A	8.78	5.12	3.66	ND	8.96	
PZ-3B	8.90	5.37	3.53	ND	21.33	
PZ-4B	4.79	1.83	2.96	ND	4.97	

Notes:

NAVD - North American Vertical Datum

BGS - Below Ground Surface

BTOC - Below Top of Casing

NAPL - Non-aqueous phase liquid

NA - Not applicable

ND - Not Detected

(a) - Monitoring wells resurveyed on 7/3/12 following utility corridor construction activities. See "Construction Completion Report,

Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)".

(b) - Depth to water measured from ground surface.

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA FIRST HALF 2013 PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

			<u>6/26</u> ,	/2013		
Well ID	Top of Casing Elevation ^(a)	Depth to Water	Water Elevation	Depth to NAPL	Total Depth of Well	Remarks
	(ft., NAVD)	(ft., BTOC)	(ft., NAVD)	(ft., BTOC)	(ft., BGS)	
MW-1	11.47	5.77	5.70	ND	15.3	
MW-3	5.56					No access to monitoring well
MW-4S	7.97	4.90	3.07	ND	12.32	
MW-4D	7.79	4.70	3.09	ND	26.68	
MW-5	8.13	1.00 ^(b)	3.90	8.9	13.25	Black tacky NAPL coating 0.55' of threaded rod.
MW-6	5.01	0.40	4.61	8.2	18.5	Black NAPL blebs on bottom $1/4$ " of threaded rod – tacky
MW-7S	8.45	4.38	4.07	ND	12.46	
MW-7D	8.31	4.18	4.13	ND	28.2	
MW-8S	5.08	0.80	4.28	ND	10	
MW-8D	4.98	0.64	4.34	ND	25.1	
MW-9S	4.47	1.64	2.83	ND	4.95	
MW-9D	4.66					No access to monitoring well
SG-1	5.23	3.81	1.42		NA	
SG-2	5.17	3.66	1.51		NA	
PZ-1A	8.05					Water level taken from top of stickup which was not surveyed. Therefore, the water
		5.17				elevation at this piezometer was not calculated .
PZ-1B	8.91	4.47	4.44	ND	22.53	
PZ-2A	8.77	4.64	4.13	ND	8.15	
PZ-2B	8.29	3.8	4.49	ND	18	
PZ-3A	8.78	5.06	3.72	ND	8.92	
PZ-3B	8.90	5.1	3.80	ND	21.28	
PZ-4B	4.79					

Notes:

NAVD - North American Vertical Datum

BGS - Below Ground Surface

BTOC - Below Top of Casing

NAPL - Non-aqueous phase liquid

NA - Not applicable

ND - Not Detected

(a) - Monitoring wells resurveyed on 7/3/12 following utility corridor construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation (Brown and Caldwell, December 2012)".

(b) - Depth to water measured from ground surface.

	Class GA Grou	ndwater Criteria							
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-1	MW-3	MW-4S	MW-4D	MW-7S
Constituent	Guidance	Standard	Units	Date	6/26/2013	6/27/2013	6/27/2013	6/27/2013	6/27/2013
Volatile Organic Compounds	5								
BTEX									
Benzene	NE	1	µg/L		0.5 U	NS	0.8 J	0.5 U	0.7 J
Toluene	NE	5	µg/L		0.7 U	NS	0.7 U	0.7 U	0.7 U
Ethylbenzene	NE	5	µg/L		0.8 U	NS	0.8 U	0.8 U	0.8 U
m&p-Xylenes	NE	5	µg/L		0.8 U	NS	0.8 U	0.8 U	0.8 U
o-Xylene	NE	5	µg/L		0.8 U	NS	0.8 U	0.8 U	0.8 U
Xylenes, Total	NE	NE	µg/L		0.8 U	NS	0.8 U	0.8 U	0.8 U
Total BTEX	NE	NE	µg/L		ND	NS	0.8	ND	0.7
Other VOCs									
Methyl Tertiary Butyl Ether	10	NE	µg/L		0.5 U	NS	0.5 U	0.5 U	0.5 l
Semi-Volatile Organic Comp	ounds (SVOCs)								
Polycyclic Aromatic Hydroca	rbons (PAHs)								
Acenaphthene	20	NE	µg/L		0.1 U	NS	0.1 U	0.1 U	0.1 U
Acenaphthylene	NE	NE	µg/L		0.1 U	NS	0.1 U	0.4 J	0.1 U
Anthracene	50	NE	µg/L		0.1 U	NS	0.2 J	0.1 U	0.2 J
Benzo(a)anthracene	0.002	NE	µg/L	[0.1 J	NS	0.1 U	0.3 J	0.1 J
Benzo(a)pyrene	NE	0	µg/L	•	0.1 U	NS	0.1 U	0.3 J	0.1 U
Benzo(b)fluoranthene	0.002	NE	µg/L	[0.1 J	NS	0.1 U	0.3 J	0.1 U
Benzo(g,h,i)perylene	NE	NE	µg/L	L	0.1 U	NS	0.1 U	0.2 J	0.1 U
Benzo(k)fluoranthene	0.002	NE	µg/L		0.1 U	NS	0.1 U	0.2 J	0.1 U
Chrysene	0.002	NE	µg/L	ſ	0.2 J	NS	0.1 U	0.3 J	0.1 U
Dibenzo(a,h)anthracene	NE	NE	µg/L	L	0.1 U	NS	0.1 U	0.1 U	0.1 U
Fluoranthene	50	NE	µg/L		0.1 J	NS	0.1 U	0.4 J	0.1 U
Fluorene	50	NE	µg/L		0.1 U	NS	0.1 U	0.2 J	0.1 U
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L		0.1 U	NS	0.1 U	0.2 J	0.1 U

	Class GA Groundwater Criteria												
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-1	MW-3	MW-4S	MW-4D	MW-7S				
Constituent	Guidance	Standard	Units	Date	6/26/2013	6/27/2013	6/27/2013	6/27/2013	6/27/2013				
Naphthalene	10	NE	µg/L		0.1 J	NS	0.1 U	0.2 J	1				
Phenanthrene	50	NE	µg/L		0.1 U	NS	0.1 U	0.3 J	0.1 U				
Pyrene	50	NE	µg/L		0.2 J	NS	0.1 J	0.4 J	0.1 U				
Total PAHs	NE	NE	µg/L		0.8	NS	0.3	3.7	1.3				

	Class GA Grou	ndwater Criteria								
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-7D	MW-8S	MW-8S DUP	MW-8D	MW-9S	MW-9D
Constituent	Guidance	Standard	Units	Date	6/27/2013	6/27/2013	6/27/2013	6/27/2013	6/27/2013	6/27/2013
Volatile Organic Compounds										
BTEX										
Benzene	NE	1	µg/L		0.5 U	NS				
Toluene	NE	5	µg/L		0.7 U	NS				
Ethylbenzene	NE	5	µg/L		0.8 U	NS				
m&p-Xylenes	NE	5	µg/L		0.8 U	NS				
o-Xylene	NE	5	µg/L		0.8 U	NS				
Xylenes, Total	NE	NE	µg/L		0.8 U	NS				
Total BTEX	NE	NE	µg/L		ND	ND	ND	ND	ND	NS
Other VOCs										
Methyl Tertiary Butyl Ether	10	NE	µg/L		0.5 U	0.5 U	0.5 U	0.5 U	NS	NS
Semi-Volatile Organic Compo	ounds (SVOCs)									
Polycyclic Aromatic Hydrocar	bons (PAHs)									
Acenaphthene	20	NE	µg/L		0.09 U	0.4 J	0.3 J	0.1 U	0.2 J	NS
Acenaphthylene	NE	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 U	0.1 U	NS
Anthracene	50	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 U	0.2 J	NS
Benzo(a)anthracene	0.002	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 J	0.2 J	NS
Benzo(a)pyrene	NE	0	µg/L	ſ	0.1 J	0.09 U	0.09 U	0.1 U	0.2 J	NS
Benzo(b)fluoranthene	0.002	NE	µg/L		0.1 J	0.09 U	0.09 U	0.1 U	0.2 J	NS
Benzo(g,h,i)perylene	NE	NE	µg/L	L	0.09 U	0.09 U	0.09 U	0.1 U	0.1 U	NS
Benzo(k)fluoranthene	0.002	NE	µg/L]	0.1 J	0.09 U	0.09 U	0.1 U	0.1 J	NS
Chrysene	0.002	NE	µg/L		0.1 J	0.09 U	0.09 U	0.1 U	0.1 J	NS
Dibenzo(a,h)anthracene	NE	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 U	0.1 U	NS
Fluoranthene	50	NE	µg/L		0.09 U	0.09 U	0.09 U	0.2 J	0.3 J	NS
Fluorene	50	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 U	0.1 U	NS
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 U	0.1 U	NS

	Class GA Groui	ndwater Criteria								
	TOGS 1.1.1 NYS Part 703 Loc ID					MW-8S	MW-8S DUP	MW-8D	MW-9S	MW-9D
Constituent	Guidance	Standard	Units	Date	6/27/2013	6/27/2013	6/27/2013	6/27/2013	6/27/2013	6/27/2013
Naphthalene	10	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 U	0.1 J	NS
Phenanthrene	50	NE	µg/L		0.09 U	0.09 U	0.09 U	0.2 J	0.2 J	NS
Pyrene	50	NE	µg/L		0.09 U	0.09 U	0.09 U	0.1 J	0.4 J	NS
Total PAHs	NE	NE	µg/L		0.4	0.4	0.3	0.6	2	NS

Notes:

J - Estimated concentration. The result is below the practical quantitation limit but above the method detection limit.

