Shaw Environmental & Infrastructure Engineering of New York, P.C.

The Shaw Group Inc.®

13 British American Boulevard Latham, NY 12110-1405 Phone: 518.783.1996

Fax: 518.783.8397

February 24, 2005

Mr. Joseph Peck NYSDEC Remedial Bureau B, Section D 625 Broadway, 12th Floor Albany, New York 12233

Subject:

Quarterly Interim Remedial Measure Operation & Maintenance and

Indoor Air Quality Monitoring Report

October 20, 2004 through December 21, 2004 Jimmy's Dry Cleaner Site, Roosevelt, New York

NYSDEC Site No. 1-30-080

Dear Mr. Peck:

Shaw Environmental and Infrastructure Engineering of New York, P.C. (Shaw) has developed this letter report to serve as a Quarterly Operation, Monitoring & Maintenance (O&M) and Indoor Air Quality Report for the Soil Vapor Extraction (SVE) System in operation at the former Jimmy's Dry Cleaner (Site) located in Roosevelt, New York. The SVE system was installed as an Interim Remedial Measure (IRM) to abate volatile organic compounds (VOCs) observed at a business and residences located in the vicinity of the Site. After the startup of the SVE system on August 7, 2002, Shaw implemented an Indoor Air Quality Monitoring program for select sampling locations. Throughout subsequent monitoring events, an overall decrease in concentrations of tetrachloroethene (PCE) in ambient air at the Deli, KFC, 40 and 44 Dutchess Street sample locations has been observed. To date, seven O&M letter reports, four Indoor Air Quality letters, and four combined Quarterly Interim Remedial Measure Operation & Maintenance and Indoor Air Quality Monitoring Reports have been submitted to the NYSDEC summarizing the IRM. This report covers the period of October 1, 2004 through December 21, 2004.

Remedial System Operation and Maintenance

To evaluate and adjust the SVE system operating performance, Shaw completed three site visits during the reporting period. VOC concentrations, air flow rates and vacuum readings were observed at extraction wells SVE-1, SVE-2, SVE-3, SVE-4, SVE-5, SVE-6, SVE-7 and at the SVE blower.

Air flow rates and VOC concentrations were also observed at the carbon influent, mid carbon and carbon effluent monitoring points. Extraction well SVE-2 was not monitored during the October 20 and November 17, 2004 visits and extraction wells SVE-4 and SVE-5 were not monitored during the October 20, 2004 site visit due to access limitations at the extraction well locations. Prior to the November 17, 2004 site visit, extraction wells SVE-4 and SVE-5 became accessible and were monitored for the remainder of the reporting period. Extraction well SVE-2 became accessible for monitoring prior to the December 21, 2004 site visit. Vapor monitoring point VMP-1 was not monitored during site visits due to access limitations at that location. A summary of the monitoring data collected during the monitoring events is presented in **Attachment 2** and summarized below.

The monitoring data revealed elevated VOC concentrations at extraction wells SVE-1 (133.0 parts per million volume (ppmv) to 232.0 ppmv), SVE-3 (19.0 ppmv to 33.2 ppmv) and SVE-4 (10.7 ppmv to 25.5 ppmv). During the current monitoring period, the air flow control valves at the wellheads were opened fully at 100% capacity (with the exception of SVE-1 at 25% capacity and SVE-5 at 80% capacity since November 17, 2004), allowing for maximum VOC extraction from the subsurface. Average air flow and vacuum readings observed during this reporting period at SVE-1 were 13.96 cubic feet per minute (cfm) and 5.0 inches of water column ("W.C.), average air flow and vacuum readings observed at SVE-3 were 8.31 cfm and 3.5" W.C and average air flow and vacuum readings observed at SVE-4 were 15.35 cfm and 4.5" W.C. Average air flow and vacuum readings observed at SVE-5 were 19.25 cfm and 2.65" W.C, average air flow and vacuum readings observed at SVE-6 were 9.43 cfm and 3.83" W.C and average air flow and vacuum readings observed at SVE-7 were 14.68 cfm and 3.83" W.C. The air flow control valve at extraction well SVE-5 was positioned at 100% open at the beginning of the reporting period and was adjusted to 80% open by the end of the reporting period. The adjustment at SVE-5 decreased the vacuum draw from the subsurface source in that area of the site in an attempt to address PCE indoor air concentrations in the deli that were above the ambient indoor air guidelines. The SVE blower operated at an average vacuum of approximately 30." W.C. and an average air flow of 99 cfm during the reporting period.

A total of twelve carbon vessel change outs have occurred prior to this reporting period. Two carbon change outs were completed during this reporting period. During each carbon change out, the lag vessel was moved to the lead position and a new carbon vessel placed in the lag position. Spent carbon was staged on-site pending disposal by an approved waste disposal firm in accordance with Federal, State and local regulations. The rate of carbon usage will be

monitored during each site visit to determine the maximum VOC extraction rate that can be accomplished to prevent VOC migration while maximizing the life of the carbon vessels.

Indoor Air Quality Monitoring Results

Shaw conducted an indoor air quality monitoring event on December 21, 2004 for the Deli, KFC, 40, and 44 Dutchess Street. Passive diffusion dosimeters were used to collect air samples over a 24 hour period. Several air samples were collected, including a background sample near the Deli and a duplicate sample from KFC for comparative purposes. The laboratory reports of analyses are presented as Attachment 3 and summarized below. The analytical results for indoor air quality monitoring events performed by the New York State Department of Health (NYSDOH) and Shaw are summarized in Attachment 4. The analytical results indicate that concentrations of tetrachloroethene (PCE) are below the NYSDOH Ambient Air Guidance Value (100 µg/m³). Furthermore, most observed concentrations were below the NYSDOH indoor ambient air goal of (10 µg/m³) as referenced in the NYSDOH Fact Sheet, PCE in Indoor and Outdoor Air, May 2003. However, an elevated PCE concentration of 31 µg/m³ was observed in the sample collected in the Deli front room. The SVE system will continue to be adjusted during each site visit to minimize and prevent the migration of PCE into the deli. Specifically, the flow control valve at extraction well SVE-1 will be adjusted from 25% open to 10% open. This adjustment will increase the influence at extraction wells SVE-2 and SVE-3 while continuing to address the source area near SVE-1. Monitoring will continue at KFC, the deli and the residences to ensure that PCE is not migrating into these areas at levels above the ambient indoor air guidelines.

