

REMEDIAL ACTION REPORT (Volume 4: Appendix G -APC-6, APC-10, APC-12)

FOR

PEERLESS PHOTO PRODUCTS SITE ROUTE 25A AND RANDALL RD. SUFFOLK COUNTY SHOREHAM, NEW YORK (SITE NO.: 1-52-031)

ATC PROJECT NO. 68.28817.0001

JUNE 20, 2007

Prepared for:

AGFA Corporation 100 Challenger Road Ridgefield Park, NJ 07660-2199 Prepared by:

DATA USABILITY REPORT

ACCUTEST CASE NO. J11121

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK SEPTEMBER 2005

REPORTED MARCH 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

ř

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of September 28, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Hapler

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY METALS PEERLESS PHOTO PRODUCTS SITE SEPTEMBER 2005

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) metals (cadmium and silver) results from the September 28, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J11121 included a total of 23 soil samples, including one (1) set of field duplicate samples, plus one (1) Matrix Spike/Matrix Duplicate (MS/MD) pair for limited metals (cadmium and silver) analysis. Case J11121 also included one (1) aqueous field blank sample for limited metals (cadmium and silver) analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 3050B (and 3010A for the aqueous field blank sample) and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J11121 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the next day. All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for total cadmium and silver following SW-846 Methods 3050B for digestion and 6010B for analysis. The aqueous cadmium and silver was analyzed following SW-846 Method 3010A for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times

.

- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J11121 metals results be used with the following qualifiers:

- 1. The reporting limit (RL) was elevated 10X for the cadmium results for J11121-2, J11121-6, J11121-7, J11121-25 and J11121-26 due to elevated silver concentrations.
- 2. The ICP serial dilution exceeded the control limit of 10% difference (100%) for silver on a batch QC sample. The ICP serial dilution exceeded the control limit of 10% difference (100%, 100%) for cadmium and silver on another batch QC sample. However, since the original values of cadmium and silver were less than 50 times the Instrument Detection Limit (IDL), the ICP serial dilution for cadmium and silver were acceptable. No qualification of data was deemed necessary due to the ICP serial dilution results.

4.0 SUMMARY

The metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

page 1

J11121-23

9/28/2005

9/30/2005

93.5

0.93

342

Q DF

1

10

1

J11121-22

9/28/2005

9/30/2005

10/1/2005

94.9

367

Q DF

1

10

Site Name	Peerless Photo Products	\$		S	Soil (mg/kg)	L	aboratory	Accutest - Dayto	n, NJ
Project Number	68.28817.0001]				Cas	e/Order #	J11121	
Sampling Date(s)	9/28/2005					Fractio	n/Method	Metals / 3050B /	6010B
			100400020144144						1004

	Sample Location	n	APC125B75W2-N	APC125B75W4-5	APC125B7SW1-W	APC12SB7-B	APC125B75W3-W	APC10TTSW1-N	APC10TTSW2-E	APC10TTSW3-5	APC10TTSW4-W	DUP092805
	Sample Numbe	er	J11121-1	J11121-2	J11121-3	J11121-4	J11121-5	J11121-6	J11121-7	J11121-8	J11121-9	J11121-10
	Sampling Date		9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005	9/28/2005
	Preparation Da	te	9/30/2005	9/30/2005	9/30/2005	9/30/2005	9/30/2005	9/30/2005	9/30/2005	9/30/2005	9/30/2005	9/30/2005
	Analysis Date		10/1/2005	10/1/2005	10/1/2005	10/1/2005	10/1/2005	10/1/2005	10/1/2005	10/1/2005	9/30/2005	10/1/2005
	Percent Solids		96.8	95.8	96.5	96.0	93.0	94.8	92.5	91.2	88.0	98.3
RL		PF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	QDF	Q DF	Q DF	Q DF
0.40	Cadmium	X	U 1	U 10	U 1	1	0.85 1	U 10	U 10	24.0 10	13.0 10	U 1
0.50	Silver	X	7.8 1	208 10	14.9 1	52.8 1	63.6 1	867 10	382 10	629 10	735 10	U 1
	Sample Location	on	APC6WSSASW1-W	APC6WSSASW2-NW	APC6WSSASW3-NE	APC6WSSASW4-E	APC6WSSASW5-SE	APC6WSSASW6-W	APC6WSSAB7-E	APC6WSSAB8-W	APC12SB2SW1-N	APC12SB2SW2-E

J11121-15

9/28/2005

9/30/2005

10/1/2005

95.0

Q DF

U 1

U 1

J11121-18

9/28/2005

9/30/2005

10/1/2005

92.8

Q DF

U 1

U 1

J11121-19

9/28/2005

9/30/2005

10/1/2005

92.2

6.3

186

Q DF

10

10

J11121-21

9/28/2005

9/30/2005

10/1/2005

97.9

Q DF

U 1

U 1

P-ICP

RL

0.40

0.50

1

F - Flame AA

Q - Qualifier, if any

Sample Number

Sampling Date

Analysis Date

Percent Solids

Cadmium

Silver

PF

X

X

Preparation Date

J11121-11

9/28/2005

9/30/2005

10/1/2005

97.7

Q DF

U 1

U 1

J11121-12

9/28/2005

9/30/2005

10/1/2005

96.9

Q DF

U 1

U 1

J11121-13

9/28/2005

9/30/2005

10/1/2005

96.4

Q DF

U 1

.1.

U

J11121-14

9/28/2005

9/30/2005

10/1/2005

96.2

0.85

Q DF

U 1

1

DF - Dilution Factor

QA Scientist M Jlapler_DATE 3/17/06

				DAT				•	- •	•	•
				DAI		- INORGANIC			<u></u>		page 1
	Site Name Peerle	ess Photo Producte	š		ç	Soil (mg/kg)	l	aboratory	Accutest - Daytor	n, NJ	
P	roject Number 68.28	817.0001					Cas	e/Order #	J11121		
Sa	mpling Date(s) 9/28/2	2005					Fractio	n/Method	Metals / 3050B /	6010B	
	Sample Location or Description	APC12SB2SW3-W	APC12SB2SW4-S	APC12SB2B							
	Sample Number	J11121-24		J <u>11</u> 121-26							
	Sampling Date	9/28/2005	9/28/2005	9/28/2005		[I		
	Preparation Date	9/30/2005	9/30/2005	9/30/2005							
	Analysis Date Percent Solids	10/1/2005	10/1/2005 93.7	10/1/2005							
RL	Percent Solids	92.7 Q DF	Q DF	94.9 Q DF		F	L		<u> </u>		
0.40	Cadmium X	7.4 10		U 10							
0.50	Silver X	324 10	369 10	341 10							
<u></u>											
	Sample Location or Description										
	Sample Number										
	Sampling Date		_								
	Preparation Date										
	Analysis Date										
- 141 - 1 6 (6.44)	Percent Solids										
RL	P F										·
0.40	Cadmium X						┝───- ├── ┼──				
0.50	Silver X			1							

1

P-ICP

1

ł

ł

ł

1

ł

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M. Jakler DATE 3/17/06

ſ

DATA SUMMARY - INORGANIC ANALYTES

page 1

Site Name	Peerless Photo Products	Aqueous (ug/L)
Project Number	68.28817.0001	
Sampling Date(s)	9/28/2005	Fi

i

Laboratory Accutest - Dayton, NJ J11121

raction/Method

Case/Order #

Metals / 3010A / 6010B

	Sample Location or Description	FB092805									
	Sample Number										
	Sampling Date	9/28/2005									
	Preparation Date	9/30/2005									
	Analysis Date	9/30/2005									
RL	PF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
4.0	Cadmium X	U 1									
10.0	Silver X	U 1			1995 - 1						
	Sample Location or Description										
	Sample Number							ļ			
	Sampling Date										
	Preparation Date							L			
	Analysis Date										
RL	PF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF		Q DF	Q DF	Q DF
4.0	Cadmium X		e de la constante								
10,0	Silver X									[· [·"]	

P-ICP

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Sharder DATE 3/17/06

_

-

•

-

,

.

.

.

APPENDIX A

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: ATC Associates, Inc.

Job No J11121

Site: AGFA-Peerless, Shorham, NY

Report Date 10/5/2005 9:20:36 AM

23 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were collected on 09/28/2005 and were received at Accutest on 09/29/2005 properly preserved, at 5 Deg. C and intact. These Samples received an Accutest job number of J11121. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

	Matrix: AQ	Batch ID:	D: MP31750
	All samples were digested within	n the recommended metho	hod holding time.
	All samples were analyzed with	in the recommended method	thod holding time.
	All method blanks for this batch	meet method specific crit	riteria.
	Sample(s) J10612-1FMS, J106	12-1FMSD, J10612-1FSD	SDL were used as the QC samples for metals.
	RPD(s) for Serial Dilution for (acceptable due to low initial san		side control limits for sample MP31750-SD1. Percent difference 0 times IDL).
	Matrix: SO	Batch ID:	D: MP31747
	All samples were digested withi	n the recommended metho	hod holding time.
	All samples were analyzed with	in the recommended method	thod holding time.
	All method blanks for this batch	meet method specific crit	riteria.
	Sample(s) J11121-15MS, J1112	21-15MSD, J11121-15SD	SDL were used as the QC samples for metals.
	RPD(s) for MSD for Silver are interference and/or sample nonh		or sample MP31747-S2. Spike recovery indicates possible matrix
	J11121-19 for Cadmium: Elevat	ed detection limit due to c	o dilution required for matrix interference.
	J11121-2 for Cadmium: Elevate	d detection limit due to di	dilution required for matrix interference.
	Matrix: SO	Batch ID:	D: MP31748
I	All samples were digested within	n the recommended metho	hod holding time.
	All samples were analyzed with	in the recommended method	thod holding time.
	All method blanks for this batch	meet method specific crit	riteria.
	Sample(s) J11116-1SDL, J111	16-1MS, J11116-1MSD w	were used as the QC samples for metals.
	RPD(s) for Serial Dilution for S low initial sample concentration		l limits for sample MP31748-SD1. Percent difference acceptable due
r	J11121-24 for Cadmium: Elevat	ed detection limit due to c	o dilution required for matrix interference.
I	J11121-25 for Cadmium: Eleva	ed detection limit due to d	o dilution required for matrix interference.
ı	J11121-26 for Cadmium: Eleva	ed detection limit due to d	o dilution required for matrix interference.
Ve	et Chemistry By Metho	d ASTM 4643-00	
	Matrix: SO	Batch ID:	D: GN83354

• There is no applicable data to evaluate for ASTM 4643-00.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO	Batch ID:	GN83321
------------	-----------	---------

• There is no applicable data to evaluate for EPA 160.3 M.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J11121).

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

- Project Number: <u>J11121</u>
- Client Name:

ATC Associates, Inc. AGFA-Peerless, Shorham, NY

Customer	Laboratory	VOA	BNA				Metals	Other
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC		
		Method	Method	Method	Method	Method		
		8260B	8270C	8081A	8082	8151		
APC12SB7SW2-N	J11121-1						X	
APC12SB7SW4-S	J11121-2						X	
APC12SB7SW1-W	J11121-3						X	
APC12SB7-B	J11121-4						X	
APC12SB7SW3-W	J11121-5						X	
APC10TTSW1-N	J11121-6						X	
APC10TTSW2-E	J11121-7						X	
APC10TTSW3-S	J11121-8						X	
APC10TTSW-4-W	J11121-9						X	
DUP092805	J11121-10						X	
APC6WSSASW1-W	J11121-11						Х	
APC6WSSASW2-NW	J11121-12						X	
APC6WSSASW3-NE	J11121-13						X	
APC6WSSASW4-E	J11121-14						X	•
APC6WSSASW5-SE	J11121-15						X	
APC6WSSASW6-W	J11121-18						Х	
APC6WSSAB7-E	J11121-19						X	
FB092805	J11121-20						X	
APC6WSSAB8-W	J11121-21						X	•
APC12SB2SW1-N	J11121-22						X	
APC12SB2SW2-E	J11121-23						X	
APC12SB2SW3-W	J11121-24					•	X	· .
APC12SB2SW4-S	J11121-25						X	
APC12SB2B	J11121-26						X .	

Client Sample Lab Sample I			2-N			Date Sampled: 09/28/05			
Matrix: SO - Soil Project: AGFA-Peerless, Shorham, NY					Date Received: 09/29/05 Percent Solids: 96.8				
Project:	AGF.	A-Peerles	s, Shorha	m, NY	(
Metals Analys	is								
			Units	DF	Prep	Analyzed By	Method	Prep Method	
Analyte	Result	RL	Units	Dr	пер	Analyzeu Dy	menou	Trep Method	
Analyte Cadmium	Result		mg/kg		09/30/05	10/01/05 KL	SW846 6010B ¹	SW846 3050B ²	

(1) Instrument QC Batch: MA16410
 (2) Prep QC Batch: MP31747

Report of Analysis

Page 1 of 1

.

		Report of Analysis										
Client Sample ID:	APC12SB7SW2-N											
Lab Sample ID:	J11121-1			Date S	Sampled: 09/28	8/05						
Matrix:	SO - Soil			Date 1	Received: 09/29)/05						
				Percer	nt Solids: 96.8							
Project:	AGFA-Peerless, Shore	rham, NY										
General Chemistry	· · · · · · · · · · · · · · · · · · ·	<u></u>										
Analyte	Result	RL	Units	DF	Analyzed	By	Method					
Solids, Percent	96.8	al gales Al content	%	1	10/01/05	SS	ASTM 4643-00					

16

.

				Re	port of A	Analysis	5		Page 1 of 1
Client Samp	le ID: APC	12SB7SW		_					
Lab Sample	ID: J111	21-2				Date	San	pled: 09/28/05	i
Matrix:	SO -	Soil				Date	Rec	eived: 09/29/05	; ;
						Perc	ent S	olids: 95.8	
Project:	AGF	A-Peerles	ss, Shorha	m, N	Y				
Metals Analy	ysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Cadmium ^a	< 5.3	5.3	mg/kg	10	09/30/05	10/01/05	ND	SW846 6010B ¹	SW846 3050B ²
Silver	208	ें 11	mg/kg	10	09/30/05	10/01/05	ND	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA16405

(2) Prep QC Batch: MP31747

(a) Elevated detection limit due to dilution required for matrix interference.

17

RL = Reporting Limit

Client Sample ID:	APC12SB7SW4-S								
Lab Sample ID:	J11121-2			Date Sampled: 09/28/05					
Matrix:	SO - Soil				Received: 09/29 nt Solids: 95.8	/05			
Project:	AGFA-Peerless, Shore	ham, NY							
General Chemistry			<u> </u>						
Analyte	Result	RL	Units	DF	Analyzed	By	Method		

10/01/05

SS

ASTM 4643-00

1

95.8 %

Solids, Percent

Page 1 of 1

	Report of Analysis											
Client Sample Lab Sample II Matrix:			1-W			Date	Rece	pled: 09/28/05 eived: 09/29/05 olids: 96.5				
Project:	AGF	AGFA-Peerless, Shorham, NY										
Metals Analys	is								· · · · · · · · · · · · · · · · · · ·			
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method			
Cadmium Silver	<0.49 14.9		mg/kg mg/kg		09/30/05 09/30/05	10/01/05 10/01/05	-	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²			

(1) Instrument QC Batch: MA16410
 (2) Prep QC Batch: MP31747

RL = Reporting Limit

	: APC12SB7SW1-W								
Lab Sample ID:	J11121-3			Date Sampled: 09/28/05					
Matrix:	SO - Soil			Date Received: 09/29/05					
				Percer	nt Solids: 96.5				
Project:	AGFA-Peerless, Sho	AGFA-Peerless, Shorham, NY							
	<u> </u>					<u> </u>			
General Chemist	ry								
	Decid	RL	Units	DF	Analyzed	By	Method		
Analyte	Result	100			· · · · · ·				
Analyte	Result 96.5				,				

Report of Analysis

RL = Reporting Limit

Page 1 of 1

......

	Report of Analysis											
Client Sampl Lab Sample I Matrix:						Date	Rece	pled: 09/28/05 eived: 09/29/05 olids: 96.0				
Project:	AGF.	AGFA-Peerless, Shorham, NY										
Metals Analy	/sis											
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method			
Cadmium Silver	<0.53 52.8	0.53 1.1	mg/kg mg/kg	1 1		-		SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²			

Instrument QC Batch: MA16410
 Prep QC Batch: MP31747

Page 1 of 1

RL = Reporting Limit

		Kepu	ort of All	alysis			Page 1 of 1			
Client Sample ID	: APC12SB7-B									
Lab Sample ID:	J11121-4			Date S	Sampled: 09/28	8/05	(
Matrix:	SO - Soil			Date l	Received: 09/29	9/05				
				Percer	nt Solids: 96.0					
Project:	AGFA-Peerless, Shore	AGFA-Peerless, Shorham, NY								
General Chemistr	у									
Analyte	Result	RL	Units	DF	Analyzed	By	Method			
Solids, Percent	96		%	1	10/01/05	SS	ASTM 4643-00			

Report of Analysis

Page 1 of 1

RL = Reporting Limit

				Re	port of A	Analysis		Page 1 of 1
Client Sample		2SB7SW	/3-W			Data Sa	mpled: 09/28/0	
Lab Sample Matrix:	SO - S	-				Date Sa Date Re	ceived: 09/29/0	
Project:	AGFA	-Peerles	s, Shorha	m, N	Y	Percent	Solids: 93.0	
Metals Analy	vsis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	0.85 63.6	0.53 1.1	mg/kg mg/kg	1 1	09/30/05 09/30/05	10/01/05 KL 10/01/05 KL	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA16410(2) Prep QC Batch: MP31747

• •

RL = Reporting Limit

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:	APC12SB7SW3-W J11121-5 SO - Soil			Date Sampled:09/28/05Date Received:09/29/05Percent Solids:93.0					
Project:	AGFA-Peerless, Shor	ham, NY							
General Chemistry	y								
Analyte	Result	RL	Units	DF	Analyzed	By	Method		
Solids, Percent	93	51.5 1	%	1	10/01/05	SS	ASTM 4643-00		

RL = Reporting Limit

Client Sample I Lab Sample ID Matrix:		-6	N			Date Sar Date Re Percent	•	
Project:	AGFA	-Peerles	s, Shorha	m, NY	ť			
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	<5.2 867		mg/kg mg/kg	10 10		09/30/05 ND 09/30/05 ND	SW846 6010B ¹ SW846 6010B ¹	

Silver

(1) Instrument QC Batch: MA16406
 (2) Prep QC Batch: MP31747

Report of Analysis

RL = Reporting Limit

Report of Analysis

Client Sample ID: APC10TTSW1-N Lab Sample ID: J11121-6 Date Sampled: 09/28/05 Date Received: 09/29/05 Matrix: SO - Soil Percent Solids: 94.8 AGFA-Peerless, Shorham, NY **Project: General Chemistry** DF RL Units Analyzed By Method Analyte Result

%

1

09/30/05

ΤМ

EPA 160.3 M

94.8

Solids, Percent

Page 1 of 1

	Report of Analysis										
Client Samp		10TTSW	2-E								
Lab Sample	ID: J1112	21-7				Date S	Sampled:	09/28/05			
Matrix:	SO -	SO - Soil Date Received: 09/29/05									
		Percent Solids: 92.5									
Project: AGFA-Peerless, Shorham, NY											
Metals Anal	ysis								,		
Analyte	Result	RL	Units	DF	Prep	Analyzed I	By Met	hod	Prep Method		
Cadmium Silver	<5.5 382		mg/kg mg/kg	10 10	09/30/05 09/30/05	09/30/05 M 09/30/05 M		46 6010B ¹ 46 6010B ¹	SW846 3050B ² SW846 3050B ²		

(1) Instrument QC Batch: MA16406
 (2) Prep QC Batch: MP31747

RL = Reporting Limit

·

······

		керо	ort of Al	larysis			Page 1 of 1			
Client Sample ID:	APC10TTSW2-E									
Lab Sample ID:	J11121-7	8/05								
Matrix:	SO - Soil			Date 1						
{				Perce	nt Solids: 92.5					
Project:	AGFA-Peerless, Shor	AGFA-Peerless, Shorham, NY								
General Chemistr	y									
Analyte	Result	RL	Units	DF	Analyzed	By	Method			
Solids, Percent	92.5	Solids, Percent 92.5 % 1 09/30/05 Th								

Report of Analysis

28

:

Page 1 of 1

				Re	port of A	Analysis			F	Page 1 of
Client Samp	ole ID: APC	LOTTSW:								
Lab Sample	ID: J1112	21-8				Date S	ampled:	09/28/05		
Matrix:	SO -	Soil				Date R	leceived:	09/29/05		
Project:	AGF	A-Peerles	s, Shorha	m, N	Y	Percen	t Solids:	91.2		
Metals Anal	lysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Meti	hod	Prep Metho	d
Cadmium	24.0		mg/kg	10	09/30/05	09/30/05 N		6 6010B ¹	SW846 3050B	
Silver	629	11	mg/kg	10	09/30/05	09/30/05 N	D SW84	6 6010B ¹	SW846 3050B	2

(1) Instrument QC Batch: MA16406
 (2) Prep QC Batch: MP31747

Page 1 of 1

29

4

Report of Analysis

Page 1 of 1

30

Client Sample ID Lab Sample ID: Matrix:	: APC10TTSW3-S J11121-8 SO - Soil			Date Sampled: 09/28/05 Date Received: 09/29/05 Percent Solids: 91.2					
Project:	AGFA-Peerless, Sho	rham, NY							
General Chemistr	у		<u>_</u>						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method		
Solids, Percent	91.2	n de la constance la constance de la constance	%	1	09/30/05	ТМ	EPA 160.3 M		

RL = Reporting Limit

	Report of Analysis											
Client Samp		OTTSW	-4-W	_								
Lab Sample	ID: J1112	J11121-9 Date Sampled: 09/28/05										
Matrix:	SO - 3	SO - Soil Date Received: 09/29/05										
ļ						Perc	ent S	Solids: 88.0				
Project:	AGFA	AGFA-Peerless, Shorham, NY										
Metals Analy	ysis											
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method			
Cadmium	13.0	5.8	mg/kg	10	09/30/05	09/30/05	ND	SW846 6010B ¹	SW846 3050B ²			
Silver	735	12	mg/kg	10	09/30/05	09/30/05	ND	SW846 6010B ¹	SW846 3050B ²			

Instrument QC Batch: MA16406
 Prep QC Batch: MP31747

RL = Reporting Limit

.

	Page 1 of 1							
Client Sample ID:	APC10TTSW-4-W							
Lab Sample ID:	J11121-9			Date S				
Matrix:	SO - Soil			Date Received: 09/29/05				
				Percei	nt Solids: 88.0			
Project:	AGFA-Peerless, Shorham, NY							
General Chemistry	/							
Analyte	Result	RL	Units	DF	Analyzed	By	Method	
Solids, Percent	88		%	1	09/30/05	ТМ	EPA 160.3 M	

Report of Analysis

32

•

				Rej	port of A	Analysis		Page 1 of 1
Client Sample I Lab Sample ID		 092805 !1-10				Date San	apled: 09/28/05	5
Matrix:	SO - 3					Date Rec	eived: 09/29/05 Solids: 98.3	
Project:	AGF	A-Peerles	s, Shorha	m, N	ſ			
Metals Analysis	5			.				
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	<0.51	0.51	mg/kg	1	09/30/05	10/01/05 KL	SW846 6010B 1	SW846 3050B ²

09/30/05 10/01/05 KL

(1) Instrument QC Batch: MA16410

<1.0 1.0

mg/kg 1

(2) Prep QC Batch: MP31747

Silver

SW846 3050B ²

SW846 6010B ¹

RL = Reporting Limit

Client Sample ID:	DUP092805							
Lab Sample ID:	J11121-10			Date S	Sampled: 09/28			
Matrix:	SO - Soil			Date I				
				Percer	nt Solids: 98.3			
Project:	AGFA-Peerless, Shorham, NY							
General Chemistry		_						
Analyte	Result	RL	Units	DF	Analyzed	By	Method	
Solids, Percent	98.3		%	1	10/01/05	SS	ASTM 4643-00	

Report of Analysis

RL = Reporting Limit

34

Page 1 of 1

	Report of Analysis												
Client Samp	le ID: APC	5WSSAS	W1-W										
Lab Sample	ID: J1112	21-11				Date Sa	ampled: 09/28/0	5					
Matrix:	SO	Soil				Date R	eceived: 09/29/0	5					
						Percent	t Solids: 97.7						
Project:	AGF	A-Peerles	s, Shorha	m, N	Y								
Metals Analy	ysis			-									
Analyte	Result	RL	Units	DF	Prep	Analyzed By	y Method	Prep Method					
Cadmium	<0.53	0.53	mg/kg	1	09/30/05	10/01/05 кі	. SW846 6010B ¹	SW846 3050B ²					

09/30/05 10/01/05 кL

SW846 6010B¹

SW846 3050B²

Silver

(1) Instrument QC Batch: MA16410

<1.1 1.1

mg/kg 1

(2) Prep QC Batch: MP31747

Page 1 of 1

. .

 \leq

	Report of Analysis											
Client Sample ID: Lab Sample ID:												
Matrix:	SO - Soil			Date Received: 09/29/05 Percent Solids: 97.7								
Project:	AGFA-Peerless, Shor	AGFA-Peerless, Shorham, NY										
General Chemistry				·								
Analyte	Result	RL	Units	DF	Analyzed	By	Method					
Solids, Percent 97.7 % 1 10/01/05 SS A												

_....

۰.

					·			
Client Sample	ID: APC	6WSSASV	W2-NW					
Lab Sample ID	: J 1112	21-12				Date Sar	npled: 09/28/05	5
Matrix:	SO -	Soil				Date Rec	ceived: 09/29/05	5
						Percent	Solids: 96.9	
Project:	AGF	A-Peerles	s, Shorha	m, NY	Y			
Metals Analysis	s	_			_			
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	<0.50		mg/kg	1	09/30/05	10/01/05 KL	SW846 6010B ¹	SW846 3050B ²
Silver	<1.0	1.0	mg/kg	1	09/30/05	10/01/05 kl	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA16410
 (2) Prep QC Batch: MP31747

Page 1 of 1

Report of Analysis

		nept		urysis			
Client Sample ID:	APC6WSSASW2-NV	v					
Lab Sample ID:	J11121-12			Date S	Sampled: 09/28	3/05	
Matrix:	SO - Soil			Date I	Received: 09/29	9/05	
				Percer	nt Solids: 96.9		
Project:	AGFA-Peerless, Sho	rham, NY					
General Chemistr	у						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	96.9		%	1	10/01/05	SS	ASTM 4643-00

Report of Analysis

Page 1 of 1

				Rej	port of A	Analysis		Page 1 of 1
Client Samp Lab Sample Matrix:			W3-NE		<u></u>	Date Sar Date Re Percent	.	
Project:	AGF	A-Peerles	s, Shorha	m, N	r	I ci cent	Jonus. 20.4	
Metals Anal	ysis		*		·			
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	<0.49 <0.99	0.49 0.99	mg/kg mg/kg		09/30/05 09/30/05	10/01/05 kl 10/01/05 kl	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA16410

(2) Prep QC Batch: MP31747

RL = Reporting Limit

.

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:	APC6WSSASW3-N J11121-13 SO - Soil	1E		Date Sampled: 09/28/05 Date Received: 09/29/05 Percent Solids: 96.4					
Project:	AGFA-Peerless, Sh	orham, NY							
General Chemistry Analyte	Result	RL	Units	DF	Analyzed	By	Method		

è.

				Rej	port of A	Analysis	5		Page 1 of 1
Client Sample Lab Sample ID Matrix:			W4-E			Date	e Rec	npled: 09/28/05 eived: 09/29/05 bolids: 96.2	1
Project:	AGFA	A-Peerles	s, Shorha	m, NY	ť	1 61 (ent c	5011 us. 90.2	
Metals Analysi	 S								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Cadmium Silver	0.85 <1.1		mg/kg mg/kg	1 1		10/01/05 10/01/05		SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA16410

(2) Prep QC Batch: MP31747

RL = Reporting Limit

		Kepu	at of Al	ialy515			Page 1 of 1				
Client Sample ID:	APC6WSSASW4-E										
Lab Sample ID:	J11121-14	•									
Matrix:	SO - Soil			Date 1	ľ						
				Perce	nt Solids: 96.2						
Project:	AGFA-Peerless, Shor	AGFA-Peerless, Shorham, NY									
General Chemistry	4										
Analyte	Result	RL	Units	DF	Analyzed	By	Method				
Solids, Percent	96.2	11.12 14	%	1	10/01/05	SS	ASTM 4643-00				

Report of Analysis

RL = Reporting Limit

Page 1 of 1

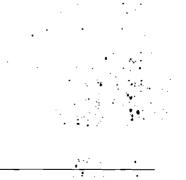
Client Sample	ID: APC6	SWSSAS	N5-SE					
Lab Sample II	D: J1112	1-15				Date San	npled: 09/28/05	5
Matrix:	SO - 3	Soil				Date Rec	eived: 09/29/05	5
						Percent S	Solids: 95.0	
Project:	AGF	A-Peerles	s, Shorha	m, N	Y			
Metals Analysi Analyte	is Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	<0.53	0.53	mg/kg	1	09/30/05	10/01/05 KL	SW846 6010B ¹	SW846 3050B ²
Silver	<1.1	1.1	mg/kg	1	09/30/05	10/01/05 KL	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA16410
 (2) Prep QC Batch: MP31747

Report of Analysis

Page 1 of 1

RL = Reporting Limit


۰.

