Report Date: 18-Jan-12 13:26

☐ Final Report☐ Re-Issued Report☑ Revised Report

Laboratory Report

Spectrum Analytical, Inc. 175 Metro Center Boulevard Warwick, RI 02886-1755 Attn: Agnes Huntley

Project: Active Industrial-Franklin Cleaners

Project #: K2745

Laboratory IDClient Sample IDContainerMatrixDate SampledDate ReceivedSB41838-02ActiveSumma canister 6 literAir29-Dec-11 13:2031-Dec-11 09:50

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 9 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

CASE NARRATIVE:

Samples are received and the pressure is recorded from the gauge on the canister. If a canister does not have a gauge, a vacuum gauge is attached to the valve and pressure is recorded. If the canister is below -10 psig, the can must be pressurized to 0 psig. Tedlar bags do not have the pressure recorded. The can pressure can be located within this report in the sample header information.

If a Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA TO-15

Calibration:

Calibration 1201023

The %RSD for analyte Benzyl chloride is 38.4%. The calculated %RSD for the RRF for each compound in the calibration must be less than 30% with at most two exceptions up to a limit of 40%. This affected the following samples:

Active

Samples:

SB41838-02 *Active*

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

-	<u>lentification</u>	<u>C1</u>	ient Proje	et #	Matrix		Collection Dat	e/Time	Re	ceived	
Active	00		K2745		Air		29-Dec-11 1			Dec-11	
SB41838-											
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cei
Air Qualit	y Analyses										
/olatile O	rganics in Air	<u>ppbv</u>	Prepared Dilution: 8	<u>09-Jan-12</u> <u>3</u>		GS1	<u>Can pr</u> Can ID	<u>essure: +1</u> : 1343			
15-07-1	Propene	< 1.70	4.00	< 2.93	6.88	U	EPA TO-15	09-Jan-12	KRL	1200702	2
5-71-8	Dichlorodifluoromethane (Freon12)	< 2.64	4.00	< 13.05	19.78	U	"	"	"	"	>
4-87-3	Chloromethane	< 3.00	4.00	< 6.20	8.26	U	"	· ·	"	")
6-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	< 2.92	4.00	< 20.41	27.96	U	"	"	"	"	2
5-01-4	Vinyl chloride	< 3.15	4.00	< 8.05	10.22	U	"	"	"	"	
06-99-0	1,3-Butadiene	< 3.02	4.00	< 6.67	8.83	U	"	"	"	"	
4-83-9	Bromomethane	< 2.38	4.00	< 9.24	15.53	U	"	"	"	"	
5-00-3	Chloroethane	< 3.58	4.00	< 9.44	10.55	U	"	"	"	"	;
7-64-1	Acetone	5.52	4.00	13.12	9.51		"	"	"	"	
5-69-4	Trichlorofluoromethane (Freon 11)	< 3.58	4.00	< 20.12	22.48	U	"	"	"	"	
I-17-5	Ethanol	3.36	4.00	6.34	7.54	J	"	"	"	"	
)7-13-1	Acrylonitrile	< 3.06	4.00	< 6.63	8.67	U	"	"	"	"	
5-35-4	1,1-Dichloroethene	< 2.98	4.00	< 11.82	15.87	U	"	"	"	"	
5-09-2	Methylene chloride	< 3.54	4.00	< 12.29	13.89	U	"	· ·	"	"	
5-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 2.95	4.00	< 22.61	30.66	U	"	"	"	"	
5-15-0	Carbon disulfide	< 2.98	4.00	< 9.28	12.45	U	"	"	"	"	
6-60-5	trans-1,2-Dichloroethene	2.56	4.00	10.15	15.86	J	"	"	"	"	
5-34-3	1,1-Dichloroethane	< 1.60	4.00	< 6.48	16.20	U	"	"	"	"	
34-04-4	Methyl tert-butyl ether	< 1.35	4.00	< 4.87	14.43	U	"	"	"	"	
-63-0	Isopropyl alcohol	2.40	4.00	5.89	9.82	J	"	"	"	"	
-93-3	2-Butanone (MEK)	< 2.86	4.00	< 8.43	11.80	U	"	"	"	"	
6-59-2	cis-1,2-Dichloroethene	441	4.00	1748.67	15.86		"	"	"	"	
0-54-3	Hexane	< 1.74	4.00	< 6.13	14.10	U	"	"	"	"	
11-78-6	Ethyl acetate	< 2.20	4.00	< 7.93	14.41	U	"	"	"	"	
'-66-3	Chloroform	< 2.27	4.00	< 11.05	19.47	U	"	u	"	"	
9-99-9	Tetrahydrofuran	< 1.76	4.00	< 5.19	11.80	U	"	u	"	"	
7-06-2	1,2-Dichloroethane	< 2.03	4.00	< 8.22	16.20	U	"	"	"	"	
-55-6	1,1,1-Trichloroethane	< 1.57	4.00	< 8.57	21.82	U	"	"	"	"	
-43-2	Benzene	< 1.29	4.00	< 4.12	12.76	U		"	"	"	
-23-5	Carbon tetrachloride	< 1.66	4.00	< 10.44	25.16	U		"	"	"	
0-82-7	Cyclohexane	< 1.40	4.00	< 4.82	13.77	U	"	"	"	"	
3-87-5	1,2-Dichloropropane	< 1.57	4.00	< 7.26	18.49	U	"	"	"	"	
-27-4	Bromodichloromethane	< 1.69	4.00	< 11.32	26.80	U		"	"	"	
-01-6	Trichloroethene	82.0	4.00	440.69	21.50			"	"	"	
3-91-1	1,4-Dioxane	< 2.12	4.00	< 7.63	14.40	U		"	"	"	
2-82-5	n-Heptane	< 1.46	4.00	< 5.98	16.39	U		"	"	"	
8-10-1	4-Methyl-2-pentanone (MIBK)	< 2.00	4.00	< 8.20	16.39	U	"	"	"	"	
061-01-5	cis-1,3-Dichloropropene	< 1.36	4.00	< 6.17	18.16	U	"	"	"	"	
061-02-6	trans-1,3-Dichloropropene	< 1.19	4.00	< 5.40	18.16	U	"	"	"	"	
9-00-5	1,1,2-Trichloroethane	< 2.10	4.00	< 11.46	21.82	U	"		"	"	
8-88-3	Toluene	< 1.51	4.00	< 5.68	15.05	U	"	"	"	"	
91-78-6	2-Hexanone (MBK)	< 1.23	4.00	< 5.04	16.39	U	"		"	"	
4-48-1	Dibromochloromethane	< 1.47	4.00	< 12.52	34.08	U	"		"	"	
06-93-4	1,2-Dibromoethane (EDB)	< 2.44	4.00	< 18.75	30.74	U					

