TOBSWMF's Leachate Monitoring Program July 2022

Town of Babylon Department of Environmental Control

Tom Vetri, Commissioner
Prepared by Joseph Guarino, Principal Environmental Analyst
281 Phelps Lane
North Babylon, NY 11703
631-422-7640

October 2022

Laboratory data and summary report from July 2022 sampling for Babylon's Leachate Monitoring Program.

TOBSWMF's Leachate Monitoring Program

July 2022

As part of its solid waste infrastructure the Town of Babylon maintains four ashfills, the Southern Ashfill (SA), the Old Northern U Ashfill (ONU), the New Northern U Ashfill (NNU) and the lateral expansion of the Southern Ashfill, also known as Cell 7 (NYSDEC Permit No. 1-4720-00778/00014). These ash facilities are located on the northern and southern face of the former Babylon Landfill located on Gleam Street in West Babylon, NY.

Babylon's leachate monitoring program (LMP) samples leachate from each of Babylon's ash facilities pursuant to the requirements of 6NYCRR part 363 (formerly part 360) and/or special condition attached to their NYSDEC solid waste management operating permits. Sampling procedures are described in detail within the 2018 Update Site Analytical Plan for the Town of Babylon Solid Waste Management Facilities (SAP) (TOBDEC, 2018).

Historically for the TOBSWMF's LMP, sampling at the SA, ONU and NNU ash facilities was limited to baseline parameters. In 2018 the NYSDEC required Babylon also sample for 1,4 dioxane and PFOA/PFAS when sampling these facilities for the LMP. July 2022 sampling for the Southern Ashfill (SA), Old Northern U (ONU) and New Northern U (NNU) was scheduled to include these emerging contaminants but was missed due to a sampling error. Emerging contaminants at these facilities will be sampled in September 2022 when the sampling team returns to sample groundwater for the Cell 7 facility. Leachate at Cell 7 continues to be sampled for expanded parameters (the expanded parameters list was modified as part of the updated NYSDEC Solid Waste Management Facility regulations (appendix 2)). Sampling of the SA, ONU, NNU and Cell 7 were performed on July 13, 2022. The sampling protocol for the LMP is detailed in the Updated SAP for the Town of Babylon Solid Waste Management Facilities (TOBDEC, 2018). Sampling at the SA and ONU is limited to the Secondary Leachate Collection and Recovery System (SLCRS). Sampling at the NNU is performed for both the Primary Leachate Collection and Recovery System (PLCRS) and SLCRS. Sampling at Cell 7 was for the PLCRS. The complete laboratory report, case narrative and QA/QC package from Pace Analytical Services Inc has been attached as an appendix to this report. Included within the Pace Labs report for Cell 7 is analysis for PFAS/PFOA's performed by Eurofins Environmental Testing America. In addition to internal laboratory QA/QC, a trip blank for VOC's was obtained as part of the operational QA/QC requirements. The trip blank included a trace of acetone observed below its reporting limit. The method blank provided as part of the PFAS/PFOA's analysis for Cell 7 was clean. The result of the field duplicate (GM-27I) and equipment blank were not notable.

Project narratives prepared by the laboratory for each category were reviewed. Each data package was certified by the laboratory as being in compliance with the laboratory quality assurance manual both technically and for completeness.

This section of the LMP report provides a brief summary of the July 2022 leachate sampling at the TOBSWMF's. The sections that follow provide discussion of the results from each ash facility.

The following are notable observations from the July 2022 LMP sampling results:

- Manganese (6.9 mg/l) did not exceed its MCL at the ONU. Manganese exceeded its MCL at the ONU in 22 of the past 38 sampling events over the life of the facility and just 2 of the previous 13 sampling events at the ONU facility since June 2016.
- pH of leachate at the ONU was 8.62, 8.26 at the SA, 7.58 at the NNU PLCRS, 7.5 at the NNU SLCRS and 7.18 at Cell 7. All continue to be observed within an acceptable range.
- Baseline organics observed at each facility for the July 2022 LMP:
 - o No baseline organics were observed above their RL at the SA facility.
 - o No baseline organics were observed above their RL at the ONU.
 - Total baseline organics observed above their RL at the NNU facility; ND at the NNU P and 0.444 mg/l at the NNU S.
 - No individual organic compound from the baseline parameters list (SA, ONU and NNU), or summation of those compounds (TTO)¹ were observed at or above their MCL or TTO limits at any of these Babylon ash facilities during the July 2022 LMP.
- Total organics from the expanded parameters list (above RL) observed at the Cell 7 facility was .86 mg/l. Total Toxic Organics (TTO) (>.01 mg/l) at the Cell 7 facility was .0.15 mg/l. This is below the overall TTO limit (10 mg/l) and 1.5 mg/l limit for base neutral extractable organic compounds within the Town of Babylon Discharge Certificate issued by SCDPW.
- Sulfide exceeded its MCL of 12 mg/l at the NNUS (101 mg/l).
- Barium did not exceed its MCL at the ONU, SA or NNU for July 2022. Barium observed at the Cell 7 facility for July 2022 (9.9 mg/l) exceeded its MCL of 8 mg/l.
- Mercury was detected above its RL at the NNU PLCRS (.00029 mg/l) for July 2022.
- Chloride at the Cell 7 for June 2021 was reported at .36 mg/l. This was approximately 4-5 orders of magnitude below its historical range at this facility. Chloride was observed at 63,200 mg/l at Cell 7 for December 2021 and 89,700 mg/l for July 2022 (in line with historical data).

¹ Suffolk County Department of Public Works Total Toxic Organics (TTO) limited to: VOC's 2.5 mg/l, Base Neutral Extractable Compounds 1.5 mg/l, Acid Extractable Compounds 1.5 mg/l and Pesticides and PCB's 1 mg/l.

TOBDEC

- For July 2022 sodium was reported below its RL at the NNUP and Cell 7.
- For July 2022 BOD returned to its normal range (below its MCL) after exceeding its MCL (300 mg/l) at the NNUP, NNUS and Cell 7 in December 2021.
- Piper diagrams for the SA, ONU, NNU and Cell 7 were updated with leachate data from the July 2022 LMP. The Piper diagrams for the SA, ONU, NNUP, NNUS and Cell 7 conform to historical data.
- Project narratives were prepared by Pace Analytical Services Inc. for the July 2022 LMP laboratory results. Any issues, deficiencies or flagging of results were summarized in these narratives, and can be found in the appendix of this report. Each data package was certified by the laboratory as being in compliance with its contract for Babylon's LMP both technically and for completeness.

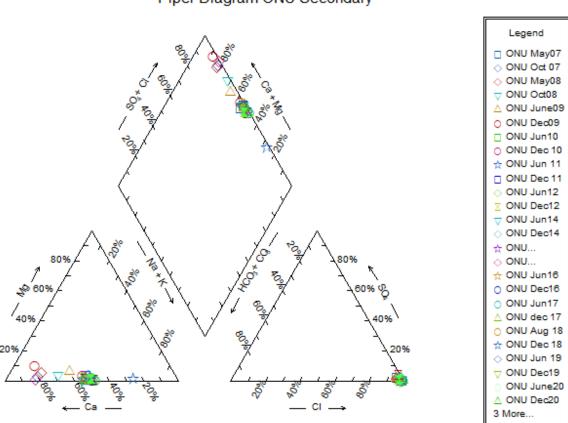
TOBSWMF's Leachate Monitoring Program

Old Northern U

July 2022

Pursuant to NYSDEC 6NYCRR Part 363 requirements for the operation of the Town of Babylon's Old Northern U (ONU) Ashfill, leachate from that facility's secondary leachate collection and recovery system (SLCRS) was sampled in accordance with the procedures detailed in the TOBSWMF's SAP (TOBDEC, 2018). The ONU SLCRS is sampled semi-annually for baseline parameters. Pursuant to NYSDEC requirement to sample for "emerging contaminants", Babylon expanded sampling to include 1,4 dioxane and PFAS/PFOA's for this facility beginning in December 2019. Due to a sampling error PFAS was not sampled in July. A sample for PFAS will be obtained from the ONU with the GMP monitoring scheduled for September 2022.

Ash has not been deposited in the ONU since it was capped in 2002 when the New Northern U (NNU) was constructed atop the facility. Leachate continues to be generated at the ONU despite the facility being capped and numerous attempts to locate the source. The LMP will continue at the ONU until there is a cessation of leachate generation. Included in this report is the July 2022 laboratory report from Pace Analytical Services, a spreadsheet summarizing parameters of concern dating back to 1995, a Piper diagram and a discussion of the laboratory results.


The attached spreadsheet provides a historical overview of leachate composition and any exceedance of MCL's at the ONU. The bullets below highlight notable observations from this round of sampling at the ONU and/or provide follow-up discussion/analysis of previous reports when appropriate.

- The chemical composition of leachate from the ONU for July 2022 generally conforms to historical data from the facility.
- pH measured in the field at the ONU SLCRS for July 2022 was 8.62.
- Manganese (6.9 mg/l) was observed below its MCL for July 2022. Manganese had exceeded its MCL at the ONU in 22 of the past 38 sampling events over the life of the facility but just 2 of the previous 13 sampling events at the ONU facility since June 2016.
- Barium (.927 mg/l) was not observed above its MCL at the ONU for July 2022.
- Arsenic and lead were not detected above their mdl at the ONU for July 2022. Low values of arsenic and lead have been intermittently observed at this facility.
- Other metals observed at the ONU at values above their reporting limit and below their MCL (where one has been established) for July 2022 include boron (.797 mg/l), calcium

(4340 mg/l), iron (5.99 mg/l), magnesium (67.9 mg/l), potassium (1660 mg/l), and sodium (3970 mg/l).

- 1,4 dioxane was observed at 8.4 ug/l for July 2022 at the ONU.
- Other organic compounds from the baseline list observed at the ONU for July 2022 was limited to acetone (.0024 mg/l).
- Sulfide (8.0 mg/l) was detected above its mdl and below its MCL at the ONU facility for July 2022.
- The Piper diagram from the ONU facility was updated with July 2022 data. The geochemical fingerprint for this facility remains unchanged.
- PFAS/PFOA's will be sampled at this facility in September 2022.

The next round of sampling at the ONU is scheduled for December 2022.

Piper Diagram ONU Secondary

Note: Solid hourglass = data point for July 2022.

PARAMETERS	03 MCL	Oct_08	June_09	Dec_09	June_10	Dec_10	Jun_11	Dec_11	12-Jun	DEC_12	Jun_13	Dec_13	Jun_14	DEC_14	June_15	Dec_15
CHLORIDE	na	10300	7450	11700	19000	16000	18000	29000	24000	32200	9610 D	39500 D	13600	32800 D	11400 [D 54100
SULFATE	na	152	90.3	139	<	29	16	7	7	<250	5130	5.41	9.64	207 D	106 I	D 82
Alkalinity		250	402	400	210	310	380	260	250	319	339 E) 136 D	330	148 D	183 I	D 186
Na	ppm	869	660	37.6	4100	3600	4200	4500	6000	6110	3170	7990	3930	6780 D	3120	566
K	ppm	878	684	352	2000	1500	20000	2100	3200	2480	1150	3790	1030 E	3060 D	1240	4470
Са	ppm	2850	1580	1350	5200	4800	4800	5700	6600	7920	3760	9640	4810	7920 D	3550	12800
Mg	ppm	95.4	90.8	101	23	160	95	86	82	130	209	0.481 B	0.244	37.3	35.2	11.9
рH	5 - 12.5	8.02	7.55	7.78	6.5	6.24	7	6.7	6.2	6.25		Temp	3.96	6.43	6.97	5.72
TDS	na	25100	14200	19300	34000	25000	37000	38000	45000	49400	39800 D	80900 D	36400	64500	38500	122
PHENOL	1.5 mg/l															
PHENOLS		0.0137	0.0397	<.01	0.011	<	0.005	0.008	0.057	<.05	<.005	0.0488 D	<.005	<.005	<.005 l	J <.005
IRON	na	9.75	21.7	34.2	33	74	60	86	46	83.6	62.9	0.416	63.3	13.6	17.9	11.6
MANGANESE	8 mg/l	16.9	15.5	21	5.5	36	20	21	18	34.5	41.2	0.0259	63.2	7.97	6.39	11.9
TKN	na	19.4	18.3	26.7	35	30	34	93	50	51.1	36.4 D	73.5 D	23.6	47.5 D	15.9 I	73.1
ALUMINUM	na	0.0146	0.245	0.038	<	0.37	0.45	<	0.79	0.0461 E	3 <.95	0.884	<	U	0.0329 I	3 <
ACETONE	50 mg/l				0.024	<	<	<	<	0.0049	0.005	0.036 Z	<	U	0.005	0.002
3+4 methylphenol								<	<	<						<
Methyl Ethyl Ketone	na						<	<	<	<	<	0.003 J	<	U	Į	J <
Arsenic	.400 mg/l				0.078	<	<	<	<	0.0049 E	3 <.28	0.0093 B	0.0124	U	Į	J <
Lead	.4 mg/l		0.0073	J .00932J	<	<	<	<	<	0.0112	<.1	0.0135	0.0164	U	Į	J 0.0031
Barium	8 mg/l	2	1.72	2.28	5.7	5	4.5	5.2	5.4	7.35	2.44 B	5.38	2.7	3.24	1.31	4.93
Xylene	ppb				<	<	<	<	<	<	<	<	<	U	Į	J <
Zinc	5 mg/l	0.0377	0.0608	0.102	<	0.17	0.14	0.22	<	0.0267	<.03	0.0096	<	0.207	0.017 E	3 0.0254
Beryllium					<	<	<	<	<	<.005	<.01	<	<	U	Į	J <
Nickel	8 mg/l	0.0119	0.0413	.0133J	<	<	<	<	<	<.04	0.03 E	0.002 B	<	U	0.002 E	3 <
Selenium	.4mg/l			.0171J	<	<	<	<	<	0.0171	<.23	<	<	U	Į	J <
Thallium		0.0249			<	<	<	<	<	<.01	<.19	<	0.123	U	Į	J 0.0635
Silver	.4mg/l	0.0053			<	<	<	<	<	0.0039 E	3 0.0388 B	3 <	<	U	Į	J 0.0029
Toluene					<	<	<	<	<	<	<	<	<	U	Į	J <
Carbon Disulfide					<	<	<	<	<	<	<	<	<	U	Į	J <
methylene chloride	2.5 mg/l	11 E	3 6.6 E	3	<	<	<	<	<	<	<	<	<	U	Į	J <
chromium										0.0071 E	0.09 E	3 <	0.0235	U	0.0027	3 <
Antimony										0.0055 E	3 <.12	0.0062 B	<	U	0.0028 E	3 <
4-Methyl-2-pentanone																0.003
Sulfide																

1,4 dioxane

ug/l

PARAMETERS

03 MCL Oct_08 June_09 Dec_09 June_10 Dec_10 Jun_11 Dec_11 12-Jun DEC_12 Jun_13 Dec_13 Jun_14 DEC_14 June_15 Dec_15

perfluorobutanoic acid (PFBA)

perfluoropentanoic acid (PFPeA)

perfluorohexanoic acid(PFHxA)

perfluoroheptanoic acid

perfluorooctanoic acid(PFOA)

perfluorononanoic acid(PFNA)

perfluorodecanoic acid (PFDA)

perfluoroundecanoic acid(PFUnA)

perfluorododecanoic acid(PFDoA)

perfluorotridecanoic acid(PFTriA)

 $perfluor otetra de canoic\ acid (PFTeA)$

perfluorobutanesulfonic acid(PFBS)

perfluorohexanesulfonic acid(PFHxS)

perfluoroheptanesulfonic acid(PFHpS)

perfluorooctanesulfonic acid(PFOS)

perfluorodecanesulfonic acid(PFDS)

perfluorooctanesulfonamide(FOSA)

N-methylperfluorooctanesulfonamidoacetic acit(NMeFOSAA)

N-ethylperfluorooctanesulfonamidoacetic acit(NEtFOSAA)

6:2FTS

8:2FTS

total PFAS

PARAMETERS	Jun_16	Dec_16			Aug_18	Dec_18	Jun_19	Dec_19	Jun_20	Dec_20	Jun_21	Dec_21
CHLORIDE	D 9630		9970		16400	19600	20400 D	14600	11600	12300	8970	40700
SULFATE	D 165		282		264	257		141	191	208	464	22.8 J
Alkalinity	D 271	182	143		293	139	245	302	196	137	157	155
Na	2390	8460	2500		3720	3760 l		3140	2230	3160	2670	9620
K	945	3870	1030		1320	1570 l	D 1560 D	1140	937	1360	1170	3740
Са	2960	9220	3100		4290	4220	5140 D	3550	2390	3360	2770	9540
Mg	38.5	<10	19.4		19.2	11	192	71	12	7.27	8.1	0.706 J
рН	5.74	9.59/7	6.49		7.49	7.52	7.22	7.59	7.15	8.02	8.57	8.88
TDS	23900	52800	25200	69200	28600	24000	29900	19500	13700	20900	12300	23100
PHENOL												
PHENOLS	<.005	0.297	0.0264		0.134	0.0059	<.00001	0.0158	<.005	0.0054	<.005	0.0563
IRON	4.79	<5	4.32		2.21	1.44	31.8	13.3	6.16	1.55	3.79	<1
MANGANESE	5.07	<.5		<.01	1.23	0.62	41.8	14.5	1.3	0.556	0.26	<.1
TKN	13.7	64.3	12.6		37.3	13.3	27.1	29.1	11.2	14	10.4	90.6
ALUMINUM	0.0704		<.0134	1.13		<.2	<.2	<.2	<.2	<.2	<.2	<2
ACETONE	J <	0.0804	<.001	0.0514	0.0024 J	0.0029	<.005	<.005	<.005	<.005	<.005	0.0341
3+4 methylphenol												
Methyl Ethyl Ketone	<	<.005	<.0005		<.005	<.005	<.005	<.005	<.005	<.005	<.005	0.0021 J
Arsenic	<	<.5	<.0068		<.5	<.01	<.2 D	<.01	<.01	<.01	<.01	<.1
Lead	0.0051	<.25	<.0013		<.25	0.0085	0.031	<.005	<.005	<.005	<.005	<.05
Barium	0.829	<10	1.32	4.9	1.34 J	1.13	2.77	2.07	0.619	1.11	0.566	5.54
Xylene	<	<.005	<.0005	<.002	<.003	<.003	<.003	<.003	<.003	<.003	<.003	<.003
Zinc	0.0358		<.0012	<.02	<1	<.02	<.02	<.02	<.02	<.02	<.02	<.2
Beryllium	0.0022	J <.25	<.00057	.0036 J	<.25	<.005	<.005	0.00034 J	0.00013	0.00017	J <.005	<.05
Nickel	<	<2	<.00088	<.04	<2	<.04	<.04	<.04	0.0478	0.0193	J 0.0229	J <.4
Selenium	<	<.5	<.0062		<.5	<.01	<.2 D	0.0135	<.01	<.01	<.01	<.1
Thallium	<	<.5	<.0036		<.5	0.0085 、		<.01	<.01	<.01	<.01	<.1
Silver	B <	<.5	<.0036		<.5	<.01	0.0048 J	0.0035 J	0.0047	<.01	<.01	0.015 J
Toluene	<	<.005	<.0005		<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Carbon Disulfide	<	<.005	<.0005		<.001	<.001	<.001	<.001	<.001	0.0033	<.001	<.001
methylene chloride	<	<.005	<.0005		<.001	<.01	<.001	<.001	<.001	<.001	<.001	<.001
chromium	<	<.5	<.0016		<.5	<.01	0.0071 J	0.0074 J	0.0489	0.0077	J 0.0031	
Antimony	<	<3	<.003		<3	<.06	0.06	<.06	<.06	<.06	<.06	<.6
4-Methyl-2-pentanone	J <	<.005	<.0005	<.005	<.005	<.005	<.005	<.005	<.005	<.005	<.005	<.005
Sulfide	<20	<2	<.61	9.6		<.002	8	<2	1.6	<2	<2	3.2
1,4 dioxane					0.21 JF	0.66	21	18.6	0.38	0.57	0.57	2

PARAMETERS	Jun_16	Dec_16	17-Jun Dec_17	Aug_18	Dec_18	Jun_19	Dec_19	Jun_20	Dec_20	Jun_21	Dec	_21
perfluorobutanoic acid (PFBA)							180	B 73	76	20	0	270
perfluoropentanoic acid (PFPeA)							120	43	67	5	9	120
perfluorohexanoic acid(PFHxA)							160	60	82	7	2	170
perfluoroheptanoic acid							53	25	29	2	8	36
perfluorooctanoic acid(PFOA)							150	44	48	4	9	51
perfluorononanoic acid(PFNA)							17	7.3	8.1	8.	3	2.6
perfluorodecanoic acid (PFDA)							5.4	J 2.1	1.8	J 2.	3	0.66 J
perfluoroundecanoic acid(PFUnA)							ND	ND	nd	ND	ND	
perfluorododecanoic acid(PFDoA)							ND	ND	nd	ND	ND	
perfluorotridecanoic acid(PFTriA)							ND	ND	nd	ND	ND	
perfluorotetradecanoic acid(PFTeA)							ND	ND	nd	ND	ND	
perfluorobutanesulfonic acid(PFBS)							76	51	82	5	6	150
perfluorohexanesulfonic acid(PFHxS)							69	B 13	B 17	1	4	34
perfluoroheptanesulfonic acid(PFHpS)							2.8	J 0.42	J 0.47	J 0.8	4 J	0.31 J
perfluorooctanesulfonic acid(PFOS)							98	32	29	2	8	9
perfluorodecanesulfonic acid(PFDS)							ND	ND	nd	ND	ND	
perfluorooctanesulfonamide(FOSA)							ND	0.76	JE nd	ND		1.3 J
N-methylperfluorooctanesulfonamidoaceti	i						ND	ND	nd	ND	ND	
N-ethylperfluorooctanesulfonamidoacetic	i						ND	ND	nd	ND	ND	
6:2FTS							ND	ND	nd	ND		5
8:2FTS							ND	ND	nd	ND		0.63 J
A A A A DEAG							024.2	251 50	440.27	E17 11	0	E0 E
total PFAS							931.2	351.58	440.37	517.44	0	50.5

PARAMETERS CHLORIDE SULFATE Alkalinity Na	Jul_22 10000 97.9 305 3970
K	1660
Ca	4340
Mg	67.9
pH	8.62
TDS	19300
PHENOL	
PHENOLS	<.005
IRON	5.99
MANGANESE	6.9
TKN	15.5
ALUMINUM	<.2
ACETONE	0.0024
3+4 methylphenol	
Methyl Ethyl Ketone	<.005
Arsenic	<.01
Lead	<.005
Barium	0.927
Xylene	<.003
Zinc	<.02
Beryllium	<.005
Nickel	0.0216 、
Selenium	<.01
Thallium	<.01
Silver	0.0024
Toluene	<.001
Carbon Disulfide	<.001
methylene chloride	<.001
chromium Antimony	0.002
Antimony	<.06
4-Methyl-2-pentanone Sulfide	<.005
Sumde 1,4 dioxane	8 8.4
1,4 UIUAAIIC	0.4

PARAMETERS Jul_22

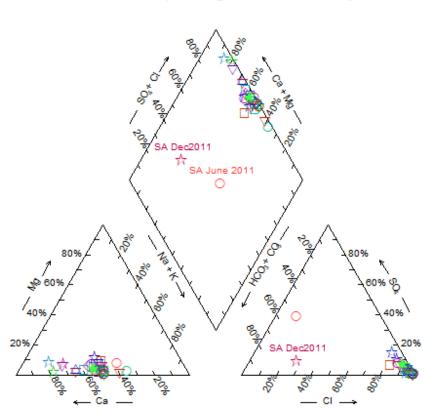
perfluorobutanoic acid (PFBA) perfluoropentanoic acid (PFPeA) perfluorohexanoic acid(PFHxA) perfluoroheptanoic acid perfluorooctanoic acid(PFOA) perfluorononanoic acid(PFNA) perfluorodecanoic acid (PFDA) perfluoroundecanoic acid(PFUnA) perfluorododecanoic acid(PFDoA) perfluorotridecanoic acid(PFTriA) perfluorotetradecanoic acid(PFTeA) perfluorobutanesulfonic acid(PFBS) perfluorohexanesulfonic acid(PFHxS) perfluoroheptanesulfonic acid(PFHpS) perfluorooctanesulfonic acid(PFOS) perfluorodecanesulfonic acid(PFDS) perfluorooctanesulfonamide(FOSA) N-methylperfluorooctanesulfonamidoaceti N-ethylperfluorooctanesulfonamidoacetic 6:2FTS 8:2FTS

total PFAS

TOBSWMF's Leachate Monitoring Program

Southern Ashfill

July 2022


Pursuant to NYSDEC 6NYCRR Part 363 (formerly part 360) requirements for the operation of the Town of Babylon's Southern Ashfill (SA), leachate from that facility's Secondary Leachate Collection and Recovery System (SLCRS) was sampled in accordance with the procedures detailed in the TOBSWMF's SAP (TOBDEC, 2018). The SA facility requires semiannual sampling of leachate for baseline parameters from the facility's SLCRS. Pursuant to NYSDEC requirement to sample for "emerging contaminants", Babylon expanded sampling to include 1,4 dioxane and PFAS/PFOA's for this facility beginning in December 2019. Due to sampling error PFAS was not sampled in July. A sample for PFAS will be obtained from the SA with the GMP monitoring scheduled for September 2022. This report includes the laboratory report from Pace Analytical Services, a Piper diagram, a spreadsheet summarizing parameters of concern dating back to 1994, and a discussion of the results.

The attached spreadsheet provides a historical overview of leachate composition at the SA and any exceedance of the MCL's. The following bullets summarize any findings from this round of sampling at the SA and provide follow-up analysis or discussion when recommended from previous reports.

- Leachate indicators at the SA have been observed to be variable. Data from the July 2022 LMP at the SA fall within the range of historical data.
- A Piper diagram that includes SA data from July 2022 conforms to its established pattern.
- Lead and arsenic were reported below their mdl's for July 2022. Low values of lead and arsenic have been observed intermittently at the SA.
- Manganese was observed below its MCL at 7.58 mg/l for July 2022. Manganese had exceeded its MCL (8 mg/l) in June 2019. The only other sampling event where manganese exceeded its MCL at the SA facility was December 2013.
- Barium was observed at 1.02 mg/l at the SA for July 2022.
- Other metals observed at the SA at values above their reporting limit and below their MCL (where one has been established) for July 2022 include boron (.729 mg/l), calcium (1540 mg/l), iron (6.57 mg/l), magnesium (65.3 mg/l), potassium (396 mg/l) and sodium (1190 mg/l).
- 1,4 dioxane was detected at 1.1 ug/l at the SA for July 2022.

- No organics from the baseline parameters list were detected above their RL at the SA facility for July 2022.
- Mercury was not detected (<.0002 mg/l) at the SA for July 2022.
- pH measured in the field was 8.26 at the SA facility.
- Sulfide (<2 mg/l) was not detected at the SA facility for July 2022.
- PFAS/PFOA's is scheduled to be sampled in September 2022.

The next round of sampling is scheduled for December 2022.

Piper Diagram SA-Secondary LCRS

Note: Solid star indicates July 2022 data.

Legend

SA Sept05

SA Apr06

SA Oct08

SA Oct07

SA Oct07

SA May08

△ SA Oct 08

SA June09

☆ SA Dec09

□ SA JUn10
○ SA S Dec 10
○ SA June...
☆ SA Dec2011
□ SA Jun2012
◇ SA Dec2012
☆ SAJun14
□ SA DEC!4
▽ SA June2015
▽ SA Dec2015
▽ SA June16

SA Dec16
 SA June17
 SA Dec17
 SA Aug 2018
 SA Dec 2018
 SA June...

6 More...

SA PARAMETERS	03 MCL	Aug '03	Mar '04	Sept '04	Mar '05	Sept '05	Apr'06	Oct '06	May'07	Oct'07	May_08	Oct_08	June_09
TKN	na	16.9000		21.1000	30.2000	22.3000	22.9000	19.8000	13.3000	14.2000	15.5000	20.0000	15.0000
TDS	na	18800.0000	9000.0000	21000.0000	16000.0000		7000.0000	19700.0000	15700.0000	23700.0000	17000.0000	21700.0000	14200.0000
PhenoIs	na	0.0170			0.0061				0.1170			0.0148	0.0103
Chloride	na	7000.0000	4750.0000	11200.0000	9250.0000	13500.0000	14700.0000	15400.0000	8400.0000	14000.0000	9500.0000	11000.0000	7500.0000
Sulfide	12												
Iron	na	5.8900	0.0448	9.4100	7.9100	5.0600	11.6000	227.0000	6.0500	2.4700	2.3000	2.2300	9.7300
Manganese	8 mg/l	5.6300	3.0900	4.6000	3.7400	4.3400	2.9100	6.7100	4.3700	2.4200	2.8600		2.37
Phenol	1.5 mg/l												
Xylene	2.5 mg/l *	1.5000											
1,2,4 Trimethylbenzene	na												
SULFATE	na	291.0000				56.0000	80.5000	51.3000	359.0000	314.0000	204.0000	126.0000	87.6000
Arsenic	.4 mg/l	0.0034						0.2630					
Acetone	na ppm	49.5000											
рН	5 - 12.5		4.0000	6.0200		5.9800	6.0900	6.3200	6.7000	6.1500	5.8900	5.7600	6.1800
Aluminum	na	0.0130	0.0415	0.0170 J	0.0475	0.0998	0.0647	6.1200	0.0620	0.0729	0.0293	0.0341	0.0962
Barium	8 mg/l	0.9800	0.6440	1.9500	1.9400	4.5100	1.6400	2.5100	1.1500	1.4500	1.1400	1.2100	1.5700
Lead		0.0017	0.0075			0.0180		0.2510	0.0040				
Zinc		0.0190		0.0140	0.0053 J		0.0136	0.8450		0.0225	0.0242	0.0368	0.0424
Toluene	2.5 mg/l *												
Cadmium	.8 mg/l	0.0003											
Vanadium		0.0005						0.0596					
Tin													
Antimony		0.0210											
Copper	1.6 mg/l	0.0029						0.1140			0.00515 J	0.0101	
Selenium	.4 mg/l	0.0270		0.0475									
Silver	.4 mg/l	0.0010								0.0252			
Berylium		0.0012											
Chromium	8 mg/l	0.0027			0.0084 J	0.0111 J		0.0426					
Nickel	8 mg/l	0.0035						0.2470					
Thallium		0.0850						0.0343				0.0202	
Carbon disulfide								0.004					
Methylene Chloride	2.5 mg/l							0.0180 B	0.0047 B		0.0058 E		0.0058
Alkalinity		320.0000			299	208	210	172.0000	284	193	259	230	290
Ammonia		10.7000	4.65	18.5	23.2	16.4	16.3	10.4000	9.75	24.8	0	14.9	13.2
Hardness		5710.0000	2340	7290	6190	9790	9570	6180.0000	5740	8110	595	5810	4450
1,4 dioxane	ug/l												

SA PARAMETERS	03 MCL	Aug '03	Mar '04	Sept '04	Mar '05	Sept '05	Apr'06	Oct '06	May'07	Oct'07	May_08	Oct_08	June_09
		Aug_03	Mar_04	Sept_04	Mar_05	Sept_05	Apr_06	Oct_06	May_07	Oct_07	May_08	Oct_08	June_09
Chloride		7000.0000	4750.0000	11200.0000	9250.0000	13500.0000	14700.0000	15400.0000	8400.0000	14000.0000	9500.0000	11000.0000	7500.0000
Sulfate		291.0000	388	120	99.2	56.0000	80.5000	51.3000	359.0000	314.0000	204.0000	126.0000	87.6000
Alkalinity		320			299	208	210	172	284	193	259	230	290
Na		2090.0000	284	1340	1390	5360	3170	2050	1920.0000	40.1000	878.0000	831.0000	739.0000
K		699	462	1300	1240	2070	1770	1260	836.0000	1590.0000	1430.0000	896.0000	828.0000
Ca		2090.0000	788	2770	2340	3760	3750	2400	2170.0000	3180.0000	2870.0000	2250.0000	1690.0000
Mg		119	91.3	86.5	85.1	97.3	49	45.9	76.3000	39.8000	57.3000	48.3000	53.2000
рН			4	6.0200		5.9800	6.0900	6.3200	6.7000	6.1500	5.8900	5.7600	6.1800

perfluorobutanoic acid (PFBA)

perfluoropentanoic acid (PFPeA)

perfluorohexanoic acid(PFHxA)

perfluoroheptanoic acid

perfluorooctanoic acid(PFOA)

perfluorononanoic acid(PFNA)

perfluorodecanoic acid (PFDA)
perfluoroundecanoic acid(PFUnA)

perfluorododecanoic acid(PFDoA)

perfluorotridecanoic acid(PFTriA)

perfluorotetradecanoic acid(PFTeA)

perfluorobutanesulfonic acid(PFBS)

perfluorohexanesulfonic acid(PFHxS)

perfluoroheptanesulfonic acid(PFHpS)

perfluorooctanesulfonic acid(PFOS)

perfluorodecanesulfonic acid(PFDS)

perfluorooctanesulfonamide(FOSA)

N-methylperfluorooctanesulfonamidoacetic acit(NMeFOSAA)

N-ethylperfluorooctanesulfonamidoacetic acit(NEtFOSAA)

6:2FTS

8:2FTS

total PFAS

SA PARAMETERS	03 MCL	Dec_09	10-Jun	DEC_10	June_11	11-Dec	12-Jun	DEC_12	June_13	Dec_13	14-Jun	14-Dec	June_15
TKN	na	16	8.6000	2.8000	1.4000	1.8000	39.0000	2.4600	3.3600 [58.0000 D	1.9000 D	2.0000	54.9000
TDS	na	9560	13000.0000	9600.0000	1500.0000	320.0000	9100.0000	13800.0000	19500.0000 E	9000.0000 D	9230.0000	4520.0000	91100.0000
PhenoIs	na	<.01	<.01	0.003 -	<.001 <		<	<.05	<.005	0.0212	<.005	<.005	0.008
Chloride	na	4900	21000.0000	6300.0000	110.0000	55.0000	6200.0000	34300.0000	3780.0000 [44700.0000 D	3140.0000 D	1840.0000 D	33600.0000
Sulfide	12											<2	<2
Iron	na	3.12	0.6700	1.8000	1.0000	26.0000	20.0000	3.4900	8.0100 E	3 21.2000	2.5900	1.9300	1.1500
Manganese	8 mg/l	1.61	2.6	2.7	0.33	2.2	5.7	2.73	2.72	12.8	5.5	2.49	0.45
Phenol	1.5 mg/l												
Xylene	2.5 mg/l *				<			<	<	<	<	U	<
1,2,4 Trimethylbenzene	na				<			<		XXXXXX			
SULFATE	na	77.7	130.0000	240.0000	450.0000	25.0000	320.0000	151.0000	5340.0000	11	515.0000	190.0000 D	124.0000
Arsenic	.4 mg/l				<	•	<	<.01	<.28	0.0051 B	<	U	U
Acetone	na ppm				<	•	<	0.001	0.003 、	0.001 J	<	U	0.041
рН	5 - 12.5	6.91	7.2000	6.8000	8.2000	7.8000	7.1000	7.1000		TEMP	4.9100	6.9500	7.1800
Aluminum	na	0.0891	<.05	0.06	0.26	1	11	<.2	<.95	0.0228 B	<	0.332	0.0512 B
Barium	8 mg/l	1.3	0.9800	0.5800	0.1100	0.0850	0.4900	0.8050	0.4900 E	4.5600	<	U	2.8300
Lead		.00427J	<	< .	< <		0.13	0.0078	<.1	0.0242	0.0086	U	0.0018 B
Zinc		0.0853	<	<	0.1000	0.6200	1.6000	0.0240	<.03	0.1590	<	0.1440	0.0234
Toluene	2.5 mg/l *		,	< .	< <	•	<	<	<	<	<	U	U
Cadmium	.8 mg/l		<	< .	< <	•	<	<.005	<.01	0.0016 B	<	U	U
Vanadium			<	< .	< <	•	<	<.05	0.03 E	3 <	<	U	0.0029 B
Tin													
Antimony			<	< .	< <	•	<	<.06	<.12	0.0067 B	<	U	0.0071 B
Copper	1.6 mg/l	0.0443	<	< .	< <	•	<	<.025	<.04	0.0082 B	<	0.0269	U
Selenium	.4 mg/l		<	< .	< <	•	<	<.005	<.23	<	<	U	U
Silver	.4 mg/l		<	< .	< <	•	<	<.01	<.02	0.0027 B	<	U	U
Berylium			<	< .	< <	•	<	<.005	<.01	<	<	U	U
Chromium	8 mg/l		<	< .	< <	•	<	<.01	0.07 E	0.003 B	<	U	0.0021 B
Nickel	8 mg/l		<	< .	< <	•	<	<.04	<.03	<	<	U	0.0018 B
Thallium			<	< .	< <	•	<	<.01	<.19	0.0068 B	0.0133	U	U
Carbon disulfide			<	< .	< <	•	<	<	<	<	<	U	U
Methylene Chloride	2.5 mg/l	.0042B	<	< .	< <	•	<	<	<	<	<	U	U
Alkalinity		318	230	200	590	180	360	209					102
Ammonia		13.1	7.6	1.8	0.6	0.8	14	1.08		60 D	1.99	1.89	53.8 D
Hardness		1910	5300	5100	570	220	2800	4500	4100 [27000 D	3000 D	3100 D	20400 D
1,4 dioxane	ug/l												

SA PARAMETERS	03 MCL Dec_09	10-Jun	DEC_10	June_11	11-Dec	12-Jun	DEC_12	June_13	Dec_13	14-Jun	14-Dec	June_15
	Dec_09	Jun_10	Dec_10	Jun_11	Dec_11	June_12	Dec_12			June_14	Dec_14	Jun_15
Chloride	4900					6200	34300)		3140	1840	
Sulfate	77.7					320	151			515	190	
Alkalinity	318					360	209	1		273	338	
Na	40.3	2000	1900	300	27	1000	1580)		782	479	8160
К	198	640	3500	21	9.2	470	550)		232	192	3310
Ca	693	2000	1900	190	81	1100	1640)		995	533	8440
Mg	43.7					20	75.9	1		141	59.7	19
рН	6.91					7.1	7.1			4.91	6.95	7.18
perfluorobutanoic acid (PFBA)												

perfluoropentanoic acid (PFPeA)

perfluorohexanoic acid(PFHxA)

perfluoroheptanoic acid

perfluorooctanoic acid(PFOA)

perfluorononanoic acid(PFNA)

perfluorodecanoic acid (PFDA) perfluoroundecanoic acid(PFUnA)

perfluorododecanoic acid(PFDoA)

perfluorotridecanoic acid(PFTriA)

perfluorotetradecanoic acid(PFTeA)

perfluorobutanesulfonic acid(PFBS)

perfluorohexanesulfonic acid(PFHxS)

perfluoroheptanesulfonic acid(PFHpS)

perfluorooctanesulfonic acid(PFOS)

perfluorodecanesulfonic acid(PFDS)

perfluorooctanesulfonamide(FOSA)

N-methylperfluorooctanesulfonamidoacetic acit(NMeFOSAA)

N-ethylperfluorooctanesulfonamidoacetic acit(NEtFOSAA)

6:2FTS

8:2FTS

total PFAS

SA PARAMETERS	03 MCL	Dec_15	Jun_16	Dec_16	17-Jur	Dec_17	Aug_18	Dec_18	June_19	Dec_19	Jun_20	Dec_20
TKN	na	9.4700 D	3.8800	43.2000		24.2000	0.5800	1.8000	17.0000 D	2.9	1.2	1.3
TDS	na	16600.0000	12.6000	39900				6300.0000	9360.0000	6800	8290	5250
PhenoIs	na	<.005	<.005	0.277				0.0028 .	J <.01	0.0092	<.005	0.0051
Chloride	na	6990.0000 D	#######	31100.0000	15400	57900.0000		2330	5830 D	5470	6860	2540
Sulfide	12		<20	<2	<.61	<2	<2	<2	6.4	<2	<2	<2
Iron	na	17.8000	2.3500	<5	6.86			12.8	210	2.85	21.5	64.3
Manganese	8 mg/l	4.97	1.87	<.5	3.42	3.86	2.09	1.09	8.44	5.31	6.67	4.21
Phenol	1.5 mg/l											
Xylene	2.5 mg/l *		<	<.005	<.0005	<.002	<.003	<.003	<.003	<.003	<.003	<.003
1,2,4 Trimethylbenzene	na											
SULFATE	na	263.0000 D	182.0000 D	246				267.0000 [427	322	621
Arsenic	.4 mg/l	0.0048 B	<.01	<.5	<.0068	<.01	<.01	<.01	0.0599	<.01	<.01	0.0154
Acetone	na ppm	0.002 J	<	0.048	0.0755	0.0264	0.0032 J	<.005	0.0016 J	<.005	<.005	<.005
pH	5 - 12.5	7.0100	6.5300	7.21/6.5	6.18	6.95	8.08	8.05	8	7.24	8.12	8.59
Aluminum	na	0.0527 B	<	<10	<.0134	.0823 J	0.0506 J	0.564	13.5	<.2	0.531	3.86
Barium	8 mg/l	0.6040	0.4350	<10	1.62	1.08	0.205	0.17	J 0.481	0.158	J 0.264	0.189
Lead		0.0042	0.0023 J	<.25	<.0013	0.0058	0.0028 J	0.013	0.279	<.005	0.011	0.0982
Zinc		0.0109 B	0.1060	<1	0.0352	.0163 J	0.0097 J	0.0652	1.87	0.0064	J 0.0762	0.486
Toluene	2.5 mg/l *		<	<.005	<.0005	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Cadmium	.8 mg/l	0.0011 B	<	<.125	<.000063	<.0025	<.0025	<.0025	0.0125	<.0025	<.0025	0.0036
Vanadium		<	<	<2.5	<.0008	<.05	<.05	0.0016 ১	J 0.0226 J	<.05	<.05	0.0113 J
Tin												
Antimony		<	<	<3	<.003	<.06	<.06	<.06	0.0765	<.06	<.06	0.0252 J
Copper	1.6 mg/l	0.0073 B	0.0026 J	<1.25	<.0025	.011 J	0.0042 J	0.0185 .	0.36	0.0087	J 0.0374	0.188
Selenium	.4 mg/l	0.0026 B	<	<.5	<.0062	<.01	<.01	<.01	<.01	<.01	<.01	<.01
Silver	.4 mg/l	0.0035 B		<.5	<.0036	<.01	<.01	<.01	0.0043 J	0.0038	J 0.0028	<.01
Berylium		<	0.0009 J	<.25	0.0051	.0018 J	<.005	<.05	<.005	0.00022	J 0.00011	<.005
Chromium	8 mg/l	0.0016 B	0.0414	<.5	<.0016	<.01	0.003 J	0.0067	0.0989	0.0156	0.0342	0.0195
Nickel	8 mg/l	0.0054 B	0.0243 J	<2	<.00088	<.04	<.04	<.04	0.069	<.04	0.0352	0.0415
Thallium		0.0244	<	<.5	<.0036	.0025 J	<.01	<.01	0.0276	0.012	<.01	<.01
Carbon disulfide			<	<.005	<.0005	<.001	<.001	<.001	<.001	<.001	<.001	0.0015
Methylene Chloride	2.5 mg/l		<	<.005	<.0005	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Alkalinity		261 D	178	151				223	183	268	199	244
Ammonia		1.28	4.39 D	57.1000					4.7	2.9	0.23	0.00097 J
Hardness		4700 D	3400 D	16400.0000	11800	9600		2200	4000	4000	10000	1400
1,4 dioxane	ug/l						0.37 J	F 0.75	0.88	<.2	0.9	0.81

SA PARAMETERS	03 MCL Dec_15	Jun_16	Dec_16	17-Jun De	ec_17 Au	ug_18	Dec_18	June_19	Dec_19	Jun_	_20	Dec_20
	Dec_15											
Chloride												
Sulfate												
Alkalinity												
Na	329	1170	1494.3944	4180	3360	560	538	1330	843		1200	565
K	640	520	1087.2889	1770	1750	305	293	486	324		418	247
Ca	1820	1410	2053.8333	4660	4420	914	807	1760	991		1550	642
Mg	99.5	63.1	70.7500	70.6	83.7	56.4	64.2	103	105		90.6	55.2
рН	7.01	7.01		6.18	6.95	8.08	8.05	8	7.24		8.12	8.59
perfluorobutanoic acid (PFBA)									70	В	76	37
perfluoropentanoic acid (PFPeA)									110		82	48
perfluorohexanoic acid(PFHxA)									130		130	58
perfluoroheptanoic acid									52		44	30
perfluorooctanoic acid(PFOA)									130		110	86
perfluorononanoic acid(PFNA)									11		11	9.8
perfluorodecanoic acid (PFDA)									15		19	18
perfluoroundecanoic acid(PFUnA)									ND	ND		nd
perfluorododecanoic acid(PFDoA)									ND		0.95 J	nd
perfluorotridecanoic acid(PFTriA)									ND	ND		nd
perfluorotetradecanoic acid(PFTeA)									ND	ND		nd
perfluorobutanesulfonic acid(PFBS)									23		36	15
perfluorohexanesulfonic acid(PFHxS)									36	В	46 B	14
perfluoroheptanesulfonic acid(PFHpS)									ND		2.8	1.2 J
perfluorooctanesulfonic acid(PFOS)									51		110	57
perfluorodecanesulfonic acid(PFDS)									ND	ND		nd
perfluorooctanesulfonamide(FOSA)									ND		0.38 JB	nd
N-methylperfluorooctanesulfonamidoacetic acit(NMe	FOSAA)								ND	ND		nd
N-ethylperfluorooctanesulfonamidoacetic acit(NEtFOS	SAA)								ND	ND		nd
6:2FTS									6.3	J	11 J	nd
8:2FTS									ND	ND		0.73 J
total PFAS									634.3	67	9.13	374.73

SA PARAMETERS	03 MCL	Jun_21	Dec_21	Jul_22
TKN	na	1.5	8	<.5
TDS	na	3670	10400	6120
PhenoIs	na	<.005	<.005	0.041
Chloride	na	3120	5870	3730
Sulfide	12	9.6	<2	<2
Iron	na	0.962	0.768 J	6.57
Manganese	8 mg/l	2.4	3.35	7.58
Phenol	1.5 mg/l			
Xylene	2.5 mg/l *	<.003	<.003	<.003
1,2,4 Trimethylbenzene	na			
SULFATE	na	328	329	407
Arsenic	.4 mg/l	<.01	<.1	<.01
Acetone	na ppm	<.005	<.005	0.0019 J
рН	5 - 12.5	8.12	8.2	8.26
Aluminum	na	<.2	<2	<.2
Barium	8 mg/l	0.148	0.296 J	1.02
Lead		<.005	<.05	<.005
Zinc		<.02	<.2	<.02
Toluene	2.5 mg/l *	<.001	<.001	<.001
Cadmium	.8 mg/l	<.0025	<.025	<.0025
Vanadium		<.05	<.5	0.0052 J
Tin				
Antimony		<.06	<.6	<.06
Copper	1.6 mg/l	<.025	<.25	<.025
Selenium	.4 mg/l	<.01	<.1	<.01
Silver	.4 mg/l	<.01	<.1	0.0027 J
Berylium		<.005	<.05	<.005
Chromium	8 mg/l	<.01	<.1	0.0021 J
Nickel	8 mg/l	0.0144	<.4	0.022 J
Thallium		<.01	<.1	<.01
Carbon disulfide		<.001	<.001	<.001
Methylene Chloride	2.5 mg/l		<.001	<.001
Alkalinity		240	188	174
Ammonia		0.12	3.5	0.092 J
Hardness		4000	4000	3200
1,4 dioxane	ug/l	0.93	0.75	1.1

SA PARAMETERS	03 MCL	Jun	_21	Dec_	_21	Jul_22
Chloride						
Sulfate						
Alkalinity						
Na		599			1530	1190
K		258			536	396
Са		654			1930	1540
Mg			52.82		79.4	65.3
Hq			8.12		8.2	8.26
perfluorobutanoic acid (PFBA)			46		72	
perfluoropentanoic acid (PFPeA)			48		66	
perfluorohexanoic acid(PFHxA)			63		86	
perfluoroheptanoic acid			32		33	
perfluorooctanoic acid(PFOA)			85		100	
perfluorononanoic acid(PFNA)			8.3		7.5	
perfluorodecanoic acid (PFDA)			15		12	
perfluoroundecanoic acid(PFUnA)		ND		ND		
perfluorododecanoic acid(PFDoA)		ND		ND		
perfluorotridecanoic acid(PFTriA)		ND		ND		
perfluorotetradecanoic acid(PFTeA)		ND		ND		
perfluorobutanesulfonic acid(PFBS)			15		29	
perfluorohexanesulfonic acid(PFHxS)			13		22	
perfluoroheptanesulfonic acid(PFHpS)		ND			1.1 JC	CL
perfluorooctanesulfonic acid(PFOS)			43		42	
perfluorodecanesulfonic acid(PFDS)		ND		ND		
perfluorooctanesulfonamide(FOSA)		ND		ND		
N-methylperfluorooctanesulfonamidoacetic acit(NMe	FOSAA)	ND		ND		
N-ethylperfluorooctanesulfonamidoacetic acit(NEtFO	SAA)		1.4	JND		
6:2FTS		ND		ND		
8:2FTS		ND			0.46 J	
total PFAS		3	69.7	47	1.06	

TOBSWMF's Leachate Monitoring Program

New Northern U Ashfill

July 2022

Pursuant to NYSDEC 6NYCRR Part 363 (formerly part 360) requirements for the operation of the Town of Babylon's New Northern U Ashfill (NNU), leachate from the NNU Primary and Secondary Leachate Collection and Recovery System (PLCRS and SLCRS) were sampled in accordance with the procedures detailed in the TOBSWMF's Updated SAP (TOBDEC, 2018). These facilities are sampled semi-annually for baseline parameters as part of Babylon's Leachate Monitoring Program (LMP). Pursuant to NYSDEC requirement to sample for "emerging contaminants", Babylon expanded sampling to include 1,4 dioxane and PFAS/PFOA's for this facility beginning in December 2019. Due to a sampling error, PFAS was not sampled in July. A sample for PFAS will be obtained from the NNU facilities with the GMP monitoring scheduled for September 2022. This document includes the laboratory report from Pace Analytical Services, Inc., a spreadsheet summarizing parameters of concern at the facility, a Piper diagram of leachate from each liner system, and a discussion of the results.

The NNU which began accepting ash in 2003 sits atop the ONU, separated by a double liner system, with each layer consisting of a bentonite blanket, liner and geocomposite. The NNU SLCRS is also separated from the ONU by the ONU cap. Both systems serve as near impermeable barriers. The elevation of the NNU system (approximately 25-30 feet above the water table) prevents groundwater infiltration from being considered a source of leachate to the system.

The attached spreadsheet provides a historical overview of leachate composition at the NNU, highlighting any exceedance of an MCL from the facility's PLCRS and SLCRS. The following discussion summarizes any noteworthy findings from the July 2022 sampling and provides follow-up analysis or discussion wherever necessary or recommended in previous reports.

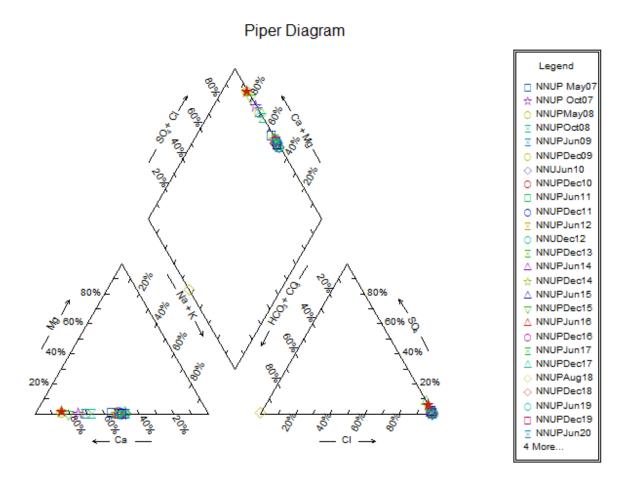
- For the July 2022 LMP pH was 7.5 at the NNU SLCRS and 7.58 at the NNU PLCRS.
- The overall leachate characteristics of the NNU PLCRS and SLCRS largely conform to the historical dataset for this facility.
- Arsenic and lead were not detected above their mdl at the NNUS. At the NNUP lead
 (.071 mg/l) was detected in July 2022. Arsenic (<.01) was below its mdl. Low values of
 arsenic and lead have been intermittently observed in the NNU leachate systems.
- Mercury (.0029 mg/l) was observed at the NNU PLCRS and below its RL at the NNU SLCRS for July 2022.

 Organics from the baseline parameters list observed above their reporting limit at the NNU for July 2022 included:

Carbon disulfide was observed at .0015 mg/l at the NNUS.

Acetone was observed below its RL at the NNU PLCRS (.0028 mg/l) and .402 mg/l at the NNU SLCRS. Low concentrations of acetone have been observed at this facility since June 2010.

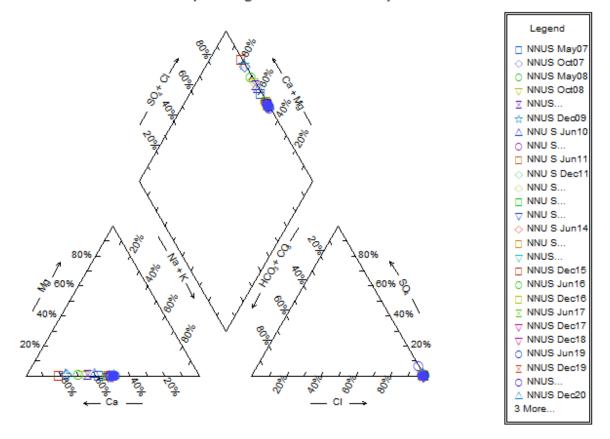
MEK was detected at .0405 mg/l at NNU-SLCRS during July 2022 sampling. Trace values of MEK have been intermittently observed at this facility.


TTO as defined on the Town of Babylon discharge certificate issued by Suffolk County Department of Public Works is <.01 mg/l at the NNU facility.

Total baseline organics for the NNU PLCRS was ND and .444 mg/l at the NNU SLCRS.

- 1,4 dioxane was observed at .78 ug/l at the NNU PLCRS and 3.3 ug/l at the NNU SLCRS.
- Barium was observed below its MCL at the NNU PLCRS (.521 mg/l) and NNU SLCRS (2.18 mg/l) for July 2022. Barium has been observed exceeding its MCL at the NNU PLCRS 5 times over 38 sampling events through the life of the facility. Barium has exceeded its MCL at the NNU SLCRS 3 times over 38 sampling events through the life of the facility. The last exceedance for barium at each of the facilities was December 2012.
- Other metals observed above their reporting limit and below their MCL at the NNU PLCRS for July 2022 include aluminum (.53 mg/l), antimony (.087 mg/l), boron (7.15 mg/l), calcium (6410 mg/l), copper (.055 mg/l), iron (.661 mg/l), magnesium (42.8 mg/l), manganese (1.49 mg/l), nickel (.044 mg/l), potassium (2270 mg/l), sodium (<5 mg/l) and zinc (.58 mg/l). The value for sodium reported is well below its historical range and is viewed as suspicious.
- Other metals observed above their mdl and below their MCL at the NNU SLCRS for July 2022 include boron (5.85 mg/l), calcium (15800 mg/l), chromium (.091 mg/l), iron (3.69 mg/l), magnesium (56.45 mg/l), manganese (.2 mg/l), potassium (5920 mg/l) and sodium (14800 mg/l).
- Sulfide was observed below its MCL at the NNUP (3.2 mg/l) and exceeded its MCL at the NNUS (101 mg/l) for the July 2022 LMP. Sulfide has exceeded its MCL at the NNUP for 8 of 13 sampling rounds since June 2016. At the NNUS sulfide has exceeded its MCL since December 2017 (except for December 2020).
- BOD was below its RL at the NNUP and below its MCL (300 mg/l) at the NNUS (110 mg/l). BOD has intermittently exceeded its MCL at these facilities.

