

REMEDIAL ACTION WORK PLAN – CALL-OUT CONTRACTOR

Former Garden Photoengraving (OU-1) - Site # 130174 40 Roselle Street Mineola, New York 11501

Prepared For:

Contract# D009808, Work Assignment No. 20 New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

Prepared By:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

HRP #: DEC1020.RA

Issued On: August 10, 2023

TABLE OF CONTENTS

1.0	INTE	RODUCTION	1
	1.1	Remedial Action and Green Remediation Objectives	1
2.0	SCO	PE OF WORK	3
	2.1	Roles and Responsibilities	
	2.2	Planning Documents and Mobilization/Demobilization	
		2.2.1 Preparation and Review of Planning Documents	5
		2.2.2 Project Meetings	
		2.2.3 Mobilization and Site Preparation Activities	6
	2.3	In-Situ Injection and Chemical Oxidation	8
3.0	PRO	JECT SCHEDULE	10
4.0	PRO	JECT CONTACTS	11

<u>Figure</u>

Figure 1	Site Location
Figure 2	ISCO Injection Treatment Area
Figure 3	South-North Cross Section (A-A')

<u>Table</u>

 Table 1
 Green Remediation Objectives

Appendices

- Appendix A Bench-Test Report
- Appendix B Community Air Monitoring Plan
- Appendix C Oxidant Information
- Appendix D Injection Design Drawings

General Information

Project/Site Information:

Former Garden Photoengraving (OU-1) Site # 130174 40 Roselle Street Mineola, New York 11501

Consultant Information:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Phone: 518-877-7101 Fax: 518-877-8561 E-mail: mark.wright@hrpassociates.com Project Number: DEC1020.RA

Client Information:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

Report Date: 8/10/2023

Mark Wright

Report Author:

Mark Wright

PE Certification:

I <u>Glenn Netuschil</u> certify that I am currently a NYS registered professional engineer and that this Remedial Action Work Plan] was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

1.0 INTRODUCTION

HRP Associates, Inc. (HRP) was contracted by the New York State Department of Environmental Conservation (NYSDEC) to complete a Remedial Design at the Former Garden Photoengraving Facility, or "Site", located at 40 Roselle Street, Mineola, New York (**Figure 1**). This Remedial Action Work Plan (RAWP) includes drawings, figures, and relevant Site data required to implement in-situ chemical oxidation (ISCO) at the Site, as outlined in the NYSDEC Record of Decision (ROD) dated March 2017.

This site-specific RAWP describes relevant details to the proposed work scope, including required permits and field activities that will be implemented during remedial activities at the Site. Remedial activities to be performed by the NYSDEC call-out contractor selected to perform the Work (the Contractor) include, but are not limited to:

- Development and submittal of required work plans for HRP and NYSDEC approval prior to Site mobilization.
- Site preparation including mobilization of equipment, permitting, Site survey, and underground utility facilities protection notification.
- Procurement of Klozur® SP and 25% NaOH activator.
- Installation of direct-push technology (DPT) injection points.
- Injection of Klozur® SP and 25% NaOH activator.

The design elements of this RAWP were based on the ROD, Remedial Actions Objectives (RAOs), and the results of the Pre-Design Investigation, including a bench-scale test performed by Prima Environmental, Inc. (Prima) (**Appendix A**). **Section 1.0** of this RAWP includes RAOs and the general responsibilities of NYSDEC, HRP, and the Contractor. **Section 2.0** consists of a detailed scope of work (SOW) for the remedial injection. **Section 3.0** consists of a summary of the overall remedial program including descriptions of each of the remedial actions to be performed. A preliminary project schedule and listing of project contacts are included in **Section 4.0** and **Section 5.0**, respectively.

1.1 Remedial Action and Green Remediation Objectives

RAOs established for the Site represent media-specific goals that are protective of public health and the environment that have been developed through consideration of the results of the Site investigation activities and with reference to potential standards criteria and guidance (SCGs), as well as current and foreseeable future anticipated uses of the Site. The RAOs presented in the ROD have been used in the preparation of this RAWP. The selected remedy shall eliminate or mitigate significant threats to public health and the environment presented by the impacts identified at the Site through the proper application of scientific and engineering principles.

RAOs for the Site established as a part of the ROD to protect public health include:

- Preventing ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Preventing contact with, or inhalation of, volatiles from contaminated groundwater.
- Mitigating impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a Site.
- Preventing ingestion and direct contact with contaminated soil.

The RAOs for the Site established as a part of the ROD to protect the environment include:

- Preventing migration of contaminants that would result in groundwater or surface water contamination.
- Restoring groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Removing the source of ground or surface water contamination.

In addition to remedial objectives to protect human health and the environment, it is the policy of NYSDEC to approach remediation projects in in a way that minimizes the environmental footprint of a clean-up action. This concept, outlined in DEC Program Policy 31, is referred to as "Green Remediation." Additionally, *Commissioner's Policy CP-75 – DEC Sustainability*, seeks to have NYSDEC continue its "lead by example" approach to accelerate and guide the transition to the low-carbon sustainable economy of the future.

In consideration of these goals, the following Green Remediation Objectives have been identified and applied to this remedial design:

- Minimizing air emissions including greenhouse gas emissions
- Waste minimization

Green Remediation best management practices (BMPs) identified for implementation during this project are detailed in **Table 1.**

2.0 SCOPE OF WORK

2.1 Roles and Responsibilities

The selected Contractor will be responsible for implementing the injection program. The Contractor will be responsible for, but not limited to, the following:

- Preparing an Injection Work Plan which outlines the SOW and labor/equipment/materials needed to execute the selected elements of the remedy outlined in this RAWP in an efficient and timely fashion. The Injection Work Plan should also contain a preliminary remedial action schedule. The work plan shall be submitted to and approved by HRP and NYSDEC prior to mobilization.
- Acquiring all labor, equipment, and materials necessary to execute the selected elements of the remedy outlined in this RAWP in an efficient and timely fashion.
- Completing the work in accordance with NYSDEC DER-10 Technical Guidance, Occupational Safety and Health Administration (OSHA) regulations, and other applicable, local, state, and federal regulations.
- Ensuring that on-site personnel have OSHA 40-hour training (in accordance with 29 Code of Federal Regulations (CFR) 1910.120 and corresponding 8-hour refresher updates).
- Implementing the work as described in the specifications and drawings of this RAWP.
- Implementing the Special Requirements Community Air Monitoring Plan (SR-CAMP; **Appendix B**) at the perimeter of the Site boundaries and locations adjacent to air intake structures at occupied buildings withing 20 feet of the work zone, and maintaining total particulates and VOC level below the levels stated in NYSDEC DER-10.
- Attending pre-construction, post-construction and periodic process meetings with the engineer (HRP) and NYSDEC.
- Obtaining any required permits needed, including permits at the municipal, state, and federal level.
- Communicating with HRP to obtain all necessary information related to coordination with the property owner, NYSDEC, the Village of Mineola Building Codes Department, as well as owners and/or operators of underground facilities, and needed to complete required work activities specified in this RAWP.
- Contacting Dig Safe New York, and other utility owners to identify potential underground utilities located within the Site boundaries, prior to any intrusive work, including drilling and injection activities.
- Confirming the location of utilities prior to initiation of any on-site work.

- Notifying HRP, NYSDEC, and utility owner (in writing) if an underground utility is uncovered or revealed at or contiguous to the Site, which was not shown or indicated in the SOW. During such time, the Contractor shall be responsible for the safety and protection of such underground facility.
- Performing all survey work necessary for the completion of the work scope and provide survey data and updated "as-built" drawings to HRP for inclusion in record drawings and plans.
- Notifying HRP and NYSDEC for any conditions that may alter the design and implementation of the remedy as indicated in the SOW.
- Characterizing and disposing of all Investigation Derived Waste (IDW).
- Working between the hours of 8:00 AM and 6:00 PM, as required by the Village of Mineola General Legislation § 376-17.1, for construction work and repairs.

This section presents a task-by-task description of the Contractor's activities to implement the remedy at the Site. The Contractor's activities will be implemented under the following general work tasks:

- Planning Documents and Mobilization/Demobilization
- In-Situ Chemical Oxidation (ISCO)

2.2 Planning Documents and Mobilization/Demobilization

The Contractor will be responsible for conducting the following activities under this work task:

- Review and preparation of relevant planning documents, including work plans, material specifications and cut sheets, drawings, and any other necessary information required by this RAWP.
- Attending a pre-construction meeting, daily health and safety meetings, and periodic coordination meetings.
- Mobilization/demobilization of equipment, labor, and materials necessary to complete the selected remedial tasks.

Additional details for these activities are presented in the following sections.

2.2.1 Preparation and Review of Planning Documents

The Contractor shall submit appropriate planning documents to HRP and NYSDEC for review. The Contractor shall finalize the documents submitted based on comments provided by HRP and NYSDEC. Contractor shall not mobilize until planning documents have been reviewed and approved by HRP and NYSDEC.

The selected Contractor shall prepare work plans including, but not limited to:

- A SOW outline which details the methods and equipment which will be implemented to complete the remedial components in an efficient and timely fashion.
- Labor, equipment, and materials necessary to complete the remedial components in an efficient and timely fashion.
- A full project schedule, including the length of time it will take for the Contractor to complete each individual work activity.
- Sequence of operations and proposed hours of operation. Normal working hours shall be defined during the pre-injection meeting, or if none are set forth, shall be defined as beginning no earlier than 8:00 a.m. and ending at no later than 6:00 p.m.
- A plan to manage impacted groundwater, if generated, during field activities.
- A Health and Safety Plan (HASP):
 - The HASP shall include all required elements of a HASP as outlined in 29 CFR 1901.120 and 29 CFR 1926.65.
 - The health and welfare of the Contractor's staff is the direct responsibility of the Contractor. The Contractor shall take necessary precautions for the health and safety of all on-site.
 - The Contractor shall designate a responsible representative at the Site to act as the Site's Health and Safety officer whose duties include executing and ensuring compliance with the approved HASP.
- A SR-CAMP will be required by the Contractor. Real-time monitoring for particulates (i.e., dust) and VOCs shall be conducted in accordance with NYSDEC DER-10. The SR-CAMP will be used to confirm that work activities do not impact the adjacent buildings and spread environmentally impacted materials off-site through the air. Dust control measures and monitoring will be detailed in SRC-AMP. The Contractor shall provide a daily data submittal from real-time monitoring from each day, before the start of work the following day.
- Proposed method(s) of decontamination procedures for Contractor's small equipment and hand tools, waste material and personal protective equipment.

- Materials and methods that will be used to temporarily store chemical reagents (if applicable).
- Characterization and waste profile for IDW (if generated), and identification of proposed licensed and permitted disposal facilities within New York State, including letters of commitment and operating licenses, if applicable.
- Site restoration including identification of the names of each injection point, and proper abandonment of DPT injection points in accordance with DER Commissioner's Policy-43 (CP-43) Guidance.

The Contractor shall revise the required submittals as necessary to address comments from HRP and NYSDEC. The Contractor shall submit the revised and/or final submittals to HRP and NYSDEC. HRP and NYSDEC's review do not relieve the Contractor of any responsibility to comply with applicable laws, rules, regulations, or agreements.

2.2.2 Project Meetings

The Contractor shall be responsible for attending project meetings as described below.

- Pre-Injection Briefing Prior to Contractor mobilization, a pre-injection meeting will be held at the Site to introduce the project team members representing the Contractor, Subcontractors, NYSDEC, and HRP. The meeting will be attended by the Contractor and will be conducted to review the SOW requirements; review responsibilities of the Contractor; establish a detailed schedule of operations including definition of normal working hours; and resolve issues (if any) raised by attending parties. HRP will prepare a summary of the pre-injection meeting and distribute a copy to the Contractor and NYSDEC.
- Daily Health and Safety Meetings The Contractor shall be responsible for attending daily health and safety meetings, which will be attended by all Contractor personnel to discuss day to day project-related health and safety issues. NYSDEC and HRP reserve the right to attend daily health and safety meetings.
- Final Inspection Following final completion of the remedial action, an inspection meeting will be held at the Site with the Contractor, NYSDEC, and HRP.

2.2.3 Mobilization and Site Preparation Activities

The Contractor shall initiate Site mobilization activities no later than three months after required submittals have been reviewed and approved by HRP and NYSDEC. The Contractor shall be responsible, at a minimum, for the following mobilization tasks:

• Provide notice to adjacent building owners regarding the injection event at a minimum of 10 business days before the injection event.

- Communicating with HRP regarding access to water and electrical service (if required). Access to other various municipal structures (i.e., hydrants, valves, manholes, fire alarms, etc.) shall not be obstructed by the Contractor to prevent use. The Contractor shall secure any required permits and abide by all applicable permit conditions.
- Verifying the existing Site conditions and identifying and marking the location(s) of all aboveground and underground utilities, equipment, and structures, as necessary to implement the work scope.
 - Prior to commencing on-site activities, the Contractor shall contact Dig Safe New York to obtain utility clearances. The Contractor shall be responsible for coordinating with the applicable utility companies, Village of Mineola, and the Site owner to ensure proper location of utilities. The Contractor shall also obtain and pay for the necessary permits to complete the work, if applicable.
 - If the Contractor damages existing utilities, equipment, or structures, the Contractor is responsible for notifying the appropriate utility company, HRP, and NYSDEC, and fully repairing damages at no additional cost to NYSDEC or HRP. Repairs, if necessary, shall be completed in accordance with the requirements of the utility company and to the satisfaction of NYSDEC and HRP.
- Mobilizing equipment, and materials to the Site as necessary to implement the remedy. Equipment mobilized to the Site will be subject to a visual inspection by HRP. Equipment that arrives at the Site in unsatisfactory condition (e.g., soiled, poor operating condition, etc.), in the opinion of HRP, shall be removed from the Site and replaced by the Contractor at no additional cost to NYSDEC. The Contractor shall be responsible for providing labor, equipment, and materials needed to conduct decontamination activities (as necessary) of personnel and equipment associated with remedial activities outlined in the RAWP.
- Constructing additional remedial support area(s), on-site staging area(s), and decontamination area(s) on the property in accordance with the provisions of the reviewed documentation and plans.
- Decontamination activities shall be conducted on a decontamination pad constructed by the Contractor in an area approved by HRP.
- Decontamination procedures shall include scraping equipment of residual soil and a hotwater pressure washing of drilling equipment and injection equipment, as needed.
- Any decontamination fluids shall be containerized in an appropriate container for characterization and disposal off-site by the contractor.

Demobilization activities to be conducted by the Contractor include, at a minimum, decontamination, dismantling and removal from the Site of all equipment, additional materials not used by the Contractor, and other waste generated during remedial construction.

2.3 In-Situ Injection and Chemical Oxidation

The chemical oxidant will be applied to the contaminant source area, adjacent to MW-2, and the location of a former cesspool. Oxidant (**Appendix C**) will be applied to nine temporary injection points, spaced 10 feet on center to encompass the VOC source area (**Figure 2**). It is anticipated that there will be two injection events with the second event occurring 60 to 90 days after the initial event. The timing of the second event (if necessary) will be based on the results of performance monitoring performed by HRP.

A series of detailed injection design drawings are provided to the Contractor in **Appendix D**. The Contractor shall be responsible, at a minimum, for the following injection tasks:

- The injection points will be spaced 10-feet on center to evenly distribute oxidant to the subsurface (**Figure 2**).
- The oxidant solution will be injected using direct-push injection methods using 2.25-inch diameter direct push rods, and ancillary equipment (oxidant mixing tanks, injection and mixing pumps, fittings, hoses, valves, etc.).
- The oxidant will be injected using a top-down method to facilitate oxidant distribution in • the vadose zone in the identified onsite treatment area (**Appendix D**). The direct-push rods will be advanced to the top of the target depth 30 ft bg (**Figure 3**). Once the target depth is reached, a 1-foot screened section will be exposed and a prescribed volume of oxidant will be injected. Once the volume of oxidant for that interval is injected, the screened section will be covered, and the tooling will be lowered to the next depth interval. This process will be repeated until oxidant has been injected throughout the entire targeted depth (30 - 45 ft bg). The proposed oxidant injection frequency is approximately 6.66% of the total alkaline activated sodium persulfate mixture (which equates to approximately 91.8 gallons of water and 163.27 pounds of alkaline activated sodium persulfate) per every 1 foot for a total of 15 ft (beginning with 30 - 31 ft bg and ending at 44 – 45 ft bg) in each injection location. However, the volume of oxidant to be injected and injection intervals are subject to variation at the discretion of the Engineer, as based on field observations. The Contractor shall follow guidance from HRP regarding alterations to the proposed injection frequency during implementation of this RAWP.
- Based on field conditions the injection method may be changed by the Engineer. The contractor shall have various types of tooling available on-site. The available injection tooling shall be attachments for the direct-push rods. A pressure activated injection tool, a retractable injection tool and an expendable point shall be available. It is the responsibility of the Contractor to ensure that the specified equipment is solicited and available for use, as needed, during the implementation of this RAWP.
- It is anticipated that the injections will be split between two events. 22,040 pounds of alkaline activated sodium persulfate is anticipated to be injected during each event for a total of 44,080 pounds of alkaline activated sodium persulfate injected.