Active SB41838-0	entification 02	<u>Cli</u>	ent Proje K2745	<u>ct #</u>	<u>Matrix</u> Air		Collection Dat 29-Dec-11 1			ceived Dec-11	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m³	*RDL	Flag	Method Ref.	Analyzed	Analyst	Batch	Cert
Air Quality	Analyses										
/olatile Or	ganics in Air		Prepared Dilution: 8	<u>09-Jan-12</u> <u>3</u>		GS1	<u>Can pre</u> Can ID	essure: +1 : 1343			
27-18-4	Tetrachloroethene	316	4.00	2142.85	27.12		EPA TO-15	09-Jan-12	KRL	1200702	X
08-90-7	Chlorobenzene	< 2.32	4.00	< 10.68	18.42	U	"	"	"	"	Χ
30-20-6	1,1,1,2-Tetrachloroethane	< 1.82	4.00	< 12.51	27.48	U	"	"	"	"	
00-41-4	Ethylbenzene	< 1.56	4.00	< 6.76	17.34	U	"	"	"	"	Χ
79601-23-1	m,p-Xylene	< 3.95	4.00	< 17.12	17.34	U	"	"	"	"	Χ
5-25-2	Bromoform	< 1.78	4.00	< 18.40	41.34	U	"	n .	"	"	Х
00-42-5	Styrene	< 1.98	4.00	< 8.42	17.01	U	"	n .	"	"	Х
5-47-6	o-Xylene	< 2.44	4.00	< 10.58	17.34	U	"	"	"	"	Х
9-34-5	1,1,2,2-Tetrachloroethane	< 2.18	4.00	< 14.97	27.47	U	"	"	"	"	Х
8-82-8	Isopropylbenzene	< 2.02	4.00	< 9.93	19.66	U	"	n .	"	"	Х
08-67-8	1,3,5-Trimethylbenzene	< 2.34	4.00	< 11.50	19.66	U	"	n .	"	"	Х
22-96-8	4-Ethyltoluene	< 1.90	4.00	< 9.34	19.66	U	"	n .	"	"	
5-63-6	1,2,4-Trimethylbenzene	< 1.34	4.00	< 6.59	19.66	U	"	"	"	"	Х
1-20-3	Naphthalene	< 1.38	4.00	< 7.22	20.94	U	"	n .	"	"	Х
41-73-1	1,3-Dichlorobenzene	< 2.18	4.00	< 13.11	24.05	U	"	n .	"	"	Х
00-44-7	Benzyl chloride	< 1.42	4.00	< 7.32	20.61	U	"	n .	"	"	Х
06-46-7	1,4-Dichlorobenzene	< 1.72	4.00	< 10.34	24.05	U	"	n .	"	"	Х
35-98-8	sec-Butylbenzene	< 1.94	4.00	< 10.65	21.96	U	"	"	"	"	
9-87-6	4-Isopropyltoluene	< 1.91	4.00	< 10.25	21.46	U	"	"	"		
5-50-1	1,2-Dichlorobenzene	< 1.86	4.00	< 11.18	24.05	U	"	"	"		Х
04-51-8	n-Butylbenzene	< 1.95	4.00	< 10.70	21.96	U	"	"	"	"	
20-82-1	1,2,4-Trichlorobenzene	< 1.47	4.00	< 10.91	29.69	U	"	"	"	"	Х
7-68-3	Hexachlorobutadiene	< 1.87	4.00	< 19.94	42.65	U	"	"		"	Х