- A Piper diagram was prepared with the July 2022 data added to the historical dataset. The geochemical fingerprint for the NNU facilities matches its historical pattern. Slight movement to the lower right triangle of the diagram was noted with the July 2022 data at the NNUP facility. The likely cause was sulfate observed above its normal range and MCL. This previously occurred (elevated sulfate) in December 2020 with a similar result on the Piper diagram. The same observance (elevated sulfate) was made at the NNUS for June 2021 with a similar result on the Piper diagram. The lower left of the diagram also included a slight shift to the left. This was likely due to sodium which was reported well below the average values. This was previously observed in December 2009 and December 2015 with similar affect to the Piper diagram.
- PFAS/PFOA's is scheduled to be sampled during September 2022.


The next round of sampling is scheduled for December 2022.

Note: solid star represents July 2022 data.

TOBSWMF's June 2022 LMP

Piper Diagram-NNU Secondary

Note: solid circle represents July 2022 data.

NNUP PARAMETERS	95 MCL	03 MCL	Aug_03	Mar_04	Sept_04	Mar_05	Sept_05	Apr_06	Oct_06	May_07	Oct_07	May_08	Oct_08	June_09	Dec_09	Jun_10	DEC_10	Jun_2011	DEC_11	June_12
CHLORIDE	500mg/l	na	24800	6400	36100	31600	32100	18800	32600	17500	33000	30000	25300	34500	27800	51000	45000	46000	42000	55000
SULFATE	500mg/l	na		357	92.3	11.3	1.51	344	12.4	323	32.2	85.5	147	104	600	70	<	85	50	280
Alkalinity	-									211	130	169	128	143	157	360	230	280	220	240
Na										3080	38.6	925	1800	1160	33.9	10000	9000	9200	8700	12000
К										2410	5310	3930	3410	2960	434	6600	6000	6000	5800	7400
Са										4930	8190	6640	6660	6150	1380	12000	11000	11000	11000	14000
Mg										14.3	0.509	0.407	0.86	1.03	3.6	3.9	6.1	8.4	68	8.6
рН	6.5-8.5	5 - 12.5	5.34	7.89	8.96	9.07	8.87	8.91	8.78	7.12	8.37	9.01	9.2	8.29	6.95	6.6	6.57	6.6	6.7	6
hardness																				
TDS	1000 mg/l	na	30700	11000	54000	46000	58000	11600	53700	30900	57000	52400	42700	50500	43300	81000	69000	88000	68000	94000
PHENOL	0.002mg/l	1.5 mg/l	0.01																	
PHENOLS	3	ŭ		1.52		0.02	0.02		0.09	0.26		0.0888	0.0128		0.0935	0.19	0.066	0.16	0.16	0.1
IRON	0.6mg/l	na	3.64	0.09	0.08	1.81	0.1	0.13	0.04	1.41	0.02	0.0289	0.0642	0.217	5.27	0.58	2.2	0.54	0.9	9.3
MANGANESE	0.6mg/l	8 mg/l	19.7	0.06	0.82	0.69	0.26	0.11	0.09	0.72	0.14	0.0554	0.0848	0.168	0.528	2.1	1.1	0.88	0.94	4.6
TKN	10 mg/l	na	18.2		36.4	70.2	88.4	11.4	42.2	14.2	42.9	83.8	77.8	66.2	52.4	78	87	78	130	98
ALUMINUM	2mg/l	na		0.48	0.69	0.45	0.83	0.94	0.93	0.28	0.98	1.28	0.54	0.478	2.94	0.31	0.52	0.49	<	1.8
ACETONE	50 mg/l	50 mg/l	38.9													0.15	0.12	0.16	0.22	0.34
Methyl Ethyl Ketone	5000 ppm	na														<	0.018	<	<	0.15
Arsenic	50 ppb	400 ppb					20.9J									65	<	<	<	<
Lead	50 ppb	400 ppb		106	15.6	333	8.97J		0.06	.01J					193	<	<	<	<	<
Barium	32 PP3	8 mg/l	3.52		9.82	11.5	18	3.1	7.11	2.7	6.6	4.96	5.34	4.1	2.73	0.64	7	4.5	37	5.7
Cadmium		.8mg/l			.013J	0.01		73.1		.01J					0.0586	<	<	<	<	<
Copper		1.6	5	0.16		0.05			.01J	0.1		0.00314J	0.0128	.0122J	0.652	0.19	<	<	<	0.1
Selenium		.4mg/l	0.05			0.05										<	<	<	<	<
Zinc		5 mg/l	0.01	0.12		0.32	0.0097		0.19	0.19	0.04	0.0228	0.0341	0.0505	1.54	0.18	<	0.22	0.34	0.39
Carbon disulfide		mg/l				0.0076										0.007	<	0.016	0.024	0.003
BOD		300 mg/l				136			220	28.6	129	175	67	630	240	280		250	230	310
Antimony			0.01												0.0802	0.03	<	<	<	<
Beryillium																<	<	<	<	<
Chromium		8 mg/l	0.01				0.0063							.0144J	0.0344	<	<	<	<	0.38
Nickel		8 mg/l	0.01								.01J	.01J	0.0094		0.0247	<	<	<	<	0.27
Thallium			0.1									0.308	0.0492	0.0358		<	<	<	<	<
Vanadium					.008J		.00575J									<	<	<	<	<
methylene chloride		2.5 mg/l							.02B	2.6B		.011B	11B	7B		<	<	<	<	<
Toluene		-									.64J					<	<	<	<	<
Mercury															0.0005	<	<	<	<	<
4-Methyl-2-pentanone																				
lodomethane																				
		"																		

perfluorobutanoic acid (PFBA)
perfluoropentanoic acid (PFPeA)
perfluorohexanoic acid(PFHxA)
perfluoroheptanoic acid
perfluorooctanoic acid(PFOA)
perfluorononanoic acid(PFNA)

12 mg/l ug/l

ng/l

sulfide mg/l

1,4 Dioxane

95 MCL

03 MCL Aug_03 Mar_04 Sept_04 Mar_05 Sept_05 Apr_06 Oct_06 May_07 Oct_07 May_08 Oct_08 June_09 Dec_09 Jun_10 DEC_10 Jun_2011 DEC_11 June_12

perfluorodecanoic acid (PFDA) perfluorododecanoic acid(PFDoA)

perfluorobutanesulfonic acid(PFBS)

perfluorohexanesulfonic acid(PFHxS)

perfluorooctanesulfonic acid(PFOS)

perfluorodecanesulfonic acid(PFDS)

N-methylperfluorooctanesulfonamidoacetic acit(NMeFOSAA)

 $N-ethyl perfluoro octane sulfonamido acetic \ a cit (NEtFOSAA) \\$

perfluoroundecanoic acid(PFUnA)

perfluorotridecanoic acid(PFTriA)

perfluorotetradecanoic acid(PFTeA)

perfluoroheptanesulfonic acid(PFHpS)

perfluoro octane sulfonamide (FOSA)

6:2FTS

8:2FTS

Total PFAS

NNUP PARAMETERS	Dec_12	June_13	Dec_13	Jun_14		DEC_14	June_15	Dec_15	Jun_16	Dec_16	June_17	Dec_17	Aug_18	Dec_18	June_19	Dec_19
CHLORIDE	57800	56300	65100 D	55500	D	35300 D	59100	63300	49100	54500	43600	214000	<2	44400 D	44200	39100
SULFATE	<5	4730	6.82	<5		256 D	<5 U	<5	<5	<5	11.4	18.3	0.68 J	15.5	15.6	413
Alkalinity	270	255	269 D	276	D	73.5	258 D	333	285	272	245	181	296	154	327	139
Na	17200	10900	13400	15600	D	8740 D	14400	647	14400	13600	13700	13400	13200	13400 D	12600 D	7250
K	8710	5220	6180	7450	D	4340 D	6730	6910	5800	5820	5510	5190	4970	5320 D	4900 D	2980
Ca	19800	13400	16400	19100	D	11000 D	16600	17000	16600	15700	14300	15200	15100	12900 D	12400 D	8200
Mg	<5	20.5	7.24	13.4		12.2	6.62	4.75	6.58	<10	3.98	2.03	<10	4.08	3.49	4.11
pH	6.15		6.45	3.69		6.83	6.23	5.83	6.31	6.38	6.09	7.17	6.78	6.85	7.77	8.49
hardness																
TDS	111000	178000	148 D	114000		74600	175000	153000	139000	88500	125000	114000	86700	80900	79800	44900
PHENOL																
PHENOLS	0.089	0.051	0.239 D	0.12		0.096 D	0.0664 D	0.284 D	0.352	D 0.339	0.0401	0.16	0.288	0.119	0.099	0.0543
IRON	0.368	0.77	0.143	0.176		0.36	0.105	0.942	0.296	<5	0.106	.0131 J	0.585 J	0.184	0.452	0.19
MANGANESE	1.01	1.34	0.887	1.08		0.674	0.734	0.617	0.46	0.896	0.332	0.289	0.715	0.0761	0.136	0.203
TKN	72.8	126	138 D	114	D	76.3 D	135 D	159 D			126	111	110	89.4 D		47.9
ALUMINUM	0.12 B	0.95	0.0998 B	<.2		U	0.137 B	0.233	0.109	J <10	<.0134	0.237	<10	0.323	0.507	0.0731 J
ACETONE	0.34	0.47 E		0.21	Ε	0.28 E	0.29 D	0.48 D				.184 D	0.555	0.116	0.11	0.0806
Methyl Ethyl Ketone	0.036	0.062	0.048 Z	0.03		0.031	0.041	0.047	0.034	0.0495	0.0193	0.0205	0.0442	0.0067	0.0062 J	0.0036 J
Arsenic	5.7 B	<	3.7 B	58.3		U	U	9 B	8.6	J <500	<6.8	<500 D	<500	<10	<200	<10
Lead	28.7	215	7.5	8.2		U	U	32	12.4		<25.4	286	<250	21.8	71.6	<5
Barium	11.7	3.85 B		3.2		3.01	3.73	3.86	3.39	<10	3.14	2.57	2.84 J		2.74	1.75
Cadmium	<	0.02 B		<		U	U		<			<.0025	0.0176 J		<.05 D	
Copper	<	<	0.0061 B	<		0.035	U	<	0.004	J <1.25	<.0025	2.97	<1.25	0.0298	0.0081 J	
Selenium	0.0154	<	<	0.0058		U	0.0029 B	0.0036 B					<.5	0.149 D		
Zinc	0.065	0.15 B	0.0151 B	0.0223		0.236	0.0156 B	0.0557	0.01		<.0012	9.8	0.547 J			
Carbon disulfide		<	<	<		U	U		<		<.0005	0.0021	0.0017	0.0032	<.001	<.001
BOD	<	281	405	328		79	402	623	412	239	157	356	363	310 D	861 D	179
Antimony	0.0089 B	<	<	<		U	0.0134 B	0.006 B	0.0136	J <3	<.003	<.06	<3	<.06	<.06	0.0175 J
Beryillium	<	<	<	<		U	U	<	0.003	J <.25	<.00057	0.006	<.25	<.025	0.0023 JE	> <.005
Chromium	0.005 B	0.14 B	0.0042 B	0.012		0.0218	0.0092 B	0.0984	0.0593	<.5	0.0102	0.0215	<.5	0.0285	0.0698	0.0132
Nickel	<	<	<	<		U	0.0025 B	0.0168	0.0029	J <2	<.00088	<.04	<2	0.0018 J	<.04	<.04
Thallium	0.0072 B	<	<	<		U	0.004 B	<	<	<.5	<.0036	<.01	<.5	0.0094 J	0.0235	<.01
Vanadium	0.0037 B	<	0.0022 B	<		U	0.003 B	0.0074 B	<	<2.5	<.0008	<.05	<2.5	<.05	<.05	<.05
methylene chloride	<	<	<	<		U	U	<	<	<.005	<.0005	<.001	<.001	<.001	<.001	<.001
Toluene	<	<	<	<		U	U	<	<	<.005	<.0005	<.001	<.001	<.001	<.001	<.001
Mercury	<	0.00017 B	<	<		U	U	<	<	<.0002	<.000023	<.0002	<.0002	<.0002	0.00013 J	0.00022
4-Methyl-2-pentanone	0.005	0.008	0.009	<		U	0.006	0.01	0.006	0.013	<.0005	.0046 J	0.0081	0.0014 J	0.0025 J	<.005
Iodomethane																
sulfide mg/l									35.4	<2	3	88	147	8	72	25.6
1,4 Dioxane													1 H		4.8	3.8
perfluorobutanoic acid (PFBA)																250 B
perfluoropentanoic acid (PFPeA)																130
perfluorohexanoic acid(PFHxA)																230
perfluoroheptanoic acid																42
perfluorooctanoic acid(PFOA)																62
perfluorononanoic acid(PFNA)																3 J

NNUP PARAMETERS	Dec_12	June_13	Dec_13	Jun_14	DEC_14	June_15	Dec_15	Jun_16	Dec_16	June_17	Dec_17	Aug_18	Dec_18	June_19	Dec_1	L9
perfluorodecanoic acid (PFDA)															ND	
perfluoroundecanoic acid(PFUnA)															ND	
perfluorododecanoic acid(PFDoA)															ND	
perfluorotridecanoic acid(PFTriA)															ND	
perfluorotetradecanoic acid(PFTeA)															ND	
perfluorobutanesulfonic acid(PFBS)																210
perfluorohexanesulfonic acid(PFHxS)																11 B
perfluoroheptanesulfonic acid(PFHpS)															ND	
perfluorooctanesulfonic acid(PFOS)																9.8
perfluorodecanesulfonic acid(PFDS)															ND	
perfluorooctanesulfonamide(FOSA)															ND	
N-methylperfluorooctanesulfonamidoacetic aci	it														ND	
N-ethylperfluorooctanesulfonamidoacetic acit(r														ND	
6:2FTS															ND	
8:2FTS															ND	

Total PFAS

NNUP PARAMETERS	Jun_20	Dec_20	Jun_21	Dec_21	Jul_22
CHLORIDE	60800	24500	29100	68800	17200
SULFATE	24.7	2670	784	25.5	1390
Alkalinity	172	80.3	139	281	70
Na	10100	6420	6870	12700	<5
K	4040	2780	3070	4680	2270
Са	11300	6400	7340	13900	6410
Mg	2	16	3.75	5.29	42.8
рН	6.96	8.56	7.92	7.78	7.58
hardness		16200	21200	29600	12200
TDS	70300	39900	40400	30800	29400
PHENOL					
PHENOLS	0.118	0.0302	0.0348	0.222	
IRON	0.368	0.247	0.324		J 0.071
MANGANESE	0.335	0.53	0.197	0.476	1.49
TKN	107	61.1	75.8	103	24.8
ALUMINUM	<1	0.236	0.21		0.53
ACETONE	0.375	0.173	0.172	0.293	0.0029 J
Methyl Ethyl Ketone	0.0412	0.0064	0.0187	0.0412	
Arsenic	<.05	<.01	<.01	<.1	<.01
Lead	0.368	0.0047			0.071
Barium	2.24	1.59	1.44	2.94	0.521
Cadmium	<.0125	0.0194	<.0025	<.025	0.0088
Copper	0.103	0.211	<.025	0.088	
Selenium	<.052	<.01	<.01	<.1	<1
Zinc	0.12	0.096	<.02	<.2	0.58
Zinc Carbon disulfide	0.12 <.001	0.096 <.001	<.02 <.001	<.2 0.0011	0.58 <.001
Zinc Carbon disulfide BOD	0.12 <.001 184	0.096 <.001 89.7	<.02 <.001 124	<.2 0.0011 390	0.58 <.001 <100
Zinc Carbon disulfide BOD Antimony	0.12 <.001 184 <.3	0.096 <.001 89.7 0.026	<.02 <.001 124 J <.06	<.2 0.0011 390 <.6	0.58 <.001 <100 0.087
Zinc Carbon disulfide BOD Antimony Beryillium	0.12 <.001 184 <.3 0.00085	0.096 <.001 89.7 0.026 .	<.02 <.001 124 J <.06 <.005	<.2 0.0011 390 <.6 <.05	0.58 <.001 <100 0.087 <.005
Zinc Carbon disulfide BOD Antimony Beryillium Chromium	0.12 <.001 184 <.3 0.00085 0.237	0.096 <.001 89.7 0.026 <.005 0.0301	<.02 <.001 124 J <.06 <.005 <.01	<.2 0.0011 390 <.6 <.05 0.099	0.58 <.001 <100 0.087 <.005 J 0.0031 J
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel	0.12 <.001 184 <.3 0.00085 0.237 0.111	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401	<.02 <.001 124 J <.06 <.005 <.01 <.0155	<.2 0.0011 390 <.6 <.05 0.099	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium	0.12 <.001 184 <.3 0.00085 0.237 0.111 0.0528	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01	<.02 <.001 124 V <.06 <.005 <.01 <.0155 <.01	<.2 0.0011 390 <.6 <.05 0.099 J <.4 <.1	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05	<.02 <.001 124 J <.06 <.005 <.01 <.0155 <.01 0.0085	<.2 0.0011 390 <.6 <.05 0.099 J <.4 <.1 J <.5	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001	<.02 <.001 124 J <.06 <.005 <.01 <.0155 <.01 0.0085 <.001	<.2 0.0011 390 <.6 <.05 0.099 J <.4 <.1 J <.5 <.001	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001	<.02 <.001	<.2 0.0011 390 <.6 <.05 0.099 J <.4 <.1 J <.5 <.001 <.001	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001 <.001	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001 <.0002 <.0005	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001 <.0002 <.0002 <.004	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001 <.0002 <.005 <.004 <2	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004 3.2
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l 1,4 Dioxane	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001 <.0002 <.005 <.004 <2 2.3	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l 1,4 Dioxane perfluorobutanoic acid (PFBA)	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.0002 <.004 <2 2.3 150	<.02 <.001 124 <.06 <.005 <.01 <.0155 <.01 0.0085 <.001 <.0002 <.0005 <.004 41.6 1.9 200	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004 3.2
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l 1,4 Dioxane perfluorobutanoic acid (PFBA)	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.001 <.004 <.0002 <.005 <.004 <2 2.3 150 120	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004 3.2
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l 1,4 Dioxane perfluorobutanoic acid (PFBA) perfluorohexanoic acid (PFPEA)	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.0002 <.004 <2 2.3 150	<.02 <.001 124 <.06 <.005 <.01 <.0155 <.01 0.0085 <.001 <.0002 <.0005 <.004 41.6 1.9 200	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004 3.2
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l 1,4 Dioxane perfluorobutanoic acid (PFBA) perfluorohexanoic acid (PFPeA) perfluorohexanoic acid(PFHxA) perfluoroheptanoic acid	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.0002 <.005 <.004 <2 2.3 150 120 170	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004 3.2
Zinc Carbon disulfide BOD Antimony Beryillium Chromium Nickel Thallium Vanadium methylene chloride Toluene Mercury 4-Methyl-2-pentanone lodomethane sulfide mg/l 1,4 Dioxane perfluorobutanoic acid (PFBA) perfluorohexanoic acid (PFPEA)	0.12 <.001	0.096 <.001 89.7 0.026 <.005 0.0301 0.0401 <.01 <.05 <.001 <.0002 <.005 <.004 <2 2.3 150 120 170 39	<.02 <.001	<.2	0.58 <.001 <100 0.087 <.005 J 0.0031 J 0.045 <.01 <.05 <.001 <.001 0.00029 <.005 <.004 3.2

NNUP PARAMETERS	Jun_	20	Dec_	20	Jun_	_21	Dec	_21	Jul
perfluorodecanoic acid (PFDA)		0.66 J	1.8 J			0.57 J		0.42	J
perfluoroundecanoic acid(PFUnA)	ND		nd		ND		ND		
perfluorododecanoic acid(PFDoA)	ND		nd		ND		ND		
perfluorotridecanoic acid(PFTriA)	ND		nd		ND		ND		
perfluorotetradecanoic acid(PFTeA)	Nd		nd		ND		ND		
perfluorobutanesulfonic acid(PFBS)		230		190		170		200	
perfluorohexanesulfonic acid(PFHxS)		14 B		9.9		10		13	
perfluoroheptanesulfonic acid(PFHpS)		0.29 J	.19 J		ND		ND		
perfluorooctanesulfonic acid(PFOS)		12		12		3.9		8	
perfluorodecanesulfonic acid(PFDS)	ND		nd		ND		ND		
perfluorooctanesulfonamide(FOSA)		0.7 JB	nd			0.98 J	ND		
N-methylperfluorooctanesulfonamidoacetic ac	it ND		nd		ND		ND		
N-ethylperfluorooctanesulfonamidoacetic acit	(rND		nd		ND		ND		
6:2FTS		4.3 J		6		3 J		5.2	
8:2FTS	ND		.59 J		ND		ND		
Total PFAS	9	928.45		755.4	•	744.35		819.72	

NNUSPARAMETERS	95 MCL	03 MCL	Aug '03	Mar '04	Sept '04	Mar '05	Sept '05	April '06	oct '06	May '07	Oct'07	May_08	Oct_08	June_09	Dec_09	Jun_10	DEC_10	Jun_2011	DEC_11	Jun_12
CHLORIDE	500mg/l	na	11400.0	15800.0	5700.0	16500.0	12000.0	14900.0	16400.0	16700.0	22000.0	23600	13600	11300	31300	39000	51000	37000	52000	54000
SULFATE	500mg/l	na		396.00	657.00	751.00	1070.00	1140.00	440.00	110.00	128.00	144	357	60.9	0	100	5	7	<5	5
Alkalinity										144.00	227.00	204	140	145	157	140	180	180	130	180
Na										3710.00	42.30	933	1220	897	970	5200	12000	8700	8800	11000
K										3430.00	3200.00	3450	1680	1490	2540	5200	7900	5600	5800	7100
Ca										6890.00	5410.00	5890	3780	2760	7350	11000	14000	11000	11000	13000
Mg										0.83	13.10	6.43	28.9	7.28	13.9	31	13	9.8	8.8	11
рН	6.5-8.5	5 - 12.5	5.52	7.33	7.17	6.76	7.36	7.96	6.99	9.93	9.58	9.2	9.11	6.77	7.28	6.6	6.4	6.8	6.7	6.3
TDS	1000 mg/l	na	24200.0	6200.0	16000.0	27000.0	18000.0	8810.0	31400.0	29700.0	36500.0	40000	30900	21500	51500	70000	82000	85000	70000	91000
PHENOL	0.002mg/l	1.5 mg/l																		
PHENOLS				1.9		0.0			0.0	0.3		0.051	0.0173	0.0142		0.01	0.2	0.11	0.14	0.31
IRON	0.6mg/l	na	2.09	0.01	2.98	1.48	4.87	0.58	4.79		0.49	5.26	2.78	2.09	0.827	2.4	12	0.71	0.7	1.3
MANGANESE	0.6mg/l	8 mg/l	7.87	4.95	2.74	2.02	1.10	2.89	1.32	0.22	1.02	0.596	1.71	1.44	2.27	3.6	<	0.95	0.98	1.5
TKN	10 mg/l	na		4.64	13.40	6.65	7.06	4.20	5.20	32.20	22.00	20.8	16.2	35.4	78.8	64	96	78	140	110
ALUMINUM	2mg/l	na	1.53	0.05	0.13	0.35	7.71	0.59	9.41	0.65	0.05	0.908	0.0352	0.243		0.2	0.5	0.63	<.1	<
ACETONE	5 ppb	50 mg/l														0.037	0.14	0.19	0.2	0.35
Methyl Ethyl Ketone	5 ppb	ppm														<	0.02	<	0.033	0.05
Arsenic	50 ppb	400 ppb		17.00	J				0.04							100	<	<	<	<
Lead	50 ppb	400 ppb				22.00	21.50		110.00	20.00	10.00 J	27.8	10.3	25	3.8	<	<	<	<	<
Barium		8 mg/l	2.36	1.26	0.96	2.15	1.33	0.58	2.02	6.13	5.45	3.84	1.94	3.53	7.62	9.6	10	5.3	5.4	6.2
Cadmium		.8mg/l	0.01	0.02		0.01	0.01	J 0.01	0.09			0.0107				<	<	<	<	<
Copper		1.6mg/l	0.01	0.02	J	0.03	0.04	0.02	0.33		0.00 J	0.12	0.115	0.176	0.0087	0.06	<	<	<	<
Zinc		5 mg/l	0.40	0.26		0.19	0.25	0.12	1.09	0.02	0.04	1.09	0.142	0.11	0.0323	0.37	0.12	0.1	0.33	0.21
Antimony			0.01	0.02	J											0.2	<	<	<	<
Beryillium			0.00													<	<	<	<	<
Chromium		8 mg/l	0.01				0.04		0.06			0.184	0.00866 J	0.0279		<	<	<	<	<
Nickel		8 mg/l	0.02	0.02			0.07		0.03			0.244	0.0146 J	0.0204	0.00646	<	<	<	<	<
Selenium		.4mg/l	0.04						0.03							<	<	<	<	<
Thallium			0.09									0.0277	0.0303	0.0189	0.0258	<	<	<	<	<
Vanadium			0.00	0.01												<	<	<	<	<
Silver		.4mg/l		0.02	J										.00838J	<	<	<	<	<
methylene chloride		2.5 mg/l							0.02 E	3.70 B		0.026 B		11 [3 10B	<	<	<	<	<
ammonia												34.8	7.33	31	77	61	93	64	72	98
hardness												762	9550	6930	18400	27000	36000	26000	27000	33000
carbon disulfide																		0.012	0.007	<
4methyl2pentano	ppb																			

perfluorobutanoic acid (PFBA) perfluoropentanoic acid (PFPeA) perfluorohexanoic acid(PFHxA)

2 hexanone lodomethane sulfide

1,4 dioxane

BOD

perfluoroheptanoic acid perfluorooctanoic acid(PFOA) ng/l

12 mg/l

300 mg/l ug/l

NNUSPARAMETERS 95 MCL 03 MCL Aug '03 Mar '04 perfluorononanoic acid(PFNA) perfluorodecanoic acid (PFDA) perfluoroundecanoic acid(PFUnA) perfluorododecanoic acid(PFDoA) perfluorotridecanoic acid(PFTriA) perfluorotetradecanoic acid(PFTeA) perfluorobutanesulfonic acid(PFBS) perfluorohexanesulfonic acid(PFHxS) perfluoroheptanesulfonic acid(PFHpS) perfluorooctanesulfonic acid(PFOS) perfluorodecanesulfonic acid(PFDS) perfluorooctanesulfonamide(FOSA) $N-methyl perfluoro octane sulfonamido acetic\ acit (NMeFOSAA)$ N-ethylperfluorooctanesulfonamidoacetic acit(NEtFOSAA)

June_09 Dec_09

Oct'07

May_08

Oct_08

May '07

Sept '04 Mar '05 Sept '05 April '06 oct '06

Jun_10 DEC_10 Jun_2011 DEC_11 Jun_12

total PFAS

6:2FTS 8:2FTS

NNUSPARAMETERS	95 MCL	Dec_12	June_13	13-	Dec	Jun_14	DEC	_14	June_15		Dec_15		Jun_16	Г	Dec_16	June_17	Dec_17	Aug_18	Dec_18	June _19	Dec_19
CHLORIDE	500mg/l	48000	51600		700 D	52600		500 D	96800	D	58100		47900		63300	44500.0		<2	47700 D	_	51900
SULFATE	500mg/l	<5	4820		:5	<5		91 D	<5	U	<5		337		<5		<5	0.32 J			<50
Alkalinity	g,·	153	123		40 D		D 89		126		217		211		392	241	240	331	227	217	215
Na		13400	12100		500	13800	D 97		13900		597		14800		16000		12800 D	13100	13800 D		9050
K		7160	5680		.80	6820		30 D	6220		6310		5970		6620	4540.00 5		4990	5500 D		3880
Ca		16100	14200		400	16700		100 D	16600		15900		17900		17600	12200.00		14900	14600 D		10400
Mg		6.35	12.7		05	13		3.1	7.78		4.58		5.64	-	<10	7.67	3.46	4.02 J		3.63	2.92
рH	6.5-8.5	6.26			06	3.96		76	6.31		5.82		6.35		6.37	5.74	7.42	6.63	6.65	6.94	7.74
TDS	1000 mg/l	106000	159000	D 138		110000		400	151000		141000		139000		94300	87000.00	112000	89400	78100	69700	60700
PHENOL	0.002mg/l	100000	203000	2 200		110000	,,,	.00	101000		111000		105000	•	3 1300	0,000.00	112000	03.00	70100	037.00	00700
PHENOLS	0.002mg/1	<.025	0.105	0.	27 D	0.109	0.0	918 D	0.041		0.13	D	0.206	D (0.334	0.06 .	15 D	0.416	0.247	0.16	0.209
IRON	0.6mg/l	0.715	0.26	B 0.1		0.934		45	0.121		2.78	_	0.246		<5	0.12 <		<1	0.0524	0.204	0.0975
MANGANESE	0.6mg/l	1.49	1.41	В 0.8		0.941	0.7		0.981		1.12		0.814		0.72	0.58	0.534	0.637	0.432	0.425	0.414
TKN	10 mg/l	126	124		30 D	107		7.5 D	100	D	140		101		110	126.00	127	122	103 D		75.1
ALUMINUM	2mg/l	0.0426 B	<		219 B	<	0.2		100	U	0.449		<		<10	<.0134	<.2	<10	0.0375 J		<.4
ACETONE	5 ppb	0.43	0.46		61 EZ			33 E	0.31	D	0.43	D	0.34	D	0.494	0.59	.306 D	0.608	0.318 D		0.331
Methyl Ethyl Ketone	5 ppb	0.051	0.069	0.0		0.028	D 0.0		0.037	_	0.065	_	0.045		0.0446	0.02	0.0377	0.046	0.0487	0.0241	0.0523
Arsenic	50 ppb	11	<		.2 B	57.7	5 0.0	U	1.9	В	3.2	В	10.1		<500		<500 D	<500	<10	<200 D	<.02
Lead	50 ppb	29.4	126		7.9	20		U	1.8	В	6.1	_	14.4		<250	20.10		<250	24.1	61.8	<.01
Barium	00 pps	9.29	4.88		81	3.75	3.	37	3.43	_	3.45		3.17		<10	2.59	2.64	2.79 J		2.07	2.1
Cadmium		<	<		<	<	0.	U	00	U	<		<		<.125	<.063	<.125 D	<.125	<.0125 D		0.0027
Copper		<	<		<	<	0.0	375		U	0.0064	В	0.0046		<1.25	0.11	0.455	<2.5	<.025	<.025	<.05
Zinc		0.0243	<	0.0	184 B	0.0223	0.2		0.0196	В	0.0601		0.0146	J	<1	0.65	1.42	0.143 J			0.0117 J
Antimony		0.0061 B	<	0.0	057 B	<		U	0.012	В	0.008	В	0.0189	J	<3	<.003	<.06	<3	<.06	<.06	<.12
Beryillium		<	<		<	<		U		U	<		0.0022	J	<.25	<.00057	0.0058	<.25	<.025 D		<.01
Chromium		<	0.12	В 0.0	133	0.136	0.0	112	0.0114		0.192		0.0079	J	<.5	<.0016	.006 J	<.5	0.0082 J	0.094	<.02
Nickel		<	<		<	<		U	0.0018	В	0.0468		<		<2	<.00088	<.04	<2	<.04	<.04	<.08
Selenium		0.0169	<		<	<		U	0.0061		<		<		<.5	<.0062	.0068 J	<.5	<.01	0.204 D	0.0242
Thallium		<	<	0.0	012 B	<		U	0.0049	В	0.0069	В	<		<.5	<.0036	<.01	<.5	0.0161	0.0289	<.02
Vanadium		0.0038 B	<	0.0	032 В	<		U	0.0019	В	0.0084	В	0.0043	J	<2.5	<.0008	<.05	<2.5	<.05	<.05	<.1
Silver		<	0.0288	В	<	<		U		U	<		<		<.5	<.0036	<.01	<.5	<.05 D	<.01	<.02
methylene chloride		<	<		<	<		U		U	<		<		<.005	<.0005	<.001	<.001	<.001	<.001	<.001
ammonia		72.3	124	D 1	39 D	120	D 95	5.7 D	124	D	157	D	149	D	154	120	121	20.1	96.2 D	93.7 D	95.6
hardness		32400	36600	D 37	600 D	32200	D 27	500 D	38400	D	38600	D	37400	D 4	40000	31200	34400	8000	32000	29000	30000
carbon disulfide		<	<		<	<		U		U	<		<		<.005	0.0778	0.0051	<.001	0.0118	0.001	<.001
4methyl2pentano	ppb	0.006	0.009	0.0	009	<		U	0.006		0.016		0.008	C	0.0139	<.0005	0.0079	0.0077	0.0074	0.0049 J	0.0072
2 hexanone											0.002	J	<		<.005	<.0005	<.005	<.005	<.005	<.005	<.005
lodomethane																					
sulfide	12 mg/l												20.2		<2	5.4	126	170	64	72	24
BOD	300 mg/l																387	356	294	254 D	228
1,4 dioxane	ug/l																	0.96 H	H 3.3	2.1	3.9
perfluorobutanoic acid (PFBA)																					260 B
perfluoropentanoic acid (PFPeA)																					140
perfluorohexanoic acid(PFHxA)																					190
perfluoroheptanoic acid																					32
																					22

perfluorooctanoic acid(PFOA)

32

NNUSPARAMETERS	95 MCL	Dec_12	June_13	13-Dec	Jun_14	DEC_14	June_15	Dec_15	Jun_16	Dec_16	June_17	Dec_17	Aug_18	Dec_18	June _19	Dec_19	
perfluorononanoic acid(PFNA)																ND	
perfluorodecanoic acid (PFDA)																ND	
perfluoroundecanoic acid(PFUnA)																ND	
perfluorododecanoic acid(PFDoA)																ND	
perfluorotridecanoic acid(PFTriA)																ND	
perfluorotetradecanoic acid(PFTeA)																ND	
perfluorobutanesulfonic acid(PFBS)																250	
perfluorohexanesulfonic acid(PFHxS)																11	В
perfluoroheptanesulfonic acid(PFHpS)																ND	
perfluorooctanesulfonic acid(PFOS)																7.1	J
perfluorodecanesulfonic acid(PFDS)																ND	
perfluorooctanesulfonamide(FOSA)																ND	
N-methylperfluorooctanesulfonamidoace	tic acit(NMeFOSA	A)														ND	
N-ethylperfluorooctanesulfonamidoacetic	acit(NEtFOSAA)															ND	
6:2FTS																ND	
8:2FTS																ND	
total PFAS																922.1	

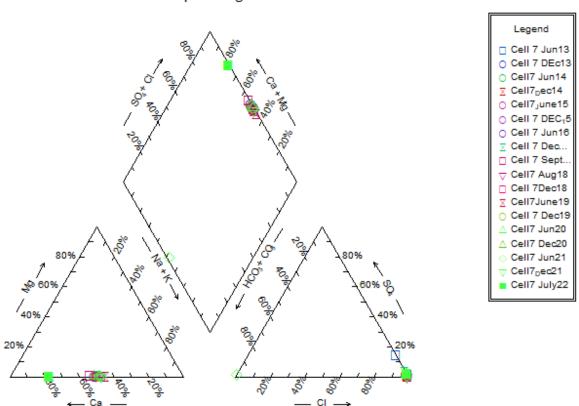
NNUSPARAMETERS	95 MCL	Jun_20	Dec_20	Jun_21	Dec_21	Jul_22
CHLORIDE	500mg/l	61600	45900	46600	48900	45100
SULFATE	500mg/l	8.9	65.9	J 4250	6.2	7.6
Alkalinity		140	176	268	272	180
Na		10600	10400	12700	14100	14800
K		4300	4680	5480	5220	5920
Са		11900	11100	13000	15300	15800
Mg		2.02	2.3	3.06	5.8	6.45
рН	6.5-8.5	6.66	7.37	7.45	7.56	7.5
TDS	1000 mg/l	70800	71200	63600	35400	13700
PHENOL	0.002mg/l					
PHENOLS		0.104	0.256	0.0862	0.165	0.151
IRON	0.6mg/l	0.108	0.185	0.0447	3.67	3.69
MANGANESE	0.6mg/l	0.322	0.312	0.146	0.431	0.2
TKN	10 mg/l	106	113	107	116	19.9
ALUMINUM	2mg/l	<1	0.0446	J 0.144	<20	<1
ACETONE	5 ppb	0.333	0.617	0.597	0.336	0.402
Methyl Ethyl Ketone	5 ppb	0.0406	0.0718	0.036	0.0367	0.0405
Arsenic	50 ppb	<.05	<.01	0.0116	<.1	<.05
Lead	50 ppb	<.025	<.005	0.0048	<.05	<.5
Barium		2.3	2.42	2.6	2.83	2.18
Cadmium		<.0125	<.0025	<.0025	<.025	<.0125
Copper		0.0895	<.025	<.025	0.099	
Zinc		0.0405	<.02	<.02	<.2	<2
Antimony		<.3	<.06	<.06	<.6	<.3
Beryillium		0.00089	<.005	<.005	<.05	<.025
Chromium		0.232	0.0201	<.01	0.538	0.091
Nickel		0.112	0.0281	J 0.0236	0.086	
Selenium		0.0468	<.01	<.01	<.1	<1
Thallium		0.054	<.01	<.01	<.1	<1
Vanadium		<.25	0.0062		<.5	0.0204 J
Silver		0.0287	<.01	<.01	0.018	
methylene chloride ammonia		<.001 98.3	<.001 107	<.001 142	<.001 145	<.001 71.6
hardness		30800	32000	1000	31000	26000
carbon disulfide		0.0018	0.0034	<.001	<.001	0.0015
4methyl2pentano	nnh	0.0018	0.0034	<.001	0.0048	
2 hexanone	ppb	<.005	<.005	<.005	<.005	<.005
Iodomethane		0.0043	<.003	<.004	<.005	<.003
sulfide	12 mg/l	12.8	<2	83.2	91.2	101
BOD	300 mg/l	180	167	265	347	110
1,4 dioxane	ug/l	2.7	2.6	3.8	2.8	3.3
perfluorobutanoic acid (PFBA)	ч <u>Б</u> / 1	270	210	270	280	5.5
perfluoropentanoic acid (PFPeA)		130	150	130	130	
perfluorohexanoic acid(PFHxA)		190	170	150	150	
perfluoroheptanoic acid		30	29	24	25	
perfluorooctanoic acid(PFOA)		36	28	34	32	
per nuor ooctanoic aciu(i i OA)		30	20	54	32	

NNUSPARAMETERS	95 MCL	Jun_20		Dec_20	Jun_	21	Dec_2	1.	Iul_22
perfluorononanoic acid(PFNA)		1.8	J	1.6	J	1.4 J		1.7 J	
perfluorodecanoic acid (PFDA)		0.72	J	0.58	J	0.68 J	(0.47 J	
perfluoroundecanoic acid(PFUnA)		ND		nd	ND		ND		
perfluorododecanoic acid(PFDoA)		ND		nd	ND		ND		
perfluorotridecanoic acid(PFTriA)		ND		nd	ND		ND		
perfluorotetradecanoic acid(PFTeA)		ND		nd	ND		ND		
perfluorobutanesulfonic acid(PFBS)		240		280		220		200	
perfluorohexanesulfonic acid(PFHxS)		12	В	12		12		12	
perfluoroheptanesulfonic acid (PFHpS)		ND		nd		0.19 J	ND		
perfluorooctanesulfonic acid(PFOS)		9.1		6.9		6		7	
perfluorodecanesulfonic acid(PFDS)		ND		nd	ND		ND		
perfluorooctanesulfonamide (FOSA)		3.1	В	nd	ND		ND		
N-methylperfluorooctanesulfonamidoacetic	acit(NMeFOSAA)	ND		nd	ND		ND		
N-ethylperfluorooctanesulfonamidoacetic a	cit(NEtFOSAA)	ND		nd	ND		ND		
6:2FTS		3.5	J	2.7	J	4.5		4.6	
8:2FTS		ND		nd	ND		ND		
total PFAS		926.22		890.78	85	2.77	842.	77	

TOBSWMF's Leachate Monitoring Program

Cell 7

July 2022


Pursuant to the NYSDEC operating permit for the operation of the Cell 7 Ashfill (Cell 7), leachate from that facility's PLCRS was sampled in accordance with the procedures detailed in the TOBSWMF's SAP (TOBDEC, 2018). The Cell 7 operating permit requires semiannual sampling of leachate for expanded parameters plus a scan for dioxins and furans from the facility's PLCRS. The expanded parameters list is found within 6NYCRR part 363-4.6(h) and includes 1,4 dioxane, fluorinated alkyl substances (PFOA's) and various other additional parameters (appendix 2) not found previously in NYCRR part 360. This report includes the laboratory report from Pace Analytical Services Inc., a spreadsheet summarizing the results, a Piper diagram and brief discussion.

- For June 2021 chloride was observed at 0.36 mg/l at the Cell 7 facility. Historical values of chloride at Cell 7 caused this result to be viewed as suspicious. For December 2021 (63200 mg/l) and July 2022 (89700 mg/l) chloride returned to a value in line with historical results.
- The Piper diagram prepared for June 2021 included a substantial change associated with the
 low value for chloride. This value was viewed as suspicious. The Piper diagram for
 December 2021 returned to its historical pattern as chloride returned to its previous range.
 For July 2022, a shift in the Piper diagram was again noted. Lab data from July 2022
 included sodium observed below its reporting limit and calcium reported above its normal
 range. This combination is likely responsible for the shift noted. It is noted that the
 diagram for Cell 7 is within the range or fingerprint observed at the other Babylon ash
 facilities.
- For July 2022 pH at Cell 7 was measured at 7.18.
- Analysis for 2378 TCDD / TCDF for July 2022 was ND (Reporting limit 10 pg/l).
- Analysis for 1,4 dioxane for July 2022 was reported at 5.7 ug/l.
- Mercury (.00009 mg/l) was not detected above its RL at Cell 7 for July 2022.
- Organics from the expanded parameters list observed during July 2022 included acetone (.394 mg/l), MEK (.056 mg/l), 3-4 methylphenol (.263 mg/l), 4methy-2pentanone (.0025 mg/l (<RL)), heptachlor (.00059 mg/l), 2,4D (.0033 mg/l), dinoseb (.0014 mg/l), Di-n-butylphtalate (.15 mg/l) and anthracene (.00079 mg/l (<RL)). Total expanded organics observed for July 2022 was .87 mg/l.
- TTO as defined in the SCDPW leachate discharge permit (>.01 mg/l) observed at the Cell 7 facility for July 2022 is .1559 mg/l. This is below the overall TTO limit of 10 mg/l, below the

limit for acid extractable organic compounds of 1.5 mg/l and below the limit for pesticides and PCB's (1.0 mg/L) set forth in the Town of Babylon Discharge Certification issued by SCDPW.

- Barium was observed at 9.9 mg/l at the Cell 7 facility, exceeding its MCL (8 mg/l). This is the second exceedance of barium above its MCL at the Cell 7 facility.
- Metals observed above their reporting limit include aluminum (.223 mg/l), arsenic (.019 mg/l), boron (.706 mg/l), calcium (17200 mg/l), iron (3.75 mg/l), magnesium (3.99 mg/l), manganese (1.22 mg/l), potassium (9720 mg/l), selenium (.011 mg/l), sodium (< 5000 mg/l) and zinc (.0235 mg/l). Sodium (<5000 mg/l) was reported below its reporting limit and was previously discussed in the discussion of the Piper diagram.
- Sulfide was detected at 3.2 mg/l, below its MCL of 12 mg/l. Sulfide has exceeded its MCL in 4 of 16 samples over the life of the facility, and three of the past five since June 2020.
- BOD at Cell 7 (294 mg/l) for July 2022 was reported below its MCL (300 mg/l).
- PFAS/PFOA and 1,4 dioxane results are included in appendix 1.

The next round of sampling for leachate at the Cell 7 facility is scheduled for December 2022.

Piper Diagram Cell 7 PLCRS

Note: solid green square represents July 2022 data.

Client Sample Results

Client: Pace Analytical Services, LLC Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1 SDG: 70222027

Client Sample ID: CELL 7 PLCRS Lab Sample ID: 200-64187-1

Date Collected: 07/13/22 08:35 **Matrix: Water** Date Received: 07/16/22 09:30

Method: 537 (modified) - Fluorinated Alkyl Substances Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed Perfluoropentanoic acid (PFPeA) 231 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 1 07/21/22 08:39 07/21/22 16:56 1.60 1 Perfluoroheptanoic acid (PFHpA) 38.9 ng/L Perfluorooctanoic acid (PFOA) 39.8 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 1 ng/L 07/21/22 08:39 07/21/22 16:56 1 Perfluorononanoic acid (PFNA) 1.60 U 1.60 Perfluorodecanoic acid (PFDA) 1.60 U 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 1 07/21/22 08:39 07/21/22 16:56 1 Perfluoroundecanoic acid (PFUnA) 1.60 U 1.60 ng/L Perfluorododecanoic acid (PFDoA) 1.60 U 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 1 Perfluorotridecanoic acid (PFTriA) 1.60 U 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 1 Perfluorotetradecanoic acid (PFTeA) 1.60 U 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 Perfluorohexanesulfonic acid 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 1 5.07 (PFHxS) Perfluoroheptanesulfonic acid 07/21/22 08:39 07/21/22 16:56 1.60 U 1.60 ng/L (PFHpS) 1.60 07/21/22 08:39 07/21/22 16:56 Perfluorooctanesulfonic acid 2.42 ng/L (PFOS) Perfluorodecanesulfonic acid (PFDS) 1.60 U 1.60 ng/L 07/21/22 08:39 07/21/22 16:56 Perfluorooctanesulfonamide (PFOSA) 1.60 U -1.60 ng/L 07/21/22 08:39 07/21/22 16:56 07/21/22 08:39 07/21/22 16:56 N-methylperfluorooctanesulfonamidoa 4.01 U 4.01 ng/L cetic acid (NMeFOSAA) 07/21/22 08:39 07/21/22 16:56 4.01 U 4.01 N-ethylperfluorooctanesulfonamidoac ng/L etic acid (NEtFOSAA) 4.01 ng/L 07/21/22 08:39 07/21/22 16:56 1H,1H,2H,2H-perfluorooctanesulfo 5.46 nic acid (6:2) 07/21/22 08:39 07/21/22 16:56 1H,1H,2H,2H-perfluorodecanesulfonic 1.60 U 1.60 ng/L acid (8:2) Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1802 PFHxS 79 50 - 150 07/21/22 08:39 07/21/22 16:56 1 94 50 - 150 07/21/22 08:39 07/21/22 16:56 1 13C4 PFHpA 07/21/22 08:39 07/21/22 16:56 13C4 PFOA 92 50 - 150 1 72 50 - 150 07/21/22 08:39 07/21/22 16:56 13C4 PFOS 13C5 PFNA 85 50 - 150 07/21/22 08:39 07/21/22 16:56 1 95 50 - 150 07/21/22 08:39 07/21/22 16:56 13C2 PFDA 98 07/21/22 08:39 07/21/22 16:56 13C2 PFUnA 50 - 150 77 50 - 150 07/21/22 08:39 07/21/22 16:56 1 13C2 PFDoA 62 50 - 150 07/21/22 08:39 07/21/22 16:56 13C8 FOSA 13C5 PFPeA 73 50 - 150 07/21/22 08:39 07/21/22 16:56 43 *5-50 - 150 07/21/22 08:39 07/21/22 16:56 13C2 PFTeDA 07/21/22 08:39 07/21/22 16:56 d3-NMeFOSAA 85 50 - 150 1 83 50 - 150 07/21/22 08:39 07/21/22 16:56 1 d5-NEtFOSAA M2-6:2 FTS 83 50 - 150 07/21/22 08:39 07/21/22 16:56 1 93 50 - 150 07/21/22 08:39 07/21/22 16:56 M2-8:2 FTS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	362	D	20.0		ng/L		07/21/22 08:39	07/22/22 16:14	5
Perfluorohexanoic acid (PFHxA)	615	D	8.02		ng/L		07/21/22 08:39	07/22/22 16:14	5
Perfluorobutanesulfonic acid (PFBS)	302	D	8.02		ng/L		07/21/22 08:39	07/22/22 16:14	5
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	76		25 - 150				07/21/22 08:39	07/22/22 16:14	5
13C2 PFHxA	100		25 - 150				07/21/22 08:39	07/22/22 16:14	5

Eurofins Burlington

	CELL 7 PLCRS													
	0			07/01/13	3/13/2014	3/13/2014	06/25/14	12/12/14	06/16/15	12/14/201	5			
				7/1/2013			6/25/2014	12/12/2014	6/16/2015	12/14/201		lan-17	Sept_17	Dec_17
TestNo	Analyte	CAS	Units	7/1/2013	13 DCC	DOI _1213	0/25/2014	12/12/2014	0/10/2013	12/14/201	0/20/2010	3011 17	JCPt_17	BCC_17
1001110	pH		OTHES		7.88	1/30/2014	5.91	6.93	3 6.95		6.01	8.21	6.48	
	DO		mg/l		2.24	1/30/2014	1.31	0.80			0.87		0.53	
	Spec cond		6/		61484	1/30/2011	50900	45794			56196		65674	
	ORP				01101		-256.4	-281.9			-79.5		-326.5	
SW8270C	Pyrene	129-00-0	μg/L	10 U	10 U			ND U	ND U		10U	<2.5	320.3	<5.0
SW8270C	Safrole	94-59-7	μg/L	10 U	10 U		ND U	ND U	ND U	10 U	10U	<2.5		<5.0
SW9014	Cyanide	57-12-5	UG/L	10.0 U	10 U		50.0 U	10 U	20 U	10 U	10U	+	<10	15.0
SW9060	Total Organic Carbon	37 12 3	mg/L	51.6 D	108 D		35.2	88.0 D	21.3	2.		<0.63	43.2	
E1613	Dioxin		Pg/L	1.0 U	10 U		ND	ND	ND U	10 U	10 U	10.03	13.2	
E300.0	Bromide	24959-67-9	mg/L	308 D	336 D			311 D	-	230 D	248D	117	373	
E300.0	Sulfate	14808-79-8	mg/L	5140 D	55 D			270 D		364 D	_	338	375	
E351.2	Nitrogen, Kjeldahl, Total	1.000 / 5 0	mg/L	63.6 D	95 D			61.2 D	49.7 D	52.0 D	57.2D	17.1	67	
E353.2	Nitrate as N	14797-55-8	mg/L	2.50 U	2.00 U			0.100 U	0.100 U	0.10 U	.1U	<0.0050	<.05	
E353.2	Nitrite as N	14797-65-0	mg/L	0.100 U	0.100 U		0.100 U	0.100 U	0.100 U	0.10 U	.1U	<0.0050	<.05	
E410.4	Chemical Oxygen Demand	14737 03 0	mg/L	517 D	1220 D			852 D	550 D	175 D	1400 D	560	1560	
E420.1	Phenolics, Total Recoverable		μg/L	49.4 D	309 D		66.6	47.5	54.8 D	5.0 U	41.9	76.2	110	
	Chromium, Hexavalent	18540-29-9	mg/L	0.0200 U	0.0200 U		0.0200 U	0.0200 U	0.0200 U	0.02 U	0.0200 U	<0.0030	<.1	
SM2120B	Color	10340-23-3	units	75 D	150 D			150 D	75.0 D	15.0	25.0	40.0	25	
SM2320B	Alkalinity, Total (As CaCO3)		mg/L	181 D	266 D			273 D	175 D	119 D	122	78.6	160	
SM2340C	Hardness (As CaCO3)		mg/L	17200 D	13100 D		14200 D	17700 D	17800 D	13200 D	25800 D	6400	19600	
SM2540C	Total Dissolved Solids		mg/L	93900 D	39300 D			51700 51700	74000	55500	61100	2960	74800	
SM4500-CL		16887-00-6	mg/L	23500 D	21600 D		21800 D	27900 D	26500 D	18400 D	18600 D	8320		
	Nitrogen, Ammonia (As N)	7664-41-7	mg/L	55.8 D	89.5 D			58.1 D	63.9 D	46.3 D	66.5 D	16.3	56.4	
SM5210B	Biochemical Oxygen Demand	7004 41 7	mg/L	42	101		30	266	25	10 U	4	<3.3	43.5	
SW6010B	Aluminum	7429-90-5	UG/L	190 U	28.0 B			200 U	17.6 BN	39.5 B	200 U	200 U	13.3	
SW6010B	Antimony	7440-36-0	UG/L	24.0 U	4.0 B			60.0 U	13.2 BN	10.9 B	15.7 J	20.3 J		
SW6010B	Arsenic	7440-38-2	UG/L	56.0 U	8.4 B			19.1		21.1	19.9	7.6 J		
SW6010B	Barium	7440-39-3	UG/L	3170 B	2430			2750	3940	2790	4250	954		
SW6010B	Beryllium	7440-41-7	UG/L	2.0 U	0.14 U			5.00 U	0.15 U	0.20 U	1.4 J	0.61 J		
SW6010B	Boron	7440-42-8	UG/L	958 B	381			666	673	480	651	429		
SW6010B	Cadmium	7440-43-9	UG/L	2.0 U	0.11 U		0.14 U	5.00 U	0.16 U	0.10 U	2.5 U		<2.5	
	Calcium	7440-70-2	UG/L	+	6300000			7100000 D		5490000 DE		2570000	7180000	
SW6010B	Chromium	7440-47-3	UG/L	8.0 U	3.2 B		3.8 B	10.0 U	2.8 B	41.9	10 U	10 U	, 100000	
SW6010B	Cobalt	7440-48-4	UG/L	8.0 U	0.19 U		0.16 U	50.0 U	1.5 B	0.20 U		2.6 J		
	Copper	7440-50-8	UG/L		13.1 B			28.9	0.37 U	4.0 B		25 U		
SW6010B	Iron	7439-89-6	UG/L		839			1480		3110	1230	1680	260	
SW6010B	Lead	7439-92-1	UG/L		10.6		7.7	3.00 U	0.85 UN	1.3 UN	5.8	<50	<100	
SW6010B	Magnesium	7439-95-4	UG/L	9900 B	3710 B		4560 B	7160		9510	10400	8040	24000	
SW6010B	Manganese	7439-96-5	UG/L	2640	1690			852		672	755	304	861	
SW6010B	Nickel	7440-02-0	UG/L	6.0 U	0.34 U			40.0 U	2.8 B	0.30 U	40 U	3.1 J	551	
													44.5000	
SW6010B	Potassium	7440-09-7	UG/L	2990000	3570000			3990000 D	3860000	2900000 D	4170000	1270000	415000	
SW6010B	Selenium	7782-49-2	UG/L		2.2 B			5.00 U		2.2 UN	10 U	10 U		
	Silver	7440-22-4	UG/L	4.0 U	0.43 U		0.37 U	10.0 U	0.87 UN	0.50 U	10 U			
SW6010B	Sodium	7440-23-5	UG/L	6310000	5760000		6490000	6240000 D	6230000	4870000 DE	7100000	2190000	6730000	
SW6010B	Thallium	7440-28-0	UG/L	38.0 U	1.3 U		4.6 B	10.0 U	1.0 U	1.9 U	10 U	10 U		
	Tin	7440-31-5	UG/L		3.7 B			40.0 U		3.4 B	3.2 J	50 U		
SW6010B	Vanadium	7440-62-2	UG/L	6.0 U	6.4 B		3.7 B	50.0 U	5.4 B	5.0 B	50 U	1.6 J		