The persulfate shall be mechanically mixed and tested to ensure the proper ratio is

- achieved. The design ratio of water to persulfate for the Site is 1,377 gallons of water to 2,449 lbs.
- Sodium hydroxide will be added to the mixture to raise the pH to 10.5 or higher.
- •
- Injection pressure shall not exceed 3 pounds per square inch (psi) during injection.
- ٠

During injection, the contractor shall record injection monitoring parameters including (but

 not limited to) pumping rate, pH, ORP, temperature, etc. SR-CAMP will be conducted by the Contractor up and downwind of the treatment area during the injection. Air monitoring will also be conducted by the Contractor near any building air intakes within 20 feet of the treatment area during injection.

The contractor shall measure depth to water, injection pressure, and persulfate
concentration during the injection. Depth to water should be measured at adjacent monitoring wells, to determine the radius of influence.

An additional 50 gallons of flush water may be added to each injection point to help distribute the product further from each injection point.

All chemicals should be stored in secondary containment, prior to use. The oxidant will be batched in polyethylene tanks as close to the injection areas as possible.

- During the injection, the contractor will implement, at a minimum, the following green
 remediation BMPs:
 - Injection equipment shall not be permitted to idle for longer than five minutes.
 - Use of temporary injection points. PVC plastic and silica sand will not be used to construct injection wells.

3.0 PROJECT SCHEDULE

A preliminary schedule for completion of the in-situ injection activities described in this RAWP is presented in the Table **below**. Prior to commencement of work, the contractor responsible for performing the injection will prepare a detailed schedule for the SOW described in **Section 1.0** above.

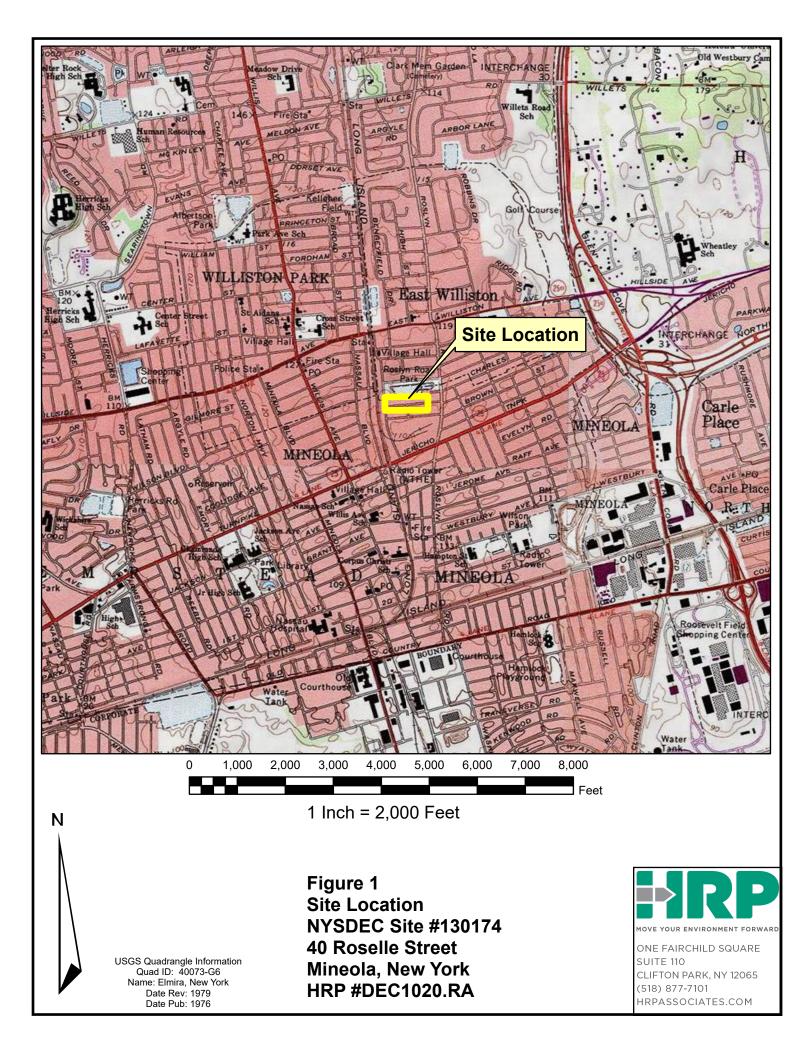
Task	Sub-task	Duration (days)	Start	End
	Prepare and Revise All Call-Out Contractor Work Plans and Procurement of Relevant Permits by the Contractor	90	5/1/2023	8/5/2023
	Mobilization and Site Preparation	1	8/6/2023	8/7/2023
	In-Situ Injection (first event)	5	8/7/2023	8/12/2023
Complete ISCO	Site Cleanup and Demobilization	1	8/12/2023	8/13/2023
Complete ISCO Injection	Contaminant Destruction	60	8/7/2023	10/6/2023
	Mobilization and Site Preparation	1	10/10/2020	10/11/2023
	In-Situ Injection (second event)		10/11/2023	10/16/2023
	Site Cleanup and Demobilization	1	10/16/2023	10/17/2023
	Contaminant Destruction	60	10/11/2023	12/10/2023

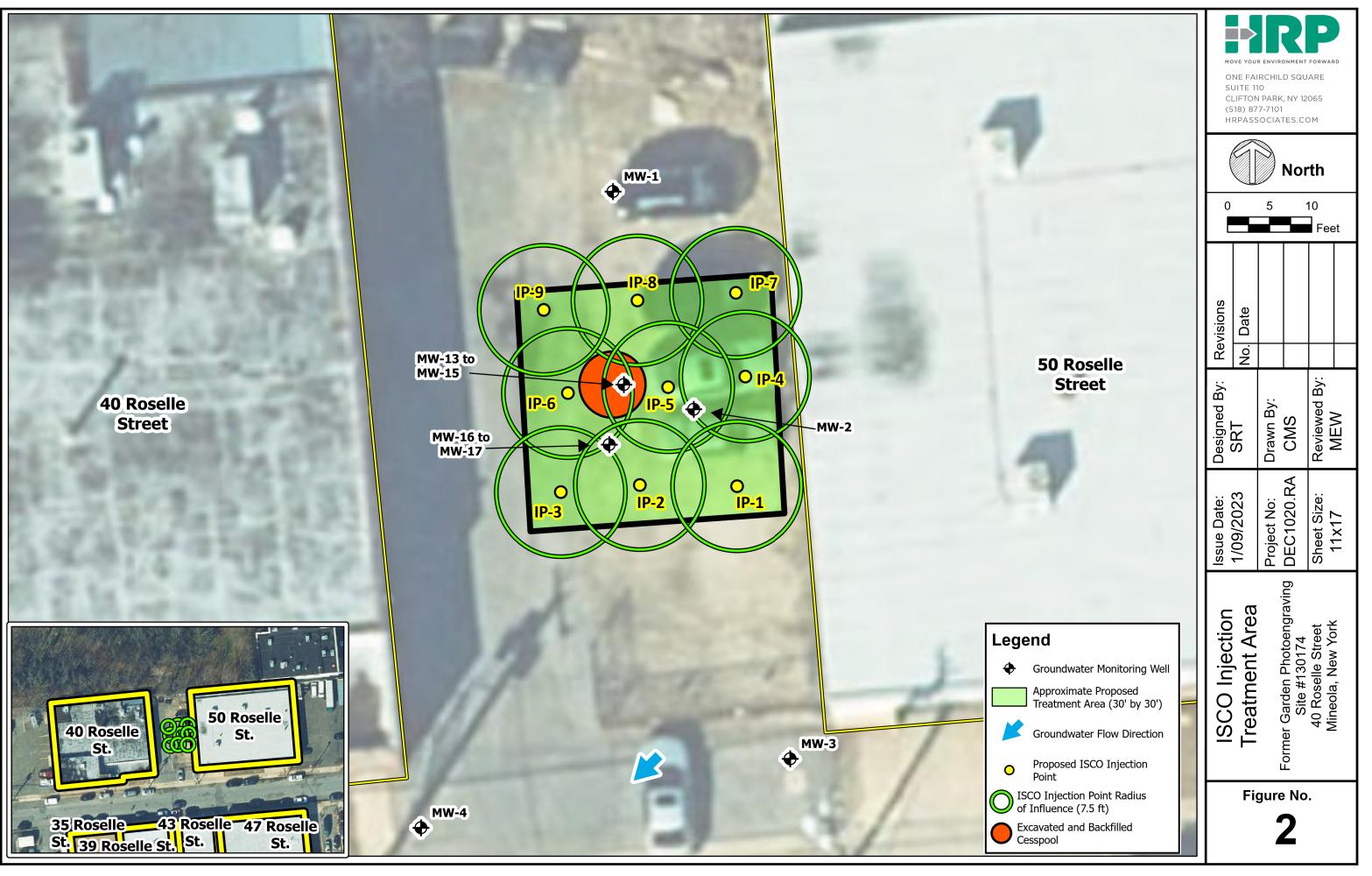
Preliminary Remedial Action Schedule

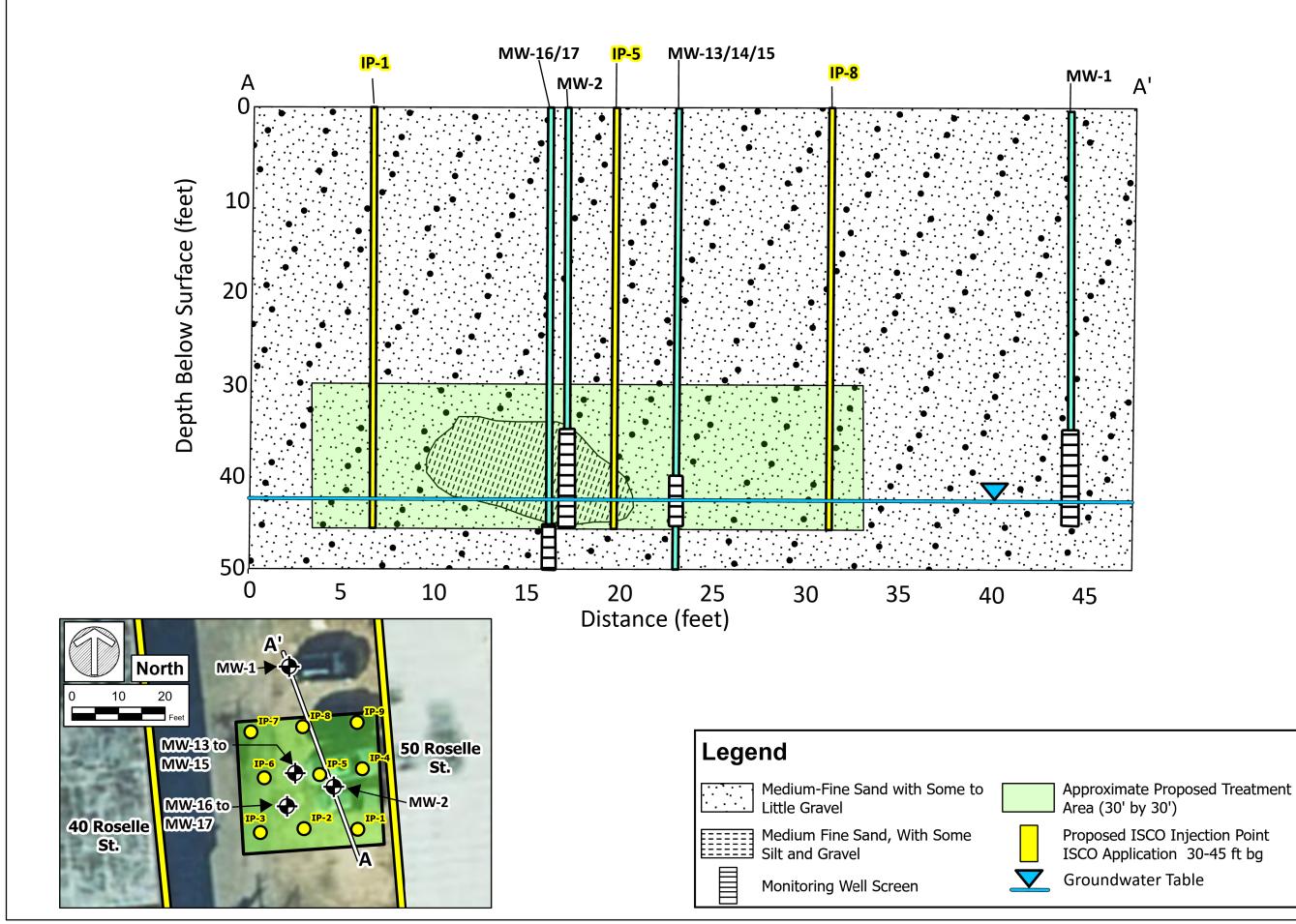
4.0 PROJECT CONTACTS

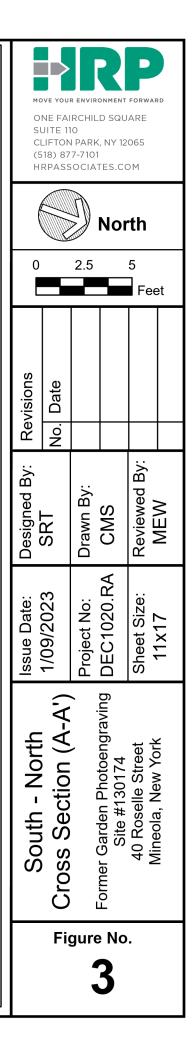
Project contacts for the NYSDEC and HRP are identified in the Table below.

Project Roles and Contact Information


Name	Role	Email	Address	Phone			
N	New York State Department of Environmental Conservation (NYSDEC)						
Benjamin Rung	DEC Project Manager	benjamin.rung@dec.ny.gov	625 Broadway, 12 th Floor, Albany, NY 12233-7015	518-402-9813			
Elyse DuBois	DEC Site Project Manager	elyse.dubois@dec.ny.gov	625 Broadway, 12 th Floor, Albany, NY 12233-7017	518-402-0031			
	New Yor	x State Department of Health (N	IYSDOH)				
Renata Ockerby	Public Health 3 Specialist	renata.ockerby@health.ny.gov	Empire State Plaza, Corning Tower 1787	(518) 402-7860			
Albany, NY 12237							
	[HRP Associates, Inc.	1 Fairchild Square,				
Glenn Netuschil	Professional Engineer	glenn.netuschil@hrpassociates.com	Suite 110 Clifton Park, NY 12065	518-877-7101			
Mark Wright	HRP Senior Project Manager	mark.wright@hrpassociates.com	1 Fairchild Square, Suite 110 Clifton Park, NY 12065	518-877-7101			
Mary Rommer	HRP Senior Project Geologist	mary.rommer@hrpassociates.com	1 Fairchild Square, Suite 110 Clifton Park, NY 12065	518-877-7101			
John Gorman	HRP Project Consultant	john.gorman@hrpassociates.com	1 Fairchild Square, Suite 110 Clifton Park, NY 12065	518-877-7101			
	Site Owner						
Jeffrey Schwartzberg	Site Operator	jbs@pcrellc.com	1670 Old Country Road, Suite 219, Plainview, NY 11803	516-444-3356			




Remedial Action Work Plan Former Garden Photoengraving OU-1 -Site #130174 40 Roselle Street Mineola, New York


FIGURES

Remedial Action Work Plan Former Garden Photoengraving OU-1 - Site #130174 40 Roselle Street Mineola, New York

TABLE

Table 1 Green Remediation Objectives Former Garden Photoengraving Site # 130174 40 Roselle Street Mineola, New York 11501

In-Situ Chemical Oxidation					
Activity	Negative Impact	Green Remediation Option / BMP	Impact Reduction	Comments and Assumptions	
In-Situ Chemical Injection	CO ₂ Emissions during equipment operation- 1,999.2 lbs.	Shut off equipment when not in use for more than 5 minutes	599.8 lbs. of CO_2	 Assume 18 hrs. (30% of 60 hrs.) idle time. Assumes use of 1.5 gallons³ of diesel per hour.¹ 	
Injection	Waste plastic and excess well materials (sand, PVC pipe)	Use temporary injection points instead of permanent injection wells	350 lbs. of plastic 2,000 lbs of Silica Fill Sand	 0.7 lbs/foot PVC², Assumes ten injection wells approx. 50 ft bg. Each. Four 50 lb bags per well. 	

