SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7010

FINAL FOCUSED REMEDIAL INVESTIGATION SPECTRUM FINISHING CORPORATION SITE Site No. 1-52-029 VOLUME I

Work Assignment Number D003060-26

Prepared by:

TAMS Consultants, Inc. 300 Broadacres Drive

Bloomfield, NJ 07003-3153

and

GZA GeoEnvironmental of New York

364 Nagel Drive Buffalo, NY 14225

December 2001

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7010

FINAL FOCUSED REMEDIAL INVESTIGATION SPECTRUM FINISHING CORPORATION SITE Site No. 1-52-029 VOLUME II

Work Assignment Number D003060-26

Prepared by:

TAMS Consultants, Inc. 300 Broadacres Drive Bloomfield, NJ 07003-3153

and

GZA GeoEnvironmental of New York 364 Nagel Drive Buffalo, NY 14225

December 2001 SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7010

FINAL FOCUSED REMEDIAL INVESTIGATION SPECTRUM FINISHING CORPORATION SITE Site No. 1-52-029 VOLUME III

Work Assignment Number D003060-26

Prepared by:

TAMS Consultants, Inc. 300 Broadacres Drive Bloomfield, NJ 07003-3153

and

GZA GeoEnvironmental of New York

364 Nagel Drive Buffalo, NY 14225

December 2001

SPECTRUM FINISHING CORPORATION FOCUSED REMEDIAL INVESTIGATION TABLE OF CONTENTS

VOLUME I

	Page
1.0 INTRODUCTION	1
1.1 REPORT ORGANIZATION	1
1.2 BACKGROUND	2
1.2.1 Site Description	2
1.2.2 Site History	
1.2.3 Agency Involvement	
1.2.4 Database Search	
1.2.5 Class 2 Inactive Hazardous Waste Disposal Sites	
1.3 PURPOSE	
1.4 FRI SCOPE OF WORK	9
2.0 FIELD EXPLORATIONS	11
2.1 GEOPHYSICAL SURVEY	
2.2 GEOPROBE SOIL BORINGS	
2.2.1 Headspace Screening	
2.2.2 Analytical Samples	
2.3 TEST BORING/MONITORING WELL INSTALLATION	
2.4 TEST PIT EXPLORATIONS	13
2.5 WATER LEVEL MEASUREMENTS	
2.6 HEALTH AND SAFETY MONITORING	
2.7 ENVIRONMENTAL SAMPLING	
2.7.1 Surface Soil Samples	
2.7.2 Subsurface Soil Sampling	16
2.7.3 Cesspool/Drainage/Well Structure Sampling	
2.7.4 Groundwater Sampling	
2.7.5 UST Product Sampling	
2.8 EXISTING MONITORING WELL ASSESSMENT	
2.9 WATER WELL INVENTORY	
2.10 INTERIM REMEDIAL MEASURES SUMMARY	
3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA	20
3.1 SURFACE FEATURES	
3.2 METEOROLOGY	
3.3 SURFACE WATER HYDROLOGY	
3.3.1 Regional Surface Water Hydrology	
3.3.2 Site Surface Water Hydrology	
3.4 REGIONAL GEOLOGY	21

SPECTRUM FINISHING CORPORATION

FOCUSED REMEDIAL INVESTIGATION TABLE OF CONTENTS (CONT'D)

VOLUME I

	<u>Page</u>
3.5 SITE GEOLOGY	22
3.5.1 Overburden	22
3.5.1.1 Fill Deposit	22
3.5.1.2 Glacial Outwash	22
3.5.1.3 Gardiners Clay	22
3.6 REGIONAL HYDROGEOLOGY	23
3.7 SITE HYDROGEOLOGY	23
3.7.1 Hydraulic Conductivity and Soil Porosity	23
3.7.2 Groundwater Flow Patterns and Velocities	24
3.8 LAND USE AND DEMOGRAPHY	24
3.9 HABITAT ASSESSMENT	24
4.0 NATURE AND EXTENT OF CONTAMINATION	25
4.1 CONTAMINANT TYPES	
4.2 SOURCE AREAS	
4.2.1 Volatile Organic Compounds	
4.2.2 Inorganics	
4.2.3 PCBs/Pesticides	
4.2.4 SVOCs	
4.3 SURFACE SOIL ANALYTICAL RESULTS	
4.3.1 Volatile Organic Compounds	
4.3.2 Inorganics	
4.3.3 PCBs/Pesticides	
4.3.4 SVOCs	
4.4 SUBSURFACE SOIL EXPLORATION ANALYTICAL RESULTS	
4.4.1 Volatile Organic Compounds	
4.4.2 Inorganics	
4.4.3 PCBs/Pesticides	
4.4.4 SVOCs	
4.5 GROUNDWATER ANALYTICAL RESULTS	
4.5.1 Volatile Organic Compounds	
4.5.2 Inorganics	
4.5.3 PCBs/Pesticides	
4.5.4 SVOCs	
5.0 CONTAMINANT FATE AND TRANSPORT	
5.1 POTENTIAL ROUTES OF MIGRATION	
5.2 CONTAMINANT PERSISTENCE AND BEHAVIORAL CHARACTERISTI	
SPECTRUM FINISHING CORPORATION	
FOCUSED REMEDIAL INVESTIGATION	

TABLE OF CONTENTS (CONT'D)

VOLUME I

	Page
5.2.1 Volatile Organic Compounds	
5.2.2 Inorganics	40
5.3 OBSERVED MIGRATION	
5.3.1 Groundwater	
5.3.2 Volatilization and Soil Vapor Migration	41
6.0 QUALITATIVE RISK ASSESSMENT	41
6.1. HUMAN HEALTH EVALUATION	41
6.1.1 Exposure Assessment	42
6.1.1.1 Surface Soils	42
6.1.1.2 Subsurface Soils	43
6.1.1.3 Overburden Groundwater	43
6.1.1.4 Potential Volatile Vapors	43
6.1.1.5 Dust Migration	44
6.1.2 Evaluation of Site Occurrence	44
6.1.3 Hazard Identification and Comparison to SCGs	
6.1.3.1 Surface Soils	
6.1.3.2 Subsurface Soils	
6.1.3.3 Overburden Groundwater	
6.1.3.4 Volatile Vapors in Downgradient Excavation or Basement	46
7.0 SUMMARY AND CONCLUSIONS	46
7.1 SITE HISTORY SUMMARY	46
7.2 FIELD EXPLORATIONS SUMMARY	
7.3 PHYSICAL SITE CHARACTERISTICS SUMMARY	47
7.3.1 Summary of Surface Features and Surface Water Hydrology	47
7.3.2 Geologic and Hydrogeologic Summary	48
7.4 NATURE AND EXTENT OF CONTAMINATION SUMMARY	48
7.4.1 IRM Summary	48
7.4.2 Source Areas	
7.4.3 Soil Contamination	
7.4.3.1 VOCs	49
7.4.3.2 Inorganics	
7.4.3.3 PCBs/Pesticides	
7.4.3.4 SVOCs	
7.4.4 GROUNDWATER ANALYTICAL RESULTS	50
7.4.4.1 VOCs	
7.4.4.2 Inorganics	50
SPECTRUM FINISHING CORPORATION	
FOCUSED REMEDIAL INVESTIGATION	
TABLE OF CONTENTS (CONT'D)	

VOLUME I

	<u>Page</u>
7.4.4.3 PCBs/Pesticides	52
7.4.4.4 SVOCs	52
7.5 CONTAMINANT FATE AND TRANSPORT SUMMARY	52
7.5.1 Observed Migration Summary	52
7.6 QUALITATIVE RISK ASSESSMENT SUMMARY	53
7.6.1 Summary of Human Health Risk Assessment	53
7.7 CONCLUSIONS	54

REFERENCES

TABLES

TABLE 1-1	SUMMARY OF CESSPOOLS, DRAINAGE STRUCTURES, AND
	WELL STRUCTURES

- TABLE 2-1SUMMARY OF SAMPLES COLLECTED FOR ANALYTICAL
TESTING
- TABLE 2-2SUMMARY OF MONITORING WELL INSTALLATIONS
- TABLE 2-3SUMMARY OF HYDRAULIC CONDUCTIVITY TESTING
RESULTS
- TABLE 2-4SUMMARY OF GROUNDWATER ELEVATIONS
- TABLE 2-5SUMMARY OF INTERIOR TEST PIT SUMP WATER
ANALYTICAL RESULTS
- TABLE 2-6SUMMARY OF SURFACE SOIL SAMPLE ANALYTICAL
RESULTS
- TABLE 2-7SUMMARY OF SUBSURFACE SOIL SAMPLE ANALYTICAL
RESULTS

TABLE 2-8SUMMARY OFCESSPOOLSEDIMENTSAMPLEANALYTICAL RESULTS

SPECTRUM FINISHING CORPORATION FOCUSED REMEDIAL INVESTIGATION TABLE OF CONTENTS (CONT'D)

VOLUME I

- TABLE 2-9SUMMARY OF CESSPOOL WATER SAMPLE ANALYTICAL
RESULTS
- TABLE 2-10SUMMARY OF DRAINAGE STRUCTURE SEDIMENT
SAMPLE ANALYTICAL RESULTS
- TABLE 2-11SUMMARY OF DRAINAGE STRUCTURE WATER SAMPLE
ANALYTICAL RESULTS
- TABLE 2-12SUMMARY OF WELL STRUCTURE SEDIMENT SAMPLE
ANALYTICAL RESULTS
- TABLE 2-13SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL
RESULTS FOR VOLATILE AND SEMI-VOLATILE ORGANIC
COMPOUNDS, PCBs AND PESTICIDES
- TABLE 2-14SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL
RESULTS FOR INORGANICS
- TABLE 2-15SUMMARY OF CESSPOOLS AND DRAINAGE STRUCTURES
IRM
- TABLE 2-16SUMMARY OF FIELD EXPLORATION DATES
- TABLE 2-17SUMMARY OF ADDITIONAL PARAMETERS ANALYTICAL
TEST RESULTS FOR MONITORING WELLS MW-6S AND
MW-13S (MAY 2001)
- TABLE 4-1EVALUATION OF BACKGROUND METALS IN SOIL
- TABLE 4-2EVALUATION OF UPGRADIENT GROUNDWATER SAMPLES
- TABLE 5-1SUMMARY OF FIELD TEST PARAMETERS
- TABLE 6-1SUMMARY OF EXPOSURE ASSESSMENT PATHWAYS
- TABLE 6-2SUMMARY OF NEW YORK STATE CRITERIA FOR SURFACE
SOIL

SPECTRUM FINISHING CORPORATION FOCUSED REMEDIAL INVESTIGATION TABLE OF CONTENTS (CONT'D)

VOLUME I

- TABLE 6-3SUMMARY OF NEW YORK STATE CRITERIA FOR
SUBSURFACE SOIL
- TABLE 6-4SUMMARY OF NEW YORK STATE CRITERIA FOR
OVERBURDEN GROUNDWATER

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 LOCATION OF WATER WELLS AND CLASS 2 INACTIVE HAZARDOUS WASTE SITES WITHIN 1 MILE UPGRADIENT AND 2 MILES DOWNGRADIENT OF THE SPECTRUM SITE
- FIGURE 4 CESSPOOL/DRAINAGE STRUCTURE/WELL STRUCTURE PIPING LOCATION PLAN
- FIGURE 5 TEST PIT INVESTIGATION AREAS
- FIGURE 6 SHALLOW GROUNDWATER ELEVATION CONTOUR PLAN 6/6/99
- FIGURE 7 SHALLOW GROUNDWATER ELEVATION CONTOUR PLAN 7/25/00
- FIGURE 8 SHALLOW GROUNDWATER ELEVATION CONTOUR PLAN 5/3/01
- FIGURE 9 INTERMEDIATE GROUNDWATER ELEVATION CONTOUR PLAN 5/3/01
- FIGURE 10 SELECTED TOTAL METAL SOIL DISTRIBUTION MAP
- FIGURE 11 SELECTED TOTAL METAL SOIL DISTRIBUTION MAP 100 TIMES EXCEEDANCE OF RSCO

SPECTRUM FINISHING CORPORATION FOCUSED REMEDIAL INVESTIGATION TABLE OF CONTENTS (CONT'D)

VOLUME I

- FIGURE 12 SELECTED TOTAL METAL SOIL DISTRIBUTION MAP -10 TIMES EXCEEDANCE OF RSCO
- FIGURE 13-A SHALLOW GROUNDWATER PCE CONTOURS (MONITORING WELLS)
- FIGURE 13-B INTERMEDIATE GROUNDWATER PCE CONTOURS (MONITORING WELLS)
- FIGURE 13-C DEEP GROUNDWATER PCE CONCENTRATIONS (MONITORING WELLS)
- FIGURE 13-D GROUNDWATER PCE CONCENTRATION CROSS-SECTION A-A'
- FIGURE 13-E SHALLOW GROUNDWATER TOTAL VOC CONTOURS (MONITORING WELLS)
- FIGURE 13-F INTERMEDIATE GROUNDWATER TOTAL VOC CONTOURS (MONITORING WELLS)
- FIGURE 13-G DEEP GROUNDWATER TOTAL VOC CONCENTRATIONS (MONITORING WELLS)
- FIGURE 14 FILTERED AND LOW-FLOW GROUNDWATER SAMPLING RESULTS FOR SELECTED METALS
- FIGURE 15 TOTAL CADMIUM CONCENTRATION (ppb) CONTOURS IN SHALLOW GROUNDWATER (1999 and 2000 ROUNDS)
- FIGURE 16 TOTAL NICKEL CONCENTRATION (ppb) CONTOURS IN SHALLOW GROUNDWATER (1999 and 2000 ROUNDS)
- FIGURE 17 TOTAL (LOW-FLOW) CADMIUM CONCENTRATION (ppb) CONTOURS IN SHALLOW GROUNDWATER (2001 ROUND)
- FIGURE 18 TOTAL (LOW-FLOW) NICKEL CONCENTRATION (ppb) CONTOURS IN SHALLOW GROUNDWATER (2001 ROUND) SPECTRUM FINISHING CORPORATION

FOCUSED REMEDIAL INVESTIGATION TABLE OF CONTENTS (CONT'D)

VOLUME I

APPENDICES

- APPENDIX A LIMITATIONS
- APPENDIX B VISTA REPORT
- APPENDIX C FIELD PROCEDURES

VOLUME II

- APPENDIX D SUBSURFACE FIELD LOGS
- APPENDIX E ANALYTICAL RESULTS VALIDATED FORM I'S AND SUMMARY OF REJECTED DATA

VOLUME III

- APPENDIX E ANALYTICAL RESULTS VALIDATED FORM I'S AND SUMMARY OF REJECTED DATA (CONTINUED)
- APPENDIX F UST REPORT
- APPENDIX G ADDITIONAL INFORMATION:
 - Town of Babylon Ash Disposal Site Final Environmental Impact Assessment, dated July 24, 1987
 - Portions of NTU Circuits, Inc. Delisting Petition Report (Figure 5.3.1 and Table 5.3.1)

1.0 INTRODUCTION

This report presents the results of the Focused Remedial Investigation (FRI) completed by GZA GeoEnvironmental of New York (GZA) during the period from June 1, 1999 through May 3, 2001 at the Spectrum Finishing Corporation (Spectrum) Site. The field work was done in three phases. Phase I was completed in June and July 1999; the second phase (Phase II) of field work was done in July 2000; and the third phase (Phase III) was completed in April and May 2001. Additionally, an Interim Remedial Measure (IRM) was conducted at the Site in April 2000. The Site is a New York State Department of Environmental Conservation (NYSDEC) Class 2 Inactive Hazardous Waste Disposal Site, Site Code 1-52-029. The Site was added to the NYSDEC registry in December 1983. The FRI was completed on behalf of the NYSDEC under Superfund Standby Contract Work Assignment No. D003060-26 to TAMS Consultants, Inc. (TAMS). The FRI was completed by GZA as a subconsultant to TAMS.

Interpretations presented within this report are based primarily on the investigations described herein. Previous investigations completed by others at the Spectrum Site and adjacent properties have been reviewed. Applicable data from these reports have been included in sections of this report.

1.1 REPORT ORGANIZATION

The text of this report is divided into seven sections. Immediately following the text are the references, tables, figures and appendices. Appendix A includes limitations to this report. A brief summary of each report section is provided below.

Section 1.0 Introduction: The purpose of the FRI report, the Site background including Site description, Site history and previous relevant studies, scope of work and report organization are discussed.

Section 2.0 Field Explorations: This section summarizes the field work completed including geoprobe soil borings, test borings, monitoring well construction, sample collection, and field information. Field activity procedures and data collection methods for these activities are outlined in Appendix C.

Section 3.0 Physical Characteristics of the Study Area: This section presents and interprets the various data collected and evaluates Site conditions (e.g., hydrogeology, geology, hydrology, etc.).

Section 4.0 Nature and Extent of Contamination: The types of chemicals detected in the various environmental media are discussed. The section is divided into source areas, groundwater and subsurface soils.

Section 5.0 Contaminant Fate and Transport: An evaluation of potential migration pathways and contaminant persistence is presented.

Section 6.0 Qualitative Risk Assessment: This section presents the results of a general human health and environmental impact assessment completed at the Site. The assessment includes an estimation of exposure point concentrations and a comparison of this data with published New York State standards, criteria and guidance values (SCGs).

Section 7.0 Summary and Conclusions: This section summarizes the results of the FRI.

1.2 BACKGROUND

1.2.1 Site Description

The Spectrum Site property consists of approximately 0.9 acres of land, located at 50 Dale Street in West Babylon, New York (see Figures 1 & 2). For the purpose of this investigation, the Site or study area was extended to the north to include the parking lot up to the south edge of the buildings located at 60 Dale Street (approximately 1.3 acres). Spectrum Finishing Corporation (SFC) has owned the Site since 1968. SFC specialized in electroplating high strength alloys, and descaling titanium alloys for the aerospace industry. Metal finishing operations at the Site ceased in about 1994.

The Site includes the original building, approximately 60 feet by 320 feet (19,400 square feet). Areas not occupied by the building consist of paved parking to the north of the building, an unpaved alleyway to the south of the building, and grassy areas to the east and west of the building. Current tenants in the building include a machine shop, door manufacturer, and an automobile storage operation.

Eleven cesspools (CP-1 though CP-11), 12 drainage structures (DS-1 through DS-12) and two former well structures (WS-1 and WS-2) exist at the Site. In general, the cesspools and drainage structures are similar and are approximately eight-foot diameter, round concrete vaults with perforated sides, and apparently no bottom [Note: CP-10 apparently has a concrete bottom.] The type of manhole cover defined the difference between a cesspool and drainage structure. The cesspools have solid steel or solid concrete covers. The drainage structures have open grate steel covers for stormwater runoff.

Figure 4 shows the apparent location of piping based on field observations made by GZA. Some of the piping locations were determined from dye testing or test pit excavation. GZA also utilized sketches obtained from Suffolk County Department of Health Services (SCDHS) to locate piping. Other piping locations are assumed based on the apparent directions of pipes entering/exiting the structures. In general, it was determined that the drainage structures received flow from the roof drains and stormwater runoff. The cesspools receive overflow from the drainage structures or directly from the on-Site buildings (toilets, floor drains, etc.). Some of the cesspools and drainage structures were found to be interconnected (e.g., CP-3 flows into CP-4). DS-6, DS-9, and DS-10 have piping exiting the structure, but apparent termini of the piping were not identified. Based on information contained in an August 8, 1975 State Pollutant Discharge Elimination System (SPDES) discharge permit (NY-008-5561) for the Site; CP-3, CP-4, CP-7, CP-10 were used for sanitary waste disposal. It is not known if the other structures were used for waste disposal.

The well structures consisted of approximate six-foot diameter concrete vaults with solid covers. The sidewalls of the structure appeared to be perforated. According to Bob Seyfarth from the SCDHS, these structures may have housed piping and water supply wells. Additional information regarding these possible wells was not available from SCDHS. Observations made by GZA in the field did not indicate the presence of open wells in the base of the structure. However, some of the pipes appeared to lead below the soil at the base of the structure.

Table 1-1 summarizes information collected by GZA regarding the structures. The summary table includes a description of the structures (elevation, cover type, diameter, etc.), description of the liquids and sediments present in the structures, and a discussion of the observed pipes that enter and exit the structures.

1.2.2 Site History

The Site history was developed from information contained in the previous reports prepared by United States Environmental Protection Agency (USEPA), NYSDEC, New York State Department of Health (NYSDOH), Suffolk County, and West Babylon and files provided to TAMS/GZA (References 1-6). Previous reports for the NTU Circuits Site were included in our review due to its close proximity to the SFC Site (adjacent to the north).

SFC Site

Spectrum Finishing Corporation (SFC) began operations at the Site around 1968. Building department records indicate that the SFC building (50 Dale Street) was constructed in the late 1960s. Metal finishing operations at the Site included electroplating (in particular copper, cadmium, chromium and nickel) of high strength alloys (for the aerospace industry); chromium conversion coating (aluminum parts); and chemical cleaning. The facility was known to have specialized in descaling and chemical cleaning of titanium alloys. Painting was also reportedly conducted at the facility. Chemicals that were reportedly stored on Site include the following:

caustic soda	sodium metabisulfide
acid (sulfuric, hydrochloric, nitric, boric,	copper
chromic)	cadmium, chromium
sodium dichromate	nickel
sodium chromate, potassium chromate	manganese
sodium fluoride, potassium fluoride	phosphate
sodium nitrate, potassium nitrate	iron
sodium cyanide, copper cyanide,	beryllium
cyanide, calcium cyanide	magnesium
cadmium oxide	tin
sodium carbonate	zinc
nickel sultanate	toluene
potassium hydroxide	methyl ethyl ketone (2-butanone)
chlorine	trichloroethene

From 1970 to 1975, the SCDHS revealed discharges of industrial waste into storm drains. High concentrations of heavy metals were noted from samples collected from the leaching tank, storm drain, and Site runoff.

During the 1970s, SCDHS inspections revealed discharges of liquid plating wastes to the soil. In 1983, an accidental spillage of wastewater drained into on-Site storm drains. Since about 1983, SFC discontinued discharge of wastewater into the on-Site drainage structures, and disposed the wastewater off-Site. In June 1994, SFC filed Chapter 7 bankruptcy and ceased operations. Some documents indicated the facility stopped operations in April 1993.

A Phase II Investigation was completed for NYSDEC by Gibbs & Hill Inc. in March 1988. The Phase II was completed to determine the nature and extent of waste, identify past and/or current episodes of chemical spills, and evaluate on-Site and off-Site impacts from any chemical spillage. Eight groundwater monitoring wells were installed at four locations. A groundwater sample was collected and analyzed from each well. Additionally, ten soil samples were collected for analysis. The samples were analyzed for cadmium, chromium, copper, iron, lead, nickel, zinc, chloride, cyanide, 1,1-dichloroethane, 1,2-dichloroethane, 2-butanone, 1,1,1-trichloroethane, trichloroethylene and toluene. These compounds were selected based on Site chemical use.

Several metals were found in the background samples including copper (30 mg/kg), iron (6951 mg/kg), lead (27.4 mg/kg) and zinc (36.1 mg/kg). Additionally, chromium was found at a concentration of 29.8 mg/kg, which was identified as being three times greater than the background sample. Cadmium was found in four of the ten samples ranging from 0.9 to 2.0 mg/kg and nickel was found in three of the ten samples ranging in concentration from 3.9 to 5.2 mg/kg. No volatile organic compounds were detected in the soil samples. However, the analyses were completed after the holding time had expired.

One round of groundwater samples was collected and analyzed. The following compounds and related maximum concentrations were identified in the groundwater samples.

Cadmium (99 ug/L)	Chromium (36 ug/L)
Copper (926 ug/L)	Iron (95 ug/L)
Lead (40 ug/L)	Nickel (28 ug/L)
Zinc (339 ug/L)	1,1,1-trichloroethane (28 ug/L)
Trichloroethene (73 ug/L)	Toluene (5 ug/L)

In May 1997, Mr. Joseph Vazzana, Jr., a potentially responsible party (PRP) for the Site, reportedly pumped liquid waste from several on-Site vats into approximately three hundred (300) 55-gallon drums. The United States Environmental Protection Agency (USEPA) witnessed this process being performed "haphazardly" with many spills. The drums were unlabeled and mislabeled, and wastes were mixed. Mr. Vazzana, Jr. demolished a large vat containing cyanide salts. The NYSDEC and NYSDOH conducted a visit to the Site on October 7, 1997. Mr. Vazzana, Jr. was observed pumping wastes from one vat to another, and hosing down several drums.

The USEPA completed a removal action to address the on-Site wastes located in the building in August 1997 through March 1998. The removal action included the removal and disposal of a total of 25,767 gallons and 77 cubic feet of various hazardous wastes. Two concrete-lined sumps, various exterior sumps/drywells, various USTs, paint booths and several vats were observed inside the building during the USEPA removal action. The removal action included scraping and sweeping to remove waste from the interior floors and pressure washing of the boiler room, wastewater treatment room, garage area, storage room, process rooms and paint booths. Wipe samples were collected in the areas that were cleaned.

Following the USEPA removal action, Roy F. Weston, Inc. (Weston) collected environmental samples in April 1998 on behalf of USEPA. Weston collected 22 on-Site surficial soil samples, sediment samples from the bottoms of on-Site storm drains, soil samples from beneath the concrete floor, stormwater/runoff samples collected from the water pooled in storm drains, and nine groundwater samples from the on-Site monitoring wells. The samples were analyzed for TCL volatile organic compounds (VOCs) and TAL inorganics (metals). Analytical results identified that several media were impacted with elevated levels of metals (including cadmium, chromium, copper, nickel, silver and cyanide) and VOCs (including 1,2dichloroethene, trichloroethene and tetrachloroethene). The Weston results are summarized below.

- On-Site surficial soil samples: cadmium (26 to 281 mg/kg); chromium (30.5 to 129 mg/kg); copper (17.1 to 190 mg/kg); nickel (15.1 to 85.6 mg/kg); silver (2.5 mg/kg); cyanide (0.9 to 5.2 mg/kg).
- Sediment samples: cadmium (291 to 6470 mg/kg); chromium (81.9 to 4340 mg/kg); copper (83.7 to764 mg/kg); nickel (44.5 mg/kg to 1400 mg/kg); silver (0.33 to 2.1 mg/kg); cyanide (2.9 to 122 mg/kg).

- Soil Samples: tetrachloroethene (3 to 180 ug/kg); cadmium (0.86 to 797 mg/kg); chromium (3.0 to 357 mg/kg); copper (5.8 to 118 mg/kg)); nickel (2.9 to 1630 mg/kg); silver (0.47 to 1.5 mg/kg); cyanide (0.07 to 168 mg/kg).
- Stormwater/runoff samples: cadmium (21.2 to 71.8 ug/L); chromium (7.4 to 61.9 ug/L); copper (20.7 to 81.4 ug/L); nickel (26.5 to 193 ug/L); silver (1.0 to 1.2 ug/L); cyanide (1.4 to 18.4 ug/L).
- Groundwater samples: 1,2-dichloroethene (26 to 1300 ug/L); trichloroethene (6 to 250 ug/L); tetrachloroethene (8 to 3500 ug/L); cadmium (1.4 to 21.5 ug/L); chromium (1.2 ug/L to 408 ug/L); copper (2.7 to 241 ug/L); nickel; (1.1 to 141 ug/L); silver (1.0 to 8.7 ug/L); cyanide (1.1 t 26.2 ug/L).

NTU Site

The NTU Site was vacant until 1968 when the current site building was constructed. Gray Electric occupied and owned the site from 1968 until 1981, when SFC purchased it. NTU Circuits leased the eastern portion of the building from 1978 until 1983. A candy distributor leased this area of the building from April 1984 until September 1984. Midmer-Losh (pipe organ manufacturer) occupied the eastern portion of the site from 1985 and Welding Metallurgy occupied the western portion of the building from 1981 until the present automotive collision shop began operation.

The former NTU Site at 60 Dale Street is a delisted NYSDEC Class 2a inactive hazardous waste disposal site (registry number 1-52-086). This facility adjoins the SFC Site to the north. The NTU Site was added to the NYSDEC registry in December 1984 and removed March 1993. NTU produced high-resolution printed circuit boards and its operations included drilling, cleaning and electroplating. Chemicals used at the NTU facility include ammonium persulfate, sulfuric acid, hydrochloric acid, copper plating solution, and etching solution (containing copper, lead and nickel).

No volatile organic chemicals were reportedly used at the NTU facility. Additionally, according to information contained in the Phase II Investigation Report, there was no documentation to verify that the organic compounds detected were ever used at the NTU Site. The highest levels of volatile organic compounds detected during historic groundwater sampling at the site included 1,1 dichloroethene (6 parts per billion (ppb)), 1,1,1 trichloroethane (74 ppb), trichloroethene (35 ppb), tetrachloroethene (370 ppb), and 1,2 dichloroethene (26 ppb). The Phase II report indicated that it is possible that contamination from an outside source reached the leach pools via nearby facilities that use volatile organic compounds (including the SFC Site). The parking lot on the south side of the NTU building is now part of the SFC Site.

NTU occupied the site from about 1978 to 1983. Remediation (soil removal) of metal contaminated soil was completed in drain pools around the site. Following the removal of contaminated soil, the drain pools were filled with lime slurry, sealed and covered with asphalt. Based on information provided by the SCDHS (Reference 1), these closed drain pools may have been tampered with following closure and illegal discharging of liquids to the parking lot surface near drain pools from the SFC Site. It should be noted that the SFC purchased the NTU Site in 1981 and reportedly leased the building for various purposes.

There is no information indicating that SFC's metal finishing operation was located in the NTU building.

1.2.3 Agency Involvement

The SFC Site is a NYSDEC Class 2 Inactive Hazardous Waste Site, Site Code 1-52-029. The Site was added to the NYSDEC registry in December 1983.

1.2.4 Database Search

GZA used Vista Information Solutions, Inc. (Vista) to review available State and Federal Lists for environmental concerns at and near the Site. The Vista report (Appendix B) identified SFC as a CERCLIS facility, Resource Conservation and Recovery Act (RCRA) large quantity generator and a RCRA violator. The Vista report also identified Spectrum as being included on the State Priority List (Registry of Inactive Hazardous Waste Disposal Sites) and the State aboveground storage tank (AST) list.

The CERCLIS database indicated that industrial effluent, which contained excessive amounts of heavy metals, was discharged to underground cesspools. Potential groundwater contamination was identified at Spectrum because of this incident.

The RCRA large quantity generator status was included in the RCRA violations database. Three written informal violations were noted and three compliance orders were issued. The database indicated that all of the violations were satisfied.

The State equivalent priority list (SPL) identified heavy metals and methyl ethyl ketone (MEK) as pollutants at Spectrum.

Fifty-nine ASTs were reported with an unknown status and one tank was identified with a removed status.

Numerous upgradient facilities were included on the State and Federal databases. The following is a summary of nearby and/or upgradient facilities.

• NTU Circuits Inc., the adjoining northerly property was identified on the RCRA violations database. One written informal violation, three generation violations and one compliance order was issued. The database indicated that all of the violations

were satisfied. This facility was also identified as a CERCLIS facility. Industrial effluent containing excessive amounts of heavy metals was discharged to underground cesspools. Potential groundwater contamination was identified. Based upon this limited information, activities and historical releases from NTU Circuits Inc. may have impacted the SFC Site.

- Carolina Freight Carriers, located approximately 150 feet north of the SFC Site, was identified on the emergency response notification system (ERNS). The response occurred in July 1988. Unknown poison liquid was identified as being spilled in a truck trailer. The immediate area of the spill was evacuated and three people were treated at a hospital. This release was listed on the State spills database with a closed status (included below). Since this release was to the surface, and is identified to have a closed status, this facility is not expected to have impacted the SFC Site.
- One RCRA treatment, storage, and disposal (TSD) facility; six RCRA small quantity generators; and seven RCRA large quantity generators were identified. Additionally, two written informal RCRA violations were noted. These listings are registrations, and the violations have been satisfied, these incidents are not expected to have impacted the SFC Site.
- Two active solid waste landfills (SWLF) were identified at nearby facilities. One SWLF located approximately 150 feet north was listed as accepting commercial waste; and one SWLF located approximately 150 feet south was listed as an incinerator. No additional information was provided. Based upon the proximity of these SWLFs, these facilities may have impacted the SFC Site.
- The underground storage tank (UST) database identified thirty-six removed USTs, seven permitted USTs, four heating oil USTs and eighteen USTs with an unknown status. Six leaking underground storage tanks (LUST) were identified with a closed status and one LUST was listed with an open status. Since the UST listings are registrations and not identified releases, it is not known whether the USTs have impacted the SFC Site. The closed LUST listings have been remediated to a level acceptable to NYSDEC. The one LUST with an open status, identified as number 951572, is located at Furniture Store at 95A Bell Street, approximately 0.12 miles west to northwest of the SFC Site. Number two fuel oil was released to the ground from an aboveground tank, spilling hundreds of gallons onto the ground. Based upon this limited information, this historical release may have impacted the SFC Site.
- The AST database included nine ASTs with a removed status, five permitted ASTs and eleven ASTs with an unknown status. Since these AST listings are registrations and not identified releases, it is not known if these ASTs have impacted the SFC Site.
- The State spills database included sixteen closed spills and three spills with an open status. The closed spills have been remediated to a level acceptable to NYSDEC, and therefore are not expected to have impacted the Site. The three open spills are listed below.

- I.T.C. at 299 Edison Avenue was identified as spill number 9411489 for spreading contaminated soil from various spills in their parking lots. Additionally, trucks were listed as constantly leaking at the pumps with many unreported spills. This facility is located approximately 0.3 miles south of the Site in an estimated cross- to downgradient direction, and therefore is not expected to have impacted the SFC Site.
- Preston Trucking Company at 125 Dale Street was identified as spill number 9711855 for a release of diesel fuel due to a tank overfill. Approximately 40 gallons was released. This facility is located approximately 0.03 miles north of the SFC Site, in an estimated crossgradient direction, and therefore is not expected to have impacted the SFC Site.
- Medigan Co. at 91 Eads Court was identified as spill number 9306875 for a fire at the building, that resulted in contaminated water runoff. This facility is located approximately 0.06 miles northeast of the SFC Site, in an estimated crossgradient direction, and therefore is not expected to have impacted the SFC Site.

1.2.5 Class 2 Inactive Hazardous Waste Disposal Sites

Eight Class 2 Inactive Hazardous Waste Disposal Sites are located in the vicinity of the SFC Site. Class 2 Sites located within about one mile upgradient and two miles downgradient of the SFC Site are shown on Figure 3.

1.3 PURPOSE

The purpose of this FRI is to confirm the presence of, and to assess the lateral and vertical extent of contamination in order to establish a baseline for the selection and design of an appropriate Site remedial response. The basic elements that have been used to gain an understanding of the environmental condition of various Site media during this FRI investigation included the following.

- Geophysical survey
- Completion of test pits
- Surface soil sampling
- Cesspool and drainage structure water and sediment sampling
- Geoprobe soil borings
- Test borings
- Installation of groundwater monitoring wells
- Water level elevation observations
- Sampling and analytical testing of collected soil and groundwater samples.

1.4 FRI SCOPE OF WORK

This scope of work for this FRI was modified for on-Site conditions. The following tasks, as described in later sections of this FRI report and the Site Field Activities Plan (FAP), were conducted.

- Coordinated work and discussed project and details with TAMS and NYSDEC;
- Research of historical information;
- Previously-installed monitoring well assessment;
- Test pits;
- Geoprobe soil borings;
- UST identification and sampling;
- Surface soil sampling (hand augers);
- Test borings;
- Installation of groundwater monitoring wells in the test borings;
- Monitoring well development;
- Hydraulic conductivity testing;
- Groundwater sampling;
- Mapping the Site;
- Groundwater well user survey;
- Groundwater level measurements;
- Baseline qualitative health risk assessment;
- QA/QC review and data evaluation;
- Identification of NYS standards, criteria and guidelines; and
- Preparation of this report.

This FRI study and report was completed in general accordance with:

- The scope of work described in the "Project Management Plan, Spectrum Finishing Corporation Site RI/FS, Site No. 1-52-029", dated January 1999;
- USEPA Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, dated October 1988;
- Procedures recommended in the NYSDEC Division of Environmental Remediation, TAGM 4025 Guidance, "Guidelines for Remedial Investigation/Feasibility Studies", dated March 1989; and
- NYSDEC Division of Environmental Remediation TAGM 4030 Guidance, "Selection of Remedial Actions at Inactive Hazardous Waste Sites", as revised May 1990.

The scope of work for the Spectrum Site was prepared by TAMS and GZA and submitted to NYSDEC for review and approval. The scope of work was subsequently finalized and issued as part of the Project Management Plan (dated January 1999); Amendment 1 (dated May 2000); Project Management Plan Amendment 2 (dated May 2000); and Work Plan Amendment Approval dated April 2001. The Project Management Plan incorporates the following additional work plan documents:

- "Field Activity Plan, Spectrum Finishing Corporation Site RI/FS, Site No. 1-52-029" dated April 1999;
- "Quality Assurance Project Plan, Spectrum Finishing Corporation Site RI/FS, Site No. 1-52-29" dated April 1999; and
- "Health and Safety Plan, Spectrum Finishing Corporation Site RI/FS, Site No. 1-52-029" dated April 1999.

2.0 FIELD EXPLORATIONS

Field explorations were completed at the Site in general accordance with the Site FAP to evaluate surface and subsurface environmental conditions and to provide data pertaining to the extent of contamination. A description of the field explorations conducted during this FRI is presented in this section. The dates of the field activities are summarized in Table 2-16.

2.1 GEOPHYSICAL SURVEY

GZA used an EM-31 terrain conductivity meter to assess for the presence or absence of shallow subsurface metallic materials. The terrain conductivity meter that utilizes electromagnetic (EM) induction is generally sensitive to the presence of highly conductive materials. The geophysical survey was generally conducted as outlined in the field procedures presented in Appendix C.

The FAP indicated that six areas of the Site would be evaluated during the geophysical survey (Figure 4 of the FAP, Reference 7). The six areas included potential areas of USTs, previously installed monitoring wells, and buried cesspool structures. GZA's geophysical survey assisted in determining the location of CP-3 and CP-4 (one of the six areas). The geophysical survey was not conducted in the other five areas because visual observations (i.e., fill ports, vents) and historic information obtained during the field investigation identified the presence of USTs, cesspools, and monitoring wells not observed during the initial Site visit. Field observations were limited during the initial Site visit by the presence of cars, metal scrap piles, and other debris.

2.2 GEOPROBE SOIL BORINGS

During the Phase I FRI work, TAMS contracted with Zebra Environmental, Inc. (Zebra) to conduct Geoprobe soil borings at the Site. TAMS contracted with Aquifer Drilling and Testing (ADT) during the Phase III FRI work to complete five additional Geoprobe soil borings at the Site. The soil borings were completed in order to evaluate the nature and extent of unsaturated and saturated subsurface soil contamination at locations around the Site and at locations off-Site to the south. The Geoprobes were generally completed as outlined in the Geoprobe field procedures presented in Appendix C. Geoprobe soil boring locations are shown on Figure 2, and the Geoprobe boring logs are contained in Appendix D.

A total of 46 Geoprobe borings were completed at the Site. The Geoprobe borings are identified as GP-1 through GP-49 (Note: borings GP-37, GP-41, and GP-43 are field duplicates, resulting in a total of 46 Geoprobe borings). Soil samples were collected at varying depths from these Geoprobe borings for laboratory analysis. Groundwater samples were generally collected at an approximate depth of 20 feet. Also, additional groundwater samples were collected at approximate depths of 40 feet, 60 feet, or 80 feet from select Geoprobe borings.

In general, the Geoprobe borings were advanced to a depth of 20 feet, except for GP-8, GP-9, and GP-11, at which refusal was encountered between 12 and 17 feet. Five of the Geoprobe borings were further advanced to an approximate depth ranging from 60 to 80 feet to allow for collection of deeper groundwater samples, including GP-5, GP-7, GP-10, GP-17 and GP-27. Soil samples were not collected from Geoprobe borings at a depth greater than 20 feet below ground surface (bgs). Four geoprobe borings (GP-1, GP-12, GP-22, and GP-26) were advanced to a depth of 30 feet to allow for temporary piezometer installation. The temporary piezometer installations were used to obtain groundwater elevations.

2.2.1 Headspace Screening

A GZA field representative did not note visual or olfactory evidence of possible contamination in soil samples collected from Geoprobe borings. The headspace of each soil sample jar was screened using a Photoionization Detector (PID) as outlined in Appendix C. The results of the soil sample headspace screening are presented on the Geoprobe soil boring logs contained in Appendix D.

2.2.2 Analytical Samples

Based on visual observation and field screening, soil samples (including matrix spike/matrix spike duplicate (MS/MSD) samples) were selected from various locations for laboratory analyses including TCL VOCs, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, TAL metals including hexavalent chromium, cyanide, and total organic carbon. Groundwater samples collected from Geoprobe borings were submitted for TCL VOCs, TAL metals (total and dissolved), and cyanide analysis. See Table 2-1 for a summary of samples collected for analytical testing.

2.3 TEST BORING/MONITORING WELL INSTALLATION

TAMS contracted with both Applied Earth Technologies (AET) and ADT to complete test borings and install additional groundwater monitoring wells at the Site. A total of twenty-two monitoring wells were completed at the Site in order to further evaluate the geologic and groundwater flow conditions within the overburden at the Site (see Figure 2). Additionally, monitoring wells were installed to collect representative groundwater samples for subsequent analytical testing. The test borings and monitoring well installations were conducted from June 26, 1999 to July 15, 1999; July 17 to July 19, 2000; and April 23 to May 2, 2001, with field techniques outlined in Appendix C and in general accordance with the Field Activities Plan. Monitoring well installation logs are presented in Appendix D.

Monitoring wells were constructed of 2-inch I.D. flush coupled polyvinyl chloride (PVC) riser and screen. Shallow wells (identified by a "S", e.g., MW-7S) were installed such that the screened interval intercepted the water table. Intermediate wells (identified by a "D" or "D1" (e.g., MW-1D or MW-5D1)) were installed such that the bottom of the well was approximately 50 feet bgs. Deep wells (identified by a "D2" (e.g., MW-5D2)) were installed such that the bottom of the well was approximately installed from about 90 feet bgs so that the bottom of the screened well is located on top of the Gardiners Clay layer. The bottoms of the wells vary by location throughout the Site. The well screens consist of an approximate 10-foot long section of machine slotted (20-slot) screen. See Table 2-2 for a monitoring well installation summary.

The installed monitoring wells were developed to remove fines and develop a filter pack by means of pumping out groundwater at a constant rate. Hydraulic conductivity testing was also conducted to provide information that would aid in evaluating subsurface conditions. Several rounds of water level measurements were used to interpret groundwater flow direction within the overburden. Monitoring well development, hydraulic conductivity testing and water level survey procedures are outlined in Appendix C. Table 2-3 presents a summary of hydraulic conductivity results for each monitoring well, and a water level summary is presented in Table 2-4.

2.4 TEST PIT EXPLORATIONS

Test pits were excavated in ten Site areas to evaluate the location and size of buried cesspools, USTs and sump structures. Refer to Appendix F for a UST summary report and additional information. Figure 5 shows the locations of the test pits. The following is a summary of findings during test pit activities and the areas that were investigated.

- CP-3, CP-4, and UST-1 location and orientation were documented to the east of the SFC building.
- UST-4 and UST-5 orientation was documented to the north of the central portion of the SFC building.
- UST-8 orientation was documented to the south of the eastern former NTU building.
- UST-1 and UST-8 orientation was documented to the north of the western portion of the SFC building.

- UST-7 orientation was documented to the south of the western former NTU building.
- CP-5 location and orientation were documented to the west of the SFC building.
- UST-6 location and orientation were documented to the west of the SFC building.
- CP-1 location and orientation were documented to the north of the west end of the SFC building.
- CP-2 location and orientation were documented to the north of the west end of the SFC building.
- An interior test pit (TP) was dug within the former SFC building to assess an apparent former sump structure.

GZA was present during the excavation of test pits to observe the subsurface conditions encountered; to check air monitoring measurements according to the Health and Safety Plan (HASP); and to document findings.

Analytical soil and water samples were collected from the interior test pit (TP). Analytical test results for these samples are contained in Table 2-7 for the soil samples and Table 2-5 for the water sample.

2.5 WATER LEVEL MEASUREMENTS

Water levels were measured within the newly installed wells, existing wells, and temporary piezometers at several different times throughout the FRI. The depth of water was measured from a reference elevation that was surveyed as part of the study. An electronic water level indicator was used to measure water levels from the established reference elevation. Water level survey information is summarized on Table 2-4.

2.6 HEALTH AND SAFETY MONITORING

A Site-specific HASP was prepared by GZA for the field activities at SFC. The Site safety officer or field representative provided the health and safety oversight during field activities. The health and safety monitoring equipment was maintained daily according to the HASP and as outlined in Appendix C. Field work was performed in Level D protection (e.g., hard hats, steel-toed boots, work clothing, latex gloves, etc.).

GZA did not detect elevated levels (greater that 1 (parts per million (ppm)) of VOCs in the work area during intrusive activities, that would have warranted additional protective measures.

2.7 ENVIRONMENTAL SAMPLING

The collected samples were submitted for analytical testing to CompuChem, of Cary, North Carolina, the analytical laboratory. The analytical results were submitted to URS Greiner Woodward Clyde of Buffalo, New York, and EDV, Inc. of Pittsburgh, Pennsylvania for data validation as part of the FRI.

A general description of the various media sampled and analyzed is provided below with the sample series designations. A summary of the samples collected is presented in Table 2-1.

- Cesspool, drainage structure and well structure soil samples (CP-1 to CP-11; DS-1 to DS-12; and WS-1 and WS-2) were collected from the cesspools and storm drainage structures.
- Cesspool and drainage structure water samples were collected when water was present.
- Soil samples from former potential well structures (WS-1 and WS-2) were collected.
- UST liquid samples (UST-1 to UST-8) were collected from USTs. Liquid samples were not obtainable from UST-5 due to physical constraints.
- Surface soils (AP-1 to AP-10) were collected from auger probe borings.
- Soil and groundwater samples were collected from Geoprobe soil borings (GP-1 to GP-49).
- Soil and water samples were collected from the former interior sump in the SFC building.
- Groundwater samples were collected from monitoring well clusters MW-1 to MW-15.

Sampling procedures (e.g. equipment cleaning, container labeling, and cooler sealing and chain-ofcustody) are presented in Appendix C and discussed herein.

2.7.1 Surface Soil Samples

Eight surface soil samples (excluding duplicate and MS/MSD samples) were collected from ten locations from a depth of 0 to 1 foot bgs. In paved areas, surface soil samples were collected approximately 0 to 0.5 feet below the pavement subbase material, or about 0.5 to 1 foot below the top of the pavement. Select surface soil samples were tested for TCL parameters including VOCs, SVOCs, pesticides, and PCBs. Additionally, select samples were tested for TAL metals and cyanide, and total organic carbon. The analytical results are presented in Table 2-6.

It should be noted that for risk-based analysis, NYSDOH considers surface soils to include those soils located from 0 to 2 inches bgs. However, samples were collected to a depth of about 1 foot during the investigation to evaluate the nature and extent of contamination in near surface soils that may require remediation, in accordance with the FAP.

2.7.2 Subsurface Soil Sampling

One hundred twenty-two subsurface soil samples (excluding duplicate and MS/MSD samples) were collected from forty-five Geoprobe borings. Additionally, five subsurface soil samples (excluding duplicate and MS/MSD samples) were collected from four test borings, including MW-5D1, MW-6S, MW-10S and MW-11S. Also, two subsurface soil samples (excluding duplicate and MS/MSD samples) were collected from the test pit A summary of samples and parameters is presented in Table 2-1. The analytical results are presented in Table 2-7.

2.7.3 Cesspool/Drainage/Well Structure Sampling

Thirty-seven soil samples and fifteen water samples (excluding duplicate and MS/MSD samples) were collected from cesspool/drainage/well structures at the Site during the FRI. A summary of samples and parameters is presented in Table 2-1.

The analytical results are presented in Tables 2-8 (cesspool soils) and 2-9 (cesspool water samples). The analytical results of the drainage structures soils are contained in Table 2-10, and Table 2-11 for the water samples. The summary of the well structure sediment sample results is contained in Table 2-12. Samples taken before and after (noted as IRM Confirmatory samples) the IRM are included within the tables.

2.7.4 Groundwater Sampling

Groundwater sampling was completed during FRI Phase I (July 1999), FRI Phase II (July 2000) and FRI Phase III (April 2001), as summarized on the following table (excluding duplicate and MS/MSD samples).

FRI Phase	Geoprobe Boring Samples	Monitoring Well Samples
Ι	54 samples from 40 locations	16 wells
Π	None	20 wells
III	1 sample from 1 location	30 wells

Groundwater was collected from monitoring wells and Geoprobe boring locations. Refer to Table 2-13 for the organic results, and Table 2-14 for the inorganics.

Monitoring well sampling procedures were conducted as outlined in Appendix C and in general accordance with the FAP. Filtered and unfiltered samples were collected from the groundwater sample locations during FRI Phase I. Low-flow sampling techniques were implemented in FRI Phases II and III for groundwater sampling. The low-flow sampling method was conducted to reduce the turbidity in the groundwater samples, which may cause interference with metal analysis.

2.7.5 UST Product Sampling

As described in Appendix F, six UST product samples were collected from the UST numbers 1 through 8 (not UST-5 and UST-7). The samples were submitted for laboratory analysis including TCL PCBs and gas chromatograph fingerprint.

2.8 EXISTING MONITORING WELL ASSESSMENT

The overburden monitoring wells (Section 2.3.2) were initially located based on the assumption that existing (previously installed) on-Site wells were functional and useable for this project. In order to confirm this, a monitoring well assessment was conducted for the existing wells, which included inspection, development, field permeability testing, and repair, if appropriate. The existing wells are designated as MW-1S, MW-1D, MW-2S, MW-2D, MW-3S, MW-3D, MW-4S, and MW-4D.

The assessment of the existing monitoring wells included opening the protective casing, and monitoring and assessing the construction materials and surface seals. The wells were observed for evidence of tampering or the presence of foreign materials. The depths of the existing wells were measured and compared to the depths indicated on their respective boring logs. The monitoring wells were then redeveloped to remove accumulated sediment by bailing and pumping.

The hydraulic conductivity at existing wells was calculated after conducting field permeability tests. These calculations were compared to the hydraulic conductivities calculated for the newly installed wells, to assess whether the existing wells appear to be functioning properly.

Based on the results of the existing well assessment, it was GZA's opinion that the previously installed monitoring wells are generally suitable for water level monitoring, groundwater sampling and hydrogeologic testing. GZA also concluded that surface water might have been introduced into MW-3, based on the condition of the flush-mounted protective casing, which was not capped or locked. However, due to the location of this well and in consultation with NYSDEC, it was decided that the well would be sampled and that the results considered in this study.

2.9 WATER WELL INVENTORY

Mr. Jeff Altorfer of the Suffolk County Water Authority (SCWA) indicated there are no public drinking water wells within a one-mile radius of the Site. The nearest public water supply well is located about 1.2 miles to the southeast, based on Figure 5.4.1 in Reference 8. The locations of water wells located within approximately one mile upgradient and two miles downgradient of the Site are shown on Figure 3.

There are several private water supply wells in the area of the Site. The nearest well to the SFC Site appears to be an irrigation well (Well Number 13988; see Figure 3), located about 1000 feet southwest of the Site. This well is reportedly used for watering lawns in the New Montefiore Cemetery (Reference 6).

Water well number S-101207 is located upgradient of the SFC Site and proximate to Cabot Street and Patton Avenue. According to the Delisting Petition Report prepared for NTU dated November 1992, this well was sampled in April 1992 at various depths bgs. Numerous VOCs were detected in the groundwater from this well, including tetrachloroethene (PCE) at a concentration of 210 ug/L at 90 feet bgs. An excerpt of this report (Table 5.3.1 and Figure 5.3.1) is provided in Appendix G.

Various monitoring wells associated with the Babylon Landfill (located about 1,500 feet east of the Site) are located east and south of the Site. Based on information contained in Reference 6, a leachate-enriched groundwater plume extends about 11,000 feet downgradient (south) of the landfill. The plume is reportedly about 1,900 wide. Additional information concerning the Babylon Landfill and its associated groundwater plume is presented in the "Town of Babylon Ash Disposal Site Final Environmental Impact Statement", provided in Appendix G.

2.10 INTERIM REMEDIAL MEASURES SUMMARY

GZA identified 11 cesspools (CP-1 though CP-11), 12 drainage structures (DS-1 through DS-12), and two former well structures (WS-1 and WS-2), as shown on Figure 2.

During GZA's field investigation, sediment and water samples were collected (if present) and analyzed from the structures. In general, the structures' sediment and water samples were analyzed for VOCs, PCBs, and metals. Some of the samples were also analyzed for SVOCs and pesticides. Analytical data are presented on the summary tables (Tables 2-8 through 2-12).

GZA issued a letter to NYSDEC dated November 22, 1999 that summarizes the findings related to the cesspools and drainage structures. GZA developed a ranking system for the structures to be selected for IRM. The cesspools and drainage structures were divided into groups based on the type and concentration of contaminants.

Eleven underground structures, cesspools and storm drains were selected by NYSDEC for remediation. Seven structures contained water. As detailed in Table 2-15, these structures were divided into the following four groups.

- Group 1 consisted of DS-4, CP-6, CP-5 and CP-10. The soils in these structures were contaminated with VOCs, SVOCs, and metals.
- Group 2 consisted of DS-8, DS-10, and CP-8. The soils in these structures were contaminated with metals.
- Group 3 consisted of CP-3, CP-4, and CP-7. The soils in these structures were contaminated with high levels of metals.
- Group 4 consisted on DS-5. The soil in this structure was contaminated with PCBs and metals.

It should be noted that CP-11 was not found or sampled until July 2000, and therefore was not included in the IRM evaluation. The selected remediation for contaminated media from the structures consisted of pumping and off-Site disposal of the water, and excavation and off-Site

disposal of the soils.

Solicitation of bids to perform the remediation were prepared and submitted to several subcontractors. Able Environmental Group (AB Oil) of Bohemia, New York was selected to perform the remediation. The remediation commenced on April 10, 2000 and was completed on April 11, 2000. GZA was on Site to observe the remediation, document quantities and perform community air monitoring.

The remediation generally consisted of initially using a vacuum truck to remove the liquids from the structures. An approximate total of 12,200 gallons of water was removed from DS-4, CP-6, CP-5, CP-10, DS-8, DS-10, CP-8, and DS-5. Mr. Kevin Oldham from the Suffolk County Department of Public Works was on Site during the removal of the water from the structures to determine which water would be acceptable for disposal at the Bergen Point wastewater treatment facility (WWTF). Water from CP-10 was identified by Mr. Oldham as having an oil content above the acceptable limit for disposal at the Bergen Point WWTF. The removed water (with the exception of the water from CP-10 (approximately 700 gallons)) was transported to and disposed of at the Bergen Point WWTF. Water from CP-10 was containerized and later disposed of by AB Oil.

A vacuum truck and small clamshell bucket were used to remove the soils from the structures. Initially, a clamshell bucket was used to remove the sediments from CP-3 and CP-4. However, a vacuum truck was used for the remaining remediation, as it was more efficient and faster. The soils were placed into four approximate 15 cubic yard roll-off boxes. The soils were segregated based on the group (Groups 1 through 4 discussed above). AB Oil collected a composite soil sample from each roll-off box for disposal analytical testing. The soils were disposed of at S&W Waste in Kearny, New Jersey.

In addition to the quantities presented above, approximately 3,250 gallons of water was decanted off the roll-off boxes prior to removal from the Site. This water was disposed of by AB Oil.

After the soil removal was completed, GZA collected confirmatory analytical soil samples from the eleven structures using a hand auger. Table 2-15 summarizes the water and soil removed from each structure and the analytical testing completed. Analytical results of the confirmatory soil samples are included on Tables 2-8 and 2-10.

- In general, VOCs, SVOCs, PCBs and pesticides were not detected in the confirmatory soil samples above their respective Recommended Soil Cleanup Criteria from NYSDEC Technical and Administrative Guidance Memorandum No. HWR-94-4046 (RSCOs) for the sediment samples, with the exception of one parameter: heptachlor epoxide. Heptachlor epoxide, a pesticide, was detected in the confirmatory sample from DS-10 at a concentration of 56 ug/kg, which is above the RSCO of 20 ug/kg.
- Several metal compounds were detected at concentrations above the RSCOs. However, the concentrations within the CPs and DSs were shown to have been

greatly reduced from the IRM activities.

During the IRM field work, the surface soils surrounding the open fill port of UST-3 (see Figure 2 and Appendix F for UST identification and locations) were observed to be stained with fuel oil. AB Oil removed approximately 1,000 gallons of liquid from the UST with a vacuum truck for disposal at the request of the NYSDEC. The impacted soil surrounding the fill port was also removed and placed in the roll-off box with soils designated as Group 1.

3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

The following sections discuss surface features, meteorology, surface water hydrology, regional and Site geology, regional and Site hydrogeology, and land use.

3.1 SURFACE FEATURES

The SFC Site is approximately 0.67 acre at 50 Dale Street, West Babylon, Suffolk County, New York. Surrounding property is mixed industrial/commercial. The elevation at the Site is approximately 63 feet, based on the National Geodetic Vertical Datum (NGVD). The overall Site topography is generally flat.

The Site includes the original building, approximately 53 feet by 220 feet, set on property that is about 100 feet by 300 feet in areal extent. Areas not occupied by the building consist of paved parking areas to the north of the building and an unpaved alleyway to the south. Grassy areas are located on the west and east sides of the building. Dale Street borders the Site to the east and Cabot Street borders the Site to the west. The northern boundary of the Site is defined as the south wall of the former NTU building. The southern boundary of the Site is the alleyway south of the SFC building.

The facility is currently occupied by three businesses: a door company (Unique Door Gallery) in the west side of the building; a machine shop in the central part of the building; and auto parts storage in the east part of the building. Walls divide the three occupied sections.

3.2 METEOROLOGY

Moderately warm summers and cool damp winters with little snowfall typify the climate in the vicinity of the Site and Suffolk County. Precipitation is distributed throughout the year with an annual average of 43 to 44 inches. The average annual temperature is about 53 degrees Fahrenheit (Reference 9).

3.3 SURFACE WATER HYDROLOGY

3.3.1 Regional Surface Water Hydrology

Regional surface water generally flows either towards tributaries, stormwater detention basins and/or through the numerous stormwater drainage systems located throughout Suffolk County, which eventually drain to the Great South Bay south of the Site. The nearest surface water feature (Santapogue Creek) to the Site, in an apparent hydraulic downgradient direction, is approximately 2 miles southeast. The Santapogue Creek flows southerly toward the Great South Bay that is part of the Atlantic Ocean (References 10 & 11).

3.3.2 Site Surface Water Hydrology

Natural surface water bodies (e.g., streams or ponds) do not exist near the Site (References 10 & 11). However, manmade drainage basins are located in the area. Asphalt and gravel areas surrounding the Site buildings direct surface water runoff at the Site. The stormwater from the parking areas, which also includes some run-off from the building roof, generally collects in several stormwater drainage structures located south of the former NTU building and north of the former SFC building. The drainage structures have perforated walls and, in most cases, no bottoms [Note: CP-10 has a bottom]. Thus, drainage into subsurface soils can occur. Stormwater along Dale and Cabot Streets drains to catch basins that convey water toward Edison Avenue.

The elevations on Site are relatively flat. Slight elevation changes suggest runoff from the Site could migrate to the north, east, south and west. It is expected that limited surface water runoff occurs from the Site.

3.4 REGIONAL GEOLOGY

The subsurface geology for the western portion of Suffolk County generally consists of unconsolidated sediments underlain by crystalline Precambrian metamorphic and igneous bedrock (Reference 12). The bedrock consists of schist, gneiss and, in some areas, granite. The bedrock, which is as deep as 800 feet bgs, is reported as having an upper layer that has been substantially weathered into clay.

Above the bedrock are sediments from the Raritan and Magothy-Matawan Group from the late Cretaceous age. The Raritan Formation consists of two units: the Lloyd sand member group below and the Raritan clay member above. The Lloyd member is of continental origin having been deposited in a large freshwater lake. The material consists of fine to coarse-grained sands, gravel and inter-bedded clay and silty sand. The Raritan clay is also of continental origin and consists of clay, silty clay and clayey silt and fine silty sand. This member acts as a confining layer over the Lloyd member. The Magothy Formation - Matawan Group sedimentary deposits are similar to the underlying sediments, with a sand and gravel deposit in the lower portion of the formation and a clay unit in the upper portion of the formation.

Above the Magothy - Matawan Group is the Jameco Gravel that was deposited during the Pleistocene age. Streams from glacial melting may have deposited this material. These sediments are mainly coarse sand and gravel with some cobbles and boulders (Reference 12).

The Gardiners Clay overlays the Jameco Gravel and is identified as an interglacial deposit of marine origin. This gray to bluish-gray clay layer acts as an effective confining layer over the Jameco

Gravel and Magothy Formation - Matawan Group. This layer is expected to be on the order of 50+ feet thick near the Site.

Sediments consisting of fine to coarse sand with traces of silt, clay and/or fine gravel are located above the Gardiners Clay, herein referred to as the Upper Glacial Aquifer (Reference 12). These sediments are considered glacial outwash from Wisconsian aged glacial activity. These soils are the main focus of this FRI (i.e., the Upper Glacial Aquifer was evaluated in this study).

3.5 SITE GEOLOGY

The geologic focus of this study is the glacial outwash sands belonging to the Upper Glacial Aquifer extending to the uppermost region of the Gardiners Clay layer. The Site geology is based on data collected from Geoprobe soil borings, monitoring well installations and test pits. Geoprobe and monitoring well installation logs identifying subsurface soils as observed during this study are presented in Appendix D.

3.5.1 Overburden

The overburden deposits encountered at the Site generally consist of fill materials, glacial outwash, and clay soil. The following sections describe the physical characteristics of the overburden deposits encountered during this study.

3.5.1.1 Fill Deposit

The fill deposit was generally encountered from the ground surface (at each of the subsurface explorations around the Site building) and ranged in thickness from approximately 0.2 to 1.6 feet bgs. The composition of the fill material varies depending on location at the Site and is also found at greater depths adjacent to underground structures (i.e., cesspools and USTs).

3.5.1.2 Glacial Outwash

Glacial outwash deposits consisting primarily of gravelly sand underlie the fill at the Site. This material is the prevalent overburden at the Site study area. This glacial sediment was observed up to depths of approximately 90 feet bgs.

The Upper Glacial soils consist of fine to coarse sands and gravel. Occasional layers or seams of finer grained soils (fine sands and silts) were observed in the soil samples. The Upper Glacial sand is continuous across the study area and is the predominant water-bearing unit studied at this Site. During this study, the groundwater table was observed at approximately 18 feet bgs.

3.5.1.3 Gardiners Clay

The Gardiners Clay was observed underneath the Upper Glacial sands at the Site during monitoring well installation. The clay was encountered at a depth of approximately 90

feet bgs and was encountered in the deep monitoring well borings. This clay layer was penetrated approximately one foot during this study. This clay layer is reported to be approximately 30 feet thick (References 12), and acts as a lower confining layer for the Upper Glacial Aquifer.

3.6 REGIONAL HYDROGEOLOGY

The general flow of groundwater in the Upper Glacial Aquifer is southeasterly (References 12 and 17). As discussed in Section 2.9, several production wells were historically used to draw water from the Upper Glacial Aquifer. Drinking water is no longer pumped from this zone due to groundwater contamination. However, some wells are still active for irrigation and cooling purposes. These wells could influence local groundwater flow patterns and potentially draw existing contamination plumes in directions other than the main southerly groundwater flow direction.

3.7 SITE HYDROGEOLOGY

As discussed above, only the Upper Glacial Aquifer at the Site was studied. The primary hydraulic properties used to describe the groundwater conditions at the Site include hydraulic conductivity, porosity and hydraulic gradient. These properties are used to estimate groundwater flow directions and velocities. Hydraulic conductivity is a measure of the ability of a soil to transmit water throughout the deposit.

3.7.1 Hydraulic Conductivity and Soil Porosity

Estimated horizontal hydraulic conductivity values were calculated from short-term pumping tests and rising head tests conducted by TAMS/GZA as part of this investigation. As shown in Table 2-3, the hydraulic conductivity ranges between approximately 10 and 900 feet per day (fpd), with an average of 300 fpd.

NYSDEC provided TAMS/GZA with aquifer pump test results calculated by IT Corporation at the National Heatset Printing Site in Babylon, New York, located approximately 1.5 miles southwest of the SFC Site. The pump tests were conducted on four monitoring wells reportedly installed in the Upper Glacial Aquifer, using an estimated aquifer thickness of 70 feet. These estimated hydraulic conductivity results ranged from 11 to 147 fpd, with an average of 137 fpd.

The wide range of hydraulic conductivity values indicates that the Upper Glacial Aquifer is heterogeneous. It is probable that areas or zones of higher (or lower) hydraulic conductivity exist throughout the Site. The Upper Glacial Aquifer reportedly has an average hydraulic conductivity across Long Island of approximately 270 feet per day (References 17 and 19).

The Upper Glacial Aquifer is reported to be anisotropic with a horizontal hydraulic conductivity between 10 to 24 times greater than the vertical hydraulic conductivity (Reference 12).

The aquifer thickness is anticipated to vary at different locations of the study area, however, was observed over the Site with an average thickness of approximately 70 feet. The transmissivity

of the Upper Glacial Aquifer to this depth ranges from 770 to 35,000 ft^2/day with an estimated average of 17,000 ft^2/day .

The effective porosity for the Upper Glacial Aquifer is reported to be about 0.20 to 0.30 (References 12 and 18).

3.7.2 Groundwater Flow Patterns and Velocities

Shallow¹ groundwater contour maps representing groundwater elevations (see Figures 6, 7 and 8) were prepared based on the water elevations measured in the groundwater monitoring wells on June 6, 1999; July 25, 2000; and May 3, 2001. The groundwater flow direction in the study area is southeasterly based on the groundwater contour map. The southeasterly flow direction is generally consistent with the apparent regional groundwater flow and previous studies.

The horizontal gradient across the study area is generally low with an estimated average of 0.002, but there are areas where the gradient is higher. The gradient is relatively low in the center of the study area.

Groundwater flow velocities were calculated using Darcy's Law (Reference 13), utilizing the average horizontal hydraulic gradient (0.002) and porosity (0.20 to 0.30). Based on the range of calculated hydraulic conductivity values (presented in Section 3.7.1 above), the groundwater velocity at the Site study area was calculated to range from about 0.05 to 6 feet per day (fpd), with an average of approximately 2 fpd or 700 feet per year. Average groundwater flow velocities reportedly range from approximately 1 fpd to 2 fpd in the Upper Glacial Aquifer.