U - The analyte was analyzed for, but was not detected.

µg/L - micrograms per liter

ND - Not detected.

NE - Not established.

NS- Not sampled

Boxed concentrations are above New York State Class GA Groundwater Quality Standards or Guidance values.

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

						Total	BTEX Conce	entrations (µg/L)					
Sampling Date							Monitor	ing Well						
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Mar-08	0	0	0	0	3.4	0	1016	57	NS	NS	NS	NS	NS	NS
Jul-08	NS	0	0	0	0	0	678	0	0	0	0	0	0	0
Mar-09	0	0	0	0	0	0	975	0	0	1	0	0	0	0
Sep-09	0	0	0	0	0	0	1257	1	0	0	0	0	0	0
Mar-10	0	0	0	0	0	0	637	2	0	9	0	0	0	0
Sep-10	0	0	0	0	0	0	NS	0	0	0	0	0	27	0
Jan-11	1.7	0	0	0	0	0	NS	NS	0	0	0	0	1	0
Apr-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Aug-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Nov-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Feb-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
May-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Nov-12	0	^(a)	^(a)	0	12	0	NS	NS	1	0	0	0	NS	NS
Jun-13	0	^(a)	^(a)	0	0.8	0	NS	NS	0.7	0	0	0	0	NS
Minimum	0	0	0	0	0	0	637	0	0	0	0	0	0	0
Maximum	1.7	0	0	0	12	0	1257	57	1	9	0	0	27	0
Mean	0.1	0	0	0	1.2	0	913	10	0	0.8	0	0	2.3	0

Notes:

BTEX - Benzene, toluene, ethylbenzene and xylene isomers

µg/L - micrograms per liter

NS - Not sampled.

(a) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities.

To calculate Total BTEX concentration, a value of zero is used for non-detect values.

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

						T	otal PAH Conc	centrations (µ	ıg/L)					
Sampling Date							Monito	oring Well						
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Mar-08	0	0	0	0.76	0.6	4.3	1774	214	NS	NS	NS	NS	NS	NS
Jul-08	NS	0.7	0	0	8.0	0	1799	154	0	0.47	0	0	12.0	0
Mar-09	0	0	0	0	0	0	2730	0	0	0	0	0	0	0
Sep-09	0	0	0	0	0	0	3373	1	0	0	0	0	0	0
Mar-10	0	0	0	0	0	39	2390	17	0	0	22	0	2	0
Sep-10	0	0	0	128	0	6	NS	14	0	0	11	0	396	0
Jan-11	22	0	0	17	0	12	NS	NS	0	0	6	0	42	5
Apr-11	0	0	0	6	0	20	NS	NS	0	0	0	0	9	0
Aug-11	0	0	0.1	14	0.1	0	NS	NS	0	0	0.4	0	16	1.2
Nov-11	0	0	0.2	10	0.4	0	NS	NS	0	0	0.8	0.2	8	3.4
Feb-12	0.2	0	0	6	0.6	4	NS	NS	0.1	0	0.6	0	5	2.9
May-12	0.4	0.1	0.6	5	0	5.8	NS	NS	0.1	0.3	1	0	6	2.8
Nov-12	0.1	^(a)	^(a)	5.6	0.4	11.7	NS	NS	2.5	2.6	0.8	1.2	NS	NS
Jun-13	0.8	(a)	(a)	NS	0.3	3.7	NS	NS	1.3	0.4	0.4	0.6	2	NS
Min	0	0	0	0	0	0	1774	0	0	0	0	0	0	0
Max	22	0.7	0.6	128	8.0	39	3373	214	2.5	2.6	22	1.2	396	5
Mean	1.8	0.1	0	15	0.7	7.6	2413	67	0	0	3.3	0	42	1.4

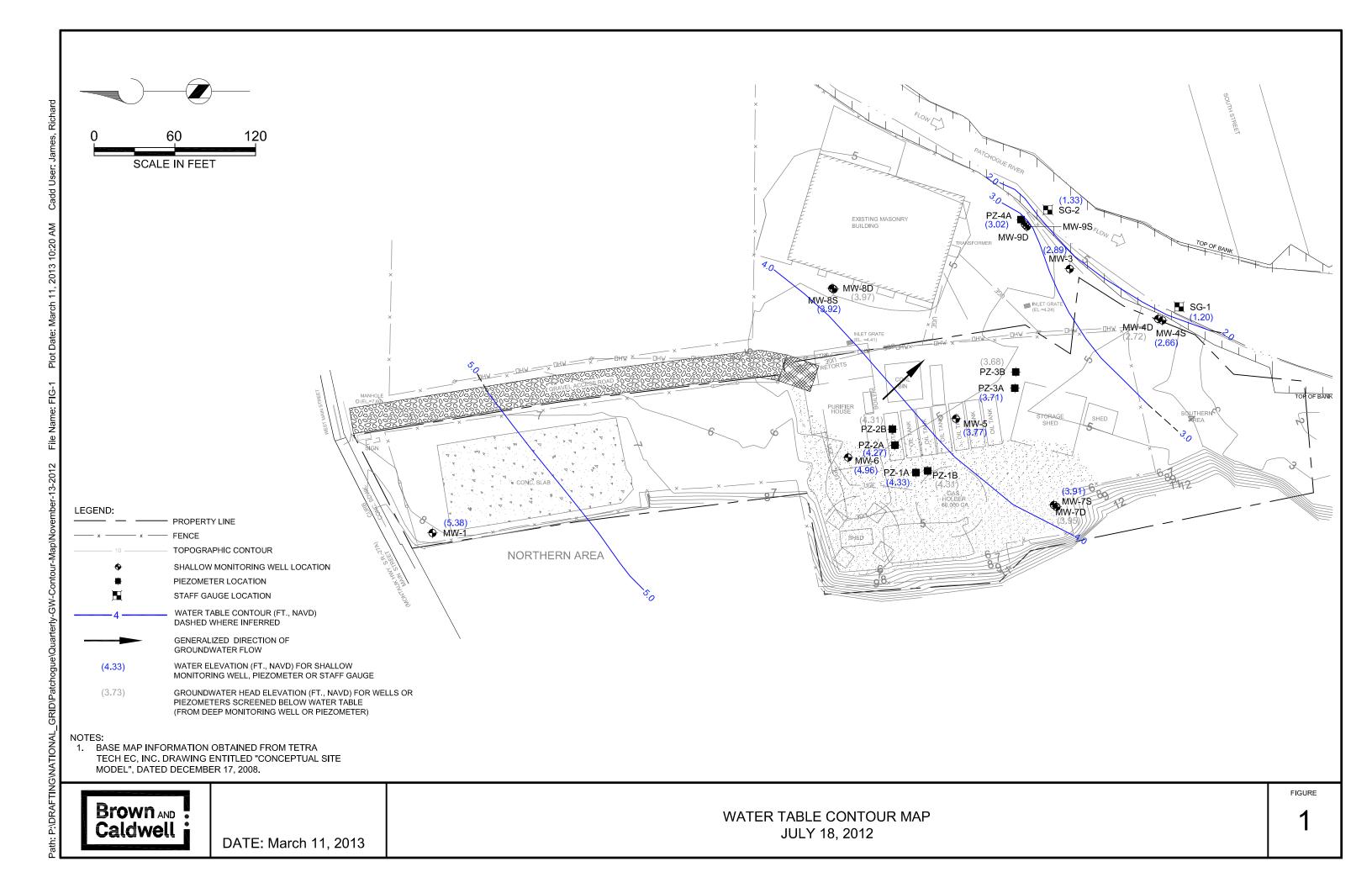
Notes:

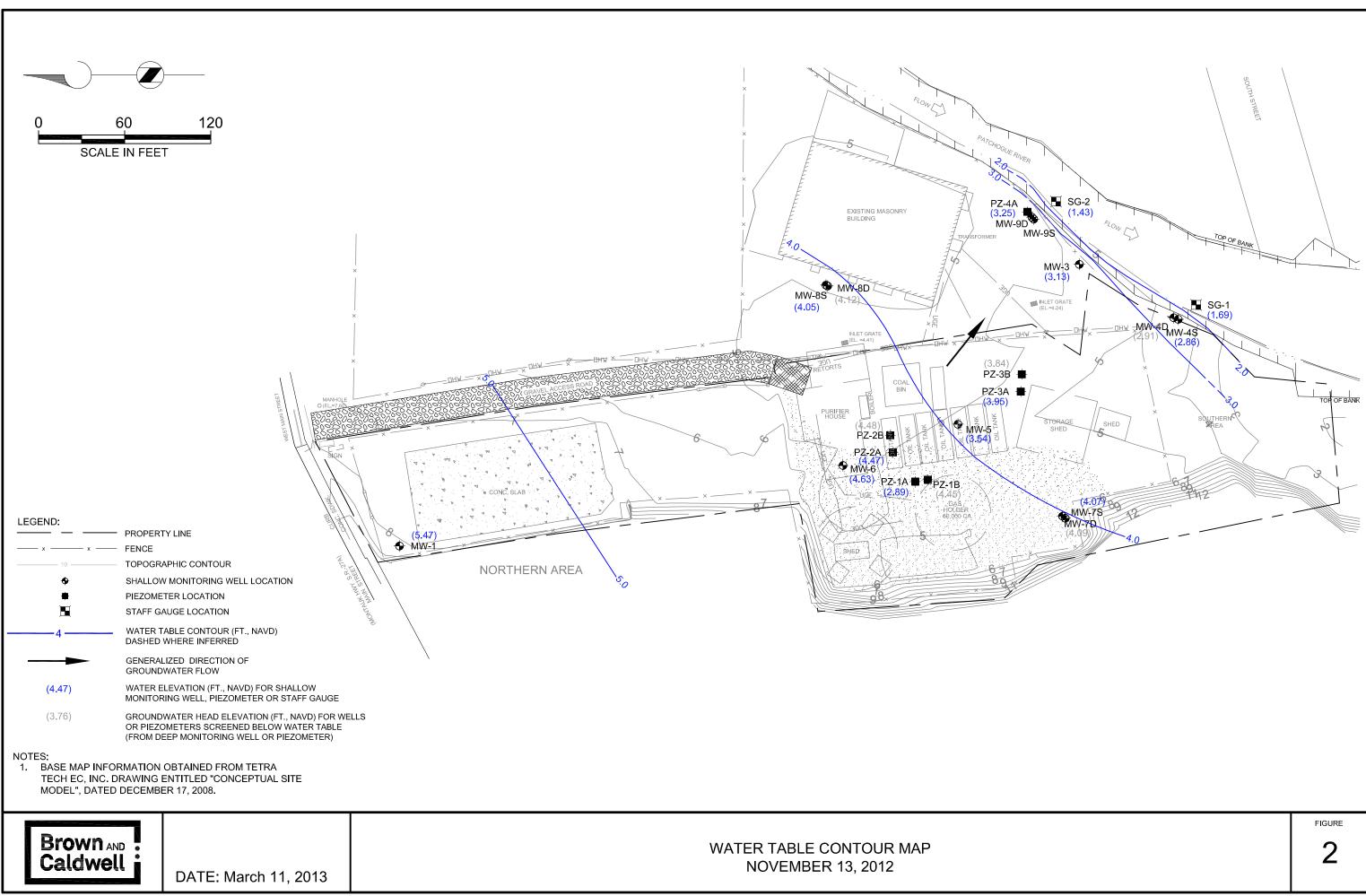
PAH - Polycyclic aromatic hydrocarbons

µg/L - micrograms per liter

NS - Not sampled.

(a) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction


activities.


To calculate Total PAH concentration, a value of zero is used for non-detect values.

Figures

Appendix A: Field Sampling Data Sheets

BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MW -) Sample I.D.: MW - 1 (if different from well no.)
Project: Rfcworm-MBP Personnel: MM AT	Date: 6 26 3 Time: 1630 Weather: 01/965 Air Temp.: 85 4
WELL DATA: Casing Diameter: 1 Intake Diameter: 1 DEPTH TO : Static Water Level: Server 6 DATUM: Top of Protective Casing DATUM: Top of Protective Casing CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (n Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (net cracked or frost heaver is Padlock Functional? Is Inner Casing Properly Capped and Vented? VOLUME OF WATER: Standing in well:	□ PVC □ Teflon® □ Open rock □ <u>\$.30</u> ft □ Other: I clean to bottom? □ Yes □ No ot bent or corroded) □ Yes □ No Yes □ No ved) □ Yes □ No Is Inner Casing Intact? □ Yes □ No I Yes □ No
PURGE DATA:	2" Submersible Pump □ 4" Submersible Pump p □ Inertial Lift Pump □ Other:
MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Other:	Tubing/Rope: Teflon® Polyethylene Polypropylene Other: Other: mber of Well Volumes Removed: NA
SAMPLING DATA: METHOD:	ibmersible Pump
Metals samples field filtered? Yes_INO No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: pH: 0, 97 Meter Model: Temperature: 16.31 Spec. Cond.: 1.657 Meter Model: ORP: 142 DO: 1.412 Turbidity: 0.33 DUP: INO Yes Name:	Contains Immiscible Liquid Toriba U-32 Meter S/N: Meter S/N: Temperature:
I certify that this sample was collected and handled in accordance with applicable reg Signature:	Date:

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	athing	MEP	 Project Num	nber:	42128	
Personnel:	NMM NAT		 Well ID:	MW-1		
Purge/Sample I	Depth:	10.3'	Sample ID:	/	NW-I	

Actual Time	рН	Temp (°C)	ORP (mV)	Cond (~S(m)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1630 1633 1636 1636 1634 1642 1645 1645 1657 1657 1657	6,96 8,96 6,96 6,96 6,96 6,96 6,96 6,96	19,10 17,33 17,91 18.03 18.00 18.00 18.30 18.31 18.31 18.31	-27 -76 -94 -103 -117 -117 -123 -128 -138	1.63 1.79 1.82 1.84 1.84 1.85 1.85 1.85 1.87 1.87 1.87 1.87	2.36 1.57 1.20 1.12 1.04 1.54 1.54 1.40 1.40 1.45	M2 174 160 144 130 125 109 92 78.5 78.5	5.82	150	
1200	6,97	18.31	-142 PLE	1.87 Call	1,42 e C F	63.0 e d			
			A		126/13				
				· · · · · · · · · · · · · · · · · · ·					

B R O W N A N D	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MW-48 Sample I.D.: MW-48 (if different from well no)
 Project: Partchogue MGP Personnel: NPB AT	Date: $6/27/3$ Time: 1621 Weather: $6/27/3$ Air Temp.: 85
DEPTH TO : Static Water Level: <u>4, 40</u> ft Bottom of We DATUM: Dop of Protective Casing 2 Top of Well Casing CONDITION: Is Well clearly labeled? 2 Yes No Is we Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? 2 Is Concrete Pad Intact? (not cracked or frost hea Is Padlock Functional? Yes No No NA Is Inner Casing Properly Capped and Vented? 2	□ PVC □ Teflon® □ Open rock II: 12.24ft □ Other: II clean to bottom? □ Yes □ No not bent or corroded) □ Yes □ No Yes □ No Ved) □ Yes □ No Is Inner Casing Intact? □ Yes □ No R w Sted
	□ 2" Submersible Pump □ 4" Submersible Pump □ □ Inertial Lift Pump □ Other:
MATERIALS: Pump/Bailer: D Teflon® Stainless Steel PVC Other:	Tubing/Rope: Tubing/Rope: Polypropylene Other:
Pumping Rate: <u>200 mL/min</u> Elapsed Time: <u>30 mm</u> Was well Evacuated? D Yes D No Nu PURGING EQUIPMENT: D Dedicated D Prepared Off-	umber of Well Volumes Removed:
SAMPLING DATA: METHOD: □ Bailer, Size:, ☐ Bladder Pump □ 2" S □ Syringe Sampler □ Peristaltic Pump □ Iner	
MATERIALS: Pump/Bailer: D Teflon® Stainless Steel	Tubing/Rope: Teflon® Polyethylene
SAMPLING EQUIPMENT: Dedicated Prepared 0 Metals samples field filtered? Yes No Method APPEARANCE: Image: Clear Turbid Color: Image: Color: Image: Color: FIELD DETERMINATIONS: pH: ig.46 Meter Model: Temperature: 20 Spec. Cond.: Image: Color: Image: Color: Image: Color: ORP: 19 DO: Image: Color: Im	d: Contains Immiscible Liquid Contains Immiscible Liquid Aoriba U-SL Meter S/N: Meter S/N: Temperature:

10.05

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Patchoque MG-P	
Personnel: NPB AT	
Purge/Sample Depth: 7.3	S

Project Number: 142128Well ID: MW - USSample ID: MW - 4S

Actual Time	pН	Temp (℃)	ORP (mV)	Cond (^{MS} /cm)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1621	6.54	21,53	-25	0.401	2.80	640	4,90	200	
1624	6.55	20.89	-30	0.396	1,30	550	-11/0	100	
1627	6.57	20,64	-26	0.392	0.78	400			
1630	6,51	20,72	-21	0,390	C.68	288			
1633	6.48	20.53	-6	0.389	0.57	120			
1636	6.47	20,42	3	0.389	0.55	110		200	
1639	6.47	20,41	3	0.387	0.49	72.0			
1642	6,42	20.41	6	0.387	0,46	63.6			
1645	6.45	20.36	12	0,387	0.42	25.3		T	
1648	6,415	20.17	15	0:387	0.40	29.3			
1651	6.40	20.72	19	0.387	0.39	20,5			
1654	JAN	Ples	Colle	ct ed				As a set of the	
<u> </u>		<u> </u>							
			-						
					<u> </u>				
	-								
					AY)	1/271	~		
				<u> </u>		6/27/	P		
				<u> </u>					
			· · · · · ·						
									· · · · · · · · · · · · · · · · · · ·
						`			
			- <u>}</u>						
			-						
							\vdash	┣───────────	
		L							
					<u> </u>				
					+		4		
				<u> </u>		1			