Groundwater Monitoring				
Activity	Negative Impact	Green Remediation Option / BMP	Impact Reduction	Comments and Assumptions
Groundwater collection Pump	Waste batteries YSI/Horiba – 3 °C" batteries Geopump/bladder pump – One Car Battery	Rechargeable batteries will be used to power sampling equipment during sampling procedures.	6 "C" batteries and 1 car batteries /yr.	

¹ Default CO² Emission Factors and High Heat Values for Various Types of Fuel. <u>https://www.law.cornell.edu/cfr/text/40/appendix-Table_C-1_to_subpart_C_of_part_98</u>

² PVC and CPVC Pipe Sizes and Weights. <u>https://pvcpipesupplies.com/pvc-cpvc-pipe-sizes-and-weights</u>

³ Fuel Usage of Geoprobe 6610. Telecom with Geoprobe Technical Sales Representative, March 18, 2022

Remedial Action Work Plan Former Garden Photoengraving OU-1 - Site #130174 40 Roselle Street Mineola, New York

APPENDIX A Bench-Test Report

February 16, 2022

Stefan R. Truex, P.G. HRP Associates 1 Fairchild Square # 110 Clifton Park, NY 12065

 RE: Final Report of Findings "Bench-scale Evaluation of Activated Persulfate for Destruction of COCs in Soil and Groundwater"
 Client Project Name: 40 Roselle Street, Mineola, NY
 Client Project No: DEC1020.RA
 PRIMA Project ID: HRP Roselle

Dear Mr. Truex:

Enclosed is the Final Report of Findings entitled "Bench-scale Evaluation of Activated Persulfate for Destruction of COCs in Soil and Groundwater" that describes bench testing conducted on soil and groundwater from the 40 Roselle Street site located in Mineola, New York. If you have any questions, please contact me at <u>cschreier@primaenvironmental.com</u>. Thank you for the opportunity to be of service.

Sincerely,

PRIMA Environmental, Inc. Real ->0

Cindy G. Schreier, Ph.D. President and Chief Scientist

Report of Findings

Bench-Scale Evaluation of Activated Persulfate for Removal of COCs from Soil and Groundwater

40 Roselle Street Mineola, New York Client ID 0.373679

February 16, 2022

Submitted to Stefan R. Truex, P.G. **HRP** Associates 1 Fairchild Square # 110 Clifton Park, NY 12065

Submitted by

5070 Robert J Mathews Parkway, Suite 300 El Dorado Hills, CA 95762

Cindy G. Schreier, Ph.D., President

February 16, 20122

Date

EXECUTIVE SUMMARY

Bench-scale treatability testing was conducted on soil and water from the site located at 40 Roselle Street in Mineola, New York to evaluate the ability of activated persulfate to destroy chemicals of concern (COCs). The primary COCs at this site were tetrachloroethene (PCE), trichloroethene (TCE), naphthalene, 1,24-trimethylbenzene (1,2,4-TMB), and butylbenzenes. Two forms of activated persulfate were evaluated: PersulfOx® and alkaline activated persulfate (AP-pH). Most testing was performed using PersulfOx®, a proprietary form of activated persulfate that is known to be able to oxidize site COCs. Because PersulfOx® did not perform as expected in initial testing, additional testing was conducted to evaluate a higher concentration of PersulfOx® and a different persulfate activator. Laboratory testing measured soil oxidant demand, and evaluated the effect of PersulfOx® and AP-pH on COCs and secondary water quality.

Laboratory testing demonstrated that PersulfOx® could reduce concentrations of COCs in the aqueous phase within 28 days, and that high concentrations were needed to treat soil. In the PersulfOx® test using 20 g/L SP (22 g/L PersulfOx®), total VOCs decreased from 1,089 μ g/L to 130 μ g/L but soil only decreased from 73,000 μ g/kg-dry to 72,000 μ g/kg-dry, which equates to overall mass removal of 6% compared to Time 0 or the Control. However, in the PersulfOx® test using 50 g/L SP (56 g/L PersulfOx®) most aqueous COC were completely removed, while concentrations of soil VOCs decreased from 56,000 μ g/kg-dry to 37,000 μ g/kg-dry, an overall decrease in mass of 34% relative to the Control. About 75% of the SP was still present at 28 days in all three PersulfOx® tests, indicating that the oxidant was not limiting. Limited removal from the soil is presumably due to association of the COCs with NAPL, where they are less susceptible to oxidation. As long as oxidant is present, it is likely that soil COCs will eventually be destroyed as they slowly dissolve into the water.

Treatment with AP-pH was more effective than PersulfOx® in the timeframe of this study. Total VOCs decreased by 72% (relative to the control) within 28 days in the AP-pH-20g/L test and by 58% in the AP-pH-50g/L test compared to 34% for the 56 g/L PersulfOx® test. The greater removal in the AP-pH tests may be due to the higher pH, which enhanced removal of/from the NAPL or to the greater range of effectiveness of high pH activation compared to other persulfate activators. Although AP-pH was more effective than PersulfOx® in the time frame of this study, it is uncertain whether the

difference would persist (at least for the 56 g/L PersulfOx® test) given a longer reaction time since SP was still present, which would enable additional COC removal to occur given more time.

Treatment of soil and water with PersulfOx® generated a small amount of Cr(VI) - up to 0.012 mg/L. In addition, pH decreased to between 3.08 and 5.27 and sulfate increased to between 530 and 1,100 mg/L due to decomposition of SP.

The soil oxidant demand, measured on impacted soil, was 1.8 g SP/kg soil when the initial PersulfOx® concentration was 11 g/L and 25 g SP/kg soil when the initial PersulfOx® was 55 g/L. Consumption of SP in the COC Removal tests was 3.3 g SP/kg soil in the low dose test and 15 g SP/kg soil in the high dose test.

Based on the results of this study, PRIMA recommends that both PersulfOx® and AP-pH be considered for use at this site. If PersulfOx® is used, a dose on the order of 56 g/L PersulfOx®/L (50 g SP/L) in the groundwater after injection is recommended since 22 g/L (20 g SP/L) did not treat COCs in soil. Because PersulfOx® decreased pH to as low as pH 2 in the laboratory tests, it is recommended that a plan be developed to adjust groundwater pH, if needed. If AP-pH is used, a dose of 20 g/L SP in the groundwater after injection should be effective toward soil COCs, though a temporary increase in aqueous concentrations may be seen. pH will initially increase to over 11, but should return to near pre-treatment levels once SP has completely decomposed.

TABLE of CONTENTS

EXECUTIVE SUMMARY	i
List of Figures	iv
List of Tables	iv
ACRONYMS and ABBREVIATIONS	•••••• v
CHEMICAL FORMULAE	vi
1.0 INTRODUCTION	1
1.1 Background	
1.2 Study Objectives	
2.0 MATERIALS and METHODS	
2.1 Materials	
2.2 Preparation and Characterization of Soil and Groundwater	
2.3 Soil Oxidant Demand / Persistence	
2.4 COC Removal / Secondary Effects	
2.4.1 Initial Tests	
2.4.2 Follow-up Tests	
2.5 Analytical Methods	
2.6 Calculations	
2.6.1 Theoretical Oxidant Demand due to COCs	
2.6.2 SOD	9
2.6.3 Percent Removed/Destroyed	
3.0 RESULTS and DISCUSSION	
3.1 Untreated Soil and Groundwater	
3.2 Initial Tests	
3.2.1 SOD/Persistence	
3.2.2 COC Removal	
3.2.3 Secondary Effects	
3.3 Follow-up Tests	
3.3.1 COC Removal	
3.3.2 Secondary Parameters	
4.0 SUMMARY and CONCLUSIONS	
APPENDIX A (Chains of Custody)	
APPENDIX B (Subcontracted Analytical Results)	

LIST of FIGURES

Figure 1.	COC Removal Reactors at Day 28 – Initial Tests	6
Figure 2.	COC Removal Reactors at Day 28 – Follow-up Tests	7
Figure 3.	SOD/Persistence 1	3
Figure 4.	Post-treatment Total VOCs – Water 1	5
Figure 5.	Post-treatment Total VOCs – Soil	5

LIST of TABLES

Table 1.	Theoretical Stoichiometric Dose Requirements	2
Table 2.	Initial Conditions for COC Removal Test – Initial Tests.	6
Table 3.	Initial Conditions for COC Removal Test – Follow-up Tests	7
Table 4.	Analytical Methods	8
Table 5.	COCs and Secondary Parameters in Untreated Soil and Water.	. 11
Table 6.	Post-Treatment VOC Concentrations – Initial Tests.	. 14
Table 7.	Mass Balance – Initial Tests.	. 16
Table 8.	Secondary Parameters Post-Treatment – Initial Tests.	. 17
Table 9.	Post-Treatment VOC Concentrations - Follow-up Tests	. 19
Table 10	. Mass Balance – Follow-up Tests	. 20
Table 11	. Secondary Parameters – Follow-up Tests	. 21

ACRONYMS and ABBREVIATIONS

AP-pH	alkaline activated persulfate
COCs	chemicals of concern
Cr(VI)	hexavalent chromium
g	grams
kg	kilograms
L	liters
mg	milligrams
mL	milliliters
mmol	millimoles
mV	millivolts
μg	micrograms
ORP	oxidation reduction potential
PCE	tetrachloroethene
PSOx	PersulfOx®
SOD	soil oxidant demand
SP	sodium persulfate
1,2,4-TMB	1,2,4-trimethylbenzene
TCE	trichloroethene
TOC	total organic carbon
VOCs	volatile organic compounds

CHEMICAL FORMULAE

C_2Cl_4	tetrachloroethene
C_2HCl_3	trichloroethene
C9H12	trimethylbenzene
$C_{10}H_{14}$	butylbenzene
$C_{10}H_8$	naphthalene
CO_2	carbon dioxide
H^+	acid/proton
H ₂ O	water
Na ⁺	sodium
O_2	oxygen
NaOH	sodium hydroxide
$Na_2S_2O_8$	sodium persulfate
SO4 ²⁻	sulfate

1.0 INTRODUCTION

Bench-scale treatability testing was conducted on soil and water from the site located at 40 Roselle Street in Mineola, New York to evaluate the ability of activated persulfate to destroy chemicals of concern (COCs). The primary COCs at this site were tetrachloroethene (PCE), trichloroethene (TCE), naphthalene, 1,24-trimethylbenzene (1,2,4-TMB), and butylbenzenes. Two forms of activated persulfate were evaluated: PersulfOx® and alkaline activated persulfate (AP-pH). Most testing was performed using PersulfOx®, a proprietary form of activated persulfate that is known to be able to oxidize site COCs. Because PersulfOx® did not perform as expected in initial testing, additional testing was conducted to evaluate a higher concentration of PersulfOx® and a different persulfate activator. Laboratory testing measured soil oxidant demand, and evaluated the effect of PersulfOx® and AP-pH on COCs and secondary water quality.

1.1 Background

Activated persulfate is an established technology for the oxidation of a wide range of organic compounds, including site COCs. Sodium persulfate (SP) alone is a strong oxidant, but activation generates the persulfate radical, which is a stronger oxidant than SP. Common activators include high pH, ferrous iron, chelated iron, hydrogen peroxide (HP), as well as proprietary compounds or mixtures such as those found in PersulfOx®, a proprietary all-in-one activated persulfate developed by Regenesis (San Clemente, California). **Equations 1-5** show theoretical reactions for conversion of PCE, TCE, naphthalene, 1,2,4-TMB, and butylbenzenes to carbon dioxide and water by SP (Na₂S₂O₈). The stoichiometric SP requirements based on these reactions are given in **Table 1** and are assumed to apply to both un-activated persulfate and activated persulfate. In practice, a greater-than-stoichiometric dose of SP will usually be required because SP is a non-selective oxidant that will react with natural organic matter and other non-target compounds and may naturally decompose.

$$2Na_{2}S_{2}O_{8} + C_{2}Cl_{4} + 4H_{2}O \rightarrow 2CO_{2} + 4SO_{4}^{2-} + 8H^{+} + 4Cl^{-} + 4Na^{+}$$
Eqn. 1
PCE

$$3Na_2S_2O_8 + C_2HCl_3 + 4H_2O \rightarrow 2CO_2 + 6SO_4^{2-} + 9H^+ + 3Cl^- + 6Na^+$$
 Eqn. 2
TCE

$$24Na_2S_2O_8 + C_{10}H_8 + 20H_2O \rightarrow 10CO_2 + 48SO_4^{2-} + 48H^+ + 48Na^+$$
 Eqn. 3
naphthalene

$$24\text{Na}_2\text{S}_2\text{O}_8 + \text{C}_9\text{H}_{12} + 18\text{H}_2\text{O} \rightarrow 9\text{CO}_2 + 48\text{SO}_4^{2-} + 48\text{H}^+ + 48\text{Na}^+ \qquad \text{Eqn. 4}$$

trimethylbenzene

$$27\text{Na}_{2}\text{S}_{2}\text{O}_{8} + \text{C}_{10}\text{H}_{14} + 20\text{H}_{2}\text{O} \rightarrow 10\text{CO}_{2} + 54\text{SO}_{4}^{2-} + 54\text{H}^{+} + 54\text{Na}^{+} \qquad \text{Eqn. 5}$$

butylbenzenes

Persulfate decomposes to generate sulfuric acid. The change in sulfate concentration and the effect on pH will depend upon the amount of persulfate used, the rate at which it decomposes, the activator used, the presence of cations that can precipitate sulfate, and the buffering ability of site soil and groundwater. Other potential secondary effects include oxidation of soil-bound chromium to water soluble hexavalent chromium [Cr(VI)] and mobilization of metals due to changes in pH. The magnitude, duration, and significance of any such changes are site specific.

COC	g SP /g COC
Tetrachloroethene	2.9
Trichloroethene	5.4
Naphthalene	45
Trimethylbenzene*	48
Butylbenzene*	48

Table 1. Theoretical Stoichiometric Dose Requirements.

* all isomers

1.2 Study Objectives

Batch tests were conducted on soil and water to evaluate activated persulfate. Initial tests were performed using PersulfOx®. Follow-up tests were performed using both PersulfOx® and AP-pH. Specific goals were:

Initial Testing

- Measure the soil oxidant demand/persistence for PersulfOx®

- Assess COC destruction by PersulfOx®
- Evaluate the effect of PersulfOx® on secondary water quality parameters.

Follow-up Testing

- Determine whether a higher concentration of PersulfOx® can destroy COCs in soil
- Determine whether AP-pH is more effective than PersulfOx® at this site.

The tests conducted to achieve these goals are described in **Section 2.0** of this report. Results and Summary/Conclusions are presented in **Sections 3.0 and 4.0**, respectively.

2.0 MATERIALS and METHODS

2.1 Materials

PersulfOx[®]. PersulfOx[®] was obtained from Regenesis (www.regenesis.com). Stock slurries were prepared as needed by adding the appropriate amount of solid material to deionized (DI) water.

Sodium Persulfate, SP. Klozur® brand SP was obtained from Peroxychem (www.evonik.com). Stock solutions were prepared as needed by adding the appropriate amount of solid material to DI water.

2.2 Preparation and Characterization of Soil and Groundwater

Four soil samples – B-A (35-45 ftbg); B-B (35-45 ftbg); B-C (35-45 ftbg); and B-D (35-45 ftbg) – were received on August 20, 2021. The soil was composited into a single sample by sieving to remove particles greater than 4 mesh (3/16 inches), then mixing until visually homogeneous. Homogenized soil was brown sand with a strong odor. It was analyzed for volatile organic compounds (VOCs), Cr(VI), metals (chromium, iron, manganese), and moisture content using the laboratories and methods described in **Section 2.5**.

One groundwater sample (8.30.21 MW-2) consisting of 10 1-liter (L) amber bottles was received on August 31, 2021. Prior to testing, the sample was homogenized by pumping chilled water from each bottle into a large Tedlar bag, mixing, then pumping the water back into the amber bottles. The water in the Tedlar bag was slightly cloudy and contained particles that looked like "rag" (mixture of fine soil particles and an emulsion of non-aqueous liquid and water); the rag was excluded to the extent possible when water was returned to the amber bottles. Homogenized groundwater was analyzed for VOCs, anions (chloride, nitrate, sulfate), Cr(VI), and metals (chromium, iron, and manganese) using the laboratories and methods described in **Section 2.5**.

2.3 Soil Oxidant Demand / Persistence

The PersulfOx® SOD/oxidant persistence was measured. Two series of four reactors were prepared. Each reactor contained 60 grams (g) soil, 60 milliliters (mL) DI water and dry PersulfOx® as needed such that the initial SP concentration was approximately 10 g/L in one series and 50 g/L in the other series. Reactors were shaken continuously. One replicate from each series was destructively sampled at 2, 5, 8 and 21 days and the water analyzed for residual SP per **Section 2.5**. SOD was calculated as described in **Section 2.6.2**.