Vertical groundwater flow appears to be negligible between the shallow and deep Upper Glacial Aquifer zones. The anisotropy of the hydraulic conductivity (i.e., the horizontal conductivity is 10 to 24 times greater than the vertical conductivity), suggests that very little vertical flow will occur from the top to the bottom of the aquifer.

Intermediate groundwater elevation contours are presented on Figure 9 for the May 3, 2001 data. The deep well groundwater elevations are also presented on Figure 9. These deeper wells indicate southerly flow.

3.8 LAND USE AND DEMOGRAPHY

The SFC Site is located in the western portion of Suffolk County, in a commercial and industrial area between three cemeteries (see Figure 1). Since the 1950s, the Site area and surrounding properties have not undergone significant physical changes, based on historical photographs.

3.9 HABITAT ASSESSMENT

The SFC Site and the areas surrounding the Site have a limited fish and wildlife population due primarily to the commercial and industrial use of the area. Based on the concentrations of chemical

¹ Shallow groundwater is defined by the wells installed to a depth of approximately 25 feet bgs.

compounds and metals detected in the various media, it appears that the impact on the fish and wildlife population in the Site area is low. Therefore, the evaluation of fish and wildlife concerns at the Site was not completed as part of this Focused RI.

4.0 NATURE AND EXTENT OF CONTAMINATION

This section discusses the nature and extent of contamination at the Site. As discussed in Section 2.10, the IRM was undertaken to remove heavily contaminated sediments located in selected cesspools and drainage structures. Soil/sediment samples were collected before (pre) and after (post) the IRM. Results of both sets of data are presented in Tables 2-8 to 2-12. The pre-IRM results are presented to portray the source area contaminant conditions at the Site (see Section 4.2). However, in evaluating the existing source area and soil quality conditions, the post-IRM results were used.

Detected chemical compounds in the various media sampled at the Site and the analytical results are presented in Table 2-5 to 2-14. CompuChem of Cary, North Carolina provided the analytical laboratory services for this project. EDV, Inc. and URS Greiner Woodward Clyde provided independent data validation services for this project.

Data qualifiers and their definitions, and a summary of information regarding data that were qualified by the validator as rejected, are included in Appendix E. Presentation of results within the text does not include data qualifiers.

The criteria used to assess whether the soil sample results represent a potential threat to human health or the environment is provided in NYSDEC TAGM 4046 dated January 1994 (Reference 14). The New York State Class GA groundwater quality standards (Reference 15) were used for comparison to the groundwater sample results.

Based on a review of the data collected (including the trends over time) for the three sample rounds conducted in July 1999 (1999 Round), July 2000 (2000 Round) and April 2001 (2001 Round); and considering the IRM (highly contaminated soil removal from the cesspools and drainage structures) was completed in April 2000; TAMS/GZA has generally considered the 1999 and 2000 rounds as representative as pre-IRM conditions and the 2001 round as post-IRM conditions. Although the 2000 round was conducted after the IRM (about three months after), it is not expected that this was sufficient time for a significant change to have occurred. Therefore, some of the figures and discussions of analytical data are grouped/presented as 1999/2000 round and 2001 round.

4.1 CONTAMINANT TYPES

Discussions of laboratory analytical results for various environmental media are presented by the chemical classes. Site specific chemical classes of concern include VOCs and inorganic compounds (metals). Other chemical classes, including SVOCs, PCBs and pesticides, were analyzed for and detected at the Site, but they appear to be relatively insignificant.

Several inorganic elements and VOCs have been identified as the contaminants of concern for this study. Based on a review of the compounds detected, toxicity characteristics, frequency of exceedance of Recommended Soil Cleanup Criteria from NYSDEC Technical and Administrative Guidance Memorandum No. HWR-94-4046 (RSCO) and groundwater standards, the metals of concern include; cadmium, chromium, copper and nickel. PCE and other VOCs have been identified as the primary VOCs of concern. VOCs and metals of concern were selected primarily for presentation and discussion purposes. It should be noted that GZA's evaluation included a detailed review of the chemical data collected for this FRI.

4.2 SOURCE AREAS

Based on historical information and previous studies conducted at and near to the Site, several potential source areas were identified. Source areas include cesspools, drainage structures, interior sumps, surficial spills, and upgradient groundwater. These potential source areas are identified (shown as bold) on Figure 4.

Underground storage tanks (USTs) are considered as possible source areas for the VOCs, inorganics, SVOCs, PCBs or pesticides. However, traceable patterns of contamination relating to the observed hazardous materials were not apparent. Petroleum related compounds were generally not detected at significant levels. As requested by NYSDEC, GZA prepared a separate report regarding the USTs. A copy of the report is included in Appendix F. At the request of the NYSDEC, the SCDHS was provided with a copy of this information.

It should be noted that soil collected from the bottom of cesspools and drainage structures are described as sediment in this report. Based on discussions with NYSDEC, the appropriate evaluation criteria for the sediment (soil) from the structures are the subsurface soil RSCOs.

4.2.1 Volatile Organic Compounds

Sediment

The VOC levels in the sediment samples (Table 2-8) from cesspools are generally higher than the drainage structures (Table 2-10). The highest levels of VOCs from the selected sediment samples were detected at CP-6. Five compounds were noted to be detected at pre-IRM levels exceeding 10,000 ug/kg in CP-6. These five compounds are identified below.

Compound	Detected Concentration	RSCO
PCE	12,000 ug/kg	1,400 ug/kg
1,1,1-trichloroethane	23,000 ug/kg	800 ug/kg
toluene	34,000 ug/kg	1,500 ug/kg
chloroethane	34,000 ug/kg	1,900 ug/kg
1,1-dichloroethane	52,000 ug/kg	200 ug/kg

Several additional VOCs were identified in CP-6 above the RSCO. Refer to Table 2-8 for these compounds and their concentrations.

VOCs were also detected in CP-5, CP-10 and DS-4 at concentrations above RSCO. These compounds include chlorobenzene at a concentration of 46,000 ug/kg (RSCO of 1,700 ug/kg); acetone at 2,300 ug/kg (RSCO of 200 ug/kg); 2-butanone at 440 ug/kg (RSCO of 300 ug/kg); xylenes (total) at 3,800 ug/kg (RSCO at 1,200 ug/kg); and toluene at 2,300 ug/kg (RSCO of 1,500 ug/kg).

The post-IRM results presented in Tables 2-8 and 2-10 identify a significant decrease in VOC concentrations in the sediment samples. Additionally, no VOCs were identified in the post IRM confirmatory samples exceeding the RSCOs for the CP and DS sediment samples.

Water

Several VOCs at various concentrations were identified in the pre-IRM water samples from the cesspools (Table 2-9) and drainage structures (Table 2-11). There are no readily applicable criteria for comparison purposes for the water in the drainage structures. However, the CP and DS waters discharge to the groundwater. Therefore, we have compared the CP and DS groundwater analytical results to the groundwater standards. The highest level was detected in the CP-10 water sample for chloroethane (91 to 1,000 ug/L). Additional compounds detected above the groundwater standards included acetone (54 to 410 ug/L) which may be associated with laboratory contamination; 1,1-dichlorethane (19 to 54 ug/L); benzene (2 ug/L); toluene (12 to 150 ug/L); ethylbenzene (50 ug/L); xylenes (total) (16 to 60 ug/L); and 1,2-dichloroethene (total) (14 ug/L).

Post-IRM water samples were not collected from the CPs or DSs.

4.2.2 Inorganics

<u>Sediment</u>

Various inorganics were detected in the sediment samples above the RSCO or expected background. The detected metals include:

Arsenic	Barium	Beryllium
Cadmium	Calcium	Chromium
Cobalt	Copper	Iron
Lead	Magnesium	Mercury
Nickel	Selenium	Sodium
Zinc		

Refer to Tables 2-8 and 2-10 for concentrations of detected inorganics. Based on distribution, number of exceedances and toxicity, and for discussion purposes, we will focus on the compounds considered to be "indicator compounds" which include cadmium, chromium, copper and nickel.

The higher levels of inorganics were generally detected in CP-3, CP-4, CP-5, CP-7, CP-8, DS-4, DS-5, DS-8, and DS-10. Metal detections in cesspool samples were generally higher than drainage structure samples. The highest levels of metals were detected in CP-3 sediments: cadmium (19,500 ppm); chromium (120,000 ppm); copper (26,900 ppm); and nickel (54,500 ppm). Additionally, these four compounds were detected at levels in exceedance of RSCOs in the above-mentioned CPs and DSs.

The post-IRM results show the metal concentrations were greatly reduced in the sediment of the IRM CPs and DSs. However, residual metal concentrations exceed the RSCOs.

Six cesspools (CP-3, CP-4, CP-6, CP-7, CP-8 and CP-10) and eleven drainage structures (all but DS-4) contain one or more of the four inorganics at levels 10 times the RSCO.

Water

The pre-IRM water samples analyzed from the CPs and DSs identified elevated levels of various inorganics. The detected inorganics include:

Antimony	Arsenic	Cadmium
Chromium	Copper	Iron
Lead	Manganese	Mercury
Nickel	Selenium	Silver
Sodium	Thallium	Zinc

Refer to Tables 2-9 and 2-11 for concentrations of detected inorganics. CP-10 contained the highest levels of metals: cadmium (318 ug/L); copper (6,700 ug/L); and nickel (1050 ug/L).

Post-IRM water samples were not collected from the CPs or DSs.

4.2.3 PCBs/Pesticides

Sediment

PCBs and pesticides were detected in the samples from CP-3, CP- 4, CP-6, CP-7, CP-9, CP-10, DS-1, DS-2, DS-3, DS-4, DS-5, DS-6, DS-7, DS-8, DS-9, DS-10, and DS-12. Refer to tables 2-8 and 2-10 for specific compounds and concentrations. The only PCB detected above the RSCO was in DS-5 at a concentration of 20,000 ug/kg, which exceeded the RSCO of 10,000 ug/kg. The pesticide heptachlor epoxide was identified above the RSCO of 20 ug/kg in samples DS-10 (IRM Conf.) and CP-10 at concentrations of 56 ug/kg and 32 ug/kg, respectively.

The post-IRM data for sediment samples identified a general decrease in the PCB concentrations in the samples collected. The IRM included removing approximately 6.5 cubic yards of soil from DS-5 where the high PCB level was encountered. Post-IRM confirmatory samples did not identify PCBs at concentrations above the RSCOs.

Water

The water samples did not identify significant levels of PCBs or pesticides above groundwater standards. Refer to Tables 2-9 and 2-11 for a presentation of the results.

4.2.4 SVOCs

Sediment

The SVOCs in sediments detected were generally below the RSCOs with the exception of CP-10. Four compounds at CP-10 exceeded the RSCO including naphthalene at 27,000 ug/kg (RSCO of 13,000 ug/kg), 2-methylnapthalene at 200,000 ug/kg (RSCO of 36,400 ug/kg), phenanthrene at 56,000 ug/kg (RSCO at 50,000 ug/kg), and bis (2-ethylhexyl) phthalate at 73,000 ug/kg (RSCO of 50,000 ug/kg). These results are presented in Tables 2-8 and 2-10. Sediments from CP-10 were removed to the concrete bottom of the structure during the IRM.

Water

SVOCs in water samples from the CPs and DSs indicate low level detections. The highest concentration reported was 59 ug/L Phenol was detected in the water from CP-5 and CP-6 at a concentration of 4 ug/L and 8 ug/L, respectively. The groundwater standard for phenol is 1 ug/L. Refer to Tables 2-9 and 2-11 for a presentation of the results.

4.3 SURFACE SOIL ANALYTICAL RESULTS

Eight surface soil samples were collected during the Site study from depths approximately 0 to 1 foot bgs. In paved areas, surface soil samples were collected approximately 0 to 0.5 feet below the pavement subbase material, or about 0.5 to 1 foot below the top of the pavement. Results of this testing are summarized in Table 2-6.

4.3.1 Volatile Organic Compounds

VOC compounds were detected in three of the eight surface soil samples analyzed; however, only 1,1-dichloroethane (DCA) and 1,1,1-trichloroethane (TCA) exceeded the RSCOs. DCA was detected at a concentration of 2,200 ug/kg, exceeding the RSCO of 200 ug/kg at AP-1. Additionally, TCA concentrations ranged from 840 to 2,400 ug/kg, exceeding the RSCO of 800 ug/kg at AP-2 and AP-1, respectively. These results are presented in Table 2-6.

4.3.2 Inorganics

Inorganics are naturally occurring elements in native soils. To assess whether the soil is contaminated, it is necessary to determine background concentrations for the Site. This was done by selecting soil samples that: appeared to be not impacted by organic contamination, were not immediately downgradient of a potential source; and were above the water table. The sample collected and analyzed from AP-5 was selected for determination of surface soil background concentrations.

Various inorganics were detected in the surface soil samples above the RSCO or expected background. The detected inorganics include:

Arsenic	Beryllium	Cadmium
Chromium	Copper	Iron
Mercury	Nickel	Zinc

Refer to Table 2-6 for concentrations of detected inorganics. As indicated above, based on distribution, number of exceedances and toxicity, for discussion purposes, we will focus on the compounds considered to be "indicator compounds" which include cadmium, chromium, copper and nickel.

The highest concentrations of cadmium, chromium, copper, and nickel were detected from the surface soil sample collected from AP-8. Elevated levels of metals were detected in the alleyway south of the SFC building as represented by sample locations AP-2, AP-3, AP-4, AP-6, AP-7, AP-8, and AP-9.

Metal	Detected Concentration
	Range (mg/kg)
Cadmium	134 to 1670
Chromium	194 to 3130
Copper	42 to 1970
Nickel	64.6 to 21,100

Concentrations of the indicator compounds detected ranged as follows:

These values suggest surficial deposition of wastes. In general the results from AP-10 suggest some impact by waste material; however, the levels are lower than the results from the alleyway (except for copper). Results from AP-1 are significantly lower than the other results.

Relatively high concentrations of cyanide were detected at AP-8 and AP-9, at 65.7 and 66.5 mg/kg, respectively.

4.3.3 PCBs/Pesticides

PCBs were detected at three locations at a concentration at or exceeding the RSCO. The locations are AP-1, AP-6 and AP-8, at which PCB-1254 was identified at concentrations ranging from 1,000 ug/kg to 6,100 ug/kg (exceeding the RSCO of 1,000 ug/kg). Refer to Table 2-6 for a presentation of these results.

4.3.4 SVOCs

SVOCs were detected at the eight sample locations. However, the concentrations were below their respective RSCOs. Table 2-6 presents these results.

4.4 SUBSURFACE SOIL EXPLORATION ANALYTICAL RESULTS

One hundred twenty-nine subsurface soil samples from geoprobes, monitoring well borings and one test pit were analyzed. Samples were generally selected from the unsaturated zone at two depth intervals based on visual observations and engineering judgement. The results are presented on Table 2-7.

4.4.1 Volatile Organic Compounds

Seventeen VOCs were detected in the subsurface soil samples. The concentrations of the detected VOCs were below the RSCOs. Thus, the samples tested did not appear to be impacted significantly by VOCs. However, it appears likely that unsaturated soils below some of the cesspools and drainage structures are or were contaminated with VOCs, and likely contribute or contributed to groundwater contamination.

4.4.2 Inorganics

Various inorganics were detected in the subsurface soil samples above the RSCO or expected background (if no RSCO value is available). Background metals in subsurface soils are presented in Table 4-1. The detected inorganics include:

Beryllium	Cadmium	Chromium
Copper	Iron	Magnesium
Mercury	Nickel	Selenium
Zinc	Cyanide	

Refer to Table 2-7 for concentrations of detected inorganics. Based on distribution, number of exceedances and toxicity, for discussion purposes, we will focus on the compounds considered to be "indicator compounds" which include cadmium, chromium, copper and nickel.

In general, the highest levels of metals were detected at GP-2, GP-4, GP-5, GP-11, GP-40, GP-47, GP-49 and TP-1. These sample locations are generally in the southeastern portion of the Site, both outside and inside the Building. TP-1 is located near the sump in the northeastern portion of the SFC Building.

The highest levels of cadmium, chromium, copper, and nickel in subsurface soil samples were detected at TP-1 at a depth of 1 foot bgs as follows: cadmium (5500 mg/kg), chromium (19,600 mg/kg), copper (3610 mg/kg) and nickel (4,900 mg/kg). The metal concentrations in the unsaturated subsurface soils typically decrease with depth. For example, at this same location from a depth of 6 feet, the metal concentrations were reported at lower concentrations as follows: cadmium (111 mg/kg), chromium (220 mg/kg), copper (54.3 mg/kg), and nickel (115 mg/kg).

The levels of the four metals in soils are shown on Figure 10. This figure includes both surface soil and subsurface soil results. The highest levels of these metals are in the alleyway south of the SFC Building and from samples inside the SFC Building (TP-1, GP-40, GP-47, and GP-49).

For comparative purposes, Figures 11 and 12 depict sample locations and Site areas containing one of more of the four metals at levels 100 times and 10 times, respectively, greater than the respective RSCOs.

Selected Total Metals in Soils at Levels 100 Times Greater Than RSCOs:

Figure 11 shows the sample locations containing one or more of the four metals at levels 100 times greater than the respective RSCOs. This figure includes cesspool and drainage structure results (post-IRM). In general, cadmium is the primary metal with concentration levels 100 times the RSCOs. The area of soil impacted at 100 times above the RSCO is estimated at 4,500 sf.

The estimated depth of soil contamination containing at or above 100 times the RSCOs is not well defined and is likely associated with surface spills and spills to structures. Most samples 100 times the RSCOs are from surficial samples and the bottom of the cesspools and drainage structures. It is suspected that the soil concentrations at or above 100 times the RSCOs is limited to the upper two feet of the surface and near surface soils. Similarly, it is expected that the average depth of contaminated soils near TP-1, GP-40 and GP-49 is approximately 4 ft. Additionally, an area of deeper (below 4 feet) soils with metals concentrations greater than 100 times the RSCO is located in the alleyway at GP-47 (possibly associated with spills in the alleyway), which extends to the water table at about 18 feet. It is estimated that the deeper 100 times the RSCO soil at GP-47 is about 200 cubic yards (cy). As such, the estimated volume of contaminated soils 100 times the RSCO totals approximately 700 cubic yards (i.e., about 440 cubic yards (cy) from the surface and near surface soils, about 50 cy from the cesspools and drainage structures and about 200 cy at GP-47).

Selected Total Metals in Soils at Levels 10 Times Greater Than RSCOs:

The surface and subsurface soil samples containing the four metals greater than 10 times the RSCO are shown on Figure 12. The area of soil containing one or more of the four metals detected at 10 times the RSCO is estimated at approximately 8500 sf. As described above, the estimated depth of soils contaminated at 10 times the RSCOs is not well defined, but is expected to be limited. It is expected that the average depth of contaminated to a level 10 times the RSCOs is:

- Interior soils: approximately 8 feet;
- Alleyway: approximately 2 to 4 feet, with the exception of the area at GP-47 that extends to the water table at about 18 feet.
- West of 40 Dale Street: 14 feet; and
- GP-11 and GP-19: 8 and 16 feet, respectively.

The estimated volume of contaminated soil (10 times the RSCO) is about 2,700 cy from the soils.

The post-IRM analytical results for six cesspools (CP-3, CP-4, CP-6, CP-7, CP-8 and CP-10) and eleven drainage structures (not DS-4) indicated one or more of the four metals at levels 10 times the RSCO. Again assuming a depth of contamination of 5 feet, this equates to an estimated volume of 160 cubic yards.

As such, the estimated volume of contaminated soils 10 times the RSCO totals approximately 2900 cubic yards (i.e., about 2700 cy from the subsurface soils and about 160 cy from the cesspools and drainage structures).

4.4.3 PCBs/Pesticides

Ten pesticides and one PCB were identified in the soil samples analyzed. The concentrations reported were below their RSCOs.

4.4.4 SVOCs

There were three SVOCs reported in subsurface soils. Phenol was detected in one sample (GP-32, S-5) at a concentration of 75 ug/kg, which is above the RSCO of 30 ug/kg. The concentrations of the remaining two SVOCs (di-n-butl phthalate and bis(2-ethylhexl)phthalate) reported were below their RSCOs.

4.5 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected in July 1999 (Phase I) from geoprobe and monitoring wells. A second round of samples (Phase II) was collected in July 2000 from the wells existing in 1999, plus five wells installed in July 2000. A third round of sampling (Phase III) was completed in May 2001 on the existing monitoring wells, one geoprobe (GP-46) and nine new wells (installed in the downgradient area). The Phase III round included analysis of groundwater samples for hexavalent chromium.

4.5.1 Volatile Organic Compounds

Twelve VOCs were detected in excess of groundwater standards. The detected compounds include:

Compound	Detected Concentration	Groundwater Standard
1,1-Dichloroethane	22 ug/L	5 ug/L
1,1-Dichloroethene	7 to 90 ug/L	5 ug/L
1,1,1-Trichloroethane	6 to 15 ug/L	5 ug/L
Trichloroethene	6 to 64 ug/L	5 ug/L
Tetrachloroethene	6 to 610 ug/L	5 ug/L
1,2-Dichloroethene (total)	7 to 51 ug/L	5 ug/L
Methylene Chloride	29 ug/L	5 ug/L
Benzene	13 to 16 ug/L	1 ug/L
Toluene	6 to 31 ug/L	5 ug/L
Chlorobenzene	15 to 17 ug/L	5 ug/L
Methyl tert-butyl ether	14 ug/L	10 ug/L
1,2-Dibromo-3-chloropropane	1 to 2 ug/L	0.04 ug/L

PCE was detected the most frequently in the groundwater and at the highest concentration (610 ug/L at GP-12). Refer to Table 2-13 for analytical results.

Plan views of the PCE distribution in the shallow, intermediate and deep groundwater are included as Figures 13-A, 13-B and 13-C, respectively. These maps display the PCE concentration contours for the 2001 round (the most recent data), and list the results for the three rounds (i.e., 1999/2000/2001) adjacent to the respective wells. The higher levels of PCE for the 1999/2000 rounds were located on the east portion of the Site near GP-33, GP-17, GP-9, and GP-12; and for the 2001 round are located in the vicinity of the MW-6 and MW-12 clusters (downgradient of the higher levels from 1999/2000). In general, PCE was not detected on the west side of the Site with the exception of GP-29 (3 ug/L) and MW-1D2 (13 to 21 ug/L).

A cross-sectional view of the PCE results in groundwater collected in 2001 is presented on Figure 13-D.

The PCE plume indicates that upgradient groundwater is contaminated (e.g., MW-9S). Thus, a potential source area exists north and/or east of the Site (see Section 2.90) and possibly from the NTU Site. Upgradient groundwater results are presented in Table 4-2. Other additional sources of PCE appear on Site. For example, the sediment sample from CP-6 contained 12,000 ug/kg of PCE. The analytical test results indicate a trend of decreasing PCE concentrations in the central-west part of the Site, and an increasing PCE concentration downgradient of the Site between the 1999/2000 and 2001 sample rounds.

Plan views of the total VOC distribution in the shallow, intermediate and deep groundwater collected from monitoring wells are included as Figures 13-E, 13-F and 13-G. These maps display the total VOC concentration contours for the 2001 round. The distribution of total VOC concentrations in groundwater are similar to those for PCE, in that VOCs were generally detected in groundwater collected from the eastern portion of the Site and downgradient (i.e., proximate to well clusters MW-6 and MW-12).

4.5.2 Inorganics

Inorganics are naturally occurring in soils and groundwater. Groundwater samples collected with high soils content (e.g., turbid water) usually contain higher metal concentrations than low turbidity groundwater. GZA obtained groundwater samples from geoprobe borings and monitoring wells. The July 1999 groundwater sampling consisted of collected samples using traditional groundwater sampling methodology (i.e., with a bailer). Due to the high turbidity identified in the groundwater samples, the samples were also filtered to assess representative groundwater and to reduce interference from the sediment within the unfiltered samples. Subsequent rounds of groundwater sampling were completed in July 2000 and May 2001. During these sampling rounds, low-flow sampling techniques were utilized to reduce sediment interference with the groundwater analytical results.

The following discussion focuses on the filtered and low-flow groundwater sample results. This discussion is followed by a summary of the unfiltered results. The results of the inorganic groundwater sampling are presented in Table 2-14.

Filtered and Low-Flow Results

The inorganics from the filtered and low-flow sampling show that eleven inorganics exceed groundwater standards. They are antimony, cadmium, chromium, copper, iron, lead, manganese, nickel, sodium, thallium and cyanide.

- Antimony slightly exceeded the groundwater standard at two of the low-flow sampling locations and at 68 of the filtered samples. However the highest groundwater concentration reported was 6.5 ug/L compared to the standard of 3 ug/L. The significance of the exceedance is not apparent. As such, antimony is not discussed further.
- Cadmium and nickel significantly exceeded the groundwater standards at 14 and 16 locations, respectively in the low-flow samples. Additionally, cadmium and nickel were detected above the groundwater standards at 27 and 8 filtered samples, respectively. These metals are discussed in more detail below.
- Chromium and copper significantly exceeded the groundwater standards at 9 and 3 low-flow sample locations, respectively. Additionally copper was detected above the groundwater standards at four filtered sample locations. Chromium was not detected above the groundwater standards in the filtered locations. These metals are discussed in more detail below.
- Iron, manganese, and sodium exceeded the groundwater standards. However, these metals are not considered significant human health concern, and are not discussed further.
- Lead exceeded the groundwater standard at one well MW-6S (2960 ug/L) downgradient of the Site. This compound cannot be related directly to the Site. Thus, this metal is not discussed further.
- Thallium was detected at well MW-11S at a concentration of 4.8 ug/L which slightly exceeds the groundwater standard of 1 ug/L. Since thallium was only detected at one location, it is not discussed further.
- Cyanide was detected at one location above the groundwater standard, MW-4S (652 ug/L). Since cyanide was only detected above the standard at one location, it is not discussed further.
- Hexavalent chromium was detected at two locations above the groundwater standard (MW-3S at 80 ug/L and MW-6S at 914 ug/L).

The following discussion focuses on the four metals (cadmium, chromium, copper, and nickel) from the low-flow sampling. Figure 14 presents the spatial distribution for these metals in groundwater.

<u>Cadmium</u>

Cadmium was detected above the groundwater standard at 31 locations. It appears that cadmium becomes prevalent in the groundwater just south of the cesspools and drainage structures in the parking area between the NTU Site and the SFC Site. The cadmium exceedances appear to originate from east to west across the Site paralleling the line of cesspools and drainage structures. The highest levels of cadmium were detected at MW-4S (672 ug/L) and GP-2 (593 ug/L).

Chromium

Chromium was detected above the groundwater standard at seven locations: MW-1S, MW-1D2, MW-2S, MW-3S, MW-3D, MW-4S, and MW-6S. The highest level of chromium was detected at MW-6S (3,180 ug/L). The other chromium levels were less than 100 ug/L. It appears that chromium could be from the Site as high levels of chromium were detected in the source areas (e.g., cesspools). However, upgradient groundwater at the MW-1 well cluster contained elevated chromium levels (62.9 to 71.7 ug/L).

Copper

Copper was detected in excess of the groundwater standard primarily in the eastern portion of the Site. Three groundwater sample locations contained elevated levels: GP-16 (205 ug/L), GP-4 (960 ug/L), and MW-4S (1910 ug/L). These data suggest that a source of copper exists or existed on Site. Upgradient copper concentrations ranged from 16.2 to 33.5 ug/L.

<u>Nickel</u>

Nickel was detected at concentrations exceeding the groundwater standard at 20 locations. Upgradient groundwater contained nickel concentrations in excess of the groundwater standard (100 ug/L). Specifically at well cluster MW-1 and well MW-9S, the nickel concentrations ranged between 189 to 313 ug/L. However, the nickel concentrations are significantly higher at several downgradient locations such as: GP-9 (1,770 ug/L); GP-4 (528 ug/L); MW-4S (916 ug/L); MW-6S (547 ug/L); MW-12S (501 ug/L); and GP-2 (999 ug/L). This suggests a source of nickel exists on Site.

Unfiltered Inorganic Results

Unfiltered metals data also indicate traceable patterns to the Site source areas. Total cadmium and total nickel concentrations were plotted (see Figures 15 & 16 showing the 1999/2000 data and Figures 17 and 18 showing the 2001 data). These figures show cadmium and nickel plumes apparently emanating from several of the cesspools and drainage structures, from the surficial soils, and/or from inside the SFC Building (e.g., TP-1).

The highest cadmium concentration was reported at GP-2, 17,200 ug/L. The total distribution shows similarities to the filtered and low-flow results. Specifically, the cadmium plume becomes prevalent in the parking area between the NTU and SFC Buildings. The unfiltered concentrations are higher than the filtered and low-flow results. The cadmium plume extends southerly beyond well (Edison Ave) MW-12S (339 ug/L).

The unfiltered nickel plume was also similar to the filtered and low-flow results. The highest concentrations were reported from GP-9 (3,360 ug/L) and GP-2 (7,310 ug/L). The plume extends southerly beyond (Edison Ave) well MW-12S (543 ug/L). The upgradient unfiltered nickel concentrations range up to 313 ug/L (MW-1D2).

4.5.3 PCBs/Pesticides

Four pesticides were detected in the groundwater. Two pesticides, aldrin and heptachlor epoxide, exceed the groundwater standards. The pesticides exceedances occurred at wells MW-1D1, MW-1D2, MW-3S, MW-4S, and MW-5D2. There does not appear to be a traceable pattern to the SFC Site.

4.5.4 SVOCs

In general, SVOCs were not detected. The SVOC detected was bis (2-ethylhexyl) phthalate. However, the concentrations did not exceed the groundwater standard.

5.0 CONTAMINANT FATE AND TRANSPORT

This section discusses the mechanisms that may affect migration of contaminants at the Site and the chemical behavioral characteristics of the compounds detected, including persistence of these chemical substances. This information is compared with the Site specific data and observations to assist in assessing the extent of migration that has occurred.

The apparent sources of contamination at the Site include:

- 1. Cesspools and drainage structures The specific cesspools and drainage structures that received wastes are not known. However, given the levels of contamination, it appears that CP-3, CP-4, CP-5, CP-6, CP-7, CP-8, DS-4, DS-5, DS-8, and DS-10 are source areas. These source areas were addressed under the IRM. Additional cesspools/drainage structures could also have been discharge locations.
- 2. Surficial staining in an alleyway south of the SFC Site building including deeper subsurface contamination at GP- 47.
- 3. Interior sump near former rinsewater treatment holding area.

In addition, interior floor drains or pipes connecting to the cesspools or drainage structures could be secondary sources, if they leaked.

Off-Site sources of contamination are likely. Specifically, the NTU Site and upgradient facilities appear to be contributing to the VOCs (PCE) contamination and possibly the inorganics such as chromium and nickel. Furthermore, downgradient facilities such as 40 Dale Street could also be contributing to the contamination. For example, the cadmium and copper filtered/low-flow groundwater concentrations are highest at wells MW-4S and MW-6S, downgradient of 40 Dale Street.

5.1 POTENTIAL ROUTES OF MIGRATION

Primary routes of migration from the Site are via groundwater and volatilization to soil gas/air. The groundwater at the Site in the glacial outwash deposits generally flows southeasterly based on current Site conditions.

Surface water and sediment are not significant migration pathways from this Site. During rainfall events, water was observed to enter drainage structures, accumulate in the parking lot or infiltrate the ground. Even though runoff was not observed exiting the Site, it is possible for some surficial contamination to migrate in runoff. Historic surface spills at the Site may have exited the Site by sheet flow.

Volatilized contamination from soil and groundwater is expected to migrate in soil gas above the groundwater table. Migration of soil gas contaminated with VOCs is expected and is less predictable than groundwater migration due to subsurface heterogeneities and subsurface structures (e.g., utilities, building foundations). The source of the VOC contamination is expected to primarily be associated with contaminated groundwater.

5.2 CONTAMINANT PERSISTENCE AND BEHAVIORAL CHARACTERISTICS

Several classes of chemical compounds were detected in the identified environmental media at the Site. However VOCs and inorganics are the contaminants that occurred with the most significance based on exceedance of RSCOs and groundwater standards. The other detected contaminants were at relatively low concentrations and at sporadic locations throughout the Site; and are, therefore, generally not pertinent to this study. Thus, the analysis and discussion of these chemical classes are not included below.

In general, chemical compounds within a given chemical class will behave similarly in the environment. However, significant differences in behavior of chemical compounds may be observed within a chemical class. Their behavior is dependent on their physical and chemical properties as well as environmental conditions, such as the presence of bacteria, pH variations, and Eh conditions.

5.2.1 Volatile Organic Compounds

Groundwater migration, under current conditions, is expected to spread the contamination in the direction of groundwater flow (southeasterly). Vertical spreading is also expected. As the contamination migrates southeasterly, the natural organic carbon in the soil will adsorb the organics, thus slowing the advance of the VOC plume. Additionally, VOCs will be attenuated in the direction of groundwater flow in response to dispersion, volatilization, and degradation, among other factors.

5.2.2 Inorganics

The fate and transport of a metal in soil and groundwater depends upon the chemical form and speciation of the metal. Typically, metals are relatively immobile in subsurface systems as a result of precipitation and/or absorption reactions (Reference 16). Surficial spills of metal plating baths, discharge of metal plating wastes, or other similar waste products can promote the rate of metal migration.

The pH of the groundwater from field data suggests that the groundwater is acidic (pH < 7). Table 5-1 shows the pH of the groundwater from the 1999, 2000 and 2001 sampling events. The metals are likely to be more mobile in an acidic environment than under neutral or higher pH conditions (pH of 7). It is expected that the metal plumes would migrate southeasterly in a similar, but at a slower rate, than the groundwater.

5.3 OBSERVED MIGRATION

5.3.1 Groundwater

The groundwater at the Site indicates upgradient groundwater contamination is present at well cluster MW-1 and well MW-9S. PCE, nickel and chromium were detected in the upgradient groundwater at concentrations exceeding groundwater quality standards. Higher concentrations of PCE, nickel and chromium were detected in the on-Site groundwater samples suggesting that the Site is contributing to these plumes.

The VOCs and metals are expected to flow at rates less than groundwater. The VOC migration rates can be calculated using the retardation factor, which calculates the organic carbon content of the soil with the groundwater seepage velocity. The average groundwater velocity is estimated at 700 feet per year. VOC velocities in groundwater are summarized below.

VOC	Retardation Factor	Estimated Average Contaminant Velocity (Feet per year)
PCE	1.4	500
TCE	1.1	630
TCA	1.3	540
cis 1,2-DCE	1.07	650
1,1 - DCE	1.09	640
1,1-DCA	1.07	650
Toluene	1.2	580

As can be seen, the primary Site VOC (PCE) will travel at a rate about 500 feet per year.

The metals migration rate in groundwater is not well understood. The pH of the groundwater is less than 7.0. When the metals are in acidic groundwater conditions, the metals will be more mobile than when the pH is higher than 7.0.

The rate of metals transport flow through the groundwater can be inferred from the distance the plume has traveled. Assume that the plume has migrated from the Site to well MW-12S (a distance of about 500 feet), and that the metals were discharged to the groundwater sometime between 1968 and 1983. This indicates that certain metals (e.g., cadmium) traveled 400 feet or more over a period of 17 to 32 years. The inferred metal transport velocity would therefore range between approximately 15 to 30 feet per year or more. Based on monitoring well analytical data from wells installed in 2001, the width of the plume at Edison Ave is narrow (less than 200 feet wide).

5.3.2 Volatilization and Soil Vapor Migration

PCE within the Site overburden groundwater and soils may volatilize into the unsaturated soil zone (i.e., the zone above the water table). As noted, the thickness of the unsaturated soil zone, based on the explorations, is approximately 18 feet thick. Migration of soil vapors (gases) occurs through the void spaces between the soil grains in the overburden. Soil vapors may discharge into the atmosphere, and into on-Site or off-Site subsurface structures such as basements, manholes, or sumps. In addition, volatilization of VOCs may occur at groundwater discharge locations, such as sumps and/or surface water features.

6.0 QUALITATIVE RISK ASSESSMENT

A qualitative human health baseline risk assessment was completed based on the information presented in Sections 1.0 through 5.0. Generally, the human health evaluation involved an exposure assessment, an evaluation of Site occurrence, hazard identification and comparison to New York State Standards, Criteria and Guidelines (SCGs).

6.1 HUMAN HEALTH EVALUATION

This Section discusses the exposure assessment, an evaluation of Site occurrence and a comparison to SCGs related to potential impacts to human health. It should be noted that several conservative assumptions were used in conducting this assessment, and thus, the risks identified may not necessarily be realized.

6.1.1 Exposure Assessment

This exposure assessment discusses potential migration routes by which chemicals in the environment may be able to reach human receptors. This discussion is based on current and hypothetical future Site conditions and extrapolated Site conditions to off-Site conditions.

Currently, the Site and the surrounding area is mixed commercial and industrial. There are no residences proximate to the Site. It is assumed for the purposes of this evaluation that the general area use will remain unchanged.

In developing hypothetical future Site conditions, the possibility for the Site and immediate surrounding area to be redeveloped for residential purposes was not evaluated, since this is considered unlikely. However, development and/or intrusive Site work in areas near the Site were evaluated. In addition, the possibility for the SFC to be abandoned and left unattended was considered. A future Site worker scenario, unaware of potential contamination, was also considered.

A complete exposure pathway must exist for a population to be impacted by the chemicals at the Site. A complete exposure pathway consists of four components:

- 1. Source and mechanism of chemical release;
- 2. Transport medium;
- 3. Point of potential human contact with the contaminated medium; and
- 4. Exposure route at the contact point.

Section 4.0 discusses potential source areas and other contaminated media at and associated with the SFC Site. Section 5.0 discusses potential routes of migration of chemical substances from source areas and observed contaminant migration at the Site. This section focuses primarily on identifying potential points of human contact with contaminated media.

The subsections below discuss exposure pathways identified for the Site. The exposure pathways are also summarized on Table 6-1.

6.1.1.1 Surface Soils

Exposure to chemical substances within surface soils may occur via dermal contact or ingestion. The Site is accessible from the surrounding commercial areas during business hours. The Site is restricted by a gated chain link fence during evening hours. In addition, the Site is approximately 90% paved or covered with slab-on-grade concrete. Thus, exposure to surface soils via dermal contact or ingestion is considered low. However, surface soil in the alleyway is accessible to the public. The alleyway is not expected to be

frequented by the public considering it is blocked by vegetation at each end, very narrow and located on private property. The possibility does exist for the Site to be abandoned and unrestricted access to the Site to occur.

6.1.1.2 Subsurface Soils

Exposure to chemical substances within on-Site subsurface soils (including those within cesspools and drainage structures) may occur via dermal contact, inhalation or ingestion under the hypothetical future scenario where on-Site intrusive work is performed and workers are unaware or not properly trained to work with potentially hazardous materials. If these materials are brought to the surface and not adequately secured, it is unlikely that exposure to local residents may occur since the Site is gated and fenced. However, vapor emissions could occur.

It should be noted that the Site is currently recognized by the NYSDEC as an inactive hazardous waste disposal site. As such, intrusive work on the Site, including construction or maintenance work on cesspools and drainage structures, should be conducted in accordance with requirements that include health and safety monitoring. Therefore, the likelihood of this potential exposure is relatively low, if proper health and safety procedures are followed.

Contaminated subsurface soils also act as a source of continuing groundwater contamination.

6.1.1.3 Overburden Groundwater

Exposure to overburden groundwater, if used as a water supply, includes ingestion, dermal contact and inhalation of vapors. There is sufficient overburden groundwater to serve as a water supply source as evidenced by the groundwater supply wells located 1.2 miles southeast of the Site. However, these water supply wells reportedly extract groundwater from greater than 300 feet bgs. Therefore, threat to these wells from contamination at the Site is not expected. Public supply wells are discussed in Section 2.9.

In addition, future development or utility repairs proximate to or downgradient of the Site may expose workers to groundwater during excavation and dewatering. The likelihood for this exposure scenario is considered moderate.

6.1.1.4 Potential Volatile Vapors

Potential inhalation exposure from PCE volatilization from this groundwater near the Site may occur under current conditions (e.g., migration of vapors into buildings). Excavation work on utilities (including drainage or cesspool structures) within the Site or along Dale and Cabot Street, or Edison Avenue may also result in exposure to VOCs. The likelihood of these exposures is considered low due to the depth to groundwater (approximately 18 feet bgs) and lack of basements in the vicinity of the Site. Additionally, work inside drainage structures or cesspools is expected to be monitored (e.g., air monitoring prior to entering) due to the confined-space nature of the work.

6.1.1.5 Dust Migration

Potential dust migration from unpaved areas could also occur resulting in off-Site migration of contaminants. This could occur from the alleyway south of the existing SFC Building. However, this area is partially vegetated. Limited dust migration is possible; although, the likelihood of significant exposure is considered low.

6.1.2 Evaluation of Site Occurrence

Tables 6-2, 6-3 and 6-4 present the range of concentrations for the chemicals detected in the various media for the exposure scenarios discussed above. The summary includes the number of times a chemical was detected; the number of samples analyzed; the maximum value reported and the location where the maximum value was reported. For purposes of this qualitative assessment, the exposure point concentration was set as the maximum reported value, and this value was then compared to SCGs.

In evaluating Site occurrence, reported analytical results qualified with an "R", indicating the data were rejected by the data validator, were omitted. In addition, data from matrix spike and matrix spike duplicate samples were not included. Data from diluted, duplicate and re-analyzed samples were included for purposes of determining a maximum or minimum value. Both unfiltered and filtered results for groundwater were included in the evaluation. However, these were combined as one sample in evaluating the frequency of occurrence.

Groundwater monitoring wells were sampled during three events. As previously described, the number of samples and analytical testing during the third round were reduced based on a review of the Round 1 and 2 data. The number of times detected is represented by the number of individual locations in which a particular substance was detected. As such, a compound was only counted once per location (e.g., MW-6S), regardless of whether it was detected in Round 1, Round 2 or Round 3 samples. The data from the three sampling rounds were combined for this evaluation (i.e., the higher or highest concentration of the three rounds were selected).

6.1.3 Hazard Identification and Comparison to SCGs

The Site's potential hazard of human exposure was reviewed based on chemical-specific health exposure based SCGs. SCGs included State values believed potentially applicable to the media or pathway being examined. The SCGs varied depending on the environmental medium under consideration; and, it should be noted that the applicability of a given SCG to a specific media or pathway was considered during the review and subsequent comparisons. The SCGs, maximum concentration and detection frequency are presented in Tables 6-2, 6-3 and 6-4.

The sections below discuss the SCGs used for each medium and the comparison of anticipated exposure point concentrations to SCGs. It should be noted that additional SCGs (i.e., non-chemical specific) might subsequently be identified during the Focused Feasibility Study.

6.1.3.1 Surface Soils

The SCGs used for Site surface soils include the following:

• "Determination of Soil Cleanup Objectives and Cleanup Levels", NYSDEC TAGM 4046 Guidance dated January 24, 1994 (Reference 14).

A comparison of soil SCGs and Site occurrence information compiled from analytical testing results of surface soil samples collected from the Site is included in Table 6-2. The data set used to compile this information included the surface soil samples (samples designated "AP" from the upper 0 to 1 foot of soil.)

As shown in Table 6-2, there are several exceedances of the SCGs. Most of the exceedances and the highest frequency of detections were noted for the metals. Two VOCs and two PCBs were also reported in exceedance of the SCGs.

6.1.3.2 Subsurface Soils

The SCGs used for Site surface soils include the following:

• "Determination of Soil Cleanup Objectives and Cleanup Levels", NYSDEC TAGM 4046 Guidance dated January 24, 1994 (Reference 14).

A comparison of soil SCGs and Site occurrence information compiled from analytical testing results for subsurface soil samples (samples designated "GP", "MW", "CP", "DS", "AG" and "TP") collected from the Site is included in Table 6-3.

As shown in Table 6-3, there are many exceedances of the SCGs, primarily for the inorganics.

6.1.3.3 Overburden Groundwater

Human health risks associated with exposure to overburden groundwater were examined by considering both use of the overburden groundwater as a drinking water source, and potential exposure to overburden groundwater at a point of contact, downgradient of the Site to the south by construction or utility workers.

The SCGs used for human health risks associated with use of overburden groundwater at the Site as a drinking water source, include the following.

• NYSDEC Class GA Groundwater Quality Criteria 6NYCRR Part 701-703 dated June 1998 (Reference 15).

As shown in Table 6-4, there are eleven VOCs that exceed the SCGs. PCE was detected the most frequently and at the highest concentration. There were no SVOCs that exceed the SCGs. Two pesticides exceed their respective SCGs.

The inorganic results are separated into two sets of data, unfiltered (total) and filtered. The unfiltered data includes the low-flow results. These results indicate that 20 inorganics exceed the SCGs. The filtered results indicate that seven inorganics exceed the SCGs.

6.1.3.4 Volatile Vapors in Downgradient Excavation or Basement

A potential exposure scenario is temporary exposure to VOC vapors within a downgradient excavation made near the Site. However, quantification of these risks without VOC vapor data is speculative and unreliable. Given the depth to groundwater, concentrations of PCE in groundwater; monitoring requirements for cesspool and drainage structure confined space entry; and lack of basements in the local Site vicinity (where structures are primarily slab-on-grade construction); it is suspected that exposure to VOCs in basements and excavations would be low.

7.0 SUMMARY AND CONCLUSIONS

7.1 SITE HISTORY SUMMARY

SFC Site

The SFC began operations at the Site around 1968. Building department records indicate that the SFC building (50 Dale Street) was constructed in the late 1960s. Metal finishing operations at the Site included electroplating (in particular copper, cadmium, chromium and nickel) of high strength alloys (for the aerospace industry), chromium conversion coating (aluminum parts), and chemical cleaning. The facility was known to have specialized in descaling and chemical cleaning of titanium alloys. Painting was also reportedly conducted at the facility.

During the 1970s, SCDHS inspections revealed discharges of liquid plating wastes to the soil and drainage structures. Since about 1983, SFC discontinued discharge of wastewater into the on-Site drainage structures, and disposed the wastewater off Site. In June 1994, SFC filed Chapter 7 bankruptcy and ceased operations.

The USEPA completed a removal action to address the on-Site wastes in August 1997 – March 1998. The removal action included the removal and disposal of a total of 25,767 gallons and 77 cubic feet of various hazardous wastes. Two concrete-lined sumps, various exterior sumps/drywells, various USTs, paint booths and several vats were observed inside the building during the EPA removal action. The removal action included the scraping and sweeping to remove waste from the interior floors and pressure washing of the boiler room, wastewater treatment room, garage area, storage room, process rooms and paint booths.

NTU Site

The NTU Site is a delisted NYSDEC Class 2a inactive hazardous waste disposal Site (registry number 1-52-086). This facility adjoins the Site to the north. NTU produced high-resolution

printed circuit boards and its operations included drilling, cleaning and electroplating. Chemicals used at the NTU facility include ammonium persulfate, sulfuric acid, hydrochloric acid, copper plating solution, and etching solution (containing copper, lead and nickel).

No volatile organic chemicals were reportedly used at the NTU facility. Additionally, according to information contained in the Phase II Investigation Report, there was no documentation to verify that the organic compounds detected were ever used at the NTU Site. The Phase II report (Reference 3) indicated that it is possible that contamination from an outside source reached the leach pools via nearby facilities that use VOCs (including the SFC Site). The parking lot on the south side of the NTU building, is now part of the SFC Site.

Remediation (soil removal) of metal contaminated soil was completed in drain pools around the Site. According to SCDHS, following the removal of contaminated soil the drain pools were filled with lime slurry, sealed and covered with asphalt.

7.2 FIELD EXPLORATIONS SUMMARY

The FRI study was conducted in three Phases between June 1999 and July 2001. During this time, various field explorations were completed at the Site in general accordance with the Site Field Activities Plan. The FRI study was completed to evaluate surface and subsurface environmental conditions and to provide data pertaining to the extent of nature and extent of on-Site contamination. The field explorations included: a geophysical survey; Geoprobe soil borings, test boring and monitoring well installations; test pit explorations; water level survey; hydraulic conductivity testing; water supply well inventory; existing monitoring well assessment; health and safety monitoring; and environmental sampling.

7.3 PHYSICAL SITE CHARACTERISTICS SUMMARY

7.3.1 Summary of Surface Features and Surface Water Hydrology

The Site property consists of approximately 0.9 acres of land, located at 50 Dale Street in West Babylon, New York. For the purpose of this investigation, the Site study area was extended to the north to include the parking lot up to the south edge of the buildings located at 60 Dale Street (approximately 1.3 acres). SFC owned the Site since 1968. SFC specialized in electroplating high strength alloys, and descaling titanium alloys for the aerospace industry. Metal finishing operations at the Site ceased in about 1994.

The Site includes the original on-Site building, approximately 60 feet by 320 feet (19,400 square feet). Areas not occupied by the building consist of paved parking to the north, an unpaved alleyway to the south, and grassy areas to the east and west of the building. Current tenants in the building include a machine shop, door manufacturer, and an automobile storage operation.

Eleven cesspools, 12 drainage structures and two former well structures exist at the Site. In general, the cesspools and drainage structures are similar and are approximately eight-foot diameter, round concrete vaults with perforated sides, and apparently no bottom. For the purposes of this report, cesspools include those structures with solid steel or concrete covers, whereas drainage structures generally have open grate steel covers.

Natural surface water bodies (e.g., streams or ponds) do not exist near the Site. However, manmade drainage basins are located in the area. Asphalt and gravel areas surrounding the Site buildings direct surface water runoff at the Site. The stormwater from the parking areas, which also includes some run-off from the building roof, generally collects in several stormwater drainage structures located south of the former NTU building and north of the SFC building. Stormwater along Dale and Cabot Streets drains to catch basins that convey water toward Edison Avenue.

7.3.2 Geologic and Hydrogeologic Summary

The fill material encountered on-Site is relatively insignificant. Glacial outwash deposits, (the Upper Glacial Aquifer) consisting primarily of gravelly sand, are under the fill at the Site. The Upper Glacial Aquifer is the prevalent overburden at the Site study area. This deposit was observed up to depths of approximately 90 feet bgs. The Upper Glacial outwash was encountered in each subsurface exploration across study area and is the predominant water-bearing unit studied at this Site. The Gardiners Clay was observed underneath the Upper Glacial sands at a depth of about 90 feet.

The groundwater flow direction in the study area is southeasterly based on the groundwater measurements made. The southeasterly flow direction is generally consistent with the apparent regional groundwater flow and previous studies.

The groundwater flow velocities were calculated for the Upper Glacial Aquifer and ranged from about 0.05 to 6 feet per day (fpd), with an average of 2 fpd or 700 feet per year.

7.4 NATURE AND EXTENT OF CONTAMINATION SUMMARY

Based on historical information and previous studies conducted at and near to the Site, several potential source areas were identified. Source areas include cesspools, drainage structures, interior sumps, surficial spills, and upgradient groundwater.

Site specific chemical classes of concern include VOCs and inorganic compounds (metals). Other chemical classes, including SVOCs, PCBs, and pesticides were analyzed for and detected at the Site, but appear to be less significant.

7.4.1 IRM Summary

The IRM was undertaken to remove heavily contaminated sediments located in selected cesspools and drainage structures. Eleven underground structures, cesspools and storm drains were selected by NYSDEC for remediation: DS-4, DS-5, DS-8, DS-10, CP-3, CP-4, CP-5, CP-6, CP-7, CP-8, and CP-10. The IRM included the removal of 11,500 gallons of non-hazardous water; 3,950 gallons of impacted water; and 43 tons of soil/sediment identified as hazardous waste (Waste Code D006 Cadmium contaminated).

7.4.2 Source Areas

The source areas include cesspools and drainage structures, surficial soils in the alleyway and the sump near the former rinsewater and treat hold area. Other potential sources include the pipelines within the SFC Building and those interconnecting the cesspools and drainage structures. Upgradient groundwater also appears to be adding contamination (VOCs and certain metals) to the Site groundwater. The most significant contamination was found in the cesspools and drainage structures. For example, the results from CP-3 (pre-IRM) contained cadmium at 19,500 mg/kg (\sim 2 %), and chromium at 120,000 mg/kg (\sim 12%).

In general, the pre-IRM results from the cesspools and drainage structures indicated that VOCs, metals, SVOCs and PCBs exceeded subsurface soil RSCOs in one or more of the structures. Post-IRM results indicate that the VOCs, PCBs, and SVOCs have been removed to levels below the RSCOs. Metal concentrations were greatly reduced, but residual concentrations are above the RSCOs in many of the cesspools and drainage structures.

7.4.3 Soil Contamination

7.4.3.1 VOCs

There were VOC detections and exceedances of RSCOs in surface soils at three locations in the alleyway. However, the VOC results from subsurface soils did not show exceedances of RSCOs.

7.4.3.2 Inorganics

The levels of the four "indicator" metals (i.e., cadmium, chromium, copper, nickel) in soils are shown on Figure 10. This figure includes both surface soil and subsurface soil results. The highest levels of these metals are in the alleyway south of the SFC Building and from samples inside the SFC Building (TP-1, GP-40 and GP-47). It should be noted that the cesspools and drainage structures also contain high levels of metals in the soil, although these results are not shown on this figure.

Figure 11 shows the sample locations containing one or more of the four metals at levels 100 times greater than the respective RSCOs. This figure includes cesspool and drainage structure results (post-IRM). In general, cadmium is the primary metal with concentration levels 100 times the RSCOs. The volume of soil impacted at 100 times above the RSCO is estimated at 440 cubic yards (cy) from the surface and near surface soils, about 50 cy from the cesspools and drainage structures and about 200 cubic yards (cy) at GP-47.

The surface and subsurface soil samples containing the four metals greater than 10 times the RSCO are shown on Figure 12. The volume of soil containing one or more of the four metals detected at 10 times the RSCO is estimated at approximately 2,900 cy.

7.4.3.3 PCBs/Pesticides

There were three PCB exceedances of RSCOs in the surface soils and one exceedance of PCBs were detected in the subsurface soils. There were no exceedances of the pesticide RSCOs in surface soils, and ten exceedances of pesticide RSCOs in subsurface soils.

7.4.3.4 SVOCs

There were SVOCs reported in surface and subsurface soils. The concentrations reported were generally below their respective RSCOs.

7.4.4 GROUNDWATER ANALYTICAL RESULTS

7.4.4.1 VOCs

Twenty-four VOCs were detected in the groundwater samples. Twelve of the VOCs were detected in excess of groundwater standards. PCE was detected the most frequently in the groundwater and at the highest concentration (610 ug/L at GP-12). A plan view of the PCE distribution in the groundwater is included as Figure 13. This map displays the shallow PCE concentration contours. The higher levels of PCE are situated on the east portion of the Site near GP-33, GP-17, GP-9, and GP-12. In general, PCE was not detected on the west side of the Site with the exception of GP-29 (3ug/L) and MW-1D2 (21 ug/L).

The PCE plume indicates that upgradient groundwater is contaminated (e.g., MW-9S, 140 ug/L). Thus, a potential source area exists north and/or west of both the SFC and NTU Site. Other additional sources of PCE appear on-Site. For example, CP-6 contained 12,000 ug/kg of PCE in the sediment sample. While a plume is not apparently emanating from CP-6, it does suggest that PCE was discharged on Site.

The analytical test results indicate a trend of decreasing PCE concentrations in the central west part of and increasing PCE concentration downgradient of the Site between the 1999/2000 and 2001 sample rounds.

7.4.4.2 Inorganics

Filtered and Low-Flow Results

The inorganics from the filtered and low-flow sampling show that eleven inorganics exceed groundwater standards. They are antimony, cadmium, chromium, copper, iron, lead, manganese, nickel, sodium, thallium and cyanide.

• Antimony slightly exceeded the groundwater standard at two of the low-flow sampling locations and at 68 of the filtered samples. However the highest groundwater concentration reported was 6.5 ug/L compared to the standard of 3 ug/L. The significance of the exceedance is not apparent. As such, antimony is not discussed further.

- Cadmium and nickel significantly exceeded the groundwater standards at 14 and 16 locations, respectively in the low-flow samples. Additionally, cadmium and nickel were detected above the groundwater standards at 27 and eight filtered samples respectively. These metals are discussed in more detail below.
- Chromium and copper significantly exceeded the groundwater standards at nine and three low-flow sample locations, respectively. Additionally copper was detected above the groundwater standards at four filtered sample locations. Chromium was not detected above the groundwater standards in the filtered locations. These metals are discussed in more detail below.
- Iron, manganese, and sodium exceeded the groundwater standards. However, these metals are not considered significant human health concern, and are not discussed further.
- Lead exceeded the groundwater standard at one well MW-6S (2960 ug/L) downgradient of the Site. This compound cannot be related directly to the Site. Thus, this metal is not discussed further.
- Thallium was detected at well MW-11S at a concentration of 4.8 ug/L which slightly exceeds the groundwater standard of 1 ug/L. Since thallium was only detected at one location, it is not discussed further.
- Cyanide was detected at one location above the groundwater standard, MW-4S (652 ug/L). Since cyanide was only detected above the standard at one location, it is not discussed further.
- Hexavalent chromium was detected at two locations above the groundwater standard (MW-3S at 80 ug/L and MW-6S at 914 ug/L).

The following discussion focuses on the four metals cadmium, chromium, copper, and nickel from the low-flow sampling. Figure 14 presents the spatial distribution for these metals in groundwater.

Cadmium

Cadmium was detected above the groundwater standard at 31 locations. It appears that cadmium becomes prevalent in the groundwater just south of the cesspools and drainage structures in the parking area between the NTU Site and the SFC Site. The cadmium exceedances appear to originate from east to west across the Site paralleling the line of cesspools and drainage structures. The highest levels of cadmium were detected at MW-4S (672 ug/L) and GP-2 (593 ug/L.)

<u>Chromium</u>

Chromium was detected above the groundwater standard at seven locations: MW-1S, MW-1D2, MW-2S, MW-3S, MW-3D, MW-4S, and MW-6S. The highest level of chromium was detected at MW-6S (3,180 ug/L). The other chromium levels were less than 100ug/L. It appears that chromium could be from the Site as high levels of chromium were detected in the source areas (e.g., cesspools). However, upgradient groundwater at well MW-1 cluster contained elevated chromium levels (62.9 to 71.7 ug/L).

<u>Copper</u>

Copper was detected in excess of the groundwater standard primarily in the eastern portion of the Site. Three groundwater sample locations contained elevated levels: GP-16 (205 ug/L), GP-4 (960 ug/L), and MW-4S (1910 ug/L). These data suggest that a source of copper exists or existed on-Site. Upgradient copper concentrations ranged from 16.2 to 33.5 ug/L.

<u>Nickel</u>

Nickel was detected at concentrations exceeding the groundwater standard at 20 locations. Upgradient groundwater contained nickel concentrations in excess of the groundwater standard (100 ug/L). Specifically at well cluster MW-1 and well MW-9S the nickel concentration ranged between 189 to 313 ug/L. However, the nickel concentrations are significantly higher at several downgradient locations such as: GP-9 (1,770 ug/L); GP-4 (528 ug/L); MW-4S (916 ug/L); MW-6S (547 ug/L); MW-12S (501 ug/L); and GP-2 (999 ug/L). This suggests a source of nickel exists on-Site.

7.4.4.3 PCBs/Pesticides

Four pesticides were detected in the groundwater. Two pesticides, aldrin and heptachlor epoxide, exceed the groundwater standards. The pesticides exceedances occurred at well MW-10S, MW-3S, MW-4S, and MW-5D2. There does not appear to be a traceable pattern to the SFC Site. Samples were not tested for PCBs.

7.4.4.4 SVOCs

In general, SVOCs were not detected. The only SVOC detected was bis (2-ethylhexyl) phthalate. However, the concentrations did not exceed the groundwater standard.

7.5 CONTAMINANT FATE AND TRANSPORT SUMMARY

7.5.1 Observed Migration Summary

Primary routes of migration from the Site are via groundwater and volatilization to soil gas/air. The groundwater at the Site in the glacial outwash deposits generally flows southeasterly. It

is generally understood that the contamination will flow with the groundwater in a southeasterly direction.

Volatilized contamination from soil and groundwater is expected to migrate in soil gas above the groundwater table. Migration of soil gas contaminated with VOCs is expected and is less predictable than groundwater migration due to subsurface heterogeneities and subsurface structures (e.g., utilities, building foundations). The source of the VOC contamination is expected to primarily be associated with contaminated groundwater.

Groundwater migration, under current conditions, is expected to spread the contamination to the south, with possible easterly components based on the direction of groundwater flow. Vertical spreading is also expected.

The groundwater at the Site indicates upgradient groundwater contamination is present at well cluster MW-1 and well MW-9S. PCE, nickel and chromium were detected in the upgradient groundwater at concentrations exceeding groundwater quality standards. Higher concentrations of PCE, nickel and chromium were detected in the on-Site groundwater samples, suggesting that the Site is contributing to these plumes.

The VOCs and metals are expected to flow at rates less than groundwater. As the contamination migrates southerly, the natural organic carbon in the soil will adsorb the organics, thus slowing the advance of the VOC plume. Additionally, VOCs will be attenuated in the direction of groundwater flow in response to dispersion, volatilization, and degradation, among other factors.

VOC migration rates were calculated using a retardation factor of about 1.1 to 1.4 times slower than groundwater. The average groundwater velocity is estimated at 700 feet per year, and thus, the retarded VOC velocities are expected to range between 500 and 650 feet per year.

Metals migration is attenuated by adsorption to the soils, dispersion and precipitation among other factors. Based on the distance traveled and the assumed time the metals have been in groundwater, the inferred metal transport velocity would range between approximately 15 to 30 feet per year or more.

7.6 QUALITATIVE RISK ASSESSMENT SUMMARY

A qualitative baseline risk assessment was completed based on the information and data obtained during the FRI study. Human health and ecological assessments were completed.

7.6.1 Summary of Human Health Risk Assessment

A qualitative baseline human health risk assessment was completed based on the information and data obtained during the FRI study. The qualitative human health evaluation included an exposure assessment, an evaluation of Site occurrence, hazard identification and comparison to New York State SCGs.

- A majority of the Site is paved and access is restricted, therefore, there is low exposure potential in these areas. However, the surface soil is exposed in the alleyway south of the SFC Building, and a greater exposure potential exists in that area.
- There is a moderate exposure potential to subsurface soils due to leaching to groundwater. Access to subsurface Site soils is considered low, as it would likely be limited to future construction or maintenance of existing subsurface utilities including the cesspools and drainage structures.
- The potential of exposure to overburden groundwater is moderate based on the current and anticipated future use of the Site and the presence of a public water supply in the area.
- There is a low exposure potential for soil gas vapors due to the relatively low groundwater concentrations; monitoring requirements for cesspool and drainage structure confined space entry; and lack of basements in the local Site vicinity (where structures are primarily slab-on-grade construction);.
- There is a low exposure potential for dust particulate from the Site as the majority of the Site is paved, and the exposed soils in the alleyway are situated between two buildings limiting exposure to wind.

7.7 CONCLUSIONS

Based on the FRI summarized above, the following conclusions regarding current Site conditions are presented.

The following Site environmental media need to be addressed during the feasibility study.

- Surface soils;
- Subsurface soils, including cesspools and drainage structures and associated piping;
- Overburden groundwater; and

In addition, off-Site concerns include the following.

- Groundwater contamination located off-Site to the south and east resulting from on-Site sources. Upgradient groundwater contamination sources and possible downgradient sources may also exist (i.e., cesspools or drainage structures possibly impacted by runoff from the site.)
- Subsurface soil in the drainage structures in the parking area of the Building at 40 Dale Street.

REFERENCES

- 1. Information provided by Suffolk County Department of Health Services, Hauppauge, New York, June 2000.
- 2. Roy F. Weston Inc. 1998. Final Draft Site Inspection Prioritization, Spectrum Finishing Corporation, Babylon, Suffolk County, New York. Prepared for United States Environmental Protection Agency (USEPA). October 1998.
- Gibbs & Hill, Inc. New York, New York. 1992. Final Phase II Investigation, NTU Circuits, Inc., Site No. 152086. Babylon, New York. Prepared for New York State Department of Environmental Conservation (NYSDEC). April 1992.
- 4. Fanning, Phillips & Molnar Engineers. 1992. Delisting Petition Report, NTU Circuits, Inc., Babylon, New York. Prepared for NTU Circuits, Inc. November 1992.
- 5. GRB Environmental Services, Inc. and Richard D. Galli, P.C. 1988. Draft Phase II Investigation, Spectrum Finishing Corporation Site, Site No. 152029, Babylon, New York. Prepared for NYSDEC Division of Solid and Hazardous Waste. March 1988.
- Woodward-Clyde Consultants, Inc. 1984. Phase I Preliminary Investigation Final Report, Spectrum Finishing Corporation Site. Submitted to NYSDEC Division of Solid Waste. September 20, 1984.
- TAMS Consultants, Inc. and GZA GeoEnvironmental of New York. 1999. Field Activity Plan, Spectrum Finishing Corporation Site RI/FS, Site No. 1-52-029. Prepared for NYSDEC. April 1999.
- 8. Telephone conversation between Mr. Jeff Altorfer (Suffolk County Water Authority) and GZA GeoEnvironmental of New York. October 13, 2000.
- 9. National Oceanic and Atmospheric Administration (NOAA). 1997. Climatological Data Annual Summary, Volume 109 Number 13.
- 10. United States Department of the Interior Geologic Survey (USGS). Amityville, New York Quadrangle, Topographic Map (scale 1:24,000). 1969. Photorevision 1979.
- United States Department of the Interior Geologic Survey (USGS). Bay Shore West, New York Quadrangle, Topographic Map (scale 1:24,000). 1969. Photorevision 1979.
- 12. United States Department of the Interior Geologic Survey (USGS). 1977. Analog-Model Analysis of Regional Three Dimensional Flow in the Ground-Water Reservoir of Long Island, New York. Geological Survey Professional Paper 982. Prepared in cooperation with the Nassau County Department of Public Works, Suffolk County Department of Environmental Control, Suffolk County Water Authority, and New York State Department of Environmental Conservation. Washington D.C. 1977.

