

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

July 10, 2019

Joe Guarino Town of Babylon 281 Phelps Lane North Babylon, NY 11703

RE: Project: CELL 7 LEACHATE EXPANDED 360 Pace Project No.: 7093111

Dear Joe Guarino:

Enclosed are the analytical results for sample(s) received by the laboratory on June 11, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

for las

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager

Enclosures

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification**

Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

CERTIFICATIONS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Pennsylvania Certification IDs

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747 New York Certification #: 10478 Primary Accrediting Body New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: 9526 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Maryland Certification #: 208 Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

SAMPLE ANALYTE COUNT

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
7093111001	CELL 7 PLCRS	EPA 8081B	JMD	20	PACE-MV
		EPA 8082A	JMD	9	PACE-MV
		EPA 8151A	MJM	5	PACE-MV
		EPA 6010C	JMW	24	PACE-MV
		EPA 7470A	JLN	1	PACE-MV
		EPA 8270D	MLM	117	PACE-MV
		EPA 8270D by SIM	STB	2	PASI-M
		EPA 8260C/5030C	KGG	67	PACE-MV
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		ASTM D5174-97	RMK	1	PASI-PA
		SM22 2120B	KM1	2	PACE-MV
		SM22 2320B	AK1	1	PACE-MV
	SM22 2340C	AK1	1	PACE-MV	
	SM22 2540C	KS1	1	PACE-MV	
	SM22 3500-Cr B	KM1	1	PACE-MV	
	EPA 410.4	JCA	1	PACE-MV	
	SM22 5210B	VNS	1	PACE-MV	
	EPA 9034	JM3	1	PACE-MV	
	EPA 300.0	BNK	3	PACE-MV	
	EPA 351.2	SDO	1	PACE-MV	
	EPA 353.2	SDO	2	PACE-MV	
	EPA 353.2	SDO	1	PACE-MV	
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	JM3	1	PACE-MV
	EPA 9060A	KM1	5	PACE-MV	

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 8081B
Description:	8081 GCS Pesticides
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 8081B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 8082A
Description:	8082 GCS PCB
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 8082A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: EPA 8151A

Description:8151A Chlorinated HerbicidesClient:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for EPA 8151A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 8151A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 117394

S0: Surrogate recovery outside laboratory control limits.

- CELL 7 PLCRS (Lab ID: 7093111001)
- 2,4-DCAA (S)
- MS (Lab ID: 557995)
 - 2,4-DCAA (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117394

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093111001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 557995)
 - 2,4,5-T
 - Dinoseb

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:EPA 8151ADescription:8151A Chlorinated HerbicidesClient:Town of BabylonDate:July 10, 2019

Analyte Comments:

QC Batch: 117394

1j: Low surrogate recovery confirmed by matrix spike.

• CELL 7 PLCRS (Lab ID: 7093111001)

• 2,4-DCAA (S)

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:EPA 6010CDescription:6010 MET ICPClient:Town of Babylon

Date: July 10, 2019

General Information:

1 sample was analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117890

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093441002,7093605007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 558466)
 - Calcium
 - Iron

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 7470A
Description:	7470 Mercury
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 7470A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: EPA 8270D Description: 8270 MSSV

Client:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for EPA 8270D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 118169

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- BLANK (Lab ID: 560810)
 - Famphur
 - Hexachlorocyclopentadiene
 - Kepone
- CELL 7 PLCRS (Lab ID: 7093111001)
 - Famphur
- Hexachlorocyclopentadiene
 - LCS (Lab ID: 560811)
 - Famphur
 - Hexachlorocyclopentadiene

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 560811)
 - Hexachlorocyclopentadiene

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 560810)
 - Famphur
- CELL 7 PLCRS (Lab ID: 7093111001)
 - Famphur
 - p-Phenylenediamine
- LCS (Lab ID: 560811)
 - Famphur
 - p-Phenylenediamine

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 8270D
Description:	8270 MSSV
Client:	Town of Babylon
Date:	July 10, 2019

QC Batch: 118169

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 560811)
 - 1,3,5-Trinitrobenzene
 - 1,3-Dinitrobenzene
 - 4,6-Dinitro-2-methylphenol
 - Methyl parathion

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 560810)
 - Famphur
 - Hexachlorocyclopentadiene
 - Kepone
 - Pentachlorophenol
 - p-Phenylenediamine
- CELL 7 PLCRS (Lab ID: 7093111001)
 - Famphur
 - Hexachlorocyclopentadiene
 - Kepone
 - Pentachlorophenol
 - p-Phenylenediamine
- LCS (Lab ID: 560811)
 - Famphur
 - Hexachlorocyclopentadiene
 - Kepone
 - Pentachlorophenol
 - p-Phenylenediamine
- LCS (Lab ID: 562856)
 - Methapyrilene
 - N-Nitrosomethylethylamine

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 8270D
Description:	8270 MSSV
Client:	Town of Babylon
Date:	July 10, 2019

QC Batch: 118169

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

• LCS (Lab ID: 560811)

Famphur

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 560811)
 - 2,4-Dimethylphenol
 - Kepone
 - N-Nitrosodimethylamine
- LCS (Lab ID: 562856)
 - 2-Acetylaminofluorene
 - 2-Naphthylamine
 - 4-Aminobiphenyl
 - 5-Nitro-o-toluidine
 - N-Nitroso-di-n-butylamine
 - p-Phenylenediamine

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 118169

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093111001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 561264)
 - Kepone
 - N-Nitrosodimethylamine

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 561264)
 - 1,3,5-Trinitrobenzene
 - 1,4-Naphthoquinone
 - 4-Nitroaniline
 - Hexachlorocyclopentadiene
 - Hexachloropropene
 - Isodrin

Additional Comments:

Analyte Comments:

QC Batch: 118169

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
 - MS (Lab ID: 561264)
 - 3&4-Methylphenol(m&p Cresol)
 - N-Nitrosodimethylamine

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

 Method:
 EPA 8270D

 Description:
 8270 MSSV

 Client:
 Town of Babylon

 Date:
 July 10, 2019

Analyte Comments:

QC Batch: 118169

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 561264)

Phenol

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: EPA 8270D by SIM

Description:8270D MSSV 14 Dioxane By SIMClient:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for EPA 8270D by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 613318

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 3314706)
 - 1,4-Dioxane (SIM)
- LCS (Lab ID: 3314707)
 - 1,4-Dioxane (SIM)

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 8260C/5030C
Description:	8260C Volatile Organics
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 117914

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

• LCS (Lab ID: 558632)

Acrolein

• MS (Lab ID: 558747)

Acrolein

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

• BLANK (Lab ID: 558631)

- 2-Butanone (MEK)
- CELL 7 PLCRS (Lab ID: 7093111001)
 - 2-Butanone (MEK)
- DUP (Lab ID: 558746)
 - 2-Butanone (MEK)
- LCS (Lab ID: 558632)
- 2-Butanone (MEK)
- MS (Lab ID: 558747)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 117914

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 558632)
 - 1,4-Dioxane (p-Dioxane)
- MS (Lab ID: 558747)
 - 1,4-Dioxane (p-Dioxane)

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 558631)
 - Acrolein
 - Chloromethane
 - Dichlorodifluoromethane
- CELL 7 PLCRS (Lab ID: 7093111001)
 - Acrolein

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

•	EPA 8260C/5030C : 8260C Volatile Organics
Client: Date:	Town of Babylon July 10, 2019
QC Batch: 1	17914
CL:	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- Chloromethane
- Dichlorodifluoromethane
- DUP (Lab ID: 558746)
 - Acrolein
 - Chloromethane
 - Dichlorodifluoromethane
- LCS (Lab ID: 558632)
 - Acrolein
 - Chloromethane
 - Dichlorodifluoromethane
- MS (Lab ID: 558747)
 - Acrolein
 - Chloromethane
 - Dichlorodifluoromethane

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 903.1
Description:	903.1 Radium 226
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 903.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 904.0
Description:	904.0 Radium 228
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 904.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: ASTM D5174-97

Description:D517497 Total Uranium KPAClient:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for ASTM D5174-97. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:SM22 2120BDescription:2120B W Apparent ColorClient:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for SM22 2120B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	SM22 2320B
Description:	2320B Alkalinity
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	SM22 2340C
Description:	2340C Hardness, Total
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: SM22 2540C

Description:2540C Total Dissolved SolidsClient:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 118004

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 559709)
 - Total Dissolved Solids
- DUP (Lab ID: 559711)
 - Total Dissolved Solids

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	SM22 3500-Cr B				
Description:	Chromium, Hexavalent				
Client:	Town of Babylon				
Date:	July 10, 2019				

General Information:

1 sample was analyzed for SM22 3500-Cr B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: EPA 410.4 Description: 410.4 COD Client: Town of Boby

Client:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	SM22 5210B
Description:	5210B BOD, 5 day
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for SM22 5210B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 9034
Description:	9034 Sulfide, Titration
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 9034. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9030B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 Town of Babylon

 Date:
 July 10, 2019

General Information:

1 sample was analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: EPA 351.2

Description:351.2 Total Kjeldahl NitrogenClient:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119268

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092926001,7093723002

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 566777)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 119268

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• DUP (Lab ID: 566780)

• Nitrogen, Kjeldahl, Total

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method: EPA 353.2

Description:353.2 Nitrogen, NO2/NO3 pres.Client:Town of BabylonDate:July 10, 2019

General Information:

1 sample was analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 353.2				
Description:	353.2 Nitrogen, NO2				
Client:	Town of Babylon				
Date:	July 10, 2019				

General Information:

1 sample was analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117323

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093101001,7093107001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 555564)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	SM22 4500 NH3 H			
Description:	4500 Ammonia Water			
Client:	Town of Babylon			
Date:	July 10, 2019			

General Information:

1 sample was analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119281

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093468001

- M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
 - MS (Lab ID: 566891)
 - Nitrogen, Ammonia

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 119281

- D6: The precision between the sample and sample duplicate exceeded laboratory control limits.
 - DUP (Lab ID: 566892)
 - Nitrogen, Ammonia

Additional Comments:

CELL 7 LEACHATE EXPANDED 360 Project:

Pace Project No .: 7093111

Method: **EPA 9014 Total Cvanide** Description: 9014 Cyanide, Total Client: Town of Babylon July 10, 2019

General Information:

1 sample was analyzed for EPA 9014 Total Cyanide. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

Date:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Method:	EPA 9060A
Description:	9060A TOC as NPOC
Client:	Town of Babylon
Date:	July 10, 2019

General Information:

1 sample was analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 118775

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092926001

- M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
 - MS (Lab ID: 564529)
 - Mean Total Organic Carbon
 - Total Organic Carbon

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Sample: CELL 7 PLCRS	Lab ID: 7093111001		Collected: 06/11/19 09:15		Received: 06/11/19 15:56 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8081 GCS Pesticides	Analytical Method: EPA 8081B Preparation Method: EPA 3510C							
Aldrin	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	309-00-2	
alpha-BHC	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	319-84-6	
beta-BHC	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	319-85-7	
delta-BHC	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	319-86-8	
gamma-BHC (Lindane)	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	58-89-9	
4,4'-DDD	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	72-54-8	
4,4'-DDE	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	72-55-9	
4,4'-DDT	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	50-29-3	
Dieldrin	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	60-57-1	
Endosulfan I	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	959-98-8	
Endosulfan II	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	33213-65-9	
Endosulfan sulfate	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	1031-07-8	
Endrin	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	72-20-8	
Endrin aldehyde	<0.10	ug/L	0.10	1	06/18/19 19:30	06/19/19 10:30	7421-93-4	
Heptachlor	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	76-44-8	
Heptachlor epoxide	<0.050	ug/L	0.050	1	06/18/19 19:30	06/19/19 10:30	1024-57-3	
Methoxychlor	<0.50	ug/L	0.50	1	06/18/19 19:30	06/19/19 10:30	72-43-5	
Toxaphene <i>Surrogates</i>	<5.0	ug/L	5.0	1	06/18/19 19:30	06/19/19 10:30	8001-35-2	
Decachlorobiphenyl (S)	116	%	30-150	1	06/18/19 19:30	06/19/19 10:30	2051-24-3	
Tetrachloro-m-xylene (S)	95	%	30-150	1		06/19/19 10:30		
8082 GCS PCB	Analytical Mether	hod: EPA 80	082A Preparation Meth	nod: EF	PA 3510C			
PCB-1016 (Aroclor 1016)	<1.0	ug/L	1.0	1	06/24/19 16:24	06/25/19 17:09	12674-11-2	
PCB-1221 (Aroclor 1221)	<2.0	ug/L	2.0	1	06/24/19 16:24	06/25/19 17:09	11104-28-2	
PCB-1232 (Aroclor 1232)	<1.0	ug/L	1.0	1	06/24/19 16:24	06/25/19 17:09	11141-16-5	
PCB-1242 (Aroclor 1242)	<1.0	ug/L	1.0	1	06/24/19 16:24	06/25/19 17:09	53469-21-9	
PCB-1248 (Aroclor 1248)	<1.0	ug/L	1.0	1	06/24/19 16:24	06/25/19 17:09	12672-29-6	
PCB-1254 (Aroclor 1254)	<1.0	ug/L	1.0	1		06/25/19 17:09		
PCB-1260 (Aroclor 1260)	<1.0	ug/L	1.0	1	06/24/19 16:24	06/25/19 17:09	11096-82-5	
Surrogates								
Tetrachloro-m-xylene (S)	62	%	30-150	1	06/24/19 16:24	06/25/19 17:09	877-09-8	
Decachlorobiphenyl (S)	75	%	30-150	1	06/24/19 16:24	06/25/19 17:09	2051-24-3	
8151A Chlorinated Herbicides	Analytical Mether	hod: EPA 81	151A Preparation Meth	nod: EF	PA 8151A			
2,4-D	1.7	ug/L	0.50	1	06/12/19 10:00	06/14/19 04:06	94-75-7	
Dinoseb	0.30	ug/L	0.20	1	06/12/19 10:00	06/14/19 04:06	88-85-7	M1
2,4,5-T	<0.25	ug/L	0.25	1	06/12/19 10:00	06/14/19 04:06	93-76-5	M1
2,4,5-TP (Silvex)	<0.25	ug/L	0.25	1	06/12/19 10:00	06/14/19 04:06	93-72-1	
Surrogates								
2,4-DCAA (S)	23	%	36-121	1	06/12/19 10:00	06/14/19 04:06	19719-28-9	1j,S0
6010 MET ICP	Analytical Mether	hod: EPA 60	010C Preparation Met	hod: El	PA 3005A			
Aluminum	<1000	ug/L	1000	5	06/14/19 17:12	06/25/19 15:13	7429-90-5	
Antimony	<300	ug/L	300	5	06/14/19 17:12	06/25/19 15:13	7440-36-0	
Arsenic	<50.0	ug/L	50.0	5	06/14/19 17:12	06/25/19 15:13	7440-38-2	
Barium	6450	ug/L	1000	5	06/14/19 17:12	06/25/19 15:13	7440-39-3	
Danulli	0450	uy/L	1000	5	00/14/18 17.1Z	00/20/18 10.15	1440-08-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Sample: CELL 7 PLCRS	Lab ID: 7	7093111001	Collected:	06/11/19	9 09:15	Received: 06	/11/19 15:56	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical N	/lethod: EPA 60	010C Prepara	ation Me	thod: Ef	PA 3005A			
Beryllium	1.7J	ug/L		25.0	5	06/14/19 17:12	06/25/19 15:13	3 7440-41-7	
Boron	334	ug/L		250	5	06/14/19 17:12	06/25/19 15:13	3 7440-42-8	
Cadmium	<12.5	ug/L		12.5	5	06/14/19 17:12	06/25/19 15:13	3 7440-43-9	
Calcium	9750000	ug/L		2000	10	06/14/19 17:12	06/25/19 15:10	5 7440-70-2	
Chromium	46.1J	ug/L		50.0	5	06/14/19 17:12	06/25/19 15:13	3 7440-47-3	
Cobalt	<250	ug/L		250	5	06/14/19 17:12	06/25/19 15:13	3 7440-48-4	
Copper	59.0J			125	5	06/14/19 17:12	06/25/19 15:13	3 7440-50-8	
Iron	150	ug/L		100	5	06/14/19 17:12	06/25/19 15:13	3 7439-89-6	
Lead	<25.0	ug/L		25.0	5	06/14/19 17:12	06/25/19 15:13	8 7439-92-1	
Magnesium	4420	-		1000	5	06/14/19 17:12	06/25/19 15:13	3 7439-95-4	
Manganese	1440	-		50.0	5	06/14/19 17:12	06/25/19 15:13	7439-96-5	
Nickel	<200	0		200	5	06/14/19 17:12			
Potassium	6390000	-	50	00000	100	06/14/19 17:12	06/25/19 16:40	7440-09-7	
Selenium	125	-		50.0	5	06/14/19 17:12	06/25/19 15:13	3 7782-49-2	
Silver	<50.0	-		50.0	5	06/14/19 17:12			
Sodium	9900000	0	ţ	50000	10	06/14/19 17:12			
Thallium	<50.0			50.0	5	06/14/19 17:12			
Tin	<250	-		250	5	06/14/19 17:12			
Vanadium	<250	0		250	5	06/14/19 17:12			
		0							
Zinc	132	ug/L		100	5	06/14/19 17:12	06/25/19 15:1	3 7440-66-6	
Zinc 7470 Mercury		ug/L /lethod: EPA 74	170A Prepara				06/25/19 15:1	3 7440-66-6	
		/lethod: EPA 74	470A Prepara						
7470 Mercury	Analytical M 0.15J	/lethod: EPA 74		tion Met 0.20	thod: EF 1	PA 7470A 06/21/19 10:50			
7470 Mercury Mercury	Analytical M 0.15J	/lethod: EPA 74 ug/L /lethod: EPA 82		tion Met 0.20	thod: EF 1	PA 7470A 06/21/19 10:50	06/21/19 18:52	2 7439-97-6	
7470 Mercury Mercury 8270 MSSV	Analytical M 0.15J Analytical M	/ethod: EPA 74 ug/L /ethod: EPA 82 ug/L		tion Met 0.20 ation Me	thod: EF 1 thod: Ef	PA 7470A 06/21/19 10:50 PA 3510C	06/21/19 18:52	2 7439-97-6 9 95-94-3	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene	Analytical M 0.15J Analytical M <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L		tion Met 0.20 ation Me 5.0	thod: EF 1 thod: EF 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	2 7439-97-6 95-94-3 120-82-1	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0	thod: EF 1 thod: EF 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 7439-97-6 95-94-3 120-82-1 95-50-1 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	Analytical M 0.15J Analytical M <5.0 <5.0	/ethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6) 95-94-3) 120-82-1) 95-50-1) 99-35-4 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trinitrobenzene	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6) 95-94-3) 120-82-1) 95-50-1) 99-35-4) 541-73-1 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trinitrobenzene 1,3-Dichlorobenzene	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/ethod: EPA 74 ug/L /ethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trinitrobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trinitrobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane)	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trinitrobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 74 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 7-4 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 2 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 120-83-2 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trinitrobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 7- ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: Ef 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 120-83-2 105-67-9 	
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimethylphenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 7- ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: Ef 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 7- ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: Ef 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-5-Trinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dichlorophenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 7/ ug/L /lethod: EPA 8/ ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: Ef 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 87-65-0 	M1
7470 Mercury Mercury 8270 MSSV 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dinitrobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2,2'-Oxybis(1-chloropropane) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	Analytical M 0.15J Analytical M <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	/lethod: EPA 7- ug/L /lethod: EPA 82 ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		tion Met 0.20 ation Me 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	thod: EF 1 thod: Ef 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 7470A 06/21/19 10:50 PA 3510C 06/18/19 09:19 06/18/19 09:19	06/21/19 18:52 06/19/19 12:50 06/19/19 12:50	 7439-97-6 95-94-3 120-82-1 95-50-1 99-35-4 541-73-1 99-65-0 106-46-7 130-15-4 134-32-7 108-60-1 58-90-2 95-95-4 88-06-2 120-83-2 105-67-9 51-28-5 121-14-2 87-65-0 606-20-2 	M1

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.:

7093111

Sample: CELL 7 PLCRS	Lab ID:	7093111001	Collected: 06/11/1	9 09:15	Received: 06	/11/19 15:56	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical	Method: EPA 82	270D Preparation Me	ethod: E	PA 3510C			
2-Chlorophenol	<5.0	0 ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	95-57-8	
2-Methylnaphthalene	<5.0	0 ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	91-57-6	
2-Methylphenol(o-Cresol)	1.0.	J ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	95-48-7	
2-Naphthylamine	<5.0) ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	91-59-8	L2
2-Nitroaniline	<5.0) ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	88-74-4	
2-Nitrophenol	<5.0) ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	88-75-5	
3&4-Methylphenol(m&p Cresol)	110	0 ug/L	25.0	5	06/18/19 09:19	06/19/19 16:50	1	
3,3'-Dichlorobenzidine	<5.0	0 ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	91-94-1	
3,3'-Dimethylbenzidine	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	119-93-7	
3-Methylcholanthrene	<5.0	0 ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	56-49-5	
3-Nitroaniline	<5.0	0 ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	99-09-2	
4,6-Dinitro-2-methylphenol	<10.0		10.0	1	06/18/19 09:19	06/19/19 12:50	534-52-1	
4-Aminobiphenyl	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	92-67-1	L2
4-Bromophenylphenyl ether	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	101-55-3	
4-Chloro-3-methylphenol	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	59-50-7	
4-Chloroaniline	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	106-47-8	
4-Chlorophenylphenyl ether	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	7005-72-3	
4-Nitroaniline	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	100-01-6	M1
4-Nitrophenol	<10.0	-	10.0	1	06/18/19 09:19	06/19/19 12:50	100-02-7	
5-Nitro-o-toluidine	<5.0	-	5.0	1	06/18/19 09:19	06/19/19 12:50	99-55-8	L2
7,12-Dimethylbenz(a)anthracene	<5.0	-	5.0	1		06/19/19 12:50		
Acenaphthene	<5.0	-	5.0	1		06/19/19 12:50		
Acenaphthylene	<5.0	0	5.0	1		06/19/19 12:50		
Acetophenone	<5.0	0	5.0	1		06/19/19 12:50		
Anthracene	<5.0	0	5.0	1		06/19/19 12:50		
Benzo(a)anthracene	<5.0	0	5.0	1		06/19/19 12:50		
Benzo(a)pyrene	<5.0	-	5.0	1		06/19/19 12:50		
Benzo(b)fluoranthene	<5.0	0	5.0	1		06/19/19 12:50		
Benzo(g,h,i)perylene	<5.0	0	5.0	1		06/19/19 12:50		
Benzo(k)fluoranthene	<5.0	0	5.0	1		06/19/19 12:50		
Benzyl alcohol	<5.0	0	5.0	1		06/19/19 12:50		
Butylbenzylphthalate	<5.0	-	5.0	1		06/19/19 12:50		
Chlorobenzilate	<5.0	0	5.0	1		06/19/19 12:50		
Chrysene	<5.0	0	5.0	1		06/19/19 12:50		
Di-n-butylphthalate	<5.0	0	5.0	1		06/19/19 12:50		
Di-n-octylphthalate	<5.0	0	5.0	1		06/19/19 12:50		
Diallate	<5.0	-	5.0	1		06/19/19 12:50		
Dibenz(a,h)anthracene	<5.0	0	5.0	1		06/19/19 12:50		
Dibenzofuran	<5.0	0	5.0	1		06/19/19 12:50		
Diethylphthalate	<5.0	0	5.0	1		06/19/19 12:50		
Dimethoate	<5.0	0	5.0	1		06/19/19 12:50		
Dimethylphthalate	<5.0	0	5.0	1		06/19/19 12:50		
Disulfoton	<5.0	0	5.0	1		06/19/19 12:50		
		0						
Ethyl methanesulfonate	<5.0	0	5.0	1 1		06/19/19 12:50		
Famphur	<10.0	Ū	10.0	1		06/19/19 12:50		CL,IC,IL L1
Fluoranthene	<5.0	0 ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	206-44-0	

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Sample: CELL 7 PLCRS	Lab ID: 709	Lab ID: 7093111001		9 09:15	Received: 06	/11/19 15:56 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	nod: EPA 82	270D Preparation Me	D Preparation Method: EP				
Fluorene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	86-73-7	
Hexachloro-1,3-butadiene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	87-68-3	
Hexachlorobenzene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	118-74-1	
Hexachlorocyclopentadiene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	77-47-4	CL,IC, M1
Hexachloroethane	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	67-72-1	
Hexachloropropene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	1888-71-7	M1
Indeno(1,2,3-cd)pyrene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	193-39-5	
Isodrin	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	465-73-6	M1
Isophorone	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	78-59-1	
Isosafrole	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	120-58-1	
Kepone	<10.0	ug/L	10.0	1		06/19/19 12:50		CL,L2, M0
Methapyrilene	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	91-80-5	-
Methyl methanesulfonate	<5.0	ug/L	5.0	1		06/19/19 12:50		
Methyl parathion	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	298-00-0	
N-Nitroso-di-n-butylamine	<5.0	ug/L	5.0	1	06/18/19 09:19	06/19/19 12:50	924-16-3	L2
N-Nitroso-di-n-propylamine	<5.0	ug/L	5.0	1		06/19/19 12:50		
N-Nitrosodiethylamine	<5.0	ug/L	5.0	1		06/19/19 12:50		
N-Nitrosodimethylamine	<5.0	ug/L	5.0	1		06/19/19 12:50		L2,M0
N-Nitrosodiphenylamine	<5.0	ug/L	5.0	1		06/19/19 12:50		22,1110
N-Nitrosomethylethylamine	<5.0	ug/L	5.0	1		06/19/19 12:50		
N-Nitrosopiperidine	<5.0	ug/L	5.0	1		06/19/19 12:50		
N-Nitrosopyrrolidine	<5.0	ug/L	5.0	1		06/19/19 12:50		
Naphthalene	<5.0	ug/L	5.0	1		06/19/19 12:50		
Nitrobenzene	<5.0	ug/L	5.0	1		06/19/19 12:50		
0,0,0-Triethylphosphorothioate	<5.0	ug/L	5.0	1		06/19/19 12:50		
O-Toluidine	<5.0	ug/L	5.0	1		06/19/19 12:50		
P-Dimethylaminoazobenzene	<5.0	ug/L	5.0	1		06/19/19 12:50		
Parathion (Ethyl parathion)	<5.0	ug/L	5.0	1		06/19/19 12:50		
Pentachlorobenzene	<5.0	-	5.0	1		06/19/19 12:50		
Pentachloronitrobenzene	<5.0 <5.0	ug/L	5.0	1		06/19/19 12:50		
	<5.0 <10.0	ug/L	10.0	1		06/19/19 12:50		CL
Pentachlorophenol		ug/L		1				0L
Phenacetin	<5.0	ug/L	5.0			06/19/19 12:50		
Phenanthrene	<5.0	ug/L	5.0	1		06/19/19 12:50		
Phenol	115	ug/L	25.0	5		06/19/19 16:50		
Pronamide	<5.0	ug/L	5.0	1		06/19/19 12:50		
Pyrene	<5.0	ug/L	5.0	1		06/19/19 12:50		
Safrole	<5.0	ug/L	5.0	1		06/19/19 12:50		
Thionazin	<5.0	ug/L	5.0	1		06/19/19 12:50		
bis(2-Chloroethoxy)methane	<5.0	ug/L	5.0	1		06/19/19 12:50		
bis(2-Chloroethyl) ether	<5.0	ug/L	5.0	1		06/19/19 12:50		
bis(2-Ethylhexyl)phthalate	<5.0	ug/L	5.0	1		06/19/19 12:50		<u></u>
p-Phenylenediamine Surrogates	<5.0	ug/L	5.0	1		06/19/19 12:50		CL,IL,L2
Nitrobenzene-d5 (S)	78	%	35-114	1	06/18/19 09:19	06/19/19 12:50	4165-60-0	
2-Fluorobiphenyl (S)	77	%	43-116	1	06/18/19 09:19	06/19/19 12:50	321-60-8	

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No .:

7093111		

Sample: CELL 7 PLCRS	Lab ID: 709	3111001	Collected: 06/11/1	9 09:15	Received: 06	/11/19 15:56 M	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical Meth	nod: EPA 82	270D Preparation Me	ethod: E	PA 3510C			
Surrogates								
p-Terphenyl-d14 (S)	65	%	33-141	1		06/19/19 12:50		
Phenol-d5 (S)	38	%	10-110	1		06/19/19 12:50		
2-Fluorophenol (S)	52	%	21-110	1		06/19/19 12:50		
2,4,6-Tribromophenol (S)	87	%	10-123	1	06/18/19 09:19	06/19/19 12:50	118-79-6	
2-Chlorophenol-d4 (S)	73	%	33-110	1	06/18/19 09:19	06/19/19 12:50	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	67	%	16-110	1	06/18/19 09:19	06/19/19 12:50	2199-69-1	
8270D MSSV 14 Dioxane By SIM	Analytical Meth	nod: EPA 82	70D by SIM Prepara	ation Me	thod: EPA 3510			
1,4-Dioxane (SIM) <i>Surrogates</i>	2.4	ug/L	0.31	1	06/17/19 12:55	06/21/19 17:23	123-91-1	
1,4-Dioxane-d8 (S)	53	%.	30-125	1	06/17/19 12:55	06/21/19 17:23		
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37	630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,1-Dichloropropene	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,3-Dichloropropane	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/15/19 00:37		
1,4-Dioxane (p-Dioxane)	<100	ug/L	100	1		06/15/19 00:37		
2,2-Dichloropropane	<1.0	ug/L	1.0	1		06/15/19 00:37		
2-Butanone (MEK)	10.8	ug/L	5.0	1		06/15/19 00:37		IL
2-Hexanone	<5.0	ug/L	5.0	1		06/15/19 00:37		12
4-Methyl-2-pentanone (MIBK)	<5.0 1.4J	ug/L	5.0	1		06/15/19 00:37		
		-		1				
Acetone Acetonitrile	103	ug/L	5.0	•		06/15/19 00:37		
Acetonitrile	128 <1.0	ug/L	5.0 1.0	1		06/15/19 00:37 06/15/19 00:37		CL
		ug/L		1				0L
Acrylonitrile	<1.0	ug/L	1.0	1		06/15/19 00:37		
Allyl chloride	<1.0	ug/L	1.0	1		06/15/19 00:37		
Benzene	<1.0	ug/L	1.0	1		06/15/19 00:37		
Bromochloromethane	<1.0	ug/L	1.0	1		06/15/19 00:37		
Bromodichloromethane	<1.0	ug/L	1.0	1		06/15/19 00:37		
Bromoform	<1.0	ug/L	1.0	1		06/15/19 00:37		
Bromomethane	<1.0	ug/L	1.0	1		06/15/19 00:37		
Carbon disulfide	<1.0	ug/L	1.0	1		06/15/19 00:37		
Carbon tetrachloride	<1.0	ug/L	1.0	1		06/15/19 00:37	56-23-5	

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Sample: CELL 7 PLCRS	Lab ID: 7093111001		Collected: 06/11/19 09:15		Received: 0	06/11/19 15:56 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C Volatile Organics	Analytical Met	thod: EPA 82	260C/5030C						
Chlorobenzene	<1.0	ug/L	1.0	1		06/15/19 00:37	108-90-7		
Chloroethane	<1.0	ug/L	1.0	1		06/15/19 00:37	75-00-3		
Chloroform	<1.0	ug/L	1.0	1		06/15/19 00:37	67-66-3		
Chloromethane	<1.0	ug/L	1.0	1		06/15/19 00:37	74-87-3	CL	
Chloroprene	<1.0	ug/L	1.0	1		06/15/19 00:37	126-99-8		
Dibromochloromethane	<1.0	ug/L	1.0	1		06/15/19 00:37	124-48-1		
Dibromomethane	<1.0	ug/L	1.0	1		06/15/19 00:37	74-95-3		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		06/15/19 00:37	75-71-8	CL	
Ethyl methacrylate	<1.0	ug/L	1.0	1		06/15/19 00:37	97-63-2		
Ethylbenzene	<1.0	ug/L	1.0	1		06/15/19 00:37	100-41-4		
lodomethane	<1.0	ug/L	1.0	1		06/15/19 00:37	74-88-4		
Isobutanol	<20.0	ug/L	20.0	1		06/15/19 00:37			
Methacrylonitrile	<1.0	ug/L	1.0	1		06/15/19 00:37			
Methyl methacrylate	<1.0	ug/L	1.0	1		06/15/19 00:37	80-62-6		
Methylene Chloride	<1.0	ug/L	1.0	1		06/15/19 00:37			
Propionitrile	<4.0	ug/L	4.0	1		06/15/19 00:37			
Styrene	<1.0	ug/L	1.0	1		06/15/19 00:37			
Tetrachloroethene	<1.0	ug/L	1.0	1		06/15/19 00:37			
Toluene	<1.0	ug/L	1.0	1		06/15/19 00:37			
Trichloroethene	<1.0	ug/L	1.0	1		06/15/19 00:37			
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/15/19 00:37			
Vinyl acetate	<1.0	ug/L	1.0	1		06/15/19 00:37			
Vinyl chloride	<1.0	ug/L	1.0	1		06/15/19 00:37			
Xylene (Total)	<3.0	ug/L	3.0	1		06/15/19 00:37			
cis-1,2-Dichloroethene	<3.0 <1.0		1.0	1		06/15/19 00:37			
cis-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1		06/15/19 00:37			
trans-1,2-Dichloroethene	<1.0 <1.0	ug/L	1.0	1		06/15/19 00:37			
		ug/L		1					
trans-1,3-Dichloropropene	<1.0	ug/L	1.0			06/15/19 00:37			
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1		06/15/19 00:37	110-57-6		
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		06/15/19 00:37	17060-07-0		
4-Bromofluorobenzene (S)	95	%	79-124	1		06/15/19 00:37	460-00-4		
Toluene-d8 (S)	101	%	69-124	1		06/15/19 00:37	2037-26-5		
Tentatively Identified Compounds									
Unknown	6.4J	ug/L		1		06/15/19 00:37			
Unknown	12.2J	ug/L		1		06/15/19 00:37			
2120B W Apparent Color	Analytical Met	thod: SM22 2	2120B						
Apparent Color	50.0	units	10.0	2		06/12/19 14:31			
рН	7.0	Std. Units	0.10	2		06/12/19 14:31			
2320B Alkalinity	Analytical Met	thod: SM22 2	2320B						
Alkalinity, Total as CaCO3	336	mg/L	1.0	1		06/24/19 13:10			
2340C Hardness, Total	Analytical Met	thod: SM22	2340C						
Tot Hardness asCaCO3 (SM 2340B	28800	mg/L	5.0	1		06/25/19 14:33			

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Sample: CELL 7 PLCRS	Lab ID: 7093	3111001	Collected: 06/11/	19 09:15	Received: 06	5/11/19 15:56 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical Meth	od: SM22	2540C					
Total Dissolved Solids	74600	mg/L	20.0	1		06/17/19 11:04		
Chromium, Hexavalent	Analytical Meth	od: SM22	3500-Cr B					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		06/12/19 07:39	18540-29-9	
410.4 COD	Analytical Meth	od: EPA 4	10.4 Preparation Me	thod: EF	PA 410.4			
Chemical Oxygen Demand	3870	mg/L	40.0	1	06/19/19 09:15	06/19/19 11:43		
5210B BOD, 5 day	Analytical Meth	od: SM22	5210B Preparation I	Method:	SM22 5210B			
BOD, 5 day	494	mg/L	66.7	33.33	06/12/19 12:20	06/17/19 12:32		
9034 Sulfide, Titration	Analytical Meth	od: EPA 90	034 Preparation Met	hod: EP	A 9030B			
Sulfide	8.0	mg/L	2.0	1	06/17/19 07:56	06/17/19 14:28		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	00.0					
Bromide Chloride Sulfate	516 <2.0 7.2	mg/L mg/L mg/L	100 2.0 5.0	200 1 1		06/27/19 23:49 06/27/19 23:32 06/27/19 23:32	16887-00-6	
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Preparation Me	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	104	mg/L	5.0	10	06/25/19 13:02	06/26/19 08:11	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	od: EPA 3	53.2					
Nitrate as N Nitrate-Nitrite (as N)	0.090 0.090	mg/L mg/L	0.050 0.050	1 1		06/11/19 23:14 06/11/19 23:14		
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/11/19 21:06	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
Nitrogen, Ammonia	93.3	mg/L	2.0	20		06/25/19 16:22	7664-41-7	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cyanide P	reparatio	on Method: EPA 9	010C		
Cyanide	4.6J	ug/L	10.0	1	06/18/19 07:57	06/18/19 15:26	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
Total Organic Carbon Total Organic Carbon Total Organic Carbon Total Organic Carbon Mean Total Organic Carbon	267 259 256 257 258	mg/L mg/L mg/L mg/L mg/L	6.0 6.0 6.0 6.0 6.0	6 6 6 6		06/21/19 17:59 06/21/19 17:59 06/21/19 17:59 06/21/19 17:59 06/21/19 17:59	7440-44-0 7440-44-0 7440-44-0	

Project: CELL 7 LE Pace Project No.: 7093111	ACHATE EXPANDED 360)					
QC Batch: 118862		Analysis Met	ihod: E	EPA 7470A			
QC Batch Method: EPA 7470	A	Analysis Des	scription: 7	470 Mercury			
Associated Lab Samples: 70	93111001						
METHOD BLANK: 564845		Matrix:	Water				
Associated Lab Samples: 70	93111001						
Demonster	11.25	Blank	Reporting	A	0		
Parameter	Units	Result	Limit	Analyzed		ers	
Mercury	ug/L	<0.20	0.20	0 06/21/19 18:	28		
LABORATORY CONTROL SAM	IPLE: 564846						
Parameter	Units	•	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Mercury	ug/L	1	1.0	101	80-120		
MATRIX SPIKE SAMPLE:	564847						
		7093441002		MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	ug/L	<0.2	20 1	0.81	78	3 75-125	
SAMPLE DUPLICATE: 56484	8						
		7093441002	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Mercury	ug/L	<0.20	<0.20)			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111					
QC Batch: 117890		Analysis Met	hod: EF	PA 6010C	
QC Batch Method: EPA 3005A		Analysis Des	cription: 60	10 MET Water	
Associated Lab Samples: 7093111001					
METHOD BLANK: 558463		Matrix:	Water		
Associated Lab Samples: 7093111001					
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	06/25/19 13:39	
Antimony	ug/L	<60.0	60.0	06/25/19 13:39	
Arsenic	ug/L	<10.0	10.0	06/25/19 13:39	
Barium	ug/L	<200	200	06/25/19 13:39	
Beryllium	ug/L	<5.0	5.0	06/25/19 13:39	
Boron	ug/L	<50.0	50.0	06/25/19 13:39	
Cadmium	ug/L	<2.5	2.5	06/25/19 13:39	
Calcium	ug/L	<200	200	06/25/19 13:39	
Chromium	ug/L	<10.0	10.0	06/25/19 13:39	
Cobalt	ug/L	<50.0	50.0	06/25/19 13:39	
Copper	ug/L	<25.0	25.0	06/25/19 13:39	
Iron	ug/L	<20.0	20.0	06/25/19 13:39	

<5.0 <200

<10.0

<40.0

<5000

<10.0

<10.0

<5000

<10.0

<50.0

<50.0

<20.0

5.0 06/25/19 13:39

200 06/25/19 13:39

10.0 06/25/19 13:39 40.0 06/25/19 13:39

5000 06/25/19 13:39

10.0 06/25/19 13:39

10.0 06/25/19 13:39

5000 06/25/19 13:39

10.0 06/25/19 13:39

50.0 06/25/19 13:39

50.0 06/25/19 13:39

20.0 06/25/19 13:39

LABORATORY CONTROL SAMPLE: 558464

Lead

Nickel

Silver

Tin

Zinc

Sodium

Thallium

Vanadium

Magnesium

Manganese

Potassium

Selenium

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Aluminum	ug/L	5000	4840	97	80-120	
Antimony	ug/L	750	710	95	80-120	
Arsenic	ug/L	500	482	96	80-120	
Barium	ug/L	500	494	99	80-120	
Beryllium	ug/L	50	50.0	100	80-120	
Boron	ug/L	2500	2480	99	80-120	
Cadmium	ug/L	50	49.8	100	80-120	
Calcium	ug/L	25000	25200	101	80-120	
Chromium	ug/L	250	252	101	80-120	
Cobalt	ug/L	500	502	100	80-120	
Copper	ug/L	250	249	100	80-120	
ron	ug/L	2000	2020	101	80-120	

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE: 558464

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ead	ug/L	500	504	101	80-120	
agnesium	ug/L	25000	24200	97	80-120	
nganese	ug/L	250	249	100	80-120	
kel	ug/L	250	251	100	80-120	
assium	ug/L	50000	47300	95	80-120	
enium	ug/L	750	731	97	80-120	
er	ug/L	250	241	96	80-120	
um	ug/L	50000	48200	96	80-120	
lium	ug/L	750	755	101	80-120	
	ug/L	2500	2510	100	80-120	
adium	ug/L	500	497	99	80-120	
;	ug/L	1000	1000	100	80-120	

MATRIX SPIKE SAMPLE:	558466						
		7093441002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	211	5000	5580	107	75-125	
Antimony	ug/L	<60.0	750	779	104	75-125	
Arsenic	ug/L	40.0	500	544	101	75-125	
Barium	ug/L	<200	500	521	102	75-125	
Beryllium	ug/L	<5.0	50	51.0	102	75-125	
Boron	ug/L	3660	2500	6060	96	75-125	
Cadmium	ug/L	<2.5	50	49.6	99	75-125	
Calcium	ug/L	442000	25000	445000	12	75-125 N	11
Chromium	ug/L	<10.0	250	261	103	75-125	
Cobalt	ug/L	<50.0	500	514	103	75-125	
Copper	ug/L	<25.0	250	264	99	75-125	
Iron	ug/L	10600	2000	11800	57	75-125 N	11
Lead	ug/L	<5.0	500	507	101	75-125	
Magnesium	ug/L	20400	25000	43900	94	75-125	
Manganese	ug/L	110	250	359	100	75-125	
Nickel	ug/L	<40.0	250	262	102	75-125	
Potassium	ug/L	60000	50000	106000	92	75-125	
Selenium	ug/L	<10.0	750	767	101	75-125	
Silver	ug/L	<10.0	250	275	110	75-125	
Sodium	ug/L	69800	50000	117000	94	75-125	
Thallium	ug/L	<10.0	750	753	100	75-125	
Tin	ug/L	<50.0	2500	2530	101	75-125	
Vanadium	ug/L	<50.0	500	516	103	75-125	
Zinc	ug/L	22.3	1000	1020	100	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

MATRIX SPIKE SAMPLE:	558468						
		7093605007	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L		5000	4940	98	75-125	
Antimony	ug/L	<60.0	750	753	99	75-125	
Arsenic	ug/L	<10.0	500	487	97	75-125	
Barium	ug/L	70.2J	500	565	99	75-125	
Beryllium	ug/L	<5.0	50	50.2	100	75-125	
Boron	ug/L	<50.0	2500	2480	99	75-125	
Cadmium	ug/L	<2.5	50	50.1	100	75-125	
Calcium	ug/L	30100	25000	55100	100	75-125	
Chromium	ug/L	5.1J	250	258	101	75-125	
Cobalt	ug/L	<50.0	500	506	101	75-125	
Copper	ug/L	<25.0	250	252	100	75-125	
ron	ug/L	93.3	2000	2130	102	75-125	
Lead	ug/L	<5.0	500	505	101	75-125	
Magnesium	ug/L	817	25000	24800	96	75-125	
Manganese	ug/L	6.8J	250	253	98	75-125	
Nickel	ug/L	<40.0	250	254	100	75-125	
Potassium	ug/L	1490J	50000	48100	93	75-125	
Selenium	ug/L	<10.0	750	730	97	75-125	
Silver	ug/L	<10.0	250	254	101	75-125	
Sodium	ug/L	13200	50000	61800	97	75-125	
Thallium	ug/L	<10.0	750	756	101	75-125	
Tin	ug/L	<50.0	2500	2510	100	75-125	
Vanadium	ug/L	<50.0	500	501	100	75-125	
Zinc	ug/L	<20.0	1000	1010	101	75-125	

SAMPLE DUPLICATE: 558465

		7093441002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	211	190J		
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	40.0	34.8	14	
Barium	ug/L	<200	10.2J		
Beryllium	ug/L	<5.0	0.10J		
Boron	ug/L	3660	3650	0	
Cadmium	ug/L	<2.5	<2.5		
Calcium	ug/L	442000	438000	1	
Chromium	ug/L	<10.0	3.7J		
Cobalt	ug/L	<50.0	<50.0		
Copper	ug/L	<25.0	17.1J		
Iron	ug/L	10600	10200	5	
Lead	ug/L	<5.0	<5.0		
Magnesium	ug/L	20400	20200	1	
Manganese	ug/L	110	109	1	
Nickel	ug/L	<40.0	6.0J		
Potassium	ug/L	60000	57600	4	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

SAMPLE DUPLICATE: 558465

		7093441002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Selenium	ug/L	<10.0	<10.0		
Silver	ug/L	<10.0	<10.0		
Sodium	ug/L	69800	67900	3	
Thallium	ug/L	<10.0	<10.0		
Tin	ug/L	<50.0	<50.0		
Vanadium	ug/L	<50.0	<50.0		
Zinc	ug/L	22.3	22.3	0	

SAMPLE DUPLICATE: 558467

Parameter	Units	7093605007 Result	Dup Result	RPD	Qualifiers
					Quaimers
Aluminum	ug/L	64.7J	73.2J		
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	<10.0	<10.0		
Barium	ug/L	70.2J	70.2J		
Beryllium	ug/L	<5.0	<5.0		
Boron	ug/L	<50.0	<50.0		
Cadmium	ug/L	<2.5	<2.5		
Calcium	ug/L	30100	30100	0	
Chromium	ug/L	5.1J	5.1J		
Cobalt	ug/L	<50.0	<50.0		
Copper	ug/L	<25.0	<25.0		
Iron	ug/L	93.3	97.5	4	
Lead	ug/L	<5.0	<5.0		
Magnesium	ug/L	817	818	0	
Manganese	ug/L	6.8J	2.7J		
Nickel	ug/L	<40.0	<40.0		
Potassium	ug/L	1490J	1650J		
Selenium	ug/L	<10.0	<10.0		
Silver	ug/L	<10.0	<10.0		
Sodium	ug/L	13200	13200	0	
Thallium	ug/L	<10.0	<10.0		
Tin	ug/L	<50.0	<50.0		
Vanadium	ug/L	<50.0	<50.0		
Zinc	ug/L	<20.0	<20.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Analysis Method:

Matrix: Water

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

QC Batch: 117914 QC Batch Method: EPA 8260C/5030C

METHOD BLANK: 558631

Analysis Description: 8260 MSV

EPA 8260C/5030C

Associated Lab Samples: 7093111001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
1,1,1-Trichloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
,1,2-Trichloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
I,1-Dichloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
,1-Dichloroethene	ug/L	<1.0	1.0	06/14/19 18:44	
,1-Dichloropropene	ug/L	<1.0	1.0	06/14/19 18:44	
,2,3-Trichloropropane	ug/L	<1.0	1.0	06/14/19 18:44	
I,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	06/14/19 18:44	
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	06/14/19 18:44	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	06/14/19 18:44	
1,2-Dichloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
I,2-Dichloropropane	ug/L	<1.0	1.0	06/14/19 18:44	
.3-Dichlorobenzene	ug/L	<1.0	1.0	06/14/19 18:44	
,3-Dichloropropane	ug/L	<1.0	1.0	06/14/19 18:44	
,4-Dichlorobenzene	ug/L	<1.0	1.0	06/14/19 18:44	
,4-Dioxane (p-Dioxane)	ug/L	<100	100	06/14/19 18:44	
2,2-Dichloropropane	ug/L	<1.0	1.0	06/14/19 18:44	
-Butanone (MEK)	ug/L	<5.0	5.0	06/14/19 18:44	IL
-Hexanone	ug/L	<5.0	5.0	06/14/19 18:44	12
-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	06/14/19 18:44	
cetone	ug/L	<5.0	5.0	06/14/19 18:44	
cetonitrile	ug/L	<5.0 <5.0	5.0	06/14/19 18:44	
crolein	ug/L	<1.0	1.0	06/14/19 18:44	CL
	ug/L	<1.0 <1.0	1.0	06/14/19 18:44	0L
crylonitrile					
llyl chloride	ug/L	<1.0	1.0	06/14/19 18:44	
Senzene	ug/L	<1.0	1.0	06/14/19 18:44	
Bromochloromethane	ug/L	<1.0	1.0	06/14/19 18:44	
Bromodichloromethane	ug/L	<1.0	1.0	06/14/19 18:44	
Bromoform	ug/L	<1.0	1.0	06/14/19 18:44	
Bromomethane	ug/L	<1.0	1.0	06/14/19 18:44	
Carbon disulfide	ug/L	<1.0	1.0	06/14/19 18:44	
Carbon tetrachloride	ug/L	<1.0	1.0	06/14/19 18:44	
Chlorobenzene	ug/L	<1.0	1.0	06/14/19 18:44	
Chloroethane	ug/L	<1.0	1.0	06/14/19 18:44	
Chloroform	ug/L	<1.0	1.0	06/14/19 18:44	
Chloromethane	ug/L	<1.0	1.0	06/14/19 18:44	CL
Chloroprene	ug/L	<1.0	1.0	06/14/19 18:44	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	06/14/19 18:44	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	06/14/19 18:44	
Dibromochloromethane	ug/L	<1.0	1.0	06/14/19 18:44	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

METHOD BLANK: 558631		Matrix:	Water		
Associated Lab Samples:	7093111001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	<1.0	1.0	06/14/19 18:44	
Dichlorodifluoromethane	ug/L	<1.0	1.0	06/14/19 18:44	CL
Ethyl methacrylate	ug/L	<1.0	1.0	06/14/19 18:44	
Ethylbenzene	ug/L	<1.0	1.0	06/14/19 18:44	
lodomethane	ug/L	<1.0	1.0	06/14/19 18:44	
Isobutanol	ug/L	<20.0	20.0	06/14/19 18:44	
Methacrylonitrile	ug/L	<1.0	1.0	06/14/19 18:44	
Methyl methacrylate	ug/L	<1.0	1.0	06/14/19 18:44	
Methylene Chloride	ug/L	<1.0	1.0	06/14/19 18:44	
Propionitrile	ug/L	<4.0	4.0	06/14/19 18:44	
Styrene	ug/L	<1.0	1.0	06/14/19 18:44	
Tetrachloroethene	ug/L	<1.0	1.0	06/14/19 18:44	
Toluene	ug/L	<1.0	1.0	06/14/19 18:44	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	06/14/19 18:44	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	06/14/19 18:44	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	06/14/19 18:44	
Trichloroethene	ug/L	<1.0	1.0	06/14/19 18:44	
Trichlorofluoromethane	ug/L	<1.0	1.0	06/14/19 18:44	
Vinyl acetate	ug/L	<1.0	1.0	06/14/19 18:44	
Vinyl chloride	ug/L	<1.0	1.0	06/14/19 18:44	
Xylene (Total)	ug/L	<3.0	3.0	06/14/19 18:44	
1,2-Dichloroethane-d4 (S)	%	96	68-153	06/14/19 18:44	
4-Bromofluorobenzene (S)	%	94	79-124	06/14/19 18:44	
Toluene-d8 (S)	%	97	69-124	06/14/19 18:44	