Following the completion of the next quarter of monitoring events, a letter report summarizing the monitoring events will be prepared by Shaw and submitted to the NYSDEC.

If you have any questions or comments regarding this information, please contact Shaw at 518-783-1996.

Sincerely,

Shaw E&I Engineering of New York, P.C.

John Skaarup

Project Engineer

X:\MG\Jimmys\Qtrly Rpts\4th Qtr\Oct-Dec 04\Text

plu a. Many

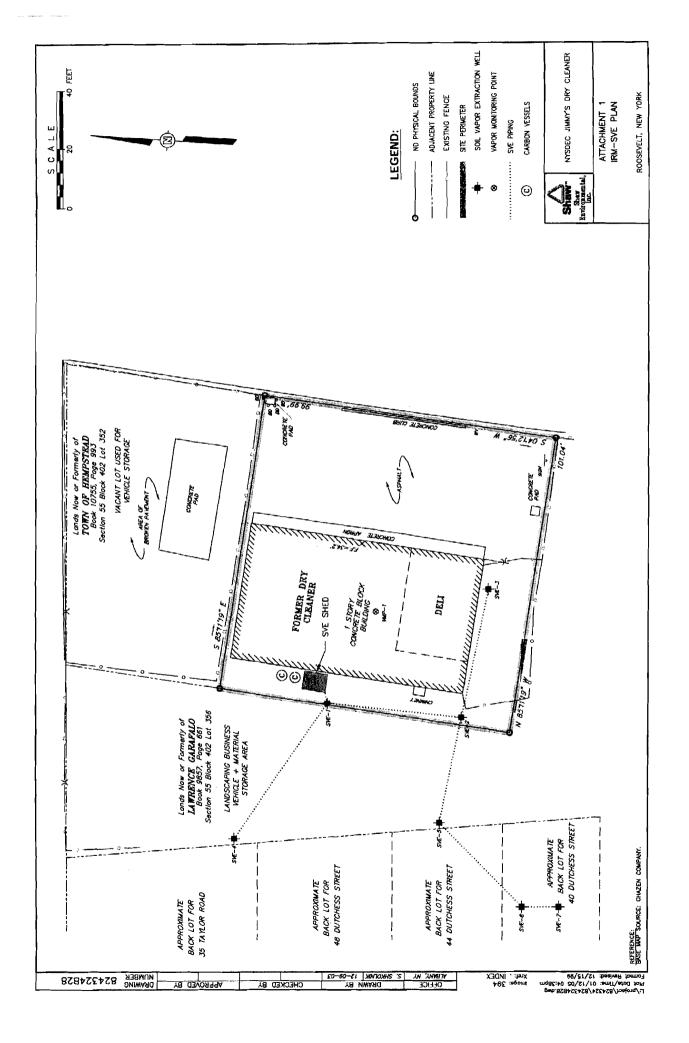
Heide-Marie Dudek, P.E.

Project Manager

Shaw E&I Engineering of New York, P.C.

Marc E. Flanagan Site Supervisor

Attachments: 1 SVE Design Plan


2 IRM Parameters

3 Indoor Air Analytical4 Indoor Air Quality Data

Cc: Robert Cozzy, NYSDEC

Becky Mitchell, NYSDOH Joseph DeFranco, NCDOH Margie Gardner, Shaw

ATTACHMENT 1 SVE DESIGN PLAN

ATTACHMENT 2 IRM PARAMETERS

		August 7, 200	2			August 12	2, 2002			August 21, 2	002	
	Vac (inches of		PID	Valve %	Vac (inches of	_		Valve %	Vac (inches o	f	PID	Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	(ppm)	Open
SVE - 1	7.0	30.0	326.0	100%	3.5	18.8	449.0	25%	7.0	31.7	925.0	25%
SVE - 2	6.0	10.0	64.4	100%	4.0	9.5	32.4	100%	7.0	17.9	68.9	100%
SVE - 3	5.5	25.0	695.0	100%	4.0	17.7	221.0	50%	7.0	23.0	521.0	50%
SVE - 4	6.0	39.0	36.4	100%	5.0	34.5	28.0	100%	8.0	25.2	37.1	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	5.0	17.0	0.0	100%	4.0	20.5	0.0	100%	6.0	11.4	0.0	100%
SVE - 7	5.0	10.5	0.0	100%	4.0	22.0	0.0	100%	6.0	9.3	0.0	100%
VMP - 1	0.0	NA	283.0	NA	0.0	NA	50.6	NA	0.0	NA	NS	NA
Before blower	NA	98.0	157.0	NA	NA NA	80.0	132.0	50%	NA	73.5	178.0	50%
Influent	NA	113.0	162.0	NA	NA	105.0	96.5	NA	NA	115.0	145.0	NA
Mid	NA	97.5	0.0	NA	NA	99.0	0.0	NA	NA _	102.0	163.0	NA
Effluent	NA	110.0	0.0	NA	NA NA	110.0	0.0	NA	NA	108.0	0.0	NA

Open bleed air valve 10%.

	0 0011 0 000 0			************
Before blower	NA	95.0	156.0	NA
Influent	NA	113.0	143.0	NA
Mid _	NA	95.0	0.0	NA
Effluent	NA	104.0	0.0	NA

Notes:

Mid = Between carbon.

NA = not applicable. NS = not sampled due to access issues. Influent = Before carbon.

		August 27, 2	2002			September	5, 2002			September 5,	2002	
	Vac (inches o	f	PID	Valve %	Vac (inches of	·		Valve %	Vac (inches of	•	PID	Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	(ppm)	Open
SVE - 1	4.0	18.0	1098.0	25%	4.0	19.8	>2000	15%	NS	NS	NS	10%
SVE - 2	4.0	12.5	93.2	100%	5.0	10.5	576.0	100%	NS	NS	NS	100%
SVE - 3	4.0	16.5	425.0	50%	3.0	11.5	>2000	50%	NS	NS	NS	50%
SVE - 4	4.0	20.6	33.2	100%	5.0	26.5	385.0	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
\$VE - 6	4.0	23.4	0.0	100%	3.0	10.1	0.0	100%	NS	NS	NS	100%
SVE - 7	3.0	6.5	0.0	100%	3.0	7.5	0.0	100%	NS	NS	NS	100%
VMP - 1	0.0	NA	116.0	NA	0.0	NA	1220.0	NA	Oper	n bleed air valve	e to 75%.	
Before blower	NA	57.0	193.0	65%	NA	43.5	>2000	65%	NA	35.2	>2000	75%
Influent	NA	103.0	90.3	NA	NA	103.0	1150.0	NA	NA	104.0	615.0	NA
Mid	NA	83.0	69.6	NA	NA	76.0	915.0	NA	NA	78.0	850.0	NA
Effluent	NA	128.0	0.0	NA	NA	99.5	0.0	NA	NA	101.0	0.0	NA_
												

Carbon change out performed.