REFERENCES

- 13. Bear, Jacob. Hydraulics of Groundwater. McGraw-Hill, 1979.
- New York State Department of Environmental Conservation (NYSDEC). 1994. Technical and Administrative Guidance Memorandum HWR-94-4046 (TAGM #4046). "Determination of Soil Cleanup Objectives and Cleanup Levels." January 1994.
- New York State Department of Environmental Conservation (NYSDEC). 1993. Division of Water Technical and Operational Guidance Series. (TOGS 1.1.1). "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations." October 1993; Revised June 1998.
- 16. Evanko Ph. D, Cynthia R., and David Dzombak, Ph. D, P.E. 1997. Technology Evaluation Report. "Remediation of Metals-Contaminated Soils and Groundwater." Carnegie Mellon University Department of Environmental Engineering. Pittsburgh, PA. Prepared for Ground-Water Remediation Technologies Analysis Center. October 1997.
- Kimmel, Grant E. and Olin C. Braids. 1980. Leachate Plumes in Groundwater from Babylon and Islip Landfills, Long Island, New York. Geological Survey Professional Paper 1085. Prepared in cooperation with the Suffolk County Department of Environmental Control. Washington D.C. 1980.
- 18. Gershman, Brickner & Bratton, Inc. Town of Babylon Ash Disposal Site Final Environmental Impact Statement. July 24, 1987.
- United States Geological Survey (USGS). 1999. Water-Resources Investigations Report 99-4086. "Stratigraphy and Hydrologic Conditions at the Brookhaven National Laboratory and Vicinity, Suffolk County, New York, 1994-97". Prepared in cooperation with the Brookhaven National Laboratory and the US Department of Energy. 1999.

Table 1-1 Summary of Cesspools, Drainage Structures, and Well Structures

Spectrum Finishing Corporation Site West Babylon, New York

Site No. 1-52-029

Circuit a Nr. 1	D.C	T			.	1. 0	II.		1
Structure Number	Reference	Type of Cover	Approximate	Type of Construction	`	the Structures		Soils in the Structures	-
	Elevation (feet)		Diameter (feet)		Depth to Liquid (feet)	Comments	Depth to Soils (feet)	Comments	
DS-1	62.22	Open Grate	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi exits west side of structure, possibly connected
DS-2	62.09	Open Grate	8	Round with perforated concrete walls, no bottom.	7 to 8		10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure f
DS-3	62.22	Open Grate	8	Round with perforated concrete walls, no bottom.	7 to 8		10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi structure from the northwest, apparently conn
DS-4	62.19	Open Grate	8	Round with perforated concrete walls, no bottom.	9		9.5	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi
DS-5	62.18	Open Grate	8	Round with perforated concrete walls, no bottom.	15		15 to 16	Dark brown/black organics and sand	4-inch diameter plastic enters structure from s
DS-6	61.92	Open Grate	8	Round with perforated concrete walls, no bottom.	5 to 6		10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipes enter structure fr diameter pipe exits structure from west side, p
DS-7	63.08	Open Grate	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	1 to 2	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi
DS-8	63.14	Open Grate	8	Round with perforated concrete walls, no bottom.	6 to 8		10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi
DS-9	63.09	Open Grate	8	Round with perforated concrete walls, no bottom.	4		10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipe exits structure from north side, possibly connected
DS-10	62.87	Open Grate	8	Round with perforated concrete walls, no bottom.	6 to 8		10 to 12	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi exists structure from east side, possibly conne
DS-11	62.96	Open Grate	8	Round with perforated concrete walls, no bottom.	8 to 10		12 to 15	Dark brown/black organics and sand	4-inch diameter plastic pipe enters/exits struct
DS-12	63.36	Open Grate	8	Round with perforated concrete walls, no bottom.	8 to 10		12 to 14	Dark brown/black organics and sand	4-inch diameter plastic pipe enters/exits struct of structure (leading towards DS-9).
CP-1	62.37	Solid Cover (Buried)	8	Round with perforated concrete walls, no bottom.	8 to 10		14 to 15	Brown sandy sediments	4-inch diameter plastic pipe enters structure f
CP-2	62.53	Solid Cover (Buried)	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	13 to 14	Brown sandy sediments	4-inch diameter plastic pipe enters structure fi
CP-3	62.52	Solid Cover (Buried)	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	12 to 14	Soft red/green sediments	4-inch diameter plastic pipe enters structure fi exists structure from the west, apparently con
CP-4	63.38	Solid Cover (Buried)	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	12 to 14	Soft red/green sediments	4-inch diameter plastic pipe enters structure fi
CP-5	62.84	Solid Cover (Buried)	8	Round with perforated concrete walls, no bottom.	10 to 12		12 to 14	Dark brown/black sandy and gravelly sediments	4-inch diameter plastic pipe enters structure fi
CP-6	no survey data, approximately 62.7	Solid Cover	8	Round with perforated concrete walls, no bottom.	8 to 10		11	Brown sand and organics	4- to 6-inch diameter plastic pipe enters struct inside of building. 4-inch diameter pipe enter
CP-7	63.25	Solid Cover	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	13	Soft green/red sediments	6-inch diameter plastic pipe enters structure f
CP-8	63.65	Solid Cover	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	6 to 8	Brown sandy sediments	6-inch diameter plastic pipe enters structure fi
CP-9	63.50	Solid Cover	8	Round with perforated concrete walls, no bottom.	3 to 4		12 to 14	Brown sand and organics	4-inch diameter plastic pipe enters structure fi
CP-10	63.72	Solid Cover	8	Round with perforated concrete walls, no bottom.	5 to 6		12 to 14	Brown sand and organics	4-inch diameter plastic pipe exits structure fro from northeast side, apparently from building
CP-11	62.50	Solid Cover	8	Round with perforated concrete walls, no bottom.	Dry	no sample collected	12	Dark brown/black organics and sand	4-inch diameter plastic pipe enters structure fi
WS-1	62.74	Solid Cover	6	Round concrete vault.	Dry	no sample collected	6	Brown sandy sediments	No apparent pipe inlets or outlets. Piping exis
WS-2	63.47	Solid Cover	6	Round concrete vault, possibly perforated.	Dry	no sample collected	5	Brown sandy sediments	1- to 1.5-inch diameter pipe and other piping

NOTES:

1) See Figure No. 4 for cesspool and drainage structure locations.

2) Survey information provided by YEC, P.E., L.S., P.C.

3) Depth measurements referenced to the ground surface.

4) N/A = not applicable.

5) Drainage structures have open grated covers and were generally located in areas to collect stormwater runoff.

6) Cesspools CP-1 through CP-5 have solid concrete covers. Cesspools CP-6 through CP-11 and WS-1 and WS-2 have solid steel covers.

7) Drainage structures with pipes leading to the buildings are generally connected to roof drains.

Remarks

re from northwest side, apparently connected to roof drain. 4-inch diameter plastic pipe ected to CP-2.

re from northwest side, apparently from building.

re from the south, apparently connected to building. 4 inch diameter plastic pipe exits onnected to CP-1.

re from northeast side, apparently connected to roof drain.

om southeast side, apparently connected to roof drain.

re from southeast and southwest sides, apparently connected to roof drains. 6 inch de, possibly connected to a buried cesspool.

re from northeast side, apparently connected to building. Structure is full of sediments.

re from southeast side, apparently connected to roof drain.

e from east side, possibly connected to DS-12. 4-inch diameter plastic pipe enters ted to building.

re from southwest side, apparently connected to roof drain. 6-inch diameter plastic pipe nnected to a buried cesspool near Dale Street.

ructure from west side, possibly connected to DS-12.

ructure from east side, apparently connected to DS-11. No pipe observed on west side

re from the southeast, apparently connected to DS-3.

re from the east, apparently connected to DS-1.

re from the northwest, apparently connected to building. 4-inch diameter plastic pipe connected to CP-4.

re from the east, apparently connected to CP-3.

re from the west, apparently connected to building.

ructure from the southwest, apparently connected to the bathrooms and floor drains enters/exits structure on the northwest side (possibly connected to a buried cesspool).

re from south side, apparently from building.

re from southwest side, apparently connected to building and or roof drain.

re from northeast side, apparently from CP-10.

from southwest side, apparently to CP-9. 4-inch diameter plastic pipe enters structure ing.

re from northwest side, apparently from building.

exist within the structure.

ng fixtures exits/enters the north side of structure.

Table 2-1 Summary of Samples Collected for Analytical Testing Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Surface Soil AP-1 AP-1 AP-1 AP-2 AP-5 AP-5 AP-6 AP-7 AP-8 (Duplicate) AP-8 AP-7 AP-8 AP-7 AP-8 AP-7 AP-8 AP-7 AP-8 AP-7 AP-8 AP-7 AP-8 AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-5 (MS/MSD) GP-4, S-9 GP-4, S-2 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-6, S-7 GP-6, S-7 GP-7, S-10 GP-7, S-10 GP-7, S-10 GP-9, S-6 GP-9, S-6 GP-9, S-6 <t< th=""><th></th><th>Date Sampled</th><th>soil soil soil soil</th><th>TCL VOCs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>TCL SVOCs 1 1 1 1 1 1 3 1 1 1 1 2</th><th>TAL Metals + Cn 1 1 1 1 1 1 3 1 1 1 1 1</th><th>TAL Metals (Dissolved)</th><th>Cr⁺⁶</th><th>TCL PCBs 1 1 1 1 1 1 3 1</th><th>TCL Pesticides</th><th>TOC</th><th>Wet Chemistry Parameters</th><th>GC Fingerprint</th></t<>		Date Sampled	soil soil soil soil	TCL VOCs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TCL SVOCs 1 1 1 1 1 1 3 1 1 1 1 2	TAL Metals + Cn 1 1 1 1 1 1 3 1 1 1 1 1	TAL Metals (Dissolved)	Cr ⁺⁶	TCL PCBs 1 1 1 1 1 1 3 1	TCL Pesticides	TOC	Wet Chemistry Parameters	GC Fingerprint
Surface Soil AP-1 AP-1 AP-1 AP-2 AP-5 AP-5 AP-5 AP-6 AP-7 AP-8 (MS/MSD) AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-5 (MS/MSD) GP-4, S-9 GP-4, S-2 GP-5, S-1 GP-6, S-4 (MS/MSD) GP-7, S-5 GP-7, S-10 GP-8, S-7 GP-7, S-10 GP-7, S-10 GP-7, S-10 GP-8, S-7 GP-9, S-6 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6	AP-1,S-1 AP-2 AP-2 AP-5 AP-11 AP-6 AP-7 AP-8 AP-9 AP-10 EB-7-AP EB-7-AP TC Soil GP-1,S-3 GP-1,S-3 GP-1,S-3 GP-2,S-5 GP-3,S-9 GP-3,S-9 GP-4,S-2 GP-4,S-2 GP-5,S-8 GP-5,S-8 GP-5,S-8 GP-6,S-4 GP-6,S-7	6/9/1999 6/28/1999 6/28/1999 6/28/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 2 1	1 1 1 1 1 1 3 1 1 1	+ Cn 1 1 1 1 1 1 3 1 1			1 1 1 1 1 1 3		1		ringerprint
AP-1 AP-1 AP-1 AP-1 AP-2 AP-2 AP-5 AP-6 AP-7 AP-8 AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-10 GP-3, S-5 GP-4, S-5 GP-4, S-2 GP-5, S-1 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-7, S-10 GP-8, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6	AP-1 AP-2, S-1 AP-2, S-1 AP-5 AP-11 AP-6 AP-7 AP-8 AP-9 AP-10 EB-7-AP TC Soil GP-1, S-3 GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-8 GP-6, S-7	6/28/1999 6/28/1999 6/28/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/27/1999	soil soil soil soil soil soil soil soil	1 1 1 1 3 1 1 1 12 1	1 1 1 3 1 1 1	1 1 1 1 3 1 1			1 1 1 1 3	1			
AP-1 AP-2 AP-2 AP-5 AP-5 (Duplicate) AP-6 AP-7 AP-8 (MS/MSD) AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-5 (MS/MSD) GP-4, S-2 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-6, S-7 GP-7, S-10 GP-6, S-7 GP-7, S-10 GP-7, S-10 GP-7, S-10 GP-7, S-10 GP-7, S-10 GP-8, S-4 GP-9, S-5 GP-9, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6	AP-1 AP-2, S-1 AP-2, S-1 AP-5 AP-11 AP-6 AP-7 AP-8 AP-9 AP-10 EB-7-AP TC Soil GP-1, S-3 GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-8 GP-6, S-7	6/28/1999 6/28/1999 6/28/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/27/1999	soil soil soil soil soil soil soil soil	1 1 1 1 3 1 1 1 1 2 1	1 1 1 3 1 1 1	1 1 1 1 3 1 1			1 1 1 1 3	1			
AP-2 AP-2 AP-5 (Duplicate) AP-5 (Duplicate) AP-5 AP-5 (Duplicate) AP-7 AP-6 AP-7 AP-8 (MS/MSD) AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-10 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-10 C GP-8, S-4 G GP-9, S-6 G GP-9, S-6 <	AP-2, S-1 AP-2 AP-5 AP-11 AP-6 AP-7 AP-8 AP-7 AP-8 AP-9 AP-10 EB-7-AP EB-7-AP TC Soil GP-1, S-3 GP-2, S-5 GP-2, S-10 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/9/1999 6/28/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil soil soil soil soil soil	1 1 1 3 1 1 1 1 12 1	1 1 1 3 1 1 1	1 1 1 3 1			1 1 1 3	1			
AP-2 AP-5 AP-5 (Duplicate) AP-5 AP-5 (Duplicate) AP-6 AP-7 AP-8 (MS/MSD) AP-9 AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-9 GP-4, S-9 GP-5, S-8 GP-6, S-7 GP-6, S-7 GP-7, S-10 GP-7, S-10 G GP-8, S-4 G GP-9, S-6 G <	AP-2 AP-5 AP-5 AP-11 AP-6 AP-7 AP-9 AP-9 AP-10 EB-7.AP TC Soil GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-10 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/28/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil soil soil soil soil soil	1 1 1 3 1 1 1 1 12 1	1 1 1 3 1 1	1 1 1 3 1			1 1 1 3	1			
AP-5 AP-5 (Duplicate) AP-6 AP-7 AP-8 (MS/MSD) AP-9 AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-9 GP-5, S-1 GP-6, S-4 (MS/MSD) GP-7, S-10 GP-6, S-7 GP-7, S-10 GP-6, S-4 (MS/MSD) GP-7, S-10 GP-8, S-4 GP-9, S-5 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6	AP-5 AP-11 AP-6 AP-7 AP-8 AP-9 AP-10 EB-7-AP TC Soil GP-1, S-3 GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-10 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7	6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil soil soil soil soil soil	1 1 3 1 1 12 12	1 1 1 3 1 1	1 1 3 1			1 1 1 3	1			
AP-5 (Duplicate) AP-6 AP-7 AP-8 (MS/MSD) AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-4, S-2 GP-5, S-1 GP-5, S-4 GP-6, S-4 (MS/MSD) GP-7, S-5 GP-7, S-5 GP-7, S-6 GP-7, S-70 GP-7, S-8 GP-7, S-6 GP-7, S-70 GP-8, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-10, S-1	AP-11 AP-6 AP-7 AP-8 AP-9 AP-10 EB-7-AP TC Soil GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-10 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 TAL (Surface : 6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil soil soil soil soil soil	1 3 1 1 12 12	1 1 3 1 1	1 1 3 1			1 1 3	1	1		
AP-7 AP-8 AP-8 (MS/MSD) AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-1, S-3 GP-1, S-8 GP-2, S-5 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-9 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-10 C GP-8, S-4 GP-9, S-5 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 (Duplicate) C GP-9, S-6 (Duplicate) C GP-10, S-1 C	AP-7 AP-8 AP-9 AP-10 EB-7-AP TC Soil GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-10 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/27/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil soil water Soil Samples): soil soil soil soil	1 3 1 1 1 12 12	1 3 1 1	1 3 1 1			1 3				
AP-8 (MS/MSD) AP-8 (MS/MSD) AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-1 GP-6, S-4 (MS/MSD) GP-7, S-5 GP-7, S-10 GP-7, S-5 GP-7, S-10 GP-7, S-10 GP-7, S-10 GP-7, S-6 GP-7, S-10 GP-8, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-1	AP-8 AP-9 AP-10 EB-7.AP C GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-6, S-4 GP-6, S-7	6/27/1999 6/27/1999 6/27/1999 6/27/1999 DTAL (Surface 3 6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/4/1999	soil soil water Soil Samples): soil soil soil soil soil	3 1 1 1 12 12	3 1 1 1	3 1 1			3				
AP-9 AP-10 Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-2, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-6 GP-5, S-1 GP-6, S-7 GP-7, S-10 GP-7, S-7 GP-6, S-7 GP-7, S-7 GP-7, S-7 GP-7, S-7 GP-7, S-10 GP-7, S-10 C GP-7, S-6 GP-7, S-7 GP-7, S-7 GP-7, S-6 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-10, S-1	AP-9 AP-10 EB-7-AP TC Soil GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-5 GP-3, S-9 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/27/1999 6/27/1999 6/27/1999 DTAL (Surface S 6/11/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/4/1999	soil soil water Soil Samples): soil soil soil soil	1 1 12 1	1 1 1	1 1							
AP-10 Equipment Blank (Bowl and Spoon) Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-5 GP-3, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-9 GP-4, S-9 GP-5, S-8 GP-5, S-1 GP-6, S-4 (MS/MSD) GP-6, S-4 GP-7, S-10 C GP-7, S-10 C GP-7, S-10 C GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-1	AP-10 EB-7-AP TC Soil GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/27/1999 6/27/1999 DTAL (Surface s 6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil water Soil Samples): soil soil soil soil	1 1 12 1	1 1	1			1				
Equipment Blank (Bowl and Spoon) Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-5 (MS/MSD) GP-4, S-9 GP-5, S-1 GP-6, S-7 GP-7, S-10 GP-8, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-1	EB-7-AP Soil GP-1, S-3 GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/27/1999 DTAL (Surface 3 6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/4/1999	water Soil Samples): Soil Soil Soil Soil	1 12 1	1								L
Geoprobe and Soil Boring Subsurface S GP-1, S-3 GP-1, S-8 GP-2, S-5 GP-2, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-6 GP-5, S-7 GP-6, S-4 GP-7, S-5 GP-7, S-5 GP-7, S-5 GP-7, S-10 (Duplicate) GP-8, S-4 GP-9, S-6 (Duplicate) GP-9, S-6 GP-9, S-1	TC Soil GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-10 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-8 GP-5, S-8 GP-6, S-7	DTAL (Surface 3 6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/4/1999	Soil Samples): soil soil soil soil	12					1	1	1		
GP-1, S-3 GP-1, S-8 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-1 GP-6, S-4 (MS/MSD) GP-6, S-4 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-10 C GP-7, S-10 G GP-7, S-10 G GP-7, S-10 G GP-8, S-4 G GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-1 C	Soil GP-1, S-3 GP-1, S-8 GP-2, S-5 GP-2, S-10 GP-3, S-5 GP-3, S-9 GP-4, S-9 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7	6/1/1999 6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/4/1999	soil soil soil soil	1	12	12	0	0	12	2	3	0	0
GP-1, S-3 GP-1, S-8 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-1 GP-6, S-4 (MS/MSD) GP-6, S-4 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-10 C GP-7, S-10 G GP-7, S-10 G GP-7, S-10 G GP-8, S-4 G GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-1 C	GP-1, S-3 GP-2, S-5 GP-2, S-5 GP-2, S-10 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-5, S-8 GP-6, S-7	6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil			12			12				Ŭ
GP-1, S-8 GP-2, S-5 GP-2, S-5 GP-3, S-5 (MS/MSD) GP-3, S-5 (MS/MSD) GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-4 (MS/MSD) GP-7, S-10 GP-7, S-10 (C GP-7, S-10 (C GP-8, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 GP-9, S-10 (C	GP-1, S-8 GP-2, S-5 GP-2, S-10 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-4, S-9 GP-5, S-1 GP-5, S-1 GP-5, S-8 GP-6, S-7	6/1/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999 6/10/1999	soil soil soil	1		1			1				
GP-2, S-10 (GP-3, S-5 (MS/MSD) (GP-4, S-9 (GP-4, S-2 (GP-5, S-1 (GP-6, S-4 (MS/MSD) (GP-6, S-4 (MS/MSD) (GP-7, S-5 (GP-7, S-10 (GP-7, S-10 (GP-7, S-10 (GP-8, S-4 (GP-9, S-5 (GP-9, S-4 (GP-9, S-6 (GP-10, S-1 (GP-2, S-10 GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-7	6/10/1999 6/10/1999 6/10/1999 6/4/1999	soil			1			1				
GP-3, S-5 (MS/MSD) GP-3, S-9 GP-4, S-2 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-5 GP-7, S-10 GP-8, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-10, S-1	GP-3, S-5 GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7	6/10/1999 6/10/1999 6/4/1999		1		1			1				
GP-3, S.9 GP-4, S-2 GP-4, S-2 GP-5, S-1 GP-5, S-1 GP-6, S-4 GP-6, S-4 GP-7, S-10 GP-7, S-10 (C GP-8, S-4 (G GP-9, S-6 (G GP-9, S-6 (G GP-9, S-6 (C) GP-10, S-1 (C	GP-3, S-9 GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7	6/10/1999 6/4/1999		1		1			1				
GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-5 GP-7, S-5 GP-7, S-10 (Duplicate) C GP-8, S-4 GP-9, S-4 GP-9, S-6 (Duplicate) C GP-9, S-6 (Duplicate) C	GP-4, S-2 GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7	6/4/1999	soil	3		3			3			ļ	
GP-4, S-9 GP-5, S-1 GP-5, S-4 GP-6, S-4 GP-7, S-5 GP-7, S-10 GP-8, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-10, S-1	GP-4, S-9 GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7		soil	1		1			1				<u> </u>
GP-5, S-1 GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-5 GP-7, S-5 GP-7, S-10 (C GP-7, S-10 (C GP-8, S-4 (GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 (Duplicate) (C GP-10, S-1 (C	GP-5, S-1 GP-5, S-8 GP-6, S-4 GP-6, S-7		soil	1		1			1	├	l		
GP-5, S-8 GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-5 GP-7, S-5 GP-7, S-10 (Duplicate) GP-8, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 (Duplicate) GP-9, S-6	GP-5, S-8 GP-6, S-4 GP-6, S-7	6/4/1999 6/7/1999	soil soil	1		1			1	┢───┤			
GP-6, S-4 (MS/MSD) GP-6, S-7 GP-7, S-5 GP-7, S-10 GP-7, S-10 GP-9, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6	GP-6, S-4 GP-6, S-7	6/7/1999	soil	1		1			1	├───┤			
GP-6, S-7 GP-7, S-5 GP-7, S-10 GP-8, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-10, S-1	GP-6, S-7	6/28/1999	soil	3		3			3				
GP-7, S-5 GP-7, S-10 (C GP-7, S-10 (Duplicate) (C GP-8, S-4 (GP-9, S-4 (GP-9, S-4 (GP-9, S-6 (GP-9, S-6 (GP-9, S-6 (GP-9, S-6 (GP-9, S-6 (GP-10, S-1) (C) (GP-10, S-1) (C) (G)		6/28/1999	soil	1		1			1				
GP-7, S-10 (C GP-7, S-10 (Duplicate) (C GP-8, S-4 (GP-9, S-4 GP-9, S-6 (GP-9, S-6 GP-9, S-6 (Duplicate) (C GP-10, S-1 (C		6/4/1999	soil	1		1			1				
GP-7, S-10 (Duplicate) (C GP-8, S-4 GP-9, S-4 GP-9, S-6 GP-9, S-6 GP-9, S-6 (Duplicate) (C GP-10, S-1 (C)	GP-7, S-10	6/28/1999	soil	1		1			1				
GP-9, S-4 GP-9, S-6 GP-9, S-6 (Duplicate) (GP-10, S-1 (GP-41, S-1	6/28/1999	soil	1		1			1				
GP-9, S-6 GP-9, S-6 (Duplicate) (GP-10, S-1 (GP-8, S-4	6/16/1999	soil	1		1			1				
GP-9, S-6 (Duplicate) (GP-10, S-1 (GP-9, S-4	6/7/1999	soil	1		1			1				
GP-10, S-1	GP-9, S-6	6/7/1999	soil	1	1	1			1	1	1	ļ	
	GP-41, S-5	6/7/1999	soil	1	1	1			1	1	1	ļ	
	GP-10, S-1	6/15/1999	soil	1		1			1		I		L
	GP-10, S-4	6/15/1999	soil	1		1			1				
	GP-11, S-4 GP-37, S-4	6/3/1999 6/3/1999	soil soil	1		1			1				
	GP-12, S-4	6/1/1999	soil	1		1			1				
	GP-12, S-10	6/1/1999	soil	1		1			1		I		
	GP-13, S-6	6/2/1999	soil	1	1	1			1	1			
	GP-14, S-6	6/2/1999	soil	1		1			1				
GP-14, S-10 G	GP-14, S-10	6/2/1999	soil	1		1			1				
	GP-15, S-1	6/2/1999	soil	1		1			1				
	GP-15, S-3	6/2/1999	soil	1		1			1				
	GP-16, S-1	6/2/1999	soil	1		1			1			ļ	
	GP-16, S-8	6/2/1999	soil	1		1			1			l	ļ
	GP-17, S-2	6/2/1999	soil	1		1			1				
	GP-17, S-6 GP-18, S-4	6/2/1999 6/16/1999	soil soil	1	1	1			1	1	1		
	GP-19, S-4	6/2/1999	soil	1	1	1			1	1	_ <u> </u>		
	GP-19, S-8	6/2/1999	soil	1		1			1				
	GP-20, S-3	6/4/1999	soil	1		1			1				
	GP-20, S-8	6/4/1999	soil	1		1			1	i l			
	GP-21, S-2	6/4/1999	soil	1		1			1				
	GP-21, S-8	6/4/1999	soil	1		1			1				
	GP-22, S-2	6/2/1999	soil	1		1			1				
	GP-22, S-9	6/2/1999	soil	1		1			1			ļ	<u> </u>
	GP-23, S-4	6/15/1999	soil	1	1	1			1	1	l	l	
	GP-24, S-3	6/3/1999	soil	1		1			1				
	GP-24, S-7 GP-25, S-5	6/3/1999 6/3/1999	soil soil	1		1			1	┟────┤	l		
	GP-25, S-5 GP-25, S-10	6/3/1999	soil	1		1			1		ł		
	GP-26, S-5	6/1/1999	soil	1		1			1				
	GP-26, S-10	6/1/1999	soil	1		1			1		I		
	GP-27, S-5	6/15/1999	soil	1		1			1				
	GP-27, S-9	6/15/1999	soil	1		1			1				
	GP-28, S-3	6/15/1999	soil	3	3	3			3	3			
	GP-28, S-8	6/15/1999	soil	1		1			1				
	GP-29, S-4	6/3/1999	soil	1		1			1]			
	GP-29, S-9	6/3/1999	soil	1		1	L]		1	<u> </u>			
	GP-30, S-1	6/3/1999	soil	1		1			1	µ		ļ	
	GP-30, S-6	6/3/1999	soil	1	4	1	└──		1		l	├ ────┦	
	GP-32, S-5	6/1/1999	soil	1	1	1	└──		1	1		├ ────┦	
	GP-32, S-9	6/1/1999	soil	1		1			1	├────┤	1		
	GP-33, S-4 GP-33, S-10	6/2/1999 6/2/1999	soil	1		1			1	├─── ┤	l		
	GP-33, S-10 GP-34, S-6	6/2/1999	soil soil	1		1			1		ł		
	GP-34, S-0 GP-34, S-10	6/2/1999	soil	1		1			1		I		
	GP-34, 3-10 GP-35, S-8	6/3/1999	soil	1		1						├ ────────────────────────────────────	
	GP-36, S-2	6/3/1999										1 1	
			501	1		1			1	ļ			
	GP-36, S-8	6/3/1999	soil soil	1		1				 			

GP-38, S-4	GP-38, S-4	6/3/1999	soil	1	I	1			1	I	
GP-38, S-9	GP-38, S-9	6/3/1999	soil	1		1			1		
GP-39, S-2	GP-39, S-2	6/3/1999	soil	1		1			1		
GP-39, S-8	GP-39, S-8	6/3/1999	soil	1		1			1		
GP-40, S-1	GP-40, S-1	6/17/1999	soil	1	1	1			1		

Table 2-1 Summary of Samples Collected for Analytical Testing Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

				TCL	TCL	TAL	TAL		TCL	TCL		Wet	GC
Location	Lab Identifier	Date Sampled	Matrix	VOCs	SVOCs	Metals + Cn	Metals (Dissolved)	Cr ⁺⁶	PCBs	Pesticides	TOC	Chemistry Parameters	Fingerprint
GP-40, S-4	GP-40, S-4	6/17/1999	soil	1		1	(Dissolved)		1			T drameters	
GP-42,S-2	GP-42,S-2	6/10/1999	soil	1		1			1				
GP-42,S-6	GP-42,S-6	6/10/1999	soil	1		1			1				
GP-44,S-4	GP-44,S-4	6/15/1999	soil	1	1	1			1	1			
GP-44,S-8	GP-44,S-8	6/15/1999	soil	1		1			1				
GP-44,S-8 (Duplicate)	GP-43,S-5	6/15/1999	soil	1		1			1				
GP-45,S-1	GP-45,S-1	4/24/2001	soil	1		1							
GP-45,S-2	GP-45,S-2	4/24/2001	soil	1		1							
GP-45,S-3	GP-45,S-3	4/24/2001 4/24/2001	soil	1		1							
GP-45,S-4 GP-45,S-5	GP-45,S-4 GP-45,S-5	4/24/2001	soil soil	1		1							
GP-45,S-5 GP-45.S-6	GP-45,S-6	4/24/2001	soil	1		1							
GP-45,S-7	GP-45,S-7	4/24/2001	soil	1		1							
GP-45.S-8	GP-45,S-8	4/24/2001	soil	1		1							
GP-46,S-1	GP-46,S-1	4/24/2001	soil	1		1							
GP-46,S-2	GP-46,S-2	4/24/2001	soil	1		1							
GP-46,S-2 (Duplicate)	GP-52,S-2	4/24/2001	soil	1		1							
GP-46,S-3 (MS/MSD)	GP-46,S-3	4/24/2001	soil	3		3							
GP-46,S-4	GP-46,S-4	4/24/2001	soil	1		1							
GP-46,S-5	GP-46,S-5	4/24/2001	soil	1		1							
GP-46,S-6	GP-46,S-6	4/24/2001	soil	1		1							
GP-46,S-7	GP-46,S-7	4/24/2001	soil	1		1							
GP-46,S-8	GP-46,S-8	4/24/2001	soil	1		1	L						
GP-46,S-9	GP-46,S-9	4/24/2001	soil	1		1	L						
GP-46,S-10 GP-47,S-1 (MS/MSD)	GP-46,S-10 GP-47,S-1	4/24/2001 4/24/2001	soil soil	1		1							
GP-47,S-1 (MS/MSD) GP-47,S-2	GP-47,S-1 GP-47,S-2	4/24/2001	soil	3		3 1							
GP-47,S-2 GP-47,S-2 (Duplicate)	GP-47,5-2 GP-50,S-2	4/24/2001	soil	1		1							
GP-47,S-3	GP-47,S-3	4/24/2001	soil	1	1	1							
GP-47,S-4	GP-47,S-4	4/24/2001	soil	1	1	1							
GP-47,S-5	GP-47,S-5	4/24/2001	soil	1		1							
GP-47,S-6	GP-47,S-6	4/24/2001	soil	1	l	1							
GP-47,S-7	GP-47,S-7	4/24/2001	soil	1		1							
GP-47,S-8	GP-47,S-8	4/24/2001	soil	1		1							
GP-47,S-9	GP-47,S-9	4/24/2001	soil	1		1							
GP-47,S-10	GP-47,S-10	4/24/2001	soil	1		1							
GP-48,S-1	GP-48,S-1	4/24/2001	soil	1		1							
GP-48,S-2	GP-48,S-2	4/24/2001	soil	1		1							
GP-48,S-3	GP-48,S-3	4/24/2001	soil	1		1							
GP-48,S-4	GP-48,S-4	4/24/2001	soil	1		1							
GP-48,S-5	GP-48,S-5 GP-48,S-6	4/24/2001	soil	1		1							
GP-48,S-6 GP-48,S-7	GP-48,S-6 GP-48,S-7	4/24/2001 4/24/2001	soil soil	1		1							
GF-46,S-7 GP-48,S-8	GP-48,S-8	4/24/2001	soil	1		1							
GP-48,S-9	GP-48,S-9	4/24/2001	soil	1		1							
GP-48,S-10	GP-48,S-10	4/24/2001	soil	1		1							
GP-49,S-1 (MS/MSD)	GP-49,S-1	4/24/2001	soil	3		3	-						
GP-49,S-2	GP-49,S-2	4/24/2001	soil	1		1							
GP-49,S-2 (Duplicate)	GP-51,S-2	4/24/2001	soil	1		1							
GP-49,S-3	GP-49,S-3	4/24/2001	soil	1		1							
GP-49,S-4	GP-49,S-4	4/24/2001	soil	1		1							
GP-49,S-5	GP-49,S-5	4/24/2001	soil	1		1							
GP-49,S-6	GP-49,S-6	4/24/2001	soil	1		1							
GP-49,S-7	GP-49,S-7	4/24/2001	soil	1		1							
GP-49,S-8	GP-49,S-8	4/24/2001	soil	1		1							
GP-49,S-9	GP-49,S-9	4/24/2001	soil	1		1							
GP-49,S-10 MW-5D1	GP-49,S-10	4/24/2001	soil	1	4	1			4				
MW-5D1 MW-6S, S-1 (MS/MSD)	MW-5D1 MW-6S, S-1	7/12/1999	soil	1	1	1			1				
MW-6S, S-1 (MS/MSD) MW-6S, S-2	MW-6S, S-1 MW-6S, S-2	7/18/2000 7/18/2000	soil soil	3 1		3 1							
MW-6S, S-2 (Duplicate)		1110/2000											
	MW-13 S-1	7/18/2000											
	MW-13, S-1 MW-10S-11	7/18/2000 7/18/2000	soil	1		1							
MW-65, S-2 (Duplicate) MW-10S, S-11 MW-11S, S-11	MW-13, S-1 MW-10S-11 MW-11S-11	7/18/2000 7/18/2000 7/17/2000				1							
MW-10S, S-11	MW-10S-11	7/18/2000	soil soil	1 1	1	1 1			1	1			
MW-10S, S-11 MW-11S, S-11	MW-10S-11 MW-11S-11	7/18/2000 7/17/2000	soil soil soil	1 1 1	1	1 1 1			1	1			
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2	7/18/2000 7/17/2000 6/10/1999	soil soil soil water	1 1 1		1 1 1 1							
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000	soil soil water water water water water	1 1 1 1 1 1 1		1 1 1 1 1 1 1			1				
MW-10S, S-11 MW-11S, S-11 Equip, Blank (Sampler) Equip, Blank (Sampler) Equip, Blank (Sampler) Equip, Blank (Sampler) Equip, Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001	soil soil water water water water water water	1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1			1				
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001	soil soil water water water water water water water	1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1			1				
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-3	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001	soil soil water water water water water water water water water	1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1			1	1			
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler) Equip. Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001	soil soil water water water water water water water	1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	0	0	1		4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-2 EB-GPS-2 EB-GPS-3 TOTA	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001 4/24/2001 L (Subsurface	soil soil water water water water water water water water soil Samples):	1 1 1 1 1 1 1 1 1 156	1	1 1 1 1 1 1 1 1 1 56		0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Eq	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-3 TOTA	7/18/2000 7/17/2000 6/16/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001 4/24/2001 L (Subsurface 6/3/1999	soil soil soil water water water water water water Soil Samples): groundwater	1 1 1 1 1 1 1 1 1 56	1	1 1 1 1 1 1 1 1 56	3	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 TOTA GP-1 GP-2	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001 4/24/2001 L (Subsurface 6/3/1999 6/10/1999	soil soil water water water water water water water soil Samples): groundwater groundwater	1 1 1 1 1 1 1 1 56 3 1	1	1 1 1 1 1 1 1 1 56 3 1	3 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip, Blank (Sampler) Geoprobe Groundwater GP-2 GP-3	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-3 TOTA GP-1 GP-2 GP-3	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 7/18/2000 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/10/1999	soil soil soil water water water water water water Soil Samples): groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1	3 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-4	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 6/28/1999 7/18/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/4/1999	soil soil soil water water water water water Soil Samples): groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1	3 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip, Blank (Sampler) Geoprobe Groundwater GP-2 GP-3	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-4 GP-5	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 6/28/1999 7/18/2001 4/24/2001 4/24/2001 4/24/2001 L (Subsurface 6/3/1999 6/10/1999 6/4/1999 6/4/1999	soil soil soil water water water water water water soil Samples): groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1	3 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-4	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 6/28/1999 7/18/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/4/1999	soil soil soil water water water water water Soil Samples): groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1	3 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geoprobe Groundwater GP-3 GP-4 GP-5 GP-5	MW-10S-11 MW-11S-11 EB-2 EB-6-GP Rinsate-1 EB-GPS-1 EB-GPS-3 TOTA GP-2 GP-3 GP-4 GP-5 GP-5,40	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/16/1999 6/16/1999 6/12/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/4/1999 6/8/1999	soil soil soil water water water water water water water soil Samples): groundwater groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5 GP-5 GP-5 GP-5 GP-5 GP-5	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-4 GP-5,60	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 6/28/1999 7/18/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/8/1999 6/8/1999	soil soil soil water water water water water Soil Samples): groundwater groundwater groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5 GP-5 GP-5 GP-5 GP-5 GP-5 GP-6 GP-7	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-3 TOTA GP-3 GP-3 GP-4 GP-5 GP-5,40 GP-5,60 GP-5,80 GP-6 GP-7	7/18/2000 7/17/2000 6/10/1999 6/28/1999 6/28/1999 6/28/1999 6/28/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/3/1999 6/7/1999 6/8/1999 6/28/1999	soil soil soil water water water water water water soil Samples): groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geport GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5 GP-6 GP-7 GP-7	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-2 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-3 GP-3 GP-4 GP-5 GP-5,40 GP-5,80 GP-5,80 GP-5,80 GP-7 GP-7,40	7/18/2000 7/17/2000 6/10/1999 6/10/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/3/1999 6/10/1999 6/4/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999	soil soil soil water water water water water water soil Samples): groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geprobe Groundwater GP-1 (MS/MSD) GP-3 GP-4 GP-5 GP-5 GP-5 GP-6 GP-7 GP-7 GP-7	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-4 GP-5 GP-5,40 GP-5,80 GP-6 GP-7 GP-7,60	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/16/1999 6/16/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999	soil soil soil water water water water water water water groundwater	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5 GP-5 GP-5 GP-7 GP-7 GP-7 GP-7 GP-7	MW-10S-11 MW-11S-11 EB-2 EB-6-GP Rinsate-1 EB-6PS-1 EB-GPS-3 TOTA GP-2 GP-3 GP-4 GP-5 GP-5,60 GP-5,60 GP-5,60 GP-7 GP-7 GP-7 GP-7,80	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/16/1999 6/16/1999 7/18/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/8/1999 6/8/1999 6/8/1999 6/8/1999 6/8/1999 6/8/1999 6/8/1999	soil soil soil water water water water water water water water groundwater	1 1 1 1 1 1 1 1 56 3 1 1 56 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 56 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5 GP-5 GP-5 GP-6 GP-7 GP-7 GP-7 GP-7 GP-8 (MS/MSD)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-2 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-3 GP-4 GP-5,60 GP-5,60 GP-5,60 GP-5,60 GP-7,60 GP-7,60 GP-7,80 GP-8	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/10/1999 6/10/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999	soil soil soil water water water water water water Soil Samples): groundwater	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 3	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geporobe Groundwater GP-1 (MS/MSD) GP-3 GP-4 GP-5 GP-5 GP-6 GP-7 GP-8 GP-9	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-4 GP-5 GP-5,40 GP-5,80 GP-6 GP-7,60 GP-7,60 GP-7,60 GP-7,80 GP-8 GP-9	7/18/2000 7/17/2000 6/10/1999 6/10/1999 6/28/1999 6/28/1999 7/18/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 4/24/2001 6/3/1999 6/10/1999 6/10/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/27/1999	soil soil soil water water water water water water soil Samples): groundwater	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1	0	1	1	4	0	0
MW-10S, S-11 MW-11S, S-11 Equip. Blank (Sampler) Geoprobe Groundwater GP-1 (MS/MSD) GP-2 GP-3 GP-4 GP-5 GP-5 GP-5 GP-5 GP-6 GP-7 GP-7 GP-7 GP-7 GP-7 GP-7 GP-8 (MS/MSD)	MW-10S-11 MW-11S-11 EB-2 EB-6-GP EB-9-GPS Rinsate-1 EB-GPS-1 EB-GPS-2 EB-GPS-2 EB-GPS-2 EB-GPS-3 TOTA GP-1 GP-2 GP-3 GP-3 GP-4 GP-5,60 GP-5,60 GP-5,60 GP-5,60 GP-7,60 GP-7,60 GP-7,80 GP-8	7/18/2000 7/17/2000 6/10/1999 6/16/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/10/1999 6/10/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999	soil soil soil water water water water water water Soil Samples): groundwater	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 3	0	1	1	4	0	0

Table 2-1 Summary of Samples Collected for Analytical Testing Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Location	Lab Identifier	Date Sampled	Matrix	TCL	TCL	TAL Metals	TAL Metals	Cr ⁺⁶	TCL	TCL	TOC	Wet Chemistry	GC
				VOCs	SVOCs	+ Cn	(Dissolved)	CI	PCBs	Pesticides	100	Parameters	Fingerprint
GP-10 GP-10 (MS/MSD)	GP-10, 40 GP-10,60	6/8/1999 6/8/1999	groundwater groundwater	1		1	1 3						
GP-11	GP-10,00 GP-11	6/17/1999	groundwater	1		1	1						
GP-12	GP-12	6/2/1999	groundwater	1		1	1						
GP-13 GP-14	GP-13 GP-14	6/2/1999 6/2/1999	groundwater groundwater	1		1	1						
GP-15	GP-14 GP-15	6/2/1999	groundwater	1		1	- 1						
GP-16	GP-16	6/2/1999	groundwater	1		1	1						
GP-17 GP-17	GP-17 GP-17,40	6/2/1999 6/17/1999	groundwater	1		1	1						
GP-17 GP-17	GP-17,40 GP-17,60	6/17/1999	groundwater groundwater	1		1	1						
GP-17	GP-17,80	6/17/1999	groundwater	1		1	1						
GP-18 GP-19	GP-18 GP-19	6/16/1999	groundwater	1		1	1						
GP-19 GP-20	GP-19 GP-20	6/2/1999 6/4/1999	groundwater groundwater	1		1	1						
GP-21	GP-21	6/4/1999	groundwater	1		1	1						
GP-22 GP-23	GP-22 GP-23	6/2/1999 6/15/1999	groundwater groundwater	1		1	1						
GP-24	GP-23 GP-24	6/3/1999	groundwater	1		1	1						
GP-24 (Duplicate)	GP-37	6/3/1999	groundwater	1		1	1						
GP-25 GP-26	GP-25 GP-26	6/3/1999 6/3/1999	groundwater	1		1	1						
GP-26 GP-26 (Duplicate)	GP-26 GP-43	6/3/1999	groundwater groundwater	1		1	1						
GP-27	GP-27	6/15/1999	groundwater	1		1	1						
GP-27 GP-27	GP-27,40	6/15/1999	groundwater	1		1	1						
GP-27 GP-27	GP-27,60 GP-27,80	6/17/1999 6/17/1999	groundwater groundwater	1		1	1						
GP-28	GP-28	6/15/1999	groundwater	1		1	1						
GP-29	GP-29	6/3/1999	groundwater	1		1	1						
GP-30 (MS/MSD) GP-32	GP-30 GP-32	6/3/1999 6/2/1999	groundwater groundwater	3		3	3						
GP-33	GP-32 GP-33	6/2/1999	groundwater	1		1	1						
GP-34	GP-34	6/2/1999	groundwater	1		1	1						
GP-35 GP-36	GP-35 GP-36	6/3/1999 6/3/1999	groundwater groundwater	1		1	1						
GP-38	GP-38	6/3/1999	groundwater	1		1	1						
GP-39	GP-39	6/4/1999	groundwater	1		1	1						
GP-40 GP-42	GP-40 GP-42	6/4/1999 6/10/1999	groundwater groundwater	1		1	1						
GP-42 GP-44	GP-42 GP-44	6/15/1999	groundwater	1		1	1						
GP-46	GP-46	4/24/2001	groundwater	1			1						
Equip. Blank (HDPE Tubing) Equip. Blank (HDPE Tubing)	EB-GP-1 EB-3	6/4/1999 6/10/1999	water	1		1	1						
Equip. Blank (HDPE Tubing)	EB-8GPW	6/28/1999	water water	1		1	1						
Drainage Structure Sediment	TOTAL (Geop	probe Groundw	ater Samples):	69	0	68	68	0	0	0	0	0	0
Drainage Structure Sediment DS-1	TOTAL (Geop DS-1-SED	6/15/1999	ater Samples): soil	69 1	0			0	0	0	0	0	0
DS-1 DS-2	DS-1-SED DS-2-SED	6/15/1999 6/15/1999	soil soil	1	0	68 1 1		0	1	0	0	0	0
DS-1 DS-2 DS-3	DS-1-SED DS-2-SED DS-3-SED	6/15/1999 6/15/1999 6/15/1999	soil soil soil	1 1 1		68 1 1 1		0	1 1 1		0	0	0
DS-1 DS-2	DS-1-SED DS-2-SED	6/15/1999 6/15/1999	soil soil	1		68 1 1		0	1		0	0	0
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample)	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000	soil soil soil soil soil soil	1 1 1 1 1 1		68 1 1 1 1 1 1 1		0	1 1 1 1 1		0	0	0
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999	soil soil soil soil soil soil soil	1 1 1 1 1 1 1	1	68 1 1 1 1 1 1 1 1			1 1 1 1 1 1	1	0		
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample)	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000	soil soil soil soil soil soil	1 1 1 1 1 1	1	68 1 1 1 1 1 1 1		0	1 1 1 1 1	1			0
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-6 DS-7	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED	6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1	1	68 1 1 1 1 1 1 1 1 1 1 1 1		0	1 1 1 1 1 1 1 1 1 1 1	1			
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-7 DS-8	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4 DS-4 DS-5-SED DS-5 SED DS-6-SED DS-7-SED DS-8-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/18/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	68 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1	1 1 1 1	0		
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-7 DS-8 DS-8 DS-8 DS-9 DS-9	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED	6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1	1	68 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1	1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-8 DS-8 DS-8 (IRM Conf. Sample) DS-9 DS-9 DS-9 DS-10	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-8 DS-9-SED DS-10-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999	Soil Soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-5 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-8 DS-8 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-8 (IRM Conf. Sample) DS-9 DS-10 DS-10	DS-1-SED DS-2-SED DS-3-SED DS-13-SED DS-13-SED DS-4 DS-5 DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-9-SED DS-9-SED DS-10-SED DS-10-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/18/1999 4/11/2000	soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-8 DS-8 (IRM Conf. Sample) DS-7 DS-9 DS-10 DS-10 (IRM Conf. Sample) DS-10 DS-10 (IRM Conf. Sample) DS-11 DS-12	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-8 DS-9-SED DS-10-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999	Soil Soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-8 (IRM Conf. Sample) DS-8 (IRM Conf. Sample) DS-9 DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger)	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-8 SED DS-8 DS-9-SED DS-10-SED DS-10-SED DS-11-SED DS-11-SED DS-12-SED EB-5	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/18/1999 6/18/1999 4/11/2000 6/18/1999 4/11/2000 6/18/1999 6/28/1999 6/28/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-8 DS-8 (IRM Conf. Sample) DS-7 DS-9 DS-10 DS-10 (IRM Conf. Sample) DS-10 DS-10 (IRM Conf. Sample) DS-11 DS-12	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4-SED DS-5 DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-8-SED DS-8-SED DS-8-SED DS-10-SED DS-11-SED DS-12-SED EB-10-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/28/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-8 (IRM Conf. Sample) DS-8 (IRM Conf. Sample) DS-9 DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger)	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4-SED DS-5 DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-8-SED DS-8-SED DS-8-SED DS-10-SED DS-11-SED DS-12-SED EB-10-SED	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/18/1999 6/18/1999 4/11/2000 6/18/1999 4/11/2000 6/18/1999 6/28/1999 6/28/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		0	
DS-1 DS-2 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 (IRM Conf. Sample) DS-6 DS-7 DS-8 (IRM Conf. Sample) DS-10 DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) Drainage Structure Water DS-2	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5 DS-5 DS-6-SED DS-7-SED DS-8-SED DS-9-SED DS-10-SED DS-11-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Drain DS-2-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 age Structure 6/15/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 DS-4 (Duplicate) DS-4 DS-5 DS-5 DS-6 DS-6 DS-7 DS-8 DS-9 DS-10 (IRM Conf. Sample) DS-10 DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) Dranage Structure Water DS-2 DS-2 DS-3 DS-2	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-10-SED DS-10-SED DS-11-SED DS-12-SED EB-10-SED TOTAL (Drain DS-2-WATER DS-3-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 age Structure 6/15/1999 6/15/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 7	68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-4 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 (IRM Conf. Sample) DS-6 DS-7 DS-8 (IRM Conf. Sample) DS-10 DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) Drainage Structure Water DS-2	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-5 DS-5 DS-6-SED DS-7-SED DS-8-SED DS-9-SED DS-10-SED DS-10-SED DS-11-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED DS-10-SED DS-12-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Drain DS-2-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/15/1999 6/16/1999	soil soil soil soil soil soil soil soil	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 (DS-6 (DS-7 (DS-8 (DS-7 (DS-8 (DS-7 (DS-8 (DS-7 (DS-9 (DS-10 (DS-10 (DS-10 (DS-10 (DS-10 (DS-10 (DS-11 (DS-11 (DS-12 (DS	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-11-SED DS-11-SED EB-10-SED TOTAL (Drain DS-2-WATER DS-3-WATER DS-3-WATER DS-13-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999	soil soil soil soil soil soil soil soil			68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-9 (IRM Conf. Sample) DS-7 DS-8 DS-9 DS-10 DS-10 (IRM Conf. Sample) DS-11 DS-12 DS-12 DS-12 DS-12 DS-12 DS-12 DS-12 DS-13 DS-2 DS-3 DS-4 DS-5 DS-6 DS-6	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-7-SED DS-7-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-11-SED DS-12-SED EB-10-SED TOTAL (Drain DS-2-WATER DS-3-WATER DS-4-WATER DS-13-WATER DS-13-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999	soil soil soil soil soil soil soil soil			68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 (DS-6 (DS-7 (DS-8 (DS-7 (DS-8 (DS-7 (DS-8 (DS-7 (DS-9 (DS-10 (DS-10 (DS-10 (DS-10 (DS-10 (DS-10 (DS-11 (DS-11 (DS-12 (DS	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-6-SED DS-7-SED DS-8-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-11-SED DS-11-SED EB-10-SED TOTAL (Drain DS-2-WATER DS-3-WATER DS-3-WATER DS-13-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 6/15/1999 6/16/1999 6/16/1999 6/16/1999 6/17/1999	soil soil soil soil soil soil soil soil			68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) DS-3 DS-4 DS-5 DS-10 DS-11 DS-12 Equipment Blank (Auger) DS-12 DS-12 Equipment Blank (Auger) DS-3 DS-4 DS-5 DS-5 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4-SED DS-4 DS-5-SED DS-6-SED DS-7-SED DS-8-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Drain DS-10-SED TOTAL (Drain DS-2-WATER DS-3-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/28/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999	soil soil soil soil soil soil soil soil			68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-10 DS-10 (IRM Conf. Sample) DS-10 DS-11 DS-2 DS-3 DS-4 DS-10 DS-10 DS-10 DS-10 DS-10 DS-10 DS-10 DS-10 DS-11 DS-2 DS-3 DS-4 DS-5 DS-5 DS-5 DS-5 DS-5 DS-6 DS-8 DS-9 DS-9 DS-10 DS-11	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4 DS-5 DS-6-SED DS-5 DS-6-SED DS-7-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-11-SED DS-11-SED DS-12-SED EB-5 EB-10-SED TOTAL (Drair DS-2-WATER DS-3-WATER DS-4-WATER DS-4-WATER DS-6-WATER DS-6-WATER DS-9-WATER DS-10-WATER DS-10-WATER DS-10-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999	soil soil soil soil soil soil soil soil			68 1			1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) DS-3 DS-4 DS-5 DS-10 DS-11 DS-12 Equipment Blank (Auger) DS-12 DS-12 Equipment Blank (Auger) DS-3 DS-4 DS-5 DS-5 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4-SED DS-4 DS-5-SED DS-6-SED DS-7-SED DS-8-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Drain DS-10-SED TOTAL (Drain DS-2-WATER DS-3-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999	soil soil soil soil soil soil soil soil			68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-10 (IRM Conf. Sample) DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) DS-3 DS-4 DS-5 DS-5 DS-5 DS-10 DS-10 DS-10 DS-11 DS-2 DS-3 DS-4 DS-5 DS-5 DS-5 DS-5 DS-6 DS-8 DS-9 DS-11 DS-12 Equipment Blank (Glass Sampler)	DS-1-SED DS-2-SED DS-3-SED DS-3-SED DS-4-SED DS-4 DS-5 DS-5 DS-6-SED DS-7-SED DS-7-SED DS-8-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-11-SED DS-11-SED DS-11-SED DS-12-SED TOTAL (Drain DS-12-WATER DS-3-WATER DS-3-WATER DS-13-WATER DS-10-WATER DS-10-WATER DS-8-WATER DS-8-WATER DS-8-WATER DS-8-WATER DS-8-WATER DS-8-WATER DS-8-WATER DS-8-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-11-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/18/1999	soil soil soil soil soil soil soil soil			68 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1			
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-7 DS-8 DS-9 (IRM Conf. Sample) DS-9 (DS-7 DS-9 (DS-7 DS-10 (IRM Conf. Sample) DS-10 (IRM Conf. Sample) DS-11 (DS-10 (IRM Conf. Sample) DS-12 (Equipment Blank (Auger) Equipment Blank (Auger) Equipment Blank (Auger) DS-2 (DS-3 DS-3 (DS-5 DS-5 (Duplicate) DS-6 (DS-6 DS-7 (DDS-11 DS-12 (Equipment Blank (Glass Sampler) Cesspool Structure Sediment	DS-1-SED DS-2-SED DS-3-SED DS-3-SED DS-3-SED DS-4 DS-5 DS-6 DS-5 DS-6-SED DS-7-SED DS-7-SED DS-8-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Drain DS-12-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-11-WATER DS-11-WATER DS-11-WATER DS-11-WATER	6/15/1999 6/15/1999 6/15/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/28/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/17/1	soil soil soil soil soil soil soil soil	1 1		68 1	68	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-9 (IRM Conf. Sample) DS-7 DS-8 DS-9 (IRM Conf. Sample) DS-10 DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) DS-3 DS-4 DS-5 DS-5 DS-10 DS-11 DS-5 DS-5 DS-5 DS-5 DS-5 DS-5 DS-5 DS-5 DS-5 DS-6 DS-7 DS-8 DS-9 DS-8 DS-9 DS-11 DS-12 Equipment Blank (Glass Sampler) Cesspool Structure Sediment CP-1 CP-2	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-7-SED DS-7-SED DS-7-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-11-SED DS-12-SED EB-5 EB-10-SED TOTAL (Drain DS-12-WATER DS-12-WATER DS-12-WATER DS-13-WATER DS-13-WATER DS-14-WATER DS-10	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 6/18/1999	soil soil soil soil soil soil soil soil			68 1	68	0	1 1				
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-7 DS-8 DS-9 (IRM Conf. Sample) DS-9 DS-9 DS-10 (IRM Conf. Sample) DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) DS-12 DS-3 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-12 Equipment Blank (Glass Sampler) Cesspool Structure Sediment CP-1 CP-2 CP-3	DS-1-SED DS-2-SED DS-3-SED DS-3-SED DS-3-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-7-SED DS-8-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Drain DS-12-WATER DS-13-WATER DS-10-WATER DS-	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/19/1999	soil soil soil soil soil soil soil soil	1 1		68 1	68	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1				
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 (IRM Conf. Sample) DS-6 (DS-6 (DS-6 (DS-6 (DS-7))) DS-7 (DS-7 (DS-8 (DS-7)) DS-8 (IRM Conf. Sample) DS-7 (DS-7) DS-8 (DS-7 (DS-7)) DS-10 (IRM Conf. Sample) DS-11 (DS-11 (DS-110)) DS-12 (Equipment Blank (Auger)) Equipment Blank (Auger) DS-3 (DS-2 (DS-3 (DS-11 (DS-11 (DS-12 (DS-12 (DS-11 (DS-12 (DS-12 (DS-11 (DS-12 (DS-2 (DS	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-13-SED DS-4 DS-5-SED DS-5 DS-6-SED DS-7-SED DS-7-SED DS-8-SED DS-7-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Draina DS-10-SED TOTAL (Draina DS-10-WATER DS-10-WATE	6/15/1999 6/15/1999 6/15/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/16/1999 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/18/1999 6/19/1999 8/19/1999 6/19/1999 6/19/1999 6/19/1999 6/19/1999	soil soil soil soil soil soil soil soil			68 1	68	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-7 DS-8 DS-9 (IRM Conf. Sample) DS-9 DS-9 DS-10 (IRM Conf. Sample) DS-10 (IRM Conf. Sample) DS-11 DS-12 Equipment Blank (Auger) Equipment Blank (Auger) DS-12 DS-3 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-12 Equipment Blank (Glass Sampler) Cesspool Structure Sediment CP-1 CP-2 CP-3	DS-1-SED DS-2-SED DS-3-SED DS-3-SED DS-3-SED DS-4-SED DS-5 DS-5 DS-6-SED DS-7-SED DS-7-SED DS-7-SED DS-8-SED DS-7-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED TOTAL (Draina DS-2-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-4-WATER DS-10-WATER DS-1	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/18/1999 6/16/1999 6/18/1999 6/18/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/16/1999 6/19/1999	soil soil soil soil soil soil soil soil	1 1		68 1	68	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1				
DS-1 DS-2 DS-3 DS-4 (Duplicate) DS-4 (IRM Conf. Sample) DS-5 DS-5 (IRM Conf. Sample) DS-6 DS-7 DS-8 DS-9 DS-10 DS-11 DS-12 Equipment Blank (Auger) DS-3 DS-4 DS-7 DS-8 DS-7 DS-8 DS-7 DS-8 DS-7 DS-8 DS-7 DS-8 DS-9 DS-10 DS-11 DS-5 DS-5 DS-6 DS-7 DS-8 DS-9 DS-10 DS-11 DS-12 Equipment Blank (Glass Sampler) CP-3 CP-3 CP-3 CP-3 CP-3 CP-3 CP-3	DS-1-SED DS-2-SED DS-3-SED DS-4-SED DS-4-SED DS-4 DS-5-SED DS-5-SED DS-6-SED DS-7-SED DS-8-SED DS-7-SED DS-8-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED DS-10-SED DS-11-SED DS-12-SED DS-12-SED DS-12-SED DS-12-SED TOTAL (Drain DS-13-WATER DS-13-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-10-WATER DS-11-WATER DS-11-WATER DS-11-WATER EB-4 TOTAL (Drainag AG-1 CP-2 CP-3, S-1	6/15/1999 6/15/1999 6/15/1999 6/16/1999 6/16/1999 4/11/2000 6/16/1999 4/11/2000 6/17/1999 6/17/1999 6/17/1999 6/17/1999 6/18/1999 6/18/1999 6/28/1999 6/28/1999 6/16/1999 6/16/1999 6/16/1999 6/18/1999 6/128/1999 6/128/1999 6/19/1999 6/19/1999 6/9/1999 6/9/1999 6/9/1999	soil soil soil soil soil soil soil soil	1 1		68 1	68	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Table 2-1 Summary of Samples Collected for Analytical Testing Spectrum Finishing Corporation Site West Babylon, New York

Site	No.	1-52-029

Location	Lab Identifier	Date Sampled	Matrix	TCL VOCs	TCL SVOCs	TAL Metals + Cn	TAL Metals (Dissolved)	Cr ⁺⁶	TCL PCBs	TCL Pesticides	тос	Wet Chemistry Parameters	GC Fingerprint
CP-5	CP-5 SED	6/9/1999	soil	1		1			1				
CP-5 (IRM Conf. Sample)	CP-5	4/10/2000	soil	1	1	1			1	1			
CP-6	CP-6-SED	6/17/1999	soil	1	-	1			1	4			
CP-6 (IRM Conf. Sample) CP-7	CP-6 CP-7-SED	4/10/2000 6/17/1999	soil soil	1	1	1			1	1			
CP-7 (IRM Conf. Sample)	CP-7	4/11/2000	soil	1	1	1			1	1			
CP-8 (MS/MSD)	CP-8-SED	6/18/1999	soil	3	3	3			3	3			
CP-8 (IRM Conf. Sample)	CP-8	4/11/2000	soil	1	1	1			1	1			
CP-9	CP-9-SED	6/27/1999	soil	1	-	1			1		_		
CP-10 CP-10 (Duplicate)	CP-10-SED CP-11-SED	6/27/1999 6/27/1999	soil soil	1	1	1			1	1	1		
CP-11. S-1	CP 11. S-1	7/25/2000	soil	1		1		-		•	•		
	DTAL (Cesspool S			22	11	22	0	0	19	11	2	0	0
Cesspool Structure Water	•			•	-	-					-		
CP-1	AG-1	6/8/1999	water	1	1	1			1	1			
CP-5 CP-6 (MS/MSD)	CP-5 CP-6-WATER	6/9/1999 6/17/1999	water water	1	1	1			1 3				
CP-9	CP-9-WATER	6/27/1999	water	1	3	1			1				
CP-10	CP-10-WATER	6/27/1999	water	1		1			1				
	TOTAL (Cesspo			7	5	7	0	0	7	1	0	0	0
Former Well Structure Sediment													
WS-1	WS-1-SED	6/17/1999	soil	1		1		-	1				
WS-2 (MS/MSD)	WS-2-SED	6/18/1999 Structure Sedim	soil	3	0	3	0	0	3	0	0	0	0
Former Interior Sump Adjacent Soil		auciare Sealm	ion oampies):	4		4	v	U	4	0	Ū		U
TP-1, S-1	TP-2	7/21/2000	soil	1		1							
TP-1, S-2	TP-1	7/21/2000	soil	1		1							
	TOTAL	(Interior Sump	Soil Samples):	2	0	2	0	0	0	0	0	0	0
Former Interior Sump Water TP-3	TP-3	7/21/2000	water	1	1	1	1						
11-J	-	terior Sump Wa	water ater Samples):	1	0	1	1	0	0	0	0	0	0
Groundwater		terior cump we								, <u> </u>		, ,	
MW-1S	MW-1S	7/27/1999	groundwater	1		1	1		1	1			
MW-1S	MW1S	7/20/2000	groundwater	1		1	1						
MW-1S	MW1S	4/30/2001	groundwater	1		1	1	1					
MW-1D1 MW-1D1	MW-1D1 MW1D1	7/27/1999 7/20/2000	groundwater groundwater	1		1	1		1	1			
MW-1D1 MW-1D1	MW1D1	4/30/2001	groundwater	1		1	1	1					
MW-1D1 MW-1D2	MW-1D2	7/27/1999	groundwater	1		1	1	•	1	1			
MW-1D2	MW1D2	7/20/2000	groundwater	1		1	1		-	-			
MW-1D2	MW1D2	4/30/2001	groundwater	1		1	1	1					
MW-2S	MW-2S	7/29/1999	groundwater	1		1	1		1	1			
MW-2S	MW2S	7/21/2000	groundwater	1		1	1						
MW-2S (Duplicate) MW-2S	MW13S MW2S	7/21/2000 4/27/2001	groundwater	1		1	1	1					
MW-25 MW-2D1	MW-2D1	7/29/1999	groundwater groundwater	1		1	1	1	1	1			
MW-2D1	MW2D	7/24/2000	groundwater	1		1	1						
MW-2D1	MW2D	4/27/2001	groundwater	1		1	1	1					
MW-3S	MW-3S	7/29/1999	groundwater	1		1	1		1	1			
MW-3S	MW3S	7/20/2000	groundwater	1		1	1						
MW-3S MW-3D1	MW-3S MW-3D1	4/24/2001 7/29/1999	groundwater	1		1	1	1	1	1			
MW-3D1 MW-3D1	MW3D	7/29/1999	groundwater groundwater	1		1	1		1	1			
MW-3D1 MW-3D1	MW-3D	4/24/2001	groundwater	1		1	1	1					
MW-3D1 (Duplicate)	MW-16D	4/24/2001	groundwater	1		1	1	1					
MW-4S	MW-4S	7/29/1999	groundwater	1		1	1		1	1			
MW-4S	MW4S	7/19/2000	groundwater	1		1	1						
MW-4S MW-4D1	MW4S MW-4D1	4/24/2001 7/29/1999	groundwater groundwater	1		1	1	1	1	1			
MW-4D1	MW4D1	7/19/2000	groundwater	1		1	1		-				
MW-4D1	MW4D	4/27/2001	groundwater	1	1	1	1	1					
MW-5D1	MW-5D1	7/28/1999	groundwater	1	1	1	1		1	1			
MW-5D1(Duplicate)	MW-9D1	7/28/1999	groundwater	1	1	1	1		1	1			
MW-5D1 MW-5D1	MW5D1	7/23/2000 4/25/2001	groundwater	1		1	1	4					
MW-5D1 MW-5D2	MW5D1 MW-5D2	4/25/2001 7/28/1999	groundwater groundwater	1		1	1	1	1	1			
MW-5D2 MW-5D2 (MS/MSD)	MW5D2	7/28/1999	groundwater	3	1	3	3		-				
MW-5D2	MW5D2	4/25/2001	groundwater	1		1	1	1					
MW-6S	MW6S	7/19/2000	groundwater	1		1	1						
MW-6S (See Note 3)	MW6S	4/26/2001	groundwater	1		1	1	1				1	
MW-6D1 (MS/MSD)	MW-6D1	7/28/1999	groundwater	3	3	3	3		3	3			
MW-6D1 MW-6D1	MW6D1 MW6D1	7/24/2000 4/26/2001	groundwater groundwater	1		1	1	1					
MW-6D1 MW-6D2	MW-6D2	7/28/1999	groundwater	1	1	1	1		1	1			
MW-6D2	MW6D2	7/24/2000	groundwater	1	1	1	1		-	<u> </u>			
MW-6D2	MW6D2	4/27/2001	groundwater	1		1	1	1					
MW-7S	MW-7S	7/29/1999	groundwater	1		1	1		1	1			
MW-7S	MW7S	4/25/2001	groundwater	1		1	1	1	4	4			
MW-7D1 MW-7D1	MW-7D1 MW7D	7/29/1999 7/24/2000	groundwater groundwater	1		1	1		1	1			
MW-7D1 MW-7D1	MW7D MW7D1	4/25/2001	groundwater	1		1	1	1					
MW-8D1	MW-8D1	7/29/1999	groundwater	1	1	1	1	•	1	1			
MW-8D1	MW8D1	7/25/2000	groundwater	1	1	1	1						
MW-8D1(Duplicate)	MW14D1	7/25/2000	groundwater	1		1	1						
MW-8D1	MW8D1	4/25/2001	groundwater	1		1	1	1					
MW-9S	MW9S	7/19/2000	groundwater	1		1	1	4					ļ
MW-9S MW-10S	MW9S MW10S	5/1/2001 7/19/2000	groundwater groundwater	1		1	1	1					
MW-103 MW-10S	MW103	4/23/2001	groundwater	1	1	1	1	1					
			3.00.000000	. ·	1								

Table 2-1 Summary of Samples Collected for Analytical Testing Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Location	Lab Identifier	Date Sampled	Matrix	TCL VOCs	TCL SVOCs	TAL Metals + Cn	TAL Metals (Dissolved)	Cr ⁺⁶	TCL PCBs	TCL Pesticides	тос	Wet Chemistry Parameters	GC Fingerprint
MW-10S (Duplicate)	MW17S	4/23/2001	groundwater	1		1	1	1					
MW-11S (MS/MSD)	MW11S	7/19/2000	groundwater	3		3	3						
MW-11S (Duplicate - See Note 1)	MW-7S2	7/25/2000	groundwater	1		1	1						
MW-11S (MS/MSD)	MW11S	4/24/2001	groundwater	3		3	3	3					
MW-12S	MW12S	7/19/2000	groundwater	1		1	1						
MW-12S	MW12S	4/23/2001	groundwater	1		1	1	1					
MW-12D1	MW12D1	4/30/2001	groundwater	1		1	1	1					
MW-12D2	MW12D2	5/1/2001	groundwater	1		1	1	1					
MW-13S	MW13S	5/3/2001	groundwater	1		1	1	1				1	
MW-13D1	MW13D1	5/3/2001	groundwater	1		1	1	1					
MW-13D2	MW13D2	5/2/2001	groundwater	1		1	1	1					
MW-14S (MS/MSD)	MW-14S	5/1/2001	groundwater	3		3	3	3					
MW-14D1	MW-14D1	5/1/2001	groundwater	1		1	1	1					
MW-15S	MW15S	5/2/2001	groundwater	1		1	1	1					
MW-15D1	MW-15D1	5/1/2001	groundwater	1		1	1	1					
Equipment Blank (Bailer)	RinsateGW	7/29/1999	water	1	1	1	1		1	1			
Equipment Blank (Tubing)	GW Rinsate 1	7/20/2000	water	1		1	1						
Equipment Blank (Tubing)	RinsatesGW2	7/25/2000	water	1		1	1						
Equipment Blank (Bailer/Tubing)	EB-GW-1	4/23/2001	water	1		1	1	1					
Equipment Blank (Bailer/Tubing)	EB-GW-2	5/3/2001	water	1		1	1	1					
<u> </u>	TO	TAL (Groundw	ater Samples):	87	6	87	87	38	20	20	0	2	0
UST Product		,	, ,										
UST-1	UST-1	6/7/1999	product										1
UST-1	UST-1	6/30/1999	product						1				
UST-2	UST-2	6/7/1999	product										1
UST-2	UST-2	6/30/1999	product						1				
UST-3	UST-3	6/7/1999	product										1
UST-3	UST-3	6/30/1999	product						1				
UST-4	UST-4	6/9/1999	product										1
UST-4	UST-4	6/30/1999	product						1				
UST-6	UST-6	6/8/1999	product										1
UST-6	UST-6	6/30/1999	product						1				
UST-8	UST-8	6/9/1999	product										1
UST-8	UST-8	6/30/1999	product						1				
		TAL (UST Proc		0	0	0	0	0	6	0	0	0	6
			TOTAL:	391	60	390	156	38	187	54	10	2	6

 Notes:

 TCL VOCs - Target Compound List Volatile Organic Compounds

 TCL SVOCs - Target Compound List Semi-volatile Organic Compounds

 TAL Metals - Target Analyte List Inorganics

 Cr⁺⁶ - Hexavalent Chromium

 TCL PCBs - Target Compound List Polychlorinated Biphenyls

 TCL Pesticides - Target Compound List Pesticides

 TOC - Total Organic Carbon

 Wet Chemistry Parameters - Biological Oxygen Demand, Fecal/Total Coliform, Hardness, Nitrate, Nitrite, Sulfate, Alkalinity, Chloride and Total Suspended Solids.