70-130 %

103

460-00-4

4-Bromofluorobenzene

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1200702 - General Air Prep										
Blank (1200702-BLK1)					Pro	epared & A	nalyzed: 09	-Jan-12		
Propene	< 0.213	U	ppbv	0.213						
Dichlorodifluoromethane (Freon12)	< 0.330	U	ppbv	0.330						
Chloromethane	< 0.375	U	ppbv	0.375						
1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.365	U	ppbv	0.365						
Vinyl chloride	< 0.394	U	ppbv	0.394						
1,3-Butadiene	< 0.377	U	ppbv	0.377						
Bromomethane	< 0.298	U	ppbv	0.298						
Chloroethane	< 0.448	U	ppbv	0.448						
Acetone	< 0.445	U	ppbv	0.445						
Trichlorofluoromethane (Freon 11)	< 0.447	U	ppbv	0.447						
Ethanol	< 0.404	U	ppbv	0.404						
Acrylonitrile	< 0.383	U	ppbv	0.383						
1,1-Dichloroethene	< 0.373	U	ppbv	0.373						
Methylene chloride	< 0.443	U	ppbv	0.443						
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.369	U	ppbv	0.369						
Carbon disulfide	< 0.372	U	ppbv	0.372						
trans-1,2-Dichloroethene	< 0.213	U	ppbv	0.213						
1,1-Dichloroethane	< 0.200	U	ppbv	0.200						
Methyl tert-butyl ether	< 0.169	U	ppbv	0.169						
Isopropyl alcohol	< 0.228	U	ppbv	0.228						
2-Butanone (MEK)	< 0.358	U	ppbv	0.358						
cis-1,2-Dichloroethene	< 0.163	U	ppbv	0.163						
Hexane	< 0.217	U	ppbv	0.217						
Ethyl acetate	< 0.275	U	ppbv	0.275						
Chloroform	< 0.284	U	ppbv	0.284						
Tetrahydrofuran	< 0.220	U	ppbv	0.220						
1,2-Dichloroethane	< 0.254	U	ppbv	0.254						
1,1,1-Trichloroethane	< 0.196	U	ppbv	0.196						
Benzene	< 0.161	U	ppbv	0.161						
Carbon tetrachloride	< 0.208	U	ppbv	0.208						
Cyclohexane	< 0.175	U	ppbv	0.175						
1,2-Dichloropropane	< 0.196	U	ppbv	0.196						
Bromodichloromethane	< 0.211	U	ppbv	0.211						
Trichloroethene	< 0.178	U	ppbv	0.178						
1,4-Dioxane	< 0.265	U	ppbv	0.265						
n-Heptane	< 0.183	U	ppbv	0.183						
4-Methyl-2-pentanone (MIBK)	< 0.250	U	ppbv	0.250						
cis-1,3-Dichloropropene	< 0.170	U	ppbv	0.170						
trans-1,3-Dichloropropene	< 0.149	U	ppbv	0.149						
1,1,2-Trichloroethane	< 0.262	U	ppbv	0.262						
Toluene	< 0.189	U	ppbv	0.189						
2-Hexanone (MBK)	< 0.154	U	ppbv	0.154						
Dibromochloromethane	< 0.184	U	ppbv	0.184						
1,2-Dibromoethane (EDB)	< 0.305	U	ppbv	0.305						
Tetrachloroethene	< 0.201	U	ppbv	0.201						
Chlorobenzene	< 0.290	U	ppbv	0.290						
1,1,1,2-Tetrachloroethane	< 0.290	U	ppbv	0.290						
Ethylbenzene	< 0.195	U	ppbv	0.227						
m,p-Xylene	< 0.195	U	ppbv	0.195						
Bromoform	< 0.494	U		0.494						
		U	ppbv							
Styrene o-Xylene	< 0.247 < 0.305	U	ppbv ppbv	0.247 0.305						