COMPLEX WE CARD A COMPLEX WORK OF A COMPLEX STREET, COMPLEX

		Kepu	ort of Al	larysis			Page 1 of 1				
Client Sample ID:	APC6WSSASW5-SE										
Lab Sample ID:	J11121-15	-									
Matrix:	SO - Soil			Date I							
				Percei	nt Solids: 95.0						
Project:	AGFA-Peerless, Shor	AGFA-Peerless, Shorham, NY									
General Chemistr	у										
Analyte	Result	RL	Units	DF	Analyzed	By	Method				
Solids, Percent	95		%	1	10/01/05	SS	ASTM 4643-00				

Report of Analysis

Page 1 of 1

•

				Re	port of A	Analysis		Page 1 of 1		
Client Sample I		5WSSAS	W6-W				<u> </u>			
Lab Sample ID	: J1112	21-18				Date San	npled: 09/28/05	5		
Matrix:	SO -	Soil					eived: 09/29/05 Solids: 92.8	5		
Project:	AGF.	AGFA-Peerless, Shorham, NY								
Metals Analysis										
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Cadmium	<0.54	0.54	mg/kg	1	09/30/05	10/01/05 KL	SW846 6010B ¹	SW846 3050B ²		

09/30/05 10/01/05 KL

Instrument QC Batch: MA16410
 Prep QC Batch: MP31747

<1.1 1.1

mg/kg 1

Silver

SW846 3050B²

SW846 6010B¹

۰.

£ 1.....

		Kepu		ia1y515			Page 1 01 1				
Client Sample ID:	APC6WSSASW6-W										
Lab Sample ID:	J11121-18	Date Sampled: 09/28/05									
Matrix:	SO - Soil			Date l							
				Percer	nt Solids: 92.8						
Project:	AGFA-Peerless, Shor	AGFA-Peerless, Shorham, NY									
General Chemistry	y .										
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method				
Solids, Percent	92.8		%	1	10/01/05	SS	ASTM 4643-00				

Report of Analysis

Page 1 of 1

	Report of Analysis											
Client Sample Lab Sample I		5WSSAB 21-19	7-Е			Date	Sam	pled: 09/28/05				
Matrix:	SO -	Soil										
Project:												
Metals Analys	sis											
Analyte	Result	RL	Units	DF	Ргер	Analyzed	By	Method	Prep Method			
Cadmium ^a Silver	6.3 186	5.3 11	mg/kg mg/kg	10 10	09/30/05 09/30/05	10/01/05 10/01/05		SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²			

(1) Instrument QC Batch: MA16405

(2) Prep QC Batch: MP31747

(a) Elevated detection limit due to dilution required for matrix interference.

Client Sample ID: APC6WSSAB7-E Lab Sample ID: 09/28/05 J11121-19 Date Sampled: Matrix: SO - Soil Date Received: 09/29/05 Percent Solids: 92.2 Project: AGFA-Peerless, Shorham, NY **General Chemistry** Analyte Result RL Units DF Method Analyzed By 92.2 Solids, Percent % 1 10/01/05 SS ASTM 4643-00

Page 1 of 1

Report of Analysis

· • • • • •

_				_						
Client Sample I	D: FB09	92805								
Lab Sample ID:	J111	21-20				Date Sar	npled: 09/28/0	5		
Matrix:	AQ -	Field Bl	ank Soil			Date Received: 09/29/05				
						Percent	Solids: n/a			
Project:	AGF	A-Peerles	ss, Shorha	am, N'	Y					
Metals Analysis										
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method		
	م را بو دره در						,	2		
Cadmium	<4.0	4.0	ug/l	1	09/30/05		SW846 6010B	SW846 3010A ²		
Silver	<10	<u>)</u> :: 10	ug/l	1	09/30/05	09/30/05 ND	SW846 6010B ¹	SW846 3010A ²		

(1) Instrument QC Batch: MA16405
 (2) Prep QC Batch: MP31750

Report of Analysis

Page 1 of 1

÷

1111211-0

Client Sample	e ID: APC	5WSSAB	8-W							
Lab Sample I	D: J1112	21-21				Date San	ipled:	09/28/05	5	
Matrix:	SO -	SO - Soil				Date Received: 09/29/05				
						Percent S	Solids:	97.9		
Project:	AGF	A-Peerle	ss, Shorha	am, N'	Y					
Metals Analys	5is									
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Meth	od	Prep Method	

mg/kg 1

mg/kg 1

Cadmium Silver

(1) Instrument QC Batch: MA16410
 (2) Prep QC Batch: MP31747

<0.49 0.49

<0.98 0.98

Report of Analysis

09/30/05 10/01/05 KL

09/30/05 10/01/05 KL

Page 1 of 1

SW846 3050B²

SW846 3050B²

SW846 6010B¹

SW846 6010B¹

÷

•••••••

2000 - Le Constante de la

ą (

		Kept		1a1y515			Fage 1 01 1		
Client Sample ID:	APC6WSSAB8-W								
Lab Sample ID:	J11121-2 1			Date 8	Sampled: 09/28	3/05			
Matrix:	SO - Soil			Date 1					
				Percer	nt Solids: 97.9				
Project:	AGFA-Peerless, Sh	AGFA-Peerless, Shorham, NY							
General Chemistr	y								
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method		
Solids, Percent	97.9		%	1	10/01/05	SS	ASTM 4643-00		

Report of Analysis

RL = Reporting Limit

4. -

:

· ..

Page 1 of 1

.

	Report of Analysis											
Client Samp Lab Sample Matrix:			/1-N			Date San Date Rec	-					
Project:												
Metals Anal	ysis						_					
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method				
Cadmium Silver	<0.54 367	0.54 11	mg/kg mg/kg		09/30/05 09/30/05	10/01/05 KL 10/01/05 ND	SW846 6010B ² SW846 6010B ¹	SW846 3050B ³ SW846 3050B ³				

(1) Instrument QC Batch: MA16405

(2) Instrument QC Batch: MA16410(3) Prep QC Batch: MP31747

52

RL = Reporting Limit

1. ..**:** - 4

.

u Anno e esta 🔅

	Report of Analysis												
Client Sample ID:	APC12SB2SW1-N												
Lab Sample ID:	J11121-22			Sampled: 09/28									
Matrix:	SO - Soil			Date 1									
				Perce	nt Solids: 94.9								
Project:	AGFA-Peerless, Shor												
General Chemistry													
Analyte	Result	RL	Units	DF	Analyzed	By	Method						
Solids, Percent	94,9		1	10/01/05	SS	ASTM 4643-00							

Report of Analysis

; .

53

RL = Reporting Limit

....

	Report of Analysis												
Lab Sample		21-23	 /2-Е				ampled: 09/28/0	-					
Matrix:	SO -	SO - Soil Date Received: 09/29/05 Percent Solids: 93.5											
Project:	AGF	AGFA-Peerless, Shorham, NY											
Metals Anal	ysis												
Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Method	Prep Method					
Cadmium Silver	0.93 342		mg/kg mg/kg		09/30/05 09/30/05	10/01/05 к 10/01/05 N	· · · · · · · · · ·	SW846 3050B ³ SW846 3050B ³					

(1) Instrument QC Batch: MA16405

(2) Instrument QC Batch: MA16410(3) Prep QC Batch: MP31747

Report of Analysis

. 54

an allerations

2.302201.00444

	Report of Analysis													
Client Sample ID: Lab Sample ID: Matrix:	APC12SB2SW2-E J11121-23 SO - Soil		Date Sampled: 09/28/05 Date Received: 09/29/05											
Project:	AGFA-Peerless, Sho													
General Chemistry		- -				_								
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method							
Solids, Percent 93.5 (1) 10/01/05 SS ASTR														

•

A. 14144

1999-0011222065-0

	Report of Analysis												
Client Sample ID:APC12SB2SW3-WLab Sample ID:J11121-24Matrix:SO - SoilDate Received:09/28/05Percent Solids:92.7													
Project:	AGF	A-Peerles	ss, Shorha	m, N	Y								
Metals Analysis													
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method					
Cadmium ^a Silver	7.4 324	5.4 11	mg/kg mg/kg	10 10	09/30/05 09/30/05	10/01/05 ND 10/01/05 ND	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²					

(1) Instrument QC Batch: MA16405
 (2) Prep QC Batch: MP31748

(a) Elevated detection limit due to dilution required for matrix interference.

Poport of Applysic

Solids, Percent

÷...

Report of Analysis Page 1 of 1 Client Sample ID: APC12SB2SW3-W Lab Sample ID: J11121-24 **Date Sampled:** 09/28/05 Date Received: 09/29/05 Matrix: SO - Soil Percent Solids: 92.7 Project: AGFA-Peerless, Shorham, NY **General Chemistry** Analyte Result RL Units DF Analyzed By Method

%

1

10/01/05

ASTM 4643-00

SS

92.7

RL = Reporting Limit

.....

Client Sampl Lab Sample Matrix:		12SB2SW 21-25 Soil	5									
Project:	AGF	A-Peerles	ss, Shorha	m, N	Y							
Metals Analy	ysis											
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method				
Cadmium ^a Silver	<5.5 369	5.5 11	mg/kg mg/kg		09/30/05 09/30/05	10/01/05 ND 10/01/05 ND	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²				

(1) Instrument QC Batch: MA16405

(2) Prep QC Batch: MP31748

(a) Elevated detection limit due to dilution required for matrix interference.

RL = Reporting Limit

Report of Analysis

Page 1 of 1

-

ь <u>э</u>

		Kepo		141 9 5 15			Tage I OI I
Client Sample ID:	APC12SB2SW4-S						
Lab Sample ID:	J11121-25			Date S	Sampled: 09/28	8/05	
Matrix:	SO - Soil	Date I	Received: 09/29	/05			
				Percer	it Solids: 93.7		
Project:	AGFA-Peerless, Shor	ham, NY					
General Chemistry	/						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	93.7		%	1	10/01/05	SS	ASTM 4643-00

Report of Analysis

.

Page 1 of 1

. .

	Report of Analysis												
Client Sample Lab Sample I		2SB2B 1-26				Date San	ipled; 09/28/05	;					
Matrix:	SO - 3	SO - SoilDate Received:09/29/05Percent Solids:94.9											
Project:	AGFA	A-Peerles	ss, Shorha	m, N'	Y								
Metals Analy	sis												
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method					
Cadmium ^a Silver	<5.4 341	5.4 11	mg/kg mg/kg	10 10	09/30/05 09/30/05	10/01/05 nd 10/01/05 nd	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²					

(1) Instrument QC Batch: MA16405

(2) Prep QC Batch: MP31748

(a) Elevated detection limit due to dilution required for matrix interference.

Page 1 of 1

60

• •

4.5. L

Report	of	Analysis
		~

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:	APC12SB2B J11121-26 SO - Soil			Date I	Sampled: 09/28 Received: 09/29 nt Solids: 94.9		
Project:	AGFA-Peerless, Shor	ham, NY					
General Chemistry	<i>,</i>						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Solids, Percent	94.9	- ;	%	1	10/01/05	SS	ASTM 4643-00

RL = Reporting Limit

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: <u>J11121</u>

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyze
J11121-1	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-2	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-3	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-4	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-5	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-6	Soil	Total Metals	29-Sep-05	30-Sep-0
J11121-7	Soil	Total Metals	29-Sep-05	30-Sep-0
J11121-8	Soil	Total Metals	29-Sep-05	30-Sep-0
J11121-9	Soil	Total Metals	29-Sep-05	30-Sep-0
J11121-10	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-11	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-12	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-13	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-14	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-15	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-18	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-19	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-20	Field Blank Soil	Total Metals	29-Sep-05	30-Sep-0
J11121-21	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-22	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-23	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-24	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-25	Soil	Total Metals	29-Sep-05	1-Oct-05
J11121-26	Soil	Total Metals	29-Sep-05	1-Oct-05

2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 WWW.Rccutest.com Client / Reporting Information Company Name ATC ASSociaTrs, Inc Project Name AFGA - Shoneham	Bottle Order Control # Accutest Job # JIII 7_] equested Analysis DW - Dinking Water
Laboratories Client / Reporting Information Recutes Client / Reporting Information	JIII Z_] aquesled Analysis Matrix Codes
	equested Analysis Matrix Codes
ATC ASSociates, Inc Project Name AFGA. Shoneham	DW - Drinking Weter
	GW - Ground Water
	WW · Water
	SW - Surface Water
1 UNCURCION IN 1 I SHOWENAM IN 3 1 1 3 1 3 1 1 1	SO - Soil
Project Conjuget Mr. No. UN E-mail Project # 68 28817.0001 82 29 20 11	SL - Sludge Ol - Ori
	UQ - Other Liquid
	AIR - Air
Nicole borelick	SOL - Other Solid
Accutest Field ID / Point of Collection SUMMA # Collection Number of preserved Bottles Q U Q Q Q	WP - Wipe
$\frac{1}{1300} \frac{1}{100} 1$	<u> </u>
-2 APC12SB75W4-S 1315 ng so 1 7 x x	
-3 APC 12-SB7SW1-W 1300 NG SO 1 4 4 4 X	
-7 APC12567-B 132016 Sell X X	
-S APC12SB7SW3-E 1310 ng So 1 X X	
6 APCIOT.TSWI-N 1345 NG SO 1 X X	
7 APC 10 TT SW2-E 1350 NG SO 1 X X	
-8 APC 10 TT SW3-9 1355 NG SO 1 X X	
-7 APCIOTTSW-4-W 1400 NG SO 1 X X	
ARLIOTTR	
	Comments / Remarks
Image: State 15 Business Days Approved By: / Date: Image: Commercial *A* Image: FULL CLP Image: State 15 Business Days Approved By: / Date: Image: Commercial *B* Image: State 15 Business Days Image: State 15 Business Days Approved By: / Date: Image: Commercial *A* Image: State 15 Business Days Image: State 15 Business Days Approved By: / Date: Image: Commercial *A* Image: State 15 Business Days Image: State 15 Business Days Approved By: / Date: Image: Commercial *A* Image: State 15 Business Days Image: State 15 Business Days Approved By: / Date: Image: Commercial *A* Image: State 15 Business Days Image: State 15 Business Days Approved By: / Date: Image: Commercial *B* Image: State 15 Business Days	3050B +6010B
I to bay Adsh I to bay Adsh	
3 Day EMERGENCY Image: NJ Full Image: State Forms	
□ 2 Day EMERGENCY □ Diher □ EDD Formal □ Differ	15
□ 1 Day EMERGENCY	······································
Emergency & Rush T/A date available VIA LabLink	
Sample Custody must be documented below each time sample's change possession, including couner delivery Date Time Date Time Received by: Date Time	Received by.
1 7 5 - S - C 92805 1 Fel 2 Fed X - Elong	2
Relinquished by: Date Time Date Time Deter Time	Received by
3 3 4 Relinquiahed by Data Time. Received by. Custody Seal # Preserved where prolicable	
S Date Time. Received by. Custody Seal # 7 7 11 2 Preserved where arthread is	<u> </u>

										23	235 Ro), Day	yton N	J 088	10		FED-E	X 1 rack	ing #				Bottle C	Order Con	itrol #		
	-		EST atorie	_					Tł	SL. 7.	32-329- \	0200 ////				99/34	80	Accute	st Quot	c #				Accutes	it job #	 -	- 1/12	
	······································		/ Reporting Informat		·	ant a th					Project Ir	formalia		5.000		im						<u>ann an</u> an						Metrix C
mpany Na						P	roject N	ame	~ ~													7	Keque	asled Ana	alysis			DW - Drinkli
	ATO	2 179	Social	<u>res,</u>	JUT	_			F6	A	- 5	han	eh	σu	n													GW - Groun
kdress ZT	en	i. 10	the			S	treet C	5.0c	ind	c. 1	1 R	ራ						00			2							ww.w
ריד מיי			State		Zlp	- c	الم		1			110 0 7						571C (а С,	1,485 [] Hi,635 []	ADMIUM	с С						SW - Surfac
	Rlin	sron	<u> </u>				ر	ngre	ha	M		<u>D</u>	4					n0	éris [l av ∓ IS LI	2	3						SO • 5
oject Conti M	ill-e	- Mc	Nally	E-r	nail	P	roject #	65	3.7	28	817	- (K	\mathcal{O}	1			£ 65	۲ ۲ ۵	П М М	B	يتر.						SL - Sil
ione #			<u> </u>			Fi	ax #	<u>Y ·</u>				<u> </u>			-			5021 C) TBA C)	ព ភូមិ ភូមិ	00	\mathcal{O}	5						LIQ - Othe
						_														¢₹		_						AIR -
mpiers Na	. ر ^{مسر}	fore	lick.			C	wont Pu	rchase Ord	6(N									10 10 10 10 10 10 10 10 10 10 10 10 10 1	624 C	625 10 10 10	Ta	ک						SOL - Oth
cculest			int of Collection		SUMMA		C	ollection		-			Nymb	er of pre		_		ា ខ្លួន ខ្លួន		B270 D	0,	5						WP - V
ample #					MEOH Vial	# <u>D</u>	ate	Time	Sampled By	Matr	ix bottle	s₽	Ş V	2 Z	W C	H H	¥0€	808 11 11 12 12 12 12 12 12 12 12 12 12 12	92 A2	121 171	4	7						LAB USE
-10	DU	20925	305			9.2	805	0900	14	So	. 1				7						X	そ						
-11 -	APCE	STA SSP	rSW1-1	\mathcal{N}^{-1}				1130	1		1				Y				-		¥	\mathbf{X}						
-12	ARG	WSSA S	W2-NU	5			_	1135		П	1				4						¥	4						
73		WSSA SU			İ —		•	1140		\prod	T		1	1	4		11				X	X		-				
_		WSSAS				╡┫		1145			1	$\uparrow\uparrow$	-+	\top	7						7	Y				-		
_			$w_{5} - SE$			┼╌┦		1150			1	╞		-+	<u>}</u>	+-					X	Ĺ	_					
_			<u>193-95</u> 15-195			┥╴┨		1/20		┼┠╴	-+					+					4	7			-+	+		
						++	<u></u>		├{	┼╂╴	+	++	+	+-	14		+				۲ ۲	*				+		
-17			<u>w5-msD</u>	_				1150				+			*		+				$\frac{1}{\chi}$	ý Y				\rightarrow		
-18	HIC	binzzy	Sw6-WL	<u>s</u>			 	<u>IISS</u>	<u> </u>		1		_		7	_	+ -		-						-+			
-15	APCI	owssa	► A B 7	<u>E</u>			•	1200	4	V					<u> </u> ¥						\mathbf{Y}	\star	*******					
Std 15	Business Da		e (Business Days) Approved By:	/ Date:] Comman		## #	Data I	Deliveration	FULL (^[]]							<u></u>		Comment	ts / Rema	ir <u>ks för</u>		
10 Day /		42						Commer						Calego	ory A					pg	2	G/J	_≾					
5 Day R] NJ Redu	ced					P Catego	bry B				'			\cup						
3 Day E	MERGENCY	,	<u></u> -] NJ Full					State F															
-	MERGENCY			_		<u> </u>		Other					FDOF	ormal_														
	MERGENCY	,	 .		<u> </u>			Comm	ercial *A	" = R4	esults O	nlv																
l Other nergen ci	& Rush T	/A data availa	ble VIA LabLink			_		QUIIII.																				
					NUMBER OF TRADE		<u> </u>	ustody mus	t be doci	imento	d below e					ession,	includi	ng cour	er deliv	ery 👔	<u> </u>							<u> </u>
Inquished b			-/	Date Tim 9-20		Received b	¢γ.	F	-l	X	-		Relingu	uished by	E-		K				9		15	Received 2	by:	' 二	2	
Inquished b			· (Date Tim		Rocolved b	Y.			<u>``</u>			Reling	ushed by	-1-0		<u> </u>				Date	Time		Z Ruceived	by /L	7		
		ør.		·		•							4								1			4	\angle	<u> </u>		
inquish	f:			Date Tim	• '	Received b	iγ						Custod	y Sedi #		っ	0		1765	erved whi	sra appiic	2018					Cooler 1	ieinp.

					22	35 Rou	te 13), Day	ton N	.1 088	10		Y FED-E	X Track	ling #				Bottle Q	rder Cor	ntrol #		
AC <u>CUTEST</u> .				Tł	CL. 73	2-329-(n		FAX: ccutes			499/3	480	Accute	est Quot	e #	-			Accules	t Job #		. ,	
Laboratories									TIMIN	*****	*****						Miron de m			ux (22)	<i>۲</i> ۲۲ (~ (Manana ana ana ana ana ana ana ana ana a
nov Name		Project	Name			roject Ini	ormatic	n	6					******				Reques	sted Ana	ilysis			Matrix Codes DW - Drinking Wate
ATC Associates	<u>`</u>		<u> </u>	F6	A-	- 71	Vr	-h	ar	$\overline{\mathcal{M}}$													GW - Ground Wele
"3 Teeni LANE	-	Street	5	Pa	ì٨	do	l	R	7	,				1									WW - Water
State	Zip	City	(ha		<u> </u>	Stat					<u> </u>		10784		S1A*8 D 5 +TTCS D	mi ut	g						SW - Surface Wata
Bueling Ton, M	<u> </u>	Project	<u> 210</u>	LQ.	na	$\int M$		97	¥				n¤	115		'Ē	4						SQ - Soil SL - Sludge
n, richally	C-11790	Pioject	• 6	8-	28	(8)	7	, C	νŶ	01			263 263 272	÷ 5	口 次 4 名	ρ							01 - 01
#		Fax #												ច ច ភូ ទី		С Ч	n						LIQ · Other Liquid
er's Name Company		Client P	urchase Ord	er #									624 D (00	여운 다		-						AIR - Air
ILEST Field ID / Point of Collection			Collection		T	-		Numbr	or of pre	Center	Anttin		-	\$24 NAC	625 BN	Atcl	12						SOL - Other Sold
test Field 10 / Point of Collection Na #	SUMMA #			Sampled By	Matrix	# of bottles			1.	<u>г</u> т.		1	2 59 C	260 D 187		चि	12				·		LAB USE ONLY
re FB 092805	MEOH Vial #	Date 9-08-05	Time	ву NG	LIA	bollies	1¥	<u>¥</u> <u>£</u>	Ŷ	2	1 9	1 2				x	×			-+	+		
4 ARGWSSABQ-KIN		9.78 6	1	<u>n</u> 6	50	┽╌	┥┤			1		+-	-			2	$\overline{\mathbf{v}}$	-+	\rightarrow			+	
0.00 p 50 1 81 1 N		120	1500	1	1					1						$\frac{1}{2}$	X	+					
APC125825WZ-E			1505		┼╂╴					++-		-				4	$\hat{\mathbf{x}}$		\neg			+	+
	·				$\left \right $		+	+		╏╹	+-					Y	X	-+	-+	_	-+	+	
00-050051115			1510		+		$\left \right $			4		-		·		- <u>-</u>				_	-+		
			1212			-	$\left - \right $		+	┝┚┼╴		-				ז ע	¥		-+	+			
K HYCIZS62 K		V	1520		v	1	\vdash		-	┢╋┼		_	-			X	\star			\rightarrow			
									+			_									\rightarrow	—	
							-		+							_			+-			+	
Turneround Time (Business Days)						Data D	eliverat		malion			1		. t. H.				The Co			under Extension		
d. 15 Business Days Approved By: / Data			Commer		<u></u>	0010 ()		FULL C		21	<u>aman</u>		economia de la constante de la c			う	<u>^</u>	<u>ີ</u>	ann cans		1172 4262200	200400000	
) Day RUSH								NYASP						-4	<u> </u>	20	θ	3					
Day RUSH] NJ Redu] NJ Full	090				NYASP State Fo		ку Н													
Day EMERGENCY			Other					EDD Fo															
Day EMERGENCY		-																					
		.	Comm	arcial *A	* = Res	ults On	ly							\vdash				·					
gency & Rush T/A data available VIA LabLink		Sample C	ustody mus	be docu	mented	below ea	ch lime	sample	is chan	ge poss	session	n, incluc	ling cour	ier deliv	ery. 🗯								
		alvad by:	VE	$\overline{\mathbf{v}}$	-			Relinqui	shed by:		e >	/				D. B	150/0	H سر	eceivad b				
lished by Usi		alved by	Viel					2 Relingue	shed by	(ee	<u>र</u> /	~				Deto	C/00 Time		eceived	f-b.	Ą		<u> </u>
	1						- 1												- 1				

APPENDIX B

Project No.: 68 Project Manager: M.	erless Photo Pro 28817.0001 McNally coutest	oducts		San Rev	e No./SDG: npling Date(s): viewed By: npletion Date:	J11121 9/28/2005 M. Traxler 3/16/2006
Method:	soil/solid (mg/Kg)		6 Is (ug/L)		Other Other	
The following table indica and QA action.	ates the data va	lidation	criteri	a exai	mined, problems	identified,
Data Validation Criteria:		accep	t FYI	qualif	fy comments	
Holding Times	n <u></u>	X			Less than 180 d	ays
Calibration Linearity - Fu and CN	mace, Hg ,				NR	
Calibration Verification		×			2-point standard	1
CRDL Standard		X			50 - 150 % R	
Calibration Blanks		X			< RL	
Preparation Blanks		X			< RL	
Field Blank	an an tan s	X			< RL	·
ICP Interference Check S	ample	×			80 - 120 % R	
Laboratory Control Samp	le	X			80 - 120 % R	
Matrix Spike Results		X			75 - 125 % R	
Laboratory Duplicate Res	ults	х	11		< 20 RPD	
ICP Serial Dilution		×	÷.		< 10 RPD	
Post Digestion Analytical	Spike				NR	
Method of Standard Addi	tion				NR	
Field Duplicate Results	•	X			< 50 RPD	
Sample Result Verificatio	n	X			Cadmium and S	Silver
Other:						<u>_</u>
General Comments:				<u> </u>	<u></u>	

Inorganic Field Duplicate Precision Worksheet

ATC

Project Name: Project Number:

er: 68.28817.0001

Case/SDG Number: _____J11121

7

Sample Location	APC6WSSASW2-NW	DUP092805
or Description		
Sample Number	J11121-12	J11121-10
Sampling Date	9/28/2005	9/28/2005
Units	mg/kg	mg/kg

Sample

Field Duplicate

	 Q
Cadmium	
Silver	

* - Denotes RPD outside criteria

J11121 Field Duplicate

QA Scientist_ M Inayder_ ____ Date_<u>3/17/06__</u>

Inorganic Matrix Spike/ Matrix Spike Duplicate Worksheet

Project Name: Peerless Photo Products Project Number: 68.28817.0001 Case/SDG Number: J11121

Sample Location APC6WSSASW5-SE APC6WSSASW5-SE APC6WSSASW5-SE or Description MSD MS Sample Number J11121-15 J11121-17 J11121-16 9/28/2005 Sampling Date 9/28/2005 9/28/2005 Units mg/kg mg/kg mg/kg

> Spike Sample Result Amount

					MS %R	Q	MSD %R	Q	RPD	Q
Cadmium	10/11	0.0	8.9	9.6	85.4	1 1	88.5		7.6	
Silver	10/10.9	0.0	9.4	12.3	90.2		113		26.7	*

MSD Result

MS Result

🖕 Q - Qualifier

* - Denotes RPD outside criteria

J11121 MS MSD Results

QA Scientist M Jlader ____ Date 3/17/06

Login Number: J11121 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31748 Matrix Type: SOLID Methods: SW846 6010B Units: ug/l

Prep Date:			09/30/05	i
Metal	J11116-1 Original		RPD	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium				
Beryllium				·
Cadmium	0.00	0.00	NC	⁶ 0-10
Calcium				
Chromium				
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese				
Nickel				
Potassium				71 0
Selenium			\sim	0-10 Serial dilution - <50× IDL
Silver	1.58	0.00	100.0(a)	0-10 Serial dilution - <50× LDL
Sodium				
Thallium				
Vanadium				
Zinc	anr		la ser là Bailtean Ba	
Associated s	amples MP31	748: J111	L21-24, J1	.1121-25, J11121-26
(*) Outside ((anr) Analyt	of QC limit: e not reque:	s sted		lation purposes low initial sample concentration (< 50 times IDL).

Login Number: J11121 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31750 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:		09/30/05	
Metal	J10612-1F Original SDL 1:5		QC Limits
Aluminum	anr		
Antimony	anr		
Arsenic	anr		
Barium	anr		
Beryllium	anr		MT 3/12/06
Cadmium	1.30 0.00	100.0 (a)	0-10 MT 3/17/06 Serial dilutions - < 50× 1DL
Calcium	anr		Serial defutions- < 50x 102
Chromium	anr		
Cobalt	anr		
Copper	anr		
Iron	anr		
Lead	anr		
Magnesium	anr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Palladium			
Potassium	anr		
Selenium	anr		
Silicon			
Silver	1.36 0.00 ((100.0(a)	0-10
Sodium	anr		
Thallium	anr		
Tin			
Vanadium	anr		
Zinc	anr		
Associated s	amples MP31750: J111	121-20	
(*) Outside (anr) Analyt	e not requested		· · · · · · · · · · · · · · · · · · ·
(a) Percent	difference acceptabl	re que to lo	low initial sample concentration (< 50 times IDL).