 MS/MSD - Matrix Spike/Matrix Spike Duplicate

MW-11S2 (collected 7/25/00) was a duplicated groundwater sample, with a lower turbidity measurement than original sample.
 Groundwater and soil samples collected in 2001 were not tested for cyanide.
 Samples collected in 2001 from wells MW-6S and MW-13S, and analyzed for wet chemistry parameters, have lab identifiers of MW-6S-RS and MW-13S-RS, respectively

Table 2-2 Summary of Monitoring Well Installations

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

					1	Site No. 1	-02-020						
Well/ Boring	Start	Ground	Reference	Top of	Top of	Top of	Depth of	Diameter	Length			epth/Elevations	
Identification	Date of Installation	Surface Elevation (ft.)	Elevation (ft.)	Fill (ft. BGS)	Sand (ft. BGS)	Clayey Layer	Boring (ft. BGS)	of Well Screen and	of Well Screen	Top of S Depth	andpack Elev. (ft)	Bottom of Depth	Sandpack Elev. (ft)
	Installation	Lievation (it.)	(it.)	(11. 1000)	(11. 1000)	(ft. BGS)	(11. 000)	Riser (in)	(ft.)	(ft. BGS)	LIEV. (II)	(ft. BGS)	Liev. (it)
MW-1S	1/21/1987	63.5	63.13		0.0		50	2	10	12.0	51.5	25.0	38.5
MW-1D1	1/21/1987	63.5	63.05		0.0		50	2	10	38.0	25.5	49.6	13.9
MW-1D2	6/26/1999	63.3	63.06	0.0	0.5	94.5	95	2	10	81.0	-17.7	95.0	-31.7
MW-2S	1/23/1997	63.6	63.11		0.0		50	2	10	12.0	51.6	24.1	39.5
MW-2D	1/23/1987	63.6	63.10		0.0		50	2	10	38.0	25.6	48.6	15.0
MW-3S	1/26/1987	63.4	62.82		0.0		50	2	10	12.0	51.4	23.6	39.8
MW-3D	1/26/1987	63.4	62.87		0.0		50	2	10	38.0	25.4	48.8	14.6
MW-4S	1/28/1987	62.3	61.99		0.0		50	2	10	12.0	50.3	23.7	38.6
MW-4D	1/28/1987	62.3	62.02		0.0		50	2	10	38.0	24.3	48.8	13.5
MW-5D1	7/12/1999	62.6	62.41	0.0	0.2		50	2	10	37.0	25.6	50.0	12.6
MW-5D2	7/8/1999	62.6	62.32	0.0	0.2	92.5	93	2	10	80.0	-17.4	93.0	-30.4
MW-6S	7/17/2000	61.8	61.35	0.0	0.2		27	2	10	15.0	46.8	27.0	34.8
MW-6D1	7/15/1999	61.7	61.33	0.0	0.3		50	2	10	35.0	26.7	50.0	11.7
MW-6D2	7/1/1999	61.8	61.33	0.0	0.3	93.0	92	2	10	78.0	-16.2	90.0	-28.2
MW-7S	7/7/1999	63.3	62.92	0.0	0.2		28	2	10	15.5	47.8	28.0	35.3
MW-7D1	7/6/1999	63.3	63.10	0.0	0.2		50	2	10	35.9	27.4	50.0	13.3
MW-8D1	7/8/1999	63.3	62.99	0.0	0.2		50	2	10	38.5	24.8	50.0	13.3
MW-9S	7/18/2000	64.8	63.78	0.0	0.2		27	2	10	15.0	49.8	27.0	37.8
MW-10S	7/18/2000	62.7	61.90	0.0	0.2		27	2	10	15.0	47.7	27.0	35.7
MW-11S	7/18/2000	63.2	62.58	0.0	0.2		26	2	10	13.7	49.5	25.7	37.5
MW-12S	7/18/2000	62.4	62.00	0.0	0.2		27	2	10	15.0	47.4	27.0	35.4
MW-12D1	4/26/2001	62.4	61.89	0.0			50	2	10	34.0	28.4	49.5	12.9
MW-12D2	4/25/2001	62.5	62.07	0.0	0.4	91.8	92	2	10	77.0	-14.5	91.2	-28.7
MW-13S	5/2/2001	62.4	61.78	0.0			24	2	10	11.5	50.9	23.7	38.7
MW-13D1	5/1/2001	62.2	61.45	0.0			51	2	10	35.0	27.2	49.6	12.6
MW-13D2	4/30/2001	62.1	61.56	0.0	0.2	90.5	92	2	10	75.0	-12.9	89.9	-27.8
MW-14S	4/24/2001	61.8	61.48	0.0			24	2	10	11.5	50.3	23.8	38.0
MW-14D1	4/23/2001	61.8	61.64	0.0	0.2		50	2	10	36.5	25.3	49.5	12.3
MW-15S	4/27/2001	62.5	62.28	0.0			24	2	10	10.0	52.5	23.5	39.0
MW-15D1	4/27/2001	62.5	61.86	0.0	0.4		50	2	10	36.0	26.5	49.6	12.9

NOTES:

1) The dashed symbol "---" indicates that the geologic unit was not encountered.

2) NA = not applicable.

3) ft. BGS = feet below ground surface.
4) Data for MW-1S, MW-1D, MW-2S, MW-3S, MW-3D, MW-4S, and MW-4D were obtained from monitoring well installation logs from previous Site studies. Depths of borings determined from field measurements.
5) Survey information provided by YEC, Inc.

Table 2-3 Summary of Hydraulic Conductivity Testing Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Monitoring	Screened Zone	Hydraulic Conductivity	Test	Results
Well		Test Method	(ft/day)	(cm/sec)
MW-1S	Overburden	pump test	15	5.4 x 10 ⁻³
MW-1D1	Overburden	pump test	11	3.8 x 10 ⁻³
MW-1D2	Overburden	pump test	65	2.3 x 10 ⁻²
MW-2S	Overburden	pump test	195	6.9 x 10 ⁻²
MW-2D	Overburden	pump test	457	1.6 x 10 ⁻¹
MW-3S	Overburden	pump test	288	1.0 x 10 ⁻¹
MW-3D	Overburden	pump test	501	1.8 x 10 ⁻¹
MW-4S	Overburden	pump test	106	3.7 x 10 ⁻²
MW-4D	Overburden	pump test	177	6.3 x 10 ⁻²
MW-5D1	Overburden	pump test	244	8.6 x 10 ⁻²
MW-5D2	Overburden	pump test	144	5.1 x 10 ⁻²
MW-6S	Overburden	pump test	270	9.5 x 10 ⁻²
MW-6D1	Overburden	pump test	288	1.0 x 10 ⁻¹
MW-6D2	Overburden	pump test	290	1.0 x 10 ⁻¹
MW-7S	Overburden	pump test	260	9.2 x 10 ⁻²
MW-7D1	Overburden	pump test	168	5.9 x 10 ⁻²
MW-8D1	Overburden	pump test	383	1.3 x10 ⁻¹
MW-9S	Overburden	pump test	233	8.2 x 10 ⁻²
MW-10S	Overburden	pump test	323	1.1 x 10 ⁻¹
MW-11S	Overburden	pump test	235	8.3 x 10 ⁻²
MW-12S	Overburden	pump test	361	1.3 x 10 ⁻¹
MW-12D1	Overburden	rising head	850	3.0 x 10 ⁻¹
MW-12D2	Overburden	rising head	672	2.4 x 10 ⁻¹
MW-13S	Overburden	rising head	816	2.9 x 10 ⁻¹
MW-13D1	Overburden	rising head	672	2.4 x 10 ⁻¹
MW-13D2	Overburden	rising head	537	1.9 x 10 ⁻¹
MW-14S	Overburden	rising head	768	2.7 x 10 ⁻¹
MW-14D1	Overburden	rising head	912	3.2 x 10 ⁻¹
MW-15S	Overburden	rising head	936	3.3 x 10 ⁻¹
MW-15D1	Overburden	rising head	36	1.3 x 10 ⁻²

Notes:

1. Data calculated using the H. Bouer; 1989 Method (rising head), or the Hvorslev's equations for constant

head in monitoring wells as documented in Lambe & Whitman (1969), "Soil Mechanics", p. 284-286 (pump test).

2. ft/day = feet per day; cm/sec = centimeters per second.

Table 2-4 Summary of Groundwater Elevations

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Well /Piezometer	Reference	June 6	, 1999	July 1	6, 1999	July 2	6, 1999	July 17 &	2 19, 2000	July 2	5, 2000	May	, 2001
Number	Elevation (ft.)	Depth (ft.)	Elevation (ft.)	Depth (ft.)	Elevation (ft.)								
MW-1S	63.13	18.39	44.7	19.76	43.4	20.11	43.0	18.66	44.5	18.95	44.2	17.61	45.5
MW-1D1	63.05	18.49	44.6	19.84	43.2	20.23	42.8	18.74	44.3	18.90	44.2	17.51	45.5
MW-1D2	63.06	not installed	NA	19.75	43.3	20.09	43.0	18.67	44.4	18.95	44.1	17.44	45.6
MW-2S	63.11	18.53	44.6	19.90	43.2	20.26	42.9	19.00	44.1	19.29	43.8	17.77	45.3
MW-2D	63.10	18.53	44.6	19.91	43.2	20.24	42.9	18.93	44.2	19.22	43.9	17.71	45.4
MW-3S	62.82	18.38	44.4	19.73	43.1	20.12	42.7	18.82	44.0	18.97	43.9	17.41	45.4
MW-3D	62.87	18.45	44.4	19.84	43.0	20.17	42.7	18.86	44.0	19.02	43.9	17.50	45.4
MW-4S	61.99	17.75	44.2	19.12	42.9	19.44	42.6	18.03	44.0	18.30	43.7	16.80	45.2
MW-4D	62.02	17.77	44.3	19.14	42.9	19.51	42.5	18.05	44.0	18.31	43.7	16.83	45.2
MW-5D1	62.41	not installed	NA	19.36	43.1	19.73	42.7	18.40	44.0	18.67	43.7	17.16	45.3
MW-5D2	62.32	not installed	NA	19.49	42.8	19.83	42.5	18.30	44.0	18.58	43.7	17.07	45.3
MW-6D1	61.33	not installed	NA	18.63	42.7	18.99	42.3	17.56	43.8	17.76	43.6	16.30	45.0
MW-6D2	61.33	not installed	NA	18.92	42.4	19.23	42.1	17.76	43.6	18.06	43.3	16.51	44.8
MW-6S	61.35	not installed	NA	not installed	NA	not installed	NA	17.57	43.8	17.81	43.5	16.27	45.1
MW-7S	62.92	not installed	NA	19.67	43.3	20.06	42.9	18.65	44.3	18.88	44.0	17.39	45.5
MW-7D1	63.10	not installed	NA	19.84	43.3	20.24	42.9	18.81	44.3	19.10	44.0	17.58	45.5
MW-8D1	62.99	not installed	NA	19.65	43.3	20.03	43.0	18.62	44.4	18.91	44.1	17.38	45.6
MW-9S	63.78	not installed	NA	not installed	NA	not installed	NA	19.31	44.5	19.53	44.3	18.00	45.8
MW-10S	61.90	not installed	NA	not installed	NA	not installed	NA	18.04	43.9	18.76	43.1	16.78	45.1
MW-11S	62.58	not installed	NA	not installed	NA	not installed	NA	18.54	44.0	18.76	43.8	17.26	45.3
MW-128	62.00	not installed	NA	not installed	NA	not installed	NA	18.50	43.5	18.74	43.3	17.23	44.8
MW-12D1	61.89	not installed	NA	17.17	44.7								
MW-12D2	62.07	not installed	NA	17.32	44.8								
MW-138	61.78	not installed	NA	16.78	45.0								
MW-13D1	61.45	not installed	NA	16.47	45.0								
MW-13D2	61.56	not installed	NA	16.58	45.0								
MW-14S	61.48	not installed	NA	16.83	44.7								
MW-14D1	61.64	not installed	NA	16.69	45.0								
MW-15S	62.28	not installed	NA	17.61	44.7								
MW-15D1	61.86	not installed	NA	17.13	44.7								
GP-1	62.49	18.20	44.3	19.55	42.9	19.94	42.6	NA	NA	NA	NA	NA	NA
GP-12	63.21	18.71	44.5	20.05	43.2	removed	NA	NA	NA	NA	NA	NA	NA
GP-22	62.60	18.07	44.5	19.40	43.2	removed	NA	NA	NA	NA	NA	NA	NA
GP-26	62.61	18.09	44.5	19.45	43.2	removed	NA	NA	NA	NA	NA	NA	NA
NTU Well MW-2	62.74	18.14	44.6	no reading	NA	no reading	NA	NA	NA	NA	NA	NA	NA

NOTES:

1. See Figure 2 for monitoring well locations.

2. Survey information provided by YEC, Inc.

3. Depth measurements referenced to the top of the PVC riser for monitoring wells.

4. N/A = not applicable.

Table 2-5 Summary of Interior Test Pit Sump Water Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date	TP-3-Water 7/21/2000
	Q
Volatile Organics (ug/L)	400
Methylene chloride	130
Acetone	30 J
1,1-Dichloroethene	74
1,1-Dichloroethane	170
2-Butanone	21 J
1,1,1-Trichloroethane	11070 D
Trichloroethene	1557 D
4-Methyl-2-pentanone	54 J
Tetrachloroethene	160
Toluene	200
Ethylbenzene	2 J
Styrene	2 J
Xylenes (Total)	15
Inorganics (ug/L)	40000
Aluminum	13800
Antimony	2.1 U
Arsenic	6 B
Barium	58.7 B
Beryllium	0.38 B
Cadmium	2750
Calcium	478000
Chromium	5430
Cobalt	30.7 B
Copper	1460
Iron	16000
Lead	58.8
Magnesium	4230 B
Manganese	577
Mercury	1.2
Nickel	3590
Potassium	176000
Selenium	4.6 B
Silver	1.6 B
Sodium	324000
Thallium	4.3 U
Vanadium	17.7 B
Zinc	1060
Cyanide	2330

NOTES:

1. Only compounds detected are presented on this table.

2. Blank indicates compound was not detected.

3. Analytical testing completed by CompuChem Corporation.

4. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

5. ug/L = micrograms per liter or parts per billion.

Table 2-6 Summary of Surface Soil Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location	Site	TAGM # 4046	Published	AP-1, 5	5-1	AP-2,S	-1	AP-5 ((4)	AP-6		AP-7		AP-8		AP-9		AP-10)
Sample Date	Background ⁷	RSCO ⁸	Background9	6/9/19	99	6/9/199	99	6/27/19	99	6/27/19	99	6/27/19	99	6/27/19	99	6/27/199	99	6/27/19	99
_	-		-		Q		Q		Q		Q		Q		Q		Q		Q
Volatile Organics (ug/kg)																			
Chloroethane		1900		6	J														
1,1-Dichloroethene		400 200		2200	J	100	т												
1,1-Dichloroethane		200		2200		840	_												
Trichloroethene		700		2400	DEJ I	22											-		-
1,1,2-Trichloroethane		NV		,	3	5	_										-		-
Tetrachloroethene		1400		150	J	10				1	J								
Toluene		1500		15		10					-								
Semi-Volatile Organics (ug/kg	()																		
Dimethyl phthalate	"	2000												420	J			86	J
Di-n-butyl phthalate		8100												110	J				-
Fluoranthene		50000																35	J
Pyrene		50000			I	ļ	I		<u> </u>	ļ				86	J			47	J
Butyl benzyl phthalate		50000		107-				46		220	J	5800		4400		1200		37	J
bis(2-Ethylhexyl)phthalate		50000		1200	J	730	J	180	J	200	J	5000		2600	T	880		140	J
Di-n-octyl phthalate		50000 1100								├ ──				82 100				42	т
Benzo(b)fluoranthene Indeno(1,2,3-cd)pyrene		3200												140	J I			42	J
Benzo(g,h,i)perylene		50000			<u> </u>		<u> </u>		<u> </u>					350	J	45	T		<u> </u>
PCBs and Pesticides (ug/kg)		50000		<u> </u>										550	5		5		
Beta-BHC		200		NT	1	NT	1		1	NT		NT		NT		NT	1	1.5	T
Gamma-BHC (Lindane)		60		NT		NT				NT		NT		NT		NT	-	0.36	J
4,4'-DDD		2900		NT		NT		4.6		NT		NT		NT		NT		8.6	5
4,4'-DDE		2100		NT		NT		18		NT		NT		NT		NT		7	J
4,4'-DDT		2100		NT		NT		16		NT		NT		NT		NT		29	J
Dieldrin		44		NT		NT		1.2	J	NT		NT		NT		NT		4.7	
Endosulfan sulfate		1000		NT		NT				NT		NT		NT		NT		2	J
Heptachlor		100		NT		NT				NT		NT		NT		NT		1.4	
PCB-1254		1000 (total)		6100		720		27	J	1000		380		3600		420		87	Р
PCB-1260		1000 (total)						37				230		1600		160	J		
Gamma chlordane		540		NT		NT		NT		NT				NT		NT		2.3	
Alpha chlordane		NV		NT		NT		NT		NT				NT		NT		23	J
Inorganics (mg/kg)	7(10	CD.	33,000	2810	÷	6260	÷	7610		5140	-	2260		4100		3870	<u> </u>	3850	_
Aluminum Antimony	7610	SB SB	33,000 NV	2810	÷ B	0.83	÷ B	/610		0.67	т	10.2	T	1.4	т	0.77	T	3850	┝──┤
Arsenic	4.4	7.5 or SB	3-12	1.2		0.83	Б	44		3.8	J	2.2	J	5.3	J	2.4	J	10.9	
Barium	19.2	300 or SB	15-600	36.8		161		19.2		22.3	в	91.6		40.9		157	-	220	
Beryllium	0.24	0.16 or SB	0-1.75	0.11		0.8	В	0.24		0.27	-	0.45	В	0.29	В	0.23	В	0.19	В
Cadmium	1.8	1 or SB	0.1-1	154		265		1.8	J	174	J	134	J	1670	J	153	J	10.3	J
Calcium	1400	SB	130-35,000	429	В	1350		1400		2200		2490		2270		307	В	22600	
Chromium	10.1	10 or SB	1.5-40	447		194		10.1		220		488		3130		292		54.8	
Cobalt	2	30 or SB	2.5-60	2.1		18.3		2	2	2.4	В	3.9	В	27.8		2.5	В	3.4	В
Copper	12	25 or SB	1-50	42	J	302	J	12		53.2	J	61.2	J	1970	J	96.5	J	49	J
Iron	8790	2,000 or SB	2,000-550,000	4550	*	10200	*	8790	*	6850	*	4010	*	13100	*	6930	sk.	6090	*
Lead	31.2	200-500	20-500 10	72.5	L	94.8	L	31.2	*	60.1	*	188	*	135	*	38	*	88	*
Magnesium	669	SB	100-5,000	421	В	1270	<u> </u>	669	В	1210		713	B	778	B	781	В	3790	
Manganese	63.1	SB	50-5,000	37.4	J	70.1	J	63.1	*	46.8	*	306	*	613	*	67.3	*	196	*
Mercury	0.03	0.1	0.001-0.2 0.5-25	0.05	J	0.17	J	0.03		0.03	В	0.04	В	0.7 21100	T	07.2		0.02 38.5	В
Nickel	6.4 169	13 or SB SB	0.5-25	64.6 143	J	368 240	J	6.4 169		109	D	97.2	В	315	J	86.2 201	в		D
Potassium Selenium	1.2	2 or SB	8,500-43,000	143	Б	240	Б	1.2		1/2		153	а I	515	D	201	U U	365	D
Silver	1.4	SB	0.1-3.9 NV	0.51	в	18.1		1.2	,	1.1	5	1.9	J	7.7					<u> </u>
Sodium		SB	6,000-8,000	83		10.1	1			<u> </u>				242	В		-	141	В
Thallium	2.2	SB	NV		B	2.2	в	2.2		1.5	в	1.2	В	3.3	-	1.9	в	1.5	-
Vanadium	14	150 or SB	1-300	5.8		15.7	Ē	14		9.2	B	-			В		B		
Zinc	51.8	20 or SB	9-50	89.6		343		51.8		188	*	401	*	1190		1030	*	102	
Cyanide		NV	NV	21.2		7.9				30.3	*	5.8	*	65.7	*	66.5	*	0.37	
Total Organic Carbon (mg/kg																			
Total Organic Carbon		NV		NT		NT		19100		NT		NT		NT		NT		2150	
NOTES																			

NOTES:

1. Only compounds detected in one or more soil samples are presented in this table.

2. Blank indicates compound was not detected. NT indicates compound was not tested.

3. Analytical testing completed by CompuChem Corporation.

4. Results presented for AP-5 are the higher of this sample and its duplicate.

5. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

6. ug/kg = parts per billion, mg/kg = parts per million.
7. AP-5 utilized for surface soil site background inorganics.

Ar-> utilized for surface soli site background inorganics.
 TAGM # 4046 RSCO are Recommended Soil Cleanup Criteria from Technical and Administrative Guidance Memorandum No. HWR-94-4046
 Published background as noted in NYSDEC Technical and Administrative Guidance Memorandum No. HWR-94-4046.
 NV = no value, SB = Site background.
 Concentrations that are bold exceed RSCO.

12. Surface soil samples were collected approximately 0 to 1.0 feet below ground surface or 0.5 feet below subbase material if paved.

Table 2-7 Summary of Subsurface Soil Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date	Site	TAGM #4046	Published	GP-1,S-3 6/1/1999	GP-1,S-8 6/1/1999	GP-2,S-5 6/10/1999	GP-2,S-10 6/10/1999	GP-3,8-5 6/10/1999	GP-3,S-9 6/10/1999	GP-4,S-2 6/4/1999	GP-4,S-9 6/4/1999	GP-5,S-1 6/7/1999	GP-5,S-8 6/7/1999	GP-6,S-4 6/28/1999	GP-6,S-7 6/28/1999	GP-7,S-5 6/4/1999	GP-7,S-10 6/28/1999	GP-8,S-4 6/16/1999	GP-9,S-4 6/7/1999	GP-9,S-6 6/7/1999	GP-10,S-1 6/15/1999	GP-10,S-4 6/15/1999	GP-11,S-4 6/3/1999
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	4-6 ft	14-16 ft	8-10 ft	18-20 ft	8-10 ft	16-18 ft	2-4 ft	16-18 ft	0-2 ft	14-16 ft	6-8 ft	12-14 ft	8-10 ft	18-20 ft	6-8 ft	6-8 ft	10-12 ft	0-2 ft	6-8 ft	6-8 ft
Volatile Organics (ug/kg)				Q		2					2	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Chloromethane		NV																					
Bromomethane		NV																					
Methylene chloride		100																					
1,1,2-Trichloro-1,2,2-trifluoroethane		6000																					
Acetone		200		5 J		2 J	_		_														
Carbon disulfide		2700 200								_													
1,1-Dichloroethane 2-Butanone		300					-	+ +	+			+ + +											
1,1,1-Trichloroethane		800																					
Trichloroethene		700						1				17			1								
Tetrachloroethene		1400		1 J				1		20	2 J	30			1						6 J		
2-Hexanone		NV																					
4-Methyl-2-pentanone		1000																					
Toluene		1500		2 J	1						l i	2 J		1 1	11	11			1			1	
1,2-Dibromo-3-chloropropane (DBCP)		NV																					
1,2,4-Trichlorobenzene		3400																					
Semi-Volatile Organics (ug/kg)																							
Phenol		30 or MDL		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Di-n-butyl phthalate		8100		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
bis(2-Ethylhexyl)phthalate		50000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	86 J	NT	NT	NT
PCB and Pesticides (ug/kg)																							
Alpha-BHC		110		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Gamma-BHC (Lindane)		60		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
4,4'-DDE		2100		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Endosulfan I		900		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Endosulfan II		900		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Endosulfan sulfate		1000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Endrin aldehyde		NV 20		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT		NT NT	NT NT	NT NT
Heptachlor epoxide p.p'-Methoxychlor		20 NV		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
PCB-1254		10000		INI	INI	INI	INI	INI	INI	1200 D	1400 D	IN I	INI	INI	INI	IN I	INI	IN I	IN I		290	INT	INT
Gamma chlordane		540		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT
Inorganics (mg/kg)																							
Aluminum	723	SB	33,000	1320	986	842	1120	710	580	6100	2200	9370	923	4100	727	869	708	2440 *	5630	1070	5860	3600	4210 J
Antimony		SB	NV				1.1 BJ				0.27 B	1.3 BJ							0.32 BJ				3.4 B
Arsenic	1.0	7.5 or SB	3-12		0.86 B					1.3 BJ	1.6 BJ	1.4 B		2.7	1.5 B		1.6 B	1.2 B	1.3 B	3.3	2.2		3.7 J
Barium	2.8	300 or SB	15-600	7.5 B	4.8 B	1.6 B	4.5 B	1.6 B	1.9 B		15.3 B	12.1 B	4.7 B	13.9 B	4.3 B	3.3 B	4.2 B	11.6 B	14.5 B	5.5 B	9.9 B	9.4 B	453
Beryllium	0.08	0.16 or SB	0-1.75		0.17 B	0.12 B	0.12 B			0.18 B		0.26 B	0.14 B	0.29 B	0.12 B	0.11 B	0.17 B	0.21 B	0.28 B	0.13 B	0.17 B	0.16 B	0.33 B
Cadmium		1 or SB	0.1-1			\downarrow	87.2		1.4	53.1	550	19.4	0.63 B	48.6 J	18.6 J	0.35 B	1.6 J			0.29 B	38.4		0.35 B
Calcium	553.0	SB	130-35,000	393 B	33.5 B	16.1 B	82 BJ	13.1 B	12.9 B	345 B	434 B	810 BJ	26.3 BJ	184 B	25.2 B	290 B	29.9 B	35.4 B	171 BJ	74.9 BJ	294 B*	199 B*	22000
Chromium	4.3	10 or SB	1.5-40	1.3 B	4.2	1.3 B	289	1.9 B	62.1	39.5	76.2	327	27.4	5.4	2.7	5.5	11.9	4.1	46.5	16.8	150	11.6	26.4
Cobalt	0.91	30 or SB	2.5-60	2.4 B	1.6 B	0.71 B	1.4 B	0.76 B	0.32 B	2.4 B	2.4 B	2.3 B	0.74 B	3.1 B	1.1 B	0.98 B	0.7 B	2.5 B	2.7 B	3.2 B	1.8 B	2 B	5.4 B
Copper	1.6	25 or SB	1-50	2.1 B	3.2 B 3260	1.6 B	71.5 J 2370	2 B	5.8 J 1680	17.7	94.4	214 J	22.9 J 2250	3.6 J 6660 *	2 J	2.2 B 2130	15.8 J	3.6 B 5410 *	5.1 B	2.5 B	69.6 * 6560 *	8.2 * 6190 *	448
Iron	0.54	2,000 or SB 200-500	2,000-550,000 20-500 ¹⁰	1870 0.86	3260	0.76	2370	2150 0.46 BJ		6010	6330 9.7	8550 7.4	2250	6660 * 1.7 J	1710 * 0.49 J		2060 * 0.29 J	5410 *	6560 4.6	2930 1.3	6560 *	6190 *	16100 331
Lead Magnesium	454	200-500 SB	20-500	0.86 390 B	260 B	0.76 119 BJ	2.3 249 BJ	0.46 BJ 205 B	0.68 117 B	4.2 632 B	9.7 402 B	7.4 656 BJ	1.5 153 BJ	1./ J 723 B	0.49 J 211 B	1.2 182 B	0.29 J 157 B	1.8 490 B	4.6 990 BJ	1.3 223 BJ	6.7 459 B	931 B	6290
Magnesium Mangapese	454	SB	50-5,000	390 B 339	200 B	28.3 *	249 BJ	205 B	117 B	88	402 B 67	45.6	37.4	151 *	39.9 *	182 B 13.5	28.3 *	225 J	68.5	35.3	439 B 54.3	65.8	350
Manganese Mercury	50	0.1	0.001-0.2	537 P	0.02 BJ		0.01 BJ	11.2 D	1.J.1 J P	0.01 BJ		43.0 R	37.4 R	151	37.7	13.3 R	20.3	223 J R	0.01 BJ	33.5 R	34.3 R	05.0 R	
Nickel	1.0	13 or SB	0.5-25	1.9 B	2 R	0.004 BJ	41.7	0.78 B	2.7 B		379	87	9.8	3.7 B	1.3 B	1.2 B	3.6 B	2.7 B	142	47.5	116	20.8	32.4
Potassium	71.9	SB	8.500-43.000	77.1 B	105 B	40.9 B	131 B	64 B		189 B	164 B	263 B	83 B	191 B	135 B	66.4 B	92.4 B	153 B	325 B	145 B	245 B	513 B	462 B
Selenium		2 or SB	0.1-3.9						20.5 15	105 1											1.7 J		1.4
Silver		SB	NV				0.15 B				0.91 B				i								
Sodium		SB	6,000-8,000			1	64.1 B	1	68.5 B			164 B	75.6 B		i				720 B	324 B	1020 B	511 B	
Thallium		SB	NV								0.81 B			2.2	1.3 B		1.2 B	2 B			1.8 B	1.8 B	1.5 B
Vanadium	1.7	150 or SB	1-300	2 B	2.8 B	1.9 B	2.6 B	2.5 B	1.6 B	8.7 B	4.5 B	11.5	2.3 B	8.2 B	1.6 B	1.9 B	3 B	5.5 B	9.8 B	2.6 B	9.4 B	6.5 B	13.8
Zinc	2.3	20 or SB	9-50	3.1 BJ	10.4 J	2.7 BJ	35.4	2.6 B	2.9 J	18.8	318	46.7	5.3 J	16 J	3.4 J	6.2 J	4.2 J	7.5 J	147	3.8 BJ	19.4	13.5	1230
Cyanide	0.35	NV	NV				29.3			12.3	9.4	26.3	1.7	R	R			0.4 B			31.8	13.9	
Total Organic Carbon (mg/kg)																							
Total Organic Carbon				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		227	NT	NT	NT

Notes: 1. Only compounds detected in one or more soil samples are presented in this table. 2. Blank indicates compound was not detected.

3. NT indicates compound was not tested.

NT indicates compound was not tested.
 Analytical testing completed by CompuChem Corporation.
 Results presented for GP-7, S-10; GP-9, S-6; GP-11, S-4; GP-44, S-8; GP-46, S-2; GP-47, S-2; GP-49, S-2; and MW-6S, S-2 are the higher of these samples and their respective duplicate.
 Q = laboratory qualifier. See Appendix E for qualifier definitions.
 ug/kg = parts per billion, mg/kg = parts per million.
 Refer to Table 4-1 for additional information on background Site conditions.
 TAGM # 4046 RSCO are Recommended Soil Cleanup Criteria from NYSDEC Technical and Administrative Guidance Memorandum No. HWR-94-4046, based on background Site soil samples (see Table 4-1). NV = no value; ND = no detections.
 Published background as noted in NYSDEC Technical and Administrative Guidance Memorandum No. HWR-94-4046, based on background Site soil samples (see Table 4-1). NV = no value; ND = no detections.
 NV = no value; SB = site background; MDL = method detection limit.
 Concentrations that are bold exceed RSCO.

Page 1 of 7

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Burker No I I I I <th></th> <th>-</th> <th>1</th> <th>1</th> <th>-</th> <th></th> <th></th> <th>-</th> <th>1</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th>1</th>		-	1	1	-			-	1				-					-	1						1				1
bitol bitol <th< th=""><th>Sample Location</th><th></th><th></th><th></th><th>GP-12 9</th><th>5-4</th><th>GP-12 S-10</th><th>GP-13 S</th><th>6 GP-14 S</th><th>6 GP-14</th><th>S-10 (</th><th>P-15 S-1</th><th>GP-15 S-3</th><th>GP-16 S</th><th>-1 G</th><th>P-16 S-8</th><th>GP-17 S-2</th><th>GP-17 S-6</th><th>GP-18 S-4</th><th>GP-10 S-4</th><th>GP-10</th><th>S-8</th><th>GP-20 S-3</th><th>GP-20 S-8</th><th>GP-21 S-2</th><th>GP-21 S-8</th><th>GP-22 S-2</th><th>GP-22 S-9</th><th>GP-23 S-4</th></th<>	Sample Location				GP-12 9	5-4	GP-12 S-10	GP-13 S	6 GP-14 S	6 GP-14	S-10 (P-15 S-1	GP-15 S-3	GP-16 S	-1 G	P-16 S-8	GP-17 S-2	GP-17 S-6	GP-18 S-4	GP-10 S-4	GP-10	S-8	GP-20 S-3	GP-20 S-8	GP-21 S-2	GP-21 S-8	GP-22 S-2	GP-22 S-9	GP-23 S-4
Open of the state		Site	TAGM #4046	Published																									
Description				10																									
Unit Unit Unit Unit U	~													2	Q														Q
Burker No I I I I <td>Volatile Organics (ug/kg)</td> <td></td> <td>· ·</td> <td></td>	Volatile Organics (ug/kg)												· ·																
Name	Chloromethane		NV																										
	Bromomethane		NV																										
Name Name <th< td=""><td>Methylene chloride</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>12</td></th<>	Methylene chloride																												12
											8 J							5 J											23
Share Share <th< td=""><td></td><td></td><td></td><td></td><td>2</td><td>2 J</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					2	2 J																							
	· /							_											-										
	2 Butanone																												
Cale of the second se		-						+ +					+ +	-				+ +	-	+ +					+ +				
Decision								-																	+				
Serie Serie <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																													
Image: More and the set of the s																													
Depare Depare <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>2</td> <td>J</td> <td></td> <td></td> <td></td> <td>1 1</td> <td>1 1</td> <td></td> <td></td> <td></td> <td> </td> <td>1 1</td> <td></td> <td></td> <td>1</td> <td>3 J</td>				1				1 1					1 1	2	J				1 1	1 1					1 1			1	3 J
		1		1				+ +					1 1					1 1	1 1	+ +					1 1			1	5.5
bit bit <td>1,2,4-Trichlorobenzene</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>+ +</td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>1</td> <td></td> <td></td> <td></td> <td>1 1</td> <td>1 1</td> <td>1 1</td> <td></td> <td>1 1</td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td> <td></td> <td>1</td>	1,2,4-Trichlorobenzene	1		1	1			+ +					1 1	1				1 1	1 1	1 1		1 1			1 1				1
bit bit </td <td>Semi-Volatile Organics (ug/kg)</td> <td></td>	Semi-Volatile Organics (ug/kg)																												
Name Name Name Name			30 or MDL		NT		NT		NT	N	Г	NT	NT	NT		NT	NT	NT			N	Т	NT	NT	NT	NT	NT	NT	
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Di-n-butyl phthalate				NT		NT				Г	NT	NT	NT		NT	NT	NT			N	Т	NT	NT	NT	NT	NT		
bit	bis(2-Ethylhexyl)phthalate		50000		NT		NT	39	J NT	N	Г	NT	NT	NT		NT	NT	NT	39 J		N	Т	NT	NT	NT	NT	NT	NT	56 J
market import import<	PCB and Pesticides (ug/kg)																												
LADM NI <	Alpha-BHC		110		NT	7	NT		NT	N	Г	NT	NT			NT	NT	NT			N	Т	NT		NT	NT		NT	
basis basis <th< td=""><td>Gamma-BHC (Lindane)</td><td></td><td>60</td><td></td><td>NT</td><td></td><td>NT</td><td></td><td>NT</td><td>N</td><td>Г</td><td>NT</td><td>NT</td><td>NT</td><td></td><td>NT</td><td>NT</td><td>NT</td><td></td><td></td><td></td><td></td><td>NT</td><td></td><td>NT</td><td>NT</td><td></td><td>NT</td><td></td></th<>	Gamma-BHC (Lindane)		60		NT		NT		NT	N	Г	NT	NT	NT		NT	NT	NT					NT		NT	NT		NT	
chanding (N) (N) <	4,4'-DDE																												
Schulataling NI NI NI NI NI <																													
shift Ni Ni <								_																					
space-second space-second<								_																					
100 NV V NV V NV V <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																				+									
Chil																													
sintendender sintendedder sintendedder sintendedd					NI		NI		NI	N	1	70	NI			NI	NI	NI			N	1	NI	NI	NI	NI	NI	NI	
bit bit <td></td> <td></td> <td></td> <td></td> <td>NT</td> <td>-</td> <td>NT</td> <td></td> <td>NT</td> <td>N</td> <td>г</td> <td>NT NT</td> <td>NT</td> <td></td> <td></td> <td>NT</td> <td>NT</td> <td>NT</td> <td></td> <td>+ +</td> <td>N</td> <td>т</td> <td>NT</td> <td>NT</td> <td>NT</td> <td>NT</td> <td>NT</td> <td>NT</td> <td></td>					NT	-	NT		NT	N	г	NT NT	NT			NT	NT	NT		+ +	N	т	NT	NT	NT	NT	NT	NT	
Name 72 58 33.00 10.0 40.0 40.0 40.0 73 50.0 70.0			540								·								<u> </u>			*							<u> </u>
value value <th< td=""><td></td><td>723</td><td>SB</td><td>33,000</td><td>1020</td><td>)</td><td>1010</td><td>693</td><td>605</td><td>37</td><td>8</td><td>5760</td><td>9910</td><td>3730</td><td></td><td>951</td><td>5310 *</td><td>1330</td><td>1290 *</td><td>1060</td><td>78</td><td>1</td><td>923</td><td>697</td><td>6020</td><td>890</td><td>1110</td><td>837</td><td>720 *</td></th<>		723	SB	33,000	1020)	1010	693	605	37	8	5760	9910	3730		951	5310 *	1330	1290 *	1060	78	1	923	697	6020	890	1110	837	720 *
array 2.8 300 31 0.520 3.2 0.2 0.2 0.2 0.2 0.5 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.18 0.1				,																		-							,,
array 2.8 300 31 0.520 3.2 0.2 0.2 0.2 0.2 0.5 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.18 0.1	Arsenic	1.0	7.5 or SB				1.5 B					2 B	2.3	2.1	В		1.3 B	1.6 B							1.7 BJ		0.87 B	1.2 B	
desite 0.1 or SB 0	Barium	2.8	300 or SB	15-600	3.2	B	3.2 B	3.1	B 2.1	В 2.	5 B	8.6 B	40.5 B	10.6	В	3.5 B	7 BE	4.7 B	4.8 B	4.3 E	3.	3 B	3.3 B	2.9 B	15.3 B	3.7 B	5.4 B	3.6 B	1.9 B
Same Same <	Beryllium	0.08	0.16 or SB	0-1.75			0.18 B	0.12	В			0.2 B	0.32 B	0.2	В		0.2 B		0.11 B	0.13 E	1		0.13 B	0.09 B	0.25 B	0.1 B		0.1 B	
Inform 4.3 10 or 8 1.5 - 0 1.7 b	Cadmium		1 or SB																					2					
chain 0.91 30 m/S 2.500 0.95 B 0.73 B 0.97 B 0.91 B 0.96 B 1.1 B 0.75 B 0.81 B 0.61 B 0.61 B 0.57 B 0.91 B 0.61 B 0.75 B <																													10.2 B
Opport 16 25 or SB 1.50 2.1 B 3.6 B 1.9 B 6.4 1.1 I 2.6 B 6.4 6.2 I 8.3 I 1.7 B 4.6 I 3.2 B 2.2 B 9.3 I 2.1 B 3.9 B 3.7 B 2.4 B 7.9 I 2.2 I 1.3 I 5.0 I 1.3 I 5.0														-						5.1									1 B
on 2,000 or SB 2,000 or SB <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>÷</td><td></td><td></td><td></td><td></td></th<>																									÷				
ced 0.54 200-500 ¹⁶ 0.65 1.2 1 0.63 1.2 1.6 0.63 1.7 1.6 0.1 0.500 2.7 0.76 2.2 2.7 0.76 2.2 2.7 0.76 2.2 2.7 0.76 2.8 0.33 0.40 0.8 2.7 0.76 2.7 0.76 2.8 0.73 8 0.7 8 0.78 8 0.78 8 0.78 8																				2.2 L					5.7 D				
Magasim 454 SB 100, 500 15.B 19.3 16.9 10.1 10.1 10.1 10.0 22.8 22.8 22.8 22.8 22.7 27.8 22.7 74.3 74.3	non			,,				2470													-	-						2350	1790 *
Manganese 50 SB 50-500 352 53 49.7 19.6 7 46.7 13 107 19.3 52.4 55 92.3 1 80.8 51.3 27.4 17.7 115 37.7 79.9 28.1 31.3 Marcary 10 13 or S8 0.500 0.00 lot R R 0.02 B 0.04 B 0.04 B R 0.03 B R R 0.03 B R 0.03 B R 0.03 B R 0.04 B R 0.03 B R 0.04 B R 0.03 B R 0.04 B R 0.04 B R 0.03 B R 0.04 B R 0.04 B R 0.03 B R R 0.04 B R 0.03 B R 0.04 B R 0.04 B R 0.04 B R 0.04 B R 0.03 B R 0.03 B R 0.04 B								162			-																	3	
Mercary Mercary Mercary Mer			55			_					7 D																		14/B
Nickl 1.0 13 or SB 0.5-25 0.72 B 1.1 B 1.3 B 0.65 B 0.29 B 2.7 B 6.2 B 4.8 B 1.7 B 8.6 2.68 8.9 1.6 B 8.5 0.81 B 2.4 B 3.8 B 1.3 B 1.1 B 9.8 P 0.73 B Otasian 7.9 SB 8,00-43 00 7.7 B 7.4 S 6.2 B 50.6 B 6.7 B 1.2 B 1.2 B 0.6 B 6.8 B 1.8 B 6.6 B 6.8 B 51.1 B 1.3 B 1.1 B 9.8 F 6.7 B 6.7 B 6.7 B 6.7 B 6.7 B 1.2 B 1.2 B 0.7 B 6.7 B 6.7 B 1.2 B 0.7 B 0.8 B <		50			33.2	R	23 R	49./			R					17.J R			92.3 J R	0.00						27.7 P		20.1 R	
Procession Procession <td>~</td> <td>1.0</td> <td></td> <td></td> <td>0.72</td> <td>B</td> <td>1 1 R</td> <td>1 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17.9</td> <td></td> <td></td> <td>R 9 8</td> <td>165</td> <td></td> <td></td> <td>R</td> <td></td> <td></td> <td>13 R</td> <td></td> <td>9.8</td> <td></td>	~	1.0			0.72	B	1 1 R	1 3								17.9			R 9 8	165			R			13 R		9.8	
Seland O S S <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.1 D</td> <td>62</td> <td></td> <td></td> <td></td> <td>==</td> <td></td> <td>5.0 D</td> <td></td> <td></td> <td></td> <td></td>							1.1 D	62				==													5.0 D				
Silver SB NV I<		,,			, 4.7	1 I	, D	02		07.		.20 5	200 0	101		2.1.0		1.52 D	20.0 D	110 1			00.0 1	5			57.5 2	0,12 1	00.1.15
Solum SB 6,000-8,000 I	Silver				1			1 1					1 1	1				1 1	1 1	1 1				i i	1 1				1 1
Thank SB NV SD	Sodium				1			1 1					1 1	1				99.9 B	1 1	1 1		+			1 1	58.2 B		1	
1.7 150 or SB 1-300 2.3 B 2.6 B 2.4 B 1.7 B 2.8 B 2.4 B 2.4 B 2.8 B 2.1 B 2.6 B 2.7 B 2.4 B 7.8 B 2.4 B 7.8 B 2.4 B 7.8 B 2.4 B 7.8 B 7.4 B 3.8 B 2.1 B 2.6 B 2.1 B 9.9 B 2.5 B 1.7 B 2.5 B 1.4 B Cinc 2.3 2.0 or SB 9.50 3.1 B 3.8 1.9 1.6 1.6 7.3 B 2.4 B 3.8 3.2 B 3.8					l						11		0.87 B		i i		0.89 B		1.1 B						1.3 B				
2.3 20 or SB 9-50 3.1 B 3.8 BJ 2.5 BJ 1.9 BJ 1.6 J 12.3 J 19.3 5.2 14.4 J 4.7 J 4.2 J 9.6 J 4.2 J 7.5 J 15.9 J 3.2 J Cyanide 0.35 NV NV 0 0.35 B 0 0.49 B 25.7 0.52 B 1.1 4 0 31.7 0 0 0 11.6 0 11.6 0	Vanadium	1.7			2.3	В	2.6 B	2.4	B 1.3	B 1.	5 B	9.2 B		7.3	В	2.4 B		3 B		2.8 E	2.	1 B	2.6 B	2.1 B	9.9 B	2.5 B	1.7 B	2.5 B	1.4 B
Cyanide 0.35 NV NV 0.35 B 0.49 25.7 0.52 B 1.1 4 31.7 Image: Carbon (mg/kg)	Zinc								BJ 1.9	BJ 1.	8 BJ	9.6 J	17.6 J	12.3				14.4 J	4.7 J	4.2 J			5.9 J		9.6 J	4.2 J	7.5 J		
	Cyanide	0.35	NV	NV					0.35	В				0.49	В	25.7	0.52 B	1.1	4		31.	7						11.6	
NT NT<	Total Organic Carbon (mg/kg)																												
	Total Organic Carbon				NT		NT	NT	NT	N	Г	NT	NT	NT		NT	NT	NT		NT	N	Т	NT						

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date Sample Depth	Site Background ⁸	TAGM #4046 RSCO ⁹	Published Background ¹⁰	GP-24,S 6/3/199 4-6 ft	99 6/.	-24,8-7 8/1999 2-14 ft Q	GP-25,S-5 6/3/1999 8-10 ft Q	GP-25,S-10 6/3/1999 18-20 ft Q	GP-26,S-5 6/1/1999 8-10 ft Q	GP-26,S-10 6/1/1999 18-20 ft Q	GP-27,S-5 6/15/1999 8-10 ft	GP-27,S- 6/15/199 16-18 ft	9 6/15/1999	GP-28,S-8 6/15/1999 14-16 ft Q	GP-29,S-4 6/3/1999 6-8 ft Q	GP-29,S-9 6/3/1999 16-18 ft Q	GP-30,S-1 6/3/1999 0-2 ft	GP-30,S-(6/3/1999 10-12 ft	6/1/1999	GP-32,S-9 6/1/1999 16-18 ft	GP-33,S-4 6/2/1999 6-8 ft Q	GP-33,S-10 6/2/1999 18-20 Q
Volatile Organics (ug/kg) Chloromethane		NV		r - 1	-	_		1			I I	1 1	- I	· · ·	F F	<u>г г</u>						
		NV		ł								+ +										-
Bromomethane Methylene chloride		100																_		_		
1,1,2-Trichloro-1,2,2-trifluoroethane		6000										+ +					+ + -					
Acetone		200		l			12					+ +			2 1	2 1					2 1	3.1
Carbon disulfide		2700		l			12					1 1			55	55					5 5	55
1,1-Dichloroethane		200		l								+ +										
2-Butanone		300		l								1 1										
1,1,1-Trichloroethane		800		l								1 1										
Trichloroethene		700		l								1 1										
Tetrachloroethene		1400		l								+ +										
2-Hexanone		NV		I 1					1			1 1					1					
		1000		ł ł								+ +										
4-Methyl-2-pentanone Toluene		1500						+ +	+ +	+ +	 	+ +		<u> </u>		<u>├</u>	<u> </u>				+ +	+ +
		1500 NV				_	<u>├</u> ──	+ $+$			<u>├──</u>			┼──┼──			┼──┼			+		+
1,2-Dibromo-3-chloropropane (DBCP) 1.2.4-Trichlorobenzene		NV 3400				_	┝───┝──	+	┥──┤──	+ $+$	├───			┼──┼──	+	<u>├</u> ───	┼──┼			+	<u> </u>	+
		3400										<u> </u>										<u> </u>
Semi-Volatile Organics (ug/kg)		30 or MDL		N ITT		NT	NIT	NIT	NIT	NIT	NIT.	A LUE		NIT	NT	NIT	NIT	NT	761	NT	NT	NT
Phenol				NT		NT	NT	NT	NT	NT	NT	NT		NI	NT	NT	NT		75 J	NT	NT	NT
Di-n-butyl phthalate bis(2-Ethylhexyl)phthalate		8100 50000		NT NT		NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT		NT NT	NT NT	NT NT	NT NT	NT NT	52 J 530 J	NT NT	NT NT	NT NT
		30000		IN I		IN I	IN I	IN I	IN I	IN I	IN I	INI	39 J	IN I	IN I	IN I	N I	IN I	330 J	IN I	IN I	IN I
PCB and Pesticides (ug/kg)			1			N 1777	2.175	2.177	2.17	2.175	2.07			2.175	2.177	2.00	2.00	2.175		2.175		2.00
Alpha-BHC		110		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	1 1	NT	NT	NT
Gamma-BHC (Lindane)		60		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	1 J	NT	NT	NT
4,4'-DDE		2100		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	19 JN		NT	NT
Endosulfan I		900		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	16 JN	NT	NT	NT
Endosulfan II		900		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	29 JN	NT	NT	NT
Endosulfan sulfate		1000		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	35 J	NT	NT	NT
Endrin aldehyde		NV		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	30 J	NT	NT	NT
Heptachlor epoxide		20		NT		NT NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT NT	NT	9.9 J 78 JN	NT	NT	NT
p,p'-Methoxychlor		NV 10000		NT		NI	NT	NI	NI	NT	NT	NT		NT	NI	NT	NI	NT	1500 J	NT	NT	NT
PCB-1254 Gamma chlordane		540		NT		NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	9.8 J	NT	NT	NT
		340		IN I		IN I	IN I	NT	IN I	INI	IN I	INI		NT	INI	IN I	NT	IN I	9.0 J	NT	IN I	NT
Inorganics (mg/kg)	700	SB	33,000	1210	1	180	1380	821	723	749	1090	644	2120 *	799 *	958	1360	1660	1870	1110	466	810	306
Aluminum	723	SB	,	1210	1	180	1380	821	123	/49	1090	044	2120 *	/99 *	958	1360	1660	1870	1110	400	810	300
Antimony Arsenic	1.0	7.5 or SB	NV 3-12					1.4 BJ		0.96 B			1 1 D	0.9 B				0.91 H	1	_		
	2.8		15-600	6.0	D	57D	2 D		2.5 B		12.1 D	2.7	1.1 B B 6.2 B		20.0	11.5 B	8.3 B			3.4 B	25 D	2.5 B
Barium Beryllium	2.8	300 or SB 0.16 or SB	0-1.75	6.9 0.14		5.7 B).09 B	0.15 B	3 B 0.09 B	2.3 B	3.9 B 0.1 B	13.1 B 0.09 B	2.7	0.13 B	3.1 B 0.1 B	2.9 B 0.11 B	0.13 B	0.15 B	6.9 H 0.15 H		3.4 B	2.5 B 0.12 B	2.3 B
Cadmium	0.08	1 or SB	0-1.75	0.14		17 17	0.13 D	0.09 B	+ +	U.1 D	0.09 B	0.71		0.1 D	0.11 D	0.15 B 0.16 B	0.15 B	0.15 1		+ +	0.12 D	1.3
Calcium	553.0	SB	130-35,000	21.1		85 B	2370 J	512 B	13.2 B	10.3 B	16.8 B*	14		34.2 B	6.3 BJ	246 BJ	536 BJ	4200	10200	15.8 B	16.5 B	73 B
Chromium	4 3	10 or SB	1.5-40	1.8		5.1	13	10.8	4 3	2.5	2.5	14		17 B	1.3 B	3 7	5.9	4200	10200	15.8 B	10.5 B	7.9
Cobalt	0.91	30 or SB	2.5-60	0.99		1.2 B	1.2 B	0.68 B	0.91 B	0.5 B	0.79 B	0.6		0.85 B	0.98 B	1.1 B	1.7 B	1.9 H		0.81 B	0.63 B	0.3 B
Copper	1.6	25 or SB	1-50	2.4		6.7	3.4 B	2.8 B	1.6 B	13 B	2.8 B*	2.8		2.2 B	2.5 B	2.6 B	47B	391		2.5 B	7.5	20.6
Iron	1910	2,000 or SB	2,000-550,000	2.4	-	130	3710	2560	1790	1210	2460 *	1600		2830 *	2920	2820	3330	3820	3280	1360	1710	1190
Lead	0.54	200-500	2,000-330,000	14		16	16	0.95 B	0.54 B	0.45 B	4.9	1.3		0.96	2920	1	3350	5 7	1.2	1300	0.6	14.5
Magnesium	454	200-300 SB	100-5,000	212		405 B	1520 J	419 B	124 B	151 B	4.9 172 B	1.5		176 B	144 BJ	522 BJ	561 BJ	2680	5980	85 B	150 B	14.3 122 B
Manganese	50	SB	50-5.000	60.7		24.8	71.1	29.8	28.5	26.5	25	21.8		53.4 J	26	38.5	98.3	86	49.3	30.6	17.8	9.6
Mercury	20	0.1	0.001-0.2	00.7	R	R	, 1.1 R	22.0 R	20.5 R	0.02 BJ	R		R R	R	R	0.03 BJ	0.02 BJ	1	R	R	R	R
Nickel	1.0	13 or SB	0.5-25	1.1	B	2.8 B	2.1 B	1.5 B	1 B	0.79 B	1.1 B	1.4		1.1 B	0.82 B	1.7 B	2.4 B	2.6 H	3 2 B	1 R	0.76 B	0.7 B
Potassium	71.9	SB	8,500-43,000	94.1		2.8 B	109 B	82 B	50.9 B	83.7 B	55.8 B	44.8		76.6 B	63 B	365 B	119 B	137 1		54 B	64.5 B	76.7 B
Selenium		2 or SB	0.1-3.9	21	1						20.0 0					202 1			, , , , , , , , , , , , , , , , , , ,			,, 5
		SB	NV		1		1 1	1 1	1 1	1 1	1 1			1 1		1	1 1	+ +		+ +	1 1	
Silver		SB	6,000-8,000					+ +			<u>├──</u>	+ +	78.7 B			67.3 B	69.7 B			+ +		+ +
Silver Sodium			0,000-8,000 NV										1.4 B	13 B		57.5 0	07.7 B			+ +		
Sodium		SB					1 1	1	1 1		1 1	1	1.7 D	1.5 5		·	1		1 1			1
Sodium Thallium	17	SB 150 or SB		26	B	4 B	37 B	23 R	15 R	17 R	24 R	1 8	B 83 P	21 R	24 R	43 B	3 Q R	<u>4</u> 1 I	3 31 R	15 R	14 R	12 B
Sodium Thallium Vanadium	1.7	150 or SB	1-300 9-50	2.6 4.8		4 B	3.7 B 4 3 J	2.3 B 4 9 J	1.5 B 2.3 BJ	1.7 B 2.4 BJ	2.4 B	1.8 24.2		2.1 B 3.4 J	2.4 B 4 1 J	4.3 B 8 9 J	3.9 B 94 J	4.1 H		1.5 B	1.4 B 2.1 BJ	1.2 B 3 7 BJ
Sodium Thallium Vanadium Zinc	2.3	150 or SB 20 or SB	1-300 9-50			4 B 11.5 J		2.3 B 4.9 J	1.5 B 2.3 BJ			1.8 24.2							3 3.1 B 3.8 BJF		1.4 B 2.1 BJ	3.7 BJ
Sodium Thallium Vanadium		150 or SB	1-300			4 B 11.5 J																