Analyta(a)	D 1	T21_	11	*DD1	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
3atch 1200702 - General Air Prep										
Blank (1200702-BLK1)					Pre	epared & A	nalyzed: 09-	-Jan-12		
1,1,2,2-Tetrachloroethane	< 0.273	U	ppbv	0.273						
Isopropylbenzene	< 0.253	U	ppbv	0.253						
1,3,5-Trimethylbenzene	< 0.292	U	ppbv	0.292						
4-Ethyltoluene	< 0.237	U	ppbv	0.237						
1,2,4-Trimethylbenzene	< 0.167	U	ppbv	0.167						
Naphthalene	< 0.173	U	ppbv	0.173						
1,3-Dichlorobenzene	< 0.273	U	ppbv	0.273						
Benzyl chloride	< 0.178	U	ppbv	0.178						
1,4-Dichlorobenzene	< 0.215	U	ppbv	0.215						
sec-Butylbenzene	< 0.243	U	ppbv	0.243						
4-Isopropyltoluene	< 0.239	U	ppbv	0.239						
1,2-Dichlorobenzene	< 0.232	U	ppbv	0.232						
n-Butylbenzene	< 0.244	U	ppbv	0.244						
1,2,4-Trichlorobenzene	< 0.184	U	ppbv	0.184						
Hexachlorobutadiene	< 0.234	U	ppbv	0.234						
Surrogate: 4-Bromofluorobenzene	10.2		ppbv		10.0		102	70-130		
LCS (1200702-BS1)					Pre	epared & A	nalyzed: 09-	-Jan-12		
Propene	10.1		ppbv		10.0		101	70-130		
Dichlorodifluoromethane (Freon12)	9.58		ppbv		10.0		96	70-130		
Chloromethane	9.55		ppbv		10.0		96	70-130		
1,2-Dichlorotetrafluoroethane (Freon 114)	9.89		ppbv		10.0		99	70-130		
Vinyl chloride	9.93		ppbv		10.0		99	70-130		
1,3-Butadiene	10.2		ppbv		10.0		102	70-130		
Bromomethane	9.79		ppbv		10.0		98	70-130		
Chloroethane	10.0		ppbv		10.0		100	70-130		
Acetone	9.44		ppbv		10.0		94	70-130		
Trichlorofluoromethane (Freon 11)	9.70		ppbv		10.0		97	70-130		
Ethanol	8.63		ppbv		10.0		86	70-130		
Acrylonitrile	9.05		ppbv		10.0		90	60-160		
1,1-Dichloroethene	9.08		ppbv		10.0		91	70-130		
Methylene chloride	10.0		ppbv		10.0		100	70-130		
1,1,2-Trichlorotrifluoroethane (Freon 113)	10.6		ppbv		10.0		106	70-130		
Carbon disulfide	10.6		ppbv		10.0		100	70-130		
trans-1,2-Dichloroethene	9.29				10.0		93	70-130 70-130		
			ppbv		10.0		93 96	70-130 70-130		
1,1-Dichloroethane	9.56		ppbv							
Methyl tert-butyl ether	9.45		ppbv		10.0		94	70-130 70-130		
Isopropyl alcohol	9.05		ppbv		10.0		90	70-130 70-130		
2-Butanone (MEK)	9.61		ppbv		10.0		96	70-130		
cis-1,2-Dichloroethene	9.20		ppbv		10.0		92	70-130		
Hexane	9.97		ppbv		10.0		100	70-130		
Ethyl acetate	10.4		ppbv		10.0		104	70-130		
Chloroform	9.36		ppbv		10.0		94	70-130		
Tetrahydrofuran	9.69		ppbv		10.0		97	70-130		
1,2-Dichloroethane	9.34		ppbv		10.0		93	70-130		
1,1,1-Trichloroethane	9.62		ppbv		10.0		96	70-130		
Benzene	9.39		ppbv		10.0		94	70-130		
Carbon tetrachloride	10.2		ppbv		10.0		102	70-130		
Cyclohexane	9.02		ppbv		10.0		90	70-130		
1,2-Dichloropropane	9.56		ppbv		10.0		96	70-130		
Bromodichloromethane	9.90		ppbv		10.0		99	70-130		
Trichloroethene	9.31		ppbv		10.0		93	70-130		