	CELL 7 PLCRS													
				07/01/13	3/13/2014	3/13/2014	06/25/14	12/12/14	06/16/15	12/14/201	15			
				7/1/2013		DUP 1213	6/25/2014	12/12/2014	6/16/2015	12/14/201		Jan-17	Sept_17	Dec 17
SW6010B	Zinc	7440-66-6	UG/L		8.7 B		11.5 B	154	12.8 BN	1.6 U	4.2 J	20 U		
	Mercury	7439-97-6	UG/L	0.18 B	1.2 B		0.10 U	0.3	0.10 U	0.10 U	0.20 U	<0.2	.039J	
SW8081/808		72-54-8	μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.1 U		<0.10
SW8081/808		72-55-9	μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.1 U		<0.10
SW8081/808	•	50-29-3	μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.1 U		<0.10
SW8081/808	,	309-00-2	μg/L	ND U	ND U		ND U	ND U	0.050 U	0.050 U	0.050 U	.05 U		<0.050
SW8081/808		319-84-6	μg/L	ND U	ND U		ND U	ND U	0.050 U	0.050 U	0.050 U	.05 U		<0.050
	Aroclor 1016	12674-11-2	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	1 U		<1.0
	Aroclor 1221	11104-28-2	μg/L	ND U	ND U		ND U	ND U		2.0 U	2.0 U	2 U		<2.0
	Aroclor 1232	11141-16-5	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	1 U		<1.0
	Aroclor 1242	53469-21-9	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	1 U		<1.0
	Aroclor 1248	12672-29-6	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	1 U		<1.0
	Aroclor 1254	11097-69-1	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	1 U		<1.0
	Aroclor 1260	11097-09-1	μg/L μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	1 U		<1.0
SW8081/808		319-85-7	μg/L μg/L	ND U	ND U		ND U	ND U	0.050 U	0.050 U	0.050 U	.05 U		0.14
SW8081/808		57-74-9	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	.03 0		0.14
SW8081/808		319-86-8	μg/L μg/L	ND U	ND U		ND U	ND U	0.050 U	0.050 U	0.050 U	.05 U		<0.050
SW8081/808		60-57-1	μg/L μg/L	ND U	ND U		ND U	ND U	0.030 U	0.10 U	0.030 U	.1 U		<0.030
	Endosulfan I	959-98-8	μg/L μg/L	ND U	ND U		ND U	ND U	0.10 U	0.050 U		.05 U		<0.10
	Endosulfan II	33213-65-9	μg/L μg/L	ND U	ND U		ND U	ND U	0.030 U	0.030 U	0.050 U 0.10 U	.1 U		<0.030
	Endosulfan sulfate	1031-07-8	μg/L μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.1 U		<0.10
SW8081/808		72-20-8	μg/L μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.1 U		<0.10
	Endrin aldehyde	7421-93-4	μg/L μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.1 U		<0.10
	gamma-BHC	58-89-9	μg/L μg/L	ND U	ND U		ND U	ND U	0.10 U	0.10 U	0.10 U	.05 U		<0.10
SW8081/808	-	76-44-8	μg/L μg/L	ND U	ND U		ND U	ND U	0.050 U	0.050 U	0.050 U	.05 U		0.61
	Heptachlor epoxide	1024-57-3	μg/L μg/L	ND U	ND U		ND U	ND U	0.050 U	0.050 U		.05 U		<0.050
	Methoxychlor	72-43-5	μg/L μg/L	ND U				ND U	0.050 U		0.050 U	.05 U		<0.050
SW8081/808	·			ND U	ND U		ND U	ND U	+	0.50 U	0.50 U			
	Dimethoate	8001-35-2	μg/L		ND U		ND U	+	_	5.0 U	5.0 U	5 U		<5.0
	Disulfoton	60-51-5	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U 1.0 U	1.0 U	.96 U .96 U		<.96
		298-04-4 298-00-0	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	.96 U		<.96 <.96
SW8141A	Methyl parathion Parathion		μg/L	ND U			ND U				1.0 U			
		56-38-2	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	.96 U		<.96
SW8141A SW8141A		298-02-2	μg/L	ND U	ND U		ND U	ND U	1.0 U	1.0 U	1.0 U	.96 U		
	Thionazin	297-97-2	μg/L	ND U	10 U		ND U	0.35.11	0.35.11	0.25.11	0.25.11	<2.5		<5.0
	2,4,5-T 2,4,5-TP (Silvex)	93-76-5	μg/L	ND U	ND U		ND U	0.25 U		0.25 U	0.25 U	.047 J		<0.25
	, , , ,	93-72-1	μg/L	ND U	ND U		0.33 P	0.25 U	0.25 U	0.25 U	0.25 U	.25 U		<0.25
	2,4-D	94-75-7	μg/L	3.2 P	ND U		0.26 PJ	0.50 U	0.57 P	0.52 P	0.50 U	.5 U		0.28 J
	Dinoseb	88-85-7	μg/L	ND	ND U		ND U	1.3	0.37 P	0.76 P	0.20 U	.085 J	.4.0	<0.20
	1,1,1,2-Tetrachloroethane	630-20-6	μg/L	ND U	ND U		ND U	ND U	_	5 U	5.0 U	<0.50	<1.0	<1.0
	1,1,1-Trichloroethane	71-55-6	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U	-	<1.0	<1.0
	1,1,2,2-Tetrachloroethane	79-34-5	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U	-	<1.0	<1.0
	1,1,2-Trichloroethane	79-00-5	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
	1,1-Dichloroethane	75-34-3	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U		<1.0	<1.0
SW8260B	1,1-Dichloroethene	75-35-4	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	1	<1.0	<1.0
SW8260B	1,1-Dichloropropene	563-58-6	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	1,2,3-Trichloropropane	96-18-4	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	1,2-Dibromo-3-chloropropane	96-12-8	μg/L	ND U	ND U	ND U	ND U	ND U	+	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	1,2-Dibromoethane	106-93-4	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	1,2-Dichlorobenzene	95-50-1	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0

	CELL 7 PLCRS													
				07/01/13	3/13/2014	3/13/2014	06/25/14	12/12/14	06/16/15	12/14/20	15			
				7/1/2013		DUP 1213	6/25/2014	12/12/2014	6/16/2015	12/14/20		Jan-17	Sept_17	Dec 17
SW8260B	1,2-Dichloroethane	107-06-2	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	1,2-Dichloropropane	78-87-5	μg/L	ND U		ND U	ND U	ND U	_	5 U	5.0 U		<1.0	<1.0
SW8260B	1,3-Dichlorobenzene	541-73-1	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	1,3-Dichloropropane	142-28-9	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	1,4-Dichlorobenzene	106-46-7	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
	1,4-Dioxane (p-Dioxane)		ug/l											<100
SW8260B	2,2-Dichloropropane	594-20-7	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	2-Butanone	78-93-3	μg/L	17		39 DZ	23	35	16	5 U	5.0 U	<0.50	15.3	9.2
SW8260B	2-Hexanone	591-78-6	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<5.0	<5.0
SW8260B	4-Methyl-2-pentanone	108-10-1	μg/L	1 J		3 DJ	2 J	2 J	+	5 U	5.0 U		<5.0	1.3 J
SW8260B	Acetone	67-64-1	μg/L	120		270 D	110	300 E	_	5 U	5.0 U		209	77.1
SW8260B	Acetonitrile	75-05-8	μg/L	ND U		25 D	35	100	49	40	5.0 U	 	<5.0	<5.0
SW8260B	Acrolein	107-02-8	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	 	<1.0	<1.0
SW8260B	Acrylonitrile	107-13-1	μg/L	ND U		ND U	ND U	ND U	_	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Allyl Chloride	107-05-1	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	 	<1.0	<1.0
SW8260B	Benzene	71-43-2	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	l	<1.0	<1.0
SW8260B	Bromochloromethane	74-97-5	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Bromodichloromethane	75-27-4	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Bromoform	75-25-2	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	Bromomethane	74-83-9	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	Carbon disulfide	75-15-0	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	Carbon tetrachloride	56-23-5	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Chlorobenzene	108-90-7	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Chloroethane	75-00-3	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Chloroform	67-66-3	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U		<1.0	<1.0
SW8260B	Chloromethane	74-87-3	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Chloroprene	126-99-8	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U		<1.0	<1.0
SW8260B	cis-1,2-Dichloroethene	156-59-2	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	cis-1,3-Dichloropropene	10061-01-5	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Dibromochloromethane	124-48-1	μg/L	ND U		ND U	ND U	ND U	_	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Dibromomethane	74-95-3	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Dichlorodifluoromethane	75-71-8	μg/L	ND U		ND U	ND U	ND U	+	5 U	5.0 U	<0.50	<1.0	<1.0
	Ethyl Methacrylate	97-63-2	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Ethylbenzene	100-41-4	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U		<1.0	<1.0
SW8260B	lodomethane	74-88-4	μg/L	ND U		ND U	ND U	ND U		5 U	2 J		<1.0	<1.0
SW8260B	Isobutyl alcohol	78-83-1	μg/L	ND U		ND U	14 J	ND U		25 U	25 U		-	
SW8260B	Methacrylonitrile	126-98-7	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Methyl Methacrylate	80-62-6	μg/L	ND U		ND U	ND U	ND U	+	5 U	5.0 U		<1.0	<1.0
SW8260B	Methylene chloride	75-09-2	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
	Propionitrile	107-12-0	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<2.0	<4.0	<4.0
SW8260B	Silane, methoxytrimethyl-		ug/L	5 JN	-	-	·- *	-		-				5
SW8260B	Silanol, trimethyl-		ug/L	19 JN				15 JN		13 JN				
SW8260B	Styrene	100-42-5	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Tetrachloroethene	127-18-4	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	Toluene	108-88-3	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	1	<1.0	<1.0
SW8260B	trans-1,2-Dichloroethene	156-60-5	μg/L	ND U		ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	trans-1,3-Dichloropropene	10061-02-6	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	trans-1,4-Dichloro-2-butene	110-57-6	μg/L	ND U		ND U	ND U	ND U		5 U	5.0 U	 	<1.0	<1.0
SW8260B	Trichloroethene	79-01-6	μg/L	ND U		ND U	ND U	ND U	_	5 U	5.0 U		<1.0	<1.0
5 11 0 <u>2</u> 00 D	111011010001010	, , , , , ,	ϻ δ/ -	1100	1.10 0	.,,,	יין טיין	1.100	5.0 0	J 0	5.00	-0.50	-1.0	`1.0

	CELL 7 PLCRS													
	CELL / PLCRS			07/04/40	2/42/204	2/12/2011	05/05/44	10/10/11	05/45/45	40/44/00	4.5			
				07/01/13	3/13/2014		06/25/14	12/12/14	06/16/15	12/14/20	_			
CMOSCOD	Trichlorofluoromethane	75.60.4	/1	7/1/2013		DUP_1213	6/25/2014	12/12/2014	6/16/2015	12/14/20			Sept_17	Dec_17
SW8260B		75-69-4	μg/L	ND U	ND U	ND U	ND U	ND U	5.0 U	5 U	5.0 U	<0.50	<1.0	<1.0
SW8260B	Trimethylsilyl fluoride+Sulfur diox		ug/L	220 JN										
	Vinyl acetate	108-05-4	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	Vinyl chloride	75-01-4	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U		<1.0	<1.0
SW8260B	Xylene (total)	1330-20-7	μg/L	ND U	ND U	ND U	ND U	ND U		5 U	5.0 U		<2.0	<2.0
SW8270C	1,2,4,5-Tetrachlorobenzene	95-94-3	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,2,4-Trichlorobenzene	120-82-1	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,2-Dichlorobenzene	95-50-1	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,3,5-Trinitrobenzene	99-35-4	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,3-Dichlorobenzene	541-73-1	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,3-Dinitrobenzene	99-65-0	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,4-Dichlorobenzene	106-46-7	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1,4-Naphthoquinone	130-15-4	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	1-Naphthylamine	134-32-7	μg/L	ND U	10 U	ND U	ND U	ND U		10 U	10 U	<2.5		<5.0
	2,2´-oxybis(1-chloropropane)	108-60-1	μg/L	ND U	ND U	40 U	ND U	ND U		10 U	10 U	<2.5		<5.0
	2,3,4,6-Tetrachlorophenol	58-90-2	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2,4,5-Trichlorophenol	95-95-4	μg/L	25 U	25 U	ND U	ND U	ND U	25 U	25 U	25 U	<2.5		<5.0
	2,4,6-Trichlorophenol	88-06-2	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2,4-Dichlorophenol	120-83-2	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2,4-Dimethylphenol	105-67-9	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2,4-Dinitrophenol	51-28-5	μg/L	ND U	25 U	ND U	ND U	ND U	25 U	25 U	25 U	<5.0		<10.0
	2,4-Dinitrotoluene	121-14-2	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2,6-Dichlorophenol	87-65-0	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2,6-Dinitrotoluene	606-20-2	μg/L	10 U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2-Acetylaminofluorene	53-96-3	μg/L	ND U	ND U	ND U	ND U	ND U	20 U	20 U	20 U	<2.5		<5.0
	2-Chloronaphthalene	91-58-7	μg/L	10 U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2-Chlorophenol	95-57-8	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2-Methylnaphthalene	91-57-6	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<0.17		<5.0
	2-Methylphenol	95-48-7	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	2-Naphthylamine	91-59-8	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	2-Nitroaniline	88-74-4	μg/L	25 U	25 U	100 U	ND U	ND U	25 U	25 U	25 U	<2.5		<5.0
	2-Nitrophenol	88-75-5	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	3,3´-Dichlorobenzidine	91-94-1	μg/L	ND U	ND U	80 U	ND U	ND U	20 U	20 U	20 U	<2.5		<5.0
	3,3´-Dimethylbenzidine	119-93-7	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	3-Methylcholanthrene	56-49-5	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	3-Methylphenol/4-Methylphenol	12-03-3	μg/L	9 J	150	170 D	ND U	9 J	41	10 U	10 U			16.8
	3-Nitroaniline	99-09-2	μg/L	ND U	25 U	ND U	ND U	ND U	25 U	25 U	25 U	<2.5		<5.0
	4,6-Dinitro-2-methylphenol	534-52-1	μg/L	ND U	ND U	ND U	ND U	ND U	25 U	25 U	25 U	<5.0		<10.0
	4-Aminobiphenyl	92-67-1	μg/L	20 U	ND U	80 U	ND U	ND U	20 U	20 U	20 U	<2.5		<5.0
	4-Bromophenyl-phenylether	101-55-3	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	4-Chloro-3-methylphenol	59-50-7	μg/L	10 U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	4-Chloroaniline	106-47-8	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	4-Chlorophenyl-phenylether	7005-72-3	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	4-Nitroaniline	100-01-6	μg/L	25 U	ND U	100 U	ND U	ND U	25 U	25 U	25 U	<2.5		<5.0
SW8270C	4-Nitrophenol	100-02-7	μg/L	25 U	ND U	100 U	ND U	ND U	25 U	25 U	25 U	<5.0		<10.0
SW8270C	5-Nitro-o-toluidine	99-55-8	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	7,12-Dimethylbenz(a)anthracene	57-97-6	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
SW8270C	Acenaphthene	83-32-9	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<0.22		<5.0
SW8270C	Acenaphthylene	208-96-8	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<0.21		<5.0

	CELL 7 PLCRS													
				07/01/13	3/13/2014	3/13/2014	06/25/14	12/12/14	06/16/15	12/14/2015				
				7/1/2013		DUP 1213	6/25/2014	12/12/2014	6/16/2015		/20/2016	Jan-17	Sept_17	Dec 17
SW8270C	Acetophenone	98-86-2	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5	50pt_17	1.2 J
SW8270C	Anthracene	120-12-7	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		0.61 J
SW8270C	Benzo(a)anthracene	56-55-3	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Benzo(a)pyrene	50-32-8	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Benzo(b)fluoranthene	205-99-2	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Benzo(g,h,i)perylene	191-24-2	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Benzo(k)fluoranthene	207-08-9	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Benzyl alcohol	100-51-6	μg/L	1	ND U	40 U	ND U	4 J	10 U	10 U 10		<2.5		<5.0
SW8270C	Bis(2-chloroethoxy)methane	111-91-1	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Bis(2-chloroethyl)ether	111-44-4	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		1.0 J
SW8270C	Butyl benzyl phthalate	85-68-7	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Chlorobenzilate	510-15-6	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Chrysene	218-01-9	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Diallate	2303-16-4	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Dibenzo(a,h)anthracene	53-70-3	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Dibenzofuran	132-64-9	μg/L	ND U	10 U	40 U	ND U	ND U		10 U 10		<2.5		<5.0
SW8270C	Diethylphthalate	84-66-2	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		0.15 J
SW8270C	Dimethylphthalate	131-11-3	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Di-n-butyl phthalate	84-74-2	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Di-n-octyl phthalate	117-84-0	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Ethyl methanesulfonate	62-50-0	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Famphur	52-85-7	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<5.0		<10.0
SW8270C	Fluoranthene	206-44-0	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Fluorene	86-73-7	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<0.17		<5.0
SW8270C	Hexachlorobenzene	118-74-1	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Hexachlorobutadiene	87-68-3	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U 10		12.5		<5
SW8270C	Hexachlorocyclopentadiene	77-47-4	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Hexachloroethane	67-72-1	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Hexachloropropene	1888-71-7	μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Indeno(1,2,3-cd)pyrene	193-39-5	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Isodrin	465-73-6	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Isophorone	78-59-1	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Isosafrole	120-58-1	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Kepone	143-50-0	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<5.0		<10.0
SW8270C	Methapyrilene	91-80-5	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Methyl methanesulfonate	66-27-3	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	Naphthalene	91-20-3	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<0.18		<5.0
SW8270C	Nitrobenzene	98-95-3	μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	N-Nitrosodiethylamine	55-18-5	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	N-Nitrosodimethylamine	62-75-9	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	N-Nitroso-di-n-butylamine	924-16-3	μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5
SW8270C	N-Nitroso-di-n-propylamine	621-64-7	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		\
SW8270C	N-Nitrosodiphenylamine	86-30-6	μg/L μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	N-Nitrosomethylethylamine	10595-95-6	μg/L μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	N-Nitrosopiperidine	100-75-4	μg/L μg/L	ND U	ND U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	N-Nitrosopyrrolidine	930-55-2	μg/L μg/L	10 U	10 U	40 U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	O,O,O-Triethylphosphorothioate	126-68-1	μg/L μg/L	ND U	10 U	ND U	ND U	ND U	10 U	10 U 10		<2.5		<5.0
SW8270C	o-Toluidine		μg/L μg/L			40 U		ND U		10 U 10		<2.5		
5770Z70C	U- I Olululi IC	95-53-4	μg/ L	ND U	110 0	40 U	ND U	ט טאו	10 0	10 0	U	\ Z. 3		<5.0

	0511.7.01.000		<u> </u>									<u> </u>		
(CELL 7 PLCRS				- 1 1									
				07/01/13		14 3/13/2014	06/25/14	12/12/14	06/16/15	12/14/201				
CM/0270C ×	. Dim athylamin aczah anzana	60.44.7		7/1/2013		ec DUP_1213	6/25/2014	12/12/2014	6/16/2015		5 6/20/2016		Sept_17	Dec_17
	p-Dimethylaminoazobenzene Pentachlorobenzene	60-11-7	μg/L	10 U	ND U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5 <2.5		<5.0
	Pentachiorobenzene Pentachloronitrobenzene	608-93-5	μg/L	ND U	ND U	ND U	ND U	ND U	10 U	10 U	10 U			<5.0
		82-68-8	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	Pentachlorophenol	87-86-5	μg/L	ND U	25 U	100 U	ND U	ND U	25 U	25 U	25 U	<5.0		<10.0
	Phenacetin	62-44-2	μg/L	10 U	ND U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	Phenanthrene	85-01-8	μg/L	ND U	10 U	40 U	ND U	ND U	10 U	10 U	10 U	<0.17		<5.0
	Phenol	108-95-2	μg/L	20	10 U	40 U	ND U	34	6 J	10 U	10 U	<2.5		19.4
	o-Phenylenediamine	106-50-3	μg/L	10 U	10 U	ND U	ND U	ND U	10 U	10 U	10 U			<5.0
	Pronamide	23950-58-5	μg/L	10 U	10 U	ND U	ND U	ND U	10 U	10 U	10 U	<2.5		<5.0
	Sulfide	18496-25-8	mg/L		2.00 U		2.00 U	25.3	2 U		20 U	<0.61	6.4	
EPA1613B 2			pg/l				ND		2 U					ND
EPA1613B 2	2378-TCDD		pg/l				ND		2 U		10 U			ND
	Total Uranium	7440-61-1	ng/l											1.07 ± 0.050 (0.193) C:NA T:NA
	Perfluorobutanesulfonic acid PFBS	375-73-5	ng/l											<84
	Perfluoroheptanoic acid PFHpA	375-85-9	ng/l											23
	Perfluorohexanesulfonic acid PFHxS	355-46-4	ng/l											13 J
	Perfluorononanoic acid PFNA	375-95-1	ng/l											<19
	Perfluorooctanesulfonic acid PFOS	1763-23-1	ng/l											<38
EPA 537	Perfluorooctanoic acid PFOA	335-67-1	ng/l											29
EPA 903.1	Radium-226	13982-63-3	ng/l											3.02 ± 1.28 (1.13) C:NA T:33%
EPA 904.0 F	Radium-228	15262-20-1	ng/l											4.14 ± 1.79 (2.70) C:75% T:16%
	6:2 FTS	13202 20 1	ng/l						+					4.14 1 1.73 (2.70) 6.7370 1.1070
	8:2 FTS		ng/l											
	N-ethyl perfluorooctandsulfamidoacetic acidNEtFOSAA		ng/l											
	N-methylperflurooctansulfamicacetic acid NMeFOSAA		ng/l											
	perfluorobutanoic acid PFBA		ng/l											
	perfluorodecansulfonic acid PFDS		ng/l											
	perfluorodecanic acid PFDA		ng/l											
	perfluorododecanoic acid PFDoA		ng/l											
	perfluoroheptanesulfonic acid PFHps		ng/l											
	perfluorohexanoic acid PFHxA		ng/l											
	perfluorooctane sulfonamide FOSA		ng/l											
	perfluoropentanoic acid PFPeA		ng/l											
-	perfluorotetradecanoic acid PFTeA		ng/l		+									
	perfluorotridecianoic acid PFTriA		ng/l		1									
	perfluoroundecanoic acid PFUnA		ng/l											
	Defindoroundecarioic acid FFOTIA		rig/i											
+														
r	n-Nitrosomorpholine													
С	Dimethylbenz(A) Antracene													
E	Bis(2-chloroisopropyl)ether													
t	total PFOA/PFAS													

CELL 7 PLCRS							
	Aug_18	Dec_18	Jun_19	Dec_19	June_20	Dec_20	June_21
Analyte		-					
pH	7.11	7.43	7.81	7.48	7.36	7.93	7.25
DO	0.05	2.01	0	1.7	2.59	2.02	2.42
Spec cond	788	1112	876	2194	>20,000	>20,000	>20,000
ORP	-55.8	-75.1	-96.3	-79.2	-73.9	-102.4	-65.3
Pyrene	U	<5	<5.0	<.25	<5	<5.0	<5.0
Safrole	U	<5	<5.0	<.25	<5	<5.0	<5.0
Cyanide	<10	21.3	4.6J	7	4.7		4.3 J
Total Organic Carbon	94.7	84.8	257 D	147	69.2	28.8	131
Dioxin							
Bromide	353	350	516	422	480	260	764
Sulfate	10.3	6.5	7.2	335	129 D	305J D	3.8
Nitrogen, Kjeldahl, Total	51.2	56.3	104 D	65.2 D	93.8 D	21.6	15.8
Nitrate as N	<.05	0.051	0.090	<0.50 D	<0.050	<0.25 D	<.25
Nitrite as N	<.05	<.05	<0.050	<0.050	<0.050	<0.050	<.05
Chemical Oxygen Demand	1810	1690	3870	3410	2240	1120	3240
Phenolics, Total Recoverable	236	177		358 D	278 D	35.3	188
Chromium, Hexavalent	<.1D	<.02	<.02	<.02	<.02	0.052	<0.020
Color		15		50.0		250 D	60.0
Alkalinity, Total (As CaCO3)	275	216	336	223	176	123	282
Hardness (As CaCO3)	20400	20100	28800	26700	28400	15800	30000
Total Dissolved Solids	54000	54400	74600	62000	58800	34000	65200
Chloride	30500	29600	50600	48500	49500	22700	0.36
Nitrogen, Ammonia (As N)	51.7D	29.8	93.3	78.7	82.2	50.7 D	108
Biochemical Oxygen Demand	137D	134	494	235	103	46.8 D	179
Aluminum	<10000 D	<200	<1000 D	77.6J D	<1000 D	311	<10000
Antimony	<3000 D	18.8J	<300 D	45.4J D	<300 D	19.2J	<3000
Arsenic	<500 D	<10.0	<50.0 D	28.4 D	<50.0 D	<10.0	<500
Barium	3580J D	3130	6450 D	5840 D	5550 D	3160	6450 J
Beryllium	<250 D	<5.0	1.7J D	<10.0 D	0.58J D	0.20J	<250
Boron	612J D	718	334 D	1040 D	92.5J D	594	740 J
Cadmium	<125 D	14.4J D	<12.5 D	<5.0 D	<12.5 D	<2.5	<125
Calcium	8140000 D	7430000	9750000 D	9300000 D	9900000 D	6120000 D	13000000
Chromium	<500 D	<10.0	46.1J D	<20.0 D	157 D	11.4	<500
Cobalt	<2500 D	5.0J	<250 D	<100 D	<250 D	<50.0	<2500
Copper	<1250 D	<25.0	59.0J D	<50.0 D	56.0J D	<25.0	<1250
Iron	10600 D	362	150 D	388 D	109 D	702	<1000
Lead	<250 D	<50.0 D	<25.0 D	<10.0 D	<25.0 D	<5.0	<250
Magnesium	18100 D	11400	4420 D	11100 D	6450 D	7170	10600
Manganese	3250 D	649	1440 D	750 D	221 D	255	496 J
Nickel	<2000 D	<40.0	<200 D	<80.0 D	72.0J D	26.2J	<2000
Potassium	3930000 D	4600000 D	6390000 D	5700000 D	5550000 D	3160000 D	8100000
Selenium	<500 D	<10.0	125 D	17.8J D	<50.0 D	<10.0	<500
Silver	<500 D	<10.0	<50.0 D	<20.0 D	18.8J D	<10.0	<500
	6910000 D	6870000 D	9900000 D	7950000 D	8800000 D	4860000 D	11800000
Sodium Thallium							<500
	<500 D	4.5J	<50.0 D <250 D	<20.0 D	<50.0 D	<10.0	<500 <2500
Tin Vanadium	<2500 D	<50.0		<100 D	<250 D	<50.0	
Vanadium	<2500 D	<50.0	<250 D	13.6J D	<250 D	10.0J	<2500

CELL 7 PLCRS							
	Aug_18	Dec_18	Jun_19	Dec_19	June_20	Dec_20	June_21
Zinc	<1000 D	16.8J D	132 D	<40.0 D	<100 D	<20.0	<1000
Mercury	<.2	<0.20	0.15J	0.15J	<.2	<0.200	<0.20
4,4´-DDD	<0.10	<0.10	<0.10	<0.10	<.1	<0.10	<0.094
4,4'-DDE	<0.10	<0.10	<0.10	<0.10	<.1	<0.10	<0.094
4,4´-DDT	<0.10	<0.10	<0.10	<0.10	<.1	0.023J	<0.094
Aldrin	<0.050	<0.050	<0.050	<0.050	<.05	<0.050	<0.047
alpha-BHC	<0.050	<.05	<0.050	<.05	<.05	<0.050	<0.047
Aroclor 1016	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<0.94
Aroclor 1221	<2.0	<2.0	<2.0	<2.0	<1	<1.0	<0.94
Aroclor 1232	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<0.94
Aroclor 1242	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<0.94
Aroclor 1248	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<0.94
Aroclor 1254	<1.0	<1.0	<1.0	0.68J	<1	<1.0	<0.94
Aroclor 1260	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<0.94
beta-BHC	<.05	<.05	<0.050	<.05	<.05	<0.050	<0.047
Chlordane							
delta-BHC	<.05	<.05	<0.050	<.05	<.05	<0.050	0.75
Dieldrin	<0.10	<0.10	<0.10	<0.10	<.1	<0.10	<0.094
Endosulfan I	<0.050	<0.050	<0.050	<0.050	<.05	<0.050	<0.047
Endosulfan II	<0.10	<0.10	<0.10	<0.10	<.1	<0.10	<0.094
Endosulfan sulfate	<0.10	<0.10	<0.10	<0.10	<.1	<0.10	<0.094
Endrin	<0.10	<0.10	<0.10	<0.10	<.1	<0.10	<0.094
Endrin aldehyde	<0.10	<0.10	<0.10	<0.10	<.1	0.026J	<0.094
gamma-BHC	<.05	<.05	<0.050	<.05	<.05	<0.050	<0.047
Heptachlor	<.05	<0.050	<0.050	<0.050	<.05	<0.050	0.23
Heptachlor epoxide	<0.050	<0.050	<0.050	<0.050	<.05	<0.050	<0.047
Methoxychlor	<0.50	<0.50	<0.50	<0.50	<.5	<0.50	<0.47
Toxaphene	<5.0	<5.0	<5.0	<5.0	<.5	<5.0	<4.7
Dimethoate	<.95	<5	<5	<.25	<5	<5.0	<5.0
Disulfoton	<.95	<5	<5.0		<5	<5.0	<5.0
Methyl parathion	<.95	<5	<5.0	<.25	<5	<5	<5.0
Parathion	<.95	<5	<5.0	<.25	<5	<5.0	<5.0
Phorate		_		0.5			
Thionazin	U	<5		<.25	<5	<5.0	<5.0
2,4,5-T	0.055J	0.19J	<0.25	<0.25	0.12	J <0.25	1.9
2,4,5-TP (Silvex)	<0.25	<0.25	<0.25	0.16J	<.25	0.12J	2.0
2,4-D	<0.50	1.4	1.7	1.0	1.3	1.4	11.6
Dinoseb	0.14J	0.16J	0.30	0.43	<.2	<0.20	1.2 <1.0
1,1,1,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1	<1	<1.0	<1.0
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 <1	<1.0 <1.0	<1.0 <1.0
1,1-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,1-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,1-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,2,3-Trichloropropane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,2-DIGHIOLODEH79H6	\1.0	\1.0	\1.U	\1.0	<u> </u>	\1.U	<1.U

CELL 7 PLCRS							
	Aug_18	Dec_18	Jun_19	Dec_19	June_20	Dec_20	June_21
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,3-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,4-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
1,4-Dioxane (p-Dioxane)	0.59	2.7	<100 SIM 2.4ug/l	4.2	<100 SIM 3.3 ug/l	1.7	4.2
2,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
2-Butanone	16.7	14.4	10.8	13.1	14.2	3.6J	22.9
2-Hexanone	<5.0	<5.0	<5.0	<5.0	<5	<5.0	<5.0
4-Methyl-2-pentanone	1.8J	1.6J	1.4J	<5.0	<5	<5.0	<5.0
Acetone	274 D	195	103	179	124	49.7	267
Acetonitrile	62.9	156	128	193	<5	<5.0	191
Acrolein	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Acrylonitrile	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Allyl Chloride	<1.0	<1.0	<1.0	<1.0	<4	<4.0	<4.0
Benzene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Bromodichloromethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Bromomethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Carbon disulfide	<1.0	1.1	<1.0	<1.0	<1	1.1	<1.0
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Chloroform	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Chloroprene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
cis-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Dibromomethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Dichlorodifluoromethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Ethyl Methacrylate	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
lodomethane	<1.0	<1.0	<1.0	<1.0	4.2	<4.0	<4.0
Isobutyl alcohol				5.8JJ	<20	<20.0	<20.0
Methacrylonitrile	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Methyl Methacrylate	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Methylene chloride	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Propionitrile	<4.0	<4.0	<4.0	<4.0	<4	<4.0	<4.0
Silane, methoxytrimethyl-			<1.0				
Silanol, trimethyl-							20.2 J
Styrene	<1.0	<1.0	<1.0		<1	<1.0	<1.0
Tetrachloroethene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
trans-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
·	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
trans-1,4-Dichloro-2-butene	1.0	\1.U	\1.0	\1.0	<1	<1.0	<1.0

CELL 7 PLCRS							
	Aug_18	Dec_18	Jun_19	Dec_19	June_20	Dec_20	June_21
Trichlorofluoromethane	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Trimethylsilyl fluoride+Sulfur diox							
Vinyl acetate	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1	<1.0	<1.0
Xylene (total)	<3.0	<3.0	<3.0	<3.0	<3	<3.0	<3.0
1,2,4,5-Tetrachlorobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,2,4-Trichlorobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,2-Dichlorobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,3,5-Trinitrobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,3-Dichlorobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,3-Dinitrobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,4-Dichlorobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1,4-Naphthoquinone	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
1-Naphthylamine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,2´-oxybis(1-chloropropane)		<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,3,4,6-Tetrachlorophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,4,5-Trichlorophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,4,6-Trichlorophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,4-Dichlorophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,4-Dimethylphenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,4-Dinitrophenol	U	<10.0	<10.0	<50.0 D	<10	<10.0	<10.0
2,4-Dinitrotoluene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,6-Dichlorophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2,6-Dinitrotoluene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Acetylaminofluorene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Chloronaphthalene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Chlorophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Methylnaphthalene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Methylphenol	0.328	<5.0	1.0J	<25.0 D	0.63	J <5.0	<5.0
2-Naphthylamine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Nitroaniline	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
2-Nitrophenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
3,3´-Dichlorobenzidine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
3,3´-Dimethylbenzidine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
3-Methylcholanthrene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
3-Methylphenol/4-Methylphenol	46.8	39.1	110 D		44.4	1.2J	83.3
3-Nitroaniline	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4,6-Dinitro-2-methylphenol	U	<10.0	<10.0	<50.0 D	<10	<10.0	<10.0
4-Aminobiphenyl	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4-Bromophenyl-phenylether	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4-Chloro-3-methylphenol	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4-Chloroaniline	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4-Chlorophenyl-phenylether	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4-Nitroaniline	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
4-Nitrophenol	U	<10.0	<10.0	<50.0 D	<10	<10.0	<10.0
5-Nitro-o-toluidine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
7,12-Dimethylbenz(a)anthracene	<u> </u>	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Acenaphthene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Acenaphthylene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
riconapitalylono	<u> </u>	٠,5.0	٠٥.٥	`ZJ.U D	~ 0	٠٥.٥	70.0

CELL 7 PLCRS							
	Aug_18	Dec_18	Jun_19	Dec_19	June_20	Dec_20	June_21
Acetophenone	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Anthracene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Benzo(a)anthracene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Benzo(a)pyrene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Benzo(b)fluoranthene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Benzo(g,h,i)perylene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Benzo(k)fluoranthene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Benzyl alcohol	U	<5.0	<5.0	<25.0 D	<5	0.88J	<5.0
Bis(2-chloroethoxy)methane	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5
Bis(2-chloroethyl)ether	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5
Bis(2-ethylhexyl)phthalate	U	<5.0	<5.0	8.9J D	<5	<5.0	<5
Butyl benzyl phthalate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Chlorobenzilate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Chrysene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Diallate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Dibenzo(a,h)anthracene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Dibenzofuran	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Diethylphthalate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Dimethylphthalate		<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Di-n-butyl phthalate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Di-n-octyl phthalate		<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Ethyl methanesulfonate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
· · · · · · · · · · · · · · · · · · ·	U	<10.0	<10.0	<50.0 D	<10	<10.0	<20.0
Famphur Fluoranthene	<.95						<20.0 <5.0
	U	<5.0	<5.0	<25.0 D	<5	<5.0	
Fluorene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Hexachlorobenzene	U	<5.0	<5.0	<.25	<5	<5.0	<5.0
Hexachlorobutadiene	U	<5	<5	<025	<5	<5.0	<5.0
Hexachlorocyclopentadiene	U	<5	<5.0	<25.0 D	<5	<5.0	<5.0
Hexachloroethane	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Hexachloropropene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Indeno(1,2,3-cd)pyrene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Isodrin	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Isophorone	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Isosafrole	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Kepone	U	<10.0	<10.0	<50.0 D	<10	<10.0	<20.0
Methapyrilene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Methyl methanesulfonate	U	<5		<25.0 D	<5	<5.0	<5.0
Naphthalene	U	<5.0	<5.0	<25.0 D	<5	<5.0	0.62 J
Nitrobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitrosodiethylamine	U	<5	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitrosodimethylamine	U	<5	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitroso-di-n-butylamine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitroso-di-n-propylamine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitrosodiphenylamine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitrosomethylethylamine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitrosopiperidine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
N-Nitrosopyrrolidine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
O,O,O-Triethylphosphorothioate	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
o-Toluidine	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0

	I						
CELL 7 PLCRS							
		D 12	1 40	D 10	1 22	D 00	
5: 4.1.	Aug_18	Dec_18	Jun_19	Dec_19	June_20	Dec_20	June_21
p-Dimethylaminoazobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Pentachlorobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Pentachloronitrobenzene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Pentachlorophenol	2.37	<10.0	<10.0	<50.0 D	<10	<10.0	<10.0
Phenacetin	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Phenanthrene	U	<5.0	<5.0	<25.0 D	<5	<5.0	<5.0
Phenol	52.2	31.4	115 D	70.0 D	87.1	3.13	62.7
p-Phenylenediamine	U	<5	<10.0	<50	<10	<10.0	<6900
Pronamide	U	<5.0	<5.0	<.25	<5	<5.0	<5.0
Sulfide	1.6J	8	8.0	4.8	25.6	<2.0	16.0
2378-TCDF	ND	ND		ND	ND	ND	ND
2378-TCDD	ND	ND	ND	ND	ND	ND	ND
	0.347 ± 0.013 (0.262) C:NA T:NA		0.281 ± 0.014 (0.262)	0.789 ± 0.039 (0.262)	0.751 ± 0.045	0.526 ± 0.049 (2.620)	1
Total Uranium	0.347 ± 0.013 (0.202) C.NA T.NA	.855+049 (2.62) C:NA T:NA	C:NA T:NA	C:NA T:NA	(2.620) C:NA T:NA	C:NA T:NA	1.09 ± 0.061 (2.620) C:NA T:NA
Perfluorobutanesulfonic acid PFBS	130	130		170	160	120	240
Perfluoroheptanoic acid PFHpA	19	18		24	26	35	26
Perfluorohexanesulfonic acid PFHxS	4.7	4.2		11	B 8.6 E	5.9	8.2
Perfluorononanoic acid PFNA	1.7	1.2		1.4	J 5	2	nd
Perfluorooctanesulfonic acid PFOS	3.3	2		3	16	4	nd
Perfluorooctanoic acid PFOA	22	22		32	50	47	38
	6.34 ± 2.29 (1.80) C:NA T:42%	15.7 ± 7.46 (2.36) C:NA T:88%		2.93 ± 1.62 (1.44) C:NA	3.77 ± 2.18 (0.852)	1.21 ± 0.852 (0.938)	
Radium-226	0.54 ± 2.25 (1.00) C.NA 1.4270		C:NA T:85% 6.45 ± 1.59 (1.46)	T:61% 3.90 ± 2.48 (4.69)	C:NA T:43% 7.79 ± 2.29 (2.88)	C:NA T:89% 3.50 ± 1.31 (2.03)	3.05 ± 2.60 (3.15) C:NA T:94%
Radium-228	10.2 ± 3.75 (5.39) C:72% T:85%	6.62 ± 2.38 (3.68) C:80% T:89%	C:78% T:52%	C:81% T:24%	C:78% T:33%	C:79% T:37%	8.59 ± 3.67 (5.94) C:70% T:92%
6:2 FTS	5.4	6.6	C.7670 1.3270	11	J 10 J	6.2	nd
8:2 FTS	ND	ND		ND	ND ND	ND	nd
N-ethyl perfluorooctandsulfamidoacetic acidNEtFOSAA	19U	ND		ND	ND	ND ND	nd
N-methylperflurooctansulfamicacetic acid NMeFOSAA	190	ND		ND	ND	ND	nd
perfluorobutanoic acid PFBA	260	170		180	260 E		310
perfluorodecansulfonic acid PFDS	19U	ND		ND	ND L	ND	nd
perfluorodecansidionic acid PTDS perfluorodecanoic acid PFDA		0.44		0.38	J 3.2	0.55	J nd
'	4.5	ND		ND	ND	ND	nd
perfluorododecanoic acid PFDoA	19U	ND ND		ND ND	0.26	I ND	
perfluoroheptanesulfonic acid PFHps	19U	250		320	370	350	nd 430
perfluorohexanoic acid PFHxA	210	ND		3 <u>2</u> U	J 2.2 E		
perfluorooctane sulfonamide FOSA	190	94		130	140	120	nd 190
perfluoropentanoic acid PFPeA	100	ND		ND			
perfluorotetradecanoic acid PFTeA	19U	ND ND			ND ND	ND ND	nd
perfluorotridecnaoic acid PFTriA	19U			ND ND			nd
perfluoroundecanoic acid PFUnA	190	ND		ND	ND	ND	nd
n Nilsan and a such a Para							
n-Nitrosomorpholine	U						
Dimethylbenz(A) Antracene	U						
Dis/O ablassicanassi/Nether							
Bis(2-chloroisopropyl)ether	U						
total PFOA/PFAS	760.6	698.44		883.78	1051.26	860.65	1242.2

CELL 7 PLCRS		
OLLL / FLORS		
	Doc 21	luk 22
Analyte	Dec_21	July_22
pH	7.01	7.18
DO	4.24	4.02
Spec cond	>20,000	>20,000
ORP	-60.6	-62.4
Pyrene	<5.0	<4.8
Safrole	<5.0 <5.0	\4.0
Cyanide	34.0	26.7
Total Organic Carbon	273 D	20.7 227 D
Dioxin	2/30	2210
Bromide	534	580
Sulfate	171	1840J D
Nitrogen, Kjeldahl, Total	248	164 D
Nitrate as N	<.05	0.25 D
Nitrite as N	<.05	<0.050
Chemical Oxygen Demand	3080	3800
Phenolics, Total Recoverable	689	351 D
Chromium, Hexavalent	<0.020	<.02
Color	70.0 D	60
Alkalinity, Total (As CaCO3)	344	257
Hardness (As CaCO3)	43000	231
Total Dissolved Solids	37700	19200
Chloride	63200	89700
Nitrogen, Ammonia (As N)	356 D	155
Biochemical Oxygen Demand	529 D	294
Aluminum	<20000	223
Antimony	<600 D	37.9
Arsenic	<100 D	18.6
Barium	8190 D	9900
Beryllium	<50.0 D	<5.0
Boron	793 D	706
Cadmium	<25.0 D	<2.5
Calcium	14900000 D	17200000 D
Chromium	<100 D	5.9J
Cobalt	<500 D	<50.0
Copper	386 D	22.2J
Iron	<1000 D	3750
Lead	<50.0 D	8.9
Magnesium	4910 D	3990
Manganese	526 D	1220
Nickel	<400 D	24.8J
Potassium	8790000 D	9720000 D
Selenium	<100 D	11.1
Silver	14.5J D	<10.0
	13900000 D	<5000
Sodium Thallium		
Tin	<100 D <500 D	8.8J <50.0
Vanadium		<50.0 11.0J
variauiuiii	48.2J D	II.UJ

CELL 7 PLCRS		
	Dec_21	July_22
Zinc	<200 D	23.5
Mercury	<0.20	0.090J
4,4´-DDD	<0.094	<0.096
4,4´-DDE	<0.094	<0.096
4,4´-DDT	<0.094	<0.096
Aldrin	<0.047	<0.048
alpha-BHC	<0.047	<0.048
Aroclor 1016	<0.94	<0.95
Aroclor 1221	<0.94	<0.95
Aroclor 1232	<0.94	<0.95
Aroclor 1242	<0.94	<0.95
Aroclor 1248	<0.94	<0.95
Aroclor 1254	<0.94	<0.95
Aroclor 1260	<0.94	<0.95
beta-BHC	<0.047	<0.048
Chlordane		
delta-BHC	<0.047	<0.048
Dieldrin	<0.094	<0.096
Endosulfan I	<0.047	<0.048
Endosulfan II	<0.094	<0.096
Endosulfan sulfate	<0.094	<0.096
Endrin	<0.094	<0.096
Endrin aldehyde	<0.094	<0.096
gamma-BHC	<0.047	<0.048
Heptachlor	<0.047	0.59
Heptachlor epoxide	<0.047	<0.048
Methoxychlor	<0.47	<0.48
Toxaphene	<4.7	<4.8
Dimethoate	<5.0	
Disulfoton	<5.0	
Methyl parathion	<5.0	
Parathion	<5.0	
Phorate		
Thionazin	<5.0	
2,4,5-T	<200 D	<0.25
2,4,5-TP (Silvex)	<200 D	<0.25
2,4-D	<200 D	3.3
Dinoseb	<200 D	1.4
1,1,1,2-Tetrachloroethane	<1.0	<1.0
1,1,1-Trichloroethane	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0
1,1,2-Trichloroethane	<1.0	<1.0
1,1-Dichloroethane	<1.0	<1.0
1,1-Dichloroethene	<1.0	<1.0
1,1-Dichloropropene	<1.0	<1.0
1,2,3-Trichloropropane	<1.0	<1.0
1,2-Dibromo-3-chloropropane	<1.0	<1.0
1,2-Dibromoethane	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0

CELL 7 PLCRS		
	Dec_21	July_22
1,2-Dichloroethane	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0
1,3-Dichloropropane	<1.0	<1.0
1,4-Dichlorobenzene	<1.0	<1.0
1,4-Dioxane (p-Dioxane)	4.1	5.7
2,2-Dichloropropane	<1.0	<1.0
2-Butanone	27.2	55.8
2-Hexanone	<5.0	<5.0
4-Methyl-2-pentanone	2.1J	2.5J
Acetone	308 D	394 D
Acetonitrile	<5.0	<5.0
Acrolein	<1.0	<1.0
Acrylonitrile	<1.0	<1.0
Allyl Chloride	<4.0	<4.0
Benzene	<1.0	<1.0
Bromochloromethane	<1.0	<1.0
Bromodichloromethane	<1.0	<1.0
Bromoform	<1.0	<1.0
Bromomethane	<1.0	<1.0
Carbon disulfide	<1.0	<1.0
Carbon tetrachloride	<1.0	<1.0
Chlorobenzene	<1.0	<1.0
Chloroethane	<1.0	<1.0
Chloroform	<1.0	<1.0
Chloromethane	<1.0	<1.0
Chloroprene	<1.0	<1.0
cis-1,2-Dichloroethene	<1.0	<1.0
cis-1,3-Dichloropropene	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0
Dibromomethane	<1.0	<1.0
Dichlorodifluoromethane	<1.0	<1.0
Ethyl Methacrylate	<1.0	<1.0
Ethylbenzene	<1.0	<1.0
Iodomethane	<4.0	<4.0
Isobutyl alcohol	11.7J	
Methacrylonitrile	<1.0	<1.0
Methyl Methacrylate	<1.0	<1.0
Methylene chloride	<1.0	<1.0
Propionitrile	<4.0	<4.0
Silane, methoxytrimethyl-	29.4J	
Silanol, trimethyl-	31.9J	
Styrene	<1.0	<1.0
Tetrachloroethene	<1.0	<1.0
Toluene	<1.0	<1.0
trans-1,2-Dichloroethene	<1.0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0
trans-1,4-Dichloro-2-butene	<1.0	<1.0
Trichloroethene	<1.0	<1.0

CELL 7 PLCRS		
0222772010		
	Dec_21	July_22
Trichlorofluoromethane	<1.0	<1.0
Trimethylsilyl fluoride+Sulfur diox	5.6J	12.0
Vinyl acetate	<1.0	<1.0
Vinyl chloride	<1.0	<1.0
Xylene (total)	<3.0	<3.0
1,2,4,5-Tetrachlorobenzene	<5.0	15.0
1,2,4-Trichlorobenzene	<5.0	<4.8
1,2-Dichlorobenzene	<5.0	<4.8
1,3,5-Trinitrobenzene	<5.0	14.0
1,3-Dichlorobenzene	<5.0	<4.8
1,3-Dinitrobenzene	<5.0	<4.8
1,4-Dichlorobenzene	<5.0	<4.8
1,4-Naphthoquinone	<5.0	ντ.υ
1-Naphthylamine	<5.0	
2,2´-oxybis(1-chloropropane)	<5.0	<4.8
2,3,4,6-Tetrachlorophenol	<5.0	<4.8
2,4,5-Trichlorophenol	<5.0	<4.8
2,4,6-Trichlorophenol	<5.0	<10.0
2,4-Dichlorophenol	<5.0	<4.8
2,4-Dimethylphenol	<5.0	<4.8
2,4-Dinitrophenol	<10.0	<9.5
2,4-Dinitrotoluene	<5.0	<4.8
2,6-Dichlorophenol	<5.0	\4.0
2,6-Dinitrotoluene	<5.0	<4.8
2-Acetylaminofluorene	<5.0	\4.0
2-Chloronaphthalene	<5.0	<4.8
2-Chlorophenol	<5.0	<4.8
2-Methylnaphthalene	<5.0	<4.8
2-Methylphenol	1.8J	<4.8
2-Naphthylamine	<5.0	\4.0
2-Nitroaniline	<5.0	<4.8
2-Nitrophenol	<5.0	<4.8
3,3´-Dichlorobenzidine	<5.0	<4.8
3,3'-Dimethylbenzidine	<5.0	\4.0
3-Methylcholanthrene	<5.0	
3-Methylphenol/4-Methylphenol		263 D
3-Nitroaniline	305 D <5.0	<4.8
4,6-Dinitro-2-methylphenol	<10.0	<9.5
4-Aminobiphenyl		\3.3
4-Ammobiphenyl 4-Bromophenyl-phenylether	<5.0	<4.8
	<5.0	
4-Chloro-3-methylphenol 4-Chloroaniline	<5.0 <5.0	<4.8 <4.8
4-Chlorophenyl-phenylether	<5.0	<4.8
4-Nitroaniline	<5.0	<4.8
4-Nitrophenol	<10.0	<9.5
5-Nitro-o-toluidine	<5.0	
7,12-Dimethylbenz(a)anthracene	<5.0	-4.0
Acenaphthylana	<5.0	<4.8
Acenaphthylene	<5.0	<4.8

CELL 7 PLCRS		
CELL / PLCRS		
	Dec 21	July 22
Acetophenone	<5.0	July_22 <4.8
Anthracene	<5.0	0.79J
Benzo(a)anthracene	<5.0	<4.8
Benzo(a)pyrene	<5.0	<4.8
Benzo(b)fluoranthene	<5.0	<4.8
Benzo(g,h,i)perylene	<5.0	<4.8
Benzo(k)fluoranthene	<5.0	<4.8
Benzyl alcohol	<5.0	\4.0
Bis(2-chloroethoxy)methane	<5.0	<4.8
Bis(2-chloroethyl)ether	<5.0	<4.8
Bis(2-ethylhexyl)phthalate	<5.0	<4.8
Butyl benzyl phthalate	<5.0 <5.0	<4.8
Chlorobenzilate	<5.0 <5.0	<4.8
Chrysene	<5.0 <5.0	<4.8
Diallate	<5.0 <5.0	\4.0
Dibenzo(a,h)anthracene	<5.0 <5.0	<4.8
Dibenzofuran		
	<5.0	<4.8
Diethylphthalate	<5.0	<4.8
Dimethylphthalate	<5.0	<4.8 150 D
Di-n-butyl phthalate	<5.0	
Di-n-octyl phthalate	<5.0	<4.8
Ethyl methanesulfonate	<5.0	420.0
Famphur	<20.0	<20.0
Fluoranthene	<5.0	<4.8
Fluorene	<5.0	<4.8
Hexachlorobenzene	<5.0	<4.8
Hexachlorobutadiene		.4.0
Hexachlorocyclopentadiene	<5.0	<4.8
Hexachloroethane	<5.0	<4.8
Hexachloropropene	<5.0	.4.0
Indeno(1,2,3-cd)pyrene	<5.0	<4.8
Isodrin	<5.0	1.0
Isophorone	<5.0	<4.8
Isosafrole	<5.0	20.0
Kepone	<20.0	<20.0
Methapyrilene	<5.0	
Methyl methanesulfonate	<5.0	-4.0
Naphthalene	<5.0	<4.8
Nitrobenzene	<5.0	<4.8
N-Nitrosodiethylamine	<5.0	
N-Nitrosodimethylamine	<5.0	
N-Nitroso-di-n-butylamine	<5.0	.1.0
N-Nitroso-di-n-propylamine	<5.0	<4.8
N-Nitrosodiphenylamine	<5.0	<4.8
N-Nitrosomethylethylamine	<5.0	
N-Nitrosopiperidine	<5.0	
N-Nitrosopyrrolidine	<5.0	
O,O,O-Triethylphosphorothioate	<5.0	
o-Toluidine	<5.0	

CELL 7 PLCRS		
	Dec_21	July_22
p-Dimethylaminoazobenzene	<5.0	
Pentachlorobenzene	<5.0	
Pentachloronitrobenzene	<5.0	
Pentachlorophenol	<10.0	
Phenacetin	<5.0	
Phenanthrene	<5.0	<4.8
Phenol	350 D	<4.8
p-Phenylenediamine	<6900	<6900
Pronamide	<5.0	
Sulfide	20.8	3.2
2378-TCDF	ND	ND
2378-TCDD	ND	ND
	5.13 ± 0.424 (26.200) C:NA	0.203 ± 0.010
Total Uranium	T:NA	(2.620) C:NA T:NA
Perfluorobutanesulfonic acid PFBS	280	302
Perfluoroheptanoic acid PFHpA	33	38.9
Perfluorohexanesulfonic acid PFHxS	7	5.07
Perfluorononanoic acid PFNA	1.1	ND
Perfluorooctanesulfonic acid PFOS	2.1	2.42
Perfluorooctanoic acid PFOA	33	39.8
	4.57 ± 3.05 (3.27) C:NA	3.74 ± 1.37 (0.317)
Radium-226	T:98%	C:NA T:106%
	7.45 ± 4.64 (8.93) C:56%	9.86 ± 3.71 (5.57)
Radium-228	T:91%	C:76% T:88%
6:2 FTS	6	5.46
8:2 FTS	ND	1.6
N-ethyl perfluorooctandsulfamidoacetic acidNEtFOSAA	ND	ND
N-methylperflurooctansulfamicacetic acid NMeFOSAA	ND	ND
perfluorobutanoic acid PFBA	440	362
perfluorodecansulfonic acid PFDS	ND	ND
perfluorodecanoic acid PFDA	0.58	ND
perfluorododecanoic acid PFDoA	ND	ND
perfluoroheptanesulfonic acid PFHps	ND	ND
perfluorohexanoic acid PFHxA	560	615
perfluorooctane sulfonamide FOSA	ND	ND
perfluoropentanoic acid PFPeA	180	231
perfluorotetradecanoic acid PFTeA	ND	ND
perfluorotridecnaoic acid PFTriA	ND	ND
perfluoroundecanoic acid PFUnA	ND	ND
1		
n-Nitrosomorpholine		
Dimethylbenz(A) Antracene		
Bis(2-chloroisopropyl)ether		
total PFOA/PFAS	1542.78	1603.25
	1 13 12.70	1000.20

Cell7 PLCRS

TOBDEC

Appendix 1

July 2022 Pace Analytical Laboratory Report and QA/QC

- SECOND OTR 2022 Leachate Sampling Data **BABYLON LANDFILL - FIELD DATA**

WELL #	Date	Start Purge	Stop Purge	Gallons Purged	Well Notes For Sampling
NNU-PLCRS	7/13/2022	008	804	~ 40	Clear, slightly cloudy, sulfur odors
NNU-SLCRS	7/13/2022	908	809	~ 40	Black particles, sulfur odors
ONU-SLCRS	7/13/2022	727	730	$09 \sim$	Clear, odors
SA-SLCRS	7/13/2022	7/13/2022 Direct Sample	Direct Sample	0	Clear, small black sediment
CETT - 7	7/13/2022	7/13/2022 Direct Sample	Direct Sample	0	Clear, odors, small black particles

			Γ	Leachate Parameters	eters		
WELL #	Sampling	Hd	ORP	Conductivity	Temp.	Turbidity	Dissolved Oxygen
	Time	(SU)	(mv)	(umhos/cm2)	(oC)	(NTU)	(DO) mg/L
NNU-PLCRS	810	7.58	-121.4	>20,000	20.2	24.10	2.15
NNU-SLCRS	815	7.50	-35.2	>20,000	22.7	52.40	2.48
ONU-SLCRS	735	8.62	-162.3	>20,000	18.8	2.31	3.56
SA-SLCRS	905	8.26	-65.1	15,870	19.9	10.64	3.98
CELL - 7	835	7.18	-62.4	>20,000	18.4	4.85	4.02

Field Notes: MS/MSD performed on ONU-SLCRS @ 740

NNU-PLCRS: New Northern U Primary * One Tap Location for Primary/Secondary (Top Road)

NNU-SLCRS: New Northern U Secondary * One Tap Location for Primary/Secondary (Top Road)

ONU-SLCRS: Old Northern U Secondary *One Tap Location for Primary/Secondary (Lower Road)

SA-SLCRS: Southern Ash Secondary *Use Bailer / Square Metal Door

CELL 7: Primary System * Use Bailer / First Round Black Cover (Left Cover)

PFCs Sampling Checklist

		ld Clothing and PPE:		
ľ)	No clothing or boots containing Gore-Tex™	⊠	
Į	F	All safety boots made from polyurethane and PVC	Sai	chemical (blue) ice packs in possession mple Containers:
6	A	No materials containing Tyvek®	Ø	All sample containers made of HDPE or
4	X	Field crew has not used fabric softener on clothing	ŊC	polypropylene Caps are unlined and made of HDPE or
	Y	Field crew has not used cosmetics,		polypropylene
		moisturizers, hand cream, or other related products this morning		t Weather (as applicable):
	ď	Field crew has not applied unauthorized	Ļ ⊿©	Wet weather gear made of polyurethane and PVC only
		sunscreen or insect repellant	Equ	uipment Decontamination:
F	-iei	ld Equipment:	卢	"PFC-free" water on-site for
Ę	*	No Teflon® or LDPE containing materials on-site		decontamination of sample equipment. No other water sources to be used.
Þ	₫	All sample materials made from stainless steel, HDPE, acetate, silicon, or		Alconox and Liquinox to be used as decontamination materials
		polypropylene	Foo	od Considerations:
		No waterproof field books on-site	凅	No food or drink on-site with exception of
Ş	2	No plastic clipboards, binders, or spiral hard cover notebooks on-site		bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available
Þ	1	No adhesives (Post-It Notes) on-site		for consumption only in the staging area
pers	onr	able boxes cannot be checked, the Field Lead sha nel to address noncompliance issues prior to com oval of noncompliance items from the site or rem	mencer	ment of that day's work. Corrective action shall
cribe t	the	noncompliance issues (include personnel not in	complia	nce) and action/outcome of noncompliance:

PFCs Sampling Checklist

	Fie	eld Clothing and PPE:			
	P *		Œ	Coolers filled with regular ice only. No chemical (blue) ice packs in possession	
	4	All safety boots made from polyurethane and PVC	Sample Containers:		
	K	 No materials containing Tyvek® Field crew has not used fabric softener on clothing Field crew has not used cosmetics, moisturizers, hand cream, or other related products this morning Field crew has not applied unauthorized sunscreen or insect repellant 	Þ	All sample containers made of HDPE or polypropylene Caps are unlined and made of HDPE or	
	M		Dlr		
			7	polypropylene	
			We	Wet Weather (as applicable):	
	陣		P	Wet weather gear made of polyurethane and PVC only	
			Eq	uipment Decontamination:	
	Field Equipment:		p ar	"PFC-free" water on-site for	
	×	No Teflon® or LDPE containing materials on-site		decontamination of sample equipment. No other water sources to be used.	
		All sample materials made from stainless steel, HDPE, acetate, silicon, or	Þ	Alconox and Liquinox to be used as decontamination materials	
		polypropylene		Food Considerations:	
	Ż.	No waterproof field books on-site		No food or drink on-site with exception of	
,	R	No plastic clipboards, binders, or spiral hard cover notebooks on-site		bottled water and/or hydration drinks (i.e., Gatorade and Powerade) that is available	
	#	No adhesives (Post-It Notes) on-site		for consumption only in the staging area	
ield	person	able boxes cannot be checked, the Field Lead sh nel to address noncompliance issues prior to cor oval of noncompliance items from the site or rer	mmence	ibe the noncompliance issues below and work with ment of that day's work. Corrective action shall worker offsite until in compliance.	
Desc	ribe the	e noncompliance issues (include personnel not ir	compli	ance) and action/outcome of noncompliance:	
ield	L bad N	gnature: Brian Nichols			
LIU	LCGU IV	unici			

August 24, 2022

Joe Guarino Town of Babylon 281 Phelps Lane North Babylon, NY 11703

RE: Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Dear Joe Guarino:

Enclosed are the analytical results for sample(s) received by the laboratory on July 13, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Elizabeth Barry, Town of Babylon Department of

Environmental Control

(631)694-3040

CERTIFICATIONS

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: 265487

- B: Analyte was detected in the associated method blank.
 - BLANK for HBN 265487 [MPRP/140 (Lab ID: 1341537)
 - Potassium

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265487

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1341540)
 - Calcium
 - Magnesium
 - Potassium
 - Sodium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 7470A
Description: 7470 Mercury
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265936

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003,70222765010

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1343596)
 - Mercury

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 8260C SIM/5030C **Description:** 8260C SIM Volatile Organics

Client: Town of Babylon Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 8260C SIM/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 266167

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MSD (Lab ID: 1344806)

• 1,4-Dioxane (p-Dioxane)

Additional Comments:

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Babylon
Date: August 24, 2022

General Information:

5 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 265051

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1339517)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
- MS (Lab ID: 1341486)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
- MSD (Lab ID: 1341487)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
- NNU PLCRS (Lab ID: 70222028001)
 - Acetone
- NNU SLCRS (Lab ID: 70222028002)
 - 2-Butanone (MEK)
 - Acetone
- ONU SLCRS (Lab ID: 70222028003)
 - Acetone
- SA SLCRS (Lab ID: 70222028004)
 - Acetone
- TRIP BLANK (Lab ID: 70222028005)
 - Acetone

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of BabylonDate:August 24, 2022

QC Batch: 265051

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- BLANK (Lab ID: 1339516)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- LCS (Lab ID: 1339517)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - · Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 1341486)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - Iodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 1341487)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- NNU PLCRS (Lab ID: 70222028001)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane

(631)694-3040

PROJECT NARRATIVE

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of BabylonDate:August 24, 2022

QC Batch: 265051

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- Bromomethane
- Carbon disulfide
- Chloroethane
- Chloromethane
- lodomethane
- Tetrachloroethene
- trans-1,4-Dichloro-2-butene
- NNU SLCRS (Lab ID: 70222028002)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- ONU SLCRS (Lab ID: 70222028003)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- SA SLCRS (Lab ID: 70222028004)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - IodomethaneTetrachloroethene
 - trans-1,4-Dichloro-2-butene
- TRIP BLANK (Lab ID: 70222028005)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Babylon
Date: August 24, 2022

QC Batch: 265051

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- ChloromethaneIodomethane
- Tetrachloroethene
- trans-1,4-Dichloro-2-butene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 265051

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 1339517)Carbon disulfide
- Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265051

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MSD (Lab ID: 1341487)1,1,1-Trichloroethane
- **Additional Comments:**

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method:EPA 8260Description:TIC MSV WaterClient:Town of BabylonDate:August 24, 2022

General Information:

2 samples were analyzed for EPA 8260 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: SM22 2120B

Description: 2120B W Apparent Color

Client: Town of Babylon

Date: August 24, 2022

General Information:

4 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of BabylonDate:August 24, 2022

General Information:

4 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265535

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1341686)
 - Alkalinity, Total as CaCO3

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: SM22 2540C

Description: 2540C Total Dissolved Solids

Client: Town of Babylon Date: August 24, 2022

General Information:

4 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 265548

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1341733)
 - Total Dissolved Solids

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 410.4
Description: 410.4 COD
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265853

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003,70222475001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1343380)
 - Chemical Oxygen Demand

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: SM22 5210B
Description: 5210B BOD, 5 day
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 264903

B2: Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.