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

		1	1	1	1		1			1	1	1	1	1	1	1		1	1	1	1		
Samula Lasatian				GP-34,S-6	GP-34,S-10	GP-35,S-8	GP-36,S-2	GP-36,S-8	GP-38,S-4	GP-38,S-9	GP-39,S-2	GP-39,S-8	GP-40,S-1	GP-40,S-4	GP-42,S-2	GP-42,S-6	GP-44,S-4	GP-44,S-8	GP-45,S-1	GP-45,S-2	GP-45,S-3	GP-45,S-4	GP-45,S-5
Sample Location Sample Date	Site	TAGM #4046	Published	6/2/1999	6/2/1999	6/3/1999	6/3/1999	6/3/1999	6/3/1999	6/3/1999	6/3/1999	6/3/1999	· · ·	6/17/1999	6/10/1999	6/10/1999	· · · · ·	6/15/1999	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001
Sample Date	Background ⁸	RSCO ⁹	Background ¹⁰	10-12 ft	18-20	14-16 ft	2-4 ft	14-16 ft	6-8 ft	16-18 ft	2-4 ft	14-16 ft		6-8 ft	2-4 ft	10-12 ft	6-8 ft	14-16 ft	0-2 ft.	2-4 ft.	4/24/2001 4-6 ft.	6-8 ft.	4/24/2001 8-10 ft.
Sample Depui	Dackground	RSCO	Dackground	10-12 1				0						0-01			0 000					0-011.	
Volatile Organics (ug/kg)		<u>.</u>														<u> </u>							
Chloromethane		NV																					
Bromomethane		NV																					
Methylene chloride		100													26								
1,1,2-Trichloro-1,2,2-trifluoroethane		6000																					
Acetone		200					5 J	2 J	4 J	2 J		5 J	22 J	9 J									+
Carbon disulfide		2700								-			_	+ +			_						+
1,1-Dichloroethane 2-Butanone		200 300								_				-			_			_			+
		800													2 1					21			+
1,1,1-Trichloroethane Trichloroethene		700											1 J		3 J 4 I	+ +			2 J	2 J 8 I			+ + 1
Tetrachloroethene		1400											9 J		91	<u> </u>			3 J	12			+ + 1
2-Hexanone		NV											, , ,		, ,	1			50				
4-Methyl-2-pentanone		1000																					
Toluene		1500											2 J		4 J								
1,2-Dibromo-3-chloropropane (DBCP)		NV						1										1 1					
1,2,4-Trichlorobenzene		3400		İ İ				Ĺ															
Semi-Volatile Organics (ug/kg)																							
Phenol		30 or MDL		NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT		NT	NT	NT	NT	NT	NT
Di-n-butyl phthalate		8100		NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT		NT	NT	NT	NT	NT	NT
bis(2-Ethylhexyl)phthalate		50000		NT	NT	NT	NT	NT	NT	NT	NT	NT	50 J	NT	NT	NT		NT	NT	NT	NT	NT	NT
PCB and Pesticides (ug/kg)	1		-	F		1										I			I				
Alpha-BHC		110		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.2 J	NT	NT	NT	NT	NT	NT
Gamma-BHC (Lindane) 4,4'-DDE		60 2100		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	_	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
4,4-DDE Endosulfan I		900		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
Endosulfan II		900		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
Endosulfan sulfate		1000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
Endrin aldehyde		NV		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
Heptachlor epoxide		20		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
p,p'-Methoxychlor		NV		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
PCB-1254		10000					870 DJ												NT	NT	NT	NT	NT
Gamma chlordane		540		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT
Inorganics (mg/kg)				ii		1	I I									1 I.							
Aluminum	723	SB	33,000	715	706	948	7970	760	1480	1950	7240	661	5910	1220	6660 *	731 *	1420	/35 *	8610 J	6600 J	1160 J	1100 J	1140 J
Antimony Arsenic	1.0	SB 7.5 or SB	NV 3-12	1 B			2 B		1.4 B	_	1.9 B		1.5 B	-	2.8	<u> </u>	_	0.96 B	0.41 B1 6.1	N 1.4 B		0.39 B	+
Barium	2.8	300 or SB	15-600	2.8 B	2.9 B	4.2 B	17.2 B	3.2 B	4.6 B	8.3 B	1.9 B	3.6 E			12.5 B	2.9 B	7.7 B	6.3 B	34.1 B		5.1 B	5.2 B	4.2 B
Beryllium	0.08	0.16 or SB	0-1.75	0.08 B	2.9 B	0.14 B	0.3 B	0.1 B	0.24 B	0.21 B	0.26 B	5.0 1	0.17 B	0.16 B	0.2 B	2.9 13	0.12 B	0.5 B	0.33 B	0.22 B	0.16 B	0.2 B	0.16 B
Cadmium	0.00	1 or SB	0.1-1	0.00 B		0.11 D	0.5 5	5.5	0.21 D	0.21 D	1.8	4.9		21.8	0.2 B	1 1	0.12 B		0.54 B	0.22 B	0.10 B	0.2 5	0.10 2
Calcium	553.0	SB	130-35,000	553 B	32.6 B	46.7 B	542 BJ	99.7 BJ	8.5 BJ	135 BJ	12700 J	14.6 E		45.1 B*	255 B	16.2 B	22.8 B*	26.1 B	2270 E	301 BE	76.9 BE	51.1 BE	E 767 BE
Chromium	4.3	10 or SB	1.5-40	2.3	2.3	30.4	8.1	14	2.3 B	8	8.2	18.4		91.5	6.7	1.9 B	1.4 B	1.9 B	12.2	7.4	2.4 B	2.9	3.2
Cobalt	0.91	30 or SB	2.5-60	0.77 B	0.53 B	1.3 B	5.2 B	0.66 B	1.2 B	1.5 B	4.3 B	0.41 E			2.1 B	0.57 B		0.67 B	2 B	1.9 B	1.3 B	1 B	0.64 B
Copper	1.6	25 or SB	1-50	1.2 B	13.9	21.7	4.9 B	21.5 J	3.1 B	4.6 B	4.5 B	8.4 J		3.6 B*	5.6 J	1.9 B		1.9 B	17.1	4 B	1.8 B	2 B	1.7 B
Iron	1910	2,000 or SB	2,000-550,000	1910	1050	4730	8850	1870	5240	4900	8530	3630	6010 *	6030 *	7700 *	2650 *	2840 *	1990 *	11200	7850	3270	3830	3020
Lead	0.54	200-500	20-500	0.52 B	0.97	13.8	4.8	1.1	1	2.1	4.2	2.2	10.9	1.1	12.5	0.77	1	0.79	67 NJ		1.2 NJ	1.1 NJ	1.4 NJ
Magnesium	454	SB	100-5,000	454 B	260 B	270 B	1050 BJ	153 BJ	235 BJ	435 BJ	8010 J	165 E		202 B	500 B	149 B		181 B	834 B	824 B	301 B	213 B	323 B
Manganese	50	SB	50-5,000	49.7	13.2	51	162	32	50	53.1	170	8.5	72.6	252	57.1 J	43.1 J	210	22.7 J	124	59.4	126	162	49.7
Mercury Nickel	1.0	0.1 13 or SB	0.001-0.2 0.5-25	R 0.87 B	0.02 BJ	3 B	0.01 BJ 4 9 B	0.01 BJ	15 B	19 B	0.01 BJ 5.4 B	0.01 E 2.6 E		62.4 K	0.01 J 3.5 B	0.95 B	1.6 B	0 95 B	66B	49B	2 B	18 B	1.3 B
Potassium	1.0 71.9	SB	8,500-43,000	0.87 B	80.7 B	99.9 B	265 B	9.4 60 B	1.5 B	440 B	268 B	65.2 E			3.5 B 172 B	80.2 B	110 B	0.95 B 86 B	324 B		75.1 B	1.8 B 88 B	1.5 B
Selenium	/1.7	2 or SB	0.1-3.9	/1.7 D	00.7 D	77.7 13	203 B	00 B	150 B	440 B	200 D	03.2 E	13 I	55 15	1/2 B	00.2 D	113 B	000	1.4 NJ		, J.1 D	00 0	103 B
Silver	1	SB	NV		1 1	+ +	+ + +			+ +		0.36 E	1.5 5		1.0	+ +		1 1	0.2 B				+
Sodium		SB	6.000-8.000	1	1 1	1 1	68.6 B			130 B	72.7 B	69.7 E		131 B	71.3 B	64.6 B		147 B	267 B		191 B	231 B	234 B
Thallium		SB	NV	1	1 1	1 1		İ			1.1 B	07.71	1.3 B		1.9 B	1.2 B		1.1 B	20, 13				
Vanadium	1.7	150 or SB	1-300	1.7 B	1.8 B	2.6 B	11.9	1.8 B	3.4 B	4 B	11.8	1.9 E	9.6 B	2.7 B	11.6	2.2 B		1.8 B	18.3	11.3	3 B	2.8 B	2.7 B
Zinc	2.3	20 or SB	9-50	1.9 BJ	2.6 BJ	7.4 J	11.7 J	4 BJ	6.8 J	13.9 J	11.6 J	5.2 J		10.2	17.3	2.2 J	6.5	2.2 J	79.1 EJ	15.2 E	3.5 BE	3.7 BE	
Cyanide	0.35	NV	NV		0.62	1.1		1.3				1.8	107	6.5					NT	NT	NT	NT	NT
Total Organic Carbon (mg/kg)																							
Total Organic Carbon				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	1		1										1				-		-				
Sample Location				GP-45,8-6	GP-45,S-7	GP-45,S-8	GP-46,S-1	GP-46,S-2	GP-46,S-3	GP-46,8	-4 GP-46,S-	5 GP-46,S-6	GP-46,S-7	GP-46,S-8	GP-46,S-9	GP-46.S-10	GP-47. S-1	GP-47, S-2	GP-47.S-3	GP-47,S-4	GP-47,S-5	GP-47.S-6	GP-47,S-7
Sample Date	Site	TAGM #4046	Published	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001				4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	10-12 ft.	12-14 ft.	14-16 ft.	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	10-12 ft.	12-14 ft.	14-16 ft.	16-18 ft.	18-20 ft.	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	10-12 ft	12-14 ft
Volatile Organics (ug/kg)				Q	Q	Q	Q	Q	2	Q	Q	QQ	Q	Q	Q	2 (2 Q	2 Q	२	Q	Q	Q
Chloromethane	1	NV		I I I	-			- I	1	1	<u> </u>	- I I	1 1	· · · ·	1 1	1	1 1	1	1 1		· · · · · ·		
Bromomethane		NV																					
Methylene chloride		100		2 J	2 J	2 J							1		1		33 DJ		1 1		i †		
1,1,2-Trichloro-1,2,2-trifluoroethane		6000					2 J	2 J		2	J	2 J	2 J	1 J	1 J	2 J				2 J		<u> </u>	
Acetone		200															26 DJ	В				'	, / /
Carbon disulfide		2700																			↓ ↓ ↓		, ↓
1,1-Dichloroethane		200											-							+	┍───┤──┦		41
2-Butanone 1,1,1-Trichloroethane		300 800					4 I	1 1					+ +				+ +			++	/─── ↓		4 J
Trichloroethene		700					4 J 8 J	21									12 DJ			++	ł +		
Tetrachloroethene		1400					47	14									480 D	160	13	2 J	(7 J
2-Hexanone		NV		1 J														1 J					1
4-Methyl-2-pentanone		1000																					
Toluene		1500																					
1,2-Dibromo-3-chloropropane (DBCP)		NV							\downarrow \downarrow							+		1 JB		+			+
1,2,4-Trichlorobenzene	1	3400														1 J		1 J					
Semi-Volatile Organics (ug/kg)		30 or MDL	1	NIT	NT	NIT	NIT	NT	NIT	NT	NT	NT	NIT	NT	NT	NT	NIT	NT	NT	NT	NT	NT	NT
Phenol Di p butul phthelata		30 or MDL 8100		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NI	NT NT	NT NT	NI NT	NT NT	NT NT
Di-n-butyl phthalate bis(2-Ethylhexyl)phthalate	1	50000	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB and Pesticides (ug/kg)		50000																					
Alpha-BHC	1	110	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Gamma-BHC (Lindane)		60		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDE		2100		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan I		900		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan II		900		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan sulfate		1000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin aldehyde Heptachlor epoxide		NV 20		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
p,p'-Methoxychlor		NV		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB-1254		10000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Gamma chlordane		540		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Inorganics (mg/kg)													•										
Aluminum	723	SB	33,000	1030 J	1880 J	881 J	3310 J	2700 J	1160 J		J 1100 J	1060 J	1160 J	900 J	1280 J	1270 J	6520 J	2110 J	1780 J	1070 J	724 J	1510 J	1120 J
Antimony		SB	NV				0.68 B		0.37 B								1.5 BN	0.33 BN				/	0.42 BN
Arsenic	1.0	7.5 or SB	3-12		0.64 B	0.53 B	1.2 B	0.53 B		0.45				0.67 B	1.3 B	1 B	2.1 B	0.5 B	0.53 B		<u> </u>	1.7 B	
Barium Beryllium	2.8	300 or SB 0.16 or SB	15-600 0-1.75	3.6 B 0.18 B	6.7 B 0.15 B	4.2 B 0.15 B	27.2 B 0.15 B	7.4 B 0.13 B	6 B	6.5	B 3.5 I 0.16 I		6.6 B 0.11 B	2.9 B	6.3 B 0.11 B	5.9 B	18 B 0.27 B	8.2 B 0.16 B	8.2 B 0.16 B	3.3 B 0.15 B	3.1 B 0.16 B	10.4 B 0.18 B	7.1 B 0.16 B
Cadmium	0.08	1 or SB	0.1-1	0.18 B	0.13 B	0.13 B	20.9	0.13 B	0.17 B		0.101	0.11 B	0.32 B		0.11 B	0.34 B	590	42.1	200	25.6	103	173	273
Calcium	553.0	SB	130-35,000	40.6 BE	3020 E	624 BE	3210	372 B	152 B		B 2170	38.3 B	349 B	34.8 B	386 B	974 B	497 BE	250 BE		135 BE	105 127 BE	242 BE	276 BE
Chromium	4.3	10 or SB	1.5-40	2.1	7.1	4.6	47.9 J	3.4	2.8	3.9	3.7	5	7.7	3.4	10 J	6.9	370	18.2	48.4	10.5	10.3	16.3	44.9
Cobalt	0.91	30 or SB	2.5-60	0.83 B	1.1 B	0.53 B	2.1 B	2.2 B	1.2 B		B 0.79 I		1 B	0.67 B	0.83 B	0.95 B	6 B	2 B	1.2 B	0.65 B	0.68 B	1.5 B	1.1 B
Copper	1.6	25 or SB	1-50	1.7 B	2.7	1.5 B	31.9	2.9 B	1.7 B	2.7			2.6 B	2.5 B	3.2 B	4.2 B	15.5	8.2	28	3.8 B	4.8 B	8.3	32.5
Iron	1910	2,000 or SB	2,000-550,000	4200	3820 B	2210	7030 *J	5000 *J	2120 *	J 2670	*J 4740 *	*J 5890 *J	3320 *J	3760 *J	4330 *J	5350 *J	7820	4420	3690	3320	2270	3810	3570
Lead	0.54	200-500	20-500 10	1.1 NJ	3.2 NJ	1.9 NJ	24.5	6.3	1.5	1.4		1.1	1.7	1	1.4	2.1	14 NJ	1.8 NJ	=11 - 10		1.2 NJ	1.8 NJ	2.7 NJ
Magnesium	454	SB	100-5,000	185 B	432 B	204 B	2000	513 B	296 B		-		282 B	305 B	316 B	335 B	615 B	379 B	1790	208 B	182 B	390 B	275 B
Manganese	50	SB	50-5,000	51.2	83	37.6	117 *J	142 *J	142 *	J 235	*J 50.2 *	*J 59.9 *J	118 *J	42.1 *J	67.8 *J	85.3 *J	99.9	204	92.1	39.1	26.5	72.3	66.9
Mercury	1.0	0.1	0.001-0.2	1.25	2.2.5	1.1 D	5()	1.00						1.7 5	2.05		10/0		104		70.1		170
Nickel Potassium	1.0 71.9	13 or SB SB	0.5-25 8.500-43.000	1.3 B 81.1 B	2.2 B 181 B	1.1 B 92.4 B	56.3 385 BJ	3.2 B 212 BJ	2.8 B				3 B 105 BJ	1.7 B 86.2 BJ	2.9 B 226 BJ	2.9 B 234 BJ	1960 235 B	112 166 B	104 129 B	97.5 97.2 B	72.1 75.1 B	112 207 B	179 123 B
Selenium	/1.9	2 or SB	0.1-3.9	01.1 B	101 B	92.4 B	202 81	212 BJ	114 B	J 92.9	61.91	53 / 5 BJ	0.47 B	00.2 BJ	220 BJ	234 BJ	0.71 BN	100 B	0.64 BN		/J.1 B	207 B	123 B
Silver		SB	0.1-3.9 NV										0.47 D		<u> </u>		0.71 Br	·	0.04 BN	4 −−− †	 		/ /
Sodium	1	SB	6,000-8,000	217 B	264 B	191 B	176 B	155 B	166 B	176	B 166 I	3 158 B	137 B	133 B	148 B	151 B	280 B	279 B	218 B	216 B	214 B	254 B	240 B
Thallium	1	SB	NV	0.82 B			0.86 B	0.91 B				1.2 B			0.7 B		1.2 B				<u>†</u> †		
Vanadium	1.7	150 or SB	1-300	2.2 B	4.3 B	2.2 B	8.9 B	5.4 B	2.4 B				3.2 B	3 B	3.7 B	4.2 B	12.4	3.5 B	3.9 B	2.4 B	2 B	5.2 B	3.1 B
Zinc	2.3	20 or SB	9-50	3.3 BE	5.8 E	2.6 BE	42.6	8.6	3.6 B	-	B 8.1	4.4	4.4	3.7 B	5.9	9.8	31.9 EJ	6.6 E	24.5 EJ	3.6 BE	5.6 E	12 E	22.6 EJ
Cyanide	0.35	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total Organic Carbon (mg/kg)				1												-	-						
Total Organic Carbon				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

					1																			
Sample Location				GP-47,S-8	GP-47,S-9	GP-47,S-10	GP-48,S-1	GP-48,S-2	GP-48,S-3	GP-48,S-4	GP-48,S-5	GP-48,S-6	GP-48,S-7	GP-48,S-8	GP-48,S-9	GP-48,S-	10 GP-49,S-1	GP-49,S-2	GP-49,S-3	GP-49,S-4	GP-49,S-5	GP-49,S-6	GP-49,S-7	GP-49,S-8
Sample Date	Site	TAGM #4046	Published	4/24/2001	4/24/2001		4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001			4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/2001	4/24/01	4/24/2001
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	14-16 ft.	16-18 ft.	0 18-20 ft.	0-2 ft.	2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	10-12 ft.	12-14 ft.	14-16 ft.	16-18 ft.			2-4 ft.	4-6 ft.	6-8 ft.	8-10 ft.	10-12 ft.	12-14 ft.	14-16 ft.
Volatile Organics (ug/kg)					2	Q		Q	Q	Q	Q	Q	Q	Q		Q	Q	Q Q	Q	Q	Q	Q	Q	Q
Chloromethane	1	NV			1 1				<u> </u>				1 J											
Bromomethane		NV											3 JB											
Methylene chloride		100						4 J																
1,1,2-Trichloro-1,2,2-trifluoroethane		6000					2 J	4 J										2 J						
Acetone		200																						
Carbon disulfide		2700 200			_																			
1,1-Dichloroethane 2-Butanone	-	300			+ +								3 1											
1,1,1-Trichloroethane		800						11					1 1											
Trichloroethene		700						5 J										2 J						
Tetrachloroethene		1400			10 J			24					2 J					19			2 J			
2-Hexanone		NV																						
4-Methyl-2-pentanone		1000															2 J				3 J			
Toluene		1500			+																			
1,2-Dibromo-3-chloropropane (DBCP) 1,2,4-Trichlorobenzene		NV 3400			+ +		+ + +					┝───┤─┤												
Semi-Volatile Organics (ug/kg)		3400							<u> </u>							1								
Phenol		30 or MDL		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butyl phthalate	İ	8100		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
bis(2-Ethylhexyl)phthalate		50000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB and Pesticides (ug/kg)																								
Alpha-BHC		110		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Gamma-BHC (Lindane)		60		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDE Endosulfan I		2100		NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT
Endosulfan I Endosulfan II		900 900		NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT
Endosulfan sulfate		1000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin aldehyde		NV		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor epoxide		20		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
p,p'-Methoxychlor		NV		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB-1254		10000		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Gamma chlordane		540		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Inorganics (mg/kg)	723	SB	33.000	1620 J	2000 J	1220 J	4520 J	4980 J	1660	3870	725	552	2340	711	2890	707	5360	2950	667	1600	1120	592	1800	1110
Aluminum Antimony	125	SB	33,000 NV	6.8 BN				4980 J	1000	3870	/35	333	2340	/11	2890	/0/	2.3 B		557	1000	1150	392	1800	1110
Arsenic	1.0	7.5 or SB	3-12	1.4 B				0.94 B	0.63 B	1 B					0.47 E	3	2.5 5							
Barium	2.8	300 or SB	15-600	67.8	14.6 B			8.9 B	5.8 B	12.4 B	2.6 B	2.6 B	8 B	5.5 B	8.4 E			4.8 B	1.2 B	3.2 B	4.1 B	2.2 B	5.6 B	8.9 B
Beryllium	0.08	0.16 or SB	0-1.75	0.19 B		0.27 B	0.21 B	0.36 B	0.13 BJ	0.22 BJ				0.11 BJ	0.13 E									
Cadmium		1 or SB	0.1-1	299	599	26			4.2				0.18 B		0.33 E			21.2	2.6	3.7	4.3 J	2	12.8	0.89 B
Calcium	553.0	SB	130-35,000	1530 E	1090 E			105 BE	4160	62.6 B	57.8 B	13.6 B	369 B	33.1 B	533 E			93.4 B	18.8 B	35 B	1590	42.3 B	3800	82.1 B
Chromium Cobalt	4.3 0.91	10 or SB 30 or SB	1.5-40 2.5-60	435 2.1 B	89.8 1.9 B	90.3 0.63 B	6.7	5.7	34.7 * 2.9 B	4.1 *	1.9 B* 0.46 B	1.8 B* 0.34 B	6.5 *	4.7 * 0.46 B	9.4 * 1.6 E		100	54.2 * 1.5 B	5.1 * 0.41 B	13.6 * 0.75 B	49.1 * 1 7 B	21.3 * 0.27 B	70.7 * 1.5 B	25.9 * 0.96 B
Cobalt Copper	1.6	25 or SB	2.5-60	2.1 B 127	67.5	0.63 B	2.4 B 3.5 B	1.2 B 2.6 B	2.9 B 9.9	6.2 B 3.5 B	0.46 B 2.2 B	0.34 B 1.5 B	1.6 B 3 B	0.46 B 1.9 B	8.7	13.6		2.9 B	0.41 B 1.2 B	0.75 B	1.7 В 7.2	0.27 B 3.6 B	1.5 B 12.7	0.96 B 5.2
Iron	1.0	2.000 or SB	2.000-550.000	4870	4960	4580	6710	7450	4090	7460	2.2 B 2510	2110	3330	2580	4630	2360		2.9 B 3850	1.2 B 1630	3710	2610	1260	3800	3150
Lead	0.54	200-500	20-500	49.2 NJ				3 8 NI	1.9 N*J	2.4 N*J	0.8 N*J	0.99 N*J	1.8 N*J	0.92 N*J	2.9 N				0.53 BN*.	1 3 N*I	1.5 N*J	0.65 N*J	2.3 N*J	1.2 N*J
Magnesium	454	200-300 SB	100-5.000	1100	1020	323 B	655 B	384 B	385 B	630 B	143 B	123 B	465 B	263 B	1620	177		243 B	144 B	270 B	235 B	119 B	328 B	327 B
Manganese	50	SB	50-5,000	81.9	114	33.7	121	59.5	151	214	44.6	41.1	64.1	46.3	99.7	41.7	56.1	90.6	31.9	42.9	62.9	11.6	89.7	73.8
Mercury		0.1	0.001-0.2	0.12																				
Nickel	1.0	13 or SB	0.5-25	419	357	15	3.5 B	2.8 B	12.6 N*J	4.1 BN*.	0.92 BN*.	0.79 BN*J	2.6 BN*.	0.98 BN*J	6.8 E				1.5 BN*	4.1 BN*	9.4 N*J	3.5 BN*J	17.6 N*J	3.1 BN*
Potassium	71.9	SB	8,500-43,000	200 B	256 B	207 B	233 B	118 B	134 B	198 B	72 B	54.8 B	125 B	135 B	154 E	8 87.2	B 173 B	101 B	54.8 B	116 B	83.2 B	54.1 B	103 B	182 B
Selenium		2 or SB	0.1-3.9		+		0.8 BNJ	0.75 BNJ				$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$						+ + +		├ ─── ├ ──				
Silver Sodium		SB SB	NV 6,000-8,000	1.2 B 182 B		215 B	450 P	341 B	270 P	446 B	419 B	390 B	503 B	280 P	406 E	378	D 202 D	368 B	182 B	361 B	401 B	396 B	242 P	366 B
Thallium	1	SB	6,000-8,000 NV	0.59 B		213 B	450 B	0.8 B	379 B 0.63 BJ	446 B 1.3 BJ	419 B	230 B	202 B	260 B	400 E	5/8	B 392 B	0.8 B	182 B	0.69 B	401 B	230 B	343 B 0.94 B	200 B
Vanadium	1.7	150 or SB	1-300	4.3 B		5.5 B	8.3 B	9.1 B	3.8 BJ	6.7 BJ	2.5 BJ	2 BJ				2.4	BJ 13.2	4.9 B	1.6 B	3.1 B	3.6 B	1.7 B	3.9 B	3.5 B
Zinc	2.3	20 or SB	9-50	158 EJ			9.3 E	11.6 E	R	R	R	R	R	R	F	2.1	R R	R	R	R	R	R	R	R
Cyanide	0.35	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total Organic Carbon (mg/kg)														•										
Total Organic Carbon				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date Sample Depth	Site Background ⁸	TAGM #4046 RSCO ⁹	Published Background ¹⁰	GP-49,9 4/24/20 16-18	01	GP-49,S 4/24/20 18-20 1	01	MW-51 7/12/19 15-17	99	MW-6S,S-1 7/18/2000 16 - 18 ft	MW-65 7/18/2 26 - 2	000	MW-10S, 7/18/20 20 - 22	000	MW-118 7/17/20 20 - 22	00	TP-1, S-1 7/21/2000 0.5 - 1 ft.	TP-1, S-2 7/21/2000 1 - 6 ft.
Volatile Organics (ug/kg)																		
Chloromethane		NV																
Bromomethane		NV																
Methylene chloride		100		1	JB													
1,1,2-Trichloro-1,2,2-trifluoroethane		6000																
Acetone		200		13	В												4 J	8 J
Carbon disulfide		2700																
1,1-Dichloroethane		200															1 J	
2-Butanone		300																
1,1,1-Trichloroethane		800															78	18
Trichloroethene		700															28	6 J
Tetrachloroethene		1400															47	7 J
2-Hexanone		NV																
4-Methyl-2-pentanone		1000		2	J							1						
Toluene		1500								4 J			2	J			4 J	2 J
1,2-Dibromo-3-chloropropane (DBCP)		NV								1		1						
1,2,4-Trichlorobenzene		3400																
Semi-Volatile Organics (ug/kg)																		
Phenol		30 or MDL		NT		NT				NT	NT		NT		NT		NT	NT
Di-n-butyl phthalate		8100		NT		NT				NT	NT		NT		NT		NT	NT
bis(2-Ethylhexyl)phthalate		50000		NT		NT		45	J	NT	NT		NT		NT		NT	NT
PCB and Pesticides (ug/kg)																		
Alpha-BHC		110		NT		NT		NT		NT	NT	1	NT	1	NT		NT	NT
Gamma-BHC (Lindane)		60		NT		NT		NT		NT	NT		NT		NT		NT	NT
4,4'-DDE		2100		NT		NT		NT		NT	NT		NT		NT		NT	NT
Endosulfan I		900		NT		NT		NT		NT	NT		NT		NT		NT	NT
Endosulfan II		900		NT		NT		NT		NT	NT		NT		NT		NT	NT
Endosulfan sulfate		1000		NT		NT		NT		NT	NT		NT		NT		NT	NT
Endrin aldehyde		NV		NT		NT		NT		NT	NT		NT		NT		NT	NT
Heptachlor epoxide		20		NT		NT		NT		NT	NT		NT		NT		NT	NT
p,p'-Methoxychlor		NV		NT		NT		NT		NT	NT		NT		NT		NT	NT
PCB-1254		10000		NT		NT		99		NT	NT		NT		NT		NT	NT
Gamma chlordane		540		NT		NT		NT		NT	NT		NT		NT		NT	NT
Inorganics (mg/kg)																		
Aluminum	723	SB	33,000	1990		1080		609	*	405	59)	518	1	843		15400 J	3940 J
Antimony	125	SB	NV	1770		1000		007		105	57		510		015		101000	57105
Arsenic	1.0	7.5 or SB	3-12	0.62	в												13.7	
Barium	2.8	300 or SB	15-600		B	11.5	В	3.1	В	2.5 B	3.	B	2.8	В	4.6	В	108	7.1 B
Beryllium	0.08	0.16 or SB	0-1.75	0				9.1			0.06		2.0	-	0.05		1 B	0.21 B
Cadmium		1 or SB	0.1-1	13.6		2.3		3.4		0.5 B	6.						5500 J	111 J
Calcium	553.0	SB	130-35,000	3590		75.9	В	410	BE	4480*	85.		21.1	B*	74.9	B*	8370 E	358 BE
Chromium	4.3	10 or SB	1.5-40	95.2	*	26.7	*	24.2		3.1	5.		1.4		3.3		19600	220
Cobalt	0.91	30 or SB	2.5-60		В	0.86	В	0.66	В	0.18 B	0.3		0.28		0.44	В	4.4 B	1.9 B
Copper	1.6	25 or SB	1-50	31.6	J	9.3		8.8		1.4 B	3.		1.2		2.2		3610	54.3
Iron	1910	2,000 or SB	2,000-550,000	4200		2220		2720		880	123		1080	-	1910		7590	4640
Lead	0.54	200-500	20-500		N*J		N*J	0.53	D	0.46 B	0.9		1.1		1.3		Б	D
Magnesium	454	200-500 SB	100-5,000	430	N*J B	337		137		2670	13	, B	1.1		1.5	B	399	387
aviagine olulli	434 50	SB	50-5,000	63.6	D	58.8	ы	33	ы *	2670	7.		20		35.3	ы	אלג. ח	30/ D
				03.0		38.8		55	-	20	/.	,	20		35.3		0.3	K
Manganese	50	0.1					DNI#I	5	D	2.4 B	5.	D	0.66	D	1.1	D	4900	125
Manganese Mercury		0.1	0.001-0.2	54.0	NIS	2.0			ri -	2.4 B		ив		115				
Manganese Mercury Nickel	1.0	13 or SB	0.5-25	54.2		5.8		,	D									
Manganese Mercury Nickel Potassium		13 or SB SB	0.5-25 8,500-43,000	54.2 154		5.8 147		68.2	B	66.4 B	67.		58.3		1.1		1520	204 B
Manganese Mercury Nickel Potassium Selenium	1.0	13 or SB SB 2 or SB	0.5-25 8,500-43,000 0.1-3.9					,	B								1520 2.4	204 B
Manganese Mercury Nickel Potassium Selenium Silver	1.0	13 or SB SB 2 or SB SB	0.5-25 8,500-43,000 0.1-3.9 NV	154	В	147	В	,	B	66.4 B	67.	2 B	58.3	В	103	В	1520 2.4 0.42 B	
Manganese Mercury Nickel Potassium Selenium Silver Sodium	1.0	13 or SB SB 2 or SB SB SB	0.5-25 8,500-43,000 0.1-3.9 NV 6,000-8,000	290	B		В	,	B			2 B		В	103	B	1520 2.4 0.42 B 1300	526 B
Manganese Mercury Nickel Potassium Selenium Silver Solium Thallium	1.0 71.9	13 or SB SB 2 or SB SB SB SB	0.5-25 8,500-43,000 0.1-3.9 NV 6,000-8,000 NV	154 290 1.1	B B B	147 389	B	68.2		66.4 B	67.	B B	58.3	B B	103 111 1.2	B B B	1520 2.4 0.42 B 1300 4.3 J	526 B 1.8 J
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	1.0 71.9	13 or SB SB 2 or SB SB SB SB 150 or SB	0.5-25 8,500-43,000 0.1-3.9 NV 6,000-8,000 NV 1-300	290	B B B	147	B	68.2		66.4 B 139 B 1.1 B	67. 11	2 B 5 B 5 B	58.3 121 1.1	B B B	103 111 1.2 1.6	B B B B	1520 2.4 0.42 B 1300 4.3 J 9.2 B	526 B 1.8 J 6.2 B
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	1.0 71.9	13 or SB SB 2 or SB SB SB 150 or SB 20 or SB	0.5-25 8,500-43,000 0.1-3.9 NV 6,000-8,000 NV 1-300 9-50	154 290 1.1 4.6	B B B	389 3.2	B	<u>68.2</u> <u>2.2</u> <u>4.6</u>	В	66.4 B	67.	2 B 5 B 5 B	58.3	B B B	103 111 1.2	B B B B	1520 2.4 0.42 B 1300 4.3 J 9.2 B 2980 J	526 B 1.8 J 6.2 B 47 J
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	1.0 71.9	13 or SB SB 2 or SB SB SB SB 150 or SB	0.5-25 8,500-43,000 0.1-3.9 NV 6,000-8,000 NV 1-300	154 290 1.1	B B B	147 389	B	68.2	В	66.4 B 139 B 1.1 B	67. 11	2 B 5 B 5 B	58.3 121 1.1	B B B	103 111 1.2 1.6	B B B B	1520 2.4 0.42 B 1300 4.3 J 9.2 B	526 B 1.8 J 6.2 B

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location			
Sample Date	Site	TAGM #4046	Published
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰
Volatile Organics (ug/kg)			
Chloromethane		NV	
Bromomethane		NV	
Methylene chloride		100	
1,1,2-Trichloro-1,2,2-trifluoroethane		6000	
Acetone Carbon disulfide		200 2700	
1,1-Dichloroethane		2700	
2-Butanone		300	
1,1,1-Trichloroethane		800	
Trichloroethene		700	
Tetrachloroethene		1400	
2-Hexanone		NV	
4-Methyl-2-pentanone		1000	
Toluene		1500	
1,2-Dibromo-3-chloropropane (DBCP)		NV	
1,2,4-Trichlorobenzene		3400	
Semi-Volatile Organics (ug/kg)	1	20 1 (D)	
Phenol Di-n-butyl phthalate		30 or MDL 8100	
bis(2-Ethylhexyl)phthalate	1	50000	
PCB and Pesticides (ug/kg)	1	50000	
Alpha-BHC		110	
Gamma-BHC (Lindane)		60	
4,4'-DDE		2100	
Endosulfan I		900	
Endosulfan II		900	
Endosulfan sulfate		1000	
Endrin aldehyde		NV	
Heptachlor epoxide		20	
p,p'-Methoxychlor		NV	
PCB-1254		10000 540	
Gamma chlordane Inorganics (mg/kg)	1	540	
Aluminum	723	SB	33,000
Antimony	125	SB	NV
Arsenic	1.0	7.5 or SB	3-12
Barium	2.8	300 or SB	15-600
Beryllium	0.08	0.16 or SB	0-1.75
Cadmium	1	1 or SB	0.1-1
Calcium	553.0	SB	130-35,000
Chromium	4.3	10 or SB	1.5-40
Cobalt	0.91	30 or SB	2.5-60
Copper	1.6	25 or SB	1-50
Iron	1910	2,000 or SB	2,000-550,000
Lead	0.54	200-500	20-500 10
Magnesium	454	SB	100-5,000
Manganese	50	SB	50-5,000
Mercury Nickel	1.0	0.1 13 or SB	0.001-0.2 0.5-25
Potassium	71.9	13 or SB SB	0.5-25 8,500-43,000
Selenium	/1.7	2 or SB	0.1-3.9
Silver		SB	NV
Sodium	1	SB	6,000-8,000
Thallium	1	SB	NV
Vanadium	1.7	150 or SB	1-300
Zinc	2.3	20 or SB	9-50
Cyanide	0.35	NV	NV
Fotal Organic Carbon (mg/kg)			

Notes:

Table 2-8 Summary of Cesspool Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	1																					
Sample Location				AG-1-SED	¹² CP 2	2-SED	CP-3-SE	D	CP-3 (IRM Conf.)	CP-3S	L-1	CP-3S-2	CP-4-SEI	D	CP-4 (IRM Conf.)	CP-5-SE	Ъ	CP-5 (IRM Co	nf)	CP-6-SEI		CP-6 (IRM Conf.)
-	0.1		D 11' 1 1															`	<i>)</i>			
Sample Date	Site	TAGM # 4046	Published	6/8/1999		1999	6/9/1999		4/11/2000	7/21/20		7/21/2000	6/9/1999		4/10/2000	6/9/1999		4/10/2000		6/17/1999		4/10/2000
Sample Depth	Background	RSCO ⁹	Background ¹⁰	14.5-15.5		14.5 ft	12.0-13.0		13.0 - 13.5 ft	13.5-14.		4.5-15.5 ft.	12.0-13.0		13.0-13.5 ft.	13.0-14.0		14.5 - 15.0 f		11.0 - 12.0		12.0 - 12.5 ft
Volatile Organics (ug/kg)					Q	Q		Q	Q		Q	Q	I	Q	Q		Q		Q		Q	Q
Chloroethane		1900			-		· · · ·	-					- I	-					-	34000 J		
Methylene chloride		100														36 J	J					
Acetone		200							3 JB	3	J	10 J			1 JB			6	JB	970 J		31 B
Carbon disulfide		2700																		49 J		
1,1-Dichloroethene		400																		680 J		
1,1-Dichloroethane		200																		52000 D	J	
Chloroform		300					+													120 J 140 J		
1,2-Dichloroethane 2-Butanone		100 300					+													140 J 560 J		
1,1,1-Trichloroethane		800					71	T								100 J	T			23000 D	I	
Carbon tetrachloride		600					/ 5	,								100 3	,			23000 E	5	
Trichloroethene		700																		2400 J		
Dibromochloromethane	1 1	NV						1														
4-Methyl-2-pentanone		1000					10 J	J														
2-Hexanone		NV																		2400 J		
Tetrachloroethene		1400					17 J]						12000 D	J	
1,1,2,2-Tetrachloroethane		600					6 J	J			_		12 J	ſ							_	
Toluene		1500								5	J	19				4 6 9 9 9 1	-			34000 D	J	
Chlorobenzene		1700					+ +									46000 J)			24 1		
Ethylbenzene		5500 NV														54 J	r			24 J		
Styrene Xylenes (Total)		1200					+ +						4 1	-			,					
1,2-Dichloroethene(Total)		400											4 J			57 J	T			1900 J		
Semi-Volatile Organics (ug/kg)		100								L			<u> </u>				,			1,000		
Naphthalene		13000		NT	NT		NT			NT		NT	NT			NT				NT		
2-Methylnaphthalene		36400		NT	NT		NT			NT		NT	NT			NT				NT		
Acenaphthene		50000		NT	NT		NT			NT		NT	NT			NT				NT		
Fluorene		50000		NT	NT		NT			NT		NT	NT			NT				NT		
Phenanthrene Dia hatalahtalata		50000		NT	NT		NT			NT		NT	NT			NT				NT		
Di-n-butyl phthalate Pyrene		8100 50000		NT NT	NT NT		NT NT			NT NT		NT NT	NT NT			NT NT				NT NT		
Butyl benzyl phthalate		50000		NT	NT		NT			NT		NT	NT			NT				NT		14740 D
bis(2-Ethylhexyl)phthalate		50000		NT	NT		NT			NT		NT	NT			NT				NT		11/10 D
PCBs and Pesticides (ug/kg)							1 1															
Aldrin		41		NT	NT		NT		0.29 JBP	NT		NT	NT		0.12 JBP	NT		0.55	JB	NT		0.79 JBP
Alpha-BHC		110		NT	NT		NT		1.4 JBP	NT		NT	NT		0.62 JB	NT		3.4	BP	NT		0.42 JBP
Beta-BHC		200		NT	NT		NT		0.53 JB	NT		NT	NT		0.52 JBP	NT		-	BP	NT		0.18 JB
Delta-BHC		300		NT	NT		NT		0.46 JBP	NT		NT	NT		0.55 JBP	NT		1.5		NT		0.21 JBP
Gamma-BHC (Lindane)		60		NT	NT		NT		0.49 JBP	NT		NT	NT		0.16 JBP	NT		3.8		NT		0.17 JB
4,4'-DDD		2900		NT	NT		NT		1 JB	NT		NT	NT		0.54 JBP	NT		0.56		NT		75 DD
4,4'-DDE 4,4'-DDT		2100 2100		NT NT	NT NT		NT NT		4.2 BP 1.6 JBP	NT NT		NT NT	NT NT		0.092 JBP 0.1 JBP	NT NT		6.1 2.8		NT NT		7.5 BP
Dieldrin		44		NT	NT		NT		0.62 J	NT		NT	NT		0.15 JP	NT		0.31		NT		2.8 JB
Endosulfan I		900		NT	NT		NT		0.28 JB	NT		NT	NT		0.061 JB	NT		0.64		NT		5.7 BP
Endosulfan II		900		NT	NT		NT		1 JBP	NT		NT	NT		0.028 JBP	NT		0.68		NT		8.4 BP
Endosulfan sulfate		1000		NT	NT		NT		0.88 JBP	NT		NT	NT		0.26 JBP	NT		0.42	JBP	NT		5.1 JBP
Endrin		100		NT	NT		NT		0.16 JBP	NT		NT	NT		0.16 JBP	NT		0.7		NT		1.5 JBP
Endrin aldehyde		NV		NT	NT		NT		4.3 JB	NT		NT	NT		0.03 JB	NT		3.9		NT		3.2 JBP
Heptachlor		100		NT	NT		NT		1.5 JBP	NT		NT	NT		0.068 JBP	NT		1.3		NT		0.44 JBP
Heptachlor epoxide		20		NT	NT		NT		0.15 JBP	NT		NT	NT		0.04 JBP	NT			JBP	NT		4.7 B
p,p'-Methoxychlor	+	NV		NT	NT		NT		0.26 JBP	NT		NT	NT 120	T	0.15 JBP	NT		0.19	JBP	NT		2.8 JBP
PCB-1254	+ +	10000		NT	NUT	_	430 J	J	2.2 ID	NT		NT	130 NT	J	0.4 m	NT		2.0	IDP	250	J	2.6 ID
Endrin ketone	<u> </u>	NV 540		NT NT	NT NT		NT NT		3.3 JP 0.99 JBP	NT NT		NT NT	NT NT		0.6 JP 0.12 JB	NT NT		2.8 5.2		NT NT		2.6 JP
Gamma chlordane Alpha chlordane	++	540 NV		NT	NI		NI		0.99 JBP 0.44 JBP	NI		NT	NT		0.12 JB 0.16 JBP	NT		5.2		NI		6.7 BP
Aipha chiordane		IN V		1 1	IN I		1N I		0.44 JBP	181		111	1 11		0.10 185	IN I		5.2	ט	IN 1		0./ BP

Table 2-8 Summary of Cesspool Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location				AG-1-SED ¹²	CP-2-SED	CP-3-SED	CP-3 (IRM Conf.)	CP-3S-1	CP-3S-2	CP-4-SED	CP-4 (IRM Conf.)	CP-5-SED	CP-5 (IRM Conf.)	CP-6-SED	CP-6 (IRM Conf.)
Sample Date	Site	TAGM # 4046	Published	6/8/1999	6/9/1999	6/9/1999	4/11/2000	7/21/2000	7/21/2000	6/9/1999	4/10/2000	6/9/1999	4/10/2000	6/17/1999	4/10/2000
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	14.5-15.5 ft.	13.5-14.5 ft	12.0-13.0 ft.	13.0 - 13.5 ft	13.5-14.5 ft.	14.5-15.5 ft.	12.0-13.0 ft.	13.0-13.5 ft.	13.0-14.0 ft.	14.5 - 15.0 ft	11.0 - 12.0 ft	12.0 - 12.5 ft
~				Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Inorganics (mg/kg)															
Aluminum	723	SB	33,000	862	9170	29300 J	939	1490 J	1970 J	23700 J	658	4290 J	877	2450 J	921
Antimony		SB	NV			441 J				268 J		4.2 J		11.8 J	
Arsenic	1.0	7.5 or SB	3-12		2.6	30.8 J				27.7 J		5.2 J		10.5 J	
Barium	2.8	300 or SB	15-600	3.5 B	32.2 B	656 J	15.9 B	7.7 B	9.8 B	182 J	3 B	86.3 J	3.5 B	89.9 J	13.3 B
Beryllium	0.08	0.16 or SB	0-1.75	0.09 B	0.27 B	2.6 J		0.14 B	0.16 B	2 J		0.41 J		0.33 J	0.06 B
Cadmium		1 or SB	0.1-1	4		19500 J	589	492 J	530 J	10700 J	66.9	328 J	0.65 B	1640 J	188
Calcium	553.0	SB	130-35,000	37.8 BJ	4040 J	6960 J	234 B	237 BE	387 BE	8010 J	44.5 B	3400 J	193 B	127000 J	166 B
Chromium	4.3	10 or SB	1.5-40	5.6	8.8	120000 J	1140	1340	1180	84100 J	278	84.9 J	2.9	924 J	11.1
Cobalt	0.91	30 or SB	2.5-60	1.5 B	2.7 B	61.2 J	2.6 B	1.9 B	1.3 B	82.8 J	0.69 B	9 J	0.3 B	6.7 J	0.51 B
Copper	1.6	25 or SB	1-50	5.7 J	6.2 J	26900 J	884	1150	941	19000 J	157	6190 J	84.7	923 J	5.7
Iron	1910	2,000 or SB	2,000-550,000	1950	10100	33700 J	2000	3030	2950	26400 J	2370	11700 J	5060	9420 J	1360
Lead	0.54	200-500	20-500 ¹⁰	4.2	51.3	8950 J	8.5	R	R	983 J	3.1	196 J	2.8	170 J	2.1
Magnesium	454	SB	100-5,000	143 BJ	3000 J	1800 J	212 B	287	389	977 J	187 B	668 J	184 B	73900 J	161 B
Manganese	50	SB	50-5,000	70	70	1060 J	52	R	R	1800 J	20.4	52.3 J	10.7	126 J	10
Mercury		0.1	0.001-0.2	0.004 R	0.01 BJ	6.2 J	0.06 B	0.077 U	0.097	0.57 J	0.52	3 J		1.3 J	
Nickel	1.0	13 or SB	0.5-25	4.3 B	4.8 B	54500 J	1790	1030	766	32200 J	119	215 J	2.2 B	401 J	17.8
Potassium	71.9	SB	8,500-43,000	45.4 B	288 B	831 J	113 B	113 B	231 B	1480 J	78.8 B	260 J	120 B	673 J	88.5 B
Selenium		2 or SB	0.1-3.9			9.8 J				11.2 J		4.3 J		6.9 J	
Silver		SB	NV			6.1 J	0.58 B			0.82 J		4.4 J		17.5 J	0.39 B
Sodium		SB	6,000-8,000		77.9 B		1350	628 B	633 B	12400 J	433 B	3300 J	140 B	796 J	195 B
Thallium		SB	NV			3.1 J		0.87 BJ				3.8 J			
Vanadium	1.7	150 or SB	1-300	2 B	14.7	24.2 J	2.2 B	3.5 B	3.5 B	16.6 J	2.8 B	8.4 J	3 B	10.2 J	1.9 B
Zinc	2.3	20 or SB	9-50	11.5 J	33.5	5470 J	136	101 J	106 J	2600 J	17.9	2260 J	7.1	704 J	43.3
Cyanide	0.35	NV	NV	0.36 B		866 J	728	950	514	5390 J	45.1	42.6 J	1.7	112 J	1.3
Total Organic Carbon (mg/kg)															
Total Organic Carbon		NV		NT	NT	NT				NT		NT		NT	

NOTES:

Only compounds detected in one or more "CP" sediment samples are presented in this table.
 Blank indicates compound was not detected.

NT indicates compound was not tested.
 Results presented for CP-10-SED are the higher of this sample and its duplicate.

Analytical testing completed by CompuChem Corporation.
 Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.
 ug/kg = parts per billion; mg/kg = parts per million.

Refer to Table 4-1 for additional information on background Site conditions.
 TAGM # 4046 RSCO are Recommended Soil Cleanup Criteria from Technical and Administrative Guidance Memorandum No. HWR-94-4046.
 Published background as noted in NYSDEC Technical and Administrative Guidance Memorandum No HWR-94-4046.
 NV = no value; ND = no detections; SB = Site Background
 SC = Site Background

12. Sample AG-1 was collected from CP-1.

IRM Conf. = Confirmatory samples collected following IRM sediment removal.
 No confirmatory sample was collected from CP-10 following IRM sediment removal; concrete bottom encountered.

15. Concentrations that are bold exceed RSCO.

Table 2-8 Summary of Cesspool Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

				1					1								
				CD 7 01			C)				C		D	CP-10-SE		CD 11	0.1
Sample Location				CP-7-SI		CP-7 (IRM Co		CP-8-SED		CP-8 (IRM Conf.)		9-9-SEI				CP-11,	
Sample Date	Site	TAGM # 4046	Published	6/17/19	99	4/11/2000		6/18/1999		4/11/2000	6/	18/199	19	6/18/199	99	7/25/20	000
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	12.5-13.5	5 ft.	13.5 - 14.0		6.0-8.0 ft.		8.0 - 8.5 ft	13.	0-14.0	ft.	13.0-14.0	0 ft.	12.0 - 13	3 <u>.0</u> ft
					Q		Q	Q)	(2		Q		Q		Q
Volatile Organics (ug/kg)	1	r.								-	-						-
Chloroethane		1900												650			
Methylene chloride		100					ID			7 10				33			7 1
Acetone Carbon disulfide		200 2700				/	JB		_	7 JB				2300	в	/	/ J
1,1-Dichloroethene		400									_						
1,1-Dichloroethane		200		3	I									93	I		
Chloroform		300		5	5									75	5		
1,2-Dichloroethane		100															
2-Butanone		300												440	В		
1,1,1-Trichloroethane		800														4	4 J
Carbon tetrachloride		600		13	J												
Trichloroethene		700															
Dibromochloromethane		NV		3	J				_								
4-Methyl-2-pentanone		1000															
2-Hexanone		NV 1400						├	_		_						1 1
Tetrachloroethene		1400		24	т											1	IJ
1,1,2,2-Tetrachloroethane Toluene		600 1500		24	J				_			3 J	T	1300	т		
Chlorobenzene		1500		6	T				_			3 J	,	1300	J		
Ethylbenzene		5500		0	J						_			580	T		
Styrene		NV							_					580	J		
Xylenes (Total)		1200												3800	I		
1,2-Dichloroethene(Total)		400		3	J									2000	5		
Semi-Volatile Organics (ug/kg)					•			<u> </u>									
Naphthalene		13000		NT							N	Г		27000	J	NT	
2-Methylnaphthalene		36400		NT							N	Г		200000	J	NT	
Acenaphthene		50000		NT							N	Г		23000	J	NT	
Fluorene		50000		NT							N			35000		NT	
Phenanthrene		50000		NT							N			56000	J	NT	
Di-n-butyl phthalate		8100		NT							N			1		NT	
Pyrene		50000		NT							N			15000	J	NT	
Butyl benzyl phthalate		50000														NT	
bis(2-Ethylhexyl)phthalate PCBs and Pesticides (ug/kg)		50000		NT			-	(00			N			1100	J	NT	
		50000 50000		NT NT				690			N			1100 73000	J	NT	
		50000		NT		0.25	IDD	690		0.22 ID	N	Г			J		
Aldrin		50000 41		NT NT		0.35		690		0.33 JB	P N	Г Г		73000		NT	
Aldrin Alpha-BHC		50000 41 110		NT NT NT		0.038	JBP	690		0.11 JB	P N P N	Г Г Г				NT NT	
Aldrin		50000 41		NT NT			JBP JBP	690			P N P N P N P N	Γ Γ Γ Γ		73000		NT	
Aldrin Alpha-BHC Beta-BHC		50000 41 110 200		NT NT NT NT		0.038	JBP JBP JBP	690		0.11 JB 0.25 JB	P N P N P N P N P N	Г Г Г Г		73000	J	NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC		50000 41 110 200 300		NT NT NT NT NT		0.038 0.19 0.2	JBP JBP JBP JBP	690		0.11 JB 0.25 JB 0.67 JB	P N P N P N P N P N	Г Г Г Г Г		73000	J	NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane)		50000 41 110 200 300 60		NT NT NT NT NT NT		0.038 0.19 0.2 0.5	JBP JBP JBP JBP JB	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB	P N P N P N P N P N P N	Г Г Г Г Г Г		73000	J	NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT		50000 41 110 200 300 60 2900 2100 2100		NT NT NT NT NT NT NT NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8	JBP JBP JBP JBP JB JB JB	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB	P N P N P N P N P N P N P N P N P N	Г Г Г Г Г Г Г Г		73000	1 1 1 1	NT NT NT NT NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin		50000 41 110 200 300 60 2900 2100 2100 44		NT NT NT NT NT NT NT NT NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2	JBP JBP JBP JBP JB JB JB JB JP	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.051 JB	P N P N P N P N P N P N P N P N P N N	Г Г Г Г Г Г Г Г		73000 7.7 15 5.1	1 1 1 1	NT NT NT NT NT NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I		50000 41 110 200 300 60 2900 2100 2100 2100 44 900		NT NT NT NT NT NT NT NT NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8 0.2 2.4	JBP JBP JBP JBP JB JB JB JP JBP	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	Г Г Г Г Г Г Г Г		73000 7.7 15 5.1 120	1 1 1 1 1 1 1 1	NT NT NT NT NT NT NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan I		50000 41 110 200 300 60 2900 2100 2100 2100 44 900 900		NT NT NT NT NT NT NT NT NT NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8 0.2 2.4 1.2	JBP JBP JBP JB JB JB JB JB JBP JBP	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.051 JB 0.096 JB	N P N P N P N P N P N P N P N P N P N P N P N P N	Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г -		73000 7.7 15 5.1	1 1 1 1 1 1 1 1	NT NT NT NT NT NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate		50000 41 110 200 300 60 2900 2100 2100 2100 2100 44 900 900 1000		NT NT NT NT NT NT NT NT NT NT NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.4 1.2 0.28	JBP JBP JBP JB JB JB JB JB JBP JBP JBP	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.051 JB 0.096 JB 0.096 JB	N P NN	Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г - Г -		73000 7.7 15 5.1 120	1 1 1 1 1 1 1 1	NT NT NT NT NT NT NT NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin		50000 41 110 200 300 60 2900 2100 2100 44 900 900 1000 100		NT NT NT NT NT NT NT NT NT NT NT NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.2 2.4 1.2 0.28 0.76	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP	690		0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.021 JB 0.096 JB 0.096 JB 0.024 JB 0.12 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	Г - Г -		73000 7.7 15 5.1 120	1 1 1 1 1 1 1 1	NT NT NT NT NT NT NT NT NT NT NT NT	
Aldrin Alpha-BHC Beta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin		50000 41 10 200 300 60 2900 2100 2100 2100 44 900 900 1000 1000 NV		NT NT NT NT NT NT NT NT NT NT NT NT NT N		0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.4 1.2 0.28 0.76 2.4	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP			0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.029 JB 0.026 JB 0.024 JB 0.024 JB 0.024 JB 0.024 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	F - F - F - F - F - F - F - F - F - F - F - F - F - F - F -		73000 7.7 15 5.1 120 10	1 1 1 1 1 1 1 1 1 1 1 1	NT NT NT NT NT NT NT NT NT NT NT NT NT N	
Aldrin Alpha-BHC Beta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin aldehyde Heptachlor		50000 41 110 200 300 60 2900 2100 2100 44 900 900 1000 NV 100		NT NT NT NT NT NT NT NT NT NT NT NT NT N		0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.4 1.2 0.28 0.76 2.4 0.96	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP			0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.029 JB 0.029 JB 0.024 JB 0.024 JB 0.024 JB 0.025 JB 0.065 JB 0.065 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	F - F - F - F - F - F - F - F - F - F - F - F - F - F - F - F - F - F -		73000 7.7 15 5.1 120 10 6.1	J J J J J J J J J J J J J N	NT NT NT NT NT NT NT NT NT NT NT NT NT N	
Aldrin Alpha-BHC Beta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Heptachlor Heptachlor epoxide		50000 41 110 200 300 60 2900 2100 2100 2100 44 900 900 1000 1000 NV 100 20		NT NT		0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.4 1.2 0.28 0.76 2.4 0.76 2.4 0.96 1.1	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP			0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.029 JB 0.024 JB 0.024 JB 0.024 JB 0.025 JB 0.065 JB 0.17 JB 0.057 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F		73000 7.7 15 5.1 120 10	J J J J J J J J J J J J J N	NT NT NT NT NT NT NT NT NT NT NT NT NT N	
Aldrin Alpha-BHC Beta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin aldehyde Heptachlor		50000 41 110 200 300 60 2900 2100 2100 2100 44 900 900 1000 1000 NV 100 20 NV		NT NT	EJ	0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.4 1.2 0.28 0.76 2.4 0.96	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP			0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.029 JB 0.029 JB 0.024 JB 0.024 JB 0.024 JB 0.025 JB 0.065 JB 0.065 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F		73000 7.7 15 5.1 120 10 6.1	J J J J J J J J J J J J J N	NT NT NT NT NT NT NT NT NT NT NT NT NT N	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epy'-Methoxychlor		50000 41 110 200 300 60 2900 2100 2100 2100 44 900 900 1000 1000 NV 100 20		NT NT	EJ	0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 2.4 1.2 0.28 0.76 2.4 0.76 2.4 0.96 1.1 0.95	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP			0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.029 JB 0.024 JB 0.024 JB 0.024 JB 0.025 JB 0.065 JB 0.17 JB 0.057 JB	N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N P N	r r r r		73000 7.7 15 5.1 120 10 6.1 32	J J J J J J J J J J J J J N	NT NT NT NT NT NT NT NT NT NT NT NT NT N	
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor p.p'-Methoxychlor PCB-1254		50000 41 110 200 300 60 2900 2100 2100 2100 44 900 900 1000 1000 NV 100 20 NV 10000		NT NT	EJ	0.038 0.19 0.2 0.5 1.1 1.4 3.8 1.2 0.28 0.76 2.4 0.96 1.1 0.95 	JBP JBP JBP JB JB JB JB JBP JBP JBP JBP			0.11 JB 0.25 JB 0.67 JB 0.13 JB 0.15 JB 0.29 JB 0.029 JB 0.096 JB 0.096 JB 0.12 JB 0.065 JB 0.17 JB 0.057 JB 0.071 JB	N P N	T F T T T T T T T T T T T T T T T T T T T T T T S8 T		73000 7.7 15 5.1 120 10 6.1 32	J J J J J J J J J J N J N J N	NT NT NT NT NT NT NT NT NT NT NT NT NT N	

Table 2-8 Summary of Cesspool Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location				CP-7-SED	CP-7 (IRM Conf.)	CP-8-SED	CP-8 (IRM Conf.)	CP-9-SED	CP-10-SED14	
Sample Date	Site	TAGM # 4046	Published	6/17/1999	4/11/2000	6/18/1999	4/11/2000	6/18/1999	6/18/1999	
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	12.5-13.5 ft.	13.5 - 14.0 ft	6.0-8.0 ft.	8.0 - 8.5 ft	13.0-14.0 ft.	13.0-14.0 ft.	
· ················				Q	Q	Q	Q	Q	Q	1
Inorganics (mg/kg)									· · · · · ·	
Aluminum	723	SB	33,000	2420 J	579	4210	657	2180	6080 J	Γ
Antimony		SB	NV	112 J		24.7 J	0.62 B		3.2 J	
Arsenic	1.0	7.5 or SB	3-12	10.1 J		5.2		1.2 B	13.9 J	
Barium	2.8	300 or SB	15-600	119 J	5 B	17.9 B	2.3 B	12.3 B	880 J	
Beryllium	0.08	0.16 or SB	0-1.75	0.5 J		0.22 B		0.2 B		
Cadmium		1 or SB	0.1-1	10300 J	167	719	15.5	9.6 J	56.3 J	
Calcium	553.0	SB	130-35,000	5540 J	95.5 B	7090 *	49.7 B	7440	14900 J	
Chromium	4.3	10 or SB	1.5-40	4980 J	189	4080	261	9.1	301 J	
Cobalt	0.91	30 or SB	2.5-60	13.8 J	0.41 B	10.4 B	0.91 B	0.94 B	14.8 J	
Copper	1.6	25 or SB	1-50	3650 J	55.2	8230 *	284	41.8 J	972 J	
Iron	1910	2,000 or SB	2,000-550,000	12800 J	1880	12500 *	2490	3230 *	32400 J	
Lead	0.54	200-500	20-500 ¹⁰	1160 J	6	1230	28.5	26.8 *	1010 J	
Magnesium	454	SB	100-5,000	373 J	117 B	838 B	151 B	4390	1860 J	
Manganese	50	SB	50-5,000	170 J	18.5	151	16.2	21.3 *	226 J	
Mercury		0.1	0.001-0.2	6.3 J		R	0.18	0.14	16.1 J	
Nickel	1.0	13 or SB	0.5-25	5810 J	135	3890	309	5.4 B	170 J	
Potassium	71.9	SB	8,500-43,000	789 J	95.8 B	114 B	55.1 B	129 B	345 J	
Selenium		2 or SB	0.1-3.9	7.5 J		1.6 J			10.5 J	
Silver		SB	NV	8 J					6.3 J	
Sodium		SB	6,000-8,000	16800 J	839 B	528 B	158 B		3300 J	
Thallium		SB	NV	2.4 J		2.2 B		0.85 B		
Vanadium	1.7	150 or SB	1-300	12.7 J	1.2 B	4.9 B	1.7 B	3.6 B	13.1 J	
Zinc	2.3	20 or SB	9-50	1740 J	42.5	723	31.5	36.7 *	2010 J	
Cyanide	0.35	NV	NV	319 J	4.9	4.2	0.31 B		2.6 J	
Total Organic Carbon (mg/k	g)									
Total Organic Carbon		NV		NT		2980		NT	306000	

CP-11, 5 7/25/20	
12.0 - 13	.0 ft
	Q
1220	J
12.5	В
	В
	J
274	
5.8	
0.76	В
49.9	
10100	
10100	R
197	
	R
0.14	
3.7	В
	B
150	-
173	в
	J
3.6	
59.9	J
0.47	ј В
0.47	5

Table 2-9 Summary of Cesspool Water Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date	AG-1-Water ⁷ 6/8/1999	CP- 5-Water 6/9/1999	CP-6-Water 6/17/1999	CP-9-Water 6/27/1999	CP-10-Water 6/27/1999
Sample Date	Q	Q	Q	Q	Q
Volatile Organics (ug/L)					
Chloroethane		R	91 J	240	1000
Acetone		R	240		
1,1-Dichloroethane		R	54 J	19 J	29 J
Toluene	1 J	R		18 J	150 J
Ethylbenzene		R			50 J
Xylenes (Total)		R	16 J		60 J
1,2-Dichloroethene(Total)		R	14 J		
Semi-Volatile Organics (ug/L)					
Phenol		4 J	8 J	NT	NT
4-Methylphenol		59 J	3 J	NT	NT
2,4-Dimethylphenol		2 J		NT	NT
Di-n-butyl phthalate		5 J		NT	NT
bis(2-Ethylhexyl)phthalate		1 J	13	NT	NT
PCBs and Pesticides (ug/L)					
Alpha-BHC		NT	NT	NT	NT
Beta-BHC		NT	NT	NT	NT
Gamma-BHC (Lindane)		NT	NT	NT	NT
4,4'-DDT	0.05 JP	NT	NT	NT	NT
Inorganics (ug/L)					
Aluminum	6840	761	82.4	316	35000
Antimony			3		27.9
Arsenic					36.7
Barium	103 B	222	49.9 R	33.2	1690 R
Beryllium	0.57 B			0.49	0.51
Cadmium	271 J	1.4	285	3.1	318
Calcium	15300 J	14000	22100	40700	143000
Chromium	80.3 J	4.3	13.9 R	4.7	1790 R
Cobalt	27.4 B	1.5	5.7	1.7	75.1
Copper	66.3	141	299	106	6700
Iron	13100 J	1920 J	4540	2610	89100
Lead	68.2 J	6.1	25 J	11.8	6260 J
Magnesium	5260 J	1230	3490	3030	12300
Manganese	269 J	30 J	103 J	83.3	1170 J
Mercury	0.06 BJ	R	1.4 J	0.2	8.4 J
Nickel	156 J	4.9	77.6 J	6.4	1050 J
Potassium	1170 B	11500 J	24700 J	19000 J	23600 J
Selenium					20.9 J
Silver					56.1
Sodium	1420 B	19800 J	40200	28500 J	25400
Thallium					7.4
Vanadium	13.9 B	1.7	2.2	1.3	53
Zinc	156	77.3 J	251 R	67.3	10700 R
Cvanide	19.3		10.9	5.1	

NOTES:

1. Only compounds detected in one or more "CP" water samples are presented in this table.

2. Blank indicates compound not detected.

3. Analytical testing completed by CompuChem Corporation.

4. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

5. ug/L = micrograms per liter.

6. NT indicates compound was not tested.

7. AG-1 was collected from CP-1.

Table 2-10 Summary of Drainage Structure Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

																						· · · · · · · · · · · · · · · · · · ·
Some la La sotion				DS-1-SH		DS-2-SED	DS-3-SEI	DS-4-SED ³	DS-4 (IRM Conf.)	DS-5-SE	D	DS-5 (IRM Conf.)	DS-6-SED	DS-7-SED		DS-8-SED	DS-8 (IRM Conf.)	DS-9-SED	DS-10-SED	DS-10 (IRM Conf.)	DS-11-SED	DS-12-SED
Sample Location Sample Date	Site	TAGM # 4046	Published	6/15/199		6/15/1999	6/15/1999		4/11/2000	6/16/199		4/11/2000	6/17/1999	6/17/1999		6/18/1999	4/11/2000	6/18/1999	6/18/1999	4/11/2000	6/18/1999	6/28/1999
	0	0	10																			
Sample Depth	Background [®]	RSCO ⁹	Background ¹⁰	11.0-12.0	Q	11.0-12.0 ft.	11.5 - 12.5	$\frac{\text{ft.}}{\text{Q}} \sim 9.5 \text{ ft.}$	10.0 - 10.5 ft.	15.5 - 16.5	о п. Q	18.5 - 19.0 ft.	10.0 - 12.0 ft.	2.0 - 3.0 ft.	Q	10.0 - 11.0 ft.	11.5 - 12.0 ft.	11.0 - 12.0 ft.	11.0 - 12.0 ft. Q	14.0 - 14.5 ft.	14.0 - 15.0 ft.	13.0 - 14.0 ft. Q
Volatile Organics (ug/kg)					~	X				<u> </u>	× 1		×	<u> </u>	`		X	x				
Methylene chloride		100														77 DB					37 B	
Acetone		200							21 B			20 B				73 D	14 B	90	110 J	4 JB	88	
Carbon disulfide		2700											2 J			2 J					4 J	
2-Butanone		300				7 J		57 J		4	J					10 J						
Tetrachloroethene		1400														12 DJ		25 J			10 J	
Toluene		1500				28 J	3 J			4.	J		2 J			6 J	2 J	280	13 J		17	6 J
Ethylbenzene		5500						22 J								2 J		170			43	44
Styrene		NV						29 J													14 JB	
Xylenes (Total)		1200						37 J		2.	J					16 J		360			24 B	75
Semi-Volatile Organics (ug	g/kg)																					
Naphthalene		13000		NT			NT	NT		NT			NT	NT		940 J		NT	NT		NT	NT
2-Methylnaphthalene		36400		NT		1000 J	NT	NT		NT			NT	NT		14000 J		NT	NT		NT	NT
Acenaphthene		50000		NT			NT	NT		NT			NT	NT		2900 J		NT	NT		NT	NT
Dibenzofuran		6200		NT			NT	NT		NT			NT	NT		1100 J		NT	NT		NT	NT
Fluorene		50000		NT			NT	NT		NT			NT	NT		4900		NT	NT		NT	NT
Phenanthrene		50000		NT		1400	NT	NT		NT			NT	NT		13000		NT	NT		NT	NT
Di-n-butyl phthalate		8100		NT		550 J	NT	NT		NT			NT	NT				NT	NT		NT	NT
Fluoranthene		50000		NT		480 J	NT	NT		NT			NT	NT				NT	NT		NT	NT
Pyrene		50000		NT		1100 J	NT	NT		NT			NT	NT		1800 J		NT	NT		NT	NT
Butyl benzyl phthalate		50000		NT		1600	NT	NT		NT			NT	NT		10000		NT	NT		NT	NT
Benzo(a)anthracene		224 or MDL		NT		190 J	NT	NT		NT			NT	NT				NT	NT		NT	NT
Chrysene		400		NT		340 J	NT	NT		NT			NT	NT				NT	NT		NT	NT
bis(2-Ethylhexyl)phthalate		50000		NT		4100	NT	NT		NT		350.2 J	NT	NT		20000	317.6 J	NT	NT	3467 D	NT	NT
Di-n-octyl phthalate		50000		NT		320 J	NT	NT		NT			NT	NT		780 J		NT	NT		NT	NT
Benzo(b)fluoranthene		1100		NT		260 XJ	NT	NT		NT			NT	NT				NT	NT		NT	NT
Benzo(k)fluoranthene		1100		NT		330 XJ	NT	NT		NT			NT	NT				NT	NT		NT	NT
PCB and Pesticides (ug/kg	()	1		T					T T			-	i i	i					. .	1 1	1 1	•
Aldrin		41		NT			NT	NT	1.4 JBP	NT		0.15 JBP	NT	NT		14 J	0.24 JBP	NT	NT	13 BP	NT	NT
Alpha-BHC		110		NT			NT	NT	0.71 JBP	NT		0.21 JBP	NT	NT			0.31 JBP	NT	NT	4.2 BP	NT	NT
Beta-BHC		200		NT		3.6 R	NT	NT	1.5 JBP	NT		0.53 JB	NT	NT		5.2 R	0.76 JBP	NT	NT	6.1 BP	NT	NT
Delta-BHC		300		NT			NT	NT	0.61 JBP	NT		0.78 JBP	NT	NT			0.55 JBP	NT	NT	5.7 BP	NT	NT
Gamma-BHC (Lindane)		60		NT			NT	NT	1.1 JBP	NT		0.17 JBP	NT	NT			0.32 JBP	NT	NT	0.62 JBP	NT	NT
4,4'-DDD		2900		NT		2.21	NT	NT	0.3 JBP	NT		0.24 IDD	NT	NT		8.9 J	0.79 JB	NT	NT	170 DDD	NT	NT
4,4'-DDE		2100 2100		NT		2.3 J	NT	NT		NT		0.24 JBP	NT	NT		8.9 J	0.56 JBP	NT	NT	170 DPB	NT NT	NT
4,4'-DDT Dioldrin		2100		NT NT	\vdash	5.2	NT NT	NT NT	1.1 IDD	NT NT		0.2 JBP	NT NT	NT NT		17 JN	1.3 JB 1.5 JP	NT	NT	+	NI	NT NT
Dieldrin Endosulfan I		900		NI NT	\vdash	5.2 4.3 JN	NI NT	NI NT	1.1 JBP 2.2 JBP	NI NT		0.2 JBP 0.21 JBP	NI NT	NI		17 JN 31 JN	23 BP	NT NT	NT NT	110 DBP	NI	NI NT
Endosulfan I Endosulfan II		900		NT	\vdash	4.3 JN	NT	NT	0.28 JBP	NT NT		0.21 JBP 0.37 JBP	NT	NT		31 JN	6.6 JBP	NT	NI	130 DJBP	NI	NI
Endosulfan sulfate		1000	+	NT	+ $+$	6.4 J	NT	NT	0.28 JBP	NT		0.98 JBP	NT	NT		14 J	4.8 JBP	NT	NT	130 DJBP 140 DJBP	NT	NT
Endosunan sunate		1000		NT		5.9 IN	NT	NT	0.38 JBF	NT		0.032 JBP	NT	NT		14 J	0.51 IBP	NT	NT	140 DJBF 15 DJB	NT	NT
Endrin Aldehyde		NV		NT		5.7 JIN	NT	NT	4.4 JBP	NT		0.032 JBP	NT	NT			0.53 JBP	NT	NT	230 DBP	NT	NT
Heptachlor		100		NT			NT	NT	0.53 JBP	NT		0.13 JBP	NT	NT		2 JN	0.26 JB	NT	NT	13 BP	NT	NT
Heptachlor epoxide		20		NT		11 R	NT	NT	0.61 JBP	NT		0.087 JBP	NT	NT		2 J1N	1.7 JB	NT	NT	56 DBP	NT	NT
p.p'-Methoxychlor		NV		NT			NT	NT	0.47 JBP	NT		2.2 JBP	NT	NT		23 JN	3.7 JBP	NT	NT	60 BP	NT	NT
PCB-1254		10000		200	I	160	710 I		4.1 J	20000	D	2.2 JBI 29 J	650 J	200 P	,	620	5.7 501	160 J	430	00 D1	111	140 J
Endrin ketone		NV		NT		100	NT	NT NT	0.26 JP	NT	2	27 5	NT	NT		8.3 JN	1.9 JBP	NT	NT	40 P	NT	NT
Gamma chlordane		540	1	NT		9.4 JN	NT	NT	0.20 31	NT			NT	NT		5.5 514	23 DB	NT	NT	1 11	NT	NT
Alpha chlordane		NV	1	NT		7.2	NT	NT	2.2 JBP			0.23 JBP	NT	NT		7.3 J	38 DBP	NT	NT	5.3 BP	NT	NT
						,		.,1	2.2 301			5.25 51				,	50 551			5.5 D1		.,.