Notes:

Effluent = After carbon.

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

		September 12,	2002		Sept.	12, 2002 (Afte	r adjustments	3)		September 18	, 2002	
	Vac (inches of	f	PID	Valve %	Vac (inches of		-	Valve %	Vac (inches of	•		Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	1.0	9.7	>2000	10%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	3.0	20.4	682.0	100%	2.0-3.0	12.3	668.0	50%	3.5	8.0	68.1	100%
SVE - 3	2.0-3.0	8.6	>2000	50%	2.0	6.8	>2000	30%	3.2	3.0	368.0	30%
SVE - 4	2.0-3.0	21.9	410.0	100%	3.0	17.2	276.0	50%	3.7	10.2	54.5	50%
SVE - 5	NS	NS	NS	100%	NS .	NS	NS	100%	NS	NS	NS	100%
SVE - 6	2.0-3.0	14.7	0.0	100%	NS	NS.	NS	100%	3.0	16.5	0.0	100%
SVE -7	2.0-3.0	21.5	0.0	100%	NS	NS	NS	100%	3.0	8.5	0.0	100%
VMP - 1	0.0	NA	>2000	NA	NS	NA	NS	NA	0.0	NA	0.0	NA
Before blower	NA	32.8	>2000	75%	NA NA	30.3	626.0	75%	NA_	34.0	69.2	75%
Influent	NA	98.5	711.0	NA NA	NA	98.0	153.0	NA	NA .	106.0	16.5	NA
Mid	NA	84.5	763.0	NA	NA NA	78	494.0	NA	NA	94.5	48.6	NA
Effluent	NA	130.0	0.0	NA	NA	115.0	O.D	NA	NA NA	94.0	46.3	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues. Influent = Before carbon.

Mid = Between carbon.

Followin	g carbon vesse	el change out.	
blower	36.1	67.1	1

Before blower	36.1	67.1	NA
Influent	110.0	16.1	NA
Mid	94.5	43.7	NA
Effluent	104.0	0.0	NA

		September	30, 2002	, , , , , , , , , , , , , , , , , , , ,		October 1	4, 2002		November 1, 2002				
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %	
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	
SVE - 1	NA	NA NA	NA	0%	NA	NA	NA NA	0%	NA	NA	NA	0%	
SVE - 2	NS	NS	NS	50%	NS	NS	NS	50%	NS	NS	NS	50%	
SVE - 3	3-4	6.4	>2000	30%	3.5	10.8	513.0	30%	3.0	8.8	369.0	50%_	
SVE - 4	2-3	24.5	1245.0	50%	4.5	38.5	109.0	50%	3.5	17.0	105.0	100%	
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%	
SVE - 6	2-3	21.1	0.0	100%	2.5	11.8	0.0	100%	<1.0	2.0	0.0	100%	
SVE - 7	2.0	8.3	0.0	100%	3.0	3.07	0.0	100%	<1.0	9.40	0.0	100%	
VMP - 1	0.0	NA	620.0	NA	D.D	NA	0.0	NA	0.0	NA _	0.0	NA	
Before blower	NA	31.5	1350.0	NA	NA	40.4	95.4	NA	NA	53.0	140.0	NA	
influent	NA	106.0	240.0	NA	NA	113.0	7.4	NA	NA	118.0	16.5	NA	
Mid	NA	94.5	144.0	NA	NA	95.0	0.0	NA	NA	97.0	10.5	NA	
Effluent	NA	114.0	0.0	NA	NA	113.0	0.0	NA	NA	102.0	0.0	NA	

Notes:

NA = not applicable.

NS = not sampled due to access issues.
Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

Carbon change out performed.

	Marine Ma	November 1	5, 2002			December	4, 2002			December 1	6, 2002	
	Vac (inches of	f		Valve %	Vac (inches of	ŧ		Valve %	Vac (inches of	f		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA NA	NA	0%	3.0	10.4	29.1	30%	NS	NS	NS	30%
SVE - 2	NS	NS	NS	50%	NS	NS	NS	50%	NS	NS	NS	50%
SVE - 3	~1.0	5.2	0.0	50%	2-3	17.0	225.0	50%	0.5	1.6	117.0	50%
SVE - 4	NS	NS	NS	100%	4.0	12.0	97.1	100%	1,5	1,3	126.0	100%
SVE - 5	NS	NS	NS	100%	3-4	3.2	0.0	100%	1.0	1,3	0.0	100%
SVE - 6	~2.0	11.8	0.0	100%	2.0	4.5	0.0	100%	1.0	0.5	0.0	100%
SVE - 7	~2.0	5.0	0.0	100%	2.0	4.7	0.0	100%	1.0	0.5	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	8.7	NA	0.0	NA	0.0	NA NA
Before blower	NA	High	92.9	NA	NA	47.9	120.0	NA	NA	40.5	190.0	NA
Influent	NA	82.5	25.2	NA	NA	110.0	15.0	NA	NA	98.1	26.4	NA
Mid	NA	84.0	17.0	NA	NA	86.5	4.5	NA	NA	91.,1	39.0	NA .
Effluent	NA	126.0	0.0.	NA	NA	107.5	0.0	NA	NA NA	132.9	0.0	NA

** = Well under water, could not bail out fast enough.

Notes:

Effluent = After carbon.