LABORATORY CONTROL SAMPLE: 558632

LADORATORT CONTROL DAMI LE.	330032					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	47.8	96	74-113	
1,1,1-Trichloroethane	ug/L	50	43.1	86	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	46.4	93	74-121	
1,1,2-Trichloroethane	ug/L	50	44.9	90	80-117	
1,1-Dichloroethane	ug/L	50	44.5	89	83-151	
1,1-Dichloroethene	ug/L	50	41.3	83	45-146	
1,1-Dichloropropene	ug/L	50	44.3	89	59-127	
1,2,3-Trichloropropane	ug/L	50	45.3	91	71-123	
1,2-Dibromo-3-chloropropane	ug/L	50	44.6	89	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	44.4	89	83-115	
1,2-Dichlorobenzene	ug/L	50	42.7	85	74-113	
1,2-Dichloroethane	ug/L	50	43.4	87	74-129	
1,2-Dichloropropane	ug/L	50	44.5	89	75-117	
1,3-Dichlorobenzene	ug/L	50	43.9	88	71-112	
1,3-Dichloropropane	ug/L	50	46.2	92	74-112	
1,4-Dichlorobenzene	ug/L	50	42.5	85	71-113	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE: 558632

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,4-Dioxane (p-Dioxane)	ug/L	1250	1400		60-140	
2,2-Dichloropropane	ug/L	50	45.1	90	63-133	on
2-Butanone (MEK)	ug/L	50	39.6	79	44-162	п
P-Hexanone	ug/L	50	41.1	82	32-183	
-Methyl-2-pentanone (MIBK)	ug/L	50	41.4	83	69-132	
cetone	ug/L	50	37.0	74	23-188	
cetonitrile	ug/L	250	241	96	30-150	
crolein	-	50	6.7	13	40-174	
crylonitrile	ug/L	50 50	43.1	86	59-148	CL,III
yl chloride	ug/L ug/L	50 50	44.1	88	46-141	
nzene	-	50 50	44.1	90	73-119	
	ug/L				81-116	
pmochloromethane	ug/L	50	45.5	91		
omodichloromethane	ug/L	50	46.5	93	78-117	
omoform	ug/L	50	44.1	88	65-122	
omomethane	ug/L	50	37.6	75	52-147	
rbon disulfide	ug/L	50	41.9	84	41-144	
rbon tetrachloride	ug/L	50	47.4	95	59-120	
lorobenzene	ug/L	50	44.8	90	75-113	
loroethane	ug/L	50	40.6	81	49-151	
oroform	ug/L	50	45.8	92	72-122	
promethane	ug/L	50	33.9	68	46-144	CL
oroprene	ug/L	50	43.5	87	60-140	
1,2-Dichloroethene	ug/L	50	44.9	90	72-121	
1,3-Dichloropropene	ug/L	50	46.1	92	78-116	
omochloromethane	ug/L	50	52.9	106	70-120	
romomethane	ug/L	50	43.8	88	75-125	
nlorodifluoromethane	ug/L	50	24.4	49	22-154	CL
yl methacrylate	ug/L	50	47.5	95	59-128	
lbenzene	ug/L	50	42.8	86	70-113	
omethane	ug/L	50	44.8	90	61-144	
utanol	ug/L	250	227	91	60-140	
hacrylonitrile	ug/L	50	45.5	91	60-140	
hyl methacrylate	ug/L	50	45.6	91	54-131	
hylene Chloride	ug/L	50	43.2	86	61-142	
pionitrile	ug/L	50	50.1	100	60-140	
rene	ug/L	50	45.2	90	72-118	
achloroethene	ug/L	50	39.3	79	60-128	
uene	ug/L	50	44.8	90	72-119	
ns-1,2-Dichloroethene	ug/L	50	44.5	89	56-142	
ns-1,3-Dichloropropene	ug/L	50	45.5	91	79-116	
ns-1,4-Dichloro-2-butene	ug/L	50	44.8	90	71-121	
chloroethene	ug/L	50	44.1	88	69-117	
chlorofluoromethane	ug/L	50	41.2	82	27-173	
vl acetate	ug/L	50	44.5	89	20-158	
yl chloride	ug/L	50	37.4	75	43-143	
lene (Total)	ug/L	150	132	88	71-109	
2-Dichloroethane-d4 (S)	%	100	102	94	68-153	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

ABORATORY CONTROL SAMPLE:	558632						
Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits	Qualifiers	
4-Bromofluorobenzene (S) Toluene-d8 (S)	% %			100 100	79-124 69-124		
MATRIX SPIKE SAMPLE:	558747						
Parameter	Units	7093267002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
,1,1,2-Tetrachloroethane	ug/L	<1.0	50	52.5	105	74-113	
,1,1-Trichloroethane	ug/L	<1.0	50	46.7	93	65-118	
,1,2,2-Tetrachloroethane	ug/L	<1.0	50	51.2	102	74-121	
,1,2-Trichloroethane	ug/L	<1.0	50	47.8	96	80-117	
,1-Dichloroethane	ug/L	<1.0	50	49.7	99	83-151	
,1-Dichloroethene	ug/L	<1.0	50	46.6	93	45-146	
,1-Dichloropropene	ug/L	<1.0	50	50.1	100		
,2,3-Trichloropropane	ug/L	<1.0	50	49.1	98		
,2-Dibromo-3-chloropropane	ug/L	<1.0	50	44.2	88		
,2-Dibromoethane (EDB)	ug/L	<1.0	50	48.1	96		
,2-Dichlorobenzene	ug/L	<1.0	50	45.7	91	74-113	
,2-Dichloroethane	ug/L	<1.0	50	48.7	97		
2-Dichloropropane	ug/L	<1.0	50	49.1	98		
3-Dichlorobenzene	ug/L	<1.0	50	49.2	98		
,3-Dichloropropane	ug/L	<1.0	50	51.0	102		
,4-Dichlorobenzene	ug/L	<1.0	50	46.5	93		
,4-Dioxane (p-Dioxane)	ug/L	<100	1250	881	70		СН
,2-Dichloropropane	ug/L	<1.0	50	44.9	90		
-Butanone (MEK)	ug/L	<5.0	50	40.0	80		п
-Hexanone	ug/L	<5.0	50	41.7	83		
-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	45.0	90		
cetone	ug/L	<5.0	50	27.0	54		
cetonitrile	ug/L	<5.0	250	203	81		
crolein	ug/L	<1.0	50	111	222		СШН
crylonitrile	ug/L	<1.0	50	46.9	94		02,01
llyl chloride	ug/L	<1.0	50	48.5	97		
enzene	ug/L	<1.0	50	49.8	100		
romochloromethane	ug/L	<1.0	50	49.3	99		
romodichloromethane	ug/L	<1.0	50	50.7	101		
romoform	ug/L	<1.0	50	46.8	94		
romomethane	ug/L	<1.0	50	38.1	76		
arbon disulfide	ug/L	<1.0	50	45.8	92		
arbon tetrachloride	ug/L	<1.0	50	52.0	104		
hlorobenzene	ug/L	<1.0	50	48.9	98		
Chloroethane	ug/L	<1.0	50 50	44.5	89		
Chloroform	ug/L	<1.0	50 50	51.4	103		
Chloromethane	ug/L	<1.0	50 50	36.8	74		CI
hloroprene	ug/L	<1.0	50 50	48.7	97		02
is-1,2-Dichloroethene	ug/L	<1.0	50 50	48.5	97		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

MATRIX SPIKE SAMPLE:	558747						
		7093267002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,3-Dichloropropene	ug/L	<1.0	50	48.7	97	78-116	
Dibromochloromethane	ug/L	<1.0	50	56.2	112	70-120	
Dibromomethane	ug/L	<1.0	50	47.4	95	75-125	
Dichlorodifluoromethane	ug/L	<1.0	50	26.1	52	22-154 (CL
Ethyl methacrylate	ug/L	<1.0	50	52.4	105	59-128	
Ethylbenzene	ug/L	<1.0	50	48.9	98	70-113	
Iodomethane	ug/L	<1.0	50	46.3	93	61-144	
Isobutanol	ug/L	<20.0	250	171	68	60-140	
Methacrylonitrile	ug/L	<1.0	50	49.6	99	60-140	
Methyl methacrylate	ug/L	<1.0	50	50.1	100	54-131	
Methylene Chloride	ug/L	<1.0	50	46.5	93	61-142	
Propionitrile	ug/L	<4.0	50	49.6	99	60-140	
Styrene	ug/L	<1.0	50	49.4	99	72-118	
Tetrachloroethene	ug/L	<1.0	50	42.4	85	60-128	
Toluene	ug/L	<1.0	50	49.3	99	72-119	
trans-1,2-Dichloroethene	ug/L	<1.0	50	49.2	98	56-142	
trans-1,3-Dichloropropene	ug/L	<1.0	50	49.4	99	79-116	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	50	46.2	92	71-121	
Trichloroethene	ug/L	<1.0	50	48.5	97	69-117	
Trichlorofluoromethane	ug/L	<1.0	50	45.3	91	27-173	
Vinyl acetate	ug/L	<1.0	50	46.1	92	20-158	
Vinyl chloride	ug/L	<1.0	50	41.2	82	43-143	
Xylene (Total)	ug/L	<3.0	150	148	98	71-109	
1,2-Dichloroethane-d4 (S)	%				97	68-153	
4-Bromofluorobenzene (S)	%				101	79-124	
Toluene-d8 (S)	%				103	69-124	

SAMPLE DUPLICATE: 558746

Parameter	Units	7093267001 Result	Dup Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	<1.0		_
1,1,1-Trichloroethane	ug/L	<1.0	<1.0		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0		
1,1,2-Trichloroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethene	ug/L	<1.0	<1.0		
1,1-Dichloropropene	ug/L	<1.0	<1.0		
1,2,3-Trichloropropane	ug/L	<1.0	<1.0		
1,2-Dibromo-3-chloropropane	ug/L	<1.0	<1.0		
1,2-Dibromoethane (EDB)	ug/L	<1.0	<1.0		
1,2-Dichlorobenzene	ug/L	<1.0	<1.0		
1,2-Dichloroethane	ug/L	<1.0	<1.0		
1,2-Dichloropropane	ug/L	<1.0	<1.0		
1,3-Dichlorobenzene	ug/L	<1.0	<1.0		
1,3-Dichloropropane	ug/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

SAMPLE DUPLICATE: 558746 7093267001 Dup Parameter Units Result Result RPD Qualifiers 1,4-Dichlorobenzene ug/L <1.0 <1.0 <100 1,4-Dioxane (p-Dioxane) ug/L <100 2,2-Dichloropropane ug/L <1.0 <1.0 <5.0 <5.0 ١L 2-Butanone (MEK) ug/L <5.0 <5.0 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L <5.0 <5.0 <5.0 Acetone <5.0 ug/L Acetonitrile <5.0 <5.0 ug/L Acrolein <1.0 <1.0 CL ug/L <1.0 Acrylonitrile ug/L <1.0 <1.0 Allyl chloride ug/L <1.0 <1.0 Benzene ug/L <1.0 Bromochloromethane ug/L <1.0 <1.0 Bromodichloromethane <1.0 <1.0 ug/L Bromoform <1.0 <1.0 ug/L Bromomethane <1.0 ug/L <1.0 Carbon disulfide <1.0 <1.0 ug/L Carbon tetrachloride ug/L <1.0 <1.0 <1.0 Chlorobenzene ug/L <1.0 <1.0 Chloroethane ug/L <1.0 <1.0 ug/L Chloroform <1.0 <1.0 CL Chloromethane ug/L <1.0 <1.0 Chloroprene ug/L <1.0 cis-1,2-Dichloroethene <1.0 <1.0 ug/L cis-1,3-Dichloropropene <1.0 <1.0 ug/L Dibromochloromethane ug/L <1.0 <1.0 <1.0 Dibromomethane ug/L <1.0 <1.0 CL Dichlorodifluoromethane ug/L <1.0 Ethyl methacrylate <1.0 <1.0 ug/L Ethylbenzene <1.0 <1.0 ug/L Iodomethane <1.0 <1.0 ug/L <20.0 <20.0 Isobutanol ug/L <1.0 Methacrylonitrile ug/L <1.0 Methyl methacrylate ug/L <1.0 <1.0 Methylene Chloride ug/L <1.0 <1.0 Propionitrile ug/L <4.0 <4.0 Styrene ug/L <1.0 <1.0 <1.0 Tetrachloroethene ug/L <1.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<3.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<1.0

<3.0

REPORT OF LABORATORY ANALYSIS

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

Toluene

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylene (Total)

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

SAMPLE DUPLICATE: 558746					
		7093267001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2-Dichloroethane-d4 (S)	%	92	98		
4-Bromofluorobenzene (S)	%	95	99		
Toluene-d8 (S)	%	101	102		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

ace moject no... 7095 m

QC Batch:	118387	Analysis Method:	EPA 8081B
QC Batch Method:	EPA 3510C	Analysis Description:	8081 GCS Pesticides
Associated Lab Sar	nples: 7093111001		
METHOD BLANK:	562242	Matrix: Water	

Associated Lab Samples: 7093111001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
4,4'-DDD	ug/L	<0.10	0.10	06/18/19 18:24	
4,4'-DDE	ug/L	<0.10	0.10	06/18/19 18:24	
4,4'-DDT	ug/L	<0.10	0.10	06/18/19 18:24	
Aldrin	ug/L	<0.050	0.050	06/18/19 18:24	
alpha-BHC	ug/L	<0.050	0.050	06/18/19 18:24	
beta-BHC	ug/L	<0.050	0.050	06/18/19 18:24	
delta-BHC	ug/L	<0.050	0.050	06/18/19 18:24	
Dieldrin	ug/L	<0.10	0.10	06/18/19 18:24	
Endosulfan I	ug/L	<0.050	0.050	06/18/19 18:24	
Endosulfan II	ug/L	<0.10	0.10	06/18/19 18:24	
Endosulfan sulfate	ug/L	<0.10	0.10	06/18/19 18:24	
Endrin	ug/L	<0.10	0.10	06/18/19 18:24	
Endrin aldehyde	ug/L	<0.10	0.10	06/18/19 18:24	
gamma-BHC (Lindane)	ug/L	<0.050	0.050	06/18/19 18:24	
Heptachlor	ug/L	<0.050	0.050	06/18/19 18:24	
Heptachlor epoxide	ug/L	<0.050	0.050	06/18/19 18:24	
Methoxychlor	ug/L	<0.50	0.50	06/18/19 18:24	
Toxaphene	ug/L	<5.0	5.0	06/18/19 18:24	
Decachlorobiphenyl (S)	%	82	30-150	06/18/19 18:24	
Tetrachloro-m-xylene (S)	%	71	30-150	06/18/19 18:24	

LABORATORY CONTROL SAMPLE: 562243

	L. 302243					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4,4'-DDD	ug/L	0.4	0.29	72	59-136	
4,4'-DDE	ug/L	0.4	0.28	70	59-119	
4,4'-DDT	ug/L	0.4	0.30	75	57-134	
Aldrin	ug/L	0.4	0.23	57	23-118	
alpha-BHC	ug/L	0.4	0.26	64	62-116	
peta-BHC	ug/L	0.4	0.31	78	69-131	
delta-BHC	ug/L	0.4	0.28	71	52-142	
Dieldrin	ug/L	0.4	0.27	67	64-123	
Endosulfan I	ug/L	0.4	0.27	66	58-129	
Endosulfan II	ug/L	0.4	0.29	73	63-139	
Endosulfan sulfate	ug/L	0.4	0.29	72	62-137	
Endrin	ug/L	0.4	0.30	74	65-123	
Endrin aldehyde	ug/L	0.4	0.26	66	62-144	
gamma-BHC (Lindane)	ug/L	0.4	0.28	69	67-119	
Heptachlor	ug/L	0.4	0.24	61	18-129	
Heptachlor epoxide	ug/L	0.4	0.29	72	67-120	
	0					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE:	562243					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Methoxychlor	ug/L	0.4	0.31J	76	57-151	
Decachlorobiphenyl (S)	%			82	30-150	
Tetrachloro-m-xylene (S)	%			71	30-150	
LABORATORY CONTROL SAMPLE:	562244	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
					00.457	
Toxaphene	ug/L	20	18.1	90	62-157	
Toxaphene Decachlorobiphenyl (S)	ug/L %	20	18.1	90 49	62-157 30-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Analysis Method:

Matrix: Water

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

QC Batch: 119051 QC Batch Method: EPA 3510C 7093111001

Analysis Description: 8082 GCS PCB

EPA 8082A

Associated Lab Samples:

METH	IOD	BLANK	: 56	5925

Associated Lab Samples: 7093111001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	<1.0	1.0	06/25/19 16:42	
PCB-1221 (Aroclor 1221)	ug/L	<2.0	2.0	06/25/19 16:42	
PCB-1232 (Aroclor 1232)	ug/L	<1.0	1.0	06/25/19 16:42	
PCB-1242 (Aroclor 1242)	ug/L	<1.0	1.0	06/25/19 16:42	
PCB-1248 (Aroclor 1248)	ug/L	<1.0	1.0	06/25/19 16:42	
PCB-1254 (Aroclor 1254)	ug/L	<1.0	1.0	06/25/19 16:42	
PCB-1260 (Aroclor 1260)	ug/L	<1.0	1.0	06/25/19 16:42	
Decachlorobiphenyl (S)	%	66	30-150	06/25/19 16:42	
Tetrachloro-m-xylene (S)	%	80	30-150	06/25/19 16:42	

LABORATORY CONTROL SAMPLE: 565926

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	5	3.0	61	42-134	
PCB-1260 (Aroclor 1260)	ug/L	5	4.3	87	34-146	
Decachlorobiphenyl (S)	%			48	30-150	
Tetrachloro-m-xylene (S)	%			53	30-150	

MATRIX SPIKE & MATRIX SPI	KE DUPLICAT	E: 56598	5		565986						
Parameter	70 Units	094017013 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
PCB-1016 (Aroclor 1016)		- <u></u>	5	5	3.4	3.4	69	67	53-116	2	
PCB-1016 (Aroclor 1016) PCB-1221 (Aroclor 1221)	ug/L ug/L	<2.0	5	5	3.4 <2.0	3.4 <2.0	09	07	55-110	2	
PCB-1232 (Aroclor 1232)	ug/L	<1.0			<2.0 <1.0	<2.0 <1.0					
PCB-1242 (Aroclor 1242)	ug/L	<1.0			<1.0	<1.0					
PCB-1248 (Aroclor 1248)	ug/L	<1.0			<1.0	<1.0					
PCB-1254 (Aroclor 1254)	ug/L	<1.0			<1.0	<1.0					
PCB-1260 (Aroclor 1260)	ug/L	<1.0	5	5	4.7	3.7	95	75	46-126	24	
Decachlorobiphenyl (S)	%						59	41	30-150		
Tetrachloro-m-xylene (S)	%						78	60	30-150		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8151A

0.20

8151A GCS Herbicides

06/14/19 03:02

36-121 06/14/19 03:02

Qualifiers

Analysis Method:

Analysis Description:

Matrix: Water

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

METHOD BLANK: 555876

Dinoseb

2,4-DCAA (S)

QC Batch:	11739	94	
QC Batch Method:	EPA 8	8151A	
Associated Lab Samp	oles:	7093111001	

Associated Lab Samples: 7093111001 Blank Reporting Limit Parameter Units Result Analyzed 2,4,5-T <0.25 0.25 06/14/19 03:02 ug/L 0.25 2,4,5-TP (Silvex) ug/L <0.25 06/14/19 03:02 2,4-D ug/L <0.50 0.50 06/14/19 03:02

ug/L

%

LABORATORY CONTROL SAMPLE: 555877

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2,4,5-T	ug/L	1	0.74	74	40-131	
2,4,5-TP (Silvex)	ug/L	1	0.86	86	37-140	
2,4-D	ug/L	3	2.5	82	53-115	
Dinoseb	ug/L	2	0.90	45	18-121	
2,4-DCAA (S)	%			80	36-121	

<0.20

90

MATRIX SPIKE SAMPLE:	557995						
		7093111001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2,4,5-T	ug/L	<0.25	1	0.32	32	40-115	M1
2,4,5-TP (Silvex)	ug/L	<0.25	1	0.60	53	48-113	
2,4-D	ug/L	1.7	3	3.0	45	39-111	
Dinoseb	ug/L	0.30	2	0.50	10	18-121	M1
2,4-DCAA (S)	%				24	36-121	S0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: C	ELL 7 LEACHATE EX	(PANDED 360				
Pace Project No.: 70)93111					
QC Batch:	118169		Analysis Meth	nod: EF	PA 8270D	
QC Batch Method:	EPA 3510C		Analysis Des	cription: 82	70 Water MSSV	
Associated Lab Sample	es: 7093111001			·		
METHOD BLANK: 56	60810		Matrix:	Water		
Associated Lab Sample	es: 7093111001					
			Blank	Reporting		
Paramet	er	Units	Result	Limit	Analyzed	Qualifiers
1,2,4,5-Tetrachloroben	zene	ug/L	<5.0	5.0	06/19/19 09:51	
1,2,4-Trichlorobenzene)	ug/L	<5.0	5.0	06/19/19 09:51	
1,2-Dichlorobenzene		ug/L	<5.0	5.0	06/19/19 09:51	
1,3,5-Trinitrobenzene		ug/L	<5.0	5.0	06/19/19 09:51	
1,3-Dichlorobenzene		ug/L	<5.0	5.0	06/19/19 09:51	
1,3-Dinitrobenzene		ug/L	<5.0	5.0	06/19/19 09:51	
1,4-Dichlorobenzene		ug/L	<5.0	5.0	06/19/19 09:51	
1,4-Naphthoquinone		ug/L	<5.0	5.0	06/19/19 09:51	
1-Naphthylamine		ug/L	<5.0	5.0	06/19/19 09:51	
2,2'-Oxybis(1-chloropro	opane)	ug/L	<5.0	5.0	06/19/19 09:51	
2,3,4,6-Tetrachlorophe	nol	ug/L	<5.0	5.0	06/19/19 09:51	
2,4,5-Trichlorophenol		ug/L	<5.0	5.0	06/19/19 09:51	
2,4,6-Trichlorophenol		ug/L	<5.0	5.0	06/19/19 09:51	
2,4-Dichlorophenol		ug/L	<5.0	5.0	06/19/19 09:51	
2,4-Dimethylphenol		ug/L	<5.0	5.0	06/19/19 09:51	
2,4-Dinitrophenol		ug/L	<10.0	10.0	06/19/19 09:51	

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<5.0

<10.0

<5.0

<10.0

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

10.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

5.0 06/19/19 09:51

10.0 06/19/19 09:51

5.0 06/19/19 09:51

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

2,4-Dinitrotoluene

2,6-Dichlorophenol

2,6-Dinitrotoluene

2-Chlorophenol

2-Naphthylamine

2-Nitroaniline

2-Nitrophenol

3-Nitroaniline

4-Aminobiphenyl

4-Chloroaniline

4-Nitroaniline

4-Nitrophenol

5-Nitro-o-toluidine

2-Acetylaminofluorene

2-Chloronaphthalene

2-Methylnaphthalene

3,3'-Dichlorobenzidine

3,3'-Dimethylbenzidine

4,6-Dinitro-2-methylphenol

4-Bromophenylphenyl ether

4-Chlorophenylphenyl ether

4-Chloro-3-methylphenol

3-Methylcholanthrene

2-Methylphenol(o-Cresol)

3&4-Methylphenol(m&p Cresol)

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

METHOD BLANK: 560810		Matrix:	Water		
Associated Lab Samples: 7093111001					
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
7,12-Dimethylbenz(a)anthracene	ug/L		5.0	06/19/19 09:51	
Acenaphthene	ug/L	<5.0	5.0	06/19/19 09:51	
Acenaphthylene	ug/L	<5.0	5.0	06/19/19 09:51	
Acetophenone	ug/L	<5.0	5.0	06/19/19 09:51	
Anthracene	ug/L	<5.0	5.0	06/19/19 09:51	
Benzo(a)anthracene	ug/L	<5.0	5.0	06/19/19 09:51	
Benzo(a)pyrene	ug/L	<5.0	5.0	06/19/19 09:51	
Benzo(b)fluoranthene	ug/L	<5.0	5.0	06/19/19 09:51	
Benzo(g,h,i)perylene	ug/L	<5.0	5.0	06/19/19 09:51	
Benzo(k)fluoranthene	ug/L	<5.0	5.0	06/19/19 09:51	
Benzyl alcohol	ug/L	<5.0	5.0	06/19/19 09:51	
bis(2-Chloroethoxy)methane	ug/L	<5.0	5.0	06/19/19 09:51	
bis(2-Chloroethyl) ether	ug/L	<5.0	5.0	06/19/19 09:51	
bis(2-Ethylhexyl)phthalate	ug/L	<5.0	5.0	06/19/19 09:51	
Butylbenzylphthalate	ug/L	<5.0	5.0	06/19/19 09:51	
Chlorobenzilate	ug/L	<5.0	5.0	06/19/19 09:51	
Chrysene	ug/L	<5.0	5.0	06/19/19 09:51	
Di-n-butylphthalate	ug/L	<5.0	5.0	06/19/19 09:51	
Di-n-octylphthalate	ug/L	<5.0	5.0	06/19/19 09:51	
Diallate	ug/L	<5.0	5.0	06/19/19 09:51	
Dibenz(a,h)anthracene	ug/L	<5.0	5.0	06/19/19 09:51	
Dibenzofuran	ug/L	<5.0	5.0	06/19/19 09:51	
Diethylphthalate	ug/L	<5.0	5.0	06/19/19 09:51	
Dimethoate	ug/L	<5.0	5.0	06/19/19 09:51	
Dimethylphthalate	ug/L	<5.0	5.0	06/19/19 09:51	
Disulfoton	ug/L	<5.0	5.0	06/19/19 09:51	
Ethyl methanesulfonate	ug/L	<5.0	5.0	06/19/19 09:51	
Famphur	ug/L	<10.0	10.0	06/19/19 09:51	CL,IC,IL
Fluoranthene	ug/L	<5.0	5.0	06/19/19 09:51	
Fluorene	ug/L	<5.0	5.0	06/19/19 09:51	
Hexachloro-1,3-butadiene	ug/L	<5.0	5.0	06/19/19 09:51	
Hexachlorobenzene	ug/L	<5.0	5.0	06/19/19 09:51	
Hexachlorocyclopentadiene	ug/L	<5.0	5.0	06/19/19 09:51	CL,IC
Hexachloroethane	ug/L	<5.0	5.0	06/19/19 09:51	
Hexachloropropene	ug/L	<5.0	5.0	06/19/19 09:51	
Indeno(1,2,3-cd)pyrene	ug/L	<5.0	5.0	06/19/19 09:51	
Isodrin	ug/L	<5.0	5.0	06/19/19 09:51	
Isophorone	ug/L	<5.0	5.0	06/19/19 09:51	
Isosafrole	ug/L	<5.0	5.0	06/19/19 09:51	
Kepone	ug/L	<10.0	10.0	06/19/19 09:51	CL,IC
Methapyrilene	ug/L	<5.0	5.0	06/19/19 09:51	<i>i</i> –
Methyl methanesulfonate	ug/L	<5.0	5.0	06/19/19 09:51	
Methyl parathion	ug/L	<5.0	5.0	06/19/19 09:51	
N-Nitroso-di-n-butylamine	ug/L	<5.0	5.0	06/19/19 09:51	
N-Nitroso-di-n-propylamine	ug/L	<5.0	5.0	06/19/19 09:51	
	~-9, L	\$0.0	0.0	20, 10, 10 00.01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

METHOD BLANK: 560810 Matrix: Water	
Associated Lab Samples: 7093111001	
Blank Reporting	
Parameter Units Result Limit Analyzed	Qualifiers
N-Nitrosodiethylamine ug/L <5.0 5.0 06/19/19 09:51	
N-Nitrosodimethylamine ug/L <5.0 5.0 06/19/19 09:51	
N-Nitrosodiphenylamine ug/L <5.0 5.0 06/19/19 09:51	
N-Nitrosomethylethylamine ug/L <5.0 5.0 06/19/19 09:51	
N-Nitrosopiperidine ug/L <5.0 5.0 06/19/19 09:51	
N-Nitrosopyrrolidine ug/L <5.0 5.0 06/19/19 09:51	
Naphthalene ug/L <5.0 5.0 06/19/19 09:51	
Nitrobenzene ug/L <5.0 5.0 06/19/19 09:51	
O,O,O-Triethylphosphorothioate ug/L <5.0 5.0 06/19/19 09:51	
O-Toluidine ug/L <5.0 5.0 06/19/19 09:51	
P-Dimethylaminoazobenzene ug/L <5.0 5.0 06/19/19 09:51	
	CL
Parathion (Ethyl parathion) ug/L <5.0 5.0 06/19/19 09:51	
Pentachlorobenzene ug/L <5.0 5.0 06/19/19 09:51	
Pentachloronitrobenzene ug/L <5.0 5.0 06/19/19 09:51	
Pentachlorophenol ug/L <10.0 10.0 06/19/19 09:51	CL
Phenacetin ug/L <5.0 5.0 06/19/19 09:51	
Phenanthrene ug/L <5.0 5.0 06/19/19 09:51	
Phenol ug/L <5.0 5.0 06/19/19 09:51	
Pronamide ug/L <5.0 5.0 06/19/19 09:51	
Pyrene ug/L <5.0 5.0 06/19/19 09:51	
Safrole ug/L <5.0 5.0 06/19/19 09:51	
Thionazin ug/L <5.0 5.0 06/19/19 09:51	
1,2-Dichlorobenzene-d4 (S) % 58 16-110 06/19/19 09:51	
2,4,6-Tribromophenol (S) % 61 10-123 06/19/19 09:51	
2-Chlorophenol-d4 (S) % 60 33-110 06/19/19 09:51	
2-Fluorobiphenyl (S) % 62 43-116 06/19/19 09:51	
2-Fluorophenol (S) % 36 21-110 06/19/19 09:51	
Nitrobenzene-d5 (S) % 65 35-114 06/19/19 09:51	
p-Terphenyl-d14 (S) % 82 33-141 06/19/19 09:51	
Phenol-d5 (S) % 23 10-110 06/19/19 09:51	

LABORATORY CONTROL SAMPLE: 560811

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/L	25	17.8	71	60-140	
1,2,4-Trichlorobenzene	ug/L	25	18.1	72	25-129	
1,2-Dichlorobenzene	ug/L	25	17.2	69	28-116	
1,3,5-Trinitrobenzene	ug/L	25	24.1	97	60-140	СН
,3-Dichlorobenzene	ug/L	25	17.0	68	18-122	
,3-Dinitrobenzene	ug/L	25	23.0	92	60-140	СН
,4-Dichlorobenzene	ug/L	25	17.3	69	25-123	
,4-Naphthoquinone	ug/L	25	23.0	92	60-140	
-Naphthylamine	ug/L		<5.0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE: 560811

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2,2'-Oxybis(1-chloropropane)	ug/L		14.8	59	44-100	
2,3,4,6-Tetrachlorophenol	ug/L	25	17.7	71	42-134	
2,4,5-Trichlorophenol	ug/L	25	18.6	75	55-125	
2,4,6-Trichlorophenol	ug/L	25	18.5	76	55-114	
2,4-Dichlorophenol	ug/L	25	18.4	74	44-127	
2,4-Dimethylphenol	ug/L	25	5.7	23	39-135	12
2,4-Dinitrophenol	ug/L	25	17.6	71	11-101	
2,4-Dinitrotoluene	ug/L	25	22.7	91	55-122	
2,6-Dichlorophenol	ug/L	25 25	18.8	75	54-95	
2,6-Dinitrotoluene	ug/L	25	21.1	84	56-121	
-Acetylaminofluorene	ug/L	25	<5.0	04	50-121	
-	-	25		71	41 100	
-Chloronaphthalene	ug/L	25	17.8 16.4	71	41-122	
-Chlorophenol	ug/L	25	16.4	66 74	43-106	
-Methylnaphthalene	ug/L	25	18.4	74	31-123	
-Methylphenol(o-Cresol)	ug/L	25	12.5	50	41-131	
-Naphthylamine	ug/L		<5.0		40.404	
-Nitroaniline	ug/L	25	17.3	69	48-124	
-Nitrophenol	ug/L	25	21.3	85	41-128	
&4-Methylphenol(m&p Cresol)	ug/L	25	10.9	44	15-141	
,3'-Dichlorobenzidine	ug/L	50	41.9	84	20-132	
3'-Dimethylbenzidine	ug/L		<5.0			
Methylcholanthrene	ug/L	25	16.2	65	60-140	
Nitroaniline	ug/L	25	18.8	75	46-112	
6-Dinitro-2-methylphenol	ug/L	25	24.3	97	28-150	СН
Aminobiphenyl	ug/L		<5.0			
Bromophenylphenyl ether	ug/L	25	18.9	76	53-121	
Chloro-3-methylphenol	ug/L	25	18.1	72	48-124	
Chloroaniline	ug/L	25	16.4	66	25-133	
Chlorophenylphenyl ether	ug/L	25	19.5	78	53-116	
Nitroaniline	ug/L	25	18.9	76	51-113	
Nitrophenol	ug/L	25	7.6J	30	10-102	
-Nitro-o-toluidine	ug/L		<5.0			
12-Dimethylbenz(a)anthracene	ug/L	25	17.9	72	60-140	
cenaphthene	ug/L	25	18.5	74	50-116	
cenaphthylene	ug/L	25	18.8	75	50-109	
cetophenone	ug/L	25	17.8	71	42-97	
nthracene	ug/L	25	19.3	77	54-117	
enzo(a)anthracene	ug/L	25	19.6	79	31-128	
enzo(a)pyrene	ug/L	25	19.8	79	30-146	
enzo(b)fluoranthene	ug/L	25	19.2	77	43-147	
enzo(g,h,i)perylene	ug/L	25	19.9	80	25-153	
enzo(k)fluoranthene	ug/L	25	19.5	78	28-148	
Senzyl alcohol	ug/L	25	14.2	57	32-143	
is(2-Chloroethoxy)methane	ug/L	25	17.2	69	47-102	
is(2-Chloroethyl) ether	ug/L	25	17.1	68	39-111	
			18.0	72	37-138	
bis(2-Ethylhexyl)phthalate	ug/L	25	10.0	12	37-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE: 560811

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chlorobenzilate	ug/L	25	20.2	81	60-140	
Chrysene	ug/L	25	19.4	78	42-140	
Di-n-butylphthalate	ug/L	25	19.7	79	50-128	
Di-n-octylphthalate	ug/L	25	19.2	77	32-148	
Diallate	ug/L	25	17.8	71	60-140	
libenz(a,h)anthracene	ug/L	25	18.9	76	22-147	
Dibenzofuran	ug/L	25	18.9	76	53-117	
Diethylphthalate	ug/L	25	19.6	78	54-124	
imethoate	ug/L	25	20.8	83	60-140	
imethylphthalate	ug/L	25	19.5	78	56-121	
sulfoton	ug/L	25	16.2	65	10-143	
hyl methanesulfonate	ug/L	25	16.2	65	41-116	
amphur	ug/L	25	39.1	156		CL,IC,IL,L1
uoranthene	ug/L	25	19.9	80	50-123	02,10,12,21
luorene	ug/L	25 25	19.9	77	51-118	
exachloro-1,3-butadiene	ug/L	25	17.6	70	18-90	
exachlorobenzene	ug/L	25	17.8	70	52-128	
exachlorocyclopentadiene	-	25 25	17.8	65		CL,IC,IH
exachloroethane	ug/L	25 25	16.9	68	41-119	
	ug/L	25 25	16.9	69	41-119	
	ug/L					
leno(1,2,3-cd)pyrene	ug/L	25	19.6	78	26-156	
odrin	ug/L	25	17.7	71	40-140	
phorone	ug/L	25	17.6	70	46-118	
safrole	ug/L	25	17.4	70	40-140	01.1.0
oone	ug/L	25	<10.0	0	10-150	CL,L2
thapyrilene	ug/L		<5.0			
thyl methanesulfonate	ug/L	25	11.6	46	41-143	~
thyl parathion	ug/L	25	25.2	101	60-140	СН
litroso-di-n-butylamine	ug/L		<5.0			
litroso-di-n-propylamine	ug/L	25	16.7	67	40-124	
litrosodiethylamine	ug/L		<5.0			
litrosodimethylamine	ug/L	25	8.8	35	36-104	L2
Nitrosodiphenylamine	ug/L	25	19.1	76	41-95	
Nitrosomethylethylamine	ug/L		<5.0			
Nitrosopiperidine	ug/L		<5.0			
Nitrosopyrrolidine	ug/L		<5.0			
phthalene	ug/L	25	18.1	72	39-107	
robenzene	ug/L	25	17.6	70	41-122	
O,O-Triethylphosphorothioate	ug/L	25	18.8	75	46-112	
Toluidine	ug/L		<5.0			
Dimethylaminoazobenzene	ug/L		<5.0			
Phenylenediamine	ug/L		<5.0			CL,IL
rathion (Ethyl parathion)	ug/L	25	21.5	86	60-140	
ntachlorobenzene	ug/L	25	18.2	73	46-113	
entachloronitrobenzene	ug/L	25	19.4	78	53-140	
entachlorophenol	ug/L	25	12.0	48	12-124	CL
henacetin	ug/L	25	18.8	75	30-143	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE: 560811

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Farainelei				70 Rec		Quaimers
Phenanthrene	ug/L	25	19.6	78	52-126	
Phenol	ug/L	25	6.4	26	10-99	
Pronamide	ug/L	25	19.7	79	60-140	
Pyrene	ug/L	25	21.0	84	41-137	
Safrole	ug/L	25	19.0	76	49-106	
hionazin	ug/L	25	19.0	76	50-140	
,2-Dichlorobenzene-d4 (S)	%			67	16-110	
4,6-Tribromophenol (S)	%			72	10-123	
Chlorophenol-d4 (S)	%			67	33-110	
Fluorobiphenyl (S)	%			73	43-116	
Fluorophenol (S)	%			37	21-110	
itrobenzene-d5 (S)	%			73	35-114	
Terphenyl-d14 (S)	%			80	33-141	
henol-d5 (S)	%			23	10-110	

LABORATORY CONTROL	SAMPLE.	562856
LADONATONT CONTROL	. SAIVIFLE.	302030

ParameterUnitsSpike Conc.LCSLCS% Rec LimitsQualifier1,2,4,5-Tetrachlorobenzeneug/L<5.0<
1,2,4-Trichlorobenzene ug/L <5.0 1,2-Dichlorobenzene ug/L <5.0 1,3,5-Trinitrobenzene ug/L <5.0 1,3-Dichlorobenzene ug/L <5.0 1,3-Dinitrobenzene ug/L <5.0 1,3-Dinitrobenzene ug/L <5.0
1,2-Dichlorobenzene ug/L <5.0
1,2-Dichlorobenzene ug/L <5.0
1,3-Dichlorobenzeneug/L<5.01,3-Dinitrobenzeneug/L<5.0
1,3-Dinitrobenzene ug/L <5.0
· · · · · · · · · · · · · · · · · · ·
1,4-Dichlorobenzene ug/L <5.0
1,4-Naphthoquinone ug/L <5.0
1-Naphthylamine ug/L 25 9.4 38 29-75
2,2'-Oxybis(1-chloropropane) ug/L <5.0
2,3,4,6-Tetrachlorophenol ug/L <5.0
2,4,5-Trichlorophenol ug/L <5.0
2,4,6-Trichlorophenol ug/L <5.0
2,4-Dichlorophenol ug/L <5.0
2,4-Dimethylphenol ug/L <5.0
2,4-Dinitrophenol ug/L <10.0
2,4-Dinitrotoluene ug/L <5.0
2,6-Dichlorophenol ug/L <5.0
2,6-Dinitrotoluene ug/L <5.0
2-Acetylaminofluorene ug/L 25 15.5 62 77-112 L2
2-Chloronaphthalene ug/L <5.0
2-Chlorophenol ug/L <5.0
2-Methylnaphthalene ug/L <5.0
2-Methylphenol(o-Cresol) ug/L <5.0
2-Naphthylamine ug/L 25 13.4 54 60-140 L2
2-Nitroaniline ug/L <5.0
2-Nitrophenol ug/L <5.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE: 562856

		Spike	LCS	LCS	% Rec	A 11/1
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
&4-Methylphenol(m&p Cresol)	ug/L		1.3J			
3'-Dichlorobenzidine	ug/L	25	15.9	64	20-132	
8'-Dimethylbenzidine	ug/L	25	22.1	89	40-130	
Methylcholanthrene	ug/L		<5.0			
itroaniline	ug/L		<5.0			
-Dinitro-2-methylphenol	ug/L		<10.0			
minobiphenyl	ug/L	25	11.4	46	60-140	L2
romophenylphenyl ether	ug/L		<5.0			
hloro-3-methylphenol	ug/L		<5.0			
Chloroaniline	ug/L		<5.0			
Chlorophenylphenyl ether	ug/L		<5.0			
litroaniline	ug/L		<5.0			
litrophenol	ug/L		<10.0			
litro-o-toluidine	ug/L	25	14.6	59	60-140	L2
2-Dimethylbenz(a)anthracene	ug/L		<5.0			
enaphthene	ug/L		<5.0			
naphthylene	ug/L		<5.0			
tophenone	ug/L		<5.0			
hracene	ug/L		<5.0			
zo(a)anthracene	ug/L		<5.0			
zo(a)pyrene	ug/L		<5.0			
zo(b)fluoranthene	ug/L		<5.0			
zo(g,h,i)perylene	ug/L		<5.0			
zo(k)fluoranthene	ug/L		<5.0			
zyl alcohol	ug/L		<5.0			
2-Chloroethoxy)methane	ug/L		<5.0			
2-Chloroethyl) ether	ug/L		<5.0			
2-Ethylhexyl)phthalate	ug/L		<5.0			
/lbenzylphthalate	ug/L		<5.0			
probenzilate	ug/L		<5.0			
/sene	ug/L		<5.0			
-butylphthalate	ug/L		<5.0			
n-octylphthalate	ug/L		<5.0			
llate	ug/L		<5.0			
enz(a,h)anthracene	ug/L		<5.0			
enzofuran	ug/L		<5.0			
thylphthalate	ug/L		<5.0			
hethoate	ug/L		<5.0			
ethylphthalate	ug/L		<5.0			
ulfoton	ug/L		<5.0			
yl methanesulfonate	ug/L		<5.0			
nphur	ug/L		<10.0			
pranthene	ug/L		<5.0			
orene	ug/L		<5.0			
achloro-1,3-butadiene	ug/L		<5.0			
xachlorobenzene	ug/L		<5.0			
achlorocyclopentadiene	ug/L		<5.0			
Chiorocyclopentaulene	uy/L		<0.0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

LABORATORY CONTROL SAMPLE:	562856					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Hexachloroethane	ug/L		<5.0			
Hexachloropropene	ug/L		<5.0			
Indeno(1,2,3-cd)pyrene	ug/L		<5.0			
sodrin	ug/L		<5.0			
sophorone	ug/L		<5.0			
sosafrole	ug/L		<5.0			
lepone	ug/L		<10.0			
lethapyrilene	ug/L	25	13.8	55	10-109	CL
lethyl methanesulfonate	ug/L		<5.0			
lethyl parathion	ug/L		<5.0			
-Nitroso-di-n-butylamine	ug/L	25	12.7	51	57-100	L2
-Nitroso-di-n-propylamine	ug/L		<5.0			
-Nitrosodiethylamine	ug/L	25	13.3	53	21-155	
-Nitrosodimethylamine	ug/L		<5.0			
-Nitrosodiphenylamine	ug/L		<5.0			
-Nitrosomethylethylamine	ug/L	25	12.1	48	33-152	CL
-Nitrosopiperidine	ug/L	25	12.3	49	40-113	
Nitrosopyrrolidine	ug/L	25	12.4	50	27-98	
phthalene	ug/L		<5.0			
robenzene	ug/L		<5.0			
O,O-Triethylphosphorothioate	ug/L		<5.0			
Toluidine	ug/L	25	12.9	52	36-99	
Dimethylaminoazobenzene	ug/L	25	11.6	46	21-166	
Phenylenediamine	ug/L	25	<5.0	0	60-140	L2
rathion (Ethyl parathion)	ug/L		<5.0			
ntachlorobenzene	ug/L		<5.0			
entachloronitrobenzene	ug/L		<5.0			
ntachlorophenol	ug/L		<10.0			
nenacetin	ug/L		<5.0			
enanthrene	ug/L		<5.0			
nenol	ug/L		<5.0			
onamide	ug/L		<5.0			
yrene	ug/L		<5.0			
afrole	ug/L		<5.0			
nionazin 2 Diaklarakan zana d4 (C)	ug/L		<5.0	44	10 110	
2-Dichlorobenzene-d4 (S)	%			41 47	16-110	
4,6-Tribromophenol (S)	% %				10-123 33-110	
Chlorophenol-d4 (S)				52	33-110 43-116	
Fluorobiphenyl (S) Fluorophenol (S)	% %			47 34	43-116 21-110	
trobenzene-d5 (S)	%			34 55	35-114	
Terphenyl-d14 (S)	%			55	33-114	
henol-d5 (S)	%			55 22	10-110	
	70			22	10-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

MATRIX SPIKE SAMPLE:	561264						
Parameter	Units	7093111001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qua	lifiers
1,2,4,5-Tetrachlorobenzene	ug/L	<5.0	25	18.5	74	60-140	
,2,4-Trichlorobenzene	ug/L	<5.0	25	18.5	74	25-129	
,2-Dichlorobenzene	ug/L	<5.0	25	16.7	67	28-116	
,3,5-Trinitrobenzene	ug/L	<5.0	25	9.8	39	60-140 M1	
,3-Dichlorobenzene	ug/L	<5.0	25	16.4	66	18-122	
,3-Dinitrobenzene	ug/L	<5.0	25	25.4	102	60-140	
,4-Dichlorobenzene	ug/L	<5.0	25	16.4	66	25-123	
,4-Naphthoquinone	ug/L	<5.0	25	<5.0	0	60-140 M1	
-Naphthylamine	ug/L	<5.0		<5.0	-		
2,2'-Oxybis(1-chloropropane)	ug/L	<5.0	25	17.7	71	44-100	
2,3,4,6-Tetrachlorophenol	ug/L	<5.0	25	22.5	90	42-134	
2,4,5-Trichlorophenol	ug/L	<5.0	25	22.2	89	55-125	
4,6-Trichlorophenol	ug/L	<5.0	25	22.7	91	55-114	
4-Dichlorophenol	ug/L	<5.0	25	22.2	89	44-127	
,4-Dimethylphenol	ug/L	<5.0	25	20.5	82	39-135	
,4-Dinitrophenol	ug/L	<10.0	25	24.8	99	11-101	
,4-Dinitrotoluene	ug/L	<5.0	25	24.2	97	55-122	
.,4-Dinhiotoldene	ug/L	<5.0	25	24.2	88	54-95	
,6-Dinitrotoluene	ug/L	<5.0	25 25	21.9	91	56-121	
-Acetylaminofluorene	ug/L	<5.0	25	<5.0	91	30-121	
-	ug/L	<5.0	25	< <u>5.0</u> 18.7	75	41-122	
-Chloronaphthalene	-	<5.0	25 25	19.0		41-122	
-Chlorophenol	ug/L	<5.0		19.0	76	43-106 31-123	
-Methylnaphthalene	ug/L	23.0 1.0J	25		80		
-Methylphenol(o-Cresol)	ug/L	<5.0	25	18.6 <5.0	70	41-131	
-Naphthylamine	ug/L	<5.0	05		77	40.404	
-Nitroaniline	ug/L		25	19.3	77	48-124	
-Nitrophenol	ug/L	<5.0	25	24.2	97	41-128	
&4-Methylphenol(m&p Cresol)	ug/L	110	25	131	84	15-141 E	
,3'-Dichlorobenzidine	ug/L	<5.0	50	24.2	48	20-132	
,3'-Dimethylbenzidine	ug/L	<5.0	~ -	<5.0			
Methylcholanthrene	ug/L	<5.0	25	15.0	60	60-140	
Nitroaniline	ug/L	<5.0	25	19.0	76	46-112	
,6-Dinitro-2-methylphenol	ug/L	<10.0	25	23.6	95	28-150	
-Aminobiphenyl	ug/L	<5.0		<5.0			
-Bromophenylphenyl ether	ug/L	<5.0	25	20.4	82	53-121	
-Chloro-3-methylphenol	ug/L	<5.0	25	25.1	100	48-124	
-Chloroaniline	ug/L	<5.0	25	11.6	47	25-133	
-Chlorophenylphenyl ether	ug/L	<5.0	25	20.9	83	53-116	
-Nitroaniline	ug/L	<5.0	25	29.5	118	51-113 M1	
-Nitrophenol	ug/L	<10.0	25	16.3	65	10-102	
-Nitro-o-toluidine	ug/L	<5.0		<5.0			
,12-Dimethylbenz(a)anthracene	ug/L	<5.0	25	19.2	77	60-140	
Acenaphthene	ug/L	<5.0	25	19.9	80	50-116	
cenaphthylene	ug/L	<5.0	25	18.8	75	50-109	
cetophenone	ug/L	<5.0	25	20.5	82	42-97	
Anthracene	ug/L	<5.0	25	21.0	84	54-117	
Benzo(a)anthracene	ug/L	<5.0	25	21.8	87	31-128	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

MATRIX SPIKE SAMPLE:	561264	7000111001	Caller	MC	MC	0/ Dee
Parameter	Units	7093111001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifier
Benzo(a)pyrene	ug/L	<5.0	25	21.7	87	30-146
Benzo(b)fluoranthene	ug/L	<5.0	25	21.3	85	43-147
Benzo(g,h,i)perylene	ug/L	<5.0	25	24.5	98	25-153
Benzo(k)fluoranthene	ug/L	<5.0	25	20.2	81	28-148
Benzyl alcohol	ug/L	<5.0	25	17.8	71	32-143
ois(2-Chloroethoxy)methane	ug/L	<5.0	25	19.1	76	47-102
bis(2-Chloroethyl) ether	ug/L	<5.0	25	26.9	108	39-111
bis(2-Ethylhexyl)phthalate	ug/L	<5.0	25	19.7	79	37-138
Butylbenzylphthalate	ug/L	<5.0	25	20.9	83	38-135
Chlorobenzilate	ug/L	<5.0	25	22.1	88	60-140
Chrysene	ug/L	<5.0	25	21.3	85	42-140
Di-n-butylphthalate	ug/L	<5.0	25	21.2	85	50-128
Di-n-octylphthalate	ug/L	<5.0	25	18.7	75	32-148
Diallate	ug/L	<5.0	25	19.4	77	60-140
Dibenz(a,h)anthracene	ug/L	<5.0	25	22.3	89	22-147
Dibenzofuran	ug/L	<5.0	25	20.3	81	53-117
Diethylphthalate	ug/L	<5.0	25	21.4	86	54-124
Dimethoate	ug/L	<5.0	25	20.5	82	60-140
Dimethylphthalate	ug/L	<5.0	25	21.3	85	56-121
Disulfoton	ug/L	<5.0	25	18.0	72	10-143
Ethyl methanesulfonate	ug/L	<5.0	25	19.5	72	41-116
Famphur	ug/L	<10.0	25	17.2	69	33-106
Fluoranthene	ug/L	<5.0	25	21.4	86	50-123
Fluorene	ug/L	<5.0	25 25	21.4	82	51-118
Hexachloro-1,3-butadiene	ug/L	<5.0	25 25	17.6	70	18-90
Hexachlorobenzene	ug/L	<5.0	25 25	19.2	70	52-128
	-	<5.0	25 25	<5.0	6	13-119 M1
Hexachlorocyclopentadiene	ug/L	<5.0		<5.0 11.4		41-119 MT
Hexachloroethane	ug/L	<5.0	25 25	6.2	46	
Hexachloropropene	ug/L	<5.0	25 25	6.2 24.2	25 97	40-140 M1 26-156
ndeno(1,2,3-cd)pyrene	ug/L	<5.0				
sodrin	ug/L	<5.0	25	<5.0	0	40-140 M1
sophorone	ug/L	<5.0	25	20.0	80	46-118
sosafrole	ug/L		25	18.0	72	40-140
Kepone	ug/L	<10.0 <5.0	25	<10.0	0	10-150 M0
Methapyrilene	ug/L		05	<5.0		44.440
Methyl methanesulfonate	ug/L	<5.0	25	14.3	57	41-143
Nethyl parathion	ug/L	<5.0	25	24.3	97	60-140
N-Nitroso-di-n-butylamine	ug/L	<5.0		<5.0		10.10.
N-Nitroso-di-n-propylamine	ug/L	<5.0	25	19.1	76	40-124
N-Nitrosodiethylamine	ug/L	<5.0		<5.0		
N-Nitrosodimethylamine	ug/L	<5.0	25	88.4	353	36-104 E,M0
N-Nitrosodiphenylamine	ug/L	<5.0	25	21.4	86	41-95
N-Nitrosomethylethylamine	ug/L	<5.0		<5.0		
N-Nitrosopiperidine	ug/L	<5.0		<5.0		
N-Nitrosopyrrolidine	ug/L	<5.0		<5.0		
Naphthalene	ug/L	<5.0	25	19.1	76	39-107
Nitrobenzene	ug/L	<5.0	25	19.6	78	41-122