Air Quality Analyses - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	resuit	1 145	Cints	TOE	Level	Result	701426	Limits	ППБ	Limi
atch 1200702 - General Air Prep										
LCS (1200702-BS1)						epared & A	nalyzed: 09-			
1,4-Dioxane	8.80		ppbv		10.0		88	60-160		
n-Heptane	9.92		ppbv		10.0		99	70-130		
4-Methyl-2-pentanone (MIBK)	10.1		ppbv		10.0		101	70-130		
cis-1,3-Dichloropropene	10.0		ppbv		10.0		100	70-130		
trans-1,3-Dichloropropene	10.4		ppbv		10.0		104	70-130		
1,1,2-Trichloroethane	9.42		ppbv		10.0		94	70-130		
Toluene	9.48		ppbv		10.0		95	70-130		
2-Hexanone (MBK)	10.4		ppbv		10.0		104	70-130		
Dibromochloromethane	9.94		ppbv		10.0		99	70-130		
1,2-Dibromoethane (EDB)	9.60		ppbv		10.0		96	70-130		
Tetrachloroethene	8.97		ppbv		10.0		90	70-130		
Chlorobenzene	9.33		ppbv		10.0		93	70-130		
1,1,1,2-Tetrachloroethane	9.21		ppbv		10.0		92	60-160		
Ethylbenzene	9.49		ppbv		10.0		95	70-130		
m,p-Xylene	19.0		ppbv		20.0		95	70-130		
Bromoform	10.0		ppbv		10.0		100	70-130		
Styrene	9.58		ppbv		10.0		96	70-130		
o-Xylene	9.53		ppbv		10.0		95	70-130		
1,1,2,2-Tetrachloroethane	9.44		ppbv		10.0		94	70-130		
Isopropylbenzene	8.60		ppbv		10.0		86	60-160		
1,3,5-Trimethylbenzene	9.06		ppbv		10.0		91	70-130		
4-Ethyltoluene	9.16		ppbv		10.0		92	70-130		
1,2,4-Trimethylbenzene	9.01		ppbv		10.0		90	70-130		
Naphthalene	12.7		ppbv		10.0		127	70-160		
1,3-Dichlorobenzene	9.34		ppbv		10.0		93	70-130		
Benzyl chloride	12.1		ppbv		10.0		121	70-130		
1,4-Dichlorobenzene	9.51		ppbv		10.0		95	70-130		
sec-Butylbenzene	8.95		ppbv		10.0		90	60-160		
4-Isopropyltoluene	9.25		ppbv		10.0		92	60-160		
1,2-Dichlorobenzene	8.75		ppbv		10.0		88	70-130		
n-Butylbenzene	9.52		ppbv		10.0		95	60-160		
1,2,4-Trichlorobenzene	9.36		ppbv		10.0		94	70-130		
Hexachlorobutadiene	7.73		ppbv		10.0		77	70-130		
Surrogate: 4-Bromofluorobenzene	10.3		ppbv		10.0		103	70-130		

Certificate of Analysis

Container Type: Summa canister 6 liter Date of Analysis: 12/22/2011

Canister ID: 4636 Analyst's Initials: KG

The sampling device detailed above has been tested and is certified to the limits for the target compounds as listed below.