156

DATA USABILITY REPORT

ACCUTEST CASE NO. J12137

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK OCTOBER 2005

REPORTED MARCH 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

Mark Har

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

920 Germantown Pike, Suite 200 - Plymouth Meeting, PA 19462

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of October 7, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Hader

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY METALS PEERLESS PHOTO PRODUCTS SITE OCTOBER 2005

1.0 INTRODUCTION

1944 C. L. S. L. S. L. S.

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) metals (cadmium and silver) results from the October 7, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J12137 included a total of seven (7) soil samples, including one (1) set of field duplicate samples, plus one (1) Matrix Spike/Matrix Duplicate (MS/MD) pair for limited metals (cadmium and silver) analysis. Case J12137 also included one (1) aqueous field blank sample for limited metals (cadmium and silver) analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 3050B (and 3010A for the aqueous field blank sample) and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J12137 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;

weeks tell as an in star

- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the next day. All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for total cadmium and silver following SW-846 Methods 3050B for digestion and 6010B for analysis. The aqueous cadmium and silver was analyzed following SW-846 Method 3010A for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times

A Low With Annual Statements

- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J12137 metals results be used with no qualifiers.

4.0 SUMMARY

The metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

l	1	I	ŧ	1 1	1	1 L	1	1 1	I	1 1	1	
					DAT	A SUMMARY	- INORGANIC	ANALYTES				page 1
	Site Name	Peerles	s Photo Product	s		5	Soil (mg/kg)	t	aboratory	Accutest - Daytor	n, <u>NJ</u>	
P	roject Number	68.288	17.0001					Cas	e/Order #	J12137		
		10/7/20	005					Fractio	on/Method	Metals / 3050B /	6010B	
	Sample Location	on	DUP100705	APC6WSSA88-E	APC12SB10B9	APC12SB10SW5-N	APC12SB10SW6-E	APC12SB105W7-W	APC12SB10SW8-S			
	or Description		·		·			ļ				
	Sample Numb		J12137-1	J12137-2	J12137-3	J12137-4	J12137-5	J12137-6	J12137-7			
	Sampling Date		10/7/2005	10/7/2005	10/7/2005	10/7/2005	10/7/2005	10/7/2005	10/7/2005			
	Preparation Da	ate	10/11/2005	10/11/2005	10/11/2005	10/11/2005	10/11/2005	10/11/2005	10/11/2005	_		
	Analysis Date Percent Solids		10/12/2005 85.1	10/12/2005 92.6	10/12/2005 96.0	10/12/2005 98.0	10/12/2005 96.0	10/12/2005 98.2	10/12/2005 97.2	4		
RL	Fercerit Solids	PF	Q DF	92.0 Q D						Q DF	Q DF	Q DF
0.40	Cadmium	X		0.59		TU: 1	0.44	1			8410.8	
0.50	Silver	X	1.3 1	1.0 1		U 1	266 1	15.3 1	39.9 1			
				<u>منطلق منفنان ومحمد ومعمو</u> مي مطا	<u></u>				<u>ىرىيىش بىرى بەر مە</u> رىيە مەر مەر مەر مەر			
	Sample Location	on										
	Sample Numb	ег										
	Sampling Date	,										
	Preparation Da	ate									·	
	Analysis Date											
	Percent Solids											
RL		ΡF	Q DF	QD	F Q DF		Q DF	and the second secon	QDI	Q DF	Q DF	Q DF
0.40	Cadmium Silver	X X										

P - ICP

F - Flame AA

Q - Qualifier, If any

DF - Dilution Factor

QA Scientist M Aakles DATE 3/2/06

I

DATA SUMMARY - INORGANIC ANALYTES

page 1

Site Name	Peerless Photo Products	
Project Number	68.28817.0001	
Sampling Date(s)	10/7/2005	

Aqueous (ug/L)

Jg/L)

Laboratory

Fraction/Method

Case/Order #

1

Accutest - Daylon, NJ J12137 Metals / 3010A / 6010B

£

	Sample Location or Description	FB100705									
	Sample Number	J12137-8									
	Sampling Date	10/7/2005									
	Preparation Date	10/11/2005									
	Analysis Date	10/12/2005									
RL	PF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
4.0	Cadmium X	U 1								<u> </u>	
5.0	Silver X	U 1									
	Sample Location or Description										
	or Description Sample Number										
	or Description Sample Number Sampling Date										
	or Description Sample Number Sampling Date Preparation Date										
	or Description Sample Number Sampling Date Preparation Date Analysis Date										
	or Description Sample Number Sampling Date Preparation Date Analysis Date	 Q DF	Q DF	 Q DF	Q DF	Q DF					
	or Description Sample Number Sampling Date Preparation Date Analysis Date		Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF

P-ICP

f

Ŧ

Î

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Hapler DATE 3/2/06

APPENDIX A

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: J12137

Client Name:

<u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

	AGFA-Feen							
			Ana					
Customer	Laboratory	VOA	BNA				Metals	Other
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC		
		Method	Method	Method	Method	Method		
		8260B	8270C	8081A	8082	8151		
DUP100705	J12137-1						X	
APC6WSSAB8-E	J12137-2						X	
APC12SB10B9	J12137-3						X	
APC12SB10SW5-N	J12137-4						X	
APC12SB10SW6-E	J12137-5						X	
APC12SB10SW7-W	J12137-6						X	
APC12SB10SW8-S	J12137-7						X	
FB100705	J12137-8						X	

12

Client Sample I	D: DUP	100705									
Lab Sample ID:	J1213	37-1				Date San	npled:	10/07/05			
Matrix:	SO -	Soil				Date Rec	eived:	10/08/05			
						Percent S	Solids:	85.1			
Project:	AGF	A-Peerle:	ss, Shorha	am, N	Y						
Metals Analysis											
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Meth	nođ	Prep Method		

(1) Instrument QC Batch: M:MA6342

<0.46 0.46 1.3 0.58

mg/kg 1

mg/kg 1

(2) Prep QC Batch: M:MP7749

Cadmium

Silver

Report of Analysis

10/11/05 10/12/05 AMA SW846 6010B¹

10/11/05 10/12/05 AMA SW846 6010B¹

Page 1 of 1

SW846 3050B 2

SW846 3050B²

í

		Repo	ort of An	alysis		-	Page 1 of
Client Sample ID:	DUP100705						
Lab Sample ID:	J12137-1			Date S	Sampled: 10/07	7/05	
Matrix:	SO - Soil			Date l	Received: 10/08	8/05	
				Percer	nt Solids: 85.1		
Project:	AGFA-Peerless, She	orham, NY					
General Chemistry		24		57	- 	Π.	N# (1 N
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Solids, Percent	85.1		%	1	10/12/05	AMA	EPA 160.3 M

RL = Reporting Limit

14

4

				ne		marysn	3		
Client Samp	le ID: APC	SWSSAB	8-E						
Lab Sample	ID: J1213	37-2				Date	Sam	pled: 10/07/05	
Matrix:	SO -	Soil				Date	Rece	ived: 10/08/05	
						Perc	ent So	olids: 92.6	
Project:	AGF	A-Peerles	s, Shorha	m, NY	Y				
Metals Analy Analyte	ysis Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Cadmium	0.59	0.42	mg/kg	1	10/11/05	10/12/05	AMA	SW846 6010B ¹	SW846 3050B ²
Silver	1.0	0.53	mg/kg	1	10/11/05	10/12/05	AMA	SW846 6010B ¹	SW846 3050B ²

Instrument QC Batch: M:MA6342
 Prep QC Batch: M:MP7749

Page 1 of 1

۰.

· `.

15

-. • *

ŝ

RL = Reporting Limit

		Page 1 of 1					
-	APC6WSSAB8-E						
Lab Sample ID:	J12137-2			Date S	Sampled: 10/07	7/05	
Matrix:	SO - Soil			Date I	Received: 10/08	3/05	
			Percer	nt Solids: 92.6			
Project:	AGFA-Peerless, Sho	rham, NY					
General Chemistr	y						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Solids, Percent	92.6		%	1	10/12/05	AMA	EPA 160.3 M

16

.

Report of Analysis

Client Sample ID: APC12SB10B9 Lab Sample ID: Date Sampled: 10/07/05 J12137-3 Matrix: Date Received: SO - Soil 10/08/05 Percent Solids: 96.0 **Project:** AGFA-Peerless, Shorham, NY **Metals Analysis** Prep Method Analyte Result RL Units DF Prep Analyzed By Method 10/11/05 10/12/05 AMA SW846 6010B ¹ SW846 3050B² Cadmium 0.69 0.40 mg/kg l

10/11/05 10/12/05 AMA SW846 6010B ¹

(1) Instrument QC Batch: M:MA6342

97.9 0.51

mg/kg 1

(2) Prep QC Batch: M:MP7749

Silver

Page 1 of 1

SW846 3050B²

ŧ

		Керо	ort of An	alysis			Page 1 of 1
Client Sample ID:	APC12SB10B9						
Lab Sample ID:	J12137-3			Date S	Sampled: 10/07	//05	
Matrix:	SO - Soil			Date I	Received: 10/08	/05	
				Percei	nt Solids: 96.0		
Project:	AGFA-Peerless, Sho	rham, NY					
General Chemistry	,						
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Solids, Percent	96		%	1	10/12/05	AMA	EPA 160.3 M

RL = Reporting Limit

Ą

Report of Analysis

Metals Analysis			
Project:	AGFA-Peerless, Shorham, NY		
l		Percent Solids:	98.0
Matrix:	SO - Soil	Date Received:	10/08/05
Lab Sample ID:	J12137-4	Date Sampled:	10/07/05
Client Sample ID:	APC12SB10SW5-N		

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	<0.39 <0.48		mg/kg mg/kg			10/12/05 ама 10/12/05 ама		SW846 3050B ² SW846 3050B ²

Instrument QC Batch: M:MA6342
 Prep QC Batch: M:MP7749

Page 1 of 1

Report of Analysis

Page 1 of 1

Lab Sample ID: J12137-4 Matrix: SO - Soil						Date Sampled: 10/07/05 Date Received: 10/08/05						
Project:	Percent Solids: 98.0											
General Chemistry	<i>,</i>											
General Chemistry Analyte	Ŧ	Result	RL	Units	DF	Analyzed	Ву	Method				

ł

Report of Analysis

Client Sample ID: APC12SB10SW6-E Lab Sample ID: J12137-5 Matrix: SO - Soil						Date Sam Date Rece Percent S	-	
Project:	etals Analysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	0.44	0.39	mg/kg	1	10/11/05	10/12/05 AMA	SW846 6010B 1	SW846 3050B ²

10/11/05 10/12/05 AMA SW846 6010B ¹

mg/kg 2

0.97

Instrument QC Batch: M:MA6342
 Prep QC Batch: M:MP7749

266

Silver

SW846 3050B²

1

.

-

i and

i.

į.

-

_

Report of Analysis

Page 1 of 1

		nepe		<u> </u>			Page 1	
Client Sample ID: Lab Sample ID: Matrix:	APC12SB10SW6-E J12137-5 SO - Soil			Date l	Sampled: 10/0 Received: 10/0 nt Solids: 96.0			
Project:	AGFA-Peerless, Shorha	m, NY		Percei	nt Solids: 96.0		{	
General Chemistry	7							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method	
Solids, Percent	. 96		%	ł	10/12/05	АМА	EPA 160.3 M	
							·	
								•
							· · · · ·	· _ ;
RL = Reporting Lin								<u>.</u>
KE – Keporting En							•_ •	22.

	Report of Analysis											
Client Samp	le ID: APC1	2SB105	W7-W									
Lab Sample	ID: J1213	7-6				Date	e Samj	pled: 10/07/05				
Matrix:	SO - 5	Soil						ived: 10/08/05 blids: 98.2	i			
Project:	AGFA	A-Peerles	s, Shorha	m, N	Y	1 010						
Metals Anal	ysis											
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method			
Cadmium	< 0.38	0.38	mg/kg	1	10/11/05	10/12/05	АМА	SW846 6010B ¹	SW846 3050B ²			

10/11/05 10/12/05 AMA SW846 6010B ¹

(1) Instrument QC Batch: M:MA6342

15.3

0.47

mg/kg 1

(2) Prep QC Batch: M:MP7749

Silver

SW846 3050B²

23

Client Sample ID: Lab Sample ID: Matrix:	APC12SB10SW7-W J12137-6 SO - Soil				Sampled: 10/07 Received: 10/08		
Project:	AGFA-Peerless, Sho	orham, NY		Percei	nt Solids: 98.2		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	98.2		%	1	10/12/05	AMA	EPA 160.3 M

Report of Analysis

Page 1 of 1

-

Client Samp	le ID· APC	12SB10SV	V8-S						
Lab Sample			10 0			Date	e Samj	pled: 10/07/05	
Matrix:	SO -	Soil					Rece	•	
						Perc	ent So	olids: 97.2	
Project:	AGF	A-Peerles	s, Shorha	m, N'	Y				
Metals Anal	ysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Cadmium	< 0.40	0.40	mg/kg	1	10/11/05	10/12/05	АМА	SW846 6010B ¹	SW846 3050B ²
Silver	39.9	0.50	mg/kg	-				SW846 6010B ¹	SW846 3050B ²

Instrument QC Batch: M:MA6342
 Prep QC Batch: M:MP7749

Report of Analysis

RL = Reporting Limit

e.

...

25

-

Report of Analysis Client Sample ID: APC12SB10SW8-S Lab Sample ID: Date Sampled: 10/07/05 J12137-7 Matrix: Date Received: 10/08/05 SO - Soil Percent Solids: 97.2 Project: AGFA-Peerless, Shorham, NY **General Chemistry** Analyte Result RL Units DF Analyzed By Method Solids, Percent 97.2 % 1 10/12/05 AMA EPA 160.3 M

26

Page 1 of 1

Client Sample I Lab Sample ID Matrix:	: J12137	-8	ınk Soil			Date	e Samj e Rece cent So		
Project:	AGFA-	Peerles	s, Shorha	m, NY	r				
Metals Analysis									
Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Cadmium	<4.0	4.0	ug/l	1	10/11/05	10/12/05	AMA	SW846 6010B ^I	SW846 3010A ²
Silver	<5.0	50	ug/I	1	10/11/05	10/12/05	AMA	SW846 6010B ¹	SW846 3010A 2

Report of Analysis

Page 1 of 1

(1) Instrument QC Batch: M:MA6342

(2) Prep QC Batch: M:MP7750

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: <u>J12137</u>

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J12137-1	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-2	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-3	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-4	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-5	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-6	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-7	Soil	T.A.L Metals	8-Oct-05	12-Oct-05
J12137-8	Field Blank Soil	T.A.L Metals	8-Oct-05	12-Oct-05

28

		Γ.	ſ	n E	(ГА	l In	Jſ	1	r C	₿ ≬ 1'	2414		v	ŧ		t		ŧ	1	ŧ	I	l	
			so if	Ø	Ľ							ion NJ		UD		X Trac	king #			—	Bottle C	der Cont	trol #		;
AC	CUTEST	•				1			29-02	00 1		732-32		/3480	Accut	ist Quo	ie #				Accules				
	Laboratorie	S			_													ma		34400 1003			\mathcal{J}	/2/	37
Company Name	Client / Reporting Informat	lion and an and an an		Project N	ame			Proje	ct Infor	mailon							I –			Reques	sled Ane	alyels			Matrix Codes DW - Drinking Wa
<u> </u>						6F	<u>-A</u>								1										GW - Cround Wel
Address 3 T	terri lane			Street	5 '	RC	ind	sa	U		Rd	5			00			Σ			Í			j	WW - Water
BURLIA	State	080	Zip	City	har				State	0	Ū				FAUG	STATE INTOE	S'ARS [] [] +:IC3 []	a Dri um	(له		Í				SW - Surface Wat
Project Contact		E-mail		Project #	<u> </u>	<u>en</u>		<u></u>	0	<u></u>	8				50 10 10 10 10 10 10 10 10 10 10 10 10 10	5 D SIA	2.2 2.7	٤	Silver						SL - Sludge
Phone # CO	Menally-					08	12	<u>8</u>	81		<u>, C</u>	$\underline{\alpha}$	<u>C</u>			n ∓	10 Ma 20%	ঁ	$\overline{\langle}$						OI - Oil
60	9-386-8	800		Fax #	6	66	1-1	38	6.	- 7	95				1200	10 D	or ara ara		Ś						LIQ - Other Liqui
Sempler's Name	Genelick			Client Pu	rchase Ord	er#										ភ្ន ខ្ល	ដ ស្ត្	ابہ ا	1		.				AIR - Air SOL: Other Solid
Accutest	Field ID / Point of Collection	SU		C	ollection		- T					of preser					8 10 12 8 184 10 8	7074	Tota						WH - Wipe
Sample #		MEO		Date	Time	Sample By	ed Matr	ix bo	tiles	<u>e</u> 1	Ŧ	No. No.	12	10 M		22 ž	123	F	<u> </u>					$\bot \Delta$	LAB USE ONLY
-100	P 10 0705		bł	~ -	0900	ng		<u> </u>	L		_	<u> </u>		-	<u> </u>			V	X					\downarrow	MEZ9
	6WSSAB8-E		<u> </u>	-	୯୫୫୦		44	4	\vdash			X			<u> </u>			<u>۲</u>	X					$A \rightarrow A$	AMETIY
	wssa88-E-ns				0840			\downarrow			4							X	X				_ _		— <u> </u>
	WSSAB8-E-MS			1	3840		+	\square		\downarrow	-	1						X	<u> </u>	_				\mathcal{A}	
	2581089				7852					$ \downarrow $								Y	<u>}</u>					\square	
	SBDSW5-N				6822	_			\downarrow			<u> </u>	` <u> </u> _					1	γ					┥──┥	
- 7-1	25810 Sw6-E			+	5900		\downarrow	\perp		_								X	X	_+					
- 6 APCI	258109w7-W				09dB				\downarrow		-							x	Ϋ́						· · · · · ·
	25810968-S				715			4_		_			1					X	¥-					4	
· 8 FUI	Turnaround Time (Business Days)				a 300	V	- 196				×		2,003,3	Weesselfing	202000000000000000000000000000000000000			X [*						
Std. 15 Business [Days Approved by:	/ Date:			Commerc	cial "A"	<u> 11995</u>	0a			a Inform		al an			i i i i i i i i i i i i i i i i i i i	<u> </u>		ol		mmania	<u>. / Reman</u>	(5 800000	NK 98 8	
I 10 Dey RUSH	124 c	1F-not	_ ^		Commerc							alegory				\vdash	<u>Y</u> .	\mathcal{F}	or	1					
5 Day RUSH 3 Day EMERGENCE		ssible	·		NJ Reduc NJ Full	ced			i		YASP C lale For	Category ms	9					<u> </u>							
					Other							met	_												
1 Day EMERGENC	1			{					<u>.</u>									-							
Other Ememory & Rushi	T/A data available VIA LabLink	9			Comme	erciai ".	a" = Re	esults	Unly							-									
				_	stody must	be doo	cumente	d belo	w each	_			PO\$6856	on, includ	ting cour	er dellv	вгу. 🙀								
Relingulated by Sampler:	and	Dapa Time	Received	by	ļ	A	X			A 2	lelinquish	ned by:	K	A	K			Date [0/2	Time	Re 2 (2012	eceived t	». /l ₍	a fu	no	
Relinquisher by	· · · · · · · · · · · · · · · · · · ·	Date Time:	Received	by.			<u> </u>			R	Binquish	icd by:			<u>*</u>			Date	Time	R	eceived i	17	<u>a.i</u>		
3 No		Date Time:	3 Received	by						- 4 C	ustudy S	6al 4				Pres		ire spplici	able	4	On Ice			Cuoler Ten 4	110. 1
\	· · ·]	5					<u> </u>	<u>_</u>												1			<u> </u>	<u> </u>

APPENDIX B

Project Name: Project No.: Project Manager: Laboratory:	Peerless Photo Pro 68.28817.0001 M. McNally Accutest	ducts		Sam Rev	e No./SDG: npling Date(s): iewed By: npletion Date:	J12137 10/7/2005 M. Traxler 3/2/2006
Compound List: Method: Matrix:	Append X SW-84 aqueou			Other		
The following table and QA action.	indicates the data va	lidation	criteri	a exan	nined, problems	identified,
Data Validation Crite	eria:	accep	t FYI	qualif	y comments	
Holding Times Calibration Linearity and CN	/ - Furnace, Hg ,	×			Less than 180 d NR	ays
Calibration Verificat		X			2-point standard	
CRDL Standard		X			50 - 150 % R	
Calibration Blanks		X			< RL	
Preparation Blanks		X			< RL	
Field Blank		X			< RL	u Malifada, mar Sauli sali a Sauli Anto
ICP Interference Cho	eck Sample	×			80 - 120 % R	
Laboratory Control	Sample	X			80 - 120 % R	do as Robert astac - 18 de tra
Matrix Spike Results	\$	×			75 - 125 % R	
Laboratory Duplicat	e Results	X			< 20 RPD	nang ngabin tawa ng
ICP Serial Dilution		X			< 10 RPD	
Post Digestion Anal	한 것이 있는 것이 같은 것이 있는 것이 없다.				NR	
Method of Standard						
Field Duplicate Res	ARREAD REACTIONS	X		New York	< 50 RPD	
Sample Result Verif	ication	×			Cadmium and	Silver
Other:						

NA - Not applicable NR - Not reviewed

QA Scientist M Hayler_____ Date 3/2/06

Inorganic Field Duplicate Precision Worksheet

Project Name: Project Number: Peerless Photo Products 68.28817.0001 Case/SDG Number: ______J12137

ATC

APC6WSSAB8-E	DUP100705
J12137-2	J12137-1
10/3/2005	10/3/2005
mg/kg	mg/kg
	J12137-2 10/3/2005

Sample

Field Duplicate

			RPD	Q
Cadmium		0.59		
Silver	1.3	1.0	26.1	

* - Denotes RPD outside criteria

J12137 Field Duplicate

QA Scientist_M Hapler___ Date_ 3/2/06

_ Inorganic Matrix Spike/ Matrix Duplicate Worksheet

Project Name: Peerless Photo Products Project Number: 68.28817.0001 Case/SDG Number: J12137

MD Result

-	Sample Location		APC6WSSAB8-E	APC6WSSAB8-EMS	APC6WSSAB8-EMD
	or Description				
ļ	Sample Number		J12137-2	J12137-2MS	J12137-2MD
	Sampling Date		10/7/2005	10/7/2005	10/7/2005
	Units		mg/kg	mg/kg	mg/kg
]					
		•			••••••••••••••••••••••••••••••••••••••

Spike Sample Result Amount

_					MS %R	Q	MD RPD	Q
Cadmium	53	0.59	52.9	0.66	99.0	1 1	11.2	\square
Silver	22	1.0	21.2	0.96	99.2		4.1	

MS Result

Q - Qualifier

* - Denotes RPD outside criteria

J12137 MS MD Results

QA Scientist M Japler_ Date 3/2/06

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	Accutest of New Jersey	Job No	J12137
		- · - ·	

Site: BCMNJ: AGFA-Peerless, Shorham, NY

Report Date 11/2/2005 11:26:06 A

7 Samples and 1 Field Blank were collected on 10/07/2005 and were received at Accutest of New Jesery on 10/08/2005. Samples received at Accutest of New England on 10/11/2005 at 3.3 Deg. C and intact. These Samples received an Accutest job number of J12137. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

		······································
Mateix: AC	Detais (D)	107750
Matrix: AQ	Batch ID:	IVI1-7730

- * All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- * All method blanks for this batch meet method specific criteria.
- Sample(s) M51426-1DUP, M51426-1MS, M51426-1SDL were used as the QC samples for metals.
- RPD(s) for Duplicate for Silver are outside control limits for sample MP7750-D1. RPD acceptable due to low duplicate and sample concentrations.

ſ	Matrix; SO	Batch ID:	MP7749
Ļ			
85	All samples were digested with	in the recommended meth-	od holding time.

All samples were analyzed within the recommended method holding time.

- * All method blanks for this batch meet method specific criteria.
- * Sample(s) J12137-2DUP, J12137-2MS, J12137-2SDI, were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cadmium are outside control limits for sample MP7749-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Wet Chemistry By Method EPA 160.3 M

presentation and a second s		
Matrix: SO	Batch ID:	CN10000
Induity 20	Datch ID.	GN18088

Sample(s) J12137-2DUP were used as the QC samples for Solids, Percent.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assigned as verified by the signature on the cover page has authorized the release of this report(J12137).

Wednesday, November 02, 2005

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J12137 Account: ALNJ - Accutest of New Jersey Project: BCMNJ: AGFA-Peerless, Shorham, NY

QC Batch ID: MP7749 Matrix Type: SOLID

Methods: SWB46 6010B Units: mg/kg

Metal	J12137-2 Original		Spikelot MPIRWS2		QC Limits	J12137-2 Original		RPD	QC Limits
Aluminum									
Antimony									
Arsenic									
Barium									
Beryllium									
Boron									
Cadmium	0.59	53.0	52.9	99.0	75~125	0.59	0.66	11.2	0-20
Calcium									
Chromium									
Cobalt									
Copper								. • .	
Iron									
Lead									
Magnesium									
Manganese									
Molybdenum									
Nickel									•
Potassium									
Selenium									
Silicon								•	
Silver	1.0	2 2.0	21.2	99.2	75-125	1.0	0.96	4.1	0-20
Godium									
Strontium									
Thallium									
rin									
Fitanium									
lungsten									
Vanadium									
Zinc				a National I				·	

(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested

58

DATA USBALITY REPORT

ACCUTEST CASE NO. J8781

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK SEPTEMBER 2005

REPORTED FEBRUARY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of September 2, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

.

Mark Frazder

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY TCLP METALS PEERLESS PHOTO PRODUCTS SITE SEPTEMBER 2005

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the eight (8) Toxicity Characteristic Leaching Procedure (TCLP) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) results from the September 2, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J8781 included a total of two (2) soil samples for TCLP metals analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 1311, 3010A, 7470 and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J8781 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the eight (8) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the same day (January 9, 2006). All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for TCLP metals following SW-846 Method 1311 for TCLP extraction, 3010A for digestion and 6010B for analysis (except for mercury, which was 7470).

3.0 FINDINGS/QUALIFIERS

The following TCLP metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J8781 metals results be used with the following qualifiers:

- 1. Batch QC samples were used for MS/MSD and serial dilution results. There were no field duplicate, field blank, or site-specific MS/MSD samples associated with this batch of samples.
- 2. The ICP serial dilution exceeded the control limit of 10% difference for several metals. However, since the original values were less than 50 times the Instrument Detection Limit (IDL), the ICP serial dilution for these metals were acceptable. No qualification of data was necessary due to the ICP serial dilution results.

4.0 SUMMARY

The TCLP metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

-

-

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

page 1

Site Name	Peerless Photo Products
Project Number	68.28817.0001
Sampling Date(s)	9/2/2005

TCLP Leachate (mg/L)

Laboratory

Case/Order #

Fraction/Method

TCLP Metals / 3010A / 6010B

Accutest - Dayton, NJ

J8781

	Sample Location		TTB-WC-0-15'	TTB-WC-15-30								
	Sample Numb	er	J8781-1	J8781-2								
	Sampling Date		9/2/2005	9/2/2005								
	Preparation Da	ite	9/15/2005	9/15/2005								
	Analysis Date		9/16/2005	9/16/2005								
	Percent Solids		n/a	n/a								
RL		P Hg	Q DF	Q DF	QDF	Q DF	Q DF	Q DF				
0.50	Arsenic	X	U 1									
1.0	Barium	X	U 1	U 1								
0.0050	Camium	X	0,59	0.91								
0.010	Chromium	X	0.013 1	0.026								
0.50	Lead	X	U 1	1						14 : 홍감 19 : 종감		
0.0020	Mercury	X	U 1	U 1								
0,50	Selenium	X	1 ט	U 1								
0.010	Silver	X	0.023	0.044 1								医带线器

P - ICP Hg - Mercury Q - Qualifier, if any DF - Dilution Factor

QA Scientist M. Flaxler_DATE - 2/28/06

APPENDIX A

.