Children of the Advances of the	N AND		LOW-FLOW GRO SAMPLING FIE	
CALD	WELL	Allendale, NJ Office	Well Number: MW-75 Sample I.D.: MW-75	(if different from well no)
Project: Mc. Personnel:	NPIS AT	0	Date: $\underline{\beta/\lambda \overline{7/13}}$ Time: $\underline{\beta'}$ Weather: $\underline{\beta'}$, $\underline{\beta'}$, $\underline{\beta'}$	Air Temp.: 654
WELL DATA: Casing Diameter Intake Diameter: DEPTH TO : S DATUM: 1 CONDITION:	itatic Water Level: op of Protective Ca Is Well clearly lab Is Prot. Casing/Su Does Weep Hole Is Concrete Pad I Is Padlock Function	Stainless Steel Galv. Steel <u>4. 4.</u> ft Bottom of We asing Top of Well Casing eled? Yes No is we urface Mount in Good Cond.? (r adequately drain well head? ntact? (not cracked or frost hea onal? Yes No No	□ Other: Il clean to bottom? □ Yes □ tot bent or corroded) □ Yes □ I Yes □ No ved) □ Yes □ No Is Inner Casing Intact? □ N	ck No J No
	Is Inner Casing Pr	roperly Capped and Vented? E	a Yes □ No To be purged: <i>\\A</i>	
PURGE DATA METHOD:	□ Bailer, S	ize: Bladder Pump	□ 2" Submersible Pump □ 4" S p □ Inertial Lift Pump □ Other	ubmersible Pump
MATERIALS Pumping Rate: _ Was well Evacua PURGING EQUI	ted?	Stainless Steel PVC Other: Elapsed Time:	Volume Pumped:	Teflon® Polyethylene Polypropylene Other:
SAMPLING D METHOD:	D Bailer, Size:	Bladder Pump D 2" Si r D Peristaltic Pump D Iner	ubmersible Pump	ble Pump
MATERIALS: F SAMPLING EQU Metals samples f APPEARANCE: FIELD DETERM Temperature: ORP:67	1PMENT:	Stainless Steel Dedicated Depared C Yes No Method Turbid Color: pH:0.18 Meter Model: d.: 0.650 Meter Model:	Diff-Site Field Cleaned Contains Immiscible Lig Mol I a U-Sa Meter S/N 2 - 13 Meter S/N	:
DUP: DIN MS/MSD: DIN Field Lab Results I certify that this samp Signature:	io Yes N DAN/A pH; We was collected and ha	DO: <u>/, 4</u> Turbidity: <u>2</u> ame: ame: DO: andled in accordance with applicable re	Temperature:	
P:1008120817183_07:9	Jata_Sheets went finite Sheet o	BC		

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	Poter	None	Mbp	Projec	t Numbe	r: 142128	
Personnel:	1/1h a	71		Well II	D:	w-75	
Purge/Sample [Depth:	7.	5'	Sample	e ID:	MW-75	_

Actual		Temp	ORP	Cond (^{MS/} cu)	DO	Turbidity	DTW	Pumping Rate	
Time	pH –	=(°C)=	(mV) =	(mS/cm)	(mg/L)	(NTU)	(ft)	(mL/min)	Comments
0835	6.44	18,92	137	0.624	1.79	102	4.211	150	
0838 0841 0844 0847	6.62	17.56	-152	B.610	1,27	102 122			
0841	5.66	17.37	-155	0-611	1.27	117		·	
2894	6.71 6.74	16.93	-159	0610	1.30	101 88.9			
0844	6.75	16.67 16.57	-161 -160	0.614	1.32	76.5	4.53	150	
0850 0853	6.75	16.45	-160	0.617	1.44	67.5	(1)	130	
0856	677	16.44	-161	0.622	1.46	54.1	4.57		1
0856	6.77	16.54	-162	0-623	1.45	43.9			
0402	6.77	16-50	-161	0.627	1.46	33.4_			
0905	6.78	16.590	-1621	0.630	1,43	18.5			
0908	10mg	L. LOM	totec/						
	/								
							-		
	\sim								
								. P.5	
				1.0					<u>д</u>
								1	
				\rightarrow	\leftarrow				
					1				
			1		1	6/	12/13		
			1 M.J.C.				111		
	ļ		<u> </u>					L	
	<u> </u>		-		-				
		+							
					1			1	
									<u>├</u>
							1		<u> </u>

BROWN AND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
CALDWELL Allendale, NJ Office	Well Number: MW - 7D Sample I.D.: MW - 7D (if different from well no)
Project: Alt hoge MBP Personnel: MM ST	Date: <u>6/27/17</u> , Time: <u>0938</u> Weather: <u>0702081</u> Air Temp.: <u>78</u>
DEPTH TO: Static Water Level: 4,27 ft Bottom of Well DATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Yes No Is we Is Prot. Casing/Surface Mount in Good Cond.? (r Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost hea Is Padlock Functional? Yes No No NA Is Inner Casing Properly Capped and Vented? R	□ PVC □ Teflon® □ Open rock II:28.3 ft □ Other: II clean to bottom? □ Yes □ No tot bent or corroded) □ Yes □ No Yes □ No ved) □ Yes □ No Is Inner Casing Intact? □ Yes □ No
PURGE DATA:	2" Submersible Pump 4" Submersible Pump p Inertial Lift Pump Other:
Image: Construction of the second constructi	Imber of Well Volumes Removed:/VA
SAMPLING DATA: METHOD: D Bailer, Size: Bladder Pump D 2" S Syringe Sampler D Peristaltic Pump D Iner	ubmersible Pump
Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: pH: 0.12 Meter Model: Meter Model: Temperature: 762 Spec. Cond.: 767 Meter Model: ORP: 762 Spec. Cond.: 767 Meter Model: DUP: No Yes Name:	Contains Immiscible Liquid Honka U-5,2 Meter S/N: Meter S/N: Temperature:
P \"Unice\"Field_LabiField_Daty_presidviveil_finio_Sheet doc	

LOW-FLOW GROUNDWATER FIELD DATA SHEET

т

Project Name:	Pas	Elvon		M	291.)	
Personnel:	NPH AT						
Purge/Sample [Depth:	0 -	2	3.	5		'

T

Ł

Project Number: 142128 Well ID: <u>MW-7D</u> Sample ID: <u>MW-7D</u>

Actual Time	pН	Temp (⁰C)	ORP (mV)	Cond (^{MS} (m)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
0958	6.54	18.21	65	0.322	7.05	616	4.27	100	
0941	6.37	1687	72	0312	3.32	769 972		0	
0944	6.27	18.50	72	Q.310	2.63				
ORY7	6.20	16.34	71	0.319	2.26	945			
0950	6.17	15.92	71	0.209	2.13	871	+1 7)		
	6.17	15.99	74	0.320	2.19	760	4,33		Rinsed
0956	6.16	15,97	75 77	0.317	2.04	760			
1002	h.l.	16:96	76	0.317	1.61	710		×	
1005	bell	17.17	77	0.319	1,68	625			
IVOR	6.11	17.17	78	0,32-0	1.64	612			
1011	6,11	17.09	78	0.319	1.77	575			
1014	10.10·	16,82	81	0.319	libb		4134	200	
1017	6,19	16,95	78	0.315	2.60	500			Rinsed
1020	6.14	16.99	8.3	0.316	2.08	430			
1023	6.1	17.05	84	0.316	1,89	420			
1025	6.10 -	16.99	86	0.316	1.84	390			
1028	p.10	17.00	88	0.316	1.74	350			
1031	6.15	16.88	91	0.313	2,51	305			Rinsed
1034	6,10	17.06	93	0,313	3,18	275	X		
10.37	6,10	17.67	96	0,314	2.25	225			
1040	6.[[17.13	98	0.31.3	2.11	190			
1043	6.11	17.10	101	0.319	1,97	175			
1049	6,10	17.30	103	0.313	1.96	150			Nucal
1052	6.12	17.62	108	0.309	2.33	12-5			Rinsed AD
1055		NPLE		ected	4123	1.0-5			Water Locks
				CCIEN					clear
				-					Circui
		1			-				
				Ν					
				1			-		
					1111		1		
				×			$4 - 1 \leq$		λ.
					/		7		
						AF	r: 1/		
					<u> </u>				
	<u> </u>					· · · ·			
L		L		1	L	1	L	L	