Analyte	Quantitation Limit (ppbv)	Analyte	Quantitation Limit (ppbv)
Acetone	<0.2	Ethanol	<0.2
Acrylonitrile	< 0.2	4-Isopropyl Toluene	< 0.2
Benzene	< 0.2	Ethyl acetate	< 0.2
Benzyl chloride	< 0.2	Ethylbenzene	< 0.2
Bromodichloromethane	< 0.2	4-Ethyltoluene	< 0.2
Bromoform	< 0.2	n-Heptane	< 0.2
Bromomethane	< 0.2	Hexachlorobutadiene	< 0.2
1,3-Butadiene	< 0.2	Hexane	< 0.2
2-Butanone (MEK)	< 0.2	2-Hexanone (MBK)	< 0.2
Carbon disulfide	< 0.2	Isopropyl alcohol	< 0.2
Carbon tetrachloride	< 0.2	4-Methyl-2-pentanone (MIBK)	< 0.2
Chlorobenzene	< 0.2	Methyl tert-butyl ether	< 0.2
Chloroethane	< 0.2	Methylene chloride	< 0.2
1,4-Dioxane	< 0.2	Naphthalene	< 0.2
n-Butylbenzene	< 0.2	1,1,1,2-Tetrachlorethane	< 0.2
Chloroform	< 0.2	Propene	< 0.2
Chloromethane	< 0.2	Styrene	< 0.2
Cyclohexane	< 0.2	1,1,2,2-Tetrachloroethane	< 0.2
Dibromochloromethane	< 0.2	Tetrachloroethene	< 0.2
1,2-Dibromoethane (EDB)	< 0.2	Tetrahydrofuran	< 0.2
1,2-Dichlorobenzene	< 0.2	Toluene	< 0.2
1,3-Dichlorobenzene	< 0.2	1,2,4-Trichlorobenzene	< 0.2
1,4-Dichlorobenzene	< 0.2	1,1,1-Trichloroethane	< 0.2
Dichlorodifluoromethane (Freon12)	< 0.2	1,1,2-Trichloroethane	< 0.2
1,1-Dichloroethane	< 0.2	Trichloroethene	< 0.2
1,2-Dichloroethane	< 0.2	1,1,2-Trichlorotrifluoroethane (Freon 113)	< 0.2
1,1-Dichloroethene	< 0.2	Trichlorofluoromethane (Freon 11)	< 0.2
cis-1,2-Dichloroethene	< 0.2	1,2,4-Trimethylbenzene	< 0.2
trans-1,2-Dichloroethene	< 0.2	1,3,5-Trimethylbenzene	< 0.2
1,2-Dichloropropane	< 0.2	Vinyl chloride	< 0.2
cis-1,3-Dichloropropene	< 0.2	m,p-Xylene	< 0.2
trans-1,3-Dichloropropene	< 0.2	o-Xylene	< 0.2
1,2-Dichlorotetrafluoroethane (Freon 114)	< 0.2	sec-Butylbenzene	< 0.2
Isopropylbenzene	< 0.2	-	

This certification applies to the following sampling devices:

1343

1646

Notes and Definitions

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

U Analyte included in the analysis, but not detected

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk

SPECTRALIANALATICALANO
Formula
HANIBALTECHNOLOGS

Subcontractor:

Spectrum Analytical, Inc.

11 Almgren Drive Agawam, Massachusetts 01001

Phone: (413) 789-9018

EQuISFacilityCode: N/A

Client Sample ID

SEATHER CANTES

12/29/2011 1:20:00 PM 12/29/2011 11:45:00 AM Collection Date

Air

K2745-02A

SOUNT RECORD

WorkOrder: K2745

Report Type : ASP-A Due Date: 1/23/2012

Requested Test

FAX Due Date :

Report To: Agnes R Ng Purchase Order: K2745

Air EDD Type : EQUIIS_4_NYSDEC DUP/MS/MSD Mitkem Sample ID

1) TO15, TO-15 VOA BY GC-MS

Use 'Client Sample IDs' when reporting data. If needed, truncate 'Client Sample IDs' to fit on reports. Use full 'Client Sample ID' when generating EDD.