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: <u>J8781</u>

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

			An	alytical R	equireme	ents		
Customer	Laboratory	VOA	BNA				Metals	Other
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC		
		Method	Method	Method	Method	Method		
		8260B	8270C	8081A	8082	8151		
TTB-WC-0-15'	J8781-1				_		X	
TTB-WC-15-30'	J8781-2						Х	

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID:	TTB-WC-0-15'		
Lab Sample ID:	J8781-1	Date Sampled:	09/02/05
Matrix:	SO - Soil	Date Received:	09/03/05
		Percent Solids:	n/a
Project:	AGFA-Peerless, Shorham, NY		

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	<0.50	D004	5.0	0.50	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Barium	<1.0	D005	100	1.0	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	sw846 3010a ³
Cadmium	0.59	D006	1.0	0.0050	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	sw846 3010A ³
Chromium	0.013	D007	5.0	0.010	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Lead	<0.50	D008	5.0	0.50	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Mercury	< 0.00020	D009	0.20	0.00020) mg/l	1	09/15/05	09/16/05 RP	SW846 7470A ²	SW846 7470A ⁴
Selenium	< 0,50	D010	1.0	0.50	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Silver	0.023	D011	5.0	0.010	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³

- (1) Instrument QC Batch: MA16327
- (2) Instrument QC Batch: MA16331
- (3) Prep QC Batch: MP31536
- (4) Prep QC Batch: MP31545

RL = Reporting Limit MCL = Maximum Contamination Level (40 CFR 261 6/96) Accutest Laboratories

Matrix:

Project:

Report of Analysis

Client Sample ID: TTB-WC-15-30' Lab Sample ID: J8781-2 Date Sampled: 09/02/05 SO - Soil Date Received: 09/03/05 Percent Solids: n/a AGFA-Peerless, Shorham, NY

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 0.50	D004	5.0	0.50	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Barium	<1.0	D005	100	1.0	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Cadmium	0.91	D006	1.0	0.0050	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Chromium	0.026	D007	5.0	0.010	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Lead	<0.50	D008	5.0	0.50	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Mercury	< 0.00020	D009	0.20	0.00020	Dmg/l	1	09/15/05	09/16/05 RP	SW846 7470A ²	SW846 7470A ⁴
Selenium	<0.50	D010	1.0	0.50	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³
Silver	0.044	D011	5.0	0.010	mg/l	1	09/15/05	09/16/05 ND	SW846 6010B ¹	SW846 3010A ³

(1) Instrument QC Batch: MA16327

(2) Instrument QC Batch: MA16331

(3) Prep QC Batch: MP31536

(4) Prep QC Batch: MP31545

RL = Reporting Limit MCL = Maximum Contamination Level (40 CFR 261 6/96) Page 1 of 1

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: <u>J8781</u>

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J8781-1	Leachate	TCLP Metals	3-Sep-05	16-Sep-05
J8781-2	Leachate	TCLP Metals	3-Sep-05	16-Sep-05

	1 1	1	۱ د	Г UH		t IN 1		f H° C			1 ([]]]	θ¥	ł		ł	(I	I		I		Í
		50			223	35 Rou	ite 13(), Day	yton	NJ 0	8810			X Traci	king #			Bollie	Order (Control #	1. los	-17	
ACCUTES				TI	EL. 732)200 ////www.a				3499/	3480	Accut	est Quo	le #			Accu	lesi Job	4/	6/05		
Laboratori				-									5017-1889.	anne.				annan sa		W . Y . 20064	T 8	recenterate	2111
Company Name	mation	Projec	a Namo		P	roject Inf	formatic	n .					T	1	5		Rec	Losted /	aieylan/	1			Matrix Codes N - Drinking Wate
	<u>lates</u>		pecel			010	<u> </u>	radi	UCI	rs_				}		13/1			1				- W · Ground Water
Address 3 TERRI LANG	<u>></u>	Street	BUTC	25	+ A	RA	ωq		11	R	d			빌		M-thod'							WW Water
City State	Zip	L/ City		<u> </u>		Stat			XX					C SIARS CI MICE	03	F						8	W Surface Water
Froject Contact	<u>07 080</u> E-mall	216 Projec	Show	her	10m	<u></u>	JÀ						- 2 2 3	15	PPLD SIMED PAUF D * G.C	2		1				1	SO - Soli SL - Sludge
mille MCNally	C-1/180	riojec	** 68	.28	817	00	юY							10.5	k K K K K K K K K K K K K K K K K K K K	F							01 - Oil
Fhone #) 4.227	Fax #	600	9 -	28	6-	70	25	21				- 0 0 1278 - 1278	고 전투	다 다 다 곳	erb						1	.1Q Other Liquid
Siampler's Name		Client	Purchase Or		- 20		_(<u> </u>	4			·	1 0	1		Ĕ							AIR Air
1) icole tor	elick				·			Al.						20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 23 65	9						*	SOL · Other Solid
Accutest Field ID / Point of Collection Sample #]	Collection	Samoled	1	#of					Bott Bott		្រុក ខ្លួង	100 100 100 100 100 100 100 100 100 100	្ពីភ្លួត	ゴ							WP - Wipe
TTRICE	MECH V		Time	Sampled By			1			N N	1	¥ [8		•0 ·	•• <	F		╉╼╸					E3
- 1 TTB-WC-0-15		9-20		176	50	22	╉╼╃		+	1	┼╌┧		+			x	-+	╉╼	┼				<u>רש</u>
- 2 TTB-WC-15-3	<u>so</u>	9-2-0	5 1200	<u> ng</u>	50	6	┢╌┟	+	_╋	1	┨╌┨	-+-					-+	+	╂─	┼╌╌┤			
					┥──		++	+	+	+-	┥─┥		┥			┟╌┼		+	+	┟╌┥			
				┥			┝┤	-+-		+	╎╌┥					┟╌┝		+		╏╼┥			
				┥	ļ	ļ	\vdash			+	\downarrow			<u> </u>	 			+	<u> </u>				
				d	<u> </u>	4	\square			4									<u> </u>				
					<u> </u>				$_$ L														
		_															_1						
									Τ	7			T -			-:							
Tumpround Time (Business Day						Dala D			_	n	100			Ī				Comme	nts / Ren	marks			
Std 15 Business Days Approved 10 Day RUSH	By: / Date:							FULL (NYASF		X voor													
□ 5 Day RUSH			🛛 NJ Red	uced			1	NYASF	P Cala	igory B													
3 Day EMERGENCY								State F EDD F															
2 Day EMERGENCY			Ditter.				IJ	EUU F	ornel						<u> </u>		<u> </u>						<u></u>
1 Day EMERGENCY			Com	nercle) "A	* = Res	ulta On	ly																
Emergency & Rush T/A data available VIA LabL	ink		_																				
Reinquished by Sampler	Date Time:	Received by:	Custody mu		imented	below ca		Relinqu			ossessi	on, inclu	ding cou	riar deliv	rery 👪	Date Ar	115 gog tag and 1	Receive	ed by,	777			
1 Martin	41265 Mar	1	Fed				1	2	F.	ed	£			•		9/3/	os 1030	2	\angle	a	lung		
Relinquished by	Date time:	Received by,						Relingu	ulshed i	бү	_	_	_	_	_	Delertin	99	Receive	ed by:				
3 Relinquished by:	Date Time.	3 Received by						4 Custod	ly Seal	#				Pres		ore applicabl	c		~		Cool	er Temp. (C.OCC
5		5						N	ME	:						<u> </u>		ئ ا مىسى				/	.0 0

APPENDIX B

Project Name: Project No.: Project Manager: Laboratory:	Peerless Photo Pro 68.28817.0001 M. McNally Accutest			San Rev	e No./SDG: npling Date(s): riewed By: npletion Date:	J8781 9/2/2005 M. Traxler 2/28/2006
Compound List: Method: Matrix:	Append X SW-84 aqueou			X Other_TCLP_ X Othermg/L_		
The following table i and QA action.	ndicates the data val	idation	criteri	a exa	mined, problems	identified,
Data Validation Crite	eria:	accep	ot FYI	qualif	y comments	
Holding Times Calibration Linearity and CN	- Furnace, Hg ,	X			Less than 180 d NR	ays
Calibration Verificati CRDL Standard		X X			2-point standard 50 - 150 % R	in the second states when
Calibration Blanks Preparation Blanks		X X			< RL < RL	
Field Blank ICP Interference Che		×	x		< RL No FB in 80 - 120 % R	batch
Laboratory Control S	Sample	×			80 - 120 % R	
Matrix Spike Results Laboratory Duplicate	e Results	×			75 - 125 % R I < 20 RPD < 10 RPD (or <	
Post Digestion Analy Method of Standard					NR	30X12L)
Field Duplicate Resu			X		< 50 RPD No F	

NA - Not applicable NR - Not reviewed

QA Scientist

M. Hapler_

		i
	Sample Location	
	or Description	
	Sample Number	
	Sampling Date	
	Units	
į		

cation	Batch QC	Batch QC	Batch QC
ion			
mber	J9538-1	J9538-1MS	J9538-1MSD
Date	9/15/2005	9/15/2005	9/15/2005
	mg/L	mg/L	mg/L

Spike Sample Result Amount

MS %R Q MSD %R RPD Q Q Arsenic 2.0 0.0065 1.8 1.9 89.7 94.7 5.4 Barium 10.0 0.46 10.7 10.7 102.4 102.4 0.0 Cadmium 0.050 0.0017 96.6 0.050 0.050 96.6 0.0 Chromium 0.20 0.0058 0.20 0.20 97.1 97.1 0.D Lead 2.0 0.038 2.0 2.0 98.1 98.1 0.0 0.0019 Mercury 0.0020 0.0 0.0018 90.0 95.0 5.4 Selenium 2.0 0.0087 1.9 1.9 94.6 94.6 0.0 Silver 0.050 0.0 0.053 0.053 106.0 106.0 0.0

MSD Result

MS Result

Q - Qualifier

* - Denotes %R or RPD outside criteria

QA Scientist M Hapler____ Date 2/28/06

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: ATC Associates, Inc.

Job No J8781

Site: AGFA-Peerless, Shorham, NY

Report Date 9/20/2005 4:42:40 PM

2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 09/02/2005 and were received at Accutest on 09/03/2005 properly preserved, at 4 Deg. C and intact. These Samples received an Accutest job number of J8781. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

	Matrix: LEACHATE	Batch ID:	MP31536
■ All	samples were digested within the	recommended metho	d holding time.

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J9538-1MS, J9538-1MSD, J9538-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic, Cadmium, Lead, Selenium are outside control limits for sample MP31536-SD1.
 Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 7470A

Γ	Matrix: LEACHATE	Batch ID: MP31545	
	All samples were digested within the r	ecommended method holding time.	
5	All samples were analyzed within the i	ecommended method holding time.	

- All method blanks for this batch meet method specific criteria.
- Sample(s) J9538-1MS, J9538-1MSD were used as the QC samples for metals.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J8781).

QC Batch ID: MP31536 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Prep Date: 09/15/05 J953B-1 Spikelot QC Metal Original MS MPITCLP1 % Rec Limits Aluminum Antimony Arsenic 0.0065 1.8 2.0 89.7 75-125 Barium 0.46 10.7 10.0 75-125 102.4 Beryllium 0.0017 Cadmium 0.050 0.050 96.6 75-125 Calcium Chromium 0.0058 0.20 97.1 75-125 0.20 Cobalt Copper anr Iron Lead 0.038 2.0 2.0 98.1 75-125 Magnesium Manganese Nickel anr Potassium Selenium 0.0087 1.9 2.0 94.6 75-125 0.050 Silver 0.0 0.053 106.0 75-125 Sodium Thallium Vanadium Zinc anr Associated samples MP31536: J8781-1, J8781-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

QC Batch ID: MP31536 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Metal	J9538-1 Original	MSD	Spikelot MPITCLP1	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	0.0065	1.9	2.0	94.7	5.4	20
Barium	0.46	10.7	10.0	102.4	0.0	20
Beryllium						
Cadmium	0.0017	0.050	0.050	96.6	0.0	20
Calcium						
Chromium	D.0058	0.20	0.20	97.1	0.0	20
Cobalt						
Copper	anr					
Iron						
Lead	0.038	2.0	2.0	98.1	0.0	20
Magnesium						
Manganese						
Nickel	anr					
Potassium						
Selenium	0.0087	1.9	2.0	94.6	0.0	20
Silver	0.0	0.053	0.050	106.0	0.0	20
Sodium						
Thallium						
Vanadium						
Zinc	anr					

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

.- .

. .

QC Batch ID: MP31536 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

		09/15/05	
BSP Result			QC Limits
1.9	2.0		80-120
10.6	10.0	105.0	80-120
0.049	0.050		80-120
0.20	0.20	100.0	80-120
anr			
2.0	2.0	100.0	80~120
anr			
1.9	2.0		80-120
0.055	0.050	110.0	80-120
	Result 1.9 10.6 0.049 0.20 anr 2.0 anr 1.9	Result MPITCLP 1.9 2.0 10.6 10.0 0.049 0.050 0.20 0.20 anr 2.0 anr 1.9 1.9 2.0	Result MPITCLP1 % Rec 1.9 2.0 95.0 10.6 10.0 106.0 0.049 0.050 98.0 0.20 0.20 100.0 anr

Associated samples MP31536: J8781-1, J8781-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

5 47

,

QC Batch ID: MP31536 Matrix Type: LEACHATE Methods: SW846 6010B Units: ug/l

Prep Date:			09/15/05	
Metal	J9538-1 Original	SDL 1:5	RPD	QC Limits
Aluminum				
Antimony				
Arsenic	6.48	0.00	(100.0(a)	0 - 1 0
Barium	459	448	2.3	0-10
Beryllium				
Cadmium	1.74	0.00	(100.0(a))0-10
Calcium				
Chromium	5.76	6.08	5.4	0-10
Cobalt				
Copper	anr			
Iron				
Lead	38.1	44.8	(17.6 (a)	0-10
Magnesium				
Manganese				
Nickel	anr			
Potassium				
Selenium	8.74	0.00	(100.0(a)) 0-10
Silver	0.00	0.00	NC	0-10
Sodium		•		
Thallium				
Vanadium				
Zinc	anr			

Associated samples MP31536: J8781-1, J8781-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

MT 7/28/46 Results are acceptable.

QC Batch ID: MP31545 Matrix Type: LEACHATE Methods: SW846 7470A Units: mg/l

Prep Date:		09/15	^{'05}
Metal	J9538-1	Spikelot	QC
	Original MS	HGPW2 % Rec	Limits

Mercury 0.0 0.0018 0.0020 90.0 56-137

Associated samples MP31545: J8781-1, J8781-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

QC Batch ID: MP31545 Matrix Type: LEACHATE Methods: SW846 7470A Units: mg/l

Prep Date:					.09/15/05					
Metal	J9538-1 Original	MSD	Spikelot HGPW2	% Rec	MSD RPD	QC Limit				
Mercury	0.0	0.0019	0.0020	95.0	5.4	22				

Associated samples MP31545: J8781-1, J8781-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

ء جي ۽

.

QC Batch ID: MP31545 Matrix Type: LEACHATE Methods: SWB46 7470A Units: mg/l

Prep Date:			09/15/0	5	
Metal	BSP Result	Spikelot HGPW2	% Rec	QC Limits	

Mercury 0.0018 0.0020 000 80-120

Associated samples MP31545: J8781-1, J8781-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

٢.

52

•

DATA USABILITY REPORT

ACCUTEST CASE NO. J946B

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK SEPTEMBER 2005 BENCHSCALE TESTING

REPORTED FEBRUARY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

Mark Starder

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the benchscale sampling event of September 12, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Trapler

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY METALS AND TCLP METALS PEERLESS PHOTO PRODUCTS SITE SEPTEMBER 2005 BENCHSCALE TESTING

1.0 INTRODUCTION

-2677722-226794 6 - 1112-226722

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) metals (cadmium and silver) results from the September 12, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J9468 included a total of eight (8) soil samples, including one (1) set of field duplicate samples, plus one (1) Matrix Spike/Matrix Spike Duplicate (MS/MSD) pair for limited metals (cadmium and silver) analysis. Case J9468 also included one (1) soil sample for Toxicity Characteristic Leaching Procedure (TCLP) cadmium and silver, in addition to the total metals analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 3050B and 6010B, except the TCLP results, which were analyzed following SW-846 Methods 1311, 3010A and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Methods methods are also considered as prescribed by SW-846.

The analytical data deliverables for Case J9468 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes

the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the same day. All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for total cadmium and silver following SW-846 Methods 3050B for digestion and 6010B for analysis. The TCLP cadmium and silver was analyzed following SW-846 Method 1311 for TCLP extraction, 3010A for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following metals and TCLP metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J9468 metals results be used with the following qualifiers:

- 1. The MS/MSD percent recoveries for cadmium exceed the control limits of 75-125% (131.7 and 195.0%, respectively). These spike recoveries indicate possible matrix interference or sample non-homogeneity. The laboratory control sample (LCS) was within its control limits. All associated cadmium results are qualified as estimated (J).
- 2. The MS/MSD percent recoveries for silver exceed the control limits of 75-125% (3818 and -1538%, respectively). These spike recoveries indicate possible matrix interference or sample non-homogeneity. However, the sample concentration exceeded four times the spike amount, rendering the spike values unusable. No qualification of silver results was made due to MS/MSD recoveries or due to a high RPD between these two values.
- 3. The ICP serial dilution was acceptable for cadmium, but exceeded the control limit of 10% difference (10.7%) for silver on sample J9468-2. However, since the original value of silver exceeded the linear calibration range, and a diluted value was used to report silver for this sample, the ICP serial dilution for silver was inappropriate. No qualification of data was deemed necessary due to the ICP serial dilution results.
- 4. CCV-11 was out of control limits for cadmium recovery. However, no data were used based on that particular continuing calibration result and no associated data were qualified for this reason.

4.0 SUMMARY

The metals and TCLP metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified matrix spike recoveries and ICP serial dilution results as areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

page	1
------	---

Site Name Pe	eerless Photo Products			S	oil (mg/kg)	aboratory	Accutest - Dayton, NJ				
Project Number 68	3.28817.0001		e/Order #	J9468							
Sampling Date(s) 9/	12/2005					Fractio	n/Method	Metals / 3050B /	6010B		
Sample Location	BSB-2	BSB-3	BSB-4	BSB-5	BSB-6	BSB-7	BSB-8	FD-2	<u></u>		<u> </u>

	or Description	(BUCKET 1)	(BUCKET 2)	(BUCKET 3)	(BUCKET 4)	(BUCKET 5)	(BUCKET 6)	(BUCKET 7)			
	Sample Number	J9468-1	J9468-2	J9468-3	J9468-4	J9468-5	J9468-6	J9468-7	J9468-8		
	Sampling Date	9/12/2005	9/12/2005	9/12/2005	9/12/2005	9/12/2005	9/12/2005	9/12/2005	9/12/2005		
	Preparation Date	9/14/2005	9/14/2005	9/14/2005	9/14/2005	9/14/2005	9/14/2005	9/14/2005	9/14/2005		
	Analysis Date	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005		
	Percent Solids	92.2	93.3	94.1	92.5	94.2	91.9	93.7	93.1		
RL	PF	Q DF Q DF	Q DF								
0.50	Cadmium X	22.7 J 1	20.7 J 1	20.3 J 1	21.0 J 1	25.5 J 1	22.8 J	15.6 J 1	16.1 J 1		
1.0	SilverX	536 10	1310 25	463 10	519 10	435 10	492 10	450 10	402 10		

	Sample Location or Description										
	Sample Number										· · · · · · · · · · · · · · · · · · ·
	Sampling Date										
	Preparation Date										
	Analysis Date										
	Percent Solids										
RL	P F	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF				
0.50	Cadmium X										
1.0	Silver X					1 12.3				2017	

P - 1CP

I

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M. Haples DATE 2/20/06

										-	-	•		4 1				
							DAT	A SUMMAR	Y-	- INORGANIC	ANA	ALYTES					page 1	
	Site Name Pee	riess P	hoto Produ	cts		ב		тс	LP	Leachate (mg/L)		Laboratory		Accutest - Dayton, NJ				
P	roject Number 68.2	8817.0	0001]						Case/Order #		J9468				
Sa	mpling Date(s) 9/12	2/2005]						Fraction	/Method	TCLP Metals / 3010A / 6010B				
	Sample Location or Description	(E	BSB-2 BUCKET 1)]				
	Sample Number		J9468-1R															
	Sampling Date	_	9/12/2005	+-					_					ļ			····	
	Preparation Date	_	9/14/2005	+-			l											
	Analysis Date Percent Solids	4	9/26/2005 92.2	+			_											
RL	P	F	QD	۶F	G) DF	Q DF	Q	DF	Q DF		Q DF	Q DF	Q)F	Q DF	Q DF	
0.0050	Cadmium X Silver X			1.											<u></u>			
0.010	Silver A	<u> </u>									-	<u>1999 - 1993</u>						
	Sample Location			-				r				<u>r</u>						
	or Description																	
	Sample Number																	
	Sampling Date								[
	Preparation Date																	
	Analysis Date Percent Solids			4-			}											
RL	P	F	QD	F	G		Q DF	Ω	DF	Q DF		Q DF	Q DF	Q	DF	Q DF	Q DF	
0.0050	Cadmium X							2 - 12 12 - 12 - 12 - 12 - 12 - 12 - 12										
0.010	Silver X																	

2

P-ICP

1

ł

ł

ł

Ĩ

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist_M Japles_DATE 2/20/06

APPENDIX A

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: <u>J9468</u>

Client Name:

ATC Associates, Inc. AGFA-Peerless, Shorham, NY

		Analytical Requirements								
Customer	Laboratory	VOA	BNA				Metals	Other		
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC				
	[Method	Method	Method	Method	Method				
		8260B	8270C	8081A	8082	8151				
BSB-2 (BUCKET 1)	J9468-1						X			
BSB-2 (BUCKET 1)	J9468-1R						X			
BSB-3 (BUCKET 2)	J9468-2						X			
BSB-4 (BUCKET 3)	J9468-3						X			
BSB-5 (BUCKET 4)	J9468-4						X			
BSB-6 (BUCKET 5)	J9468-5						X			
BSB-7 (BUCKET 6)	J9468-6						X			
BSB-8 (BUCKET 7)	J9468-7						X			
FD-2	J9468-8			· · · · · · · · · · · · · · · · · · ·			X			

--- 12

				Re	port of A	Analysis		Page 1 of
Client Sample	e ID: BSB-	2 (BUCK	ET 1)					
Lab Sample I	[D: J946]	8-1				Date Sau	npled: 09/12/05	5
Matrix:	SO -	Soil				Date Re	ceived: 09/12/05	5
ł						Percent	Solids: 92.2	
Project:	AGF	A-Peerles	s, Shorha	m, N	Y			
Metals Analy	sis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	22.7	>> 0 55	mg/kg	1	09/14/05	09/15/05 ND	SW846 6010B 1	SW846 3050B ³
Silver	536		mg/kg	10		09/15/05 ND	SW846 6010B ²	SW846 3050B ³
·		2.4	0.0					

Instrument QC Batch: MA16321
 Instrument QC Batch: MA16327
 Prep QC Batch: MP31509

13

of 1

	Report of Analysis											
Client Sample ID:	BSB-2 (BUCKET 1)											
Lab Sample ID:	J9468-1			Date S	Sampled: 09/12	2/05						
Matrix:	SO - Soil				Received: 09/12 nt Solids: 92.2	2/05						
Project:	AGFA-Peerless, Shor	rham, NY		ICICO	it bolius. 72.2							
General Chemistry	_											
Analyte	Result	RL	Units	DF	Analyzed	By	Method					
Solids, Percent	92 .2	Statistic Statistic	%	1	09/13/05	AS	EPA 160.3 M					

RL = Reporting Limit

14

•

	Report of Analysis												
Client Samp	ole ID: BSB-2	BUCK	ET 1)										
Lab Sample	ID: J9468	-1R					Date Sat	mpled: 0	9/12/	05	j		
Matrix:	SO - S	Soil					Date Re	ceived: 0	9/12/	05			
l							Percent	Solids: 9	2.2				
Project:	AGFA	-Peerles	s, Shorl	ham, NY	r								
Metals Anal Analyte	ysis, TCLP L Result	eachate HW#			Units	DF	Ргер	Analyzed	D.,	Method	Prep Metho		
maryte	Acquit	****	MCL	KL,	UIIIIS	Dr	riep	Allalyzeu	Бy	Method	Trep Means		
Cadmium	0.74) D006	1.0	0.0050	mg/l	1	09/26/05	09/26/05	ND	SW846 6010B ¹	SW846 3010A		
Silver	0.31	D011	5.0	0.010	mg/l	1	09/26/05	09/26/05	ND	SW846 6010B ¹	SW846 3010A		

Instrument QC Batch: MA16380
 Prep QC Batch: MP31663

جاريا والمتعطين المتعاليا

 \ldots, \ldots, t

÷

	Report of Analysis										Page 1 of
Client Sample I Lab Sample ID		•	ET 2)			Date	Sam	pled:	09/12/05		
Matrix:	SO - So	bil						eived: folids:	09/12/05 93.3		
Project:	AGFA-	Peerles	s, Shorha	m, N	Y						
Metals Analysis	5										
Analyte	Result	RL	Units	DF	Ргер	Analyzed	By	Meth	nod	Prep Metho	d
Cadmium Silver	20.7 1310		mg/kg mg/kg			09/15/05 09/15/05			6 6010B ¹ 6 6010B ²	SW846 3050B SW846 3050B	
(1) Instrument Q	-										
(2) Instrument Q	C Batch: M	A16327									

(3) Prep QC Batch: MP31509

Page 1 of 1

	Report of Analysis										
Client Sample ID:	BSB-3 (BUCKET 2)										
Lab Sample ID:	J9468-2			Date S	Sampled: 09/12	2/05					
Matrix:	SO - Soil			Date I	Received: 09/12	2/05					
				Percei	nt Solids: 93.3						
Project:	AGFA-Peerless, Shor	ham, NY									
General Chemistry	,										
Analyte	Result	RL	Units	DF	Analyzed	By	Method				
Solids, Percent	93 3	4.	%	1	09/13/05	AS	EPA 160.3 M				

17

.

- -----

....

	Report of Analysis											
Client Samp	le ID: BSB	-4 (BUCK	ET 3)									
Lab Sample	ID: J946	8-3				Date	: Sam	pled: 09/12/05				
Matrix:	SO -	Soil				Date	Rece	eived: 09/12/05				
						Perc	ent S	olids: 94.1				
Project:	AGF	A-Peerles	s, Shorha	m, NY	(
-												
Metals Anal	ysis											
	ysis Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method			
Metals Anal Analyte Cadmium			Units mg/kg		•	Analyzed 09/15/05	2	Method SW846 6010B ¹	Prep Method SW846 3050B ²			

(1) Instrument QC Batch: MA16321
 (2) Prep QC Batch: MP31509

			Repo	rt of An	alysis			Page 1 of 1
r		BSB-4 (BUCKET 3)						
	Lab Sample ID:	J9468-3			Date S	Sampled: 09/12	./05	}
	Matrix:	SO - Soil			Date I	Received: 09/12	/05	
					Percer	nt Solids: 94.1		1
	Project:	AGFA-Peerless, Short	am, NY					
	General Chemistry							
	Analyte	Result	RL	Units	DF	Analyzed	By	Method
	Solids, Percent	94.1		%	1	09/13/05	AS	EPA 160.3 M

.

Report of Analysis Client Sample ID: BSB-5 (BUCKET 4) Lab Sample ID: J9468-4 Date Sampled: 09/12/05 Matrix: SO - Soil Date Received: 09/12/05 Percent Solids: 92.5 Project: AGFA-Peerless, Shorham, NY **Metals Analysis** Analyte RL Result Units DF Prep Analyzed By Method Prep Method Cadmium 21.0 0.56 SW846 3050B² mg/kg l 09/14/05 09/15/05 ND SW846 6010B⁻¹ Silver SW846 3050B² 519 11 mg/kg 10 09/14/05 09/15/05 ND SW846 6010B¹

(1) Instrument QC Batch: MA16321

(2) Prep QC Batch: MP31509

Page 1 of 1

1

20

4

All is a state in the second

	Report of Analysis											
•	BSB-5 (BUCKET 4)											
Lab Sample ID:	J9468-4			Date S	Sampled: 09/12	2/05						
Matrix:	SO - Soil			Date I	Received: 09/12	2/05						
				Percer	at Solids: 92.5							
Project:	AGFA-P ce rless, Shor	ham, NY										
General Chemistry	/						······································					
Analyte	Result	RL	Units	DF	Analyzed	By	Method					
Solids, Percent	92.5		%	1	09/13/05	AS	EPA 160.3 M					

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

	Report of Analysis										
Client Samp	le ID: BSB-6	(BUCK	ET 5)								
Lab Sample	ID: J9468	-5				Date	Sam	pled: 09/12/05	j		
Matrix:	SO - S	Soil				Date	Rece	eived: 09/12/05	i		
						Perce	ent S	olids: 94.2			
Project:	AGFA	-Peerles	s, Shorha	m, N	Y						
Metals Analy Analyte	ysis Result	RL	Units	DF	Ргер	Analyzed	By	Method	Prep Method		
Cadmium	25.5	0.48	mg/kg	1	09/14/05	09/14/05	ND	SW846 6010B ¹	SW846 3050B ²		
Silver	435	9. 7	mg/kg	10	09/14/05	09/15/05	ND	SW846 6010B ¹	SW846 3050B ²		

(1) Instrument QC Batch: MA16321(2) Prep QC Batch: MP31509

RL = Reporting Limit

1

and the state of the second second of

		Repo	rt of Ar	nalysis			Page 1 of 1
Client Sample ID: Lab Sample ID: Matrix:	BSB-6 (BUCKET 5) J9468-5 SO - Soil			Date l	Sampled: 09/12 Received: 09/12 nt Solids: 94.2		
Project:	AGFA-Peerless, Shor	ham, NY		Percei	at Sonds: 94.2		
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	94.2		%	I	09/13/05	AS	EPA 160.3 M

100

· . .