BROWNAND	OW-FLOW GROUNDWATER SAMPLING FIELD DATA
Allendale, NJ Office Sample I.	ber: $MW - 8S$ D.: $MW - 8S$ (if different from well no)
Project: Patchoque MCP Date: <u>b/</u> Personnel: NPB AT Weather:	27/13 Time: 1468 Overcast Air Temp.: 85
WELL DATA: Casing Diameter: Stainless Steel Steel PVC Tefl Intake Diameter: Stainless Steel Galv. Steel PVC Tefl DEPTH TO: Stait Water Level: Image: Steel Galv. Steel PVC Tefl DATUM: Top of Protective Casing Top of Well Casing Other: Other: CONDITION: Is Well clearly labeled? Yes No Is well clean to be is Prot. Casing/Surface Mount in Good Cond.? (not bent or Does Weep Hole adequately drain well head? Yes N Is Concrete Pad Intact? (not cracked or frost heaved) Yes N Is Inner Casing Properly Capped and Vented? Yes Integration	on® □ Other: □ Teflon® □ Open rock pottom? Ø Yes □ No corroded) Ø Yes □ No No es □ No er Casing Intact? Ø Yes □ No
	tial Lift Pump Other: Teflon® Tobing/Rope: Polyethylene Polypropylene
Pumping Rate: <u>360 mL/min</u> Elapsed Time: <u>36 min</u> Volume F Was well Evacuated?	ell Volumes Removed: $\Lambda \Lambda A$
SAMPLING DATA: METHOD:	Pump
MATERIALS: RumpBailer: Teflon® Ø Stainless Steel SAMPLING EQUIPMENT: Dedicated Matels samelas fold filtered?	Tubing/Rope: Teflon® Polyethylene
FIELD DETERMINATIONS:pH: $6, 2.5$ Meter Model:HeribaTemperature:17,92Spec. Cond.: $0, 529$ Meter Model: $$ ORP: -80 DO: 1.64 Turbidity: $21,0$ DUP: -80 DYesName: $DUP 0 6, 2713$ MS/MSD:DDName:	Meter S/N:
Field Lab Results: DN/A pH: DO: Temper I certify that this sample was collected and handled in accordance with applicable regulatory and Signature: Date: Date:	project protocols

LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	chearne MGP
Personnel: NPB	AT
Purge/Sample Depth:	25'

Project Number: 142128Well ID: MW - 95Sample ID: MW - 85

Actual Time	pН	Temp (⁰C)	ORP (mV)	Cond (~S(w)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1408	6.20	22.87	-19 -36 -56	0,35L 0.414 0.487	3.77 3.19 2.56	205 565	0,8 0,85	300	
1417	6.18	18.65 18.45 18:04 17:82	-74 -77 -77 -79	0.549 C.565 C.575 O.578	2.29 2.08 1.86 1.81	525 415 256			
1429	6.29	17.95	-80 -79 -80	0,578 0,579 0,579	1,71	45.3	0,85	300	
1430	bids SAN	17.97 NPLE	-80 Co []	C.579 ecte,	d d	21.0			
					6/27/12				
					6/24/13				

CALDWELL Allendale, NJ Office Well Number: MW-B Sample I.D: MWW-B Utertext them with rest Project: MT Date: C/27/15 Time: 1507 Personnel: MAT Velt Date: C/27/15 Time: 1507 Well DATA: // Casing Diameter: Stainless Steel Stainless Steel Casing Diameter: Air Temp: Air Temp: Intake Diameter:	BROWNAND	LOW-FLOW GROUNDWATER SAMPLING FIELD DATA
Personnet: Milet T Weather: Difference WELL DATA:	Allendale, NJ Office	Sample I.D.: Mw-8D (if different from well no)
Casing Diameter:		
METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump/Bailer: Teflon® Teflon® Polypropylene MATERIALS: Pump/Bailer: Teflon® Polypropylene Pumping Rate: Other: Polypropylene Was well Evacuated? Yes No Number of Well Volumes Removed: MA PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Pump SampLing Data: Stainless Steel Tubing/Rope: Teflon® Was well Evacuated? Yes No Number of Well Volumes Removed: MA PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Pump Stainless Steel Stainless Steel Polypropylene Polypropylene Stainless Steel Stainless Steel Polypropylene Polypropylene MATERIALS: Pump/Bailer: Teflon® Tubing/Rope: Teflon® Stainless Steel Veer No Method: Polyptylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field f	Casing Diameter: Intake Diameter: Intake Diameter: 2 Casing Diameter: Casing Casing Diameter: Casing Casing Diameter: Casing Casing Diameter: Casing Casing Casing Diameter: Casing Casing Casing Casing Diameter: Casing Casing Casing Casing Diameter: Casing Casing Casing Casing Diameter: Casing Casing	□ PVC □ Teflon® □ Open rock □ Other: □ Other: □ clean to bottom? □ Yes □ No tot bent or corroded) □ Yes □ No Yes □ No ved) □ Yes □ No ↓ Is Inner Casing Intact? □ Yes □ No ↓ Yes □ No
MATERIALS: Pump/Bailer: Stainless Steel PVC Polyethylene PVC Other: Polyethylene Polyethylene Pumping Rate: PVC Number of Well Volumes Pumped: Polyethylene Was well Evacuated? Yes No Number of Well Volumes Removed: PUR PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned SAMPLING DATA: METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump SAMPLING DATA: METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 0 ther: MATERIALS: Pump/Bailer: Tefion® Tubing/Rope: Tefion® Stainless Steel Stainless Steel Polyethylene Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Polyethylene Stainless Steel Ves No Meter Model: Polyethylene Polyethylene Stainless Steel Inturing/Rope: Teflon® Polyethylene Polyethylene Polyethylene Stainless Steel Inturing Rope: Yes No Meter Model: <td>METHOD</td> <td></td>	METHOD	
METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump/Bailer: Peristaltic Pump Inertial Lift Pump Other:	MATERIALS: Pump/Bailer: A Stainless Steel PVC Pumping Rate: 300 Was well Evacuated? Yes No Nu	Tubing/Rope: Polyethylene Polypropylene Other: Volume Pumped: State Imber of Well Volumes Removed: WA
SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Yes No Method: APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: pH: 6.11 Meter Model: Meter S/N: Temperature: 15.79 Spec. Cond.: 0.453 Meter Model: 10.144 Meter S/N: ORP: 75 DO: 1.607 Turbidity: 36.7 Meter S/N: DUP: No Yes Name: 10.1452 Meter S/N: 10.1452 DUP: No Yes Name: 10.1607 Turbidity: 36.7 MS/MSD: No Yes Name: 10.1607 Turbidity: 36.7 Field Lab Results: N/A PH: DO: Temperature: 10.1607 I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols. 10.144 10.144 Signature: Mater Date: 10.444 10.444	METHOD: Bailer, Size: Bladder Pump 2"S	ubmersible Pump
	Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared O Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color:	Dff-Site Field Cleaned Contains Immiscible Liquid Contains Immiscible Liquid Contains Immiscible Liquid Contains Immiscible Liquid Meter S/N: Contains Immiscible Liquid Meter S/N: Contains Immiscible Liquid Temperature: Equilatory and project grobcols, /)-7

BROWN AND CALDWELL

riend

70'

LOW-FLOW GROUNDWATER FIELD DATA SHEET

bp

Project Name:	P
Personnel:	NAR
Purge/Sample	Depth:

 Project Nu	mber: 142128
Well ID:	MW-8P
Sample ID:	MW-8D

		-	0.00						
Actual Time	pН	Temp (⁰C)	ORP (mV)	Cond ("Slup	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
					(11.9.2)				Comments
1505	6.29	19.38	-46	0.540	1.65	207	0.65	300	
1506 1509	6.27	17.82	0 DF	0.497	2.03	183			
1512	6.27 6.24	171.43	75 46	0.455	1.64	182	0.65	300	
1515	6.27	16.72	46	0.448	1.47	230	0.03		
1518	6.21	16.21	51	0.450	1.47	245 258	0.70		Ruse fin-three
1521	6.24	16.06	54	0.447	2.02	258			all
1524	6-17.	1582	67 72	0.450	0.84	183	m 76		
1577	6113	15.78	75	0.457	0.97	154	0.75		
1533	6.11	15.79	-78	0.453	1.00	88.9			,
1536	Al: Wing			Í					
	1000		-						
				-		1			
								00	
			2.1	11.11.11.11		1. II. I		grant temp	
	 								
-					20 - 20 - 1 - 1 - 2				
	1			\square					
					\searrow				
						no			
		<u>† </u>				1/2 b	27/13		
	1						11		
	L								
							\vdash		
						+	\rightarrow		
			_						
					-				
			<u> </u>						<u> </u>
L					-	_L		1	·

SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Yes No Method: APPEARANCE: Clear Turbid Color: Contains Immiscible L FIELD DETERMINATIONS: pH: 6.2/ Meter Model: 7/07/10/07/2 Meter S/ ORP: 103 DO: 7.22 Meter Model: 5 Meter S/ DUP: No Yes Name:	
Allendaie, NJ Unice Sample I.D.: MW - 9S Project: MUM At Date:	ELD DATA
Personnel: Mt Weather: DRUCAS WELL DATA:	(if different from well no)
Casing Diameter: 2 Stainless Steel Steel PVC Teflon® Other:	<u>1126</u> Air Temp.: <u>()</u>
PURGE DATA: METHOD: Bailer, Size: Biladder Pump 2" Submersible Pump 4" MATERIALS: Pump/Bailer: Stainless Steel Tubing/Rope: 0 MATERIALS: Pump/Bailer: Stainless Steel Tubing/Rope: 0 Pumping Rate: 150 Other: 0 0 Number of Well Volumes Removed PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned SAMPLING DATA: MATERIALS: Pumg/Bailer: Teflon® Tubing/Rope: 0 MATERIALS: Pumg/Bailer: Teflon® Number of Well Volumes Removed 1/1000 0 MATERIALS: Pumg/Bailer: Dedicated Prepared Off-Site Field Cleaned SAMPLING DATA: Stainless Steel Stainless Steel Tubing/Rope: 0 MATERIALS: Pumg/Bailer: Teflon® Tubing/Rope: 0 MATERIALS: Pumg/Bailer: Teflon® Tubing/Rope: 0 MATERIALS: Pumg/Bailer: Teflon® Tubing/Rope: 0 SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samp	No No
MATERIALS: Pump/Bailer: Stainless Steel Tubing/Rope: PVC Other: Other: Image: Content in the image: Content i	
METHOD: □ Bailer, Size: □ Bladder Pump □ 2" Submersible Pump □ 4" Submer □ Syringe Sampler □ Peristaltic Pump □ Inertial Lift Pump □ Other:	Teflon® Polyethylene Polypropylene Other: d:A
Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Yes No Method: APPEARANCE: Clear Turbid Color: Contains Immiscible L FIELD DETERMINATIONS: pH: G.Z./ Meter Model: Job Color: Meter S/ Temperature: ZI. 95 Spec. Cond.: OF 726 Meter Model: Job Color: Meter S/ ORP: -103 DO: OF 726 Turbidity: Z1/7 Meter S/ DUP : No Yes Name: Mater: Meter S/ MS/MSD No Yes Name: Meter	sible Pump
Field Lab Results: DN/A pH: DO: Temperature: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols.	N:
Signature: Date: 6/27/13 Producevrield_Labirield_Data_Sheetstivent_And_Sheet toc	

BROWN AND CALDWELL

4.0'

LOW-FLOW GROUNDWATER FIELD DATA SHEET MBP

	n.H.	
Project Name:	Patchop	V
Personnel:	NUDAT	_
Purge/Sample	Depth:	

Project Number: 142128 Well ID: <u>MW-95</u> Sample ID: <u>MW-95</u>

Actual Time	рН	Temp (°C)	ORP (mV)	Cond (~S(m)	DO (mg/L)	Turbidíty (NTU)	DTW (ft)	Pumping Rate (mL/min)	Comments
1125	6.17	21,73	-96 -91 -102	0.671	1.86	423	1.9	150	
/125 1129	6.17	21,54	-97	0.671	124	423 334			
1132	6.19	21.45		0.67,	0-99	229	215		
1135 1138	6.70	24.40	-100	0.692	0.88 0.89	229 106 72.5			
1138	6.19	21.56	-99	0.695	0.89	-12.5	22	150	
1141	6.20	21,75	-100	0.700	0.91	52-7			
1144	6.70	21.94	-100	0.706	084	43.6			
1147	670	2217	-101	0.712	0.85	38.9			
1150	620	22.01	-101	0.715	0.80	33.6	2.53		
1153	6.21	21.92	-10R	0.725	0.77	28.8			_
1158	6.21	21.95	-1031	0.726	0-72	29,7	provided a		
1159	1.Bmpl	- Coller	prage						
	/								
<u> </u>							-		
	\	-				-			
	<u> </u>								
<u> </u>									
							· · · · · · · · · · · · · · · · · · ·		
-	1			· · ·					
				· · · · · · · · · · · · · · · · · · ·					
					NIKA	6/27/12		-	
-						4-49			
	-								
	-				-				
-						· · · · · · · · · · · · · · · · · · ·			
				1				7	
		1					1		
	1	1	1	1		<u> </u>			
									<u> </u>
			1			<u> </u>	+		
				<u> </u>		+			

Appendix B: Laboratory Reports (CD-ROM)

Appendix C: Data Usability Summary Report (DUSR)

ENVIRONMENTAL Data Services, Inc.

DATA USABILITY SUMMARY REPORT PATCHOGUE, NEW YORK

Client:	Brown and Caldwell, Upper Saddle River, New Jersey
SDG:	PCH13
Laboratory:	Lancaster Laboratories, Lancaster, Pennsylvania
Site:	Patchogue, New York
Date:	September 1, 2013

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-1 GRAB GROUNDWATER	7113055	Water
2	MW-7S GRAB GROUNDWATER	7113056	Water
3	MW-7D GRAB GROUNDWATER	7113057	Water
4	MW-9S GRAB GROUNDWATER	7113058	Water
5	FB062713 GRAB WATER	7113059	Water
6	MW-8S GRAB GROUNDWATER	7113060	Water
7	DUP062713 GRAB GROUNDWATER	7113061	Water
8	MW-8D GRAB GROUNDWATER	7113062	Water
8MS	MW-8D GRAB GROUNDWATERMS	7113063	Water
8MSD	MW-8D GRAB GROUNDWATERMSD	7113064	Water
9	MW-4S GRAB GROUNDWATER	7113065	Water
10	MW-49 GRAB GROUNDWATER	7113066	Water
11*	TRIPBLANK WATER	7113067	Water

* - VOC only

A Data Usability Summary Review was performed on the analytical data for nine water samples, one aqueous field blank sample, and one aqueous trip blank sample June 26-27, 2013 by Brown and Caldwell at the Patchogue, New York Site. The samples were analyzed under Environmental Protection Agency (USEPA) *"Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions"*.

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
VOC (BTEX and MTBE)	USEPA SW-846 Method 8260B
SVOC (PAH)	USEPA SW-846 Method 8270C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, August 2008: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- SOP Number HW-22, Revision 4, August 2008: Validating Semivolatile Organic Compounds by SW-846 Method 8270D;

• and the reviewer's professional judgment.

The following items/criteria were reviewed:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes. There were no qualifications.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (BTEX and MTBE)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB062713 GRAB WATER	None - ND	-	-	-	-
TRIP BLANK WATER	None - ND	-	-	-	-

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

• All %D and RRF criteria were met.

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

		VOC		
Compound	MW-8S GRAB GROUNDWATER	DUP062713 GRAB GROUNDWATER	RPD	Qualifier
_	ug/L	ug/L		
None	ND	ND	-	-

• Field duplicate results are summarized below. The precision was acceptable.

Semivolatile Organics Compounds (PAH)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD sample exhibited acceptable percent recoveries (%R) and/or relative percent differences (RPD).

Laboratory Control Samples

• The LCS sample exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blanks

• The following table summarizes field blank contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
FB062713 GRAB WATER	ND	-	-	-	

GC/MS Tuning

• All criteria were met.

Initial Calibration

• All %RSD and average RRF criteria were met.

Continuing Calibration

All %D and RRF criteria were met.

Compound Quantitation

All criteria were met. •

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable.

РАН								
Compound	MW-8S GRAB	DUP062713 GRAB	RPD	Qualifier				
	GROUNDWATER ug/L	GROUNDWATER ug/L		-				
Acenaphthene	0.4	0.3	29%	None				

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

aughlavel Dated: 9/4/13

Nancy Weaver Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

🚯 eurofins

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-1	Grab	Groundwater
		COC:	3329	51
		Patcl	hogue	, NY

Project Name: Patchogue, NY

Collected: 06/26/2013 17:03 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH01 SDG#: PCH13-01

CAT No.	Analysis Name	CAS Number	As Receiv Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	46 8260B	ug/l	ug/l	
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.8	1
10335	Methyl Tertiary Butyl Ethe	er 1634-04-4	N.D.	0.5	1
10335	Toluene	108-88-3	N.D.	0.7	1
10335	m+p-Xylene	179601-23-1	N.D.	0.8	1
10335	o-Xylene	95-47-6	N.D.	0.8	1
10335	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-8	46 8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	1
07805	Benzo(a)anthracene	56-55-3	0.1 3	J 0.1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	0.1 3	J 0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	0.2 3	J 0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	0.1 3		1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	0.1		1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
0/805				0.1	*

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/10/2013 00:52	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/10/2013 00:52	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 09:49	Brian K Graham	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/3

Page 3 of 21

LL Sample	#	WW 7113055
LL Group	#	1400827
Account	#	09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

🔅 eurofins

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-7S Grab Groundwater
		COC: 332951
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/27/2013 09:08 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH7S SDG#: PCH13-02

LL Sample # WW 7113056 LL Group # 1400827 Account # 09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name	CAS Number	As Receive Result	ed Metho	ceived d tion Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/1		
10335	Benzene	71-43-2	0.7 J	0.5		1
10335	Ethylbenzene	100-41-4	N.D.	0.8		1
10335	Methyl Tertiary Butyl Ethe	r 1634-04-4	N.D.	0.5		1
10335	Toluene	108-88-3	N.D.	0.7		1
10335	m+p-Xylene	179601-23-1	N.D.	0.8		1
10335	o-Xylene	95-47-6	N.D.	0.8		1
10335	Xylene (Total)	1330-20-7	N.D.	0.8		1
GC/MS	Semivolatiles SW-84	6 8270C	ug/l	ug/l		
07805	Acenaphthene	83-32-9	N.D.	0.1		1
07805	Acenaphthylene	208-96-8	N.D.	0.1		1
07805	Anthracene	120-12-7	0.2 J	0.1		1
07805	Benzo(a)anthracene	56-55-3	0.1 J	0.1		1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1		1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1		1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1		1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1		1
07805	Chrysene	218-01-9	N.D.	0.1		1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1		1
07805	Fluoranthene	206-44-0	N.D.	0.1		1
07805	Fluorene	86-73-7	N.D.	0.1		1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1		1
07805	Naphthalene	91-20-3	1	0.1		1
07805	Phenanthrene	85-01-8	N.D.	0.1		1
07805	Pyrene	129-00-0	N.D.	0.1		1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/09/2013 19:58	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/09/2013 19:58	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 10:12	Brian K Graham	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 4 of 21