2.4 COC Removal / Secondary Effects

2.4.1 Initial Tests

Batch tests were conducted to evaluate the ability of PersulfOx® to destroy COCs and assess its effect on secondary water quality. Seven (7) reactors were prepared by combining soil, groundwater and PersulfOx® as appropriate to give the initial conditions shown in **Table 2.** PersulfOx® dosing was based on the results of the SOD test (**Section 2.3**), the concentration of COCs in groundwater and soil (**Section 3.1**) and the stoichiometry of **Equations 1-5**. Reactors were destructively sampled at the specified times and the soil and water each analyzed for VOCs. Water was also analyzed for Cr(VI), dissolved chromium, ORP, pH, residual SP, and sulfate. Moisture content of soil was measured. **Figure 1** shows the reactors prior to sampling at Days 28.

2.4.2 Follow-up Tests

Because PersulfOx® did not perform as well as expected on soil in the initial tests (see **Section 3.2.2**), additional testing was performed to determine whether a higher concentration of PersulfOx® and/or a different persulfate activator (high pH) would be more effective. Batch tests were conducted to evaluate the PersulfOx® and AP-pH in the similar manner as described in **Section 2.4.2**. Soil, water and reagents were combined to Initial conditions as shown in **Table 3**. A 2:1 mole ratio of sodium hydroxide (NaOH) to SP was used to adjust pH in the AP-pH tests. At 28 days, reactors were destructively sampled and the soil and water each analyzed for VOCs. Water was

also analyzed for pH, residual SP, and sulfate. **Figure 2** shows the reactors prior to sampling.

Test ·	Soil	GW	Reps	Initial PersulfOx [®]		Sample Time
	g	mL	#	g/L as PSOx	g/L as SP	days
Time 0	317	950	1	0	0	0
Control	317	950	2	0	0	7, 28
PSOx-Low	317	950	2	5.6	5.0	7, 28
PSOx-High	317	950	2	22	20	7, 28

Table 2. Initial Conditions for COC Removal Test – Initial Tests.

PSOx = PersulfOx

Figure 1. COC Removal Reactors at Day 28 – *Initial Tests.* From left: Control, PersulfOx® Low, PersulfOx® High.

Test	Soil	GW	Initial SP	Initial pH	Total Liquid [^]
Test	g	mL	g/L		mL
Control	85	245	0	ambient	255
PSOx-50	85	245.0	50*	ambient	255
AP-pH-20	85	245.0	20	>11**	255
AP-pH-50	85	245	50	>11**	255

 Table 3. Initial Conditions for COC Removal Test – Follow-up Tests.

* Added as PersulfOx®

** pH adjusted using 2:1 mole ratio of NaOH:SP

^ Added groundwater plus liquid reagents.

Figure 2. COC Removal Reactors at Day 28 – Follow-up Tests. From left: Control, PersulfOx® 50 g/L, AP-pH-20 g/L, AP-pH-50 g/L.

2.5 Analytical Methods

The methods for each analysis and the laboratory that performed the analyses are summarized in **Table 4**. All subcontracted samples were collected in appropriately preserved containers and shipped on ice under chain of custody via overnight delivery to the analytical laboratory. Soil and water were separated by allowing water to settle overnight, then siphoning as much water as possible directly into sample containers. Samples for anions, Cr(VI), and dissolved metals were filtered by PRIMA through a 0.45

micron polyethersulfone (PES) filter. Soil was centrifuged to remove excess water before being homogenized and placed in a sample container with minimal headspace.

Analyte	Method	Laboratory*
Anions	EPA 300	Alpha
Cr(VI)	EPA 7199/218.6	McCampbell
Metals	EPA 6020	Alpha
Moisture	Gravimetric	PRIMA
ORP	Probe	PRIMA
рН	Probe	PRIMA
Residual persulfate	FAS/KMnO4 titration	PRIMA
Sulfate	Hach**	PRIMA
VOCs	EPA 8260B	Alpha

* Alpha Analytical (Sparks, NV); McCampbell Analytical (Pittsburg, CA)

** Hach DR2800 spectrophotometer and appropriate Hach test reagents.

2.6 Calculations

2.6.1 Theoretical Oxidant Demand due to COCs

The theoretical amount of oxidant needed to convert a COC to carbon dioxide, water and chloride is the concentration of the COC in the matrix (soil or water, see **Section 3.1**) times the stochiometric requirement (**Table 1**). The total theoretical demand is the sum of the individual COC demands, as shown in **Equation 6**.

$$OD_{COCS} = \sum_{1}^{i} COC_{i} \ x \ SR_{i}$$

Eqn. 6

where

- OD_{COCs} is total theoretical oxidant demand due to COCs, in g/kg for soil or g/L for water
- $[COC]_i$ is concentration of *i*th COC in matrix, in g/kg for soil or g/L for water

SR_i is the stoichiometric oxidant requirement (g oxidant / g COC) of the *i*th COC based on theoretical equations for conversion of the COC to CO₂.

2.6.2 SOD

SOD was calculated according to Equation 7.

$$SOD = ([Ox]_{init} - [Ox]_t) x (V/M)$$
Eqn. 7

where

- SOD is soil oxidant demand, in g (or mg) oxidant/kg soil
- [Ox]*init* is the initial concentration of oxidant, in g (or mg) oxidant/L
- $[Ox]_t$ is the concentration of oxidant at time, t, in g (or mg) oxidant/L
- V is total volume of the aqueous phase, in L
- M is mass of soil, in kg

2.6.3 Percent Removed/Destroyed

For the Initial COC Removal tests, the percent remaining and destroyed were calculated by comparing the mass of each COC in the test reactor to the mass in the Time 0 reactor according to **Equations 8-10**. Concentrations in soil are on a dry weight basis.

Percent Remaining in Water = $100 \text{ x} (C_{aq}V_{aq})/(C_{aq}T_{0}V_{aq}+C_{s}T_{0}M_{s})$	Eqn. 8
---	--------

Percent Remaining in Soil = $100 \text{ x} (C_s M_s)/(C_{aq,T0}V_{aq}+C_{s,T0}M_s)$, Eqn. 9

Percent Destroyed = 100 - (% Remaining in Water + % Remaining in Soil) Eqn. 10

where

- C_{aq} is the aqueous concentration (µg/L) in the control or test,
- $C_{aq,T0}$ is the aqueous concentration ($\mu g/L$) in the Time 0 sample on a dry basis
- C_s is the soil concentration (mg/kg) in the control or test
- $C_{s,T0}$ is the soil concentration (mg/kg) at Time 0
- V_{aq} is the aqueous volume of the control or test
- M_s is the mass (kg) of the soil in the control or test on a dry basis

For the Follow-up COC Removal tests, the percent remaining was calculated by comparing the mass of each COC in the test reactor to the mass in the Control reactor according to **Equations 11-12**, where $C_{aq,Con}$ is the aqueous concentration in the Control and $C_{s,Con}$ is the soil concentration in the Control. Concentrations in soil are on a dry weight basis.

Percent Remaining in Water = $100 \text{ x} (C_{aq}V_{aq})/(C_{aq,Con}V_{aq}+C_{s,Con}M_s)$	Eqn. 11
Percent Remaining in Soil = $100 \text{ x} (C_sM_s)/(C_{aq,Con}V_{aq}+C_{s,Con}M_s)$,	Eqn. 12

3.0 RESULTS and DISCUSSION

Tables in this section contain data from subcontracted analytical laboratories.Complete analytical data packages are in Appendix B.

3.1 Untreated Soil and Groundwater

The concentrations of COCs and secondary parameters in untreated soil and groundwater are shown in **Table 5**. Groundwater contained 58 micrograms (μ g)/L TCE, 86 μ g/L n-butylbenzene, and 2,200 μ g/L naphthalene, while soil contained 850 μ g/kilogram (kg) TCE, 9,100 μ g/kg PCE, 1,300 μ g/kg 1,2,4-TMB, 15,000 μ g/L sec-butylbenzene, 7,700 μ g/L n-butylbenzene, and 62,000 μ g/kg naphthalene. The theoretical oxidant demand due to these COCs is 4.0 g SP/kg soil and 0.1 g SP/L groundwater.

Analyte	Units	Soil	Groundwater
Trichloroethene	μg/kg or μg/L	850	58
Tetrachloroethene	μg/kg or μg/L	9,100	< 20
1,2,4-Trimethylbenzene	μg/kg or μg/L	1,300	< 20
sec-Butylbenzene	μg/kg or μg/L	15,000	< 20
n-butylbenzene	μg/kg or μg/L	7,700	86
Naphthalene	μg/kg or μg/L	62,000	2,200
total VOCs	μg/kg or μg/L	95,950	2,344
Metals*			
Chromium	mg/kg or mg/L	13	< 0.010
Cr(VI)	mg/kg or mg/L	0.47	< 0.00040
Iron	mg/kg or mg/L	2,000	1.8
Manganese	mg/kg or mg/L	32	0.013
Anions			
Chloride	mg/L	n.m.	12
Nitrate	mg/L-N	n.m.	< 0.25
Sulfate	mg/L	n.m.	1.1

Table 5. COCs and Secondary Parameters in Untreated Soil and Water.

* Total metals in soil, dissolved metals in water.

3.2 Initial Tests

3.2.1 SOD/Persistence

The amount of SP remaining and consumed in the PersulfOx® SOD / persistence tests are shown in **Figure 3.** When the initial SP concentration was 9.2 g/L (11 g/L PersulfOx®), the 21-day SOD was 1.8 g SP/kg soil, but when the initial SP concentration was 46 g/L (55 g/L PersulfOx®), the amount of SP consumed was 25 g SP/kg soil. Increased SOD with higher initial concentration of oxidant is a common phenomenon.

3.2.2 COC Removal

The concentrations of COCs in treated soil and water are shown in **Table 6.** The concentration of total VOCs is also depicted in **Figures 4** and **5** for water and soil, respectively. The mass balance is given in **Table 7**. Treatment with PersulfOx® decreased aqueous concentrations of COCs, but did not significantly affect soil concentrations or overall mass removal. Total aqueous VOCs decreased from 1,089 μ g/L at Time 0 to 936 μ g/L in the Day 28 PSOx Low test and to 130 μ g/L at Day 28 PSOx High test, but soil VOCs increased from 73,000 μ g/kg-dry at Time 0 to 79,000 μ g/kg-dry in the day 28 PSOx-Low test and decreased to 72,000 μ g/kg-dry in the PSOx High test. These changes equate to -6% destruction in the low dose test and 6% destruction in the high dose test. Aqueous phase total VOCs decreased in the Control (to 883 μ g/L by Day 28), but not in the soil. Losses in the Control were somewhat greater than losses in the PSOx Low test (see **Figure 3**) and may have been due to biodegradation in the Control, which would have been inhibited by the oxidizing nature of PersulfOx®.

The reason for the poor removal of VOCs from soil may be due to their presence as a components of a non-aqueous phase liquid (NAPL) that coats the soil and prevents the VOCs from rapidly moving into the water phase where they are more easily oxidized. The presence of "rag" in untreated groundwater (see **Section 2.2**) suggests a NAPL is present. The high concentrations of VOCs in soil imply this NAPL is associated with the soil, since the soil is primarily sand and unlikely to strong sorb VOCs under the high (3:1) water to soil ratio used in these tests. Persulfate was still present at 28 days (**Section 3.4.1**), so it is likely that additional removal could occur given a longer reaction time, which would allow VOCs to dissolve from the NAPL into the water.

Time Dave	SP Remaini	ng, g/L Soln.	SP Consumed, g/kg Soil		
Time, Days -	Low Dose	Low Dose High Dose		High Dose	
0	9.2	46	0	0	
2	8.3	42	0.9	4.0	
5	8.0	39	1.2	7.0	
8	7.7	33	1.5	13	
21	7.4	21	1.8	25	

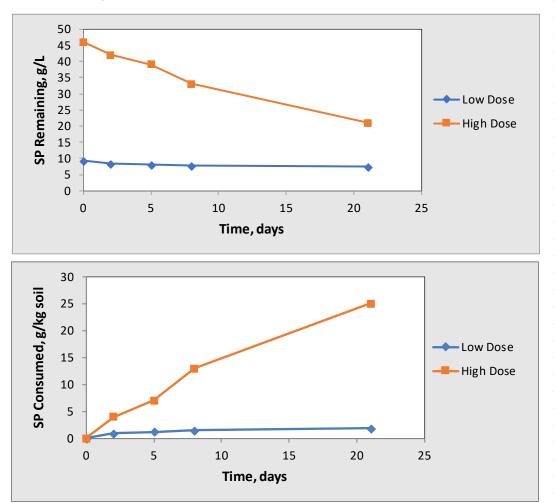


Figure 3. SOD/Persistence.

Table 6. Post-Treatment VOC Concentrations – Initial Tests								
Analyte	Units TO		Control		PSOx - Low (5 g/L SP; 5.6 g/L PSOx)		PSOx - High (20 g/L SP; 22 g/L PSOx)	
			Day 7	Day 28	Day 7	Day 28	Day 7	Day 28
VOCs - Aqueous								
Trichloroethene	μg/L	99	97	94	86	73	61	19
Tetrachloroethene	μg/L	190	240	240	230	220	190	100
1,2,4-Trimethylbenzene	μg/L	11	14	11	10	< 10	< 10	< 10
sec-Butylbenzene	μg/L	43	43	36	46	47	31	11
n-butylbenzene	μg/L	26	14	12	15	16	11	< 10
Naphthalene	μg/L	720	560	490	620	580	190	< 40
total VOCs	μg/L	1,089	968	883	1,007	936	483	130
VOCs - Soil - Wet basis								
Trichloroethene	µg/kg	< 800	< 800	< 800	< 800	< 800	< 800	< 800
Tetrachloroethene	µg/kg	5,900	4,000	6,600	3,900	5,600	4,000	4,600
1,2,4-Trimethylbenzene	µg/kg	960	800	990	< 800	910	830	900
sec-Butylbenzene	µg/kg	12,000	10,000	12,000	9,400	11,000	10,000	10,000
n-butylbenzene	µg/kg	7,100	5,600	6,300	5,200	5,700	5,700	5,200
Naphthalene	µg/kg	33,000	22,000	41,000	22,000	40,000	24,000	37,000
total VOCs	μg/kg	58,960	42,400	66,890	40,500	63,210	44,530	57,700
VOCs - Soil - Dry basis								
Trichloroethene	µg/kg	< 1,000	< 1,000	< 890	< 1,000	< 994	< 978	< 1,000
Tetrachloroethene	µg/kg	7,300	5,000	7,300	4,900	7,000	4,900	5,800
1,2,4-Trimethylbenzene	µg/kg	1,200	1,000	1,100	< 1,000	1,100	1,000	1,100
sec-Butylbenzene	µg/kg	15,000	13,000	13,000	12,000	14,000	12,000	13,000
n-butylbenzene	µg/kg	8,800	7,000	7,000	6,600	7,100	7,000	6,500
Naphthalene	µg/kg	41,000	28,000	46,000	28,000	50,000	29,000	46,000
total VOCs	μg/kg	73,000	53,000	74,000	51,000	79,000	54,000	72,000

Table 6. Post-Treatment VOC Concentrations – Initial Tests

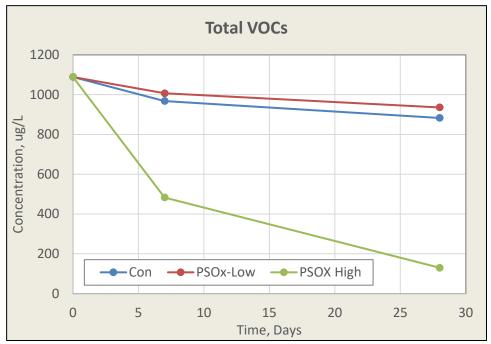


Figure 4. Post-treatment Total VOCs – Water.

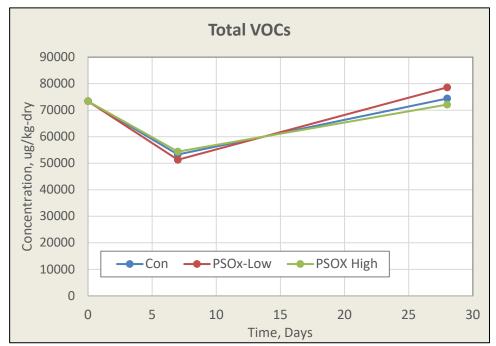


Figure 5. Post-treatment Total VOCs - Soil.