Barra an ann an Anna an Ann Anna an Anna

	Report of Analysis										
Client Samp		7 (BUCK	ET 6)		······		0	-1.1. 00/12/05			
Lab Sample								pled: 09/12/05			
Matrix:	SO	Soil				Date	e Rec	eived: 09/12/05			
						Perc	ent S	olids: 91.9			
Project:	AGF	A-Peerles	s, Shorha	m, NY	ſ						
Metals Analy Analyte	ysis Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method		
Cadmium Silver	22.8 492		mg/kg mg/kg		09/14/05 09/14/05	09/14/05 09/15/05	•	SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²		

Instrument QC Batch: MA16321
 Prep QC Batch: MP31509

1

	Report of Analysis								
Client Sample ID:	BSB-7 (BUCKET 6)								
Lab Sample ID:	J9468-6			Date !	Sampled: 09/12	2/05			
Matrix:	SO - Soil			Date 1	Received: 09/12	2/05	1		
1				Perce	nt Solids: 91.9				
Project:	AGFA-Peerless, Shor	ham, NY							
General Chemistry	γ						/		
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method		
Solids, Percent	91.9		%	1	09/13/05	AS	EPA 160.3 M		

RL = Reporting Limit

Ċ)

	Report of Analysis									
Client Samp	le ID: BSB-	8 (BUCK	ET 7)							
Lab Sample	ID: J9468	8-7				Date	e Sam	pled: 09/12/05	i	
Matrix:	SO -	Soil				Date	Rec	eived: 09/12/05	5	
l						Perc	ent S	olids: 93.7		
Project:	AGF	A-Peerles	s, Shorha	m, NY	Y					
Metals Analy Analyte	ysis Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method	
Cadmium Silver	15.6 450					09/14/05 09/15/05		SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ²	

Instrument QC Batch: MA16321
 Prep QC Batch: MP31509

83

÷

^ . .

	Page 1 of						
Client Sample ID:	BSB-8 (BUCKET 7)						
Lab Sample ID:	J9468-7			Date S	Sampled: 09/12	2/05	
Matrix:	SO - Soil			Date I	Received: 09/12	2/05	
				Percer	nt Solids: 93.7		
Project:	AGFA-Peerless, Shor	ham, NY					
General Chemistry							
Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Solids, Percent	93.7		%	1	09/13/05	AS	EPA 160.3 M

· · ·

•

	Report of Analysis								
Client Samp	de ID: FD-2								
Lab Sample	ID: J9468	8-8				Date	Sam	pled: 09/12/05	
Matrix:	SO - 3	Soil				Date	Rec	eived: 09/12/05	
						Perc	ent S	olids: 93.1	
Project:	AGF	A-Peerles	s, Shorha	m, NY	(
Metals Anal	lysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Cadmium	N. M. 1997, N.Y. 1997.	0.51		1		09/14/05		SW846 6010B ¹	SW846 3050B ²
Silver	402	्र 1 0	mg/kg	10	09/14/05	09/15/05	ND	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA16321

(2) Prep QC Batch: MP31509

.

:

· • .

Server and the server server of the server Interaction

for the second
Report of Analysis

. . .

.....

Page 1 of 1

Lab Sample ID: Matrix:	J9468-8 SO - Soil				Date Sampled: 09/12/05 Date Received: 09/12/05 Percent Solids: 93.1					
Project:	AGFA-Peerless, Shor	GFA-Peerless, Shorham, NY								
General Chemistry	,									
-	Result	RL	Units	DF	Analyzed	Bv	Method			
General Chemistry Analyte Solids, Percent			Units %	DF	Analyzed 09/13/05	Ву	Method			

•1

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: <u>J9468</u>

general se ge

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

	Laboratory			Date Rec'd	Date
	Sample ID	Matrix	Metals Requested	at Lab	Analyzed
	J9468-1	Soil	T.A.L Metals	12-Sep-05	15-Sep-05
-	J9468-2	Soil	Tclp Metals	12-Sep-05	15-Sep-05
	J9468-3	Soil	T.A.L Metals	12-Sep-05	15-Sep-05
	J9468-4	Soil	T.A.L Metals	12-Sep-05	15-Sep-05
	J9468-5	Soil	T.A.L Metals	12-Sep-05	15-Sep-05
	J9468-6	Soil	T.A.L Metals	12-Sep-05	15-Sep-05
-	J9468-7	Soil	T.A.L Metals	12-Sep-05	15-Sep-05
-	J9468-8	Soil	T.A.L Metals	12-Sep-05	15-Sep-05

00:130

ACCUTEST.	I	1 1 T	EL. 732-329-0200	30, Dayton NJ 08810 FAX: 732-329-3499/3480 accutest.com	FED-EX Tracking # Accutest Quote #	Acculest Job # J9468
Correny Name ATC ASSOCIATES Address TERRI LANC		Project Name PETRES Street	Project Information			Analysis Matrix Codes
Bordington NJ	······	City SHOREHAM Project # Fax #	NY NY		6021 CL RACCI PALO 1 TAJ RUC PALO 10 T	TON WORK Surface Water TON WORK Surface Water SO-Sol TON SO-Sol TON SU-Sucher SU-Studge UQ-Deter Leguid TON WORK SU-Surface Water SU-Sol TON SU-Sol UQ-Deter Leguid AIR-AU
Sampler's Name Accutest Field ID / Point of Collection Sample #	SUMMA #	Client Purchase Order # Collection Date Time Sample By	d Matrix bottles y	Number of preserved Bottles		AIR-AU AIR-AU
-1 - BSB-2 (Bucket 1) -2 + BSB-3 (Bucket 2) -3 BSB-4 (Bucket 2) -4 BSB-5 (Bucket 4)	7-	1-1205 1044 MA 12/05 1045 MSA 2/07	7 7 7 7			MEG
-5 B5B6 (Baket5) -6 B5B-7 (Bucket6) -7 B5B-B (Baket7)						
Turnaround Trne (Business Days)						Comments / Remarks
Std. 15 Business Days Approved By: / Date: 10 Day RUSH	2/05	Commercial 'A' Commercial 'B' NJ Reduced NJ Full Other] FULL CLP] NYASP Category A L NYASP Category B] State Forms] EDO Format		msp volume for paper a /12/05
1 Day EMERGENCY Other i mergency & Rush T/A data available VIA LabLink chiguished by Sympler Dae Tr		Sample Custody must be doo	A" = Results Only aumented below each tim	ne samples change possession, indux Refinushed by	aing courier desivery Date Time.	SDOJ SMPLE - 2 apKB. NB 9-13-05 Received by
Refinished the N. Den Th	05/000-3	10-16	9/13/05" 2 1710	2 Relingusnod by: 4 Custody Seal #	Date Time Preserved where applicable	2 Receives by 4 On log Do log Cooler Temp

APPENDIX B

-

.

. .

مستنب فليتر

Project Name: Project No.: Project Manager: Laboratory:	Peerless Photo Pi 68.28817.0001 M. McNally Accutest	roducts		Sam Rev	e No./SDG: npling Date(s): iewed By: npletion Date:	J9468 9/12/2005 M. Traxler 2/20/2006		
Compound List: Method: Matrix:	X TAL Appendix IX CLP SOW 3/90 X SW-846 X soil/solid (mg/Kg) aqueous (ug/L)				Other Other			
The following table in and QA action.	dicates t <mark>he data</mark> v	alidation	criteri	a exar	nined, problems	identified,		
Data Validation Criter	ia:	accep	ot FYI	qualif	y comments			
Holding Times Calibration Linearity - and CN	Furnace, Hg ,	×			Less than 180 d NR	lays		
Calibration Verificatio CRDL Standard	n	x			2-point standard 50 - 150 % R			
Calibration Blanks Preparation Blanks		×			< RL < RL			
Field Blank ICP Interference Chec					< RL Not in th 80 - 120 % R	e a fin e an antige		
Laboratory Control Sa Matrix Spike Results				×		ligh Cd recoveries		
Laboratory Duplicate		n Kaja Kaja Kaja Kaja	X		< 10 RPD Ag	sample results are h results too high		
Post Digestion Analyt Method of Standard A	ddition				NR NR			
Field Duplicate Result Sample Result Verific	والمتحاج والمتحد المتحجوق	X			< 50 RPD Cadmium and 1	Silver		

NA - Not applicable

-

j

NR - Not reviewed

QA Scientist_M Japler_____ Date_2/20/06

Project Name:	Peerless Photo F	Products		Cas	e No./SDG:	J9468
	68.28817.0001				npling Date(s):	9/12/2005
• •	M. McNally Accutest				viewed By: npletion Date:	M. Traxler 2/20/2006
Compound List:	TAL		div IV		X Other_TCLP_	
Method:	CLP SOW 3/90	X SW-84			X Othermg/L_	
Matrix:	soil/solid (mg/Kg)		⊷ us (ug/L)			
The following table ind and QA action. Data Validation Criteria			ot FYI			lacininea,
Holding Times			\square	Π	Less than 180 d	avs
Calibration Linearity - F	Зитасе На				NR	
	undee, ny ,					
Calibration Verification	I	x			2-point standard	
CRDL Standard		X			50 - 150 % R	
Calibration Blanks		X			- DI	
Preparation Blanks		X			< RL	en e
Field Blank		X			< RL	·
ICP Interference Check	Sample	×			80 - 120 % R	
Laboratory Control Sar		x			80 - 120 % R	
Matrix Spike Results		X			75 - 125 % R	Batch OC
Laboratory Duplicate R	Peculte				< 20 RPD	
ICP Serial Dilution		X			< 10 RPD	
Post Digestion Analytic	al Cnika				NR	
	이 가 있다. 그는 것은 것					· ·
					NR < 50 RPD No F	
Method of Standard Ad						- 1 1
Field Duplicate Results			X		Cadmium and S	· *

NA - Not applicable NR - Not reviewed

Sector and the second s

ł

.....

QA Scientist M. Frakler

Date 2/20/06

Inorganic Field Duplicate Precision Worksheet ATC

Project Name: Project Number:

1

ſ

•••••••••••••••

Peerless Photo Products 68.28817.0001

Case/SDG Number: J9468

Sample Location	BSB-2	FD-2
or Description	(BUCKET 1)	
Sample Number	J9468-1	J9468-8
Sampling Date	9/12/2005	9/12/2005
Units	mg/kg	mg/kg

Sample

Field Duplicate

			RPD	Q
Cadmium	22.7	16.1	34.0	
Silver	536	402	28.6	

T

* - Denotes RPD outside criteria

J9468 Field Duplicate

QA Scientist M. Llayder Date 2/20/06

norganic Matrix Spike/ Matrix Spike Duplicate Worksheet

[¬]roject Name:

Peerless Photo Products Project Number: 68.28817.0001

Case/SDG Number: J9468

ATC

-Sample Location or Description Sample Number Sampling Date Units

BSB-3 BSB-3 BSB-3 (BUCKET 2) (BUCKET 2) (BUCKET 2) J9468-2 J9468-2D J9468-2S 9/12/2005 9/12/2005 9/12/2005 mg/kg mg/kg mg/kg

MS Result

Spike Sample Result Amount

					MS %R	Q	MSD %R	Q	RPD	Q
Cadmium	11.2	20.7	35.4	41.6	131.7	*	195.0	*	16.1	
Silver	11.5	1310	1750	1140	3818	*	-1538	*	42.2	*

MSD Result

Q - Qualifier

- Denotes RPD outside criteria

J9468 MS MSD Results

QA Scientist M. Jarden ____ Date 2/20/06

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	ATC Associates, Inc.	Job No	J9468
Site:	AGFA-Peerless, Shorham, NY	Report Date	9/28/2005 3:01:46 PM

8 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 09/12/2005 and were received at Accutest on 09/12/2005 properly preserved, at 4.8 Deg. C and intact. These Samples received an Accutest job number of J9468. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

	Matrix: LEACHATE	Batch ID:	MP31663
A.	All samples were digested within the r	ecommended metho	d holding time.
2	All samples were analyzed within the r	ecommended metho	od holding time.
4	All method blanks for this batch meet	method specific crite	eria.
4	Sample(s) J10026-1AMS, J10026-1A	MSD, J10026-1ASI	DL were used as the QC samples for metals.
Γ	Matrix: SO	Batch ID:	MP31509

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J9468-2MSD, J9468-2SDL, J9468-2MSD were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Cadmium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Cadmium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike and Matrix Spike Duplicate Recovery(s) for Silver are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Silver are outside control limits for sample MP31509-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Silver are outside control limits indicating possible matrix interference.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO	Batch ID:	GN82691	
			1

There is no applicable data to evaluate for EPA 160.3 M.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J9468).

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: J9468 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

Time; Sample ID; Metal	CCV True	19:43 CCV9 Results	:	CCV True	20:07 CCV10 Results	% Rec	CCV True	21:14 CCV11 Results	1. I I I I I I I I I I I I I I I I I I I
Aluminum	anr						:		
Antimony	anr		1992년 1993년 1993년 1993년 199 1993년 1993년 199			i waji se			
usenic	anr								
Barium	anr								
Beryllium	anr					· · · ·			M
Cadmium	2000	2030	101.5	2000	2010	100.5	2000	1600	80.0*(a) Hinlob
Calcium	anr							C.	Do. or (a) MI JIN/ob CCV II resul are low. No final resul based on CCV II
Chromium	anr								CCV II FESH
Cobalt	anr								are low.
Copper	anr								Al final res
Iron	anr								I VI COVIL
Lead	anr								based on
Magnesium	anr		n in the second seco Second second br>Second second						
Manganese	anr								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	250	25 0	100.0	250	250	100.0	250	231	9,2.4
Sodium	anr					•			,
Thallium	anr		,						
Vanadium	anr								
Zinc	anr		•						

(*) Outside of QC limits
(anr) Analyte not requested
(a) No samples reported for this element in the area bracketed by this QC.

ñ___ 49

ı.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J9468 Account: BCMNJ ~ ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31509 Matrix Type: SOLID

-

Methods: SWB46 6010B Units: mg/kg

Prep Date:			09/15/05	· · · · · · · · · · · · · · · · · · ·
Metal	J9468-2 Original MS	Spikelot MPIRS1	t Rec	QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			· · · · ·
Beryllium				MT 7/17/06
Cadmium	20.7 35.	.4 11.2	131.7N(a	75-125
Calcium		C		
Chromium	anr			
Cobalt				
Copper				
Iron				
Lead	anr		· · · · ·	
Magnesium				
Manganese			•	
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium	anr			
Silicon				MT 7/17/06
Silver	1310 175	50 11.5	3817.8 (b	15-125
Sodium			·	Sample concentration - 1x
Thallium				spike amount. No qualitization
Tin				MT 7/17/06 Sample concentration Z4X spike amount. No goalification of data due to MS results
Vanadium				\mathcal{D}
Zinc				
Associated sa	mples MP31509:	J9468-1 , J946	58-2, J946	58-3, J 9468-4, J9458-5, J9468-6, J9468-7, J9468-8
<pre>(*) Outside c (N) Matrix Sp (anr) Analyte</pre>	ike Rec. outsi not requested	ide of QC limit	IS	rference and/or sample nonhomogeneity.

(b) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

80

•

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J9468 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31509 Matrix Type: SOLID

84

Methods: SW845 6010B Units: mg/kg

Prep Date:	_		09/15/05	
Metal	J9468-2 Original MSD	Spikelot MPIRS1 🕏 Rec	MSD RPD	QC Limit
Aluminum				
Antimony				
Arsenic	anr			
Barium	anr			
Beryllium				MT 2/17/06
Cadmium	20.7 41.6	10.7 195.0N	16.1	20
Calcium		\sim	n an search Tha Bailtean A	
Chromium	anr			
Cobalt				
Copper				
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel			:	
Palladium			·	
Potassium				
Selenium	anr		. *	
Silicon				m Hall
Silver	1310 1140	11 (-1538.	51 12 . 2 (c)	
Sodium			· · · ·	Sample concentration = 7X
Thallium				spike amount. No qualificate
Tin				» Mr Hin/06 Sample concentration Z4x Spike amount. No qualification of data due to MSD regults,
Vanadium				O or MS/MSD RPD
Zinc				
Associated sa	mples MP31509: J9	468-1, J9468-2, J9	468-3, J94	68- 4, J9468-5, J9468-6, J9468-7, J9468-8
<pre>(*) Outside o (N) Matrix Sp (anr) Analyte (a) Spike rec (b) Spike amo informati</pre>	<pre>f QC limits ike Rec. outside not requested overy indicates p unt low relative on.</pre>	ossible matrix int	erference a nt. Refer	and/or sample nonhomogeneity. to lab control or spike blank for recovery

· 81

Login Number: J9468 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31509 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

09/15/05 Prep Date: 09/14/05 Spikelot Spikelot QC BSP QC BSP MPIRS1 * Rec Limits Result MPIRS1 * Rec Limits Metal Result Aluminum Antimony Arsenic anr Barium anr Beryllium ÷ 97.0 101.0 Cadmium 10.1 10 80-120 10 80-120 9.7 Calcium Chromium anr Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Palladium Potassium Selenium anr Silicon Mr 2/17/06 LCS results ore acceptable. Silver 9.9 10 99.0 80-120 10.0 10 100.0 80-120 Sodium Thallium Tin Vanadium Zinc Associated samples MP31509: J9468-1, J9468-2, J9468-3, J9468-4, J9468-5, J9468-6, J9468-7, J9468-8

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

82

÷

SERIAL DILUTION RESULTS SUMMARY

Login Number: J9468 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31509 Matrix Type: SOLID Methods: SW846 6010B Units: ug/l

	201	5 RPD 6 1	QC Limits 0-10	
Antimony Arsenic anr Barium anr Beryllium Cadmium 190 Calcium Chromium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum	201	6 1	0-10	
Arsenic anr Barium anr Beryllium Cadmium 190 Calcium 190 Calcium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum	201		0-10	
Barium anr Beryllium Cadmium 190 Calcium Chromium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum	201	6.1	0-10	
Beryllium Cadmium 190 Calcium Chromium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum	201	6.1	0-10	
Cadmium 190 Calcium Chromium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum		6.1	0-10	
Calcium Chromium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum		6.1	0-10	
Chromium anr Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum				
Cobalt Copper Iron Lead anr Magnesium Manganese Molybdenum				
Copper Iron Lead anr Magnesium Manganese Molybdenum				
Iron Lead anr Magnesium Manganese Molybdenum				
Lead anr Magnesium Manganese Molybdenum				
Magnesium Manganese Molybdenum				
Manganese Molybdenum				
Molybdenum				
-				
Nickel		· · · · · · · · · · · · · · · · · · ·		
Palladium				
Potassium				
Selenium anr		1.1 A		
Silicon				Met
Silver 119	00 13100	10.7*(a)	0-19	2/17/06
Sodium		· · · · · · · · · · · · · · · · · · ·		
Thallium				original value exceeded linear range. Therefore, the high FPD for Ag of the ICP serial dilution should not be used to
Tin				Therefore the high Fristor Rig or the ICF
Vanadium		· · · · · · · · · · · · · · · · · · ·		serial dilution should not be used to
Zinc				quality data.

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested (a) Serial dilution indicates possible matrix interference.

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: J9468 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31663 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Metal	RL	IDL	MB raw	final
Aluminum	0.20	. 025		
Antimony	0.20	.0045		
Arsenic	0.50	.0044	anr	
Barium	1.0	.0007	anr	
Beryllium	0.0050	. 002		
Cadmium	0.0050	.0006	0.00032	<0.0050
Calcium	5.0	. 34		
Chromium	0.010	.0015	anr	
Cobalt	0.050	. 0009		
Copper	0.025	.001		
Iron	0.10	. 034		
Lead	0.50	.0029	anr	
Magnesium	5.0	.015		
Manganese	0.015	.0005		
Molybdenum	0.010	.002		
Nickel	0.040	.0021		
Palladium	0.010	.0026		
Potassium	5.0	. 025		
Selenium	0.50	.0033	anr	
Silicon	0.20	. 024		
Silver	0.010	.0006	0.000026	6 <0.010
Sodium	5.0	.16		
fhallium	0.20	.0077		
ſin	0.010	.0042		
Vanadium	0.050	.0016		
Linc	0.020	.0029		

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

DATA USABILITY REPORT

ACCUTEST CASE NO. J6866

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK AUGUST 2005 BENCHSCALE TESTING

REPORTED FEBRUARY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

lark Traples

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

920 Germantown Pike, Suite 200 • Plymouth Meeting, PA 19462

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the benchscale sampling event of August 11, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Trapler

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY METALS AND TCLP METALS PEERLESS PHOTO PRODUCTS SITE AUGUST 2005 BENCHSCALE TESTING

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) metals (cadmium and silver) results from the August 11, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J6866 included a total of three (3) soil samples, including one (1) set of field duplicate samples, plus one (1) field blank for limited metals (cadmium and silver) analysis. Sample BSB-1 was also used for the Matrix Spike/Matrix Spike Duplicate (MS/MSD) results.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 3050B and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J6866 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the following day. All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for total cadmium and silver following SW-846 Methods 3050B for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J6866 metals results be used with the following qualifiers:

 The MS/MSD percent recoveries for silver exceed the control limits of 75-125% (-117 and -268%, respectively). These spike recoveries indicate possible matrix interference or sample non-homogeneity. However, the sample concentration exceeded four times the spike amount, rendering the spike values unusable. No qualification of silver results was made due to MS/MSD recoveries or due to a high RPD between these two values.

4.0 SUMMARY

The metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified matrix spike and matrix spike duplicate recoveries results as areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

······

.....

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

bade	1

T

Soil (mg/kg)

Laboratory Accutest - Dayton, NJ

Case/Order # J6866

Fraction/Method

Ξ¥.

Metals / 3050B / 6010B

	Sample Location or Description	BSB-1	FD-1								
	Sample Number	J6866-1	J6866-2								
	Sampling Date	8/11/2005	8/11/2005								
	Preparation Date	8/15/2005	8/15/2005								
	Analysis Date Percent Solids	8/16/2005 81.9	8/16/2005 88.9								
RL	P F			Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
0.50	Cadmium X	7.8 1	5.7								
5.0	Silver X	317 5	251 5				물 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관				
	Sample Location or Description										
	Sample Number										
	Sampling Date										
	Preparation Date										
	Analysis Date										
	Percent Solids										
RL	PF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
0,50	Cadmium X										
5.0	Silver X									성동은 사람이	

P - ICP

F - Flame AA

1

f

Project Number

Sampling Date(s) 8/11/2005

Site Name Peerless Photo Products

68,28817,0001

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M. Mapler DATE 2/23/06

						D	AT	A SUMMARY	- INORGANIC	ANALYTES				page 1
	Site Name	Peerle	ss Photo Pro	ducts	s			Aq	ueous (ug/L)		Laboratory	Accutest - Dayto	n, NJ	
P	roject Number	68.288	317.0001							Ca	se/Order #	J6866		
Sa	mpling Date(s)	8/11/2	005							Fracti	on/Method	Metals / 3010A /	6010B	
	Sample Locatio or Description	n	FB-1				:					1		<u> </u>
	Sample Numbe	.г	J6866-3	3							1	1		
	Sampling Date		8/11/200	5										
	Preparation Dat	te	8/16/200											
	Analysis Date		8/17/200											
RL		PF	Q	DF	Q DI	= Q	DF	Q DF	Q DF		= <u>Q</u> DI		Q DF	Q DF
<u>4.0</u> 10	Cadmium Silver	X X	4.0 U 10 U											
				لينسل	·		· · · · ·	· · ·		∎ <u></u> _⊥└`ı				
	Sample Locatio or Description	'n												
	Sample Numbe	er.												
	Sampling Date													·
	Preparation Dat	te												
	Analysis Date					<u> </u>								
RL		PF	Q	DF		= Q	DF	Q DF	Q DF	QDI		Q DF	Q DF	Q DF
4.0	Cadmium	X												
10	Silver	X				·			LN<2.)	에 관계 관계		

ł

1

P-ICP

Í

ŧ

1

1

ŧ

t

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Haple DATE 2/23/06

ï

Ŧ

APPENDIX A

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: <u>J6866</u>

Client Name:

ATC Associates, Inc.

AGFA-Peerless

			A	nalytical R	equiremer	nts	
Customer	Laboratory	VOA	BNA			Metals	Other
Sample Code	Sample ID	GC/MS	GC/MS	GC	PCB		
		Method	Method	Method	Method		
		8260	8270C	8021	8082		
BSB-1	J6866-1					Х	
FD-1	J6866-2					Х	
FB-1	J6866-3					Х	

12

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID: Matrix:	BSB-1 J6866-1 SO - So					Date	e Sam e Rece		
Project:	AGFA-	Peerless				ICIU	en o	Juus. 01.7	
Metals Analysis									
Analyte Res	sult	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Cadmium 7.8		0.61	mg/kg	1	08/15/05	08/16/05	JDM	SW846 6010B l	SW846 3050B ³
			mg/kg		08/15/05	08/17/05	NÐ	SW846 6010B ²	SW846 3050B ³

(3) Prep QC Batch: MP31144

.

÷

1

.

		nepu		aly 515			Fage 1 01 1
Client Sample ID:	BSB-1						
Lab Sample ID:	J6866-1			Date S	Sampled: 08/11	/05	
Matrix:	SO - Soil			Date l	Received: 08/12	2/05	
				Perce	nt Solids: 81.9		
Project:	AGFA-Peerless			1			
General Chemistry	7						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	81.9		%	1	08/15/05	мс	ASTM 4643-00

Report of Analysis

14

بواجار والمتحاد والمحاج والمحاج

Report of Analysis

Page 1 of 1

Client Sampl Lab Sample I Matrix:		5-2				Date	Sampled: Received: nt Solids:	08/12/05	
Project:	AGF	A-Peerles	s			ICICC	nt Sonds.	00.7	
Metals Analy	sis								
Analyte	Result	RL	Units	DF	Prep	Analyzed J	By Met	bod	Prep Method
Cadmium Silver	5.7 251	en ist	mg/kg mg/kg			08/16/05 J 08/17/05 J		46 6010B ¹ 46 6010B ¹	SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA16172

(2) Prep QC Batch: MP31144

RL = Reporting Limit

.

.