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

MATRIX SPIKE SAMPLE:	561264						
		7093111001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
O,O,O-Triethylphosphorothioate	ug/L	<5.0	25	20.4	82	46-112	
O-Toluidine	ug/L	<5.0		<5.0			
P-Dimethylaminoazobenzene	ug/L	<5.0		<5.0			
p-Phenylenediamine	ug/L	<5.0		<5.0			
Parathion (Ethyl parathion)	ug/L	<5.0	25	23.5	94	60-140	
Pentachlorobenzene	ug/L	<5.0	25	19.7	79	46-113	
Pentachloronitrobenzene	ug/L	<5.0	25	21.5	86	53-140	
Pentachlorophenol	ug/L	<10.0	25	21.6	86	12-124	
Phenacetin	ug/L	<5.0	25	21.1	85	30-143	
Phenanthrene	ug/L	<5.0	25	21.3	85	52-126	
Phenol	ug/L	115	25	129	56	10-99 E	
Pronamide	ug/L	<5.0	25	20.2	81	60-140	
Pyrene	ug/L	<5.0	25	22.5	90	41-137	
Safrole	ug/L	<5.0	25	20.7	83	49-106	
Thionazin	ug/L	<5.0	25	21.1	84	50-140	
1,2-Dichlorobenzene-d4 (S)	%				70	16-110	
2,4,6-Tribromophenol (S)	%				84	10-123	
2-Chlorophenol-d4 (S)	%				74	33-110	
2-Fluorobiphenyl (S)	%				78	43-116	
2-Fluorophenol (S)	%				52	21-110	
Nitrobenzene-d5 (S)	%				79	35-114	
p-Terphenyl-d14 (S)	%				52	33-141	
Phenol-d5 (S)	%				37	10-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHAT Pace Project No.: 7093111	E EXPANDED 360										
QC Batch: 613318	Analysis Method: E			EPA 8270D by SIM							
QC Batch Method: EPA 3510		Analysi	s Descriptio	on: 8	8270D Water 14 Dioxane by SIM						
Associated Lab Samples: 70931110	01										
METHOD BLANK: 3314241		M	latrix: Wate	er							
Associated Lab Samples: 70931110	01										
_		Blank Reporting		. 0							
Parameter	Units	Result L		_imit	mit Analyzed		Qualifiers				
1,4-Dioxane (SIM)	ug/L	<0.25			0.25 06/21/19 11:31						
1,4-Dioxane-d8 (S)	%.		39	30-125	5 06/21/	19 11:31					
LABORATORY CONTROL SAMPLE &	LCSD: 3314242		33	314243							
		Spike	LCS	LCSD	LCS	LCSD	% Rec			Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		RPD	Qualifiers
1,4-Dioxane (SIM)	ug/L	10	7.8	7.		73	40-125		6	20	
1,4-Dioxane-d8 (S)	%.				39	46	30-125				
LABORATORY CONTROL SAMPLE:	3314706										
		Spike	LCS		LCS	%	6 Rec				
Parameter	Units	Conc.	Result		% Rec	L	imits	Quali	ifiers		
1,4-Dioxane (SIM)	ug/L	10	0	.22J		2	40-125	L2			
1,4-Dioxane-d8 (S)	%.					44	30-125				
LABORATORY CONTROL SAMPLE:	3314707										
		Spike	LCS		LCS	%	6 Rec				
Parameter	Units	Conc.	Result		% Rec	L	imits	Quali	fiers		
1,4-Dioxane (SIM)	ug/L	10		0.25		3	40-125	L2			
1,4-Dioxane-d8 (S)	%.					47	30-125				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACH, Pace Project No.: 7093111	ATE EXPANDED 36	0					
QC Batch: 117419		Analysis M	Analysis Method:				
QC Batch Method: SM22 2120B		Analysis De	escription:	2120B Color			
Associated Lab Samples: 7093111	001						
METHOD BLANK: 556066	Matrix	k: Water					
Associated Lab Samples: 7093111	001						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Qualif	liers	
Apparent Color	units	<5.0) .	5.0 06/12/19 1	4:31		
LABORATORY CONTROL SAMPLE	556067						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Apparent Color	units	40	40.0	100	90-110		
SAMPLE DUPLICATE: 556068							
		7092990004	Dup				
Parameter	Units	Result	Result	RPD	Qualifier	S	
		5.0)	5.0	0		
Apparent Color	units	0.0	, ,	5.0	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CEI	L 7 LEACHA	TE EXPANDED 360							
Pace Project No.: 709	3111								
QC Batch: 11	C Batch: 119110			ethod:	SM22 2320B				
QC Batch Method: SN	/I22 2320B		Analysis De	scription:	2320B Alkalinity				
Associated Lab Samples	: 70931110	001							
METHOD BLANK: 566	023		Matrix	: Water					
Associated Lab Samples	: 70931110	001							
_			Blank Reportir						
Parameter		Units	Result	Limit	Analyzed	Qualifie	ers		
Alkalinity, Total as CaCO	3	mg/L	<1.0	1.	0 06/24/19 11:	56			
		500004							
LABORATORY CONTRO	DL SAMPLE:	566024	Spike	LCS	LCS	% Rec			
Parameter		Units	•	Result	% Rec	Limits	Qualifiers		
Alkalinity, Total as CaCO	3	mg/L	25	26.1	104	85-115			
MATRIX SPIKE SAMPLE	:	566025							
			7093107007	' Spike	MS	MS	% Rec		
Parameter		Units	Result	Conc.	Result	% Rec	Limits	Qualifiers	
Alkalinity, Total as CaCO	3	mg/L	4	4.6 25	71.3	107	75-125		
SAMPLE DUPLICATE:	566026								
			7093107007	Dup					
Parameter		Units	Result	Result	RPD	Qualifiers			
Alkalinity, Total as CaCO	3	mg/L	44.6	45.	7	2			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHA	TE EXPANDED 360						
Pace Project No.: 7093111							
QC Batch: 119301		Analysis Me	thod: S	SM22 2340C			
QC Batch Method: SM22 2340C		Analysis De	scription: 2	2340C Hardness	s, Total		
Associated Lab Samples: 7093111	001						
METHOD BLANK: 567060		Matrix	Water				
Associated Lab Samples: 70931110	001						
_		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Tot Hardness asCaCO3 (SM 2340B	mg/L	<5.0	5.0	0 06/25/19 14:	32		
LABORATORY CONTROL SAMPLE:	567061						
LABORATORY CONTROL SAMPLE.	100700	Spike	LCS	LCS	% Rec		
Parameter	Units	•	Result	% Rec	Limits	Qualifiers	
Tot Hardness asCaCO3 (SM 2340B	mg/L	100	99.0	99	90-110		
MATRIX SPIKE SAMPLE:	567062						
		7093111001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Tot Hardness asCaCO3 (SM 2340B	mg/L	288	00 20000	49000	101	75-125	
SAMPLE DUPLICATE: 567063							
		7093111001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Tot Hardness asCaCO3 (SM 2340B	mg/L	28800	29000	D	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHA [*] Pace Project No.: 7093111	TE EXPANDED 360						
QC Batch: 118004		Analysis Metho	od: S	M22 2540C			
QC Batch Method: SM22 2540C		Analysis Descr	iption: 2	540C Total Diss	olved Solids		
Associated Lab Samples: 70931110	001						
METHOD BLANK: 559707		Matrix: V	Vater				
Associated Lab Samples: 70931110	001	Disala	Demention				
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifie	rs	
Total Dissolved Solids	mg/L	<10.0	10.0	06/17/19 10:	51		
LABORATORY CONTROL SAMPLE:	559708						
Parameter	Units	•	CS sult	LCS % Rec	% Rec Limits	Qualifiers	
Total Dissolved Solids	mg/L	500	540	108	85-115		
MATRIX SPIKE SAMPLE:	559710						
	Units	7093107009	Spike Conc.	MS	MS % Rec	% Rec Limits	Qualifiers
Parameter		Result		Result			Quaimers
Total Dissolved Solids	mg/L	408	600	980	95	75-125	
MATRIX SPIKE SAMPLE:	559712						
		7093263004	Spike	MS	MS	% Rec	0 117
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	162	300	454	97	75-125	
SAMPLE DUPLICATE: 559709		7000407000	Dur				
Parameter	Units	7093107009 Result	Dup Result	RPD	Qualifiers		
Total Dissolved Solids	mg/L	408	480) 10	6 D6	_	
SAMPLE DUPLICATE: 559711							
SAMPLE DUPLICATE: 559711 Parameter	Units	7093263004 Result	Dup Result	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:		TE EXPANDED 360						
Pace Project No.:	7093111							
QC Batch:	117343		Analysis Me	thod:	SM22 3500-Cr B	3		
QC Batch Method:	SM22 3500-Cr I	В	Analysis De	scription:	Chromium, Hexa	avalent by 3500		
Associated Lab Sar	mples: 70931110	001						
METHOD BLANK:	555717		Matrix	: Water				
Associated Lab Sar	mples: 70931110	001						
_			Blank	Reporting		0 11		
Parar	neter	Units	Result	Limit	Analyzed	Qualifie	ers	
Chromium, Hexava	lent	mg/L	<0.020	0.02	0 06/12/19 07:	38		
LABORATORY CO	NTROL SAMPLE:	555718						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Chromium, Hexava	lent	mg/L	0.2	0.21	104	85-115		
MATRIX SPIKE SA	MPLE:	555719						
			7093094001	Spike	MS	MS	% Rec	
Parar	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chromium, Hexava	lent	mg/L	<0.0	0.2	0.19	93	75-125	
SAMPLE DUPLICA	TE: 555720							
			7093094001	Dup				
Parar	neter	Units	Result	Result	RPD	Qualifiers		
Chromium, Hexaval		mg/L	<0.020	<0.02				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 118376 QC Batch Method: EPA 410.4							
QC Batch Method: EPA 410.4		Analysis Method	d: El	PA 410.4			
		Analysis Descri	ption: 42	10.4 COD			
Associated Lab Samples: 709311100)1						
METHOD BLANK: 562201		Matrix: W	ater				
Associated Lab Samples: 709311100)1	Disal	Deneritari				
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers		
Chemical Oxygen Demand	mg/L	<10.0	10.0	06/19/19 11:3	7		
LABORATORY CONTROL SAMPLE:	562202						
Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits Q	ualifiers	
Chemical Oxygen Demand	mg/L	500	531	106	90-110		
MATRIX SPIKE SAMPLE:	562203						
Parameter	Units	7093107001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chemical Oxygen Demand	mg/L	<10.0	1000	1010	100	90-110	Quainero
	562205						
MATRIX SPIKE SAMPLE:	562205	7093260004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chemical Oxygen Demand	mg/L	<10.0	1000	1050	105	90-110	
SAMPLE DUPLICATE: 562204							
Parameter	Units	7093107001 Result	Dup Result	RPD	Qualifiers		
Chemical Oxygen Demand	mg/L	<10.0	<10.0				
SAMPLE DUPLICATE: 562206							
		7093260004	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE Pace Project No.: 7093111	EXPANDED 360					
QC Batch: 117484		Analysis M	lethod:	SM22 5210B		
QC Batch Method: SM22 5210B		Analysis D	escription:	5210B BOD, 5	day	
Associated Lab Samples: 7093111001						
METHOD BLANK: 556243		Matri	x: Water			
Associated Lab Samples: 7093111001						
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	d Qualit	iers
BOD, 5 day	mg/L	<2.	0 2	.0 06/17/19 1	1:09	
LABORATORY CONTROL SAMPLE: 5	56244					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
BOD, 5 day	mg/L	198	202	102	84.5-115.4	
SAMPLE DUPLICATE: 556245						
		7093205001	Dup			
SAMPLE DUPLICATE: 556245 Parameter	Units	7093205001 Result	Dup Result	RPD	Qualifier	s

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	CELL 7 LEACHATE 7093111	EXPANDED 360						
QC Batch:	118006		Analysis M	lethod:	EPA 9034			
QC Batch Method:	C Batch Method: EPA 9030B		Analysis D	escription:	9034 Sulfide V			
Associated Lab Sar	nples: 7093111001	l						
METHOD BLANK:	559717		Matri	x: Water				
Associated Lab Sar	nples: 709311100 ²	l						
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyze	ed Qualit	fiers	
Sulfide		mg/L	<2.	0 2	2.0 06/17/19 1	4:26		
LABORATORY CO	NTROL SAMPLE:	559718				_		
Parar	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Sulfide		mg/L	56.1	48.0	86	80-120		
SAMPLE DUPLICA	TE: 559719							
			7092926001	Dup				
Parar	neter	Units	Result	Result	RPD	Qualifier	S	
Sulfide		mg/L	72.	0 7:	2.0	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CELL 7 LEACHATE EXPANDED 360

QC Batch: 119378		Analysis Meth	nod: El	PA 300.0			
QC Batch Method: EPA 300.0		Analysis Desc	cription: 30	0.0 IC Anions			
Associated Lab Samples: 7093	111001						
METHOD BLANK: 567505		Matrix:	Water				
Associated Lab Samples: 7093	111001						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Bromide	mg/L	<0.50	0.50	06/26/19 23:	22		
Chloride	mg/L	<2.0	2.0	06/26/19 23:	22		
Sulfate	mg/L	<5.0	5.0	06/26/19 23:	22		
LABORATORY CONTROL SAMP	LE: 567506				_		
	11.5		LCS	LCS	% Rec	0 11	
Parameter	Units	Conc. R		% Rec	Limits	Qualifiers	
Bromide	mg/L	1	1.1	108	90-110		
Chloride	mg/L	10	10.2	102	90-110		
Sulfate	mg/L	10	10.3	103	90-110		
MATRIX SPIKE SAMPLE:	567507				MS	% Rec	
MATRIX SPIKE SAMPLE:	567507	7094769001	Spike	MS	1010	/01100	
MATRIX SPIKE SAMPLE: Parameter	567507 Units	7094769001 Result	Spike Conc.	Result	% Rec	Limits	Qualifier
Parameter			Conc.			Limits	Qualifier
MATRIX SPIKE SAMPLE: Parameter Bromide Chloride	Units	Result	Conc. D 1 9 10	Result	% Rec	Limits	Qualifier

SAMPLE DUPLICATE: 567508

		7094769001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	ND	<0.50		
Chloride	mg/L	10.9	10.8	0	
Sulfate	mg/L	<5.0	4.7J		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CELL 7 LEACHA Pace Project No.: 7093111	TE EXPANDED 360)					
QC Batch: 119268		Analysis Metho	d: E	PA 351.2			
QC Batch Method: EPA 351.2		Analysis Descri	ption: 3	51.2 TKN			
Associated Lab Samples: 70931110	001						
METHOD BLANK: 566775		Matrix: W	/ater				
Associated Lab Samples: 70931110	001	Dissi	Dementier				
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifier	6	
Nitrogen, Kjeldahl, Total	mg/L	<0.10	0.10	06/26/19 07:5	51		
LABORATORY CONTROL SAMPLE:	566776						
Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits	Qualifiers	
Nitrogen, Kjeldahl, Total	mg/L	4	4.0	99	90-110		
MATRIX SPIKE SAMPLE:	566777						
Demonster	11-1-	7092926001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Kjeldahl, Total	mg/L	97.9	20	94.6	-16	90-110	M6
MATRIX SPIKE SAMPLE:	566779						
Parameter	Units	7093723002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrogen, Kjeldahl, Total	mg/L	4.7	4	9.1	110	90-110	
SAMPLE DUPLICATE: 566778							
Parameter	Units	7092926001 Result	Dup Result	RPD	Qualifiers		
Nitrogen, Kjeldahl, Total	mg/L	97.9	91.2	2 7	7	-	
SAMPLE DUPLICATE: 566780							
Parameter	Units	7093723002 Result	Dup Result	RPD	Qualifiers		
Nitrogen, Kjeldahl, Total	mg/L	4.7	3.8	22	2 D6	-	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CELL 7 LEACHA ⁻ Pace Project No.: 7093111	TE EXPANDED 360	0					
QC Batch: 117323 QC Batch Method: EPA 353.2 Associated Lab Samples: 70931110	01	Analysis Metho Analysis Descri		PA 353.2 53.2 Nitrite, Unp	pres.		
METHOD BLANK: 555560		Matrix: W	/ater				
Associated Lab Samples: 70931110	01						
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifier	3	
Nitrite as N	mg/L	<0.050	0.050	06/11/19 20:3	34		
LABORATORY CONTROL SAMPLE:	555561						
Parameter	Units	Spike LC Conc. Res		LCS % Rec	% Rec Limits	Qualifiers	
Nitrite as N	mg/L	1	1.0	104	90-110		
MATRIX SPIKE SAMPLE:	555562						
Parameter	Units	7093101001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0.5	0.55	110	90-110	
MATRIX SPIKE SAMPLE:	555564						
Parameter	Units	7093107001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0.5	0.56	112	90-110 I	VI1
SAMPLE DUPLICATE: 555563							
Parameter	Units	7093101001 Result	Dup Result	RPD	Qualifiers		
Nitrite as N	mg/L	<0.050	<0.050)		-	
SAMPLE DUPLICATE: 555565							
Parameter	Units	7093107001 Result	Dup Result	RPD	Qualifiers		
Nitrite as N	mg/L	<0.050	<0.050)		-	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CELL 7 LEACHAT	TE EXPANDED 360						
Pace Project No.:	7093111							
QC Batch:	117329		Analysis Met	hod:	EPA 353.2			
QC Batch Method:	EPA 353.2		Analysis Des	scription:	353.2 Nitrate + N	Nitrite, preserve	d	
Associated Lab Sam	ples: 70931110	01						
METHOD BLANK:	555678		Matrix:	Water				
Associated Lab Sam	ples: 70931110	01						
Param	eter	Units	Blank Result	Reporting Limit	Analyzed	Qualifie	ers	
Nitrate-Nitrite (as N)		mg/L	<0.050	0.05	0 06/11/19 23:	04		
LABORATORY CON	TROL SAMPLE:	555679						
Param	eter	Units		LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Nitrate-Nitrite (as N)		mg/L	1	1.1	106	90-110		
MATRIX SPIKE SAM	1PLE:	555680						
Param	eter	Units	7093094001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Nitrate-Nitrite (as N)		mg/L	0.1	14 0.5	0.61	94	4 90-110	
SAMPLE DUPLICAT	E: 555681							
Param	eter	Units	7093094001 Result	Dup Result	RPD	Qualifiers		
Nitrate-Nitrite (as N)		mg/L	0.14	0.1		2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CELL 7 LEACHAT	TE EXPANDED 360							
Pace Project No.:	7093111								
QC Batch:	119281		Analysis M	ethod:	SM22 4	500 NH3	sН		
QC Batch Method:	SM22 4500 NH3	3 H	Analysis De	escription:	4500 An	nmonia			
Associated Lab Sar	nples: 70931110	01							
METHOD BLANK:	566889		Matrix	x: Water					
Associated Lab Sar	nples: 70931110	01							
			Blank	Reporting					
Paran	neter	Units	Result	Limit	A	nalyzed	Qualifi	ers	
Nitrogen, Ammonia		mg/L	0.036	J C	0.10 06/2	5/19 14:	09		
LABORATORY COI		566890							
	ATTOL SAMELE.	500090	Spike	LCS	LCS		% Rec		
Paran	neter	Units	Conc.	Result	% Rec	;	Limits	Qualifiers	
Nitrogen, Ammonia		mg/L	1	1.0		101	90-110		
MATRIX SPIKE SAI	MPLE:	566891							
			709346800	1 Spike	Μ	S	MS	% Rec	
Parar	neter	Units	Result	Conc.	Re	sult	% Rec	Limits	Qualifiers
Nitrogen, Ammonia		mg/L	2	22.4 1	0	29.0	6	7 75-12	5 M6
SAMPLE DUPLICA	TE: 566892								
			7093468001	Dup					
	neter	Units	Result	Result	l	RPD	Qualifiers	;	
Paran									

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CELL 7 LEACHA	TE EXPANDED 360						
Pace Project No.:	7093111							
QC Batch:	118162		Analysis Me	thod:	EPA 9014 Total	Cyanide		
QC Batch Method:	EPA 9010C		Analysis Des	scription:	9014 Cyanide, T	otal		
Associated Lab Sa	mples: 7093111	001						
METHOD BLANK:	560795		Matrix:	Water				
Associated Lab Sa	mples: 7093111	001						
			Blank	Reporting				
Para	meter	Units	Result	Limit	Analyzed	Qualifie	ers	
Cyanide		ug/L	<10.0	10.	0 06/18/19 15:	19		
LABORATORY CO	NTROL SAMPLE:	560796						
Para	meter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Cyanide		ug/L	75	67.0	89	85-115		
MATRIX SPIKE SA	MPLE:	560797						
			7092926001	Spike	MS	MS	% Rec	
Para	meter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cyanide		ug/L	3.	4J 100	82.7	79	9 75-125	
SAMPLE DUPLICA	TE: 560798							
			7092926001	Dup				
Para	meter	Units	Result	Result	RPD	Qualifiers		
Cyanide		ug/L	3.4J	4.0	J			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.:	7093111
-------------------	---------

QC Batch: 118775		Analysis Metl	hod: E	PA 9060A			
QC Batch Method: EPA 9060A		Analysis Des	cription: 9	060 TOC			
Associated Lab Samples: 7093	111001						
METHOD BLANK: 564526		Matrix:	Water				
Associated Lab Samples: 7093	111001						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Mean Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14	:06		
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14	:06		
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:	:06		
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:	:06		
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:	:06		
LABORATORY CONTROL SAMPI	LE: 564527						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc. F	Result	% Rec	Limits	Qualifiers	
Mean Total Organic Carbon	mg/L		9.2	92	85-115		
Total Organic Carbon	mg/L	10	9.2	92	85-115		
Total Organic Carbon	mg/L	10	9.2	92	85-115		
Total Organic Carbon	mg/L	10	9.1	91	85-115		
Total Organic Carbon	mg/L	10	9.2	92	85-115		
MATRIX SPIKE SAMPLE:	564529						
		7092926001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	27		280	27	7 75-12	5 M6
Total Organic Carbon	mg/L	27	6 10	282	53	3 75-12	5 M6
Total Organic Carbon	mg/L	28	31 10	280	-10) 75-12	5 M6
Total Organic Carbon	mg/L	29	1 10	291	-5	5 75-12	5 M6
		07	-				

SAMPLE DUPLICATE: 564528

Total Organic Carbon

		7092926001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Mean Total Organic Carbon	mg/L	278	276	1	
Total Organic Carbon	mg/L	291	287	1	
Total Organic Carbon	mg/L	281	276	2	
Total Organic Carbon	mg/L	277	276	0	
Total Organic Carbon	mg/L	276	278	0	

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

277

10

279

17

75-125 M6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

Sample: CELL 7 PLCRS PWS:	Lab ID: 7093111 Site ID:	001 Collected: 06/11/19 09:15 Sample Type:	Received:	06/11/19 15:56	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	9.05 ± 2.77 (0.511) C:NA T:85%	pCi/L	07/08/19 12:18	3 13982-63-3	
Radium-228	EPA 904.0	6.45 ± 1.59 (1.46) C:78% T:52%	pCi/L	06/26/19 14:28	3 15262-20-1	
Total Uranium	ASTM D5174-97	0.281 ± 0.014 (0.262) C:NA T:NA	ug/L	07/03/19 17:37	7 7440-61-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	CELL 7 LEACHAT	E EXPANDED 360			
Pace Project No.:	7093111				
QC Batch:	348120	Analysis Method:	ASTM D5174-9)7	
QC Batch Method:	ASTM D5174-97	Analysis Description:	D5174.97 Total		
Associated Lab Sa	mples: 70931110	01			
METHOD BLANK:	1692751	Matrix: Water			
Associated Lab Sa	mples: 70931110	01			
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Total Uranium		0.253 ± 0.009 (0.262) C:NA T:NA	ug/L	07/03/19 14:30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	CELL 7 LEACHA	TE EXPANDED 360			
Pace Project No.:	7093111				
QC Batch:	348072	Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radium 2	28	
Associated Lab Sa	mples: 70931110	001			
METHOD BLANK:	1692603	Matrix: Water			
Associated Lab Sa	mples: 70931110	001			
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		0.162 ± 0.326 (0.719) C:81% T:76%	pCi/L	06/26/19 14:26	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	CELL 7 LEACHA	TE EXPANDED 360				
Pace Project No.:	7093111					
QC Batch:	349975	Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1	Analysis Descriptic	on: 903.1 Radium-2	26		
Associated Lab Sa	mples: 70931110	001				
METHOD BLANK:	1701355	Matrix: Wate	r			
Associated Lab Sa	mples: 70931110	001				
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		0.0599 ± 0.311 (0.645) C:NA T:80%	pCi/L	07/08/19 12:18		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PACE-MV	Pace Analytical Services - Melville	
---------	-------------------------------------	--

PASI-M Pace Analytical Services - Minneapolis

PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

- 1j Low surrogate recovery confirmed by matrix spike. The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased СН hiah. The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased CL low. D6 The precision between the sample and sample duplicate exceeded laboratory control limits. Е Analyte concentration exceeded the calibration range. The reported result is estimated. IC The initial calibration for this compound was outside of method control limits. The result is estimated. This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be IH
 - This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

QUALIFIERS

Project: CELL 7 LEACHATE EXPANDED 360

Pace Project No.: 7093111

ANALYTE QUALIFIERS

IL	This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
S0	Surrogate recovery outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CELL 7 LEACHATE EXPANDED 360

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7093111001	CELL 7 PLCRS	EPA 3510C	118387	EPA 8081B	118389
7093111001	CELL 7 PLCRS	EPA 3510C	119051	EPA 8082A	119179
7093111001	CELL 7 PLCRS	EPA 8151A	117394	EPA 8151A	117602
7093111001	CELL 7 PLCRS	EPA 3005A	117890	EPA 6010C	117898
7093111001	CELL 7 PLCRS	EPA 7470A	118862	EPA 7470A	118885
7093111001	CELL 7 PLCRS	EPA 3510C	118169	EPA 8270D	118310
7093111001	CELL 7 PLCRS	EPA 3510	613318	EPA 8270D by SIM	614673
7093111001	CELL 7 PLCRS	EPA 8260C/5030C	117914		
7093111001	CELL 7 PLCRS	EPA 903.1	349975		
7093111001	CELL 7 PLCRS	EPA 904.0	348072		
7093111001	CELL 7 PLCRS	ASTM D5174-97	348120		
7093111001	CELL 7 PLCRS	SM22 2120B	117419		
7093111001	CELL 7 PLCRS	SM22 2320B	119110		
7093111001	CELL 7 PLCRS	SM22 2340C	119301		
7093111001	CELL 7 PLCRS	SM22 2540C	118004		
7093111001	CELL 7 PLCRS	SM22 3500-Cr B	117343		
7093111001	CELL 7 PLCRS	EPA 410.4	118376	EPA 410.4	118422
7093111001	CELL 7 PLCRS	SM22 5210B	117484	SM22 5210B	118481
7093111001	CELL 7 PLCRS	EPA 9030B	118006	EPA 9034	118030
7093111001	CELL 7 PLCRS	EPA 300.0	119378		
7093111001	CELL 7 PLCRS	EPA 351.2	119268	EPA 351.2	119309
7093111001	CELL 7 PLCRS	EPA 353.2	117329		
7093111001	CELL 7 PLCRS	EPA 353.2	117323		
7093111001	CELL 7 PLCRS	SM22 4500 NH3 H	119281		
7093111001	CELL 7 PLCRS	EPA 9010C	118162	EPA 9014 Total Cyanide	118192
7093111001	CELL 7 PLCRS	EPA 9060A	118775		

CHAIN-OF-CUSTODY / Analytical Request Doc The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must I

RELINQUISHED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME			Sulfide C=GRAB C= C 지아이는 TYPE 전국 C 지아이는 지나지, 지아이, 지나, 지아이, 지나, 지아이, 지아이, 지나, 지아, 지아이, 지아이, 지나, 지아, 지아이, 지나, 지아이, 지나, 지아이, 지나, 지아이, 지나, 지아이, 지나, 지아이, 지아이, 지나, 지아, 지아이, 지아이, 지아이, 지아이, 지아이, 지아이, 지아이,	Δ Δ <		Company Name:	Report To: Joe Guarino Attention.	
COLLECTION SAMPLE TYPE Gerek B CecokP <	M M	Sulfide COOLECTED (966 veloce for left)) COUNH3, CODE (966 veloce for left) 1 Render 0 1 Render </td <td>COLLECTED</td> <td></td> <td></td> <td>r # Address.</td> <td>Company Name Address: Address: Pace Quote</td> <td>State / Loca NY</td>	COLLECTED			r # Address.	Company Name Address: Address: Pace Quote	State / Loca NY
Semetric LADE Semetric LADE CODUNISION Semetric LADE Control (Control (Contro) (Control (Control (Contro) (Control (Control (Con	M M	ВОП, ВССОДЕ (зове valid codes to left)) СОДЕ (зове valid codes to left)) СОДЕ (зове valid codes to left)) Пами на проблами на пр	Pace Profile #: 5271 LINE 2 & 6 Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (YIN) COLLECTED	Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (Y/N)	Dave Drofile #: 6074 INIC 2 8 6	Pace Ounte	Company Name Address: Pace Durite	State / Loca
Colinate Strike Colinate Colinate <thcolinate< th=""> <thcolinate< th=""> <th< td=""><td>Marriel Code Schultde Marriel Code<</td><td>Sulfidae Sulfidae AmTRIX CODE (see valid codes to left) Toc COD, NH3, NO3, TKN, Phenoly Amonger S271 LINE 2 & 6 B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Cyanide Amonger S271 LINE 2 & 6 B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Pace Produces Amonger S271 LINE 2 & 6 B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B161 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B161 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B161 Pace Produces B161 Pace Produces B161 Pace Produces B161 Pace Produce B161 Pace Produces B161 Pace Produce B161 Pace Produce</td><td>me. Cell 7 Leachate Expanded 360 Pace Project Manager. jennifer aracr@pacelabs com, Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (YIN) Pace Profile #: 5271 LINE 2 & 6 Conternation Preservatives</td><td>Ime: Cell 7 Leachate Expanded 360 Pace Project Manager: jennifer aracr@pacelabs com, Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (YN)</td><td>me. Cell 7 Leachate Expanded 360 Pace Project Manager. jennifer.aracri@pacelabs.com, Dave Profile # 5734 i Nic 가 6 6</td><td></td><td>Company Name Address:</td><td></td></th<></thcolinate<></thcolinate<>	Marriel Code Schultde Marriel Code<	Sulfidae Sulfidae AmTRIX CODE (see valid codes to left) Toc COD, NH3, NO3, TKN, Phenoly Amonger S271 LINE 2 & 6 B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Cyanide Amonger S271 LINE 2 & 6 B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Pace Produces Amonger S271 LINE 2 & 6 B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B151 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B161 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B161 Pace Produces B00, Br, CI, SO4, Color, Cr+6 Filtered Analysis B161 Pace Produces B161 Pace Produces B161 Pace Produces B161 Pace Produce B161 Pace Produces B161 Pace Produce	me. Cell 7 Leachate Expanded 360 Pace Project Manager. jennifer aracr@pacelabs com, Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (YIN) Pace Profile #: 5271 LINE 2 & 6 Conternation Preservatives	Ime: Cell 7 Leachate Expanded 360 Pace Project Manager: jennifer aracr@pacelabs com, Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (YN)	me. Cell 7 Leachate Expanded 360 Pace Project Manager. jennifer.aracri@pacelabs.com, Dave Profile # 5734 i Nic 가 6 6		Company Name Address:	
Column Source Source<	Order#: Colorer#: Colorer#: Colorer Colorer#: Colorer#: Colorer#: Colorer#: Colorer#: Colorer#: Colorer#: Colorer Colorer	Sulficte Solution Color ## COD TOC COD COD COD COD COD COD<	Order #: Pace Uote me. Cell 7 Leachate Expanded 360 Pace Project Manager: Jennifer aracr@pacelabs.com, Pace Project Manager: Pace Project Manager: Pace Project Manager: Pace Project Manager:	Order #: Pace Uucle Imae. Cell 7 Leachate Expanded 360 Pace Project Manager. jennifer aracr@pacelabs com, Pace Profile #: 5271 LINE 2 & 6 Requested Analysis Filtered (YN)	Order #: Me: Cell 7 Leachate Expanded 360 Peace Project Manager: jennifer aracri@pacelabs.com, Pace Project Manager: jennifer aracri@pacelabs.com,		Company Name	Regulatory A

	-Pace Analytical			U F	HAIN:	CHAIN-OF-CUSTODY / Analytical Request	:UST	ODY	I Ar	umen ⁻	ical	Rec	jues		401	+ - 1	WO#:7093111	31	11				
Section A	filmet leformerion.	Section B Decrimed Deviant Information:	t Information		2		Section C	C C							PM: JSA	JSA MT · B	Due Di RAR-ECO	Due Date: B-ECO	: 06	06/25/19	19		
Company:	Ц	Report To: Joe	Joe Guarino				Attention							, 1	ירדבוי								
Address:	s Lane						Company Name	Name:								-							I
North Bat							Address										No. of Street, or Stre	Reç	Regulatory Agency	Agency	E State	Salar Salar	
Email:	ylon.com	Purchase Order #:					Pace Quote:	ote:										č					
Phore: Requester	Proce. 631-422-7640 Processed Due Date. Pro-	Project #	Cell 7 Leac	Cell 7 Leachate Expanded 360	1 360		Pace Profile #: 527	file #:	-	I INF 2 & 6	Jennifer.aracri@pacelaps.com	@pacel	abs.con	-				ñ	State / Location NY	ation			
-											Π		Re	quested	Requested Analysis Filtered (Y/N)	5 Filtered	(N/A) P						
	MATRIX	CCDE		COLLECTED	TED	N		Pre	Preservatives	tives		N/A										ri i si Na asi	
# M3TI	SAMPLE ID One Character per box. (A-Z, 0-9/, -) Sample Ids must be unique Tissue	NATRIX CODE (see valid code:	SAMPLE TYPE (G=GRAB C=C	ART		SAMPLE TEMP AT COLLECTIO	ургезегуед Unpreserved	HO3 HSSO¢	NªOH HCI	Na2S2O3	Methanol Other	test sesvisnA Dioxin/Furan Scan	822 mulbeR	Radium 228 Uranium	ensxoid 4, f				(N\Y) eninoldO laubiceR				
13	Ceil 7 PLCRS	TW			-							×	×	×	×								
14																							
15																							
16																							
17																							
18																						1	
19																							
20																							
21																							1
22																							1
23																							T
24		-				-						\neg		_		_	_		_				
	ADDITIONAL COMMENTS	RELI	RELINQUISHED BY / AFFILIATION	I AFFILIATION		DATE	TIME		9	ACCEF	ACCEPTED BY / AFFILIATION	I AFFILI	ATION		a farm and a	DATE	TIME		SAI	SAMPLE CONDITIONS	NDITION	2	
Cell 7 Lea	Cell 7 Leachate Expanded 360	Briér	Brion NCHOIL	12	100 6	6/11/19	×1600	2	Ash	print	in	Æ	AUGI	-	9	11/19	15.5	X 17(9	2	6	5	
Pag		_		SAMPLER	NAME AN	SAMPLER NAME AND SIGNATURE	JRE								-				u				1
e 94 of				PRINT	Name of	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:		Brian		NIChois	Jia		DATE	DATE Signed:		01-1177	U		eceived or	(N/,	sied soler (VV)	act act	(N/.
178								DUNN	Vr	1		-		0			-		ы	CI	C' Se	s S	J)

Proje WO#:7093111 Client Name: Bab/low Bab/low Proje Courier: Fed Ex UPS Client Courier: Fed Ex UPS Client Courier: Proje Tracking #: Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes Yes No Seals intact: Yes Yes No Seals intact: Yes Custody Seal on Cooler/Box Present: Yes Packing Material: Bubble Wrap Bubble Bags Correction Factor: Yes Yes Samples on ice, cooling process has begun
Baby/OW Courier: Fed Ex UPS USPS Client Commercial Pace Dther Tracking #: Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Packing Material: Bubble Wrap Bubble Bags Ziploc None Dther Temperature Blank Present: Yes No Thermometer Used: THO Correction Factor: YO A Samples on ice, cooling process has begun
Baby/OW Courier: Fed Ex UPS USPS Client Commercial Pace Dther Tracking #: Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Packing Material: Bubble Wrap Bubble Bags Ziploc None Dther Temperature Blank Present: Yes No Thermometer Used: THO Correction Factor: YO A Samples on ice, cooling process has begun
Courier: Fed Ex UPS USPS Client Commercial Pace Dther CLIENT: BAB-ECO Tracking #:
Tracking #: Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Temperature Blank Present: Yes No Packing Material: Bubble Wrap Bubble Bags Ziploc None Dther Type of Ice: Wet Blue None Thermometer Used: Ho Correction Factor: Yo Correction Factor: Samples on ice, cooling process has begun
Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Temperature Blank Present: Yes No Packing Material: Bubble Wrap Bubble Bags Ziploc None Dther Type of Ice: Wet Blue None Thermometer Used: Ho Correction Factor: Yo Correction Factor: Yo Samples on ice, cooling process has begun
Packing Material: Bubble Wrap Bubble Bags Ziploc None Dther Type of Ice: Wet Blue None Thermometer Used: (H09) Correction Factor: 1 De Samples on ice, cooling process has begun
Thermometer Used: (H09) Correction Factor: + O, + Samples on ice, cooling process has begun
Inermonieter Osed.
Cooler Temperature (°C): 2.6 Date/Time 5035A kits placed in freezer
Temp should be above freezing to 6.0°C USDA Regulated Soil (\oint N/A, water sample) Date and Initials of person examining contents: $(f/1)/19$
Image: Construction of the construc
If Yes to either question, fill out a Regulated Soil Checklist (F-LI-C-010) and include with SCUR/COC paperwork.
COMMENTS:
Chain of Custody Present: DYes INo 1.
Chain of Custody Filled Out: DYes DNo 2.
Chain of Custody Relinquished: DYes DNo 3.
Sampler Name & Signature on COC:
Samples Arrived within Hold Time:
Short Hold Time Analysis (<72hr):
Rush Turn Around Time Requested: Ves Vo
Sufficient Volume: (Triple volume provided for MS/MSD DYes DNo 8.
Correct Containers Used: ØYes No 9.
-Pace Containers Used:
Containers Intact: DYes DNo 10.
Filtered volume received for Dissolved tests
Sample Labels match COC: Area Inc. 12.
-Includes date/time/ID/Analysis Matrix SL (WT) OIL
All containers needing preservation have been checked μ_{Yes} $\square No$ $\square N/A$ 13. \square HNO ₃ \square H ₂ SO ₄ \square NaOH \square HCl
pH paper Lot # HCSG 3463
All containers needing preservation are found to be in Sample #
compliance with EPA recommendation?
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide, μ Yes \Box No \Box N/A
NAOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil and Grease, Initial when completed: Lot # of added preservative: Date/Time preservative added
DRO/8015 (water). Per Method, VOA pH is checked after analysis
Samples checked for dechlorination:
Residual chlorine strips Lot # Positive for Res. Chlorine? Y N
Headspace in VOA Vials (>0mm):
Trip Blank Present:
Trip Blank Custody Seals Present
Pace Trip Blank Lot # (if applicable):
Client Notification/ Resolution: Field Data Required? Y / N
Person Contacted: Date/Time:
Comments/ Resolution:

* PM (Project Manager) review is documented electronically in LIMS.

F-LI-C-002-rev.02

Page 95 of 178

•

www.pacelabs.com

Report Prepared for:

Jennifer Aracri PASI Long Island 575 Broad Hollow Road Melville NY 11747

REPORT OF LABORATORY ANALYSIS FOR TCDD

Report Prepared Date: June 27, 2019

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

PaceProject#: 10479467 Sample Receipt Date: 06/15/2019 Client Project #: 7093111 Client Sub PO #: N/A State Cert #: 11647

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 4 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

This report has been reviewed by:

Richardson oanne ` June 27, 2019

Joanne Richardson, (612) 607-6453 (612) 607-6444 (fax)

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of PaceAnalytical Services, Inc.

The results relate only to the samples included in this report.

Page 96 of 178 Page 1 of 83

DISCUSSION

This report presents the results from the analysis performed on one sample submitted by a representative of Pace Analytical Services, LLC. The sample was analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) using USEPA Method 1613B. The reporting limits were set to correspond to the lowest calibration point and a nominal 1-Liter sample amount, and the sensitivity was verified by signal-to-noise measurements. The quantitation limits, adjusted for sample extraction amount, may be somewhat higher or lower than the reporting limits provided in this report.

The isotopically-labeled TCDD internal standard in the sample extract was recovered at 72%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native TCDD was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD was not detected.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard material. The results show that the spiked native TCDD was recovered at 113-114% with a relative percent difference of 0.9%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

_

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Minnesota - Pet	1240
Alabama	40770	Mississippi	MN00064
Alaska - DW	MN00064	Missouri - DW	10100
Alaska - UST	17-009	Montana	CERT0092
Arizona	AZ0014	Nebraska	NE-OS-18-06
Arkansas - DW	MN00064	Nevada	MN00064
Arkansas - WW	88-0680	New Hampshire	2081
CNMI Saipan	MP0003	New Jersey (NE	MN002
California	2929	New York	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Carolina -	27700
EPA Region 8+	via MN 027-053	North Carolina -	530
Florida (NELAP	E87605	North Dakota	R-036
Georgia	959	Ohio - DW	41244
Guam	17-001r	Ohio - VAP	CL101
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon - Primar	MN300001
Illinois	200011	Oregon - Secon	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky - DW	90062	South Dakota	NA
Kentucky - WW	90062	Tennessee	TN02818
Louisiana - DE	03086	Texas	T104704192
Louisiana - DW	MN00064	Utah (NELAP)	MN00064
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Massachusetts	M-MN064	West Virginia -	382
Michigan	9909	West Virginia -	9952C
Minnesota	027-053-137	Wisconsin	999407970
Minnesota - De	via MN 027-053	Wyoming - UST	2926.01

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10479467 Page 98 of 178 Page 3 of 83

Report No.....10479467_1613TCDD_DFR

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interferencepresent
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR Report No.....10479467 Page 99 of 178 Page 4 of 83

Appendix A

Sample Management

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Sample ID Cross Reference

Client Sample ID CELL 7 PLCRS Pace Sample ID 7093111001 Date Received

06/15/2019

Sample Type Water

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10479467_1613TCDD_DFR

Page 101 of 178 Page 6 of 83

	Pace Analytical *	6/11/2019 Results Requested Bv: 6/25/2019		W0#:10479467				Need a Catagory B Package w/NY FOulS FDDe		N Samples Intact(Y) or N	e provided on this COC document.			FMT-ALL-C-002rev.00 24March2009 Page 1 of 1
Chain of Custody		ter: 7093111 Workorder Name: CELL 7 LEACHATE EXPANDED 360 Owner Received Date:		Jennifer Aracri Jennifer Aracri Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Phone (631)694-3040 Phone (612)607-1700 Phone (612)607-1700		1 CELL 7 PLCRS PS 6/11/2019 09:15 7093111001 Water 2) 7 X X X		Transfers Released By Date/Time Received By Date/Time Need a	मि	Y or (N) Received on Ice (Y) or	***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.		Page 1	7 DFriday, June 14, 2019 10:50:35 AM
	кер	ort I	N 0	10479467_1	6131CDD	_DF	К					Page	7 of 8	აკ

	5
Para Analyt	

			物であ																			_								
			の意味の語言		Acres and	Constraints (Constraints)		大山は北京の																	5	F			se	lqme2 Intact (N/Y)
Hered					ičy -				****						-									SAMPLE CONDITIONS	S	-				Custod Sealed Coaler (Y/N)
					Regulatory Agency	3-2 MB / 90021054 202	and the state of the	44 H M									-							SAMPLE	7	┢		· -	uo pəi	Receiv Ica
() () ()					Regula		State	112.1	·持 / ~	(N/A) ə	Sulfide Residual Chlorin	-	{					1					<u> </u>		δ''				0 ní	темр
76		0077019-4" 04130418-rp.		2 (AL 1947) 24 (AL 1970) 2000	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A CONTRACTOR A		14-33111131101	NUM FRAME		tonariq,NYT	LOC COD'NH3'NO3'	· ×	+				-							TIME	15,5%			Standing of the		
		-			141414	ALTERNATION OF	THE REPORT OF	fered			Cyanide Cyanide	×	1											щ÷	11/19/11]				-19
W.		Ma	O CIE					halvete Fil			TAL Metals +B 5 500,Br,Cl,SO4,	×	+											TAG V	1119					1-9
t Do			,					uested A			8151	×													リー					
ques ant field							elabs.com	Rec			8081 8250 8260	×												AFFILATION	NA121					DATE Signed:
al Re							acricopace		N/A	1S9 <u>1</u>	aseo Viver Olher	×	1	1 [-	 			 T				 	 	BYIAFFIL	لممرة م					
alytic							Jernitier aractil@pacelaps.com		es Se		Methanol Methanol	-										-		ACCEPTED BY I	-per				Nev) IN	
/ An		;io					15		Preservatīves		N≊OH HCI	1													What				Contraction of the local distance of the loc	
	0	Invoice Information:		Company Name		Pare Quoie. Dare Droiact Manager	ofile #		Ā		EONH POSCH														ଚ				Brin	しいの
CUS.	Section C	Invoice	Auention	Aliphiston			Pace Profile #				Unpreserved	4					•			х у ч. 1 1					(07/×					
- P -0-1 - P -0-1											A 9MƏT 3J9MA2												-	DATE	6/n 119			10.25	AND SIGNATURE of SAMPLER:	of SAMPLER:
CHAIN-OF-CUSTODY / Analytical Request Do WO拼;709311						USC P			XED X	EN C	DATE	۲ <u>ٽ</u>											· .		3 USJ2/				NAME AN Name of	SIGNATURE of
Ŭ ⊢	-					- Property C			COLLECTED	4	Tame													FILATION		•			SAMPLER NAME PRINT Name c	SIGNA
		mation:	2			· (Teil 7) contratio Exercised 260				START	DATE						1. 							REINQUSHED BY AFTLATION	NICHI				<u>0</u>	<u></u>
		ject Infon	JOE GUARNO		br#		ġ			ees valid code:)=D 8ARD=D)	SAMPLE TYPE	5																		
	Section B	Required Project Information:			rhase Or	tiect Name	Project #		CODF	orv Wrardo	AR ToT T													14. 	Brier					
	S.	e B			ā	4	L		ÚRIX	Drinking Water Water Waste Water Product Soil/Solid	aq sua																			
									. W	233589	A A B E																		·	
·						Fax				٥	Jox. unique													MENTS						
	-	Ë	ylori ana	2	abidon conde					SAMPLE ID	acter per , 0-9 / , -) s must be				 									FONAL CO						
Pace Analytical	Section A	Informatio	Address 284 Dhalps Land	V 11700	@townhine	1-477-764	late:			SAM	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	LCRS												ABDITIONAL COMMENTS	anded 360					
A Back	. Yu	red Client	50 - 51 - 52	Pahadan M	in isrino		Bequested Due Date:		l		.	Cell 7 PLCRS		-		\$485.00°.0							540 Y 2		Ceil 7 Leachate Expanded 360					1
	Re		Addres	Ň		Phone:	Beque	64	1794	67 <u>16</u>	# ₩∍⊥I L3TCDD	- D	R R	3	4	5	ġ.	Ň	œ	6	10	÷	12		Cell 7 Le		2ag		age 10 of 8	3 of 178 3

Contraction Reaction B Section B Section C	ENT ODA CONTRACTOR
Report To: Leadent To: Leadent To: Leadent To: Leadent To: Copy To: Copy To: Copy To: Copy To: Copy To: Fac Protection Protection Attention: Protection Protection Protection Protection Protection Protection Protecti	
Copy To: Copy To: Copy To: Project H: Project H: Project H: Project H: Project H:	Regulatory Agency
Drom Purchase Order #: Fix Purchase Order #: Project Name Purchase Order #: Project Name Purchase Order #: Project Name Purchase Order #: Project Name Fix Project Name Project Name Project Name Project Name Fix Project Name Project Name Project Name Project Name No Project Name Project Name Project Name Project Name No Prove Project Name Project Name Project Name No Prove Prove Project Name Project Name No Prove Prove Prove Prove No Prove Prove	and the second se
Test Activity Constrained and the second and the s	
Oute Dete: Project # Oute Dete: Prove Provide # MPLE ID SAMPLE ID SAMPLE ID SAMPLE ID Numming Wate Down Control (ECTED) Numming Mate Coll (TPLC) Numming Mate Coll (TPLC) Numming Mate SAMPLE ID Numming Mate Coll (TPLC) Numming Mate SAMPLE ID Numming Mate SAMPLE <	
Cell 1 1 C C C C C C C C C C C C C C C C C	are aroute the state to the state of the sta
ANTICLE CONTRACTOR OF A CONTRA	Contraction Requested Analysis Fittered (YAN)
AMPLE ID SAMPLE ID SAMPLE ID Sample dis must be unique to the dimarter per bit one	
One Character per box. Wee Sample distribution Wee Sample distribution Maximum distribution	
Cell 7 PLCRS Cell	Johadhamol Dither Start Sainuffurau Sainuffurau Saidual Chlorin Saidual Chlorin Saidual Chlorin
Antonia convients	
attovia: converts Relations to by Artilization Dates more for the first first first for the first firs	
RANGE MEMALIN / S. C. 6/4/10 / KIM / 1/4	PEDBY AFFILIATION
11/11 1007 /	W-HELL 10/11/0 15 8 9.01 4 1 V
O SHALLER NAME AND SIGNARD SIGN	
PRINT NAME OF SAMPLER: Brion NIC	N Cooler DATE Signed: 6-11-19 FEMP in C Cooler Coulor Received of Coulor Coulor Received of Coulor C

Prace Analytical"	Document Name: SCUR Exception Form – Coolers Above 6°C	Document Revised: 08Ap r 2019 Page 1 of 1
	Document No.: F-MN-C-298-Rev.02	Issuing Authority: Pace Minnesota Quality Office