🚯 eurofins

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-7D Grab Groundwater
		COC: 332951
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/27/2013 10:55 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH7D SDG#: PCH13-03

LL Sample	#	WW 7113057
LL Group	#	1400827
Account	#	09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

c iles ne benzene 1 Tertiary Buty ne	SW-846		ug/l			
benzene 1 Tertiary Buty ne					ug/1	
l Tertiary Buty ne		71-43-2	N.D.		0.5	1 .
ne		100-41-4	N.D.		0.8	1
	l Ether	1634-04-4	N.D.		0.5	1
		108-88-3	N.D.		0.7	1
ylene		179601-23-1	N.D.		0.8	1
ene		95-47-6	N.D.		0.8	1
e (Total)		1330-20-7	N.D.		0.8	1
volatiles	SW-846	8270C	ug/l		ug/l	
phthene		83-32-9	N.D.		0.09	1
phthylene		208-96-8	N.D.		0.09	1
acene		120-12-7	N.D.		0.09	1
(a) anthracene		56-55-3	N.D.		0.09	1
(a)pyrene		50-32-8	0.1	J	0.09	1
(b) fluoranth	ene	205-99-2	0.1	J	0.09	1
(g,h,i)perylene	9	191-24-2	N.D.		0.09	1
(k) fluoranth	ene	207-08-9	0.1	J	0.09	1
sene		218-01-9	0.1	J	0.09	1
z(a,h)anthracen	ne	53-70-3	N.D.		0.09	1
anthene		206-44-0	N.D.		0.09	1
ene		86-73-7	N.D.		0.09	1
o(1,2,3-cd)pyre	ene	193-39-5	N.D.		0.09	1
halene		91-20-3	N.D.		0.09	1
nthrene		85-01-8	N.D.		0.09	1
iiciii ciic		129-00-0	N.D.		0.09	1
o () o o o c a e o h	<pre>(b) fluoranth g,h,i) perylene (k) fluoranth ene (a,h) anthracen nthene ne (1,2,3-cd) pyre</pre>	<pre>(b) fluoranthene g,h,i) perylene (k) fluoranthene ene (a,h) anthracene nthene ne (1,2,3-cd) pyrene alene threne</pre>	(b) fluoranthene 205-99-2 g,h,i)perylene 191-24-2 (k) fluoranthene 207-08-9 ene 218-01-9 (a,h) anthracene 53-70-3 nthene 206-44-0 ne 86-73-7 (1,2,3-cd) pyrene 193-39-5 alene 91-20-3 threne 85-01-8	(b) fluoranthene 205-99-2 0.1 g,h,i)perylene 191-24-2 N.D. (k) fluoranthene 207-08-9 0.1 ene 218-01-9 0.1 (a,h) anthracene 53-70-3 N.D. nthene 206-44-0 N.D. ne 86-73-7 N.D. (1,2,3-cd) pyrene 193-39-5 N.D. alene 91-20-3 N.D. threne 85-01-8 N.D.	(b) fluoranthene 205-99-2 0.1 J g,h,i)perylene 191-24-2 N.D. (k) fluoranthene 207-08-9 0.1 J ene 218-01-9 0.1 J (a, h) anthracene 53-70-3 N.D. nthene 206-44-0 N.D. ne 86-73-7 N.D. (1,2,3-cd) pyrene 193-39-5 N.D. alene 91-20-3 N.D. threne 85-01-8 N.D.	(b) fluoranthene 205-99-2 0.1 J 0.09 g,h,i)perylene 191-24-2 N.D. 0.09 (k) fluoranthene 207-08-9 0.1 J 0.09 ene 218-01-9 0.1 J 0.09 (a, h) anthracene 53-70-3 N.D. 0.09 nthene 206-44-0 N.D. 0.09 ne 86-73-7 N.D. 0.09 (1, 2, 3-cd) pyrene 193-39-5 N.D. 0.09 alene 91-20-3 N.D. 0.09 threne 85-01-8 N.D. 0.09

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/09/2013 20:22	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/09/2013 20:22	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 10:36	Brian K Graham	. 1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 5 of 21

🔅 eurofins

Analysis Report

Account

LL Sample # WW 7113058 LL Group # 1400827

09286

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-9S	Grab	Groundwater
		COC: 3	33295:	L
		Patcho	ogue,	NY

Project Name: Patchogue, NY

Collected: 06/27/2013 11:59 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH9S SDG#: PCH13-04

Brown	&	Caldwell		

As Received

2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name		CAS Number	As Rec Result		Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l		ug/l	
10335	Benzene		71-43-2	N.D.		0.5	1
10335	Ethylbenzene		100-41-4	N.D.		0.8	1
10335	Methyl Tertiary Bu	tyl Ether	1634-04-4	N.D.		0.5	1
10335	Toluene		108-88-3	N.D.		0.7	1
10335	m+p-Xylene		179601-23-1	N.D.		0.8	1
10335	o-Xylene		95-47-6	N.D.		0.8	1
10335	Xylene (Total)		1330-20-7	N.D.		0.8	1
GC/MS	Semivolatiles	SW-846	8270C	ug/l		ug/l	
07805	Acenaphthene		83-32-9	0.2	J	0.1	1
07805	Acenaphthylene		208-96-8	N.D.		0.1	1
07805	Anthracene		120-12-7	0.2	J	0.1	1
07805	Benzo (a) anthrace	ne	56-55-3	0.2	J	0.1	1
07805	Benzo (a) pyrene		50-32-8	0.2	J	0.1	1
07805	Benzo(b)fluorant	hene	205-99-2	0.2	J	0.1	1
07805	Benzo(g,h,i)peryle	ne	191-24-2	N.D.		0.1	1
07805	Benzo(k)fluorant	hene	207-08-9	0.1	J	0.1	1
07805	Chrysene		218-01-9	0.1	J	0.1	1
07805	Dibenz(a,h)anthrac	ene	53-70-3	N.D.		0.1	1
07805	Fluoranthene		206-44-0	0.3	J	0.1	1
07805	Fluorene		86-73-7	N.D.		0.1	1
07805	Indeno(1,2,3-cd)py	rene	193-39-5	N.D.		0.1	ĺ
07805	Naphthalene		91-20-3	0.1	J	0.1	1
07805	Phenanthrene		85-01-8	0.2	J	0.1	1
07805	Pyrene		129-00-0	0.4	J	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
1033	5 UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/09/2013 20:47	Sarah A Guill	1
0116	3 GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/09/2013 20:47	Sarah A Guill	1
0780	5 PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 10:59	Brian K Graham	1
0780	7 BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 6 of 21

🔅 eurofins

5 Analysis Report

Account

LL Sample # WW 7113059 LL Group # 1400827

09286

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	FB062	2713	Grab	Water
		COC:	332	951	
		Patch	nogue	e, NY	

Project Name: Patchogue, NY

Collected: 06/27/2013 14:25 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCHFB SDG#: PCH13-05FB

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	N.D.	0.1	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	0.1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	N.D.	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record							
CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution	
No. 07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	Date and Time 07/03/2013 15:16	Matthew S Woods	Factor 1	
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1	

NW 9/1/13

eurofins

6 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-8S Grab Groundwater
		COC: 332951
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/27/2013 14:40 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH8S SDG#: PCH13-06

LL Sample # WW 7113060 LL Group # 1400827 Account # 09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Benzene		71-43-2	N.D.	0.5	1
10335	Ethylbenzene		100-41-4	N.D.	0.8	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
10335	Toluene		108-88-3	N.D.	0.7	1
10335	m+p-Xylene		179601-23-1	N.D.	0.8	1
10335	o-Xylene		95-47-6	N.D.	0.8	1
10335	Xylene (Total)		1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles	SW-846	8270C	ug/l	ug/l	
07805	Acenaphthene		83-32-9	0.4 J	0.09	1
07805	Acenaphthylene		208-96-8	N.D.	0.09	1
07805	Anthracene		120-12-7	N.D.	0.09	1
07805	Benzo(a)anthracene		56-55-3	N.D.	0.09	1
07805	Benzo(a)pyrene		50-32-8	N.D.	0.09	1
07805	Benzo(b)fluoranthen	e	205-99-2	N.D.	0.09	1
07805	Benzo(g,h,i)perylen	e	191-24-2	N.D.	0.09	1
07805	Benzo(k)fluoranthen	e	207-08-9	N.D.	0.09	1
07805	Chrysene		218-01-9	N.D.	0.09	1
07805	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.09	1
07805	Fluoranthene		206-44-0	N.D.	0.09	1
07805	Fluorene		86-73-7	N.D.	0.09	1
07805	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.09	1
07805	Naphthalene		91-20-3	N.D.	0.09	1
07805	Phenanthrene		85-01-8	N.D.	0.09	1 .
07805	Pyrene		129-00-0	N.D.	0.09	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/09/2013 21:12	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/09/2013 21:12	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 15:41	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 8 of 21

eurofins

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DUP062713 Grab Groundwater COC: 332951 Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/27/2013 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCHFD SDG#: PCH13-07FD