Comments: Franklin Cleaners/Active Industrial target analyte list.

	7 7 1	Date/Time				Date/Time	01/03/2012
Relinquished by:	y: (reproble Dundly)	01/03/12 12:00	Received by: Fed ox	red ex			Page 1 of 1
Relinquished by:	o France		Received by:			12/3/11 950am	C
	, , ,			(
	175 Metro	175 Metro Center Blvd * Warwick * R1 * 02886-1755 * 401-732-3400 * 401-732-3499	(1 * 02886-1755 * 401-7	32-3400 * 401-732	-3.199	18.6	000

www.spectrum-analytical.com

Chain of Custody Record/Field Test Data Sheets for Air Analyses

Special Handling:

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

Rush TAT - Date Needed:

- All TATs subject to laboratory approval.

- Min. 24-hour notification needed for rushes.

								10/5	17.2011	8759 3426 1180		to 1 tx		7	7
3	110-asmpt.co	1110-0	0000	ainford (KSa	Results to	□ E-mail Results to	0420	12.50-11	9	SME	1	8	2 15	TX
	DF	O F	SIND	3 33(250	rmat	□ EDD Format	1700	11.62.21	+ Rose Ly	Show	the	7	K of	Ç
					2.19			Time:	Date:	Received by:	Receiv		Relinquished by:	Relinqu	
r media.	QC issue(s) with a	or suspect any	d difficulties	any technica.	on experience	789-9115 if s	nely at (800)	Department immedia	Please contact SA's Air Department immediately at (800) 789-9115 if you experience any technical difficulties or suspect any QC issue(s) with air media.						Printed:
											Date:				Signed:
										in good working condition, based on visual observation, and agree to the terms and conditions as listed on the back of this document.	ition, and agn	n visual observa	in good working condition, based on visual obserconditions as listed on the back of this document.	orking con as listed o	in good we
							mments:	equirements & Co	Special Instructions/QC Requirements & Comments:	Date Needed: 12/27/1/ Order #: 4/03/ I attest that all media relinquished from Spectrum Analytical, Inc. have been received	Order #:	om Spectrum A	1227/1	t all media	Date Needed:
		Stop	er info.	Department for further info		y contact SA	rges may appl	* additional charges may apply contact SA's QA	□DQA*	Flow Kate/Setting: NA	Flow Kate	XN	Sabounte		Location:
		Start	RCP	□ CT DPH RCP		□ TIER IV*		□NY ASP B*	□ NO QC	ntrollers: O	# Flow Controllers:		Wirken		Company:
(inches of Hg)	(Fahrenheit)	Use	CAM	□ MA DEP CAM		□ TIER II*	Å.	□NY ASP A*	□ Standard	sters: O	# LL Canisters:	Sanford	Koven		Requested by:
Ambient Pressure	Ambient A	Client						Cat A	QA/QC Reporting Level:	nisters: 2	Total # Canisters:		12/21/11	equest:	Date of Request:
						8.5		631. (2) . (2) .							
									35076						
								11,67							
×						926	1370	11-22-21	Ethlivent				-30	6	1343
X		×				Shii	1145	11.52-21	Estivent				-30	6	1646
Soil	Indo	Temp. (F)	Temp. (F) (Start)	Field ("Hg) " (Stop)	Field ("Hg) (Start)	Time Start Time Stop (24 hr clock) (24 hr clock)	Time Start (24 hr clock)	Sample Date(s)	Sample Id:	Lab Id:		("Hg) (Lab) Flow Reg. ID	<u> </u>	Can Size (L)	Can ID
Gas	or /Aml	Interior /	Interior	Canister Pressure in	Canister Pressure in						Flow	Incoming	Outgoing Inco		
25		5							RQN:	P.O. No.:		Soupere	Karn Soupere	lanager:	Project Manager:
	Air			VI	23/20	: EBR	Sampler(s):			Attn:		0000	1	031.40	Tel#: (
s reti			State:	,			Location:	494	SUR XY 115	Not	2	26611, M. M.	レ	Patchas	0
urnec		boust 63	DEC-Lindonhoust 63		Site Name: DEC - Homp stead 200	: DEC-1	Site Name	KON	rossijays Pari	330 C		Live	225 SHautic Live	225	
i unu		4	5212	/	50	Project No.: 1300	Project No		of Bartaluco	DIVICE			.2.	E. J.R	
Matrix	Analysis								reve Tauss	Invoice To:		erd	en Sonterd	0: X \$\frac{1}{2} \frac{1}{2}	Report To: Ksnew