Table 7. Mass Balance – Initial Tests.							
Analyte	Control			PSOx - Low (5 g/L SP; 5.6 g/L PSOx)		PSOx - High (20 g/L SP; 22 g/L PSOx)	
	Day 7	Day 28	Day 7	Day 28	Day 7	Day 28	
	Perc	ent of Total	Remaining	in Rater (Re	elative to Tii	me 0)	
Trichloroethene	98	95	87	74	62	19	
Tetrachloroethene	9.8	9.8	9.4	9.0	7.8	4.1	
1,2,4-Trimethylbenzene	3.7	2.9	2.7	< 2.7	< 2.7	< 2.7	
sec-Butylbenzene	0.93	0.78	1.0	1.0	0.67	0.24	
n-butylbenzene	0.51	0.44	0.55	0.59	0.40	< 0.37	
Naphthalene	4.2	3.7	4.7	4.4	1.4	< 0.30	
Total VOCs	4.1	3.8	4.3	4.0	2.1	0.6	
	Per	cent of Tota	l Remaining	g in Soil (Rel	lative to Tim	ne 0)	
Trichloroethene	0 - 100	0 - 100	0 - 100	0 - 100	0 - 100	0 - 100	
Tetrachloroethene	63	92	62	87	61	72	
1,2,4-Trimethylbenzene	82	89	< 82	92	82	91	
sec-Butylbenzene	83	89	79	91	81	83	
n-butylbenzene	79	79	74	79	78	73	
Naphthalene	64	105	64	114	68	106	
Total VOCs	69	97	67	102	71	94	
		Percent of T	Total Remov	ved (Relativ	e to Time 0)		
Trichloroethene	0-100	0-100	0-100	0-100	0-100	0-100	
Tetrachloroethene	27	-2	29	3.6	31	24	
1,2,4-Trimethylbenzene	15	7.6	15 - 97	5-8	15-18	6-9	
sec-Butylbenzene	16	11	20	8	18	17	
n-butylbenzene	21	21	26	20	22	27	
Naphthalene	32	-9	31	-19	31	-6	
Total VOCs	27	0	29	-6	27	6	

Table 7.	Mass	Balance -	Initial	Tests.
----------	------	-----------	---------	--------

3.2.3 Secondary Parameters

The effect of treatment on secondary water quality parameters is shown in **Table 8**. Cr(VI) was not detected in the low dose PersulfOx® test, but was detected at 0.012 mg/L Cr(VI) in the Day 28 high dose test. Treatment with PersulfOx® decreased pH (from 6.05 at Time 0 to 5.9 low dose test and 3.08 in the high dose test) and increased sulfate (from 8 mg/L to 530-1,100 mg/L by Day 28) due to the decomposition of persulfate. About 75% of the SP initially added was still present by Day 28, implying that additional COC removal could occur given a longer reaction time.

The amount of SP consumed in the low dose test was 1.1 g SP/L (3.3 g SP/kg soil), while the amount consumed in the high dose test was 5 g SP/L (15 g SP/kg soil). These values are comparable to the amount consumed in the 21-day SOD tests (Section 3.3.1).

Analyte	Units	Contro T0		trol	PSOx - Low (5 g/L SP; 5.6 g/L PSOx)		PSOx - High (20 g/L SP; 22 g/L PSOx)	
			Day 7	Day 28	Day 7	Day 28	Day 7	Day 28
Moisture	%-dry	24.5	25.8	11.3	26.7	24.3	22.2	25.0
Chromium, dissolved	mg/L	< 0.010	0.025	< 0.010	0.038	0.014	< 0.010	0.025
Chromium, hexavalent	mg/L	< 0.00040	< 0.00080	< 0.00040	< 0.010	< 0.0040	< 0.010	0.012
ORP	mV	104	75	28	193	306	354	567
рН		6.05	6.10	6.15	5.90	5.27	4.84	3.08
Residual SP	g/L	n.a.	n.a.	n.a.	4.0	3.9	16	15
Sulfate	mg/L	8.0	65	36	265	1100	160	530

 Table 8. Secondary Parameters Post-Treatment – Initial Tests.

n.a. = not applicable

3.3 Follow-up Tests

3.3.1 COC Removal

The post-treatment concentrations of COCs in soil and water from the follow-up tests are shown in **Table 9.** The mass balance is given in **Table 10**. Treatment with 56 g/L PersulfOx® (PSOx-50g/L) completely removed most target VOCs from the aqueous

phase within 28 days and decreased total target VOCs in soil from 56,000 μ g/kg-dry in the Control to 37,000 μ g/k-dry, resulting in 34% reduction in target VOCs (compared to the Control). The results indicate that increasing the PersulfOx® concentration from 22 g/L (PSOx-High, **Section 3.2.2**) to 56 g/L (PSOx-50g/L, **this section**) enhances overall mass removal of VOCs. (Note: Although the mass balance of the initial tests in **Section 3.2.2** was calculated relative to Time 0 while the mass balance of these follow-up tests was calculated relative to the Control, the two sets of data can be compared. In the initial tests, the degree of removal relative to the Control is the difference between the degree of removal (relative to Time 0) of a treatment and the degree of removal (relative to Time 0) of the Control. As can be seen in **Table 7**, the Day 28 Percent Removed was similar for the Control and PSOx tests, indicating that treatment with 5.6-22 g/L PersulfOx® had little effect compared to no treatment.

Treatment with AP-pH increased aqueous concentrations of target VOCs, but decreased soil concentrations. Aqueous concentrations increased from 701 μ g/L in the Control to 5,950 μ g/L in the AP-pH-20 g/L test and to 1,033 μ g/L I the AP-pH-50 g/L test) within 28 days, while soil target VOCs decreased from 56,000 μ g/kg-dry to 14,000 μ g/kg-dry in the AP-pH-20g/L test and to 23,000 μ g/kg-dry in the AP-pH -50g/L test. Overall, target total VOC mass decreased by 72% in the AP-pH-20g/L test and by 58% in the AP-pH-50g/L test.

Non-target VOCs were detected in the PSOx-50g/L and AP-pH-50g/L tests. Acetone, a common by-product of chemical oxidation, was detected at up to 1,200 mg/L. Acetone is susceptible to biodegradation and therefore is not likely to persist in the field. Chloroethane, bromomethane, and chloroform were seen at concentrations up to 57 mg/L. Haloethanes and methanes are known reactive intermediates of persulfate oxidation and are not expected to persist.

3.3.2 Secondary Parameters

The effect of treatment on secondary water quality parameters is shown in **Table 11**. Treatment with PersulfOx® decreased pH (from 6.92 to 1.96) and increased sulfate (from 48 mg/L to 3,100 mg/L) by Day 28 due to the decomposition of persulfate, while treatment with AP-pH increased pH to above 12 and increased sulfate to up to 18,000 mg/L. About 72% of the SP initially added was still present by Day 28 in the PSOx-50g/L test and about 30% was present in the AP-pH tests, implying that additional COC

removal could occur given a longer reaction time. The lower residual concentration of SP in the AP-pH tests compared to the PersulfOx® test is consistent with greater COC removal in the AP-pH tests.

Analyte	Units	Control	PSOx (50 g/L SP; 56 g/L PSOx)	AP-pH (20 g/L SP, pH >11)	AP-pH (50 g/L SP, pH >11)
		Day 28	Day 28	Day 28	Day 28
Target VOCs - Aqueous					
Trichloroethene	μg/L	27	< 1.0	< 100	23
Tetrachloroethene	μg/L	110	20	510	120
1,2,4-Trimethylbenzene	μg/L	10	< 1.0	< 100	< 20
sec-Butylbenzene	μg/L	36	< 1.0	1200	170
n-butylbenzene	μg/L	18	< 1.0	940	130
Naphthalene	μg/L	500	< 4.0	3,300	590
total Target VOCs	mg/L	701	20	5,950	1,033
Non-Target VOCs - Aqueo	us				
Acetone	μg/L	< 160	1,200	< 2,000	490
Chloroethane	μg/L	< 8.0	57	< 100	< 20
Bromomethane	μg/L	< 32	37	< 400	< 80
Chloroform	μg/L	< 8.0	1.4	< 100	21
VOCs - Soil - Wet basis					
Trichloroethene	µg/kg	< 800	< 800	< 400	< 800
Tetrachloroethene	µg/kg	3,100	1,400	940	1,900
1,2,4-Trimethylbenzene	µg/kg	1,000	< 800	< 400	< 800
sec-Butylbenzene	µg/kg	7,100	4,800	2,600	4,400
n-butylbenzene	µg/kg	4,900	3,400	1,700	2,900
Naphthalene	µg/kg	30,000	21,000	6,300	9,900
total VOCs	µg/kg	46,100	30,600	11,540	19,100
VOCs - Soil - Dry basis					
Trichloroethene	µg/kg	< 970	< 960	< 480	< 960
Tetrachloroethene	µg/kg	3,800	1,700	1,100	2,300
1,2,4-Trimethylbenzene	µg/kg	1,200	< 960	< 480	< 960
sec-Butylbenzene	µg/kg	8,600	5,800	3,100	5,300
n-butylbenzene	µg/kg	5,900	4,100	2,000	3,500
Naphthalene	µg/kg	36,000	25,000	7,500	12,000
total VOCs	µg/kg	56,000	37,000	14,000	23,000

Table 9. Post-Treatment VOC Concentrations – Follow-up Tests

Table 10. Mass Balance – Follow-up Tests							
Analyte	PSOx AP-pH (50 g/L SP; 56 g/L PSOx) (20 g/L SP, pH >11)		AP-pH (50 g/L SP, pH >11)				
	Day 28 Day 28		Day 28				
Percent of Total Remaining in Water (Relative to Contro							
Trichloroethene	< 3.7	0-100	85				
Tetrachloroethene	0.17	4.4	1.0				
1,2,4-Trimethylbenzene	< 0.027	< 2.7	< 0.54				
sec-Butylbenzene	< 0.004	4.6	0.65				
n-butylbenzene	< 0.006	5.2	0.72				
Naphthalene	< 0.004	3.0	0.53				
Total VOCs	0.012	3.5	0.60				
	Percent of Total F	Remaining in Soil (Re	elative to Control)				
Trichloroethene	0 - 100	0 - 100	0 - 100				
Tetrachloroethene	44	30	60				
1,2,4-Trimethylbenzene	< 79	< 39	< 79				
sec-Butylbenzene	67	36	62				
n-butylbenzene	69	34	59				
Naphthalene	69	21	33				
Total VOCs	66	25	41				
	Percent of To	tal Removed (Relati	ive to Control)				
Trichloroethene	0-100	0-100	0-100				
Tetrachloroethene	56	66	39				
1,2,4-Trimethylbenzene	> 21	> 58	> 20				
sec-Butylbenzene	33	59	38				
n-butylbenzene	31	61	41				
Naphthalene	31	76	67				
Total VOCs	34	72	58				

Table 10. Mass Balance – Follow-up Tests

Table 11. Secondary Parameters – Follow-up Tests								
Analyte	Units	PSOx - 50 g/L Control (50 g/L SP; 56 g/L PSOx)		AP-pH - 20g/L (20 g/L SP, pH >11)	AP-pH - 50 g/L (50 g/L SP, pH >11)			
		Day 28	Day 28	Day 28	Day 28			
Moisture	%-dry	21.2	20.1	19.4	20.5			
рН		6.92	1.96	12.30	12.2			
Residual SP	g/L	n.a.	36	7.1	16			
Sulfate	mg/L	48	3,100	9,000	18,000			

Table 11. Secondary Parameters – Follow-up Tests

4.0 SUMMARY and CONCLUSIONS

Laboratory testing demonstrated that PersulfOx® could reduce concentrations of COCs in the aqueous phase within 28 days, and that high concentrations were needed to treat soil. In the PersulfOx® test using 20 g/L SP (22 g/L PersulfOx®), total VOCs decreased from 1,089 μ g/L to 130 μ g/L but soil only decreased from 73,000 μ g/kg-dry to 72,000 μ g/kg-dry, which equates to overall mass removal of 6% compared to Time 0 or the Control. However, in the PersulfOx® test using 50 g/L SP (56 g/L PersulfOx®) most aqueous COC were completely removed, while concentrations of soil VOCs decreased from 56,000 μ g/kg-dry to 37,000 μ g/kg-dry, an overall decrease in mass of 34% relative to the Control. About 75% of the SP was still present at 28 days in all three PersulfOx® tests, indicating that oxidant was not limiting. Limited removal from the soil is presumably due to association of the COCs with a NAPL, where they are less susceptible to oxidation. As long as oxidant is present, it is likely that soil COCs will eventually be destroyed as they slowly dissolve into the water.

Treatment with AP-pH was more effective than PersulfOx® in the timeframe of this study. Total VOCs decreased by 72% (relative to the control) within 28 days in the AP-pH-20g/L test and by 58% in the AP-pH-50g/L test compared to 34% for the 56 g/L PersulfOx® test. The greater removal in the AP-pH tests may be due to the higher pH, which enhanced removal of/from the NAPL or to the greater range of effectiveness of high pH activation compared to other persulfate activators. Although AP-pH was more effective than PersulfOx® in the time frame of this study, it is uncertain whether the difference would persist (at least for the 56 g/L PersulfOx® test) given a longer reaction time since SP was still present, which would enable additional COC removal to occur given more time.

Treatment of soil and water with PersulfOx® generated a small amount of Cr(VI) - up to 0.012 mg/L. In addition, pH decreased to between 3.08 and 5.27 and sulfate increased to between 530 and 1,100 mg/L due to decomposition of SP.

The soil oxidant demand, measured on impacted soil, was 1.8 g SP/kg soil when the initial PersulfOx® concentration was 11 g/L and 25 g SP/kg soil when the initial PersulfOx® was 55 g/L. Consumption of SP in the COC Removal tests was 3.3 g SP/kg soil in the low dose test and 15 g SP/kg soil in the high dose test.

Based on the results of this study, PRIMA recommends that both PersulfOx® and AP-pH be considered for use at this site. If PersulfOx® is used, a dose on the order of 56 g/L PersulfOx®/L (50 g SP/L) in the groundwater after injection is recommended since 22 g/L (20 g SP/L) did not treat COCs in soil. Because PersulfOx® decreased pH to as low as pH 2 in the laboratory tests, it is recommended that a plan be developed to adjust groundwater pH, if needed. If AP-pH is used, a dose of 20 g/L SP in the groundwater after injection should be effective toward soil COCs, though a temporary increase in aqueous concentrations may be seen. pH will initially increase to over 11, but should return to near pre-treatment levels once SP has completely decomposed.

APPENDIX A (Chains of Custody)

APPENDIX B (Subcontracted Analytical Reports)

Remedial Action Work Plan Former Garden Photoengraving OU-1 - Site #130174 40 Roselle Street Mineola, New York

APPENDIX B

Special Requirements Community Air Monitoring Plan (SR-CAMP)

Special Requirement Community Air Monitoring Plan 40 Roselle Street, Mineola, New York

This Special Requirement Community Air Monitoring Plan (SR-CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress during remedial activities at the site.

If work is performed within 20 feet of an occupied structure, additional continuous monitoring locations will be established at the nearest air intake locations (e.g. windows, doors, vent intakes) for nearby structures. It is anticipated that several planned injection locations will be within 20 feet of the 50 Roselle Street building. During these activities monitoring locations will be established adjacent to all first floor windows and building air intakes within 20 feet of the work area or the air intake structure located closest to the work zone.

The SR-CAMP is not intended for use in establishing action levels for workers respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the SR-CAMP helps to confirm that work activities did not spread contamination off-site through the air.

Reliance on the SR-CAMP should not preclude simple, common sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Depending on the nature of known or potential contaminants at the site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, the installation of soil borings or monitoring wells, and during the application of the In Situ Chemical Oxidation (ISCO) injections.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil samples. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuing monitoring may be required during sampling activities.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations will be monitored continuously at the upwind and downwind perimeters of the exclusion zone, and adjacent to first floor windows and building air intakes within 20 feet of the work area at temporary particulate monitoring stations. The particulate monitoring will be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment will be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration will be visually assessed during all work activities.

• If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than the background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work may continue

with dust suppression techniques provided that no visible dust is migrating from the work area.

- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 mcg/m³, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 mcg/m³ or less at the monitoring point.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re- evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings will be recorded and be available for State (DEC and DOH) personnel to review.

VOC Monitoring, Response Levels, and Actions

VOCs will be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone), and adjacent to first floor windows and building air intakes within 20 feet of the work area on a continuous basis or as otherwise specified. Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work will be performed using a photo ionization detector (PID) equipped with a 10.2 eV bulb. The PID will be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15- minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm above established background readings, monitoring should occur within the occupied structure(s). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of the vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less- but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown.

All 15-minute readings will be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes will also be recorded.