LL Sample # WW 7113061 LL Group # 1400827 Account # 09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.8	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10335	Toluene	108-88-3	N.D.	0.7	1
10335	m+p-Xylene	179601-23-1	N.D.	0.8	1
10335	o-Xylene	95-47-6	N.D.	0.8	1
10335	Xylene (Total)	1330-20-7	N.D.	0.8	1
GC/MS	Semivolatiles SW-84	6 8270C	ug/l	ug/l	
07805	Acenaphthene	83-32-9	0.3 J	0.1	1
07805	Acenaphthylene	208-96-8	N.D.	0.1	1
07805	Anthracene	120-12-7	N.D.	0.1	1
07805	Benzo(a)anthracene	56-55-3	N.D.	0.1	1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1	1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1	1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1	1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1	1
07805	Chrysene	218-01-9	N.D.	0.1	1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1	1
07805	Fluoranthene	206-44-0	N.D.	0.1	1
07805	Fluorene	86-73-7	N.D.	0.1	1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1	1
07805	Naphthalene	91-20-3	N.D.	0.1	1
07805	Phenanthrene	85-01-8	N.D.	0.1	1
07805	Pyrene	129-00-0	N.D.	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/10/2013 01:16	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/10/2013 01:16	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 16:04	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 9 of 21

🐝 eurofins

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-8D Grab Groundwater
		COC: 332951
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/27/2013 15:36 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH8D SDG#: PCH13-08BKG

LL Sample # WW 7113062 LL Group # 1400827 # 09286 Account

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name	CAS Number	As Receiv Result	ed Meth	eceived od ction Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10335	Benzene	71-43-2	N.D.	0.5		1
10335	Ethylbenzene	100-41-4	N.D.	0.8		1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5		1
10335	Toluene	108-88-3	N.D.	0.7		1
10335	m+p-Xylene	179601-23-1	N.D.	0.8		1
10335	o-Xylene	95-47-6	N.D.	0.8		1
10335	Xylene (Total)	1330-20-7	N.D.	0.8		1
GC/MS	Semivolatiles SW-846	8270C	ug/l	ug/1		
07805	Acenaphthene	83-32-9	N.D.	0.1		1
07805	Acenaphthylene	208-96-8	N.D.	0.1		1 .
07805	Anthracene	120-12-7	N.D.	0.1		1
07805	Benzo(a) anthracene	56-55-3	0.1 J	0.1		1
07805	Benzo(a)pyrene	50-32-8	N.D.	0.1		1
07805	Benzo(b)fluoranthene	205-99-2	N.D.	0.1		1
07805	Benzo(g,h,i)perylene	191-24-2	N.D.	0.1		1
07805	Benzo(k)fluoranthene	207-08-9	N.D.	0.1		1
07805	Chrysene	218-01-9	N.D.	0.1		1
07805	Dibenz(a,h)anthracene	53-70-3	N.D.	0.1		1
07805	Fluoranthene	206-44-0	N.D.	0.1		1
07805	Fluorene	86-73-7	N.D.	0.1		1
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	0.1		1
07805	Naphthalene	91-20-3	N.D.	0.1		1
07805	Phenanthrene	85-01-8	N.D.	0.1		1
07805	Pyrene	129-00-0	0.1 J	0.1		1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/09/2013 22:49	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/09/2013 22:49	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 04:02	Brian K Graham	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 10 of 21

eurofins

MailAnalysisReport

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-4S	Grab	Groundwater
		COC: 3	33295	1
		Patcho	ogue,	NY

Project Name: Patchogue, NY

Collected: 06/27/2013 16:54 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH4S SDG#: PCH13-09

LL Sample # WW 7113065 LL Group # 1400827 Account # 09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name	CAS Number	As Rec Result		As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-8	846 8260B	ug/l		ug/1		
10335	Benzene	71-43-2	0.8	J	0.5	1	
10335	Ethylbenzene	100-41-4	N.D.		0.8	1	
10335	Methyl Tertiary Butyl Eth	her 1634-04-4	N.D.		0.5	1	
10335	Toluene	108-88-3	N.D.		0.7	1	
10335	m+p-Xylene	179601-23-1	N.D.		0.8	1	
10335	o-Xylene	95-47-6	N.D.		0.8	1	
10335	Xylene (Total)	1330-20-7	N.D.		0.8	1	
					ug/l		
•		846 8270C	ug/l		-		
07805	Acenaphthene	83-32-9	N.D.		0.1	1	
07805	Acenaphthylene	208-96-8	N.D.		0.1	1	
07805	Anthracene	120-12-7	0.2	J	0.1	1	
07805	Benzo(a)anthracene	56-55-3	N.D.		0.1	1	
07805	Benzo(a)pyrene	50-32-8	N.D.		0.1	1	
07805	Benzo(b)fluoranthene	205-99-2	N.D.		0.1	1	
07805	Benzo(g,h,i)perylene	191-24-2	N.D.		0.1	1	
07805	Benzo(k)fluoranthene	207-08-9	N.D.		0.1	1	
07805	Chrysene	218-01-9	N.D.		0.1	1	
07805	Dibenz(a,h)anthracene	53-70-3	N.D.		0.1	1	
07805	Fluoranthene	206-44-0	N.D.		0.1	1	
07805	Fluorene	86-73-7	N.D.		0.1	1	
07805	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.		0.1	1	
07805	Naphthalene	91-20-3	N.D.		0.1	1	
07805	Phenanthrene	85-01-8	N.D.		0.1	1	
07805	Pyrene	129-00-0	0.1	J	0.1	1	

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
No.			-				Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/10/2013 00:03	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/10/2013 00:03	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 16:27	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 13 of 21

🔅 eurofins

IO Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-4D Grab Groundwater
		COC: 332951
		Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/27/2013 16:50 by NPB

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCH4D SDG#: PCH13-10

LL Sample # WW 7113066 LL Group # 1400827 Account # 09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name		CAS Number	As Rec Result		As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l		ug/l	
10335	Benzene		71-43-2	N.D.		0.5	1
10335	Ethylbenzene		100-41-4	N.D.		0.8	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.		0.5	1
10335	Toluene		108-88-3	N.D.		0.7	1
10335	m+p-Xylene		179601-23-1	N.D.		0.8	1
10335	o-Xylene		95-47-6	N.D.		0.8	1
10335	Xylene (Total)		1330-20-7	N.D.		0.8	1
GC/MS	Semivolatiles	SW-846	8270C	ug/l		ug/l	
07805	Acenaphthene		83-32-9	N.D.		0.1	1
07805	Acenaphthylene		208-96-8	0.4	J	0.1	1
07805	Anthracene		120-12-7	N.D.		0.1	1
07805	Benzo(a)anthracen	e	56-55-3	0.3	J	0.1	1
07805	Benzo (a) pyrene		50-32-8	0.3	J	0.1	1
07805	Benzo(b)fluoranth	ene	205-99-2	0.3	J	0.1	1
07805	Benzo(g,h,i)peryl	ene	191-24-2	0.2	J	0.1	1
07805	Benzo(k)fluoranth	ene	207-08-9	0.2	J	0.1	1
07805	Chrysene		218-01-9	0.3	J	0.1	1
07805	Dibenz(a,h)anthrace	ne	53-70-3	N.D.		0.1	1
07805	Fluoranthene		206-44-0	0.4	J	0.1	1
07805	Fluorene		86-73-7	0.2	J	0.1	1
07805	Indeno(1,2,3-cd)p	yrene	193-39-5	0.2	J	0.1	1
07805	Naphthalene		91-20-3	0.2	J	0.1	1 .
07805	Phenanthrene		85-01-8	0.3	J	0.1	1
07805	Pyrene		129-00-0	0.4	J	0.1	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/10/2013 00:28	Sarah A Guill	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/10/2013 00:28	Sarah A Guill	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	13182WAG026	07/03/2013 16:50	Matthew S Woods	1
07807	BNA Water Extraction	SW-846 3510C	1	13182WAG026	07/01/2013 22:30	Karen L Beyer	1

NW 9/1/13

Page 14 of 21

🔅 eurofins

Analysis Report

LL Sample # WW 7113067

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Trip Blank Water COC: 332949 Patchogue, NY

Project Name: Patchogue, NY

Collected: 06/26/2013

Submitted: 06/29/2013 09:35 Reported: 07/12/2013 11:49

PCHTB SDG#: PCH13-11TB*

LL Group # 1400827 Account # 09286

Brown & Caldwell 2 Park Way Suite 2A Upper Saddle River NJ 07458

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.8	1
10335	Methyl Tertiary Butyl Ethe	r 1634-04-4	N.D.	0.5	1
10335	Toluene	108-88-3	N.D.	0.7	1
10335	m+p-Xylene	179601-23-1	N.D.	0.8	1
10335	o-Xylene	95-47-6	N.D.	0.8	1
10335	Xylene (Total)	1330-20-7	N.D.	0.8	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	UST VOCs 8260 (Water)	SW-846 8260B	1	T131901AA	07/09/2013 19:34	Sarah A Guill	1 .
	GC/MS VOA Water Prep	SW-846 5030B	1	T131901AA	07/09/2013 19:34	Sarah A Guill	1

NW 9/1/13

Appendix D: Electronic Data Deliverable (CD-ROM)

