567 Main Street

WESTBURY, NASSAU COUNTY, NEW YORK

Construction Completion Report

(Former Atlas Graphics Site)

NYSDEC Site Number: 130043B

Prepared for:

H.D.P Printing Industries Corporation 2459 Broadmoor Lane Spring Hill, Florida 34606

Prepared by:

Tyll Engineering and Consulting, PC 169 Commack Road, Suite 173 Commack, New York 11725 (631) 623-5373

OCTOBER 2023

CERTIFICATIONS

I, <u>Karen Tyll</u>, an currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Design was implemented and that all construction activities were completed in substantial conformance with the Departmentapproved Sub-Slab Depressurization Work Plan (SSDSWP).

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Karen Tyll, of Tyll Engineering and Consulting, PC am certifying as Owner's Designated Site Representative and I have been authorized and designated by all site owners to sign this certification for the site.

<u>10/25/23</u> date

CERTIFICATIONS	II
TABLE OF CONTENTS I	
LIST OF FIGURESI	V
APPENDICESI	
LIST OF ACRONYMS	
CONSTRUCTION COMPLETION REPORT	
1.0 BACKGROUND AND SITE DESCRIPTION	1
1.1 PROJECT BACKGROUND	1
1.2 SITE LOCATION AND DESCRIPTION	1
2.0 SUMMARY OF SITE REMEDY	2
2.1 REMEDIAL ACTION OBJECTIVES	2
3.0 INTERIM REMEDIAL MEASURES	
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	2
4.1 GOVERNING DOCUMENTS	2
4.1.1 Site Specific Health & Safety Plan (HASP)	2
4.1.2 Quality Assurance Project Plan (QAPP)	2
4.1.3 Soil/Materials Management Plan (S/MMP)	2
4.1.4 Community Air Monitoring Plan (CAMP)	
4.2 INTERIM REMEDIAL PROGRAM ELEMENTS	3
4.2.1 Contractors and Consultants	3
4.2.2 Installation of the Sub-Slab Depressurization System (SSDS)	3
4.2.3 Nuisance Controls	3
4.2.4 CAMP Results	-
4.2.5 Daily Reports	3
4.2.6 SSDS Startup and Testing	3
4.3 IMPORTED BACKFILL	
4.4 CONTAMINATION REMAINING AT THE SITE	
4.5 COVER SYSTEM	
4.6 INSTITUTIONAL CONTROLS	-
4.7 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN	5

TABLE OF CONTENTS

LIST OF FIGURES

- Figure 1 Project Site Map
- Figure 2 Tax Map
- Figure 3 Sub-Slab Depressurization System Installation Plan- As-Built

APPENDICES

- Appendix A Quality Assurance Project Plan
- Appendix B Daily Reports and Camp Information
- Appendix C SSDS Installation Photos
- Appendix D Manifests and Waste Characterization Lab Report
- **Appendix E** Imported Material Information
- **Appendix F** Environmental Easement

LIST OF ACRONYMS

Acronym	Definition
bgs	below ground surface
CCR	Construction Completion Report
CVOC	chlorinated volatile organic compounds
EPA	U.S. Environmental Protection Agency
HVAC	Heating, Ventilation and Air Conditioning
IRM	Interim Remedial Measure
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYSDOT	New York State Department of Transportation
O, M & M	Operation, Maintenance and Monitoring
PCBs	polychlorinated biphenyls
PCE or PERC	Perchloroethylene
PFAS	per-and polyfluoroalkyl substances
PID	Photoionization Detector
RI	Remedial Investigation
RIWP	Remedial Investigation Work Plan
SMP	Site Management Plan
SSDS	sub-slab depressurization system
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
SVOCs	semi-volatile organic compounds
TAL	target analyte list
TCL	target compound list
TCE	Trichloroethene
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UST	Underground Storage Tank
UUSCOs	Unrestricted Use SCOs
VOC	volatile organic compounds

CONSTRUCTION COMPLETION REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

1.1 PROJECT BACKGROUND

H.D.P. Printing Industries Corp. entered into an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC) in February 2021, to investigate and remediate a 0.21-acre property located in Westbury, Nassau County, New York.

1.2 SITE LOCATION AND DESCRIPTION

The site is located in the County of Nassau, New York and is identified as Section 11, Block 164 and Lot 68 on the Nassau County Tax Map. The site is an approximately 0.2-acre area and is bounded by commercial building and Parking Lots to the north and east, Main Street to the south, and Swalm Street to the west (**Figure 1**). The boundaries of the site are show on the Tax Map on **Figure 2**.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

3.0 INTERIM REMEDIAL MEASURES

The remedy for this site was performed as a single project, and no interim remedial measures, operable units or separate construction contracts were performed.

The installation of a SSDS facilitated the engineering control measure necessary for the documented CVOC SVI risk, as well as a means to reduce the exposure risk posed by residual CVOCs.

The SSDS system consists of an interior SSDS installed within trenches under the concrete slab (**Figure 3**). Negative pressure gradients created by the SSDS fan have been accomplished within the trench system. The SSDS has be monitored on an annual basis and adjusted to confirm that there is a negative pressure gradient below the building slab and in the subsurface soils.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDECapproved Sub-Slab Depressurization System Work Plan (SSDSWP) for the 567 Main Street site approved February 3, 2023. The primary objective of the SSDSWP was to mitigate chlorinated VOC vapor impacts identified in subsurface at the Site. This objective was accomplished via the installation of a SSDS within the Site building. The overall objective for the Site is its continued use for commercial/light industrial purposes. This IRM completed at the Site was conducted in accordance with the NYSDEC-approved SSDSWP submitted in January 2023 (approved by NYSDEC February 2023). Deviations from the SSDSWP, if any, are noted in **Section 4.7**.