A [242] 43 Un Almgren Brive • Agawam, MAO1001 • 1-800-789-9115 • 413-789-9018 · FAX 413-789-4076 • www.spectrum-analytical.com

18.60

Revised 06/10

Sender's Name

COMPANY ENVIRONENT ASSEMT AND REME

Your Internal Billing Reference

Company

Recipient's

413

6 Special Handling and Delivery Signature Options SATURDAY Delivery Not metable for Freick Status Openings, Freick 20th AM, or Freick Special Status

11772-324

63

FedEx Envelope* 5 Packaging .Dec.

FedEx Pak*

From This portion can be removed for Recipient's records.

Pate 2-30-// Tracking Number 875934261180

00040

00052

8759 3426 1180

FedEx First Overnight

NEW FedEx 2Day A.M.
Second business morning.
Saturday Delivery NOT available.

2 or 3 Business Days

4 Express Package Service *To most locations.

NOTE Service order has changed. Please select carefully.

0215

24h9th6 120

FedEx Priority Overnight
Next business morning, * Friday ships
delivered on Monday unlass SATURUR

FedEx Standard Overnight
Next business afternoon.*
Saturday Delivery NOT available.

FedEx 2Day
Second business afternoon,* Thursday shipments
will be delivered on Monday infess SATURDAY
the layer of the shipment of the shipmen

Box FedEx FedEx Express Saver
Third business day.*
Saturday Delivery NOT available Tube FedEx

Indirect Signal Indirect Signal Indirect Signal Indirect, someo address, someo address may signal Indirect Sig

Cargo Aircraft Only

6438252699

HOLD Saturday
FedS.location address
REDURED. Available ONLY for
FedS. 7 Portry Overright and
FedS. 2Day to select locations.

No Shipper's Decisir

ation. Yes Shipper's Declaration not required.

Dry Ice Dry Ice, 9, UN 1845

Payment Bill to:

Dor, this shipment contain dangerous goods?

HOLD Weekday
FedEx location address
REQUIRED. NOT available
FedEx First Overnight.

TT9

Acct No.

Packages up to 150 lbs.
For packages over 150 lbs. use the new
FodEx Express Freight US Airbill.

CHAIN-OF-CUSTODY RECORD

SB418380k P

Report Type : ASP-A WorkOrder: K2745

Requested Test

Due Date: 1/23/2012

ACTEVE TRANKLEY Phone: (413) 789-9018 Subcontractor: 11 Almgren Drive Agawam, Massachusetts 01001 Spectrum Analytical, Inc. EQuISFacilityCode: N/A EFFLUENT(X) Client Sample ID 12/29/2011 1:20:00 PM 12/29/2011 11:45:00 AM Collection Date Purchase Order: K2745 Matrix FAX Due Date Ą Air EDD Type : EQUIIS_4_NYSDEC Report To: Agnes R Ng DUP/MS/MSD Mitkem Sample ID K2745-02A K2745-01A

OF PROTEST NAME CHANGED TO "ACTIVE INDUSTRIAL-FRANKLIN CLEAVERS RE CLIENT REGUEST 1/18/18-94

Use 'Client Sample IDs' when reporting data. If needed, truncate 'Client Sample IDs' to fit on reports. Use full 'Client Sample ID' when generating EDD.

Comments: Franklin Cleaners/Active Industrial target analyte list.

	Relinquished by:	Relinquished by:	
	Fed ax	Comments Symmety	W 11 0 0
		01/03/12 12:00	Date/Time
	Received by:	Received by: Fed	
		ex	
	12/3/11 950am		Date/Time 01/03/2012
0		Page 1 of	01/03/201