Remedial Action Work Plan Former Garden Photoengraving OU-1 - Site #130174 40 Roselle Street Mineola, New York

APPENDIX C Oxidant Information

29-Sep-2022

Customer:	HRP Associates				
Contact:	Jessica Kruczek				
Site Location:	Mineola, NY				
Proposal Number:	CRM 24545				

Prepared by:
John Valkenburg, PE
1-517-669-5400
John.Valkenburg@evonik.com

Klozur[®] SP Demand Calculations and Cost Estimate

ltem	Packaging Type		ntity os)	Unit Rate (\$USD / Ib)	Cost in \$USD (FOB Origin)
Klozur [®] SP	55.1 lb bags	44,080		1.53	\$67,442
Klozur® Activator(s)					
25% NaOH	Totes (delivered pricing)		65,000	0.515	\$33,475
			Number of	Estimated	
		Shipping	Deliveries N/A	Cost Per Delivery⁴ N/A	Not Included
		Taxes ³			Not Included
				Total:	\$100,917

1) Number of packages needed is rounded up to nearest whole unit.

2) Price valid for 30 days from date at top of document. Terms: net 30 days. Prices are FOB Origin.

3) Any applicable taxes not included. Please provide a copy of your tax exempt certificate or resale tax number when placing your order. In accordance with the law, applicable state and local taxes will be applied at the time of invoicing if Evonik has not been presented with your fully executed tax exemption documentation.

4) If shipping not included, estimated freight rates available upon request. Freight rates provided are estimates only. Standard delivery time can vary from 1-3 weeks from time of order, depending upon volume. Expedited transport can be arranged at extra cost.

5) Return Policy: Within 90 days of sale and following written approval by Evonik, products in their unopened containers, which by analysis meet the original specifications and are in the same condition as they were shipped, will be accepted for return at invoiced price, less a 25% handling charge and return freight paid by buyer. Products that are made to order or custom blended are non-returnable. Returned products that are not received back by Evonik in the same condition as they were shipped or that have been stored outside, may be subject to a higher restocking fees or no refund at all.

6) All sales are per Evonik's Terms and Conditions.

7) All disclaimers within the standard proposal/demand calculator attachments apply to any and all estimates.

PROPOSAL ATTACHMENTS

PRODUCT OVERVIEW

Klozur[®] SP is an environmental grade sodium persulfate which has been delivered safely and cost effectively to treat a wide variety of common contaminants of concern with an unmatched combination of power and control. With proper activation, Klozur SP can generate both oxidative and reductive pathways delivering the power to destroy the most recalcitrant of contaminants.

For more information on activated Klozur® SP, please contact your Evonik technical representative or www.klozur.com.

SITE INFORMATION							
	<u>Value</u>	<u>Unit</u>	Note				
Target Area Width (perpendicular to GW flow direction)	30	ft	customer supplied				
Target Area Length (Parallel to GW flow direction)	30	ft	customer supplied				
Area of Treatment	900	ft2	customer supplied				
Top of Treatment Zone	30	ft bgs	customer supplied				
Base of Treatment Zone	45	ft bgs	customer supplied				
Treatment Zone Thickness	15	ft	customer supplied				
Treatment Volume	13,500	ft3	calculated value				
Porosity	35	%	default value				
Ground Water Volume	35,341	USG	calculated value				
Soil Density	100	lbs/ft3	default value				
Soil Mass	1,350,000	lb	calculated value				
Fraction Soil Mass Contacted*	100	%	default value				
Base Buffering Capacity (Alkaline Activation only)	3	g 25 percent NaOH / kg soil	estimated value, it is recommend that this be analytically determined				
Soil Oxidant Demand	1.8	g Klozur / kg soil	estimated value, it is recommend that this be analytically determined				

* Fraction soil mass contacted may be less for sites with contact limitations such as fractured bedrock or those with low permeable materials.

Disclaimer:

The estimated dosage and recommended application methodology described in this document are based on the site information provided to Evonik, but are not meant to constitute a guaranty of performance or a predictor of the speed at which a given site is remediated. Klozur® persulfate and activator demand calculations do not take into account the kinetics, speed of the reaction, or ability to establish contact between the reagents and contamination in the subsurface. These calculations represent the minimum anticipated amount needed to treat the contaminants of concern (COCs). As a result, these calculations should be used as a general approximation for purposes of an initial economic assessment. Evonik recommends that oxidant demand and treatability testing be performed to verify the quantities of oxidant needed.

CONTAMINANTS OF CONCERN* (COCs)

Concentrations:

The following are estimates of the contaminant concentration in soil and groundwater within the target area. The total COC mass was calculated including estimated COC mass in groundwater, soil and NAPL, if present, within the targeted area.

	GW	Soil	NAPL	Total COC Mass**
Contaminant	<u>(mg/L)</u>	<u>(mg/kg)</u>	<u>(lbs)</u>	(lb)
naphthalene	0.2	41.0	554.0	609.4
PCE	1.8	7.3	99.0	109.4
DCE	0.08	0	0	0
ТСА	0.001	0	0	0
trimethylbenzene	0	1	0	2
butylbenzene	0	24	321	354

Remedial Goals and Target Mass Reductions:

The target demand is determined by also accounting for remedial goals for each contaminant and represents the estimated mass reductions targeted for each contaminant.

Contaminant	GW (<u>mg/L)</u>	Soil <u>(mg/kg)</u>	NAPL <u>(lbs)</u>	Total COC Mass Targeted*** _(lbs)
naphthalene	0	0	0	609.4
PĊE	0	0	0	109.4
DCE	0	0	0	0
ТСА	0	0	0	0
trimethylbenzene	0	0	0	2
butylbenzene	0	0	0	354

*Unless provided, sorbed concentrations were roughly estimated based on expected groundwater concentrations, foc and Koc values. For a more refined estimate, it is recommended that actual values be verified via direct sampling of the targeted treatment interval.

** Includes estimated contaminant mass in soil, groundwater, and NAPL (if provided) at the site.

*** Includes estimated contaminant mass in soil, groundwater, and NAPL (if provided) at the site with the remedial goals subtracted from the total mass onsite.

KLOZUR[®] PERSULFATE DEMAND

The estimated mass of Klozur[®] SP accounts for target demand with the COCs, non-target demand associated with the soils (SOD) and a safety factor applied to each. The safety factor is intended to account for potential variability in the COC and SOD estimates and any other uncertainties associated with the application or site.

The demand from COCs was estimated using:		Degradation Ratio		The degradation ratio should be determined/verified in a bench or field test		
	Klozur SP Demand		Safety Factor	Klozur SP with Fa		
Demand from COCs	20,181		2.0	40,362	lb	
Demand from SOD	2,430		1.5	3,645	lb	
Total Klozur [®] SP Demand:	44,007	lb	To be applied in	2	applications	
Klozur® SP Per Application:	22,004	lb				

KLOZUR® SP PACKAGING OPTIONS AND PRICING

Klozur[®] SP can be delivered to your site in a variety of packages including in bags, or two sizes of super sacks for your handling convenience. Pricing below is exclusive of shipping and any applicable taxes.

Estimate for	Total Project	Total Project Demand		
Packaging Type	# of packages / pallet	lb Klozur® SP / pallet	# of packages needed	
55.1 lb bags	40	2,204	800	
	Unit Rate	Quantity	Cost in \$USD	
Packaging Type	(\$USD / lb)	(lbs)	(FOB Origin)	
55.1 lb bags	1.53	44,080	\$67,442	

KLOZUR[®] ACTIVATION CHEMISTRIES

Klozur[®] activation chemistries are used to convert Klozur[®] SP into the highly reactive radicals. Choosing the right activator chemistry for your contaminants of concern is important in obtaining a successful site remediation. The choice of activator will be dependent upon the target contaminants, site lithology and hydrogeology, and other site conditions. While activator demand quantities for all methods are given, not all activation methods are recommended for your given contaminant or site conditions. Please consult with an Evonik technical representative for proper selection of activation chemistry.

Note: Only one type of activator is typically needed.

*Evonik Industries AG is the owner or licensee under various patent applications relating to the use of activation chemistries

Alkaline (High pH) Activation

Alkaline activated persulfate is the most commonly used activation method. Alkaline demand is a funcation of the alkalinity needed to neutralize generate HSO_4^- from persulfate decomposition plus the amount needed to raise ground water / soil to a pH > 10. Common alkaline sources include 25% NaOH, hydrated lime, and Portland cement.

Calculation for NaOH (high pH) demand:

Sodium hydroxide is a highly soluble form of alkalinity that is commonly used for injection events with Klozur[®] SP. Evonik recommends using 25% NaOH solutions as it has higher solubilities and minimal heat of dissolution issues.

		Application		Units
NaOH Solution Concentration			25	% w/w
NaOH demand for HSO4 neutralization		29,621	59,242	Ib Solution
Soil buffering amount		4,050 4,050		lb Solution
Package Type	Totes	Package Mass		2,500 Ib Solution
Number of Packages		14	26	
Total NaOH demand		35,000	65,000	Ib Solution

** note: the addition of highly concentrated or crystalline NaOH to water is very exothermic. Add NaOH slowly to water, and allow for excess heat to dissipate.

Hydrated Lime [Ca(OH)₂]

Hydrated Lime $[Ca(OH)_2]$ is a solid alkali with a low solubility. It is well suited for soil mixing and for solid state emplacement applications. When selecting hydrated lime, evaluate impurities to maximize hydrated lime content and minimize carbonate content.

		Application	Total	Units	
Assumed purity of $Ca(OH)_2$ to Activate Klozur [®] SP:			92	%	
Package Type	50 lb Bag	Package Mass		50	lb
Number of Packages		170	319		
Mass of $Ca(OH)_2$ to Activate Klozur [®] SP:		8,500	15,950	lb	

** Ca(OH)₂ has a low solubility and will typically be applied as a solid/slurry. As with any chemical material, it is recommended that precautions in the SDS be followed. Hydrated lime purity should be confirmed at time of order and masses adjusted as necessary.

INSTALLATION VIA INJECTION

Klozur[®] SP will be delivered as a dry powder, packaged in 55.1-lb (25 Kg) bags, and 2,204 lb (1,000 Kg) supersacks (1,102 lbs, or 500 Kg, supersacks are available as special order items). Klozur[®] SP is highly soluble in water and can be injected via fixed wells, open boreholes or using direct push technology (DPT). Klozur[®] SP is typically batched at a concentration of between 50 to 450 g/L (5 to 35%) and Evonik recommends injecting at a concentration between 50 and 250 g/L, depending upon site design and conditions. Effective treatment requires establishing contact between a sufficient amount of activated persulfate and the contaminant in the subsurface. A key element of establishing this contact in a source zone is the injection volume used to inject the activated persulfate reagents. Depending on the application method employed and site conditions, between 20% and 100% (with >50% typical) of the effective porosity is normally targeted during Klozur[®] SP injection, with a higher percent pore fill normally targeted for sites with slow

Below is an example injection scenario for the proposed mass Klozur[®] SP for this site. The suggested injection volumes may be altered based on the site specific conditions.

Number of Applications

2

Klozur SP Dosage	Project Totals		Per Applicatio		
Mass of Klozur [®] SP	44,080	lb	22,040	lb	
Concentration in Total Pore Volume	150	g/L	75	g/L	
	13.7	% w/w	7.1	% w/w	
Application rate by soil mass (dry weight)	32.7	g/kg	16.3	g/kg	
Injection Locations					
Number of Injection Locations	4	locations			
Radius of Influence					
Design ¹	10.0	ft			
Injection ²	7.7	ft			
Overlapping Design ROI ³	17	%			
Approximate Spacing between locations ⁴	15.0	ft			
Injection Details	Project Totals		Per Applicat		
Total Injection Volume	24,800	gal	12,400	gal	
Percentage of Effective Pore Volume			82	%	
Volume per Injection Location	6,200	gal	3,100	gal	
Klozur [®] SP Injection Concentration			213	g/L	
			18.9	% w/w	
Mass per Injection Location					
Klozur [®] SP	11,020	lb	5,510	lb	
25% NaOH	16,250	Lbs Solution	8,750	Lbs Solut	

Design parameters should be considered approximations and suggestions. Site design engineers and contractors are ultimately responsible for the field application and design.

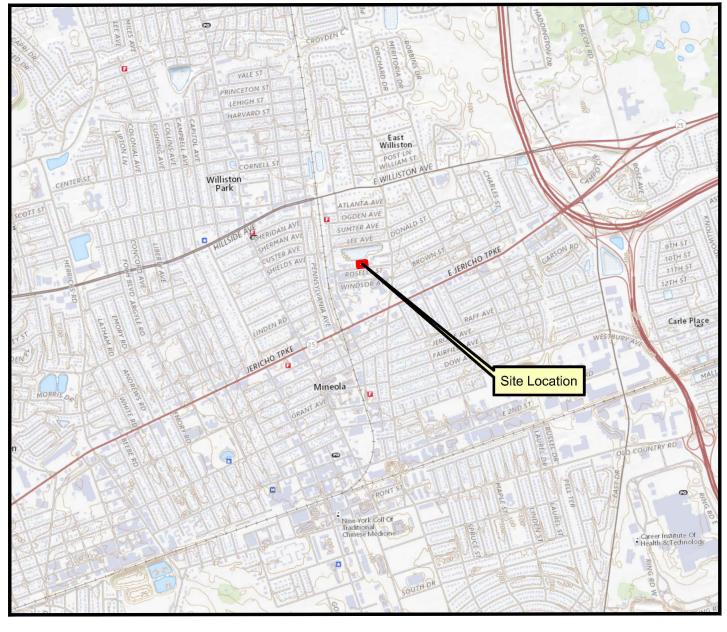
Values are based upon client supplied data and other assumed values. Changes in any of the input values will affect and alter other

1. Design radius of influence corresponds to the desired treatment radius from each injection location.

2. Injection radius of influence corresponds to the distance from each injection point the injection volume would distribute assuming uniform (cylindrical) distribution in the effective pore volume.

3. Approximate percentage of overlap between the Design ROI from the various injection locations. Actually percent overlap will depend upon injection location layout.

4. Approximate distance between injection locations. Actual distance will depend upon site layout.


Notes:

Remedial Action Work Plan Former Garden Photoengraving OU-1 - Site #130174 40 Roselle Street Mineola, New York

APPENDIX D Injection Design Drawings

SITE LOCATION MAP SCALE: 1" = 2000'

SITE # 130174

GARDEN PHOTOENGRAVING (OU-1) IN-SITU CHEMICAL OXIDATION INJECTION PLAN

Prepared By:

ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM

Prepared For:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 BROADWAY ALBANY, NY 12233

JANUARY 13, 2023

40 ROSELLE STREET MINEOLA, NEW YORK HRP PROJECT NO. DEC1020.RA

TITLE / DESCRI
TITLE SHEET
SITE PLAN
NOTES
DETAILS

GENERAL NOTES

- ALL DIMENSIONS, ELEVATIONS, AND EXISTING CONDITIONS SHALL TO INJECTIONS. ANY DISCREPANCIES DISCOVERED DURING THE
- SHALL CONTACT "DIG SAFELY NT" (811), AT LE STARTING CONSTRUCTION. THE CONTRACTOR SHALL COO INDIVIDUAL UTILITY COMPANIES
- THE CONTRACTOR SHALL ENSURE ALL WORK DONE AS A PART OF THIS CONTRACT IS DONE WITHIN ALL APPLICABLE LAWS, CODES, AND REGULATION
- CONTRACTOR TO ENSURE ALL APPLICABLE PERMITS ARE SECURED PRIOR TO INITIATING WORK
- THE CONTRACTOR SHALL WORK IN COOPERATION WITH THE NYSDEC TO SECURE SITE ACCESS AND MAKE NOTIFICATIONS TO THE SITE OWNER NO LESS THAN TO THE COMMENCEMENT OF FIELD ACTIVITIES

SHEET INDEX	X	
RIPTION	CREATED	REVISED
	06/23/2022	01/13/2023
	06/23/2022	01/13/2023
	06/23/2022	01/13/2023
	06/23/2022	01/13/2023

	DESIGNED: CALL:
	GARDEN PHOTOENGRAVING (OU-1) SITE # 130174 IN-SITU CHEMICAL OXIDATION INJECTION PLAN 40 ROSELLE STREET MINEOLA, NEW YORK P.E. SEAL
LEGEND CONTROL OR NOT LOCATED CONTROL ON NOT LOCATED CONTROL ON NOT LOCATED	NHEET NO. SHEET NO. SHEET NO.