During sample triage, this form is to be placed in each cooler that arrives above 6.0 degrees Celsius

SCUR Exceptions:

Workorder #:

Out of Temp Sample IDs	Container Type	# of Containers	(1997) 1977 - Alexandria Alexandria 1978 - Alexandria Alexandria Alexandria Alexandria Alexandria Alexandria Alexandria	PM Notified?	s 🖾 No 🔤	
an and and the second secon			If yes ind	licate who was conta		
			ryco,.ind	If no, indicate reaso	acteu/date/	time.
				in no, maicate reaso	an why.	
			-	· · ·		
			Mult	iple Cooler Project?		
		2	lf you	answered yes, fill out inform	ation to the left	
		1. 1.				
	and the	en e		No Temp Bla	nk 👘	as ana a
	1. 1 Martin		Read Temp	Corrected Temp	Contraction of the second second	erage Temp
			29	3.0	2]
1			A.3	3.4		· · · · · · · · · · · · · · · · · · ·
			3.0	31		
			2.9	3.0		
· · · · · · · · · · · · · · · · · · ·				· · ·		
		······	A CHARLEN AND A HAR A	Other Issue	State 1	
		enter a financia di	Issue Type:		ontainer	# of
Tracking Number/T	emperature:		Sampl	le ID	Туре	Containers
						e Mare 1
			· ·			
·						
			· · · · · · · · · · · · · · · · · · ·			
<u>·</u>						
······································			·			·
	· · · · · · · · · · · · · · · · · · ·					
	1	1	the second se			

pH Adjustment Log for Preserved Samples

Sample ID	Type of Preserv.	pH Upon Receipt	Date Adjusted	Time Adjusted	Amoun t Added (mL)	Lot # Added	pH After	In Compliance after addition? Yes No	Initials
								Yes No	

Report No.....10479467_1613TCDD_DFR

s de la companya de l	Sa	imple (Condit	tion Upon Receipt
Pace Analytical*				
	Client I	Name:	,	Proje WO#:7093111
	1	Bats/	lou	
Courier:] Fed Ex UPS USPS / Clie				
Tracking #:				
Custody Seal on Cooler/Box Present:	'es 🛛 No	Seals	intact:	Yes No Temperature Blank Present: Yes No
Packing Material: Bubble Wrap Bubble	Bags 🗌 Zip	loc (None	e 🖸 Dthe	er Type of Ice: (Wet) Blue None
Thermometer Used: (H09)		ion Factor	2 · · · · · · · · · · · · · · · · · · ·	
Cooler Temperature (°C): 7-10	Cooler Te	emperatur	e Correct	
Temp should be above freezing to 6.0°C	_			
USDA Regulated Soil (I N/A, water sample	e)			Date and Initials of person examining contents: (a//1/19.T)
Did samples originate in a quarantine zone within the		AL, AR, CA	, FL, GA, IC	D, LA, MS, NC, Did samples orignate from a foreign source (internationally,
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	🗌 YES	NO NO		Including Hawaii and Puerto Rico)?
If Yes to either question, t	fill out a Reg	gulated So	il Checkli	list (F-LI-C-010) and include with SCUR/COC paperwork.
· · · · ·				COMMENTS:
Chain of Custody Present:	 ∕_Yes			1.
Chain of Custody Filled Out:	ØYes ≠		·	
Chain of Custody Relinquished:	 ∠			3.
Sampler Name & Signature on COC:	DYes the			4. •
Samples Arrived within Hold Time:	/Yes		<u></u> .	5.
Short Hold Time Analysis (<72hr):	ØYes			6.
Rush Turn Around Time Requested:	□Yes	7 %•		7.
Sufficient Volume: (Triple volume provided for MS/MS	1			8.
Correct Containers Used:	Yes	□No		9.
-Pace Containers Used:	QYes	□No	•	
Containers Intact;	Yes	□No		10.
Filtered volume received for Dissolved tests	□Yes	⊡No		11. Note if sediment is visible in the dissolved container.
Sample Labels match COC:	_ ¶Yes	□No		12.
-Includes date/time/ID/Analysis Matrix SL				
All containers needing preservation have been checke	^a AYes	⊡No	⊡N/A	
oH paper Lot # HCSU 3465				
All containers needing preservation are found to be in compliance with EPA recommendation?	,			Sample #
HNO3, H2SO4, HCI, NaOH>9 Sulfide,	Yes	□No	⊡n/A	
NAOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil and Greasଏ	e.			
DRO/8015 (water). Per Method, VOA pH is checked after analysis	-			Initial when completed: Lot # of added preservative: Date/Time preservative added
	⊡Yes			14.
Samples checked for dechlorination: (I starch test strips Lot #		2.10	7	
Residual chlorine strips Lot #				Positive for Res. Chlorine? Y N
leadspace in VOA Vials (>0mm):	□Yes	ZINO		15.
rip Blank Present:	□Yes	ZNo	□N/A	16.
rip Blank Custody Seals Present	□Yes	⊡No		
ace Trip Blank Lot # (if applicable):	•			
Client Notification/ Resolution:			_	Field Data Required? Y / N
Person Contacted:				Date/Time:
Comments/ Resolution:				
* PM (Project Manager) review is docum	nented elec	tronically	y in LIMS	s. F-LI-C-002-rev.02

Page 106 of 178

Page 11 of 83

		N	0			
Se /	Document		Document Revised: 09Mav2014	ument Revised: 09May2019		
Pace Analytical"	Sample Condition Up		Page 1 of 1			
	Document F-MN-L-213		Issuing Authority:	<u> </u>		
		1ev.28	Pace Minnesota Quality Office	e ·		
Sample Condition Client Name: Upon Receipt	Ville	8	#:10479467	7		
Courier:	s 🔤 USPS 🔂 c	lient CLIEN	MR Due Date: 0 T: PASI-LINY	6/28/19		
Tracking Number: 1068 0079 38		Exception		· .		
Custody Seal on Cooler/Box Present?		act? Yes MNo	Biological Tissue Frozen?			
Packing Material: Bubble Wrap Bubble Wrap Bu		Other:	Temp Blank?	Yes No		
Thermometer: T4(0254) T5(0489) Note: Each West Virginia Sample must have ten	Type of Ice:	🗙 Wet 🔲 Blue	None Dry Melted	n		
	mp Read w/temp blank;		0	<u></u>		
Correction Factor: <u>40.</u> Cooler Temp Co	rrected w/temp blank :		^o C Average Corrected Ten (no temp blank only) ^o C 3. o _C	np See Exceptio		
SDA Regulated Soil: (🔀 N/A, water sample/Oth	er:)	Date/Initials of Rev	son Examining Contents:	In Lule		
old samples originate in a quarantine zone within th D, LA. MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (ch If Yes to either question, fill	leck mans)?	GA, Did samples origina	te from a foreign source (internationa	ally, including		
			COMMENTS:			
ain of Custody Present and Filled Out? ain of Custody Relinguished?	Yes No	1.				
	Yes No	2.	· · · · · · · · · · · · · · · · · · ·			
npler Name and/or Signature on COC? nples Arrived within Hold Time?	Yes No N//	The second se				
	Yes No	4.				
ort Hold Time Analysis (<72 hr)?	Yes No	5. Fecal Coliform	HPC Total Coliform/E coli BOD/cB	OD Hex Chrome		
sh Turn Around Time Requested?	Yes KNo	6.				
ficient Volume?	Yes No	7.		: 		
rrect Containers Used?	Yes No	8.				
-Pace Containers Used?	Yes No		-			
ntainers intact?	Yes No	9.		<u> </u>		
· · · · · · · · · · · · · · · · · · ·			e in the dissolved container?	- <u></u>		
Id Filtered Volume Received for Dissolved Tests?		10 Is sediment wish		s []No		
ufficient information available to reconcile the sam	AYes □No XINA AAV2 6-15-19		Time on Container Below:	Son Exercit		
ufficient information available to reconcile the sam he COC?	ZYes □No MAKZG-15-79 ZYes □No		Time on Container Below:	See Exceptio		
ufficient information available to reconcile the sam the COC? atrix: Water Soil OII OII Other	MAX 2 6-15-19 \$21Yes □No	11. If no, write ID/ Date	Time on Container Below:			
sufficient information available to reconcile the sam the COC? atrix Water Soil Oil Other containers needing acid/base preservation have be ecked?	MAKZ G-15-19 ØYes □No		Time on Container Below:			
sufficient information available to reconcile the sam the COC? atrix Water Soil OII Other containers needing acid/base preservation have be ecked? containers needing preservation are found to be in npliance with EPA recommendation?	PMAK 2 G- 15-19 PMAK 2 G- 15-19 PMAK 2 G- 15-19 No PMAK 2 G- 15-19 No PMAK 2 G- 15-19 No PMAK 2 G- 15-19 PMAK 2 G- 1	11. If no, write ID/ Date	/Time on Container Below:			
eld Filtered Volume Received for Dissolved Tests? sufficient information available to reconcile the sam the COC? atrix Suvater Soil OII OII Other containers needing acid/base preservation have be ecked? containers needing preservation are found to be in mpliance with EPA recommendation? NO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>12 Cyani reptions: VOA, Coliform, TOC/DOC Oil and Grease, O/8015 (water) and Dioxin PFAS	PMAK 2 G- 15-19 PMAK 2 G- 15-19 PMAK 2 G- 15-19 No PMAK 2 G- 15-19 No PMAK 2 G- 15-19 No PMAK 2 G- 15-19 PMAK 2 G- 1	11. If no, write ID/ Date 12. Sample # NaOH Positive for Res. Yes Chlorine? No	/Time on Container Below:]Zinc Acetate See Exceptio		
ufficient information available to reconcile the sam the COC? atrix: Water Soil Oil Other containers needing acid/base preservation have be ecked? containers needing preservation are found to be in npliance with EPA recommendation? IO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Colliform, TOC/DOC Oil and Grease.	en IYes No AN/A Ves No AN/A Ves No AN/A	11. If no, write ID/ Date 12. Sample # NaOH Positive for Res. Yes Chlorine? No	/Time on Container Below:]Zinc Acetate		
ufficient information available to reconcile the sam the COC? atrix: Swater Soil Oil Other containers needing acid/base preservation have be ecked? containers needing preservation are found to be in npliance with EPA recommendation? IO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Colliform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid PFAS	MAK 2 G- IS-19 PYes No PYes No PYes No PYes No PYes No N/A	11. If no, write ID/ Date 12. Sample # NaOH Positive for Res. Yes Chlorine? No	/Time on Container Below:	Zinc Acetate		
ufficient information available to reconcile the sam the COC? atrix: Swater Soil Oil Other containers needing acid/base preservation have be tecked? containers needing preservation are found to be in npliance with EPA recommendation? IO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Colliform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid PFAS	MAK 2 G- IS-19 PYes No PYes No PYes No PYes No NA PYes No PYes No PAN/A	11. If no, write ID/ Date 12. Sample # Date Positive for Res. Yes Chlorine? No Res. Chlorine 0-6 13.	/Time on Container Below:]Zinc Acetate See Exceptio		
ufficient information available to reconcile the sam the COC? atrix: Swater Soil Oil Other containers needing acid/base preservation have be tecked? containers needing preservation are found to be in npliance with EPA recommendation? IO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Colliform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid PFAS dspace in VOA Vials (greater than 6mm)? Blank Present?	MAK 2 G- IS-19 SIYes No en Ves No Yes No SAN/A de) SIYes No N/A Ves No SIN/A Ves No SIN/A	11. If no, write ID/ Date 12. Sample # Date Positive for Res. Yes Chlorine? No Res. Chlorine 0-6 13. 14.	/Time on Container Below:	Zinc Acetate		
ufficient information available to reconcile the sam the COC? atrix: Water Soil Oil Other containers needing acid/base preservation have be ecked? containers needing preservation are found to be in npliance with EPA recommendation? IO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Coliform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid PFAS dspace in VOA Vials (greater than 6mm)? Blank Present? Blank Custody Seals Present?	MAK 2 G- IS-19 PYes No PYes No	11. If no, write ID/ Date 12. Sample # Date Positive for Res. Yes Chlorine? No Res. Chlorine 0-6 13.	/Time on Container Below: HNO3 H25O4 PH Paper Lot# Roll 0-6 Strip # (if purchased):	Zinc Acetate		
ufficient information available to reconcile the sam the COC? atrix: ∑WaterSoifOifOther containers needing acid/base preservation have be ecked? containers needing preservation are found to be in npliance with EPA recommendation? IO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Coliform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid/PFAS dspace in VOA Vials (greater than 6mm)? Blank Present? Blank Custody Seals Present? CLIENT NOTIFICATION/RESOLUTION rson Contacted:	MAK 2 G- IS-19 SIYes No en Ves No Yes No SAN/A de) SIYes No N/A Ves No SIN/A Ves No SIN/A	11. If no, write ID/ Date 12. Sample # 12. Sample # NaOH Positive for Res. Yes Chlorine? No Res. Chiorine 0-6 13. 14. Pace Trip Blank Lo	/Time on Container Below: HNO ₃ H ₂ SO ₄ pH Paper Lot# Roll 0-6 Strip # (if purchased):	Zinc Acetate See Exceptio		
sufficient information available to reconcile the sam the COC? atrix Water Soil Oil Other containers needing acid/base preservation have be acked? containers needing preservation are found to be in npliance with EPA recommendation? NO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Coliform, TOC/DOC Oil and Grease, D/8015 (water) and Dixid PFAS	MAK 2 G- IS-19 SIYes No en Ves No Yes No SAN/A de) SIYes No N/A Ves No SIN/A Ves No SIN/A	11. If no, write ID/ Date 12. Sample # Date Positive for Res. Yes Chlorine? No Res. Chlorine 0-6 13. 14.	/Time on Container Below: HNO ₃ H ₂ SO ₄ pH Paper Lot# Roll 0-6 Strip # (if purchased):	Zinc Acetate See Exceptio O-14 Strip See Exceptior		
sufficient information available to reconcile the same the COC? atrix: Swater Soil Oil Other containers needing acid/base preservation have be acked? containers needing preservation are found to be in npliance with EPA recommendation? NO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Collform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid PFAS adspace in VOA Vials (greater than 6mm)? Blank Present? Blank Custody Seals Present? CLIENT NOTIFICATION/RESOLUTION rson Contacted: mments/Resolution:	MAK 2 G- IS-19 SIYes No en Ves No Yes No SAN/A de) SIYes No N/A Ves No SIN/A Ves No SIN/A	11. If no, write ID/ Date 12. Sample # 12. Sample # NaOH Positive for Res. Yes Chlorine? No Res. Chiorine 0-6 13. 14. Pace Trip Blank Lo	/Time on Container Below: HNO ₃ H ₂ SO ₄ pH Paper Lot# Roll 0-6 Strip # (if purchased):	Zinc Acetate See Exceptio O-14 Strip See Exceptior		
sufficient information available to reconcile the same the COC? atrix Swater Soil Oil Other containers needing acid/base preservation have be acked? containers needing preservation are found to be in npliance with EPA recommendation? NO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>12 Cyani eptions: VOA, Coliform, TOC/DOC Oil and Grease, D/8015 (water) and Dioxid PFAS adspace in VOA Vials (greater than 6mm)? Blank Present? CLIENT NOTIFICATION/RESOLUTION rson Contacted:	MAK 2 G- IS-19 PYes No PYes	11. If no, write ID/ Date 12. Sample # 12. Sample # NaOH Positive for Res. Yes Chlorine? No Res. Chlorine 0-6 13. 14. Pace Trip Blank Lo Date/Time:	/Time on Container Below: HNO3 H2SO4 pH Paper Lot# Roll 0-6 Strip : # (if purchased): Field Data Required? Yes	Zinc Acetate See Exception 0-14 Strip See Exception Image: See E		

Page 107 of 178 Page 12 of 83

Di	oxin		ater (Non Potab						ep Funnel EB-24858			
	QC Matrix Lot #:DI_3			E	_ Extract Solvents:					Extraction On (Date/Time):		
	Time of Spiking	ng: <u>06/21/19 11:20</u>			<u>0</u> 1	oluene	Lot #			06/21/19 13:30		
	Balance: 10		10B	AL2	F	Hexane Lot #				Extra	ction Off (Date/Time):	
SPE Filter Lot:					N	MeCl Lot #		187760		06/21/19 15:40		
	Standards Na		Name/ID		Amo	Amount I		v	Vitness	Expiration	Date	
	Internal Std. FL-I-12430-084		10	100 F		CHS		06/12/20				
	Native FL-N-12430-076			<u> </u>				03/04/20				
	-	DWCL								08/01/19		
	Recovery		-1243		10 MF					05/31/2		
	Tridecane	A	03698	06	1(10		MF				
	Others											
#	Sample ID)	Internal Standards	Native Standards	Full Bottle Weight	Empty Bottle Weight	pH/ResCl Check	pH Adjusted	Glassware Set	Location	Comments	
1	BLANK-71351	·	x		1425.3	<u>ш</u> 466.4						
2	LCS-71352		x	x	1407.3	467.1						
3	LCSD-71353		x	x	1422.0	466.9						
4	10479036001		x		1352.4	401.9				10-C11-122	8290,TI	
5	10479037001		х		510.0					10-C11-121	8290,TI	
6	10477019002-R		х		509.1					10-C11-047	1613 TD/I	
7	50227279001		х		506.8					10-C10-099	1613 TCDI	
8	7093111001		х		1611.3	510.0				10-C11-135	1613 TI	
9	10478824001		х		1505.7	453.9				10-C11-112	1613 T	
10	10478826001		x		1462.5	451.0				10-C11-112	1613 TC 1613 T-O; WHO05; L:	
11			x		1483.6	501.3				10-C11-118	1613 T-O; WHO05; L3	
12				1566.5	500.8				Rcving	TCDD/		
13	10479686002		X		1349.6	507.0				Rcving	TCDDA	
14	10479686003		X		1504.4	504.8				Rcving	1613 TCDD/F	
15 16	10479929001 10479929002		X X		1399.7 1550.6	508.8 509.6				10-C10-152 10-C10-152	1613 TCDD/F	

Relinquished By: M Felea

Received By: Print Revision: 2

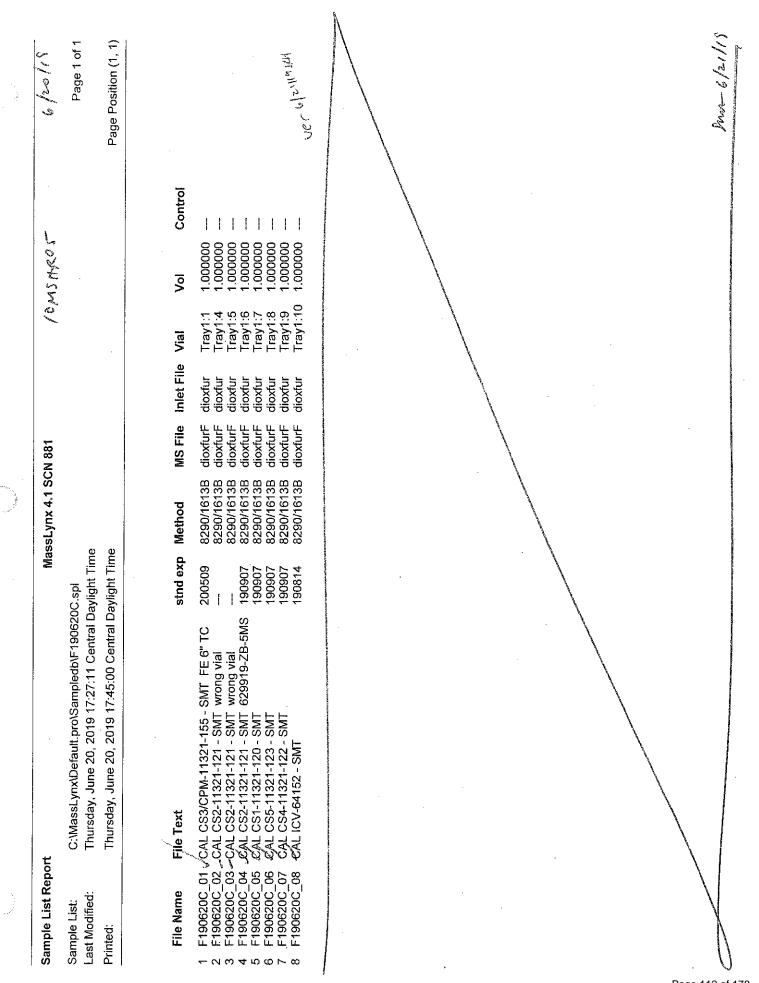
Date:

F-MN-H-045-Rev.03, 13Sep2018

_{Page 108}109178 Page 13 of 83

Report No.....10479467_1613TCDD_DFR

	Silica		Alumina	C	Carbon	Florisi
Initials	MF	Initials	MF	Initials	Initial	s
Date	6/24/2019	Date	6/24/2019	Date	Dat	e
Neutral Batch	634N	Alumina Lot #	87	Hexane Lot #	Florisil Lot	#
Basic Batch	585B	Hexane Lot #	190683	 Dispenser	Hexane Lot	#
Acid Batch	679A	Dispenser	Q266	50% Batch	Dispense	er
Hexane Lot #	190683	60% Batch	1852	Dispenser	6% Batc	h
Dispenser	Q266	Dispenser	Q266	75% Batch	Dispense	er
				Dispenser		
	Acid	Base		Toluene Lot #		
Sulphuric Ac	cid Lot # 1919	65		Dispenser	Sulfate Batch	า
Bas	e Batch			Methanol Lot #		
				Dispenser		
				_		


Client names have been blacked out on notebook pages in order to preserve client confidentiality

Analysis Key Code List

- = Not used	RRM = ReRun - Matrix
\checkmark = Worked up	RRLM = ReRun – Lock Mass
# = See comment # below	RRBI = ReRun – Bad Injection
Li = Liner, replace or clean	RRRT = ReRun – Retention Time shift
Ba = Baseplate, change	RR>S = Rerun – need better Sensitivity
SyB = Syringe, replace – bent	Re = Re-extract
SyP = Syringe, replace – plugged	AS = Adjust Slits
SyO = Syringe, replace – other	LC = Leak Check
IS = Injector Septum, replace	RB = Re-Boot system
BS = Batch Septum, replace	CiS = Cleaned inner Source
Fi = Filament, replace	CoS = Cleaned outer Source
Co = Contacts, adjust	AiS = Alternate inner Source
Ca = re-Calibrate	AoS = Alternate outer Source
Tu = Tune	<y =="" adjust="" down<="" focus="" td="" y=""></y>
TC = Tune and Calibrate	>Y = Adjust Y focus up
CC () = Cut Column (length cut)	Di () = Dilution needed (amount needed)
CO = Carry-Over possible	FE = Front End – liner, baseplate and septum

H033 Rev.00 (28Sep2009) Report No.....10479467_1613TCDD_DFR

Page 112 of 178 Page 17 of 83

Page Position (1, 1) Page 1 of 1 6/2-5/1 Aur 6/26/18 Control ł ł 000000 Ž 000000. 000000 000000. 000000 000000 000000 000000 000000 000000 000000 00000 000000 000000 00000 00000 00000 10MINGS <u></u>{o} Tray1:14 Tray1:17 Tray1:1 Tray1:12 Tray1:11 Tray1:15 Fray1:16 ray1:10 **Fray1:13** Fray1:9 Tray1:6 Tray1:7 Fray1:8 ray1:3 Tray1:1 ray1. ray1:` Vial Intet File dioxfur dioxful dioxfui dioxful dioxful dìoxfui dioxful dioxful **MS** File dioxfurF MassLynx 4.1 SCN 881 8290-TD 8290/1613B 8290/1613B 8290/1613B 613B-TDF 1613B-TDF 1613B-TDF 1613B-TD 1613B-TD 1613B-TD 1613B-TDF 613B-TDF 613B-TDF 613B-TD 8290-TD 8290-TD Method HOUSE stnd exp 200509 200509 200509 200509 Tuesday, June 25, 2019 15:35:34 Central Daylight Time Tuesday, June 25, 2019 15:59:46 Central Daylight Time ł 1 C:\MassLynx\Default.pro\Sampledb\F190625B.spl AL CS3/CPM-11321-155 - SMT FE 18" (LM G4) d/AL CS3/CPM-11321-155 - SMT TC F190625B_03 vCAL CS3/CPM-11321-155 - SMT F190625B 17 CAL CS3/CPM-11321-155 - SMT F190625B_04 - BLANK BLANK-64780-10X - SM F190625B_05 - SAMP 10479036001 - SMT F190625B_07 LEAMP 10477019002-R - SMT AMP 7093111001 - SMT LI AMP 10478826001 - SMT F190625B_06 (SAMP 10479037001 - SMT SAMP 50227279001 - SMT AMP 10478824001 - SMT AMP 10479686001 - SMT* AMP 10479686002 - SMT AMP 10479686003 - SMT AMP 10479929002 - SMT AMP 10479929001 - SMT File Text F190625B_08 64 F190625B_09 64 F190625B_10 64 F190625B_11 64 F1906258_12 50 F1906258_13 50 F1906258_14 50 F1906258_15 50 F1906258_16 50 F1906258_16 50 F190625B 01 190625B_02 V Sample List Report File Name Last Modified: Sample List: Printed: 25 2014001 59180

Page 1 of 1 Page Position (1, 1) Server 6/2-6/19 6 125/18 1.000000 1.000000 1.000000 1.000000 000000 000000 000000 000000 000000. 1.000000 Ē 10 MS W206 Fray1:8 Fray1:5 Tray1:6 Fray1:9 Tray1:5 [ray1:7 Fray1:8 Tray1:1 Iray1:6 Fray1:7 Fray1:1 Vial Inlet File dioxfur **WS** File dioxfur 8290/1613B MassLynx 4.1 SCN 881 Method stnd exp 190907 190907 190907 200618 190907 190907 190814 200618 190907 190907 190907 Tuesday, June 25, 2019 15:52:37 Central Daylight Time Tuesday, June 25, 2019 15:52:47 Central Daylight Time

 1
 U190625A_01_CAL CS3/CPM-11321-158 - SMT Ca
 20

 2
 U190625A_02-CAL CS3-11321-121 - SMT
 19

 3
 U190625A_03-CAL CS1-11321-120 - SMT LM G2
 19

 4
 U190625A_03-CAL CS1-11321-120 - SMT LM G2
 19

 5
 U190625A_04-CAL CS5-11321-122 - SMT
 19

 5
 U190625A_06-CAL CS5-11321-122 - SMT
 19

 6
 U190625A_06-CAL CS3/CPM-11321-128 - SMT TC 1010640-ZB5
 20

 7
 U190625A_06-CAL CS3/CPM-11321-128 - SMT
 19

 8
 U190625A_08-CAL CS1-11321-121 - SMT
 19

 9
 U190625A_08-CAL CS1-11321-120 - SMT
 19

 9
 U190625A_08-CAL CS1-11321-122 - SMT
 19

 10
 U190625A_10-CAL CS2-11321-122 - SMT
 19

 11
 U190625A_11-CAL CS4-11321-122 - SMT
 19

 C:\MassLynx\Default.pro\Sampledb\U190625A.SPL File Text Sample List Report File Name Last Modified: Sample List: Printed:

Report No.....10479467_1613TCDD_DFR

Page 114 of 178 Page 19 of 83

6/25/19	Page 1 of 1	Page Position (1, 1)	Free- 6/26/119
10MS MR. OG			Vial Inj Tray1:1 1.000000 Tray1:1 1.000000 Tray1:11 1.000000 Tray1:11 1.000000 Tray1:12 1.000000 Tray1:13 1.000000 Tray1:14 1.000000 Tray1:15 1.000000 Tray1:15 1.000000 Tray1:17 1.000000 Tray1:17 1.0000000 Tray1:17 1.0000000 Tray1:12 1.0000000 Tray1:12 1.0000000 Tray1:12 1.0000000 Tray1:12 1.0000000 Tray1:12 1.0000000 Tray1:13 1.0000000 Tray1:13 1.0000000 Tray1:13 1.0000000 Tray1:13 1.0000000 Tray1:13 1.0000000 Tray1:14 1.0000000 Tray1:12 1.0000000 Tray1:13 1.0000000 Tray1:13 1.0000000 Tray1:21 1.0000000 Tray1:21 1.
MassLynx 4.1 SCN 881	Q	6	MethodMS FileInter File8290/1613Bdioxfurdioxfur8290/1613Bdioxfurdioxfur2290dioxfurdioxfur2290dioxfurdioxfur2290dioxfurdioxfur8290/1613Bdioxfurdioxfur8290/1613Bdioxfurdioxfur8290/1613Bdioxfurdioxfur8290/1613Bdioxfurdioxfur8290/1613Bdioxfurdioxfur8290/1613Bdioxfurdioxfur8290/1613
Ma	Jtt.pro\Sampledb\U1906 2019 15:53:59 Central I	Tuesday, June 25, 2019 15:54:01 Central Daylight Time	File Text stnd exp File Text stnd exp real CS3/CPM-11321-158 - SMT stnd exp real CS3.LCS-71352 - SMT 200618 reason contraction smt reason contreason smt
 Sample List Report	List: dified:	Printed: Tt	File Name File Name File Name

Report No.....10479467_1613TCDD_DFR

1

Page 115 of 178 Page 20 of 83

Appendix B

Sample Analysis Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613E	Sample Anal	ysis Results
--------------	-------------	--------------

Client - PASI Long Island

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted	7093 F190 SMT	L 7 PLCRS 3111001)625B_09) mL		Matrix	Water		
% Moisture Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID	NA NA F190 F190)620)625B_03 NK-71351		Dilution Collected Received Extracted Analyzed	NA 06/11/2019 06/15/2019 06/21/2019 06/25/2019	9 09:30 9 13:30	
Native Isomers	Conc pg/L	EMPC pg/L	RL pg/L	Internal Standards		ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		10	2,3,7,8-TCDD-13C		2.00	72
				Recovery Standard 1,2,3,4-TCDD-13C	ł	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl	4	0.20	93
Conc = Concentration (Totals in EMPC = Estimated Maximum F RL = Reporting Limit			omers).	ND = Not De NA = Not Ap NC = Not Ca	plicable		

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 117 of 178 Page 22 of 83

Appendix C

QC and Calibration Results Summary

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Blank Analysis Results

Native	Conc	EMPC	RL	Internal	ng's Percent
Lab Sample Name Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename(s)	BLA U19 959 U19	LKEY NK-71351 0625B_07 mL 0625 0625B_01		Matrix Dilution Extracted Analyzed Injected By	Water NA 06/21/2019 13:30 06/25/2019 21:19 SMT

Isomers	pg/L	pg/L	pg/L	Standards	Added	Recovery
2,3,7,8-TCDD	ND		10	2,3,7,8-TCDD-13C	2.00	74
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	102

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 119 of 178 Page 24 of 83

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename Method Blank ID	LCS-71352 U190625B_03 940 mL U190625 U190625B_01 BLANK-71351	Matrix Dilution Extracted Analyzed Injected By	Water NA 06/21/2019 13:30 06/25/2019 18:26 SMT
Method Blank ID	BLANK-71351	Injected By	SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDD	10	11	7.3	14.6	114
2,3,7,8-TCDD-37Cl4	10	11	3.7	15.8	112
2,3,7,8-TCDD-13C	100	92	25.0	141.0	92

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

*=SeeDiscussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 120 of 178 Page 25 of 83

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted ICAL ID CCal Filename	LCSD-71353 U190625B_04 955 mL U190625 U190625B_01	Matrix Dilution Extracted Analyzed	Water NA 06/21/2019 13:30 06/25/2019 19:10
Method Blank ID	BLANK-71351	Injected By	SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDD	10	11	7.3	14.6	113
2,3,7,8-TCDD-37Cl4	10	9.3	3.7	15.8	93
2,3,7,8-TCDD-13C	100	77	25.0	141.0	77

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

*=SeeDiscussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 121 of 178 Page 26 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client	PASI Long Island				
Spike 1 ID Spike 1 Filename	LCS-71352 U190625B_03		Spike 2 ID Spike 2 Filename	LCSD-71353 U190625B_04	
Compound		Spike 1 %REC	Spike 2 %REC	%RPD	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 122 of 178 Page 27 of 83 Method 1613B Initial Calibration (ICAL) - Response Factor Summary

ICAL ID Calibration Date Instrument Column Phase Column ID No.	F190620 06/20/2019 10MSHR05 (F) ZB5-MS 0.25mm ZB5-MS-629919			Data F CS-1 CS-2 CS-3 CS-4 CS-5	iles: F190620C_05 F190620C_04 F190620C_01 F190620C_07 F190620C_06	Time 17:57 17:17 14:33 19:16 18:36	Injected SMT SMT SMT SMT SMT
Isomer	CS-1	CS-2	CS-3	CS-4	CS-5	Ave RF	%RSD
Native Analyte 2,3,7,8-TCDD	0.9373	0.9455	1.1569	0.9977	1.0136	1.0102	8.74
Labeled Analyte 2,3,7,8-TCDD-13C	1.0013	1.0206	1.1268	0.9990	1.0306	1.0357	5.08
CleanupStandard 2,3,7,8-TCDD-37Cl4	1.0162	1.0207	1.0664	1.0241	1.0598	1.0374	2.28

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 123 of 178 Page 28 of 83 Method 1613B Initial Calibration (ICAL) - Isotope Ratio Summary

ICAL ID Calibration Date Instrument Column Phase Column ID No.	F190620 06/20/2019 10MSHR05 (F) ZB5-MS 0.25mm ZB5-MS-629919			Data F CS-1 CS-2 CS-3 CS-4 CS-5	iles: F190620C_05 F190620C_04 F190620C_01 F190620C_07 F190620C_06	Time 17:57 17:17 14:33 19:16 18:36	Injected SMT SMT SMT SMT SMT
Isomer	CS-1	CS-2	CS-3	CS-4	CS-5	L	imits
Native Analyte 2,3,7,8-TCDD	0.85	0.82	0.77	0.78	0.80	0.6	5 - 0.89
Labeled Analyte 2,3,7,8-TCDD-13C	0.79	0.79	0.78	0.79	0.79	0.6	5 - 0.89
Recovery Standard 1,2,3,4-TCDD-13C	0.80	0.79	0.80	0.80	0.81	0.6	5 - 0.89

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Initial Calibration (ICAL) - Response Factor Summary

ICAL ID Calibration Date Instrument Column Phase Column ID No.	U190625 06/25/2019 10MSHR06 (U) ZB-5MS 0.25mm 1010640			Data F CS-1 CS-2 CS-3 CS-4 CS-5	iles: U190625A_08 U190625A_07 U190625A_06 U190625A_10 U190625A_09	Time 13:28 12:45 12:03 14:57 14:16	Injected SMT SMT SMT SMT SMT
Isomer	CS-1	CS-2	CS-3	CS-4	CS-5	Ave RF	%RSD
Native Analyte 2,3,7,8-TCDD	0.8872	0.9537	1.0760	0.9331	0.9377	0.9575	7.38
Labeled Analyte 2,3,7,8-TCDD-13C	0.9612	0.9567	0.9756	0.9274	1.0240	0.9690	3.65
CleanupStandard 2,3,7,8-TCDD-37Cl4	1.0012	1.0255	0.9281	0.9412	1.0332	0.9858	4.91

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 125 of 178 Page 30 of 83 Method 1613B Initial Calibration (ICAL) - Isotope Ratio Summary

ICAL ID Calibration Date Instrument Column Phase Column ID No.	U190625 06/25/2019 10MSHR06 (U) ZB-5MS 0.25mm 1010640			Data F CS-1 CS-2 CS-3 CS-4 CS-5	iles: U190625A_08 U190625A_07 U190625A_06 U190625A_10 U190625A_09	Time 13:28 12:45 12:03 14:57 14:16	Injected SMT SMT SMT SMT SMT
Isomer	CS-1	CS-2	CS-3	CS-4	CS-5	L	imits
Native Analyte 2,3,7,8-TCDD	0.83	0.81	0.78	0.78	0.77	0.6	5 - 0.89
Labeled Analyte 2,3,7,8-TCDD-13C	0.76	0.79	0.79	0.77	0.79	0.6	5 - 0.89
Recovery Standard 1,2,3,4-TCDD-13C	0.79	0.80	0.79	0.79	0.80	0.6	5 - 0.89

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 126 of 178 Page 31 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD Calibration Verification Method 1613B

Lab Name Filename Injected By Analyzed	CS3/CPM-11321-155 F190625B_03 SMT 06/25/2019 14:43		Instrument ID GC Column ID ICAL ID	10MSHR05 (F) ZB5-MS-629919 F190620	
Native Isomers	m/z's Forming Ratio (1)	Ion Abund. Ratio	QC Limits (2)	Conc Found	Conc. Range (ng/ml) (3)
Native Analyte					
2,3,7,8-TCDD	M/M+2	0.83	0.65 - 0.89	11.7	7.8 - 12.9
Labeled Analytes					
1,2,3,4-TCDD-13C 2,3,7,8-TCDD-13C	M/M+2 M/M+2	0.79 0.80	0.65 - 0.89 0.65 - 0.89	 98.2	 82 - 121
Cleanup Standard					
2,3,7,8-TCDD-37Cl4		(4)		9.3	7.9 - 12.7

1. See Table 8, Method 1613, for m/z specifications.

2. Ion Abundance Ratio Control Limits from Table 9, Method 1613.

3. Contract-required concentration range as specified in Table 6, Method 1613, under VER (10/94 Revision).

4. No ion abundance ratio; report concentration found.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 127 of 178 Page 32 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

2,3,7,8-TCDD Calibration Verification Method 1613B

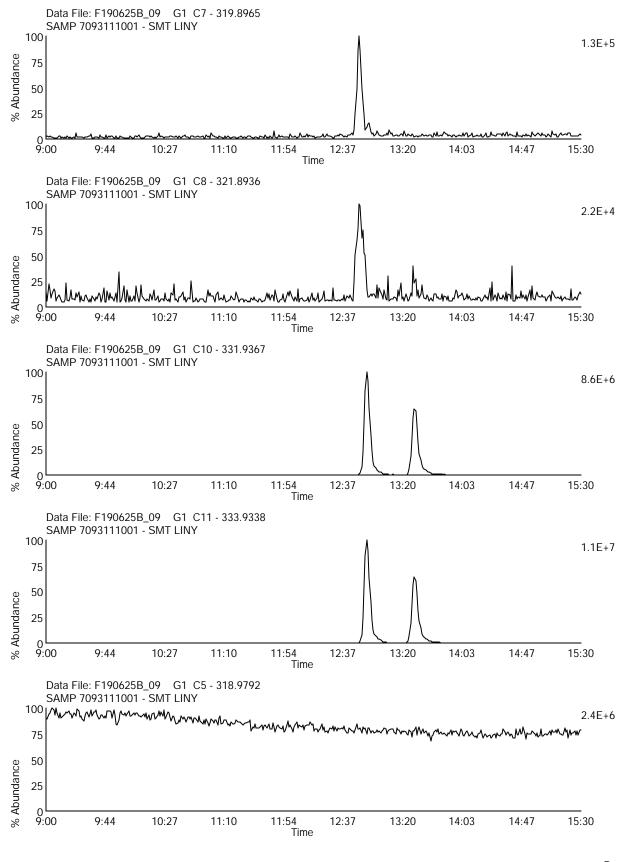
Lab Name Filename Injected By Analyzed	CS3/CPM-11321-158 U190625B_01 SMT 06/25/2019 17:02		Instrument ID GC Column ID ICAL ID	10MSHR06 (U) 1010640 U190625	
Native Isomers	m/z's Forming Ratio (1)	Ion Abund. Ratio	QC Limits (2)	Conc Found	Conc. Range (ng/ml) (3)
Native Analyte					
2,3,7,8-TCDD	M/M+2	0.75	0.65 - 0.89	11.0	7.8 - 12.9
Labeled Analytes					
1,2,3,4-TCDD-13C 2,3,7,8-TCDD-13C	M/M+2 M/M+2	0.80 0.78	0.65 - 0.89 0.65 - 0.89	 105.1	 82 - 121
Cleanup Standard					
2,3,7,8-TCDD-37Cl4		(4)		10.0	7.9 - 12.7

1. See Table 8, Method 1613, for m/z specifications.

2. Ion Abundance Ratio Control Limits from Table 9, Method 1613.

3. Contract-required concentration range as specified in Table 6, Method 1613, under VER (10/94 Revision).

4. No ion abundance ratio; report concentration found.


REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 128 of 178 Page 33 of 83

Appendix D

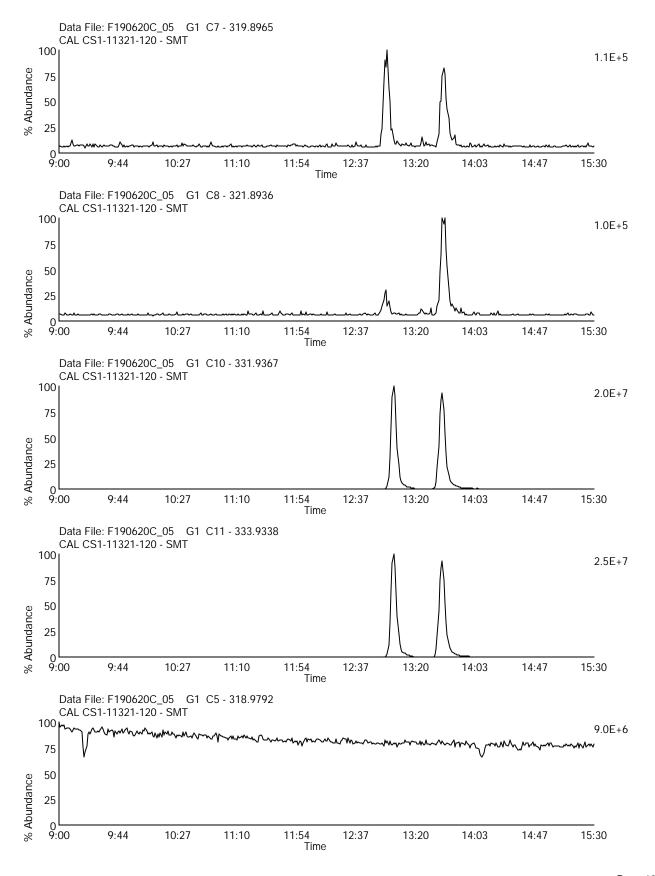
Sample Raw Data

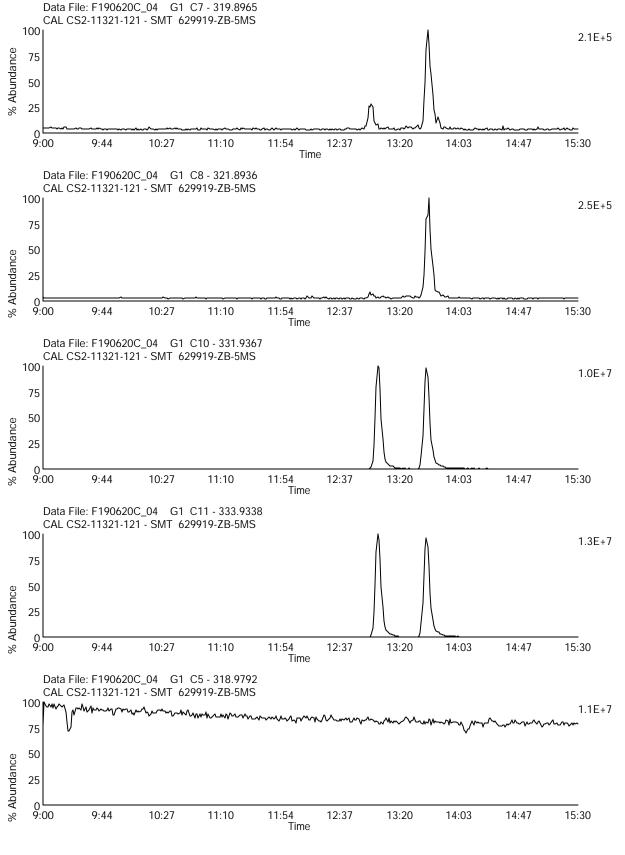
Page 130 of 178 Page 35 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

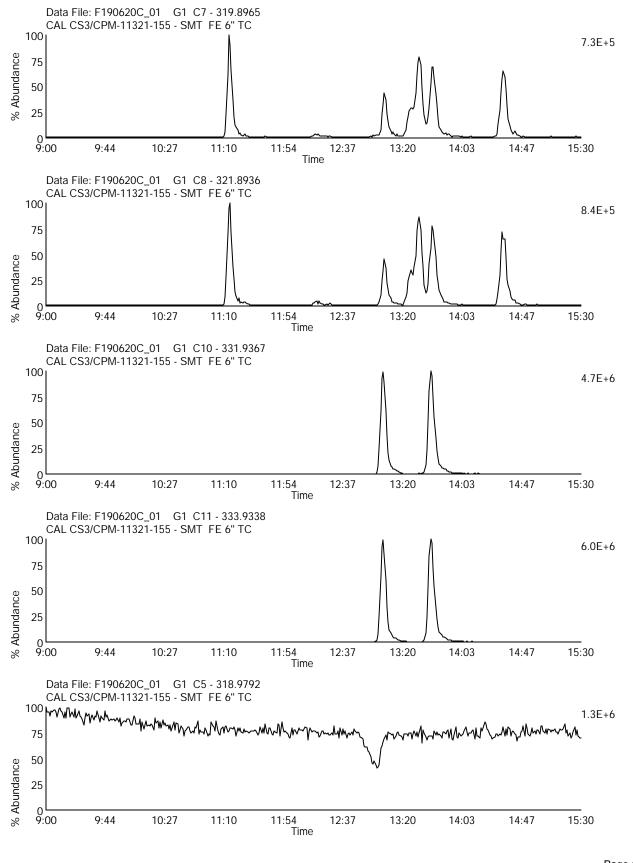
TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	CELL 7 PLCRS 7093111001 F190625B_09 06/25/2019 19:38			Instrum GC Co	Injected By Instrument ID GC Column ID ICAL ID		SMT 10MSHR05 (F) ZB5-MS-629919 F190620			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	12:54 13:29 13:31 13:30	4.12e7 3.13e7 9.02e6 ND	5.26e7 3.90e7 ND	8.59e6 5.49e6 1.65e6 ND	1.07e7 6.88e6 ND	8.566e3 8.083e3 4.873e3 4.834e3	3.014e3 7.082e3 1.860e3	0.78 0.80	


REPORT OF LABORATORY ANALYSIS


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

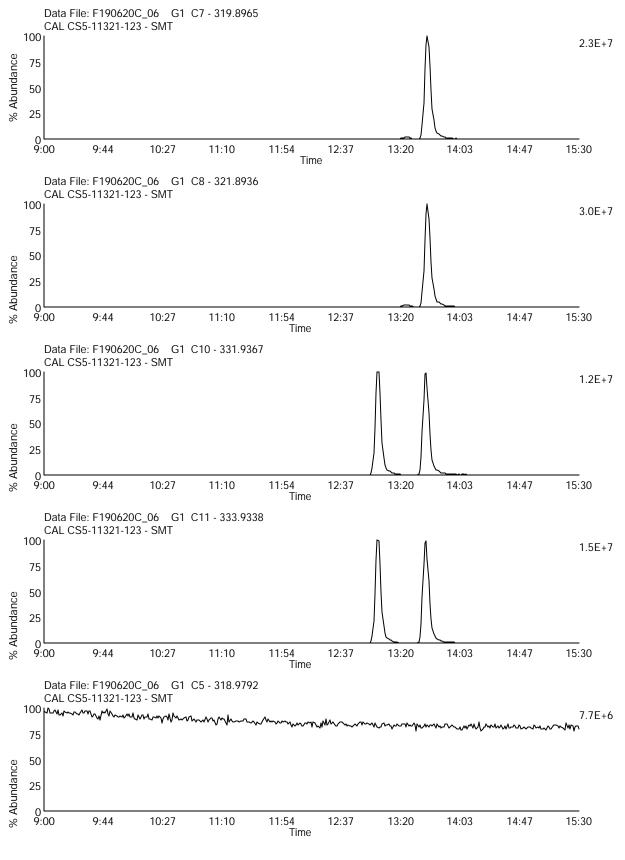
Page 131 of 178 Page 36 of 83


Appendix E

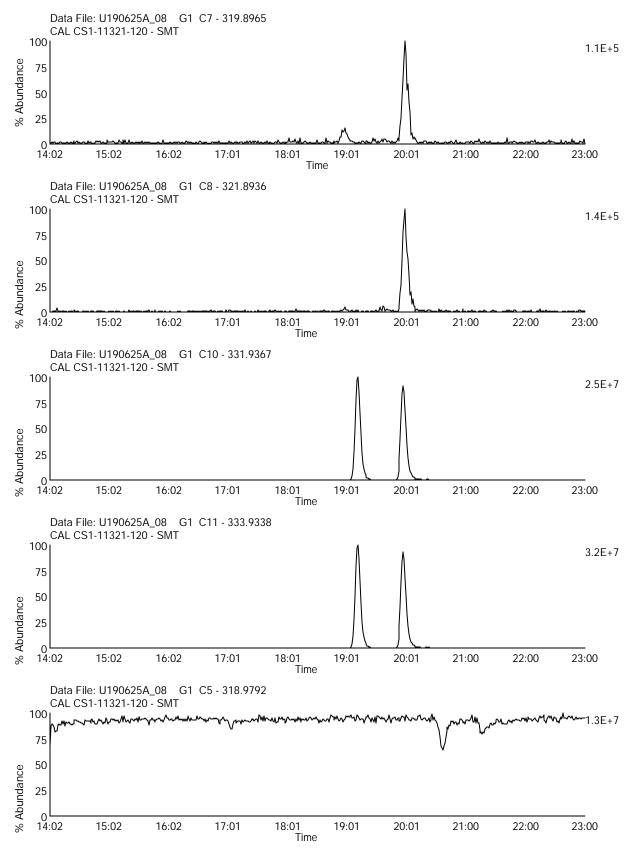
Calibration Raw Data



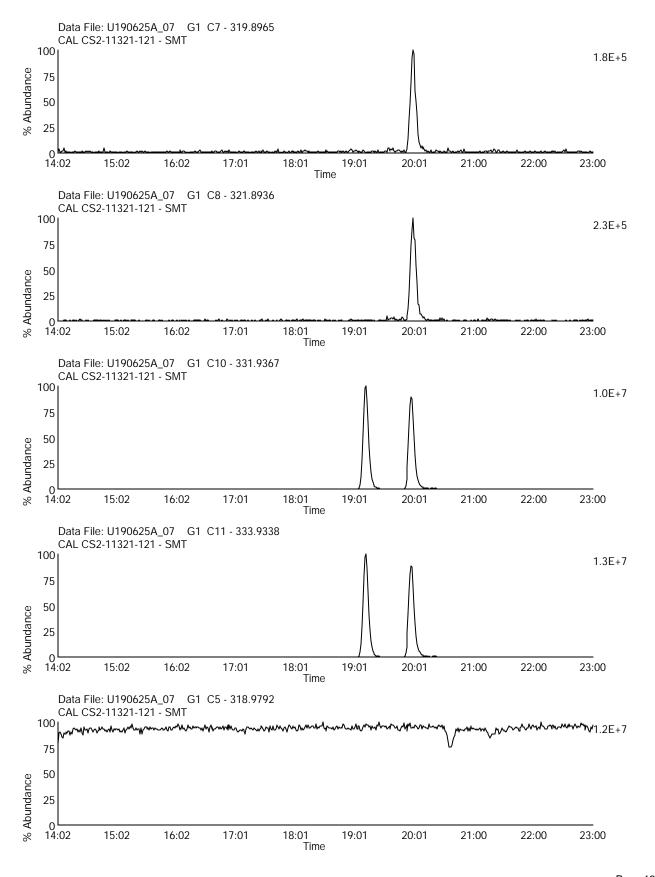
Page 134 of 178 Page 39 of 83



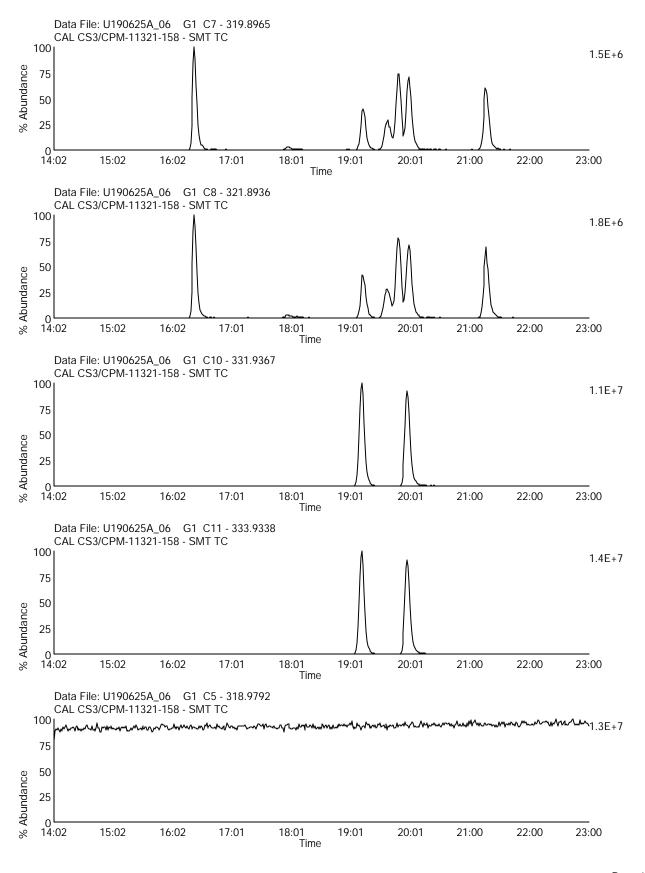
Report No.....10479467_1613TCDDce DFaRtical Services, LLC.