Table 2-10 Summary of Drainage Structure Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location				DS-1-SED	DS-2-SED	DS-3-SED	DS-4-SED ³	DS-4 (IRM Conf.)	DS-5-SED	DS-5 (IRM Conf.)	DS-6-SED	DS-7-SED	DS-8-SED	DS-8 (IRM Conf.)	DS-9-SED	DS-10-SED	DS-10 (IRM Conf.)	DS-11-SED	DS-12-SED
Sample Date	Site	TAGM # 4046	Published	6/15/1999	6/15/1999	6/15/1999	6/16/1999	4/11/2000	6/16/1999	4/11/2000	6/17/1999	6/17/1999	6/18/1999	4/11/2000	6/18/1999	6/18/1999	4/11/2000	6/18/1999	6/28/1999
Sample Depth	Background ⁸	RSCO ⁹	Background ¹⁰	11.0-12.0 ft.	11.0-12.0 ft.	11.5 - 12.5 ft.	~ 9.5 ft.	10.0 - 10.5 ft.	15.5 - 16.5 ft.	18.5 - 19.0 ft.	10.0 - 12.0 ft.	2.0 - 3.0 ft.	10.0 - 11.0 ft.	11.5 - 12.0 ft.	11.0 - 12.0 ft.	11.0 - 12.0 ft.	14.0 - 14.5 ft.	14.0 - 15.0 ft.	13.0 - 14.0 ft.
~				Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Inorganics (mg/kg)																			
Aluminum	723	SB	33,000	1670 *	3010 *	3230 *	29000 J	868	4890 J	738	4380	5640	5650	1480	8910	2860	549	2200	3600
Antimony		SB	NV	2.5 B	1.2 B	3.4 B	3.6 B		33.7		4.7 BE	4.8 BE	52.3 J		8.6 BE	21.4 J		2.4 BE	14.6 J
Arsenic	1.0	7.5 or SB	3-12	1.6 B	3.2	3.5	4.4		7.5		3.8	3.6	3.2		4.3	2.5 B		3.4	5.8
Barium	2.8	300 or SB	15-600	12.8 B	32.6 B	26.4 B	39.2 B	7.6 B	74.7	5 B	37.2 B	59.9	92.6	47.4	138	101	8 B	54.6 B	469
Beryllium	0.08	0.16 or SB	0-1.75		0.12 B	0.12 B	1.1 B		0.25 B		0.22 B	0.15 B	0.28 B		0.3 B	0.27 B		0.18 B	0.34 B
Cadmium		1 or SB	0.1-1	50.1	56	369	67.4	0.42 B	4350	13.3	103	18.7	496	2.6	48.1	246	62.8	42.6	80.3 J
Calcium	553.0	SB	130-35,000	33200	74000	11100	23700	71.1 B	39400	56.8 B	37000 *	6240 *	11700 *	109 B	12600 *	11300 *	197 B	10600 *	6270
Chromium	4.3	10 or SB	1.5-40	25.7	59	155	253	2.4	1220	144	254	290	1630	119	175	5280	254	147	217
Cobalt	0.91	30 or SB	2.5-60	2.1 B	2.7 B	3.1 B	7.2 B	0.43 B	7.4 B	0.54 B	6.7 B	4.8 B	7 B	0.6 B	3.8 B	4 B	0.61 B	2.4 B	4.8 B
Copper	1.6	25 or SB	1-50	165 J	281 J	142 J	1970 J	2.8 B	1010 J	40	301 *	188 *	362 *	9.4	370 *	665 *	26.5	207 *	240 J
Iron	1910	2,000 or SB	2,000-550,000	4350 *	5810 *	7440 *	13100 *	1650	12300 *	3190	15800 *	9180 *	11100 *	3030	12300 *	9360 *	6140	5970 *	16200 *
Lead	0.54	200-500	20-500	198	74.6	221	139	5	319	21.3	1170	192	313	9.7	300	211	43.2	132	292 *
Magnesium	454	SB	100-5,000	19100	42400	6510	13900	261 B	22600	247 B	21600	3760	6890	351 B	8050	4810	142 B	6260	3490
Manganese	50	SB	50-5,000	46.8 J	74.8 J	42.8 J	175 J	13.1	106 J	23.5	121	116	83.9	18.2	82.4	73.4	37.1 B	42.6	64 *
Mercury		0.1	0.001-0.2	0.1 J	0.18 J	0.25 J	0.18 J		0.41 J	0.07 B	R	0.24 J	0.06 J		R	0.11 J	0.06 B	0.14 J	0.19
Nickel	1.0	13 or SB	0.5-25	23 J	38 J	73.7 J	150 J	1.6 B	369 J	40.8	201	83.1	956	11.5	98.1	476	31.2	64.7	102
Potassium	71.9	SB	8,500-43,000	115 B	244 B	145 B	190 B	73 B	492 B	92.5 B	264 B	109 B	130 B	82.9 B	164 B	139 B	66.9 B	106	172 B
Selenium		2 or SB	0.1-3.9				1.8		2.6		1.9 J	1.7 J	2.2 J			1.8 J		1.7 J	2.3 J
Silver		SB	NV	0.33 B		0.35 B	0.51 B		0.67 B		0.26 B	0.72 B	0.37 B		0.38 B	0.44 B		0.4 B	3.3
Sodium		SB	6,000-8,000	223 B	248 B	210 B	480 B	150 B	378 B	159 B	226 B	191 B	292 B	157 B	360 B	428 B	151 B	164 B	<u> </u>
Thallium		SB	NV	1.4 B	1.5 B	1.8 B	2.7 B		2.2 B		2.6 B	1.4 B	1.8 B		2.9	2 B		1.2 B	3.1
Vanadium	1.7	150 or SB	1-300	14.3	15.4	20.1	22.7	2.7 B	21.3	2.8 B	19.1	24.8	14.1 B	4.5 B	15.4	13.9 B	3.3 B	14.8 B	16.9
Zinc	2.3	20 or SB	9-50	105	369	273	1270	6.2	840	22.6	354	224	788	45.2	754	1020	113	289	808 *
Cyanide	0.35	NV	NV	0.65	0.81	1.8	2.2		32.4	1.3	3.6	1	8.5	7.2	2.3	25.8	15.9	1.7	2.5 *
Total Organic Carbon (r	mg/kg)																		
Total Organic Carbon				NT	NT	NT	NT		NT		NT	NT	35800		NT	NT		NT	NT

NOTES:

1. Only compounds detected in one or more "DS" samples are presented in this table.

2. Blank indicates compound was not detected.

3. Results presented for DS-4-SED are the higher of this sample and its duplicate.

4. Analytical testing completed by CompuChem Corporation.

5. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

6. ug/kg = parts per billion, mg/kg = parts per million.

7. IRM Conf. = Confirmatory samples collected following IRM sediment removal.

8. Refer to Table 4-1 for additional information on background Site conditions.

9. TAGM # 4046 RSCO are Recommended Soil Cleanup Criteria from Technical and Administrative Guidance Memorandum No. HWR-94-4046.

10. Published background as noted in NYSDEC Technical and Administrative Guidance Memorandum No HWR-94-4046.

11. Concentrations that are bold exceed the RSCO.

12. NT = not tested, SB = Site Background.

Table 2-11 Summary of Drainage Structure Water Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date	DS-2-V 6/15/1		DS-3-W 6/15/19		DS-4-W 6/16/19		DS-5-Wa 6/16/19		DS-6-W 6/17/19		DS-8-W 6/18/19		DS-9-W 6/18/19		DS-10-V 6/18/19		DS-11-V 6/18/19		DS-12-W 6/28/19	
Volatile Organics (ug/L)						·														
Acetone									410	J			54	DJ						
2-Butanone					4	J														
Benzene															2	J				
4-Methyl-2-pentanone													4	J						
Toluene													12							
1,2-Dichloroethene(Total)															2	J				
Semi-Volatile Organics (ug/L)																	•			
4-Methylphenol	NT	1	NT		3	J			NT	1	NT		NT		NT	1	NT	1	NT	
Di-n-butyl phthalate	NT	1	NT		7	J	i i		NT		NT		NT		NT		NT		NT	
Pyrene	NT		NT		1	-			NT		NT		NT		NT		NT		NT	
Butyl benzyl phthalate	NT	1	NT		9	J	i i		NT		NT		NT		NT		NT		NT	
bis(2-Ethylhexyl)phthalate	NT		NT		30		2	J	NT		NT		NT		NT		NT		NT	
PCB (ug/L)																				
			1				1													
Inorganics (ug/L)																				
Aluminum	619		2380		1810		529		999		643		7180		165	в	96.3	в	881	
Antimony	1.9		2300		1.4	в	02)		5.5	В	6.8	в	18.5	В	3.3		70.5	2	001	
Arsenic		_				-			- 10	_		_	14.4	_	0.0	Ē				
Barium	44	в	69.2	в	96.3	в	32.8	в	72.7	R	32	R	962	R	42.4	R	42.5	R	100	в
Beryllium													0.42						0.58	В
Cadmium	39	J	100	J	70.4	J	48.8	J	46		37.7		183		59.1		8.2		22.4	
Calcium	17000	-	28100		26700		12100		9990		5690		71900		35900		10600		8110	
Chromium	10.2	E	28.9	J	73.4	J	23.4	J	79.9	R	122	R	633	R	262	R	8.3	В	20.8	
Cobalt	1.5	В	2.2	в	5.8	В	1.5	В	6.3	В	1.9	В	21.2	В	2.9	В	1.1	В	2.8	В
Copper	52.4		83.7		246		56.1		260		96.5		814		171		36.1		99.6	
Iron	2360	J	6480	J	7910	J	1570	J	3940		1960		57400		2900		583		2150	
Lead	18	J	113	J	129	J	44.4	J	98.2	J	49.3	J	545	J	7.5		8		35.1	
Magnesium	3790	BE	12400	J	9700	J	3780	BE	3070	В	1790	В	28800	J	2450	В	2040	В	2930	В
Manganese	72.5	J	106	J	190	J	61.7	J	90.8	J	40.5	J	588	J	152	J	41.7	J	74.7	
Mercury	0.03	J		R		R]	R	0.09	J		R	0.12	J		R		R	0.4	
Nickel	17.7		52.7		105	J	33.4	BE	89	J	68.6	J	540		299	J	23.6	BE	42.4	
Potassium	1930	BE	1220	BE	3160	BE	1100	BE	1170	BE	305	BE	9090	J	2560	BE	967	BE	802	BE
Selenium													8.6	J						
Silver							0.86						1.6	В						
Sodium	5840	J	2790	В	2960	В	2990	В	6490		1120	В	38800		14700		3540	В	4160	В
Thallium													9.1							
Vanadium	5.3		12.1	В	11.8	В	4.6	В	8.5		7.1		40.2		2.6		3.7		9	В
Zinc	199		602		627		385		419	R	369		3170	R	275	R	101	R	304	
Cyanide			6.2	В	16.3		34.3		29.6		9.9	В	20.6		15.2				19.2	

NOTES:

1. Only compounds detected in one or more "DS" water samples are presented in this table.

2. Blank indicates compound was not detected.

3. Results presented for DS-5-Water are the higher of this sample and its duplicate.

4. Analytical testing completed by CompuChem Corporation.

5. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

6. ug/L = parts per billion.

7. NT indicates the sample was not tested.

Table 2-12 Summary of Well Structure Sediment Sample Analytical Results

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date	Site	TAGM # 4046	Published	WS-1-SED 6/17/1999	WS-2-SED 6/18/1999
Sample Depth	Background ⁷	RSCO ⁸	Background ⁹	~5.5 ft BGS	~5.5 ft BGS
Volatile Organics (ug/kg)				Q	Q
1,1-Dichloroethane	, 	200		6 J	I I
Tetrachloroethene		1400		0 3	16
Toluene		1500		5 J	10
PCB (ug/kg)		1500		55	
PCB-1254		10000		34 J	2400
РСВ-1234 РСВ-1260	+	10000		12 J	2400
Inorganics (mg/kg)		10000		12 J	
	702	CD.	22.000	2(70	5700
Aluminum	723	SB	33,000	2670	5720
Arsenic	1.0	7.5 or SB	3-12	1.1 B	3.3
Barium	2.8	300 or SB	15-600	6.6 B	15.2 B
Beryllium	0.08	0.16 or SB	0-1.75	0.13 B	0.21 B
Cadmium		1 or SB	0.1-1	3.4	19.4 J
Calcium	553.0	SB	130-35,000	637 B*	735 B
Chromium	4.3	10 or SB	1.5-40	4.3	31.5
Cobalt	0.91	30 or SB	2.5-60	1.5 B	2.9 B
Copper	1.6	25 or SB	1-50	6.1 *	23.4 J
Iron	1910	2,000 or SB	2,000-550,000	4740 *	7280 *
Lead	0.54	200-500	20-500	18.9	25.1 *
Magnesium	454	SB	100-5,000	500 B	922 B
Manganese	50	SB	50-5,000	56.5	73.5 *
Mercury		0.1	0.001-0.2	R	R
Nickel	1.0	13 or SB	0.5-25	2.8 B	34.6
Potassium	71.9	SB	8,500-43,000	106 B	161 B
Thallium		SB	NV	1.3 B	2.1 B
Vanadium	1.7	150 or SB	1-300	5.4 B	10.3 B
Zinc	2.3	20 or SB	9-50	18.5	34.8 *
Cyanide	0.35	NV	NV		4.6 *

NOTES:

- 1. Only detected compounds in the "WS" samples presented in this table.
- 2. Blank indicates compound was not detected.
- 3. Analytical testing completed by CompuChem Corporation.
- 4. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.
- 5. ug/kg = parts per billion, mg/kg = parts per million.
- 6. ~ft BGS = approximate feet below ground surface.
- 7. Refer to Table 4-1 for additional information on background Site conditions.
- 8. TAGM # 4046 RSCO are Recommended Soil Cleanup Criteria from Technical and Administrative Guidance Memorandum No. HWR-94-4046.

9. Published background as noted in NYSDEC Technical and Administrative Guidance Memorandum No HWR-94-4046.

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

						<u>г</u> г					1	-		1				1					_
	NYSDEC																						
Sample Location	Class GA	MW-1S	MW-1S	MW-1S	MW-1D1	MW-1D1	MW-1D1	MW-1D2	MW-1D2	MW-1D2	MW-2S	MW-2S		MW-2D	MW-2D	MW-2D1	MW-3S	MW-3S	MW-3S	MW-3D	MW-3D	MW-3D	MW-4S
Sample Date	Criteria	7/27/1999 Q		4/30/2001 Q	7/27/1999 Q	7/20/2000 Q	4/30/2001 Q	7/27/1999 Q	7/20/2000 Q	4/30/2001 Q	7/29/1999		0 4/27/2001 Q Q	7/29/1999 Q	7/24/2000 Q	4/27/2001 Q	7/29/1999 Q			7/29/1999 Q	7/20/2000		7/29/1999 Q
Volatile Organics (ug/L)		ď	G	<u> </u>			ď	<u>d</u>	<u>u</u>			×		<u>a</u>	G	ď				<u>a</u>			
Chloroethane	5																						
Methylene chloride	5																						
Acetone	50																						
Chloroform	7																						
Carbon disulfide	60																			1 J			
Methyl-tert-butyl ether	10						5 J												14				
1,1-Dichloroethane	5																						
1,1-Dichloroethene	5							1 J	2 J	2 J													
1,1,2-Trichloro-1,2,2-trifluoroethane	5									1 J													
1,1,1-Trichloroethane	5							15	12	11	1 J									2 J			2 J
Trichloroethene	5						2 J	12	16	14	4 J			9 J	1 J	1 J	11 J			64	2 J	1 J	
Benzene	1																						
4-Methyl-2-pentanone	NV																						
Tetrachloroethene	5							21	16	13 B	140	33	20	13	4 J	13	210	17	7 J	140	6 J	10 J	77
Toluene	5													6 J						8 J			
Chlorobenzene	5																						
Ethylbenzene	5																						
Xylenes (Total)	5																						
1,2-Dichloroethene (Total)	5								2 J	2 J	2 J						3 J			18			
1,3-Dichlorobenzene	3																						
1,4-Dichlorobenzene	3																						
1,2-Dichlorobenzene	3																						
1,2-Dibromo-3-chloropropane	0.04																						
1,2,4-Trichlorobenzene	5																						
Semi-Volatile Organics (ug/L)	-																						
bis(2-Ethylhexyl)phthalate	5	NT		NT	NT		NT	NT		NT	NT		NT	NT		NT	NT		NT	NT		NT	NT
PCB and Pesticides (ug/L)																							
Aldrin	0.002			NT	0.03 J		NT			NT			NT			NT	0.034 J		NT			NT	
Alpha-BHC	NV	0.038 J		NT			NT			NT			NT			NT	0.081 J		NT			NT	0.079 JN
Heptachlor	0.04			NT	0.015 J		NT			NT			NT			NT			NT	0.015 J		NT	
Heptachlor epoxide	0.03			NT			NT	0.05 JN		NT			NT			NT			NT	0.026 J		NT	0.18 J

NOTES: 1. Only compounds detected in one or more groundwater samples are presented in this table.
2. Blank indicates compound was not detected.
3. NT indicates compound was not tested.
4. Analytical testing completed by CompuChem Corporation.
5. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

6. ug/L = micrograms per liter.

7. NYSDEC Class GA Standards (Std)/Guidance Values (GV), dated June 1998; Errata Sheet dated January 1999; and Addendum dated April 2000.

NY SDEC class GA Standards (standards (standards values (GV), dated Julie 1996, Errata Sheet dated Jan 8. NV = no value; SB = site background.
 Results presented for GP-9, GP-24, GP-26, MW-2S (2000), MW-5D1 (1999), MW-8D1 (2000), MW-3D1 (2001) and MW-10S (2001) are the higher for these samples and their respective duplicate.
 Concentrations that are bold exceed the Class GA groundwater quality limit.

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

T															1					1					
	NYSDEC																								
Sample Location	Class GA	MW-4S	MW-4	S	MW-4D	MW-4D	MW-4	D MW	/-5D1	MW-5D1	MW-5D1	MW-5D2	MW-5D2	MW-5D2	MW-6S	MW-6S	MW-6D1	MW-6D		MW-6D2		MW-6D2	MW-7S	MW-7S	MW-7D1
Sample Date	Criteria	7/19/2000				7/19/2000			8/1999	7/23/2000	4/25/2001	7/28/1999			7/19/2000	4/25/2001	7/28/1999			7/28/1999		4/27/2001	7/29/199 <u>9</u>	4/25/2001	7/29/1999
			Q	Q	Q		Q	Q	Q	Q	G	2 (2	Q Q	Q	Q	Q	2	QQ	(Q Q	Q	Q	Q	Q
Volatile Organics (ug/L)			-		1 1		-	1 1			r r			- -	1 1		1 1	-						1	
Chloroethane	5																								
Methylene chloride	5																								
Acetone	50																								
Chloroform	7																								
Carbon disulfide	60																								
Methyl-tert-butyl ether	10															2 J									
1,1-Dichloroethane	5																								
1,1-Dichloroethene	5									2 J		2 J								1 J	1 J	1 J			
1,1,2-Trichloro-1,2,2-trifluoroethane	5																								
1,1,1-Trichloroethane	5	2 J								8 J		11		5 J						8 J	6 J				
Trichloroethene	5	6 J				45 J	18	3	12	26 J	1 J	30	3 J	20	4 J	4 J	7 J	5	J 4 J	23 J	23 J	26			
Benzene	1																								
4-Methyl-2-pentanone	NV																								
Tetrachloroethene	5	160	13		5 J	400	390)	88	19	10	25	22	10	75	160	20	74	87	23	10 J		8 J	1 J	
Toluene	5																								3 J
Chlorobenzene	5																								
Ethylbenzene	5																					2 J			
Xylenes (Total)	5																								
1,2-Dichloroethene (Total)	5	6 J				19 J	3'		2 J						3 J	9 J		3	J 4 J						
1,3-Dichlorobenzene	3																	-				1 JB			
1,4-Dichlorobenzene	3																					2 JB			
1.2-Dichlorobenzene	3																					2 JB			
1,2-Dibromo-3-chloropropane	0.04																					2 JB			
1.2.4-Trichlorobenzene	5							I JB														3 JB			
Semi-Volatile Organics (ug/L)	- 1				I			1		<u> </u>	· · · · · ·			<u> </u>	<u> </u>		<u> </u>							<u> </u>	<u> </u>
bis(2-Ethylhexyl)phthalate	5		NT	·	NT		N	-	4 J		NT	NT		NT		NT	2 J		NT	NT		NT	NT	NT	NT
PCB and Pesticides (ug/L)	- 1									<u> </u>	· · · · · ·				<u> </u>										
Aldrin	0.002		NT	- T			N	-			NT			NT		NT			NT			NT		NT	
Alpha-BHC	NV		NT	+ +			N	+ +			NT	0.03 J		NT		NT	0.01 J		NT	0.029 J		NT		NT	
Heptachlor	0.04		NT				N				NT	0.000		NT		NT	0.0.0		NT	0.011 JI	N	NT		NT	
																									1

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

											-						-					1				
	NYSDEC														MW-11S repea											
Sample Location	Class GA	MW-7D1	MW-7D1			MW-8D1	MW-8D1	MW-9S	MW-9S	MW-10S				W11S	(MW-7S2)	MW-12S	MW-12			MW-12D2	MW-13S	MW-13D1	MW-13D2	MW-14S	MW-14D1	
Sample Date	Criteria	7/24/2000			999 Q	7/25/2000			5/1/2001 Q	7/19/2000) 4/23/20 Q	01 7/19/ Q		4/2001	7/25/2000	7/18/2000			2001 Q	5/1/2001 Q	5/3/2001 Q	5/3/2001 Q	5/2/2001	5/1/2001	5/1/2001	
Volatile Organics (ug/L)	1	C	2	Q	Q	(<u>, 1</u>	2 C	l Q		Q	Q	Q	Q	Q	<u> </u>	2	Q	Q	Q	Ι Q	Q	Q	C	<u>! </u>	Q Q
Chloroethane	5																									
Methylene chloride	5																									
Acetone	50							8 J													4 JB	3 JB				
Chloroform	7																		2 JB	1 JB		1 J				
Carbon disulfide	60																									
Methyl-tert-butyl ether	10								1 J																	
1,1-Dichloroethane	5																			1 J						
1,1-Dichloroethene	5					35 J									24 J					3 J						
1,1,2-Trichloro-1,2,2-trifluoroethane	5																			3 J						
1,1,1-Trichloroethane	5																			17						
Trichloroethene	5	2 J				21 J		3 J	2 J						16 J	1 J	2	2 J 2	24	32		1 J	6 J			3 J
Benzene	1					13 J									16 J											
4-Methyl-2-pentanone	NV						2 J	1 J														1				
Tetrachloroethene	5		6 J			10 J	6 J	140	130	16	12	2	8 J	2 J	17 J	28	80	56	50	25	3 J	4 J	18	2 J	1 J	
Toluene	5				3 J	18 J									18 J											
Chlorobenzene	5					15 J									17 J											
Ethylbenzene	5																									
Xylenes (Total)	5																					1 JB				
1,2-Dichloroethene (Total)	5							9 J	4 J								2	2 J 5	51	1 J						
1,3-Dichlorobenzene	3																				1 JB	2 JB				
1,4-Dichlorobenzene	3																				1 JB	2 JB				
1,2-Dichlorobenzene	3																				1 JB	2 JB				
1,2-Dibromo-3-chloropropane	0.04																				1 JB	2 JB				
1,2,4-Trichlorobenzene	5																				3 JB	5 JB				
Semi-Volatile Organics (ug/L)	•																									
bis(2-Ethylhexyl)phthalate	5		NT	N	IT		NT		NT		N	-		NT			N	- N	IT	NT	NT	NT	NT	NT	NT	NT
PCB and Pesticides (ug/L)	•						· ·																			
Aldrin	0.002		NT				NT		NT		N	-		NT			N	- N	т	NT	NT	NT	NT	NT	NT	NT
Alpha-BHC	NV		NT		1 1		NT		NT		N			NT			N	- N	іт 🗌	NT	NT	NT	NT	NT	NT	NT
Heptachlor	0.04		NT	0.01	2 J		NT		NT		N			NT			N	- N	ιт	NT	NT	NT	NT	NT	NT	NT
Heptachlor epoxide	0.03		NT				NT		NT		N			NT			N		IT	NT	NT	NT	NT	NT	NT	NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	1																1							
	NYSDEC																							
Sample Location	Class GA	MW-15D1	GP-1	GP-2		GP-4			GP-5-40	GP-5-60	GP-5-80	GP-6	GP-7	GP-7-40	GP-7-60	GP-7-80	GP-8	GP-9	GP-10	GP-10-40	GP-10-60	GP-11	GP-12	GP-13
Sample Date	Criteria	5/1/2001	6/3/1999	6/10/199	99 6/10/1999 Q (6/4/199	9 Q	6/7/1999	6/8/1999	6/8/1999 Q	6/28/1999 Q	6/8/1999	6/7/1999 Q	6/8/1999 Q	6/8/1999 Q	6/28/1999 Q	6/16/199			6/8/1999 Q Q	6/8/1999	6/17/1999 Q	6/2/1999 Q	6/2/1999 Q
Volatile Organics (ug/L)		Q	Q			<u>د</u>	Q	Q	Q	Q	Q	G	Q	ĮΩ	L Q	<u> </u>	<u> </u>	Q	Q (Q	Q	Q	Q
Chloroethane	5							2 J																
Methylene chloride	5												1											
Acetone	50							4 J		3 J				4 J	2 J			41		5 J	3 J			
Chloroform	7																							
Carbon disulfide	60										2 J					1 J								
Methyl-tert-butyl ether	10																							
1,1-Dichloroethane	5					2	J					22	3 J						2 J	1 J				
1,1-Dichloroethene	5																						90	
1,1,2-Trichloro-1,2,2-trifluoroethane	5																							
1,1,1-Trichloroethane	5					7	J	10		1 J	15	3 J			1 J	8 J		6	1 J	2 J				
Trichloroethene	5	2 J	9 J	8	J	2	J	2 J		9 J	28				10	17		4 .	2 J	3 J	8 J		33 J	
Benzene	1																							
4-Methyl-2-pentanone	NV																							
Tetrachloroethene	5		120	130		250	D	110	8 J	2 J	10				2 J	6 J	44	540	130	47	2 J		610	19
Toluene	5																							
Chlorobenzene	5																							
Ethylbenzene	5																							
Xylenes (Total)	5																							2 J
1,2-Dichloroethene (Total)	5		3 J	2	J							1 J						7 .	1 J	2 J			14 J	
1,3-Dichlorobenzene	3	1 J																						
1,4-Dichlorobenzene	3	1 J																						
1,2-Dichlorobenzene	3	1 J																						
1,2-Dibromo-3-chloropropane	0.04	1 JB																						
1,2,4-Trichlorobenzene	5	2 JB																						
Semi-Volatile Organics (ug/L)																								
bis(2-Ethylhexyl)phthalate	5	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB and Pesticides (ug/L)																								
Aldrin	0.002	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Alpha-BHC	NV	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor	0.04	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor epoxide	0.03	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

										1				1		1			1					
	NYSDEC																							
Sample Location	Class GA	GP-14	GP-15	GP-16	GP-	17 GP-	17-40	GP-17-60	GP-17-80	GP-18	GP-19	GP-20	GP-21	GP-22	GP-23	GP-24	GP-25	GP-26	GP-27	GP-27-40	GP-27-60	GP-27-80	GP-28	GP-29
Sample Date	Criteria	6/2/1999	6/2/1999					6/17/19 <u>99</u>		6/16/199		6/4/1999	6/4/199 <u>9</u>	6/2/1999	6/15/1999	6/3/1999	6/3/1999	6/3/199 <u>9</u>	6/15/1999		6/17/1999	6/17/1999	6/15/1999	6/3/1999
		(2	Q	Q	Q	Q	C	Q		QQ	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
Volatile Organics (ug/L)																								
Chloroethane	5																							1
Methylene chloride	5									29														1
Acetone	50						6 J		6 J															1
Chloroform	7																							1
Carbon disulfide	60								1 J															1
Methyl-tert-butyl ether	10																							1
1,1-Dichloroethane	5		2	J			1 J			2	J	1 J												1
1,1-Dichloroethene	5																	7 J						1
1,1,2-Trichloro-1,2,2-trifluoroethane	5																							1
1,1,1-Trichloroethane	5		1	J			1 J	1 J	11	3	J	1 J	1 J									9 J		1
Trichloroethene	5	12 J	4	J 2,	J			10	22	2	J										3 J	14		i
Benzene	1			-	-							1												i İ
4-Methyl-2-pentanone	NV																				1			1
Tetrachloroethene	5	230	96	24	43	30	8 J	2 J	8 J	240	J 22	1										7 J		3 J
Toluene	5											1	1 J											1
Chlorobenzene	5											1												i İ
Ethylbenzene	5																				1			1
Xylenes (Total)	5												1 J											1
1,2-Dichloroethene (Total)	5	4 J	2	J		4 J				4	J													1
1.3-Dichlorobenzene	3			-																	1			i
1,4-Dichlorobenzene	3																							1
1,2-Dichlorobenzene	3																							1
1,2-Dibromo-3-chloropropane	0.04																							1
1,2,4-Trichlorobenzene	5																							í – – – – – – – – – – – – – – – – – – –
Semi-Volatile Organics (ug/L)	<u> </u>							L		1 1				I										
bis(2-Ethylhexyl)phthalate	5	NT	NT	NT	N	IT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PCB and Pesticides (ug/L)						••1 1																		
Aldrin	0.002	NT	NT	NT	N	IT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Alpha-BHC	0.002 NV	NT	NT	NT			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor	0.04	NT	NT	NT	N		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor epoxide	0.04	NT	NT	NT			NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	0.05	INI	INT	IN I	IN		INT	INT	INT	111	IN Í	INT	INT	111	INT	INT	INT	INT	INT	INT	INT	INT	INT	111

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	NYSDEC																						
Sample Location	Class GA	GP-30		GP-32	GP-33		GP-34	Ļ	GP-35		GP-36	;	GP-38	3	GP-39		GP-40)	GP-42		GP-44	GF	P-46
Sample Date	Criteria	6/3/199	9	6/2/1999	6/2/199	9	6/2/199	9	6/3/199	9	6/3/199	9	6/3/199	9	6/4/199	9	6/4/199	9	6/10/199	99	6/15/1999	4/24	4/20 <u>01</u>
			Q	Q		Q		Q		Q		Q		Q		Q		Q		Q	0	ξ	Q
Volatile Organics (ug/L)														_									
Chloroethane	5																						
Methylene chloride	5																						
Acetone	50																						8 J
Chloroform	7																						
Carbon disulfide	60																						
Methyl-tert-butyl ether	10																						
1,1-Dichloroethane	5				3	J	3	J															
1,1-Dichloroethene	5																						
1,1,2-Trichloro-1,2,2-trifluoroethane	5																						
1,1,1-Trichloroethane	5						3	J															1 J
Trichloroethene	5						4	J									2	J					
Benzene	1																						
4-Methyl-2-pentanone	NV																						
Tetrachloroethene	5			360	410		220				2	J			2	J	31						
Toluene	5												1	J									1 J
Chlorobenzene	5																						
Ethylbenzene	5																						
Xylenes (Total)	5																						1 J
1,2-Dichloroethene (Total)	5						3	J															
1,3-Dichlorobenzene	3																						1 J
1,4-Dichlorobenzene	3																						1 J
1,2-Dichlorobenzene	3																						1 J
1,2-Dibromo-3-chloropropane	0.04																						1 J
1,2,4-Trichlorobenzene	5																						
Semi-Volatile Organics (ug/L)																							
bis(2-Ethylhexyl)phthalate	5	NT		NT	NT		NT		NT		NT		NT		NT		NT		NT		NT		NT
PCB and Pesticides (ug/L)																							
Aldrin	0.002	NT		NT	NT		NT		NT		NT		NT		NT		NT		NT		NT		NT
Alpha-BHC	NV	NT		NT	NT		NT		NT		NT		NT		NT		NT		NT		NT		NT
Heptachlor	0.04	NT		NT	NT		NT		NT		NT		NT		NT		NT		NT		NT		NT
Heptachlor epoxide	0.03	NT		NT	NT		NT		NT		NT		NT		NT		NT		NT		NT		NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	NYSDEC		low flow	low flow	1	low flow	low flow		low flow	low flow		low flow	low flow			low flow		low flow	low flow		low flow	low flow		low flow	low flow	
Sample Location	Class GA	MW-1S	MW-1S	MW-1S	MW-1D1	MW-1D1	MW-1D1	MW-1D2	MW-1D2	MW-1D2	MW-2S	MW-2S	MW-2S	MW-2D1	MW-2D1	MW-2D1	MW-3S	MW-3S	MW-3S	MW-3D			MW-4S	MW-4S	MW-4S	MW-4D1
Sample Date	Evaluation	7/27/1999	7/20/2000	4/30/2001	7/27/1999		4/30/2001	7/27/1999	7/20/2000	4/30/2001	7/29/1999	7/21/2000	4/27/2001		7/29/1999		7/29/1999	7/20/2000	4/24/2001	-	-		7/29/1999	7/19/2000	4/24/2001	7/29/1999
Campie Bate	Criterion ⁷	Q	Q	0		Q	-1/00/2001 Q	Q	Q	Q	Q	0	0		Q		0	Q	Q		Q //20/200		Q	Q	Q	
Unfiltered Inorganics (u		8	8	9	¢	Q	Q.	9	9	Q	Q.	Q	Q	2	Q	4	2	Q.	Q		×	4 4	3	8	Q	Q Q
Aluminum	NV	2260	1910	578	665	1	89.1 B	75400			201		4260	· · · ·	126 B	116 B	10100	260	119 B	675		138 B	2550	· · · · ·		484
	3	2260 26.4 B	1910	576	25.2 B		1.8 B	11.5 B			201 27.5 B		4200 2.8 B		28.3 B	110 D	25.7 B	200	119 D	25.7 B		130 D	2550 26.5 B			26.4 B
Antimony Arsenic	25	20.4 D		<u> </u>	20.2 D		1.0 D	16.5			27.3 D	-	2.0 D		20.3 D	+ +	25.7 B 8.8 B			20.7 0		+ +	20.3 D			20.4 D
Barium	1000	81.6 B	65.5 B	18.9 B	34.1 B	41.2 B	46.9 B	530	20 B	21.2 B	37.4 B	47.6 B	70.2 B	47.6 B	54.6 B	50.8 B	108 B	49.8 B	42.4 B	142 B	39.4 E	39.2 B	45.6 B	24.3 B	34.7 B	36.5 B
Beryllium	3	01.0 D	0.41 B	10.9 D	54.1 D	41.2 D	40.9 D	3.8 B	20 0	21.2 D	57.4 D	47.0 B	0.62 B	47.0 D	54.0 B	30.0 B	0.86 B	43.0 D	42.4 D	142 0	55.4 L	JJJ.Z D	0.41 B	24.3 D	54.7 D	30.3 B
Cadmium	5	0.87 B	0.41 B	0.75 B	0.46 B			5.0 D			0.93 B	2.7 B	0.02 D		0.59 B	+ +	0.00 B	1.9 B	2.5 B	0.67 B	+ +		640	38.1	70.5	3.7 B
Calcium	NV	15200	19400	33500	9520	13600	15100	138000	12700	12800	16900	20900	19100	16100	12700	18000	20400	17900	19000	17400	11700	17000	15200	5640	11000	12600
Chromium	50	2.5 B	62.9	4 B	3320 2 B	49.3	4.1 B	218 J	71.7	2.9 B	10300	60.5	22.8	10100	12700	4.1 B	305 J	84.2	87.7	2.4 B		5.2 B	32.3 J	61.7	30.3	10.2
Hexavalent Chromium	50	NT	NT	40	NT	43.5 NT	4.1 D	NT	NT	2.5 D	NT	NT	22.0	NT	NT		NT	NT	79.6	NT	NT	5.2 D	NT NT	NT	50.5	NT
Cobalt	NV	3.4 B	7.4 B	2.1 B	1.4 B	4.3 B		70.3	6.6 B	0.66 B		5.8 B	1.8 B				8.7 B	5.2 B	0.56 B	0.97 B	5.1 E		6.5 B	14.2 B	12.2 B	1 B
Copper	200	11.2 B	33.5	10.9 B	6 B	17.5 B		252	24.4 B	2.7 B	42.8	125	348		4 B		209	48.2	26	3.2 B			1370	1100	834	60.4
Iron	300	1200	312	31.4 BJ	654	230	37.6 BJ	94800	339	48.1 BJ	104	289	7000 J		126	113 J	14300	476	30.1 B	837	296	157	264	228	57.7 B	1090
Lead	25	2.1 B	512		3.2		00 00	32.7			11.1	9.5	213 J		1.4 B	2 BJ	9.7			3.2	200		2.7 B		1.4 B	15.1
Magnesium	35000	2780 B	2720 B	3080 B	2250 B	3130 B	3390 B	41300	3900 B	3850 B	3640 B	4180 B	4400 B	3080 B	2960 B	3620 B	5110	3640 B	3830 B	3270 B	2090 E	3220 B	4150 B	2380 B	2950 B	2460 B
Manganese	300	157	175	94.3	81	21.2	9.6 B	3120	24.8	2.5 B	5.1 B	41.8	95	12 B	11.5 B	9.8 B	464	42	21.6	447	50.9	115	374	90.1	68.7	71.7
Mercury	0.7					0.18 B		0.05 B				0.19 B					0.05 B				0.19 E			0.18 B		0.08 B
Nickel	100	4.9 B	283	9.8 B	1.7 B	221	5.2 B	129 J	313	5.3 B	2.7 B	275	19.2 B		1.3 B	5.3 B	40.3 J	228	28.2 B	2.6 B		6.7 B	739 J	423	249	6.7 B
Potassium	NV	4120 B	3630 BE	3440 BE	1450 B	1810 BE	1520 BE	12400	1360 BE	1230 BEJ	1550 B	2080 BE	1570 BE	1900 BE	2340 B	1490 BE	3850 B	3170 BE	1920 B	3510 B	1610 E	1110 B	2090 B	3660 BE	3980 B	1590 B
Selenium	10							9.6 J																		
Silver	50												11.6		0.73 B											
Sodium	20000	14700	13600	19100	8200	9310	10200	13200	11000	10300	8050	9650	7530	18700	19900	16800	14800	9960	9660 E	52300	20200	12500 E	19900	74900	120000 E	7280
Thallium	0.5				1			5.4 B			1		1													
Vanadium	NV	2 B		0.51 B	1.2 B			149		0.54 B			8.6 B				17.9 B	0.72 B		1.1 B				2.9 B	2.2 B	2.6 B
Zinc	2000	41.9	62.6	51	14.8 B			1070			23.2	18.3 B	62.3	5.2 B	11.1 B		73.5	7.2 B	6.8 B	14.6 B			183	21.5	42.6	89.8
Cyanide	200			NT			NT			NT		2.5 B	NT	1.7 B		NT	23		NT			NT	5.1 B	652	NT	24.7
Filtered Inorganics (ug/	/L)																									
Aluminum	NV	215	NT	NT		NT	NT		NT	NT		NT	NT	NT		NT	92 B	NT	NT		NT	NT	1500	NT	NT	
Antimony	3	4 B	NT	NT	2.8 B	NT	NT	3.9 B	NT	NT	3.5 B	NT	NT	NT	3.6 B	NT	3.8 B	NT	NT	4.1 B	NT	NT	4.1 B	NT	NT	3.7 B
Arsenic	25		NT	NT		NT	NT		NT	NT		NT	NT	NT		NT		NT	NT		NT	NT		NT	NT	
Barium	1000	108 B	NT	NT	27.4 B	NT	NT	11.7 B	NT	NT	30.8 B	NT	NT	NT	53.9 B	NT	51.4 B	NT	NT	132 B	NT	NT	53.1 B	NT	NT	33.3 B
Beryllium	3		NT	NT	0.3 B	NT	NT		NT	NT		NT	NT	NT		NT		NT	NT		NT	NT	0.36 B	NT	NT	
Cadmium	5	0.99 B	NT	NT		NT	NT		NT	NT	1.1 B	NT	NT	NT		NT	2.4 B	NT	NT		NT	NT	672	NT	NT	2.8 B
Calcium	NV	17700	NT	NT	9850	NT	NT	21200	NT	NT	14800	NT	NT	NT	12200	NT	19900	NT	NT	17100	NT	NT	14900	NT	NT	12600
Chromium	50		NT	NT		NT	NT	11.6	NT	NT		NT	NT	NT		NT	7.3 B	NT	NT		NT	NT	33.7	NT	NT	2.1 B
Cobalt	NV	2.8 B	NT	NT	1.4 B	NT	NT	2.4 B	NT	NT		NT	NT	NT		NT	1.1 B	NT	NT		NT	NT	8.5 B	NT	NT	
Copper	200	7.8 B	NT	NT	1.8 B	NT	NT		NT	NT	49.2	NT	NT	NT		NT	32.8	NT	NT		NT	NT	1910	NT	NT	18.8 B
Iron	300	38.6 B	NT	NT		NT	NT		NT	NT		NT	NT	NT		NT		NT	NT		NT	NT		NT	NT	
Lead	25		NT	NT		NT	NT		NT	NT	4.6 B	NT	NT	NT		NT		NT	NT		NT	NT		NT	NT	
Magnesium	35000	2870 B	NT	NT	2110 B	NT	NT	3410 B	NT	NT	3070 B	NT	NT	NT	2700 B	NT	3450 B	NT	NT	2930 B	NT	NT	3920 B	NT	NT	2350 B
Manganese	300	138	NT	NT	5 B	NT	NT	49.5	NT	NT	7 B	NT	NT	NT	6.6 B	NT	15.2	NT	NT	80.8	NT	NT	394	NT	NT	51.1
Mercury	0.7		NT	NT		NT	NT		NT	NT		NT	NT	NT		NT		NT	NT		NT	NT		NT	NT	
Nickel	100	3 B	NT	NT		NT	NT		NT	NT	2.9 B	NT	NT	NT	3.5 B	NT	13.8 B	NT	NT		NT	NT	916	NT	NT	3.8 B
Potassium	NV	5680	NT	NT	1580 B	NT	NT	3220 B	NT	NT	1430 B	NT	NT	NT	2600 B	NT	3120 B	NT	NT	4360 B		NT	3420 B	NT	NT	1820 B
Selenium	10		NT	NT		NT	NT		NT	NT		NT	NT	NT		NT		NT	NT		NT	NT		NT	NT	
Silver	50	15055	NT	NT		NT	NT	107	NT	NT		NT	NT	NT	100	NT		NT	NT		NT	NT		NT	NT	
Sodium	20000	15300	NT	NT	7870	NT	NT	10700	NT	NT	6500	NT	NT	NT	19800	NT	13600	NT	NT	45900	NT	NT	29400	NT	NT	7050
Thallium	0.5	0.70	NT	NT		NT	NT		NT	NT		NT	NT	NT		NT		NT	NT		NT	NT		NT	NT	
Vanadium	NV 2000	0.72 B 54.4	NT NT	NT NT	0.93 B 19.9 B	NT NT	NT NT	2.2 B 10.3 B	NT NT	NT NT	22.4	NT NT	NT NT	NT NT	20.2	NT NT	30	NT NT	NT NT	17.1 B	NT	NT NT	180	NT NT	NT NT	
Zinc																										92.6

NOTES: 1. Inorganic compounds tested for are presented.
2. Blank indicates compound was not detected.
3. NT indicates compound was not tested.
4. Analytical testing completed by CompuChem Corporation.
5. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

6. ug/L = micrograms per liter.
 7. NYSDEC Class GA Standards (Std)/Guidance Values (GV): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated June 1998

8. NV = no value.

9. Results presented for MW-2S (2000), MW-5D1 (1999), MW-8D1 (2000), MW-3D1 (2001), MW-10S (2001), GP-9, GP-24, and GP-26 are the higher of these samples and their respective duplicates.

10. Low flow indicates that the groundwater samples were collected via low flow sampling techniques. The remaining groundwater samples were collected via traditional groundwater sampling methods with a bailer.

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	NYSDEC	low flow	low flow		low flow	low flow		low flow	low flow		low flow	v low	flow		low flow	low flow	low flow	low flow		low flow		low flow	low flow		low flow	low flow	low flow	low flow
Sample Location	Class GA	MW-4D1	MW-4D1	MW-5D1	MW-5D1	MW-5D1	MW-5D2	MW-5D2	MW-5D2	MW-6D1	MW-6D		/-6D1	MW-6D2	MW-6D2	MW-6D2	MW-6S	MW-6S	MW-7S	MW-7S	MW-7D1	MW-7D1		MW-8D1	MW-8D1	MW-8D1	MW-9S	MW-9S
Sample Date	Evaluation	7/19/2000	4/27/2001			4/25/2001		7/23/2000	4/25/2001				/2001	7/28/1999	7/24/2000	4/27/2001	7/19/2000	4/26/2001	7/29/1999	4/25/2001	7/29/1999	7/24/2000					7/19/2000	
	Criterion ⁷	Q	Q	2 Q	Q Q	Q	Q	Q	C	2 Q		Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	(<u>a</u> (Q Q	Q	Q	G	Q Q
Unfiltered Inorganics (ug/L)																											
Aluminum	NV			17300	149 B	99.6 B	5500			3490		2	50	118000		69.8 B		163 B	7570		97300			10800		4440	308	
Antimony	3		1.9 B	24.5 B			26.1 B							10.5 B				3.4 B	24.6 B		12.4 B			20.3 B				
Arsenic	25			17.6 B								_		48.6					8 B		53.5			9.6 B		2.6 B		
Barium	1000	81.6 B	72.6 B	201 B	59.1 B	49.1	52.5 B	50.3 B	49.6 B	109 B	66.5	B 58	3.7 B	825	42.2 B	48.5 B	57.2 B	78.1 B	149 B	30.4 B	1800	59.9 B	57.7 B	134 B	43.1 B	79.7 B	35.9 B	58.1 B
Beryllium	3	3.1 B	6.5	1.1 B 35.2	0.65 B	5.5	4.2 B	6.8	0.39 B	0.43 B 4.7 B	1.0		I.4 B	5.8 45.2	0.6 B	0.55 B	476	1940	0.4 B 16.9	16.2	5.1			0.77 B		0.68 B 0.39 B		0.43 B
Cadmium Calcium	5 NV	3.1 B 18000	14000	12900	27400	5.5	27200	13600	0.39 B	4.7 B	1.2	171		45.2	20700	0.55 B 14700	23400	20200	18600	11400	381000	12800	11700	16700	13000	0.39 B	18700	0.43 B 11700
Chromium	50	44.8	7.2 B	270 J	5.9 B	9.6 B	15.4 J	3.7 B	12.2	13.6 J	2.8		6 B	574 J	7.5 B	12.4	3180	824	292 J	15.6	448 J	12000	4.2 B	22 J	13000	12400	42.3	3.2 B
Hexavalent Chromium	50	NT	1.20	NT	NT	14.23	NT	NT D	12.2	NT	NT	5	00	NT	NT NT	10.16	NT	914	NT	19.53	NT	NT	4.2 0	NT	NT	10.0	NT	0.2 0
Cobalt	NV	5 B		18.8 B	0.42 B		4.7 B	0.5 B		12.3 B	0.64	В		117			7.6 B	9.4 B	5.6 B	10.00	56.3			18.4 B	0.43 B	3.5 B	9.3 B	0.56 B
Copper	200	42.2	62.2	62.9	4.2 B		9.4 B		4.2 B	23.4 B				723	3.2 B	3.9 B	18.5 B	9.6 B	143	8.5 B	343			56.1		15.6 B	16.2 B	2 B
Iron	300	277	79.6 BJ	29500	156	76.1 B	4650	23 B	257	6200		5	20 J	153000		29.4 BJ	222	18.4 BJ	15900	77.1 B	112000	16.4 B	21.4 B	16900		5300	756	43.4 BJ
Lead	25			24.5			1.7 B			10.1				86.5			2960 B		31.3		87.1			17.1		8.2		
Magnesium	35000	3620 B	2730 B	4770 B	8570	3480 B	6690	2500 B	5500	4130 B	2800		00 B	28800	6140	4310 B	110	5080	4050 B	1490 B	53400	2680 B	2470 B	4700 B	2800 B	3260 B	3380 B	2470 B
Manganese	300	565	28.5	1950	12.8 B	34.7	338	59.1	27.6	954	11.8	B 49	9.2	5470	11.6 B	7.9 B		214	2020	10.2 B	3790	22.1	14.5 B	1030	15.6	248	587	19.5
Mercury Nickel	0.7	0.2 214	43	0.04 B 31.3 B	1.2 B	7.3 B	17.7 B		6.9 B	0.03 B 10.4 B			6.2 B	0.37 175 J		5.4 B	547	981	0.63 47.4 J	33.3 B	0.44 91.6 J		6.2 B	0.19 B 17.3 B		11.9 B	0.18 B	6 B
Potassium	NV	3660 BE	2260 BE		2890 BE	-	3420 B	2190 BE	2370 B	2430 B	2920		80 BE	10700	2450 BE	2330 BE	3360 BE		47.4 J 5410	1600 B	7880	1920 BI	-	2660 B	1740 BE	-	1860 BE	
Selenium	10	3000 BE	2200 DE	4000 B	2090 BE	1500 B	3420 B	2190 BE	2370 8	2430 B	2920	DE 19	OU DE	10700 10.3 J	2450 BE	2330 BE	3300 BE	2700 BE	5410	1000 B	8.5 J	1920 DI	E 1200 B	2000 B	1740 BE	1520 B	1000 BE	_ 1740 BE
Silver	50									0.97 B				10.0 0					2.1 B		0.00					1 1	1	
Sodium	20000	29900	24200	30300	37200	15900 E	19400	19800	48800 E	17200	25500	203	00	23400	25500	45900	36700	27700	11700	5720 E	12000	10100	8990 E	10200	10400	8450 E	14600	7290
Thallium	0.5													8 B												1 1		
Vanadium	NV			32.7 B	0.74 B		9.2 B	0.88 B		7.2 B				162			2 B	0.82 B	16.6 B		117			19.3 B		5.1 B	0.9 B	0.58 B
Zinc	2000	4 B		82.7	1.3 B		19.8 B			26.1				759			4 B	42.3	36.5		498			55.1		20.7	9.4 B	
Cyanide	200	6.2 B	NT	142	1.7 B	NT	18	6.7 B	NT	31	2.3	B NT		6.3 B	1.8 B	NT	5.2 B	NT	132	NT		46.8	NT		3.9 B	NT		NT
Filtered Inorganics (ug		I	. .	1	T	T	I I	· · · - · · ·		F	T= T			I I I	I	· · · - · ·	· · ·	· ··- · · ·		· ·			I		· · · - · ·	· · - ·	1	I
Aluminum	NV	NT	NT		NT	NT		NT	NT		NT	NT			NT	NT	NT	NT	15	NT	83.7 B	NT	NT		NT	NT	NT	NT
Antimony	3	NT	NT NT	4.1 B	NT	NT NT	3.8 B	NT NT	NT NT	4.3 B	NT NT	NT		3.7 B	NT NT	NT	NT	NT	4 B	NT NT	3.2 B	NT NT	NT	3.6 B	NT	NT NT	NT	NT
Arsenic Barium	25 1000	NT NT	NT	61.8 B	NT	NT	15 B	NT	NT	50.3 B	NT	NT NT		25.9 B	NT	NT NT	NT NT	NT NT	57.5 B	NT	56.4 B	NT	NT NT	34.8 B	NT NT	NT	NT NT	NT NT
Beryllium	3	NT	NT	01.0 D	NT	NT	10 0	NT	NT	50.5 B	NT	NT		20.0 0	NT	NT	NT	NT	57.5 B	NT	30.4 D	NT	NT	04.0 D	NT	NT	NT	NT
Cadmium	5	NT	NT	8.6	NT	NT	3.4 B	NT	NT	1 B	NT	NT			NT	NT	NT	NT	14.8	NT		NT	NT		NT	NT	NT	NT
Calcium	NV	NT	NT	12800	NT	NT	26800	NT	NT	14700	NT	NT		21100	NT	NT	NT	NT	16400	NT	25200	NT	NT	14200	NT	NT	NT	NT
Chromium	50	NT	NT	5.4 B	NT	NT		NT	NT		NT	NT		23.7	NT	NT	NT	NT	1.8 B	NT	1.8 B	NT	NT		NT	NT	NT	NT
Cobalt	NV	NT	NT		NT	NT	2.6 B	NT	NT	0.81 B	NT	NT		1.5 B	NT	NT	NT	NT	1.5 B	NT		NT	NT		NT	NT	NT	NT
Copper	200	NT	NT		NT	NT		NT	NT		NT	NT		2.3 B	NT	NT	NT	NT	20.8 B	NT		NT	NT		NT	NT	NT	NT
Iron	300	NT	NT		NT	NT	33.7 B	NT	NT		NT	NT			NT	NT	NT	NT	664	NT		NT	NT		NT	NT	NT	NT
Lead	25	NT	NT		NT	NT	50.40	NT	NT	0110	NT	NT		0000	NT	NT	NT	NT	0000 5	NT	0050 5	NT	NT	0770 5	NT	NT	NT	NT
Magnesium	35000	NT	NT	2380 B	NT	NT	5340	NT	NT	3110 B	NT NT	NT		2860 B	NT	NT	NT	NT	2320 B	NT	2850 B	NT NT	NT	2770 B	NT	NT	NT	NT
Manganese Mercury	300 0.7	NT NT	NT NT	42.0	NT NT	NT NT	276	NT NT	NT NT	10.2 B	NI	NT NT		5.9 B	NT NT	NT NT	NT NT	NT NT	1830	NT NT	6.1 B	NI	NT NT	10.5 B	NT NT	NT NT	NT NT	NT NT
Nickel	100	NT	NT	+ +	NT	NT	1.5 B	NT	NT	+ +	NT	NT			NT	NT	NT	NT	29.2 B	NT	<u> </u>	NT	NT		NT	NT	NT	NT
Potassium	NV	NT	NT	3540 B	NT	NT	2500 B	NT	NT	2630 B	NT	NT		6390	NT	NT	NT	NT	29.2 D 4840 B	NT	2330 B	NT	NT	1670 B	NT	NT	NT	NT
Selenium	10	NT	NT	0010 0	NT	NT	2000 0	NT	NT	2000 0	NT	NT			NT	NT	NT	NT	1010 0	NT	2000 5	NT	NT	10/00	NT	NT	NT	NT
Silver	50	NT	NT		NT	NT		NT	NT		NT	NT			NT	NT	NT	NT		NT		NT	NT		NT	NT	NT	NT
Sodium	20000	NT	NT	29800	NT	NT	17900	NT	NT	16000	NT	NT		20200	NT	NT	NT	NT	10500	NT	10400	NT	NT	9430	NT	NT	NT	NT
Thallium	0.5	NT	NT		NT	NT		NT	NT		NT	NT			NT	NT	NT	NT		NT		NT	NT		NT	NT	NT	NT
Vanadium	NV	NT	NT		NT	NT	0.99 B	NT	NT	0.85 B	NT	NT		2.2 B	NT	NT	NT	NT		NT	0.88 B	NT	NT		NT	NT	NT	NT
Zinc	2000	NT	NT	5.7 B	NT	NT	8 B	NT	NT	4.1 B	NT	NT			NT	NT	NT	NT	5.4 B	NT		NT	NT	3.4 B	NT	NT	NT	NT

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	NYSDEC	low flow	low flo		low flow	low flow	low flow	low flow	low flow	low flow	low flow	low flov		low flow	low flow		low flow	low flow										
Sample Location	Class GA	MW-10S	MW-10		MW11S	MW-11S dup	MW-11S	MW-12S	MW-12S	MW-12D1	MW-12D2	MW-13		MW-13D2			MW-15S	MW-15D1	GP-1	GP-2	GP-3	GP-4	GP-5	GP-5-40	GP-5-60	GP-5-80	GP-6	GP-7
Sample Date	Evaluation	7/19/2000	4/23/20		7/19/2000		4/24/2001	7/19/2000	4/23/2001	4/30/2001	5/1/2001	5/3/200					5/2/2001	5/1/2001	6/3/1999	6/10/1999	6/10/1999	6/4/1999				6/28/1999	6/8/1999	
	Criterion ⁷	Q		Q	Q	Q	Q	Q	Q	Q	Q		Q (2	(Q Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	G	Q Q
Unfiltered Inorganics (
Aluminum	NV	367	124	В	106 B	488	110 B	417	200 B	329	264		223		189 B	358		106 B	20200	201000	15600	72700	165000	42500	32800	19000	29200	305000
Antimony	3						4.7 B		1.7 B			1.9 E			2.8 B				11 B	292	20.6 B	6.7 B	16.3 BJ	5.5 BJ	8.3 BJ	2.1 B	3.7 B	15.5 BJ
Arsenic	25			_					50.0 5		17.0 5	0.51	2.1 B				10.0		16.7 J	91.1	7.1 B	18.4 J	67.8 J	24	23.7	8.9 B	21.6	58.6 J
Barium	1000	64.4 B	68.2	в	73.5 B	61.6 B	31.1 B	39 B	52.2 B	77.9 B	17.9 B	0.54 E	3 14.4 B	0.12 B	62.2 B	61.4 B	43.8 B	81.7 B	207	2060	249	782	827 J	434 J	384 J	179 B	264	1330 J
Beryllium	3		1.0	_	0.05 D	0.40 D	0.40 5	110	0.53 B		470				100		7.0	0.74 0	1.9 B	15	1.5 B	6.2	11.2 J	2.9 BJ	2.6 BJ	1.6 B	3.2 B	14.8
Cadmium	5 NV	25000	1.2		0.85 B	0.48 B 18900	0.46 B 20400	110	339 16100	39	4.7 B		3.2 B		103 26400	0.6 B	7.9	0.71 B 55100	R 14000	17200 J	154 J	R	128 J	6.8 J 14600 J	23.9 J 15400 J	10000	310	482 J
Calcium Chromium	50	25600 44.7	20800 4.6		21200 49.9	18900 1.4 B	20400 4.2 B	16800 47.2	16100 7 P	19700 11.2	16500 4.9 B		46400 9.1 B	3.6 B	26400 4.5 B	16400 11.4	15.1	11.6	14200 3010	38200 123000 J	18000 7540 J	15000 1890	34000 J 4820 J	389 J	750 J	18600 93.3	27600 336	29900 J 3480 J
Hexavalent Chromium	50	44.7 NT	4.0		49.9 NT	Т.4 В NT	4.2 D	47.2 NT	10.71	11.2	4.9 D		46.29	3.0 B	4.3 B	11.4	15.56	11.0	NT	NT	7540 J	NT	4620 J	NT	NT 750 5	93.3 NT	NT	NT
Cobalt	NV	7.8 B	0.83		5.4 B	INT	0.71 B	8.6 B	7 B	1.7 B	4.3 B		40.23	0.72 B	1.5 B	0.89 B	6.4 B	1.4 B	10.9 B	128 J	8.6 B	33.5 B	162 J	55 J	79.1 J	81.2	28.9 B	118 J
Copper	200	16.4 B	0.00	5	18.5 B		0.710	17.2 B	3.5 B	11.9 B	2.8 B		3.8 B	0.12 D	1.0 D	5.1 B	2 B	4.3 B	R	6500	1090	80.0 B	2450	115	233	32.6	223	9520
Iron	300	922	80.2	в	387	725	126	928	143	171 J	465 J		77.1 B	24.1 BJ	209 J	500 J	81.3 B	119 J	43200	239000 J	25400 J	64000	195000 J	82600 J	92300 J	36000	52300	426000 J
Lead	25						1.1 B									1.1 B			R	428 J	31.8 J	R	194 J	67.6 J	123 J	26	44.1	288 J
Magnesium	35000	3170 B	3450	В	3360 B	3100 B	2890 B	2850 B	3030 B	3510 B	5030		2050 B		4090 B	2650 B	6090	5420	5580	16900 J	5710 J	9600	23200 J	9130 J	8120 J	8660	8900	34300 J
Manganese	300	380	60.3		919	111	8.4 B	540	97.6	61.6	382	1.3 E	3 36	0.51 B	21.6	83.8	449	134	R	6680 J	345 J	R	7070 J	3820 J	3750 J	2000	601	5020 J
Mercury	0.7																		0.59 J	5.2 J	R	0.3 J	0.63 J	R	R	0.05 B	0.16 B	1.6 J
Nickel	100	198	7.9		230		6.5 B	501	543	78.4	10.1 B		9.6 B	4.7 B	25.5 B	13.4 B	20.3 B	18.1 B	393	7310 J	368 J	834	1090 J	216 J	224 J	39 B	250	1520 J
Potassium	NV	1840 BE	2100		2510 BE	2560 BE	1470 B	2590 BE	2250 B	2460 BE	1430 BE		2210 BI	1	2380 B	E 3320 BE	3870 BE	5140 E	4610 B	20200 J	4730 BE	11100	34400 J	7570 J	6280 J	4780 BE	6790 J	49700 J
Selenium	10																			15.5			13	8.9	7.1	9.7	12.6	22
Silver	50	10100	11000	-	10000	10,100	47700 5	44000	10000 5	00000	40000	4700			11000	40000	70000	4.4000	10,100	12.9	10000 1	15500	0.9 B	40000 1	47000 1	40000	10000	40700
Sodium Thallium	20000 0.5	10100	11900	E	10800	10400	17700 E 4.8 B	11200	12900 E	20000	10600	1720 E	3 26200		11600	10900	78000	14600	10400 5.3 B	11000 J 24.3	13000 J 4.5 B	15500	93700 J 34.5	10200 J 13.8	17900 J 16.5	13900 J 4.9 B	12000 J 8.5 B	16700 J 38.7
Vanadium	0.5 NV	1.2 B			0.76 B	1.2 B	4.0 B	1.3 B			0.77 B		4.2 B	0.54 B	1.4 B	1.3 B	0.96 B	1.9 B	36.1 B	175	4.5 B 19.9 B	10 59.4	171 J	66.1 J	53.2 J	4.9 B 35 B	58.3	248 J
Zinc	2000	8.3 B			13 B	2.5 B	1.2 D	10.5 B	39.6	38.4	8.3 B		4.2 D	0.54 D	1.4 D	7.7 B	9 B	1.5 D	235 J	14200	154	318 J	606	174	310	66.7	164	1010
Cyanide	200	0.0 5	NT			5.5 B	NT	10.0 2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	98.3	5490	97.4	4.5	465	6.3 B	20.3	00.1	125	9.2 B
Filtered Inorganics (ug																												
Aluminum	, NV	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	238	55.8 B	209	2930	235			74.2 B	73.8 B	
Antimony	3	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	3.9 B	4.5 B	5.8 B	3.6 B	3.6 B	4.2 B	3.5 B	3.4 B	3.7 B	3.9 B
Arsenic	25	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT										
Barium	1000	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	57.9 B	4.1 B	33.1 B	105 B	223	43.8 B	32.8 B	25.8 B	33 B	27.4 B
Beryllium	3	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		0.34 B		1.3 B						
Cadmium	5	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	85	593	34.7	207	70	3 B	3.1 B	0.81 B	199	72.4
Calcium	NV	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	14700	16000	15800	18300	36700	13500	13100	17900	27500	23700
Chromium	50 NV	NT NT	NT		NT NT	NT	NT NT	NT NT	NT	NT NT	NT NT	NT	NT	NT NT	NT	NT	NT	NT	18.9 3.1 B	4.1 B 8.7 B	47.9 2.5 B	11.5 13.1 B	48.1 23.5 B	0.4 5	5.00	14 5 0	0.00	9.2 B
Cobalt	NV 200	NT	NT NT		NI NT	NI	NI NT	NI NT	NT NT	NI	NI NT	NT NT	NI	NI	NT NT	NT NT	NT NT	NT NT	3.1 B 85.5	8.7 B 11.9 B	2.5 B 77.4	13.1 B 960	23.5 B 15 B	3.1 B	5.2 B	11.5 B	8.6 B 3.1 B	
Copper Iron	300	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1830	1560	516	960 6470	1310	756	2550	1230	1560	2520
Lead	25	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		1000	0.0	0170	1010		2000	1200	1000	
Magnesium	35000	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	2600 B	3000 B	2960 B	3840 B	5470	2390 B	3240 B	5060	3940 B	3390 B
Manganese	300	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	73.4	303	53.7	684	1440	314	658	508	200	891
Mercury	0.7	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT										
Nickel	100	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	177	999	77.1	528	587	11.1 B	14.6 B	9.4 B	75.7	211
Potassium	NV	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	2400 B	2610 B	2710 B	4880 B	15900	2850 B	2470 B	2720 B	4390 B	8640
Selenium	10	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT										/
Silver	50	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	40000			17500			15000	10100		
Sodium	20000	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	10200	11300	11000	17500	104000	9050	15200	13400	12100	16100
Thallium	0.5	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT		4 D	110	1.4 B	+ $+$	+ $+$	+	100	2.0	_ /
Vanadium Zinc	NV 2000	NT NT	NT NT		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NI	NT NT	NT NT	NT NT	NT NT	1.4 B 89.2	1 B 124	1.1 B 40.1	1.4 B 199	63.1	5.8 B	30.1	1.2 B 9.5 B	2 B 24.8	16.1 B
200	2000		141		191	INI		INI					141	INI	INT	INT			03.2	124	40.1	199	03.1	5.0 D	50.1	9.0 D	24.0	