- NNU PLCRS (Lab ID: 70222028001)
 - BOD, 5 day

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 9034

Description: 9034 Sulfide, Titration
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 9034 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9030B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: Town of Babylon

Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265903

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70221562006,70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1343505)
 - Bromide
 - Chloride
- MS (Lab ID: 1343507)
 - Bromide

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Town of Babylon

Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 266615

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70221775001,70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1347222)Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Babylon Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265018

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003,70222038001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1339410)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265009

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70221999001,70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1339339)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 420.1

Description: Phenolics, Total Recoverable

Client: Town of Babylon Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 420.1 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Babylon
Date: August 24, 2022

General Information:

4 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method:EPA 9014 Total CyanideDescription:9014 Cyanide, TotalClient:Town of BabylonDate:August 24, 2022

General Information:

4 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 266333

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003,70222765010

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1345613)
 - Cyanide

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Method: EPA 9060A

Description: 9060A TOC as NPOC Client: Town of Babylon Date: August 24, 2022

General Information:

4 samples were analyzed for EPA 9060A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 266203

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1344876)Total Organic Carbon

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU PLCRS	Lab ID: 702	22028001	Collected: 07/13/2	22 08:10	Received: 07	7/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Aluminum	530	ug/L	200	1	07/19/22 09:15	07/26/22 10:5	2 7429-90-5	
Antimony	86.5	ug/L	60.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-36-0	
rsenic	<10.0	ug/L	10.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-38-2	
Barium	521	ug/L	200	1	07/19/22 09:15	07/26/22 10:52	2 7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-41-7	
Soron	7150	ug/L	50.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-42-8	
admium	8.8	ug/L	2.5	1	07/19/22 09:15	07/26/22 10:52	2 7440-43-9	
alcium	6410000	ug/L	20000	100	07/19/22 09:15	08/17/22 13:13	3 7440-70-2	M1
Chromium	3.1J	ug/L	10.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-47-3	
obalt	<50.0	ug/L	50.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-48-4	
Copper	55.3	ug/L	25.0	1	07/19/22 09:15	07/26/22 10:52	2 7440-50-8	
on	661	ug/L	100	1	07/19/22 09:15	07/26/22 10:52	2 7439-89-6	
ead	70.7	ug/L	5.0	1	07/19/22 09:15	07/26/22 10:52	2 7439-92-1	
1agnesium	42800	ug/L	200	1	07/19/22 09:15			M1
langanese	1490	ug/L	10.0	1	07/19/22 09:15	07/26/22 10:5	2 7439-96-5	
lickel	44.6	ug/L	40.0	1	07/19/22 09:15			
otassium	2270000	ug/L	500000	100	07/19/22 09:15			M1
elenium	<1000	ug/L	1000	100	07/19/22 09:15			
ilver	1.3J	ug/L	10.0	1	07/19/22 09:15			
odium	<5000	ug/L	5000	1	07/19/22 09:15			M1
hallium	<10.0	ug/L	10.0	1	07/19/22 09:15			
anadium	<50.0	ug/L	50.0	1	07/19/22 09:15			
inc	580	ug/L	20.0	1	07/19/22 09:15			
470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: EF	PA 7470A			
	Pace Analytica		•					
Mercury	0.29	ug/L	0.20	1	07/21/22 11:45	07/22/22 12:00	7439-97-6	
260C SIM Volatile Organics	Analytical Meth	nod: EPA 82	260C SIM/5030C					
3	Pace Analytica							
,4-Dioxane (p-Dioxane) Surrogates	0.78	ug/L	0.20	1		07/22/22 16:1	7 123-91-1	
,2-Dichlorobenzene-d4 (S)	94	%	43-153	1		07/22/22 16:13	7 2199-69-1	
-Bromofluorobenzene (S)	96	%	79-139	1		07/22/22 16:1		
260C Volatile Organics	Analytical Meth Pace Analytica							
cetone	2.8J	ug/L	5.0	1		07/15/22 11:56	6 67-64-1	IH
crylonitrile	<1.0	ug/L	1.0	1		07/15/22 11:56		
enzene	<1.0	ug/L	1.0	1		07/15/22 11:56		
romochloromethane	<1.0	ug/L	1.0	1		07/15/22 11:56		
romodichloromethane	<1.0	ug/L	1.0	1		07/15/22 11:56		
		-						
romoform	-1 ∩	ua/l	1 ∩	1		()//15/22 11 56	1 /5-25-2	
Bromoform Bromomethane	<1.0 <1.0	ug/L ug/L	1.0 1.0	1 1		07/15/22 11:56 07/15/22 11:56		v3

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU PLCRS	Lab ID: 7	70222028001	Collected: 07/13/2	22 08:10	Received: 0	7/13/22 12:38 M	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical M	Method: EPA 82	260C/5030C					
	Pace Analy	tical Services -	Melville					
Carbon disulfide	<1.0	ug/L	1.0	1		07/15/22 11:56	75-15-0	L2,v3
Carbon tetrachloride	<1.0	J	1.0	1		07/15/22 11:56		,
Chlorobenzene	<1.0	0	1.0	1		07/15/22 11:56		
Chloroethane	<1.0	ug/L	1.0	1		07/15/22 11:56	75-00-3	v3
Chloroform	<1.0	ug/L	1.0	1		07/15/22 11:56		
Chloromethane	<1.0	ug/L	1.0	1		07/15/22 11:56		v3
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/15/22 11:56		v3
Dibromochloromethane	<1.0	•	1.0	1		07/15/22 11:56		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/15/22 11:56		
Dibromomethane	<1.0	ug/L	1.0	1		07/15/22 11:56		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 11:56		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 11:56		
trans-1,4-Dichloro-2-butene	<1.0	•	1.0	1		07/15/22 11:56		v3
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:56		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:56		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 11:56		v3
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 11:56		
rans-1,2-Dichloroethene	<1.0	•	1.0	1		07/15/22 11:56		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/15/22 11:56		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 11:56	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 11:56		
Ethylbenzene	<1.0	ug/L	1.0	1		07/15/22 11:56		
2-Hexanone	<5.0	-	5.0	1		07/15/22 11:56		
odomethane	<4.0	ug/L	4.0	1		07/15/22 11:56	74-88-4	v3
Methylene Chloride	<1.0	ug/L	1.0	1		07/15/22 11:56	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/15/22 11:56		
Styrene	<1.0	ug/L	1.0	1		07/15/22 11:56		
1,1,1,2-Tetrachloroethane	<1.0	•	1.0	1		07/15/22 11:56	630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 11:56	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		07/15/22 11:56		v3
Toluene	<1.0	ug/L	1.0	1		07/15/22 11:56		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:56	71-55-6	
1,1,2-Trichloroethane	<1.0	•	1.0	1		07/15/22 11:56	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		07/15/22 11:56	79-01-6	
Trichlorofluoromethane	<1.0	-	1.0	1		07/15/22 11:56		
1,2,3-Trichloropropane	<1.0	ū	1.0	1		07/15/22 11:56		
Vinyl acetate	<1.0	J	1.0	1		07/15/22 11:56		
Vinyl chloride	<1.0	ū	1.0	1		07/15/22 11:56		
Xylene (Total)	<3.0	ū	3.0	1		07/15/22 11:56		
Surrogates		J	-					
1,2-Dichloroethane-d4 (S)	114	%	81-122	1		07/15/22 11:56	17060-07-0	
4-Bromofluorobenzene (S)	102	%	79-118	1		07/15/22 11:56	460-00-4	
Toluene-d8 (S)	91	%	82-122	1		07/15/22 11:56	2037-26-5	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU PLCRS	Lab ID: 70	222028001	Collected:	07/13/2	22 08:10	Received: 0	7/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
TIC MSV Water	Analytical Me								
ΓIC Search	No TIC's Found	ai Services ·	· INICIVILIC		1		07/19/22 19:50)	
2120B W Apparent Color	Analytical Me								
Apparent Color oH	12.0 7.3	units Std. Units	3	5.0 0.10	1 1		07/14/22 09:27 07/14/22 09:27		
320B Alkalinity	Analytical Me Pace Analytic								
Alkalinity, Total as CaCO3	70.0	mg/L		1.0	1		07/19/22 13:20)	
340C Hardness, Total	Analytical Me Pace Analytic								
Tot Hardness asCaCO3 (SM 2340B	12200	mg/L		5.0	1		07/21/22 18:16	;	
540C Total Dissolved Solids	Analytical Me Pace Analytic								
otal Dissolved Solids	29400	mg/L		10.0	1		07/19/22 14:35	i	
Chromium, Hexavalent	Analytical Me Pace Analytic								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		07/14/22 09:24	18540-29-9	
10.4 COD	Analytical Me Pace Analytic			tion Met	hod: EP	A 410.4			
Chemical Oxygen Demand	1230	mg/L		100	1	07/21/22 05:56	6 07/21/22 08:15	i	
210B BOD, 5 day	Analytical Me Pace Analytic			aration N	/lethod: S	SM22 5210B			
BOD, 5 day	<100	mg/L		100	50	07/14/22 14:25	5 07/19/22 11:36		B2
034 Sulfide, Titration	Analytical Me Pace Analytic			ion Metl	nod: EPA	9030B			
Sulfide	3.2	mg/L		2.0	1	07/19/22 11:00	07/19/22 14:19)	
800.0 IC Anions 28 Days	Analytical Me Pace Analytic								
oromide Chloride Gulfate	332 17200 1390	mg/L mg/L mg/L		50.0 1000 500	100 500 100		07/25/22 20:59 07/22/22 13:20 07/25/22 20:59	16887-00-6	
51.2 Total Kjeldahl Nitrogen	Analytical Me			tion Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	24.8	mg/L		0.50	1	07/27/22 05:56	6 07/27/22 12:24	7727-37-9	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU PLCRS	Lab ID: 7022	2028001	Collected: 0	7/13/2	2 08:10	Received: 07	7/13/22 12:38 N	latrix: Water	
Parameters	Results	Units	Report L	imit	DF	Prepared	Analyzed	CAS No.	Qua
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	<0.050	mg/L	0	0.050	1		07/15/22 07:32	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0	0.050	1		07/15/22 07:32	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L	0	0.050	1		07/15/22 00:49	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		•	on Met	hod: EF	PA 420.1			
Phenolics, Total Recoverable	<10.0	ug/L		10.0	2	08/01/22 15:10	08/01/22 20:51		
4500 Ammonia Water	Analytical Meth Pace Analytical								
Nitrogen, Ammonia	42.7	mg/L		10.0	100		07/19/22 13:27	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		•	de Pr	eparatio	on Method: EPA 9	010C		
Cyanide	<10.0	ug/L		10.0	1	07/25/22 18:40	07/25/22 19:43	57-12-5	
9060A TOC as NPOC	Analytical Meth Pace Analytical								
Total Organic Carbon	15.7	mg/L		10.0	10		07/23/22 01:19	7440-44-0	
Total Organic Carbon	11.2	mg/L		10.0	10		07/23/22 01:19	7440-44-0	
Total Organic Carbon	10.6	mg/L		10.0	10		07/23/22 01:19	-	
Total Organic Carbon	11.1	mg/L		10.0	10		07/23/22 01:19	7440-44-0	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU SLCRS	Lab ID: 7022	22028002	Collected: 07/13/2	2 08:15	Received: 07	/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60	10C Preparation Me	thod: Ef	PA 3005A			
	Pace Analytica	Services -	Melville					
Aluminum	<1000	ug/L	1000	5	07/19/22 09:15	08/17/22 13:24	7429-90-5	
Antimony	<300	ug/L	300	5	07/19/22 09:15	08/17/22 13:24	7440-36-0	
rsenic	<50.0	ug/L	50.0	5	07/19/22 09:15	08/17/22 13:24	7440-38-2	
Barium	2180	ug/L	1000	5	07/19/22 09:15	08/17/22 13:24	7440-39-3	
eryllium	<25.0	ug/L	25.0	5	07/19/22 09:15	08/17/22 13:24	7440-41-7	
oron	5850	ug/L	250	5	07/19/22 09:15	08/17/22 13:24	7440-42-8	
admium	<12.5	ug/L	12.5	5	07/19/22 09:15	08/17/22 13:24	7440-43-9	
calcium	15800000	ug/L	20000	100	07/19/22 09:15			
hromium	91.0	ug/L	50.0	5	07/19/22 09:15			
obalt	<250	ug/L	250	5	07/19/22 09:15			
Copper	<125	ug/L	125	5	07/19/22 09:15			
on .	3690	ug/L	500	5	07/19/22 09:15			
ead	<500	ug/L	500	100	07/19/22 09:15			
lagnesium	6450	ug/L	1000	5	07/19/22 09:15			
langanese	200	ug/L	50.0	5	07/19/22 09:15			
ickel	95.5J	ug/L	200	5	07/19/22 09:15			
otassium	5920000	ug/L	500000	100	07/19/22 09:15			
elenium	<1000	ug/L	1000	100	07/19/22 09:15			
ilver	11.8J	ug/L	50.0	5	07/19/22 09:15			
odium	14800000	ug/L ug/L	500000	100	07/19/22 09:15			
hallium	<1000	ug/L ug/L	1000	100	07/19/22 09:15			
anadium	20.4J	ug/L ug/L	250	5	07/19/22 09:15			
inc	<2000	ug/L ug/L	2000	100	07/19/22 09:15			
ii IC		-				00/11/22 13.21	7440-00-0	
470 Mercury	•		70A Preparation Me	thod: EF	PA 7470A			
	Pace Analytica	Services -	Melville					
Mercury	0.087J	ug/L	0.20	1	07/21/22 11:45	07/22/22 12:02	2 7439-97-6	
260C SIM Volatile Organics	Analytical Meth	od: EPA 82	60C SIM/5030C					
	Pace Analytica	Services -	Melville					
							400.04.4	
	3.3	ug/L	0.20	1		07/22/22 16:41	123-91-1	
Surrogates	3.3 96	ug/L %	0.20 43-153	1		07/22/22 16:41		
,4-Dioxane (p-Dioxane) Surrogates ,2-Dichlorobenzene-d4 (S) I-Bromofluorobenzene (S)							2199-69-1	
Surrogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S)	96	% % od: EPA 82	43-153 79-139 60C/5030C	1		07/22/22 16:41	2199-69-1	
Surrogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S) 260C Volatile Organics	96 99 Analytical Meth	% % od: EPA 82	43-153 79-139 60C/5030C	1		07/22/22 16:41	2199-69-1 460-00-4	ΙΗ
Surrogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S) 260C Volatile Organics	96 99 Analytical Meth Pace Analytica 402	% % od: EPA 82 Services - ug/L	43-153 79-139 60C/5030C Melville 25.0	1 1		07/22/22 16:41 07/22/22 16:41	2199-69-1 460-00-4 3 67-64-1	IH
Surrogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S) 260C Volatile Organics acetone acrylonitrile	96 99 Analytical Meth Pace Analytica 402 <1.0	% % od: EPA 82 Services - ug/L ug/L	43-153 79-139 60C/5030C Melville 25.0 1.0	1 1 5 1		07/22/22 16:41 07/22/22 16:41 07/15/22 13:33 07/15/22 12:16	2199-69-1 460-00-4 3 67-64-1 5 107-13-1	IH
currogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S) 260C Volatile Organics cetone crylonitrile enzene	96 99 Analytical Meth Pace Analytica 402 <1.0 <1.0	% od: EPA 82 Services - ug/L ug/L ug/L ug/L	43-153 79-139 60C/5030C Melville 25.0 1.0	1 1 5 1		07/22/22 16:41 07/22/22 16:41 07/15/22 13:33 07/15/22 12:16 07/15/22 12:16	2199-69-1 460-00-4 3 67-64-1 6 107-13-1 6 71-43-2	ΙΗ
Surrogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S) 260C Volatile Organics acetone acrylonitrile benzene bromochloromethane	96 99 Analytical Meth Pace Analytica 402 <1.0 <1.0 <1.0	% od: EPA 82 Services - ug/L ug/L ug/L ug/L ug/L	43-153 79-139 60C/5030C Melville 25.0 1.0 1.0	1 1 5 1 1		07/22/22 16:41 07/22/22 16:41 07/15/22 13:33 07/15/22 12:16 07/15/22 12:16 07/15/22 12:16	2199-69-1 460-00-4 3 67-64-1 5 107-13-1 6 71-43-2 5 74-97-5	IH
Surrogates ,2-Dichlorobenzene-d4 (S) -Bromofluorobenzene (S) 260C Volatile Organics acetone acrylonitrile denzene bromochloromethane bromodichloromethane	96 99 Analytical Meth Pace Analytica 402 <1.0 <1.0 <1.0 <1.0	% % od: EPA 82 Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	43-153 79-139 60C/5030C Melville 25.0 1.0 1.0 1.0	1 1 5 1 1 1		07/22/22 16:41 07/22/22 16:41 07/15/22 13:33 07/15/22 12:16 07/15/22 12:16 07/15/22 12:16 07/15/22 12:16	2199-69-1 460-00-4 3 67-64-1 5 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4	ΙΗ
<i>Surrogates</i> ,2-Dichlorobenzene-d4 (S)	96 99 Analytical Meth Pace Analytica 402 <1.0 <1.0 <1.0	% od: EPA 82 Services - ug/L ug/L ug/L ug/L ug/L	43-153 79-139 60C/5030C Melville 25.0 1.0 1.0	1 1 5 1 1		07/22/22 16:41 07/22/22 16:41 07/15/22 13:33 07/15/22 12:16 07/15/22 12:16 07/15/22 12:16	2199-69-1 460-00-4 3 67-64-1 5 107-13-1 5 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2	IH v3

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU SLCRS	Lab ID:	70222028002	Collected: 07/13/2	22 08:15	Received: (07/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
	Pace Analy	ytical Services -	Melville					
Carbon disulfide	1.5	5 ug/L	1.0	1		07/15/22 12:16	75-15-0	L2,v3
Carbon tetrachloride	-1.0 <1.0	ū	1.0	1		07/15/22 12:16		L2, VO
Chlorobenzene	<1.0	0	1.0	1		07/15/22 12:16		
Chloroethane	<1.0	-	1.0	1		07/15/22 12:16		v3
Chloroform	<1.0	-	1.0	1		07/15/22 12:16		
Chloromethane	<1.0	-	1.0	1		07/15/22 12:16		v3
1,2-Dibromo-3-chloropropane	<1.0	J	1.0	1		07/15/22 12:16		v3
Dibromochloromethane	<1.0	0	1.0	1		07/15/22 12:16		
I,2-Dibromoethane (EDB)	<1.0	-	1.0	1		07/15/22 12:16		
Dibromomethane	<1.0	-	1.0	1		07/15/22 12:16		
1,2-Dichlorobenzene	<1.0	-	1.0	1		07/15/22 12:16		
1,4-Dichlorobenzene	<1.0	J	1.0	1		07/15/22 12:16		
rans-1,4-Dichloro-2-butene	<1.0	0	1.0	1		07/15/22 12:16		v3
1,1-Dichloroethane	<1.0	-	1.0	1		07/15/22 12:16		VO
1,2-Dichloroethane	<1.0	-	1.0	1		07/15/22 12:16		
,1-Dichloroethene	<1.0	-	1.0	1		07/15/22 12:16		v3
is-1,2-Dichloroethene	<1.0	J	1.0	1		07/15/22 12:16		VO
rans-1,2-Dichloroethene	<1.0	0	1.0	1		07/15/22 12:16		
,2-Dichloropropane	<1.0	-	1.0	1		07/15/22 12:16		
:is-1,3-Dichloropropene	<1.0	-	1.0	1		07/15/22 12:16		
rans-1,3-Dichloropropene	<1.0	-	1.0	1		07/15/22 12:16		
Ethylbenzene	<1.0	J	1.0	1		07/15/22 12:16		
2-Hexanone	<5.0	0	5.0	1		07/15/22 12:16		
odomethane	<4.0	-	4.0	1		07/15/22 12:16		v3
Methylene Chloride	<1.0	-	1.0	1		07/15/22 12:16		٧٥
•	<5.0	-	5.0	1		07/15/22 12:16		
I-Methyl-2-pentanone (MIBK) Styrene	<0.0 <1.0	J	1.0	1		07/15/22 12:16		
1,1,1,2-Tetrachloroethane	<1.0	J	1.0	1		07/15/22 12:16		
1,1,2,2-Tetrachioroethane	<1.0 <1.0	J	1.0	1		07/15/22 12:16		
Fetrachloroethene	<1.0	J	1.0	1		07/15/22 12:16		v3
		0		1		07/15/22 12:16	_	VS
Foluene	<1.0	J	1.0					
I,1,1-Trichloroethane	<1.0	0	1.0	1		07/15/22 12:16 07/15/22 12:16		
I,1,2-Trichloroethane	<1.0	0	1.0	1				
Frichloroethene	<1.0	U	1.0	1		07/15/22 12:16		
Frichlorofluoromethane	<1.0	•	1.0	1		07/15/22 12:16		
,2,3-Trichloropropane	<1.0		1.0	1		07/15/22 12:16		
/inyl acetate	<1.0	ū	1.0	1		07/15/22 12:16		
/inyl chloride	<1.0	J	1.0	1		07/15/22 12:16		
(ylene (Total)	<3.0	u g/L	3.0	1		07/15/22 12:16	1330-20-7	
Surrogates I,2-Dichloroethane-d4 (S)	110) %	81-122	1		07/15/22 12:16	17060 07 0	
1-Bromofluorobenzene (S)	99		79-118	1		07/15/22 12:16		
-Bromonuorobenzene (S) -oluene-d8 (S)								
Tentatively Identified Compounds	93	J 70	82-122	1		07/15/22 12:16	2031-20-3	
Sulfur dioxide	12.0	J ug/L		1		07/15/22 12:16	7446-00-5	N
Silanol, trimethyl-	10.8	•		1		07/15/22 12:16		N
Juanoi, unineuryi-	10.0	ug/∟		1		01/15/22 12:10	1000-40-0	IN

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU SLCRS	Lab ID: 702	22028002	Collected: 07/1	3/22 08:	15 Received:	07/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Lim	t DF	Prepare	d Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Meth Pace Analytica							
Tentatively Identified Compounds Unknown	6.9J	ug/L		1		07/15/22 12:10	6	
2120B W Apparent Color	Analytical Meth Pace Analytica							
Apparent Color bH	32.0 6.4	units Std. Units	10 0. <i>′</i>			07/14/22 09:20 07/14/22 09:20		
2320B Alkalinity	Analytical Meth Pace Analytica							
Alkalinity, Total as CaCO3	180	mg/L	1	.0 1		07/19/22 13:3	0	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	26000	mg/L	5	.0 1		07/21/22 18:1	9	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	13700	mg/L	10	00 1		07/19/22 14:5	2	
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.02	20 1		07/14/22 09:2	5 18540-29-9	
110.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Melville	Method:	EPA 410.4			
Chemical Oxygen Demand	2340	mg/L	10	00 1	07/21/22 05	5:56 07/21/22 08:1	5	
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparation Melville	n Metho	d: SM22 5210B			
BOD, 5 day	110	mg/L	10	00 50	07/14/22 14	:28 07/19/22 11:38	3	
9034 Sulfide, Titration	Analytical Meth Pace Analytica		34 Preparation Melville	1ethod: E	EPA 9030B			
Sulfide	101	mg/L	2	.0 1	07/19/22 11	:00 07/19/22 14:2	2	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide Chloride Sulfate	<0.50 45100 7.6	mg/L mg/L mg/L	0.9 100 5)	07/25/22 21:1: 07/25/22 21:2: 07/25/22 21:1:	7 16887-00-6	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: NNU SLCRS	Lab ID: 7022	22028002	Collected: 07/13/2	22 08:15	Received: 07	7/13/22 12:38	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Preparation Me	thod: EF	PA 351.2						
	Pace Analytical	Services -	Melville								
Nitrogen, Kjeldahl, Total	19.9	mg/L	0.50	1	07/27/22 05:56	07/27/22 12:25	7727-37-9				
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth										
	Pace Analytical										
Nitrate as N	0.053	mg/L	0.050	1		07/15/22 07:34					
Nitrate-Nitrite (as N)	0.080	mg/L	0.050	1		07/15/22 07:34	1/27-37-9				
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical										
Nitrite as N	<0.050	mg/L	0.050	1		07/15/22 00:50	14797-65-0				
Phenolics, Total Recoverable	•	Analytical Method: EPA 420.1 Preparation Method: EPA 420.1 Pace Analytical Services - Melville									
Phenolics, Total Recoverable	151	ug/L	5.0	1	08/01/22 15:10	08/01/22 18:42	!				
4500 Ammonia Water	Analytical Meth Pace Analytical										
Nitrogen, Ammonia	71.6	mg/L	10.0	100		07/19/22 13:28	7664-41-7				
9014 Cyanide, Total	Analytical Meth Pace Analytical		014 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	0010C					
Cyanide	21.1	ug/L	10.0	1	07/25/22 18:40	07/25/22 19:44	57-12-5				
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A								
	Pace Analytical	Services -	Melville								
Total Organic Carbon	11.4	mg/L	10.0	10		07/23/22 01:31	7440-44-0				
Total Organic Carbon	11.7	mg/L	10.0	10		07/23/22 01:31	7440-44-0				
Total Organic Carbon	11.3	mg/L	10.0	10		07/23/22 01:31	7440-44-0				
Total Organic Carbon	11.5	mg/L	10.0	10		07/23/22 01:31	7440-44-0				

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: ONU SLCRS	Lab ID: 702	22028003	Collected: 07/13/2	22 07:35	Received: 07	7/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Juminum	<200	ug/L	200	1	07/19/22 09:15	07/26/22 11:06	7429-90-5	
Intimony	<60.0	ug/L	60.0	1	07/19/22 09:15	07/26/22 11:06	7440-36-0	
rsenic	<10.0	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:06	7440-38-2	
arium	927	ug/L	200	1	07/19/22 09:15	07/26/22 11:06	7440-39-3	
eryllium	<5.0	ug/L	5.0	1	07/19/22 09:15	07/26/22 11:06	7440-41-7	
Soron	797	ug/L	50.0	1	07/19/22 09:15	07/26/22 11:06	7440-42-8	
admium	<2.5	ug/L	2.5	1	07/19/22 09:15	07/26/22 11:06	7440-43-9	
alcium	4340000	ug/L	20000	100	07/19/22 09:15	08/17/22 13:29	7440-70-2	
Chromium	2.0J	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:06	7440-47-3	
obalt	<50.0	ug/L	50.0	1	07/19/22 09:15	07/26/22 11:06	7440-48-4	
opper	<25.0	ug/L	25.0	1	07/19/22 09:15	07/26/22 11:06	7440-50-8	
on	5990	ug/L	100	1	07/19/22 09:15	07/26/22 11:06	7439-89-6	
ead	<5.0	ug/L	5.0	1	07/19/22 09:15	07/26/22 11:06	7439-92-1	
1agnesium	67900	ug/L	200	1	07/19/22 09:15	07/26/22 11:06	7439-95-4	
langanese	6900	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:06	7439-96-5	
lickel	21.6J	ug/L	40.0	1	07/19/22 09:15	07/26/22 11:06	7440-02-0	
otassium	1660000	ug/L	500000	100	07/19/22 09:15	08/17/22 13:29	7440-09-7	
elenium	<10.0	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:06	7782-49-2	
iilver	2.4J	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:06	7440-22-4	
odium	3970000	ug/L	500000	100	07/19/22 09:15	08/17/22 13:29	7440-23-5	
hallium	<10.0	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:06	7440-28-0	
'anadium	5.1J	ug/L	50.0	1	07/19/22 09:15	07/26/22 11:06	7440-62-2	
inc	<20.0	ug/L	20.0	1	07/19/22 09:15	07/26/22 11:06	7440-66-6	
470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: EF	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	07/21/22 11:45	07/22/22 12:03	3 7439-97-6	
260C SIM Volatile Organics	Analytical Meth	nod: EPA 82	260C SIM/5030C					
	Pace Analytica							
,4-Dioxane (p-Dioxane) Surrogates	8.4	ug/L	0.20	1		07/22/22 17:05	5 123-91-1	M1
,2-Dichlorobenzene-d4 (S)	98	%	43-153	1		07/22/22 17:05	5 2199-69-1	
-Bromofluorobenzene (S)	100	%	79-139	1		07/22/22 17:05		
260C Volatile Organics	Analytical Meth Pace Analytica							
cetone	2.4J	ug/L	5.0	1		07/15/22 12:35	5 67-64-1	IH
acrylonitrile	<1.0	ug/L	1.0	1		07/15/22 12:35		
Benzene	<1.0	ug/L	1.0	1		07/15/22 12:35		
Bromochloromethane	<1.0	ug/L	1.0	1		07/15/22 12:35		
romodichloromethane	<1.0	ug/L	1.0	1		07/15/22 12:35		
romoform	<1.0	ug/L	1.0	1		07/15/22 12:35		
romomethane	<1.0	ug/L	1.0	1		07/15/22 12:35		v3
-Butanone (MEK)	<5.0	ug/L	5.0	1		07/15/22 12:35		

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: ONU SLCRS	Lab ID: 70	222028003	Collected: 07/13/2	2 07:35	35 Received: 07/13/22 12:38 Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
8260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C						
	Pace Analytic	al Services -	Melville						
Carbon disulfide	<1.0	ug/L	1.0	1		07/15/22 12:35	75-15-0	L2,v3	
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/15/22 12:35		,,,	
Chlorobenzene	<1.0	ug/L	1.0	1		07/15/22 12:35			
Chloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35		v3	
Chloroform	<1.0	ug/L	1.0	1		07/15/22 12:35			
Chloromethane	<1.0	ug/L	1.0	1		07/15/22 12:35		v3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/15/22 12:35		v3	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/15/22 12:35			
Dibromomethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 12:35			
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/15/22 12:35		v3	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:35		v3	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:35		VO	
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/15/22 12:35			
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 12:35			
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 12:35			
Ethylbenzene	<1.0	ug/L	1.0	1		07/15/22 12:35			
2-Hexanone	<5.0	ug/L	5.0	1		07/15/22 12:35			
odomethane	<4.0	ug/L	4.0	1		07/15/22 12:35		v3	
Methylene Chloride	<1.0	ug/L	1.0	1		07/15/22 12:35		VO	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/15/22 12:35			
Styrene	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
Tetrachloroethene	<1.0	ug/L	1.0	1		07/15/22 12:35		v3	
Toluene	<1.0	ug/L	1.0	1		07/15/22 12:35		VO	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35		M1	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
Trichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:35			
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/15/22 12:35			
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/15/22 12:35			
Vinyl acetate	<1.0 <1.0	ug/L	1.0	1		07/15/22 12:35			
Vinyl decidic	<1.0	ug/L	1.0	1		07/15/22 12:35			
Xylene (Total)	<3.0	ug/L	3.0	1		07/15/22 12:35			
Surrogates	~5.0	ug/L	5.0	•		31/10/22 12:00	1000 20-1		
1,2-Dichloroethane-d4 (S)	112	%	81-122	1		07/15/22 12:35	17060-07-0		
4-Bromofluorobenzene (S)	104	%	79-118	1		07/15/22 12:35			
Toluene-d8 (S)	95	%	82-122	1		07/15/22 12:35			
Tentatively Identified Compounds	55	70	02 122	•		3.7.13.22 12.00	_00. 200		
Sulfur dioxide	19.3J	ug/L		1		07/15/22 12:35	7446-09-5	N	

Date: 08/24/2022 08:29 AM

ANALYTICAL RESULTS

Project: LEACHATES BASELINE 7/13

Sample: ONU SLCRS	Lab ID: 702	222028003	Collected: 07/13	/22 07:3	5 Received: 07	7/13/22 12:38 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2120B W Apparent Color	Analytical Met							
Apparent Color pH	42.0 6.6	units Std. Units	5.0 0.10			07/14/22 09:24 07/14/22 09:24		
2320B Alkalinity	Analytical Met Pace Analytic							
Alkalinity, Total as CaCO3	305	mg/L	1.0	1		07/19/22 13:46		M1
2340C Hardness, Total	Analytical Met Pace Analytic							
Tot Hardness asCaCO3 (SM 2340B	8700	mg/L	5.0	1		07/22/22 17:30		
2540C Total Dissolved Solids	Analytical Met Pace Analytic							
Total Dissolved Solids	19300	mg/L	100	1		07/19/22 14:52		
Chromium, Hexavalent	Analytical Met Pace Analytic							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		07/14/22 09:20	18540-29-9	
410.4 COD	Analytical Met Pace Analytic		0.4 Preparation M Melville	ethod: E	PA 410.4			
Chemical Oxygen Demand	952	mg/L	40.0	1	07/21/22 05:56	07/21/22 08:15		M1
5210B BOD, 5 day	Analytical Met Pace Analytic		5210B Preparation Melville	Method:	: SM22 5210B			
BOD, 5 day	<4.0	mg/L	4.0	2	07/14/22 14:31	07/19/22 11:40		
9034 Sulfide, Titration	Analytical Met Pace Analytic		34 Preparation Me Melville	thod: EF	PA 9030B			
Sulfide	8.0	mg/L	2.0	1	07/19/22 11:00	07/19/22 14:25		
300.0 IC Anions 28 Days	Analytical Met Pace Analytic							
Bromide Chloride Sulfate	160 10000 97.9	mg/L mg/L mg/L	100 400 25.0	200		07/22/22 13:47 07/22/22 13:47 07/25/22 21:40	16887-00-6	M1 M1
351.2 Total Kjeldahl Nitrogen	Analytical Met Pace Analytic		1.2 Preparation M Melville	ethod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	15.5	mg/L	0.50	1	07/27/22 05:56	07/27/22 12:26	7727-37-9	M1
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met Pace Analytic							
Nitrate as N	0.098	mg/L	0.050	1		07/15/22 07:26	14797-55-8	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: ONU SLCRS	Lab ID: 7022	22028003	Collected:	07/13/2	22 07:35	Received: 07	/13/22 12:38 M	latrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2						
	Pace Analytical	Services -	Melville						
Nitrate-Nitrite (as N)	0.098	mg/L		0.050	1		07/15/22 07:26	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		07/15/22 00:43	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	0.1 Preparat	ion Met	hod: EP	A 420.1			
	Pace Analytical	Services -	Melville						
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	08/05/22 12:10	08/05/22 16:15		
4500 Ammonia Water	Analytical Meth Pace Analytical								
Nitrogen, Ammonia	17.7		Meiville	2.5	25		07/19/22 13:29	7664 41 7	
Millogen, Ammonia	17.7	mg/L		2.5	23		07/19/22 13.29	7004-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		•	nide Pr	eparatio	n Method: EPA 9	010C		
Cyanide	<10.0	ug/L		10.0	1	07/25/22 18:40	07/25/22 19:44	57-12-5	M1
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	14.0	mg/L		10.0	10		07/23/22 01:55	7440-44-0	M1
Total Organic Carbon	13.8	mg/L		10.0	10		07/23/22 01:55	7440-44-0	M1
Total Organic Carbon	13.8	mg/L		10.0	10		07/23/22 01:55	7440-44-0	M1
Total Organic Carbon	14.3	mg/L		10.0	10		07/23/22 01:55	7440-44-0	M1

Project: LEACHATES BASELINE 7/13

Date: 08/24/2022 08:29 AM

Sample: SA SLCRS	Lab ID: 702	22028004	Collected: 07/13/2	22 07:40	Received: 07	7/13/22 12:38 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A				
	Pace Analytica	l Services -	Melville						
Aluminum	<200	ug/L	200	1	07/19/22 09:15	07/26/22 11:08	7429-90-5		
Antimony	<60.0	ug/L	60.0	1		07/26/22 11:08			
rsenic	<10.0	ug/L	10.0	1		07/26/22 11:08			
Barium	1020	ug/L	200	1		07/26/22 11:08			
Beryllium	<5.0	ug/L	5.0	1		07/26/22 11:08			
Boron	729	ug/L	50.0	1	07/19/22 09:15	07/26/22 11:08	7440-42-8		
Cadmium	<2.5	ug/L	2.5	1		07/26/22 11:08			
Calcium	1540000	ug/L	20000	100	07/19/22 09:15	08/17/22 13:38	7440-70-2		
Chromium	2.1J	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:08	7440-47-3		
Cobalt	<50.0	ug/L	50.0	1	07/19/22 09:15	07/26/22 11:08	7440-48-4		
Copper	<25.0	ug/L	25.0	1	07/19/22 09:15	07/26/22 11:08	7440-50-8		
on	6570	ug/L	100	1	07/19/22 09:15	07/26/22 11:08	7439-89-6		
ead	<5.0	ug/L	5.0	1	07/19/22 09:15	07/26/22 11:08	7439-92-1		
/lagnesium	65300	ug/L	200	1	07/19/22 09:15	07/26/22 11:08	7439-95-4		
Manganese	7580	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:08	7439-96-5		
lickel	21.6J	ug/L	40.0	1	07/19/22 09:15	07/26/22 11:08	7440-02-0		
otassium	396000J	ug/L	500000	100	07/19/22 09:15	08/17/22 13:38	7440-09-7	В	
Selenium	<10.0	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:08	7782-49-2		
Silver	2.7J	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:08	7440-22-4		
Sodium	1190000	ug/L	500000	100	07/19/22 09:15	08/17/22 13:38	7440-23-5		
hallium	<10.0	ug/L	10.0	1	07/19/22 09:15	07/26/22 11:08	7440-28-0		
anadium	5.2J	ug/L	50.0	1	07/19/22 09:15	07/26/22 11:08	7440-62-2		
inc	<20.0	ug/L	20.0	1	07/19/22 09:15	07/26/22 11:08	7440-66-6		
470 Mercury	Analytical Method: EPA 7470A Preparation Method: EPA 7470A								
	Pace Analytica	I Services -	Melville						
Mercury	<0.20	ug/L	0.20	1	07/21/22 11:45	07/22/22 12:08	7439-97-6		
260C SIM Volatile Organics	Analytical Meth	nod: EPA 82	260C SIM/5030C						
_	Pace Analytica								
,4-Dioxane (p-Dioxane) Surrogates	1.1	ug/L	0.20	1		07/22/22 17:28	123-91-1		
,2-Dichlorobenzene-d4 (S)	99	%	43-153	1		07/22/22 17:28	2199-69-1		
-Bromofluorobenzene (S)	101	%	79-139	1		07/22/22 17:28			
260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C						
	Pace Analytica	l Services -	Melville						
cetone	1.9J	ug/L	5.0	1		07/15/22 12:55	67-64-1	IH	
Acrylonitrile	<1.0	ug/L	1.0	1		07/15/22 12:55	107-13-1		
Benzene	<1.0	ug/L	1.0	1		07/15/22 12:55	71-43-2		
Bromochloromethane	<1.0	ug/L	1.0	1		07/15/22 12:55	74-97-5		
Bromodichloromethane	<1.0	ug/L	1.0	1		07/15/22 12:55	75-27-4		
Bromoform	<1.0	ug/L	1.0	1		07/15/22 12:55	75-25-2		
Bromomethane	<1.0	ug/L	1.0	1		07/15/22 12:55	74-83-9	v3	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/15/22 12:55	78-03-3		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: SA SLCRS	Lab ID: 702	222028004	Collected: 07/13/2	2 07:40	Received: 0	7/13/22 12:38 N	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260C Volatile Organics	Analytical Method: EPA 8260C/5030C									
	Pace Analytic	al Services -	Melville							
Carbon disulfide	<1.0	ug/L	1.0	1		07/15/22 12:55	75-15-0	L2,v3		
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/15/22 12:55		,		
Chlorobenzene	<1.0	ug/L	1.0	1		07/15/22 12:55				
Chloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55		v3		
Chloroform	<1.0	ug/L	1.0	1		07/15/22 12:55				
Chloromethane	<1.0	ug/L	1.0	1		07/15/22 12:55		v3		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/15/22 12:55		v3		
Dibromochloromethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/15/22 12:55				
Dibromomethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 12:55				
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/15/22 12:55		v3		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,2-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:55		v3		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:55		VO		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,2-Dichloropropane	<1.0	ug/L	1.0	1		07/15/22 12:55				
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 12:55				
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 12:55				
Ethylbenzene	<1.0	ug/L	1.0	1		07/15/22 12:55				
2-Hexanone	<5.0	ug/L	5.0	1		07/15/22 12:55				
Iodomethane	<4.0	ug/L	4.0	1		07/15/22 12:55		v3		
Methylene Chloride	<1.0	ug/L	1.0	1		07/15/22 12:55		VO		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		07/15/22 12:55				
Styrene	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
Tetrachloroethene	<1.0	ug/L	1.0	1		07/15/22 12:55		v3		
Toluene	<1.0	ug/L	1.0	1		07/15/22 12:55		٧٥		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
Trichloroethene	<1.0	ug/L	1.0	1		07/15/22 12:55				
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/15/22 12:55				
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/15/22 12:55				
Vinyl acetate	<1.0 <1.0	ug/L ug/L	1.0	1		07/15/22 12:55				
Vinyl acetate Vinyl chloride	<1.0	ug/L	1.0	1		07/15/22 12:55				
Xylene (Total)	<3.0	ug/L ug/L	3.0	1		07/15/22 12:55				
Surrogates	₹3.0	ug/L	3.0	'		01/10/22 12:00	1000-20-1			
1,2-Dichloroethane-d4 (S)	113	%	81-122	1		07/15/22 12:55	17060-07-0			
4-Bromofluorobenzene (S)	101	%	79-118	1		07/15/22 12:55				
Toluene-d8 (S)	94	%	82-122	1		07/15/22 12:55				
Tentatively Identified Compounds	J -f	70	02 122	•		31/10/22 12:00	_00. 200			
Sulfur dioxide	20.7J	ug/L		1		07/15/22 12:55	7446-09-5	N		

Project: LEACHATES BASELINE 7/13

Date: 08/24/2022 08:29 AM

Sample: SA SLCRS	Lab ID: 702	22028004	Collected: 07/13	/22 07:4	0 Received: 07	7/13/22 12:38 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2120B W Apparent Color	Analytical Met Pace Analytica							
Apparent Color pH	18.0 7.6	units Std. Units	5.0 0.10			07/14/22 09:26 07/14/22 09:26		
2320B Alkalinity	Analytical Met Pace Analytica							
Alkalinity, Total as CaCO3	174	mg/L	1.0	1		07/19/22 14:28		
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	3200	mg/L	5.0	1		07/22/22 17:40		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	6120	mg/L	20.0	1		07/19/22 14:54		
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		07/14/22 09:23	18540-29-9	
410.4 COD	Analytical Met Pace Analytica		.4 Preparation M Melville	ethod: E	PA 410.4			
Chemical Oxygen Demand	178	mg/L	10.0	1	07/21/22 05:56	07/21/22 08:15		
5210B BOD, 5 day	Analytical Met Pace Analytica		210B Preparation Melville	Method:	SM22 5210B			
BOD, 5 day	<4.0	mg/L	4.0	2	07/14/22 14:39	07/19/22 11:45		
9034 Sulfide, Titration	Analytical Met Pace Analytica		4 Preparation Me Melville	thod: EF	PA 9030B			
Sulfide	<2.0	mg/L	2.0	1	07/19/22 12:30	07/19/22 14:33		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide Chloride Sulfate	<0.50 3730 407	mg/L mg/L mg/L	0.50 400 25.0	200		07/21/22 23:30 07/25/22 23:15 07/25/22 22:21	16887-00-6	
351.2 Total Kjeldahl Nitrogen	Analytical Met Pace Analytica		.2 Preparation M Melville	ethod: E	PA 351.2			
Nitrogen, Kjeldahl, Total	<0.50	mg/L	0.50	1	07/27/22 05:56	07/27/22 12:29	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met Pace Analytica							
Nitrate as N	1.6	mg/L	0.050	1		07/15/22 07:30	14797-55-8	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: SA SLCRS	Lab ID: 7022	2028004	Collected: 07/13/	22 07:40	Received: 07	7/13/22 12:38 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytical							
Nitrate-Nitrite (as N)	1.6	mg/L	0.050	1		07/15/22 07:30	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical							
Nitrite as N	<0.050	mg/L	0.050	1		07/15/22 00:40	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		0.1 Preparation Me Melville	thod: EF	PA 420.1			
Phenolics, Total Recoverable	40.6	ug/L	5.0	1	08/01/22 15:10	08/01/22 18:45		
4500 Ammonia Water	Analytical Meth Pace Analytical							
Nitrogen, Ammonia	0.092J	mg/L	0.10	1		07/19/22 13:35	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide P Melville	reparatio	on Method: EPA 9	010C		
Cyanide	9.4J	ug/L	10.0	1	07/25/22 18:40	07/25/22 19:47	57-12-5	
9060A TOC as NPOC	Analytical Meth Pace Analytical							
Total Organic Carbon Total Organic Carbon Total Organic Carbon	4.2J 4.4J 4.2J	mg/L mg/L mg/L	10.0 10.0 10.0	10 10 10		07/23/22 02:32 07/23/22 02:32 07/23/22 02:32	7440-44-0	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: TRIP BLANK	Lab ID: 702	22028005	Collected: 07/13/2	22 00:00	Received:	07/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Method: EPA 8260C/5030C							
	Pace Analytica	l Services -	Melville					
Acetone	1.6J	ug/L	5.0	1		07/15/22 11:37	7 67-64-1	IH
Acrylonitrile	<1.0	ug/L	1.0	1		07/15/22 11:37		
Benzene	<1.0	ug/L	1.0	1		07/15/22 11:37		
Bromochloromethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
Bromodichloromethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
Bromoform	<1.0	ug/L	1.0	1		07/15/22 11:37	-	
Bromomethane	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
2-Butanone (MEK)	<5.0	ug/L	5.0	1		07/15/22 11:37		
Carbon disulfide	<1.0	ug/L	1.0	1		07/15/22 11:37		L2,v3
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/15/22 11:37		,
Chlorobenzene	<1.0	ug/L	1.0	1		07/15/22 11:37		
Chloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
Chloroform	<1.0	ug/L	1.0	1		07/15/22 11:37		••
Chloromethane	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
Dibromochloromethane	<1.0	ug/L	1.0	1		07/15/22 11:37		VO
I,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/15/22 11:37		
Dibromomethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 11:37		
,,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 11:37		
rans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
1,1-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		٧٥
,, Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
cis-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		07/15/22 11:37		VS
rans-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		07/15/22 11:37		
1,2-Dichloropropane	<1.0	ug/L ug/L	1.0	1		07/15/22 11:37		
	<1.0	-	1.0	1		07/15/22 11:37		
cis-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1		07/15/22 11:37		
rans-1,3-Dichloropropene Ethylbenzene	<1.0 <1.0	ug/L	1.0	1		07/15/22 11:37		
Ethylberizerie 2-Hexanone		ug/L		1				
odomethane	<5.0 <4.0	ug/L	5.0 4.0	1		07/15/22 11:37 07/15/22 11:37		v3
	<1.0	ug/L	1.0	1		07/15/22 11:37		VS
Methylene Chloride		ug/L	5.0	1		07/15/22 11:37		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L						
Styrene	<1.0	ug/L	1.0	1		07/15/22 11:37		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
Tetrachloroethene	<1.0	ug/L	1.0	1		07/15/22 11:37		v3
Toluene	<1.0	ug/L	1.0	1		07/15/22 11:37		
I,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
Frichloroethene	<1.0	ug/L	1.0	1		07/15/22 11:37		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/15/22 11:37		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/15/22 11:37		
Vinyl acetate	<1.0	ug/L	1.0	1		07/15/22 11:37		
Vinyl chloride	<1.0	ug/L	1.0	1		07/15/22 11:37	75-01-4	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Sample: TRIP BLANK	Lab ID: 7022	22028005	Collected: 07/13/2	22 00:00	Received: 07	7/13/22 12:38 I	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260C Volatile Organics	Analytical Method: EPA 8260C/5030C									
	Pace Analytical	Pace Analytical Services - Melville								
Xylene (Total) Surrogates	<3.0	ug/L	3.0	1		07/15/22 11:37	1330-20-7			
1,2-Dichloroethane-d4 (S)	108	%	81-122	1		07/15/22 11:37	17060-07-0			
4-Bromofluorobenzene (S)	102	%	79-118	1		07/15/22 11:37	460-00-4			
Toluene-d8 (S)	92	%	82-122	1		07/15/22 11:37	2037-26-5			
TIC MSV Water	Analytical Meth	od: EPA 82	60							
	Pace Analytical	Services -	Melville							
TIC Search	No TIC's Found			1		07/19/22 19:50)			