		Repo	ort of An	alysis			Page 1 of 1
Client Sample ID:	FD-1 J6866-2			Data	Sampled: 08/11	105	
Lab Sample ID: Matrix:	50800-2 SO - Soil				Sampled: 08/11 Received: 08/12		
				Perce	nt Solids: 88.9		
Project:	AGFA-Peerless						
General Chemistry	r					••••	
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	88.9		%	1	08/15/05	мс	ASTM 4643-00

RL = Reporting Limit

				Rej	port of 4	Analysis	5		Page 1 of 1
Client Sample I Lab Sample ID Matrix:	: J6866	-	ank Soil			Date		pled: 08/11/05 sived: 08/12/05 plids: n/a	
Project:	AGFA	-Peerle	SS			1 CI C	cut D	onus. ma	
Metals Analysis	S								
Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Cadmium Silver	<4.0 <10		ug/l ug/l	1 1		08/17/05 08/17/05		SW846 6010B ¹ SW846 6010B ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA16172
 (2) Prep QC Batch: MP31165

17

•

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: J6866

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J6866-1	Soil	Cadmium & Silver	12-Aug-05	17-Aug-05
J6866-2	Soil	Cadmium & Silver	12-Aug-05	17-Aug-05
J6866-3	Field Blank Soil	Cadmium & Silver	12-Aug-05	17-Aug-05

		ť	1		1	I (CH	AI	I N (0	r F (CI	US	T	IO	l)Y	(ł	1	ł		ŧ	!		ŧ	ĩ
	YCCN.	T	5	o, f	, ,	(22.	35 Rou	ite 1	30, Daj	yton	NJ 0	8810		FED	EX Trac	king #				Bottle (Dider Co	ontrol #		{
		ratories				\mathbf{V}		L. / J.	2-329-("		FAA accute			-3499	/3480		test Quo	le #				Accule	si Job #	J	686	6
		nt / Reporting Information				V		P	roject inf	ormal	lion										Recu	ested An	aluele			Matrix Codes
Company Ne		Δ <u></u>			Project I	Vame					·						1			X						DW - Drinking Water
Address	C ASSOCI	4122			Siraei	6FA	- 18	<u>m</u>	<u>ess</u>	FR	010							1	Ø.	3	pridezy					GW - Ground Water
~	TERRI	LANE				- .				_		_				00	Hi Li	a	31	Ñ dr.	i ŝ	5				WW · Water
	2 LINGTON	Slate AIT	Zip		City			-	Stel	8						100	D SHITIS	25	M	0		CFV/J				SW - Surface Water SQ - Spil
Project Conta		<u></u>	E-mail		Project #				<u> </u>								2.F	۵ «	5	5	Ş	NI I	ļ		1	St - Sludge
Μ.	KE MCNAI	h		_ [_		_	8	1 1 7	E &	3	15	H	Ł				OI - Oil
Phone #	09 386 880	,			ax#									٠			 ភ្2្	고 고 고 고 고 고 고	CADAW	BADMINN	Note	10	ł			LIQ • Other Liquid
Sampler's No	lich ALL M				Client Pu	irchase Ori	ier#	- <u>-</u>								ា ជ រដ្ឋា			((Ş	-				AIR - Air SOL - Other Solid
Accutest		Point of Collection	SUMMA		C	ollection			1		Numb	to re	preserv	ed Bolt	108		1 - 1		Dist	3	25			}		WP . WIDE
Sample #			MECH Via	#	Date	Time	Sampled By	Matrix	# of bottles	ġ.	1 I	108Q	ğ				0 00 MF.		P	۲		\mathbb{N}				LAB USE ONLY
- 1	BSB-1			8	lilos	15:15		S	2			1					1			-					7	ME 29
- 2	FD - 1				1	15:15	MAN	5	Z							1-	1	1							7	AMETS
- 3	FB-1			+	t^{-}		hin	W	1		V	オ	+-		-+	-+	1	1								
				+	<u> </u>	1	<u> </u>		- <u></u>	-	┝╼╶┟╴	+		┼╌┤	-+	-+	1	<u> </u>							K	1
		· · · · ·									\vdash		+-	╀╌┪			+						-+			
												_		┼╶┥				┨───								
								 		ļ'				$ \downarrow \downarrow$	\rightarrow											
								<u> </u>	 			_													$ \rightarrow $	
•																										
							{		1							1	1									
				1-			†						_													
		me (Business Days)						<u>.</u>	Data D	ellvora	able Info	matic	<u></u>	翻翻			Sin Pe				inishi Simi	iommen	s / Rem	arks 25		
	Business Days	Approved By: / D	Dato:			Comme					FULL							-11	SUT	77	D	P	PEA	DIN	4 77	STAL
 10 Day R 5 Day RL] Comme] NJ Redi					NYASi NYASF													C	,	
X 3 Day EA		MINI	8/11/05] NJ Full					State F								ESU		<u> </u>					
D 2 Day EA						Other					EDD F	ormal	l													
1 Day EA																	Γ									
Cher Other	:					Comm	ierclal "A	" = Res	ults Oni	ly																
Emergency	& Rush T/A data aval	labie VIA LabLink				ustoriv mil	t be down	Denthi	below P	ch lin	ne samo	les ch	ADDP D	035689	ion. Inc	ludino co	uner deli	very Sta			2.47		2000			
Relinquished by	Samplet.		Date Time Billics	Received	byd	1					Raling			1	Z				Date	Time:		Received		17		(De
	all for		15:40 Date Time	Robind	yr.	def.	Ø	~/A	-05	Þ	2 Relingu		le .	den je	Γ			_0	8-6		▶	2 Received	by	yay	lus	V
Relingulated by	[·	Guie Fine .	veca/vec	wţ.						4	uner 194	<i>v</i> y.									4				,
Relinquished or			Date Time	Received	¢γ						Custod				<u> </u>		Pre	served wi		cable		On log			Coole	Tenip.
ж Ц		·	!								LA	ίσμ	5						<u> </u>	1.K					<u> </u>	1179

APPENDIX B

Project No.: 6 Project Manager: 6	Peerless Photo F 8.28817.0001 M. McNally Accutest			San Rev	se No./SDG: npling Date(s): viewed By: npletion Date:	J6866 8/11/2005 M. Traxler 2/21/2006			
Compound List: Method: Matrix:	TAL CLP SOW 3/90 soil/solid (mg/Kg)	Append X SW-84 aqueou	6)	Other				
The following table indi and QA action.	cates the data	alidation	criter	ia exai	mined, problems	identified,			
Data Validation Criteria:		accep	t FYI	qualif	fy comments				
Holding Times		X			Less than 180 d	ays			
Calibration Linearity - F and CN	urnace, Hg ,								
Calibration Verification		×			2-point standard	I			
CRDL Standard		X			50 - 150 % R				
Calibration Blanks	an the second second second	X			< RL	2 - 2 A			
Preparation Blanks		X		3. 1	< RL				
Field Blank		×			< RL				
ICP Interference Check	Sample	×			80 - 120 % R				
Laboratory Control Sam	ple	x			80 - 120 % R				
Matrix Spike Results			X		75 - 125 % R A	g sampl o results are			
Laboratory Duplicate Re	esults		X		< 20 RPD Ag s	sample results are h			
ICP Serial Dilution		X			< 10 RPD				
Post Digestion Analytic	al Spike				NR				
Method of Standard Add	dition				NR				
Field Duplicate Results		X			< 50 RPD				
Sample Result Verificati	on	X			Cadmium and S	Silver			
Other:			11						

NA - Not applicable NR - Not reviewed

QA Scientist_M Flapler_

_____Date___/23/06

Inorganic Matrix Spike/ Matrix Spike Duplicate Worksheet

Project Name: Peerless Photo Products
Project Number: 68.28817.0001

Case/SDG Number: J6866

ATC

-					
	Sample Location		BSB-1	BSB-1	BSB-1
	or Description				
-	Sample Number	I	J6866-1	J6866-1D	J6866-1S
-	Sampling Date		8/11/2005	8/11/2005	8/11/2005
	Units		mg/kg	mg/kg	mg/kg
					<u></u>

Spike Sample Result Amount

-		_				MS %R	Q	MSD %R	Q	RPD	Q
	Cadmium	12.7	7.8	18.6	20.1	84.9		99.7		7.8	
	Silver	12.7	317	302	284	-117.9	*	-267.6	*	6.1	

MSD Result

MS Result

Q - Qualifier

* - Denotes RPD outside criteria

QA Scientist M Stayler Date 2/23/06

Inorganic Field Duplicate Precision Worksheet ATC

Project Name: Project Number: Peerless Photo Products 68.28817.0001 Case/SDG Number: J6866

BSB-1	FD-1
	10-1
J6866-1	J6866-2
8/11/2005	8/11/2005
mg/kg	mg/kg
	8/11/2005

Sample

Field Duplicate

			RPD	Q
Cadmium	7.8	5.7	31.1	
Silver	317	251	23.2	

* - Denotes RPD outside criteria

QA Scientist M. Flander Date 2/23/06

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J6866 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless

QC Batch ID: MP31144 Matrix Type: SOLID Methods: SW846 60108 Units: mg/kg

Prep Date:				08/	15/05	
Metal	J6866-1 Original	MS	Spikelot MPIRS1	% R	éc	QC Limits
Aluminum						
Ant imony	anr			- 		
Arsenic	anr					
Barium	ann					
Beryllium	anr					
Boron						
Cadm i um	7.8	18.6	12.7	84.	9	75-125
Calcium						
Chromium	anr					
Cobalt						
Соррег	алг					
Iron				i.	1. 1. 1.	
Lead	anr					
Magnesium	anr			·		
Manganese						
Molybdenum						
Nickel	anr					
Palladium						
Potassium						
Selenium	anr			*		
Silicon						
Silver	317	302	12.7	(-11	7.9(a)	75-125 7/01/06
Socium						I suite compared to the
Strontium						mailed Sample
Thallium	anr					hs-125 Hot Job Low spike compared to the original sample
Tin						
Titanium						
Vanadium						
Zinc	anr					
Associated sa	amples MP31	144: Je	i866-1, J686	6-2		
Results < ID (*) Outside ((N) Matrix Sp (anr) Analyte (a) Spike ama informati	of QC limits bike Rec. on e not reques bunt low re	s utside sted	of QC limit	S	-	· .

9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J6866 Account: BCMNJ - ATC Associates, inc. Project: AGFA-Peerless

QC Batch ID: MP31144 Matrix Type: SOLID

3 }

Methods: SW846 6010B Units: mg/kg

Prep Date:					08/15/05	
Metal	J6866-1 Original	MSD	Spikelo MPIRS1	t % Rec	MSD RPD	QC Limit
Aluminum						
Antimony	anr					
Arsenic	anr					
Barium	anr					
Beryllium	anr				· · ·	
Boron						
Cadmium	7.8	20.1	12,3	99. 7	7.8	20
Calcium						
Chromium	anr					
Cobalt						
Copper	anr					
Iron						
Lead	anr					
Magnesium	anr				-	
Manganese						
Molybdenum						
Nickel	anr					
Palladium						
Potassium						
Selenium	ann					
Silicon						
Silver	317	284	12.3	-267.6	(2) 6.1	20 MT 2/21/06
Sodium				(3/31/06
Strontium						Low spike compared to H
Thallium	anr					Low spike compared to H osiginal sample.
Tin						Bright Sample.
Titanium						
Vanadiym						
Zinc	anr					
Associated sa	mples MP31	144: J6	866-1, <u>1</u> 68	66-2		
Results < 100 (*) Outside o (N) Matrix Sp (apr) Analyte	are shown of QC limit aike Rec. on a npt reques aynt low re	as zer s utside st o d	o for calc of QC limi	µlation p ts		to lab control or spike blank for recovery

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J6866 Account: BCMNJ - ATC Associates, inc. Project: AGFA-Peerless

QC Batch ID: MP31144 Matrix Type: SOLID

100

Methods: SW846 6010B Units: mg/kg

Prep Date:			08/15/05		{
leta l	BSP Result	Spikelot MPIRS1	% Rec	QC Limits	
\luminum				: · · ·	
\ntimony	anr				
Arsenic	anr				
Barium	anr		- 1 (47)		
Beryllium	anr				
Boron				· · · · · · · · · · · · · · · · · · ·	
Cadmium	9.6	10	96.0	80-120	
Calcium					
Chromium	anr				
Cobalt					
Copper	anr				
Iron					
Lead	anr			20	
Magnesium	anr				
Manganese					
Molybdenum					
Nickel	ann				
Palladium					
Potassium					
Setenium	anr				
Silicon					
Silver	9.1	10	91.0	80-120	
Socium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium					
Zinc	aur				
Associated	sampies	MP31144: J	6866-1, J	J6866 - 2	
	IDL are s	hown as ze imits		alculation purposes	
				Page 1	_

DATA USABILITY REPORT

ACCUTEST CASE NO. J12634

DATA USABILITY SUMMARY REPORT

- Representation and the second se

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK OCTOBER 2005 BENCHSCALE TESTING

REPORTED FEBRUARY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

Mark Isarder

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

920 Germantown Pike, Suite 200 = Plymouth Meeting, PA 19462

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the benchscale sampling event of October 13, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

 $\langle \cdot, \cdot \rangle$

References and a second

Mark Fragler

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY TCLP METALS PEERLESS PHOTO PRODUCTS SITE OCTOBER 2005 BENCHSCALE TESTING

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) Toxicity Characteristic Leaching Procedure (TCLP) metals (cadmium and silver) results from the October 13, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J12634 included a total of four (4) soil samples for limited metals (TCLP cadmium and silver) analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 1311, 3010A and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J12634 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the following day (October 14, 2005). All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for TCLP cadmium and silver following SW-846 Method 1311 for TCLP extraction, 3010A for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following TCLP metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J12634 metals results be used with the following qualifiers:

- 1. Batch QC samples were used for MS/MSD and serial dilution results. There were no field duplicate, field blank, or site-specific MS/MSD samples associated with this batch of samples.
- 2. The ICP serial dilution was acceptable for cadmium, but exceeded the control limit of 10% difference (100%) for silver on sample J11988-1. The ICP serial dilution exceeded the control limit of 10% difference (100%, 100%) for cadmium and silver on sample J7989-1A. However, since the original values of cadmium and silver were less than 50 times the Instrument Detection Limit (IDL), the ICP serial dilution for cadmium and silver were acceptable. No qualification of data was deemed necessary due to the ICP serial dilution results.

4.0 SUMMARY

The TCLP metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

						DAT	A SUMMARY -	INORGANIC	ANALYTES				page 1
	Site Name	Peerle	ss Photo	Products	j]		TCLP I	_eachate (mg/L)	L	aboratory	Accutest - Dayton	, NJ	
Ρ	roject Number	68.288	17.0001						Cas	e/Order #	J12634		
Sa	mpling Date(s)	10/13/	2005						Fractio	n/Method	TCLP Metals / 30	10A / 6010B	
	Sample Locati or Description		BSB	-2.5	BSB-5	BSB-7.5	BSB-10						
	Sample Numb	er	J126	34-1	J12634-2	J12634-3	J12634-4						
	Sampling Date		10/13		10/13/2005	10/13/2005	10/13/2005						
	Preparation Da		10/17/		10/17/2005	10/17/2005	10/17/2005						
	Analysis Date Percent Solids		10/18	/2005	10/18/2005	10/18/2005	10/18/2005						
RL	Fercent Solids	PF		Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
0.0050	Cadmium	X	0.57	1	0.80	0.0050 U 1	0.0061						
0.010	Silver	X	0.16	1	0.037 1	0.025 1	0.022 1						
				·								<u></u>	
	Sample Locati or Description												
	Sample Numb	er											
	Sampling Date	•											
	Preparation Da	ate											
	Analysis Date				-								
RL	Percent Solids	P F		Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
ينزوك ونوعي													
0.0050	Cadmium Silver	X											

ŧ

I

Ĩ

P-ICP

F - Flame AA

ł

ł

ł

ł

1

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Shapler DATE 2/20/06

APPENDIX A

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: J12634

a a affectionada – e a com

Client Name:

New Adda to the second second

ATC Associates, Inc. AGFA-Peerless, Shorham, NY

		Analytical Requirements									
Customer	Laboratory	VOA	BNA				Metals	Other			
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC					
		Method	Method	Method	Method	Method					
		8260B	8270C	8081A	8082	8151					
BS-2.5	J12634-1						X				
BS-5	J12634-2						X				
BS-705	J12634-3						X				
BS-10	J12634-4						X				

NY CONSCREPTION OF A CONSCREPTION

Report of Analysis

Client Sample ID: BS-2.5 Lab Sample ID: J12634-1 Date Sampled: 10/13/05 Matrix: SO - Solid Date Received: 10/14/05 Percent Solids: n/a Project: AGFA-Peerless, Shorham, NY Metals Analysis, TCLP Leachate SW846 1311 Analyte Result HW# MCL RL DF Analyzed By Method **Prep Method** Units Prep

-				-
Cadmium	0.57 D006 1.0	0.0050 mg/l 1		SW846 6010B ¹ SW846 3010A ²
Silver	0.16 D011 5.0	0.010 mg/1 1	MUL CO/81/01 CO/17/01	SW846 6010B ¹ SW846 3010A ²

(1) Instrument QC Batch: MA16492

(2) Prep QC Batch: MP31948

Page 1 of 1

•

strends and strends

Billion and Balance and States

				Rep	ort o	f An	alysis			1	Page 1 of 1
Client Samp Lab Sample		4-2					Date Sa	mpled: 1	0/13/0	5	
Matrix:	SO - :						Date Re		0/14/0	-	
Project:	AGFA	A-Peerles	s, Shorl	ham, NY	•						}
Metals Anal	ysis, TCLP L	eachate	SW846	5 1311							
Analyte	Result	HW#	MCL	RL	Units	DF	Ргер	Analyzed	By	Method	Prep Method
Cadmium	0.80	D006	1.0	0.0050	mg/l	1	10/17/05	10/18/05	LH	SW846 6010B ¹	SW846 3010A ²
Silver	0.037	D011	5.0	0.010	mg/l	1	10/17/05	10/18/05	LH	SW846 6010B 1	SW846 3010A ²

(1) Instrument QC Batch: MA16488
 (2) Prep QC Batch: MP31880

÷

and the state of the second second second second

and the second pro-

Report of Analysis

Page 1 of 1

٦

Client Sample Lab Sample II Matrix:		4-3					Date Sa Date Re Percent	•			
Project: AGFA-Peerless, Shorham, NY											
Metals Analys	is, TCLP Le	achate	SW846	1311							
Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method	
Cadmium	< 0.0050	: D006	1.0	0.0050	mg/l	1	10/17/05	10/18/05 LH	SW846 6010B ¹	SW846 3010A ²	
Silver	0.025	D011	5.0	0.010	mg/l	1	10/17/05	10/18/05 LH	SW846 6010B ¹	SW846 3010A ²	

(1) Instrument QC Batch: MA16488

(2) Prep QC Batch: MP31880

e « 1994 » an<u>hairtean</u>aiste ann an an anna an anna an anna an anna
Report of Analysis

Page 1 of 1

Client Sampl Lab Sample) Matrix:	ID: J12634	BS-10 J12634-4 SO - Solid					Date Sampled: 10/13/05 Date Received: 10/14/05 Percent Solids: n/a				
Project:	AGFA-	AGFA-Peerless, Shorham, NY									
Metals Analysis, TCLP Leachate SW846 1311											
Analyte	Result	HW#	MCL	RL	Units	DF	Ргер	Analyzed B	y]	Method	Prep Method
Cadmium Silver	0.0061 0,022			0.0050 0.010	mg/l mg/l	1 1		10/18/05 L 10/18/05 L			SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA16488

(2) Prep QC Batch: MP31880

.

.

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: J12634

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

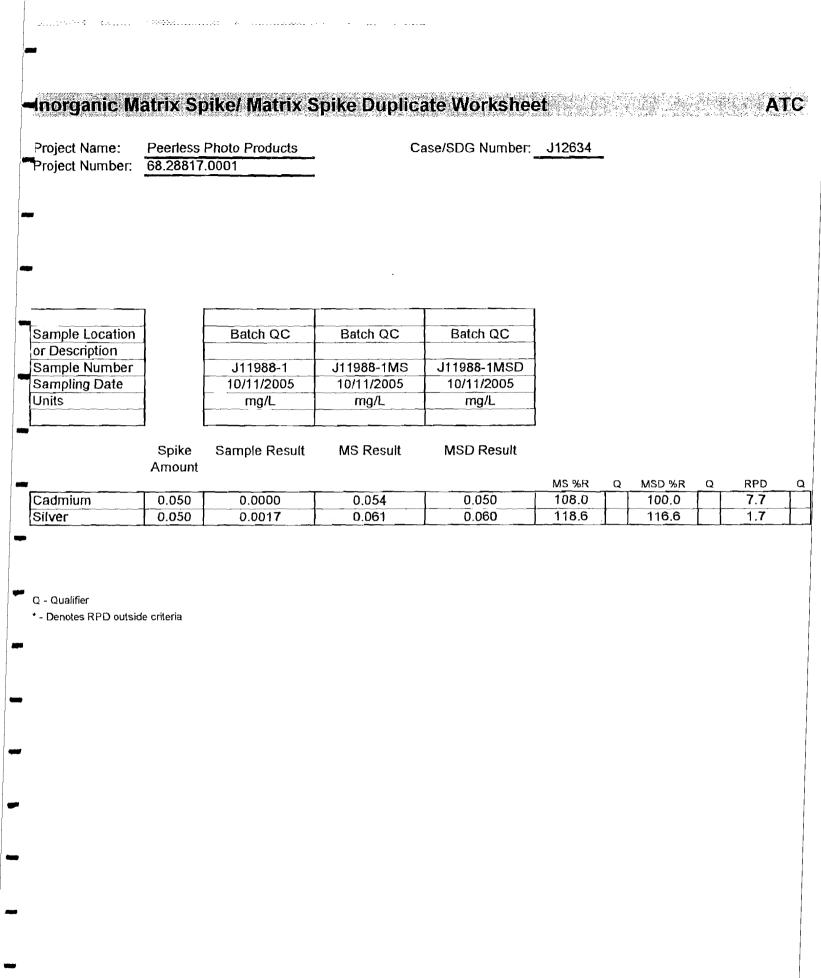
Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J12634-1	Leachate	TCLP Metals	13-Oct-05	14-Oct-05
J12634-2	Leachate	TCLP Metals	13-Oct-05	14-Oct-05
J12634-3	Leachate	TCLP Metals	13-Oct-05	14-Oct-05
J12634-4	Leachate	TCLP Metals	13-Oct-05	14-Oct-05

										NJ 08								Bol					
				-	EL. 73) FA7 .accut			3499/3	1480	Accul	lest Quo	la #			Acc	utest Job	# J	126	34	
TOTTO		roject Nar	ne	-77		tojeci li		ation Prio		Pap						7	R	equested	Analysis				Matrix Codes OW - Orinking Wate
	S	met		All												MIN						1	GW - Ground Wate WW - Water
		Suc	PI.	Ham										N S	Stats D	w.Š							SW - Surface Wate
L-mai													100	E	E E	3							SL - Sludge O1 - Oil
			nase Or	der#				<u> </u>	<u> </u>							N							LIQ - Other Liquid AIR - Air
SUMMA#	┝╍╍╸	Coli	ection	Samoin		# 01	\mathbb{F}				*	_	-									+	SOL • Other Solid WP • Wipe
MEOH VIB #			Time Y 68	By MJ	Matrix	bottle	5 9		¥ ₿	2	Į į		jii đi	14 F	22	X			+				LAB USE ONLY
			+-	┼┠╴	Sal			╄╌╋		$\left\{ - \right\}$						X		+			┝╾┥		155
					Sec	1		┟╌┤				+-				Ŷ		╺╋╼					
							+-	┼╌┤	-+-	+	+	+							+				
				<u> </u>			<u>†</u>		1														
								┝━┼	+	╉╌┧		+	┨				_	-					
						Data C	Seliver	able Info	mation									Comm	ents / Rec	narks			
-12-05			Comme NJ Redi NJ Full	uced		(NYAGI NYAGI NYAGI	P Caleg P Caleg Forms	iory A iory B													
		ple Custo		1			•	ne samp	es dha	nge pos	session	/Includ	ling coul	her deliv	əry. 🎆								
Time Rec 12:05	wedpw	J.U.M			K			Relinq 2		int	A./	jų	K I	0-M	-04	Oste 11	FN).	2	277	ul		10	14-02
	CONTRACTOR 100 E-mail SUMMA# MECH Val # MECH	C C C C C C C C C C C C C C C C C C C	COSOLIO E-mai Project # Fax # Client Purch SUMMA # Coli MEOH Visi # Dete 10/13/55 // MEOH Visi # Dete 10/13/55 // Client Purch 10/13/55 // Client Purch Coli Col	Client Purchase Or E-mail Fax # Client Purchase Or SUMMA # Collection MECH Visi # Dete 10/13/of //68 Collection MECH Visi # Dete Time Collection Collection MECH Visi # Dete Time Collection Comme Com	CBOILO E-mai Project # Fax # Client Purchase Order # SUMMA # Collection MECH Val # Date 10/13/of /4 68 MECH Val # 10/13/of /4 68 MECH Val # Collection MECH Val # Commercial 'A Commercial 'A Received by Commercial A MECH Val # Commercial 'A Commercial 'A	OBOILO SHORSHAM E-mail Project # Fax # Client Purchase Order # SUMMA # Collection MECH Val # Date IO/13/o5 IV de MECH Val # Date IO/13/o5 IV de IV de IV de	OBOILO SHORAHAM E-mail Project # Fax # Client Purchase Order # SUMMA # Collection MECH Val # Date Jol/3/o5 ///68 Jol/3/o5 ///68 Jol/3/o5 ///68 Jol/3/o5 ///68 MECH Val # Date Jol/3/05 Jol/3/05 Jol/3/05 Jol/3/05	OPDOLLO SHOREHMAN NY E-mail Project # Fax # Client Purchase Order # SUMMA # Collection MECH Val # Date Time By MECH Val # Date 10/13/05 /Y de MECH Val # Date 10/13/05 /Y de 11/10 Sa L 11/10 Commercial 'A' 11/10 Data Deliver 11/10 Commercial 'A' 11/10 Commercial 'A' = Results Dniy 11/10 Commercial 'A'	OPSOLLO SUOP SHAM NY E-mail Project # Client Purchase Order # Client Purchase Order # SUMMA # Collection MEOH Val # Date Time By MEOH Val # Date Time Service MEOH Val # Date Time Service MEOH Val # Date Time Service Set 1 NU Reduced	OBSILE SHORESHAM NY E.mail Project # Client Purchase Order # SUMMA # Collection MECH Val # Date Time By MECH Val # Date 10/13/05 1/068 MECH Val # Date 10/13/05 1/068 MECH Val # Date 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/13/05 1/068 10/14 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/15 1/168 10/168 1/168	OBDILG SHORSHAM NY E-mail Project # Client Purchase Order # SUMMA # Collection MEOH Visi # Date Time By MEOH Visi # Date Time Serobol MEOH Visi # Date Date Date MEOH Visi # Date Date Date Date	OBSILE SHORESHAM NY E-mail Project # Fax # Client Purchase Order # SUMMA # Collection MECH Visi # Date Time Serrodo MECH Visi # Date Time Serrodo MECH Visi # Date MECH Visi # MECH Visi # MECH Visi# Date MECH Vis	OPSOIL SHOPESHAM NY E-mai Project # Number of proserved Bottles SUMMA # Collection MEOH Val # Date Time By MEOH Val # Date Image: State in the state internation Image: State internation Image: State internation Image: St	Clent Purchase Order # Fax # Clent Purchase Order # SUMMA # Clent Purchase Order # SUMMA # Deta MECH Var # Deta Time Bit Summer MECH Var # Deta Time Set Collection MECH Var # Deta Time Set Set	E-mail Project # Fax # Image: Summary of Bottlee Client Purchase Order # Image: Summary of Bottlee SUMMA # Collection MECH Wat # Dete Image: Summary of Bottlee Image: Summary of Bottlee Image: Summary of Bo	Fax # Image: Second	E-mail Project # Fax #	Fax # Image: Construction of the second	Fax # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fax # B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2	Fax 8 Image: State of the state of th	Fat f Image: State of the state of th	Fax # B Z D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>

APPENDIX B

K14

.


· · · · · · · · · · · · · · · · · · ·	Project Name: Peerless Photo Pro Project No.: 68.28817.0001				se No./SDG: npling Date(s):	J12634 10/13/2005
Project Manager:	M. McNally			Rev	viewed By:	M. Traxler 2/20/2006
Laboratory: Compound List:	Accutest	Appen		Cor	npletion Date:	
Method:		X SW-84			X Othermg/L_	
Matrix:	soil/solid (mg/Kg)	aqueou	us (ug/L)			
The following table ind	licates the data	validation	criteri	a exar	mined, problems	identified,
and QA action.						
Data Validation Criteria	1: 		ot FY	quain	y comments	
Holding Times					Less than 180 c	lays
Calibration Linearity - I and CN	Furnace, Hg ,				NR	
Calibration Verification		X		0.000.	2-point standar	j
CRDL Standard					50 - 150 % R	방송화화가 가 영상 영상 가야?
Calibration Blanks		X			< RL	
Preparation Blanks		X			< RL	
Field Blank	least and the second second	z	X		< RL No FB in	batch
ICP Interference Check	Sample	×			80 - 120 % R	
Laboratory Control Sa	nple	X		4 s.	80 - 120 % R	nin an
Matrix Spike Results	arta (j. 1919), den de servici Na servicio de la companya Na servicio de la companya	X			75 - 125 % R	Batch QC
Laboratory Duplicate R	1	X		- 1 A	< 20 RPD	
ICP Serial Dilution		. X .	2.5	<	< 10 RPD	a dharach a tha an t
Post Digestion Analytic					NR	
Method of Standard Ac				- 27 -	NR	n di kata di ka
Field Duplicate Results	g. 1	×	×		< 50 RPD No F	
Sample Result Verifica	tion	' X	í I		Cadmium and	Silver

NA - Not applicable NR - Not reviewed

4

ander and the second
M Hapler QA Scientist_

_____Date_2/20/06

J12634 MS MSD Results

QA Scientist_____ Date_____ Date______Date_____

teres and the second second second

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	ATC Associates, Inc.	Job No	J12634
Site:	AGFA-Peerless, Shorham, NY	Report Date	10/20/2005 6:00:51 P

4 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 10/13/2005 and were received at Accutest on 10/14/2005 properly preserved, at 4.6 Deg. C and intact. These Samples received an Accutest job number of J12634. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

Matrix: LEACHATE	Datab JD.	1000
Matrix: LEACHATE	Batch ID:	MP31880

All samples were digested within the recommended method holding time.

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J11988-1MS, J11988-1MSD, J11988-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Silver are outside control limits for sample MP31880-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

	Matrix: LEACHATE	Batch ID:	MP31948
a	All samples were digested within the re-	commended metho	d holding time.

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J7989-1AMS, J7989-1AMSD, J7989-1ASDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cadmium, Silver are outside control limits for sample MP31948-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J12634).

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J12634 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

10/11/05

QC Batch ID: MP31880 Matrix Type: LEACHATE

Prep Date:

Methods: SW846 6010B Units: mg/l

Metal	J11988- Origina		Spikeld MPITCLE	DE 21 % Rec	QC Limits
Aluminum			······································		
Antimony ·					
Arsenic	anr				
Barium	anr				
Beryllium					
Boron					• •
Cadmium	0.0	0.054	0.050	108.0	75-125
Chromium	anr				
Cobalt					
Copper					
Iron					
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Potassium					
Selenium	anr				
Silicon					
Silver	0.0017	0.061	0.050	118.6	75 - 125
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					
Associated sa	mples MP3:	1880: J12	634-2, J1	2634-3, J1	2634-4
Results < IDL (*) Outside o (N) Matrix Sp (anr) Analyte	f QC limit ike Rec. o	ts outside o			rposes

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J12634 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

> Methods: SW846 6010B Units: mg/l

QC Batch ID: MP31880 Matrix Type: LEACHATE

Metal	J11988-1 Original MSD	Spikelot MPITCLP1		MSD RPD	QC Limit
Aluminum					
Antimony					
Arsenic	anr				
Barium	anr				
Beryllium					
Boron				•	
Cadmium	0.0 0.050	0.050	100.0	7.7	20
Chromium	anr				
Cobalt				• . *	
Copper					
Iron					
Magnesium					
Manganese					
Molybdenum				·, ·	
Nickel					
Palladium					
Potassium					
Selenium	anr				
Silicon					
Silver	0.0017 0.060	0.050	116. 6	1.7	20
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					
Associated sam	nples MP31880: J	12634-2, J120	634-3, J	12634-4	
Results < IDL (*) Outside of	are shown as ze: OC limits	ro for calcu	lation p	urposes	
(N) Matrix Spi	ike Rec. outside not requested	of QC limit:	s		
,	iequested				

•

SERIAL DILUTION RESULTS SUMMARY

Login Number: J12634 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31880 Matrix Type: LEACHATE

Methods: SW846 6010B Units: ug/l

Prep Date:			10/11/05	
Metal	J11988-1 Original	SDL 1:5	RPD	QC Limits
Aluminum				
Antimony				
Arsenic	anr		et d'égené Anna a la	
Barium	anr			
Beryllium				
Boron				
Cadmium	0.00	0.00	NC	0-10
Chromium	anr			
Cobalt				
Copper				
Iron				
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium	anr			
Silicon				
Silver	1.70	0.00	(100.0(a)	0-10 MIT 7/20/06 250× IDL
Sodium				250X IDL
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				
Associated sa	mples MP318	880: J126	34-2, J126	
(*) Outside o (anr) Analyte	f QC limits not reques	a sted		ation purposes ow initial sample concentration (< 50 times IDL).