SCOPE OF WORK	HEALTH AN
 THE PROPOSED REMEDY FOR THE SITE IS IN-SITU CHEMICAL OXIDATION (ISCO), AS OUTLINED IN THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) RECORD OF DECISION (ROD). HRP ASSOCIATES, INC. WAS CONTRACTED BY THE NYSDEC TO DESIGN THE ISCO REMEDIAL ACTION AT THE SITE. THE CALL-OUT CONTRACTOR (THE CONTRACTOR) SHALL PERFORM THE WORK. 	1. THE CC a. TH
2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR CONDUCTING THE FOLLOWING ACTIVITIES UNDER THIS WORK TASK:	AD PR
a. PREPARATION, SUBMITTAL, AND REVISION (IF NEEDED) OF RELEVANT PLANNING DOCUMENTS, INCLUDING WORK PLANS, MATERIAL SPECIFICATIONS AND CUT SHEETS, DRAWINGS, AND ANY OTHER NECESSARY INFORMATION REQUIRED TO PERFORM THE WORK.	b. TH CC
b. ATTENDING A PRE-CONSTRUCTION MEETING, DAILY HEALTH AND SAFETY MEETINGS, AND PERIODIC COORDINATION MEETINGS.	ON
i. PRE-INJECTION BRIEFING - PRIOR TO CONTRACTOR MOBILIZATION, A PRE-INJECTION MEETING WILL BE HELD AT THE SITE TO INTRODUCE THE PROJECT TEAM MEMBERS REPRESENTING THE CONTRACTOR, NYSDEC, AND HRP. THE MEETING WILL BE SCHEDULED BY HRP AND WILL BE CONDUCTED TO REVIEW THE SOW REQUIREMENTS; REVIEW RESPONSIBILITIES OF HRP AND THE CONTRACTOR; ESTABLISH A DETAILED SCHEDULE OF OPERATIONS INCLUDING DEFINITION OF NORMAL WORKING HOURS; AND RESOLVE ISSUES (IF ANY) RAISED BY ATTENDING PARTIES. HRP WILL PREPARE A SUMMARY OF THE PRE-INJECTION MEETING AND DISTRIBUTE A COPY TO THE CONTRACTOR AND NYSDEC.	c. TH OF 2. A COM PARTIC THAT V SHALL
ii. DAILY HEALTH AND SAFETY MEETINGS - THE CONTRACTOR SHALL BE RESPONSIBLE FOR ATTENDING DAILY HEALTH AND SAFETY	FOLLO
MEETINGS, WHICH WILL BE ATTENDED BY ALL CONTRACTOR PERSONNEL TO DISCUSS DAY TO DAY PROJECT-RELATED HEALTH AND SAFETY ISSUES. NYSDEC AND HRP RESERVE THE RIGHT TO CONDUCT AND/OR ATTEND DAILY HEALTH AND SAFETY MEETINGS.	3. DUST C
iii. FINAL INSPECTION - FOLLOWING FINAL COMPLETION OF THE REMEDIAL ACTION, AN INSPECTION MEETING WILL BE HELD AT THE SITE WITH THE CONTRACTOR, NYSDEC, AND HRP.	1. THE CO SODIUI
c. A FULL PROJECT SCHEDULE, INCLUDING THE LENGTH OF TIME IT WILL TAKE FOR THE CONTRACTOR TO COMPLETE EACH	2. CHEMI
INDIVIDUAL WORK ACTIVITY.	a. TH CC
d. SEQUENCE OF OPERATIONS AND PROPOSED HOURS OF OPERATION. NORMAL WORKING HOURS SHALL BE DEFINED DURING THE PRE-INJECTION MEETING, OR IF NONE ARE SET FORTH, SHALL BE DEFINED AS BEGINNING NO EARLIER THAN 8:00 A.M. AND ENDING AT NO LATER THAN 6:00 P.M., AS REQUIRED BY THE VILLAGE OF MINEOLA GENERAL LEGISLATION §376-17.1, FOR CONSTRUCTION WORK AND REPAIRS.	i. PE HA
e. A PLAN TO MANAGE IMPACTED GROUNDWATER, IF GENERATED, DURING FIELD ACTIVITIES.	ii. SA IN
3. THE CONTRACTOR SHALL INITIATE SITE MOBILIZATION ACTIVITIES NO LATER THAN THREE MONTHS AFTER REQUIRED SUBMITTALS HAVE BEEN REVIEWED AND APPROVED BY HRP ASSOCIATES, INC. (HRP) AND NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL	b. TH CH
CONSERVATION (NYSDEC). THE CONTRACTOR SHALL BE RESPONSIBLE, AT A MINIMUM, FOR THE FOLLOWING MOBILIZATION TASKS: a. COORDINATING ACCESS TO WATER AND ELECTRICAL SERVICE (IF REQUIRED). ACCESS TO OTHER VARIOUS MUNICIPAL	c. TH FO
STRUCTURES (I.E., HYDRANTS, VALVES, MANHOLES, FIRE ALARMS, ETC.) SHALL NOT BE OBSTRUCTED BY THE CONTRACTOR TO PREVENT USE. THE CONTRACTOR SHALL BY ALL APPLICABLE PERMIT CONDITIONS.	d. CC SA
b. VERIFY THE EXISTING SITE CONDITIONS AND IDENTIFYING AND MARKING THE LOCATION(S) OF ALL ABOVEGROUND AND UNDERGROUND UTILITIES, EQUIPMENT, AND STRUCTURES, AS NECESSARY TO IMPLEMENT THE WORK SCOPE.	e. BE NE
4. IF THE CONTRACTOR DAMAGES EXISTING UTILITIES, EQUIPMENT, OR STRUCTURES, THE CONTRACTOR IS RESPONSIBLE FOR NOTIFYING THE APPROPRIATE UTILITY COMPANY, HRP, AND NYSDEC, AND FULLY REPAIRING DAMAGES AT NO ADDITIONAL COST TO NYSDEC OR HRP. REPAIRS, IF NECESSARY, SHALL BE COMPLETED IN ACCORDANCE WITH REQUIREMENTS OF THE UTILITY COMPANY AND TO THE SATISFACTION OF NYSDEC AND HRP.	f. C⊢ g. AL
5. MOBILIZING EQUIPMENT, AND MATERIALS TO THE SITE AS NECESSARY TO IMPLEMENT THE REMEDY. EQUIPMENT MOBILIZED TO THE SITE WILL BE SUBJECT TO A VISUAL INSPECTION BY HRP. EQUIPMENT THAT ARRIVES AT THE SITE IN UNSATISFACTORY CONDITION (E.G., SOILED, POOR OPERATING CONDITION, ETC.), IN THE OPINION OF HRP, SHALL BE REMOVED FROM THE SITE AND REPLACED BY THE CONTRACTOR AT NO ADDITIONAL COST TO NYSDEC. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING LABOR, EQUIPMENT, AND MATERIALS NEEDED TO CONDUCT DECONTAMINATION ACTIVITIES (AS NECESSARY) OF PERSONNEL AND EQUIPMENT ASSOCIATED WITH THE INJECTION PROGRAM.	CA h. TH 3. CHEMI a. TH
6. CONSTRUCTING ADDITIONAL REMEDIAL SUPPORT AREA(S), ON-SITE STAGING AREA(S), AND DECONTAMINATION AREA(S) ON THE PROPERTY IN ACCORDANCE WITH THE PROVISIONS OF THE REVIEWED DOCUMENTATION AND PLANS.	b. TC
7. DECONTAMINATION ACTIVITIES SHALL BE CONDUCTED ON A DECONTAMINATION PAD CONSTRUCTED BY THE CONTRACTOR IN AN AREA APPROVED BY HRP. DECONTAMINATION PROCEDURES SHALL INCLUDE SCRAPING EQUIPMENT OF RESIDUAL SOIL AND A HOT-WATER PRESSURE WASHING OF DRILLING EQUIPMENT AND INJECTION EQUIPMENT, AS NEEDED. ANY DECONTAMINATION FLUIDS SHALL BE CONTAINERIZED IN AN APPROPRIATE CONTAINER FOR CHARACTERIZATION AND DISPOSAL OFF-SITE BY THE CONTRACTOR.	4. CHEMI a. AC b. TC
8. THE CHEMICAL OXIDANT (ACTIVATED PERSULFATE) SHALL BE APPLIED TO THE CONTAMINANT SOURCE AREA, ADJACENT TO MW-2, AND	5. MAKEU
THE LOCATION OF A FORMER CESSPOOL. GREEN REMEDIATION BEST MANAGEMENT PRACTICES	a. CC
1. THE CONTRACTOR SHALL IMPLEMENT GREEN REMEDIATION BEST MANAGEMENT PRACTICES (BMPS) TO MINIMIZE THE ENVIRONMENTAL	b. AM
FOOTPRINT OF THE INJECTIONS.	6. STORA
2. THE CONTRACTOR SHALL PERFORM THE GREEN REMEDIATION BMPS TO MEET THE NYSDEC PROGRAM POLICY DER-31 REFERRED TO AS "GREEN REMEDIATION". ADDITIONALLY, COMMISSIONER'S POLICY CP-75 - DEC SUSTAINABILITY, SEEKS TO HAVE NYSDEC CONTINUE ITS "LEAD BY EXAMPLE" APPROACH TO ACCELERATE AND GUIDE THE TRANSITION TO THE LOW-CARBON SUSTAINABLE ECONOMY OF THE FUTURE.	a. TA ST
3. THE CONTRACTOR SHALL PERFORM THE FOLLOWING GREEN REMEDIATION BMPS, TO THE EXTENT PRACTICABLE:	b. TA INC
a. MINIMIZE AIR EMISSIONS INCLUDING GREENHOUSE GAS EMISSIONS BY SHUTTING OFF EQUIPMENT WHEN NOT IN USE FOR MORE	c. TH
THAN 5 MINUTES.	7. SECON
b. USE TEMPORARY INJECTION POINTS INSTEAD OF PERMANENT INJECTION POINTS.	a. SE
	b. MA
d. USE OF PASSIVE DIFFUSION BAGS TO COLLECT GROUNDWATER SAMPLES (AS APPLICABLE).	8. PUMPS
e. USE OF RECHARGABLE BATTERIES FOR MONITORING EQUIPMENT (WATER LEVEL METERS, ETC.).	a. AL
	b. EC
	c. AL BE IN.

ONTRACTOR SHALL PREPARE A HEALTH AND SAFETY PLAN (HASP):

- HE HASP SHALL INCLUDE ALL REQUIRED ELEMENTS OF A HASP AS OUTLINED IN OCCUPATIONAL SAFETY AND HEALTH DMINISTRATION (OSHA) 29 CODE OF FEDERAL REGULATIONS (CFR) 1901.120 AND 29 CFR 1926.65 AND ANY REQUIRED COVID-19 ROTOCOLS.
- HE HEALTH AND WELFARE OF THE CONTRACTOR'S STAFF IS THE DIRECT RESPONSIBILITY OF THE CONTRACTOR. THE ONTRACTOR SHALL TAKE NECESSARY PRECAUTIONS FOR THE HEALTH AND SAFETY OF ALL ON-SITE AND ENSURING THAT N-SITE PERSONNEL HAVE OSHA 40-HOUR TRAINING AND CORRESPONDING 8-HOUR REFRESHER UPDATES.
- HE CONTRACTOR SHALL DESIGNATE A RESPONSIBLE REPRESENTATIVE AT THE SITE TO ACT AS THE SITE'S HEALTH AND SAFETY FFICER WHOSE DUTIES INCLUDE EXECUTING AND ENSURING COMPLIANCE WITH THE APPROVED HASP.
- MMUNITY AIR MONITORING PROGRAM (CAMP) WILL BE REQUIRED BY THE CONTRACTOR, AND REAL-TIME MONITORING FOR CULATES (I.E., DUST) AND SHALL BE CONDUCTED IN ACCORDANCE WITH NYSDEC DER-10. THE CAMP WILL BE USED TO CONFIRM WORK ACTIVITIES DO NOT SPREAD ENVIRONMENTALLY IMPACTED MATERIALS OFF-SITE THROUGH THE AIR. THE CONTRACTOR . PROVIDE A DAILY DATA SUBMITTAL FROM REAL-TIME MONITORING FROM EACH DAY, BEFORE THE START OF WORK THE WING DAY.

CONTROL MEASURES AND MONITORING WILL BE DETAILED IN CAMP.

EMICAL OXIDATION

ONTRACTOR SHALL BE RESPONSIBLE FOR ALL LABOR, EQUIPMENT, AND MATERIALS NECESSARY TO INJECT ALKALINE ACTIVATED M PERSULFATE INTO THE SUBSURFACE TO TREAT GROUNDWATER TO DEPTHS BETWEEN 30 - 45 FEET BELOW GRADE (FT BG).

ICAL HANDLING AND STORAGE:

- HE CONTRACTOR MUST COMPLY WITH ALL FEDERAL, STATE, AND LOCAL REQUIREMENTS REGARDING HAZARDOUS OMMUNICATION INCLUDING, BUT NOT LIMITED TO, OSHA 29 CFR 1910.1200, 1926.59.
- ERSONS WORKING IN AN AREA WHERE THEY MAY BE EXPOSED TO CHEMICALS MUST BE INFORMED ABOUT THE POTENTIAL AZARDS.
- AFETY DATA SHEETS (SDS) FOR MATERIALS SHALL BE MAINTAINED ON SITE AND PROVIDED TO ALL INDIVIDUALS WHO MAY COME CONTACT WITH THE CHEMICALS.
- HE CONTRACTOR MUST FOLLOW THE MANUFACTURER'S INSTRUCTIONS AND PRECAUTIONS WHEN STORING AND HANDLING THE HEMICALS.
- HE CONTRACTOR MUST SUPPLY AND USE THE APPROPRIATE LEVEL OF PERSONAL PROTECTIVE EQUIPMENT (PPE) APPROPRIATE OR THE TYPE OF CHEMICALS BEING USED.
- ONTRACTOR PERSONNEL WORKING WITH OR TRANSPORTING CHEMICALS MUST HAVE RECEIVED APPROPRIATE CHEMICAL AFETY AND HYGIENE TRAINING.
- EFORE STARTING WORK, THE CONTRACTOR SHALL DETERMINE WHETHER TEMPORARY EYEWASH AND/OR SHOWERS ARE EEDED. IF DETERMINED TO BE NECESSARY, THE CONTRACTOR SHALL PROVIDE A PORTABLE STATION.
- HEMICALS MUST BE STORED PER THE MANUFACTURER'S REQUIREMENTS AND KEPT IN CLOSED CONTAINERS WHEN NOT IN USE.
- LL CHEMICALS WILL BE STORED IN A DRY LOCATION SURROUNDED BY A SECONDARY CONTAINMENT SYSTEM WITH A MINIMUM APACITY OF 110% OF THE VOLUME OF CHEMICAL BEING STORED.
- HE SODIUM PERSULFATE AND SODIUM HYDROXIDE MUST BE STORED IN SEPARATE LOCATIONS.

ICAL OXIDANT:

- HE SODIUM PERSULFATE SHALL BE KLOZUR[®]SP MANUFACTURED BY EVONIK.
- DTAL AMOUNT OF SODIUM PERSULFATE TO BE INJECTED IS ESTIMATED TO BE 44,080 POUNDS OVER TWO EVENTS.

ICAL ACTIVATION:

- CTIVATION: MAXIMUM 25% SOLUTION (WEIGHT) OF SODIUM HYDROXIDE, KLOZUR[®] ACTIVATOR MANUFACTURED BY EVONIK.
- DTAL AMOUNT OF 25% SOLUTION (WEIGHT) SODIUM HYDROXIDE TO BE INJECTED IS ESTIMATED TO BE 66,000 POUNDS.

JP WATER:

- ONTRACTOR SHALL USE POTABLE WATER FOR MIXING OF SOLUTION FOR INJECTION.
- MOUNT OF WATER TO PREPARE OXIDANT SOLUTION IS ESTIMATED TO BE 24,800 GALLONS PER EVENT.

AGE & MIXING TANKS:

- ANK(S) USED TO PREPARE INJECTION SOLUTION ON SITE SHALL BE MADE OF MATERIALS COMPATIBLE WITH THE CHEMICALS FORED IN THEM.
- ANKS SHALL BE OF SUFFICIENT CAPACITY TO CONTAIN THE TOTAL VOLUME OF CHEMICALS PLUS PROVIDE A MINIMUM OF 12 CHES OF FREEBOARD.
- HE OXIDANT WILL BE BATCHED IN TANKS AS CLOSE TO THE INJECTION AREA AS POSSIBLE.

NDARY CONTAINMENT:

- ECONDARY CONTAINMENT SHALL HAVE A MINIMUM CAPACITY OF 110% OF THE TOTAL VOLUME OF MATERIALS STORED.
- ATERIAL SHALL BE COMPATIBLE WITH CHEMICALS STORED.
- 3, VALVES, FLOWMETERS, PRESSURE GAUGES, & ACCESSORIES:
- L EQUIPMENT USED SHALL BE IN GOOD WORKING CONDITION. USE OF LEAKING EQUIPMENT WILL NOT BE PERMITTED ON SITE.
- QUIPMENT SHALL BE MADE OF MATERIALS COMPATIBLE WITH CHEMICALS BEING INJECTED.
- LL FLOW METERS, PRESSURE GAUGES, AND ANY OTHER MEASURING INSTRUMENTS USED DURING THE INJECTION EVENT SHALL E CHECKED AND CALIBRATED, IF APPLICABLE, IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS PRIOR TO THE VJECTION EVENT.