QUALITY CONTROL DATA

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265936 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1343592 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 07/22/22 11:56

LABORATORY CONTROL SAMPLE: 1343593

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 1.1 108 80-120 ug/L

MATRIX SPIKE SAMPLE: 1343594

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 Mercury ug/L 1.1 102 75-125

MATRIX SPIKE SAMPLE: 1343596

70222765010 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <0.20 75-125 M1 Mercury ug/L 1 0.66 65

SAMPLE DUPLICATE: 1343595

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 <0.20</td>

SAMPLE DUPLICATE: 1343597

Date: 08/24/2022 08:29 AM

Parameter Units 70222765010 Dup
Result Result RPD Qualifiers
ug/L <0.20 <0.20

Mercury ug/L <0.20 <0.20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

QC Batch: 265487 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1341537 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	07/26/22 10:48	
Antimony	ug/L	<60.0	60.0	07/26/22 10:48	
Arsenic	ug/L	<10.0	10.0	07/26/22 10:48	
Barium	ug/L	<200	200	07/26/22 10:48	
Beryllium	ug/L	<5.0	5.0	07/26/22 10:48	
Boron	ug/L	1.7J	50.0	07/26/22 10:48	
Cadmium	ug/L	<2.5	2.5	07/26/22 10:48	
Calcium	ug/L	<200	200	07/26/22 10:48	
Chromium	ug/L	<10.0	10.0	07/26/22 10:48	
Cobalt	ug/L	<50.0	50.0	07/26/22 10:48	
Copper	ug/L	<25.0	25.0	07/26/22 10:48	
Iron	ug/L	<100	100	07/26/22 10:48	
Lead	ug/L	<5.0	5.0	07/26/22 10:48	
Magnesium	ug/L	<200	200	07/26/22 10:48	
Manganese	ug/L	<10.0	10.0	07/26/22 10:48	
Nickel	ug/L	<40.0	40.0	07/26/22 10:48	
Potassium	ug/L	1150J	5000	07/26/22 10:48	
Selenium	ug/L	<10.0	10.0	07/26/22 10:48	
Silver	ug/L	<10.0	10.0	07/26/22 10:48	
Sodium	ug/L	<5000	5000	07/26/22 10:48	
Thallium	ug/L	<10.0	10.0	07/26/22 10:48	
Vanadium	ug/L	<50.0	50.0	07/26/22 10:48	
Zinc	ug/L	<20.0	20.0	07/26/22 10:48	

LABORATORY CONTROL SAMPLE:	1341538					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	25000	24600	98	80-120	
Antimony	ug/L	1000	972	97	80-120	
Arsenic	ug/L	500	476	95	80-120	
Barium	ug/L	500	489	98	80-120	
Beryllium	ug/L	500	490	98	80-120	
Boron	ug/L	1000	970	97	80-120	
Cadmium	ug/L	500	482	96	80-120	
Calcium	ug/L	25000	24800	99	80-120	
Chromium	ug/L	500	482	96	80-120	
Cobalt	ug/L	500	485	97	80-120	
Copper	ug/L	500	471	94	80-120	
Iron	ug/L	12500	12000	96	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

LABORATORY CONTROL SAMPLE:	1341538					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead	ug/L	500	489	98	80-120	
Magnesium	ug/L	25000	24100	96	80-120	
Manganese	ug/L	500	485	97	80-120	
Nickel	ug/L	500	488	98	80-120	
Potassium	ug/L	25000	23700	95	80-120	
Selenium	ug/L	500	470	94	80-120	
Silver	ug/L	250	244	98	80-120	
Sodium	ug/L	25000	27300	109	80-120	
Thallium	ug/L	250	250	100	80-120	
Vanadium	ug/L	500	483	97	80-120	
Zinc	ug/L	500	481	96	80-120	

MATRIX SPIKE SAMPLE:	1341540						
		70222028001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier
Aluminum	ug/L	530	12500	13900	107	75-125	
Antimony	ug/L	86.5	1000	1150	106	75-125	
Arsenic	ug/L	<10.0	500	518	104	75-125	
Barium	ug/L	521	500	1020	100	75-125	
Beryllium	ug/L	<5.0	500	436	87	75-125	
Boron	ug/L	7150	1000	8160	101	75-125	
Cadmium	ug/L	8.8	500	427	84	75-125	
Calcium	ug/L	6410000	12500	6640000	1840	75-125 N	<i>I</i> 11
Chromium	ug/L	3.1J	500	449	89	75-125	
Cobalt	ug/L	<50.0	500	439	87	75-125	
Copper	ug/L	55.3	500	454	80	75-125	
ron	ug/L	661	5000	4930	85	75-125	
₋ead	ug/L	70.7	500	493	84	75-125	
Magnesium	ug/L	42800	12500	51800	72	75-125 N	<i>I</i> 11
Manganese	ug/L	1490	500	1950	92	75-125	
Nickel	ug/L	44.6	500	449	81	75-125	
Potassium	ug/L	2270000	12500	2390000	960	75-125 N	<i>I</i> 11
Selenium	ug/L	<1000	500	487	89	75-125	
Silver	ug/L	1.3J	250	198	79	75-125	
Sodium	ug/L	< 5000	12500	<5000	0	75-125 N	<i>I</i> 11
Γhallium	ug/L	<10.0	250	194	77	75-125	
√anadium	ug/L	<50.0	500	461	92	75-125	
Zinc	ug/L	580	500	988	82	75-125	

SAMPLE DUPLICATE: 1341539

Date: 08/24/2022 08:29 AM

Parameter	Units	70222028001 Result	Dup Result	RPD	Qualifiers
Aluminum	ug/L	530	501	6	
Antimony	ug/L	86.5	78.1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

SAMPLE DUPLICATE: 1341539 70222028001 Dup Parameter Units Result Result **RPD** Qualifiers <10.0 Arsenic ug/L <10.0 521 Barium ug/L 499 4 < 5.0 Beryllium ug/L <5.0 Boron 7150 6870 4 ug/L Cadmium 8.8 8.4 5 ug/L Calcium ug/L 6410000 6430000 0 Chromium 3.1J ug/L 3.0J Cobalt ug/L <50.0 <50.0 Copper ug/L 55.3 55.1 0 661 Iron ug/L 631 5 70.7 Lead ug/L 70.0 1 42800 4 Magnesium ug/L 41200 1490 Manganese ug/L 1430 4 Nickel ug/L 44.6 43.6 2 2270000 Potassium ug/L 2270000 0 Selenium ug/L <1000 <1000 Silver ug/L 1.3J <10.0 <5000 Sodium ug/L <5000 <10.0 Thallium ug/L <10.0 <50.0 Vanadium < 50.0 ug/L 580 Zinc 562 3 ug/L

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 266167 Analysis Method: EPA 8260C SIM/5030C QC Batch Method: EPA 8260C SIM/5030C Analysis Description: 8260C SIM 5030C

> Laboratory: Pace Analytical Services - Melville

70222028001, 70222028002, 70222028003, 70222028004 Associated Lab Samples:

METHOD BLANK: 1344759 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004 Rlank Reporting

		Diam	reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	<0.20	0.20	07/22/22 15:30	
1,2-Dichlorobenzene-d4 (S)	%	94	43-153	07/22/22 15:30	
4-Bromofluorobenzene (S)	%	97	79-139	07/22/22 15:30	

LABORATORY CONTROL SAMPLE: 1344760

Date: 08/24/2022 08:29 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	2.5	2.3	93	59-135	
1,2-Dichlorobenzene-d4 (S)	%			102	43-153	
4-Bromofluorobenzene (S)	%			100	79-139	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1344805 1344806 MAC MCD

Parameter	702 Units	222028003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	8.4	2.5	2.5	12.0	12.5	142	162	42-159	4 1	<i>I</i> 11
1,2-Dichlorobenzene-d4 (S) 4-Bromofluorobenzene (S)	% %						99 101	99 101	43-153 79-139		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

QC Batch: 265051 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004, 70222028005

METHOD BLANK: 1339516 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004, 70222028005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1,1-Trichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1-Dichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1-Dichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	v3
1,2,3-Trichloropropane	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	07/15/22 09:55	v3
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dichloropropane	ug/L	<1.0	1.0	07/15/22 09:55	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
2-Butanone (MEK)	ug/L	<5.0	5.0	07/15/22 09:55	
2-Hexanone	ug/L	<5.0	5.0	07/15/22 09:55	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	07/15/22 09:55	
Acetone	ug/L	<5.0	5.0	07/15/22 09:55	
Acrylonitrile	ug/L	<1.0	1.0	07/15/22 09:55	
Benzene	ug/L	<1.0	1.0	07/15/22 09:55	
Bromochloromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Bromodichloromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Bromoform	ug/L	<1.0	1.0	07/15/22 09:55	
Bromomethane	ug/L	<1.0	1.0	07/15/22 09:55	v3
Carbon disulfide	ug/L	<1.0	1.0	07/15/22 09:55	v3
Carbon tetrachloride	ug/L	<1.0	1.0	07/15/22 09:55	
Chlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
Chloroethane	ug/L	<1.0	1.0	07/15/22 09:55	v3
Chloroform	ug/L	<1.0	1.0	07/15/22 09:55	
Chloromethane	ug/L	<1.0	1.0	07/15/22 09:55	v3
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	07/15/22 09:55	
Dibromochloromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Dibromomethane	ug/L	<1.0	1.0	07/15/22 09:55	
Ethylbenzene	ug/L	<1.0	1.0	07/15/22 09:55	
Iodomethane	ug/L	<4.0	4.0	07/15/22 09:55	v3
Methylene Chloride	ug/L	<1.0	1.0	07/15/22 09:55	
Styrene	ug/L	<1.0	1.0	07/15/22 09:55	
Tetrachloroethene	ug/L	<1.0	1.0	07/15/22 09:55	v3
Toluene	ug/L	<1.0	1.0	07/15/22 09:55	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

METHOD BLANK: 1339516 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004, 70222028005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	07/15/22 09:55	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	07/15/22 09:55	v3
Trichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	
Trichlorofluoromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Vinyl acetate	ug/L	<1.0	1.0	07/15/22 09:55	
Vinyl chloride	ug/L	<1.0	1.0	07/15/22 09:55	
Xylene (Total)	ug/L	<3.0	3.0	07/15/22 09:55	
1,2-Dichloroethane-d4 (S)	%	113	81-122	07/15/22 09:55	
4-Bromofluorobenzene (S)	%	102	79-118	07/15/22 09:55	
Toluene-d8 (S)	%	91	82-122	07/15/22 09:55	

LABORATORY CONTROL SAMPLE:	1339517				
		Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifie
1,1,1,2-Tetrachloroethane	ug/L	50	44.7	89	75-122
1,1,1-Trichloroethane	ug/L	50	46.4	93	72-126
1,1,2,2-Tetrachloroethane	ug/L	50	45.1	90	70-127
1,1,2-Trichloroethane	ug/L	50	45.6	91	81-119
1,1-Dichloroethane	ug/L	50	43.8	88	72-126
1,1-Dichloroethene	ug/L	50	33.7	67	66-133 v3
1,2,3-Trichloropropane	ug/L	50	47.6	95	69-120
1,2-Dibromo-3-chloropropane	ug/L	50	41.4	83	47-133 v3
1,2-Dibromoethane (EDB)	ug/L	50	49.6	99	81-123
1,2-Dichlorobenzene	ug/L	50	47.9	96	80-117
1,2-Dichloroethane	ug/L	50	53.8	108	69-134
1,2-Dichloropropane	ug/L	50	45.4	91	75-125
1,4-Dichlorobenzene	ug/L	50	47.7	95	80-117
2-Butanone (MEK)	ug/L	50	46.6	93	33-165 IH
2-Hexanone	ug/L	50	49.1	98	50-128 IH
4-Methyl-2-pentanone (MIBK)	ug/L	50	47.8	96	62-131
Acetone	ug/L	50	60.8	122	14-156 IH
Acrylonitrile	ug/L	50	45.3	91	60-136
Benzene	ug/L	50	46.7	93	78-117
Bromochloromethane	ug/L	50	48.1	96	77-122
Bromodichloromethane	ug/L	50	50.4	101	80-123
Bromoform	ug/L	50	45.2	90	49-138
Bromomethane	ug/L	50	32.8	66	10-143 IH,v3
Carbon disulfide	ug/L	50	32.1	64	66-133 L2,v3
Carbon tetrachloride	ug/L	50	42.6	85	64-135
Chlorobenzene	ug/L	50	45.3	91	79-117
Chloroethane	ug/L	50	30.3	61	31-156 v3
Chloroform	ug/L	50	49.7	99	79-123
Chloromethane	ug/L	50	24.4	49	39-116 v3
cis-1,2-Dichloroethene	ug/L	50	44.3	89	77-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

ABORATORY CONTROL SAMPLE:	1339517					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
is-1,3-Dichloropropene	ug/L	50	45.3	91	78-131	
ibromochloromethane	ug/L	50	45.0	90	65-123	
bromomethane	ug/L	50	54.9	110	81-123	
nylbenzene	ug/L	50	42.3	85	79-115	
lomethane	ug/L	50	19.5	39	10-183	v3
thylene Chloride	ug/L	50	44.2	88	67-123	
rene	ug/L	50	45.1	90	82-121	
achloroethene	ug/L	50	33.2	66	65-120	v3
ene	ug/L	50	46.7	93	80-114	
s-1,2-Dichloroethene	ug/L	50	42.5	85	74-123	
-1,3-Dichloropropene	ug/L	50	44.1	88	73-135	
s-1,4-Dichloro-2-butene	ug/L	50	39.3	79	52-137	v3
nloroethene	ug/L	50	45.9	92	79-115	
hlorofluoromethane	ug/L	50	41.7	83	51-136	
d acetate	ug/L	50	46.3	93	49-136	
vl chloride	ug/L	50	32.4	65	49-118	
ne (Total)	ug/L	150	126	84	80-118	
Dichloroethane-d4 (S)	%			109	81-122	
omofluorobenzene (S)	%			103	79-118	
ene-d8 (S)	%			94	82-122	

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 13414	86		1341487						
			MS	MSD							
	702	222028003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
I,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	50.6	51.8	101	104	65-122		
1,1,1-Trichloroethane	ug/L	<1.0	50	50	60.3	64.8	121	130	72-123	7 M1	
,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	49.0	52.7	98	105	64-133	7	
1,1,2-Trichloroethane	ug/L	<1.0	50	50	51.7	55.2	103	110	78-120	6	
I,1-Dichloroethane	ug/L	<1.0	50	50	51.6	52.6	103	105	70-124	2	
1,1-Dichloroethene	ug/L	<1.0	50	50	39.1	40.4	78	81	61-139	3 v3	
,2,3-Trichloropropane	ug/L	<1.0	50	50	50.9	55.7	102	111	64-120	9	
,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	44.4	48.0	89	96	32-137	8 v3	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	56.0	57.5	112	115	78-121	3	
1,2-Dichlorobenzene	ug/L	<1.0	50	50	54.4	58.0	109	116	75-120	6	
,2-Dichloroethane	ug/L	<1.0	50	50	58.7	59.7	117	119	58-138	2	
1,2-Dichloropropane	ug/L	<1.0	50	50	52.0	54.6	104	109	74-122	5	
1,4-Dichlorobenzene	ug/L	<1.0	50	50	54.8	58.8	110	118	76-118	7	
2-Butanone (MEK)	ug/L	< 5.0	50	50	47.1	47.7	94	95	33-148	1 IH	
2-Hexanone	ug/L	< 5.0	50	50	52.1	53.1	104	106	49-124	2 IH	
1-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	55.6	59.7	111	119	60-136	7	
Acetone	ug/L	2.4J	50	50	41.2	41.7	78	79	35-112	1 IH	
Acrylonitrile	ug/L	<1.0	50	50	48.1	50.5	96	101	45-132	5	
Benzene	ug/L	<1.0	50	50	54.9	58.4	110	117	70-130	6	
Bromochloromethane	ug/L	<1.0	50	50	52.4	53.1	105	106	70-122	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 13414	86		1341487						
Parameter	702 Units	222028003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
Bromodichloromethane	ug/L	<1.0	50	50	54.7	57.1	109	114	74-122	4	
Bromoform	ug/L	<1.0	50	50	46.9	49.2	94	98	39-139	5	
Bromomethane	ug/L	<1.0	50	50	29.7	34.9	59	70	10-130	16	IH,v3
Carbon disulfide	ug/L	<1.0	50	50	38.1	39.2	76	78	60-129	3	v3
Carbon tetrachloride	ug/L	<1.0	50	50	57.0	61.6	114	123	56-143	8	
Chlorobenzene	ug/L	<1.0	50	50	53.8	55.4	108	111	74-122	3	
Chloroethane	ug/L	<1.0	50	50	37.0	38.7	74	77	35-146	5	v3
Chloroform	ug/L	<1.0	50	50	56.8	57.9	114	116	71-129	2	
Chloromethane	ug/L	<1.0	50	50	28.5	31.0	57	62	29-112	8	v3
cis-1,2-Dichloroethene	ug/L	<1.0	50	50	51.5	53.5	103	107	73-129	4	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	47.7	52.7	95	105	67-130	10	
Dibromochloromethane	ug/L	<1.0	50	50	49.6	51.7	99	103	55-126	4	
Dibromomethane	ug/L	<1.0	50	50	56.7	60.5	113	121	71-127	6	
Ethylbenzene	ug/L	<1.0	50	50	54.4	54.5	109	109	70-126	0	
lodomethane	ug/L	<4.0	50	50	24.4	28.6	49	57	10-167	16	v3
Methylene Chloride	ug/L	<1.0	50	50	48.0	48.1	96	96	69-117	0	
Styrene	ug/L	<1.0	50	50	51.6	53.1	103	106	79-123	3	
Tetrachloroethene	ug/L	<1.0	50	50	45.2	46.8	90	94	64-124	3	v3
Toluene	ug/L	<1.0	50	50	57.7	60.8	115	122	76-123	5	
trans-1,2-Dichloroethene	ug/L	<1.0	50	50	50.0	53.2	100	106	69-127	6	
trans-1,3-Dichloropropene	ug/L	<1.0	50	50	45.3	50.2	91	100	61-130	10	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	38.4	43.8	77	88	18-144	13	v3
Trichloroethene	ug/L	<1.0	50	50	57.8	61.9	116	124	73-125	7	
Trichlorofluoromethane	ug/L	<1.0	50	50	56.3	57.6	113	115	59-129	2	
Vinyl acetate	ug/L	<1.0	50	50	45.6	46.6	91	93	34-123	2	
Vinyl chloride	ug/L	<1.0	50	50	42.5	42.7	85	85	33-127	0	
Xylene (Total)	ug/L	<3.0	150	150	158	163	106	108	78-123	3	
1,2-Dichloroethane-d4 (S)	%						106	107	81-122		
4-Bromofluorobenzene (S)	%						106	103	79-118		
Toluene-d8 (S)	%						95	92	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 264820 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1338476 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 07/14/22 09:21

LABORATORY CONTROL SAMPLE: 1338477

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 1338478

Date: 08/24/2022 08:29 AM

70222028003 Dup **RPD** Parameter Units Result Result Qualifiers 42.0 **Apparent Color** 42.0 units 0 6.6 0 pН Std. Units 6.6

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265535 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1341683 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 07/19/22 12:36

LABORATORY CONTROL SAMPLE: 1341684

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total on CoCC3

Alkalinity, Total as CaCO3 mg/L 25 22.5 90 85-115

MATRIX SPIKE SAMPLE: 1341686

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 305 Alkalinity, Total as CaCO3 mg/L 341 75-125 M1 50 73

SAMPLE DUPLICATE: 1341685

Date: 08/24/2022 08:29 AM

Parameter Units Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 305 310 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 702

QC Batch Method:

70222028

QC Batch: 26597

265974

SM22 2340C

Analysis Method:

SM22 2340C

Analysis Description:

2340C Hardness, Total

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002

METHOD BLANK: 1343679
Associated Lab Samples: 7

70222028001, 70222028002

Blo

Matrix: Water

Blank Result Reporting Limit

Analyzed

Qualifiers

Parameter
Tot Hardness asCaCO3 (SM 2340B

Units mg/L

<5.0

5.0 07/21/22 17:40

LABORATORY CONTROL SAMPLE: 1343680

Spike Conc. LCS Result

73.3

73.3

LCS % Rec % Rec Limits

Qualifiers

Tot Hardness asCaCO3 (SM 2340B

Parameter

Units mg/L

Units

mg/L

mg/L

1343682

100

100

100

115

90-110

_

Parameter
Tot Hardness asCaCO3 (SM 2340B

70221293011 Result Spike Conc.

667

73.3

MS Result

840

0

MS % Rec % Rec Limits

75-125

Qualifiers

SAMPLE DUPLICATE: 1343810

Date: 08/24/2022 08:29 AM

MATRIX SPIKE SAMPLE:

Parameter

Tot Hardness asCaCO3 (SM 2340B

Units

70221293011 Result Dup Result

RPD

Qualifiers

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 266145

QC Batch Method: SM22 2340C

Parameter

Tot Hardness asCaCO3 (SM 2340B

Analysis Method:

SM22 2340C

Analysis Description: Laboratory:

2340C Hardness, Total Pace Analytical Services - Melville

Associated Lab Samples: 70222028003, 70222028004

METHOD BLANK: 1344641 Associated Lab Samples:

Matrix: Water

70222028003, 70222028004

Blank Result Reporting

Limit

Analyzed Qualifiers

07/22/22 17:22

LABORATORY CONTROL SAMPLE: 1344642

LCS Result

<5.0

LCS % Rec

100

% Rec Limits

Qualifiers

Tot Hardness asCaCO3 (SM 2340B

Parameter

Parameter

Units mg/L

Units

mg/L

100

Spike

Conc.

8700

90-110

MATRIX SPIKE SAMPLE:

1344643

70222028003

Spike Conc.

100

10000

MS Result

19200

MS % Rec % Rec Limits

75-125

Qualifiers

SAMPLE DUPLICATE: 1344644

Tot Hardness asCaCO3 (SM 2340B

Units

Units

mg/L

70222028003 Result

Result

Dup Result

RPD

Qualifiers

105

Parameter Tot Hardness asCaCO3 (SM 2340B

Date: 08/24/2022 08:29 AM

mg/L

8700

8600

1

Qualifiers

QUALITY CONTROL DATA

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265548 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1341731 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <10.0 10.0 07/19/22 14:00

LABORATORY CONTROL SAMPLE: 1341732

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits

Total Dissolved Solids mg/L 500 526 105 85-115

MATRIX SPIKE SAMPLE: 1341734

70221999004 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 230 600 768 90 75-125

MATRIX SPIKE SAMPLE: 1341736

70222028003 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 19300 3000 21700 81 75-125

SAMPLE DUPLICATE: 1341733

SAMPLE DUPLICATE: 1341735

Date: 08/24/2022 08:29 AM

70221999004 Dup
Parameter Units Result RepD Qualifiers

Total Dissolved Solids

Mesult

Result

RPD

Qualifiers

10 D6

70222028003 Dup
Parameter Units Result RPD Qualifiers

Total Dissolved Solids mg/L 19300 19200 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 264813 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1338452 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chromium, Hexavalent mg/L <0.020 0.020 07/14/22 09:17

LABORATORY CONTROL SAMPLE: 1338453

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Chromium, Hexavalent mg/L 0.2 0.20 98 85-115

MATRIX SPIKE SAMPLE: 1338462

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 Chromium, Hexavalent mg/L 0.24 0.2 118 75-125

SAMPLE DUPLICATE: 1338463

Date: 08/24/2022 08:29 AM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Chromium, Hexavalent
 mg/L
 <0.020</td>
 <0.020</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265853 Analysis Method: EPA 410.4
QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1343378 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chemical Oxygen Demand mg/L <10.0 10.0 07/21/22 08:15

LABORATORY CONTROL SAMPLE: 1343379

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Chemical Oxygen Demand 500 515 103 90-110 mg/L

MATRIX SPIKE SAMPLE: 1343380

Date: 08/24/2022 08:29 AM

MS % Rec 70222028003 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand 952 90-110 M1 mg/L 2000 2420 73

 MATRIX SPIKE SAMPLE:
 1343382
 70222475001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 39.0
 1000
 972
 93
 90-110

SAMPLE DUPLICATE: 1343381

 Parameter
 Units
 Result
 Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 952
 943
 1

Chemical Oxygen Demand mg/L 952 943 1

SAMPLE DUPLICATE: 1343383 70222475001 Dup

ParameterUnitsResultResultRPDQualifiersChemical Oxygen Demandmg/L39.036.86

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 264903 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1338732 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <2.0 2.0 07/19/22 09:39

LABORATORY CONTROL SAMPLE: 1338733

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 195 99 84.5-115.4

SAMPLE DUPLICATE: 1338734

Date: 08/24/2022 08:29 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 BOD, 5 day
 mg/L
 <4.0</td>
 <4.0</td>

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch Method:

Sulfide

Sulfide

QC Batch: 265494

EPA 9030B

Analysis Method:

EPA 9034

Analysis Description:

9034 Sulfide Waste Water

Laboratory:

Pace Analytical Services - Melville

70222028001, 70222028002, 70222028003, 70222028004 Associated Lab Samples:

METHOD BLANK: 1341566

Associated Lab Samples:

Matrix: Water 70222028001, 70222028002, 70222028003, 70222028004

Blank

Reporting

Parameter

Units Result Limit Analyzed

LCS

% Rec

Qualifiers

Sulfide

mg/L

Units

mg/L

Units

mg/L

<2.0

2.0 07/19/22 14:06

LABORATORY CONTROL SAMPLE: 1341567

Parameter

Spike Conc.

LCS Result

2400

Dup

Result

% Rec Limits

0

Qualifiers

Parameter

Date: 08/24/2022 08:29 AM

SAMPLE DUPLICATE: 1341568

70222028003 Result

2800

8.0

8.0

RPD

86

Qualifiers

80-120

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Bromide Chloride Sulfate

Date: 08/24/2022 08:29 AM

QC Batch: 265903 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1343503 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Parameter	Units	Result	Limit	Analyzed	Qualifiers
,	mg/L	<0.50	0.50	07/21/22 20:20	
•	mg/L	0.14J	2.0	07/21/22 20:20	
	mg/L	0.13J	5.0	07/21/22 20:20	

LABORATORY CONTROL SAMPLE:	1343504					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		1.1	110	90-110	
Chloride	mg/L	10	10.9	109	90-110	
Sulfate	mg/L	10	11.0	110	90-110	

MATRIX SPIKE SAMPLE:	1343505						
		70222028003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	160	200	167	4	90-110	M1
Chloride	mg/L	10000	2000	10400	19	90-110	M1
Sulfate	mg/L	97.9	50	145	93	90-110	

MATRIX SPIKE SAMPLE:	1343507						
		70221562006	Spike	MS	MS	% Rec	0 115
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	0.88	86	90-110	M1
Chloride	mg/L	20.8	10	30.9	101	90-110	
Sulfate	mg/L	53.2	10	62.3	92	90-110	

SAMPLE DUPLICATE: 1343506			_		
Parameter	Units	70222028003 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	160	160	0	
Chloride	mg/L	10000	10000	0	
Sulfate	mg/L	97.9	101	3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

SAMPLE DUPLICATE: 1343508

Parameter	Units	70221562006 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	20.8	20.8	0	
Sulfate	mg/L	53.2	54.4	2	

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 266615 Analysis Method: EPA 351.2

QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1347218 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

D28001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Kjeldahl, Total mg/L <0.10 0.10 07/27/22 12:12

LABORATORY CONTROL SAMPLE: 1347219

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Kjeldahl, Total 4.2 105 90-110 mg/L

MATRIX SPIKE SAMPLE: 1347220

MS MS % Rec 70221775001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total 1.4 mg/L 20 20.1 93 90-110

MATRIX SPIKE SAMPLE: 1347222

70222028003 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 90-110 M1 15.5 Nitrogen, Kjeldahl, Total mg/L 20 38.0 112

SAMPLE DUPLICATE: 1347221

Parameter Units 70221775001 Dup Result Result RPD Qualifiers

Nitrogen, Kjeldahl, Total mg/L 1.4 <0.50

SAMPLE DUPLICATE: 1347223

Date: 08/24/2022 08:29 AM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 15.5
 14.3
 8

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265009 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1339337 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.050 0.050 07/15/22 00:24

LABORATORY CONTROL SAMPLE: 1339338

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.1 106 90-110 mg/L

MATRIX SPIKE SAMPLE: 1339339

MS % Rec 70221999001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 90-110 M1 Nitrite as N mg/L 0.5 0.56 111

MATRIX SPIKE SAMPLE: 1339341

70222028003 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.54 107 90-110

SAMPLE DUPLICATE: 1339340

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

SAMPLE DUPLICATE: 1339342

Date: 08/24/2022 08:29 AM

 Parameter
 Units
 70222028003 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265018 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1339406 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.050 0.050 07/15/22 07:23

LABORATORY CONTROL SAMPLE: 1339407

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 0.90 90 90-110 mg/L

MATRIX SPIKE SAMPLE: 1339408

MS % Rec 70222028003 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.098 Nitrate-Nitrite (as N) mg/L 0.5 0.55 90 90-110

MATRIX SPIKE SAMPLE: 1339410

70222038001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 90-110 M1 < 0.050 Nitrate-Nitrite (as N) mg/L 0.5 0.22 39

SAMPLE DUPLICATE: 1339409

 Parameter
 Units
 70222028003 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.098
 0.084
 16

SAMPLE DUPLICATE: 1339411

Date: 08/24/2022 08:29 AM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

QC Batch: 267292 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028004

METHOD BLANK: 1350333 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Phenolics, Total Recoverable ug/L <5.0 5.0 08/01/22 18:29

LABORATORY CONTROL SAMPLE: 1350334

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Phenolics, Total Recoverable ug/L 100 102 102 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 267943 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028003

METHOD BLANK: 1353530 Matrix: Water

Associated Lab Samples: 70222028003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Phenolics, Total Recoverable ug/L <5.0 5.0 08/05/22 16:36

LABORATORY CONTROL SAMPLE: 1353531

Parameter Units Spike LCS LCS % Rec
Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L 100 93.0 93 90-110

MATRIX SPIKE SAMPLE: 1350335

70222028003 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L <5.0 50 41.1 82 75-125

SAMPLE DUPLICATE: 1350336

Date: 08/24/2022 08:29 AM

70222028003 Dup
Parameter Units Result Repl Qualifiers

Phenolics, Total Recoverable ug/L <5.0 <5.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 265549 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1341737 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.10 0.10 07/19/22 13:18

LABORATORY CONTROL SAMPLE: 1341738

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Ammonia mg/L 0.97 97 90-110

MATRIX SPIKE SAMPLE: 1341739

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 17.7 mg/L 41.0 Nitrogen, Ammonia 25 93 75-125

SAMPLE DUPLICATE: 1341740

Date: 08/24/2022 08:29 AM

ParameterUnits70222028003 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L17.716.67

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 266333 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1345611 Matrix: Water
Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

70222028001, 70222028002, 70222028003, 70222028004 Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Cyanide ug/L <10.0 10.0 07/25/22 19:41

LABORATORY CONTROL SAMPLE: 1345612

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Cyanide 75 82.2 110 85-115 ug/L

MATRIX SPIKE SAMPLE: 1345613

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 75-125 M1 Cyanide ug/L 100 26.9 20

MATRIX SPIKE SAMPLE: 1345615

70222765010 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers <10.0 Cyanide ug/L 100 112 109 75-125

SAMPLE DUPLICATE: 1345614

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Cyanide
 ug/L
 <10.0</td>
 <10.0</td>

SAMPLE DUPLICATE: 1345616

Date: 08/24/2022 08:29 AM

Cyanide

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 ug/L
 <10.0</td>
 <10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

QC Batch: 266203 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

METHOD BLANK: 1344861 Matrix: Water

Associated Lab Samples: 70222028001, 70222028002, 70222028003, 70222028004

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Total Organic Carbon	mg/L	<1.0	1.0	07/23/22 00:53	
Total Organic Carbon	mg/L	<1.0	1.0	07/23/22 00:53	
Total Organic Carbon	mg/L	<1.0	1.0	07/23/22 00:53	
Total Organic Carbon	mg/L	<1.0	1.0	07/23/22 00:53	

LABORATORY CONTROL SAMPLE:	1344862	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Organic Carbon	mg/L	10	10.9	109	85-115	
Total Organic Carbon	mg/L	10	10.6	106	85-115	
Total Organic Carbon	mg/L	10	10.8	108	85-115	
Total Organic Carbon	mg/L	10	11.0	110	85-115	

MATRIX SPIKE SAMPLE:	1344876						
		70222028003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Organic Carbon	 mg/L	14.3	10	27.2	130	75-125	M1
Total Organic Carbon	mg/L	13.8	10	28.0	142	75-125	M1
Total Organic Carbon	mg/L	13.8	10	27.9	141	75-125	M1
Total Organic Carbon	mg/L	14.0	10	27.1	131	75-125	M1

SAMPLE DUPLICATE: 1344877

Date: 08/24/2022 08:29 AM

		70222028003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Total Organic Carbon	 mg/L	14.0	14.0	0	
Total Organic Carbon	mg/L	13.8	14.6	5	
Total Organic Carbon	mg/L	13.8	15.6	12	
Total Organic Carbon	mg/L	14.3	14.9	4	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/24/2022 08:29 AM

B A	nalyte was detected in the associated method blank.
-----	---

- B2 Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N The reported TIC has an 85% or higher match on a mass spectral library search.
- V3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70222028001	NNU PLCRS	EPA 3005A		EPA 6010C	265556
0222028002	NNU SLCRS	EPA 3005A	265487	EPA 6010C	265556
0222028003	ONU SLCRS	EPA 3005A	265487	EPA 6010C	265556
0222028004	SA SLCRS	EPA 3005A	265487	EPA 6010C	265556
0222028001	NNU PLCRS	EPA 7470A	265936	EPA 7470A	265983
0222028002	NNU SLCRS	EPA 7470A	265936	EPA 7470A	265983
0222028003	ONU SLCRS	EPA 7470A	265936	EPA 7470A	265983
0222028004	SA SLCRS	EPA 7470A	265936	EPA 7470A	265983
0222028001	NNU PLCRS	EPA 8260C SIM/5030C	266167		
0222028002	NNU SLCRS	EPA 8260C SIM/5030C	266167		
0222028003	ONU SLCRS	EPA 8260C SIM/5030C	266167		
0222028003	SA SLCRS	EPA 8260C SIM/5030C	266167		
	NNU PLCRS	EPA 8260C/5030C			
70222028001		EPA 8260C/5030C EPA 8260C/5030C	265051		
70222028002	NNU SLCRS		265051		
70222028003	ONU SLCRS	EPA 8260C/5030C	265051		
70222028004	SA SLCRS	EPA 8260C/5030C	265051		
70222028005	TRIP BLANK	EPA 8260C/5030C	265051		
0222028001	NNU PLCRS	EPA 8260			
0222028005	TRIP BLANK	EPA 8260			
0222028001	NNU PLCRS	SM22 2120B	264820		
0222028002	NNU SLCRS	SM22 2120B	264820		
0222028003	ONU SLCRS	SM22 2120B	264820		
0222028004	SA SLCRS	SM22 2120B	264820		
0222028001	NNU PLCRS	SM22 2320B	265535		
0222028002	NNU SLCRS	SM22 2320B	265535		
0222028003	ONU SLCRS	SM22 2320B	265535		
0222028004	SA SLCRS	SM22 2320B	265535		
0222028001	NNU PLCRS	SM22 2340C	265974		
70222028002	NNU SLCRS	SM22 2340C	265974		
0222028003	ONU SLCRS	SM22 2340C	266145		
70222028004	SA SLCRS	SM22 2340C	266145		
0222028001	NNU PLCRS	SM22 2540C	265548		
70222028002	NNU SLCRS	SM22 2540C	265548		
0222028003	ONU SLCRS	SM22 2540C	265548		
0222028004	SA SLCRS	SM22 2540C	265548		
0222028001	NNU PLCRS	SM22 3500-Cr B	264813		
0222028002	NNU SLCRS	SM22 3500-Cr B	264813		
0222028003	ONU SLCRS	SM22 3500-Cr B	264813		
0222028004	SA SLCRS	SM22 3500-Cr B	264813		
0222028001	NNU PLCRS	EPA 410.4	265853	EPA 410.4	265857
70222028002	NNU SLCRS	EPA 410.4	265853	EPA 410.4	265857
0222028003	ONU SLCRS	EPA 410.4	265853	EPA 410.4	265857
	SA SLCRS		_00000		_55557

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEACHATES BASELINE 7/13

Pace Project No.: 70222028

Date: 08/24/2022 08:29 AM

Lab ID	Sample ID	ple ID QC Batch Method		Analytical Method	Analytical Batch	
70222028001	NNU PLCRS	SM22 5210B	264903	SM22 5210B		
70222028002	NNU SLCRS	SM22 5210B	264903	SM22 5210B	265774	
70222028003	ONU SLCRS	SM22 5210B	264903	SM22 5210B	265774	
70222028004	SA SLCRS	SM22 5210B	264903	SM22 5210B	265774	
70222028001	NNU PLCRS	EPA 9030B	265494	EPA 9034	265573	
70222028002	NNU SLCRS	EPA 9030B	265494	EPA 9034	265573	
70222028003	ONU SLCRS	EPA 9030B	265494	EPA 9034	265573	
70222028004	SA SLCRS	EPA 9030B	265494	EPA 9034	265573	
70222028001	NNU PLCRS	EPA 300.0	265903			
0222028002	NNU SLCRS	EPA 300.0	265903			
70222028003	ONU SLCRS	EPA 300.0	265903			
70222028004	SA SLCRS	EPA 300.0	265903			
70222028001	NNU PLCRS	EPA 351.2	266615	EPA 351.2	266620	
70222028002	NNU SLCRS	EPA 351.2	266615	EPA 351.2	266620	
70222028003	ONU SLCRS	EPA 351.2	266615	EPA 351.2	266620	
70222028004	SA SLCRS	EPA 351.2	266615	EPA 351.2	266620	
70222028001	NNU PLCRS	EPA 353.2	265018			
70222028002	NNU SLCRS	EPA 353.2	265018			
70222028003	ONU SLCRS	EPA 353.2	265018			
70222028004	SA SLCRS	EPA 353.2	265018			
70222028001	NNU PLCRS	EPA 353.2	265009			
70222028002	NNU SLCRS	EPA 353.2	265009			
70222028003	ONU SLCRS	EPA 353.2	265009			
70222028004	SA SLCRS	EPA 353.2	265009			
70222028001	NNU PLCRS	EPA 420.1	267292	EPA 420.1	267383	
70222028002	NNU SLCRS	EPA 420.1	267292	EPA 420.1	267383	
70222028003	ONU SLCRS	EPA 420.1	267943	EPA 420.1	267383	
70222028004	SA SLCRS	EPA 420.1	267292	EPA 420.1	267383	
70222028001	NNU PLCRS	SM22 4500 NH3 H	265549			
70222028002	NNU SLCRS	SM22 4500 NH3 H	265549			
70222028003	ONU SLCRS	SM22 4500 NH3 H	265549			
70222028004	SA SLCRS	SM22 4500 NH3 H	265549			
70222028001	NNU PLCRS	EPA 9010C	266333	EPA 9014 Total Cyanide	266404	
70222028002	NNU SLCRS	EPA 9010C	266333	EPA 9014 Total Cyanide	266404	
70222028003	ONU SLCRS	EPA 9010C	266333	EPA 9014 Total Cyanide	266404	
70222028004	SA SLCRS	EPA 9010C	266333	EPA 9014 Total Cyanide	266404	
70222028001	NNU PLCRS	EPA 9060A	266203			
70222028002	NNU SLCRS	EPA 9060A	266203			
70222028003	ONU SLCRS	EPA 9060A	266203			
70222028004	SA SLCRS	EPA 9060A	266203			

MO#: 70222028

CHAIN-OF-CUSTODY / A
The Chain-of-Custody is a LEGAL DOC

Invoice Information:

Required Project Information:

Section B

Section C

ŏ

SAMPLE CONDITIONS Regulatory Agency State / Location 3 Residual Chlorine (Y/N) 0 238 TIME PFOA / PFAS × Requested Analysis Filtered (Y/N) anexoid 4,1 × × × Sulfide × × DATE 712 Cyanide × × × COL × × COD'NH3'NO3'1KN'bheno × × × Kimberly.Mack@PaceLabs.com × × BOD, Br, CI, SO4, Color, Cr+6 ACCEPTED BY / AFFILIATION TAL Metals +B & Hardness × AOV 036 haq × Analyses Test N/A Jeher Methanol なるから KOZSZ6N Preservatives Pace Profile #: 5271 LINE HORN Pace Quote: Pace Project Manager: нсі EONH Сотралу Nате ₽OSZH 022 TIME Address: Unpreserved 4 4 14 14 4 8 **\$ OF CONTAINERS** SAMPLE TEMP AT COLLECTION DATE 738 905 740 9/8 1/13/21/108 818 TIME END 1/13/4 Brian Nichols / Zion Environmental, LLC DATE COLLECTED RELINQUISHED BY / AFFILIATION Leachates Baseline 360 TIME START DATE Report To: Joe Guarino SAMPLE TYPE (G=GRAB C=COMP) ₹ × ₹ Ž 5 ¥ Purchase Order #. WATRIX CODE (see valid codes to left) Project Name: Copy To: Project #: CODE DWW WWY SL SL OL OL AR AR TS MATRIX Drinking Water Waste Waste Waste Waste Product Soil/Soild Oil Wipe Air Other Tissue MS/MSD (Performed on ONU-SLCRS) art 360 Baseline Leachates Includes MS/MSD and Trip Blank SAMPLE ID
One Character per box.
(A-Z, 0-8 /, -)
Sample Ids must be unique ADDITIONAL COMMENTS mail: jguarino@townofbabylon.com Town of Babylon 281 Phelps Lane 631-422-7640 **NNU PLCRS** NNU SLCRS ONU SLCRS Jorth Babylon, NY 11703 SA SLCRS Trip Blank Requested Due Date :ompany:

Pace Analytical

Required Client Information:

Address:

Phone:

Page 76 of 77

10 7 12

œ တ

LO.

9

co

WHIL

(N/Y) ntact Samples

> (N/A) Cooler

pelsed

(N/Y)

DATE Signed: 7-13.2072

Brian Nichols

SAMPLER NAME AND SIGNATURE

PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

Received on

TEMP in C

	S	ample	Condit	ion Upor	Receipt	0#:702	22028
Pace Analytical"	Client N	la es e:			Proj N	Uff · I UK.	
/ Los / Blary tream					Proj	I: KMM C	Due Date: 07/22/22
Court of the Hotel Hotel Bellion		AB-E		206	rı	LENT: BAB-ECO	
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☑ Client		erciai [ווע_ פטפר	161	Ų.		
Tracking #:	, change	01-	latest DV	oc No d	e) / o	Lamagentusa Disple	Descrit Olive No. No.
Custody Seal on Cooler/Box Present: TYe					N/A	Temperature Blank	
Packing Material: Bubble Wrap Bubble	Bags [JZIDIOC J	one Do	uiei E	_	Type of Ice: (Wet)	
Thermometer Used: THOST THIES	Correct	ion Facti	or: + (),	1-100)	3 8		ing process has begun
Cooler Temperature(°C):	Looier	rempera	ture Correc	teat CJ: .		_ Date/Time 5035A ki	ts placed in freezer
Temp should be above freezing to 6.0°C USDA Regulated Soil (A water sample)				Date and	Initials of pe	rson examining conto	ents:KU ^{7/13} hr
Did samples originate in a quarantine zone wi	hin the U	nited Sta	tes: AL, AR, C	A, FL, GA, ID, L	A, MS, NC,	Did samples orignate	e from a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	□ Ye	s \square No				including Hawaii and	Puerto Rico}? ☐ Yes⊠ No
If Yes to either question, fill out a Regulate	d Soil Ch	ecklist (F-LI-C-010)	and include	with SCUR/CO		- No. of - No.
	72.			2		COMMENTS:	
Chain of Custody Present:	Z Yes	□No		1.			· · · · · · · · · · · · · · · · · · ·
Chain of Custody Filled Out:	□Yes	□No		2.			
Chain of Custody Relinquished:	(⊉Ýes	□No		3.			
Sampler Name & Signature on COC:	⊠Yes	□No	□N/A	4.			
Samples Arrived within Hold Time:	Yes	□No	5	5.			
Short Hold Time Analysis (<72hr):	⊠Yes	□No		6.			
Rush Turn Around Time Requested:	□Yes	οИΩ		7.			
Sufficient Volume: (Triple volume provided for	I ⊘ Yes	□No		8.			
Correct Containers Used:	⊠Yes	□No		9.		141	To a
-Pace Containers Used:	⊠Yes	□No				ž.	
Containers Intact:	□Yes	□No		10.		. 1	
Filtered volume received for Dissolved tests	□Yes	□No	ÐN/A	11.	Note if sedim	nent is visible in the dis	ssolved container.
Sample Labels match COC:	∠⊒Yes	□No		12.			
-Includes date/time/ID, Matrix: SC Wit 0	IL						
All containers needing preservation have been	⊈¥es	□No	□N/A	13.	□ HNO ₃	□H ₂ SO ₄ □NaOH	H HCI
checked?							0
pH paper Lot # LCZ 8/177						_	
All containers needing preservation are found	to be			Sample #			¥ 19
in compliance with method recommendation?	,						
l .	∠Yes	□No	□N/A				
NAOH>12 Cyanide)							₹ ²
Exceptions: VOA, Coliform, TOC/DOC, Oil and Gr	ease,		Į.			, , , , , , , , , , , , , , , , , , ,	
DRO/8015 (water).			3	Initial wher	completed.	Lot # of added	Date/Time preservative
Per Method, VOA pH is checked after analysis						preservative:	added:
Samples checked for dechlorination:	⊡Yes	□No	DN/A	14.			
KI starch test strips Lot #	3		_				
Residual chlorine strips Lot #	=1,		1.1.		ositive for Res	c. Chlorine? Y N	
SM 4500 CN samples checked for sulfide?	□Yes	□No	∕∆N/A	15.			
Lead Acetate Strips Lot #		<i>C</i>			ositive for Sul	fide? Y N	
Headspace in VOA Vials (>6mm):	□Yes	∕ ONo	□N/A	16.			
	ØYes	NO	□N/A	17.			ê .
Trip Blank Custody Seals Present Pace Trip Blank Lot # (if applicable):	ØYes	□No	□N/A				iii
		_		5.110 . 6			
Client Notification/ Resolution:				Field Data F		Y / N	
Person Contacted: Comments/ Resolution:		×			Date/Time:		
Commentsy resultition.							

August 18, 2022

Joe Guarino Town of Babylon 281 Phelps Lane North Babylon, NY 11703

RE: Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Dear Joe Guarino:

Enclosed are the analytical results for sample(s) received by the laboratory on July 13, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Melville
- Pace National Mt. Juliet
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Elizabeth Barry, Town of Babylon Department of

Environmental Control

(631)694-3040

CERTIFICATIONS

Project: CELL 7 LEACHATE EXPANDED 7/13

70222027 Pace Project No.:

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040 **Guam Certification**

Florida: Cert E871149 SEKS WET

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358

Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Services Long Island

575 Broad Hollow Rd. Melville. NY 11747 Connecticut Certification #: PH-0435

Delaware Certification # NY 10478

Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Pace Analytical Services National

12065 Lebanon Road, Mt. Juliet, TN 37122

Alabama Certification #: 40660 Alaska Certification 17-026 Arizona Certification #: AZ0612 Arkansas Certification #: 88-0469 California Certification #: 2932 Canada Certification #: 1461.01 Colorado Certification #: TN00003 Connecticut Certification #: PH-0197

DOD Certification: #1461.01

EPA# TN00003

Florida Certification #: E87487

Georgia DW Certification #: 923 Georgia Certification: NELAP Idaho Certification #: TN00003 Illinois Certification #: 200008 Indiana Certification #: C-TN-01 Iowa Certification #: 364 Kansas Certification #: E-10277 Kentucky UST Certification #: 16 Kentucky Certification #: 90010 Louisiana Certification #: Al30792 Louisiana DW Certification #: LA180010

Maine Certification #: TN0002

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

CELL 7 LEACHATE EXPANDED 7/13 Project:

Pace Project No.: 70222027

Pace Analytical Services National

Maryland Certification #: 324 Massachusetts Certification #: M-TN003

Michigan Certification #: 9958

Minnesota Certification #: 047-999-395

Mississippi Certification #: TN00003

Missouri Certification #: 340

Montana Certification #: CERT0086

Nebraska Certification #: NE-OS-15-05

Nevada Certification #: TN-03-2002-34

New Hampshire Certification #: 2975 New Jersey Certification #: TN002

New Mexico DW Certification

New York Certification #: 11742

North Carolina Aquatic Toxicity Certification #: 41 North Carolina Drinking Water Certification #: 21704

North Carolina Environmental Certificate #: 375

North Dakota Certification #: R-140

Ohio VAP Certification #: CL0069

Oklahoma Certification #: 9915

Oregon Certification #: TN200002

Pennsylvania Certification #: 68-02979

Rhode Island Certification #: LAO00356

South Carolina Certification #: 84004

South Dakota Certification

Tennessee DW/Chem/Micro Certification #: 2006

Texas Certification #: T 104704245-17-14

Texas Mold Certification #: LAB0152

USDA Soil Permit #: P330-15-00234

Utah Certification #: TN00003

Virginia Certification #: VT2006

Vermont Dept. of Health: ID# VT-2006

Virginia Certification #: 460132

Washington Certification #: C847

West Virginia Certification #: 233

Wisconsin Certification #: 998093910

Wyoming UST Certification #: via A2LA 2926.01

A2LA-ISO 17025 Certification #: 1461.01

A2LA-ISO 17025 Certification #: 1461.02

AIHA-LAP/LLC EMLAP Certification #:100789

SAMPLE ANALYTE COUNT

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
70222027001	CELL 7 PLCRS	EPA 8081B	SKF	20	PACE-MV
		EPA 8082A	SB2	9	PACE-MV
		EPA 8151A	MJM	5	PACE-MV
		EPA 6010C	JP2	24	PACE-MV
		EPA 7470A	JJS	1	PACE-MV
		EPA 8270E	AGW, AO	10	PAN
		EPA 8270E	RP1	77	PACE-MV
		EPA 8260C SIM/5030C	BBL	3	PACE-MV
		EPA 8260C/5030C	KGG	65	PACE-MV
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		ASTM D5174-97	PS1	1	PASI-PA
		SM22 2120B	SM2	2	PACE-MV
		SM22 2320B	GML	1	PACE-MV
		SM22 2540C	AKM	1	PACE-MV
		SM22 3500-Cr B	CEA	1	PACE-MV
		EPA 410.4	JCA	1	PACE-MV
		SM22 5210B	VNS	1	PACE-MV
		EPA 9034	NAA	1	PACE-MV
		EPA 300.0	SPM	3	PACE-MV
		EPA 351.2	DJM	1	PACE-MV
		EPA 353.2	JP1	2	PACE-MV
		EPA 353.2	DJM	1	PACE-MV
		EPA 420.1	RESE	1	PACE-MV
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	RESE	1	PACE-MV
		EPA 9060A	JWT	5	PACE-MV

PACE-MV = Pace Analytical Services - Melville
PAN = Pace National - Mt. Juliet
PASI-PA = Pace Analytical Services - Greensburg

(631)694-3040

PROJECT NARRATIVE

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: August 18, 2022

p-Phenylenediamine is reporting with critically low recovery in the laboratory control sample(s). This compound is a method defined poor performer. Results are estimated.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 8081B

Description: 8081 GCS Pesticides
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 8081B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 265621

C2: Relative percent difference between results from each column was greater than 40%. The lower of the two results was reported.

- CELL 7 PLCRS (Lab ID: 70222027001)
 - Tetrachloro-m-xylene (S)
- LCS (Lab ID: 1342012)
 - Decachlorobiphenyl (S)
- LCSD (Lab ID: 1342014)
 - Decachlorobiphenyl (S)

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:EPA 8082ADescription:8082 GCS PCBClient:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for EPA 8082A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 8151A

Description: 8151A Chlorinated Herbicides

Client: Town of Babylon

Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 8151A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 8151A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 7470A
Description: 7470 Mercury
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265936

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003,70222765010

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1343596)
 - Mercury

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 8270E

Description: SVOA (GC/MS) 8270E
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 8270E by Pace National Mt. Juliet. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H3: Sample was received or analysis requested beyond the recognized method holding time.