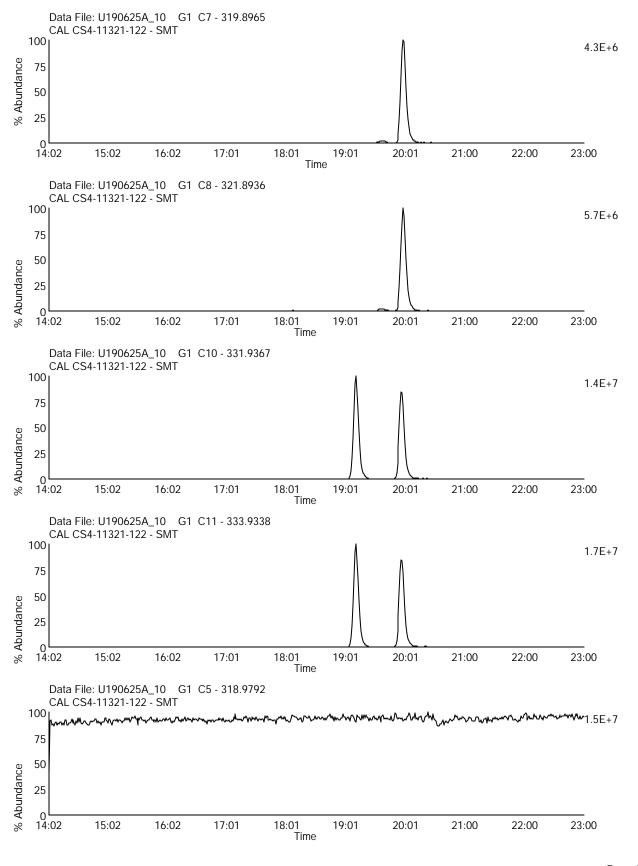

Report No.....10479467_1613TCDDceDraReprical Services, LLC.

Instrument: 10MSHR05 (F)

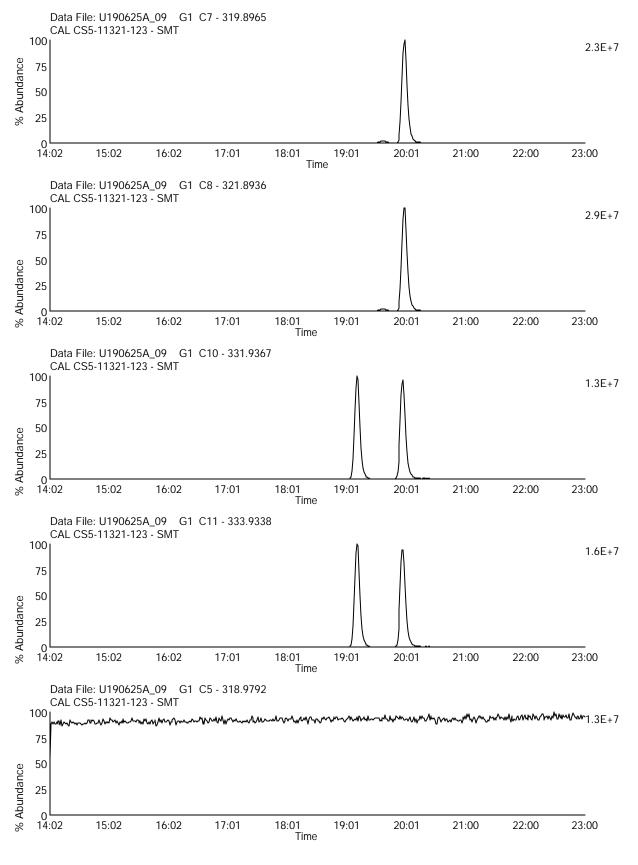

Report No.....10479467_1613TCDDceDraRytical Services, LLC.

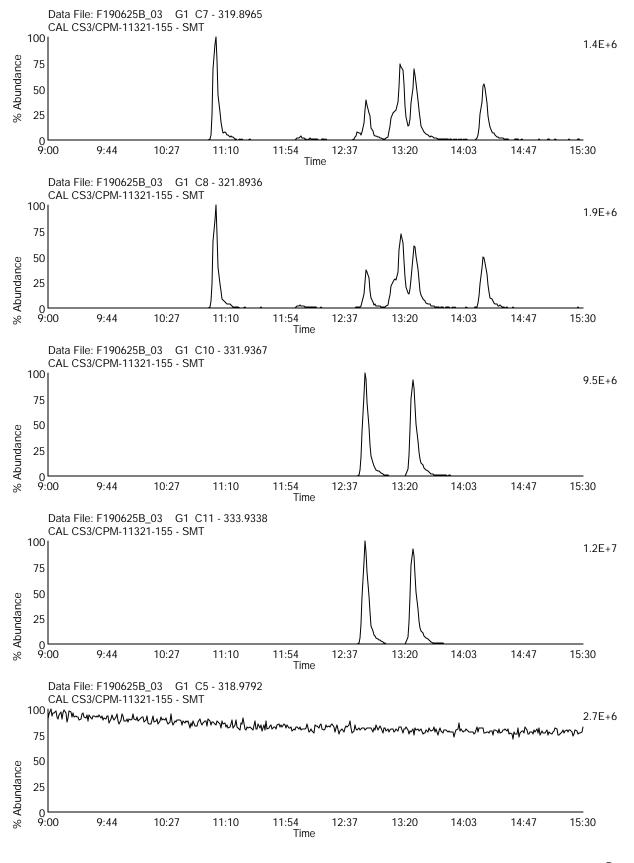
Page 137 of 178 Page 42 of 83

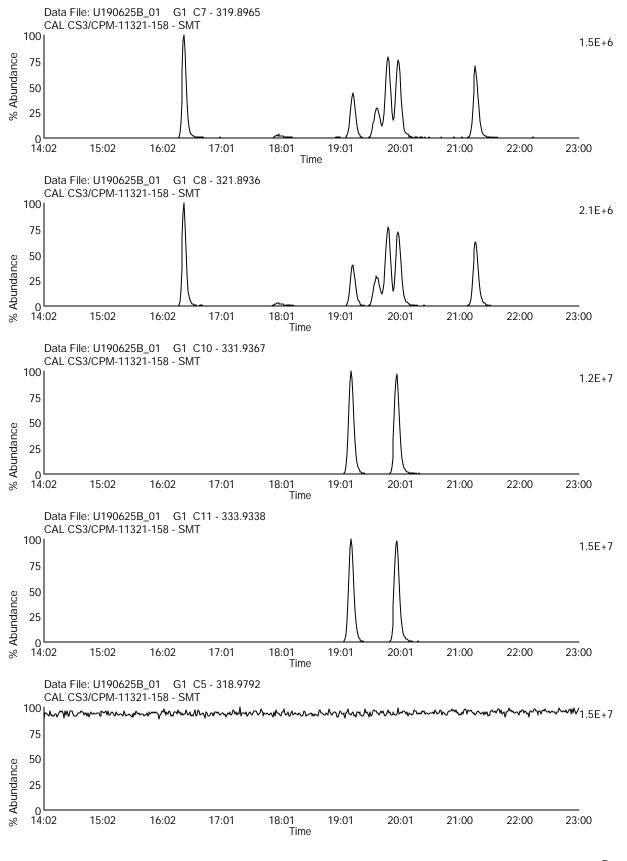



Page 138 of 178 Page 43 of 83

Lab Sample ID: CS2-11321-121 Client Sample ID: Instrument: 10MSHR06 (U)




Lab Sample ID: CS3/CPM-11321-158 Client Sample ID: Instrument: 10MSHR06 (U)



Page 141 of 178 Page 46 of 83

Lab Sample ID: CS3/CPM-11321-158 Client Sample ID: Instrument: 10MSHR06 (U)

Report No.....10479467_1613TCDDceDraRytical Services, LLC.

Page 144 of 178 Page 49 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS1-11321-120 Filename F190620C_05 Analyzed 06/20/2019 17:57				Injecte Instrum GC Co ICAL II	nent ID Iumn ID		HR05 (F) IS-629919 20			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C 1 7Cl4 1	3:04 3:40 3:41 3:41 3:41	9.92e7 9.89e7 1.13e6 (M)4.82e5	1.24e8 1.25e8 5.65e5	1.95e7 1.81e7 2.03e5 8.23e4	2.46e7 2.29e7 9.67e4	 	 	0.80 0.79 0.85	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 145 of 178 Page 50 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	Lab ID CS2-11321-121 Filename F190620C_04				Injecte Instrum GC Co ICAL II	nent ID Iumn ID		HR05 (F) IS-629919 20		
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	13:04 13:40 13:41 13:41	5.27e7 5.38e7 2.44e6 1.04e6	6.68e7 6.82e7 1.27e6	1.03e7 1.00e7 4.55e5 1.98e5		 	 	0.79 0.79 0.82	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 146 of 178 Page 51 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS3/CPM-11321-155 Filename F190620C_01 Analyzed 06/20/2019 14:33					Injecte Instrum GC Co ICAL IE	nent ID lumn ID		HR05 (F) IS-629919 20		
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	13:06 13:41 13:42 13:43	(M)2.32e7 (M)2.57e7 5.55e6 2.96e6	2.89e7 3.30e7 (M)3.83e6	4.64e6 4.69e6 9.87e5 4.96e5	5.98e6	 	 	0.80 0.78 0.77	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 147 of 178 Page 52 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS4-11321-122 Filename F190620C_07 Analyzed 06/20/2019 19:16					nent ID lumn ID		HR05 (F) IS-629919 20			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	13:04 13:39 13:40 13:40	6.47e7 6.42e7 5.98e7 2.55e7	8.14e7 8.17e7 3.27e7	1.28e7 1.18e7 1.09e7 4.68e6	1.59e7 1.48e7 6.03e6		 	0.80 0.79 0.78	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 148 of 178 Page 53 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS5-11321-123 Filename F190620C_06 Analyzed 06/20/2019 18:36				Injecte Instrun GC Co ICAL II	nent ID Iumn ID		HR05 (F) IS-629919 20			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	13:04 13:39 13:40 13:40	6.07e7 6.19e7 2.88e8 1.26e8	7.52e7 7.81e7 1.58e8	1.16e7 1.15e7 5.31e7 2.27e7	1.47e7 1.46e7 2.96e7	 	 	0.81 0.79 0.80	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 149 of 178 Page 54 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS1-11321-120 Filename U190625A_08 Analyzed 06/25/2019 13:28						nent ID lumn ID	SMT 10MSI 10106 U1906	-		
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:12 19:58 19:60 19:60	1.53e8 1.44e8 1.73e6 6.70e5	1.93e8 1.89e8 8.06e5	2.52e7 2.28e7 2.54e5 1.08e5	2.99e7	 2.010e3	 1.896e3	0.79 0.76 0.83	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 150 of 178 Page 55 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS2-11321-121 Filename U190625A_07 Analyzed 06/25/2019 12:45						nenť ID lumn ID	SMT 10MS 10106 U1906	-		
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:12 19:58 19:60 19:60	6.25e7 5.93e7 2.89e6 1.15e6	7.84e7 7.54e7 1.42e6	1.03e7 9.20e6 4.55e5 1.82e5		 	 	0.80 0.79 0.81	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 151 of 178 Page 56 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS3/CPM-11321-158 Filename U190625A_06 Analyzed 06/25/2019 12:03					Injecte Instrum GC Co ICAL IE	nent ID Iumn ID	SMT 10MSI 10106 U1906			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:12 19:58 19:60 19:60	6.47e7 6.34e7 1.36e7 6.78e6	8.23e7 8.00e7 8.65e6	1.12e7 1.03e7 2.25e6 1.05e6	1.43e7 1.31e7 1.30e6	 	 	0.79 0.79 0.78	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 152 of 178 Page 57 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	Lab ID CS4-11321-122 Filename U190625A_10				Injecte Instrun GC Co ICAL II	nent ID Iumn ID	SMT 10MSI 10106 U1906			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:11 19:57 19:59 19:59	7.76e7 7.08e7 6.60e7 2.65e7	9.78e7 9.19e7 3.42e7	1.36e7 1.15e7 1.08e7 4.28e6	1.72e7 1.45e7 5.64e6		 	0.79 0.77 0.78	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 153 of 178 Page 58 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	ab ID CS5-11321-123 iilename U190625A_09					nent ID lumn ID	SMT 10MSI 10106 U1906			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:11 19:58 19:59 19:60	7.50e7 7.64e7 3.50e8 1.41e8	9.42e7 9.69e7 1.84e8	1.26e7 1.21e7 5.46e7 2.27e7		 	 	0.80 0.79 0.77	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 154 of 178 Page 59 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS3/CPM-11321-155 Filename F190625B_03 Analyzed 06/25/2019 14:43				Injecte Instrum GC Co ICAL IE	nent ID Iumn ID		HR05 (F) 1S-629919 20			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	12:52 13:26 13:27 13:27	4.82e7 4.97e7 1.06e7 6.00e6	6.14e7 6.18e7 7.20e6	9.44e6 8.76e6 1.80e6 9.66e5	1.09e7	 	 	0.79 0.80 0.83	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 155 of 178 Page 60 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID CS3/CPM-11321-158 Filename U190625B_01 Analyzed 06/25/2019 17:02				Injecte Instrum GC Co ICAL IE	nent ID Iumn ID	SMT 10MSI 10106 U1906				
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:11 19:58 19:59 19:59	7.16e7 7.22e7 1.59e7 7.37e6	9.00e7 9.24e7 9.89e6	1.21e7 1.17e7 2.64e6 1.16e6			 	0.80 0.78 0.75	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 156 of 178 Page 61 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

Column Performance Mix (CPM) / Window Defining Mix (WDM)

Posolution:	16 20/
Time Analyzed:	14:33
Date Analyzed:	6/20/2019
Raw Data File:	F190620C_01
Lab Sample ID:	CS3/CPM-11321-155

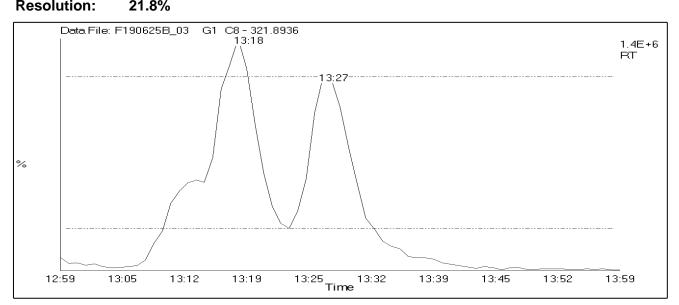
Injected By:	SMT
Instrument ID:	10MSHR05 (F)
GC Column	ZB5-MS
GC Column S/N:	ZB5-MS-629919

Resolution:

Group	Msss	First Eluter	Last Eluter
TCDF	305.8987	10:18	14:44
PeCDF	341.8567	14:44	22:06
HxCDF	373.8207	24:14	30:23
HpCDF	407.7818	32:14	33:39
OCDF	441.7428	35:35	35:35
TCDD	321.8936	11:15	14:33
PeCDD	357.8517	16:46	21:35
HxCDD	391.8127	26:03	30:02
HpCDD	425.7737	32:33	33:16
OCDD	459.7347	35:32	35:32
1234-TCDD-13	331.9367	13:06	13:06
123789-HxCD	401.8559	30:01	30:01

REPORT OF LABORATORY ANALYSIS

F-MN-H-047-Rev.00 22-Oct-2014


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

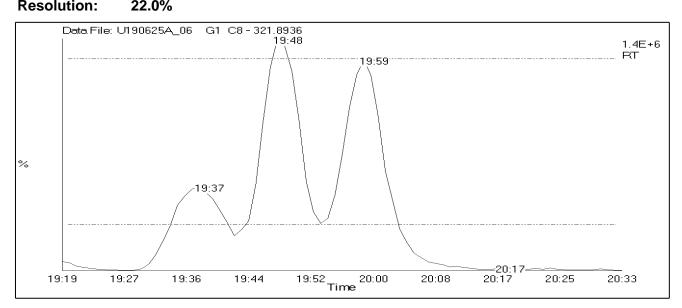
Column Performance Mix (CPM) / Window Defining Mix (WDM)

Pacalution	24 00/		
Time Analyzed:	14:43	GC Column S/N:	ZB5-MS-629919
Date Analyzed:	6/25/2019	GC Column	ZB5-MS
Raw Data File:	F190625B_03	Instrument ID:	10MSHR05 (F)
Lab Sample ID:	CS3/CPM-11321-155	Injected By:	SMT

Group	Msss	First Eluter	Last Eluter
TCDF	305.8987	10:07	14:27
PeCDF	341.8567	14:27	21:41
HxCDF	373.8207	23:47	30:10
HpCDF	407.7818	32:05	33:30
OCDF	441.7428	35:28	
TCDD	321.8936	11:03	14:17
PeCDD	357.8517	16:27	21:12
HxCDD	391.8127	25:34	29:49
HpCDD	425.7737	32:25	33:08
OCDD	459.7347	35:24	
1234-TCDD-13	331.9367	12:52	
123789-HxCD	401.8559	29:48	

REPORT OF LABORATORY ANALYSIS

F-MN-H-047-Rev.00 22-Oct-2014


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

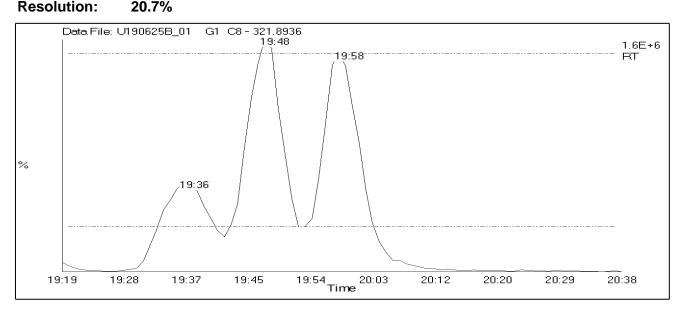
Column Performance Mix (CPM) / Window Defining Mix (WDM)

Becalution	22.00/		
Time Analyzed:	12:03	GC Column S/N:	1010640
Date Analyzed:	6/25/2019	GC Column	ZB-5MS
Raw Data File:	U190625A_06	Instrument ID:	10MSHR06 (U)
Lab Sample ID:	CS3/CPM-11321-158	Injected By:	SMT

Group	Msss	First Eluter	Last Eluter
TCDF	305.8987	15:03	21:33
PeCDF	341.8567	21:26	30:32
HxCDF	373.8207	31:31	34:19
HpCDF	407.7818	35:29	36:40
OCDF	441.7428	38:42	38:42
TCDD	321.8936	16:24	21:17
PeCDD	357.8517	24:21	30:10
HxCDD	391.8127	32:13	34:03
HpCDD	425.7737	35:42	36:16
OCDD	459.7347	38:33	38:33
1234-TCDD-13	331.9367	19:12	19:12
123789-HxCD	401.8559	34:02	34:02

REPORT OF LABORATORY ANALYSIS

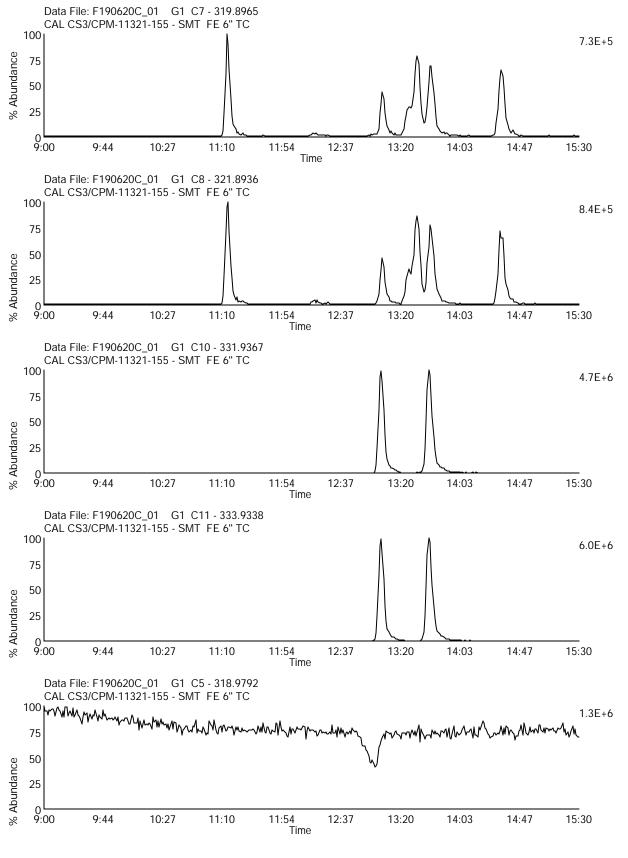
F-MN-H-047-Rev.00 22-Oct-2014


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

> Tel: 612-607-1700 Fax: 612- 607-6444

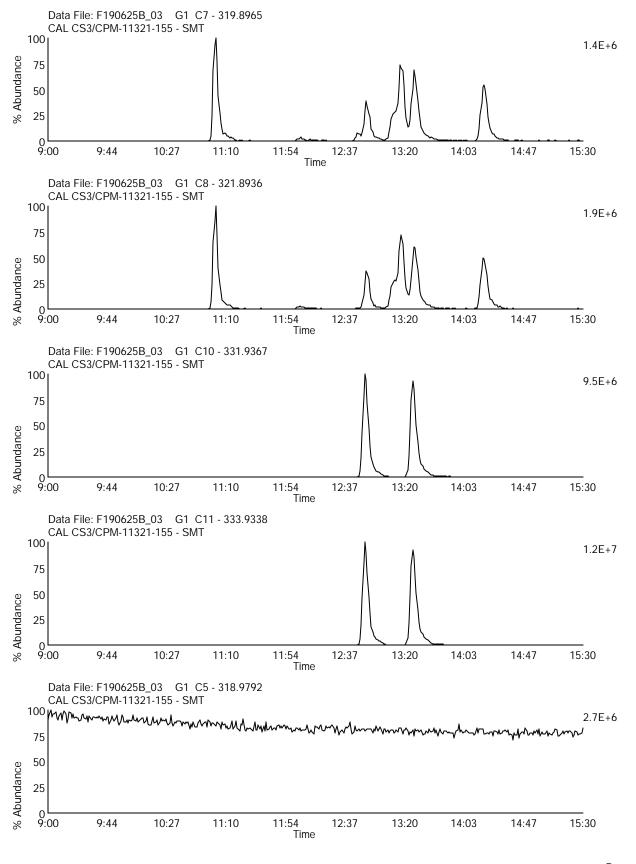
Column Performance Mix (CPM) / Window Defining Mix (WDM)

Deceluition	00 70/		
Time Analyzed:	17:02	GC Column S/N:	1010640
Date Analyzed:	6/25/2019	GC Column	ZB-5MS
Raw Data File:	U190625B_01	Instrument ID:	10MSHR06 (U)
Lab Sample ID:	CS3/CPM-11321-158	Injected By:	SMT

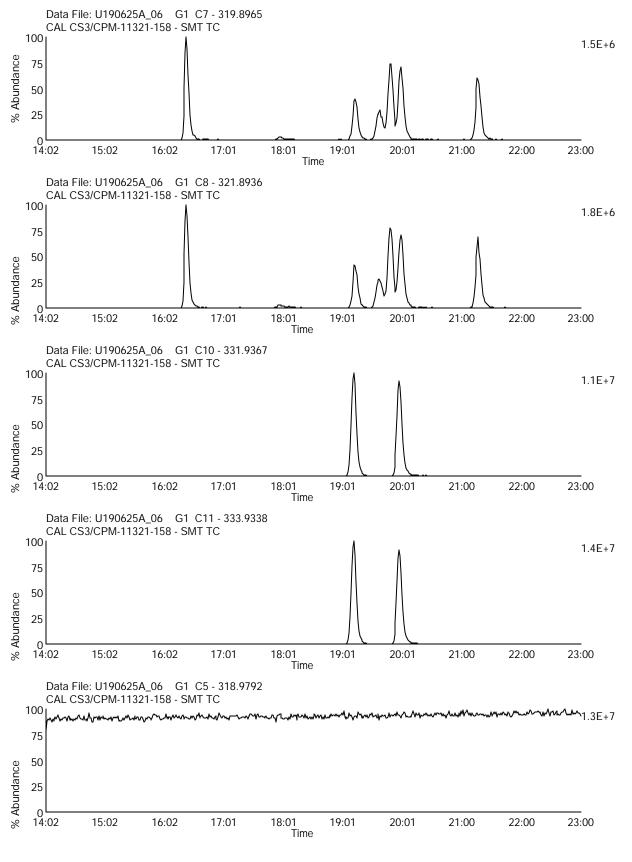


Group	Msss	First Eluter	Last Eluter
TCDF	305.8987	15:01	21:34
PeCDF	341.8567	21:25	30:32
HxCDF	373.8207	31:31	34:19
HpCDF	407.7818	35:28	36:39
OCDF	441.7428	38:41	
TCDD	321.8936	16:24	21:16
PeCDD	357.8517	24:19	30:10
HxCDD	391.8127	32:12	34:03
HpCDD	425.7737	35:42	36:16
OCDD	459.7347	38:33	
1234-TCDD-13	331.9367	19:11	
123789-HxCD	401.8559	34:02	

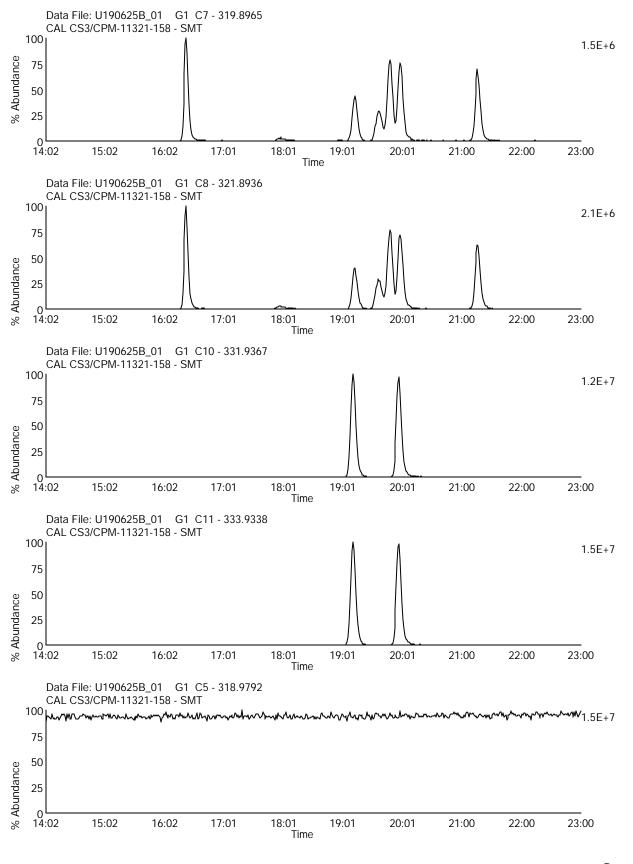
REPORT OF LABORATORY ANALYSIS


F-MN-H-047-Rev.00 22-Oct-2014

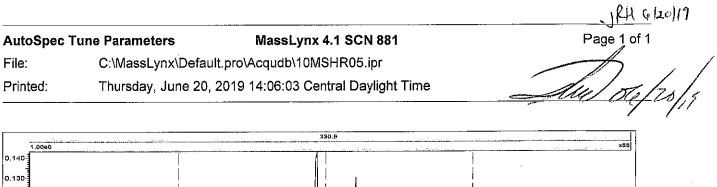
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

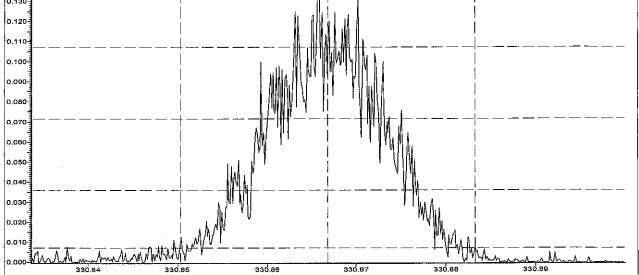

Report No.....10479467_1613TCDDce DFaRtical Services, LLC.

Lab Sample ID: CS3/CPM-11321-155 Client Sample ID: CPM/WDM Instrument: 10MSHR05 (F)


Page 162 of 178 Page 67 of 83

Lab Sample ID: CS3/CPM-11321-158 Client Sample ID: CPM/WDM Instrument: 10MSHR06 (U)




Page 163 of 178 Page 68 of 83

Lab Sample ID: CS3/CPM-11321-158 Client Sample ID: CPM/WDM Instrument: 10MSHR06 (U)

Report No.....10479467_1613TCDDceDFaRytical Services, LLC.

Source	(El+))
--------	-------	---

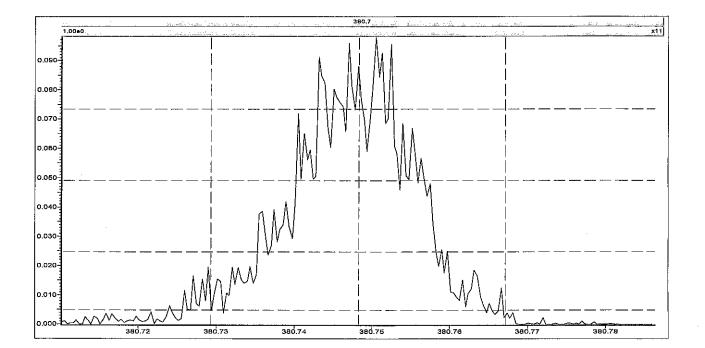
Ion Repeller (V)	-4.62
Focus 1	293
Beam Centre	-18.4
Focus 2	4463
Temperature (C)	280
Elec Energy (eV)	35.0
Trap Current (uA)	500.0
Y Deflect 1	-121.1
Z Deflect 1	-19.6
Z Deflect 2	-14.6
Z Focus 2	2490
Z Focus 3	0
Z Deflect 3	-11.4
Y Focus	3383
Rotate 2	-2.2
Curve 2	21.9
Curve 3	4.9
Rotate 3	-33.4
Rotate 4	-49.5
V Acc (V)	7035.81
Magnet Mass	330.9
Source Slit	42.06
Collector Slit	18.02
MIKES Slit	100.00
Alpha	75.00
Detector Voltage	350
Ion Energy	-8.20
Z4 Restrictor	Off
Vacc Limit	8000

Analyser No information

Engineer

AutoSpec Tune Parameters

MassLynx 4.1 SCN 881

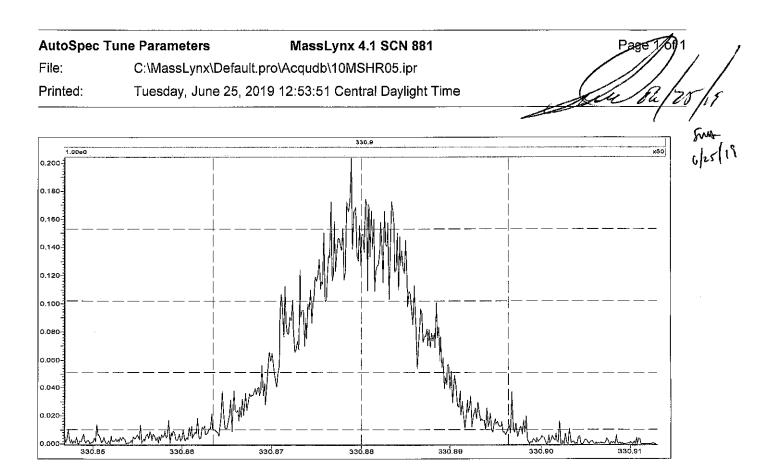

Page 1 of 1 BAC 6/21/19

File:

C:\MassLynx\DEFAULT.PRO\ACQUDB\10MSHR05.ipr

Printed:

Friday, June 21, 2019 06:56:03 Central Daylight Time

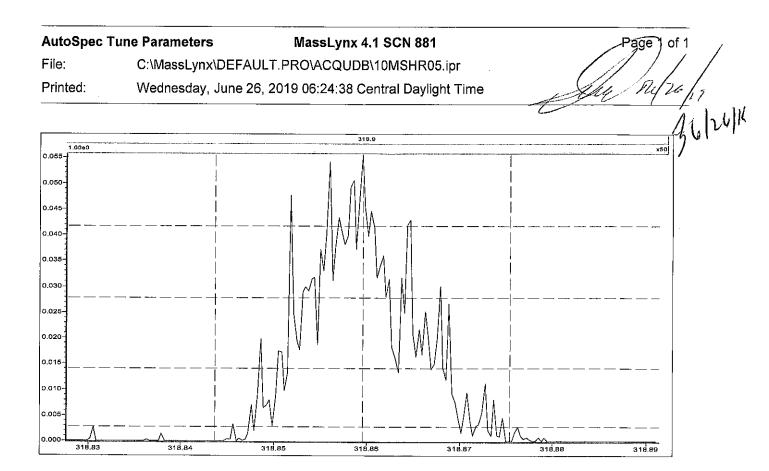

Source (EI+)

Ion Repeller (V)	-4.62
Focus 1	293
Beam Centre	-18.4
Focus 2	4463
Temperature (C)	280
Elec Energy (eV)	35.0
Trap Current (uÁ)	500.0
Y Deflect 1	-121.1
Z Deflect 1	-19.6
Z Deflect 2	-14.6
Z Focus 2	2490
Z Focus 3	0
Z Deflect 3	-11.4
Y Focus	3383
Rotate 2	-2.2
Curve 2	21.9
Curve 3	4.9
Rotate 3	-33.4
Rotate 4	-49.5
V Acc (V)	7042.14
Magnet Mass	330.9
Source Slit	42.06
Collector Slit	18.02
MIKES Slit	100.00
Alpha	75.00
Detector Voltage	350
Ion Energy	-8.20
Z4 Restrictor	Off
Vacc Limit	8000
VAUD LITTIL	0000

Analyser

No information

Engineer

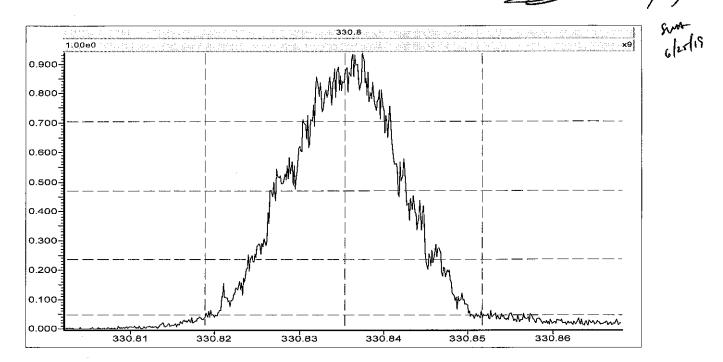

Source (EI+)

Source (EIT)	
Ion Repeller (V)	-6.50
Focus 1	552
Beam Centre	-17.6
Focus 2	4445
Temperature (C)	280
Elec Energy (eV)	35.0
Trap Current (uA)	500.0
Y Deflect 1	-116.2
Z Deflect 1	-22.7
Z Deflect 2	-12.5
Z Focus 2	2350
Z Focus 3	0
Z Deflect 3	-5.4
Y Focus	3344
Rotate 2	-9.5
Curve 2	24.9
Curve 3	6.1
Rotate 3	-15.4
Rotate 4	2.4
V Acc (V)	7038.39
Magnet Mass	330.9
Source Slit	41.66
Collector Slit	17.68
MIKES Slit	100.00
Alpha	75.00
Detector Voltage	350
lon Energy	-8.20
Z4 Restrictor	Off
Vacc Limit	8000

Analyser

No information

Engineer

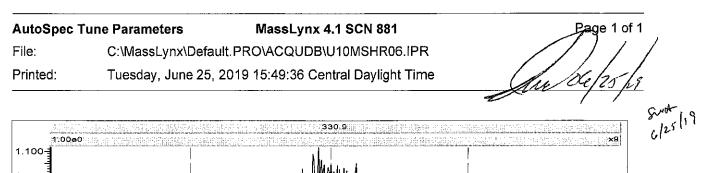

Source (EI+)

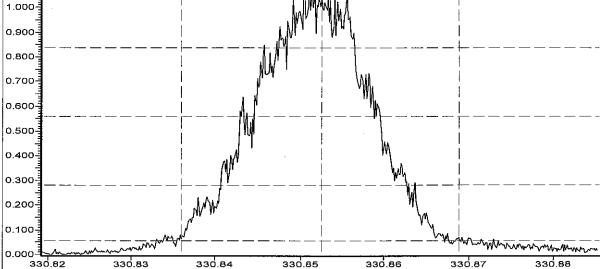
Ion Repeller (V)	-6.50
Focus 1	552
Beam Centre	-17.6
Focus 2	4445
Temperature (C)	280
Elec Energy (eV)	35.0
Trap Current (uA)	500.0
Y Deflect 1	-116.2
Z Deflect 1	-22.7
Z Deflect 2	-12.5
Z Focus 2	2350
Z Focus 3	0
Z Deflect 3	-5.4
Y Focus	3344
Rotate 2	-9.5
Curve 2	24.9
Curve 3	6.1
Rotate 3	-15.4
Rotate 4	2.4
V Acc (V)	7038.51
Magnet Mass	330.9
Source Slit	41.66
Collector Slit	17.68
MIKES Slit	100.00
Alpha	75.00
Detector Voltage	350
Ion Energy	-8.20
Z4 Restrictor	Off
Vacc Limit	8000

Analyser No information

Engineer No information

AutoSpec Tune Parameters MassLynx 4.1 SCN 881 Page 1 of T File: C:\MassLynx\Default.pro\Acqudb\U10MSHR06.IPR Page 1 of T Printed: Tuesday, June 25, 2019 12:01:54 Central Daylight Time Page 1 of T


Source (EI+)


Ion Repeller (V) Focus 1 Beam Centre Focus 2 Temperature (C) Elec Energy (eV) Trap Current (uA) Y Deflect 1 Z Deflect 1 Z Deflect 2 Z Focus 2 Z Focus 3 Z Deflect 3 Y Focus Rotate 2 Curve 2 Curve 3 Rotate 4 V Acc (V) Magnet Mass Source Slit Collector Slit MIKES Slit Alpha Detector Voltage	-5.93 493 33.4 4520 280 35.0 500.0 -48.9 -50.5 -4.3 2250 0 1.1 3919 -14.8 -2.9 -8.2 2.0 6.3 7000.86 330.8 19.64 15.68 100.00 65.00 350
Detector Voltage Ion Energy Z4 Restrictor	350 -20.00 Off
Vacc Limit	8000

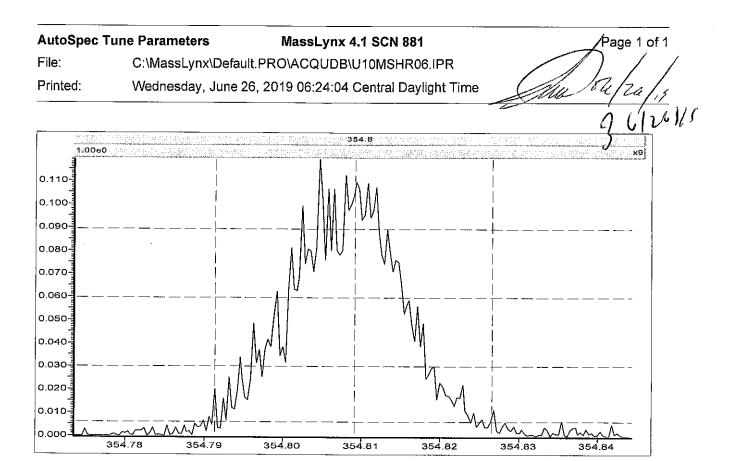
Analyser

No information

Engineer

Source (EI+)

Ion Repeller (V)	-5.93
Focus 1	493
Beam Centre	33.4
Focus 2	4520
Temperature (C)	280
Elec Energy (eV)	35.0
Trap Current (uÁ)	500.0
Y Deflect 1	-48.9
Z Deflect 1	-50.5
Z Deflect 2	-4.3
Z Focus 2	2250
Z Focus 3	0
Z Deflect 3	1.1
Y Focus	3919
Rotate 2	-14.8
Curve 2	-2.9
Curve 3	-8.2
Rotate 3	2.0
Rotate 4	6.3
V Acc (V)	7000.49
Magnet Mass	330.9
Source Slit	19.64
Collector Slit	15.68
MIKES Slit	100.00
Alpha	65.00
Detector Voltage	350
Ion Energy	-20.00
Z4 Restrictor	Off
Vacc Limit	8000


Analyser

No information

Engineer No information

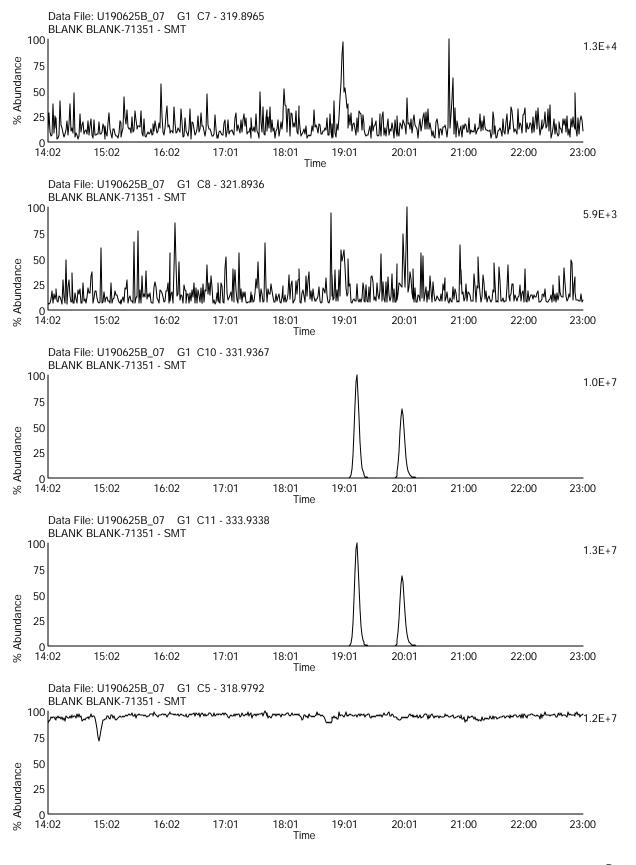
Report No.....10479467_1613TCDD_DFR

Page 170 of 178 Page 75 of 83

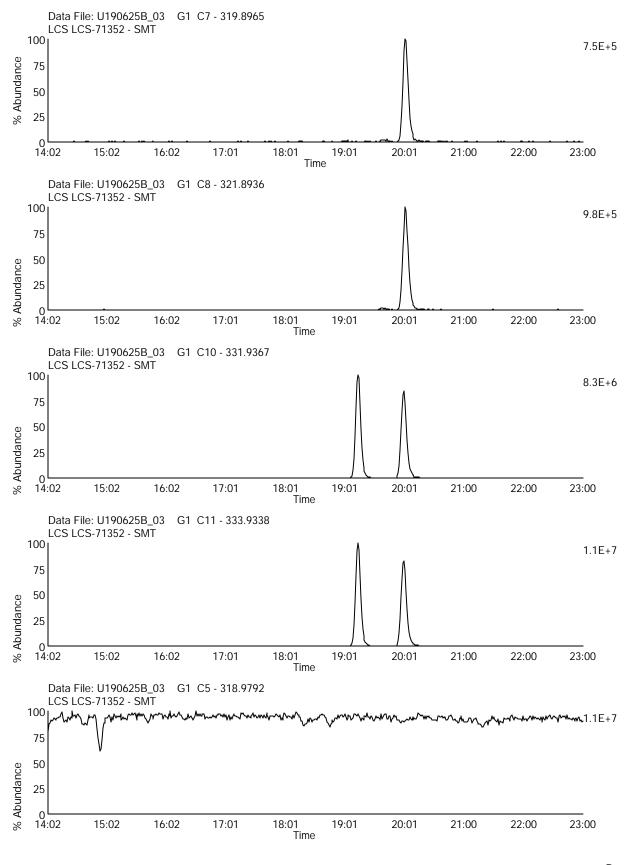
Source	(Ei+)
--------	-------

Ion Repeller (V) Focus 1 Beam Centre Focus 2 Temperature (C) Elec Energy (eV) Trap Current (uA) Y Deflect 1 Z Deflect 2 Z Focus 2 Z Focus 3 Z Deflect 3 Y Focus Rotate 2 Curve 2 Curve 3 Rotate 3 Rotate 4 V Acc (V) Magnet Mass Source Slit Collector Slit MIKES Slit Alpha Detector Voltage Ion Energy Z4 Restrictor Vacc Limit	-5.93 493 33.4 4520 280 35.0 500.0 -48.9 -50.5 -4.3 2250 0 1.1 3919 -14.8 -2.9 -8.2 2.0 6.3 7000.57 330.8 19.64 15.68 100.00 65.00 350 -20.00 Off 8000

Analyser

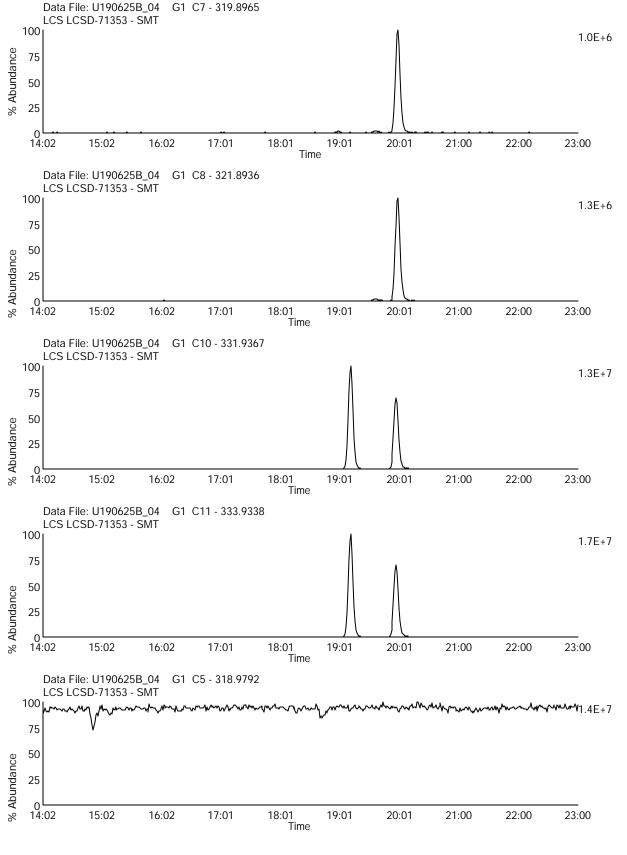

No information

Engineer


No information

Appendix F

QC Raw Data



Page 173 of 178 Page 78 of 83

Report No.....10479467_1613TCDDceDraRytical Services, LLC.

Page 174 of 178 Page 79 of 83

Report No.....10479467_1613TCDDceDFaceDFaRtical Services, LLC.