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date	NYSDEC Class GA Evaluation Criterion ⁷	GP-7-40 6/8/1999 Q	GP-7-60 6/8/1999	6/28/19		P-8 6/1999 Q	GP-9 6/7/1999 Q	GP-10 6/15/1999 Q	GP-10-40 6/8/1999 Q	GP-10-60 6/8/1999 Q	GP-11 6/17/1999 Q	GP-12 6/2/1999 Q	GP-13 6/2/1999 Q	GP-14 6/2/1999		6/2	iP-16 2/1999 Q	GP-17 6/2/1999 Q	GP-17-40 6/17/1999 Q	GP-17-60 6/17/1999 Q	GP-17-80 6/17/1999 Q	GP-18 6/16/1999 Q	GP-19 6/2/1999 Q	GP-20 6/4/1999 Q	GP-21 6/4/1999 Q	GP-22 6/2/1999 Q	GP-23 6/15/1999 Q	GP-24 6/3/1999 Q	GP-25 6/3/1999 Q
Unfiltered Inorganics (u																													
Aluminum	NV	27200	2480	32500			103000 J	134000	33500	5530	217000	42000	93600	95400	176000	626		25200	129000	20300	153000	10500	88000	2180	71600	41600	200000	40900	15100
Antimony	3	12.6 BJ	4.8 B			1.1 B	18.8 BJ	4.1 B	1.6 BJ		4.1 B	2.8 B	3.7 B	6.4 B			3.1 B	3.9 B	7.1 B		2.4 B	9.8 B	20.1 B		9.3 BJ	8.4 B	3.9 B	17.2 B	1.6 BJ
Arsenic	25	15.4		28.6		4.2	37.6 J	38	19.3	5.8 B	56.7	19.8 J	20.7 J	71.7 J	139 J		29.9 J	11.5 J	61.1	21.9	54	7.6 B	28.1 J		33.4	18 J	46	25.2 J	10.8
Barium	1000	410 J	65.2 B	339		50	732 J	657	311 J	90.8 B	R	299	1060	816	1450		519	442	R	R	R	212	782	86.5 B	1020 J	262	R	347	151 B
Beryllium	3	2.2 B		2.9		3.8 B	6.5 J	8.6	2.5 B	0.52 B	14	3.9 B	6.5	7.7	6.3		6.9	2.8 B	9	1.5 B	8.1	1.3 B	11.2		5.8 J	3.5 B	11.6	2.2 B	1.2 B
Cadmium	5	15.5 J	14.7 J			3.3 J	481 J	11.1 J	42.2 J	7.2 J	21		R		R		R	R				54.4 J	R	43.7 J	321 J	R	3.9 B	R	0.57 B
Calcium	NV	15100 J	12600 J	25200			46100 J	14000	16900 J	13500 J	20400	28600	19900	26300	33100	190		23400	16200	13400	19800	15200	23200	19900 J	11400 J	10500	27900	12900	11500 J
Chromium	50	822 J	134 J	371		90 J	5670 J	762 J	411 J	94.1 J	R	211	434	676	1280		030	599	R	R	R	3310 J	6410	56.1 J	1340 J	1990	R	6170	132 J
Hexavalent Chromium	50	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	N		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cobalt	NV	39.5 B	4.8 B	60.9		9.4 B	46.7 B	71 J	65.4 J	6.1 B	92	17.9 B	56.2 J	46 B	71.5 J		27 B	14.7 B	141	72.3	140	8.2 B	53.6 J	4.1 B	42.1 B	21.2 B	191	30.1 B	14.8 B
Copper	200	218	23 B	173		27	3960 J	4010	307	21.4 B	542	R	R	R	R		R	R	556	61.3	259	732	R	13.3 B	452	R	372	R	40.1
Iron	300	71600 J	14100 J	89500	1370		139000 J	152000 J	84400 J	19400 J	235000	57700	104000	150000	231000	951	100	41200	232000	49700	241000	28000 J	108000	5100 J	114000 J	67500	209000	76500	27800 J
Lead	25	73.5 J	12.9	61.8		61 J	315 J	129 J	71.4 J	12.2	215 J	74.7	R	R	R		R	R	171 J	53.4 J	159 J	196 J	R	4.6	102 J	R	178 J	R	22.1 J
Magnesium	35000	6570 J	3640 B	11600			19300 J	16900 J	8450 J	4340 B	28900	R	11600	21500	44200	134	400	6180	23900	7320	R	4540 BE	14500	4520 B	12300 J	7220	31700	11600	5050 J
Manganese	300	2690 J	334 J	3530		50 J	3010 J	2990 J	4900 J	528 J	4350 J	R	R	R	R	_	R	R	9690 J	9520 J	5680 J	2000 J	R	114 J	952 J	R	15500 J	R	1300 J
Mercury	0.7	R	R	÷		02 J	0.64 J	0.04 J	R	R	R	0.09 BJ	0.18 BJ	1.1 J	4.3 J	-).54 J	0.12 J	R	R	R	R	0.89 J	R	0.11 BJ	R	R	R	R
Nickel	100	162 J	50.6 J	91.4		40 J	3360 J	349 J	137 J	37.1 B	300 J	258	307	178	246		382	185	292 J	102 J	182 J	73.5 J	402	42.7 J	467	225	227 J	645	69.3 J
Potassium	NV	5470 J	2300 B	6030			19400 J	14700 J	6350 J	3120 B	31600 J	7960	11500	19500	37800	91	100	15000	17400 J	4740 BE	21500 E	4820 BE	11500	1670 B	8860 J	6140	34000 J	6870	4840 B
Selenium	10	6.1		6	10	0.5	8.5	14.2 J	5.7		11.8 J			10.0		_			16.4 J		12.5 N				8.9 J		11.9 J		
Silver	50						2.1 B							40.9	819		5.8 B												
Sodium	20000	11300 J	15200 J	11900			55600 J	8990 J	13900 J	18800 J	9200	18200	8510	13700	7740		190	19800	11000	17500	13300	10000 J	7620	5570 J	16000 J	5490	10800	3400 B	8680 J
Thallium	0.5	14.5		16		1.5	16.7	21.9	17.8	40.05	30.5	6.6 B	16.1	22.1	34.2		2.7	5.4 B	35.8	12.6	33.8	6.7 B	15		13.9	9.4 B	29.7	13.8	05.0.5
Vanadium	NV	43.4 B	4.5 B			6.5 B	111 J	131	59 J	13.3 B	231	55	63.4	185	326		111	29.8 B	215	49.4 B	224	21.5 B	94.1	5.1 B	127 J	59.5	203	103	25.9 B
Zinc	2000	233	45.2 J	178		47	874 J	387	165	34.7 J	R	171 J	674 J	428 J	700 J		731 J	119	ĸ	R	R	62.3 J	597 J	18.1 BJ	811	304 J	R	664 J	72.3 J
Cyanide	200	22.7		5.9	В	27	164 J	6.4 B	159	18.4	6.8 B		15.6			2	258	46.2				1100	215	22.7	4.7 B	108	9.1 B	617	
Filtered Inorganics (ug/	- /								-				-		-	-								-					
Aluminum	NV				_		66.0 B	62.6 B				66.9 B			NT	5	50.4 B	309							49.5 B	69.6 B			
Antimony	3	3.5 B	3.6 B	3.7	B 4	4.3 B	4.2 B	3.9 B	4.2 B	3.4 B	3.9 B	3.3 B	3.6 B	3.9 B	NT	_	4 B	4.2 B	3.7 B	3.7 B	3.3 B	4.1 B	3.5 B	4.3 B	6.5 B	3.6 B	3.3 B	4 B	3.2 B
Arsenic	25				-										NT										4.3 B				
Barium	1000	54.6 B	42.2 B	40.2		7.9 B	74.3 B	12.6 B	41.7 B	52.1 B	64.5 B	73.4 B	32.3 B	42.2 B	NT		3.8 B	256	26.4 B	44.1 B	21.9 B	37.4 B	23.9 B	52.4 B	54.7 B	10.1 B	38.4 B	15.3 B	36.3 B
Beryllium	3					36 B								0.38 B	NT	-).41 B	0.57 B	0.70.0		0.31 B	0.37 B	0.41 B		0.34 B	0.36 B	0.32 B	0.35 B	
Cadmium	5	5.7	9.7	1=100		5.3	241	2 B	5.6	3.2 B	2.3 B	1.3 B	3.1 B	0.74 B	NT		20.3	24	0.79 B	0.87 B	15500	3.3 B	12.4	33.7	34.6	40.7	1.5 B	88.9	1.1 B
Calcium	NV	14400	12500	17100	157	00	26700	11600	15900	13500	18800	23300	16100	20900	NT	144	400	26400	13100	13300	15700	12900	19500	20100	8810	9590	24100	10900	10100
Chromium	50	0.4 5	4.5 B				8.4 B	47.4 0	40 0	100	0.0 0	0.5 0	5.0 0	0.4 5	NT	_	0.0	4.3 B	0.0 0	0.5 0	100	4.0 0	0.0 0	0.0 0	5.5 B	0.4 5	00.4 D	6.4 B	3.6 B
Cobalt	NV 2000	3.4 B	2.1 0	7.4		2.2 B	5.7 B	17.1 B	12 B	1.2 B	9.6 B	2.5 B	5.3 B	3.1 B	NT		2 8	6.5 B	2.3 B	3.5 B	4.6 B	1.6 B	8.6 B	3.8 B	4.3 B	6.4 B	22.1 B	2.8 B	├──┼─ ┨
Copper	200 300	2020	2.1 B	1820	25	2.7 B	46.1 4830	12.9 B 6760	8.8 B 1620	1.5 B 1060	10400	29.7 3340	2300	14.7 B 3910	NT NT		205 682	107 5600	681	224	958	6.6 B 1380	7.7 B 2980	1.6 B 1790	2.8 B 1390	2.7 B 3010	203	12.1 B 552	241
Iron		2020	422	1620	25	10	4030	0700	1020	1000	10400	3340	2300	2910			002	0000	001	224	900	1300	2900	1790	1280	3010	203	552	241
Lead	25	2450 B	3030 B	4100	D 20	30 B	2470 P	2220 P	2010 0	2220 0	3530 B	3850 B	3600 B	2510 0	NT		010 D	2260 0	2010 P	2260 P	4250 B	1010 P	4760 B	4140 P	1840 B	1750 P	3580 B	2670 B	2050 B
Magnesium	35000 300			4180 653			3470 B 1160	2320 B 695	2810 B 1330	3330 B 183	3530 B 900		3600 B	3510 B 294	NT NT		810 B	3260 B 379	2010 B 207	3260 B 504	4250 B 474	1910 B 1590	4760 B 522	4140 B		1750 B 376	3580 B 3150	2670 B 341	2050 B 239
Manganese	300	366	93.3	053	1	52	1160	690	1330	183	900	159	543	294	N I	_	117	3/9	207	504	4/4	1590	522	110	98.3	310	3150	341	239
Mercury Nickel	100	15 B	3.9 B	5.1	D 47).8 B	1770	217	18.4 B	5.6 B	8.3 B	9.6 B	14.5 B	14.2 B	NT	-	30.7 B	46.2	60	4.6 B	3.6 B	9.2 B	18.9 B	19.3 B	30.7 B	39.2 B	8.9 B	100	6.3 B
Potassium	NV	2030 B	2050 B	2680		70 B	6440	217 1770 B	2670 B	2640 B	8.3 B 3970 B	9.6 B 3960 B	2580 B	3820 B	NT		330 B	46.2	2210 B	4.6 B 2570 B	2430 B	9.2 B 2640 B	2610 B	19.3 B 1990 B	30.7 B 1790 B	39.2 B 1580 B	8.9 B 4000 B	1130 B	3320 B
Selenium	NV 10	2030 8	2000 B	2080	D 28		0440	1770 8	20/U B	2040 B	3910 B	2900 B	2000 B	3020 B		13	330 B	14300	221018	2010 8	2430 B	2040 B	2010 8	1990 B	1190 8	1000 B	4000 B	1130 B	3320 B
Selenium Silver	10 50		├	_						+					+	-							<u> </u>		-				├──┼ ┨
		0000	13700	11100	91	20	40200	7700	12400	17900	8570	16500	9450	14400	NT	61	200	20500	9140	16600	11900	8450	6640	5570	15200	5040	9220	3320 B	7790
Sodium	20000	9900	13/00	11100	91	20	40200	1100	12400	17800	0100	10500	9400	14400	NT	202	200	20500	9140	16600	11800	0400	0040	5570	15200	5040	9220	3320 B	1190
Thallium	0.5		├	0.70	D 4	170		120		+	120	110			NT	-	02 D	120		150	0.00 0	1.1 B	<u> </u>	1.4 B	220	1 0	0.95 0		├──┼ ┨
Vanadium	NV	23.6	8.1 B	0.78		1.7 B	90.6	1.3 B 136	11.6 B	5.2 B	1.2 B 13.7 B	1.1 B 44.7	29.3	23.5	NT NT	-	0.83 B 28.5	1.2 B	450	1.5 B 7.7 B	0.88 B	1.1 B 10.6 B	7.4 B	1.4 B 10.6 B	3.3 B 15.1 B	1 B 18.2 B	0.85 B	39.4	9.7 B
Zinc	2000	23.0	0. I B	21.0		7 B	90.0	130	11.0 B	э.z В	13.7 B	44.7	29.3	23.3	INI	2	0.0	58.7	4.5 B	1.1 B		10.0 B	1.4 B	10.0 B	10.1 B	10.2 D		39.4	9.1 D

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Unfiltered Inorganics (ug/L Aluminum	// \		6/15/199 ג	-	-27-40 5/1999 Q	GP-27-6 6/17/19		P-27-80 7/1999 Q	GP-28 6/15/1999 Q	GP-29 6/3/1999 Q	GP-30 6/3/1999 Q	GP-32 6/2/199		GP-34 6/2/199		GP-35 6/3/1999 Q	GP-36 6/3/1999 Q	GP-38 6/3/1999 Q	GP-39 6/4/1999 Q	GP-40 6/4/1999 Q	GP-42 6/10/1999 Q	GP-44 6/15/1999 Q	GP-46 4/24/2001 Q
Aluminum													1		-								
	NV	102000	132000	521		82000		500	165000	105000	72100	76900	51900	39300		56300	61400	46300	39300	46700	222000	200000	NT
Antimony	3	4.6 B	5.1		2.1	5.8		1.8 B	3.2 B	3 BJ	6 BJ	3.3		2.6			7.2 BJ	3 BJ	4.4 B	11.5 B	15.9	5.8	NT
Arsenic	25	36.1 J	65.3	29		69		30.5	55	43.4 J	43.7 J	27.8	•	13.9	J	44.3 J	28.9	25.2	31.3 J	21.7 J	64	79.9	NT
Barium	1000	990	1	R 60	609		R	R	R	737 J	611 J	465	324	319		490 J	660 J	362 J	740	279	1000	R	NT
Beryllium	3	6.7	8.8		4	6.2		4.9 B	10.8	7.5 J	5.4 J	5.4	6.7	3	В	7.2 J	3 BJ	3.2 BJ	3.8 B	3.5 B	12.5	14.7	NT
Cadmium	5		30.9							46.1 J	66.8 J		BR BR			1.3 B	12 J		R	R	263 J	259	NT
Calcium	NV	19400	J 17300	138	300	14800		R	R	11100 J	18100 J	17000	15100	14200		15400 J	19500 J	13400 J	18400	13500	28500	13300	NT
Chromium	50	449	I	R 22	228 J		R	228	348	355 J	465 J	248	2310	159		1280 J	2250 J	215 J	654	3510	4600 J	R	NT
Hexavalent Chromium	50	NT	NT	NT	-	NT	N	Т	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT
Cobalt	NV	105	117	1(07 J	124	5	52.6	165	165 J	30.2 BJ	20.9	B 34.5 B	16.5	В	25.3 B	28 BJ	36.9 B	27.6 B	14.8 B	86.2 J	380	NT
Copper	200	166	264	18	84	311		136	409	288	229		R R		R	1700	1580	109	R	R	6370	484	NT
Iron	300	136000	182000	986	600 J	213000	128	000	228000	137000 J	139000 J	76200	153000	50700		123000 J	116000 J	76700 J	84300	46700	275000 J	295000	NT
Lead	25	94.8 J	136 .	1:	36 J	173 .	Je	64.7 J	226 J	222 J	132 J		R R		R	4940 J	263 J	57.5 J	R	R	261 J	370 J	NT
Magnesium	35000	15200	22100	118	300 J	17300	19	200	28500	14300 J	13800 J	9860	11400	10300		10200 J	15200 J	10200 J	8400	8840	28400 J	30000	NT
Manganese	300	1550 J	8670	93	360 J	15000	J 6	870 J	11700 J	15600 J	1080 J		R R		R	1350 J	1050 J	3180 J	R	R	3190 J	47200 J	NT
Mercury	0.7	0.33 J	F	2	J	0.22	J	R	R	0.33 J	0.21 J	0.02	J 1.5 J		R	1 J	3.6 J	0.06 BJ	R	1 J	3.8 J	0.04 J	NT
Nickel	100	106	216	1:	33 J	277	J	113 J	274 J	236 J	165 J	110	90.2	83.6		113 J	225 J	123 J	89.4	366	1900 J	326 J	NT
Potassium	NV	15300	16700	80)50 J	11800	J 13	200 J	25700 J	13500 J	9250 J	13200	13800	6930		13700 J	13100 J	9340 J	7830	5410	34700 J	28200 J	NT
Selenium	10	9.9	10.8	7	7.4	12.8	J	8.4 J	14.4 J	11.4	9.8					6	10.2	8.6			19.4	17.1 J	NT
Silver	50												54.8	6.5	В	23.8	13.7			3.1 B	2.6		NT
Sodium	20000	18100 J	11500	106	600 J	14800	12	400	13100	7460 J	5250 J	16300	8300	8210		7130 J	9330 J	12200 J	8750	4890 B	14700 J	11600	NT
Thallium	0.5	22.3	22.4	19	9.9	39.9	2	23.2	35.9	20.3	11.9	12	24.1	8.7	В	22.9	11.2	13.2	13.9	7.5 B	32.7	48.2	NT
Vanadium	NV	116	194	73	3.6	179		136	217	143 J	157 J	66.2	138	47.7	В	96.7 J	119 J	73.4 J	70.5	61	218	277	NT
Zinc	2000	275 J	í	۲ ۱	72		R	R	R	395	592	210	J 287 J	108	J	237	255	158	125 J	453 J	596	R	NT
Cyanide	200			1:	26	13.6			5 B		59.2		556			80.1	161			524	21.7	5.2	NT
Filtered Inorganics (ug/L)																							
Aluminum	NV												67.4 B							64.4 B			
Antimony	3	3.7 B	5.1	3 3	3.7 B	3.8	В	3.4 B	3 B	3.7 B	4.3 B	4	B 3.7 B	4.2	В	4 B	4.4 B	3.8 B	3.4 B	5.9 B	4.7 B	6 B	
Arsenic	25																						
Barium	1000	83.8 B	47.4	3 23	3.9 B	39.8	B 2	21.2 B	43 B	24.7 B	43.6 B	11	B 16.8 B	20.4	В	33.9 B	42.4 B	32.8 B	32.2 B	14.4 B	11.3 B	38.5 B	74.5 B
Beryllium	3						().31 B		0.36 B		0.35	B 0.42 B	0.35	В	0.3 B		0.42 B					
Cadmium	5	0.62 B	5.2							4.4 B	5.7		0.82 B	1.1	В	0.85 B	0.77 B		0.58 B	67.9	25.3	45.1	2.3 B
Calcium	NV	16900	16300	105	500	13000	14	200	13800	9880	14400	15000	16100	12300		13500	16000	12000	17300	13200	19600	12000	35900
Chromium	50	2 B									3.1 B									3.5 B			4.7 B
Cobalt	NV	11.1 B	3.6	3 3	3.7 B	4.5	В	2.7 B	8 B	5.8 B		2.1	B 3.1 B	1.6	В	1.9 B	1.2 B	1.7 B	1.9 B	1.9 B	5.9 B	5.9 B	4.8 B
Copper	200								1		1 İ	7.3	В 7В	23.7	В	3.6 B	17 B		1.8 B	133	9.9 B		
Iron	300	10100	289	5	513	1790		756	547	142	4810	3070	3360	1130		1010	2450	291	694	572	2800	192	549
Lead	25								1				8.6			2.9 B							
Magnesium	35000	3300 B	2870	3 22	280 B	2940	B 3	700 B	2870 B	2600 B	4000 B	2970	B 2650 B	2610	В	1580 B	2130 B	2540 B	2520 B	2620 B	2800 B	2300 B	6880
Manganese	300	508	394	5	578	897		447	1120	583	140	110	192	209		746	243	214	60	57.2	291	1450	724
Mercury	0.7								11		1 1									1	1 1		
Nickel	100	8.2 B	4.6	3 4	4.1 B	9.3	В	2.6 B	10.1 B	7.1 B	6.1 B	8.7	B 9.5 B	6.5	В	6.1 B	6.3 B	4.5 B	2.4 B	42.1	278	12.6 B	14.7 B
Potassium	NV	5150	3450		10 B	2660	B 2	630 B	3040 B	3190 B	2090 B	7480	2530 B	1830	В	3000 B	4490 B	3700 B	3490 B	1410 B	4430 B	2910 B	5290
Selenium	10				1						1 1												
Silver	50																						
	20000	17200	12000	844	40	13600	10	700	10900	7220	5030	15600	8970	7300		7650	8000	10500	8400	5060	10900	10600	27400 E
Thallium	0.5									-													
Vanadium	NV	1.5 B	1	3 0	0.8 B	0.87	B).81 B	<u> </u>	1.4 B	1 1	1.3	В			0.97 B	0.85 B	0.74 B	0.84 B	1.6 B	0.74 B	0.87 B	
	2000	8.1 B		3		8.2			8.6 B	4.7 B	10.8 B	24.3	48.4	10.1	В	26.1	13.1 B	3.9 B	6 B	69.6	8 B	5.2 B	5.6 B

Table 2-15 Summary of Cesspools and Drainage Structures IRM

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Structure Number	Type of Cover	Summary of Impac Volume Remove (gallons)	ted Water Removal Comments	Summary of Contam Depth Removed (feet)	inated Soil Removal Approximate Volume (cubic yards)	Approximate Depth of Confirmatory Soil Sample Collection (feet)	Ι
DS-4	Open Grate			7.0 to 10.0 ft (3.0 ft thick)	5.6	10.0 to 10.5	
CP-6	Solid Cover	4,000 Gallons (Removed from DS-4, CP-6, and CP- 5).	Disposed of at the Bergen Point Waste Water Treatment Facility (non- hazardous liquid)	10.5 to 12.0 ft (1.5 thick)	2.8	12.0 to 12.5	Roll-off Box 1 (Group 1 Soils): S
CP-5	Solid Cover (Buried)		nazardous nquid)	13.0 to 14.5 ft (1.5 ft thick)	2.8	14.5 to 15.0	semi-volatile organic compounds
CP-10	Solid Cover	700 Gallons	Disposed of at AB Oil (oil sheen on water)	NA	NA	No sample collected due to a concrete bottom.	
DS-8	Open Grate	4,000 Gallons (Removed from DS-8, DS-10, and CP-	Disposed of at the Bergen Point Waste Water	10.0 to 11.5 ft (1.5 ft thick)	2.8	11.5 to12.0	
DS-10	Open Grate	8).	Treatment Facility (non- hazardous liquid)	12.5 to 14.0 ft (1.5 ft thick)	2.8	14.0 to 14.5	Roll-off Box 2 (Group 2 Soils): S
CP-8	Solid Cover			7.0 to 8.0 ft (1.0 ft thick)	1.9	8.0 to 8.5	
	•	•		•		•	•
CP-3	Solid Cover (Buried)	Dry	No water removed.	8.0 to 13.0 ft (5.0 ft thick)	9.3	13.0 to 13.5	
CP-4	Solid Cover (Buried)	Dry	No water removed.	12.0 to 13.0 ft (1.0 ft thick)	1.9	13.0 to 13.5	Roll-off Box 3 (Group 3 Soils): S
CP-7	Solid Cover	Dry	No water removed.	12.0 to 13.5 ft (1.5 ft thick)	2.8	13.5 to 14.1	
DS-5	Open Grate	3,500 Gallons	Disposed of at the Bergen Point Waste Water Treatment Facility (non- hazardous liquid)	14.5 to 18.5 ft (3.5 ft thick)	6.5	18.5 to 19.0	Roll-off Box 4 (Group 4 Soils): S

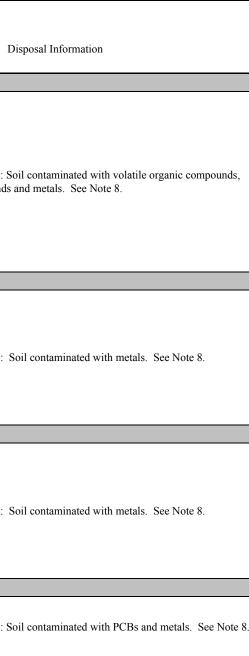
NOTES:

1. See Figure No. 3 for cesspool and drainage structure locations.

2. Depth measurements referenced to the ground surface.

3. N/A = not applicable.

4. Volume of liquid based on estimates from AB Oil vacuum truck operator.


5. Volume of soil based on an 8-foot diameter structure, and depth measurements made before and after soil removal.

6. No soils were removed from CP-10 as it had a concrete bottom.

7. In addition to the quantities listed above, approximately 3,250 gallons of water was decanted off of the four roll-off boxes prior to removal from the Site. The impacted water was disposed of at AB Oil as non-hazardous metals-impacted.

8. Approximately 43 tons of D006 (Cadmium Hazardous Waste) was removed from the structures noted above and disposed of at S&W Waste in Kearney, NJ, as requested by NYSDEC.

9. 1,000-gallons of fuel oil was removed from UST-3 and disposed of by AB Oil.

Table 2-16Summary of Field Exploration Dates

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Field Activity	FRI Phase I	Interim Remedial Measures	FRI Phase II	FRI Phase III
Geophysical Survey	6/6/1999			
Geoprobe Soil Borings	6/01/99 to 6/17/99			
	6/28/1999			
				4/24/2001
Test Boring/Monitoring Well Installation	6/26/99 to 7/15/99			
			7/17/00 to 7/19/00	4/23/01 to 5/02/01
Test Pit Explorations	6/08/99 to 6/9/99		07/21/00	
Water Level Measurements	6/6/1999			
	7/16/1999			
	7/26/1999			
			7/17/00 & 7/19/00	
			7/25/2000	
				5/3/2001
Health and Safety Monitoring	Conducted daily in field	Conducted daily in field	Conducted daily in field	Conducted daily in field
Environmental Sampling	Conducted between 6/1/99 to 6/18/99, 6/26/99 to 6/30/99, 7/12/01 and 7/27/99 to 7/29/99	4/10/00 to 4/11/00	Conducted between 7/19/00 and 7/25/00 (2000 Round)	Conducted between 4/24/01 to 5/04/01 (2001 Round)
Existing Monitoring Well Assessment	(1999 Round) 6/01/99 to 6/05/99			

Table 2-17 Summary of Additional Parameters Analytical Test Results for Monitoring Wells MW-6S and MW-13S (May 2001)

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location Sample Date		MW- 6S 5/10/2001		3S)01 Q
Parameters (mg/L)				
Total Coliform			present	
Biological Oxygen Demand (BOD)	<2		<4	
Chloride	30.2		54	
Hardness	101		15.9	
Sulfate	23		33.6	
Total Suspended Solids (TSS)	2340		4	
Alkalinity	71		31	
Nitrate/Nitrite	2.3		10.1	

NOTES:

1. Blank indicates parameter not detected.

2. Analytical testing completed by CompuChem Corporation.

3. Q = laboratory qualifier. Refer to Appendix E for qualifier definitions.

4. mg/L = milligrams per liter or ppm.

Table 4-1 Evaluation of Background Metals in Soil

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Sample Location	GP-26,S-5	G	P-14,S	-6	Site Background (Higher Concentration		Published
Sample Date	6/1/1999	6	/2/199	9	of Selected Soil	$RSCO^{6}$	Background 9
Sample Depth	8-10 ft bgs	10-	-12 ft t	gs	Samples) ⁸		-
Inorganics (mg/kg)				<u> </u>	• · · •		•
Aluminum	723		715		723	SB	33,000
Antimony						SB	NV
Arsenic			1.0	В	1.0	7.5 or SB	3-12
Barium	2.5 B		2.8	В	2.8	300 or SB	15-600
Beryllium			0.08	В	0.08	0.16 or SB	0-1.75
Cadmium						1 or SB	0.1-1
Calcium	13.2 B		553	В	553.0	SB	130-35,000
Chromium	4.3		2.3		4.3	10 or SB	1.5-40
Cobalt	0.91 B		0.77	В	0.91	30 or SB	2.5-60
Copper	1.6 B		1.2	В	1.6	25 or SB	1-50
Iron	1790		1910		1910	2000 or SB	2,000-550,000
Lead	0.54 B		0.52	В	0.54	20-500 10	20-500 10
Magnesium	124 B		454	В	454	SB	100-5,000
Manganese	28.5		49.7		50	SB	50-5,000
Mercury						0.1	0.001-0.2
Nickel	1.0 B		0.87	В	1.0	13 or SB	0.5-25
Potassium	50.9 B		71.9	В	71.9	SB	8,500-43,000
Selenium						2 or SB	0.1-3.9
Silver						SB	NV
Sodium						SB	6,000-8,000
Thallium						SB	NV
Vanadium	1.5 B		1.7	В	1.7	150 or SB	1-300
Zinc	2.3 B.	J	1.9	BJ	2.3	20 or SB	9-50
Cyanide			0.35	В	0.35	NV	NV

NOTES:

1. See Section 4.3.2 for information regarding the criteria used to establish background samples.

2. Blank indicates compound was not detected.

- 3. Analytical testing completed by CompuChem Corporation.
- 4. Q = laboratory qualifier. See Appendix E for qualifier definitions.

5. mg/kg = milligrams per kilogram; bgs = below ground surface.

 RSCO is the Recommended Soil Cleanup Criteria from NYSDEC Technical and Administrative Guidance Memorandum No. HWR-94-4046.

7. SB = site background; NV = no value.

8. The higher concentration of selected soil samples is considered representative of background Site conditions.

9. Published background as noted in NYSDEC Technical and Administrative Guidance Memorandum No HWR-94-4046.

10. Average background levels of lead for metropolitan or suburban areas or near highways typically range from 200-500 ppm.

Table 4-2 Evaluation of Upgradient Groundwater Samples

Spectrum Finishing Corporation Site West Babylon, New York

Site No. 1-52-029

			Site No.	1 02	022					
	Low Flo		Low Flo		Low Flo		Low Flo			NYSDEC Class GA
Sample Location	MW-1		MW-11		MW-11		LOW FIG			Evaluation
1		-							IIICITET ⁹	_
Sample Date	4/30/20		4/30/20		4/30/20		5/1/200	_	HIGHEST ⁹	Criterion ⁷
		Q		Q		Q		Q		
Volatile Organics (ug/L)									ND	-
Chloroethane									ND	5
Methylene chloride									ND	5
Acetone									ND	50
Chloroform Carbon disulfide									ND	7 NV
			5	r			1	T	ND	
Methyl-tert-butyl ether			5	J			1	J	5	NV
1,1-Dichloroethane					2	T			ND	5
1,1-Dichloroethene					2	J I			2	5
1,1,2-Trichloro-1,2,2-trifluoroethane					1	J			1	5
1,1,1-Trichloroethane				T	11			T	11	5
Trichloroethene			2	J	14		2	J	14 ND	5
Benzene									ND	1
4-Methyl-2-pentanone					10	D	100		ND 120	NV
Tetrachloroethene					13	В	130		130 ND	5
Toluene									ND	5
Chlorobenzene									ND	5
Ethylbenzene									ND	5
Xylenes (Total)						ž		×	ND	5
1,2-Dichloroethene (Total)					2	J	4	J	4	5
1,3-Dichlorobenzene									ND	3
1,4-Dichlorobenzene									ND	3
1,2-Dichlorobenzene									ND	3
1,2-Dibromo-3-chloropropane									ND	0.04
1,2,4-Trichlorobenzene									ND	5
Unfiltered Inorganics (ug/L	670		00.1	D	-				00.1	1100
Aluminum	578		89.1						89.1	1109
Antimony			1.8	в					1.8	3
Arsenic	10.0	5	16.0	5		D	50.1	D	ND	25
Barium	18.9	в	46.9	в	21.2	В	58.1	В	58.1	1000
Beryllium	0.55	5					0.40	D	ND	3
Cadmium	0.75	в	15100		10000		0.43	В	0.75	5
Calcium	33500	5	15100	5	12800	D	11700	D	33500	16100
Chromium	4	В	4.1	в	2.9	В	3.2	В	4.1	57
Hexavalent Chromium		5			0.77	D	0.54	D	ND	50
Cobalt	2.1				0.66		0.56		2.1	7
Copper	10.9				2.7	B		В	10.9	200
Iron	31.4	ΒJ	37.6	ΒJ	48.1	BJ	43.4	ВÌ	48.1	409
Lead				_					ND	25
Magnesium	3080	В	3390		3850		2470	В	3850	35000
Manganese	94.3		9.6	В	2.5	в	19.5		94.3	300
Mercury		D		D		D		D	ND	0.7
Nickel	9.8		5.2		5.3			B	9.8	252
Potassium	3440	BE	1520	BE	1230	BE	1740	BE	3440	2165
Selenium									ND	10
Silver	10100		10200		10200		7200		ND	50
Sodium	19100		10200		10300		7290		19100	20000
Thallium	0.51	D			0.54	D	0.50	D	ND 0.59	0.5
Vanadium	0.51	В			0.54	В	0.58	В	0.58	0.9
Zinc	51 NT		NT		NT		NT		51 NT	2000
Cyanide	NT		NT		NT		NT		NT	200

NOTES:

1. Compounds detected in one or more groundwater samples are presented in this table.

2. Blank indicates compound was not detected.

3. NT = compound was not tested; ND = Not Detected.

4. Analytical testing completed by CompuChem Corporation.

5. Q = laboratory qualifier.

6. ug/L = micrograms per liter.

 NYSDEC Class GA Standards (Std)/Guidance Values (GV): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, dated June 1998.

8. NV = no value.

9. Highest of the upgradient concentration in groundwater (i.e., groundwater collected from MW-1S, MW-1D1, MW-1D2, and MW-9S in 2001).

Table 5-1 Summary of Field Test Parameters

Spectrum Finishing Corporation Site West Babylon, New York

Site No. 1-52-029

Monitoring Well	Date	pH (standard units)	Specific Conductance (mS/cm)	Temperature (C)	Turbidity (NTU)	
MW-1S	July 1999	5.85	0.20	15.1	0	
MW-1S	July 2000	4.65	0.23	16.0	0	
MW-1S	April 2001	5.65	0.28	14.1	1	
MW-1D1	July 1999	5.76	0.11	14.7	0	
MW-1D1	July 2000	5.39	0.14	15.8	0	
MW-1D1	April 2001	5.52	0.16	14.1	3	
MW-1D2	July 1999	6.78	0.17	15.7	1	
MW-1D2	July 2000	5.28	0.15	14.7	0	
MW-1D2	April 2001	5.52	0.16	14.3	2	
MW-2S	July 1999	6.77	0.15	15.5	2	
MW-2S MW-2S	July 2000	5.59	0.19	18.5	15	
MW-2D	April 2001 July 1999	5.94 6.18	0.16	13.2	6 NA	
MW-2D MW-2D	July 2000	5.62	0.14	14.7	0	
MW-2D MW-2D	April 2001	5.40	0.14	14.7	2	
MW-2D MW-3S	July 1999	5.55	0.24	14.4	2	
MW-3S	July 2000	5.67	0.18	15.6	13	
MW-3S	April 2001	6.43	0.18	13.3	1	
MW-3D	July 1999	5.74	0.35	14.3	0	
MW-3D	July 2000	5.61	0.17	16.2	0	
MW-3D	April 2001	5.17	0.18	15.2	1	
MW-4S	July 1999	5.68	0.25	16.2	1	
MW-4S	July 2000	6.32	0.44	16.4	2	
MW-4S	April 2001	5.79	0.66	13.8	1	
MW-4D	July 1999	5.55	0.16	14.6	1	
MW-4D	July 2000	5.75	0.26	16.0	4	
MW-4D	April 2001	5.63	0.24	13.9	1	
MW-5D1	July 1999	6.00	0.26	15.2	1	
MW-5D1	July 2000	5.64	0.39	14.9	7	
MW-5D1	April 2001	7.04	0.20	13.5	3	
MW-5D2	July 1999	7.44	0.27	17.9	3	
MW-5D2	July 2000	5.44	0.19	16.9	3	
MW-5D2	April 2001	6.57	0.38	13.4	3	
MW-6S	July 2000	6.56	0.30	15.6	12	
MW-6S	April 2001	5.61	0.31	12.1	2	
MW-6D1 MW-6D1	July 1999	6.92 5.67	0.21 0.21	15.0	4	
MW-6D1 MW-6D1	July 2000 April 2001	5.77	0.22	13.9	3	
MW-6D2	July 1999	9.22	0.22	15.5	4	
MW-6D2	July 2000	5.05	0.29	17.4	1	
MW-6D2	April 2001	5.37	0.39	13.5	1	
MW-7S	July 1999	6.94	0.16	15.5	18	
MW-7S	July 2000	6.18	0.13	16.8	4	
MW-7S	April 2001	6.28	0.10	10.5	2	
MW-7D	July 1999	5.83	0.15	15.0	0	
MW-7D	July 2000	5.62	0.14	16.1	0	
MW-7D	April 2001	5.47	0.13	12.7	0	
MW-8D1	July 1999	6.12	0.16	15.9	0	
MW-8D1	July 2000	5.68	0.14	16.0	0	
MW-8D1	April 2001	5.65	0.13	13.3	3	
MW-9S	July 2000	5.52	0.18	15.9	15	
MW-9S	April 2001	5.46	0.35	16.1	11	
MW-10S	July 2000	5.94	0.19	15.0	26	
MW-10S	April 2001	5.18	0.20	14.1	2	
MW-11S	July 2000	6.00	0.17	16.8	16	
MW-11S	April 2001	5.97	0.24	12.3	2	
MW-12S	July 2000	5.92	0.15	14.6	8	
MW-12S	April 2001	5.27	0.19	4.7	14	
MW-12D1	April 2001	5.64	0.23	15.1	1	
MW-12D2 MW-13S	May 2001 May 2001	6.09 9.32	0.19 0.34	14.7 14.9	9	
MW-13D1			0.18		4	
MW-13D1 MW-13D2	May 2001 May 2001	5.73 6.35	0.18	15.1 15.4	5	
MW-13D2 MW-14S	May 2001 May 2001	6.28	0.24	13.4	7	
MW-14D1	May 2001 May 2001	4.82	0.13	14.5	0	
MW-14D1 MW-158	May 2001 May 2001	6.20	0.13	13.0	2	
MW-155 MW-15D1	May 2001	5.74	0.18	15.8	9	

NOTES:

1. mS/cm = millisiemens per centimeter; C = degrees Celsius; NTU = nephelometric turbidity units

2. NA = not available

3. Field parameters were collected during monitoring well development and/or well purging prior to sampling.

Table 6-1 Summary of Exposure Assessment Pathways

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Medium	Exposure	Likelihood of Exposure	Data Set	Standards
	Ingestion, Inhalation and Dermal Contact Low		Surface Soil Test Results	TAGM 4046 Soil Cleanup Objectives
Surface Soils	by local commercial workers and migration			
	to surface water through erosion.			
	Ingestion, Inhalation and Dermal Contact by	Low	Test Results for Geoprobe/Soil Boring Subsurface	
	construction or commercial/maintenance		Soil; Sediment (Soil) from Drainage Structures,	TAGM 4046 Soil Cleanup Objectives
	workers.		Cesspools, Former Well Structures;	
Subsurface Soils			and Soil Adjacent to Former Interior Sump	
	Leaching to groundwater.	Moderate	Test Results for Geoprobe/Soil Boring Subsurface	
			Soil; Sediment (Soil) from Drainage Structures,	TAGM 4046 Soil Cleanup Objectives
			Cesspools, Former Well Structures;	
			and Soil Adjacent to Former Interior Sump	
	Ingestion, Inhalation and Dermal Contact	Moderate	Test Results for Overburden Groundwater	NYSDEC Class GA Groundwater Quality Criteria
	from use as a drinking water source.		(from Geoprobe Borings and Monitoring Wells)	
Overburden Groundwater				
	Ingestion, Inhalation and Dermal Contact		Test Results for Overburden Groundwater	NYSDEC Class GA Groundwater Quality Criteria
	at points of groundwater discharge	Moderate	(from Geoprobe Borings and Monitoring Wells)	
	(e.g., sumps, basements, bodies of water)			
	Inhalation within excavations, manholes,		Overburden Groundwater Test Results	
Soil Vapor	sumps, buildings/basements, other structures,	Low	(see above) used to estimate	According to NYSDOH, none available.
	or otherwise outdoors.		maximum possible vapor concentrations	
			by applying Henry's Law	
	Inhalation by local commercial		Field Air Monitoring Results	
Air	workers or construction/maintenance	Low		None.
(Particulate Dusts)	workers.			

Notes:

1. See text section 6.0 for further discussion of Likelihood of Exposure.

Table 6-2 Summary of New York State Criteria for Surface Soil

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

Site No. 1-52-029								
	Number of	Summary of Number of	f Site Occurrence	NUCDEO				
Parameter	Samples	Samples	Maximum	Location of Maximum	NYSDEC TAGM 4046 ³			
Volatile Organics (ug/kg)	Dettetted	Tested		Muximum				
1,1,2-Trichloroethane	1	8	5	AP-2, S-1	NV			
Chloroethane	1	8	6	AP-1, S-1	1,900			
1,1-Dichloroethene	1	8	5	AP-1, S-1	400			
1,1-Dichloroethane	2	8	2,200	AP-1, S-1	200			
1,1,1-Trichloroethane	2	8	2,400	AP-1, S-1	800			
Trichloroethene	2	8	22	AP-2, S-1	700			
Tetrachloroethene	3	8	150	AP-1, S-1	1,400			
Toluene	2	8	15	AP-1, S-1	1,500			
Semi-Volatile Organics (ug/kg)				111 1,0 1	1,000			
Dimethyl phthalate	2	8	420	AP-8	2,000			
Di-n-Butylphthalate	1	8	110	AP-8	8,100			
Fluoranthene	1	8	35	AP-10	50,000			
Pyrene	2	8	86	AP-8	50,000			
Butylbenzylphthalate	6	8	5,800	AP-7	50,000			
Bis (2-Ethylhexyl) Phthalate	8	8	5,000	AP-7	50,000			
Di-n-Octyl Phthalate	1	8	82	AP-7 AP-8	50,000			
Benzo (b) Fluoranthene	2	8	100	AP-8	1,100			
Indeno (1,2,3-cd) Pyrene	1	8	140	AP-8	3,200			
Benzo(g,h,i) Perylene	2	8	350	AP-8	50,000			
	Z	8	550	AP-0	30,000			
Pesticides and PCBs (ug/kg)	1	2	1.1.1	AP-10	100			
Heptachlor	1	2	1.4		100			
Beta-BHC	1		1.5	AP-10	200			
Gamma-BHC (Lindane)	1	2	0.36	AP-10	60			
Dieldrin	2	2	4.7	AP-10	44			
4,4'-DDE	2	2	18	AP-5	2,100			
4,4'-DDD	2	2	8.6	AP-10	2,900			
4,4'-DDT	2	2	29	AP-10	2,100			
Endosulfan sulfate	1	2	2	AP-10	1,000			
alpha-Chlordane	1	2	23	AP-10	NV			
gamma-Chlordane	1	2	2.3	AP-10	540			
PCB-1254	8	8	6,100	AP-1, S-1	1,000			
PCB-1260	4	8	1,600	AP-8	1,000			
Metals (mg/kg)			T					
Aluminum	8	8	7,610	AP-5	SB			
Antimony	5	8	10.2	AP-7	SB			
Arsenic	8	8	10.9	AP-10	7.5			
Barium	8	8	220	AP-10	300			
Beryllium	8	8	0.8	AP-2, S-1	0.16			
Cadmium	8	8	1,670	AP-8	1			
Calcium	8	8	22,600	AP-10	SB			
Chromium	8	8	3,130	AP-8	10			
Cobalt	8	8	27.8	AP-8	30			
Copper	8	8	1,970	AP-8	25			
Iron	8	8	13,100	AP-8	2,000			
Lead	8	8	188	AP-7	200-500			
Magnesium	8	8	3,790	AP-10	SB			
Manganese	8	8	613	AP-8	SB			
Mercury	7	8	0.7	AP-8	0.1			
Nickel	8	8	21,100	AP-8	13			
Potassium	8	8	365	AP-10	SB			
Selenium	3	8	1.9	AP-7	2			
Silver	3	8	18.1	AP-2, S-1	SB			
Sodium	3	8	242	AP-8	SB			
Thallium	8	8	3.3	AP-8	SB			
Vanadium	8	8	15.7	AP-2, S-1	150			
Zinc	8	8	1190	AP-8	20			
Cyanide	7	8	66.5	AP-9	NV			

NOTES:

1. Site occurrence includes maximum detected values of the respective test parameters.

2. SB = Site Background

3. TAGM 4046 = "Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives Levels", prepared by NYSDEC, are adjusted for inorganic compounds based on background Site soil samples. See Table 4-1.
 4. NV = No Value

5. ug/kg = parts per billion, mg/kg = parts per million.

Table 6-3 Summary of New York State Criteria for Subsurface Soil

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

	Summary of Site Occurrence						
Parameter	Number of Samples Detected	Number of Samples Tested	Maximum	Location of Maximum	NYSDEC TAGM 4046		
Volatile Organics (ug/kg)	Delected	Testeu		Wiaximum	4040		
Chloromethane	1	155	1	GP-48,S-7	NV		
Bromomethane	1	155	3	GP-48, S-7	NV		
Methylene Chloride	9	155	37	DS-11	100		
Acetone	36	155	90	DS-9	200		
Carbon Disulfide	3	155	4	DS-11	2,700		
1,1-Dichloroethane	2	155	6	WS-1	2,700		
2-Butanone	3	155	7	DS-2	300		
1,1,1-Trichloroethane	9	155	78	TP-1,S-1	300		
1,1,2-Tricholoro-1,2,2-trifluoroethane	12	155			6,000		
			4	GP-48, S-2	,		
1,2-Dibromo-3-chloropropane	1	155	1	GP-47, S-2	NV		
1,2,4-Trichlorobenzene	2	155	1	GP-46, S-10 GP-47, S-2	3,400		
Trichloroethene	12	155	28	TP-1,S-1	700		
4-Methyl-2-Pentanone	3	155	3	GP-49	1,000		
2-Hexanone	2	155	1	GP-45,S-6, GP-47,S-2	NV		
Tetrachloroethene	27	155	480	GP-47,S-1	1,400		
Toluene	21	155	280	DS-9	1,500		
Ethylbenzene	3	155	170	DS-9	5,500		
Styrene	1	155	14	DS-11	NV		
Xylene (total)	3	155	360	DS-9	1,200		
Semi-volatile Organics (ug/kg)							
2-Methylnaphthalene	1	21	1,000	DS-2	36,400		
Phenanthrene	1	21	1,400	DS-2	50,000		
Di-n-Butyl phthalate	3	21	550	DS-2	8,100		
Fluoranthene	1	21	480	DS-2	50,000		
Pyrene	1	21	1,100	DS-2	50,000		
Butylbenzylphthalate	2	21	14,740	CP-6 (IRM Conf.)	50,000		
Benzo (a) Anthracene	1	21	190	DS-2	224		
Chrysene	1	21	340	DS-2	400		
Phenol	1	21	75	GP-32, S-5	30		
Bis (2-ethylhexyl) phthalate	12	21	4,100	DS-2	50,000		
Di-n-Octyl Phthalate	1	21	320	DS-2 DS-2	50,000		
Benzo (b) Fluoranthene	1	21	260	DS-2	1,100		
Benzo (k) Fluoranthene	1	21	330	DS-2	1,100		
PCBs and Pesticides (ug/kg)	1		550	0.02	1,100		
Aldrin	10	19	13	DS-10 (IRM Conf.)	41		
Alpha-BHC	10	19	4.2	DS-10 (IRM Conf.)	110		
Beta-BHC	11	19	6.1	DS-10 (IRM Conf.)	200		
Delta-BHC	10	19	5.7	DS-10 (IRM Conf.)	300		
Gamma-BHC (Lindane)	11	19	3.8	CP-5	60		
4,4'-DDD	7	19	1.1	CP-7	2,900		
4,4'-DDE	10	19	170	DS-10 (IRM Conf.)	2,100		
4,4'-DDT	6	19	3.8	CP-7	2,100		
Dieldrin	10	19	5.2	DS-2	44		
Endosulfan I	10	19	110	DS-10 (IRM Conf.)	900		
Endosulfan II	12	19	130	DS-10 (IRM Conf.)	900		
Endosulfan sulfate	10	19	130	DS-10 (IRM Conf.)	1,000		
Endrin	12	19	140	DS-10 (IRM Conf.)	100		
Endrin aldehyde	11	19	230	DS-10 (IRM Conf.)	NV		
Heptachlor	10	19	13	DS-10 (IRM Conf.)	100		
Heptachlor epoxide	10	19	56	DS-10 (IRM Conf.)	20		
p,p'-Methoxychlor	12	19	78	GP-32,8-5	NV		
		98	1500	GP-32,8-5	10,000		
	18			01 54,0-5	10,000		
Aroclor - 1254	18				10.000		
Aroclor - 1254 Aroclor - 1260	1	98	12	WS-1	10,000 NV		
Aroclor - 1254					10,000 NV 540		

NOTES: (See Page 2.)

Table 6-3 Summary of New York State Criteria for Subsurface Soil

Spectrum Finishing Corporation Site West Babylon, New York Site No. 1-52-029

		Summary of Site Occurrence					
Parameter	Number of Samples Detected	Number of Samples Tested	Maximum	Location of Maximum	NYSDEC TAGM 4046		
Metals (mg/kg)							
Aluminum	155	155	15400	TP-1, S-1	SB		
Antimony	24	155	14.6	DS-12	SB		
Arsenic	73	155	13.7	TP-1, S-1	7.5		
Barium	155	155	469	DS-12	300		
Beryllium	107	155	1	TP-1, S-1	0.16		
Cadmium	93	155	5500	TP-1, S-1	1		
Calcium	155	155	74000	DS-2	SB		
Chromium	155	155	19600	TP-1, S-1	10		
Cobalt	155	155	6.7	DS-6	30		
Copper	155	155	3610	TP-1, S-1	25		
Iron	155	155	16200	DS-12	2,000		
Lead	150	155	1170	DS-6	200-500		
Magnesium	155	155	42400	DS-2	SB		
Manganese	150	155	350	GP-11,S-4	SB		
Mercury	43	155	0.52	CP-4 (IRM Conf.)	0.1		
Nickel	155	155	4900	TP-1, S-1	13		
Potassium	155	155	1520	TP-1, S-1	SB		
Selenium	16	155	2.4	TP-1, S-1	2		
Silver	16	155	3.3	DS-12	SB		
Sodium	97	155	1350	CP-3 (IRM Conf.)	SB		
Thallium	52	155	4.3	TP-1, S-1	SB		
Vanadium	152	155	24.8	DS-7	150		
Zinc	111	155	2980	TP-1, S-1	20		
Cyanide	48	107	950	CP-3,S-1	NV		

NOTES:

1. Site occurrence includes maximum detected values of the respective test parameters.

2. SB = Site Background

3. TAGM 4046 = "Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives Levels",

prepared by NYSDEC, are adjusted for inorganic compounds based on background Site soil samples. See Table 4-1.

4. NV = No Value

5. ug/kg = parts per billion, mg/kg = parts per million.

6. Pre-IRM cesspool and drainage structure sediments were not included in this summary.

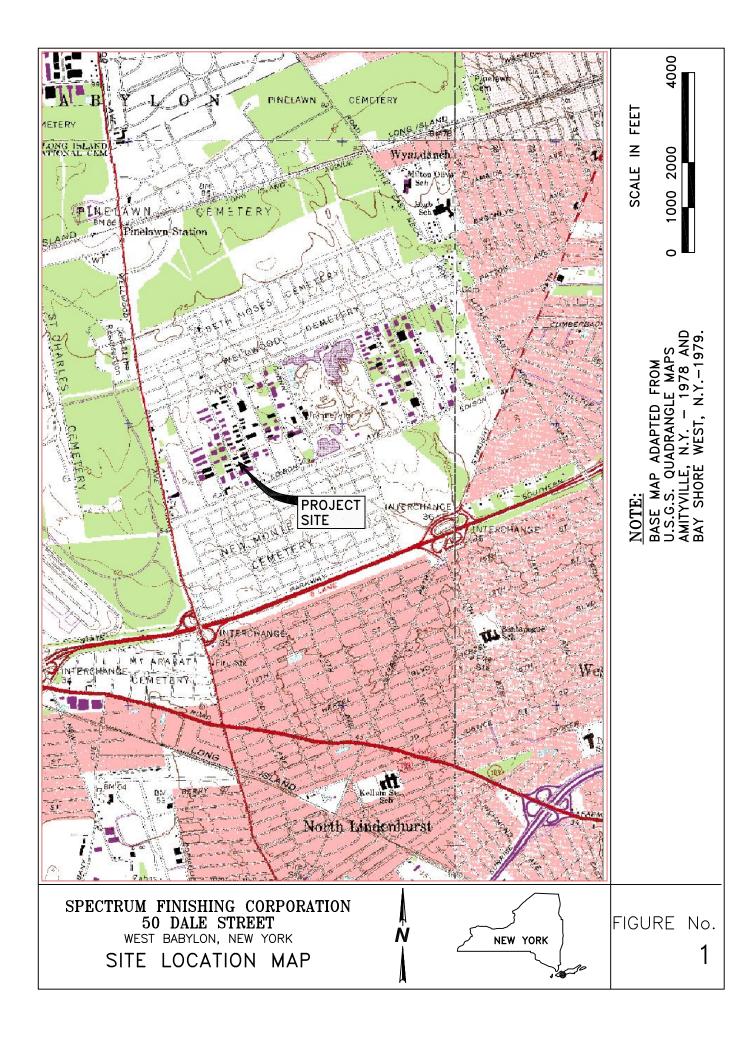
Table 6-4 Summary of New York State Criteria for Overburden Groundwater

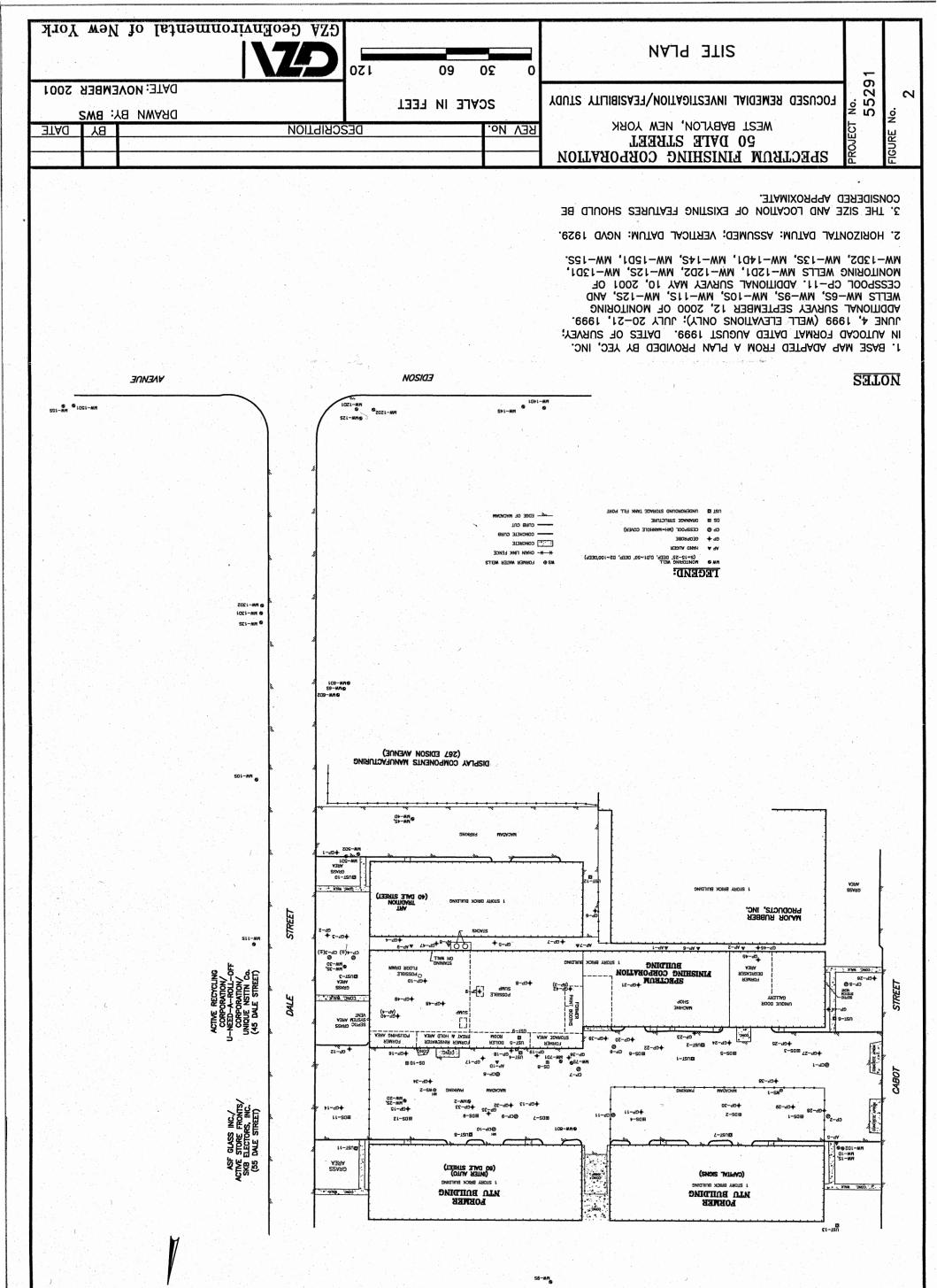
Spectrum Finishing Corporation RI/FS West Babylon, New York Site No. 1-52-029

Parameter	Samples Detected	Samples Tested	Maximum	Location of Maximum	NYSDEC Class GA
Volatile Organics (ug/l)		<u> </u>			
Chloroethane	1	85	2	GP-5	5 (GV)
Chloroform	3	85	2	MW-12D1	7 (std.)
Chlorobenzene	2	85	17	MW-11S (Repeat)	1 (std.)
1,1,2-Trichloro-1,2,2-trifluoroethane	2	85	3	MW-12D2	5 (std.)
Methylene chloride	1	85	29	GP-18	5 (std.)
Carbon disulfide	4	85	2	GP-5 (80)	60 (GV)
Acetone	13	85	41	GP-9	50 (GV)
Methyl tert-butyl ether	4	85	14	MW-3S	10 (GV)
4-Methyl-2-pentanone	2	85	2	MW-8D1	NV
1, 1 -Dichloroethane	12	85	22	GP-6	5 (std.)
1,1-Dichloroethene	9	85	90	GP-12	5 (std.)
1,2-Dichloroethene (total)	25	85	51	MW-12D1	5 (std.)
1,1,1-Trichloroethane	28	85	17	MW-12D2	5 (std.)
1,2,4-Trimethylbenzene	5	85	5	MW-13D1	5 (std.)
Trichloroethene	47	85	64	MW-3D	5 (std.)
Tetrachloroethene	59	85	610	GP-12	5 (std.)
Benzene	2	85	16	MW-11S (Repeat)	1 (std.)
Ethylbenzene	1	85	2	MW-6D2	5 (std.)
1,3-Dichlorobenzene	5	85	2	MW-13D1	3 (std.)
1,4-Dichlorobenzene	5	85	2	MW-6D2 & MW-13D1	3 (std.)
1,2-Dichlorobenzene	5	85	2	MW-6D2 & MW-13D1	3 (std.)
1,2-Dibromo-3-chloropropane	5	85	2	MW-6D2 & MW-13D1	0.04 (std)
Toluene	8	85	18	MW-8D1	5 (std.)
Xylene (total)	4	85	2	GP-13	5 (std.)
Semi-Volatile Organics (ug/l)					
Bis(2-ethylhexyl)phthalate	2	20	4	MW-5D-1	5 (std.)
Pesticides and PCBs (ug/l)					
Aldrin	2	21	0.034	MW-3S	0.002 (GV)
Alpha-BHC	6	21	0.081	MW-3S	NV
Heptachlor	4	21	0.015	MW-1D1	0.04 (Std)
Heptachlor epoxide	6	21	0.18	MW-4S	0.03 (Std)

NOTES: (See Page 2.)