• CELL 7 PLCRS (Lab ID: 70222027001)

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 1897460

L0: Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

- LCS (Lab ID: R3820477-1)
 - p-Phenylenediamine

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:EPA 8270EDescription:8270E MSSVClient:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for EPA 8270E by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 265623

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- BLANK (Lab ID: 1342019)
 - Benzaldehyde
 - Caprolactam
 - bis(2-Ethylhexyl)phthalate
- CELL 7 PLCRS (Lab ID: 70222027001)
 - Benzaldehyde
 - Caprolactam
 - bis(2-Ethylhexyl)phthalate
- LCS (Lab ID: 1342020)
 - Benzaldehyde
 - Caprolactam
 - bis(2-Ethylhexyl)phthalate
- LCSD (Lab ID: 1342021)
 - Benzaldehyde
 - Caprolactam
 - bis(2-Ethylhexyl)phthalate

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 265623

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- LCS (Lab ID: 1342020)
 - Butylbenzylphthalate
 - Di-n-octylphthalate
- LCSD (Lab ID: 1342021)
 - Butylbenzylphthalate
 - Di-n-octylphthalate

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 8270E
Description: 8270E MSSV
Client: Town of Babylon
Date: August 18, 2022

QC Batch: 265623

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

• CELL 7 PLCRS (Lab ID: 70222027001)

4-Chloro-3-methylphenolLCS (Lab ID: 1342020)4-Chloro-3-methylphenol

LCSD (Lab ID: 1342021)4-Chloro-3-methylphenol

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 265623

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

LCS (Lab ID: 1342020)2,4,6-Tribromophenol (S)

• LCSD (Lab ID: 1342021)

• 2,4,6-Tribromophenol (S)

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 8260C SIM/5030C

Description: 8260C SIM Volatile Organics

Client: Town of Babylon

Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 8260C SIM/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

(631)694-3040

PROJECT NARRATIVE

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 265051

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- BLANK (Lab ID: 1339516)
 - Acrolein
- CELL 7 PLCRS (Lab ID: 70222027001)
 - Acrolein
- LCS (Lab ID: 1339517)
 - Acrolein
- MS (Lab ID: 1341486)
 - Acrolein
- MSD (Lab ID: 1341487)
 - Acrolein

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- CELL 7 PLCRS (Lab ID: 70222027001)
 - 2-Butanone (MEK)
 - Acetone
- LCS (Lab ID: 1339517)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
 - Dichlorodifluoromethane
- MS (Lab ID: 1341486)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
 - Dichlorodifluoromethane
- MSD (Lab ID: 1341487)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
 - Dichlorodifluoromethane

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of BabylonDate:August 18, 2022

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 265051

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- LCS (Lab ID: 1339517)
 - Acrolein
- MS (Lab ID: 1341486)
 - Acrolein
- MSD (Lab ID: 1341487)
 - Acrolein

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- BLANK (Lab ID: 1339516)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- CELL 7 PLCRS (Lab ID: 70222027001)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - Iodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- LCS (Lab ID: 1339517)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 1341486)
 - 1,1-Dichloroethene

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Babylon
Date: August 18, 2022

QC Batch: 265051

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- 1,2-Dibromo-3-chloropropane
- Bromomethane
- Carbon disulfide
- Chloroethane
- Chloromethane
- lodomethane
- Tetrachloroethene
- trans-1,4-Dichloro-2-butene
- MSD (Lab ID: 1341487)
 - 1,1-Dichloroethene
 - 1,2-Dibromo-3-chloropropane
 - Bromomethane
 - Carbon disulfide
 - Chloroethane
 - Chloromethane
 - lodomethane
 - Tetrachloroethene
 - trans-1,4-Dichloro-2-butene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 265051

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

LCS (Lab ID: 1339517)Carbon disulfide

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of BabylonDate:August 18, 2022

QC Batch: 265051

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MSD (Lab ID: 1341487) • 1,1,1-Trichloroethane

• Chloroprene

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 903.1

Description:903.1 Radium 226Client:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 904.0

Description:904.0 Radium 228Client:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: ASTM D5174-97

Description: D517497 Total Uranium KPA

Client: Town of Babylon Date: August 18, 2022

General Information:

1 sample was analyzed for ASTM D5174-97 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: SM22 2120B

Description: 2120B W Apparent Color

Client: Town of Babylon

Date: August 18, 2022

General Information:

1 sample was analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: SM22 2540C

Description: 2540C Total Dissolved Solids

Client: Town of Babylon

Date: August 18, 2022

General Information:

1 sample was analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 265548

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1341733)
 - Total Dissolved Solids

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 410.4
Description: 410.4 COD
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:SM22 5210BDescription:5210B BOD, 5 dayClient:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 9034

Description: 9034 Sulfide, Titration
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 9034 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9030B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: Town of Babylon Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 267257

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70223149001,70223149005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1350222)
 - Bromide
 - Chloride
 - Sulfate
- MS (Lab ID: 1350224)
 - Bromide
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen

Client: Town of Babylon

Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 269441

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70223937006,70224928001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1361757)Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client: Town of Babylon Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 267058

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70222765010,70222766008

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1349320)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 265009

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70221999001,70222028003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1339339)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 420.1

Description: Phenolics, Total Recoverable

Client: Town of Babylon

Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 420.1 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method:SM22 4500 NH3 HDescription:4500 Ammonia WaterClient:Town of BabylonDate:August 18, 2022

General Information:

1 sample was analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 9014 Total Cyanide
Description: 9014 Cyanide, Total
Client: Town of Babylon
Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Method: EPA 9060A

Description: 9060A TOC as NPOC Client: Town of Babylon Date: August 18, 2022

General Information:

1 sample was analyzed for EPA 9060A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: CELL 7 LEACHATE EXPANDED 7/13

Date: 08/18/2022 08:22 AM

Lob ID: 7022							
Lab ID. 7022	22027001	Collected: 07/13/2	2 08:35	Received: 07	7/13/22 12:38 M	latrix: Water	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: EPA 8081	IB Preparation Me	thod: El	PA 3510C			
Pace Analytical	Services - M	elville					
<0.048	ug/L	0.048	1	07/19/22 19:21	07/20/22 11:08	309-00-2	
<0.048	ug/L	0.048	1	07/19/22 19:21	07/20/22 11:08	319-84-6	
<0.048	ug/L	0.048	1	07/19/22 19:21	07/20/22 11:08	319-85-7	
<0.048	ug/L	0.048	1	07/19/22 19:21	07/20/22 11:08	319-86-8	
<0.048	ug/L	0.048	1	07/19/22 19:21	07/20/22 11:08	58-89-9	
< 0.096	ug/L	0.096	1	07/19/22 19:21	07/20/22 11:08	72-54-8	
< 0.096	ug/L	0.096	1	07/19/22 19:21	07/20/22 11:08	72-55-9	
< 0.096	ug/L	0.096	1	07/19/22 19:21	07/20/22 11:08	50-29-3	
< 0.096	•	0.096	1	07/19/22 19:21	07/20/22 11:08	60-57-1	
	•	0.048	1				
	•		1				
	-			07/19/22 19:21	07/20/22 11:08	1031-07-8	
	-						
	•						
	•						
	•						
	•						
	•						
10	~g/ =		-	017107== 101=1	01720722 11100	000.002	
37	%	10-167	1	07/19/22 19:21	07/20/22 11:08	2051-24-3	
44	%	27-139	1				C2
Analytical Meth	od: EPA 8082	2A Preparation Me	thod: Ef	PA 3510C			
<0.95	ua/L	0.95	1	07/22/22 11:08	07/25/22 17:23	12674-11-2	
< 0.95	-		1				
	•		1				
	•		1				
	•						
	•						
<0.95	ug/L	0.95	1				
48	%	37-105	1	07/22/22 11·∩¤	07/25/22 17:23	877-09-8	
			-		01/25/22 11.25	2001 24 0	
•		•	thod: El	PA 8151A			
3.3	ug/L	0.50	1	07/18/22 09:00	07/21/22 09:38	94-75-7	
1.4	•	0.20	1				
<0.25	-	0.25	1				
<0.25	ug/L	0.25	1				
106	%	38-155	1	07/18/22 09:00	07/21/22 09:38	19719-28-9	
	Analytical Meth Pace Analytical <0.048 <0.048 <0.048 <0.048 <0.096 <0.096 <0.096 <0.096 <0.096 <0.096 <0.096 <0.096 <0.096 <0.096 <0.095 <0.095 <0.048 <4.8 37 44 Analytical Meth Pace Analytical <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95 <0.95	Analytical Method: EPA 8083 Pace Analytical Services - M <0.048	Analytical Method: EPA 8081B Preparation Method Pace Analytical Services - Melville	Analytical Method: EPA 8081B Preparation Method: El Pace Analytical Services - Melville <0.048	Analytical Method: EPA 8081B Preparation Method: EPA 3510C Pace Analytical Services - Melville <0.048	Analytical Method: EPA 8081B Preparation Method: EPA 3510C Pace Analytical Services - Melville <0.048	Analytical Method: EPA 8081B Preparation Method: EPA 3510C Pace Analytical Services - Melville -0.048

Project: CELL 7 LEACHATE EXPANDED 7/13

Date: 08/18/2022 08:22 AM

Sample: CELL 7 PLCRS	Lab ID: 702	22027001	Collected: 07/13/2	2 08:35	Received: 07	7/13/22 12:38 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	010C Preparation Me	thod: E	PA 3005A			
	Pace Analytica	Services -	Melville					
Aluminum	223	ug/L	200	1	07/15/22 09:20	07/22/22 14:08	7429-90-5	
Antimony	37.9J	ug/L	60.0	1		07/22/22 14:08		
Arsenic	18.6	ug/L	10.0	1		07/22/22 14:08		
Barium	9900	ug/L	200	1		07/22/22 14:08		
Beryllium	<5.0	ug/L	5.0	1		07/22/22 14:08		
Boron	706	ug/L	50.0	1		07/22/22 14:08	-	
Cadmium	<2.5	ug/L	2.5	1		07/22/22 14:08		
Calcium	17200000	ug/L	20000	100		07/26/22 11:45		
Chromium	5.9J	ug/L	10.0	1		07/22/22 14:08		
Cobalt	<50.0	ug/L	50.0	1		07/22/22 14:08		
Copper	22.2J	ug/L	25.0	1		07/22/22 14:08		
Iron	3750	ug/L	100	1		07/22/22 14:08		
Lead	8.9	ug/L	5.0	1		07/22/22 14:08		
Magnesium	3990	ug/L	200	1		07/22/22 14:08		
Manganese	1220	ug/L	10.0	1		07/22/22 14:08		
Nickel	24.8J	ug/L	40.0	1		07/22/22 14:08		
Potassium	9720000	ug/L	500000	100		07/26/22 11:45		
Selenium	11.1	ug/L	10.0	1		07/20/22 11:43		
Silver	<10.0	ug/L	10.0	1		07/22/22 14:08		
Sodium	<5000	ug/L	5000	1		07/22/22 14:08		
Thallium	8.8J	ug/L	10.0	1		07/22/22 14:08		
Tin	<50.0	ug/L	50.0	1		07/22/22 14:08		
√anadium	11.0J	ug/L	50.0	1		07/22/22 14:08		
Zinc	23.5	ug/L	20.0	1		07/22/22 14:08		
7470 Mercury	Analytical Meth	od: EPA 74	170A Preparation Me	thod: E	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	0.090J	ug/L	0.20	1	07/21/22 11:45	07/22/22 12:21	7439-97-6	
SVOA (GC/MS) 8270E	Analytical Meth	od: EPA 82	270E Preparation Me	thod: 3	510C			
	Pace National	- Mt. Juliet						
2,4,6-Trichlorophenol	<10.0	ug/L	10.0	1	07/21/22 15:55	07/22/22 15:36	88-06-2	G6,H3
Famphur	<20.0	ug/L	20.0	1		07/26/22 14:23		G6,H3
Kepone	<20.0	ug/L	20.0	1	07/21/22 15:55			G6,H3
p-Phenylenediamine	<6900	ug/L	6900	1		07/26/22 14:23		G6,H3,
Surrogates								L0
2-Fluorophenol (S)	26.6	%	10.0-120	1	07/21/22 15:55	07/22/22 15:36	367-12-4	
Phenol-d5 (S)	21.0	%	10.0-120	1	07/21/22 15:55	07/22/22 15:36	4165-62-2	
Nitrobenzene-d5 (S)	34.0	%	10.0-127	1	07/21/22 15:55	07/22/22 15:36	4165-60-0	
	36.2	%	10.0-130	1	07/21/22 15:55	07/22/22 15:36	321-60-8	
2-Fluorobiphenyl (S) 2,4,6-Tribromophenol (S)	36.2 43.4	% %	10.0-130 10.0-155	1 1		07/22/22 15:36		

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

Sample: CELL 7 PLCRS	Lab ID: 1	0222027001	Collected: 07/13/2	22 08:35	Received: 07	7/13/22 12:38 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270E MSSV	Analytical Method: EPA 8270E Preparation Method: EPA 3510C							
	Pace Analyt	ical Services -	Melville					
Acenaphthene	<4.8	ug/L	4.8	1	07/19/22 19:21	07/21/22 04:20	83-32-9	
Acenaphthylene	<4.8	ug/L	4.8	1	07/19/22 19:21			
Acetophenone	<4.8	ug/L	4.8	1	07/19/22 19:21			
Anthracene	0.79J	ug/L	4.8	1		07/21/22 04:20		
Atrazine	<4.8	ug/L	4.8	1	07/19/22 19:21			
Benzaldehyde	<4.8	ug/L	4.8	1		07/21/22 04:20		IC
Benzo(a)anthracene	<4.8	ug/L	4.8	1	07/19/22 19:21			.0
Benzo(a)pyrene	<4.8	ug/L	4.8	1	07/19/22 19:21			
Benzo(b)fluoranthene	<4.8	ug/L	4.8	1		07/21/22 04:20		
Benzo(g,h,i)perylene	<4.8	ug/L	4.8	1		07/21/22 04:20		
Benzo(k)fluoranthene	<4.8	ug/L	4.8	1		07/21/22 04:20		
Biphenyl (Diphenyl)	<4.8	ug/L	4.8	1		07/21/22 04:20		
1-Bromophenylphenyl ether	<4.8	ug/L	4.8	1	07/19/22 19:21			
Butylbenzylphthalate	<4.8	ug/L	4.8	1		07/21/22 04:20		
Caprolactam	<4.8	ug/L	4.8	1	07/19/22 19:21			IC
I-Chloro-3-methylphenol	<4.8	ug/L	4.8	1		07/21/22 04:20		v3
-Chloroaniline	<4.8	ug/L	4.8	1		07/21/22 04:20		VO
is(2-Chloroethoxy)methane	<4.8	ug/L	4.8	1	07/19/22 19:21			
is(2-Chloroethyl) ether	<4.8	ug/L	4.8	1		07/21/22 04:20		
2-Chloronaphthalene	<4.8	ug/L	4.8	1		07/21/22 04:20		
2-Chlorophenol	<4.8	ug/L	4.8	1		07/21/22 04:20		
-Chlorophenylphenyl ether	<4.8	ug/L	4.8	1		07/21/22 04:20		
Chrysene	<4.8	ug/L	4.8	1	07/19/22 19:21			
Dibenz(a,h)anthracene	<4.8	ug/L	4.8	1		07/21/22 04:20		
Dibenzofuran	<4.8	ug/L	4.8	1	07/19/22 19:21			
,2-Dichlorobenzene	<4.8	ug/L	4.8	1		07/21/22 04:20		
,3-Dichlorobenzene	<4.8	ug/L ug/L	4.8	1	07/19/22 19:21			
,4-Dichlorobenzene	<4.8	ug/L	4.8	1	07/19/22 19:21			
3,3'-Dichlorobenzidine	<4.8	ug/L	4.8	1		07/21/22 04:20		
2,4-Dichlorophenol	<4.8	ug/L	4.8	1		07/21/22 04:20		
Diethylphthalate	<4.8	ug/L ug/L	4.8	1		07/21/22 04:20		
2,4-Dimethylphenol	<4.8	ug/L	4.8	1		07/21/22 04:20		
Dimethylphthalate	<4.8	ug/L	4.8	1	07/19/22 19:21			
Di-n-butylphthalate	150	ug/L	47.6	10		07/21/22 04:20		
				10	- · · · · · · · · · · · · · · · · · · ·	07/21/22 21:31	_	
I,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	<9.5 <9.5	ug/L ug/L	9.5 9.5	1		07/21/22 04:20		
2,4-Dinitrotoluene	<4.8	•	4.8	1		07/21/22 04:20		
2,6-Dinitrotoluene	<4.8	ug/L ug/L	4.8	1		07/21/22 04:20		
Di-n-octylphthalate	<4.8	•	4.8	1		07/21/22 04:20		
is(2-Ethylhexyl)phthalate	<4.8	ug/L ug/L	4.8	1		07/21/22 04:20		IC
Fluoranthene	<4.6 <4.8	•	4.8	1		07/21/22 04:20		Ю
luorantnene Iuorene	<4.8 <4.8	ug/L	4.8	1		07/21/22 04:20		
		ug/L				07/21/22 04:20		
lexachloro-1,3-butadiene	<4.8	ug/L	4.8	1				
lexachlorobenzene	<4.8	ug/L	4.8	1		07/21/22 04:20		
Hexachlorocyclopentadiene	<4.8	ug/L	4.8	1	07/40/00 40 04	07/21/22 04:20	77 17 1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CELL 7 LEACHATE EXPANDED 7/13

Date: 08/18/2022 08:22 AM

Sample: CELL 7 PLCRS	Lab ID: 702	Lab ID: 70222027001 Collected: 07/13/22 08:35 Received: 07/13/22 12:					12:38 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
3270E MSSV	Analytical Met	hod: EPA 82	270E Preparation Me	ethod: El	PA 3510C				
	Pace Analytica	al Services -	- Melville						
ndeno(1,2,3-cd)pyrene	<4.8	ug/L	4.8	1	07/19/22 19:21	07/21/22 04:20	193-39-5		
sophorone	<4.8	ug/L	4.8	1	07/19/22 19:21				
2-Methylnaphthalene	<4.8	ug/L	4.8	1		07/21/22 04:20			
2-Methylphenol(o-Cresol)	<4.8	ug/L	4.8	1		07/21/22 04:20			
&4-Methylphenol(m&p Cresol)	263	ug/L	47.6	10		07/21/22 21:31			
laphthalene	<4.8	ug/L	4.8	1		07/21/22 04:20	91-20-3		
-Nitroaniline	<4.8	ug/L	4.8	1		07/21/22 04:20			
-Nitroaniline	<4.8	ug/L	4.8	1		07/21/22 04:20			
-Nitroaniline	<4.8	ug/L	4.8	1		07/21/22 04:20			
litrobenzene	<4.8	ug/L	4.8	1		07/21/22 04:20			
-Nitrophenol	<4.8	ug/L	4.8	1		07/21/22 04:20			
-Nitrophenol	<9.5	ug/L ug/L	9.5	1		07/21/22 04:20			
		-	4.8			07/21/22 04:20			
V-Nitroso-di-n-propylamine	<4.8	ug/L		1		07/21/22 04:20			
I-Nitrosodiphenylamine	<4.8	ug/L	4.8	1					
2,2'-Oxybis(1-chloropropane)	<4.8	ug/L	4.8	1		07/21/22 04:20			
Pentachlorophenol	<9.5	ug/L	9.5	1		07/21/22 04:20			
Phenanthrene	<4.8	ug/L	4.8	1		07/21/22 04:20			
Phenol	<4.8	ug/L	4.8	1		07/21/22 04:20			
Pyrene	<4.8	ug/L	4.8	1		07/21/22 04:20			
,3,4,6-Tetrachlorophenol	<4.8	ug/L	4.8	1		07/21/22 04:20			
,2,4-Trichlorobenzene	<4.8	ug/L	4.8	1		07/21/22 04:20			
2,4,5-Trichlorophenol	<4.8	ug/L	4.8	1		07/21/22 04:20			
2,4,6-Trichlorophenol	<4.8	ug/L	4.8	1	07/19/22 19:21	07/21/22 04:20	88-06-2		
Surrogates									
Nitrobenzene-d5 (S)	67	%	30-113	1	07/19/22 19:21				
2-Fluorobiphenyl (S)	68	%	13-100	1	07/19/22 19:21	07/21/22 04:20	321-60-8		
-Terphenyl-d14 (S)	57	%	10-138	1	07/19/22 19:21	07/21/22 04:20	1718-51-0		
Phenol-d5 (S)	44	%	10-100	1	07/19/22 19:21	07/21/22 04:20	4165-62-2		
?-Fluorophenol (S)	49	%	26-113	1	07/19/22 19:21	07/21/22 04:20	367-12-4		
2,4,6-Tribromophenol (S)	92	%	10-168	1	07/19/22 19:21	07/21/22 04:20	118-79-6		
2-Chlorophenol-d4 (S)	67	%	29-98	1	07/19/22 19:21	07/21/22 04:20	93951-73-6		
,2-Dichlorobenzene-d4 (S)	50	%	14-101	1	07/19/22 19:21	07/21/22 04:20	2199-69-1		
8260C SIM Volatile Organics	Analytical Met	hod: EPA 82	260C SIM/5030C						
	Pace Analytical Services - Melville								
1,4-Dioxane (p-Dioxane)	5.7	ug/L	0.20	1		07/18/22 19:21	123-91-1		
Surrogates		ŭ							
,2-Dichlorobenzene-d4 (S)	97	%	43-153	1		07/18/22 19:21	2199-69-1		
-Bromofluorobenzene (S)	101	%	79-139	1		07/18/22 19:21	460-00-4		
260C Volatile Organics	Analytical Method: EPA 8260C/5030C								
U	Pace Analytica								
,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 13:14	630-20-6		
I,1,1-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 13:14			
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		07/15/22 13:14			
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		07/15/22 13:14			

ANALYTICAL RESULTS

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

Sample: CELL 7 PLCRS	Lab ID:	70222027001	Collected: 07/13/2	22 08:35	Received: (07/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C					
	Pace Analy	rtical Services -	Melville					
,1-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-34-3	
,1-Dichloroethene	<1.0	•	1.0	1		07/15/22 13:1	4 75-35-4	v3
,1-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 563-58-6	
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 96-12-8	v3
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		07/15/22 13:1	4 106-93-4	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 95-50-1	
,2-Dichloroethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 107-06-2	
,2-Dichloropropane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 78-87-5	
,3-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 541-73-1	
,3-Dichloropropane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 142-28-9	
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		07/15/22 13:14	4 106-46-7	
,4-Dioxane (p-Dioxane)	<100	ug/L	100	1		07/15/22 13:1	4 123-91-1	
2,2-Dichloropropane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 594-20-7	
2-Butanone (MEK)	55.8	ug/L	5.0	1		07/15/22 13:1	4 78-93-3	IH
-Hexanone	<5.0	ug/L	5.0	1		07/15/22 13:1	4 591-78-6	
-Methyl-2-pentanone (MIBK)	2.5J	ug/L	5.0	1		07/15/22 13:14	4 108-10-1	
cetone	394	ug/L	25.0	5		07/15/22 13:5	3 67-64-1	IH
cetonitrile	<5.0	ug/L	5.0	1		07/15/22 13:14	4 75-05-8	
crolein	<1.0	ug/L	1.0	1		07/15/22 13:14	4 107-02-8	IC
crylonitrile	<1.0	ug/L	1.0	1		07/15/22 13:1	4 107-13-1	
allyl chloride	<4.0	ug/L	4.0	1		07/15/22 13:14	4 107-05-1	
Benzene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 74-83-9	v3
Carbon disulfide	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-15-0	L2,v3
Carbon tetrachloride	<1.0	ug/L	1.0	1		07/15/22 13:1	4 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-00-3	v3
Chloroform	<1.0	ug/L	1.0	1		07/15/22 13:1	4 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 74-87-3	v3
Chloroprene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 126-99-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 124-48-1	
Dibromomethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 74-95-3	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-71-8	
thyl methacrylate	<1.0	ug/L	1.0	1		07/15/22 13:1	4 97-63-2	
Ethylbenzene	<1.0	ug/L	1.0	1		07/15/22 13:1	4 100-41-4	
odomethane	<4.0	ug/L	4.0	1		07/15/22 13:1	4 74-88-4	v3
sobutanol	<20.0	ug/L	20.0	1		07/15/22 13:1	4 78-83-1	
/lethacrylonitrile	<1.0	ug/L	1.0	1		07/15/22 13:1	4 126-98-7	
Methyl methacrylate	<1.0	ug/L	1.0	1		07/15/22 13:1	4 80-62-6	
Methylene Chloride	<1.0	ug/L	1.0	1		07/15/22 13:1	4 75-09-2	
Propionitrile	<4.0	ug/L	4.0	1		07/15/22 13:1	4 107-12-0	
Styrene	<1.0	_	1.0	1		07/15/22 13:1	4 100-42-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

Sample: CELL 7 PLCRS	Lab ID: 70	222027001	Collected: 07/13/2	2 08:35	Received: 07	7/13/22 12:38	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Me	ethod: EPA 82	260C/5030C					
	Pace Analytic	cal Services -	Melville					
Tetrachloroethene	<1.0	ug/L	1.0	1		07/15/22 13:14	127-18-4	v3
Toluene	<1.0	ug/L	1.0	1		07/15/22 13:14	108-88-3	
Trichloroethene	<1.0	ug/L	1.0	1		07/15/22 13:14	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		07/15/22 13:14	75-69-4	
√inyl acetate	<1.0	ug/L	1.0	1		07/15/22 13:14	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		07/15/22 13:14	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		07/15/22 13:14	1330-20-7	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 13:14	156-59-2	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 13:14	10061-01-5	
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		07/15/22 13:14	156-60-5	
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		07/15/22 13:14	10061-02-6	
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1		07/15/22 13:14	110-57-6	v3
1,2-Dichloroethane-d4 (S)	114	%	81-122	1		07/15/22 13:14	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-118	1		07/15/22 13:14	460-00-4	
Toluene-d8 (S)	92	%	82-122	1		07/15/22 13:14	2037-26-5	
2120B W Apparent Color	Analytical Me	ethod: SM22	2120B					
	Pace Analytic	cal Services -	Melville					
Apparent Color	60.0	units	25.0	5		07/14/22 09:32	2	
Н	6.7	Std. Units		5		07/14/22 09:32		
2320B Alkalinity	Analytical Me	ethod: SM22	2320B					
·	Pace Analytic	cal Services -	Melville					
Alkalinity, Total as CaCO3	257	mg/L	1.0	1		07/18/22 15:34	1	
2540C Total Dissolved Solids	Analytical Me	ethod: SM22	2540C					
	Pace Analytic	cal Services -	Melville					
Total Dissolved Solids	19200	mg/L	100	1		07/19/22 14:32	2	
Chromium, Hexavalent	Analytical Me Pace Analytic							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		07/14/22 09:26	19540 20 0	
Ciliomidiii, Hexavalent		•				07/14/22 09.20	10040-29-9	
410.4 COD	Analytical Me Pace Analytic		10.4 Preparation MetMelville	hod: EPA	A 410.4			
Chemical Oxygen Demand	3800	mg/L	100	1	07/27/22 05:40	07/27/22 07:59)	
5210B BOD, 5 day	Analytical Me Pace Analytic		5210B Preparation N	1ethod: S	SM22 5210B			
BOD, 5 day	294	mg/L	100	50	07/14/22 14:22	07/19/22 11:34	ļ	
9034 Sulfide, Titration	Analytical Me Pace Analytic		034 Preparation Meth	nod: EPA	.9030B			
Sulfido	•			1	07/10/22 00:22	07/10/22 14:17	i	
Sulfide	3.2	mg/L	2.0	1	07/19/22 09:30	07/19/22 14:14	•	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

Sample: CELL 7 PLCRS	Lab ID: 7022	22027001	Collected: 07/13/2	22 08:35	Received: 07	7/13/22 12:38 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
	Pace Analytica	l Services -	Melville					
Bromide	580	mg/L	250	500		08/08/22 21:55	24959-67-9	
Chloride	89700	mg/L	2000	1000		08/09/22 15:33		
Sulfate	1840J	mg/L	2500	500		08/08/22 21:55	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytica		51.2 Preparation Met Melville	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	164	mg/L	12.5	5	08/16/22 05:49	08/16/22 21:44	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	nod: EPA 35	3.2					
	Pace Analytica	l Services -	Melville					
Nitrate as N	0.25	mg/L	0.25	5		07/29/22 18:11	14797-55-8	
Nitrate-Nitrite (as N)	0.25	mg/L	0.25	5		07/29/22 18:11	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	53.2					
	Pace Analytica	l Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		07/15/22 00:51	14797-65-0	
Phenolics, Total Recoverable	-		20.1 Preparation Met	thod: EF	PA 420.1			
	Pace Analytica	l Services -	Melville					
Phenolics, Total Recoverable	351	ug/L	25.0	5	08/01/22 16:40	08/01/22 20:50		
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H					
	Pace Analytica	l Services -	Melville					
Nitrogen, Ammonia	155	mg/L	10.0	100		07/21/22 14:57	7664-41-7	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cyanide Pr	eparatio	on Method: EPA 9	010C		
,	Pace Analytica			•				
Cyanide	26.7	ug/L	10.0	1	07/18/22 14:40	07/18/22 18:04	57-12-5	
0060A TOC as NPOC	Analytical Meth	nod: EPA 90	060A					
	Pace Analytica							
Total Organic Carbon	226	mg/L	25.0	25		07/15/22 14:04	7440-44-0	
Total Organic Carbon	227	mg/L	25.0	25		07/15/22 14:04	7440-44-0	
otal Organic Carbon	226	mg/L	25.0	25		07/15/22 14:04	7440-44-0	
otal Organic Carbon	220	mg/L	25.0	25		07/15/22 14:04	7440-44-0	
	225	mg/L	25.0	25		07/15/22 14:04		

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265936 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1343592 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 07/22/22 11:56

LABORATORY CONTROL SAMPLE: 1343593

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury 1.1 108 80-120 ug/L

MATRIX SPIKE SAMPLE: 1343594

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 Mercury ug/L 1.1 102 75-125

MATRIX SPIKE SAMPLE: 1343596

70222765010 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 75-125 M1 Mercury ug/L 1 0.66 65

SAMPLE DUPLICATE: 1343595

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 <0.20</td>

SAMPLE DUPLICATE: 1343597

Date: 08/18/2022 08:22 AM

Mercury

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 ug/L
 <0.20</td>
 <0.20</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 265048 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1339505 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	07/22/22 12:36	
Antimony	ug/L	<60.0	60.0	07/22/22 12:36	
Arsenic	ug/L	<10.0	10.0	07/22/22 12:36	
Barium	ug/L	<200	200	07/22/22 12:36	
Beryllium	ug/L	<5.0	5.0	07/22/22 12:36	
Boron	ug/L	1.7J	50.0	07/22/22 12:36	
Cadmium	ug/L	<2.5	2.5	07/22/22 12:36	
Calcium	ug/L	<200	200	07/22/22 12:36	
Chromium	ug/L	<10.0	10.0	07/22/22 12:36	
Cobalt	ug/L	<50.0	50.0	07/22/22 12:36	
Copper	ug/L	<25.0	25.0	07/22/22 12:36	
Iron	ug/L	<100	100	07/22/22 12:36	
Lead	ug/L	<5.0	5.0	07/22/22 12:36	
Magnesium	ug/L	<200	200	07/22/22 12:36	
Manganese	ug/L	<10.0	10.0	07/22/22 12:36	
Nickel	ug/L	<40.0	40.0	07/22/22 12:36	
Potassium	ug/L	<5000	5000	07/22/22 12:36	
Selenium	ug/L	<10.0	10.0	07/22/22 12:36	
Silver	ug/L	<10.0	10.0	07/22/22 12:36	
Sodium	ug/L	<5000	5000	07/22/22 12:36	
Thallium	ug/L	<10.0	10.0	07/22/22 12:36	
Tin	ug/L	<50.0	50.0	07/22/22 12:36	
Vanadium	ug/L	<50.0	50.0	07/22/22 12:36	
Zinc	ug/L	<20.0	20.0	07/22/22 12:36	

LABORATORY CONTROL SAMPLE:	1339506					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	25000	25100	100	80-120	
Antimony	ug/L	1000	981	98	80-120	
Arsenic	ug/L	500	485	97	80-120	
Barium	ug/L	500	494	99	80-120	
Beryllium	ug/L	500	500	100	80-120	
Boron	ug/L	1000	980	98	80-120	
Cadmium	ug/L	500	491	98	80-120	
Calcium	ug/L	25000	25100	100	80-120	
Chromium	ug/L	500	486	97	80-120	
Cobalt	ug/L	500	489	98	80-120	
Copper	ug/L	500	479	96	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

ABORATORY CONTROL SAMPLE:	1339506					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
on	ug/L	12500	12600	101	80-120	
ad	ug/L	500	491	98	80-120	
gnesium	ug/L	25000	25100	100	80-120	
nganese	ug/L	500	495	99	80-120	
cel	ug/L	500	490	98	80-120	
assium	ug/L	25000	24200	97	80-120	
enium	ug/L	500	483	97	80-120	
er	ug/L	250	243	97	80-120	
ium	ug/L	25000	25700	103	80-120	
llium	ug/L	250	244	98	80-120	
	ug/L	1000	996	100	80-120	
adium	ug/L	500	492	98	80-120	
С	ug/L	500	488	98	80-120	

MATRIX SPIKE SAMPLE:	1339508						
		70221775008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	<200	12500	12800	102	75-125	
Antimony	ug/L	<60.0	1000	1010	101	75-125	
Arsenic	ug/L	<10.0	500	504	101	75-125	
Barium	ug/L	<200	500	517	103	75-125	
Beryllium	ug/L	<5.0	500	525	105	75-125	
Boron	ug/L	3.0J	1000	1000	100	75-125	
Cadmium	ug/L	<2.5	500	518	104	75-125	
Calcium	ug/L	<200	12500	12800	102	75-125	
Chromium	ug/L	<10.0	500	514	103	75-125	
Cobalt	ug/L	<50.0	500	515	103	75-125	
Copper	ug/L	<25.0	500	506	101	75-125	
Iron	ug/L	<100	5000	5190	104	75-125	
Lead	ug/L	<5.0	500	516	103	75-125	
Magnesium	ug/L	<200	12500	12800	102	75-125	
Manganese	ug/L	<10.0	500	520	104	75-125	
Nickel	ug/L	<40.0	500	498	100	75-125	
Potassium	ug/L	< 5000	12500	13100	99	75-125	
Selenium	ug/L	<10.0	500	515	103	75-125	
Silver	ug/L	<10.0	250	249	99	75-125	
Sodium	ug/L	< 5000	12500	14900	119	75-125	
Thallium	ug/L	<10.0	250	257	103	75-125	
Tin	ug/L	<50.0	1000	1020	102	75-125	
Vanadium	ug/L	<50.0	500	512	102	75-125	
Zinc	ug/L	<20.0	500	511	102	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

SAMPLE DUPLICATE: 1339507					
		70221775008	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Intimony	ug/L	<60.0	<60.0		
rsenic	ug/L	<10.0	<10.0		
rium	ug/L	<200	<200		
ryllium	ug/L	<5.0	< 5.0		
ron	ug/L	3.0J	2.6J		
dmium	ug/L	<2.5	<2.5		
lcium	ug/L	<200	<200		
romium	ug/L	<10.0	<10.0		
palt	ug/L	<50.0	<50.0		
oper	ug/L	<25.0	<25.0		
1	ug/L	<100	<100		
ad	ug/L	<5.0	< 5.0		
gnesium	ug/L	<200	<200		
nganese	ug/L	<10.0	<10.0		
cel	ug/L	<40.0	<40.0		
assium	ug/L	<5000	<5000		
enium	ug/L	<10.0	<10.0		
ver	ug/L	<10.0	<10.0		
dium	ug/L	<5000	<5000		
allium	ug/L	<10.0	<10.0		
	ug/L	<50.0	<50.0		
adium	ug/L	<50.0	<50.0		
c	ug/L	<20.0	<20.0		

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 1897460 Analysis Method: EPA 8270E

QC Batch Method: 3510C Analysis Description: SVOA (GC/MS) 8270E

Laboratory: Pace National - Mt. Juliet

Associated Lab Samples: 70222027001

METHOD BLANK: R3818356-3 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2,4,6-Trichlorophenol	ug/L	<10.0	10.0	07/22/22 12:18	
2-Fluorophenol (S)	%	22.8	10.0-120	07/22/22 12:18	
Phenol-d5 (S)	%	16.1	10.0-120	07/22/22 12:18	
Nitrobenzene-d5 (S)	%	27.8	10.0-127	07/22/22 12:18	
2-Fluorobiphenyl (S)	%	30.8	10.0-130	07/22/22 12:18	
2,4,6-Tribromophenol (S)	%	41.5	10.0-155	07/22/22 12:18	
p-Terphenyl-d14 (S)	%	56.3	10.0-128	07/22/22 12:18	

METHOD BLANK: R3820477-2 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Famphur	ug/L	<20.0	20.0	07/26/22 12:06	
Kepone	ug/L	<20.0	20.0	07/26/22 12:06	
p-Phenylenediamine	ug/L	<6900	6900	07/26/22 12:06	

LABORATORY CONTROL SAMPLE & LCSD: R3818356-1 R3818356-2										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
2,4,6-Trichlorophenol	ug/L	50.0	23.6	24.4	47.2	48.8	42.0-120	3.33	23	
2-Fluorophenol (S)	%				19.4	17.5	10.0-120			
Phenol-d5 (S)	%				14.8	15.4	10.0-120			
Nitrobenzene-d5 (S)	%				30.0	29.5	10.0-127			
2-Fluorobiphenyl (S)	%				38.2	39.3	10.0-130			
2,4,6-Tribromophenol (S)	%				51.5	50.0	10.0-155			
p-Terphenyl-d14 (S)	%				52.3	51.7	10.0-128			

LABORATORY CONTROL SAMPLE: R3820477-1

Date: 08/18/2022 08:22 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Famphur	ug/L	50.0	32.0	64.0	32.0-120	
Kepone	ug/L	50.0	24.7	49.4	10.0-120	
p-Phenylenediamine	ug/L	50.0	0.0228	0.0456	50.0-150 L	0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265396

QC Batch Method: EPA 8260C SIM/5030C

Analysis Method: EPA 8260C SIM/5030C

Analysis Description: 8260C SIM 5030C

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1340991 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	<0.20	0.20	07/18/22 14:59	
1,2-Dichlorobenzene-d4 (S)	%	106	43-153	07/18/22 14:59	
4-Bromofluorobenzene (S)	%	104	79-139	07/18/22 14:59	

LABORATORY CONTROL SAMPLE:	1340992					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	2.5	2.5	99	59-135	
1,2-Dichlorobenzene-d4 (S)	%			96	43-153	
4-Bromofluorobenzene (S)	%			100	79-139	

70221779003	Spike	MS	MS	% Rec	
Result	Conc.	Result	% Rec	Limits	Qualifiers
<0.20	2.5	2.2	89	42-159	
			99	43-153	
			102	79-139	
	Result	Result Conc.	Result Conc. Result	Result Conc. Result % Rec	Result Conc. Result % Rec Limits <0.20 2.5 2.2 89 42-159 99 43-153

SAMPLE DUPLICATE: 1341388

Date: 08/18/2022 08:22 AM

		70222251001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	1.4	1.3	12	
1,2-Dichlorobenzene-d4 (S)	%	105	100		
4-Bromofluorobenzene (S)	%	102	102		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 265051 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1339516 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	07/15/22 09:55	- <u> </u>
1,1,1-Trichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1-Dichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,1-Dichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	v3
1,1-Dichloropropene	ug/L	<1.0	1.0	07/15/22 09:55	
1,2,3-Trichloropropane	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	07/15/22 09:55	v3
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dichloroethane	ug/L	<1.0	1.0	07/15/22 09:55	
1,2-Dichloropropane	ug/L	<1.0	1.0	07/15/22 09:55	
1,3-Dichlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
1,3-Dichloropropane	ug/L	<1.0	1.0	07/15/22 09:55	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
1,4-Dioxane (p-Dioxane)	ug/L	<100	100	07/15/22 09:55	
2,2-Dichloropropane	ug/L	<1.0	1.0	07/15/22 09:55	
2-Butanone (MEK)	ug/L	<5.0	5.0	07/15/22 09:55	
2-Hexanone	ug/L	<5.0	5.0	07/15/22 09:55	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	07/15/22 09:55	
Acetone	ug/L	<5.0	5.0	07/15/22 09:55	
Acetonitrile	ug/L	<5.0	5.0	07/15/22 09:55	
Acrolein	ug/L	<1.0	1.0	07/15/22 09:55	IC
Acrylonitrile	ug/L	<1.0	1.0	07/15/22 09:55	
Allyl chloride	ug/L	<4.0	4.0	07/15/22 09:55	
Benzene	ug/L	<1.0	1.0	07/15/22 09:55	
Bromochloromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Bromodichloromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Bromoform	ug/L	<1.0	1.0	07/15/22 09:55	
Bromomethane	ug/L	<1.0	1.0	07/15/22 09:55	v3
Carbon disulfide	ug/L	<1.0	1.0	07/15/22 09:55	v3
Carbon tetrachloride	ug/L	<1.0	1.0	07/15/22 09:55	
Chlorobenzene	ug/L	<1.0	1.0	07/15/22 09:55	
Chloroethane	ug/L	<1.0	1.0	07/15/22 09:55	v3
Chloroform	ug/L	<1.0	1.0	07/15/22 09:55	
Chloromethane	ug/L	<1.0	1.0	07/15/22 09:55	v3
Chloroprene	ug/L	<1.0	1.0	07/15/22 09:55	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	07/15/22 09:55	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

METHOD BLANK: 1339516 Matrix: Water

Associated Lab Samples: 70222027001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromochloromethane	ug/L	<1.0	1.0	07/15/22 09:55	- ·
Dibromomethane	ug/L	<1.0	1.0	07/15/22 09:55	
Dichlorodifluoromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Ethyl methacrylate	ug/L	<1.0	1.0	07/15/22 09:55	
Ethylbenzene	ug/L	<1.0	1.0	07/15/22 09:55	
Iodomethane	ug/L	<4.0	4.0	07/15/22 09:55	v3
Isobutanol	ug/L	<20.0	20.0	07/15/22 09:55	
Methacrylonitrile	ug/L	<1.0	1.0	07/15/22 09:55	
Methyl methacrylate	ug/L	<1.0	1.0	07/15/22 09:55	
Methylene Chloride	ug/L	<1.0	1.0	07/15/22 09:55	
Propionitrile	ug/L	<4.0	4.0	07/15/22 09:55	
Styrene	ug/L	<1.0	1.0	07/15/22 09:55	
Tetrachloroethene	ug/L	<1.0	1.0	07/15/22 09:55	v3
Toluene	ug/L	<1.0	1.0	07/15/22 09:55	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	07/15/22 09:55	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	07/15/22 09:55	v3
Trichloroethene	ug/L	<1.0	1.0	07/15/22 09:55	
Trichlorofluoromethane	ug/L	<1.0	1.0	07/15/22 09:55	
Vinyl acetate	ug/L	<1.0	1.0	07/15/22 09:55	
Vinyl chloride	ug/L	<1.0	1.0	07/15/22 09:55	
Xylene (Total)	ug/L	<3.0	3.0	07/15/22 09:55	
1,2-Dichloroethane-d4 (S)	%	113	81-122	07/15/22 09:55	
4-Bromofluorobenzene (S)	%	102	79-118	07/15/22 09:55	
Toluene-d8 (S)	%	91	82-122	07/15/22 09:55	

LABORATORY CONTROL SAMPLE:	1339517					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qua	ifiers
1,1,1,2-Tetrachloroethane	ug/L	50	44.7	89	75-122	
1,1,1-Trichloroethane	ug/L	50	46.4	93	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	45.1	90	70-127	
1,1,2-Trichloroethane	ug/L	50	45.6	91	81-119	
1,1-Dichloroethane	ug/L	50	43.8	88	72-126	
1,1-Dichloroethene	ug/L	50	33.7	67	66-133 v3	
1,1-Dichloropropene	ug/L	50	44.1	88	69-124	
1,2,3-Trichloropropane	ug/L	50	47.6	95	69-120	
1,2-Dibromo-3-chloropropane	ug/L	50	41.4	83	47-133 v3	
1,2-Dibromoethane (EDB)	ug/L	50	49.6	99	81-123	
1,2-Dichlorobenzene	ug/L	50	47.9	96	80-117	
1,2-Dichloroethane	ug/L	50	53.8	108	69-134	
1,2-Dichloropropane	ug/L	50	45.4	91	75-125	
1,3-Dichlorobenzene	ug/L	50	48.3	97	82-116	
1,3-Dichloropropane	ug/L	50	45.3	91	81-118	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

LABORATORY CONTROL SAMPLE:	1339517	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifie
1,4-Dichlorobenzene	ug/L		47.7	95	80-117
1,4-Dioxane (p-Dioxane)	ug/L	1250	1090	87	32-175
2,2-Dichloropropane	ug/L	50	43.8	88	47-151
2-Butanone (MEK)	ug/L	50	46.6	93	33-165 IH
2-Hexanone	ug/L	50	49.1	98	50-128 IH
4-Methyl-2-pentanone (MIBK)	ug/L	50	47.8	96	62-131
Acetone	ug/L	50	60.8	122	14-156 IH
Acetonitrile	ug/L	250	251	100	60-146
Acrolein	ug/L	50	58.3	117	10-204 IC,v1
Acrylonitrile	ug/L	50	45.3	91	60-136
Allyl chloride	ug/L	50	41.7	83	60-131
Benzene	ug/L	50	46.7	93	78-117
Bromochloromethane	ug/L	50	48.1	96	77-122
Bromodichloromethane	ug/L	50	50.4	101	80-123
Bromoform	ug/L	50	45.2	90	49-138
Bromomethane	ug/L	50	32.8	66	10-143 IH,v3
Carbon disulfide	ug/L	50	32.1	64	66-133 L2,v3
Carbon tetrachloride	ug/L	50	42.6	85	64-135 Lz,v3
Chlorobenzene	ug/L	50	45.3	91	79-117
Chloroethane	ug/L	50	30.3	61	31-156 v3
Chloroform		50 50	49.7	99	79-123
	ug/L			49	
Chloromethane	ug/L	50	24.4		39-116 v3
Chloroprene	ug/L	50	44.1	88	63-126
cis-1,2-Dichloroethene	ug/L	50	44.3	89	77-125
cis-1,3-Dichloropropene	ug/L	50	45.3	91	78-131
Dibromochloromethane	ug/L	50	45.0	90	65-123
Dibromomethane	ug/L	50	54.9	110	81-123
Dichlorodifluoromethane	ug/L	50	27.1	54	13-149 IH
Ethyl methacrylate	ug/L	50	47.1	94	62-140
Ethylbenzene	ug/L	50	42.3	85	79-115
lodomethane	ug/L	50	19.5	39	10-183 v3
Isobutanol	ug/L	250	185	74	25-162
Methacrylonitrile	ug/L	50	42.2	84	59-139
Methyl methacrylate	ug/L	50	49.3	99	66-133
Methylene Chloride	ug/L	50	44.2	88	67-123
Propionitrile	ug/L	50	44.2	88	58-137
Styrene	ug/L	50	45.1	90	82-121
Tetrachloroethene	ug/L	50	33.2	66	65-120 v3
Toluene	ug/L	50	46.7	93	80-114
rans-1,2-Dichloroethene	ug/L	50	42.5	85	74-123
rans-1,3-Dichloropropene	ug/L	50	44.1	88	73-135
trans-1,4-Dichloro-2-butene	ug/L	50	39.3	79	52-137 v3
Trichloroethene	ug/L	50	45.9	92	79-115
Trichlorofluoromethane	ug/L	50	41.7	83	51-136
Vinyl acetate	ug/L	50	46.3	93	49-136
Vinyl chloride	ug/L	50	32.4	65	49-118
Xylene (Total)	ug/L	150	126	84	80-118

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

LABORATORY CONTROL SAMPLE: 1339517

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dichloroethane-d4 (S)	%			109	81-122	
4-Bromofluorobenzene (S)	%			103	79-118	
Toluene-d8 (S)	%			94	82-122	

MATRIX SPIKE & MATRIX SPIKE	E DUPLICATE	E: 13414	86		1341487						
			MS	MSD							
		22028003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	50.6	51.8	101	104	65-122	2	
1,1,1-Trichloroethane	ug/L	<1.0	50	50	60.3	64.8	121	130	72-123	7 M1	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	49.0	52.7	98	105	64-133	7	
,1,2-Trichloroethane	ug/L	<1.0	50	50	51.7	55.2	103	110	78-120	6	
I,1-Dichloroethane	ug/L	<1.0	50	50	51.6	52.6	103	105	70-124	2	
,1-Dichloroethene	ug/L	<1.0	50	50	39.1	40.4	78	81	61-139	3 v3	
,1-Dichloropropene	ug/L	<1.0	50	50	59.2	61.8	118	124	71-125	4	
,2,3-Trichloropropane	ug/L	<1.0	50	50	50.9	55.7	102	111	64-120	9	
,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	44.4	48.0	89	96	32-137	8 v3	
,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	56.0	57.5	112	115	78-121	3	
,2-Dichlorobenzene	ug/L	<1.0	50	50	54.4	58.0	109	116	75-120	6	
,2-Dichloroethane	ug/L	<1.0	50	50	58.7	59.7	117	119	58-138	2	
,2-Dichloropropane	ug/L	<1.0	50	50	52.0	54.6	104	109	74-122	5	
,3-Dichlorobenzene	ug/L	<1.0	50	50	55.4	58.5	111	117	78-119	5	
,3-Dichloropropane	ug/L	<1.0	50	50	51.2	52.0	102	104	74-118	1	
,4-Dichlorobenzene	ug/L	<1.0	50	50	54.8	58.8	110	118	76-118	7	
,4-Dioxane (p-Dioxane)	ug/L	<100	1250	1250	1220	1360	98	109	10-192	11	
2,2-Dichloropropane	ug/L	<1.0	50	50	54.6	56.4	109	113	43-136	3	
2-Butanone (MEK)	ug/L	<5.0	50	50	47.1	47.7	94	95	33-148	1 IH	
?-Hexanone	ug/L	<5.0	50	50	52.1	53.1	104	106	49-124	2 IH	
I-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	55.6	59.7	111	119	60-136	7	
Acetone	ug/L	2.4J	50	50	41.2	41.7	78	79	35-112	1 IH	
Acetonitrile	ug/L	<5.0	250	250	261	240	105	96	57-124	8	
Acrolein	ug/L	<1.0	50	50	60.5	66.4	121	133	11-209	9 IC	v1
Acrylonitrile	ug/L	<1.0	50	50	48.1	50.5	96	101	45-132	5	
Allyl chloride	ug/L	<4.0	50	50	45.0	50.7	90	101	65-120	12	
Benzene	ug/L	<1.0	50	50	54.9	58.4	110	117	70-130	6	
Bromochloromethane	ug/L	<1.0	50	50	52.4	53.1	105	106	70-122	1	
Bromodichloromethane	ug/L	<1.0	50	50	54.7	57.1	109	114	74-122	4	
Bromoform	ug/L	<1.0	50	50	46.9	49.2	94	98	39-139	5	
Bromomethane	ug/L	<1.0	50	50	29.7	34.9	59	70	10-130	16 IH	v3
Carbon disulfide	ug/L	<1.0	50	50	38.1	39.2	76	78	60-129	3 v3	
Carbon tetrachloride	ug/L	<1.0	50	50	57.0	61.6	114	123	56-143	8	
Chlorobenzene	ug/L	<1.0	50	50	53.8	55.4	108	111	74-122	3	
Chloroethane	ug/L	<1.0	50	50	37.0	38.7	74	77	35-146	5 v3	
Chloroform	ug/L	<1.0	50	50	56.8	57.9	114	116	71-129	2	
Chloromethane	ug/L	<1.0	50	50	28.5	31.0	57	62	29-112	8 v3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

MATRIX SPIKE & MATRIX SPIK	(E DUPLICATI	E: 13414	86		1341487						
			MS	MSD							
	702	22028003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
Chloroprene	ug/L	<1.0	50	50	57.2	57.8	114	116	76-114	1 M1	
cis-1,2-Dichloroethene	ug/L	<1.0	50	50	51.5	53.5	103	107	73-129	4	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	47.7	52.7	95	105	67-130	10	
Dibromochloromethane	ug/L	<1.0	50	50	49.6	51.7	99	103	55-126	4	
Dibromomethane	ug/L	<1.0	50	50	56.7	60.5	113	121	71-127	6	
Dichlorodifluoromethane	ug/L	<1.0	50	50	36.6	37.5	73	75	10-123	2 IH	
Ethyl methacrylate	ug/L	<1.0	50	50	55.4	58.8	111	118	36-135	6	
Ethylbenzene	ug/L	<1.0	50	50	54.4	54.5	109	109	70-126	0	
odomethane	ug/L	<4.0	50	50	24.4	28.6	49	57	10-167	16 v3	
sobutanol	ug/L	<20.0	250	250	247	248	99	99	30-134	0	
Methacrylonitrile	ug/L	<1.0	50	50	46.8	45.8	94	92	26-132	2	
Methyl methacrylate	ug/L	<1.0	50	50	53.1	58.5	106	117	35-130	10	
Methylene Chloride	ug/L	<1.0	50	50	48.0	48.1	96	96	69-117	0	
Propionitrile	ug/L	<4.0	50	50	52.9	48.1	106	96	23-128	10	
Styrene	ug/L	<1.0	50	50	51.6	53.1	103	106	79-123	3	
Tetrachloroethene	ug/L	<1.0	50	50	45.2	46.8	90	94	64-124	3 v3	
Toluene	ug/L	<1.0	50	50	57.7	60.8	115	122	76-123	5	
rans-1,2-Dichloroethene	ug/L	<1.0	50	50	50.0	53.2	100	106	69-127	6	
rans-1,3-Dichloropropene	ug/L	<1.0	50	50	45.3	50.2	91	100	61-130	10	
rans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	38.4	43.8	77	88	18-144	13 v3	
Trichloroethene	ug/L	<1.0	50	50	57.8	61.9	116	124	73-125	7	
Trichlorofluoromethane	ug/L	<1.0	50	50	56.3	57.6	113	115	59-129	2	
√inyl acetate	ug/L	<1.0	50	50	45.6	46.6	91	93	34-123	2	
/inyl chloride	ug/L	<1.0	50	50	42.5	42.7	85	85	33-127	0	
Kylene (Total)	ug/L	<3.0	150	150	158	163	106	108	78-123	3	
1,2-Dichloroethane-d4 (S)	%						106	107	81-122		
1-Bromofluorobenzene (S)	%						106	103	79-118		
Toluene-d8 (S)	%						95	92	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 265621 Analysis Method: EPA 8081B

QC Batch Method: EPA 3510C Analysis Description: 8081 GCS Pesticides

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1342011 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
4,4'-DDD	ug/L	<0.10	0.10	07/20/22 10:13	
4,4'-DDE	ug/L	<0.10	0.10	07/20/22 10:13	
4,4'-DDT	ug/L	<0.10	0.10	07/20/22 10:13	
Aldrin	ug/L	< 0.050	0.050	07/20/22 10:13	
alpha-BHC	ug/L	< 0.050	0.050	07/20/22 10:13	
beta-BHC	ug/L	< 0.050	0.050	07/20/22 10:13	
delta-BHC	ug/L	< 0.050	0.050	07/20/22 10:13	
Dieldrin	ug/L	<0.10	0.10	07/20/22 10:13	
Endosulfan I	ug/L	< 0.050	0.050	07/20/22 10:13	
Endosulfan II	ug/L	<0.10	0.10	07/20/22 10:13	
Endosulfan sulfate	ug/L	<0.10	0.10	07/20/22 10:13	
Endrin	ug/L	<0.10	0.10	07/20/22 10:13	
Endrin aldehyde	ug/L	< 0.10	0.10	07/20/22 10:13	
gamma-BHC (Lindane)	ug/L	< 0.050	0.050	07/20/22 10:13	
Heptachlor	ug/L	< 0.050	0.050	07/20/22 10:13	
Heptachlor epoxide	ug/L	< 0.050	0.050	07/20/22 10:13	
Methoxychlor	ug/L	< 0.50	0.50	07/20/22 10:13	
Toxaphene	ug/L	<5.0	5.0	07/20/22 10:13	
Decachlorobiphenyl (S)	%	42	10-167	07/20/22 10:13	
Tetrachloro-m-xylene (S)	%	87	27-139	07/20/22 10:13	

LABORATORY CONTROL SAMPLE &	LCSD: 1342012	2	13	42014						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
4,4'-DDD	ug/L	0.4	0.40	0.39	101	97	35-143	4	20	
4,4'-DDE	ug/L	0.4	0.38	0.36	94	90	36-135	4	20	
4,4'-DDT	ug/L	0.4	0.36	0.35	91	88	36-143	2	20	
Aldrin	ug/L	0.4	0.31	0.31	78	79	25-119	0	20	
alpha-BHC	ug/L	0.4	0.38	0.37	94	93	38-131	1	20	
beta-BHC	ug/L	0.4	0.41	0.41	102	103	41-134	1	20	
delta-BHC	ug/L	0.4	0.40	0.40	100	100	46-145	0	20	
Dieldrin	ug/L	0.4	0.36	0.35	90	88	39-134	3	20	
Endosulfan I	ug/L	0.4	0.24	0.24	60	59	35-114	2	20	
Endosulfan II	ug/L	0.4	0.29	0.28	72	71	44-127	1	20	
Endosulfan sulfate	ug/L	0.4	0.35	0.35	89	87	37-144	2	20	
Endrin	ug/L	0.4	0.39	0.38	98	96	43-143	2	20	
Endrin aldehyde	ug/L	0.4	0.37	0.38	93	94	39-136	2	20	
gamma-BHC (Lindane)	ug/L	0.4	0.37	0.38	94	94	41-136	0	20	
Heptachlor	ug/L	0.4	0.34	0.34	85	85	31-121	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Toxaphene

Decachlorobiphenyl (S)

Tetrachloro-m-xylene (S)

Date: 08/18/2022 08:22 AM

LABORATORY CONTROL SAMPLE 8	LCSD: 13420	12	13	42014						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Heptachlor epoxide	ug/L	0.4	0.37	0.37	94	92	41-132	2	20	
Methoxychlor	ug/L	0.4	0.37J	0.36J	92	90	39-155		20	
Decachlorobiphenyl (S)	%				64	92	10-167		20	C2
Tetrachloro-m-xylene (S)	%				82	83	27-139		20	
LABORATORY CONTROL SAMPLE:	1342013									
		Spike	LCS		LCS	%	6 Rec			
Parameter	Units	Conc.	Result		% Rec	L	imits	Qualifiers		

18.3

92

80

86

16-149

10-167

27-139

20

ug/L

%

%

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 266071 Analysis Method: EPA 8082A
QC Batch Method: EPA 3510C Analysis Description: 8082 GCS PCB

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1344352 Matrix: Water

Associated Lab Samples: 70222027001

5 .	11.5	Blank	Reporting		0 117
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	<1.0	1.0	07/25/22 10:33	
PCB-1221 (Aroclor 1221)	ug/L	<1.0	1.0	07/25/22 10:33	
PCB-1232 (Aroclor 1232)	ug/L	<1.0	1.0	07/25/22 10:33	
PCB-1242 (Aroclor 1242)	ug/L	<1.0	1.0	07/25/22 10:33	
PCB-1248 (Aroclor 1248)	ug/L	<1.0	1.0	07/25/22 10:33	
PCB-1254 (Aroclor 1254)	ug/L	<1.0	1.0	07/25/22 10:33	
PCB-1260 (Aroclor 1260)	ug/L	<1.0	1.0	07/25/22 10:33	
Decachlorobiphenyl (S)	%	60	10-138	07/25/22 10:33	
Tetrachloro-m-xylene (S)	%	58	37-105	07/25/22 10:33	