Page 175 of 178 Page 80 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	BLANK-7 U190625	DFBLKEY BLANK-71351 U190625B_07 06/25/2019 21:19			Injecte Instrum GC Co ICAL II	nenť ID lumn ID	SMT 10MS 10106 U1906			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:13 19:59 20:00 19:60	5.45e7 3.96e7 1.24e7 ND	6.86e7 4.88e7 ND	1.02e7 6.80e6 2.11e6 ND		5.966e3 6.924e3 2.369e3 2.410e3	2.989e3 7.216e3 8.322e2	0.79 0.81	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 176 of 178 Page 81 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	LCS-713 U190625	DLCSSK LCS-71352 U190625B_03 06/25/2019 18:26			Injecte Instrum GC Co ICAL IE	nent ID Iumn ID	SMT 10MSI 10106 U1906			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:14 20:00 20:02 20:01	4.85e7 4.33e7 1.21e7 4.61e6	6.10e7 5.45e7 6.04e6	8.23e6 6.95e6 1.94e6 7.51e5	8.68e6	 	 	0.80 0.79 0.76	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 177 of 178 Page 82 of 83

> Tel: 612-607-1700 Fax: 612- 607-6444

TCDD Detected Peak List

Client ID Lab ID Filename Analyzed	DLCSSL LCSD-71 U190625 06/25/20	353			Injected By Instrument ID GC Column ID ICAL ID			SMT 10MSHR06 (U) 1010640 U190625			
Tetra-Dioxins:		RT	Area 1	Area 2	Height 1	Height 2	Noise 1	Noise 2	Ratio	Code	
1,2,3,4-TCDD-1 2,3,7,8-TCDD-1 2,3,7,8-TCDD-3 2,3,7,8-TCDD	3C	19:12 19:58 19:60 19:60	6.82e7 5.02e7 1.40e7 5.51e6	8.49e7 6.41e7 6.88e6	1.31e7 9.06e6 2.57e6 1.02e6		 	 	0.80 0.78 0.80		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10479467_1613TCDD_DFR

Page 178 of 178 Page 83 of 83

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

July 22, 2019

Joe Guarino Town of Babylon 281 Phelps Lane North Babylon, NY 11703

RE: Project: LEACHATES BASELINE 360 Pace Project No.: 7092926

Dear Joe Guarino:

Enclosed are the analytical results for sample(s) received by the laboratory between June 10, 2019 and June 11, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

REVISION 1: Report re-issued on 7/18/19 for updated qualifiers in the case narrative.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

lenenfor lin

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: LEACHATES BASELINE 360 Pace Project No.: 7092926

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137

Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

Minnesota Dept of Ag Certifcation #: via MN 027-053-137

Long Island Certification IDs

575 Broad Hollow Rd, Melville, NY 11747 New York Certification #: 10478 Primary Accrediting Body New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208 Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

∟ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
7092926001	NNU PLCRS	EPA 6010C	JMW	23	PACE-MV
		EPA 7470A	JLN	1	PACE-MV
		EPA 8270D by SIM	STB	2	PASI-M
		EPA 8260C/5030C	KGG	53	PACE-MV
		SM22 2120B	KM1	2	PACE-MV
		SM22 2320B	AK1	1	PACE-MV
		SM22 2340C	AK1	1	PACE-MV
		SM22 2540C	KS1	1	PACE-MV
		SM22 3500-Cr B	KM1	1	PACE-MV
	EPA 410.4	JCA	1	PACE-MV	
		SM22 5210B	VNS	1	PACE-MV
		EPA 9034	JM3	1	PACE-MV
		EPA 300.0	BNK	3	PACE-MV
		EPA 351.2	SDO	1	PACE-MV
		EPA 353.2	SDO	2	PACE-MV
		EPA 353.2	SDO	1	PACE-MV
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	JM3	1	PACE-MV
		EPA 9060A	KM1	5	PACE-MV
092926002	NNU SLCRS	EPA 6010C	JMW	23	PACE-MV
		EPA 7470A	JLN	1	PACE-MV
		EPA 8270D by SIM	STB	2	PASI-M
		EPA 8260C/5030C	KGG	52	PACE-MV
		SM22 2120B	KM1	2	PACE-MV
		SM22 2320B	AK1	1	PACE-MV
		SM22 2340C	AK1	1	PACE-MV
		SM22 2540C	KS1	1	PACE-MV
		SM22 3500-Cr B	KM1	1	PACE-MV
		EPA 410.4	JCA	1	PACE-MV
		SM22 5210B	VNS	1	PACE-MV
		EPA 9034	JM3	1	PACE-MV
		EPA 300.0	BNK	3	PACE-MV
		EPA 351.2	SDO	1	PACE-MV
		EPA 353.2	SDO	2	PACE-MV
		EPA 353.2	SDO	1	PACE-MV
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	JM3	1	PACE-MV

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 9060A	 KM1	5	PACE-MV
092926003	ONU SLCRS	EPA 6010C	JMW	23	PACE-MV
		EPA 7470A	JLN	1	PACE-MV
		EPA 8270D by SIM	STB	2	PASI-M
		EPA 8260C/5030C	KGG	50	PACE-MV
		SM22 2120B	KM1	2	PACE-MV
		SM22 2320B	AK1	1	PACE-MV
		SM22 2340C	AK1	1	PACE-MV
		SM22 2540C	KS1	1	PACE-MV
		SM22 3500-Cr B	KM1	1	PACE-MV
		EPA 410.4	JCA	1	PACE-MV
	SM22 5210B	VNS	1	PACE-MV	
	EPA 9034	JM3	1	PACE-MV	
		EPA 300.0	BNK	3	PACE-MV
		EPA 351.2	SDO	1	PACE-MV
		EPA 353.2	SDO	2	PACE-MV
		EPA 353.2	SDO	1	PACE-MV
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	JM3	1	PACE-MV
		EPA 9060A	KM1	5	PACE-MV
092926004	STORAGE BLANK	EPA 8260C/5030C	KGG	50	PACE-MV
092926005	SA SLCRS	EPA 6010C	JMW	23	PACE-MV
		EPA 7470A	JLN	1	PACE-MV
		EPA 8270D by SIM	STB	2	PASI-M
		EPA 8260C/5030C	KGG	51	PACE-MV
		SM22 2120B	KM1	2	PACE-MV
		SM22 2320B	AK1	1	PACE-MV
		SM22 2340C	AK1	1	PACE-MV
		SM22 2540C	KS1	1	PACE-MV
		SM22 3500-Cr B	KM1	1	PACE-MV
		EPA 410.4	JCA	1	PACE-MV
		SM22 5210B	VNS	1	PACE-MV
		EPA 9034	JM3	1	PACE-MV
		EPA 300.0	BNK	3	PACE-MV
		EPA 351.2	SDO	1	PACE-MV
		EPA 353.2	SDO	2	PACE-MV
		EPA 353.2	SDO	1	PACE-MV

SAMPLE ANALYTE COUNT

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	JM3	1	PACE-MV
		EPA 9060A	KM1	5	PACE-MV
7092926006	EQUIPMENT BLANK	EPA 6010C	JMW	23	PACE-MV
		EPA 7470A	JLN	1	PACE-MV
		EPA 8270D by SIM	STB	2	PASI-M
		EPA 8260C/5030C	KGG	50	PACE-MV
		SM22 2120B	KM1	2	PACE-MV
		SM22 2320B	AK1	1	PACE-MV
		SM22 2340C	AK1	1	PACE-MV
		SM22 2540C	KS1	1	PACE-MV
		SM22 3500-Cr B	KM1	1	PACE-MV
		EPA 410.4	JCA	1	PACE-MV
		SM22 5210B	VNS	1	PACE-MV
		EPA 9034	JM3	1	PACE-MV
		EPA 300.0	BNK	3	PACE-MV
		EPA 351.2	SDO	1	PACE-MV
		EPA 353.2	SDO	2	PACE-MV
		EPA 353.2	SDO	1	PACE-MV
		SM22 4500 NH3 H	BNK	1	PACE-MV
		EPA 9014 Total Cyanide	JM3	1	PACE-MV
		EPA 9060A	KM1	5	PACE-MV
7092926007	TRIP BLANK	EPA 8260C/5030C	KGG	50	PACE-MV

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: EPA 6010C Description: 6010 MET ICP

Client: Town of Babylon Date: July 22, 2019

General Information:

5 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117595

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092454017

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 557036)

Manganese

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:EPA 7470ADescription:7470 MercuryClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 7470A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: EPA 8270D by SIM

Description:8270D MSSV 14 Dioxane By SIMClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 8270D by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation was conducted outside of the recognized method holding time. • ONU SLCRS (Lab ID: 7092926003)

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 613318

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 3314706)
 - 1,4-Dioxane (SIM)
- LCS (Lab ID: 3314707)
 - 1,4-Dioxane (SIM)

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:EPA 8270D by SIMDescription:8270D MSSV 14 Dioxane By SIMClient:Town of BabylonDate:July 22, 2019

Analyte Comments:

QC Batch: 615153

1j: Reanalysis conducted in excess of EPA method holding time. Reanalysis was required due to over range recoveries in original in hold analysis.

• ONU SLCRS (Lab ID: 7092926003)

• 1,4-Dioxane-d8 (S)

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	EPA 8260C/5030C
Description	00000 \/- - (' - 0

Description:8260C Volatile OrganicsClient:Town of BabylonDate:July 22, 2019

General Information:

7 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 117325

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value. • BLANK (Lab ID: 555632) 2-Butanone (MEK) • DUP (Lab ID: 555693) 2-Butanone (MEK) EQUIPMENT BLANK (Lab ID: 7092926006) 2-Butanone (MEK) • LCS (Lab ID: 555633) 2-Butanone (MEK) • MS (Lab ID: 555694) 2-Butanone (MEK) • NNU PLCRS (Lab ID: 7092926001) 2-Butanone (MEK) • NNU SLCRS (Lab ID: 7092926002) • 2-Butanone (MEK) • ONU SLCRS (Lab ID: 7092926003) 2-Butanone (MEK) • SA SLCRS (Lab ID: 7092926005) 2-Butanone (MEK) • STORAGE BLANK (Lab ID: 7092926004) • 2-Butanone (MEK) • TRIP BLANK (Lab ID: 7092926007) 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 117325

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 555632)
 - 2-Hexanone
 - Acetone
 - Tetrachloroethene
- DUP (Lab ID: 555693)

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	EPA 8260C/5030C
-	8260C Volatile Organics
Client:	Town of Babylon
Date:	July 22, 2019
QC Batch: 11	7325
CL: T	he continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
	• 2-Hexanone
	Acetone
	Tetrachloroethene
• E	QUIPMENT BLANK (Lab ID: 7092926006)
	• 2-Hexanone
	Acetone
	Tetrachloroethene
• L	CS (Lab ID: 555633)
	• 2-Hexanone
	Acetone
	Tetrachloroethene
• N	IS (Lab ID: 555694)
	• 2-Hexanone
	Acetone
	Tetrachloroethene
• N	INU PLCRS (Lab ID: 7092926001)
	• 2-Hexanone
	Acetone
	Tetrachloroethene
• N	INU SLCRS (Lab ID: 7092926002)
	• 2-Hexanone
	Acetone
	Tetrachloroethene
• C	DNU SLCRS (Lab ID: 7092926003)
	• 2-Hexanone
	• Acetone
	Tetrachloroethene
• S	A SLCRS (Lab ID: 7092926005)
	• 2-Hexanone
	• Acetone
	• Tetrachloroethene
• S	TORAGE BLANK (Lab ID: 7092926004)
	• 2-Hexanone

- Acetone
- Tetrachloroethene
- TRIP BLANK (Lab ID: 7092926007)
 - 2-Hexanone
 - Acetone
 - Tetrachloroethene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: EPA 8260C/5030C

Description:8260C Volatile OrganicsClient:Town of BabylonDate:July 22, 2019

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:SM22 2120BDescription:2120B W Apparent ColorClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for SM22 2120B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	SM22 2320B			
Description:	2320B Alkalinity			
Client:	Town of Babylon			
Date:	July 22, 2019			

General Information:

5 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

 Method:
 SM22 2340C

 Description:
 2340C Hardness, Total

 Client:
 Town of Babylon

 Date:
 July 22, 2019

General Information:

5 samples were analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: SM22 2540C

Description:2540C Total Dissolved SolidsClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117745

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092852006,7092927004

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 557801)
 - Total Dissolved Solids

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 118003

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 559705)
 - Total Dissolved Solids

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	SM22 3500-Cr B				
Description:	Chromium, Hexavalent				
Client:	Town of Babylon				
Date:	July 22, 2019				

General Information:

5 samples were analyzed for SM22 3500-Cr B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: EPA 410.4

Description:410.4 CODClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 117776

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 557835)
 - Chemical Oxygen Demand

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	SM22 5210B			
Description:	5210B BOD, 5 day			
Client:	Town of Babylon			
Date:	July 22, 2019			

General Information:

5 samples were analyzed for SM22 5210B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:EPA 9034Description:9034 Sulfide, TitrationClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 9034. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9030B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 Town of Babylon

 Date:
 July 22, 2019

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 119376

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 567395)
 - Chloride
 - Sulfate

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: EPA 351.2

Description:351.2 Total Kjeldahl NitrogenClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119268

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092926001,7093723002

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 566777)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 119268

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• DUP (Lab ID: 566780)

• Nitrogen, Kjeldahl, Total

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method: EPA 353.2

Description:353.2 Nitrogen, NO2/NO3 unpresClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117328

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093035001,7093139001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 555675)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	EPA 353.2
Description:	353.2 Nitrogen, NO2
Client:	Town of Babylon
Date:	July 22, 2019

General Information:

5 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 117107

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092854001,7092926001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 554581)
 - Nitrite as N

QC Batch: 117321

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092953001,7093040001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 555464)
 - Nitrite as N
- MS (Lab ID: 555466)
- Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:	SM22 4500 NH3 H
Description:	4500 Ammonia Water
Client:	Town of Babylon
Date:	July 22, 2019

General Information:

5 samples were analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: 119281

- B: Analyte was detected in the associated method blank.
 - BLANK for HBN 119281 [WETA/191 (Lab ID: 566889)
 - Nitrogen, Ammonia

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 119281

- A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7093468001
 - M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
 - MS (Lab ID: 566891)
 - Nitrogen, Ammonia

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 119281

- D6: The precision between the sample and sample duplicate exceeded laboratory control limits.
 - DUP (Lab ID: 566892)
 - Nitrogen, Ammonia

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:EPA 9014 Total CyanideDescription:9014 Cyanide, Total

Client:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 9014 Total Cyanide. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Method:EPA 9060ADescription:9060A TOC as NPOCClient:Town of BabylonDate:July 22, 2019

General Information:

5 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 118775

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 7092926001

- M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
 - MS (Lab ID: 564529)
 - Mean Total Organic Carbon
 - Total Organic Carbon

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU PLCRS	Lab ID:	7092926001	Collected: 06/10/	19 13:10	Received: 06	6/10/19 15:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 60	010C Preparation M	ethod: E	PA 3005A			
Aluminum	50	7 ug/L	200	1	06/13/19 09:04	06/24/19 21:28	3 7429-90-5	
Antimony	<60.	0 ug/L	60.0	1	06/13/19 09:04	06/24/19 21:28	3 7440-36-0	
Arsenic	<20	0 ug/L	200	20	06/13/19 09:04	06/25/19 15:04	1 7440-38-2	
Barium	274		200	1	06/13/19 09:04	06/24/19 21:28	3 7440-39-3	
Beryllium	2.3	-	100	20	06/13/19 09:04	06/25/19 15:04	1 7440-41-7	
Boron	528	-	50.0	1		06/24/19 21:28		
Cadmium	<50.		50.0	20	06/13/19 09:04	06/25/19 15:04	1 7440-43-9	
Calcium	1240000	-	4000	20	06/13/19 09:04	06/25/19 15:04	1 7440-70-2	
Chromium	69.	-	10.0	1	06/13/19 09:04	06/24/19 21:28	3 7440-47-3	
Cobalt	9.8	0	50.0	1	06/13/19 09:04			
Copper	8.1	0	25.0	1		06/24/19 21:28		
Iron	45	0	20.0	1	06/13/19 09:04			
Lead	71.	0	5.0	1		06/24/19 21:28		
Magnesium	349		200	1		06/24/19 21:28		
Manganese	13	0	10.0	1	06/13/19 09:04			
Nickel	<40.		40.0	1		06/24/19 21:28		
Potassium	490000	0	100000	20	06/13/19 09:04			
Selenium	167	0	200	20		06/25/19 15:04		
Silver	<10.		10.0	1		06/24/19 21:28		
Sodium	1260000	0	100000	20	06/13/19 09:04		-	
Thallium	23.	0	10.0	20		06/24/19 21:28		
Vanadium	<pre>23.</pre>	0	50.0	1	06/13/19 09:04			
		0						
Zinc	121	0	400	20		06/25/19 15:04	1 1440-00-0	
7470 Mercury	-		470A Preparation Me					
Mercury	0.13	J ug/L	0.20	1	06/21/19 10:50	06/21/19 16:3 ⁻	7439-97-6	
8270D MSSV 14 Dioxane By SIM	Analytical	Method: EPA 82	270D by SIM Prepar	ation Me	ethod: EPA 3510			
1,4-Dioxane (SIM) <i>Surrogates</i>	4.:	8 ug/L	0.25	1	06/17/19 12:55	06/21/19 13:28	3 123-91-1	
1,4-Dioxane-d8 (S)	4	8 %.	30-125	1	06/17/19 12:55	06/21/19 13:28	3	
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Acetone	11	0 ug/L	5.0	1		06/12/19 01:01	67-64-1	CL
Acrylonitrile	<1.	0 ug/L	1.0	1		06/12/19 01:0 [,]	107-13-1	
Benzene	<1.	0 ug/L	1.0	1		06/12/19 01:0 ⁻	71-43-2	
Bromochloromethane	<1.	-	1.0	1		06/12/19 01:0 ⁻	74-97-5	
Bromodichloromethane	<1.	-	1.0	1		06/12/19 01:0 ⁻	75-27-4	
Bromoform	<1.	0	1.0	1		06/12/19 01:0 ⁻	75-25-2	
Bromomethane	<1.	0	1.0	1		06/12/19 01:01		
2-Butanone (MEK)	6.2	0	5.0	1		06/12/19 01:01		IL
Carbon disulfide	<1.	0	1.0	1		06/12/19 01:0		
Carbon tetrachloride	<1.	0	1.0	1		06/12/19 01:0		
Chlorobenzene	<1.	0	1.0	1		06/12/19 01:0		
Chloroethane	<1.	•	1.0	1		06/12/19 01:0		
Chloroform	<1.	0	1.0	1		06/12/19 01:0		
	51.	- ug/L	1.0	•		50, 1 <u>2</u> , 10 01.0		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU PLCRS	Lab ID: 70	92926001	Collected: 06/10/1	9 13:10	Received: 06	6/10/19 15:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		06/12/19 01:01	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/12/19 01:01	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/12/19 01:01	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/12/19 01:01	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/12/19 01:01	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 01:01	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 01:01	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/12/19 01:01	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 01:01	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 01:01	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 01:01		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 01:01	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 01:01	156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/12/19 01:01		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 01:01		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 01:01		
Ethylbenzene	<1.0	ug/L	1.0	1		06/12/19 01:01		
2-Hexanone	<5.0	ug/L	5.0	1		06/12/19 01:01		CL
Iodomethane	<1.0	ug/L	1.0	1		06/12/19 01:01		02
Methylene Chloride	<1.0	ug/L	1.0	1		06/12/19 01:01		
4-Methyl-2-pentanone (MIBK)	2.5J	ug/L	5.0	1		06/12/19 01:01		
Styrene	<1.0	ug/L	5.0 1.0	1		06/12/19 01:01		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 01:01		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 01:01		
Tetrachloroethene	<1.0 <1.0	-	1.0	1		06/12/19 01:01		CL
Toluene		ug/L		1				UL
1,1,1-Trichloroethane	<1.0 <1.0	ug/L	1.0 1.0	1		06/12/19 01:01 06/12/19 01:01		
		ug/L						
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 01:01		
Trichloroethene	<1.0	ug/L	1.0	1		06/12/19 01:01		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/12/19 01:01		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/12/19 01:01		
Vinyl acetate	<1.0	ug/L	1.0	1		06/12/19 01:01		
Vinyl chloride	<1.0	ug/L	1.0	1		06/12/19 01:01		
Xylene (Total)	<3.0	ug/L	3.0	1		06/12/19 01:01	1330-20-7	
Surrogates	400	0/	00.450			00/40/40 04-04	47000 07 0	
1,2-Dichloroethane-d4 (S)	103	%	68-153	1		06/12/19 01:01		
4-Bromofluorobenzene (S)	93	%	79-124	1		06/12/19 01:01		
Toluene-d8 (S) Tentatively Identified Compounds	99	%	69-124	1		06/12/19 01:01	2037-26-5	
Methanethiol	143J	ug/L		1		06/12/19 01:01	74-03-1	N
Isopropyl Alcohol	6.5J	ug/L		1		06/12/19 01:01		N
Silanol, trimethyl-	12.0J	ug/∟ ug/L		1		06/12/19 01:01		N
2120B W Apparent Color	Analytical Me	thod: SM22	2120B					
Apparent Color	10.0	units	5.0	1		06/11/19 13:58		
рН	7.0	Std. Units		1		06/11/19 13:58		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: LEACHATES BASELINE 360

Pace Project No.:

ject No.: 7092926

Sample: NNU PLCRS	Lab ID: 7092	2926001	Collected: 06/10/1	9 13:10	Received: 06	6/10/19 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Meth	od: SM22	2320B					
Alkalinity, Total as CaCO3	327	mg/L	1.0	1		06/22/19 00:10		
2340C Hardness, Total	Analytical Meth	od: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	31000	mg/L	5.0	1		06/24/19 13:46		
2540C Total Dissolved Solids	Analytical Meth	od: SM22	2540C					
Total Dissolved Solids	79800	mg/L	40.0	1		06/14/19 11:25		
Chromium, Hexavalent	Analytical Meth	od: SM22	3500-Cr B					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		06/11/19 10:54	18540-29-9	
410.4 COD	Analytical Meth	od: EPA 41	0.4 Preparation Met	hod: EF	PA 410.4			
Chemical Oxygen Demand	3030	mg/L	200	1	06/14/19 09:46	06/14/19 12:01		
5210B BOD, 5 day	Analytical Meth	od: SM22	5210B Preparation N	/lethod:	SM22 5210B			
BOD, 5 day	861	mg/L	100	50	06/11/19 15:00	06/16/19 09:46		
9034 Sulfide, Titration	Analytical Meth	od: EPA 90	34 Preparation Met	nod: EP	A 9030B			
Sulfide	72.0	mg/L	2.0	1	06/17/19 07:56	06/17/19 14:27		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Bromide	926	mg/L	100	200		06/26/19 20:01	24959-67-9	
Chloride Sulfate	<2.0 15.6	mg/L mg/L	2.0 5.0	1 1		06/26/19 19:45 06/26/19 19:45		
351.2 Total Kjeldahl Nitrogen		•	51.2 Preparation Met		PA 351.2	00,20,10,10,10		
Nitrogen, Kjeldahl, Total	97.9	mg/L	5.0	10		06/26/19 07:54	7727-37-9	M6
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	•						
Nitrate as N	0.034J	mg/L	0.050	1		06/10/19 22:45	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/10/19 22:45		
353.2 Nitrogen, NO2	Analytical Meth	iod: EPA 38	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/10/19 21:00	14797-65-0	M1
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
Nitrogen, Ammonia	109	mg/L	10.0	100		06/25/19 14:12	7664-41-7	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cyanide Pr	eparatio	on Method: EPA 9	010C		
Cyanide	3.4J	ug/L	10.0	1	06/18/19 07:57	06/18/19 15:20	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
Total Organic Carbon	291	mg/L	6.0	6		06/21/19 15:00	7440-44-0	M6
Total Organic Carbon Total Organic Carbon	281 277	mg/L mg/L	6.0 6.0	6 6		06/21/19 15:00 06/21/19 15:00		M6 M6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU PLCRS	Lab ID: 709	2926001	Collected: 06/10/1	9 13:10	Received: 06	6/10/19 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Met	nod: EPA 90	60A					
Total Organic Carbon Mean Total Organic Carbon	276 278	mg/L mg/L	6.0 6.0	6 6		06/21/19 15:00 06/21/19 15:00		M6 M6

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU SLCRS	Lab ID:	7092926002	Collected:	06/10/1	19 13:25	Received: 06	6/10/19 15:00 I	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical I	Method: EPA 60	010C Prepai	ration Me	ethod: El	PA 3005A			
Aluminum	<200) ug/L		200	1	06/13/19 09:04	06/24/19 21:33	3 7429-90-5	
Antimony	<60.0) ug/L		60.0	1	06/13/19 09:04	06/24/19 21:33	3 7440-36-0	
Arsenic	<200) ug/L		200	20	06/13/19 09:04	06/25/19 15:06	5 7440-38-2	
Barium	2070) ug/L		200	1	06/13/19 09:04	06/24/19 21:33	3 7440-39-3	
Beryllium	2.2.	J ug/L		100	20	06/13/19 09:04	06/25/19 15:06	6 7440-41-7	
Boron	4680) ug/L		50.0	1	06/13/19 09:04	06/24/19 21:33	3 7440-42-8	
Cadmium	<50.0) ug/L		50.0	20	06/13/19 09:04	06/25/19 15:06	6 7440-43-9	
Calcium	11400000) ug/L		4000	20	06/13/19 09:04	06/25/19 15:06	6 7440-70-2	
Chromium	94.0	-		10.0	1	06/13/19 09:04	06/24/19 21:33	3 7440-47-3	
Cobalt	6.7.	-		50.0	1	06/13/19 09:04	06/24/19 21:33	3 7440-48-4	
Copper	<25.0	-		25.0	1	06/13/19 09:04	06/24/19 21:33	3 7440-50-8	
Iron	204	-		20.0	1	06/13/19 09:04	06/24/19 21:33	3 7439-89-6	
Lead	61.8	-		5.0	1	06/13/19 09:04	06/24/19 21:33	3 7439-92-1	
Magnesium	3630	-		200	1		06/24/19 21:33		
Manganese	425			10.0	1		06/24/19 21:33		
Nickel	<40.0	0		40.0	1		06/24/19 21:33		
Potassium	4340000	0		100000	20		06/25/19 15:06		
Selenium	204	0		200	20		06/25/19 15:06		
Silver	<10.0	-		10.0	1		06/24/19 21:33		
Sodium	10700000	0		100000	20		06/25/19 15:06		
Thallium	28.9	0		10.0	1		06/24/19 21:33		
Vanadium	<50.0	- 5		50.0	1		06/24/19 21:33		
Zinc	98.8	-		400	20		06/25/19 15:06		
7470 Mercury		Method: EPA 74	170A Prepar				00,20,10 10100		
Mercury	<0.20			0.20	1		06/21/19 16:32	7/30-07-6	
		0					00/21/19 10.32	1439-97-0	
8270D MSSV 14 Dioxane By SIM	-		270D by Silvi			thod: EPA 3510	00/04/40 40 40		
1,4-Dioxane (SIM) Surrogates	2.1	l ug/L		0.25	1	06/17/19 12:55	06/21/19 13:48	3 123-91-1	
1,4-Dioxane-d8 (S)	50) %.		30-125	1	06/17/19 12:55	06/21/19 13:48	3	
8260C Volatile Organics	Analytical I	Method: EPA 82	260C/5030C						
Acetone	224	4 ug/L		10.0	2		06/13/19 21:17	67-64-1	CL
Acrylonitrile	<1.0	-		1.0	1		06/12/19 00:43	3 107-13-1	
Benzene	<1.0	-		1.0	1		06/12/19 00:43	3 71-43-2	
Bromochloromethane	<1.0	0		1.0	1		06/12/19 00:43		
Bromodichloromethane	<1.0	0		1.0	1		06/12/19 00:43		
Bromoform	<1.0	0		1.0	1		06/12/19 00:43		
Bromomethane	<1.0	0		1.0	1		06/12/19 00:43		
2-Butanone (MEK)	24.1	-		5.0	1		06/12/19 00:43		IL
Carbon disulfide	1.0	0		1.0	1		06/12/19 00:43		
Carbon tetrachloride	<1.0	0		1.0	1		06/12/19 00:43		
Chlorobenzene	<1.0	0		1.0	1		06/12/19 00:43		
		-							
Chloroethane	<1.0	-		1.0	1		06/12/19 00:43		
Chloroform	<1.0) ug/L		1.0	1		06/12/19 00:43	67-66-3	

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU SLCRS	Lab ID: 70	92926002	Collected: 06/10/1	9 13:25	Received: 06	6/10/19 15:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		06/12/19 00:43	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/12/19 00:43	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/12/19 00:43	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/12/19 00:43	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/12/19 00:43	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 00:43	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 00:43	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/12/19 00:43	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:43	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:43	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:43		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:43		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:43		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/12/19 00:43		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 00:43		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 00:43		
Ethylbenzene	<1.0	ug/L	1.0	1		06/12/19 00:43		
2-Hexanone	<5.0	ug/L	5.0	1		06/12/19 00:43		CL
Iodomethane	<1.0	ug/L	1.0	1		06/12/19 00:43		0L
Methylene Chloride	<1.0	ug/L	1.0	1		06/12/19 00:43		
4-Methyl-2-pentanone (MIBK)	<1.0 4.9J	-	5.0	1		06/12/19 00:43		
	4.95 <1.0	ug/L	1.0	1		06/12/19 00:43		
Styrene		ug/L		1				
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0			06/12/19 00:43		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 00:43		
Tetrachloroethene	<1.0	ug/L	1.0	1		06/12/19 00:43		CL
Toluene	<1.0	ug/L	1.0	1		06/12/19 00:43		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:43		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:43		
Trichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:43		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/12/19 00:43		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/12/19 00:43		
Vinyl acetate	<1.0	ug/L	1.0	1		06/12/19 00:43		
Vinyl chloride	<1.0	ug/L	1.0	1		06/12/19 00:43		
Xylene (Total)	<3.0	ug/L	3.0	1		06/12/19 00:43	1330-20-7	
Surrogates	101	0/	00.450	4		00/40/40 00 40	47000 07 0	
1,2-Dichloroethane-d4 (S)	104	%	68-153	1		06/12/19 00:43		
4-Bromofluorobenzene (S)	94	%	79-124	1		06/12/19 00:43		
Toluene-d8 (S)	103	%	69-124	1		06/12/19 00:43	2037-26-5	
Tentatively Identified Compounds	24.01	ua/I		1		06/12/19 00:43	74 02 4	N
Methanethiol	31.8J	ug/L		1 1				N
Silanol, trimethyl-	12.9J	ug/L	04000	I		06/12/19 00:43	1000-40-0	Ν
2120B W Apparent Color	Analytical Me							
Apparent Color	10.0	units	5.0	1		06/11/19 13:58		
pH	7.0	Std. Units	s 0.10	1		06/11/19 13:58		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU SLCRS	Lab ID: 7092	926002	Collected: 06/10/1	19 13:25	5 Received: 06	5/10/19 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Metho	od: SM22	2320B					
Alkalinity, Total as CaCO3	217	mg/L	1.0	1		06/22/19 00:23		
2340C Hardness, Total	Analytical Metho	od: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	29000	mg/L	5.0	1		06/24/19 13:46		
2540C Total Dissolved Solids	Analytical Metho	od: SM22	2540C					
Total Dissolved Solids	69700	mg/L	40.0	1		06/14/19 11:25		
Chromium, Hexavalent	Analytical Metho	od: SM22	3500-Cr B					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		06/11/19 10:54	18540-29-9	
410.4 COD	Analytical Metho	od: EPA 4	10.4 Preparation Met	thod: EF	PA 410.4			
Chemical Oxygen Demand	2440	mg/L	100	1	06/14/19 09:46	06/14/19 12:01		
5210B BOD, 5 day	Analytical Metho	od: SM22	5210B Preparation N	/lethod:	SM22 5210B			
BOD, 5 day	254	mg/L	200	100	06/11/19 15:00	06/16/19 09:48		
9034 Sulfide, Titration	Analytical Metho	od: EPA 90	034 Preparation Met	hod: EP	A 9030B			
Sulfide	72.0	mg/L	2.0	1	06/17/19 07:56	06/17/19 14:27		
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 30	0.00					
Bromide	732	mg/L	100	200		06/26/19 20:52		
Chloride Sulfate	<2.0 <5.0	mg/L mg/L	2.0 5.0	1 1		06/26/19 20:35 06/26/19 20:35		
351.2 Total Kjeldahl Nitrogen	Analytical Metho	od: EPA 3	51.2 Preparation Met	thod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	56.9	mg/L	5.0	10	06/25/19 13:02	06/26/19 07:57	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Metho	od: EPA 3	53.2					
Nitrate as N	0.026J	mg/L	0.050	1		06/10/19 22:49		
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/10/19 22:49	7727-37-9	
353.2 Nitrogen, NO2	Analytical Metho	od: EPA 3	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/10/19 21:06	14797-65-0	
4500 Ammonia Water	Analytical Metho	od: SM22	4500 NH3 H					
Nitrogen, Ammonia	93.7	mg/L	10.0	100		06/25/19 14:13	7664-41-7	
9014 Cyanide, Total	Analytical Metho	od: EPA 90	014 Total Cyanide Pr	eparatio	on Method: EPA 9	010C		
Cyanide	41.9	ug/L	10.0	1	06/18/19 07:57	06/18/19 15:22	57-12-5	
9060A TOC as NPOC	Analytical Metho	od: EPA 90	060A					
Total Organic Carbon	106	mg/L	3.0	3		06/21/19 16:43		
-	104 104	-	3.0 3.0	3 3				
9014 Cyanide, Total Cyanide 9060A TOC as NPOC	Analytical Metho 41.9 Analytical Metho 106 104	od: EPA 90 ug/L od: EPA 90	014 Total Cyanide Pr 10.0 060A 3.0 3.0	reparatio 1 3 3		0010C 06/18/19 15:22	57-12-5 7440-44-0 7440-44-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: NNU SLCRS	Lab ID: 709	2926002	Collected: 06/10/1	9 13:25	Received: 06	6/10/19 15:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	Analytical Meth	nod: EPA 906	50A					
Total Organic Carbon Mean Total Organic Carbon	103 103	mg/L mg/L	3.0 3.0	3 3		06/21/19 16:43 06/21/19 16:43		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: ONU SLCRS	Lab ID:	7092926003	Collected: 06/10/	19 13:45	Received: 06	6/10/19 15:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 60	010C Preparation M	ethod: E	PA 3005A			
Aluminum	<20	0 ug/L	200	1	06/13/19 09:04	06/24/19 21:3	9 7429-90-5	
Antimony	<60.	0 ug/L	60.0	1	06/13/19 09:04	06/24/19 21:3	9 7440-36-0	
Arsenic	<20	0 ug/L	200	20	06/13/19 09:04	06/25/19 15:09	9 7440-38-2	
Barium	277		200	1	06/13/19 09:04	06/24/19 21:3	9 7440-39-3	
Beryllium	<5.	0 ug/L	5.0	1	06/13/19 09:04	06/24/19 21:3	9 7440-41-7	
Boron	49	4 ug/L	50.0	1	06/13/19 09:04	06/24/19 21:3	9 7440-42-8	
Cadmium	<50.		50.0	20	06/13/19 09:04	06/25/19 15:09	9 7440-43-9	
Calcium	514000	-	4000	20	06/13/19 09:04	06/25/19 15:09	9 7440-70-2	
Chromium	7.1	-	10.0	1	06/13/19 09:04	06/24/19 21:3	9 7440-47-3	
Cobalt	<50.	-	50.0	1	06/13/19 09:04	06/24/19 21:3	9 7440-48-4	
Copper	<25.	-	25.0	1	06/13/19 09:04			
Iron	3180	•	20.0	1	06/13/19 09:04	06/24/19 21:3	9 7439-89-6	
Lead	31.	0	5.0	1	06/13/19 09:04			
Magnesium	19200		200	1	06/13/19 09:04			
Manganese	4180	0	200	20	06/13/19 09:04			
Nickel	<40.	0	40.0	1	06/13/19 09:04			
Potassium	156000	0	100000	20	06/13/19 09:04			
Selenium	<20	0	200	20	06/13/19 09:04			
Silver	4.8	-	10.0	1	06/13/19 09:04			
Sodium	456000		100000	20	06/13/19 09:04			
Thallium	79.	0	10.0	1	06/13/19 09:04			
Vanadium	<50.	•	50.0	1	06/13/19 09:04			
Zinc	<20.	0	20.0	1	06/13/19 09:04			
		-	470A Preparation M			00/24/10 21:0	0 1440 00 0	
7470 Mercury Mercury	<0.2		0.20	1	06/21/19 10:50	06/21/10 16:3	1 7/30-07-6	
		5				00/21/19 10.34	4 1439-91-0	
8270D MSSV 14 Dioxane By SIM	-		270D by SIM Prepar			00/05/40 40 4	7 400 04 4	110
1,4-Dioxane (SIM) <i>Surrogates</i>	21.	0 ug/L	0.50	1	06/24/19 17:46	06/25/19 12:1	7 123-91-1	H2
1,4-Dioxane-d8 (S)	5	7 %.	30-125	1	06/24/19 17:46	06/25/19 12:1	7	1j
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Acetone	<5.	0 ug/L	5.0	1		06/12/19 00:2	5 67-64-1	CL
Acrylonitrile	<1.	-	1.0	1		06/12/19 00:2	5 107-13-1	
Benzene	<1.	0 ug/L	1.0	1		06/12/19 00:2	5 71-43-2	
Bromochloromethane	<1.	-	1.0	1		06/12/19 00:2	5 74-97-5	
Bromodichloromethane	<1.	0	1.0	1		06/12/19 00:2		
Bromoform	<1.	0	1.0	1		06/12/19 00:2		
Bromomethane	<1.	0	1.0	1		06/12/19 00:2		
2-Butanone (MEK)	<5.	0	5.0	1		06/12/19 00:2		IL
Carbon disulfide	<1.	0	1.0	1		06/12/19 00:2		
Carbon tetrachloride	<1.	0	1.0	1		06/12/19 00:2		
Chlorobenzene	<1.	0	1.0	1		06/12/19 00:2		
Chloroethane	<1.	-	1.0	1		06/12/19 00:2		
Chloroform	<1.	0	1.0	1		06/12/19 00:2		
	51.	- ug/L	1.0	•		50, 12, 10 00.20		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: ONU SLCRS	Lab ID: 709	92926003	Collected: 06/10/1	9 13:45	Received: 06	6/10/19 15:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	thod: EPA 8	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		06/12/19 00:25	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/12/19 00:25	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/12/19 00:25	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/12/19 00:25	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/12/19 00:25	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 00:25	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 00:25	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/12/19 00:25	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:25	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:25		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:25		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:25		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:25		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/12/19 00:25		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 00:25		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 00:25		
Ethylbenzene	<1.0 <1.0	ug/L	1.0	1		06/12/19 00:25		
•		-		1		06/12/19 00:25		0
2-Hexanone	<5.0	ug/L	5.0					CL
Iodomethane	<1.0	ug/L	1.0	1		06/12/19 00:25		
Methylene Chloride	<1.0	ug/L	1.0	1		06/12/19 00:25		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		06/12/19 00:25		
Styrene	<1.0	ug/L	1.0	1		06/12/19 00:25		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 00:25		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 00:25		
Tetrachloroethene	<1.0	ug/L	1.0	1		06/12/19 00:25	127-18-4	CL
Toluene	<1.0	ug/L	1.0	1		06/12/19 00:25		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:25	5 71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:25	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:25	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/12/19 00:25	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/12/19 00:25	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		06/12/19 00:25	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		06/12/19 00:25	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		06/12/19 00:25	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	105	%	68-153	1		06/12/19 00:25	17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-124	1		06/12/19 00:25	460-00-4	
Toluene-d8 (S)	101	%	69-124	1		06/12/19 00:25	2037-26-5	
2120B W Apparent Color	Analytical Met	thod: SM22	2120B					
Apparent Color	10.0	units	5.0	1		06/11/19 13:58		
pH	7.0	Std. Units		1		06/11/19 13:58		
2320B Alkalinity	Analytical Met	thod: SM22	2320B					
Alkalinity, Total as CaCO3	245	mg/L	1.0	1		06/22/19 00:35	i	
	2.3		1.0	•				

Project: LEACHATES BASELINE 360

Pace Project No.:

7092926

	1.1.15			40.40.		40404500	Andrew NAC 1	
Sample: ONU SLCRS	Lab ID: 7092	2926003	Collected: 06/10/	19 13:45	5 Received: 06	6/10/19 15:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2340C Hardness, Total	Analytical Meth	nod: SM22 2	2340C					
Tot Hardness asCaCO3 (SM 2340B	14200	mg/L	5.0	1		06/24/19 14:01		
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	2540C					
Total Dissolved Solids	29900	mg/L	40.0	1		06/14/19 11:26		
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	3500-Cr B					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		06/11/19 10:54	18540-29-9	
410.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Me	thod: El	PA 410.4			
Chemical Oxygen Demand	653	mg/L	100	1	06/14/19 09:46	06/14/19 12:01		
5210B BOD, 5 day	Analytical Meth	nod: SM22	5210B Preparation I	Method:	SM22 5210B			
BOD, 5 day	4.4	mg/L	4.0	2	06/11/19 15:00	06/16/19 09:50		
9034 Sulfide, Titration	Analytical Meth	nod: EPA 90	34 Preparation Met	hod: EP	A 9030B			
Sulfide	8.0	mg/L	2.0	1	06/17/19 07:56	06/17/19 14:27		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Bromide	271	mg/L	100	200		06/26/19 22:15		
Chloride Sulfate	20400 197	mg/L mg/L	2000 50.0	1000 10		06/27/19 19:21 06/26/19 21:25		
351.2 Total Kjeldahl Nitrogen	Analytical Meth	0	51.2 Preparation Me	thod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	27.1	mg/L	. 5.0	10		06/26/19 07:58	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	•	3.2					
Nitrate as N	0.018J	mg/L	0.050	1		06/10/19 22:50	14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/10/19 22:50	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/10/19 21:07	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22 4	4500 NH3 H					
Nitrogen, Ammonia	28.7	mg/L	2.5	25		06/25/19 14:15	7664-41-7	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cyanide P	reparatio	on Method: EPA 9	010C		
Cyanide	4.0J	ug/L	10.0	1	06/18/19 07:57	06/18/19 15:23	57-12-5	
9060A TOC as NPOC	Analytical Meth	nod: EPA 90	060A					
Total Organic Carbon	18.4	mg/L	1.0	1		06/21/19 17:00		
Total Organic Carbon	18.7	mg/L	1.0	1		06/21/19 17:00		
Total Organic Carbon	18.6	mg/L	1.0	1		06/21/19 17:00		
Total Organic Carbon Mean Total Organic Carbon	18.6 18.6	mg/L mg/L	1.0 1.0	1 1		06/21/19 17:00 06/21/19 17:00		
insuit total organio odiboli	10.0	g/∟	1.0	,		50/21/10 11.00		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: STORAGE BLANK	Lab ID: 709	2926004	Collected: 06/10/1	19 13:45	Received: 0	6/10/19 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		06/11/19 23:49	67-64-1	CL
Acrylonitrile	<1.0	ug/L	1.0	1		06/11/19 23:49	107-13-1	
Benzene	<1.0	ug/L	1.0	1		06/11/19 23:49	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		06/11/19 23:49	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		06/11/19 23:49	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		06/11/19 23:49	75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		06/11/19 23:49	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		06/11/19 23:49	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		06/11/19 23:49	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		06/11/19 23:49	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:49	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		06/11/19 23:49	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		06/11/19 23:49	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/11/19 23:49	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/11/19 23:49	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/11/19 23:49	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/11/19 23:49	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:49	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:49	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/11/19 23:49	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:49	75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:49	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:49	156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/11/19 23:49	78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/11/19 23:49	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/11/19 23:49		
Ethylbenzene	<1.0	ug/L	1.0	1		06/11/19 23:49		
2-Hexanone	<5.0	ug/L	5.0	1		06/11/19 23:49	591-78-6	CL
lodomethane	<1.0	ug/L	1.0	1		06/11/19 23:49		
Methylene Chloride	<1.0	ug/L	1.0	1		06/11/19 23:49		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		06/11/19 23:49		
Styrene	<1.0	ug/L	1.0	1		06/11/19 23:49		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49		
Tetrachloroethene	<1.0	ug/L	1.0	1		06/11/19 23:49		CL
Toluene	<1.0	ug/L	1.0	1		06/11/19 23:49		01
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:49		
Trichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:49		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/11/19 23:49		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/11/19 23:49		
Vinyl acetate	<1.0	ug/L	1.0	1		06/11/19 23:49		
Vinyl chloride	<1.0	ug/L	1.0	1		06/11/19 23:49		
Xylene (Total)	<3.0	ug/L	3.0	1		06/11/19 23:49		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: STORAGE BLANK	Lab ID: 70	92926004	Collected: 06/10/1	9 13:45	Received: 0	6/10/19 15:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Me	ethod: EPA 82	260C/5030C					
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	68-153	1		06/11/19 23:49	17060-07-0	
4-Bromofluorobenzene (S)	95	%	79-124	1		06/11/19 23:49	460-00-4	
Toluene-d8 (S)	99	%	69-124	1		06/11/19 23:49	2037-26-5	

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: SA SLCRS	Lab ID:	7092926005	Collected: 06/11/1	19 10:15	Received: 06	6/11/19 15:56	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
Aluminum	1350	0 ug/L	200	1	06/13/19 09:04	06/24/19 22:43	3 7429-90-5	
Antimony	76.	5 ug/L	60.0	1	06/13/19 09:04	06/24/19 22:43	3 7440-36-0	
Arsenic	59.	9 ug/L	10.0	1	06/13/19 09:04	06/24/19 22:43	3 7440-38-2	
Barium	48	1 ug/L	200	1	06/13/19 09:04	06/24/19 22:43	3 7440-39-3	
Beryllium	<5.	0 ug/L	5.0	1	06/13/19 09:04	06/24/19 22:43	3 7440-41-7	
Boron	48	0 ug/L	50.0	1	06/13/19 09:04	06/24/19 22:43	3 7440-42-8	
Cadmium	12.	-	2.5	1	06/13/19 09:04	06/24/19 22:43	3 7440-43-9	
Calcium	176000	-	4000	20	06/13/19 09:04	06/25/19 15:11	7440-70-2	
Chromium	98.	-	10.0	1	06/13/19 09:04	06/24/19 22:43	3 7440-47-3	
Cobalt	10.5	-	50.0	1	06/13/19 09:04	06/24/19 22:43	3 7440-48-4	
Copper	36	-	25.0	1		06/24/19 22:43		
Iron	21000	0	20.0	1		06/24/19 22:43		
Lead	27	0	5.0	1		06/24/19 22:43		
Magnesium	10300		200	1		06/24/19 22:43		
Manganese	844	0	10.0	1		06/24/19 22:43		
Nickel	69.		40.0	1		06/24/19 22:43		
Potassium	48600	•	100000	20		06/25/19 15:11		
Selenium	<10.	0	10.0	1		06/24/19 22:43		
Silver	4.3		10.0	1		06/24/19 22:43		
Sodium	133000		100000	20		06/25/19 15:11	-	
Thallium	27.	0	10.0	1		06/24/19 22:43		
Vanadium	22.6	•	50.0	1		06/24/19 22:43		
Zinc	187	0	20.0	1		06/24/19 22:43		
		5				00/24/10 22.40	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
7470 Mercury	Analytical		470A Preparation Me 0.20	1		06/21/19 16:36	2 7420 07 6	
		5				00/21/19 10.30	7439-97-0	
8270D MSSV 14 Dioxane By SIM	-		270D by SIM Prepar			00/04/40 40 4		
1,4-Dioxane (SIM) <i>Surrogates</i>	0.8	8 ug/L	0.25	1	06/17/19 12:55	06/21/19 16:44	123-91-1	
1,4-Dioxane-d8 (S)	42	2 %.	30-125	1	06/17/19 12:55	06/21/19 16:44	1	
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Acetone	1.6	J ug/L	5.0	1		06/12/19 00:07	67-64-1	CL
Acrylonitrile	<1.	0 ug/L	1.0	1		06/12/19 00:07	7 107-13-1	
Benzene	<1.	0 ug/L	1.0	1		06/12/19 00:07	7 71-43-2	
Bromochloromethane	<1.	0 ug/L	1.0	1		06/12/19 00:07	7 74-97-5	
Bromodichloromethane	<1.	-	1.0	1		06/12/19 00:07	75-27-4	
Bromoform	<1.	0 ug/L	1.0	1		06/12/19 00:07	7 75-25-2	
Bromomethane	<1.	0	1.0	1		06/12/19 00:07		
2-Butanone (MEK)	<5.	0	5.0	1		06/12/19 00:07		IL
Carbon disulfide	<1.	0	1.0	1		06/12/19 00:07		
Carbon tetrachloride	<1.	0	1.0	1		06/12/19 00:07		
Chlorobenzene	<1.	0	1.0	1		06/12/19 00:07		
Chloroethane	<1.	-	1.0	1		06/12/19 00:07		
Chloroform	<1.	0	1.0	1		06/12/19 00:07		
	51.	- ugic	1.0	•		50, 1 <u>L</u> , 10 00.01	0.000	

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: SA SLCRS	Lab ID: 709	2926005	Collected: 06/11/1	9 10:15	Received: 0	6/11/19 15:56 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		06/12/19 00:07	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/12/19 00:07	′ 96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/12/19 00:07	' 124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/12/19 00:07	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/12/19 00:07	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 00:07	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/12/19 00:07	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/12/19 00:07	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:07	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:07	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:07	75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:07	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:07	156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/12/19 00:07	78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 00:07	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/12/19 00:07	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		06/12/19 00:07	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		06/12/19 00:07	591-78-6	CL
lodomethane	<1.0	ug/L	1.0	1		06/12/19 00:07	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		06/12/19 00:07	75-09-2	
4-Methyl-2-pentanone (MIBK)	85.7	ug/L	5.0	1		06/12/19 00:07	108-10-1	
Styrene	<1.0	ug/L	1.0	1		06/12/19 00:07	100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 00:07	630-20-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/12/19 00:07	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		06/12/19 00:07	127-18-4	CL
Toluene	<1.0	ug/L	1.0	1		06/12/19 00:07	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:07	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/12/19 00:07	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		06/12/19 00:07	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/12/19 00:07	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/12/19 00:07	′96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		06/12/19 00:07	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		06/12/19 00:07	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		06/12/19 00:07	1330-20-7	
Surrogates		Ũ						
1,2-Dichloroethane-d4 (S)	98	%	68-153	1		06/12/19 00:07	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		06/12/19 00:07	460-00-4	
Toluene-d8 (S)	103	%	69-124	1		06/12/19 00:07	2037-26-5	
Tentatively Identified Compounds								
4-Bromo-2,5-dimethoxyamp	10.1J	ug/L		1		06/12/19 00:07	32156-26-6	Ν
2120B W Apparent Color	Analytical Met	hod: SM22	2120B					
Apparent Color	75.0	units	25.0	5		06/12/19 14:32	2	
pH	7.0	Std. Units	s 0.10	5		06/12/19 14:32	2	
2320B Alkalinity	Analytical Met	hod: SM22	2320B					
Alkalinity, Total as CaCO3	183	mg/L	1.0	1		06/22/19 02:32	2	