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

		January 6,	, 2003			January 13	3, 2003			January 31	, 2003	
	Vac (inches o	f		Valve %	Vac (inches of	f		Valve %	Vac (inches of	Ī		Vaive %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	4.0	3.0	900.0	30%	3.0	13.0	823.0	30%	4.0	8.0	425.0	30%
SVE - 2	NS	NS	NS	50%	NS	NS	NS	50%	NS	NS_	NS	50%
SVE - 3	~1.0	2.4	78,2	50%	1.25	1.10	72.0	50%	0-1	1.00	10.0	50%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	3.0	4.1	0.0	100%	NS	NS	NS	100%	NS	NS_	NS	100%
SVE-6	~2.0	5.8	0.0	100%	3.0	8.15	0.0	100%	2-3	6.00	D.0	100%
SVE - 7	~2.0	4.6	0.0	100%	2.0	4.70	0.0	100%	2-3	5.10	0.0	100%
VMP - 1	0.0	NA NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	40.1	180.0	NA	NA	120.0	210.0	NA	NA	17.0	525.0	NA
Influent	NA	NS	NS	NA	NA	103.0	36.0	NA	NA	115.0	38.6	NA
Mid	NA NA	91.0	24.0	NA _	NA	93.0	_12.0	NA	NA	96.0	28.0	NA
Effluent	NA	111.0	0.0.	NA	NA	118.0	1,5	NA	NA	112.0	0.0	NA

** = Well under water, could not bail out fast enough.

Carbon change out performed.

Notes:

Effluent = After carbon.

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

	,	February 1	0, 2003			March 5,	2003			March 18	2003	
	Vac (inches of	Ī		Valve %	Vac (inches o	f		Valve %	Vac (inches of	f		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	8.0	28.7	350.0	30%	NA	NA	NA	_0%	NA	NA	NA	0%
SVE - 2	NS	NS	NS	50%	<1	0.3	7.7	100%	2.0	3.6	0.0	100%
SVE - 3	0.0	0.0	0.0	50%	<1	0.0	0.0	50%	2.0	4.6	46.1	50%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%_	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	<1	0.2	2.7	100%	2.5	11.3	0.0	100%
SVE - 6	0.0	0.0	0.0	100%	0.0	0.0	0.0	100%	2.5	3.9	0.0	100%
SVE - 7	0.0	0.0	0.0	100%	0.0	0.0	0.0	100%	3.0	10.9	0.0	100%
VMP - 1	0.0	_ NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA NA	30.0	165.0	NA	NA	44.0	0.0	NA	NA	54.0	2.6	NA
Influent	NA	15.3	109.0	NA	NA	106.0	0.0	NA	NA	113.0	0.0	NA
Mid	NA	92.5	3.3	NA	NA	88.6	22.3	NA	NA	85.0	0.0	NA
Effluent	NA_	126.0	0.0	NA	NA_	115.0	0.0	NA	NA	121.0	0.0	NA
	1								<u> </u>			

Open valve at SVE -2 to 100% Carbon Change out performed Close valve at SVE -1 to 0%

Notes:

NA = not applicable.
NS = not sampled due to access issues. Effluent = After carbon.

Influent = Before carbon.

		April 5, 2	2003			April 14,	2003			May 1, 2	003	
	Vac (inches of	•		Valve %	Vac (inches of	-		Valve %	Vac (inches of	_		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	N.A	NA	NA	0%	NA	NA	NA	0%
SVE - 2	7.5	7.2	0.5	100%	9.0	11.5	10.8	100%	NA	NA	NA	100%
SVE - 3	7.0**	9.8**	131.0**	100%	9.0	5.0	85.0	100%	8.0	22.1	89.2	100%
SVE - 4	NS_	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	7.0	21.3	0.0	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	6.5	13.1	0.0	100%	8.0	55.0	0.0	100%	7.0	40.5	0.0	100%
SVE - 7	6.0	9.5	0.0	100%	9.0	34.0	0.0	100%	7.0	43.4	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	46.0	36.6	NA	NA	93.0	36.4	NA	NA	59.0	24.5	NA_
Influent	_ NA	120.0	9.7	NA	NA	118.0	15.6	NA	NA	109.5	15.1	NA
Mid	_NA	96.1	0.6	NA	NA	94.0	5.5	NA	NA	101.0	20.5	NA
Effluent	NA	105.0	0.0	NA	NA NA	106.0	0.0	NA	NA	111.0	0.0	NA NA

Changed the extraction rate at SVE-3 to 100%. SVE - 3 7.0 10.6 144 100%

Notes:

Mid = Between carbon. Effluent = After carbon.

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

		May 14, 2	2003			May 27, 2	2003			June 11,	2003	
	Vac (inches of	•		Valve %	Vac (inches of	•		Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Ореп
SVE - 1	NA	NA NA	NA	0%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	NS	NS	NS	100%	8.5	83.0	14.5	100%	NS	NS	NS	100%
SVE - 3	>5	5.35	101.0	100%	NS	NS_	_NS	100%	NS	NS	NS	100%
SVE - 4	>5	15.7	35.9	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	8.0	71.5	5.6	100%	NS	NS	NS	100%
SVE - 6	>5	21.7	0.0	100%	8.0	46.8	0.0	100%	<5	23.3	0.0	100%
SVE - 7	>5	16.0	0.0	100%	8.0	25.3	0.0	100%	<5	18.3	0.0	100%
VMP - 1	0.0	NA NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	74.5	31.6	NA	NA NA	140.0	35.5	NA	NA NA	71.5	6.6	NA
Influent	NA	104.0	17.5	NA	NA	105.0	16.2	NA	NA	81.5	0.0	NA
Mid	NA	90.5	14.6	NA	NA	25.6	26.2	NA	NA	86.5	0.0	NA
Effluent	NA	122.0	0.0	NA	NA	106.0	0.0	NA	NA	128.0	0.0	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues. Influent = Before carbon.

Mid = Between carbon.

	June 30, 2003					July 16, 2	2003		July 29, 2003			
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA NA	0%
SVE - 2	5.0	23.5	0.0	100%	NS	NS	NS	100%	5.0	15.6	0.0	100%
SVE - 3	6.0	25.0	76.8	100%	5.5	NS	3.0	100%	6.0	6.0	0.0	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	5	29.9	0	100%_
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	4.5	10.0	0.0	100%
SVE - 6	6.0	43.2	0.0	100%	4.0	NS	3.2	100%	4.0	7.6	0.0	100%
SVE - 7	5.5	19.2	0.0	100%	4.0	NS	1.6	100%	5.0	13.0	0.0	100%
VMP-1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA NA	0.0	NA
Before blower	NA	62.5	7.0	NA	NA NA	NS	31.0	NA J	NA	65.0	34.9	NA
Influent	NA	96.0	0.0	NA	NA NA	NS	21.6	NA	NA	108.0	18.3	NA
Mid	NA	89.5	7.0	NA	NA	NS	22.0	NA	NA	91.5	11.5	NA
Effluent	NA	121.3	20.6	NA	NA	NS	16.4	NA	NA	121.0	7.6	NA

Notes:

NA = not applicable.