LABORATORY CONTROL SAMPLE	& LCSD: 1344353		13	344354						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	5	3.1	2.9	62	58	16-139	7	30	
PCB-1260 (Aroclor 1260)	ug/L	5	4.2	3.9	83	78	27-150	7	30	
Decachlorobiphenyl (S)	%				63	66	10-138		30	
Tetrachloro-m-xylene (S)	%				60	56	37-105		30	

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 265294 Analysis Method: EPA 8151A

QC Batch Method: EPA 8151A Analysis Description: 8151A GCS Herbicides

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1340593 Matrix: Water

Associated Lab Samples: 70222027001

Danamatan	l laite	Blank	Reporting	A made made	Oalifia
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2,4,5-T	ug/L	< 0.25	0.25	07/21/22 08:46	
2,4,5-TP (Silvex)	ug/L	< 0.25	0.25	07/21/22 08:46	
2,4-D	ug/L	< 0.50	0.50	07/21/22 08:46	
Dinoseb	ug/L	0.12J	0.20	07/21/22 08:46	
2,4-DCAA (S)	%	70	38-155	07/21/22 08:46	

LABORATORY CONTROL SAMPLE &		13	340595							
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
2,4,5-T	ug/L	1	0.77	0.71	77	71	17-153	9	30	
2,4,5-TP (Silvex)	ug/L	1	0.79	0.73	78	72	43-136	8	30	
2,4-D	ug/L	3	2.3	2.2	77	75	45-137	3	30	
Dinoseb	ug/L	2	1.9	2.0	94	100	10-111	6	30	
2,4-DCAA (S)	%				83	73	38-155		30	

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 265623 Analysis Method: EPA 8270E

QC Batch Method: EPA 3510C Analysis Description: 8270E Water MSSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1342019 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	<5.0	5.0	07/20/22 21:39	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	07/20/22 21:39	
1,3-Dichlorobenzene	ug/L	<5.0	5.0	07/20/22 21:39	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	07/20/22 21:39	
2,2'-Oxybis(1-chloropropane)	ug/L	<5.0	5.0	07/20/22 21:39	
2,3,4,6-Tetrachlorophenol	ug/L	<5.0	5.0	07/20/22 21:39	
2,4,5-Trichlorophenol	ug/L	<5.0	5.0	07/20/22 21:39	
2,4,6-Trichlorophenol	ug/L	<5.0	5.0	07/20/22 21:39	
2,4-Dichlorophenol	ug/L	<5.0	5.0	07/20/22 21:39	
2,4-Dimethylphenol	ug/L	<5.0	5.0	07/20/22 21:39	
2,4-Dinitrophenol	ug/L	<10.0	10.0	07/20/22 21:39	
2,4-Dinitrotoluene	ug/L	<5.0	5.0	07/20/22 21:39	
2,6-Dinitrotoluene	ug/L	<5.0	5.0	07/20/22 21:39	
2-Chloronaphthalene	ug/L	<5.0	5.0	07/20/22 21:39	
2-Chlorophenol	ug/L	<5.0	5.0	07/20/22 21:39	
2-Methylnaphthalene	ug/L	<5.0	5.0	07/20/22 21:39	
2-Methylphenol(o-Cresol)	ug/L	<5.0	5.0	07/20/22 21:39	
2-Nitroaniline	ug/L	<5.0	5.0	07/20/22 21:39	
2-Nitrophenol	ug/L	<5.0	5.0	07/20/22 21:39	
3&4-Methylphenol(m&p Cresol)	ug/L	<5.0	5.0	07/20/22 21:39	
3,3'-Dichlorobenzidine	ug/L	<5.0	5.0	07/20/22 21:39	
3-Nitroaniline	ug/L	<5.0	5.0	07/20/22 21:39	
4,6-Dinitro-2-methylphenol	ug/L	<10.0	10.0	07/20/22 21:39	
4-Bromophenylphenyl ether	ug/L	<5.0	5.0	07/20/22 21:39	
4-Chloro-3-methylphenol	ug/L	<5.0	5.0	07/20/22 21:39	
4-Chloroaniline	ug/L	<5.0	5.0	07/20/22 21:39	
4-Chlorophenylphenyl ether	ug/L	<5.0	5.0	07/20/22 21:39	
4-Nitroaniline	ug/L	<5.0	5.0	07/20/22 21:39	
4-Nitrophenol	ug/L	<10.0	10.0	07/20/22 21:39	
Acenaphthene	ug/L	<5.0	5.0	07/20/22 21:39	
Acenaphthylene	ug/L	<5.0	5.0	07/20/22 21:39	
Acetophenone	ug/L	<5.0	5.0	07/20/22 21:39	
Anthracene	ug/L	<5.0	5.0	07/20/22 21:39	
Atrazine	ug/L	<5.0	5.0	07/20/22 21:39	
Benzaldehyde	ug/L	<5.0	5.0	07/20/22 21:39	IC
Benzo(a)anthracene	ug/L	<5.0	5.0	07/20/22 21:39	
Benzo(a)pyrene	ug/L	<5.0	5.0	07/20/22 21:39	
Benzo(b)fluoranthene	ug/L	<5.0	5.0	07/20/22 21:39	
Benzo(g,h,i)perylene	ug/L	<5.0	5.0	07/20/22 21:39	
Benzo(k)fluoranthene	ug/L	<5.0	5.0	07/20/22 21:39	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

METHOD BLANK: 1342019 Matrix: Water

Associated Lab Samples: 70222027001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
	ug/L	- 	5.0	07/20/22 21:39	
Biphenyl (Diphenyl)		<5.0 <5.0		07/20/22 21:39	
bis(2-Chloroethoxy)methane	ug/L		5.0		
bis(2-Chloroethyl) ether	ug/L	<5.0	5.0	07/20/22 21:39	10
bis(2-Ethylhexyl)phthalate	ug/L	<5.0	5.0	07/20/22 21:39	IC
Butylbenzylphthalate	ug/L	<5.0	5.0	07/20/22 21:39	
Caprolactam	ug/L	<5.0	5.0	07/20/22 21:39	IC
Chrysene	ug/L	<5.0	5.0	07/20/22 21:39	
Di-n-butylphthalate	ug/L	<5.0	5.0	07/20/22 21:39	
Di-n-octylphthalate	ug/L	<5.0	5.0	07/20/22 21:39	
Dibenz(a,h)anthracene	ug/L	<5.0	5.0	07/20/22 21:39	
Dibenzofuran	ug/L	<5.0	5.0	07/20/22 21:39	
Diethylphthalate	ug/L	<5.0	5.0	07/20/22 21:39	
Dimethylphthalate	ug/L	<5.0	5.0	07/20/22 21:39	
Fluoranthene	ug/L	<5.0	5.0	07/20/22 21:39	
Fluorene	ug/L	<5.0	5.0	07/20/22 21:39	
Hexachloro-1,3-butadiene	ug/L	<5.0	5.0	07/20/22 21:39	
Hexachlorobenzene	ug/L	<5.0	5.0	07/20/22 21:39	
Hexachlorocyclopentadiene	ug/L	<5.0	5.0	07/20/22 21:39	
Hexachloroethane	ug/L	<5.0	5.0	07/20/22 21:39	
Indeno(1,2,3-cd)pyrene	ug/L	<5.0	5.0	07/20/22 21:39	
Isophorone	ug/L	<5.0	5.0	07/20/22 21:39	
N-Nitroso-di-n-propylamine	ug/L	<5.0	5.0	07/20/22 21:39	
N-Nitrosodiphenylamine	ug/L	<5.0	5.0	07/20/22 21:39	
Naphthalene	ug/L	<5.0	5.0	07/20/22 21:39	
Nitrobenzene	ug/L	<5.0	5.0	07/20/22 21:39	
Pentachlorophenol	ug/L	<10.0	10.0	07/20/22 21:39	
Phenanthrene	ug/L	<5.0	5.0	07/20/22 21:39	
Phenol	ug/L	<5.0	5.0	07/20/22 21:39	
Pyrene	ug/L	<5.0	5.0	07/20/22 21:39	
1,2-Dichlorobenzene-d4 (S)	%	65	14-101	07/20/22 21:39	
2,4,6-Tribromophenol (S)	%	101	10-168	07/20/22 21:39	
2-Chlorophenol-d4 (S)	%	74	29-98	07/20/22 21:39	
2-Fluorobiphenyl (S)	%	85	13-100	07/20/22 21:39	
2-Fluorophenol (S)	%	48	26-113	07/20/22 21:39	
Nitrobenzene-d5 (S)	%	77	30-113	07/20/22 21:39	
p-Terphenyl-d14 (S)	%	104	10-138	07/20/22 21:39	
Phenol-d5 (S)	%	32	10-100	07/20/22 21:39	

LABORATORY CONTROL SAMPLE	LABORATORY CONTROL SAMPLE & LCSD: 1342020 1342021										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max		
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers	
1,2,4-Trichlorobenzene	ug/L	25	16.5	18.6	66	74	35-107	12	30		
1,2-Dichlorobenzene	ug/L	25	14.2	16.7	57	67	33-101	16	30		
1,3-Dichlorobenzene	ug/L	25	13.9	16.3	56	65	30-100	15	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

LABORATORY CONTROL SAMPLE 8	& LCSD: 13420			342021							
_		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max		
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifier	
,4-Dichlorobenzene	ug/L	25	14.1	16.7	56	67	28-97	17	30		
2,2'-Oxybis(1-chloropropane)	ug/L	25	17.7	20.1	71	81	35-101	13	30		
2,3,4,6-Tetrachlorophenol	ug/L	25	23.7	21.7	95	87	50-122	9	30		
2,4,5-Trichlorophenol	ug/L	25	24.4	24.6	98	98	52-122	0	30		
2,4,6-Trichlorophenol	ug/L	25	22.9	23.2	92	93	48-113	1	30		
2,4-Dichlorophenol	ug/L	25	18.8	19.8	75	79	51-109	5	30		
2,4-Dimethylphenol	ug/L	25	16.6	17.4	67	70	24-94	5	30		
2,4-Dinitrophenol	ug/L	25	21.4	22.6	86	91	10-174	5	30		
2,4-Dinitrotoluene	ug/L	25	23.9	23.2	96	93	53-124	3	30		
2,6-Dinitrotoluene	ug/L	25	23.9	23.5		94	61-118	2	30		
2-Chloronaphthalene	ug/L	25	19.9	20.6		82	49-104	3	30		
2-Chlorophenol	ug/L	25	16.0	18.2		73	47-93	13	30		
2-Methylnaphthalene	ug/L	25	18.8	21.0		84	46-102	11	30		
2-Methylphenol(o-Cresol)	ug/L	25	14.7	16.0		64	38-88	9	30		
2-Nitroaniline	ug/L	25	18.5	22.5		90	44-108	19	30		
2-Nitrophenol	ug/L	25	20.4	22.5		90	52-114	10	30		
8&4-Methylphenol(m&p Cresol)	ug/L	25	13.1	16.0		64	36-88	20	30		
3,3'-Dichlorobenzidine	ug/L	25	24.3	23.0		92	59-126	6	30		
B-Nitroaniline	ug/L	25	25.0	24.2		97	63-113	3	30		
I,6-Dinitro-2-methylphenol	ug/L	25	21.9	24.2		97	26-148	10	30		
I-Bromophenylphenyl ether	ug/L	25	23.2	23.3		93	59-114	0	30		
I-Chloro-3-methylphenol	ug/L	25	20.6	20.7		83	55-106	0	30 v	13	
I-Chloroaniline	ug/L	25	17.9	19.4		77	54-100	8	30	v S	
I-Chlorophenylphenyl ether	ug/L	25	21.3	23.4		94	59-108	9	30		
l-Nitroaniline	ug/L	25	24.3	24.6		98	64-113	1	30		
	ug/L ug/L	25	7.8J	8.1J		32	10-83		30		
I-Nitrophenol							54-101	0			
Acenaphthene	ug/L	25	22.3	22.4		90		0	30		
Acenaphthylene	ug/L	25	21.3	21.8		87	56-105	2	30		
Acetophenone	ug/L	25	17.8	19.9		80	50-99	11	30		
Anthracene	ug/L	25	23.6	23.6		94	61-108	0	30		
Atrazine	ug/L	25	29.1	28.1		113	59-136	3	30	10	
Benzaldehyde	ug/L	25	22.5	26.7		107	18-176	17	30 I	U	
Benzo(a)anthracene	ug/L	25	24.2	23.0		92	62-109	5	30		
Benzo(a)pyrene	ug/L	25	23.7	24.8		99	62-117	4	30		
Benzo(b)fluoranthene	ug/L	25	24.1	25.0		100	60-111	4	30		
Benzo(g,h,i)perylene	ug/L	25	23.9	24.0		96	58-123	1	30		
Benzo(k)fluoranthene	ug/L	25	24.3	24.6		98	63-111	1	30		
Biphenyl (Diphenyl)	ug/L	25	20.8	20.7		83	53-104	0	30		
is(2-Chloroethoxy)methane	ug/L	25	18.7	20.9		84	47-94	11	30		
ois(2-Chloroethyl) ether	ug/L	25	16.3	19.2		77	45-95	16	30		
ois(2-Ethylhexyl)phthalate	ug/L	25	25.9	24.7		99	58-114	5	30 I		
Butylbenzylphthalate	ug/L	25	28.3	26.7			41-115	6	30 v		
Caprolactam	ug/L	25	8.1	7.7		31	11-40	5	30 I	IC	
Chrysene	ug/L	25	24.1	23.6		94	61-109	2	30		
Di-n-butylphthalate	ug/L	25	25.4	23.9		96	46-119	6	30		
Di-n-octylphthalate	ug/L	25	27.8	27.9		111	47-130	0	30 v	v 1	
Dibenz(a,h)anthracene	ug/L	25	23.8	22.7	95	91	62-121	5	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

LABORATORY CONTROL SAMPLE	& LCSD: 1342020		13	342021						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Dibenzofuran	ug/L	25	21.7	22.0	87	88	58-107	1	30	
Diethylphthalate	ug/L	25	24.1	24.1	96	96	10-140	0	30	
Dimethylphthalate	ug/L	25	24.3	24.5	97	98	10-159	1	30	
Fluoranthene	ug/L	25	23.4	23.6	94	94	61-112	1	30	
Fluorene	ug/L	25	22.0	23.1	88	92	57-106	5	30	
Hexachloro-1,3-butadiene	ug/L	25	15.2	17.4	61	70	23-109	14	30	
Hexachlorobenzene	ug/L	25	23.2	23.4	93	93	49-121	1	30	
Hexachlorocyclopentadiene	ug/L	25	14.2	15.8	57	63	10-122	11	30	
Hexachloroethane	ug/L	25	12.8	15.8	51	63	21-98	21	30	
Indeno(1,2,3-cd)pyrene	ug/L	25	23.1	23.4	92	93	59-116	1	30	
Isophorone	ug/L	25	19.9	22.6	79	91	53-99	13	30	
N-Nitroso-di-n-propylamine	ug/L	25	17.8	19.4	71	78	48-104	9	30	
N-Nitrosodiphenylamine	ug/L	25	23.2	23.5	93	94	61-107	1	30	
Naphthalene	ug/L	25	17.2	19.9	69	80	46-99	14	30	
Nitrobenzene	ug/L	25	18.0	20.6	72	83	46-99	13	30	
Pentachlorophenol	ug/L	25	23.7	22.6	95	91	15-138	5	30	
Phenanthrene	ug/L	25	22.7	22.7	91	91	60-109	0	30	
Phenol	ug/L	25	7.0	7.5	28	30	19-49	8	30	
Pyrene	ug/L	25	24.7	24.0	99	96	59-112	3	30	
1,2-Dichlorobenzene-d4 (S)	%				50	59	14-101			
2,4,6-Tribromophenol (S)	%				109	108	10-168			Ē
2-Chlorophenol-d4 (S)	%				62	70	29-98			
2-Fluorobiphenyl (S)	%				77	86	13-100			
2-Fluorophenol (S)	%				38	44	26-113			
Nitrobenzene-d5 (S)	%				69	78	30-113			
p-Terphenyl-d14 (S)	%				102	94	10-138			
Phenol-d5 (S)	%				28	31	10-100			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 264820
QC Batch Method: SM22 2120B

Analysis Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1338476 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 07/14/22 09:21

LABORATORY CONTROL SAMPLE: 1338477

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 1338478

Date: 08/18/2022 08:22 AM

70222028003 Dup **RPD** Parameter Units Result Result Qualifiers 42.0 **Apparent Color** 42.0 0 units 6.6 0 pН Std. Units 6.6

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265363 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1340737 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 07/18/22 12:37

LABORATORY CONTROL SAMPLE: 1340738

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25.6 102 85-115

MATRIX SPIKE SAMPLE: 1340740

MS MS % Rec 30504884001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 5.8 Alkalinity, Total as CaCO3 mg/L 56.2 50 101 75-125

SAMPLE DUPLICATE: 1340739

Date: 08/18/2022 08:22 AM

Parameter Units Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 5.8 5.9 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265548

QC Batch Method: SM22 2540C

Analysis Method: SM22 2540C

Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1341731 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <10.0 10.0 07/19/22 14:00

LABORATORY CONTROL SAMPLE: 1341732

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 500 526 105 85-115

MATRIX SPIKE SAMPLE: 1341734

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Discreted Solids 230 600 759 00 75 135

Total Dissolved Solids mg/L 230 600 768 90 75-125

MATRIX SPIKE SAMPLE: 1341736

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 19300 3000 21700 81 75-125

SAMPLE DUPLICATE: 1341733

Date: 08/18/2022 08:22 AM

70221999004 Dup
Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 230 208 10 D6

SAMPLE DUPLICATE: 1341735 70222028003 Dup

Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 19300 19200 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SM22 3500-Cr B

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 264813 Analysis Method:

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1338452 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Chromium, Hexavalent mg/L <0.020 0.020 07/14/22 09:17

LABORATORY CONTROL SAMPLE: 1338453

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Chromium, Hexavalent mg/L 0.2 0.20 98 85-115

MATRIX SPIKE SAMPLE: 1338462

MS MS % Rec 70222028003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 Chromium, Hexavalent mg/L 0.24 0.2 118 75-125

SAMPLE DUPLICATE: 1338463

Date: 08/18/2022 08:22 AM

Parameter Units 70222028003 Dup Result RPD Qualifiers

Chromium, Hexavalent mg/L <0.020 <0.020

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 266614 Analysis Method: QC Batch Method: EPA 410.4 Analysis Description:

Laboratory: Pace Analytical Services - Melville

EPA 410.4

410.4 COD

Associated Lab Samples: 70222027001

METHOD BLANK: 1347212 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Chemical Oxygen Demand mg/L <10.0 10.0 07/27/22 07:54

LABORATORY CONTROL SAMPLE: 1347213

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Chemical Oxygen Demand 500 501 100 90-110 mg/L

MATRIX SPIKE SAMPLE: 1347214

SAMPLE DUPLICATE: 1347217

Date: 08/18/2022 08:22 AM

MS MS % Rec 70222940002 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand 43.5 mg/L 1000 1020 97 90-110

Chemical Oxygen Demand Hig/L 45.5 1000 1020 97 90-110

 MATRIX SPIKE SAMPLE:
 1347216
 70222765010
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 <10.0</th>
 1000
 1020
 102
 90-110

SAMPLE DUPLICATE: 1347215

 Parameter
 Units
 70222940002 Result
 Dup Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 43.5
 39.0
 11

70222765010 Dup
Parameter Units Result RPD Qualifiers

Parameter Units Result Result RPD Qualifiers

Chemical Oxygen Demand mg/L <10.0 5.9J

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 264903 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1338732 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <2.0 2.0 07/19/22 09:39

LABORATORY CONTROL SAMPLE: 1338733

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 195 99 84.5-115.4

SAMPLE DUPLICATE: 1338734

Date: 08/18/2022 08:22 AM

 Parameter
 Units
 70222028003 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 <4.0</td>
 <4.0</td>

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265494 Analysis Method: EPA 9034

QC Batch Method: EPA 9030B Analysis Description: 9034 Sulfide Waste Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1341566 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfide mg/L <2.0 2.0 07/19/22 14:06

LABORATORY CONTROL SAMPLE: 1341567

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Sulfide mg/L 2800 2400 86 80-120

SAMPLE DUPLICATE: 1341568

Date: 08/18/2022 08:22 AM

Sulfide

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 mg/L
 8.0
 8.0
 0

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

QC Batch: 267257 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1350220 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	08/08/22 14:40	
Chloride	mg/L	0.022J	2.0	08/08/22 14:40	
Sulfate	mg/L	<5.0	5.0	08/08/22 14:40	

LABORATORY CONTROL SAMPLE:	1350221					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		0.98	98	90-110	
Chloride	mg/L	10	9.8	98	90-110	
Sulfate	mg/L	10	9.8	98	90-110	

MATRIX SPIKE SAMPLE:	1350222						
		70223149001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.10	1	1.3	121	90-110 N	//1
Chloride	mg/L	38.8	10	54.6	158	90-110 N	<i>I</i> 11
Sulfate	mg/L	<5.0	10	17.6	128	90-110 N	<i>I</i> 11

MATRIX SPIKE SAMPLE:	1350224						
_		70223149005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.074	1	1.2	111	90-110	M1
Chloride	mg/L	27.2	10	37.7	105	90-110	
Sulfate	mg/L	<5.0	10	14.6	111	90-110	M1

SAMPLE DUPLICATE: 1350223					
		70223149001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.10	0.11J		
Chloride	mg/L	38.8	43.2	11	
Sulfate	mg/L	<5.0	5.4		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

SAMPLE DUPLICATE: 1350225

Parameter	Units	70223149005 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	0.074	0.074J		
Chloride	mg/L	27.2	27.0	1	
Sulfate	mg/L	<5.0	3.5J		

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 269441 QC Batch Method: EPA 351.2 Analysis Method: EPA 351.2 Analysis Description: 351.2 TKN

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1361753 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Kjeldahl, Total mg/L <0.10 0.10 08/16/22 20:49

LABORATORY CONTROL SAMPLE: 1361754

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Kjeldahl, Total 4.4 110 90-110 mg/L

MATRIX SPIKE SAMPLE: 1361755

MS % Rec 70223937006 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total 1.4 mg/L 4 5.7 108 90-110

MATRIX SPIKE SAMPLE: 1361757

70224928001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.50 90-110 M1 Nitrogen, Kjeldahl, Total mg/L 4 4.9 116

SAMPLE DUPLICATE: 1361756

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 1.4
 1.4
 2

SAMPLE DUPLICATE: 1361758

Date: 08/18/2022 08:22 AM

 Parameter
 Units
 70224928001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 <0.50</td>
 0.68

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265009 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

70222027001 Associated Lab Samples:

METHOD BLANK: 1339337 Matrix: Water

Associated Lab Samples: 70222027001

> Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N < 0.050 0.050 07/15/22 00:24 mg/L

LABORATORY CONTROL SAMPLE: 1339338

Spike Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.1 106 90-110 mg/L

MATRIX SPIKE SAMPLE: 1339339

MS MS % Rec 70221999001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 90-110 M1 Nitrite as N mg/L 0.5 0.56 111

LCS

LCS

% Rec

MATRIX SPIKE SAMPLE: 1339341

70222028003 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N 0.5 0.54 107 90-110

mg/L

SAMPLE DUPLICATE: 1339340

70221999001 Dup RPD Parameter Units Result Result Qualifiers < 0.050 Nitrite as N mg/L < 0.050

SAMPLE DUPLICATE: 1339342

Date: 08/18/2022 08:22 AM

Dup 70222028003 RPD Units Qualifiers Parameter Result Result < 0.050 Nitrite as N < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 267058 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1349316 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.050 0.050 07/29/22 17:38

LABORATORY CONTROL SAMPLE: 1349317

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.1 108 90-110 mg/L

MATRIX SPIKE SAMPLE: 1349320

MS % Rec 70222765010 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrate-Nitrite (as N) 90-110 M1 mg/L 0.5 0.61 122

MATRIX SPIKE SAMPLE: 1349322

70222766008 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrate-Nitrite (as N) mg/L 0.5 0.51 97 90-110

SAMPLE DUPLICATE: 1349321

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 <0.050</td>
 <0.050</td>

SAMPLE DUPLICATE: 1349323

Date: 08/18/2022 08:22 AM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 267294 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1350338 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Phenolics, Total Recoverable ug/L <5.0 5.0 08/01/22 19:30

LABORATORY CONTROL SAMPLE: 1350339

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L 100 92.6 93 90-110

MATRIX SPIKE SAMPLE: 1350340

MS MS % Rec 70222765010 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <5.0 Phenolics, Total Recoverable ug/L 50 51.4 98 75-125

Theriolics, rotal recoverable ag/E

SAMPLE DUPLICATE: 1350341

Date: 08/18/2022 08:22 AM

Phenolics, Total Recoverable

Total Recoverable

Parameter

Units

Total Recoverable

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265895 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1343483 Matrix: Water

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.10 0.10 07/21/22 14:23

LABORATORY CONTROL SAMPLE: 1343484

Spike LCS LCS % Rec Parameter Conc. Result % Rec Limits Qualifiers Units Nitrogen, Ammonia mg/L 0.91 91 90-110

MATRIX SPIKE SAMPLE: 1343485

70222391003 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 Nitrogen, Ammonia mg/L 0.90 85 75-125

SAMPLE DUPLICATE: 1343486

Date: 08/18/2022 08:22 AM

ParameterUnits70222391003 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L<0.10</td><0.10</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Matrix: Water

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Cyanide

QC Batch: 265292 QC Batch Method: EPA 9010C Analysis Method: EPA 9014 Total Cyanide
Analysis Description: 9014 Cyanide, Total

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1340585

Associated Lab Samples: 70222027001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Cyanide ug/L <10.0 10.0 07/18/22 17:49

LABORATORY CONTROL SAMPLE: 1340586

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units ug/L 75 75.5 101 85-115

MATRIX SPIKE SAMPLE: 1340587

70221306005 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 Cyanide ug/L 100 110 110 75-125

SAMPLE DUPLICATE: 1340588

Date: 08/18/2022 08:22 AM

 Parameter
 Units
 70221306005 Result
 Dup Result
 RPD
 Qualifiers

 Cyanide
 ug/L
 <10.0</td>
 <10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 265033 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70222027001

METHOD BLANK: 1339466 Matrix: Water

Associated Lab Samples: 70222027001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	1.0	07/15/22 13:00	
Total Organic Carbon	mg/L	<1.0	1.0	07/15/22 13:00	
Total Organic Carbon	mg/L	<1.0	1.0	07/15/22 13:00	
Total Organic Carbon	mg/L	<1.0	1.0	07/15/22 13:00	
Total Organic Carbon	mg/L	<1.0	1.0	07/15/22 13:00	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	10	9.4	94	85-115	
Total Organic Carbon	mg/L	10	9.4	94	85-115	
Total Organic Carbon	mg/L	10	9.5	95	85-115	
Total Organic Carbon	mg/L	10	9.4	94	85-115	
Total Organic Carbon	mg/L	10	9.4	94	85-115	

MATRIX SPIKE SAMPLE:	1339469						
		70221749001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	10	10.4	102	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.4	102	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.5	102	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.3	101	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.4	102	75-125	

SAMPLE DUPLICATE: 1339468

Date: 08/18/2022 08:22 AM

		70221749001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Sample: CELL 7 PLCRS PWS:	Lab ID: 7022 Site ID:	2027001 Collected: 07/13/22 08:35 Sample Type:	Received:	07/13/22 12:38	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 903.1	3.74 ± 1.37 (0.317) C:NA T:106%	pCi/L	08/02/22 11:53	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	9.86 ± 3.71 (5.57) C:76% T:88%	pCi/L	07/29/22 18:38	3 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Uranium	ASTM D5174-97	0.203 ± 0.010 (2.620) C:NA T:NA	ug/L	08/11/22 14:31	7440-61-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 519971 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 70222027001

METHOD BLANK: 2520861 Matrix: Water

Associated Lab Samples: 70222027001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.639 ± 0.342 (0.602) C:77% T:96%
 pCi/L
 07/29/22 13:10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 519925 Analysis Method: ASTM D5174-97

QC Batch Method: ASTM D5174-97 Analysis Description: D5174.97 Total Uranium KPA

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 70222027001

METHOD BLANK: 2520740 Matrix: Water

Associated Lab Samples: 70222027001

ParameterAct \pm Unc (MDC) Carr TracUnitsAnalyzedQualifiersTotal Uranium 0.000 ± 0.001 (0.262) C:NA T:NAug/L08/11/22 13:56

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

QC Batch: 519970 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 70222027001

METHOD BLANK: 2520860 Matrix: Water

Associated Lab Samples: 70222027001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.284 (0.600) C:NA T:87%
 pCi/L
 08/02/22 11:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WORKORDER QUALIFIERS

WO: 70222027

p-Phenylenediamine is reporting with critically low recovery in the laboratory control sample(s). This compound is a method defined poor performer. Results are estimated.

ANALYTE QUALIFIERS

Date: 08/18/2022 08:22 AM

C2	Relative percent difference between results from each column was greater than 40%. The lower of the two results was
	reported.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

An aliquot for analysis was taken from the original container received due to volume requirements of the laboratory's procedure. Rinsing of the original sample container for inclusion in the sample extraction was not performed.

H3 Sample was received or analysis requested beyond the recognized method holding time.

IC The initial calibration for this compound was outside of method control limits. The result is estimated.

QUALIFIERS

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

ANALYTE QUALIFIERS

Date: 08/18/2022 08:22 AM

IH	This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
L0	Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
v3	The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CELL 7 LEACHATE EXPANDED 7/13

Pace Project No.: 70222027

Date: 08/18/2022 08:22 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70222027001	CELL 7 PLCRS	EPA 3510C	265621	EPA 8081B	265655
70222027001	CELL 7 PLCRS	EPA 3510C	266071	EPA 8082A	266195
70222027001	CELL 7 PLCRS	EPA 8151A	265294	EPA 8151A	265686
70222027001	CELL 7 PLCRS	EPA 3005A	265048	EPA 6010C	265085
70222027001	CELL 7 PLCRS	EPA 7470A	265936	EPA 7470A	265983
70222027001	CELL 7 PLCRS	3510C	1897460	EPA 8270E	1897460
70222027001	CELL 7 PLCRS	EPA 3510C	265623	EPA 8270E	265656
70222027001	CELL 7 PLCRS	EPA 8260C SIM/5030C	265396		
70222027001	CELL 7 PLCRS	EPA 8260C/5030C	265051		
70222027001	CELL 7 PLCRS	EPA 903.1	519970		
70222027001	CELL 7 PLCRS	EPA 904.0	519971		
70222027001	CELL 7 PLCRS	ASTM D5174-97	519925		
70222027001	CELL 7 PLCRS	SM22 2120B	264820		
70222027001	CELL 7 PLCRS	SM22 2320B	265363		
70222027001	CELL 7 PLCRS	SM22 2540C	265548		
70222027001	CELL 7 PLCRS	SM22 3500-Cr B	264813		
70222027001	CELL 7 PLCRS	EPA 410.4	266614	EPA 410.4	266617
70222027001	CELL 7 PLCRS	SM22 5210B	264903	SM22 5210B	265774
70222027001	CELL 7 PLCRS	EPA 9030B	265494	EPA 9034	265573
70222027001	CELL 7 PLCRS	EPA 300.0	267257		
70222027001	CELL 7 PLCRS	EPA 351.2	269441	EPA 351.2	269448
70222027001	CELL 7 PLCRS	EPA 353.2	267058		
70222027001	CELL 7 PLCRS	EPA 353.2	265009		
70222027001	CELL 7 PLCRS	EPA 420.1	267294	EPA 420.1	267388
70222027001	CELL 7 PLCRS	SM22 4500 NH3 H	265895		
70222027001	CELL 7 PLCRS	EPA 9010C	265292	EPA 9014 Total Cyanide	265429
70222027001	CELL 7 PLCRS	EPA 9060A	265033		

WO#: 70222027

CHAIN-OF-CUSTODY / Analytical I

The Chain-of-Custody is a LEGAL DOCUMENT. All re

(N/Y) Samples Intact SAMPLE CONDITIONS (N/A) Cooler paleas Custody Regulatory Agency State / Location (N/Y) 3 Received on Residual Chlorine (Y/N) Ö LEMP IN C Sulfide DATE Signed: 7-13-2032 TIME СОД'ИНЗ'ИОЗ' ТКИ, Рћепо Cyanide NOS' AIK' TDS 7/13 DATE BOD, Br, CI, SO4, Color, Cr+6 TAL Metals +B & Hardness Kimberly.Mack@PaceLabs.com 1918 2808 × 1808 × ACCEPTED BY / AFFILIATION 0728 × 0928 Analyses Test N/A Duran -Other Methanol 5271 LINE 2 & 6 Na2S2O3 Preservatives **Brian Nichols** HOBN Pace Project Manager: HÇI Section C Invoice Information: ниоз Pace Profile #: Company Name ₽OSZH 1226 Pace Quote: Attention: THME Address: Unpreserved 8 SAMPLER NAME AND SIGNATURE # OF CONTAINERS PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 1/2 CX TIME END Brian Nichols / Zion Environmental, LLC DATE Cell 7 Leachate Expanded 360 COLLECTED RELINQUISHED BY / AFFILIATION TIME START DATE Required Project Information: Report To: Joe Guarino SAMPLE TYPE (G=GRAB C=COMP) ourchase Order #: Ž MATRIX CODE (see valid codes to left) Project Name: Section B Sopy To: CCODE DWW WWW WWP OL OL AR AR TS MATRIX
Drinking Water
Water
Waste Water
Product
Solifsolid
Oil
Wipe
Air
Cliner
Tissue ADDITIONAL COMMENTS (A-Z, 0-9 / , -) Sample Ids must be unique One Character per box. SAMPLE ID mail: jquarino@townofbabylon.com 281 Phelps Lane Town of Babylon Required Client Information: 631-422-7640 Cell 7 PLCRS Cell 7 Leachate Expanded 360 North Babylon, NY 11703 Requested Due Date Company: Address: Page 86 of 107 Phone: 12 9 7 # MHTI က 40 9 ∞ 6

Due Date: 07/22/22 WO#: 70222027

CHAIN-OF-CUSTODY / Analyti

The Chain-of-Custody is a LEGAL DOCUMENT

CLIENT: BAB-ECO

Samples Intact (Y/V) SAMPLE CONDITIONS ŏ Regulatory Agency State / Location Received on Residual Chlorine (Y/N) Page: TEMP In C 0 238 TIME Requested Analysis Filtered (Y/N) DATE r PFAS/PF05 9nexoid 4,1 × Kimberly.Mack@PaceLabs.com mninei × Radium 228 × ACCEPTED BY / AFFILIATION Radium 226 Dioxin/Furan Scan Analyses Test N/A Other Methanol 5271 LINE 2 & 6 Preservatives Na2S2O3 **Brian Nichols** HOEN Pace Project Manager: Pace Profile #: 5271 HCI invoice Information: боин Company Name: Address: H2504 Pace Quote: Section C Attention: TIME Unpreserved # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TIME 14/2 835 END DATE Brian Nichols / Zion Environmental, LLC Cell 7 Leachate Expanded 360 COLLECTED RELINQUISHED BY I AFFILIATION TIME START DATE Required Project Information: Report To: Joe Guarino SAMPLE TYPE (G=GRAB C=COMP) M Purchase Order #: MATRIX CODE (see valid codes to left) Project Name: Section B Copy To: Project #: CODE DW WT WW SL OL WP AR AR TS MATRIX
Drinking Water
Water
Waste Water
Product
Soul/Solid
Oil
Wipe
Air
Other
Tissue ADDITIONAL COMMENTS One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique SAMPLE ID mail: iguarino@townofbabylon.com 281 Phelps Lane Town of Babylon Required Client Information: 631-422-7640 Cell 7 PLCRS Cell 7 Leachate Expanded 360 Jorth Babylon, NY 11703 Requested Due Date: Page 87 of 107 Address: 5 15 16 18 19 22 23 24 4 17 20 21 # MHTI

(N/A)

Cooler

Sealed Custody

> (N/Y) 90

> > -13-2622

1

DATE Signed:

SIGNATURE of SAMPLER:

	S	ample	e Condit	ion Upc	n Recr	U∩#:	702	22027	
Pace Analytical"	Client N	lamo			Proje		-0.07		
		AB. E	800		Projei	PM: KMM		Due Date: 07/22	/22
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☑Client		01-			-	CL.IENY:	BAIS-ECO		
Tracking #:				101					
Custody Seal on Cooler/Box Present:	es Cum	Seals	intact: \(\sum \)	es No F	Α/Δ	Temnerat	ure Blank f	Present: Yes No)
Packing Material: Bubble Wrap Bubble					3 %	Type of Ic		Blue None	,
Thermometer Used: THOST THIE	Correct	inn Fact	or: + O.	Ī				g process has begun	
Cooler Temperature(°C):			ture Correc		. 2		100	s placed in freezer	
Temp should be above freezing to 6.0°C	===						o o o o o o o o o o o o o o o o o o o		
USDA Regulated Soil (A)/A, water sample	.]			Date and	d Initials of p	erson exami	nina conter	nts: KLJ 7/13/2	
Did samples originate in a quarantine zone w		nitad Sta	toc: AL AD C		· ·		Ü	from a foreign source	
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		s \square No	LES. AL, AR, C	A, I C, OA, ID,	LA, MO, NO,			ruerto Rico)? 🛚 Yes 🏻	1 No
If Yes to either question, fill out a Regulati			E_I1_C_010] :	and include	with SCHD/	ז עווטטוטווע מאסרשים חחר	idwaii aiin b	Tuerto kicoj? 🗀 res 🕰	1 MO
in the te state question, an out a regulation	0011 01	icckiist (1 [1 0 010]	ond morado	WILL SOUR		MENTS:		_
Chain of Custody Present:	⊠Yes	□No		1.		- 001	II IZIVIO.		_
Chain of Custody Filled Out:	/Z/Yes	□No		2.					
Chain of Custody Relinquished:	ØYes	□No		3.					_
Sampler Name & Signature on COC:	ZYes	□No	□N/A	4.					
Samples Arrived within Hold Time:	Yes	□No		5.				70	_
Short Hold Time Analysis (<72hr):	ZYes	□No		6.					
Rush Turn Around Time Requested:	□Yes	⊠¶o		7.					
Sufficient Volume: (Triple volume provided for	lizYes	□No		8.					
Correct Containers Used:	∕ ⊠Yes	□No		9.					
-Pace Containers Used:	⊠Yes	□No							
Containers Intact:	⊠Yes	□No		10.					
Filtered volume received for Dissolved tests	□Yes	□No	∠N/A	11.	Note if sedi	ment is visible	e in the diss	olved container.	- 2
Sample Labels match COC:	⊠Yes	□No		12.					
-Includes date/time/ID, Matrix: SI/WI) (
All containers needing preservation have been	n 🗹 Yes	□No	□N/A	13.	□ HNO ₃	□ H ₂ SO ₄	□NaOH	□ HCI	0)
checked?	/							a	
pH paper Lot #HCZ8751					,				
All containers needing preservation are found in compliance with method recommendation?				Sample #	ŗ				
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,		(T)	□N1/Λ	1					
NAOH>12 Cyanide)	□Yes	□No	□N/A	1				*	
Exceptions: VOA, Coliform, TOC/DOC, Oil and Gr	0200							- 5	
DRO/8015 (water).	E43E,			laitial who	on completed.	Lot # of add	404	Data /Time a assessment	_
Per Method, VOA pH is checked after analysis				Introduction with	en completed:	preservative		Date/Time preservati added:	ve
Samples checked for dechlorination:	□Yes	□No	Ç Z N/A	14.		Thi esei varive	3.	Jaonen:	\dashv
KI starch test strips Lot #	L103	L110	911/1	1.2					
Residual chlorine strips Lot #	19				Positive for Re	es. Chlorine? \	/ N		- 1
SM 4500 CN samples checked for sulfide?	□Yeş	□No	ØN/A	15.	1 001 11 TO	os. Orkornic:	I I		-
Lead Acetate Strips Lot #			1	5.0	Positive for Su	ılfide?	'N		
Headspace in VOA Vials (>6mm):	□Yes	₽No	□N/A	16.			5.		\neg
Trip Blank Present:	ØYes .	□No	□N/A	17.					
Trip Blank Custody Seals Present	∀es	□No	□N/A				10		
Pace Trip Blank Lot # (if applicable):									1
Client Notification/ Resolution:				Field Data	Required?	Y	/ N	7	_
Person Contacted:					Date/Time:	•	,		
Comments/ Resolution:					.,	•			
									_
		77							

Environment Testing America

ANALYTICAL REPORT

Eurofins Burlington 530 Community Drive Suite 11 South Burlington, VT 05403

Tel: (802)660-1990

Laboratory Job ID: 200-64187-1

Laboratory Sample Delivery Group: 70222027 Client Project/Site: Cell 7 Leachate Expanded 7/13

For:

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, New York 11747

Attn: Kimberley Mack

Elizabeth a Myc

Authorized for release by: 7/27/2022 12:11:00 PM

Elizabeth Nye, Project Manager I (802)923-1029

Elizabeth.Nye@et.eurofinsus.com

Review your project results through

·····LINKS ·······

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Client: Pace Analytical Services, LLC Project/Site: Cell 7 Leachate Expanded 7/13 Laboratory Job ID: 200-64187-1 SDG: 70222027

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	19

3

4

6

8

10

11

13

14

15

Definitions/Glossary

Client: Pace Analytical Services, LLC Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Qualifiers

	NAC.
	IVI.
_	

Qualifier	Qualifier Description
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
D	Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDI	Mathad Datastian Limit

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Pace Analytical Services, LLC Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1 SDG: 70222027

Job ID: 200-64187-1

Laboratory: Eurofins Burlington

Narrative

CASE NARRATIVE

Client: Pace Analytical Services, LLC

Project: Cell 7 Leachate Expanded 7/13

Report Number: 200-64187-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The sample was received on 07/16/2022; the sample arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 1.2° C.

PERFLUORINATED HYDROCARBONS

Sample CELL 7 PLCRS was analyzed for Perfluorinated Hydrocarbons in accordance with TAL SOP BR-LC-009. The sample was prepared on 07/21/2022 and analyzed on 07/21/2022 and 07/22/2022.

13C2 PFTeDA Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: CELL 7 PLCRS. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Results for sample CELL 7 PLCRS we reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

4

5

b

8

9

11

12

14

15

Detection Summary

Client: Pace Analytical Services, LLC Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Client Sample ID: CELL 7 PLCRS

DL

Γ	B 1/ 6 1/6					
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	231	1.60	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	38.9	1.60	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	39.8	1.60	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.07	1.60	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.42	1.60	ng/L	1	537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic	5.46	4.01	ng/L	1	537 (modified)	Total/NA
acid (6:2)						
Perfluorobutanoic acid (PFBA) - DL	362 D	20.0	ng/L	5	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA) - DL	615 D	8.02	ng/L	5	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS) -	302 D	8.02	ng/L	5	537 (modified)	Total/NA

Lab Sample ID: 200-64187-1

Client Sample Results

Client: Pace Analytical Services, LLC Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Client Sample ID: CELL 7 PLCRS

(PFBS)

Isotope Dilution

13C4 PFBA

13C2 PFHxA

Lab Sample ID: 200-64187-1 Date Collected: 07/13/22 08:35 **Matrix: Water** Date Received: 07/16/22 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluoropentanoic acid (PFPeA)	231		1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluoroheptanoic acid (PFHpA)	38.9		1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorooctanoic acid (PFOA)	39.8		1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorononanoic acid (PFNA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorodecanoic acid (PFDA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluoroundecanoic acid (PFUnA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorododecanoic acid (PFDoA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorotridecanoic acid (PFTriA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorotetradecanoic acid (PFTeA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluorohexanesulfonic acid (PFHxS)	5.07		1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
Perfluoroheptanesulfonic acid (PFHpS)	1.60	U	1.60		ng/L			07/21/22 16:56	
Perfluorooctanesulfonic acid (PFOS)	2.42		1.60		ng/L			07/21/22 16:56	
Perfluorodecanesulfonic acid (PFDS)	1.60		1.60		ng/L			07/21/22 16:56	
Perfluorooctanesulfonamide (PFOSA)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.01	U	4.01		ng/L			07/21/22 16:56	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.01	U	4.01		ng/L			07/21/22 16:56	
H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	5.46		4.01		ng/L		07/21/22 08:39	07/21/22 16:56	
IH,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.60	U	1.60		ng/L		07/21/22 08:39	07/21/22 16:56	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1802 PFHxS	79		50 - 150				07/21/22 08:39	07/21/22 16:56	
13C4 PFHpA	94		50 - 150				07/21/22 08:39	07/21/22 16:56	
13C4 PFOA	92		50 - 150				07/21/22 08:39	07/21/22 16:56	
3C4 PFOS	72		50 - 150				07/21/22 08:39	07/21/22 16:56	
13C5 PFNA	85		50 - 150				07/21/22 08:39	07/21/22 16:56	
13C2 PFDA	95		50 - 150				07/21/22 08:39	07/21/22 16:56	
13C2 PFUnA	98		50 ₋ 150				07/21/22 08:39	07/21/22 16:56	
13C2 PFDoA	77		50 - 150				07/21/22 08:39	07/21/22 16:56	
I3C8 FOSA	62		50 - 150				07/21/22 08:39	07/21/22 16:56	
	70		50 - 150				07/21/22 08:39	07/21/22 16:56	
13C5 PFPeA	73								
	73 43	*5-	50 - 150				07/21/22 08:39	07/21/22 16:56	
3C2 PFTeDA		*5-						07/21/22 16:56 07/21/22 16:56	
13C2 PFTeDA 13-NMeFOSAA	43	*5-	50 - 150				07/21/22 08:39		
13C2 PFTeDA 13-NMeFOSAA 15-NEtFOSAA	43 85	*5-	50 - 150 50 - 150				07/21/22 08:39 07/21/22 08:39	07/21/22 16:56	
13C2 PFTeDA 13-NMeFOSAA 15-NEtFOSAA M2-6:2 FTS	43 85 83	*5-	50 - 150 50 - 150 50 - 150				07/21/22 08:39 07/21/22 08:39 07/21/22 08:39	07/21/22 16:56 07/21/22 16:56	
13C2 PFTeDA 13-NMeFOSAA 15-NEtFOSAA M2-6:2 FTS M2-8:2 FTS Method: 537 (modified) - Fluor	43 85 83 83 93	vi Substan	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 07/21/22 08:39	07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 07/21/22 16:56	
13C2 PFTeDA d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS Method: 537 (modified) - Fluor Analyte	43 85 83 83 93 inated Alky Result	rl Substan Qualifier	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 ces - DL	MDL	Unit	<u>D</u>	07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 Prepared	07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 Analyzed	Dil Fa
13C2 PFTeDA d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS Method: 537 (modified) - Fluor Analyte Perfluorobutanoic acid (PFBA)	43 85 83 83 93 inated Alky Result 362	VI Substan	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 ces - DL RL 20.0	MDL	ng/L	<u>D</u>	07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 Prepared 07/21/22 08:39	07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 Analyzed 07/22/22 16:14	_ Dil Fa
13C5 PFPeA 13C2 PFTeDA d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS Method: 537 (modified) - Fluor Analyte Perfluorobutanoic acid (PFBA) Perfluorobutanesulfonic acid	43 85 83 83 93 inated Alky Result	rl Substan Qualifier D	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 ces - DL	MDL		<u>D</u>	07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 07/21/22 08:39 Prepared 07/21/22 08:39 07/21/22 08:39	07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 07/21/22 16:56 Analyzed	Dil Fa

Eurofins Burlington

Analyzed

Prepared

07/21/22 08:39 07/22/22 16:14

07/21/22 08:39 07/22/22 16:14

Dil Fac

5

5

Limits

25 - 150

25 - 150

%Recovery Qualifier

76

100

Client Sample Results

Client: Pace Analytical Services, LLC
Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1
SDG: 70222027

Client Sample ID: CELL 7 PLCRS

Lab Sample ID: 200-64187-1

Date Collected: 07/13/22 08:35

Date Received: 07/16/22 09:30

Matrix: Water

Method: 537 (modified) - Fluorinated Alkyl Substances - DL (Continued)

 Isotope Dilution
 %Recovery 13C3 PFBS
 Qualifier 25 - 150
 Limits 25 - 150
 Prepared 07/21/22 08:39
 Analyzed 07/22/22 16:14
 Dil Fac 07/21/22 08:39

4

5

6

8

10

12

11

40

Client: Pace Analytical Services, LLC

Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ad	ceptance L	imits)	
		PFHxS	C4PFHA	PFOA	PFOS	PFNA	PFBA	PFHxA	PFDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
200-64187-1	CELL 7 PLCRS	79	94	92	72	85			95
LCS 200-181889/2-A	Lab Control Sample	77	100	99	73	95	106	107	98
MB 200-181889/1-A	Method Blank	80	108	103	76	97	108	113	98
			Perce	ent Isotope	Dilution Re	covery (Ad	ceptance L	imits)	
		PFUnA	PFDoA	PFOSA	PFPeA	PFTDA	d3NMFOS	d5NEFOS	M262FTS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
200-64187-1	CELL 7 PLCRS	98	77	62	73	43 *5-	85	83	83
LCS 200-181889/2-A	Lab Control Sample	88	80	61	112	77	93	94	83
MB 200-181889/1-A	Method Blank	92	83	69	116	79	97	92	83
			Perce	ent Isotope	Dilution Re	covery (Ad	ceptance L	imits)	
		M282FTS	C3PFBS						
Lab Sample ID	Client Sample ID	(50-150)	(50-150)						
200-64187-1	CELL 7 PLCRS	93							
LCS 200-181889/2-A	Lab Control Sample	88	83						
MB 200-181889/1-A	Method Blank	89	82						
Surrogate Legend									
PFHxS = 1802 PFHxS									

PFHxS = 1802 PFHxS

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFOS = 13C4 PFOS

PFNA = 13C5 PFNA

PFBA = 13C4 PFBA

PFHxA = 13C2 PFHxA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA PFDoA = 13C2 PFDoA

PFOSA = 13C8 FOSA

PFPeA = 13C5 PFPeA

PFTDA = 13C2 PFTeDA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

C3PFBS = 13C3 PFBS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFBA	PFHxA	C3PFBS					
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)					
200-64187-1 - DL	CELL 7 PLCRS	76	100	87					

Surrogate Legend

PFBA = 13C4 PFBA PFHxA = 13C2 PFHxA C3PFBS = 13C3 PFBS

Eurofins Burlington

QC Sample Results

Client: Pace Analytical Services, LLC Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-181889/1-A

Matrix: Water

Analysis Batch: 181913

١k

Prep Type: Total/NA

Prep Batch: 181889

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.00	U	5.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluoropentanoic acid (PFPeA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorohexanoic acid (PFHxA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluoroheptanoic acid (PFHpA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorooctanoic acid (PFOA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorononanoic acid (PFNA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorodecanoic acid (PFDA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluoroundecanoic acid (PFUnA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorododecanoic acid (PFDoA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorotridecanoic acid (PFTriA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorotetradecanoic acid (PFTeA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorobutanesulfonic acid (PFBS)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorohexanesulfonic acid (PFHxS)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluoroheptanesulfonic acid (PFHpS)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorooctanesulfonic acid (PFOS)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorodecanesulfonic acid (PFDS)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
Perfluorooctanesulfonamide (PFOSA)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.00	U	5.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.00	U	5.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	5.00	U	5.00		ng/L		07/21/22 08:39	07/21/22 16:24	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	2.00	U	2.00		ng/L		07/21/22 08:39	07/21/22 16:24	1

	MB	МВ				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1802 PFHxS	80		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C4 PFHpA	108		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C4 PFOA	103		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C4 PFOS	76		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C5 PFNA	97		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C4 PFBA	108		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C2 PFHxA	113		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C2 PFDA	98		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C2 PFUnA	92		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C2 PFDoA	83		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C8 FOSA	69		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C5 PFPeA	116		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C2 PFTeDA	79		50 - 150	07/21/22 08:39	07/21/22 16:24	1
d3-NMeFOSAA	97		50 - 150	07/21/22 08:39	07/21/22 16:24	1
d5-NEtFOSAA	92		50 - 150	07/21/22 08:39	07/21/22 16:24	1
M2-6:2 FTS	83		50 - 150	07/21/22 08:39	07/21/22 16:24	1
M2-8:2 FTS	89		50 - 150	07/21/22 08:39	07/21/22 16:24	1
13C3 PFBS	82		50 - 150	07/21/22 08:39	07/21/22 16:24	1

QC Sample Results

Client: Pace Analytical Services, LLC Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 200-181889/2-A

Matrix: Water

fonic acid (8:2)

Analysis Batch: 181913

Prep	Type: Total/NA	
Prep	Batch: 181889	

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorobutanoic acid (PFBA)	40.0	40.64		ng/L		102	70 - 130	
Perfluoropentanoic acid (PFPeA)	40.0	41.17		ng/L		103	70 - 130	
Perfluorohexanoic acid (PFHxA)	40.0	40.09		ng/L		100	70 - 130	
Perfluoroheptanoic acid (PFHpA)	40.0	43.32		ng/L		108	70 - 130	
Perfluorooctanoic acid (PFOA)	40.0	41.86		ng/L		105	70 - 130	
Perfluorononanoic acid (PFNA)	40.0	41.86		ng/L		105	70 - 130	
Perfluorodecanoic acid (PFDA)	40.0	40.19		ng/L		100	70 - 130	
Perfluoroundecanoic acid	40.0	42.01		ng/L		105	70 - 130	
(PFUnA) Perfluorododecanoic acid (PFDoA)	40.0	39.88		ng/L		100	70 - 130	
Perfluorotridecanoic acid (PFTriA)	40.0	38.51		ng/L		96	70 - 130	
Perfluorotetradecanoic acid (PFTeA)	40.0	40.42		ng/L		101	70 - 130	
Perfluorobutanesulfonic acid (PFBS)	35.4	37.14		ng/L		105	70 - 130	
Perfluorohexanesulfonic acid (PFHxS)	36.4	36.81		ng/L		101	70 - 130	
Perfluoroheptanesulfonic acid (PFHpS)	38.1	39.81		ng/L		105	70 - 130	
Perfluorooctanesulfonic acid (PFOS)	37.1	36.56		ng/L		98	70 - 130	
Perfluorodecanesulfonic acid (PFDS)	38.6	36.31		ng/L		94	70 - 130	
Perfluorooctanesulfonamide (PFOSA)	40.0	42.20		ng/L		106	70 - 130	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	41.55		ng/L		104	70 - 130	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	36.88		ng/L		92	70 - 130	
1H,1H,2H,2H-perfluorooctanesulf onic acid (6:2)	37.9	37.74		ng/L		100	60 - 140	
1H,1H,2H,2H-perfluorodecanesul	38.3	33.93		ng/L		89	70 - 130	

LCS LCS

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
18O2 PFHxS	77		50 - 150
13C4 PFHpA	100		50 - 150
13C4 PFOA	99		50 - 150
13C4 PFOS	73		50 - 150
13C5 PFNA	95		50 - 150
13C4 PFBA	106		50 - 150
13C2 PFHxA	107		50 - 150
13C2 PFDA	98		50 - 150
13C2 PFUnA	88		50 - 150
13C2 PFDoA	80		50 - 150
13C8 FOSA	61		50 - 150
13C5 PFPeA	112		50 - 150
13C2 PFTeDA	77		50 - 150
d3-NMeFOSAA	93		50 - 150
d5-NEtFOSAA	94		50 - 150

Eurofins Burlington

Page 98 of 107 7/27/2022

QC Sample Results

Client: Pace Analytical Services, LLC
Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1
SDG: 70222027

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

LCS LCS

Lab Sample ID: LCS 200-181889/2-A

Matrix: Water

Analysis Batch: 181913

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 181889

Isotope Dilution	%Recovery G	Qualifier	Limits
M2-6:2 FTS	83		50 - 150
M2-8:2 FTS	88		50 - 150
13C3 PFBS	83		50 ₋ 150

6

8

10

11

13

14

15

7/27/2022

QC Association Summary

Client: Pace Analytical Services, LLC Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1 SDG: 70222027

LCMS

Prep Batch: 181889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-64187-1	CELL 7 PLCRS	Total/NA	Water	3535	
200-64187-1 - DL	CELL 7 PLCRS	Total/NA	Water	3535	
MB 200-181889/1-A	Method Blank	Total/NA	Water	3535	
LCS 200-181889/2-A	Lab Control Sample	Total/NA	Water	3535	

Analysis Batch: 181913

Lab Sample ID 200-64187-1	Client Sample ID CELL 7 PLCRS	Prep Type Total/NA	Matrix Water	Method 537 (modified)	Prep Batch 181889
MB 200-181889/1-A	Method Blank	Total/NA	Water	537 (modified)	181889
LCS 200-181889/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	181889

Analysis Batch: 181963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-64187-1 - DL	CELL 7 PLCRS	Total/NA	Water	537 (modified)	181889

Lab Chronicle

Client: Pace Analytical Services, LLC Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Client Sample ID: CELL 7 PLCRS

Lab Sample ID: 200-64187-1 Date Collected: 07/13/22 08:35 Date Received: 07/16/22 09:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			181889	07/21/22 08:39	KFW	TAL BUR
Total/NA	Analysis	537 (modified)		1	181913	07/21/22 16:56	ND	TAL BUR
Total/NA	Prep	3535	DL		181889	07/21/22 08:39	KFW	TAL BUR
Total/NA	Analysis	537 (modified)	DL	5	181963	07/22/22 16:14	KFW	TAL BUR

Laboratory References:

TAL BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Accreditation/Certification Summary

Client: Pace Analytical Services, LLC

Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1 SDG: 70222027

Laboratory: Eurofins Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-17-23
Florida	NELAP	E87467	06-30-23
Minnesota	NELAP	050-999-436	12-31-22
New Hampshire	NELAP	2006	12-18-22
New Jersey	NELAP	VT972	06-30-23
New York	NELAP	10391	04-01-23
Pennsylvania	NELAP	68-00489	04-30-23
Rhode Island	State	LAO00298	12-30-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	02-10-23
Virginia	NELAP	460209	12-14-22
Wisconsin	State	399133350	08-31-22

3

4

5

7

8

9

11

12

4 4

40

7/27/2022

Method Summary

Client: Pace Analytical Services, LLC

Job ID: 200-64187-1 Project/Site: Cell 7 Leachate Expanded 7/13 SDG: 70222027

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL BUR
3535	Solid-Phase Extraction (SPE)	SW846	TAL BUR

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

7/27/2022

Sample Summary

Client: Pace Analytical Services, LLC

Project/Site: Cell 7 Leachate Expanded 7/13

Job ID: 200-64187-1

SDG: 70222027

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
200-64187-1	CELL 7 PLCRS	Water	07/13/22 08:35	07/16/22 09:30

2

6

8

9

10

13

14

15

Page 1 of 1

FMT-ALL-C-002rev 00 24March2009

Pace Analytical ® Results Requested By: 8/4/2022 CELL 7 LEACHATE EXPANDED 7/13

Workorder Name:

Workorder: 70222027

Chain of Custody

PASI New York Laboratory

Requested Analysis ₽FAS Preserved Containers 70222027 KMM P.O. Eurofins Burlington (TA) 30 Community Drive, Suite 11 South Burlington, VT 05403 Subcontract To Phone (631)694-3040 Email: kimberley.mack@pacelabs.com Ż State of Sample Origin: 575 Broad Hollow Road Pace Analytical Melville Kımberley M. Mack Melville, NY 11747 Report / Invoice To

Samples Intact Y or Comments Received on Ice Y or 4730 7/14/22 Date/Time Unpreserved Custody Seal Y or N Matrix Water Received By 70222027001 Lab ID Date/Time 271511 7/13/2022 08 35 Date/Time ပွ Collect Cooler Temperature on Receipt Released By **CELL 7 PLCRS** Sample ID Transfers Item

LAB USE ONLY

Z

⁸K,

²⁰⁰⁻⁶⁴¹⁸⁷ COC

Sept.