74

SERIAL DILUTION RESULTS SUMMARY

Login Number: J12634 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

Prep Date:			10/17/05				
Metal	J7989-1A Original	SDL 1:5	RPD	QC Límits			
Aluminum							
Antimony			·				
Arsenic	anr						
Barium	anr						
Beryllium							
Cadmium	0.704	0.00	(100.0(a)	0-10	MT		
Calcium)MT H20/06		
Chromium	anr				- 10 - 1 - P		
Cobalt							
Copper							
Iron							
Lead	anr						
Magnesium							
Manganese							
Nickel							
Potassium							
Selenium	anr						
Silver	1.16	0.00	100.0(a)	0-10	MT 2/20/06 < 50×		
Sodium					2/20/06	>	
Thallium					< 50×	: IDL	
Vanadium							
Zinc							
Associated sa	mples MP319	4B: J126	34-1				

(anr) Analyte not requested
(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</pre>

Page 1

.

79

DATA USABILITY REPORT

ACCUTEST CASE NO. J19888

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK JANUARY 2006 BENCHSCALE TESTING

REPORTED FEBRUARY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

lark. Mapler

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

920 Germantown Pike, Suite 200 = Plymouth Meeting, PA 19462

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the benchscale sampling event of January 9, 2006 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Trayder

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY TCLP METALS PEERLESS PHOTO PRODUCTS SITE JANUARY 2006 BENCHSCALE TESTING

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) Toxicity Characteristic Leaching Procedure (TCLP) metals (cadmium and silver) results from the January 9, 2006 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J19888 included a total of one (1) soil sample for limited metals (TCLP cadmium and silver) analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 1311, 3010A and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J19888 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;

Recepting a second commencement

Bala le bertavar Alle Alexa

- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the same day (January 9, 2006). All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for TCLP cadmium and silver following SW-846 Method 1311 for TCLP extraction, 3010A for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following TCLP metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J19888 metals results be used with the following qualifiers:

1. Batch QC samples were used for MS/MSD and serial dilution results. There were no field duplicate, field blank, or site-specific MS/MSD samples associated with this batch of samples.

4.0 SUMMARY

The TCLP metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

Produced and the second second second

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

TCLP	Leachate	(mg/L)
------	----------	--------

Laboratory

Accutest - Dayton, NJ

J19888

Project Number	68.28817.0001
Sampling Date(s)	1/9/2006

Site Name Peerless Photo Products

ł

1

Case/Order # Fraction/Method

TCLP Metals / 3010A / 6010B

	Sample Location		BSB (BUCH										
	Sample Numb	er	J198	88-1									
	Sampling Date	;	1/9/2	2006									
	Preparation Da	ate	1/12/	2006									
	Analysis Date		1/12/	2006									
RL ^{1 set}	Percent Solids	PF		Q DF									
0.0050	Cadmium	X	0.88										
0.010	Silver	X	0.44	11									
	Sample Location												
	Sample Numbe	er											
	Sampling Date												
	Preparation Da	ite											
	Analysis Date												
	Percent Solids												
RL		PF		Q DF	a DF	Q DF							

P - ICP

0.0050

0.010

F - Flame AA

ł

Γ.

I

Q - Qualifier, if any

Cadmium

Silver

X X

DF - Dilution Factor

QA Scientist M Harles DATE 2/21/06

F

 (\cdot)

.

12 A.A. 12

1221-21

5

APPENDIX A

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: J19888

Client Name:

ATC Associates, Inc. AGFA-Peerless, Shorham, NY

-			Analytical Requirements								
	Customer	Laboratory	VOA	BNA	Pest	PCB		Metals	Other		
	Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC				
	}		Method	Method	Method	Method	Method				
			8260	8270C	8081	8082	8015		CN		
-	BSB-3A (BUCKET 2)	J19888-1	1					X			

Accutest Laboratories

....

			Rep	ort of	f An	alysis				Page 1 of 1			
	•	KET 2)				Doto Sou	malod: 0	1/00/	06				
Lab Sample ID: J19888-1 Matrix: SO - Soil							Date Received: 01/09/06						
AGF	A-Peerles	s, Shorl	ham, NY	-		Percent	5011ds: 11	/a					
sis, TCLP L	eachate	SW846	5 1311	·									
Result	HW#	MCL	RL	Units	DF	Prep	Analyzed	By	Method	Prep Metho			
0.88	S D006	1.0	0.0050	mg/l	1	01/12/06	01/12/06	LH	SW846 6010B ¹	SW846 3010A			
D 44	0011	5.0	0.010	mg/l	1	01/12/06	01/12/06	LH	SW846 6010B ¹	SW846 3010A			
	D: J1988 SO - S AGFA sis, TCLP L Result 0.88	D: J19888-1 SO - Soil AGFA-Peerles sis, TCLP Leachate Result HW# 0.88 D006	D: J19888-1 SO - Soil AGFA-Peerless, Short sis, TCLP Leachate SW846 Result HW# MCL	e ID: BSB-3A (BUCKET 2) D: J19888-1 SO - Soil AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL 0.88 D006 1.0 0.0050	e ID: BSB-3A (BUCKET 2) D: J19888-1 SO - Soil AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL Units 0.88 D006 1.0 0.0050 mg/l	e ID: BSB-3A (BUCKET 2) D: J19888-1 SO - Soil AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL Units DF 0.88 D006 1.0 0.0050 mg/l 1	D: J19888-1 Date San SO - Soil Date Repercent AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL Units DF Prep 0.88 D006 1.0 0.0050 mg/l 1 01/12/06	e ID: BSB-3A (BUCKET 2) D: J19888-1 Date Sampled: 0 SO - Soil Date Received: 0 Percent Solids: n AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL Units DF Prep Analyzed 0.88 D006 1.0 0.0050 mg/l 1 01/12/06 01/12/06	e ID: BSB-3A (BUCKET 2) D: J19888-1 Date Sampled: 01/09/ SO - Soil Date Received: 01/09/ Percent Solids: n/a AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL Units DF Prep Analyzed By 0.88 D006 1.0 0.0050 mg/l 1 01/12/06 01/12/06 LH	e ID: BSB-3A (BUCKET 2) D: J19888-1 Date Sampled: 01/09/06 SO - Soil Date Received: 01/09/06 Percent Solids: n/a AGFA-Peerless, Shorham, NY sis, TCLP Leachate SW846 1311 Result HW# MCL RL Units DF Prep Analyzed By Method 0.88 D006 1.0 0.0050 mg/l 1 01/12/06 01/12/06 LH SW846 6010B ¹			

(1) Instrument QC Batch: MA16913
 (2) Prep QC Batch: MP32974

13

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project No: J19888

With the State of
Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J19888-1	Leachate	Tclp Metals	09-Jan-06	12-Jan-06

			ł	ţ	I	Ģ	l'H	AI	IN I	U	ľ	ι	UL) 1	J				t	1		F		ſ	wee, ,	.
4		CUTES					TI		35 Rol 2 -32 9-(FED-	EX Trec	king #			Bottk	e Order	Control A	l		
		Laboratori									accut					Accu	test Quo	te #				itest Job	VI	488	8	
Company N		Client / Reporting Infe	ormation	ente accesi dovis do La nota accesi dovisi do				P	noject In	lomal	ion	8										Analysis				Matrix Codea
ATT		Associates			Project	Nama												1							[DW - Dnnking Weler GW - Ground Water
Address					Street											-1	<u> </u>	•	3							WW - Water
		TÉRRI LANE	•	Zip	City				Stal								D MT8		Ē					{	1	SW - Surface Water
City By A Project Contr	Wis	IN NJ		08	City				310	9							STARS [] MTBC	D STATE	212	Ì		ł				SO - Soi
Project Cont	ect /	Na. AA 1 ()	CATC AS	nail Muntal	Project	#	·					-				- 0 8			-1					}		SL - Sludge
Phone #			CATC AS	365.011	Fax #		· · · · · · · · · · · · · · · · · · ·									-1-0-0	8	E E	こわ							01 - 04
	<u>۹ں،</u>	386 5800		•		=			_	_						12821 12821	□ ॻ ₽	고 고 고 고	502							LIQ - Other Liquid
Sampler's No	ame ""	TU			Client P	urchase Or	der #									2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200	10-		1						AIR - Air SOL - Other Solid
Accutest	<u> </u>	Field ID / Point of Collection		SUMMA#		Collection		<u></u>	<u>}</u>		Num	iber of	f preser	ved Bo	ttles			83	3		Į					WP - Wipe
Sample #				MEOH Val	1	Time	Sampled By	Matrix	# of bottles	Ģ	Į	T I	ð y	12	To B	100 100 100 100 100 100 100 100 100 100	N N N	12% 12%	4				1		┝╼	LAB USE ONLY
-1		BSB-3A (Bucket)	2		1.9-06	_	MT		1				<u> </u>		┤╸┤╸		1		Y	+	┼──	1	+	┝╼╉╴	-1	1E4
			·····		+	1.0	1.00		<u>†</u> '−			-+	+	<u>}</u>		+				+	+					<u>• • • · · · · · · · · · · · · · · · · ·</u>
						<u> </u>		┼───	┥───		+	+	-+-	+	┝─┼─					+	+-					
	<u> </u>	<u>}</u>				┼	<u> </u>				-+	-+	_+-	+-	┢╍┽	- -	┫──			+	╉╼╍					
							ļ	├ ───	┥			-+	-+-		+ +						<u> </u>					
						ļ	ļ	ļ				4			┟─┟─		ļ				<u> </u>				<u> </u>	
								 	<u> </u>												<u> </u>	4				
]							7]			
						1			1			-				1	<u> </u>			1	1	1	1			
		·			+	+	†		†			-		-			†				†	1	1			
estatute atomiciany Alexandratica Mari		Tumaround Time (Business Da	ys)						Data D	ellvera	ible Info	ormat	lon								L Comma	nts / Re	narks			
🗆 Std. 15			l By: / Date:	The second s		Comme	rcial "A"				FULL	CLP														
🗖 10 Day P						Comme							tagory A				┝				*** <u>***</u>					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
📑 5 Day R(7 1-9-	06		D NJ Rodi D NJ Full	beot				NYAS State		tegary E Ir	3												
3 Day EN	MERGE		1 (-7-	<u></u>		Cther_					EDD															
2 Day EA																	\vdash									
Ciber						Comm	ercial "A"	= Res	ults Onl	y											•					
Emergency	& Ru	h T/A data available VIA LabL	n k]	Δ																				
Reingbard by			ساء ۳۰۰۰	New R		which y my	it be docu	mented l	below ea	ch lím		pies c quishec		0055656	sion, incl	uding cou	ler deliv	ery 🏭	Date Time:		Receivi	it by				
	\mathcal{T}		1-9-1		10 07	XA	\mathcal{N}				2	4 91 91 19 (2					
Relinquished by		1-1-0	Date Time.		colved by		£				Relina	vished	d by						Date Time:		Receive	ed by:				
3 RolingLished by			Date Turne;	3	iceived by	<u> </u>					4 Cusio	dy See					į ime	nvad wh	ere applicable		4 On in	\checkmark		Con	ier 1emp	
wandowenan ol											0.000	.,					1.43				On ic					(11) 70

APPENDIX B

-

.

Project Name:Peerless IProject No.:68.28817.Project Manager:M. McNallLaboratory:Accutest				J19888 1/9/2006 M. Traxler 2/22/2006		
Compound List: Image: Tall Method: Image: CLP SOV Matrix: Image: Soil/Solid	V 3/90 🔀	Append SW-84 aqueou)	X OtherTCLP X Othermg/L	
The following table indicates the	e data valida	ation	criter	ia exar	nined, problems	identified,
and QA action. Data Validation Criteria:	i	accep	ot FYI	qualif	y comments	
Holding Times Calibration Linearity - Furnace, I and CN	-{g ,	x			Less than 180 d NR	ays
Calibration Verification CRDL Standard		× ×			2-point standard 50 - 150 % R	
Calibration Blanks Preparation Blanks		× ×			< RL < RL	
Field Blank ICP Interference Check Sample		×	×		< RL No FB in 80 - 120 % R	batch
Laboratory Control Sample Matrix Spike Results		× ×	1917 1920 - 1 1921 - 1		80 - 120 % R 75 - 125 % R E	Batch QC
Laboratory Duplicate Results		X X		1.0 1.1	< 20 RPD < 10 RPD	
Post Digestion Analytical Spike Method of Standard Addition					NR NR	
Field Duplicate Results Sample Result Verification		×			< 50 RPD No F Cadmium and S	
Other:						

and the second
NA - Not applicable NR - Not reviewed

QA Scientist M Hapler _____ Date 2/21/06

-norganic Matrix Spike/ Matrix Spike Duplicate Worksheet

Project Name:Peerless Photo ProductsProject Number:68.28817.0001

4.

مربيح ودرف ودار بالتناه فكنفر ال

Case/SDG Number: J19888

ATC

Sample Location or Description Sample Number Sampling Date Units

]	
tion	Batch QC	Batch QC	Batch QC
ber	J19691-1	J19691-1MS	J19691-1MSD
е	1/12/2006	1/12/2006	1/12/2006
	mg/L	mg/L_	mg/L

Spike Sample Result Amount

1997					MS %R	_Q	MSD %R	Q	RPD	Q
Cadmium	0.050	0.000	0.049	0.047	98.0	1 1	94.0		4.2	
Silver	0.050	0.000	0.053	0.053	106.0		106.0		0.0	

MSD Result

MS Result

Q - Qualifier

* - Denotes RPD outside criteria

J19888 MS MSD Results

QA Scientist M Grapler_ Date 2/21/06

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:	ATC Associates, Inc.	Job No	J19888
Site:	AGFA-Peerless, Shorham, NY	Report Date	1/13/2006 5:49:18 PM

1 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 01/09/2006 and were received at Accutest on 01/09/2006 properly preserved, at 3 Deg. C and intact. These Samples received an Accutest job number of J19888. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

I	Matrix: LEACHATE	Batch ID:	MP32974								
Ħ	All samples were digested within the recommended method holding time.										

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

- Sample(s) J19691-1AMS, J19691-1AMSD, J19691-1ASDL were used as the QC samples for metals.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J19888).

DATA USABILITY REPORT

ACCUTEST CASE NO. J11509

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK OCTOBER 2005

REPORTED FEBRUARY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

Mark Grapler

MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of October 3, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

nark Inarder

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY METALS PEERLESS PHOTO PRODUCTS SITE OCTOBER 2005

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) metals (cadmium and silver) results from the October 3, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J11509 included a total of six (6) soil samples, including one (1) set of field duplicate samples, plus one (1) Matrix Spike/Matrix Spike Duplicate (MS/MSD) pair for limited metals (cadmium and silver) analysis. Case J11509 also included one (1) aqueous field blank sample for limited metals (cadmium and silver) analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 3050B (and 3010A for the aqueous field blank sample) and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J11509 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the same day. All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for total cadmium and silver following SW-846 Methods 3050B for digestion and 6010B for analysis. The aqueous cadmium and silver was analyzed following SW-846 Method 3010A for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J11509 metals results be used with no qualifiers.

4.0 SUMMARY

The metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

												h~9c ;
	Site Name	Peerle	ss Photo Product	5		S	Soil (mg/kg)	L	aboratory	Accutest - Daytor	, NJ	
Ρ	roject Number	68.288	317.0001					Cas	e/Order #	J11509		
Sa	mpling Date(s)	10/3/2	005					Fractio	n/Method	Metals / 30508 / 0	5010B	
	Sample Locati or Description	on	APC13IWSW1-N	APC13IW5W2-S	APC13IWSW3-E	APC13WSW3-EMS	APC13IWSW3-EMSE	DUP100305	APC13IWSW4-W	APC13IW-B		
	Sample Numb	er	J11509-1	J11509-2	J11509-3	J11509-4	J11509-5	J11509-6	J11509-7	J11509-8		
	Sampling Date		10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005	10/3/2005		
	Preparation Da	ate	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005		
	Analysis Date		10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005	10/5/2005		
RL	Percent Solids		91.4 Q DF	91,8 Q DF	97.8 Q DF	97.8 Q DF	97.8	96.1 Q DF	96.8	95.4	Q DF	Q DF
0.50	Cadmium	X		2.4 1			Q DF			Q DF		
1,0	Silver	- ÎX	133 2		3.2 1	88.5% 1 77.3% 5	87.5% 1 87.5% 5	2.0 1 223 5	11.1			
						and the second sec						
	Sample Locati or Description	on										
	Sample Numb	eľ.										
	Sampling Date	<u>}</u>										
	Preparation Da	ate										
	Analysis Date Percent Solids			 								
RL		PF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DI	Q DF	Q DF	Q DF
0.50	Cadmium Silver	X										

P - ICP

ł

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Staples DATE 2/28/66

page 1

l	ł	t	I	ł	I	1	1 1		ł	l	ł	1	l	t	•		
						DA	TA SUMMAR	रY -	INORGANIC	: ANA	LYTES					page 1	
	Site Name	Peerless Photo Products				Aqueous (ug/L)					Laboratory			Accutest - Dayton, NJ			
P	roject Number	68.288	317.0001								Case/O	rder#	J1150	9			
Sa	ampling Date(s)	10/3/2005									Fraction/Method		Metals				
	Sample Location	on	FB100305			<u></u>						والمراجعين المحمد بالأقصير					
	Sample Numb	ei.	J11509-9														
	Sampling Date		10/3/2005														
	Preparation Da	ite	10/5/2005							[L				
	Analysis Date		10/5/2005			·	<u> </u>						<u> </u>				
RL		PF	and the second	the second second	Q DF	Q DI		DF	Q DF		Q DF	Q DI		Q DF	Q D	and the second	
<u>4.0</u> 10	Cadmium Silver	X	U. U.							<u> </u>							
				<u></u>						<u></u>							
	Sample Location	מכ				ويتكون وكالمجر المحمد		T					Γ				
	Sample Numb	er															
	Sampling Date																
	Preparation Da	ite								L							
	Analysis Date	No. 1						_		<u> </u>							
RL	and a state of the	ΡF	QD)ト	Q DF	Q DI	Q	DF	QDF		Q DF	Q DI		Q DF	QD	F Q DF	
4.0	Cadmium	X		<u> </u>			() 			<u> </u>			 				
10	Silver	X			Constant Constant	관광적사학			35.5 Cay	1			ं।				

P - ICP

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M. Harder DATE - 2/28/06

APPENDIX A

.

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: J11509

Client Name:

ATC Associates, Inc. AGFA-Peerless, Shorham, NY

			An	alytical R	equirem	ents		
Customer	Laboratory	VOA	BNA				Metals	Other
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC		
· ·		Method	Method	Method	Method	Method		
		8260B	8270C	8081A	8082	8151		Cyanide
APC13IWSW1-N	J11509-1						Х	
APC13IWSW2-S	J11509-2						X	
APC13IWSW3-E	J11509-3						X	
DUP100305	J11509-6						X	_
APC13IWSW4-W	J11509-7						Х	
APC13IW-B	J11509-8						X	
FB100305	J11509-9						Х	

	Report of Analysis									
Client Sample ID:	APC13IWSW1-N									
Lab Sample ID:	J11509-1	Date Sampled:	10/03/05							
Matrix:	SO - Soil	Date Received:	10/04/05							
		Percent Solids:	91.4							
Project:	AGFA-Peerless, Shorham, NY									

Metals Analysis

Attalyte	Result	RL	Units l	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	<0.55 133	0.55 2.2	mg/kg mg/kg			10/05/05 јдм 10/05/05 јдм		SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA16428

(2) Prep QC Batch: MP31798

Report of Analysis

RL = Reporting Limit

· • • · ·

1.

.....

				Page 1 of 1						
Client Sample ID:	APC13IWSW1-N				 					
Lab Sample ID:	J11509-1			Date S	Sampled: 10/03	5/05				
Matrix:	SO - Soil			Date I						
				Percent Solids: 91.4						
Project:	AGFA-Peerless, Shor	bam, NY								
General Chemistry	,		•				r			
Analyte	Result	RL	Units	DF	Analyzed	By	Method			
Solids, Percent	91.4		%	· 1	10/05/05	AK	EPA 160.3 M			

tere communication data?

				Rej	Page 1 of 1			
Client Samp Lab Sample		13IWSW2	2-S			Date San	apled: 10/03/0:	5
Matrix:	SO -	Soil				Date Rec Percent S		5
Project:	AGF	A-Peerles	s, Shorha	m, N	Y			
Metals Analy	ysis			~~~~	.			
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	2.4 394		mg/kg mg/kg			10/05/05 јдм 10/05/05 јдм		SW846 3050B ² SW846 3050B ²
(1) Instrumen	t OC Batch:	MA16428	3					

(2) Prep QC Batch: MP31798

varea la a

Page 1 of 1 Client Sample ID: APC13IWSW2-S Lab Sample ID: Date Sampled: 10/03/05 J11509-2 Matrix: SO - Soil Date Received: 10/04/05 Percent Solids: 91.8 Project: AGFA-Peerless, Shorham, NY General Chemistry Analyte RL Method Result Units DF Analyzed By Solids, Percent 91.8 % 1 10/05/05 EPA 160.3 M AK

P

. •

Report of Analysis

Report of Analysis Client Sample ID: APC13IWSW3-E Lab Sample ID: J11509-3 Date Sampled: 10/03/05 Date Received: 10/04/05 Matrix: SO - Soil Percent Solids: 97.8 Project: AGFA-Peerless, Shorham, NY **Metals Analysis** Analyte Result RL Units DF Analyzed By Method Prep Method Prep SW846 3050B ² Cadmium < 0.53 0.53 10/05/05 10/05/05 JDM SW846 6010B¹ mg/kg 1 3.2 1.1 10/05/05 10/05/05 JDM SW846 6010B ¹ SW846 3050B 2 Silver mg/kg 1

(1) Instrument QC Batch: MA16428

(2) Prep QC Batch: MP31798

Page 1 of 1

1

		Page 1 of 1					
Client Sample ID:	APC13IWSW3-E						
Lab Sample ID:	J11509-3			Date 8	Sampled: 10/03	/05	
Matrix:	SO - Soil			Date 1	Received: 10/04		
				Percer			
Project:	AGFA-Peerless, Shore	rham, NY					
General Chemistry	į						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	97.8		%	1	10/05/05	AK	EPA 160.3 M

4 8

• 4

........

.

				Rej	port of A	Analysis			Page 1 of 1
Client Sample									
Lab Sample ID	: J1150	9-6				Date S	ampled:	10/03/05	1
Matrix:	SO - S	loil				Date R	eceived:	10/04/05	
						Percen	t Solids:	96.1	
Project:	AGFA	-Peerles	s, Shorba	m, NY	ŕ				
Metals Analysi	s								
Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Met	hod	Prep Method
Cadmium	2.0	0.53	mg/kg	1	10/05/05	10/05/05 JE	M SW84	46 6010B ¹	SW846 3050B ²
Silver	223	5.3	mg/kg	5	10/05/05	10/05/05 JE	M SW84	46 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA16428
 (2) Prep QC Batch: MP31798

, .

t i terretari de la deserverte de la deserv

aktivity (December 2011), p.8

				Page 1 of 1			
Client Sample ID: Lab Sample ID:	DUP100305 J11509-6			Date S	Sampled: 10/02	3/05	
Matrix:	SO - Soil						
Project:	AGFA-Peerless, Sho	orham, NY			nt Solids: 96.1		
General Chemistry	· · · · · · · · · · · · · · · · · · ·						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
Solids, Percent	96.1	lan 141	%	1	10/05/05	AK	EPA 160.3 M

· · ·

Report of Analysis

Client Sample ID: APC13IWSW4-W Lab Sample ID: J11509-7 Date Sampled: 10/03/05 Matrix: SO - Soil Date Received: 10/04/05 Percent Solids: 96.8 Project: AGFA-Peerless, Shorham, NY **Metals Analysis** Prep Method Analyte Result RL Units DF Prep Analyzed By Method SW846 3050B 2 Cadmium <0.51 0.51 mg/kg 1 10/05/05 10/05/05 JDM SW846 6010B⁻¹ 11.1 1.0 SW846 3050B² 10/05/05 10/05/05 JDM SW846 6010B 1 Silver mg/kg 1

(1) Instrument QC Batch: MA16428

(2) Prep QC Batch: MP31798

Page 1 of 1

and and the state of the second s

		Report of Analysis											
Client Sample ID: Lab Sample ID:	APC13IWSW4-W J11509-7												
Matrix:	SO - Soil			Date S Date I									
Project:	AGFA-Peerless, Sh												
General Chemistry		•==											
Analyte	Result	RL	Units	DF	Analyzed	By	Method						
Solids, Percent	96.8		%	1	10/05/05	AK	EPA 160.3 M						

Z

Report of Analysis

Client Sample ID: APC13IW-B Lab Sample ID: J11509-8 Date Sampled: 10/03/05 Matrix: SO - Soil Date Received: 10/04/05 Percent Solids: 95.4 Project: AGFA-Peerless, Shorham, NY **Metals Analysis** RL **Prep Method** Analyte Result Units DF Prep Analyzed By Method 1.60.533105.3 SW846 3050B² Cadmium mg/kg 1 10/05/05 10/05/05 JDM SW846 6010B¹ SW846 3050B² Silver mg/kg 5 10/05/05 10/05/05 JDM SW846 6010B¹

(1) Instrument QC Batch: MA16428

(2) Prep QC Batch: MP31798

Page 1 of 1

Report of Analysis Page 1 of 1 Client Sample ID: APC13IW-B Lab Sample ID: J11509-8 Date Sampled: 10/03/05 Matrix: SO - Soil Date Received: 10/04/05 Percent Solids: 95.4 Project: AGFA-Peerless, Shorham, NY **General Chemistry** RL Units DF Analyzed Method Analyte Result By Solids, Percent 95.4 % 1 10/05/05 EPA 160.3 M

AK

Report of Analysis

Page 1 of 1

Client Sample I Lab Sample ID: Matrix:	J1150		ink Soil			Date Sam Date Rec Percent S	eived: 10/04/05	
Project:	AGF	A-Peerles	s, Shorha	m, N	Y			
Metals Analysis								
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Silver	<4.0 <10	4.0 10	ug/l ug/l	1 1	10/05/05 10/05/05	10/05/05 nd 10/05/05 nd	SW846 6010B ¹ SW846 6010B ¹	SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA16426
 (2) Prep QC Batch: MP31804

RL = Reporting Limit

.