Unable to change out carbon units due to access issues.

NS = not sampled due to access issues.

Flow meter not working.

Influent = Before carbon. Mid = Between carbon.

Before blower	71.5	31.2	NA
Influent	100.0	14.0	NA
Mid	92.0	0.0	NA
Effluent	114.0	0.0	NA

		August 26	, 2003			September 2	24, 2003			October 21	, 2003	
	Vac (inches o	f		Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA NA	0%
SVE - 2	NS	NS	NS	100%	5.0	10.8	1026.0	100%	NS _	NS	NS	100%
SVE - 3	5.0	36.5	157.0	100%	4.0	28.1	82.5	100%	3.0	13.7	101.0	100%
SVE - 4	5.0	26.3	50.2	100%	5.0	20.2	127.0	100%	3.0	25.2	53.8	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	4.0	19.0	0.0	100%	3.5	24.5	0.0	100%	2.0	27.2	0.0	100%
SVE - 7	4.0	23.6	0.0	100%	4.0_	16.9	0.0	100%	2.0	24.4	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA NA	0.0	NA	0.0	NA	0.0	NA NA
Before blower	NA	120.0	43.0	NA	NA	52.0	478.0	NA	NA	101.0	46.2	NA_
Influent	NA	125.0	20.2	NA	NA	119.0	139.0	NA	NA	114.0	17.0	NA
Mid	NA	102.0	0.0	NA	NA	98.5	53.0	NA	NA NA	97.5	0.0	NA
Effluent	NA	110.0	0.0	NA	NA	99.5	67.0	NA	NA	87.0	0.0	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

		November 2	4, 2003			December 17	, 2003			January 6	, 2004	
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches o	f		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	_ NA	NA	NA	0%	NA	NA NA	NA	0%	NS	NS	NS	0%
SVE-2	4.5	4.7	67.9	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 3	3.5	6.9	185.0	100%	0.0	0.0	19.9	100%	NS	NS	NS	100%
SVE - 4	5.0	16.4	46.7	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	3.2	12.5	3.4	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	3.0	8.4	0.0	100%	0.0	0.0	0.0	100%	NS	NS	NS	100%
SVE - 7	2.5	10.5	0.0	100%	0.0	0.0	0.0	100%	NS	NS	NS	100%
VMP - 1	0.0	0.0	NA	NA	0.0	0.0	NA	NA	NS	NS	NS	NA _
Before blower	NA	218.0	39.2	NA	NA	160.0	136.0	NA	NS	NS	NS	NA
Influent	NA	75.0	3.6	ÑA	NA	86.0	12.7	NA	NS	NS	NS	NA
Mid	NA	83.0	0.0	NA	NA	81.5	1,5	NA	NS	NS	NS	NA
Effluent	NA NA	132.0	0.0	NA	NA	126.0	0.0	NA_	NS	NS	NS	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

NS = System not sampled due to maintence, standing water in lines, changed SVE filter.

		February 9	9, 2004		March 30, 2004					April 28, 2	004	
	Vac (inches o	f		Valve %	Vac (inches of			Valve %	Vac (inches of	• •		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA NA	NA	0%	2.0	10.0	0.0	10%	7.0	9.7	97.4	10%
SVE - 2	NS	NS	NS	100%	6.0	47.0	5.0	100%	NS	NS	NS	100%
SVE - 3	2.0	4.4	42.3	100%	5.0	30.0	60.0	100%	1.2	0.9	2.2	100%
SVE - 4	NS	NS	NS	100%	5.0	24.0	15.0	100%	6.0	17.7	7.3	100%
SVE - 5	0.1	1.0	18.8	100%	5.0	22.0	10.0	100%	NS	NS	NS	100%
SVE-6	0.0	0.9	0.0	100%	4.0	24.0	0.0	100%	0.08	0.88	0.0	100%
SVE - 7	0.0	0.1	0.0	100%	4.0	32.0	0.0	100%	0.05	2.97	0.01	100%
VMP - 1	0.0	0.0	NA	NA	NS	NS	NA	NA	NS	NS	NA	NA
Before blower	NA	6.3	19.5	NA	NA	45.0	33.0	NA	NA	18.8	42.5	NA
Influent	NA	101.0	0.0	NA	NA NA	128.0	14.0	NA	NA	82.0	7.1	NA
Mid	NA	88.0	0.0	NA	NA	103.0	5.D	NA	NA	96.5	4.1	NA
Effluent	NA	133.0	0.0	NA	NA	100.0	0.0	NA	NA	130.0	1.1	NA
Notes:					Notes:	. ,				ng carbon vess		
NA = not applicable					Carbon change	out performed.			Before blower	36.0	35.7	NA
NS = Not sampled.		er water.							influent	128.0	6.3	NA_
Influent = Before ca									Mid	106.0	1.1	NA NA
Mid = Between car	bon.								Effluent	100.0	0.0	NA
Effluent = After car	bon.							•				

		May 24, 20	04			June 22, 20	004			July 28, 20	04	
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	_Open_	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	2.6	18.8	120.0	10%	2.0	27.0	212.0	20%	3.5	65.5	77.5	25%
SVE - 2	NS	NS	NS	100%	4.0	38.0	0.0	100%	NS	NS	NS	100%
SVE - 3	2.9	2.1	69.7	100%	3.0	19.0	83.0	100%	3.0	5.0	86.8	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS .	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	2.60	9.00	0.0	100%	3.00	15.00	0.0	100%	2.75	55.5	0.0	100%
SVE - 7	2.50	12,70	0.00	100%	3.00	22.00	0.00	100%	2.75	66.0	0.00	100%
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	33.5	32.6	NA	NA	39.0	53.0	NA	NA	42.4	19.9	NA
Influent	NA	92.5	10.6	NA	NA	114.0	8.0	NA	NA	109.0	2.0	ÑA
Mid	NA	85.0	0.0	NA	NA NA	89.0	0.0	NA	NA	83.5	1.5	NA
Effluent	NA	126.0	0.0	NA	NA NA	91.0	0.0	NA	NA	136.0	0.0	NA
			-		2.150	<u> </u>	·····					

Changed SVE-1 to 25%

NS = Not sampled, well head not accessible.