BILL SENDER

MELVILLE, NY 11747 UNITED STATES US BETSY NYE **EUROFINS BURLINGTON** 30 COMMUNITY DRIVE, SUITE 11

ORIGIN ID:ZMVA (631) 6943040 NORANNE SAAGER PACE ANALYTICAL SERVICES 575 BROADHOLLOW RD

SOUTH BURLINGTON VT 05403

FedEx Express

TRK# 5901 5094 5250

PRIORITY OVERNIGHT

05403 BTV VT – US

1.

Login Sample Receipt Checklist

Client: Pace Analytical Services, LLC

Job Number: 200-64187-1

SDG Number: 70222027

List Source: Eurofins Burlington

Login Number: 64187 List Number: 1

Residual Chlorine Checked.

Creator: Cunningham, Caroline R

Creator: Cunningnam, Caroline R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

2

3

F

6

0

10

12

IR

1

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Kimberley Mack **PASI Long Island** 575 Broad Hollow Road Melville NY 11747

> REPORT OF LABORATORY **ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10617258

Sample Receipt Date: 07/16/2022

Client Project #: 70222027

Client Sub PO #: N/A State Cert #: 11647

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

This report has been reviewed by:

July 28, 2022

Joanne Richardson, (612) 607-6453

(612) 607-6444 (fax)

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

July 28, 2022

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analysis performed on one sample submitted by a representative of Pace Analytical Services, LLC. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The reporting limits were set to correspond to the lowest calibration points and a nominal 1-liter sample amount, and the sensitivity was verified by signal-to-noise measurements. The quantitation limits, adjusted for sample extraction amount, may be somewhat higher or lower than the reporting limits provided in this report. Estimated maximum possible concentration (EMPC) values, where present, were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 34-95%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCDDs and PCDFs at the reporting limits.

Laboratory spike samples were also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 81-110% with relative percent differences of 0.0-6.3%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Mississippi	MN00064
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
Iowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Internal Transfer	Internal Transfer Chain of Custody	and the second s			
	X Samples Pre-Logged into eCOC.	Logged into eCOC.	State Of Origin: NY		Pace Analytical aww.pacelabs.com
	Workorder Name: CELL 7 LEAC	CELL 7 LEACHATE EXPANDED 7/13	_ pa	//13/2022 Results Requested By:	uested By: 8/4/2022
Report To	Subcontract To			Requested Analysis	-
Kimberley M. Mack Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Phone (631)694-3040	Pace Analytical Minneso 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	cal Minnesota eet MN 55414 507-1700	КАМ-МЕТНОД	Edition of First and American	10617258
Item Sample ID	Sample Collect Type Date/Time Lab ID	M marrix	Preserved Containers	862	LAB USE ONLY
1 CELL 7 PLCRS	PS 7/13/2022 08:35 702220	70222027001 Water 1	×		1,00
3 2				·	
4 u					
				Comments	
Transfers Pelease (18)		Received By	Date/Time,		13.5
2	1/15/22/80	S. JACK	7-16/9:10		
3			<u>}</u>		
Cooler Temperature on Receipt	seipt 1.1 °C Custody Seal	Seal Y or N	Received on Ice (y) or	N Samples Intact	Intact (Y) or N
***In order to maintain client c This chain of custody is co.	***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.	sampling site, sampler's r information is available in	name and signature may not the owner laboratory.	be provided on this COC d	ocument.
<					
No					
Š					

Friday, July 15, 2022 1:56:5-

Page 1 of 1

FMT-ALL-C-002rev.00 24March2009

(N/A) səlqme2 Cooler (Y/N) SAMPLE CONDITIONS belead Spoisu (N/A) 3 Кесеїуед оп WO#:70222027 Residual Chlorine (Y/N) Ö TEMP In C epyjng OOT 1 0 kg DATE Signed: 713.2032 СОД,ИНЗ,ИОЗ,ТКИ,Рћепо NOS' AIK' TDS DATE BOD, Br, CI, SO4, Color, Cr+6 ZSƏNDIRH & B+ slaidM JAT Kimberly Mack@PaceLabs.com 8082 1808 0728 × ACCEPTED BY / AFFILIATION 929 Sran---N/A JaeT seaylenA CHAIN-OF-CUSTODY / Analytical I Other Methanol EOZSZEN HOBM **Brian Nichols** Section C Invoice Information: Attention: Pace Project Manager. Pace Profile #: 527 HCI HNO3 Company Name ace Quote: ₽0SZH 9221 Unpreserved # ОЕ СОИТАІИЕВЗ SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION 1/5/2 SIGNATURE of SAMPLER: DATE B END DATE Brian Nichols / Zion Environmental, LLC Purchase Order #: Project Name: Cell 7 Leachate Expanded 360 COLLECTED RELINQUISHED BY / AFFILIATION TIME START DATE Required Project Information: SAMPLE TYPE (GEGRAB CECOMP) ₹ MATRIX CODE (see valid codes to left) Section B CODE WY WW S! S! OL WP AR AR MATRIX
Drinkling Water
Water
Waste Waste
Froduct
Product
Oil
Oil
Wipe
Air
Other
Tissue ADDITIONAL COMMENTS One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique SAMPLE ID North Babylon, NY 11703
Email: jguarino@townofbabylon.com
Phone: 631-422-7640 Town of Babylon 281 Phalps Lane Cell 7 PLCRS cell 7 Leachale Expanded 360 F a 10 # WBTI m ø œ

(V/V) Samples Samples SAMPLE CONDITIONS (N/A) ŏ balsa2 Custody Regulatory Agency (N/X) сę Due Date: 07/22/22 Received on Residual Chlorine (Y/N) Page: O TEMP In C MO#: 70222027 238 7-13-2622 TIME Ñ DATE CLIENT: BAB-ECO **2019/2A79** Kimberly Mack@PaceLabs.com 9nexoiQ P, f DATE Signed: MuinerU Radium 228 PM: KMM ACCEPTED BY LAFFILIATION Radium 226 Dioxin/Furan Scan N/A Analyses Test Address:
Pace Quote:
Pace Project Manager: Kimbert
Pace Profile #: 5,271 LINE 2,8,6 The Chain-of-Custody is a LEGAL DOCUMENT Methanol CHAIN-OF-CUSTODY / Analyti Na2S2O3 Preservatives HOBN **Brian Nichols** нсі involce information. ниоз Company Name: H2504 Section C 10/2 (220 TIME Unpreserved # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION SIGNATURE of SAMPLER: DATE 1/4/2 835 TIME 28 DATE Brian Nichols / Zion Environmental, LLC Cell 7 Leachate Expanded 360 COLLECTED RELINGUISHED BY / AFFILIATION TIME START DATE Required Project Information: SAMPLE TYPE (G=GRAB C=COMP) Purchase Order #: MATRIX CODE (see valid codes to left) ₹ Project Name: Project #: Section B Copy To: MATRIX Drinking Water Washe Washe Washe Washe Product Soil/Soild Oil Wipe Air Other Tissue SAMPLE ID
One Character per box.
(A-Z, 0-9 /, -)
Sample Ids must be unique ADDITIONAL COMMENTS Email: jguarino@townofbabylon.com Town of Babylon 281 Phelps Lane Required Client Information: 631-422-7640 Cell 7 PLCRS lorth Babylon, NY 11703 Cell 7 Leachate Expanded 360 Requested Due Date 18 13 15 13 8 22 23 4 72 16 7 # MHL!

	•	Sampl	e Condi	tion Upo	n Recci	WO排:7'02	22027
/ Pace Analytical*	Client	Name:			Proje		
1		3AB- 6	£ 80	Almar		PM: KMM [CLIENY: BAB-ECO	Due Date: 07/22/22
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☑Clier	nt Com	mercial	□ace □	ther		CEAENT DIRECTO	
Tracking #: Custody Seal on Cooler/Box Present:	vaa etaa	0 1	Care care .	v — w	t		
Packing Material: Bubble Wrap Bubb	Yes Tage	o Seals	intact: 📙	Yes NoE	₫ ₹ ₹/A	Temperature Blank I	Present: □Yes 🗀 No
Thermometer Used: THOST THOST	ne bags } Corro	Zipioc tiaa 5aai	Mane 🗆	utner 4		Type of Ice: (Wet)	
Cooler Temperature(°C):	Coole	CUON Faci	ature Corre	atad(eC)		Samples on ice, coolin	g process has begun
Temp should be above freezing to 6.0°C	COOLE	rempera	atule come	cteat ci: 4	. 2	Date/Time 5035A kits	s placed in freezer
USDA Regulated Soil (교체/A, water samp						erson examining conter	nts:KW7/13/m
Did samples originate in a quarantine zone	within the			CA, FL, GA, ID,	LA, MS, NC,	Did samples orignate f	rom a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map		es 🗆 No				including Hawaii and P	uerto Rico)? 🛮 Yes💢 No
If Yes to either question, fill out a Regula	ted Soil C	hecklist l	(F-L1-C-010)	and include	with SCUR/C		
Chain of Custody Present:				en gran en en		COMMENTS:	
Chain of Custody Fresent. Chain of Custody Filled Out:	ØYes	□No	****		minus	-	<u> </u>
Chain of Custody Relinquished:	Z/Yes_		Company of the second of the s	<u> </u>			
Sampler Name & Signature on COC:	ØYes ØYes		CN /A	3.			to the state of th
Samples Arrived within Hold Time:	ZYes		□N/A	4,			
Short Hold Time Analysis (<72hr):	ZYes	□No □No		5. 6.			
Rush Turn Around Time Requested:	Yes	<u>⊠</u> ¶0	The state of the s	- I ^{u,} 7.			
Sufficient Volume: (Triple volume provided fo				8.	handa Pranganan		No v - e sali sassa nir sas ² sasta sassa nigg
Correct Containers Used:	⊠Yes	□No		9.	cacail, Corresponding		
-Pace Containers Used:	⊠Yes	□No		3.			*
Containers Intact:	_ ØYes .	□No		10.		**************************************	
Filtered volume received for Dissolved tests	□Yes	□No	N/A	111.	Note if sedir	ment is visible in the dissu	olved container
Sample Labels match COC:	⊠Yes	□No	inin (1.57 no m.	12.		1101010111111001330	DIVEG COTTCOMEIS
-Includes date/time/ID, Matrix: SI/Wi)			29 th 100 may 100 th				
All containers needing preservation have bee	n ØYes	□No	□N/A	13.	□ HNO ₃	□H ₂ SO ₄ □NaOH	□ HCI
checked?	/					. -	4
pH paper Lot #HC287622							
All containers needing preservation are found in compliance with method recommendation	0 to be			Sample #	•		
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,		(¬No	□N1/A				
NAOH-12 Cyanide)	□Yes	□No	□N/A	1			*
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rasea						ř
DRO/8015 (water).	10036,		4 7 600 20	laitial who	n completed:	11 -6 4 -6 -44 -4	ls . /#:
Per Method, VOA pH is checked after analysis				mudai wile	n completea:	Lot # of added	Date/Time preservative
Samples checked for dechlorination:	□Yes	□No	ÇZN/A Š	14.		preservative:	added:
KI starch test strips Lot #			7.11.	1			
Residual chlorine strips Lot #	ş**			1	ositive for Res	s. Chlorine? Y N	
SM 4500 CN samples checked for sulfide?	□Yes	□No	ØN/A	15,		3. Olifornio 3. 4. 14	Zedenie – Kilonia Keerdinaan zeset
Lead Acetate Strips Lot #			y ,	4. *	ositive for Sul	fide? Y N	:
Headspace in VOA Vials (>6mm):	⊡Yes	₽₩o	□N/A	16.		**************************************	
Trip Blank P rese nt:	Ç a Yes	□No	□N/A	17.	·		· · · · · · · · · · · · · · · · · · ·
Trip Blank Custody Seals Present	(zaYes	□No	□N/A			į.	
Pace Trip Blank Lot # (if applicable):							
Client Notification/ Resolution:			a compression of the second	Field Data	Required?	Y / N	
Person Contacted:	··· ////		at the process of the party of		Date/Time:		
Comments/ Resolution:							
		· · · · · · · · · · · · · · · · · · ·	·	·			
		Succession of a breathanness		Canada Ca			
PM (Project Manager) review is documented e	Innter-*-	Unio CHAS			mm		
The colour menador Langa is anoninguise 6	iedironica	ny in UMS:					ENV-FRM-MELV-0024-01

DC#_Title: ENV-FRM-MIN4-0150 v05_Sample Condition Upon Receipt (SCUR)

Effective Date: 04/12/2022

							e essente e contrato son a de	en estre etange e un algent	resonantionionisticality no.
Sample Condition Upon Client Receipt	Name:			Projec	ct #:		O#:	106172	58
-	PACE, NY					- 100 - 10	Advisor 1964 at	war day but a high shown in	Anda Vine shift a takin Anadii ili kira
Courier:	d Ex 🔲 UPS	USPS		Client			I: JMR	ARREST TO A SECURITION OF THE SECURITIES OF THE SECURITION OF THE SECURITIES OF THE SECURITION OF THE	e: 08/01/22
☐ Pa	ce SpeeDee	Commer	cial			CL	.IENT: PF	SI-LINY	
				See Exce	ptions RM-MIN4-				
Tracking Number:	101 5094 5	385			KIVI-IVIIN4-	800,650,0	<u>Erskovalandira</u>	_NCSA III.A Philips (Philips)	have Madified to go and the elemental solution of a commence of the commence o
Custody Seal on Coole	er/Box Present? Yes	⊠ No		Seals Ir	ntact? Yes		No Bio	ological Tissue Frozen	? Yes No N/A
Packing Material: But	oble Wrap Bubble B	ags	□None	Пс	Other:	_	5 10		
T1(0461) D	T2(1336) T3(0459) T4(0254)	□ T5(0489)			Type of			Temp Bla	nk? ⊠ Yes □No
T7 (0042)	01339252/1710 122639816 1	40792808			ice:	∡A Wet	☐Blue	□None □Dry	Melted
Did Samples Originate in West Vir	ginia? □Yes ØNo Were A	ll Container	Temps Ta	iken? □Yes	□No & N/A				
					· -			Average Corre	cted See Exceptions
				_	201			Temp (no tem	p blank ENV-FRM-MIN4-014;
Temp should be above freezing t	co 6°C Cooler Temp	Read w/t	emp bla	ank:	4-01		ºC	only):	OC 1 Container
Correction Factor: TRU	Cooler Temp Corre	stad w/t		.m.les	2.1		0.0		•
		ctea w/te	emp bia	nk:			oc		
USDA Regulated Soil: (A N/A Did samples originate in a quar	water sample/Other:	od Statas:)	A FL C4				ining Contents:	
MS, NC, NM, NY, OK, OR, SC, T	N. TX or VA (check maps)?	ed States: /	AL, AR, C No			id samp	oles originate f nd Puerto Rico	rom a foreign source))?	(internationally, including
If Yes	to either question, fill out				iV-FRM-MIN4	-0154 a	nd include wit	th SCUR/COC paperw	□No ork.
Location (check one					1			COMMENTS:	
Chain of Custody Present and	filled Out?	∑Yes	□No		1.				
Chain of Custody Relinquishe		Yes	□No		2.				
Sampler Name and/or Signat Samples Arrived within Hold		¥Yes	No No	□N/A	3.	IE F 1			
_					4. 5. □Fec	If Fecal	:<8 hrs> ·m Пнрс Пт	8hr, <24 hrs, \square >24 hr	S BOD/cBOD Hex Chrome
Short Hold Time Analysis (<7	<u> </u>	Yes	ØNo		Turl	oidity _	Nitrate Nitr	ite Orthophos Ot	her
Rush Turn Around Time Requ	uested?	Yes	ON		6.				
Sufficient Volume?		Yes	No		7.				
Correct Containers Used? -Pace Containers Used?		X Yes ▼Yes	□No □No		8.				
Containers Intact?		XYes	□No_		9.				
Field Filtered Volume Receive		□Yes	□No	⊠ N/A	10. Is see	diment	visible in the	dissolved container?	Yes No
Is sufficient information availa	able to reconcile the		_		11. If no, w	rite ID/	Date/Time on	Container Below:	See Exception
samples to the COC? Matrix: ⊠Water □Soil □Oil	Dothor	Yes	□No						ENV-FRM-MIN4-0142
All containers needing acid/ba					100				
been checked?	ase preservation have	Yes	□No	⊠ N/A	12. Sample	! #			
All containers needing preser	vation are found to be in								
compliance with EPA recomm		Yes	□No	⊠ N/A		NaOH	☐ HN	O ₃	Zinc Acetate
(HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >	9 Sulfide, NaOH>10			der·//					
Cyanide)									
Exceptions: VOA, Coliform, TO	C/DOC Oil and Grease	Yes	□No	ØN/A	Positive for	Res.]Yes		See Exception
DRO/8015 (water) and Dioxin	•				Chlorine?		No	pH Paper Lot#	ENV-FRM-MIN4-0142
					Res. Chlori	ne	0-6 Roll	0-6 Strip	0-14 Strip
									,, /p-
Headspace in Methyl Mercury		□Yes	□No	⊘ N/A					
Extra labels present on soil VC		□Yes	□No	⊠ N/A	13.				See Exception
Headspace in VOA Vials (great Trip Blank Present?	ei uian omm)?	Yes	∐No □No	IXÎN/A	1.4				ENV-FRM-MIN4-014
Trip Blank Custody Seals Prese	ent?	∐Yes ∐Yes	∐No ∐No	MN/A XN/A	14. Pace	Trin Rla	nk Lot # (if pu	ırchased)·	
CLIENT NOTIFICAT	_			(24)17/17	1 400	. rip Dia			Пу., П.,
Person Contacted:	IOIN NEOCEOTION				Date/Tin	ne:		Field Data Required?	∟Yes ∐No
Comments/Resolution:									
		2	6 (1)	117 11 11				-	
Project Manager Re		Ucho	udso	2		Date:	7-16-22		
ote: Whenever there is a discrepanc		IIance sampl	ies, a copy	of this for	n will be sent to				e.,, out of hold, incorrect
eservative, out of temp, incorrect co	ntainers).						Labeled by	y:/R	(9)

Qualtrax JD: 52742 Report No.....10617258_1613FC_DFR

Page 1 of 1

Page 9 of 16

Reporting Flags

- A = Reporting Limit based on signal to noise (EDL)
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Isotope ratio out of specification
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Method 1613B Sample Analysis Results

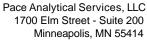
Client - PASI Long Island

Client's Sample ID **CELL 7 PLCRS** Lab Sample ID 70222027001 Filename L220721B_09 Injected By SMT 1090 mL

<u> Pace Analytical</u>

Total Amount Extracted Matrix Water % Moisture NA Dilution NA

Dry Weight Extracted NA Collected 07/13/2022 08:35 ICAL ID Received L220718 07/16/2022 09:10 CCal Filename(s) L220721B 01 Extracted 07/19/2022 12:45 Method Blank ID BLANK-100068 Analyzed 07/22/2022 03:27


Native Isomers	Conc pg/L	EMPC pg/L	RL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		10 10	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 65 75
2,3,7,8-TCDD Total TCDD	ND ND		10 10	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 71 78 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	50 50 50	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	88 82 73 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		50 50	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 55 47
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND	 	50 50 50 50 50	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	56 34 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	50 50 50 50	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		50 50 50	Total 2,3,7,8-TCDD Equivalence: 0.00 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		50 50			
OCDF OCDD	ND ND		100 100			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

REPORT OF LABORATORY ANALYSIS

RL = Reporting Limit

Method 1613B Blank Analysis Results

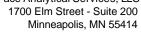
Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

<u> Pace Analytical</u>

ICAL ID CCal Filename(s) **DFBLKQP** BLANK-100068 L220721A_11 950 mL L220718 L220721A_03

Matrix Water Dilution NA

Extracted 07/19/2022 12:45 Analyzed 07/21/2022 15:44


Injected By **SMT**

Native Isomers	Conc pg/L	EMPC pg/L	RL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		10 10	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 60 71
2,3,7,8-TCDD Total TCDD	ND ND		10 10	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	73 77 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		50 50 50	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	65 64 67 61
1,2,3,7,8-PeCDD Total PeCDD	ND ND		50 50	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 54 45
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND	 	50 50 50 50 50	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	54 35 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	50 50 50 50	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	50 50 50	Total 2,3,7,8-TCDD Equivalence: 0.00 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		50 50			
OCDF OCDD	ND ND		100 100			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-100069 Filename L220721A 13 **Total Amount Extracted** 934 mL **ICAL ID** L220718

CCal Filename L220721A_03

Method Blank ID BLANK-100068

Water Matrix Dilution NA

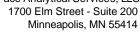
Extracted 07/19/2022 12:45 Analyzed 07/21/2022 17:41

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 100 100	11 11 47 49 45 45 46 47 47 49 46 48 46 41 99 97	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	107 110 95 98 89 90 93 93 94 99 92 95 91 91 81 99
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	9.2 72 68 87 90 94 77 75 71 76 71 78 60 51 61 80	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	92 72 68 87 90 94 77 75 71 76 71 78 60 51 61 40

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)


Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

*=See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-100070 Filename L220721A 14 **Total Amount Extracted** 973 mL **ICAL ID** L220718

CCal Filename L220721A_03

Method Blank ID BLANK-100068

Water Matrix Dilution NA

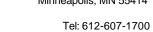
Extracted 07/19/2022 12:45 Analyzed 07/21/2022 18:40

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 100 100	11 11 47 48 44 43 44 46 46 48 46 47 45 46 41 93 92	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	106 106 93 96 87 87 89 93 92 97 91 93 89 92 81 93
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	100 100 100 100 100 100 100 100 100 100	9.5 63 60 73 75 80 74 75 66 63 64 71 49 39 50 65	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	95 63 60 73 75 80 74 75 66 63 64 71 49 39 50

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)


Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

*=See Discussion

Fax: 612-607-6444

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PASI Long Island

 Spike 1 ID
 LCS-100069
 Spike 2 ID
 LCSD-100070

 Spike 1 Filename
 L220721A_13
 Spike 2 Filename
 L220721A_14

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	107	106	0.9	
2,3,7,8-TCDD	110	106	3.7	
1,2,3,7,8-PeCDF	95	93	2.1	
2,3,4,7,8-PeCDF	98	96	2.1	
1,2,3,7,8-PeCDD	89	87	2.3	
1,2,3,4,7,8-HxCDF	90	87	3.4	
1,2,3,6,7,8-HxCDF	93	89	4.4	
2,3,4,6,7,8-HxCDF	93	93	0.0	
1,2,3,7,8,9-HxCDF	94	92	2.2	
1,2,3,4,7,8-HxCDD	99	97	2.0	
1,2,3,6,7,8-HxCDD	92	91	1.1	
1,2,3,7,8,9-HxCDD	95	93	2.1	
1,2,3,4,6,7,8-HpCDF	91	89	2.2	
1,2,3,4,7,8,9-HpCDF	91	92	1.1	
1,2,3,4,6,7,8-HpCDD	81	81	0.0	
OCDF	99	93	6.3	
OCDD	97	92	5.3	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Appendix 2

Baseline and Expanded Parameters List (6NYCRR Part 363-4.6(h))

- (5) Data quality assessment. At the conclusion of each sampling event and analysis of the samples collected, data quality assessment must occur. A data quality assessment report must be submitted with the results from each sampling event. Data quality assessment must occur in two phases data validation and data usability analysis.
 - (i) Data validation.
 - (a) For those sampling events for which only routine parameters are analyzed, the required data validation may be performed by the laboratory that performed the sample analyses.
 - (b) For those sampling events in which groundwater samples are analyzed for baseline or expanded parameters, the data validation must be performed by a person with experience with similar validation projects and who is not affiliated with the laboratory that performed the analyses and who is acceptable to the department.
 - (c) The data validation must be performed on all analytical data for the facility at a rate acceptable to the department, but not less than five percent of the data generated, and must consist, at a minimum, of the following:
 - (1) field records and analytical data are reviewed to determine whether the data are accurate and defensible. All AQA/AQC information must be reviewed along with any corrective actions taken during that sampling event; and
 - (2) all data summaries must be clearly marked to identify any data that are not representative of environmental conditions at the site, or that were not generated in accordance with the site analytical plan.
 - (ii) Data usability analysis.
 - (a) The data usability analysis must be performed on all analytical data generated by the requirements for this Part for the facility and must consist of the following:
 - (1) an assessment to determine if the data quality objectives were met;
 - (2) for consistency, comparison of the analytical data with the results from previous sampling events;
 - (3) evaluation of field duplicate results to indicate the samples are representative;
 - (4) comparison of the results of all field blanks, trip blanks, equipment rinstate blanks, and method blanks with full data sets to provide information concerning contaminants that may have been introduced during sampling, shipping, or analysis;
 - (5) evaluation of matrix effects to assess the performance of the analytical method with respect to the sample matrix, and determine whether the data have been biased high or low due to matrix effects;
 - (6) integration of the field and laboratory data with geological, hydrogeological, and meteorological data to provide information about the extent of contamination, if it occurs; and
 - (7) comparison of precision, accuracy, representativeness, comparability, completeness, and defensibility of the data generated with that required to meet the data quality objectives established in the site analytical plan.

(h) Water quality analysis tables.

The water quality analysis tables in this section list the routine, baseline, and expanded parameters for analysis of all monitoring samples. The department may modify the parameters for analysis based on the location of the landfill or site-specific characteristics of waste disposed at the landfill.

TABLE 1: ROUTINE PARAMETERS 1

Common Name (and CAS number, as	The state of the s	anamangaganana :::::::::::::::::::::::::::::
Field Parameters	Leachate Indicators	Inorganic Parameters (total):
Static water level (in wells and sumps)		Arsenic
Specific Conductance	Ammonia (7664-41-7)	Cadmium
Temperature	Nitrate	Calcium
Floaters or Sinkers ³	Chemical Oxygen Demand	Iron
Temperature	Biochemical Oxygen Demand (BOD ₅)	Lead
pH	Total Organic Carbon	Magnesium
Eh	Total Dissolved Solids	Manganese
Dissolved Oxygen⁴	Sulfate	Potassium
Field Observations ⁵	Alkalinity	Sodium
Turbidity	Phenols (108-95-2)	
- SP-6-SP-6-blass and - service conditions	Chloride	
	Bromide (24959-67-9)	
	Total hardness as CaCO ₃	

TABLE 2A: BASELINE PARAMETERS: Field Parameters, Leachate Indicators, and Inorganic Patameters 6

Field Parameters:	Leachate Indicators:	Inorganic Parameters (total unless otherwise noted):	
Static water level (in wells and sumps)	Total Kjeldahl Nitrogen	Aluminum	
Specific Conductance	Ammonia (7664-41-7)	Antimony	
Temperature	Nitrate	Arsenic	
Floaters or Sinkers®	Chemical Oxygen Demand	Barium	
Temperature	Biochemical Oxygen Demand (BOD ₅)	Beryllium	
pH	Total Organic Carbon	Cadmium	
Eh	Total Dissolved Solids	Calcium	
Dissolved Oxygen 9	Sulfate	Chromium	
Field Observations 10	Alkalinity	Chromium (Hexavalent) 11	
Turbidity	Phenois (108-95-2)	Cobalt	
	Chloride	Copper	
	Bromide (24959-67-9)	Cyanide	
	Total hardness as CaCO ₃	Iron	
	Color	Lead	
	Boron (7440-42-8)	Magnesium	
		Manganese	
		Mercury	
		Nickel	
		Potassium	
		Selenium	
		Silver	
i kan salah sa		Sodium	
it ne nebel vermisker skandaurmanete sametestensk deleste ambeset ransaste reketebellisakende b selester medisamete	alandar mari da mari d	Thallium	
and the world the chart of a common deleter to be demonstrated and a common destroyers of a common of the common deleters.		Vanadium	
		Zinc	

TABLE 2B; BASELINE PARAMETERS; Organic Parameters 12

Common Name (and CAS number, as	appropriate) 13	
Organic Parameters:		
Acetone (67-64-1)	1,1-Dichloroethane; Ethylidene chloride (75- 34-3)	Styrene (100-42-5)
Acrylonitrile (107-13-1)	1,2-Dichloroethane; Ethylene dichloride (107-06-02)	1,1,1,2-Tetrachloroethane (630-20-6)
Benzene (71-43-2)	1,1-Dichloroethylene, 1,1-Dichloroethene, Vinylidene chloride (75-35-4)	1,1,2,2-Tetrachloroethane (79-34-5)
Bromochloromethane (74-97-5)	cis-1,2-Dichloroethylene; cis-1,2-Dichloroethene (156-59-2)	Tetrachloroethylene; Tetrachloroethene; Perchloroethylene (127-18-4)
Bromodichloromethane (75-27-4)	trans-1,2-Dichloroethylene; trans-1,2-Dichloroethene (156-60-2)	Toluene (108-88-3)
Bromoform; Tribromomethane (75- 25-2)	1,2-Dichloropropane; Propylene dichloride (78-87-5)	1,1,1-Trichloroethane; Methylchloroform (71- 55-6)
Carbon disulfide (75-15-0)	cis-1,3-Dichloropropene (10061-01-5)	1,1,2-Trichloroethane (79-00-5)
Carbon tetrachloride (56-23-5)	trans-1,3-Dichloropropene (10061-02-6)	Trichloroethylene, Trichloroethene (79-01-6)
Chlorobenzene (108-90-7)	Ethylbenzene (100-41-4)	Trichlorofluoromethane; CFC-11 (75-69-4)
Chloroethane; Ethyl chloride (75-00-3)	2-Hexanone; Methyl butyl ketone (591-78-6)	1,2,3-Trichloropropane (96-18-4)
Chloroform; Trichloromethane (67- 66-3)	Methyl bromide, Bromomethane (74-83-9)	Vinyl acetate (108-05-4)
Dibromochloromethane, Chlorodibromomethane (124-48-1)	Methyl chloride; Chloromethane (74-87-3)	Vinyl chloride, Chloroethene (75-01-4)
1,2-Dibromo-3-chloropropane; DBCP (96-12-8)	Methylene bromide; Dibro- momethane (74- 95-3)	Xylenes (1330-20-7)
1,2-Dibromoethane; Ethylene dibromide; EDB (106-93-4)	Methylene chloride, Dichloromethane (75- 09-2)	
o-Dichlorobenzene; 1,2-Dichlorobenzene (95-50-1)	Methyl ethyl ketone; MEK; 2-Butanone (78- 93-3)	·
p-Dichlorobenzene; 1,4-Dichlorobenzene (106-46-7)	Methyl lodide; lodomethane (74-88-4)	
trans-1,4-Dichloro-2-butene (110-57-6)	4-Methyl-2-pentanone; Methyl isobutyl ketone (108-10-1)	A Million Deliver in the Annual Annua

TABLE 3A: EXPANDED PARAMETERS: Field Parameters, Leachate Indicators, Radionuclides, and Inorganic Parameters 14

Common Name (and CAS number	er, as appropriate) 15	
pervalent describes also entreta entretamente enterelevants 🛕 territories in de religi al-dissemble entretamente (mily milit		ge deriktekten geleicht der

Field Parameters	Leachate Indicators:	Inorganic Parameters: (total unless otherwise noted):	Radionuclides 16
Static water level (in wells and sumps)	Total Kjeldahl Nitrogen	Aluminum	Radium-226 per EPA 903,1
Specific Conductance	Ammonia (7664-41-7)	Antimony	Radium-228 per EPA 904.0
Temperature	Nitrate	Arsenic	Total Uranium per EPA 908 0
Floaters or Sinkers 17	Chemical Oxygen Demand	Barium	
Temperature	Biochemical Oxygen Demand (BOD ₅)	Beryllium	
pH	Total Organic Carbon	Cadmium	
Eh	Total Dissolved Solids	Calcium	
Dissolved Oxygen 18	Sulfate	Chromium	
Field Observations 19	Alkalinity	Chromium (Hexavalent) 20	
Turbidity	Phenols (108-95-2)	Cobalt	
	Chloride	Copper	man
	Bromide (24959-67-9)	Cyanide	
	Total hardness as CaCO ₃	Iron	
	Color	Lead	
	Boron (7440-42-8)	Magnesium	
		Manganese	
		Mercury	
		Nickel	1
		Potassium	
		Selenium	
		Silver	
		Sodium	
		Thallium	
	***	Tin	
		Vanadium	1
		Zinc	

TABLE 3B: EXPANDED PARAMETERS: Organic Parameters 21

Common Name (and CAS number, as Organic Parameters:	та о 🔭 👫 та та о 🔭 и на от на о . 💆 на относна от о на се на о организационно организацион на оснавацион од на организацион и относнава од оснава од осна	aranan mamatama anan mana arang ang manang manang manang mang mang m
Acenaphthene (83-32-9)	2,4-Dichlorophenol (120-83-2)	Naphthalene (91-20-3)
Acenaphthylene (208-96-8)	2,6-Dichlorophenol (87-65-0)	1,4-Naphthoguinone (130-15-4)
Acetone (67-64-1)	1,2-Dichloropropane; Propylene dichloride (78-87-5)	1-Naphthylamine (134-32-7)
Acetonitrile, Methyl cyanide (75-05-8)	1,3-Dichloropropane, Trimethylene dichloride (142-28-9)	2-Naphthylamine (91-59-8)
Acetophenone (98-86-2)	2,2-Dichloropropane, Isopropylidene chloride (594-20-7)	o-Nitroaniline; 2-Nitroaniline (88-74-4)
2-Acetylaminofluorene; 2-AAF (53- 96-3)	1,1-Dichloropropene (563-58-6)	m-Nitroaniline; 3-Nitroaniline (99-09-2)
Acrolein (107-02-8)	cis-1,3-Dichloropropene (10061-01-5)	p-Nitroaniline, 4-Nitroaniline (100-01-6)
Acrylonitrile (107-13-1)	trans-1,3-Dichloropropene (10061-02-6)	Nitrobenzene (98-95-3)
Aldrin (309-00-2)	Dieldrin (60-57-1)	o-Nitrophenol 2-Nitrophenol (88-75-5)
Allyl chloride (107-05-1)	Diethyl phthalate (84-66-2)	p-Nitrophenol; 4-Nitrophenol (100-02-7)
4- aminobiphenyl (92-67-1)	0,0-Diethyl 0-2-pyrazinyl	N-Nitrosodi-n-butylamine (924-16-3)
Anthracene (120-12-7)	cls-1,2-Dichloroethylene, cls-1,2-Dichloroethene (156-59-2)	
N-Nitrosodiethylamine (55-18-5)		
Benzene (71-43-2)	trans-1,2-Dichloroethylene (156-60-2)	N-Nitrosodimethylamine (62-75-9)
Benzo[a]anthracene; Benzanthracene (56-55-3)	Phosphorothioate; Thionazin (297-97-2)	N-Nitrosodiphenylamine (86-30-6)
Benzo[b]fluoranthene (205-99-2)	Dimethoate (60-51-5)	N-Nitrosodipropylamine; N-Nitroso-N- dipropyl-amine; Di-n-propylni-trosamine (621- 64-7)
Benzo[k]fluoranthene (207-08-9)	p-(Dimethylamino)azobenzene (60-11-7)	N-Nitrosomethylethalamine (10595-95-6)
Benzo[ghi]perylene (191-24-2)	7,12-Dimethylbenz[a]anthracene (57-97-6)	N-Nitrosopiperidine (100-75-4)
Benzo[a]pyrene (50-32-8)	3,3 ²¹ -Dimethylbenzidine (119-93-7)	N-Nitrosopyrrolidine (930-55-2)
Benzyl alcohol (100-51-6)	2,4-Dimethylphenol, m-Xylenol (105-67-9)	5-Nitro-o-toluidine (99-55-8)
alpha-BHC (319-84-6)	Dimethyl phthalate (131-11-3)	Parathion (56-38-2)
beta-BHC (319-85-7)	m-Dinitrobenzene (99-65-0)	Pentachlorobenzene (608-93-5)
delta-BHC (319-86-8)	4,6-Dinitro-o-cresol 4,6- Dinitro-2- methylphenol (534-52-1)	Pentachloronitrobenzene (82-68-8)

gamma-BHC Lindane (58-89-9)	2,4-Dinitrophenol (51-28-5)	Pentachlorophenol (87-86-5)
Bis(2-chloroethoxy)methane (111- 91-1)	2,4-Dinitrotoluene (121-14-2)	Phenacetin (62-44-2)
Bis(2-chloroethyl) ether; Dichloroethyl ether (111-44-4)	2,6-Dinitrotoluene (606-20-2)	Phenanthrene (85-01-8)
Bis-(2-chloro-1-methyl-ethyl)ether;	Dinoseb; DNBP; 2-sec-	Phenol (108-95-2)
2,2 ²¹ -Dichlorodiïsopropyl ether; DCIP ²³	Butyl-4,6-dinitrophenol (88-85-7)	
Bis(2-ethylhexyl)phthalate (117-81-7)	Di-n-octyl phthalate (117-84-0)	p-Phenylenediamine (106-50-9)
Bromochloromethane (74-97-5)	Diphenylamine (122-39-4)	Phorate (298-02-2)
Bromodichloromethane (75-27-4)	Disulfoton (298-04-4)	Polychlorinated biphenyls; PCBs; Aroclors 24
Bromoform (75-25-2)	Endosulfan I (959-98-8)	Polychlorinated dibenzo-p- dioxins; PCDDs ²¹
4-Bromophenyl phenyl ether (101- 55-3)	Endosulfan II (33213-65-9)	Polychlorinated dibenzo- furans; PCDFs ²⁸
Butyl benzyl phthalate; Benzyl butyl phthalate (117-81-7)	Endosulfan sulfate (1031-07-8)	Pronamide (23950-58-5)
Carbon disulfide (75-15-0)	Endrin (72-20-8)	Propionitrile; Ethyl cyanide (107-12-0)
Carbon tetrachloride (56-23-5)	Endrin aldehyde (7421-93-4)	Pyrene (129-00-0)
Chlordane 27	Ethylbenzene (100-41-4)	Safrole (94-59-7)
p-Chloroaniline (106-47-8)	Ethyl methacrylate (97-63-2)	Silvex; 2,4,5-TP (93-72-1)
Chlorobenzene (108-90-7)	Ethyl methanesulfonate (62-50-0)	Styrene (100-42-5)
Chlorobenzilate (510-15-6)	Famphur (52-85-7)	2,4,5-T; 2,4,5-trichloro- phenoxyacetic acid (93-76-5)
p-Chloro-m-cresol; 4-Chloro-3- methylphenol (59-50-7)	Fluoranthene (206-44-0)	1,2,4,5-Tetrachlorobenzene (95-94-3)
Chloroethane; Ethyl chloride (75-00-3)	Fluorene (86-73-7)	2,3,7,8-Tetrachlorodi- benzo-p-dioxin; 2,3,7,8-TCDD (1746-01-6)
Chloroform; Trichloromethane (67- 66-3)	Heptachlor (76-44-8)	1,1,1,2-Tetrachloroethane (630-20-6)
2-Chloronaphthalene (91-58-7)	Heptachlor epoxide (1024-57-3)	1,1,2,2-Tetrachloroethane (79-34-5)
2-Chlorophenol (95-57-8)	Hexachlorobenzene (118-74-1)	Tetrachioroethylene; Tetrachioroethene; Perchioroethylene (127-18-4)
4-Chlorophenyl phenyl ether (7005- 72-3)	Hexachlorobutadiene (87-68-3)	2,3,4,6-Tetrachlorophenol (58-90-2)
Chloroprene (126-99-8) Chrysene (218-01-9)	Hexachlorocyclopentadiene (77-47-4)	Toluene (108-88-3)
m-Cresol, 3-methylphenol (108-39-4)	Hexachloroethane (67-72-1) Hexachloropropene (1888-71-7)	o-Toluidine (95-53-4)
there is no a first transaction and annual a		Toxaphene 28
p-Cresol, 2-methylphenol (95-48-7) p-Cresol; 4-methylphenol (106-44-5)	2-Hexanone, Methyl butyl ketone (591-78-6) Indeno(1,2,3-cd)pyrene (193-39-5)	1,2,4-Trichlorobenzene (120-82-1) 1,1,1-Trichloroethane, Methylchloroform (71- 55-6)
2,4-D; 2,4-Dichlorophen- oxyacetic acid (94-75-7)	Isobutyl alcohol (78-83-1)	1,1,2-Trichloroethane (79-00-5)
4,4 ²¹ -DDD (72-54-8)	Isodrin (465-73-6)	Trichloroethylene, Trichloroethene (79-01-6)
4,4 ²¹ -DDE (72-55-9)	Isophorone (78-59-1)	Trichlorofluoromethane, R-11 (75-69-4)
· · · · · · · · · · · · · · · · · · ·	Isosafrole (120-58-1)	2,4,5-Trichlorophenol (95-95-4)
4,4 ²¹ -DDT (50-29-3) Diallate (2303-16-4)		
Dibenz[a,h]anthracene (53-70-3)	Kepone (143-50-0) Methacrylonitrile (126-98-7)	2,4,6-Trichlorophenol (88-06-2) 1,2,3-Trichloropropane (96-18-4)
Dibenzofuran (132-64-9)	Methapyrilene (91-80-5)	0,0,0-Triethyl phosphorothioate (126-68-1)
Dibromochloromethane; Chlorodibromomethane (124-48-1)	Methoxychlor (72-43-5)	sym-Trinitrobenzene (99-35-4)
1,2-Dibromo-3-chloro- propane, DBCP (96-12-8)	Methyl bromide, Bromomethane (74-83-9)	Vinyl acetate (108-05-4)
1,2-Dibromoethane, Ethylene dibromide; EDB (106-93-4)	Methyl chloride; Chloromethane (74-87-3)	Vinyl chloride; Chloroethene (75-01-4)
Di-n-butyl phthalate (84-74-2)	3-Methylcholanthrene (56-49-5)	Xylene (total)
o-Dichlorobenzene; I,2-Dichlorobenzene (95-50-1)	Methyl ethyl ketone, MEK, 2-Butanone (78- 93-3)	Per- and polyfluoroalkyl substances 29
m-Dichlorobenzene; 1,3-Dichlorobenzene (541-73-1)	Methyl iodide, lodomethane (74-88-4)	1,4-Dioxane (123-91-1)
p-Dichlorobenzene; 1,4-dichlorobenzene (106-46-7)	Methyl methacrylate (80-62-6)	
3,3 ²¹ -Dichlorobenzidine (91-94-1)	Methyl methanesulfonate (66-27-3)	1
trans-1,4-Dichloro- 2-butene (110-	2-Methylnaphthalene (91-57-6)	

Dichlorodifluoromethane, CFC 12 (75-71-8)	Methyl parathion; Parathion methyl (298- 00-0)	
1,1-Dichloroethane; Ethyldidene chloride (75-34-3)	4-Methyl-2-pentanone, Methyl isobutyl ketone (108-10-1)	
1,2-Dichloroethane; Ethylene dichloride (107-06-2)	Methylene bromíde; Dibromomethane (74- 95-3)	
1,1-Dichloroethylene; 1,1-Dichloroethene; Vinylidene chloride (75-35-4)	Methylene chloride, Dichloromethane (75- 09-2)	1200

(i) Leachate management plan.

The leachate management plan must include:

- (1) a description of how the landfill will be constructed, operated, and closed in a manner that minimizes the generation of leachate, except in those cases where the department has approved the recirculation of leachate for waste mass stabilization enhancement, and how the migration of leachate into surface water or groundwater will be prevented;
- (2) a description of operational methods to minimize the occurrence of perched leachate trapped above the leachate collection and removal system and surface seeps of leachate from above-grade landfill operations;
- (3) a schedule for biennial video inspection and annual maintenance of the primary and secondary leachate collection and removal system;
- (4) a schedule for the monitoring and recording of the secondary leachate collection and removal system flow data to determine the presence, quantity, nature and significance of any liquid detected;
- (5) a discussion of the specific design and operational features related to the system, including leachate monitoring and sampling, locations of all leachate sampling points, alarm systems and maintenance, and any required back up equipment; and
- (6) if leachate recirculation is proposed, the leachate management plan must include
 - (i) a supporting geotechnical analysis evaluating the effect of leachate recirculation on the structural integrity and stability of the landfill's liner system, leachate collection and removal system, and waste mass;
 - (ii) a description of how increased landfill gas emissions and associated odors will be controlled;
 - (iii) a description of the methods and rate of leachate recirculation and addition;
 - (iv) procedures for recording the date and volume of recirculated leachate;
 - (v) a description of the operation, which addresses
 - (a) the use of permeable operating cover or alternative operating cover to facilitate leachate distribution throughout the waste mass, and
 - (b) operational controls such as monitoring of surface seeps, liner system performance and excessive leachate head buildup, prevention of subsurface fires, odor control, and instruction for cessation of leachate recirculation and remediation of these conditions.

(j) Odor control plan.

The odor control plan must include:

- (1) identification of all potential sources for odors and a description of the operational procedures and strategies to be followed to effectively control odors at the facility;
- (2) procedures to be taken in the event of proposed waste volume increases or changes in waste characterization that may increase landfill gas emissions or odors;
- (3) identification of the landfill personnel who would be responsible for implementation of the odor control plan; and
- (4) operational and design-related recommendations that can be implemented upon detection of odor control problems, including impervious membranes and interim covers in conjunction with other landfill gas control methods. The odor control plan may include but not be limited to, gas control systems that are appropriately connected to the landfill liner system's primary leachate collection and removal system (including the drainage area on the landfill's side slopes), use of a horizontal gas collection lines, which may include rejection or mitigation of odiferous wastes that are determined to be contributing to off-site odors.
- (k) Gas monitoring and emission control plan.

The gas monitoring and emission control plan must include:

(1) a description of the day-to-day operation of the landfill gas management system with respect to operation of odor and emission controls:

- (2) a description of any air quality monitoring, including monitoring for fugitive landfill odor and air emissions; and
- (3) for a landfill with an appurtenant landfill gas-to-energy facility or other landfill gas recovery facility, a discussion of how the landfill's odor and air emission controls are integrated with a recovery facility.
- (I) Winter and inclement weather operation plan.

A description of how winter and inclement weather operations will be conducted, including identification of the specific actions to be taken to prevent frost action on the liner system in places where waste will not be placed within one year of construction certification approval.

(m) Residential drop-off operation plan.

A description of the operation of a residential drop-off area, if applicable, for non-commercial vehicles to unload waste and recyclables at an area other than the landfill working face.

(n) A radioactive waste detection plan.

The radioactive waste detection plan must include procedures for detecting radioactive material; operation and maintenance documents for radiation detectors which address proper equipment placement for effective operation and include setting of investigation alarm setpoint settings and calibration methods; and response procedures to be implemented if radioactive waste is detected.

(o) Emergency response plan.

An emergency response plan must include a description of, at a minimum, the actions to be taken in response to

- (1) uncontrolled explosive landfill gases detected on-site or beyond the property boundary;
- (2) unexpected events during the construction and operation of the landfill gas management system, including the equipment to be utilized to maintain proper landfill gas venting and control when normal operations cease; and
- (3) unexpected events during the subsequent construction and/or daily operation of the landfill's leachate collection and removal system.
- (p) Conceptual closure, post-closure care, custodial care, and end use plan.

The conceptual closure, post-closure care, custodial care, and end use plan must include:

- (1) a site plan that shows proposed final contours, property lines, storm water drainage system, streams and water courses, roads, structures and, if applicable, the groundwater and leachate treatment system, air pollution control system and any active landfill gas collection system;
- (2) typical details of final cover system components and facility structures;
- (3) a description of how the sequential closure of areas of the landfill is expected to progress in concert with the fill progression schedule, including effects of landfill reclamation activities if proposed;
- (4) an estimate of the greatest number of landfill cells which, at any given point during the lifetime of the facility, will have received waste but not undergone final closure;
- (5) an estimate of the maximum volume of waste and alternative operating cover that will be contained within the landfill;
- (6) sufficient information upon which to estimate closure costs and post-closure and custodial care monitoring and maintenance costs. This information must be based upon the requirements of Subpart 363-9 of this Part, including a rolling 30-year postclosure care period, and must include estimates of:
 - (i) quantities and costs for each component of the final cover system, including related construction costs;
 - (ii) the anticipated length of the post-closure care period based on the types of wastes disposed and the criteria provided in section 363-9.6(a) of this Part;
 - (iii) post-closure operational, monitoring and maintenance costs including costs to replace system components based on predicted service life; and
 - (iv) custodial care monitoring and maintenance costs including costs to replace system components based on predicted service life; and
- (7) a conceptual end use for the site, if proposed.

Footnotes

This list contains parameters for which possible analytical procedures are provided in: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I

(July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), IIIA (April 1998), document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title. *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1983, incorporated by reference in section 360.3 of this Title.

- 2 Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals, "Total" indicates all species in the groundwater that contain this element.
- 3 Any floaters or sinkers found must be analyzed separately for baseline parameters.
- 4 Surface water only.
- Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.
- This list contains parameters for which possible analytical procedures are provided in: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), IIIA (April 1998), document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title. Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020, March, 1983, incorporated by reference in section 360.3 of this Title.
- 7 Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals. "Total" indicates all species in the groundwater that contain this element.
- 8 Any floaters or sinkers found must be analyzed separately for baseline parameters.
- 9 Surface water only.
- Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.
- The department may waive the requirement to analyze hexavalent chromium provided that total and hexavalent and trivalent chromium values do not exceed 0.05 mg/l.
- This list contains parameters for which possible analytical procedures are provided in: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998) document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title. Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020, March, 1983, incorporated by reference in 360.3 of this Title.
- 13 Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.
- This list contains parameters for which possible analytical procedures are provided in: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998) document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title. Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020, March 1983, incorporated by reference in 360.3 of this Title. Prescribed Procedures for Measurement of Radioactivity in Drinking Water, USEPA-600/4-80-032, August 1980, incorporated by reference in section 360.3 of this Title.
- 15 Common names are those widely used in government regulations, scientific publications, and commerce, synonyms exist for many chemicals. "Total" indicates all species in the groundwater that contain this element.
- Two sets of samples must be collected: one filtered and one unfiltered. Filtered samples must be filtered using a 0.45 micron filter via standard techniques.
- 17 Any floaters or sinkers found must be analyzed separately for baseline parameters.
- 18 Surface water only.
- Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.
- The department may waive the requirement to analyze hexavalent chromium provided that total and hexavalent and trivalent chromium values do not exceed 0.05 mg/l.
- This list contains parameters for which possible analytical procedures are provided in: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998) document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title. Methods for Chemical Analysis of Water and Wastes, USEPA-600/4-79-020, March 1983, incorporated by reference in section 360.3 of this Title.

22

Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

- This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2"-oxybis[2]-chloro- (CAS RN 39638-32-9).
- 24 Polychlorinated biphenyls (1336-36-3): This category contains congener chemicals, including constituents of Aroclor 1016 (12674-11-2), Aroclor 1221 (11104-28-2), Aroclor 1232 (11097-69-1), and Aroclor 1260 (11096-82-5).
- Polychlorinated dibenzo-p-dioxins: This category contains congener chemicals, including tetrachlorodibenzo-p-dioxins, pentachlorodibenzo-p-dioxins, and hexachlorodibenzo-p-dioxins.
- 26 Polychlorinated dibenzofurans: This category includes congener chemicals, including tetrachlorodibenzofurans, pentachlorodibenzofurans, and hexachlorodibenzofurans.
- 27 Chlordane: This entry includes alpha-chlordane (5103-71-9), beta-chlordane (5103-74-2), gamma-chlordane (5566-34-7), and constituents of chlordane (57-74-9; 12789-03-6).
- Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.
- Per- and polyfluoroalkyl substances (PFAS): This category contains congener chemicals, including but not limited to perfluorooctanoic acid, perfluorooctanesulfonic acid, perfluorononanoic acid, perfluorohexanesulfonic acid, perfluorobetanesulfonic acid.

6 CRR-NY 363-4.6 Current through September 30, 2018

END OF DOCUMENT

© 2019 Thomson Reuters. No claim to original U.S. Government Works.

© 2019 Thomson Reuters