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: <u>J11509</u>

Client Name: <u>ATC Associates, Inc.</u> <u>AGFA-Peerless, Shorham, NY</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J11509-1	Soil	T.A.L Metals	3-Oct-05	4-Oct-05
J11509-2	Soil	T.A.L Metals	3-Oct-05	4-Oct-05
J11509-3	Soil	T.A.L Metals	3-Oct-05	4-Oct-05
J11509-6	Soil	T.A.L Metals	3-Oct-05	4-Oct-05
J11509-7	Soil	T.A.L Metals	3-Oct-05	4-Oct-05
J11509-8	Soil	T.A.L Metals	3-Oct-05	4-Oct-05
J11509-9	Field Blank Soil	T.A.L Metals	3-Oct-05	4-Oct-05

ł	1	ſ	4 1	ł	1		ŧ	(ł	ſ		ł		t		ſ		F	sanger	Γ-	Г		r	· • • •
						(H		NC					JD										/
ь 🛃	ACC	UTE	ST.				TI		5 Route -329-02					480		X Trucki		• 		$-\Gamma$		<u>930/</u>	05-2	<u>-</u>
	La	borat	ories						WW	/₩.8000	ilesi.co	101			Accule	si Quate	. #			Accut	iusi Job #	J	1150	9
Сотралу	and a second	Client / Report	rting Information		Project	Name		Pr	oject Infor	mation	1990 1910						<u> </u>		1 	equested A	inalysis	315		Matrix Codes DW Drinking Water
	ATC AS	Sociat	es. Inc.	······	F	FG	7-1	rec	less	Ph	otol	ia	hets					88	80	ł				GW - Cround Water
Address	3 Ter		he		Street	51	Zar	<u>da</u>	11	Ro	a	7			n¤	1985		3	6010					WW - Water
CityBu	onling T	CO Stale	JJ 08	01L	City <	Sha	Leh	An	State	ĥ	N				2012	ST4FS CINTRE	5-48 1 - 01	হ্						SW - Surface Weler SO - Solt
Project C				mall	Project	" (o`	8.2	05	>17			\sim	·		۲ ۲۵ ۲		5 5 5 5 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7	ADMIUM	Neg					SL - Sludge
Phone #		386-2	2 2 a A	<u> </u>	Fax #				86-	. '7	$\frac{1}{\alpha}$		L		С 1 25, 25,		5° 01 7 <u>8</u>	B	امند این					UL-OII
Sampler's	Name I	<u>- 000</u>			Client P	Urchase Ord	¥	· <u>)</u>	00		<u> </u>	<u> </u>			_0	· 1	0,1	Ŭ						AIR - Air
Acculas	icole	eld ID / Point of C		SUMMA#		Callection		Ţ		Nu	mber of	preserve	d Bollies				1 1 22	Ð	F					SOL - Other Solid WP - Wip e
Sample				MEOH Vial #	Date	Time	Sampled By	Matrix	# of boillos	r 5	-100 104	je.	10 m	£00€	00 828 828	ព ខេត្ត ខេត្ត	82:00 784 0	5	10					LAB USE ONLY
-1	APCIJI		╺╍╼╼┶	<u> </u>	1030			8	1		\square	×						1	X_		$\left - \right $			MES
	APC 131			<u> </u>	10)3/05	1020	106	X	$\downarrow\downarrow$		┟╌┼╴	14	┟╌┼╴					X	X		┼╌┤			AMET 10
- 3	APCIST				10/3/05		NG	8	1		┟╌┥╸	1	┟╶┼╴					X	<u>x</u>		┼╌┧			
2 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1			EMS B-EMSD	<u> </u>	10/3/05	1	<u>16</u>	C	+		┟╺┼╴	+	┟╶╁╸	┼┥			+	X			╁╌┤	+-		}
. 6	DUPIC			<u> </u>		0900	<u>50</u>	850	-i+		+	Y	┟╶┽╴	╉╾┧		-+	+	7	$\frac{\lambda}{\sqrt{2}}$		┟╍╍┥			}
7	APCIZI	wswi	1-W		10/305	1030	ng	So)			7						X	$\overline{\mathbf{X}}$					
- 9	APCISI				lolsbs	1035	n6	8	1			И						X	X					
. 9	FBIOC	<u>1305</u>		 	1013103	1100	16	<u>Sq</u>			X			4-4				X	X1					
	Tuma	round Time (Busir	ness Deys)						Úala Deli	verable in	nformatic								1175-1174P	Comme	nts / Rem	arks	i prosvanji	
1	15 Business, Days	A	Approved By: / Date:		1] Commer] Commer											~		2.					
□ 10 Di □ 5 Daj		-			C] NJ Redu				K NYA	SP Cale	egory B				1	J		<u> </u>					
1	EMERGENCY	_			~] NJ Full] Other				EDC						\top	18	TA	X	1h	R.	TU	25	\
0-100	TEMERGENON-	\mathfrak{G}			-	<u></u>			11- Ch								<u> </u>		<u> </u>		<u> </u>			- <u>1</u>
Emerger	ncy & Rush T/A da	ta avaliable VI/	A LabLink		-	Comm	ercial *A	- Kesi	nts Offiy												· · · ·			
Reinquishe	d by Sampler		Dele Tim	- M-25-		Lustody mus	.7	mented b	elow eact		mples ch inquished		, 7	, includi	ng court	er delive	'γ		inty/cu	d Receive	id by	17	× //	
1 Relinguishe		1-6	JO 3	25 1	celvod by	<u> , e</u>	X.	∑_			nyuished	Uy Co	K?					IJALO/	18	2 Receive	ed by:	and a	\mathcal{A}	<u>د</u>
3		· · ·		3	· · ·					1				_		D	und ober			4			Cooler Te	
Religouishe	ט טי:	·	Date Tim	а: Кө ,	served by						lody Seal	6	32			Prese	veo wnei E	-785	inte 10/4/2					""]. 2°C

P

APPENDIX B

Project Name: Project No.: Project Manager: Laboratory:	Peerless Photo Pr 68.28817.0001 M. McNally Accutest			San Rev	e No./SDG: npling Date(s): riewed By: npletion Date:	J11509 10/3/2005 M. Traxler 2/20/2006
Compound List: Method: Matrix:	X TAL CLP SOW 3/90 X soil/solid (mg/Kg)	X SW-84			Other Other	
The following table in and QA action.	dicates the data v	alidation	criteri	a exar	nined, problems	identified,
Data Validation Criter	ia:	accep	ot FYI	qualif	y comments	
Holding Times			\square	\square	Less than 180 d	ays
Calibration Linearity - and CN	Furnace, Hg ,				NR	
Calibration Verification	n	X			2-point standard	i Sharan a shekara a shekara shekara
CRDL Standard		X			50 - 150 % R	
Calibration Blanks	an the state of the second second second	X			< RL	동일 - 외장 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등
Preparation Blanks		×			< RL-	
Field Blank	ter and the standard and associate	X			< RL	
ICP Interference Chec	k Sample	X			80 - 120 % R	
Laboratory Control Sa	ample	X			80 - 120 % R	e de la calega de la
Matrix Spike Results		X			75 - 125 % R	
Laboratory Duplicate	Results	×			< 20 RPD	en de la contra de l
ICP Serial Dilution		×			< 10 RPD	
Post Digestion Analy	ical Spike				NR	ana Mari Mari Angela Angela
Method of Standard A	ddition				NR	
Field Duplicate Resul	ts The extension was and	X			< 50 RPD	an an an the state of the second
Sample Result Verific	ation	×		84 Q 94	Cadmium and S	Silver
Other:						

NA - Not applicable NR - Not reviewed

No.

QA Scientist_M. Flapler_____ Date_728/06

Inorganic Matrix Spike/ Matrix Spike Duplicate Worksheet ATC

Project Name: Peerless Photo Products Project Number: 68.28817.0001 Case/SDG Number: J11509

MSD Result

Sample Location or Description Sample Number Sampling Date Units

APC13IWSW3-E	APC13IWSW3-EMS	APC13IWSW3-EMSE
J11509-3	J11509-4	J11509-5
10/3/2005	10/3/2005	10/3/2005
mg/kg	mg/kg	mg/kg

MS Result

Spike Sample Result Amount

•					MS %R	Q	MSD %R	Q	RPD
Cadmium	9.8	0.0	8.7	8.6	88.5		87.5		1.2
Silver	9.83	3.2	10.8	11.8	77.3		88		8.8

Q - Qualifier

* - Denotes RPD outside criteria

J11509 MS MSD Results

QA Scientist M Fixpler ______Date_____28/06

Inorganic Field Duplicate Precision Worksheet ATC

Project Name: Project Number:

.....

Peerless Photo Products 68.28817.0001

Case/SDG Number: J11509

Sample Location	APC13IW-B	DUP100305
or Description		
Sample Number	J11509-8	J11509-6
Sampling Date	10/3/2005	10/3/2005
Units	mg/kg	mg/kg

Sample

Field Duplicate

			RPD	Q
Cadmium	1.6	2.0	22.2	
Silver	310	223	32.6	

* - Denotes RPD outside criteria

QA Scientist M Flagler Date 2/28/06

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: ATC Associates, Inc.

الم الرادير مترينه ما مخشقه الرام م

Job No J11509

Site: AGFA-Peerless, Shorham, NY

Report Date 10/10/2005 5:03:45 P

6 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were collected on 10/03/2005 and were received at Accutest on 10/04/2005 properly preserved, at 3.2 Deg. C and intact. These Samples received an Accutest job number of J11509. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

	Matrix: AQ	Batch ID:	MP31804								
-	All samples were digested within the recommended method holding time.										
3	All samples were analyzed within the recommended method holding time.										
-	All method blanks for this batch r	neet method specific crit	eria.								
<u> </u>	Matrix: SO	Batch ID:	MP31798								

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) J11509-3MS, J11509-3MSD, J11509-3SDL were used as the QC samples for metals.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO	Details (D)	G1102.470
Matrix: SO	Batch ID:	GN83479

There is no applicable data to evaluate for EPA 160.3 M.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J11509).

Page 1 of 1

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J11509 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31798 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

Prep Date:				10/06/05	
Metal	J11509-3 Original		Spikelot MPIRS1	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic	anr				
Barium	anr				
Beryllium	anr			• •	
Cadmium	0.0	8.7	9.8	88.5	75-125
Calcium				• •	
Chromium	anr			· .	
Cobalt				•	
Copper				• .	
Iron				•	
Lead	anr				
Magnesium				•	
Manganese					
Molybdenum					
Nickel	anr				
Palladium					
Potassium					
Selenium	anr				
Silicon					
Silver	3.2	10.8	9.83	77.3	75-125
Sodium					
Thallium				·	
Fin					
Vanadium					
Zinc	anr				

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

•

60

Login Number: J11509 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31798 Matrix Type: SOLID Methods: SW846 6010B Dnits: mg/kg

Prep Date:					10/06/05		
Metal	J11509~3 Original		Spikelot MPIRS1	€ Rec	MSD RPD	QC Limit	
Aluminum							
Antimony							
Arsenic	anr						
Barium	anr						
Beryllium	anr						
Cadmium	0.0	8.6	9.8	87.5	1.2	20	
Calcium							
Chromium	anr						
Cobalt							
Copper					- - -		
Iron					<i>.</i> .		
Lead	anr				-		
Magnesium					· · · · ·		
Manganese					· · ·		
Molybdenum					•		
Nickel	anr						
Palladium							
Potassium							
Selenium	anr						
Silicon							
Silver	3.2	11.8	9.83	87.5	8.9	20	
Sodium							
Thallium							
Tin							
Vanadium							
Zinc	anr				-		
Associated sa	mples MP317	98: J11	1509-1, J11	509-2,	J11509-3, J	11509-6, Ј11509-7, Ј11509-В	
Results < IDL (*) Outside o (N) Matrix Sp (anr) Analyte	f QC limits ike Rec. ou	tside o			purposes		
							. ;

Login Number: J11509 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31798 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

Prep Date:			10/06/05	5	 	 	
Metal	BSP Result	Spikelot MPIRS1	* Rec	QC Limits		 	
luminum							
Antimony							
Arsenic	anr						
Barium	anr						
Beryllium	anr		1. j.				
Cadmium	8.5	10	85.0	80-120			
Calcium							
Chromium	anr						
Cobalt							
Copper			•				
Iron			•				
Lead	anr						
Magnesium							
Manganese							
Molybdenum			at pr				
Nickel	anr						
Palladium							
Potassium							
Selenium	anr						
Silicon			e Al an an an				
Silver	8.5	10	85.0	80-120			
Sodium							
Thallium			en e				
Tin							
Vanadium							
Zinc	anr						

Associated samples MP31798: J11509-1, J11509-2, J11509-3, J11509-6, J11509-7, J11509-8

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

DATA USABILITY REPORT

H2M CASE NO. ATC017

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK MARCH 2007

REPORTED APRIL 2007

ATC PROJECT NO. 68.28817.0001

PREPARED BY

['] MARK TRAXLER SENIOR QUALITY ASSURANCE SCIENTIST

920 Germantown Pike, Suite 200 • Plymouth Meeting, PA 19462

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of March 20, 2007 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Glader

Mark Traxler Senior Quality Assurance Scientist

DATA USABILITY SUMMARY METALS PEERLESS PHOTO PRODUCTS SITE MARCH 2007

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the two (2) metals (cadmium and silver) results from the March 20, 2007 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case 0703712 included a total of six (6) soil samples, including one (1) set of field duplicate samples, plus one (1) Matrix Spike/Matrix Duplicate (MS/MD) pair for limited metals (cadmium and silver) analysis. Case 0703712 also included one (1) aqueous field blank (FB) sample.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by H2M Laboratories (H2M), Melville, New York following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 3050B and 6010B. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case 0703712 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the two (2) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from H2M was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, delivered under a chain of custody record, and received at H2M on the same day. All samples were received intact and in good condition at H2M.

The soil samples were collected and analyzed for total cadmium and silver following SW-846 Methods 3050B for digestion and 6010B for analysis.

3.0 FINDINGS/QUALIFIERS

The following metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case 0703712 metals results be used with the following qualifiers:

- 1. All results that were above the IDL but less than the CRDL were flagged by the laboratory with a "B". Since these values were less than the CRDL, the results were qualified as estimated (J).
- The MD relative percent difference (RPD) for silver exceeded the method requirements of 20%, but not the project Data Quality Objective (DQO) of 35% (33.4%). Therefore, no qualification of silver results was made due to the MD.
- 3. The ICP serial dilution exceeded the control limit of 10% difference (25.0%) for cadmium on sample APC11-BS-56. However, since the original value of cadmium was less than 50 times the IDL, the ICP serial dilution for cadmium was acceptable. No qualification of data was deemed necessary due to the ICP serial dilution results.

4.0 SUMMARY

The metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check

sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

Site Name	Peerless Photo Products	Soil (mg/kg)	Laboratory	H2M - Melville, New York
Project Number	68.28817.0001	Aqueous (ug/L)	Case/Order #	ATC017
Sampling Date(s)	3/20/2007		Fraction/Method	Metals / 3050B / 6010B

	Sample Location or Description	APC-11-BS-56	APC-11-BS-56 MS	APC-11-BS-56 MD	APC-11-SW-19Z	APC-11-SW-20Z	APC-11-SW-20Z Dup	APC-11-FB-200			
	Sample Number	0703712-001	0703712-001S	0703712-001D	0703712-002	0703712-003	0703712-004	0703712-005			
	Sampling Date	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007			
	Preparation Date	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007			
	Analysis Date	3/21/2007	3/21/2007	3/21/2007	3/21/2007	3/21/2007	3/21/2007	3/21/2007			
	Percent Solids	89.2	89.2	89.2	86.5	80.7	80.3	0.0			
RL	P F	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
0.50	Cadmium X	0.17 B J 1	99.4%	0.19 B 1	0.28 B J 1	0.46 B J 1	0.47 B J 1	0.76 B J 1			
1.00	Silver X	5.9* 1	78.7% 1	8.2 * 1	0.48 B* J 1	5.0 * 1	5.6 * 1	0.51 U U 1			

	Sample Location or Description										
	Sample Number										
	Sampling Date										
	Preparation Date Analysis Date Percent Solids										
	Analysis Date										
	Percent Solids					_					
RL	PF	Q DF	QDF								
0.50	Cadmium X Silver X										

P - ICP

F - Flame AA

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Starder DATE 4/27/09

page 1

APPENDIX A

,

U.S. EPA - CLP

	1		
INORGANIC	ANALYSTS	DATA	SHEET

EPA SAMPLE NO

	INORGANIC ANA	INORGANIC ANALYSIS DATA SHEET					
Lab Name: H2M LABS,	INC. Contract:		APC-11-BS-56				
Lab Code: <u>10478</u>	Case No.	SAS No.:	SDG No.: ATC017				
Matrix (soil/water):	SOIL	Lab Sample ID:	0703712-001				
Level (low/med):	1.OW	Date Received:	3/20/2007				
% Solids:	<u>89.2</u>						
Concentration Units (uc/L or mg/kg dry weight): MG/KG							

CAS No.	Analyte	Concentration	С	Q	м
7440-43-9	Cadmium	0.17	В		P
7440-22-4	Silver	5.9		•	Р

Color Before: BROWN	Clarity Before:		Texture:	MEDIUM
Color After: YELLOW	_ Clarity After:	CLEAR	Artifacts:	

Comments: DATE REPORTED: MARCH 26, 2007

ILM04.1

i.

ł

	1		EPA SAMPLE NO
Lab Name: H2M LABS,		ANALYSIS DATA SHEET Contract:	APC-11-SW-192
Lab Code: <u>10476</u>	Case No.	SAS No.:	SDG NO.: ATCO17
Matrix (soil/water):	SOIL	Lab Sample ID:	0703712-002
Level (low/med):	LOW	Date Received:	3/20/2007
% Solids:	86.5		
Concentrat	ion Units (ug/L o	r mg/kg dry weight): MG/H	KG

CAS No.	Analyte	Concentration	с	Q	м
7440-43-9	Cadmium	0.28	В	<u>.</u>	P
7440-22-4	Silver	0.48	В	*	P
			Γ	}	

Color Before: BROWN	Clarity Before:		Texture:	MEDIUM
Color After: <u>YELLOW</u>	Clarity After:	CLEAR	Artifacts:	

Comments: DATE REPORTED: MARCH 26, 2007

1EPA SAMPLE NOINORGANIC ANALYSIS DATA SHEETAPC-11-SW-20ZLab Name: H2M LABS, INC.Contract:Lab Code: 10478Case No.SAS No.:SDG No.: ATC017Matrix (soil/water):SOILLevel (low/med):LOWB0.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7440-43-9	Cadmium	0.46	В		P
7440-22-4	Silver	5.0		*	Р

Color Before: BROWN	Clarity Before:		Texture:	MEDIUM
Color After: YELLOW	Clarity After:	CLEAR	Artifacts:	

Comments:

DATE REPORTED: MARCH 26, 2007

ATC017 S16

ILM04.1

			EPA SAMPLE NO
	INORGANI	C ANALYSIS DATA SHEET	APC-11-SW-202 DUP
Lab Name: <u>H2M_LABS,</u>	INC.	Contract:	
Lab Code: <u>10478</u>	Case No.	SAS No.:	SDG No.: ATCO17
Matrix (soil/water):	SOIL	Lab Sample ID:	0703712-004
Level (low/med):	LOW	Date Received:	3/20/2007
% Solids:	80.3		
Concentra	tion Units (ug/L	or mg/kg dry weight): MG/K	<u>sc</u>

CAS No.	Analyte	Concentration	С	Q	м
7440-43-9	Cadmium	0.47	В		P
7440-22-4	Silver	5.6		*	P

Colcr Before:	BROWN	Clarity	Before:		Texture:	MEDIUM
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	. <u></u> ,

Comments:

DATE REPORTED: MARCH 26, 2007

.

ATC017 S17

1

1 EPA SAMPLE NO INORGANIC ANALYSIS DATA SHEET APC-11-FB-200 Lab Name: <u>H2M LABS, INC.</u> Contract: Lab Code: 10478 Case No. SAS No.: SDG No.: ATC017 Matrix (soil/water): WATER Lab Sample ID: 0703712-005 Level (low/med): Date Received: <u>3/20/2007</u> LOW % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): UG/L

Texture:

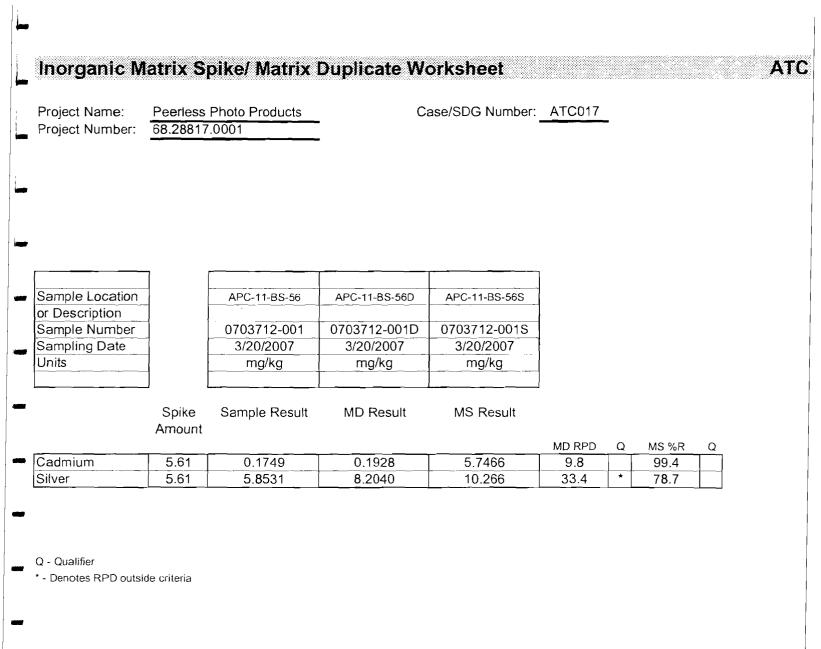
Artifacts:

CAS NO.	Analyte	Concentration	С	Q	М
7440-43-9	Cadmium	0.76	в		P
7440-22-4	Silver	0.51	υ		P

Color Before: COLORLESS Clarity Before: CLEAR Color After: COLORLESS Clarity After: CLEAR

Comments:

DATE REPORTED: MARCH 26, 2007


APPENDIX B

Project Name: Project No.: Project Manager: _aboratory:	Peerless Photo Pro 68.28817.0001 T. Gregory H2M	oducts		Sar Rev	se No./SDG: mpling Date(s): viewed By: mpletion Date:	ATC017 3/20/2007 M. Traxler 4/26/2007
Compound List: Method: Matrix:	TAL CLP SOW 3/90 Soil/solid (mg/Kg)	X SW-84)	X OtherCd, Ag	
and QA action.	ndicates the data va					dentified,
Data Validation Crite	eria: 	accep		quali	fy comments	
Holding Times		X	11		Less than 180 d	ays
Calibration Linearity and CN	- Furnace, Hg ,				NR	
Calibration Verificati	ion	X			2-point standard	ł
CRDL Standard		X			50 - 150 % R	
Calibration Blanks		X			< RL	
Preparation Blanks		x			< RL	
Field Blank		X			< RL	
CP Interference Che	eck Sample	x	11		80 - 120 % R	
_aboratory Control §	Sample	X			80 - 120 % R	
Matrix Duplicate Res	ults	X	ţ ţ		< 35 RPD	
Matrix Spike Results	i	X			Ag > 4X spike a	mount
CP Serial Dilution			x		Cd > 10 RPD, b	ut < 50x IDL
Post Digestion Analy	ytical Spike				NR	
Method of Standard	· · ·				NR	
Field Duplicate Resu	lits	X			< 50 RPD	
Sample Result Verifi		x			Cadmium and S	ilver
Other:						

NA - Not applicable NR - Not reviewed

QA Scientist M Hapler

_____Date__4/27/07

ATC017 MD MS Results

QA Scientist M Flaples Date 4/27/07

Inorganic Field Duplicate Precision Worksheet ATC

Project Name: Project Number:

Peerless Photo Products 68.28817.0001 Case/SDG Number: ATC017

Sample Location	APC-11-SW-20Z	APC-11-SW-20Z
or Description		
Sample Number	0703712-003	0703712-004
Sampling Date	3/20/2007	3/20/2007
Units	mg/kg	mg/kg

Sample

Field Duplicate

	_		RPD	Q
Cadmium	0.46	0.47	2.2	\square
Silver	5.0	5.6	11.3	

* - Denotes RPD outside criteria

QA Scientist M Hapler Date 4/27/07

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

SDG:	ATC017	
------	--------	--

Analytical Requirements

Customer Sample Code	Laboratory Sample Code	ME
APC-11-BS-56	0703712-001	X
APC-11-SW-19Z	0703712-002	X
APC-11-SW-20Z	0703712-003	x
APC-11-SW-20Z DUP	0703712-004	X
APC-11-FB-200	0703712-005	X

CLP(Non-CLP (Please indicate year of protocol)

ASP B 10/2000 CEL 3/20107

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

1

t

ł

1

Í

1

T

F

F

1

ł

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

<u>SDG : ATC017</u>

1

Ł

I

ł

ł

Laboratory Samp ID	Client Sample ID	Matrix	Metals Requested	DateRecd Date at Lab Analyzed
0703712-001	APC-11-BS-56	SOIL	AG,CD,	20-Mar-07 03/07
0703712-001DUP	APC-11-BS-56D	SOIL	AG,CD,	20-Mar-07 03/07
0703712-001MS	APC-11-BS-56S	SOIL	AG,CD,	20-Mar-07 03/07
0703712-002	APC-11-SW-19Z	SOIL	AG,CD,	20-Mar-07 03/07
0703712-003	APC-11-SW-20Z	SOIL	AG,CD,	20-Mar-07 03/07
0703712-004	APC-11-SW-20Z DUP	SOIL	AG,CD,	20-Mar-07 03/07
0703712-005	APC-11-FB-200	WATER	AG,CD,	20-Mar-07 03/07

H2M LABS, INC.

ŧ

ł

ł

ŧ

1

20534

ŧ

ł

Ì

ł

1

EXTERNAL CHAIN OF CUSTODY

T

.

Tel: (631) 694-3040 Fax: (631) 420-8436	CLIEN	IT:	AT	TC	, 						H2M SDG	NO: ATCOIT
SHOREHAM REMEDIATION	Sample Container Description				Street of	AN ALA		, M.C.		NOTES: * SILVEN PMI 21HR7	e écromiun Ast AT	Phone Number: (609) 784-3648 PISQuate#>
DELIVERABLES:	>				175			202		1 102 6	ER Silm Di	900
HURNAROUND TIME; 21DAM FR. KAGE	Total No. of Containers	080	AN GANI		SIS RE		STED	INOI	86	ms/msD	ER SAMPI 3 JARS	
DATE TIME MATRIX FIELD I.D.		V OA		PCB				Metal	z	LAB I.C		REMARKS:
1/2067 1:50 Soil APC-11-5W-192						\bot				07037	12-002	
120/071:56 5011 APC-11-5W-20Z											12-003	
10007 1:59 Soil APC-11-5W-202 DUP	1							1		<u>p7037</u>	12-004	
120/07 2:05 Soil APC-11-BS-56										070371	2-001	
holozatt Soil APC-11-B5-56 MS												
120/07 22-15 Soil APC-11-BS-56 MSD	1							1				
3/2067 2:20 Aq APC-11- FB-200								1		070371	2-005	
Relinquished by (Skarlature) Date Time Received t	by: (Signature)				Date		Time		l	LABOR	TORY USE OI	
Relinquished by (Signature) Date Time Received to 3:20 2.14:59	, d	_			5/24	1 1	6:53	Disc	repa	ncias Between	Samoles were:	
tellinquished by/(Signature) Date Time Received t	oy: (Signature)				Dale		Time	CO	CRe	Labels and cord? Y or N	2. Ambient or chille 3. Received in goo	d condition: Y or N
telinquished by: (Signature) Date Time Received t	by: (Signature)				Date		Time		lain:		4. Property preserv	
Relinquished by: (Signature) Date Time Received b	y; (Signature)				Date		Time					rpackage: Y or N lerpackage: Y or N sent & complete upon sample recei;

ATCO 786 - ORIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

SDG NARRATIVE FOR METALS SAMPLES RECEIVED: 3/20/07 SDG #: ATC017

For Samples:

APC-11-BS-56 APC-11-SW-19Z APC-11-SW-20Z APC-11-SW-20Z DUP APC-11-FB-200

One water sample and four soil samples were received by H2M Labs, Inc. on 3/20/07 for cadmium and silver analysis.

Samples were prepared and analyzed using EPA method 6010B with a TJA 61E trace ICP instrument.

Sample APC-11-BS-56 was utilized for QC analysis and reporting.

Duplicate analysis did not reproduce within acceptance ranges for silver. Silver data was reported flagged "*" on Forms 1 and 6.

No other issues were noted during the analysis of this sample group.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or bis designee, as verified by the following signature.

Date Reported: March 30, 2007

Vincent Stancampiano Vice President

H2M LABS, INC.

QUALIFIERS FOR METALS ANALYSIS

Q (Quality Control) Qualifiers

- E The reported value is estimated because of the presence of interference. An explanatory note is included in the SDG narrative.
- M Duplicate injection precision not met.
- N Matrix spike sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- + Correlation coefficient for the MSA is less than 0.995
- W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis is not within control limits.

C (Concentration) Qualifiers

- B Entered if the reported value is less than the Contract Required Detection Limit (CRDL) but greater than the Instrument Detection Limit (IDL).
- U Entered if the analyte was analyzed for but not detected, i.e., less than the IDL.

M (Method) Qualifiers

- P Analyzed by ICP.
- M Analyzed by ICP-MS
- A Analyzed by Flame AA.
- F Analyzed by Furnace AA.
- CV Analyzed by Manual Cold Vapor techniques.
- AV Analyzed by Automated Cold Vapor techniques.
- C Analyzed by Manual Spectrophotometric Method.
- CA- Analyzed by Midi-distillation Spectrophotometric Method.
- NR Analyte not Required.

	6		EPA SAL	IPLE NO
	DUPLICATES		APC-11	-BS-56
Lab Name: <u>H2M LABS, INC.</u>	Contract:			
Lab Code: <u>10478</u> Cas	e No. SAS No	.:	SDG No.:	<u>ATC017</u>
Matrix (soil/water): <u>SOII</u>		Level	(low/med):	LOW
% Solids for Sample: 89.2	ę	Solids for	Duplicate:	89.1

Concentration Units (ug/L or mg/kg dry weight): MG/KG

t Sample (S)	C Duplicate	(D) C	RPD Q
5 0.1749	B	0.1928 B	9-8-
5.8531		8.2040	/ 33.4 7
	<u> </u>		

ATC017 S20

ILM04.1

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO

Contract: Lab Code: 10478 Case No. SAS NO.: SDG NO.: <u>ATCO17</u>

Level (low/med): LOW

Matrix (soil/water): SOIL % Solids for Sample: <u>89.2</u>

Lab Name: H2M LABS, INC.

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	Control Limit	Spiked Sample	Sample	Spi	ke			
Analyte	۶R	Result (SSR) C	Result (SR) (Added	(SA)	%R	Q	M
Cadmium	75-125	5.7466	0.1749 E	3	5.61	99.4		P
Silver	75-125	10.2660	5.8531		5.61	78.7		P

Comments:

FORM V (Part 1) - IN

APC-11-BS-56S

Lab Name:<u>H2M LABS, INC.</u>Contract:Lab Code:<u>10478</u>Case No.SAS No.:SDG No.: <u>ATC017</u>Preparation Blank Matrix (soil/water):<u>SOIL</u>Preparation Blank Concentration Units (ug/L or mg/kg):<u>MG/KG</u>

Cadmium Silver	1.1 B 0.5 U	1.2 E 0.6 E		 .0 B .5 U	0.030	B U	P P
Analyte	Initial Calib. Blank (ug/L) C		inuing Calibr Blank (ug/L) C 2	C	Prepa- ration Blank	С	м

ATC017 S24

ILM04.1