Changed SVE-1 to 20% open

NA = not applicable.
Influent = Before carbon.

Notes:

Mid = Between carbon.

		August 20, 2	2004			September 29	, 2004	
	Vac (inches of			Valve %	Vac (Inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Ореп	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	7.0	43.0	153.0	25%	6.0	7.1	145.0	25%
SVE - 2	NS	_NS	NS	100%	NS	NS	NS	100%
SVE - 3	4.0	23.0	75.0	100%	2.0	6.5	31.9	100%
SVE - 4	NS	NS	NS	100%	NS	NS NS	NS	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	4.00	35.00	0.0	100%	4.60	7.90	0.0	100%
SVE - 7	4.00	18.00	0.00	100%	4.80	5.75	0.00	100%
VMP - 1	NS	NS	NS	NA	NS	NS_	NS	NA
Before blower	NA	48.0	49.0	NA	NA NA	145.0	23.7	NA_
Influent	NA	122.0	34.0	NA	NA	91.0	9.0	NA
Mid	NA NA	98.0	33.0	NA	NA	86.0	0.0	NA
Effluent	NA NA	107.0	31.0	NA NA	NA	127.0	0.0	NA
Notes:	Following	carbon vess	el change ou	ıt.				
NS = Not sampled, well head not accessible.	Before blower	48.0	53.0	NA_				
NA = not applicable.	Influent	122.0	33.0	NA				
influent = Before carbon.	Mid	98.0	0.0	NA				
Mid = Between carbon.	Effluent	107.0	0.0	NA				
Effluent = After carbon.					a			

	0	ctober 20, 20	004	*******	No	vember 17, 2	2004		De	cember 21, 2	2004	
	Vac (inches of		PID	Valve %	Vac (inches of		PID	Valve %	Vac (inches of		PID	Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	(ppm)	Open
SVE - 1	5.0	13.4	133.0	25%	6.5	26.6	175.0	25%	3.5	1.89	232.0	25%
SVE - 2	NS	NS	NS	NA	NS	NS	NS	NA	2.0	17.50	1.4	100%
SVE - 3	3.0	13.9	33.2	100%	5.0	7.5	19.8	100%	2.5	3.53	19.0	100%
SVE - 4	NS	NS	NS	100%	6.0	18.7	25.5	100%	3.0	12.0	10.7	100%
SVE - 5	NS	NS	NS	100%	3.0	28.2	0.0	80%	2.3	10.30	0.0	80%
SVE - 6	4.00	8.90	0.0	100%	4.5	10.00	0.0	100%	3.00	9.38	0.0	100%
SVE - 7	4.00	8.85	0.0	100%	4.5	19.00	0.0	100%	3.00	16.20	0.0	100%
VMP - 1	NS_	NS	NS	NA	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	218.0	23.5	NA	NA	214+	23.7	NA	NA	Over	36.2	NA _
Influent	NA	89.0	7.3	ÑΑ	NA	110.0	9.0	NA	NA.	97.0	11.5	NA
Mid	NA NA	84.5	0.10	NA	NA	97.0	0.0	NA	NA	78.0	4.1	NA
Effluent	NA	134.0	D.0	NA	NA	128.0	0.0	NA	NA NA	106.0	2.6	NA
Notes			********	*************************************				_				

Notes:

NS = Not sampled, well head not accessible.

NA = Not applicable. Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

Following ca	arbon vesse	l change	out.	Following ca	ırbon vesse	change	out.
Before blower	204.0	25.6	NA	Before blower	85.5	33.9	NA
Influent	113.0	9.3	NA	Influent	115.0	16.7	NA
Mid	102.0	0.0	NA	Mid	80.5	6.6	NA
Effluent	132.0	0.0	NA	Effluent	130.0	0.0	NA

ATTACHMENT 3 INDOOR AIR ANALYTICAL

6601 KIRKVILLE ROAD EAST SYRACUSE, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.galsonlabs.com

Ms. Heide Dudek Shaw Environmental & Infrastructure 13 British American Blvd. Latham, NY 12110 January 03, 2005

DOH ELAP# 11626

Account# 14965

Login# L113232

Dear Ms. Dudek:

Enclosed are the analytical results of the samples received by our laboratory December 23, 2004. All test results meet the quality control requirements of AIHA and NELAC unless otherwise stated in this report.

Results in this report are based on the sampling data provided by the client and refer only to items tested. Unless otherwise requested, all samples will be discarded thirty days from the date of this report.

Please contact client services at (888) 432-5227, if you would like any additional information regarding this report.

Thank you for using Galson Laboratories.

Sincerely,

Galson Laboratories

F. Joseph Unangst Laboratory Director

Enclosure(s)

ESS.			Report To:	Heidi Duden	I.E.	Invoice To:	Same	
CALSO	'A K	k if change		Show Environm	aspl, TAC	 .		
LABORATO	ORIES Name	dress Client? yes		13 Brotish Amer			//	
1 Kirkville Rd st Syracuse, NY 13057•		no 🔀	Diama Na .	Latham NY 121	<u> </u>	Dhono No i	5 TID DOS 10	0/
315-437-5227		• •	Phone No.:			Eav No :	- 5/8-783-/9 5/8-783-/	0207
888-432-LABS(5227) : 315-437-0571	Chen	t Account #:				rax IVO.	318-185-6	137/
w.gaisonlabs.com		Site Name : 1	YCORC -	Time Do Clark	Project ·		Sampled By : John	Skann
Need Results By:	(surcharge)	Verbal Authoriza	ation :	Timmy Dry Clean			Campiocoy	24 441 457
5 Business Days	0%	Purchase Order	· No. :	[[m]				
4 Business Days	35%	Credit Card			Card Holder Nan	ne :		Exp. :
3 Business Days	50%							
2 Business Days	75 <u>%</u>		: 1 - 1-	0//			T/0	02.47
Next Day by 6pm	100%_	Fax Results T	o: Heidi	Dudek -mareidudek es		Fax No. :	5/8-783-	-839/
Next Day by Noon	150%	Email Results T	o: <u>heide</u>	-Mareidudek @ S	howg p. Co	reg_		
Same day	200%			*A1. 17. (Caralifa DI
Sample		Data Camadad	Collection	*Air Volume (liters)/	Ameliaia F	Decuments	Method Reference	Specific DL
Identification	on	Date Sampled	Medium	Passive Monitors (Min)		Requested		Needed
9		12/21/64	35030VM	1440 miss	tetachlar	sethene	NYSDOH311-9	10 49/m3
Backgroun	<u>d</u>	1				<u> </u>		
Deli_	•							
KFC								
DUCA								
Tinkl					V		<u> </u>	
1 LIN BIONE	<							
								