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: SA SLCRS	Lab ID: 70	92926005	Collected: 06/11/	19 10:15	5 Received: 06	6/11/19 15:56 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2340C Hardness, Total	Analytical Me	thod: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	4000	mg/L	5.0	1		06/24/19 15:16		
2540C Total Dissolved Solids	Analytical Me	thod: SM22	2540C					
Total Dissolved Solids	9360	mg/L	20.0	1		06/17/19 10:20		
Chromium, Hexavalent	Analytical Me	thod: SM22	3500-Cr B					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		06/12/19 07:39	18540-29-9	
410.4 COD	Analytical Me	thod: EPA 4	10.4 Preparation Me	thod: El	PA 410.4			
Chemical Oxygen Demand	710	mg/L	10.0	1	06/19/19 09:15	06/19/19 11:38		
5210B BOD, 5 day	Analytical Me	thod: SM22	5210B Preparation	Method:	SM22 5210B			
BOD, 5 day	50.8	mg/L	10.0	5	06/12/19 12:20	06/17/19 12:30		
9034 Sulfide, Titration	Analytical Me	thod: EPA 90	034 Preparation Met	hod: EF	PA 9030B			
Sulfide	6.4	mg/L	2.0	1	06/17/19 07:56	06/17/19 14:27		
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 3	0.0					
Bromide Chloride	67.7 5830	mg/L mg/L	12.5 400	25 200		06/26/19 22:32 06/26/19 22:49		
Sulfate	361	mg/L	125	25		06/26/19 22:32	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Me	thod: EPA 3	51.2 Preparation Me	thod: El	PA 351.2			
Nitrogen, Kjeldahl, Total	17.0	mg/L	5.0	10	06/25/19 13:02	06/26/19 07:59	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Me	thod: EPA 3	53.2					
Nitrate as N	0.30	mg/L	0.050	1		06/11/19 22:41		
Nitrate-Nitrite (as N)	0.43	mg/L	0.050	1		06/11/19 22:41	1121-31-9	
353.2 Nitrogen, NO2	Analytical Me					00/14/140 00 04	4 4707 05 0	
Nitrite as N	0.13	mg/L	0.050	1		06/11/19 20:31	14797-65-0	
4500 Ammonia Water	Analytical Me							
Nitrogen, Ammonia	4.7	mg/L		1		06/25/19 14:16	7664-41-7	
9014 Cyanide, Total	-		014 Total Cyanide P					
Cyanide	3.4J	ug/L	10.0	1	06/18/19 07:57	06/18/19 15:24	57-12-5	
9060A TOC as NPOC	Analytical Me	thod: EPA 90	060A					
Total Organic Carbon	8.9	mg/L	1.0	1		06/21/19 17:17		
Total Organic Carbon	8.8	mg/L	1.0	1		06/21/19 17:17		
Total Organic Carbon Total Organic Carbon	8.7 8.8	mg/L mg/L	1.0 1.0	1 1		06/21/19 17:17 06/21/19 17:17		
Mean Total Organic Carbon	8.8	mg/L	1.0	1		06/21/19 17:17		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: EQUIPMENT BLANK	Lab ID: 7092	2926006	Collected: 06/11/1	9 10:40	Received: 06	6/11/19 15:56 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
Aluminum	<200	ug/L	200	1	06/13/19 09:04	06/24/19 22:48	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	06/13/19 09:04	06/24/19 22:48	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	06/13/19 09:04	06/24/19 22:48	7440-38-2	
Barium	<200	ug/L	200	1	06/13/19 09:04	06/24/19 22:48	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	06/13/19 09:04	06/24/19 22:48	7440-41-7	
Boron	<50.0	ug/L	50.0	1	06/13/19 09:04	06/24/19 22:48	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	06/13/19 09:04	06/24/19 22:48	7440-43-9	
Calcium	165J	ug/L	200	1	06/13/19 09:04	06/24/19 22:48	7440-70-2	
Chromium	<10.0	ug/L	10.0	1	06/13/19 09:04	06/24/19 22:48	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1	06/13/19 09:04	06/24/19 22:48	7440-48-4	
Copper	<25.0	ug/L	25.0	1	06/13/19 09:04	06/24/19 22:48	7440-50-8	
Iron	21.8	ug/L	20.0	1	06/13/19 09:04	06/24/19 22:48	7439-89-6	
Lead	<5.0	ug/L	5.0	1	06/13/19 09:04	06/24/19 22:48	7439-92-1	
Magnesium	<200	ug/L	200	1	06/13/19 09:04	06/24/19 22:48	7439-95-4	
Manganese	<10.0	ug/L	10.0	1		06/24/19 22:48		
Nickel	<40.0	ug/L	40.0	1	06/13/19 09:04	06/24/19 22:48	7440-02-0	
Potassium	<5000	ug/L	5000	1	06/13/19 09:04	06/24/19 22:48	7440-09-7	
Selenium	<10.0	ug/L	10.0	1		06/24/19 22:48		
Silver	<10.0	ug/L	10.0	1		06/24/19 22:48		
Sodium	<5000	ug/L	5000	1		06/24/19 22:48		
Thallium	<10.0	ug/L	10.0	1		06/24/19 22:48		
Vanadium	<50.0	ug/L	50.0	1		06/24/19 22:48		
Zinc	<20.0	ug/L	20.0	1		06/24/19 22:48		
7470 Mercury	Analytical Meth	nod: EPA 74	470A Preparation Me	thod: E	PA 7470A			
Mercury	<0.20	ug/L	0.20	1	06/21/19 10:50	06/21/19 16:42	7439-97-6	
8270D MSSV 14 Dioxane By SIM	Analytical Meth	nod: EPA 82	270D by SIM Prepara	ation Me	ethod: EPA 3510			
1,4-Dioxane (SIM) Surrogates	<0.25	ug/L	0.25	1	06/17/19 12:55	06/21/19 17:04	123-91-1	
1,4-Dioxane-d8 (S)	46	%.	30-125	1	06/17/19 12:55	06/21/19 17:04		
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		06/11/19 23:31	67-64-1	CL
Acrylonitrile	<1.0	ug/L	1.0	1		06/11/19 23:31	107-13-1	
Benzene	<1.0	ug/L	1.0	1		06/11/19 23:31	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		06/11/19 23:31		
Bromodichloromethane	<1.0	ug/L	1.0	1		06/11/19 23:31	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		06/11/19 23:31	75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		06/11/19 23:31	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		06/11/19 23:31	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		06/11/19 23:31		
Carbon tetrachloride	<1.0	ug/L	1.0	1		06/11/19 23:31		
Chlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:31		
Chloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31		
Chloroform	<1.0	ug/L	1.0	1		06/11/19 23:31		
		-						

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: EQUIPMENT BLANK	Lab ID: 709	2926006	Collected: 06/11/1	9 10:40	Received: 0	6/11/19 15:56 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 8	260C/5030C					
Chloromethane	<1.0	ug/L	1.0	1		06/11/19 23:31	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/11/19 23:31	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/11/19 23:31	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/11/19 23:31	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/11/19 23:31	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:31	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:31	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/11/19 23:31	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:31		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:31		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:31		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/11/19 23:31		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/11/19 23:31		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/11/19 23:31		
Ethylbenzene	<1.0 <1.0	ug/L	1.0	1		06/11/19 23:31		
2-Hexanone	<5.0	-	5.0	1		06/11/19 23:31		CL
		ug/L		1				0L
Iodomethane	<1.0	ug/L	1.0			06/11/19 23:31		
Methylene Chloride	<1.0	ug/L	1.0	1		06/11/19 23:31		
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		06/11/19 23:31		
Styrene	<1.0	ug/L	1.0	1		06/11/19 23:31		
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31		
Tetrachloroethene	<1.0	ug/L	1.0	1		06/11/19 23:31		CL
Toluene	<1.0	ug/L	1.0	1		06/11/19 23:31		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:31	79-00-5	
Trichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:31	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/11/19 23:31	75-69-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/11/19 23:31	96-18-4	
Vinyl acetate	<1.0	ug/L	1.0	1		06/11/19 23:31	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		06/11/19 23:31	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		06/11/19 23:31	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	68-153	1		06/11/19 23:31	17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-124	1		06/11/19 23:31	460-00-4	
Toluene-d8 (S)	99	%	69-124	1		06/11/19 23:31	2037-26-5	
2120B W Apparent Color	Analytical Met	hod: SM22	2120B					
Apparent Color	<5.0	units	5.0	1		06/12/19 14:32		
рН	6.5	Std. Units		1		06/12/19 14:32		
2320B Alkalinity	Analytical Met	hod: SM22	2320B					
Alkalinity, Total as CaCO3	<1.0	mg/L	1.0	1		06/22/19 02:38		
		5						

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: EQUIPMENT BLANK	Lab ID: 709	2926006	Collected: 06/11/1	9 10:40	Received: 06	6/11/19 15:56 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
2340C Hardness, Total	Analytical Meth	nod: SM22 2	2340C					
Tot Hardness asCaCO3 (SM 2340B	<5.0	mg/L	5.0	1		06/24/19 15:16		
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	2540C					
Total Dissolved Solids	31.0	mg/L	10.0	1		06/17/19 10:21		
Chromium, Hexavalent	Analytical Meth	nod: SM22 :	3500-Cr B					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		06/12/19 07:39	18540-29-9	
410.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Met	hod: EF	PA 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	06/19/19 09:15	06/19/19 11:39		
5210B BOD, 5 day	Analytical Meth	nod: SM22 s	5210B Preparation N	lethod:	SM22 5210B			
BOD, 5 day	1.0J	mg/L	2.0	1	06/12/19 12:19	06/17/19 12:16		
9034 Sulfide, Titration	Analytical Meth	nod: EPA 90	34 Preparation Meth	nod: EP	A 9030B			
Sulfide	6.4	mg/L	2.0	1	06/17/19 07:56	06/17/19 14:28		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Bromide	0.021J	mg/L	0.50	1		06/26/19 23:05	24959-67-9	
Chloride Sulfate	1.1J <5.0	mg/L mg/L	2.0 5.0	1 1		06/26/19 23:05 06/26/19 23:05		
351.2 Total Kjeldahl Nitrogen		•	51.2 Preparation Met		PA 351 2	00/20/13 23.03	14000 75 0	
Nitrogen, Kjeldahl, Total	0.30	mg/L	0.10	1		06/26/19 08:37	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	-			00/20/10 10:02	00/20/10 00:07	1121-01-0	
Nitrate as N	<0.050	mg/L	0.050	1		06/11/19 22:42	1/707-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		06/11/19 22:42		
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		06/11/19 20:32	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H					
Nitrogen, Ammonia	0.027J	mg/L	0.10	1		06/25/19 14:19	7664-41-7	В
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cyanide Pr	eparatio	on Method: EPA 9	010C		
Cyanide	4.6J	ug/L	10.0	1	06/18/19 07:57	06/18/19 15:25	57-12-5	
9060A TOC as NPOC	Analytical Meth	nod: EPA 90	060A					
Total Organic Carbon	<1.0	mg/L	1.0	1		06/21/19 17:29	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		06/21/19 17:29		
Total Organic Carbon	<1.0	mg/L	1.0	1		06/21/19 17:29	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		06/21/19 17:29		
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		06/21/19 17:29	7440-44-0	

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: TRIP BLANK	Lab ID: 709	2926007	Collected: 06/11/1	9 00:00	Received: 0	6/11/19 15:56 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Acetone	<5.0	ug/L	5.0	1		06/11/19 23:14	67-64-1	CL
Acrylonitrile	<1.0	ug/L	1.0	1		06/11/19 23:14	107-13-1	
Benzene	<1.0	ug/L	1.0	1		06/11/19 23:14	71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		06/11/19 23:14	74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		06/11/19 23:14	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		06/11/19 23:14	75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		06/11/19 23:14	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		06/11/19 23:14	78-93-3	IL
Carbon disulfide	<1.0	ug/L	1.0	1		06/11/19 23:14	75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		06/11/19 23:14	56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:14	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		06/11/19 23:14	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		06/11/19 23:14	74-87-3	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		06/11/19 23:14	96-12-8	
Dibromochloromethane	<1.0	ug/L	1.0	1		06/11/19 23:14	124-48-1	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		06/11/19 23:14	106-93-4	
Dibromomethane	<1.0	ug/L	1.0	1		06/11/19 23:14	74-95-3	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:14	95-50-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		06/11/19 23:14	106-46-7	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		06/11/19 23:14	110-57-6	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14	107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:14	75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:14	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:14		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		06/11/19 23:14	78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/11/19 23:14	10061-01-5	
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		06/11/19 23:14	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		06/11/19 23:14	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		06/11/19 23:14		CL
lodomethane	<1.0	ug/L	1.0	1		06/11/19 23:14	74-88-4	
Methylene Chloride	<1.0	ug/L	1.0	1		06/11/19 23:14	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		06/11/19 23:14		
Styrene	<1.0	ug/L	1.0	1		06/11/19 23:14	100-42-5	
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14		
Tetrachloroethene	<1.0	ug/L	1.0	1		06/11/19 23:14	127-18-4	CL
Toluene	<1.0	ug/L	1.0	1		06/11/19 23:14		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		06/11/19 23:14		
Trichloroethene	<1.0	ug/L	1.0	1		06/11/19 23:14		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		06/11/19 23:14		
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		06/11/19 23:14		
Vinyl acetate	<1.0	ug/L	1.0	1		06/11/19 23:14		
Vinyl chloride	<1.0	ug/L	1.0	1		06/11/19 23:14		
Xylene (Total)	<3.0	ug/L	3.0	1		06/11/19 23:14		

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Sample: TRIP BLANK	Lab ID: 70	092926007	Collected: 06/11/1	9 00:00	Received: 0	6/11/19 15:56	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	ethod: EPA 8	260C/5030C					
Surrogates 1,2-Dichloroethane-d4 (S)	101	%	68-153 79-124	1		06/11/19 23:14 06/11/19 23:14		
4-Bromofluorobenzene (S) Toluene-d8 (S)	99 100	%	79-124 69-124	1		06/11/19 23:14		

Project: Pace Project No.:	LEACHATES BAS 7092926	SELINE 360						
QC Batch:	118860		Analysis Me	ethod:	EPA 7470A			
QC Batch Method:	EPA 7470A		Analysis De	scription:	470 Mercury			
Associated Lab San	nples: 70929260	001, 7092926002,	7092926003, 709	2926005, 7092	926006			
METHOD BLANK:	564840		Matrix	: Water				
Associated Lab San	nples: 70929260	001, 7092926002,	7092926003, 709	2926005, 7092	926006			
_			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifi	ers	
Mercury		ug/L	<0.20	0.2	0 06/21/19 15:	:50		
LABORATORY COM	NTROL SAMPLE:	564841						
Paran	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Mercury		ug/L	1	0.99	99	80-120		
MATRIX SPIKE SAI	MPLE:	564842						
			7091639001	Spike	MS	MS	% Rec	
Paran	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury		ug/L	<0.	.20 1	1.1	107	7 75-125	
SAMPLE DUPLICA	TE: 564843							
_			7091639001	Dup				
Paran	neter	Units	Result	Result	RPD	Qualifiers		
Mercury		ug/L	<0.20	< 0.2)			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

QC Batch:	117595	Analysis Method:	EPA 6010C
QC Batch Method:	EPA 3005A	Analysis Description:	6010 MET Water
Associated Lab Sam	ples: 709292600	, 7092926002, 7092926003, 7092926005, 7	7092926006

METHOD BLANK: 557033 Associated Lab Samples: 7

3 Matrix: Water 7092926001, 7092926002, 7092926003, 7092926005, 7092926006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	06/24/19 21:17	
Antimony	ug/L	<60.0	60.0	06/24/19 21:17	
Arsenic	ug/L	<10.0	10.0	06/24/19 21:17	
Barium	ug/L	<200	200	06/24/19 21:17	
Beryllium	ug/L	<5.0	5.0	06/24/19 21:17	
Boron	ug/L	<50.0	50.0	06/24/19 21:17	
Cadmium	ug/L	<2.5	2.5	06/24/19 21:17	
Calcium	ug/L	<200	200	06/24/19 21:17	
Chromium	ug/L	<10.0	10.0	06/24/19 21:17	
Cobalt	ug/L	<50.0	50.0	06/24/19 21:17	
Copper	ug/L	<25.0	25.0	06/24/19 21:17	
Iron	ug/L	<20.0	20.0	06/24/19 21:17	
Lead	ug/L	<5.0	5.0	06/24/19 21:17	
Magnesium	ug/L	<200	200	06/24/19 21:17	
Manganese	ug/L	<10.0	10.0	06/24/19 21:17	
Nickel	ug/L	<40.0	40.0	06/24/19 21:17	
Potassium	ug/L	<5000	5000	06/24/19 21:17	
Selenium	ug/L	<10.0	10.0	06/24/19 21:17	
Silver	ug/L	<10.0	10.0	06/24/19 21:17	
Sodium	ug/L	<5000	5000	06/24/19 21:17	
Thallium	ug/L	<10.0	10.0	06/24/19 21:17	
Vanadium	ug/L	<50.0	50.0	06/24/19 21:17	
Zinc	ug/L	<20.0	20.0	06/24/19 21:17	

LABORATORY CONTROL SAMPLE: 557034

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	5000	5000	100	80-120	
Antimony	ug/L	750	785	105	80-120	
Arsenic	ug/L	500	513	103	80-120	
Barium	ug/L	500	522	104	80-120	
Beryllium	ug/L	50	53.9	108	80-120	
Boron	ug/L	2500	2580	103	80-120	
Cadmium	ug/L	50	52.6	105	80-120	
Calcium	ug/L	25000	26600	106	80-120	
Chromium	ug/L	250	260	104	80-120	
Cobalt	ug/L	500	518	104	80-120	
Copper	ug/L	250	262	105	80-120	
ron	ug/L	2000	2120	106	80-120	
_ead	ug/L	500	531	106	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

LABORATORY CONTROL SAMPLE: 557034

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Magnesium	ug/L	25000	26200	105	80-120	
Manganese	ug/L	250	265	106	80-120	
Nickel	ug/L	250	262	105	80-120	
Potassium	ug/L	50000	50600	101	80-120	
Selenium	ug/L	750	773	103	80-120	
ilver	ug/L	250	252	101	80-120	
odium	ug/L	50000	50700	101	80-120	
nallium	ug/L	750	784	105	80-120	
anadium	ug/L	500	520	104	80-120	
inc	ug/L	1000	1040	104	80-120	

MATRIX SPIKE SAMPLE:

557036

MATRIX OF IRE SAME EE.	557050	7092454017	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier
Aluminum	ug/L	<200	5000	4850	97	75-125	
Antimony	ug/L	<60.0	750	752	100	75-125	
Arsenic	ug/L	<10.0	500	500	100	75-125	
Barium	ug/L	45.5J	500	551	101	75-125	
Beryllium	ug/L	<5.0	50	52.2	104	75-125	
Boron	ug/L	146	2500	2600	98	75-125	
Cadmium	ug/L	<2.5	50	50.6	101	75-125	
Calcium	ug/L	12000	25000	36600	98	75-125	
Chromium	ug/L	<10.0	250	242	97	75-125	
Cobalt	ug/L	<50.0	500	494	98	75-125	
Copper	ug/L	7.2J	250	258	100	75-125	
Iron	ug/L	13.6J	2000	2000	99	75-125	
Lead	ug/L	<5.0	500	523	105	75-125	
Magnesium	ug/L	5640	25000	30700	100	75-125	
Manganese	ug/L	2120	250	2440	130	75-125 N	/11
Nickel	ug/L	<40.0	250	252	100	75-125	
Potassium	ug/L	5660	50000	50300	89	75-125	
Selenium	ug/L	<10.0	750	760	101	75-125	
Silver	ug/L	<10.0	250	237	95	75-125	
Sodium	ug/L	35000	50000	80000	90	75-125	
Thallium	ug/L	<10.0	750	762	101	75-125	
Vanadium	ug/L	<50.0	500	496	99	75-125	
Zinc	ug/L	<20.0	1000	1000	99	75-125	

SAMPLE DUPLICATE: 557035

Parameter	Units	7092454017 Result	Dup Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	<10.0	<10.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

SAMPLE DUPLICATE: 557035 7092454017 Dup Parameter Units Result Result RPD Qualifiers 45.5J Barium ug/L 47.1J <5.0 0.078J Beryllium ug/L 146 Boron ug/L 150 2 Cadmium <2.5 <2.5 ug/L Calcium 12000 12000 0 ug/L Chromium ug/L <10.0 <10.0 <50.0 Cobalt ug/L <50.0 Copper ug/L 7.2J <25.0 Iron ug/L 13.6J <20.0 <5.0 Lead ug/L <5.0 5640 3 Magnesium ug/L 5810 2120 2280 7 Manganese ug/L <40.0 Nickel ug/L <40.0 Potassium ug/L 5660 3810J Selenium ug/L <10.0 <10.0 Silver ug/L <10.0 <10.0 Sodium ug/L 35000 36100 3 <10.0 Thallium ug/L <10.0 <50.0 Vanadium ug/L <50.0 <20.0 Zinc 5.8J ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

QC Batch:	117325
QC Batch Method:	EPA 8260C/5030C

Analysis Method:EPA 8260C/5030CAnalysis Description:8260 MSV

Associated Lab Samples: 7092926001, 7092926002, 7092926003, 7092926004, 7092926005, 7092926006, 7092926007

METHOD BLANK: 555632	2		N	latrix: Water			
Associated Lab Samples:	7092926001,	7092926002,	7092926003,	7092926004,	7092926005,	7092926006,	7092926007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
1,1,1-Trichloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
1,1-Dichloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
1,1-Dichloroethene	ug/L	<1.0	1.0	06/11/19 20:37	
1,2,3-Trichloropropane	ug/L	<1.0	1.0	06/11/19 20:37	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	06/11/19 20:37	
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	06/11/19 20:37	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	06/11/19 20:37	
1,2-Dichloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
1,2-Dichloropropane	ug/L	<1.0	1.0	06/11/19 20:37	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	06/11/19 20:37	
2-Butanone (MEK)	ug/L	<5.0	5.0	06/11/19 20:37	IL
2-Hexanone	ug/L	<5.0	5.0	06/11/19 20:37	CL
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	06/11/19 20:37	
Acetone	ug/L	<5.0	5.0	06/11/19 20:37	CL
Acrylonitrile	ug/L	<1.0	1.0	06/11/19 20:37	
Benzene	ug/L	<1.0	1.0	06/11/19 20:37	
Bromochloromethane	ug/L	<1.0	1.0	06/11/19 20:37	
Bromodichloromethane	ug/L	<1.0	1.0	06/11/19 20:37	
Bromoform	ug/L	<1.0	1.0	06/11/19 20:37	
Bromomethane	ug/L	<1.0	1.0	06/11/19 20:37	
Carbon disulfide	ug/L	<1.0	1.0	06/11/19 20:37	
Carbon tetrachloride	ug/L	<1.0	1.0	06/11/19 20:37	
Chlorobenzene	ug/L	<1.0	1.0	06/11/19 20:37	
Chloroethane	ug/L	<1.0	1.0	06/11/19 20:37	
Chloroform	ug/L	<1.0	1.0	06/11/19 20:37	
Chloromethane	ug/L	<1.0	1.0	06/11/19 20:37	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	06/11/19 20:37	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	06/11/19 20:37	
Dibromochloromethane	ug/L	<1.0	1.0	06/11/19 20:37	
Dibromomethane	ug/L	<1.0	1.0	06/11/19 20:37	
Ethylbenzene	ug/L	<1.0	1.0	06/11/19 20:37	
lodomethane	ug/L	<1.0	1.0	06/11/19 20:37	
Methylene Chloride	ug/L	<1.0	1.0	06/11/19 20:37	
Styrene	ug/L	<1.0	1.0	06/11/19 20:37	
Tetrachloroethene	ug/L	<1.0	1.0	06/11/19 20:37	CL
Toluene	ug/L	<1.0	1.0	06/11/19 20:37	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	06/11/19 20:37	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	06/11/19 20:37	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

METHOD BLANK: 555632 Matrix: Water Associated Lab Samples: 7092926001, 7092926002, 7092926003, 7092926004, 7092926005, 7092926006, 7092926007 Blank Reporting

Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	06/11/19 20:37	
Trichloroethene	ug/L	<1.0	1.0	06/11/19 20:37	
Trichlorofluoromethane	ug/L	<1.0	1.0	06/11/19 20:37	
Vinyl acetate	ug/L	<1.0	1.0	06/11/19 20:37	
Vinyl chloride	ug/L	<1.0	1.0	06/11/19 20:37	
Xylene (Total)	ug/L	<3.0	3.0	06/11/19 20:37	
1,2-Dichloroethane-d4 (S)	%	100	68-153	06/11/19 20:37	
4-Bromofluorobenzene (S)	%	95	79-124	06/11/19 20:37	
Toluene-d8 (S)	%	99	69-124	06/11/19 20:37	

LABORATORY CONTROL SAMPLE: 555633

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Falameter						Quaimers
1,1,1,2-Tetrachloroethane	ug/L	50	52.8	106	74-113	
1,1,1-Trichloroethane	ug/L	50	47.4	95	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	52.8	106	74-121	
1,1,2-Trichloroethane	ug/L	50	48.2	96	80-117	
1,1-Dichloroethane	ug/L	50	50.6	101	83-151	
1,1-Dichloroethene	ug/L	50	46.8	94	45-146	
1,2,3-Trichloropropane	ug/L	50	52.1	104	71-123	
1,2-Dibromo-3-chloropropane	ug/L	50	50.7	101	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	47.6	95	83-115	
1,2-Dichlorobenzene	ug/L	50	46.9	94	74-113	
1,2-Dichloroethane	ug/L	50	49.9	100	74-129	
1,2-Dichloropropane	ug/L	50	50.1	100	75-117	
1,4-Dichlorobenzene	ug/L	50	46.7	93	71-113	
2-Butanone (MEK)	ug/L	50	49.8	100	44-162 I	L
2-Hexanone	ug/L	50	49.6	99	32-183 0	CL
4-Methyl-2-pentanone (MIBK)	ug/L	50	47.5	95	69-132	
Acetone	ug/L	50	48.5	97	23-188 0	CL
Acrylonitrile	ug/L	50	49.3	99	59-148	
Benzene	ug/L	50	50.4	101	73-119	
Bromochloromethane	ug/L	50	49.6	99	81-116	
Bromodichloromethane	ug/L	50	51.1	102	78-117	
Bromoform	ug/L	50	47.4	95	65-122	
Bromomethane	ug/L	50	46.9	94	52-147	
Carbon disulfide	ug/L	50	47.0	94	41-144	
Carbon tetrachloride	ug/L	50	54.1	108	59-120	
Chlorobenzene	ug/L	50	48.6	97	75-113	
Chloroethane	ug/L	50	48.4	97	49-151	
Chloroform	ug/L	50	51.1	102	72-122	
Chloromethane	ug/L	50	46.3	93	46-144	
cis-1,2-Dichloroethene	ug/L	50	50.3	101	72-121	
cis-1,3-Dichloropropene	ug/L	50	49.4	99	78-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

LABORATORY CONTROL SAMPLE: 555633

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Dibromochloromethane	ug/L		56.8	114	70-120	
Dibromomethane	ug/L	50	47.1	94	75-125	
Ethylbenzene	ug/L	50	49.0	98	70-113	
lodomethane	ug/L	50	47.3	95	61-144	
Methylene Chloride	ug/L	50	44.0	88	61-142	
Styrene	ug/L	50	48.9	98	72-118	
Tetrachloroethene	ug/L	50	43.1	86	60-128	CL
Foluene	ug/L	50	49.2	98	72-119	
rans-1,2-Dichloroethene	ug/L	50	48.1	96	56-142	
ans-1,3-Dichloropropene	ug/L	50	50.4	101	79-116	
rans-1,4-Dichloro-2-butene	ug/L	50	52.3	105	71-121	
richloroethene	ug/L	50	48.0	96	69-117	
richlorofluoromethane	ug/L	50	50.4	101	27-173	
/inyl acetate	ug/L	50	54.4	109	20-158	
/inyl chloride	ug/L	50	49.9	100	43-143	
Xylene (Total)	ug/L	150	146	97	71-109	
,2-Dichloroethane-d4 (S)	%			99	68-153	
-Bromofluorobenzene (S)	%			99	79-124	
Toluene-d8 (S)	%			104	69-124	

MATRIX SPIKE SAMPLE:	555694						
		7092092005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.22	50	41.0	82	74-113	
1,1,1-Trichloroethane	ug/L	<0.22	50	41.3	83	65-118	
1,1,2,2-Tetrachloroethane	ug/L	< 0.32	50	47.1	94	74-121	
1,1,2-Trichloroethane	ug/L	<0.23	50	42.5	85	80-117	
1,1-Dichloroethane	ug/L	<0.19	50	43.6	87	83-151	
1,1-Dichloroethene	ug/L	<0.23	50	41.4	83	45-146	
1,2,3-Trichloropropane	ug/L	<0.28	50	46.1	92	71-123	
1,2-Dibromo-3-chloropropane	ug/L	<0.47	50	43.3	87	74-119	
1,2-Dibromoethane (EDB)	ug/L	<0.24	50	41.9	84	83-115	
1,2-Dichlorobenzene	ug/L	<0.17	50	37.9	76	74-113	
1,2-Dichloroethane	ug/L	<0.19	50	42.9	86	74-129	
1,2-Dichloropropane	ug/L	<0.43	50	43.3	87	75-117	
1,4-Dichlorobenzene	ug/L	<0.25	50	37.9	76	71-113	
2-Butanone (MEK)	ug/L	<1.3	50	37.8	76	44-162 IL	
2-Hexanone	ug/L	<0.60	50	37.7	75	32-183 C	L
4-Methyl-2-pentanone (MIBK)	ug/L	<0.39	50	43.1	86	69-132	
Acetone	ug/L	<1.6	50	26.1	50	23-188 C	L
Acrylonitrile	ug/L	<0.29	50	43.0	86	59-148	
Benzene	ug/L	0.62J	50	43.8	86	73-119	
Bromochloromethane	ug/L	<0.18	50	40.5	81	81-116	
Bromodichloromethane	ug/L	<0.22	50	43.9	88	78-117	
Bromoform	ug/L	<0.43	50	38.6	77	65-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

MATRIX SPIKE SAMPLE:	555694						
		7092092005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromomethane	ug/L	<0.43	50	32.6	65	52-147	
Carbon disulfide	ug/L	<0.25	50	41.8	84	41-144	
Carbon tetrachloride	ug/L	<0.20	50	43.9	88	59-120	
Chlorobenzene	ug/L	<0.18	50	38.2	76	75-113	
Chloroethane	ug/L	<0.35	50	42.6	85	49-151	
Chloroform	ug/L	<0.20	50	42.1	84	72-122	
Chloromethane	ug/L	<0.20	50	38.7	77	46-144	
cis-1,2-Dichloroethene	ug/L	<0.24	50	41.8	84	72-121	
cis-1,3-Dichloropropene	ug/L	<0.26	50	42.2	84	78-116	
Dibromochloromethane	ug/L	<0.29	50	46.9	94	70-120	
Dibromomethane	ug/L	<0.24	50	42.9	86	75-125	
Ethylbenzene	ug/L	<0.16	50	37.2	74	70-113	
lodomethane	ug/L	<0.58	50	36.7	73	61-144	
Methylene Chloride	ug/L	<0.30	50	40.6	81	61-142	
Styrene	ug/L	<0.22	50	38.6	77	72-118	
Tetrachloroethene	ug/L	<0.28	50	32.1	64	60-128 CI	_
Toluene	ug/L	<0.20	50	42.3	85	72-119	
rans-1,2-Dichloroethene	ug/L	<0.19	50	42.0	84	56-142	
trans-1,3-Dichloropropene	ug/L	<0.36	50	42.5	85	79-116	
trans-1,4-Dichloro-2-butene	ug/L	<0.54	50	42.0	84	71-121	
Trichloroethene	ug/L	<0.22	50	41.7	83	69-117	
Trichlorofluoromethane	ug/L	<0.12	50	41.9	84	27-173	
Vinyl acetate	ug/L	<0.28	50	42.6	85	20-158	
Vinyl chloride	ug/L	<0.33	50	42.0	84	43-143	
Xylene (Total)	ug/L	<0.18	150	112	75	71-109	
1,2-Dichloroethane-d4 (S)	%				102	68-153	
4-Bromofluorobenzene (S)	%				95	79-124	
Toluene-d8 (S)	%				101	69-124	

SAMPLE DUPLICATE: 555693

Parameter	Units	7092092003 Result	Dup Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.22	<1.0		
1,1,1-Trichloroethane	ug/L	<0.22	<1.0		
1,1,2,2-Tetrachloroethane	ug/L	<0.32	<1.0		
1,1,2-Trichloroethane	ug/L	<0.23	<1.0		
1,1-Dichloroethane	ug/L	<0.19	<1.0		
1,1-Dichloroethene	ug/L	<0.23	<1.0		
1,2,3-Trichloropropane	ug/L	<0.28	<1.0		
1,2-Dibromo-3-chloropropane	ug/L	<0.47	<1.0		
1,2-Dibromoethane (EDB)	ug/L	<0.24	<1.0		
1,2-Dichlorobenzene	ug/L	<0.17	<1.0		
1,2-Dichloroethane	ug/L	<0.19	<1.0		
1,2-Dichloropropane	ug/L	<0.43	<1.0		
1,4-Dichlorobenzene	ug/L	<0.25	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

SAMPLE DUPLICATE: 555693

Parameter	Units	7092092003 Result	Dup Result	RPD	Qualifiers
				RFD	
2-Butanone (MEK)	ug/L	<1.3	<5.0		IL
2-Hexanone	ug/L	<0.60	<5.0		CL
4-Methyl-2-pentanone (MIBK)	ug/L	<0.39	<5.0		
Acetone	ug/L	2.4J	2.2J		CL
Acrylonitrile	ug/L	<0.29	<1.0		
Benzene	ug/L	2.7	2.9		9
Bromochloromethane	ug/L	<0.18	<1.0		
Bromodichloromethane	ug/L	<0.22	<1.0		
Bromoform	ug/L	<0.43	<1.0		
Bromomethane	ug/L	<0.43	<1.0		
Carbon disulfide	ug/L	<0.25	<1.0		
Carbon tetrachloride	ug/L	<0.20	<1.0		
Chlorobenzene	ug/L	<0.18	<1.0		
Chloroethane	ug/L	<0.35	<1.0		
Chloroform	ug/L	<0.20	<1.0		
Chloromethane	ug/L	<0.20	<1.0		
cis-1,2-Dichloroethene	ug/L	<0.24	<1.0		
cis-1,3-Dichloropropene	ug/L	<0.26	<1.0		
Dibromochloromethane	ug/L	<0.29	<1.0		
Dibromomethane	ug/L	<0.24	<1.0		
Ethylbenzene	ug/L	4.3	4.5		4
odomethane	ug/L	<0.58	<1.0		
Methylene Chloride	ug/L	< 0.30	<1.0		
Styrene	ug/L	<0.22	<1.0		
Tetrachloroethene	ug/L	<0.28	<1.0		CL
Foluene	ug/L	19.3	20.4		6
trans-1,2-Dichloroethene	ug/L	<0.19	<1.0		
rans-1,3-Dichloropropene	ug/L	<0.36	<1.0		
trans-1,4-Dichloro-2-butene	ug/L	<0.54	<1.0		
Trichloroethene	ug/L	<0.22	<1.0		
Trichlorofluoromethane	ug/L	<0.12	<1.0		
Vinyl acetate	ug/L	<0.28	<1.0		
Vinyl chloride	ug/L	< 0.33	<1.0		
Xylene (Total)	ug/L	26.0	25.8		1
1,2-Dichloroethane-d4 (S)	%	96	100		
4-Bromofluorobenzene (S)	%	93	93		
Toluene-d8 (S)	%	97	96		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES Pace Project No.: 7092926	BASELINE 360										
QC Batch: 613318		Analysi	s Method:	E	PA 8270[D by SIM					
QC Batch Method: EPA 3510		Analysi	s Descriptio	on: 82	270D Wa	ter 14 Di	oxane by S	SIM			
Associated Lab Samples: 70929	26001, 7092926002, 7	092926005,	709292600)6							
METHOD BLANK: 3314241		M	latrix: Wate	r							
Associated Lab Samples: 70929	26001, 7092926002, 7	092926005,	709292600)6							
		Blank	-	porting							
Parameter	Units	Result	: L	_imit	Ana	alyzed	Quali	fiers			
1,4-Dioxane (SIM)	ug/L	<	0.25	0.25	06/21/	19 11:31					
1,4-Dioxane-d8 (S)	%.		39	30-125	06/21/	19 11:31					
LABORATORY CONTROL SAMPL	E & LCSD: 3314242	2	33	14243							
		Spike	LCS	LCSD	LCS	LCSD	% Rec			Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		RPD	Qualifiers
1,4-Dioxane (SIM)	ug/L	10	7.8	7.3			40-125		6	20	
1,4-Dioxane-d8 (S)	%.				39	46	30-125				
LABORATORY CONTROL SAMPL	E: 3314706										
		Spike	LCS		LCS	9	6 Rec				
Parameter	Units	Conc.	Result		% Rec	L	imits	Quali	fiers		
1,4-Dioxane (SIM)	ug/L	10	0	.22J		2	40-125	L2			
1,4-Dioxane-d8 (S)	%.					44	30-125				
LABORATORY CONTROL SAMPL	E: 3314707										
		Spike	LCS		LCS	9	6 Rec				
Parameter	Units	Conc.	Result		% Rec	L	imits	Quali	fiers		
1,4-Dioxane (SIM)	ug/L	10		0.25		3	40-125	L2			
1,4-Dioxane-d8 (S)	%.					47	30-125				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	LEACHATES BASELINE 360

Pace Project No.: 7092926										
QC Batch: 615153		Analys	is Method	I: EF	PA 8270	D by SIM				
QC Batch Method: EPA 3510		Analys	is Descrip	otion: 82	70D Wa	ter 14 Die	oxane by S	IM		
Associated Lab Samples: 709292600)3									
METHOD BLANK: 3323553		N	latrix: Wa	ater						
Associated Lab Samples: 709292600)3									
		Blank	F	Reporting						
Parameter	Units	Result	t	Limit	Ana	lyzed	Qualif	iers		
1,4-Dioxane (SIM)	ug/L	<	:0.25	0.25	06/25/	19 11:18				
1,4-Dioxane-d8 (S)	%.		41	30-125	06/25/	19 11:18				
LABORATORY CONTROL SAMPLE & I	_CSD: 3323554			3323555						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,4-Dioxane (SIM) 1,4-Dioxane-d8 (S)	ug/L %.	10	8.	4 8.0	84 38	80 46	40-125 30-125		5 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BA Pace Project No.: 7092926	ASELINE 360						
QC Batch: 117122		Analysis N	lethod:	SM22 2120B			
QC Batch Method: SM22 2120B		Analysis D	escription:	2120B Color			
Associated Lab Samples: 7092926	6001, 7092926002,	7092926003					
METHOD BLANK: 554708		Matri	ix: Water				
Associated Lab Samples: 7092926	6001, 7092926002, ¹	7092926003					
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	
Apparent Color	units	<5.	0 !	5.0 06/11/19 1	3:57		
		<5.	0 4	5.0 06/11/19 1	3:57		
Apparent Color LABORATORY CONTROL SAMPLE:		_					
LABORATORY CONTROL SAMPLE:	554709	Spike	LCS	LCS	% Rec	Qualifiera	
LABORATORY CONTROL SAMPLE: Parameter	554709 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
LABORATORY CONTROL SAMPLE: Parameter	554709	Spike	LCS	LCS	% Rec	Qualifiers	
LABORATORY CONTROL SAMPLE: Parameter Apparent Color	554709 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
LABORATORY CONTROL SAMPLE: Parameter	554709 Units	Spike Conc. 40	LCS Result 40.0	LCS % Rec	% Rec Limits	Qualifiers	
LABORATORY CONTROL SAMPLE: Parameter Apparent Color	554709 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits		
LABORATORY CONTROL SAMPLE: Parameter Apparent Color SAMPLE DUPLICATE: 554710	554709 Units units	Spike Conc. 40 7092924001	LCS Result 40.0 Dup Result	LCS % Rec 100	% Rec Limits 90-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BAS Pace Project No.: 7092926	SELINE 360						
QC Batch: 117419		Analysis M	lethod:	SM22 2120B			
QC Batch Method: SM22 2120B		Analysis D	escription:	2120B Color			
Associated Lab Samples: 70929260	005, 7092926006						
METHOD BLANK: 556066		Matri	x: Water				
Associated Lab Samples: 70929260	05, 7092926006						
		Blank	Reporting	I			
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	
Apparent Color	units	<5.	0	5.0 06/12/19 1	4:31		
LABORATORY CONTROL SAMPLE:	556067						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Apparent Color	units	40	40.0	100	90-110		
SAMPLE DUPLICATE: 556068							
		7092990004	Dup				
Parameter	Units	Result	Result	RPD	Qualifier	s	
Apparent Color	units	5.0	0	5.0	0		
pH	Std. Units	6.	5	6.5	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

,	EACHATES BAS 7092926	ELINE 360						
QC Batch:	118942		Analysis Me		SM22 2320B			
QC Batch Method:	SM22 2320B		Analysis Des	scription:	2320B Alkalinity			
Associated Lab Samp	oles: 70929260	01, 7092926002,	7092926003, 7092	2926005, 7092	926006			
METHOD BLANK: 5	565421		Matrix:	Water				
Associated Lab Samp	oles: 70929260	01, 7092926002,	7092926003, 7092 Blank	2926005, 7092 Reporting	926006			
Parame	eter	Units	Result	Limit	Analyzed	Qualifie	ers	
Alkalinity, Total as Ca	CO3	mg/L	<1.0	1.	0 06/21/19 23:	40		
LABORATORY CONT	ROL SAMPLE:	565422						
Parame	eter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Alkalinity, Total as Ca	CO3	mg/L	25	26.2	105	85-115		
MATRIX SPIKE SAMI	PLE:	565424						
_			7092454017		MS	MS	% Rec	
Parame		Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total as Ca	CO3	mg/L	16	6.5 25	44.9	114	75-125	
SAMPLE DUPLICATE	: 565423			_				
Parame	iter	Units	7092454017 Result	Dup Result	RPD	Qualifiers		
				16.		 1	_	
Alkalinity, Total as Ca	003	mg/L	10.5	16.	0	I		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEAC	CHATES BAS	SELINE 360							
Pace Project No.: 7092	926								
QC Batch: 119	111		Analysis Me	ethod:	SM2	22 2340C			
QC Batch Method: SM	22 2340C		Analysis De	escription:	234	0C Hardness	s, Total		
Associated Lab Samples:	70929260	001, 7092926002,	7092926003, 709	2926005, 70	92926	6006			
METHOD BLANK: 5660	27		Matrix	: Water					
Associated Lab Samples:	70929260	001, 7092926002, 7				6006			
Parameter		Units	Blank Result	Reporting Limit	9	Analyzed	Qualifi	ore	
Tot Hardness asCaCO3 (\$	SM 2340B	mg/L	<5.0)	5.0	06/24/19 13:	46		
_ABORATORY CONTRO	L SAMPLE:	566028							
Parameter		Units	Spike Conc.	LCS Result		.CS Rec	% Rec Limits	Qualifiers	
Tot Hardness asCaCO3 (SM 2340B	mg/L	100	99.0		99	90-110		
MATRIX SPIKE SAMPLE:		566415							
			7093107008	B Spike		MS	MS	% Rec	
Parameter		Units	Result	Conc.		Result	% Rec	Limits	Qualifiers
Tot Hardness asCaCO3 (\$	SM 2340B	mg/L	4	66	7	700	99	75-125	
SAMPLE DUPLICATE:	566416								
			7093107008	Dup					
Parameter		Units	Result	Result		RPD	Qualifiers		
Tot Hardness asCaCO3 (S	2240B	mg/L	40.0)	3.3	1	8		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BA Pace Project No.: 7092926	SELINE 360						
QC Batch: 117745		Analysis Metho	od: S	SM22 2540C			
QC Batch Method: SM22 2540C		Analysis Desci		2540C Total Diss	olved Solids		
Associated Lab Samples: 7092926	6001, 7092926002, 7	7092926003					
METHOD BLANK: 557796		Matrix: V	Vater				
Associated Lab Samples: 7092926	001, 7092926002, 7		Dementing				
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifier	s	
Total Dissolved Solids	mg/L	<10.0	10.0	06/14/19 10:4	42		
LABORATORY CONTROL SAMPLE:	557797						
Parameter	Units		CS esult	LCS % Rec	% Rec Limits	Qualifiers	
Total Dissolved Solids	mg/L	500	516	103	85-115		
MATRIX SPIKE SAMPLE:	557799						
Demonster	11-26-	7092852006	Spike	MS	MS	% Rec	0
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	49.0	300	337	96	75-125	
MATRIX SPIKE SAMPLE:	557801						
Deveryoter	L la ita	7092927004	Spike	MS	MS % Data	% Rec	Overlifiers
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	900	600	1660	127	75-125	M1
SAMPLE DUPLICATE: 557798		7000050000	Dur				
Parameter	Units	7092852006 Result	Dup Result	RPD	Qualifiers		
Total Dissolved Solids	mg/L	49.0	48.0)	2	-	
SAMPLE DUPLICATE: 557800							
Parameter	Units	7092927004 Result	Dup Result	RPD	Qualifiers		
						_	
Total Dissolved Solids	mg/L	900	860		5		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES BA Pace Project No.: 7092926	ASELINE 360						
QC Batch: 118003		Analysis Me	thod: S	SM22 2540C			
QC Batch Method: SM22 2540C		Analysis Des		2540C Total Diss	solved Solids		
Associated Lab Samples: 709292	6005, 7092926006						
METHOD BLANK: 559701		Matrix:	Water				
Associated Lab Samples: 709292	6005, 7092926006						
		Blank	Reporting		o 11/		
Parameter	Units	Result	Limit	Analyzed	Qualifiers	<u> </u>	
Total Dissolved Solids	mg/L	<10.0	10.0	06/17/19 09:	42		
LABORATORY CONTROL SAMPLE	: 559702						
Devenueter	l le ite	Spike	LCS	LCS	% Rec	Duelifiere	
Parameter	Units		Result	% Rec		Qualifiers	
Total Dissolved Solids	mg/L	500	568	114	85-115		
MATRIX SPIKE SAMPLE:	559704						
		7092927006		MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	5	96 600	1130	89	75-125	
MATRIX SPIKE SAMPLE:	559706						
		7092454017		MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	2	11 300	490	93	75-125	
SAMPLE DUPLICATE: 559703							
		7092927006	Dup		0 117		
Parameter	Units	Result	Result	RPD	Qualifiers	-	
Total Dissolved Solids	mg/L	596	602	2	1		
SAMPLE DUPLICATE: 559705							
_		7092454017	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers	-	
Total Dissolved Solids	mg/L	211	223	3	6 D6		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: LEACHATES E Pace Project No.: 7092926	ASELINE 360						
QC Batch: 117155		Analysis Me	thod:	SM22 3500-Cr E	3		
QC Batch Method: SM22 3500-0	r B	Analysis Des		Chromium, Hexa	avalent by 3500	1	
Associated Lab Samples: 709292	26001, 7092926002,	7092926003					
METHOD BLANK: 554814		Matrix:	Water				
Associated Lab Samples: 709292	26001, 7092926002,	7092926003					
_		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Chromium, Hexavalent	mg/L	<0.020	0.02	0 06/11/19 10:	54		
LABORATORY CONTROL SAMPLE	: 554815						
Parameter	Units		LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Chromium, Hexavalent	mg/L	0.2	0.20	102	85-115		
MATRIX SPIKE SAMPLE:	554816						
		7092926001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chromium, Hexavalent	mg/L	<0.0	20 0.2	0.20	102	2 75-125	
SAMPLE DUPLICATE: 554817							
		7092926001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Chromium, Hexavalent	mg/L	<0.020	< 0.02	0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES B/ Pace Project No.: 7092926	ASELINE 360						
QC Batch: 117343		Analysis Me	thod: S	SM22 3500-Cr E	3		
QC Batch Method: SM22 3500-Cr	В	Analysis De	Analysis Description: Chromium, Hexavalent by 3500				
Associated Lab Samples: 709292	6005, 7092926006						
METHOD BLANK: 555717		Matrix	: Water				
Associated Lab Samples: 709292	6005, 7092926006	5					
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifi	ers	
Chromium, Hexavalent	mg/L	<0.020	0.020	06/12/19 07:	38		
LABORATORY CONTROL SAMPLE	555718						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Chromium, Hexavalent	mg/L	0.2	0.21	104	85-115		
MATRIX SPIKE SAMPLE:	555719						
Parameter	Units	7093094001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chromium, Hexavalent	mg/L			0.19	93		Quaimers
SAMPLE DUPLICATE: 555720							
CAN LE DOI LIOATE. 000720		7093094001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Chromium, Hexavalent	mg/L	<0.020	<0.020)			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 117776							
		Analysis Meth	od: E	PA 410.4			
QC Batch Method: EPA 410.4		Analysis Desc	ription: 4	10.4 COD			
Associated Lab Samples: 70929260	001, 7092926002, 7	092926003					
METHOD BLANK: 557830		Matrix:	Water				
Associated Lab Samples: 70929260	01, 7092926002, 7	092926003 Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifiers	;	
Chemical Oxygen Demand	mg/L	<10.0	10.0	0 06/14/19 11:	54		
LABORATORY CONTROL SAMPLE:	557831						
Parameter	Units	•	.CS esult	LCS % Rec	% Rec Limits C	Qualifiers	
Chemical Oxygen Demand	mg/L	500	509	102	90-110		
MATRIX SPIKE SAMPLE:	557832						
Parameter	Units	7093543001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chemical Oxygen Demand	mg/L	10.2		1010	100	90-110	Quainers
MATRIX SPIKE SAMPLE:	557834	7092454015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chemical Oxygen Demand	mg/L	19.0	1000	969	95	90-110	
SAMPLE DUPLICATE: 557833							
Parameter	Units	7093543001 Result	Dup Result	RPD	Qualifiers		
Chemical Oxygen Demand	mg/L	10.2	<10.0				
SAMPLE DUPLICATE: 557835							
Parameter	Units	7092454015 Result	Dup Result	RPD	Qualifiers		
Chemical Oxygen Demand	mg/L	19.0	12.4		2 D6	-	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Project No.: 7092926							
QC Batch: 118376		Analysis Met	hod: E	EPA 410.4			
QC Batch Method: EPA 410.4		Analysis Des	cription: 4	410.4 COD			
Associated Lab Samples: 7092926	6005, 7092926006						
METHOD BLANK: 562201		Matrix:	Water				
Associated Lab Samples: 7092926	005, 7092926006						
Deveryeter	Linita	Blank	Reporting	A stall start	Qualifia		
Parameter	Units	Result	Limit	Analyzed	Qualifie	rs	
Chemical Oxygen Demand	mg/L	<10.0	10.0	0 06/19/19 11:	37		
ABORATORY CONTROL SAMPLE:	562202						
_			LCS	LCS	% Rec		
Parameter	Units	Conc. F	Result	% Rec	Limits	Qualifiers	
Chemical Oxygen Demand	mg/L	500	531	106	90-110		
MATRIX SPIKE SAMPLE:	562203						
		7093107001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chemical Oxygen Demand	mg/L	<10	.0 1000	1010	100	90-110	
MATRIX SPIKE SAMPLE:	562205						
		7093260004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chemical Oxygen Demand	mg/L	<10	.0 1000	1050	105	90-110	
SAMPLE DUPLICATE: 562204							
Parameter	Units	7093107001 Result	Dup Result	RPD	Qualifiers		
Chemical Oxygen Demand	mg/L	<10.0 <	<10.0			_	
SAMPLE DUPLICATE: 562206							
5		7093260004	Dup	555			
Parameter	Units	Result	Result	RPD	Qualifiers	_	
Chemical Oxygen Demand	mg/L	<10.0	<10.0	0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	LEACHATES BAS 7092926	SELINE 360						
QC Batch:	117293		Analysis M	ethod:	SM22 5210B			
QC Batch Method:	SM22 5210B		Analysis De	escription:	5210B BOD, 5	day		
Associated Lab Sam	ples: 70929260	001, 7092926002,	7092926003					
METHOD BLANK:	555119		Matrix	x: Water				
Associated Lab Sam	ples: 70929260	01, 7092926002,	7092926003					
			Blank	Reporting]			
Param	neter	Units	Result	Limit	Analyze	ed Quali	ifiers	
BOD, 5 day		mg/L	<2.0	0	2.0 06/16/19 (9:10		
LABORATORY CON	ITROL SAMPLE:	555120						
			Spike	LCS	LCS	% Rec		
Param	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
BOD, 5 day		mg/L	198	208	105	84.5-115.4		
SAMPLE DUPLICAT	E: 555121							
			7092970001	Dup				
Param	eter	Units	Result	Result	RPD	Qualifier	rs	
BOD, 5 day		mg/L		<u> </u>	157	18		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BA Pace Project No.: 7092926	SELINE 360						
QC Batch: 117484		Analysis M	lethod:	SM22 5210B			
QC Batch Method: SM22 5210B		Analysis D	escription:	5210B BOD, 5	day		
Associated Lab Samples: 7092926	005, 7092926006						
METHOD BLANK: 556243		Matri	x: Water				
Associated Lab Samples: 7092926	005, 7092926006						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	
BOD, 5 day	mg/L	<2.	0 2	.0 06/17/19 1	1:09		
LABORATORY CONTROL SAMPLE:	556244						
	000244	Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
BOD, 5 day	mg/L	198	202	102	84.5-115.4		
SAMPLE DUPLICATE: 556245							
SAMPLE DUPLICATE: 556245		7093205001	Dup				
SAMPLE DUPLICATE: 556245 Parameter	Units	7093205001 Result	Dup Result	RPD	Qualifier	s	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