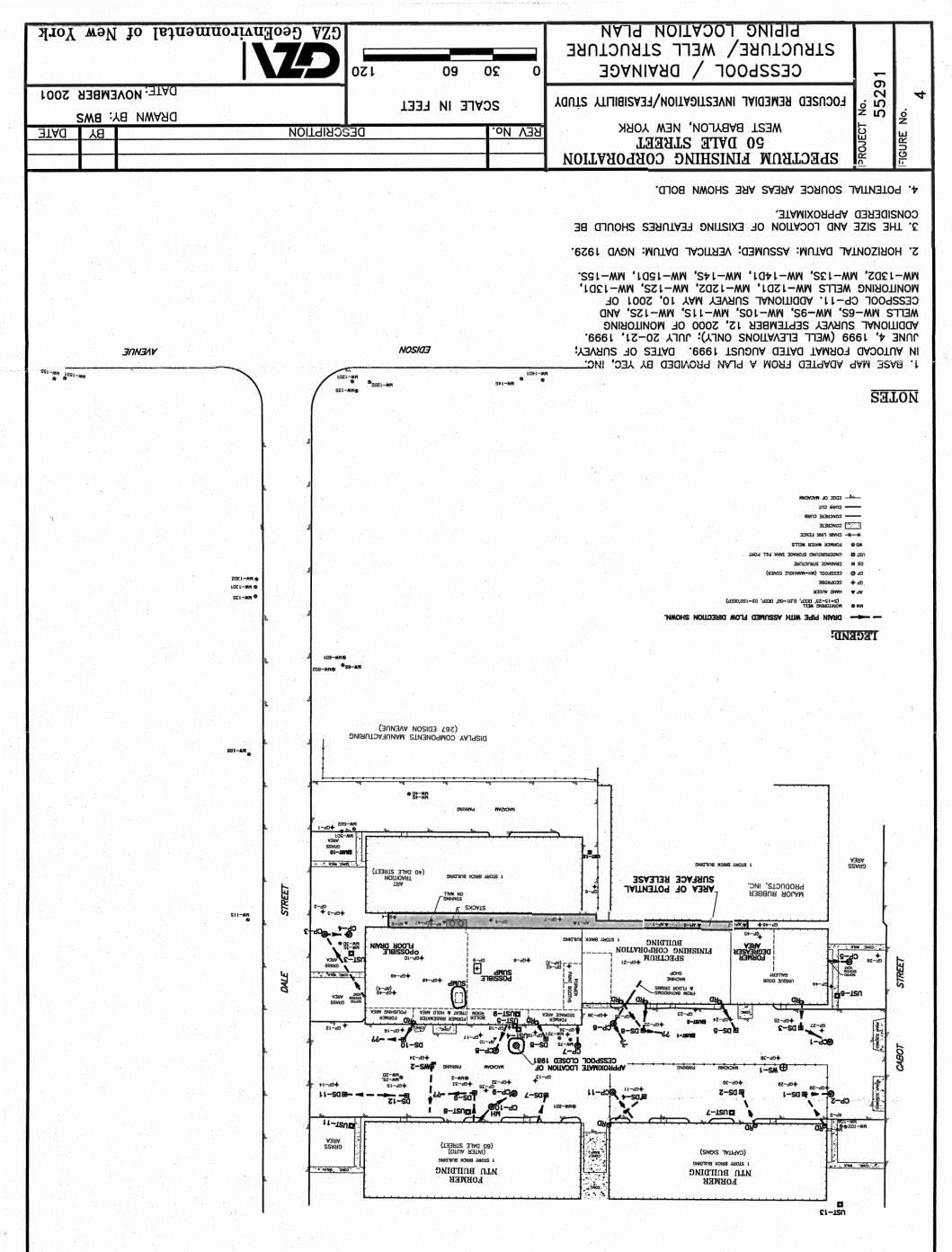
Page 1 of 2

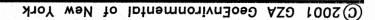

Table 6-4 Summary of New York State Criteria for Overburden Groundwater


Spectrum Finishing Corporation RI/FS West Babylon, New York Site No. 1-52-029

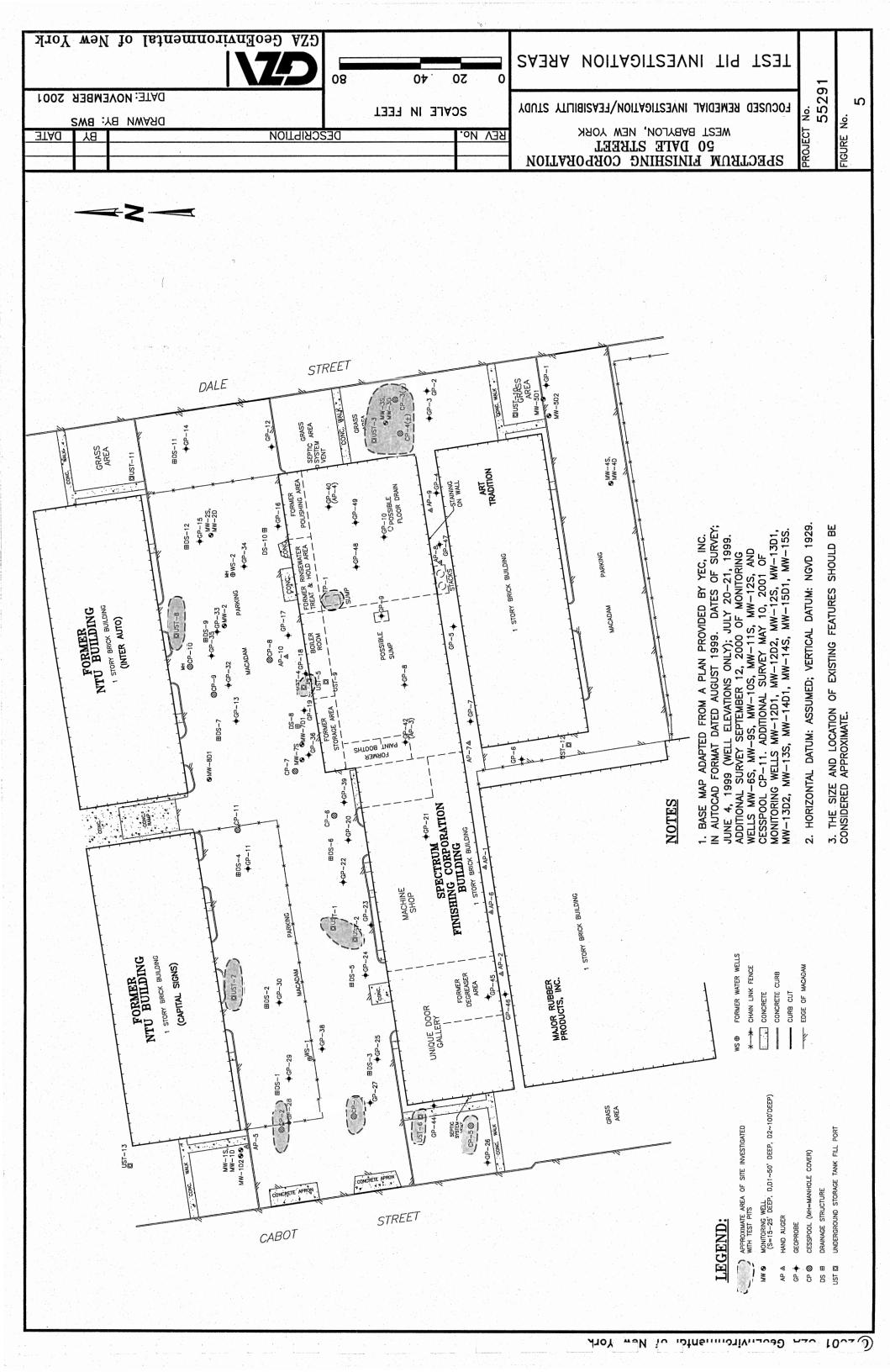
Parameter	Samples Detected	Samples Tested	Maximum	Location of Maximum	NYSDEC Class GA
Unfiltered Metals (ug/l)					
Aluminum	81	84	305,000	GP-7	NV
Antimony	68	84	292	GP-2	3 (std.)
Arsenic	61	84	139	GP-15	25 (std.)
Barium	74	84	2,060	GP-2	1,000 (std.)
Beryllium	64	84	15	GP-2	3 (GV)
Cadmium	53	84	17,200	GP-2	5 (std.)
Calcium	80	84	381,000	MW-7D1	NV
Chromium	75	84	123,000	GP-2	50 (std.)
Hexavalent Chromium	9	30	914	MW-6S	50
Cobalt	83	84	380	GP-44	NV
Copper	65	84	9,520	GP-7	200 (std.)
Iron	83	84	426,000	GP-7	300 (std.)
Lead	58	84	4,940	GP-35	25 (std.)
Magnesium	80	84	53,400	MW-7D1	35,000 (GV)
Manganese	68	84	47,200	GP-44	300 (std.)
Mercury	45	84	5.2	GP-2	0.7 (std.)
Nickel	83	84	7,310	GP-2	100 (std.)
Potassium	82	84	49,700	GP-7	NV
Selenium	34	84	22	GP-7	10 (std.)
Silver	16	84	819	GP-15	50 (std.)
Sodium	83	84	120,000	MW-4S	20,000 (std.)
Thallium	53	84	48.2	GP-44	0.5 (GV)
Vanadium	81	84	326	GP-15	NV
Zinc	69	84	14,200	GP-2	2,000 (GV)
Cyanide	51	75	5,490	GP-2	200 (std.)
Filtered Metals (ug/l)					
Aluminum	20	70	2,930	GP-4	NV
Antimony	69	70	6.5	GP-21	3 (std.)
Arsenic	1	70	4.3	GP-21	25 (std.)
Barium	70	70	256	GP-17	1,000 (std.)
Beryllium	22	70	1.3	GP-4	3 (GV)
Cadmium	55	70	672	MW-4S	5 (std.)
Calcium	70	70	36,700	GP-5	NV
Chromium	23	70	48.1	GP-5	50 (std.)
Cobalt	60	70	23.5	GP-5	NV
Copper	39	70	1910	MW-4S	200 (std.)
Iron	57	70	10,400	GP-11	300 (std.)
Lead	3	70	8.6	GP-33	25 (std.)
Magnesium	70	70	6,880	GP-46	35,000 (GV)
Manganese	70	70	3,150	GP-23	300 (std.)
Nickel	62	70	1,770	GP-9	100 (std.)
Potassium	70	70	15,900	GP-5	NV
Sodium	70	70	104,000	GP-5	20,000 (std.)
Vanadium	41	70	3.3	GP-21	NV
Zinc	64	70	199	GP-4	2,000 (GV)

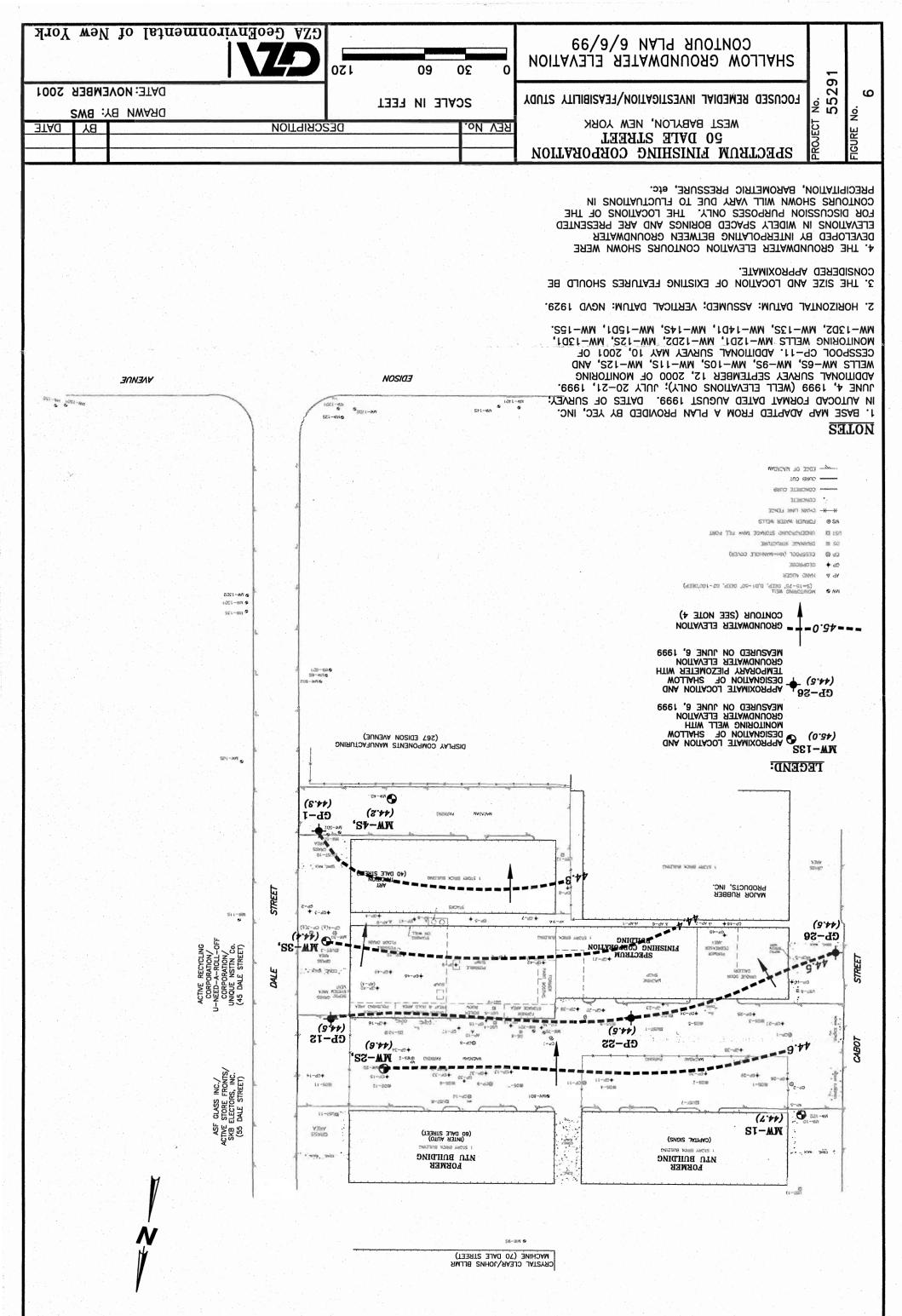
NOTES:


- 1. Site occurrence includes maximum and minimum detected values of the respective test parameters.
- 2. NYSDEC Class GA Groundwater Standards as promulgated in 6 NYCRR 703, dated June 1998; Errata dated January 1999; and Addendum dated April 2000.
- 3. NV = No Value, std. = Standard, GV = Guidance Value.
- 4. ug/l = parts per billion.

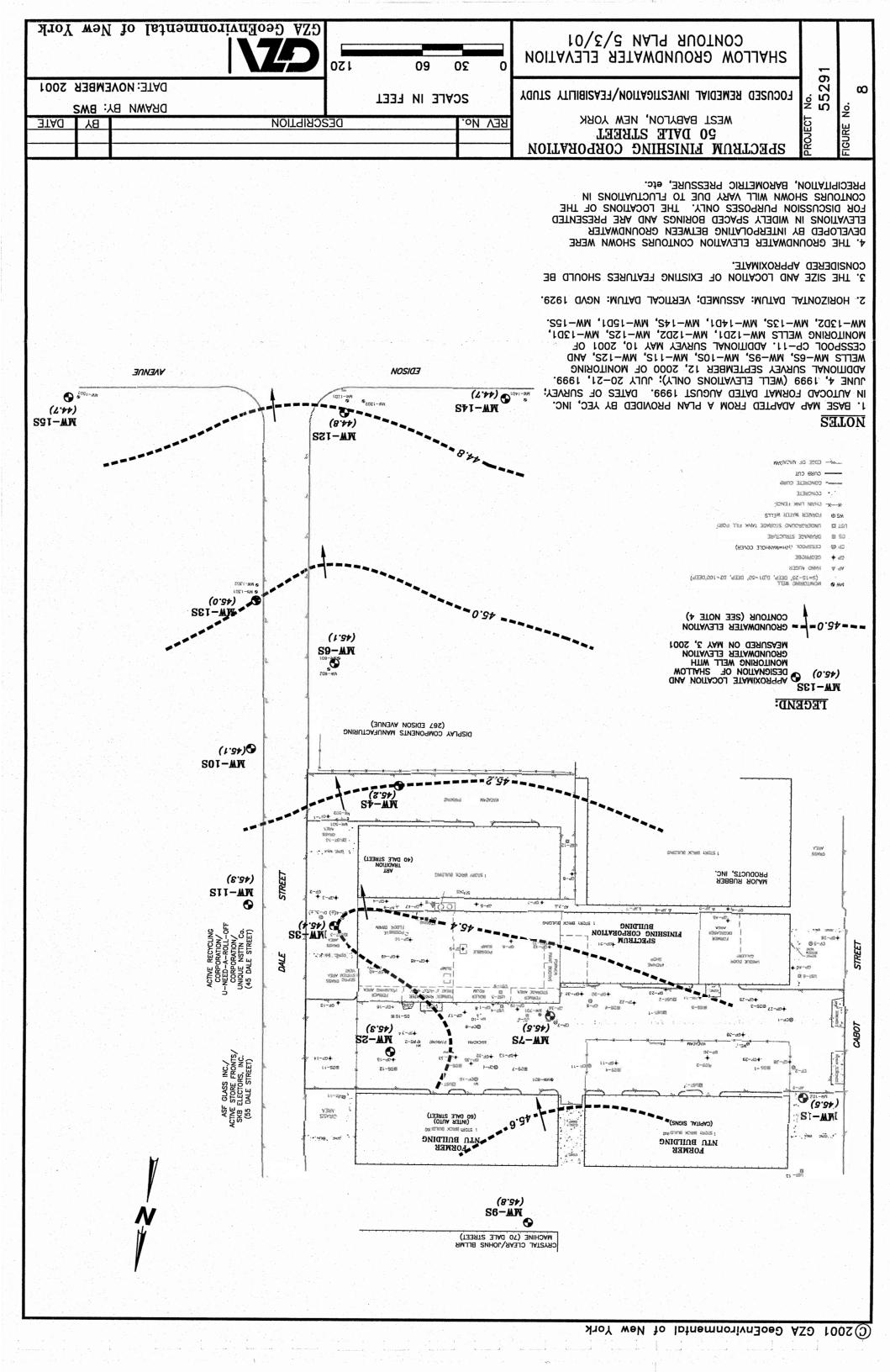


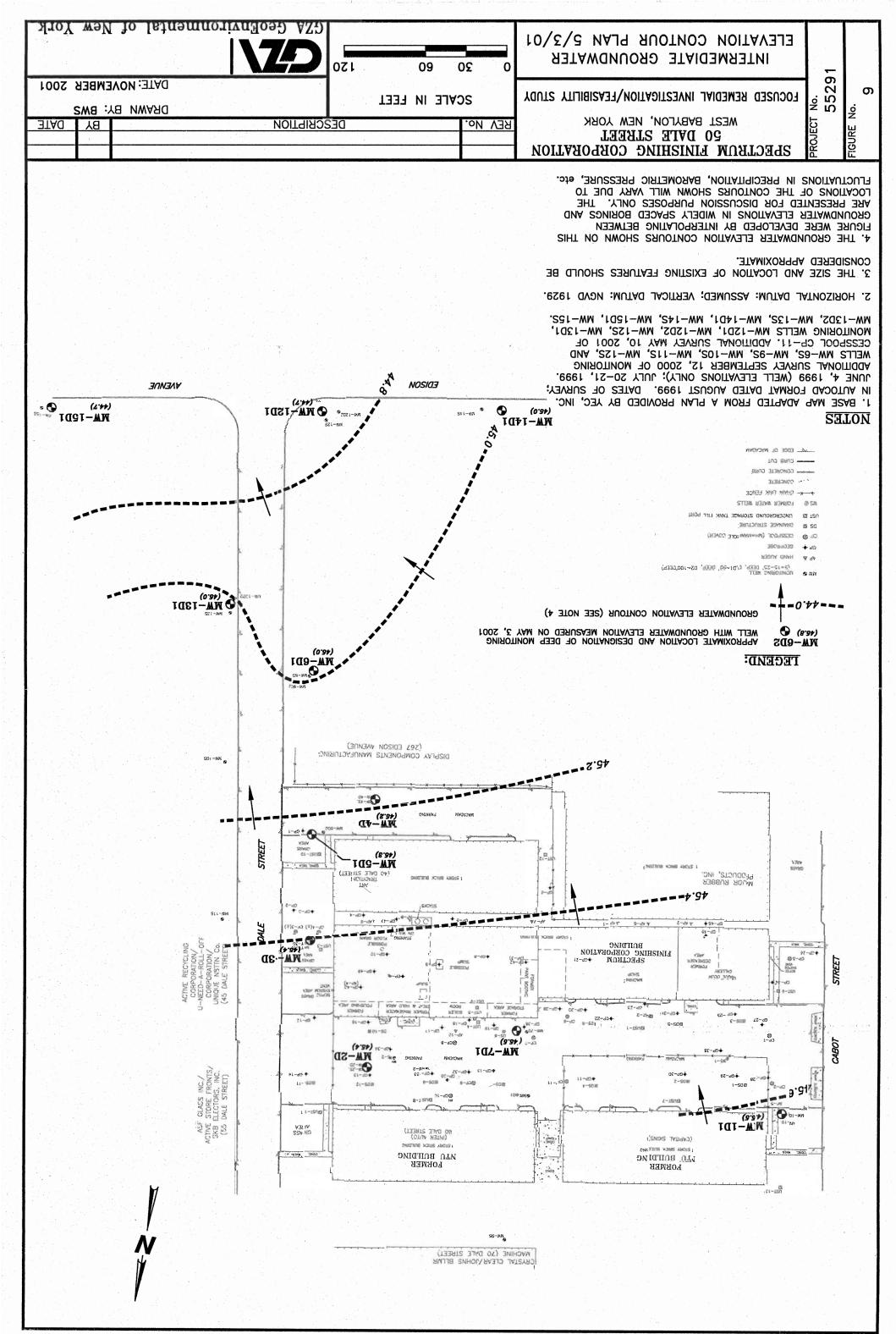
©2001 GZA GeoEnvironmental of New York

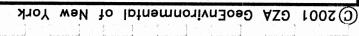

Wychine (10 dyte Sligeel) Cyvstyl Clevy/Johns Bitting

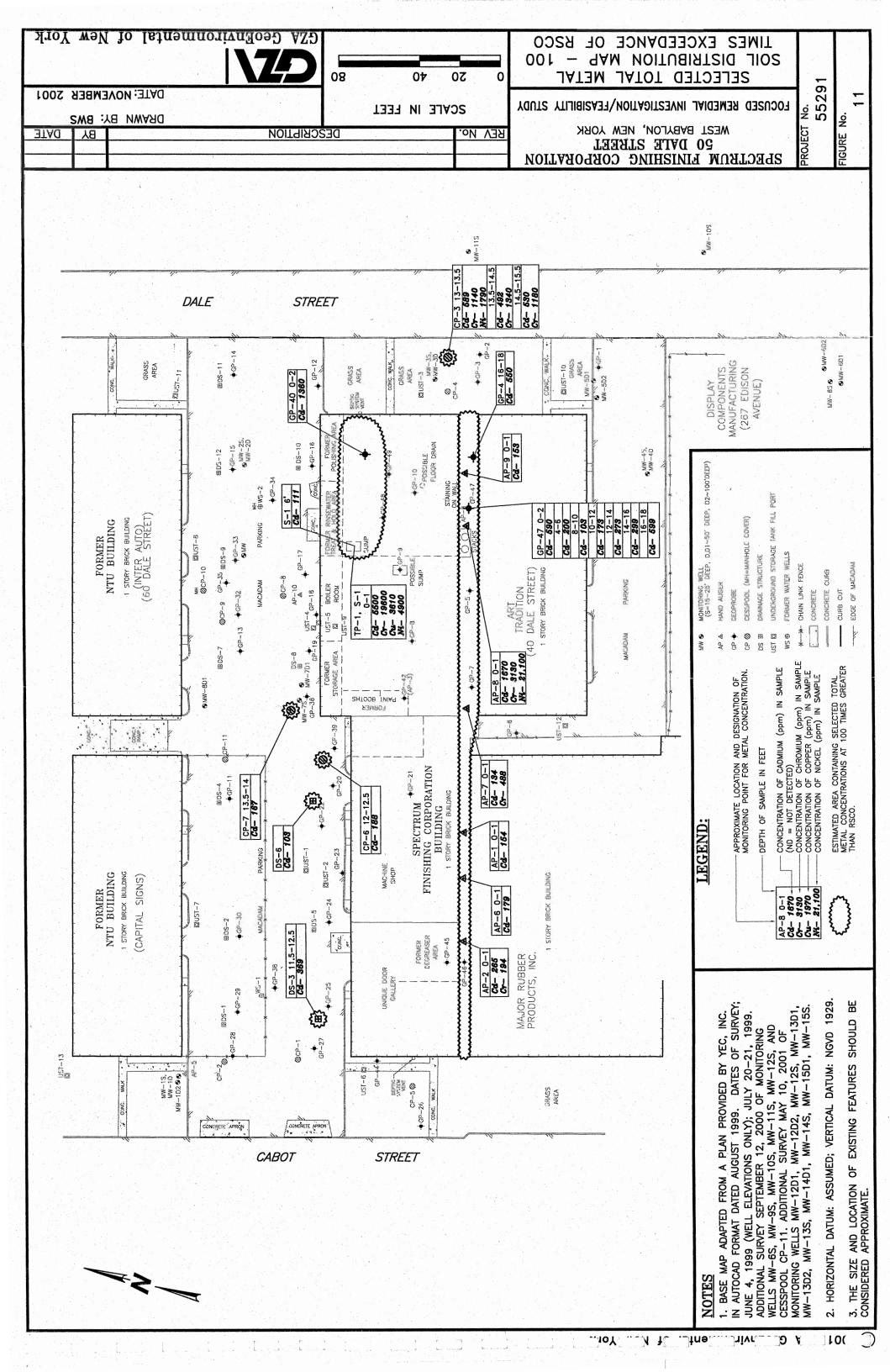


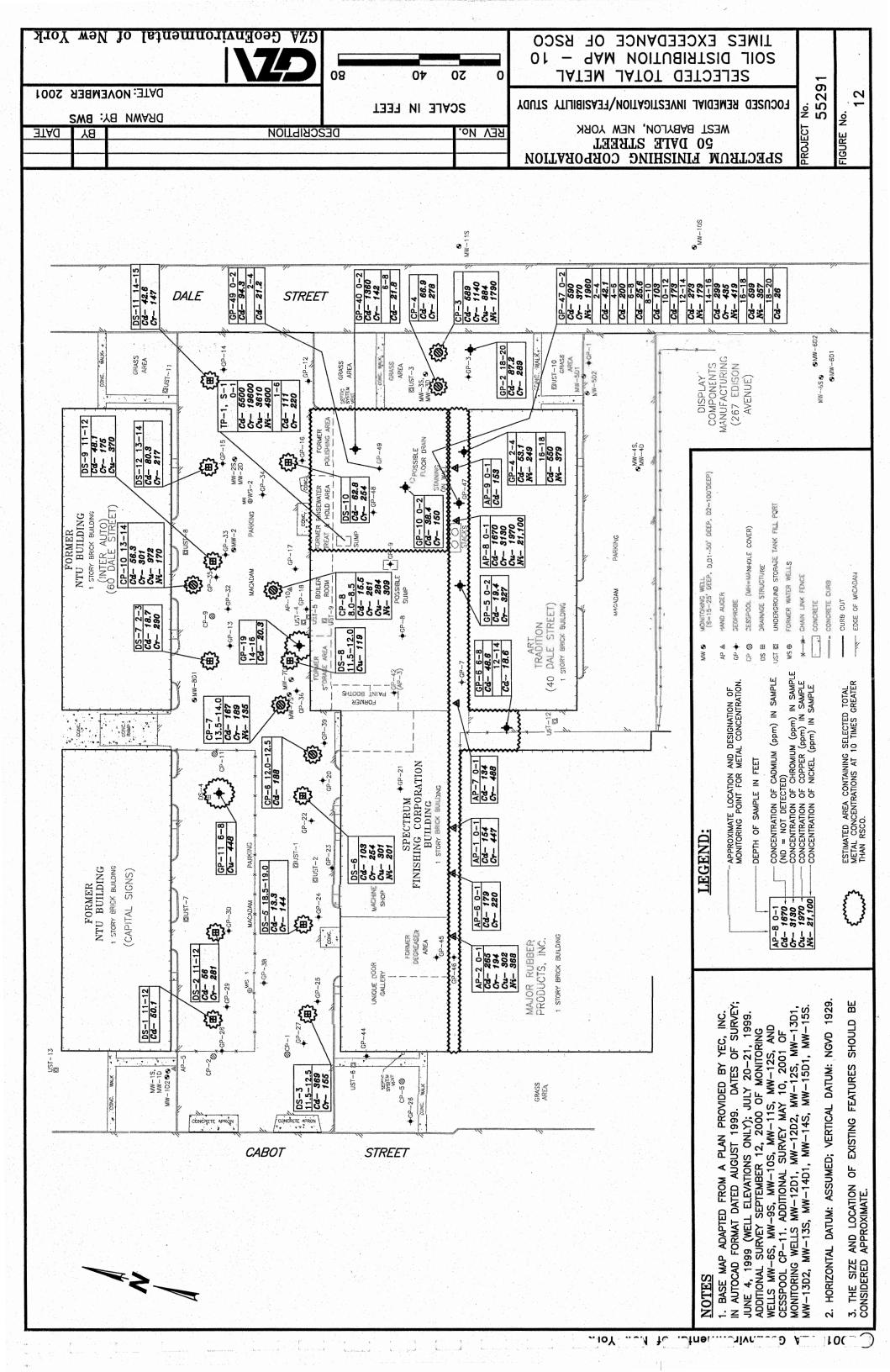
CRYSTAL CLEAR/JOHNS BLLMR MACHINE (70 DALE STREET)

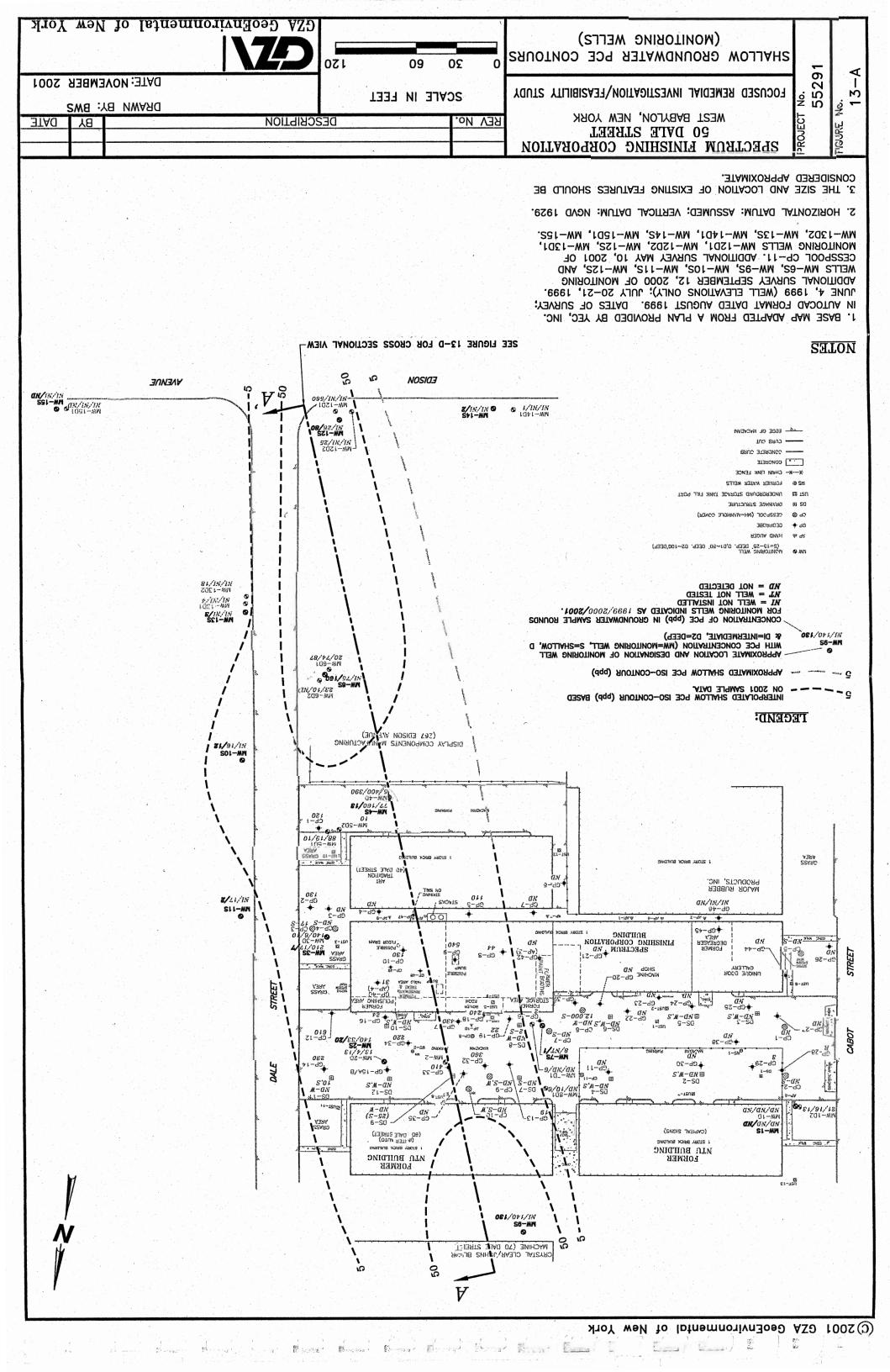


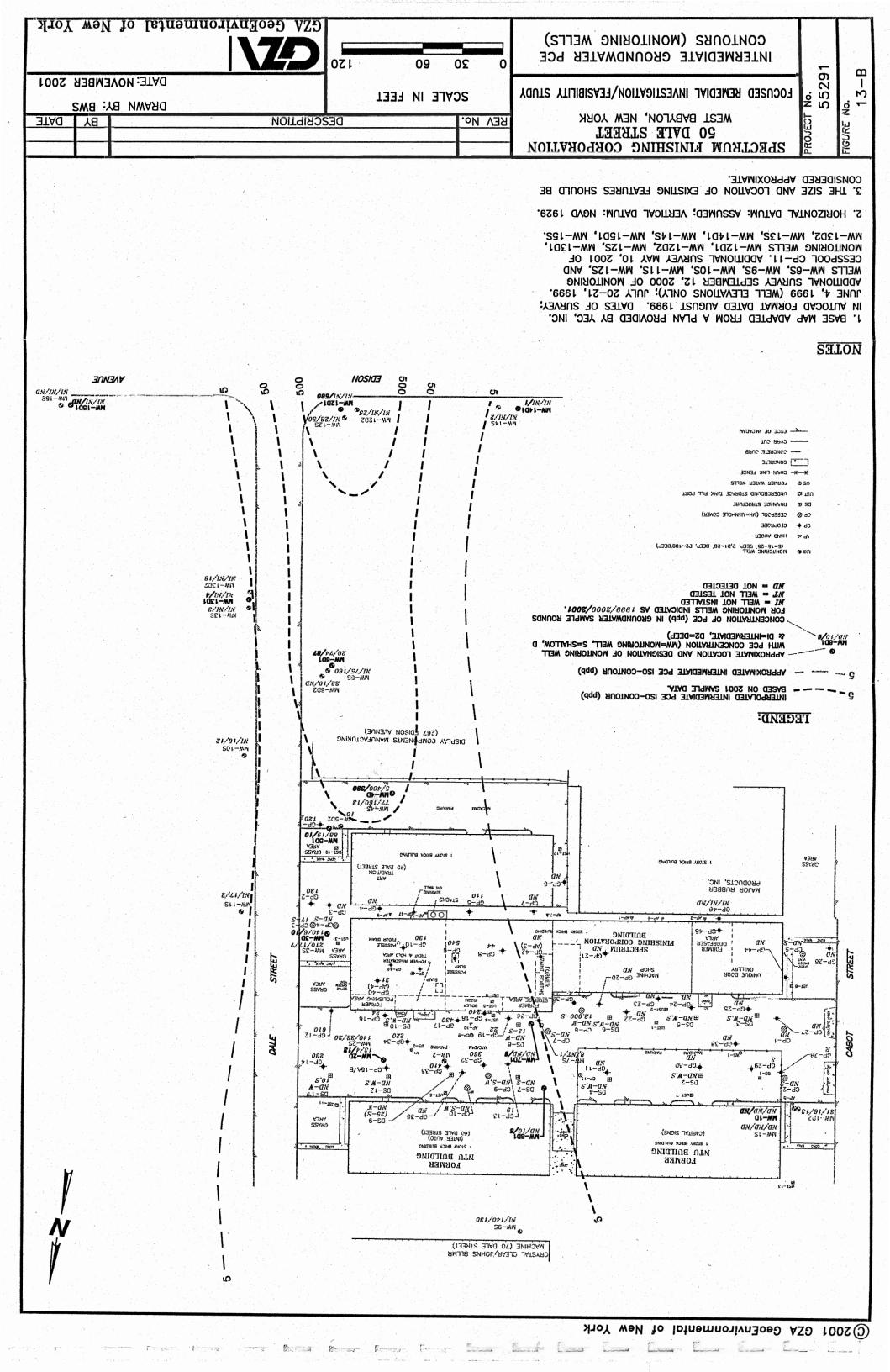


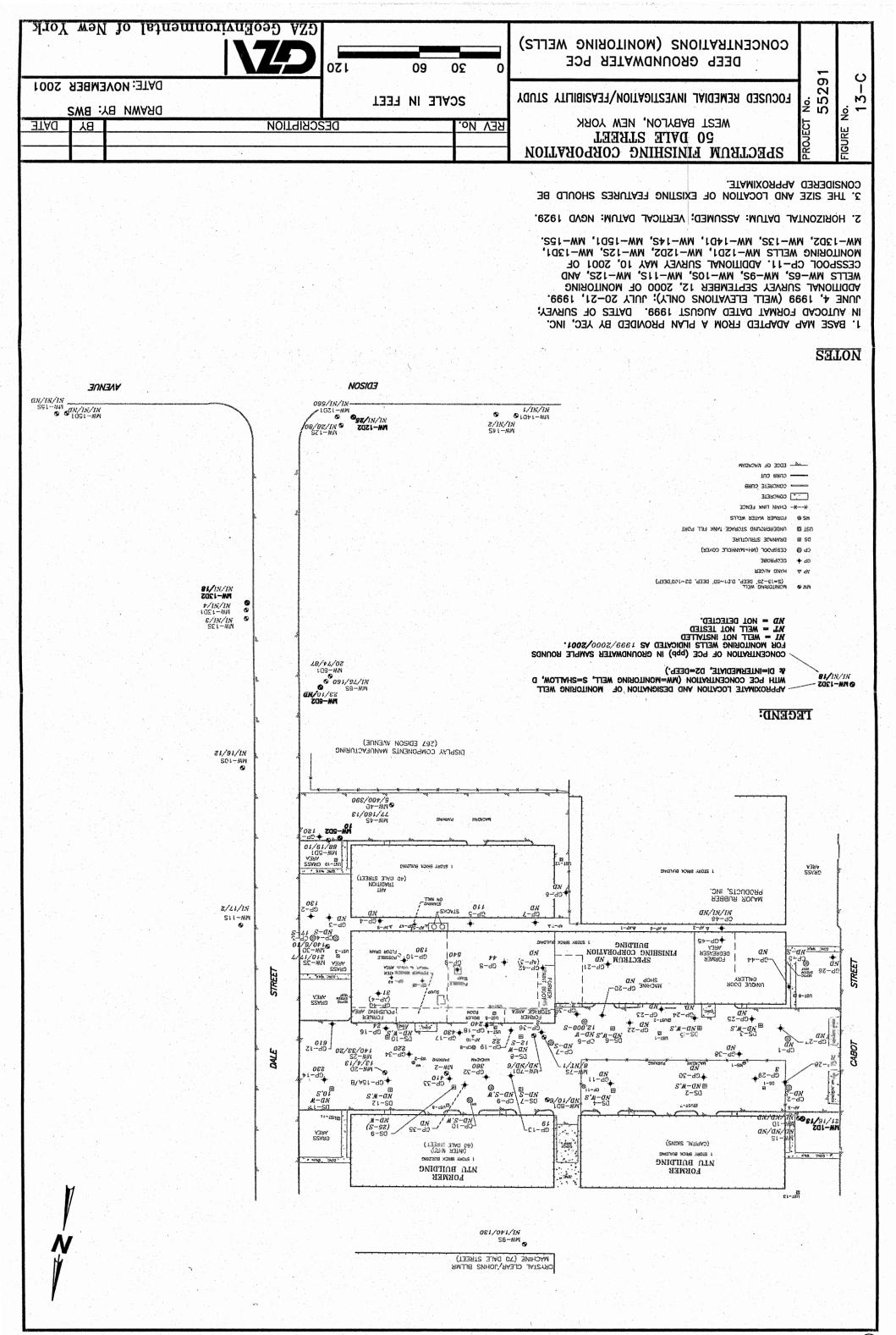

© 2001 GZA GeoEnvironmental of New York



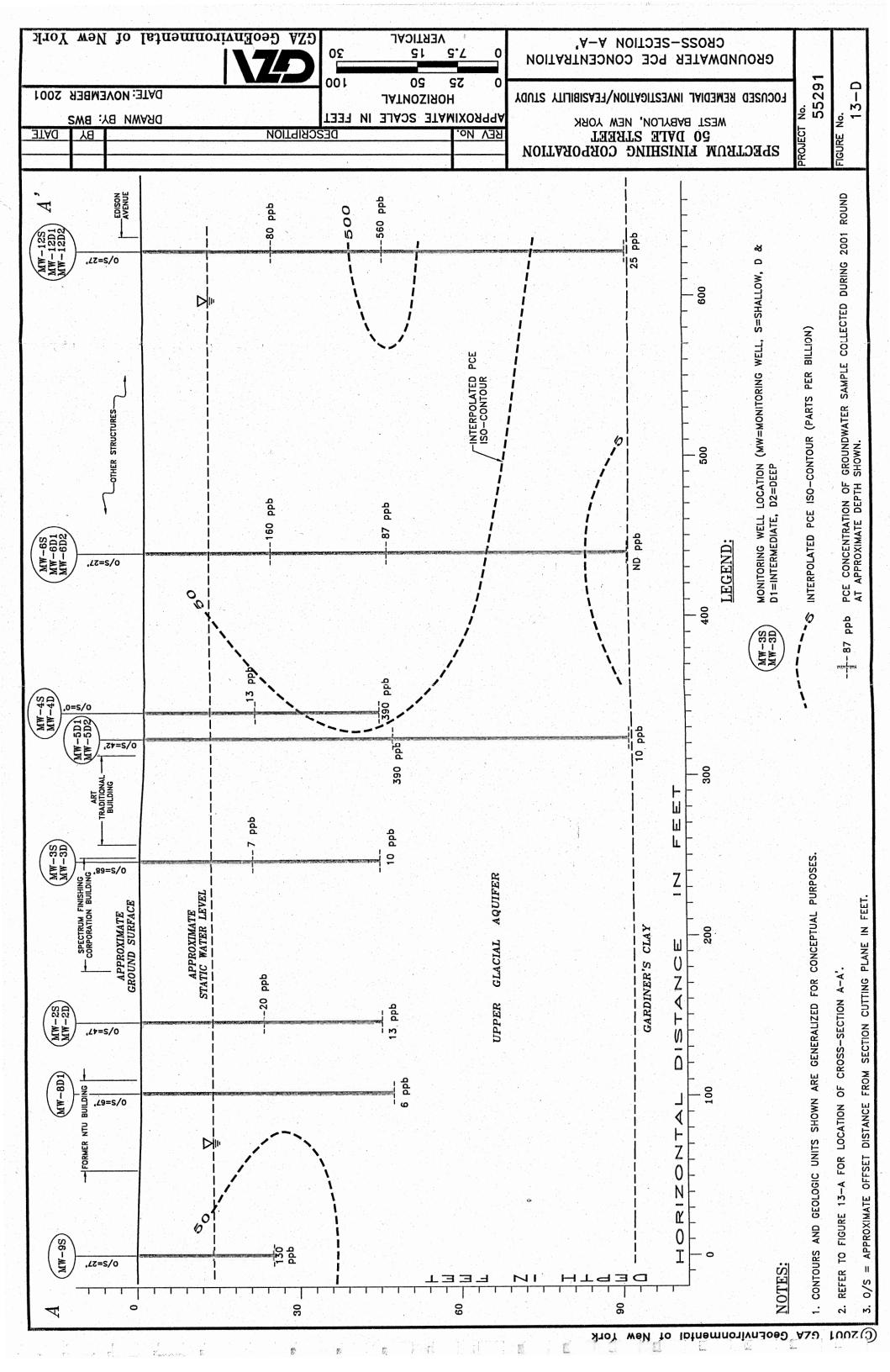

©2001 GZA GeoEnvironmental of New York

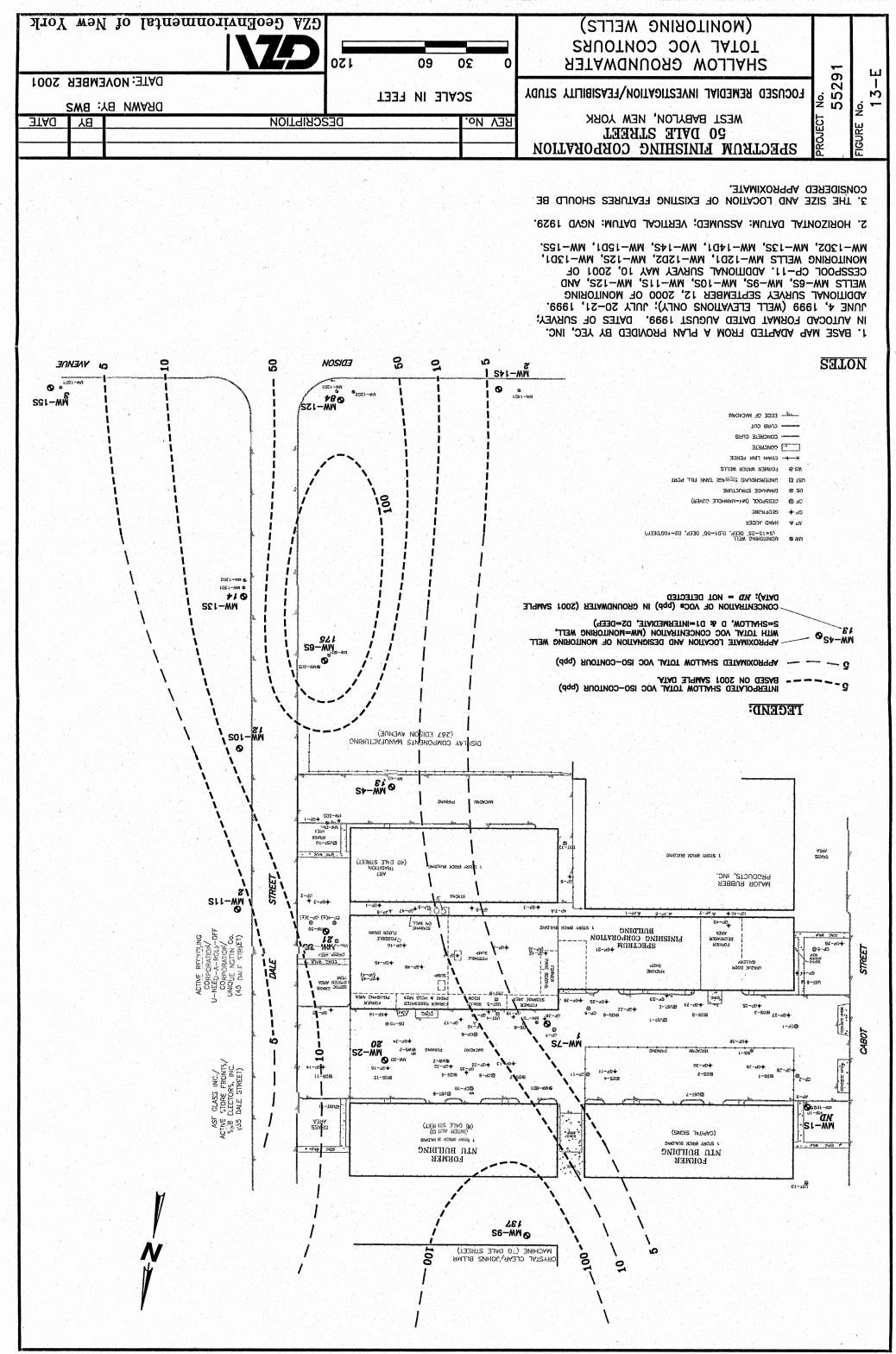






Summer Branner Branner - Branner - Branner


\$1-1-17 #"


f A. I

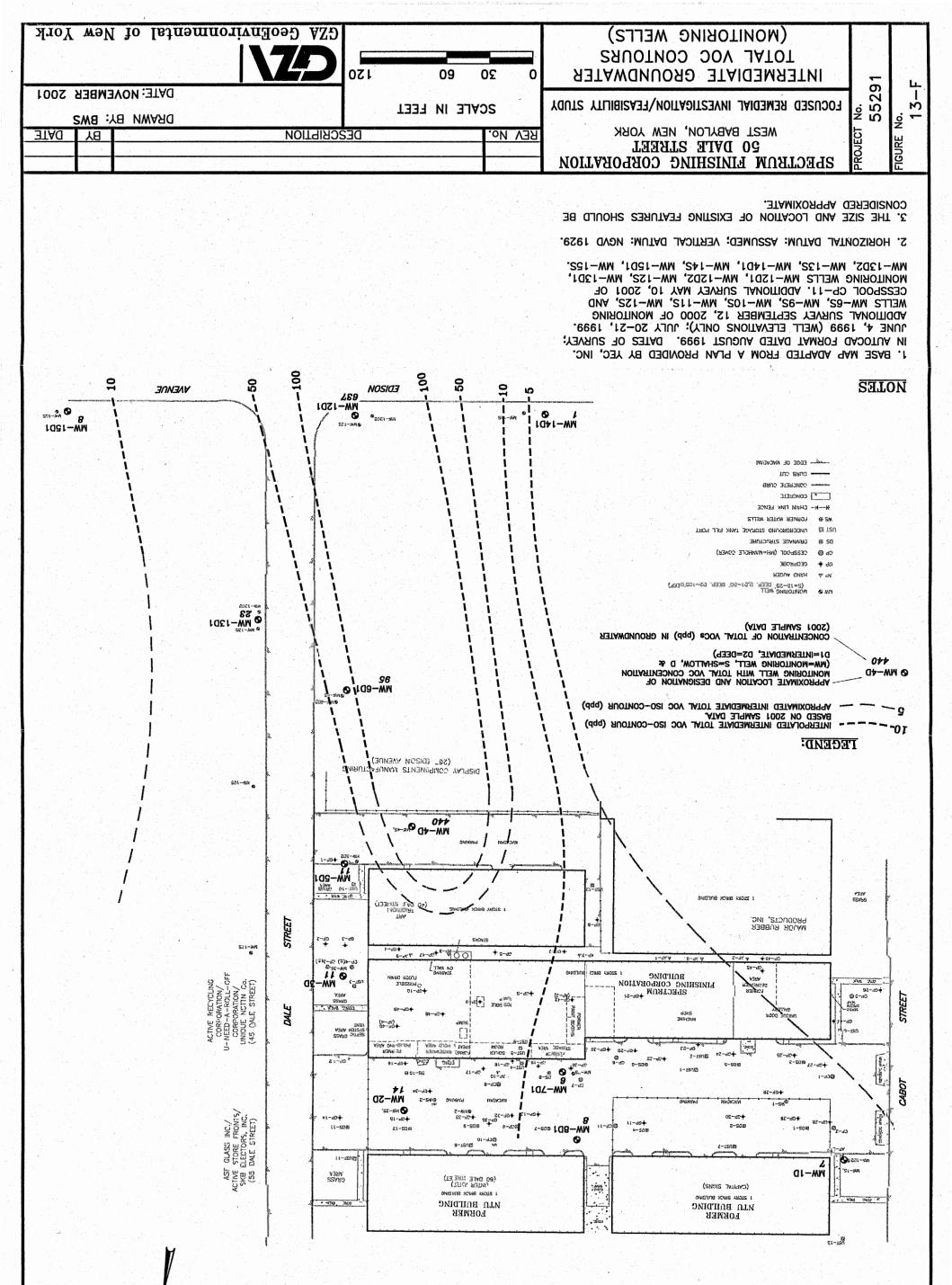
Contraction of the second

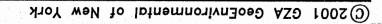
©2001 GZA GeoEnvironmental of New York

1

Contract Records (There are

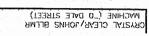
EN PORT ENTER

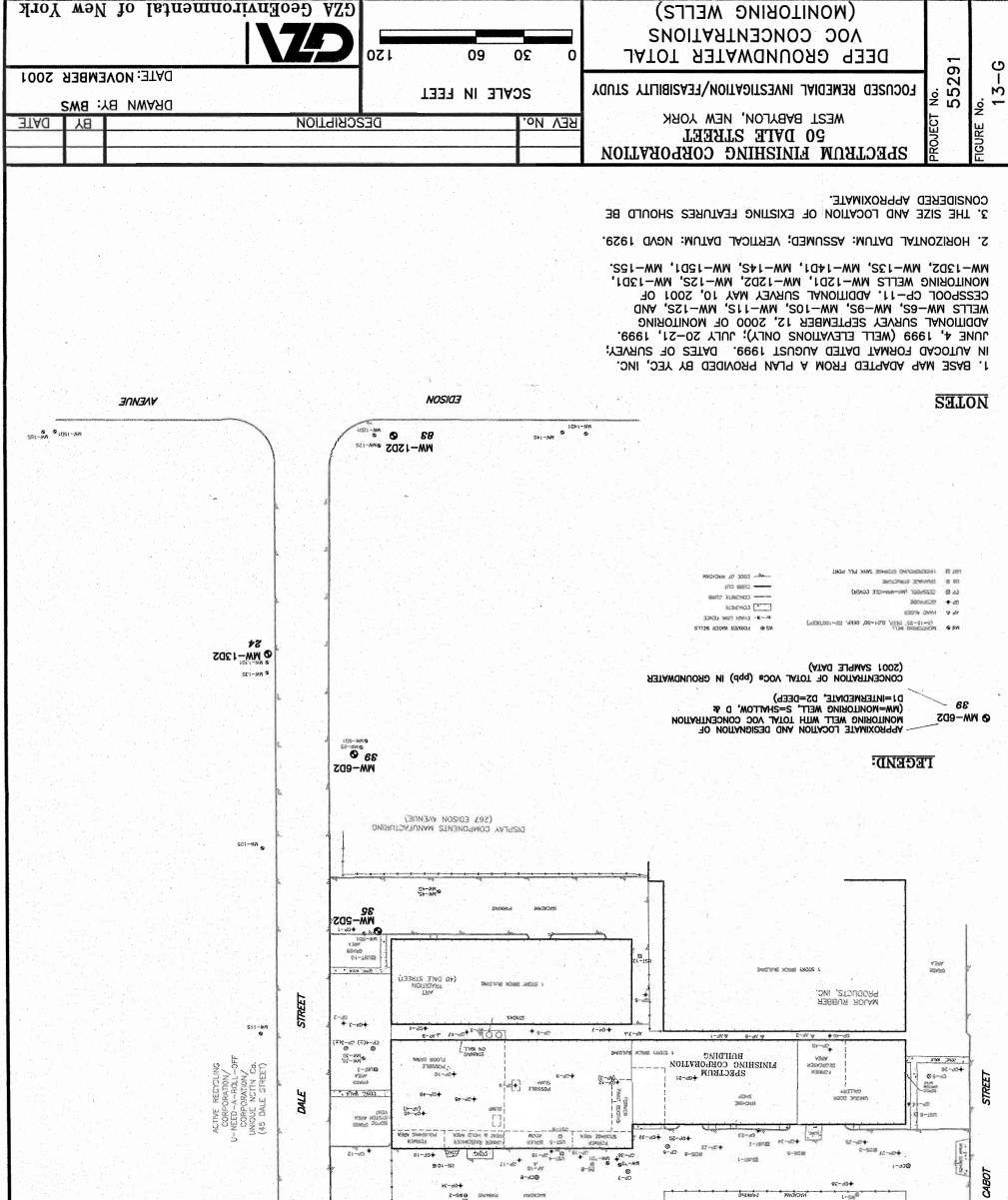

11.000


Constant 1

Enna Luna

©2001 GZA GeoEnvironmental of New York

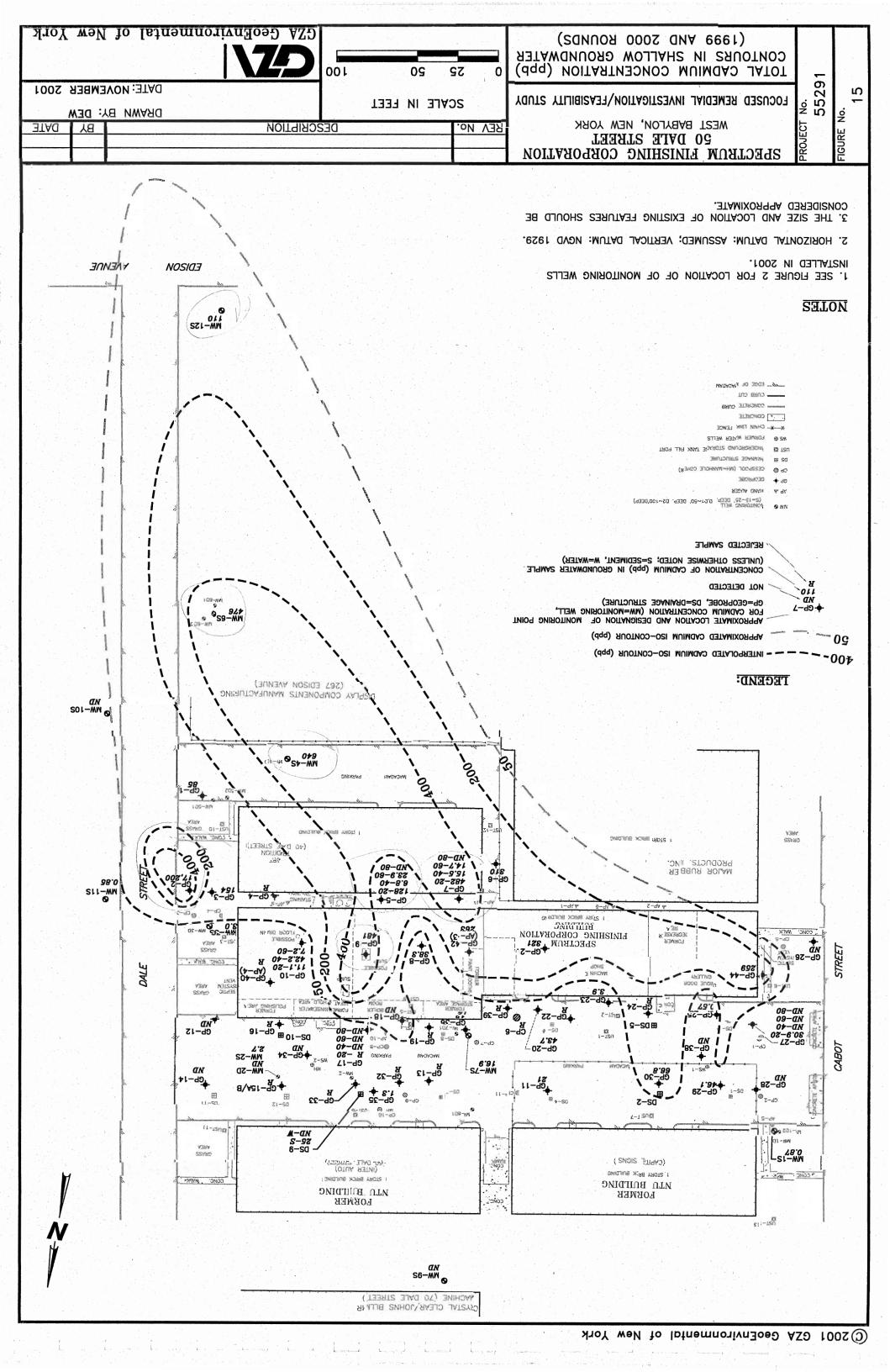

2

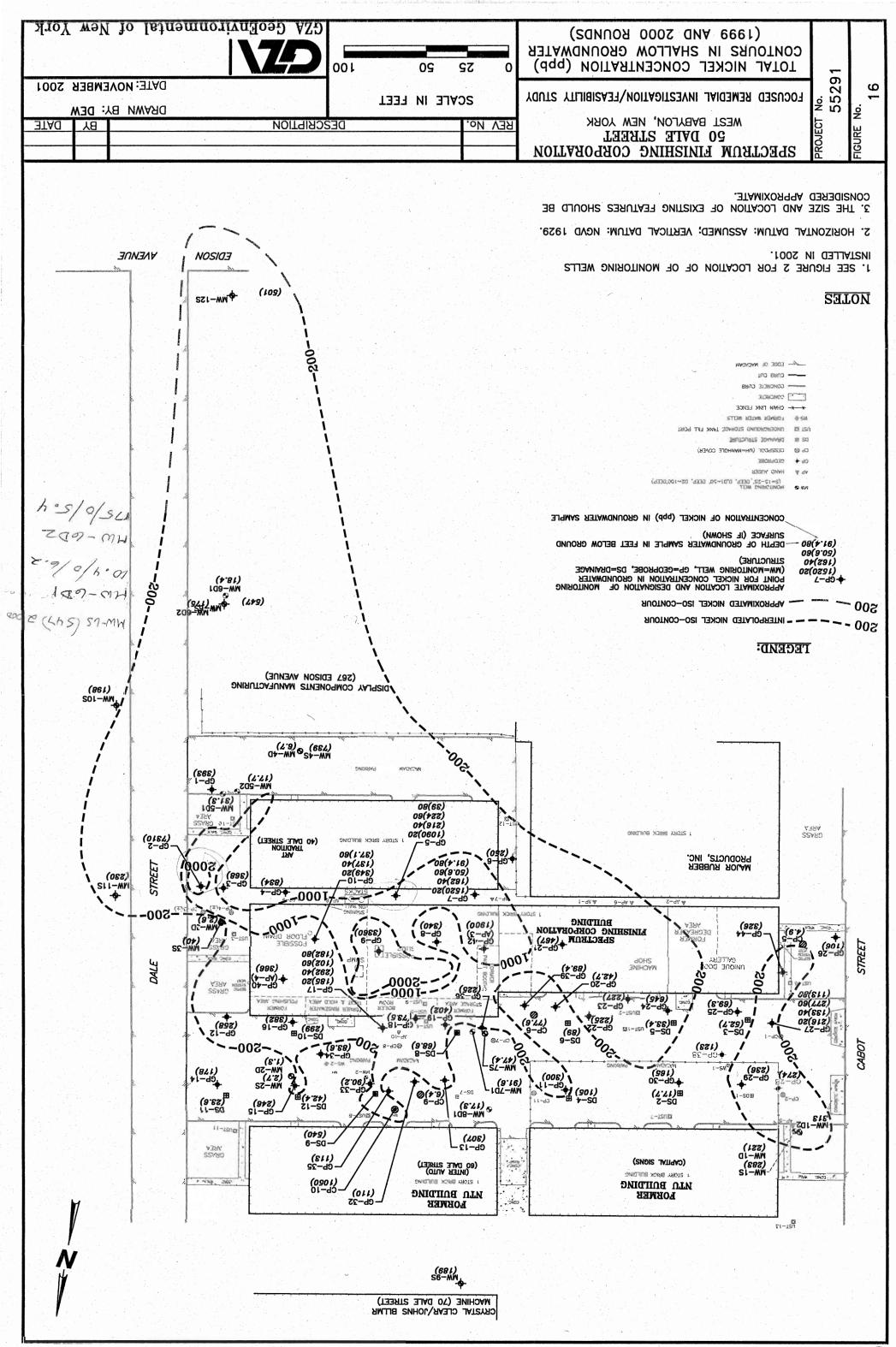


the restance of the

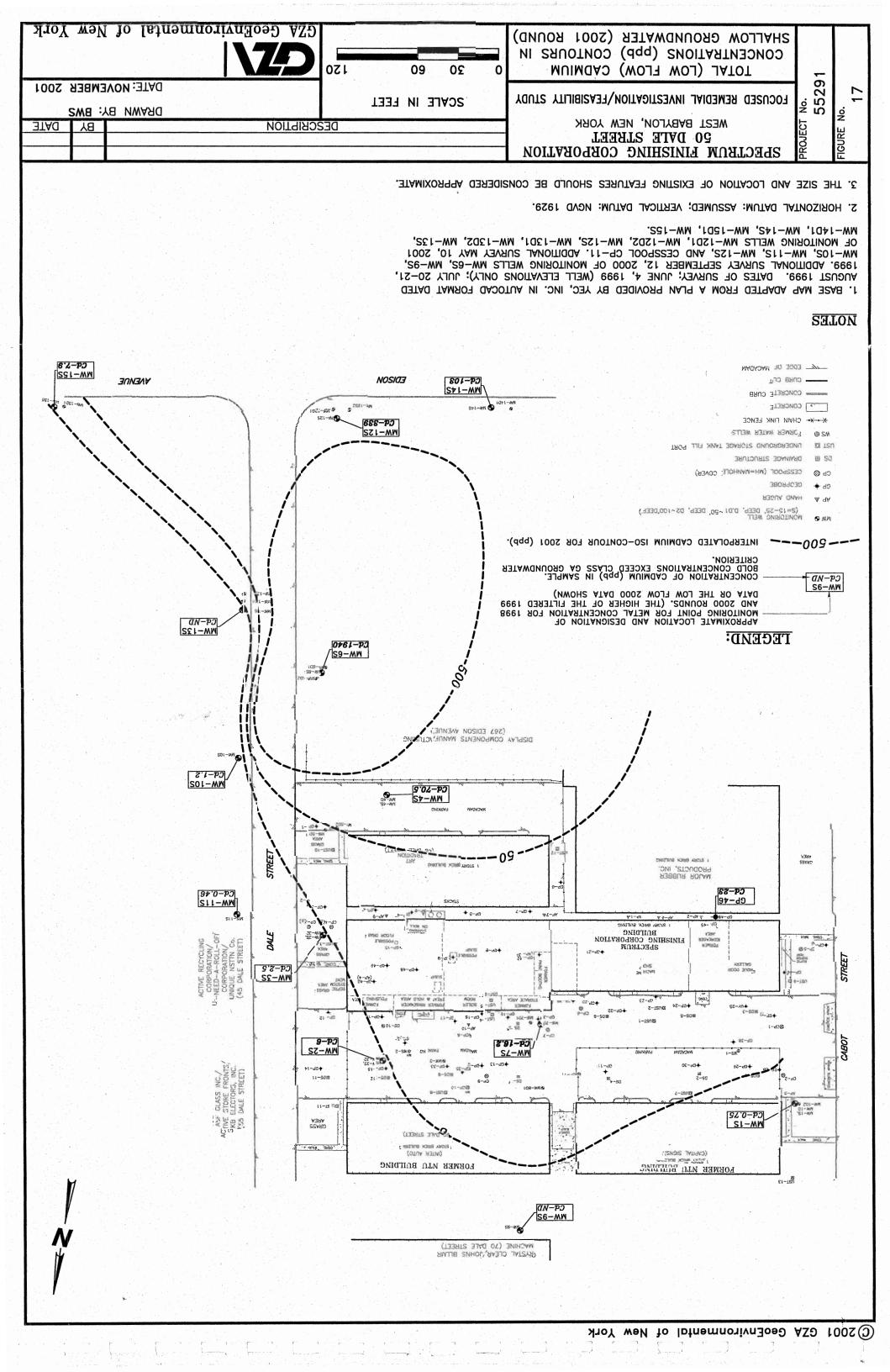
an kari

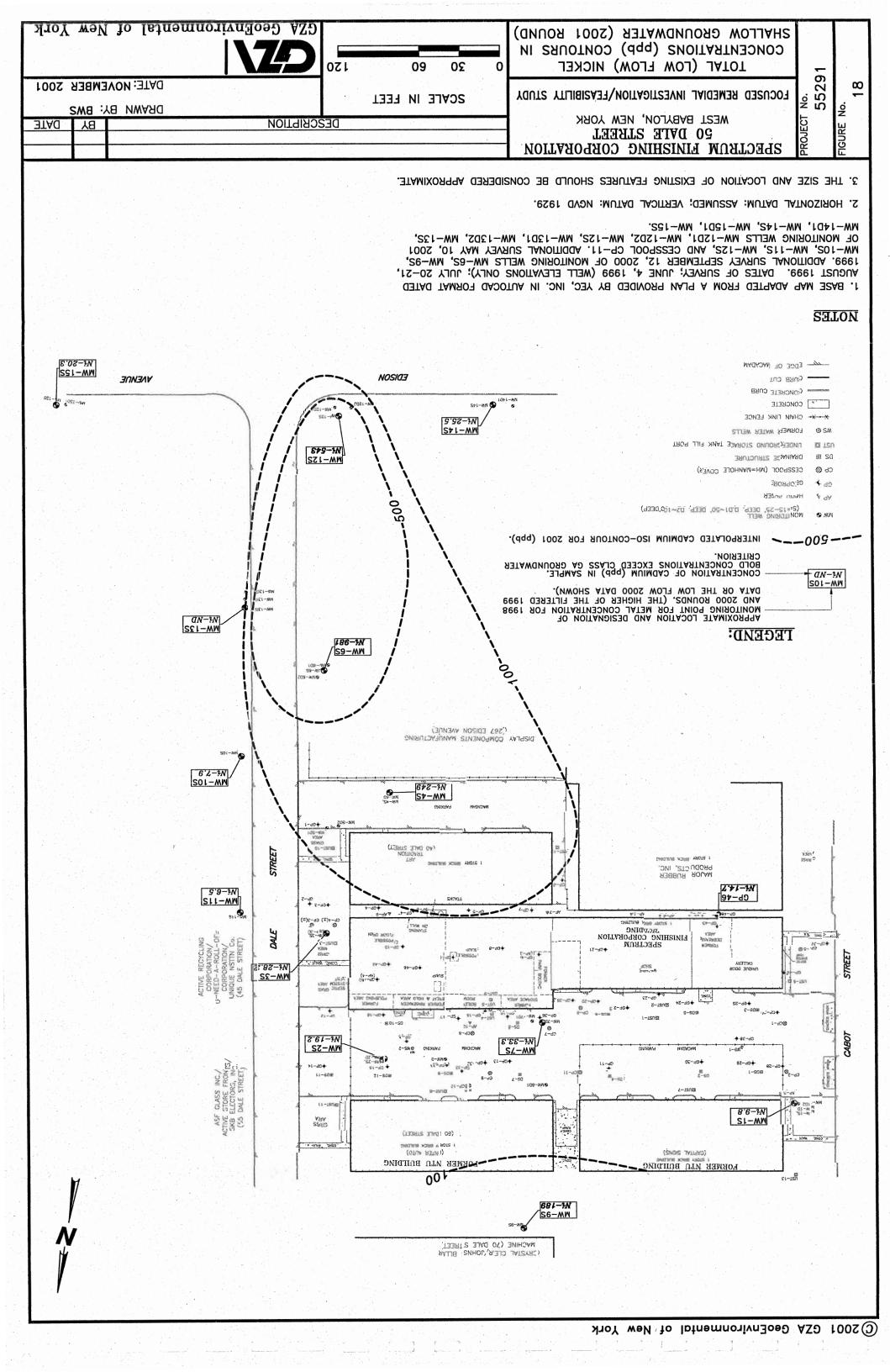
(C)2001 GZA GeoEnvironmental of New York


WYCHINE (_O DWLE STREET) CRYSTAL CLEAR/JOHNS BLLMR


F GLASS INC./ E STORE FRONTS/ ELECTORS, INC. 5 DALE STREET)

ACTIVE SKB E (55 D


SS-MW


85-40+ -12-6 2-540 90-13 +06-13 0X-3N 0K-30 -02-40 62-104 ví – ato 🕂 25-124 11-a9♦ ₩-50₿ Z-S01 8-00 1-901 11-508 6-1018 Z1-S08 1-608 2010-ca @CE-10 108-MWG 9-15025 2-15033 **43 8** WM-1DS 11-2010 AZEA ₽., (INTER AUTO) (CVGILVT ZIONZ) 155 RUNE SOLE BUCK BUCK SHICH BRICK BRICK BRICH NTU BUILDING FORMER NLD BUILDING FORMER PITV24 21-13

© 2001 GZA GeoEnvironmental of New York