- 9. PIPING:

10. INJECTIONS:

- IMPLEMENTATION.

11. SITE RESTORATION:

a. ALL PIPING USED SHALL BE COMPATIBLE WITH THE CHEMICALS BEING USED.

b. ALL PIPING SHALL BE EQUIPPED WITH CHECK VALVES TO PREVENT BACKFLOW OF INJECTION MATERIALS

a. THE INJECTION POINTS SHALL BE SPACED 10-FEET ON CENTER TO EVENLY DISTRIBUTE OXIDANT TO THE SUBSURFACE.

b. THE OXIDANT SOLUTION SHALL BE INJECTED USING DIRECT PUSH INJECTION METHODS USING 2.25-INCH DIAMETER DIRECT PUSH RODS, AND ANCILLARY EQUIPMENT (OXIDANT MIXING TANKS, INJECTION AND MIXING PUMPS, FITTINGS, HOSES, VALVES, ETC.).

c. THE OXIDANT WILL BE INJECTED USING A TOP-DOWN METHOD TO FACILITATE OXIDANT DISTRIBUTION IN THE VADOSE ZONE IN THE IDENTIFIED ONSITE TREATMENT AREA. THE DIRECT PUSH RODS WITH AN EXPENDABLE TIP WILL BE ADVANCED TO THE TOP OF THE TARGET DEPTH, 30 FEET BELOW GRADE (FT BG). ONCE THE TARGET DEPTH IS REACHED, A 1-FOOT SCREENED SECTION WILL BE EXPOSED, AND A PRESCRIBED VOLUME OF OXIDANT WILL BE INJECTED. ONCE THE VOLUME OF OXIDANT FOR THAT INTERVAL IS INJECTED, THE SCREENED SECTION WILL BE COVERED AND THE TOOLING WILL BE LOWERED TO THE NEXT DEPTH INTERVAL. THIS PROCESS WILL BE REPEATED UNTIL THE OXIDANT HAS BEEN INJECTED THROUGHOUT THE ENTIRE TARGETED DEPTH (30-45 FT BG). THE PROPOSED OXIDANT INJECTION FREQUENCY IS APPROXIMATELY 6.66% OF THE TOTAL ALKALINE ACTIVATED SODIUM PERSULFATE MIXTURE (WHICH EQUATES TO APPROXIMATELY 91.8 GALLONS OF WATER AND 163.27 POUNDS OF ALKALINE ACTIVATED SODIUM PERSULFATE) PER EVERY 1 FOOT FOR A TOTAL OF 15 FT (BEGINNING WITH 30-31 FT BG AND ENDING AT 44-45 FT BG) IN EACH INJECTION LOCATION. HOWEVER, THE VOLUME OF OXIDANT TO BE INJECTED AND INJECTION INTERVALS ARE SUBJECT TO VARIATION AT THE DISCRETION OF THE ENGINEER, AS BASED ON FIELD OBSERVATIONS. THE CONTRACTOR SHALL FOLLOW GUIDANCE FROM HRP REGARDING ALTERATIONS TO THE PROPOSED INJECTION FREQUENCY DURING

i. THE CONTRACTOR SHALL HAVE VARIOUS INJECTION TOOLS AVAILABLE ON SITE. THE INJECTION TOOLS SHALL BE ATTACHMENTS FOR THE DIRECT PUSH RODS. THE INJECTION TOOLS SHALL BE A PRESSURE ACTIVATED INJECTION TOOL AND RETRACTABLE INJECTION TOOL AND AN EXPENDABLE POINT. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE THAT THE SPECIFIED EQUIPMENT IS SOLICITED AND AVAILABLE FOR USE, AS NEEDED, DURING IMPLEMENTATION.

d. THE PERSULFATE SHALL BE MECHANICALLY MIXED AND TESTED TO ENSURE THE PROPER RATIO IS ACHIEVED. THE DESIGN RATIO FOR THE SITE IS 1,377 GALLONS OF WATER TO 2,449 POUNDS OF PERSULFATE, PER INJECTION POINT.

e. SODIUM HYDROXIDE SHOULD BE ADDED TO THE MIXTURE TO RAISE THE PH TO 10.5 OR HIGHER.

f. APPROXIMATELY 1,377 GALLONS OF THE OXIDANT SOLUTION WILL BE INJECTED INTO EACH INJECTION POINT

g. INJECTION PRESSURE SHALL NOT EXCEED 3 POUNDS PER SQUARE INCH (PSI) DURING INJECTION.

h. DURING INJECTION, THE CONTRACTOR SHALL RECORD INJECTION MONITORING PARAMETERS INCLUDING (BUT NOT LIMITED TO) INJECTION PUMPING RATE AND PRESSURE.

i. THE CONTRACTOR SHALL MEASURE DEPTH TO WATER, PH, OXIDATION-REDUCTION POTENTIAL (ORP) AND TEMPERATURE IN NEARBY MONITORING WELLS TO DETERMINE THE RADIUS OF INFLUENCE.

j. AN ADDITIONAL 50 GALLONS OF FLUSH WATER SHALL BE ADDED TO EACH INJECTION POINT TO HELP DISTRIBUTE THE PRODUCT FURTHER FROM EACH INJECTION POINT.

k. ALL CHEMICALS SHOULD BE STORED IN SECONDARY CONTAINMENT, PRIOR TO USE.

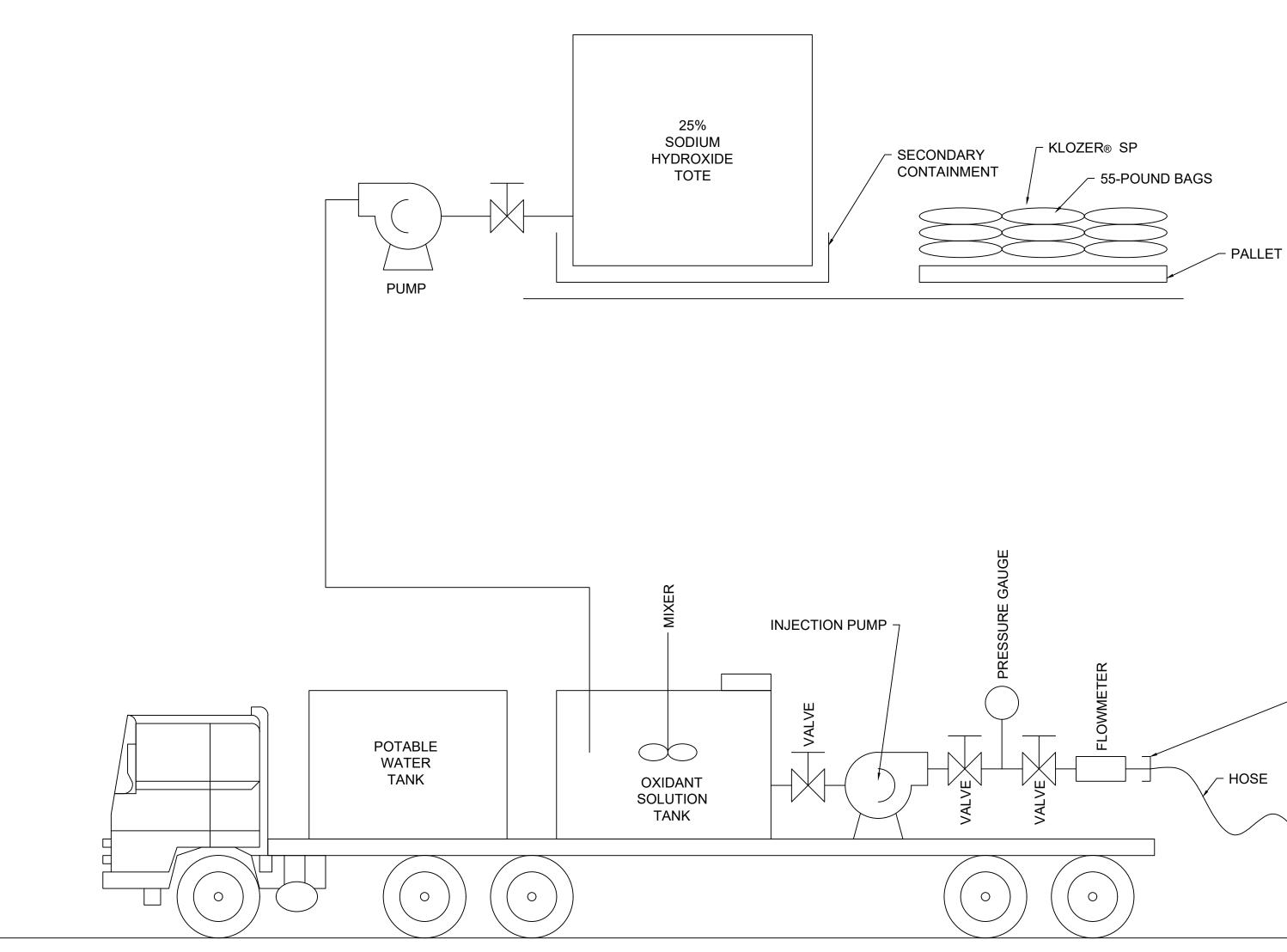
I. THE CONTRACTOR SHALL CONTINUOUSLY MONITOR THE INJECTION TEMPERATURE, PRESSURE AND FLOW RATE.

m.FLOW RATE SHALL BE CONTROLLED TO A MAXIMUM FLOW RATE OF 5 GALLONS PER MINUTE (GPM) PER INJECTION POINT.

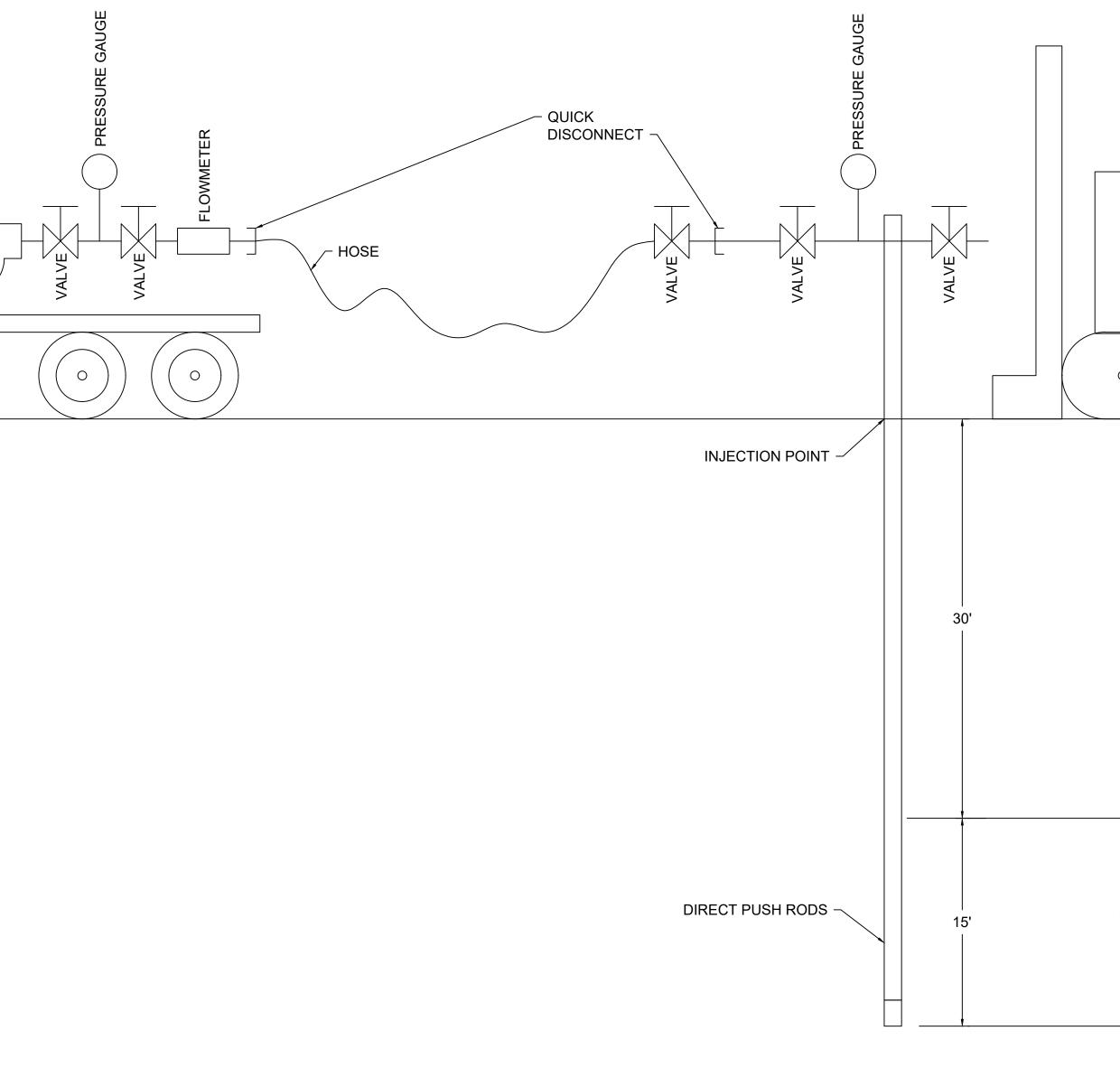
n. INJECTIONS SHALL BE COMPLETED USING 10 HOUR DAYS. AT THE COMPLETION OF INJECTIONS EACH DAY ALL EQUIPMENT AND CHEMICALS SHALL BE SECURELY LOCKED UP TO PREVENT UNAUTHORIZED ACCESS.

a. UPON COMPLETION OF THE WORK, THE CONTRACTOR SHALL REMOVE ALL EQUIPMENT, MATERIALS, SUPPLIES AND WASTE MATERIAL FROM THE SITE AND RESTORE THE AREA TO PRE-EXISTING CONDITIONS.

b. UNUSED CHEMICALS SHALL BE DISPOSED OFF SITE IN ACCORDANCE WITH ALL LOCAL, STATE AND FEDERAL REGULATIONS.

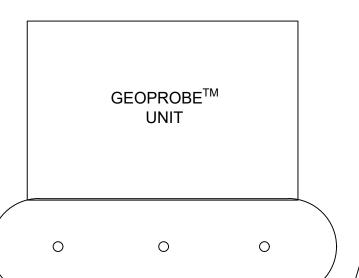

c. IDENTIFICATION OF THE NAMES OF EACH INJECTION POINT, AND PROPER ABANDONMENT OF DIRECT PUSH INJECTION POINTS IN ACCORDANCE WITH DER COMMISSIONER'S POLICY-43 (CP-43) GUIDANCE.

ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES COM ESCRIPTION SPECIFICATION TE SITE PLANS DES DES ADJUST (SION N $\widehat{}$ DTOENGRAVING (OU-' ITE # 130174 HEMICAL OXIDATION ECTION PLAN ROSELLE STREE ARDEN PHOT SITI IN-SITU CHE INJE(MIN MIN () Ο 7


SHEET NO.

S-2

SHEET 03 OF 04



PROPOSED INJECTION SYSTEM NOT TO SCALE

	ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM							
	REVISIONS	NO. DATE DESCRIPTION	1 09/29/2022 ADJUST SPECIFICATIONS	2 01/13/2023 UPDATE SITE PLANS				
	DESIGNED: SCALE:		DRAWN: ISSUE DATE:	BOB/SRT 06/23/2022	REVIEWED: PROJECT NUMBER:	GN DEC1020.RA	APPROVED: SHEET SIZE:	MEW 24"x36"
								P.E. SEAL
IVE RODS TO RADE SURFACE. TRIBUTE TERVAL. E AVAILABLE D INJECTION N TOOL. PMENT MAY BE SHOWN (PER AYOUT	GARDEN PHOTOENGRAVII BITE BITE # 130174 IN-SITU CHEMICAL OXIC INJECTION PLAN AINFOLA NEW YOR				MINEOLA, NEW YORK			
	MARCTION SYSTEM DETAILS D-1							

SHEET 04 OF 04

GROUND SURFACE

NOTES:

- 1. TOP-DOWN INJECTION METHOD, DRIVE RODS TO APPROXIMATELY45 FEET BELOW GRADE SURFACE PUSH DOWN RODS AND EVENLY DISTRIBUTE OXIDANT SOLUTION OVER DEPTH INTERVAL.
- 2. ADDITIONAL INJECTION TOOLS TO BE AVAILABLE ON-SITE ARE PRESSURE ACTIVATED INJECTION TOOL AND RETRACTABLE INJECTION TOOL.
- ACTUAL INJECTION SUPPORT EQUIPMENT MAY BE HOUSED ON A MOBILE VEHICLE AS SHOWN (PER EVONIK'S SETUP), OR AS A STATIC LAYOUT DEPENDING OF SITE LOGISTICS.

INJECTION INTERVAL