- ,	ACHATES BAS 92926	ELINE 360						
QC Batch: 11	8006		Analysis M	ethod:	EPA 9034			
QC Batch Method: E	PA 9030B		Analysis De	escription:	9034 Sulfide W	aste Water		
Associated Lab Samples	s: 70929260	01, 7092926002, 7	092926003, 709	92926005, 709	2926006			
METHOD BLANK: 559	9717		Matri	x: Water				
Associated Lab Samples	s: 70929260	01, 7092926002, 7	092926003, 709	92926005, 709	2926006			
			Blank	Reporting				
Parameter	r	Units	Result	Limit	Analyze	d Quali	ifiers	
Sulfide		mg/L	<2.0) 2	2.0 06/17/19 1	4:26		
LABORATORY CONTR	OL SAMPLE:	559718						
			Spike	LCS	LCS	% Rec		
Parameter	r	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Sulfide		mg/L	56.1	48.0	86	80-120		
SAMPLE DUPLICATE:	559719							
			7092926001	Dup				
Parameter	r	Units	Result	Result	RPD	Qualifier	rs	
Sulfide		mg/L	72.0) 72	2.0	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	LEACHATES BASELINE 360
1 10/000	

•	
Pace Project No .:	7092926

QC Batch:	11937	6	Analysis Meth	nod: EF	PA 300.0		
QC Batch Method:	EPA 3	00.0	Analysis Des	cription: 30	300.0 IC Anions		
Associated Lab San	ples:	7092926001, 7092926002	2, 7092926003, 70929	926005, 709292	26006		
METHOD BLANK: 567390 Matrix: Water							
Associated Lab San	ples:	7092926001, 7092926002	2, 7092926003, 70929	926005, 709292	26006		
			Blank	Reporting			
Paran	neter	Units	Result	Limit	Analyzed	Qualifiers	
Bromide		mg/L	<0.50	0.50	06/26/19 10:06		
		ma/l	<2.0	2.0	06/26/19 10:06		
Chloride		mg/L	<2.0	2.0	00/20/13 10.00		

LABORATORY CONTROL SAMPLE: 567391

Bromide mg/L 1 1.0 103 90-110	Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	Bromide	mg/L	1	1.0	103	90-110	
Chloride mg/L 10 10.7 107 90-110	Chloride	mg/L	10	10.7	107	90-110	
Sulfate mg/L 10 10.6 106 90-110	Sulfate	mg/L	10	10.6	106	90-110	

MATRIX SPIKE SAMPLE:	567392						
		7094103006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	0.93	92	80-120	
Chloride	mg/L	9.0	10	18.9	99	80-120	
Sulfate	mg/L	<5.0	10	9.7	90	80-120	

MATRIX SPIKE SAMPLE:	567394						
		7094234005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.0	94	80-120	
Chloride	mg/L	34.0	10	43.6	96	80-120	
Sulfate	mg/L	13.6	10	24.0	103	80-120	

SAMPLE DUPLICATE: 567393

Parameter	Units	7094103006 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	9.0	8.9	1	
Sulfate	mg/L	<5.0	<5.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

SAMPLE DUPLICATE: 567395					
		7094234005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	1.0		
Chloride	mg/L	34.0	43.5	25	5 D6
Sulfate	mg/L	13.6	23.8	54	D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

,	CHATES BAS 2926	ELINE 360						
	9268		Analysis M	ethod:	EPA 351.2			
QC Batch Method: EP	PA 351.2		Analysis De		351.2 TKN			
Associated Lab Samples	: 70929260	01, 7092926002, 7	7092926003, 709	92926005, 7092	2926006			
METHOD BLANK: 566	775		Matrix	x: Water				
Associated Lab Samples	: 70929260	01, 7092926002, 7	7092926003, 709	92926005, 7092	2926006			
			Blank	Reporting		0 11		
Parameter		Units	Result	Limit	Analyzed	Qualifiers	S	
Nitrogen, Kjeldahl, Total		mg/L	<0.10) 0.1	0 06/26/19 07	:51		
LABORATORY CONTRO	DL SAMPLE:	566776						
			Spike	LCS	LCS	% Rec		
Parameter		Units	Conc.	Result	% Rec	Limits (Qualifiers	
Nitrogen, Kjeldahl, Total		mg/L	4	4.0	99	90-110		
MATRIX SPIKE SAMPLE	:	566777						
			709292600	•	MS	MS	% Rec	
Parameter		Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Kjeldahl, Total		mg/L	ç	97.9 20	94.6	-16	90-110	M6
MATRIX SPIKE SAMPLE		566779						
			709372300	•	MS	MS	% Rec	
Parameter		Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Kjeldahl, Total		mg/L		4.7 4	9.1	110	90-110	
SAMPLE DUPLICATE:	566778							
Parameter		Units	7092926001 Result	Dup Result	RPD	Qualifiers		
Nitrogen, Kjeldahl, Total		mg/L	97.9	9 91	.2	7	-	
SAMPLE DUPLICATE:	566780							
			7093723002	Dup				
Parameter		Units	Result	Result	RPD	Qualifiers	_	
Nitrogen, Kjeldahl, Total		mg/L	4.7	7 3	.8 2	22 D6		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: LEACHATES BAS Pace Project No.: 7092926	SELINE 360						
QC Batch: 117107		Analysis Metho	od: E	PA 353.2			
QC Batch Method: EPA 353.2		Analysis Descr	ription: 3	53.2 Nitrite, Un	ores.		
Associated Lab Samples: 70929260	001, 7092926002, 7	092926003					
METHOD BLANK: 554577		Matrix: V	Vater				
Associated Lab Samples: 70929260	001, 7092926002, 7						
Deremeter	Linito	Blank	Reporting Limit	Analyzad	Qualifier	_	
Parameter	Units	Result	-	Analyzed		S	
Nitrite as N	mg/L	<0.050	0.050) 06/10/19 20:4	42		
LABORATORY CONTROL SAMPLE:	554578						
Parameter	Units		CS sult	LCS % Rec	% Rec Limits	Qualifiers	
Nitrite as N	mg/L	1	1.0	102	90-110		
MATRIX SPIKE SAMPLE:	554579						
		7092854001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0.5	0.48	95	90-110	
MATRIX SPIKE SAMPLE:	554581						
		7092926001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0.5	0.18	37	90-110 I	VI1
SAMPLE DUPLICATE: 554580							
Parameter	Units	7092854001 Result	Dup Result	RPD	Qualifiers		
Nitrite as N	mg/L	<0.050	<0.050)		-	
SAMPLE DUPLICATE: 554582							
Parameter	Units	7092926001 Result	Dup Result	RPD	Qualifiers		
Nitrite as N	mg/L	<0.050	<0.050)		_	
	mg/L	-0.000	<0.00C	•			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BA Pace Project No.: 7092926	SELINE 360						
QC Batch: 117321		Analysis Meth	od:	EPA 353.2			
QC Batch Method: EPA 353.2		Analysis Desc		353.2 Nitrite, Un	pres.		
Associated Lab Samples: 7092926	6005, 7092926006						
METHOD BLANK: 555462		Matrix: V	Water				
Associated Lab Samples: 7092926	6005, 7092926006						
Devenuerten	l la ita	Blank	Reporting	A se a lu se a d	Qualifier		
Parameter	Units	Result	Limit	Analyzed	Qualifier	<u> </u>	
Nitrite as N	mg/L	<0.050	0.05	0 06/11/19 19:	58		
LABORATORY CONTROL SAMPLE:	555463						
5			.CS	LCS	% Rec	0	
Parameter	Units		esult	% Rec		Qualifiers	
Nitrite as N	mg/L	1	1.0	104	90-110		
MATRIX SPIKE SAMPLE:	555464						
		7092953001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0 0.5	0.64	129	90-110) M1
MATRIX SPIKE SAMPLE:	555466						
		7093040001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrite as N	mg/L	<0.050	0 0.5	0.64	128	90-110	0 M1
SAMPLE DUPLICATE: 555465							
_		7092953001	Dup		.		
Parameter	Units	Result	Result	RPD	Qualifiers	_	
Nitrite as N	mg/L	<0.050	<0.05	0			
SAMPLE DUPLICATE: 555467							
_		7093040001	Dup	_	_		
Parameter	Units	Result	Result	RPD	Qualifiers	_	
Nitrite as N	mg/L	<0.050	<0.05	0			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BAS Pace Project No.: 7092926	SELINE 360						
QC Batch: 117111		Analysis Metho	od: E	EPA 353.2			
QC Batch Method: EPA 353.2		Analysis Desc	ription: 3	353.2 Nitrate, Un	pres.		
Associated Lab Samples: 70929260	001, 7092926002, 7	7092926003					
METHOD BLANK: 554669		Matrix: V	Vater				
Associated Lab Samples: 70929260	001, 7092926002, 7	7092926003					
		Blank	Reporting		o ""		
Parameter	Units	Result	Limit	Analyzed	Qualifier	ſS	
Nitrate-Nitrite (as N)	mg/L	<0.050	0.050	06/10/19 22:2	25		
ABORATORY CONTROL SAMPLE:	554670						
_			CS	LCS	% Rec	o	
Parameter	Units	Conc. Re	esult	% Rec		Qualifiers	
Nitrate-Nitrite (as N)	mg/L	1	1.0	103	90-110		
MATRIX SPIKE SAMPLE:	554671						
		7092927001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrate-Nitrite (as N)	mg/L	6.0	5	10.8	95	90-110	
MATRIX SPIKE SAMPLE:	554673						
		7092854001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrate-Nitrite (as N)	mg/L	4.3	5	9.5	102	90-110	
SAMPLE DUPLICATE: 554672							
_		7092927001	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers	_	
Nitrate-Nitrite (as N)	mg/L	6.0	5.7	7 {	5		
SAMPLE DUPLICATE: 554674							
D		7092854001	Dup		o		
Parameter	Units	Result	Result	RPD	Qualifiers	_	
Nitrate-Nitrite (as N)	mg/L	4.3	4.3	3 '	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: LEACHATES BA Pace Project No.: 7092926	SELINE 360						
QC Batch: 117328		Analysis Metho	od: E	PA 353.2			
QC Batch Method: EPA 353.2		Analysis Desc		53.2 Nitrate, Un	pres.		
Associated Lab Samples: 7092926	005, 7092926006						
METHOD BLANK: 555671		Matrix: V	Water				
Associated Lab Samples: 7092926	005, 7092926006						
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers		
Nitrate-Nitrite (as N)	mg/L	<pre></pre>	0.050			·	
LABORATORY CONTROL SAMPLE:	555672		~~		a(D		
Parameter	Units	•	CS esult	LCS % Rec	% Rec Limits C	Jualifiers	
Nitrate-Nitrite (as N)	mg/L	1	1.0	102	90-110		
MATRIX SPIKE SAMPLE:	555673						
		7093035001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrate-Nitrite (as N)	mg/L	4.0) 5	8.5	91	90-110	
MATRIX SPIKE SAMPLE:	555675						
		7093139001	Spike	MS	MS	% Rec	A 11/1
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrate-Nitrite (as N)	mg/L	0.69	9 0.5	1.1	86	90-110	M1
SAMPLE DUPLICATE: 555674							
Parameter	Units	7093035001 Result	Dup Result	RPD	Qualifiers		
Nitrate-Nitrite (as N)	mg/L	4.0	4.0		1		
SAMPLE DUPLICATE: 555676							
Parameter	Units	7093139001 Result	Dup Result	RPD	Qualifiers		
Nitrate-Nitrite (as N)	mg/L	0.69	0.69		 1		
	mg/L	0.00	0.08	,	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	LEACHATES BAS	SELINE 360						
Pace Project No.:	7092926							
QC Batch:	119281		Analysis Met	thod: S	SM22 4500 NH3	3 H		
QC Batch Method:	SM22 4500 NH3	3 H	Analysis Des	scription: 4	500 Ammonia			
Associated Lab Sar	nples: 70929260	001, 7092926002,	7092926003, 7092	926005, 70929	926006			
METHOD BLANK:	566889		Matrix:	Water				
Associated Lab Sar	nples: 70929260	001, 7092926002,	7092926003, 7092	926005, 70929	926006			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifi	ers	
Nitrogen, Ammonia		mg/L	0.036J	0.10	06/25/19 14	:09		
LABORATORY CO	NTROL SAMPLE:	566890						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Nitrogen, Ammonia		mg/L	1	1.0	101	90-110		
MATRIX SPIKE SAI	MPI F:	566891						
			7093468001	Spike	MS	MS	% Rec	
Parar	neter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Nitrogen, Ammonia		mg/L	22	2.4 10	29.0	6	7 75-12	5 M6
SAMPLE DUPLICA	TE: 566892							
			7093468001	Dup				
Parar	neter	Units	Result	Result	RPD	Qualifiers		
Nitrogen, Ammonia		mg/L	22.4	17.7		23 D6		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BA Pace Project No.: 7092926	ASELINE 360						
QC Batch: 118162		Analysis Meth	hod: E	EPA 9014 Total (Cyanide		
QC Batch Method: EPA 9010C		Analysis Des	cription: 9	014 Cyanide, T	otal		
Associated Lab Samples: 7092926	6001, 7092926002,	7092926003, 7092	926005, 70929	926006			
METHOD BLANK: 560795		Matrix:	Water				
Associated Lab Samples: 7092926	6001, 7092926002,	7092926003, 70929	-	926006			
Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifie	ers	
Cyanide	ug/L	<10.0	10.0	06/18/19 15:	19		
LABORATORY CONTROL SAMPLE:	560796						
Parameter	Units		LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Cyanide	ug/L	75	67.0	89	85-115		
MATRIX SPIKE SAMPLE:	560797						
5		7092926001	Spike	MS	MS	% Rec	0
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cyanide	ug/L	3.4	IJ 100	82.7	79	9 75-125	
SAMPLE DUPLICATE: 560798							
Parameter	Units	7092926001 Result	Dup Result	RPD	Qualifiers		
Cyanide	ug/L	3.4J	4.0	J			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

QC Batch:	118775	Analysis Method:	EPA 9060A
QC Batch Method:	EPA 906	DA Analysis Description:	9060 TOC
Associated Lab Sam	ples: 70	92926001, 7092926002, 7092926003, 7092926005, 7	7092926006

METHOD BLANK: 564526

Matrix: Water

Associated Lab Samples:	7092926001	, 7092926002,	7092926003,	7092926005,	7092926006
-------------------------	------------	---------------	-------------	-------------	------------

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:06	
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:06	
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:06	
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:06	
Total Organic Carbon	mg/L	<1.0	1.0	06/21/19 14:06	

LABORATORY CONTROL SAMPLE: 564527

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Mean Total Organic Carbon	mg/L		9.2	92	85-115	
Total Organic Carbon	mg/L	10	9.2	92	85-115	
Total Organic Carbon	mg/L	10	9.2	92	85-115	
Total Organic Carbon	mg/L	10	9.1	91	85-115	
Total Organic Carbon	mg/L	10	9.2	92	85-115	

MATRIX SPIKE SAMPLE:

MATRIX SPIKE SAMPLE:	564529						
		7092926001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	278	10	280	27	75-125	M6
Total Organic Carbon	mg/L	276	10	282	53	75-125	M6
Total Organic Carbon	mg/L	281	10	280	-10	75-125	M6
Total Organic Carbon	mg/L	291	10	291	-5	75-125	M6
Total Organic Carbon	mg/L	277	10	279	17	75-125	M6

SAMPLE DUPLICATE: 564528

		7092926001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Mean Total Organic Carbon	mg/L	278	276	1	
Total Organic Carbon	mg/L	291	287	1	
Total Organic Carbon	mg/L	281	276	2	
Total Organic Carbon	mg/L	277	276	0	
Total Organic Carbon	mg/L	276	278	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PACE-MV Pace Analytical Services - Melville

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- 1j Reanalysis conducted in excess of EPA method holding time. Reanalysis was required due to over range recoveries in original in hold analysis.
- B Analyte was detected in the associated method blank.
- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- H2 Extraction or preparation was conducted outside of the recognized method holding time.
- IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- N The reported TIC has an 85% or higher match on a mass spectral library search.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Analytical **QC Batch Method** QC Batch Batch Lab ID Sample ID **Analytical Method** 7092926001 NNU PLCRS EPA 3005A 117595 EPA 6010C 117620 7092926002 NNU SLCRS EPA 3005A 117595 EPA 6010C 117620 7092926003 **ONU SLCRS** EPA 3005A 117595 EPA 6010C 117620 7092926005 SA SLCRS EPA 3005A 117595 EPA 6010C 117620 7092926006 **EQUIPMENT BLANK** EPA 3005A 117595 EPA 6010C 117620 7092926001 NNU PLCRS EPA 7470A 118860 EPA 7470A 118884 7092926002 NNU SLCRS EPA 7470A 118860 EPA 7470A 118884 7092926003 **ONU SLCRS** EPA 7470A 118860 EPA 7470A 118884 7092926005 SA SLCRS EPA 7470A 118860 EPA 7470A 118884 EQUIPMENT BLANK 118860 7092926006 EPA 7470A EPA 7470A 118884 7092926001 NNU PLCRS EPA 3510 613318 EPA 8270D by SIM 614673 7092926002 NNU SLCRS EPA 3510 613318 EPA 8270D by SIM 614673 7092926003 **ONU SLCRS FPA 3510** 615153 EPA 8270D by SIM 615378 EPA 8270D by SIM 7092926005 SA SLCRS EPA 3510 613318 614673 EPA 8270D by SIM 7092926006 EQUIPMENT BLANK EPA 3510 613318 614673 7092926001 NNU PLCRS EPA 8260C/5030C 117325 7092926002 NNU SLCRS EPA 8260C/5030C 117325 7092926003 **ONU SLCRS** EPA 8260C/5030C 117325 7092926004 STORAGE BLANK EPA 8260C/5030C 117325 7092926005 SA SLCRS EPA 8260C/5030C 117325 7092926006 EQUIPMENT BLANK EPA 8260C/5030C 117325 7092926007 **TRIP BLANK** EPA 8260C/5030C 117325 NNU PLCRS 117122 7092926001 SM22 2120B 7092926002 NNU SLCRS 117122 SM22 2120B **ONU SLCRS** 7092926003 SM22 2120B 117122 7092926005 SA SLCRS SM22 2120B 117419 7092926006 EQUIPMENT BLANK SM22 2120B 117419 7092926001 NNU PLCRS SM22 2320B 118942 118942 7092926002 NNU SLCRS SM22 2320B 7092926003 **ONU SLCRS** SM22 2320B 118942 7092926005 SA SLCRS SM22 2320B 118942 7092926006 EQUIPMENT BLANK SM22 2320B 118942 7092926001 NNU PLCRS SM22 2340C 119111 NNU SLCRS 7092926002 SM22 2340C 119111 7092926003 **ONU SLCRS** SM22 2340C 119111 7092926005 SA SLCRS SM22 2340C 119111 7092926006 **EQUIPMENT BLANK** SM22 2340C 119111 7092926001 NNU PLCRS SM22 2540C 117745 7092926002 NNU SLCRS SM22 2540C 117745 **ONU SLCRS** 7092926003 SM22 2540C 117745 7092926005 SA SI CRS SM22 2540C 118003 **EQUIPMENT BLANK** 7092926006 SM22 2540C 118003 NNU PLCRS 7092926001 SM22 3500-Cr B 117155

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LEACHATES BASELINE 360

Pace Project No.: 7092926

Analytical QC Batch **QC Batch Method** Batch Lab ID Sample ID **Analytical Method** 7092926002 NNU SLCRS SM22 3500-Cr B 117155 7092926003 **ONU SLCRS** SM22 3500-Cr B 117155 7092926005 SA SLCRS SM22 3500-Cr B 117343 7092926006 **EQUIPMENT BLANK** SM22 3500-Cr B 117343 7092926001 NNU PLCRS EPA 410.4 117776 FPA 410.4 117816 NNU SLCRS EPA 410.4 EPA 410.4 7092926002 117776 117816 7092926003 **ONU SLCRS** EPA 410.4 117776 EPA 410.4 117816 7092926005 SA SLCRS EPA 410.4 118376 EPA 410.4 118422 7092926006 EQUIPMENT BLANK 118376 EPA 410.4 EPA 410.4 118422 7092926001 NNU PLCRS SM22 5210B 117293 SM22 5210B 118243 7092926002 NNU SLCRS SM22 5210B 117293 SM22 5210B 118243 7092926003 **ONU SLCRS** SM22 5210B 117293 SM22 5210B 118243 117484 7092926005 SA SLCRS SM22 5210B SM22 5210B 118481 7092926006 **EQUIPMENT BLANK** 117484 SM22 5210B SM22 5210B 118481 EPA 9034 7092926001 NNU PLCRS EPA 9030B 118006 118030 7092926002 NNU SLCRS EPA 9030B 118006 EPA 9034 118030 7092926003 **ONU SLCRS** EPA 9030B 118006 EPA 9034 118030 7092926005 SA SLCRS EPA 9030B 118006 EPA 9034 118030 7092926006 **EQUIPMENT BLANK** EPA 9030B 118006 EPA 9034 118030 7092926001 NNU PLCRS EPA 300.0 119376 7092926002 NNU SLCRS EPA 300.0 119376 7092926003 **ONU SLCRS** EPA 300.0 119376 7092926005 SA SLCRS EPA 300.0 119376 **EQUIPMENT BLANK** 7092926006 EPA 300.0 119376 7092926001 NNU PLCRS EPA 351.2 119268 EPA 351.2 119309 7092926002 NNU SLCRS EPA 351.2 119268 EPA 351.2 119309 7092926003 **ONU SLCRS** EPA 351.2 119268 EPA 351.2 119309 7092926005 SA SLCRS 119268 EPA 351.2 119309 EPA 351.2 EQUIPMENT BLANK EPA 351.2 119309 7092926006 EPA 351.2 119268 7092926001 NNU PLCRS EPA 353.2 117111 7092926002 NNU SLCRS EPA 353.2 117111 7092926003 **ONU SLCRS** EPA 353.2 117111 7092926005 SA SLCRS EPA 353.2 117328 7092926006 EQUIPMENT BLANK EPA 353.2 117328 NNU PLCRS 7092926001 EPA 353.2 117107 7092926002 NNU SLCRS EPA 353.2 117107 7092926003 **ONU SLCRS** EPA 353.2 117107 7092926005 SA SLCRS EPA 353.2 117321 7092926006 EQUIPMENT BLANK EPA 353.2 117321 7092926001 NNU PLCRS SM22 4500 NH3 H 119281 7092926002 NNU SLCRS SM22 4500 NH3 H 119281 **ONU SLCRS** 7092926003 SM22 4500 NH3 H 119281

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:LEACHATES BASELINE 360Pace Project No.:7092926

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7092926005	SA SLCRS	SM22 4500 NH3 H	119281		
7092926006	EQUIPMENT BLANK	SM22 4500 NH3 H	119281		
7092926001	NNU PLCRS	EPA 9010C	118162	EPA 9014 Total Cyanide	118192
7092926002	NNU SLCRS	EPA 9010C	118162	EPA 9014 Total Cyanide	118192
7092926003	ONU SLCRS	EPA 9010C	118162	EPA 9014 Total Cyanide	118192
7092926005	SA SLCRS	EPA 9010C	118162	EPA 9014 Total Cyanide	118192
7092926006	EQUIPMENT BLANK	EPA 9010C	118162	EPA 9014 Total Cyanide	118192
7092926001	NNU PLCRS	EPA 9060A	118775		
7092926002	NNU SLCRS	EPA 9060A	118775		
7092926003	ONU SLCRS	EPA 9060A	118775		
7092926005	SA SLCRS	EPA 9060A	118775		
7092926006	EQUIPMENT BLANK	EPA 9060A	118775		

CHAIN-OF-CUSTODY / Analytical Request Doci WO#: 7092926

Section B Section C Section C Required Project Information: Invoice Information: Report To Joe Guarino Attention: Company Name: Company Name:	:#: Pace Quote:	Project Name: Leachates Baseline 360 Pace Project Manager jennifer aracri@pacelabs.com,	~	START END COLLECTION TGECREB C=CO COLLECTION TGECRED T	 Соре (Соре (3	WT 944461325 1 X X X X X X X X X X X X X X X X X X	WT 646/s1355 X X X X X X X X X X X X X X X X X X	WT	WT T T T T T T T T T T T T T T T T T T				RELINQUISHED BY (AFFILIATION DATE TIME ACCEPTED BY (AFFILIATION DATE	Chapter Kon Jun 20th 1 Pure 6		
Section B Section B Required Client Information: Required P Required Client Information: Required P Address 241 Phelics Lane Copy To Copy To	hofbabylon, com	Phone 631-422-7640 Fax Proj		MATRIX Drinking Water Water Water Proud		NNU PLCRS	NNU SLCRS	ONU SLCRS	את אברנהט	Equipment atomic	Strike Blank			ADDITIONAL COMMENTS	Pari 360 Raceline eachaise		

\sim	Sa	ample	Condi	tion Upon I	Rec	eipt	
Pace Analytical				:	N.	1011.7000	000
Leeg tested Laboratory	Client	Name:		Pr	V	VO#:7092	926
36	To		bably a		P	M: JSA Due Dat	te: 06/24/19
Courier: C Fed Ex UPS USPS	Client Comm	nercial 🗍 F	Pace D	ther	C	LIENT: BAB-ECO	
Tracking #:				Yes No		Tomporature Blank	
Custody Seal on Cooler/Box Present:	Yes No			-			Present: Yes No
Packing Material: Bubble Wrap	ole Bags 🔲 Zip	oloc []Non	ie [_Dthe	()		Type of Ice: Ve	Blue None
Thermometer Used: TH091	Correct	tion Factor	r:		0	Samples on ice, cool	
Cooler Temperature (°C): 1.9	Cooler T	emperatur	re Correc	ted (°C): //	9	Date/Time 5035A kit	s placed in freezer
Temp should be above freezing to 6.0°C							the last - D
USDA Regulated Soil (🔽 N/A, water sam	ple)		Ă.		ials o	of person examining co	
Did samples originate in a quarantine zone within t	he United States	AL, AR, CA	, FL, GA, I	D, LA, MS, NC,	and in	including Hawaii and Pu	n a foreign source (internationally, erto Rico)? Yes No
NM. NY, OK, OR, SC, TN, TX, or VA (check map) If Yes to either question	i, fill out a Reg	gulated So				COMMENTS:	paperwork.
	~	□No		1.		oonnarro.	
Chain of Custody Present:	Ples			2			
Chain of Custody Filled Out:	Wes			3.			
Chain of Custody Relinquished:	- Wes		□n/A	4.			
Sampler Name & Signature on COC:	ØYes /			5.			
Samples Arrived within Hold Time:	ØYes			6.			
Short Hold Time Analysis (<72hr):	PYes		7	7.			
Rush Turn Around Time Requested:	□Yes	- JNO	5	8.		······································	
Sufficient Volume: (Triple volume provided for MS/M	ASD PYes			9.		-	
Correct Containers Used:	Pres	□No		5.			
-Pace Containers Used:	Tyres	□No		10			
Containers Intact:	Q Yes	□No	-	10. #		antio visitio in the stand of a	
Filtered volume received for Dissolved tests	QYes	□No	ц4ла		seaime	ent is visible in the dissolved of	container.
Sample Labels match COC:	Yes	⊡No		12.			
-Includes date/time/ID/Analysis Matrix SL					~		
All containers needing preservation have been chec	Ked DYes	□No	⊡N/A	13. 🖸 HN	03	□ H₂SO₄ □ NaOH	
pH paper Lot # 40463463	-			Sample #			:
All containers needing preservation are found to be i	n .			Sauther,			•
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCI, NaOH>9 Sulfide,	Yes	□No	□N/A				
NAOH>12 Cyande) Exceptions VOA, Coliform, TOC/DOC, Oil and Grea	ise						
000/8015 (1000)				Initial when compl	eted;	Lot # of added preservative:	Date/Time preservative added
Per Method, VOA pH is checked after analysis			-lui	14			
Samples checked for dechlorination:	□Yes	□No	QN/A	14_			
KI starch test strips Lot #				Positive	for Res	s. Chlorine? Y N	
Residual chlorine strips Lot #	□Ycs	TANO	⊡N/A	15.			
Headspace in VOA Vials (>6mm):	□Yes	1 No		16			
Trip Black Present	⊡Yes						
Trip Blank Cuslody Seals Present			/				
Pace Trip Blank Lot # (if applicable):				Field Data Requir	red?	Y / N	
Client Notification/ Resolution:				Date/Ti	me:		
Person Conlacted:					1		
Comments/ Resolution:							

* PM (Project Manager) review is documented electronically in LIMS.

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields m	Section C Invoice Information:		Name:			L	Pace Project Manager: jennifer.aracn@pacelabs.com, Pace Profile #: 5,7711INFS 3.8.6			test Aardness 8. Hardness 8. Hardness 8. Color, Cr+6	 НСІ НСІ НСІ ИаОЗ МаСНА МаСНА Маснана Маснана Маснана Маснана Маснана Суапіде Суапіде Суапіде ПОС ПОС<!--</th--><th></th><th></th><th>× × × ×</th><th></th><th></th><th>×</th><th></th><th></th><th></th><th></th><th></th><th>ACCEPTED BY / AFFILIATION DATE TIME</th><th>a subritani-Acer Copper 25.56 26</th><th></th><th>C</th>			× × × ×			×						ACCEPTED BY / AFFILIATION DATE TIME	a subritani-Acer Copper 25.56 26		C
EGAL DOCUN	ormation:		ame:			L	N	L	Preservative		и ^{si} oh HCi HИO3												A . /	Jul		
stody is a L	Section C Invoice Infe	Attention:	Company Name:	Addrace.	Date Clipto.		Pace Project IV				SAMPLE TEMP A # OF CONTAINER Unpreserved												TIME	1,9 ~1600		TURE
hain-of-Cu										S	TIME		ļ	Į	2012	4/1/4 1040	1						DATE	6/4/1		IPLER NAME AND SIGNATURE
The O	ation:					-	Leachates Baseline 360		COLLECTED		DATE TIME DATE				Chilic	Cfill	6/m/						RELINQUISHED BY / AFFILIATION	chois Zeon		SAMPLER NAM
	Section B Required Project Information:	To: Joe Guarino		5	Codor #.	ŧ.	ame:		(iiəl oi	seboo bilav see) ECODE (SAMPLE TYPE	TW	ΤŴ	TW	Ξ. ΤΛ	MT.	Ţ						RELINQUISHE	Brien Nichels		
	Section Require	Report	Copy T	6400	D		Project	inch.																		
Pace Analytical	A d Client Information:	iy: Town of Babylon			abylon, NY 11703		631-422-7640 Frax: and Due Date:			SAMPLE ID	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	, NNU PLCKS	MIG SECKS		SA SLCRS	Equipment Blank	Trip Blank						ADDITIONAL COMMENTS	Baseline Leachates	Pa	ge 89
Face Analytical				Client Information: Town of Babylon 201 Bicklor Jong				ex.	: on ne v/on.com Fax:	ax.	BX: MATRIX Dinking Water Water Water Water Water Water Water SaiviSolid	ax. MATRIX MATRIX Water I Noter Product ox. Wipe ox. Matrix Viber Product Tissue	altr. MATRIX MATRIX Mater Vater Vater SailSaid ov. Mige Tissue	ax. MATRIX MATRIX Drinking Wo Wate Wate Wate Noucr an Shoucr a Shoucr a Con Con Stream Tessue Tessue	ax. MATRIX Mater Waster Waster Waster Wige SolifSolid Other Tissue	altr. MATRIX MATRIX MATRIX Mater Nater Mater Califordia ox. On Mater	ax. MATRIX MATRIX Drinking W Wate Wate Wate Vice out out Tissue Tessue	ax. MATRIX M	ax. MATRIX Water and Second ox. Atripe Tissue Tissue	ax. MATRIX MATRIX Wate Water Wate Water out on Sinduct Tessue Tessue	ax. MATRIX MATRIX Wate Water Wate Water out on Salvouct Tessue Tessue	ax. MATRIX MATRIX Wate Water Wore on Sevence at trasse	ax. Matrix w Water of O of Sofored Attraction of O of	ax. Matrixia value out	MMENTS	Section Sectio

	Sam	ple C	onditio	on Upon F	Receipt
Pace Analytical*	Client Na	moi		Pr	WO#:7092926
			land	(- · · ·	PM: JSA Due Date: 06/24/19
		an	- Dthe		CLIENT: BAB-ECO
Courier: Fed Ex UPS USPS	nt [_]Commerc	cial 🛄 Pa		31	
Tracking #:					
Custody Seal on Cooler/Box Present: Ve					Temperature Blank Present: Yes No
Packing Material: Bubble Wrap Bubble B	3ags 🗌 Ziploc	None	Other	0	Type of Ice: Wet Blue None
Thermometer Used: (H09	Correction			4	Samples on ice, cooling process has begun
Cooler Temperature (°C):	Cooler Tem	perature	Correcte	d (°C): 2	Bate/Time 5035A kits placed in freezer
Temp should be above freezing to 6.0°C					2 LALLATO
USDA Regulated Soil (🏴 N/A, water sample)					tials of person examining contents: 6//////9-(P
Did samples originate in a quarantine zone within the U NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	YES	NO			Did samples orignate from a foreign source (internationally including Hawaii and Puerto Rico)? Yes No
If Yes to either question, fi	II out a Regul	ated Soil	Checklis	st (F-LI-C-010)	and include with SCUR/COC paperwork. COMMENTS:
	Yes	□No		1	COMMENTS:
Chain of Custody Present:	Yes			2	
Chain of Custody Filled Out:	Yes			3.	
Chain of Custody Relinquished:	Yes		□N/A	4	i k
Sampler Name & Signature on COC:	Yes			5	
Samples Arrived within Hold Time:	ØYes			6.	
Short Hold Time Analysis (<72hr): Rush Turn Around Time Requested:	□Yes			7.	
Sufficient Volume: (Triple volume provided for MS/MSE				8.	
Correct Containers Used:	Tyes			9	
-Pace Containers Used:	⊈Yes				
Containers Intact:	Ves	No		10.	
Filtered volume received for Dissolved tests	□Yes	ΩNo		11. Note	if sediment is visible in the dissolved container.
Sample Labels match COC:	ZYes	□No		12.	
-Includes date/lime/ID/Analysis Matrix SL	OIL				
All containers needing preservation have been checked	Yes	□No	DN/A	13; D H	INO3 🗆 H2SO4 🗆 NaOH 🗀 HCI
pH paper Lot # MCS63463 All containers needing preservation are found to be in	(************************************			Sample #	
compliance with EPA recommendation?	-	_			
(HNO₃, H₂SO₄, HCI, NaOH>9 Sulfide, NAOH>12 Cyanide)	TYes	□No	□n/A		
Exceptions VOA, Coliform TOC/DOC, Oil and Grease	1			Initial when cor	mpleted. Lot # of added preservative: Date/Time preservative added
DRO/8015 (Water). Per Method, VOA pH is checked after analysis					
Samples checked for dechlorination:	□Yes	□No	DN/A	14	
KI starch test strips Lot #			2		
Residual chlorine strips Lot #		1			ive for Res. Chlorine? Y N
Headspace in VOA Vials (>6mm)	□Yes	No		15	
Trip Blank Present:	Yes	□No	□n/A	16.	
Trip Blank Custody Seals Present	Yes	□No	⊡N/A		
Pace Trip Blank Lot # (if applicable):					
Client Notification/ Resolution:				Field Data Re	
Person Contacted:				Date	е/Time
Comments/ Resolution					

* PM (Project Manager) review is documented electronically in LIMS.

ANALYTICAL REPORT

Job Number: 420-155310-1 SDG Number: 7092926 Job Description: Pace Analytical Sevices, Inc.-Mellville

> For: Pace Analytical Mellville 575 Broadhollow Road Melville, NY 11747

Attention: James Murphy

Gaura marciano

Laura L Marciano Customer Service Manager Imarciano@envirotestlaboratories.com 06/27/2019

cc: Ms. Jen Aracri Betty Harrison Accounts Payable Sophia Sparkes

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified in the Certification Information section of this report Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

EXECUTIVE SUMMARY - Detections

Client: Pace Analytical Mellville

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
420-155310-1	NNU PLCRS				
Phenolics, Total Re	ecoverable	0.099	0.050	mg/L	420.4 Rev. 1.0
420-155310-2	NNU SLCRS				
Phenolics, Total Re	ecoverable	0.16	0.050	mg/L	420.4 Rev. 1.0

METHOD SUMMARY

Client: Pace Analytical Mellville Job Number: 420-155310-1 SDG Number: 7092926 Description Lab Location Method **Preparation Method** Matrix: Water Phenols Semi-Automated EnvTest EPA 420.4 Rev. 1.0 Distillation/Phenolics EnvTest Distill/Phenol Lab References: EnvTest = EnviroTest Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Pace Analytical Mellville

Job Number: 420-155310-1 SDG Number: 7092926

Analyst ID

DM

Method

EPA 420.4 Rev. 1.0

Analyst Mastrobuono, Danielle

SAMPLE SUMMARY

Client: Pace Analytical Mellville

Job Number: 420-155310-1 SDG Number: 7092926

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-155310-1	NNU PLCRS	Water	06/10/2019 1310	06/14/2019 1015
420-155310-2	NNU SLCRS	Water	06/10/2019 1325	06/14/2019 1015
420-155310-3	ONU SLCRS	Water	06/10/2019 1345	06/14/2019 1015
420-155310-4	SA SLCRS	Water	06/11/2019 1015	06/14/2019 1015
420-155310-5	Equipment Blank	Water	06/11/2019 1040	06/14/2019 1015

SAMPLE RESULTS

Analytical Data

Job Number: 420-155310-1 Sdg Number: 7092926

			General Chemis	try			
Client Sample ID:	NNU PLCRS						
Lab Sample ID: Client Matrix:	420-155310-1 Water				Date Sampled: Date Received:		0/2019 1310 4/2019 1015
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.099	Dater analyzed	0.050 /2019 1614 /2019 0946	0.050	5.0	420.4 Rev. 1.0
Client Sample ID:	NNU SLCRS						
Lab Sample ID: Client Matrix:	420-155310-2 Water				Date Sampled: Date Received:		0/2019 1325 4/2019 1015
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.16	2410741419204	0.050 /2019 1614 /2019 0946	0.050	5.0	420.4 Rev. 1.0
Client Sample ID:	ONU SLCRS						
Lab Sample ID: Client Matrix:	420-155310-3 Water				Date Sampled: Date Received:		0/2019 1345 4/2019 1015
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010		0.010 /2019 1551 /2019 0946	0.010	1.0	420.4 Rev. 1.0
Client Sample ID:	SA SLCRS						
Lab Sample ID: Client Matrix:	420-155310-4 Water				Date Sampled: Date Received:		1/2019 1015 4/2019 1015
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010		0.010 /2019 1552 /2019 0946	0.010	1.0	420.4 Rev. 1.0
Client Sample ID:	Equipment Bl	ank					
Lab Sample ID: Client Matrix:	420-155310-5 Water				Date Sampled: Date Received:		1/2019 1040 4/2019 1015
Analyte		Result	Qual Units	RL	RL	Dil	Method
Phenolics, Total Rec	coverable Anly Batch: Prep Batch:	0.010	,	0.010 /2019 1552 /2019 0946	0.010	1.0	420.4 Rev. 1.0

DATA REPORTING QUALIFIERS

Client: Pace Analytical Mellville

Job Number: Sdg Number: 7092926

Lab Section	Qualifier	Description
General Chemistry		
	U	Indicates analyzed for but not detected.

The following analytes are Not Part of the ELAP scope of accreditation:

Sulfur, Tungsten, Bicarbonate Alkalinity, 7 Day BOD 5210C, 28 Day BOD, Soluble BOD, Carbon Dioxide, Carbonate Alkalinity, CBOD Soluble, Chlorine, Cyanide (WAD), Ferrous Iron, Ferric Iron, Total Nitrogen, Total Organic Nitrogen, Dissolved Oxygen, pH, Solids (Fixed), Solids (Percent), Solids (Percent Moisture), Solids (Percent Volatile), Solids (Volatile Suspended), Temperature, TKN (Soluble), COD (Soluble), Total Inorganic Carbon, 2-Aminopyridine, 3-Picoline, 1-Methyl-2-pyrrilidinone, Aziridine, Dimethyl sulfoxide, 1-Chlorohexane, 1,2,4,5-Tetramethylbenzene, 4-Ethyl toluene, p-Diethylbenzene, Iron Bacteria, Salmonella, Sulfur Reducing Bacteria, & UOD (Ultimate Oxygen Demand).

The following analytes are Not Part of ELAP Potable Water scope of accreditation

Ammonia (SM 4500NH3G), TKN (351.2), Phosphorus (365.3), Nitrate-Nitrite (10-107-4-1C, 353.2), m-Xylene & p-Xylene (502.2, 524), o-Xylene (502.2, 524), Sulfide (SM4500SD), Acenaphthene (525.2), Acenaphthylene (525.2), Fluoranthene (525.2), Fluorene (525.2), Phenanthrene (525.2), Anthracene (525.2), Pyrene (525.2), Benzo[a]anthracene (525.2), Benzo[b]fluoranthene (525.2), Benzo[g,h,i]perylene (525.2), Benzo[k]fluoranthene (525.2), Indeno[1,2,3-cd]pyrene (525.2), & Dibenz(a,h)anthracene (525.2).

The following analytes are Not Part of ELAP Solid and Hazardous Waste scope of accreditation

Ammonia (SM 4500NH3G), TKN (351.2), Phosphorus (365.3), 1,2-Dichloro-1,1,2-trifluoroethane (8260), & Chlorodifluoromethane (8260).

The following analytes are Not Part of ELAP Non Potable Water scope of accreditation

Dissolved Organic Carbon (5310C), Mecoprop (8151A), MCPA (8151A), Propylene Glycol (8015D).

Definitions and Glossary

Client: Pace Analytical Mellville

Job Number:

Sdg Number: 7092926

Abbreviation	These commonly used abbreviations may or may not be present in this report.
%R	Percent Recovery
DL, RA, RE	Indicates a Dilution, Reanalysis or Reextraction.
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit - an estimate of the minimum amount of a substance that an analytical process can reliably detect. A MDL is analyte- and matrix-specific and may be laboratory-dependent.
ND	Not detected at the reporting limit (or MDL if shown).
QC	Quality Control
RL	Reporting Limit - the minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
RPD	Relative Percent Difference - a measure of the relative difference between two points

QUALITY CONTROL RESULTS

Client: Pace Analytical Mellville

Job Number: 420-155310-1 Sdg Number: 7092926

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry				mounou	Top Baton
Prep Batch: 420-132681					
LCS 420-132681/28-A	Lab Control Spike	т	Water	Distill/Phenol	
LCS 420-132681/3-A	Lab Control Spike	Т	Water	Distill/Phenol	
MB 420-132681/2-A	Method Blank	Ť	Water	Distill/Phenol	
MB 420-132681/27-A	Method Blank	т	Water	Distill/Phenol	
20-155302-A-2-B DU	Duplicate	Т	Water	Distill/Phenol	
20-155302-A-2-C MS	Matrix Spike	т	Water	Distill/Phenol	
20-155308-A-7-B DU	Duplicate	Т	Water	Distill/Phenol	
20-155308-A-7-C MS	Matrix Spike	Т	Water	Distill/Phenol	
20-155310-1	NNU PLCRS	Т	Water	Distill/Phenol	
20-155310-2	NNU SLCRS	Т	Water	Distill/Phenol	
20-155310-3	ONU SLCRS	Т	Water	Distill/Phenol	
20-155310-4	SA SLCRS	Т	Water	Distill/Phenol	
20-155310-5	Equipment Blank	Т	Water	Distill/Phenol	
Analysis Batch:420-1327	07				
CS 420-132681/28-A	Lab Control Spike	Т	Water	420.4 Rev. 1.0	420-132681
.CS 420-132681/3-A	Lab Control Spike	Т	Water	420.4 Rev. 1.0	420-132681
/IB 420-132681/2-A	Method Blank	Т	Water	420.4 Rev. 1.0	420-132681
IB 420-132681/27-A	Method Blank	Т	Water	420.4 Rev. 1.0	420-132681
20-155302-A-2-B DU	Duplicate	Т	Water	420.4 Rev. 1.0	420-132681
20-155302-A-2-C MS	Matrix Spike	Т	Water	420.4 Rev. 1.0	420-132681
20-155308-A-7-B DU	Duplicate	Т	Water	420.4 Rev. 1.0	420-132681
20-155308-A-7-C MS	Matrix Spike	Т	Water	420.4 Rev. 1.0	420-132681
20-155310-1	NNU PLCRS	Т	Water	420.4 Rev. 1.0	420-132681
20-155310-2	NNU SLCRS	Т	Water	420.4 Rev. 1.0	420-132681
20-155310-3	ONU SLCRS	Т	Water	420.4 Rev. 1.0	420-132681
20-155310-4	SASLCRS	Т	Water	420.4 Rev. 1.0	420-132681
20-155310-5	Equipment Blank	Т	Water	420.4 Rev. 1.0	420-132681

Report Basis

T = Total

Surrogate Recovery Report

Lab Sample ID Client Sample ID

Surrogate

Acceptance Limits

Quality Control Results

Job Number: 420-155310-1 Sdg Number: 7092926

Method: 420.4 Rev. 1.0 Preparation: Distill/Phenol

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 420-132681/2-A Water 1.0 06/19/2019 1536 06/19/2019 0946	Analysis Batch: 420-132707 Prep Batch: 420-132681 Units: mg/L		Instrument ID: Lachat Quikchem 8500 FIA Lab File ID: OM_6-19-2019_03-35-07PN Initial Weight/Volume: mL Final Weight/Volume: mL	
Analyte		Result	Qual	RL RL	
Phenolics, Total	Recoverable	0.010	U	0.010 0.010	
Method Blank	- Batch: 420-132681			Method: 420.4 Rev. 1.0 Preparation: Distill/Phenol	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 420-132681/27-A Water 1.0 06/19/2019 1601 06/19/2019 0946	Analysis Batch: 420-132707 Prep Batch: 420-132681 Units: mg/L		Instrument ID: Lachat Quikchem 8500 FIA Lab File ID: OM_6-19-2019_03-35-07PN Initial Weight/Volume: mL Final Weight/Volume: mL	
Analyte		Result	Qual	RL RL	
Phenolics, Total	Recoverable	0.010	U	0.010 0.010	_

Client: Pace Analytical Mellville

Method Blank - Batch: 420-132681

Quality Control Results

Job Number: 420-155310-1 Sdg Number: 7092926

Method: 420.4 Rev. 1.0 Preparation: Distill/Phenol

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 420-132681/3-A Water 1.0 06/19/2019 1537 06/19/2019 0946	,	Analysis Batch: 420-132707 Prep Batch: 420-132681 Units: mg/L			kchem 8500 FIA 2019_03-35-07PM.(nL nL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Phenolics, Total	Recoverable	0.0500	0.055	109	57 - 123	
Lab Control S	pike - Batch: 420-132681				od: 420.4 Rev. 1.0 ration: Distill/Phe	nol
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 420-132681/28-A Water 1.0 06/19/2019 1601 06/19/2019 0946	Analysis Batch: Prep Batch: 420 Units: mg/L		Lab Fil Initial \	le ID: OM_6-19-2 Weight/Volume: I	kchem 8500 FIA 2019_03-35-07PM.(nL nL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Phenolics, Total	Recoverable	0.0500	0.056	112	57 - 123	

Client: Pace Analytical Mellville

Lab Control Spike - Batch: 420-132681

Quality	Control	Results
---------	---------	---------

Job Number: 420-155310-1 Sdg Number: 7092926

Method: 420.4 Rev. 1.0 Preparation: Distill/Phenol

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-155302-A-2-C MS Water 1.0 06/19/2019 1540 06/19/2019 0946	Analysis Batch: 420-1 Prep Batch: 420-1326 Units: mg/L	Instrument ID: Lachat Quikchem 8500 FI Lab File ID: OM_6-19-2019_03-35-07I Initial Weight/Volume: mL Final Weight/Volume: mL						
Analyte		Sample Result/Qual	Spike Amount	Result	% Rec.	Limit	Qual		
Phenolics, Total	Recoverable	0.011	0.0300	0.039	94	55 - 136			
Matrix Spike - Batch: 420-132681			Method: 420.4 Rev. 1.0 Preparation: Distill/Pheno						
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-155308-A-7-C MS Water 1.0 06/19/2019 1607 06/19/2019 0946	Analysis Batch: 420-132707 Prep Batch: 420-132681 Units: mg/L				at Quikchem 8 5-19-2019_03 mL mL			
Analyte		Sample Result/Qual	Spike Amount	Result	% Rec.	Limit	Qual		
Phenolics, Total Recoverable		0.012	0.0300	0.038	87	55 - 136			

Client: Pace Analytical Mellville

Matrix Spike - Batch: 420-132681

Quality Control Results

Job Number: 420-155310-1 Sdg Number: 7092926

Method: 420.4 Rev. 1.0 Preparation: Distill/Phenol

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-155302-A-2-B DU Water 1.0 06/19/2019 1539 06/19/2019 0946	Analysis Batch: 420-132707 Prep Batch: 420-132681 Units: mg/L		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	lume: mL	nem 8500 FIA 9_03-35-07PM.(
Analyte		Sample Result/Qual	Result	RPD	Limit	Qual
Phenolics, Total	Recoverable	0.011	0.011	0	15	
Duplicate - Ba	tch: 420-132681			Method: 420.4 Preparation: I		
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	420-155308-A-7-B DU Water 1.0 06/19/2019 1606 06/19/2019 0946	Analysis Batch: 420-132707 Prep Batch: 420-132681 Units: mg/L		Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	lume: mL	nem 8500 FIA 9_03-35-07PM.(
Analyte		Sample Result/Qual	Result	RPD	Limit	Qual
Phenolics, Total	Recoverable	0.012	0.012	1	15	

Duplicate - Batch: 420-132681

Client: Pace Analytical Mellville

Chain of Custody

155310

Pace Analytical www.pacelabs.com

Work	order: 7092926	Workorder Name:	LEACHATE	S BASELI	NE 360			Res	sults F	Reque	sted B	y: 6/2	24/201	9		<u>.</u>
Repor	t / Invoice To	Subcor	ntract To							F	equeste	d Anal	ysis			
Pace J 575 B Melvil Phone Email	fer Aracri Analytical Melville troad Hollow Road le, NY 11747 e (631)694-3040 : jennifer.aracri@pacelabs	315 Fullerto Newburgh,		Inc. P.C) <u>70929</u> 2	26JSA		Total Recoverable								
State	of Sample Origin: N	Y		1	Prese	rved Co	ntainers	lics,								
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	H2SO4			20.1 Phenolics								LAB USE ONLY
1	NNU PLCRS	6/10/2019 13:10	7092926001	Water		╆╌┢╴	1	X				\uparrow		╂──┼─		
2	NNU SLCRS	6/10/2019 13:25	7092926002	Water				Х								
3	ONU SLCRS	6/10/2019 13:45	7092926003	Water				X								
4	SA SLCRS	6/11/2019 10:15	7092926005	Water	1			X								
5	EQUIPMENT BLANK	6/11/2019 10:40	7092926006	Water				X								
Transt 1 2	fers Released By	Date/Ti	ne Receiv		le		Date/Ti 66/14		n v		Catego S EDI	•	Comm Packag			
3 Cool	er Temperature on Re	ceipt <u>2.4</u> °C	Custody Seal	Y or I	<u>v</u>	Red	eived o	n Ice	Ye	r N			Sam	ples in	tact ر	y ør N

Date Sampled. 6/11/2019 420

420-1350390

FEDEX 1068 40793227

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Page 108 of 109 06/27/2019

ς.

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Pace Analytical Mellville

Job Number: 420-155310-1 SDG Number: 7092926

Login Number: 155310

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	2.4 C
Cooler Temp. is within method specified range.(0-6 C PW, 0-8 C NPW, or BAC <10 C $$	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	