					. <u>. </u>			
IF YOU DO NOT	WANT A LAB	ORATORY BLAN	K ADDED PLEASI	CHECK BOX. If blanks a	re not submitted o	or box is not checl	ked, our policy states that	a laboratory
			be charged at nor				, ,	•
description of ind		-						
description of mu	uany or proce	cos/ interferences	» ргезепі іп samp	mig area: N C/NE				
hain of Custody		Print Name		<u> </u>	Signature			Pate/Time
Relinquished by :	Tale	Skaarus		Ale	a Stron	w	12/52/	<u> </u>
Received by LAB:	41/4	+ Materia	<i>Y</i>	Wools A Macy				A10:02 IN
in#: L11323				Il be considered as nex		*Collect	ion Time(min) X LPM =	

LABORATORY ANALYSIS REPORT

Client

: Shaw Environmental & Infrastructure

Site

: NYS DEC-Jimmy's Dry Cleaner

6601 KIRKVILLE ROAD EAST SYRACUSE, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.galsonlabs.com

Date Sampled : 21-DEC-04 Date Received: 23-DEC-04 Account No.: 14965

Login No. : L113232

Date Analyzed: 28-DEC-04

Perchloroethylene

Sample ID	<u>Lab ID</u>	Time minutes	Total uq	Conc ug/m3
G	L113232-1	1440	0.17	4.0
BACKGROUND	L113232-2	1440	0.2	4.8
DELI	L113232-3	1440	1.3	31
KFC	L113232-4	1440	0.26	6.2
DUP A	L113232-5	1440	0.24	5.7
TRIP BLANK	L113232-6	AK	0.04	NA

Results corrected for a desorption efficiency of 103% in the ppm calculation. COMMENTS: Sample results have not been corrected for the blank value.

Level of quantitation: 0.03 ug

Analytical Method

: NYS DOH 311-9

Submitted by: AS Approved by : dk

OSHA PEL (TWA) Collection Media : 100 ppm

Date : 03-JAN-05

NYS DOH # : 11626

: OVM QC by: M

-Less Than

mg -Milligrams

-Cubic Meters m3

kg -Kilograms

-Greater Than NA -Not Applicable ug -Micrograms

-Liters

NS -Not Specified

ATTACHMENT 4 INDOOR AIR QUALITY DATA

Attachment 4

Indoor Air Quality Data

NYSDEC - Jimmy's Dry Cleaner

61 Nassau Road, Roosevelt, New York

		NYSDOH			-		
Sample Location	Units	Guidance Value	09/29/98	01/05/99	08/17/00	08/28/01	05/09/02
KFC - Kitchen	ug/m ³	10	NS	NS	NS	10	70
40 Dutchess (Bsmt. Living. Rm)	ug/m ³	10	NS	NS	NS	5 (PL)	NS
40 Dutchess (Bsmt. Bdrm/baby rm)	ug/m³	10	NS	NS	NS	5 (PL)	490
40 Dutchess (Kitchen/First Floor)	ug/m³	10	NS	NS	NS	5 (PL)	280
Deli - Front Room	ug/m ³	10	1250/1400	400/400	510/480	108	900/870
Deli - Storage Room (Back)	ug/m³	10	930/970	400/400	490/480	NS	NS
DUPA (KFC)	ug/m ³		NS	NS	NS	NS	NS
Dupe 1 (Deli - Front Room)	ug/m ³	<u>1</u> 0	NS	NS	NS	NS	NS
Dupe 2 (40 Dutchess.Bsmt)	ug/m³	10	NS	NS	NS	NS	NS
Dupe 3 (Deli - Front Room)	ug/m³	10	NS _	NS	NS	NS	NS
Dupe 4 (KFC)	ug/m³	10	NS	NS	NS	NS	NS
44 Dutchess (Jackson Bsmt./Family Rm)	ug/m³		NS	NS	NS	NS	NS
44 Dutchess (First Floor/Kitchen)	ug/m³	10	NS	NS	NS	NS	NS
34 Dutchess (Bsmt, Rec Room)	ug/m ³	10	NS	NS	NŞ	5 (PL)/5 (PL)	NS
34 Dutchess (Bsmt. Bdrm)	ug/m³		NS	NS	NS	5 (PL)	NS
34 Dutchess (First Floor/Kitchen)	ug/m ³	10	NS	NS	NS	5 (PL)	NS
MSUP - Bld. 1 Basement, store room	ug/m³	10	NS	NS	NS	ND	ND
MSUP - Bld. 1 First floor, southwest corner	ug/m ³		NS	NS	NS	ND/ND	5 (PL)
MSUP - Bld. First floor, northwest corner	ug/m ³	10	NS	NS	NS	ND	5 (PL)
MSUP - Bld. 2 First floor, front room	ug/m³	10	NS	NS	NS	ND	5 (PL)
MSUP - Bld. 2 First floor, rear room	ug/m ³		NS_	NS	NS	ND	ND
MSUP - Bld. 3 Basement, computer room	ug/m³	10	NS	NS	NS	ND	5 (PL)/5 (PL)
MSUP - Bld. 3 First floor, office	ug/m ³	10	NS	NS	NS	ND	ND
MSUP - Play area southwest of Bld. 1	ug/m ³	10	NS	NS	NS	ND/ND	5 (PL)
Background	ug/m³	10	NS	NS	NS	NA	NA

Notes:

Bold = Value exceeds NYSDOH guidance value.

MSUP = Miss Shelly's School - 66 Nassau Road.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene in Indoor and

Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

5 (PL)/5 (PL) = Indicates that the NCDOH collected a

duplicate sample from this location.

Attachment 4

Indoor Air Quality Data

NYSDEC - Jimmy's Dry Cleaner

61 Nassau Road, Roosevelt, New York

	NYSDOH					
Units	Guidance Value	07/01/02	11/25/02	01/13/03	03/05/03	05/01/03
ug/m ³	10	NS	18	6.4	3.3	42
ug/m³	10	5 (PL)	NS	NS	NS	NS
ug/m³	10	5	1.0	5.2	24	NS
ug/m ³	10	NS _	NS	NS	NS	NS
ug/m ³	10	230	67_	48	119	69
ug/m ³	10	NS	NS	NS	NS	NS
ug/m ³	10	NS_	NS	NS	NS	NS_
ug/m ³	10	NS	NS	49	NS	NS
ug/m³	10	NS	NS	NS	20	NS
ug/m ³	10	NS	NS	NS	NS	69
ug/m³	10	NS	NS	NS	NS	NS
ug/m³	10	14	7.4	NS	2 .6	NS
ug/m³	10	5 (PL)	NS	NS	NS	NS
ug/m ³	10	NS	NS	NS	NS_	NS
ug/m ³	10	NS	NS	NS	NS	NS
ug/m ³	10	NS	NS	NS	NS	NS_
ug/m³	10	NS	NS	NS	NS	NS
	10	NS	NS	NS	NS	NS
ug/m ³	10	NS_	NS	NS	NS	NS
ug/m³	10	NS	NS	NS _	NS	NS
ug/m ³	10	NS	NS	NS	NS	NS
ug/m ³	10	NS	NS	NS	NS	NS_
ug/m ³	10	NS	NS	NS	NS	NS
ug/m ³	10	NS	NS	NS	NS	NS
ug/m³	10	NS_	1.7	2.4	4.0	15
	S	ug/m³ 10 ug/m³ 10	ug/m³ 10 NS ug/m³ 10 5 (PL) ug/m³ 10 5 ug/m³ 10 NS ug/m³ 10 NS	ug/m³ 10 NS 18 ug/m³ 10 5 (PL) NS ug/m³ 10 5 1.0 ug/m³ 10 NS NS ug/m³ 10 NS NS	ug/m³ 10 NS 18 6.4 ug/m³ 10 5 (PL) NS NS ug/m³ 10 5 (PL) NS NS ug/m³ 10 S NS NS ug/m³ 10 NS NS NS ug/m³ 10 NS	ug/m³ 10 NS 18 6.4 3.3 ug/m³ 10 5 (PL) NS NS NS ug/m³ 10 5 1.0 5.2 24 ug/m³ 10 NS NS NS NS ug/m³ 10

Notes:

Bold = Value exceeds NYSDOH guidance value.

MSUP = Miss Shelly's School - 66 Nassau Road.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene

in Indoor and Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

5 (PL)/5 (PL) = Indicates that the NCDOH collected

a duplicate sample from this location.

Attachment 4

Indoor Air Quality Data

NYSDEC - Jimmy's Dry Cleaner

61 Nassau Road, Roosevelt, New York

		NYSDOH					
Sample Location	Units	Guidance Value	09/23/03	3/30/2004	6/22/2004	9/30/2004	12/21/2004
KFC - Kitchen	ug/m ³	¹ 10	5.9	5.5	4.3	19	6.2
40 Dutchess (Bsmt. Living. Rm)	ug/m ³	10	NS	NS	NS	NS	NS
40 Dutchess (Bsmt. Bdrm/baby rm)	ug/m ³	10	6.2	10.0	6.2	2.8	4.0
40 Dutchess (Kitchen/First Floor)	ug/m ³	10	NS	NS (NS	NS	NS
Deli - Front Room	ug/m³	10	26	14.0	54	27	31
Deli - Storage Room (Back)	ug/m ³	10	NS	NS	NS	NS	NS
DUPA (KFC)	ug/m ³	: 10	NS	5.2	7.1	20	5.7
Dupe 1 (Deli - Front Room)	ug/m³	¹ 10	NS	NS	NS	NS	NS
Dupe 2 (40 Dutchess.Bsmt)	ug/m ³	å 10	NS .	NS	NS	NS	NS
Dupe 3 (Deli - Front Room)	ug/m ³	<u>.</u> 10	NS	NS	NS	NS	NS
Dupe 4 (KFC)	ug/m³	10	5.2	NS	NS	NS	NS
44 Dutchess (Jackson Bsmt./Family Rm)	ug/m³	<u>,</u> 10	NS	5.0	NS	5.2	NS
44 Dutchess (First Floor/Kitchen)	ug/m³	10	NS	NS NS	NS	NS	NS
34 Dutchess (Bsmt. Rec Room)	ug/m ³	[‡] 10	NS	3.6	NS	NS	NS
34 Dutchess (Bsmt. Bdrm)	ug/m³	<u> </u>	NS	NS	NS	NS	NS
34 Dutchess (First Floor/Kitchen)	ug/m³	<u> </u>	NS	NS	NS	NS	NS
MSUP - Bld. 1 Basement, store room	ug/m³	10	NS	NS	NS	NS	NS
MSUP - Bld. 1 First floor, southwest corner	ug/m³	<u>*</u> 10	NS	NS	NS	NS	NS
MSUP - Bld. First floor, northwest corner	ug/m³	10	NS	NS	NS	NS	NS
MSUP - Bld. 2 First floor, front room	ug/m ³	<u>†</u> 10.	NS-	NS	NS	NS	NS
MSUP - Bld. 2 First floor, rear room	ug/m³	10	NS	NS	NS	NS	NS
MSUP - Bld. 3 Basement, computer room	ug/m ³	å 10	NS	NS	NS	NS	NS
MSUP - Bld. 3 First floor, office	ug/m³	10	NS	NS	NS	NS	NS
MSUP - Play area southwest of Bld. 1	ug/m³		- NS	NS	NS	NS	NS
Background	ug/m³	10	6.2	4.8	4.3	4.0	4.8

Notes:

Bold = Value exceeds NYSDOH guidance value.

MSUP = Miss Shelly's School - 66 Nassau Road.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene

in Indoor and Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

5 (PL)/5 (PL) = Indicates that the NCDOH collected

a duplicate sample from this location.