The Remedial Goals in the SSDSWP were as follows:

- Install a SSDS to create negative sub-slab pressure beneath the site building, thus mitigating potential soil vapor intrusion issues within the site building.
- Install gauges associated with the SSDS as well as pressure monitoring points to confirm the influence, confirm, and monitor the operation of the system.

4.1 GOVERNING DOCUMENTS

4.1.1 Site Specific Health & Safety Plan (HASP)

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site. The HASP can be found in Appendix D of the SSDSWP.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP is included as **Appendix A** of this document. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

4.1.3 Soil/Materials Management Plan (S/MMP)

The S/MMP was included in Section 4.0 of the SSDSWP

4.1.4 Community Air Monitoring Plan (CAMP)

A Community Air Monitoring Plan (CAMP) was completed during the SSDS Installation project. A Dusttrak Model 8520 meter was used to measure and record the amount of dust in the air and a portable photoionization detector (PID) was used to detect organic vapors. The equipment was installed and continuously used within the interior work area when intrusive activities were in progress at the Site. Data generated from CAMP at the facility during construction can be found within the Daily Reports in **Appendix B**.

4.2 INTERIM REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

- Tyll Engineering and Consulting, PC (Karen Tyll, PE) completed the SSDS design and oversaw the Installation; and
- PG Environmental was the contractor that completed the SSDS Installation.

4.2.2 Installation of the Sub-Slab Depressurization System (SSDS)

The SSDS trenches including piping, gravel backfill, and re-concreting were completed in February and March 2023. The SSDS followed the design presented in the SSDS Work Plan approved by NYSDEC and NYSDOH. The SSDS consists of two intersecting trenches leading to one SSDS fan installed upon the rear of the building. Photographs are provided in **Appendix C.**

The trenches were cut into the concrete basement slab using an electric powered saw and jackhammer and was approximately 12-inches wide and was excavated to 1 feet deep below the slab. Each trench has a 4-inch diameter, fabric wrapped perforated pipe running through it surrounded by gravel. The piping was connected to a vertical riser which extends up through the building wall to the roof.

The trenches were topped off with gravel and the tenant had their concrete contractor close the tops of the trench with concrete to match the existing floor slab.

4.2.3 Nuisance Controls

The SSDS installation was completed indoors and the occurrences of nuisances were not observed.

4.2.4 CAMP Results

No exceedances of CAMP guidelines were observed during the SSDS Installation.

Copies of all field data sheets relating to the CAMP are provided in electronic format within the

Daily Reports in Appendix B.

4.2.5 Daily Reports

Tyll Engineering submitted daily reports during the SSDS Installation Project between February 27 and March 6, 2023. The Daily Reports can be found in **Appendix B.**

4.2.6 SSDS Startup and Testing

After the initiation of the active SSDS, a start-up test was performed by TEC to determine sub-

slab pressure readings under operational conditions and to establish the efficacy of the SSDS.

On March 22, 2023, TEC went to the Site and determined that the SSDS was in operation. Pressure readings were collected from the 4 sub-slab soil vapor monitoring points using a digital manometer to determine the pressure differentials beneath the building slab. The results were all above the required pressure readings of -0.004 inches of water. Chart below shows the results:

Point	Pressure (in H ₂ 0)
VP-1	-0.94
VP-2	-0.32
VP-3	-0.04
VP-4	-0.07

The SSDS remains in operation and will not be shut down unless the NYSDEC approves it.

4.3 IMPORTED BACKFILL

No Backfill was imported during this SSDS Installation. Only ³/₄" gravel was imported for the SSDS trenches. See **Appendix E** for the gravel delivery ticket.

4.4 CONTAMINATION REMAINING AT THE SITE

As presented in **Section 3.1**, the objective of the SSDS building EC is to reduce the potential SVI risk posed by CVOC impacted soil vapor from areas below the Structure. Contaminated media remaining at the site includes CVOC impacted soil vapor as summarized below

- In 2010, a NYSDEC Contractor collected three samples, 2 from within the building and 1 from outside the building. Tetrachloroethylene (PCE) was detected in indoor air within the Site building at concentrations of 27 and 28 micrograms per cubic meter (ug/m3). At the time, these concentrations were below the NYSDOH indoor air guideline of 100 ug/m3 but were near the current NYSDOH indoor air guideline of 30 ug/m3. Trichloroethylene (TCE) was detected in the indoor air at concentrations of 1.9 and 1.6 ug/m3. The current NYSDOH indoor air guideline for TCE is 2 ug/m3. In addition, PCE and TCE were detected at (maximum of 4,200 ug/m3 and 31,000 ug/m3 respectively) in soil vapor beneath the building.
- On March 11, 2021, an additional sampling event was completed that included the collection of sub-slab, indoor air and outdoor ambient air. PCE was detected in indoor air within the building at concentrations of 1.7 at VP-1 and 1.5 ug/m3 at VP-2. These concentrations were below the NYSDOH indoor air guideline of 30 ug/m3. TCE was detected in the indoor air at concentrations of 2.0 at VP-1 and 1.4 ug/m3 at VP-2. The current NYSDOH indoor air guideline for TCE is 2 ug/m3. PCE and TCE were detected at

maximum concentrations of 360 ug/m3 and 1800 ug/m3 in soil vapor beneath the building slab. TCE was not detected in the outside (ambient) air sample but PCE was detected at 2.7 ug/m3 (higher concentration than the two indoor air samples).

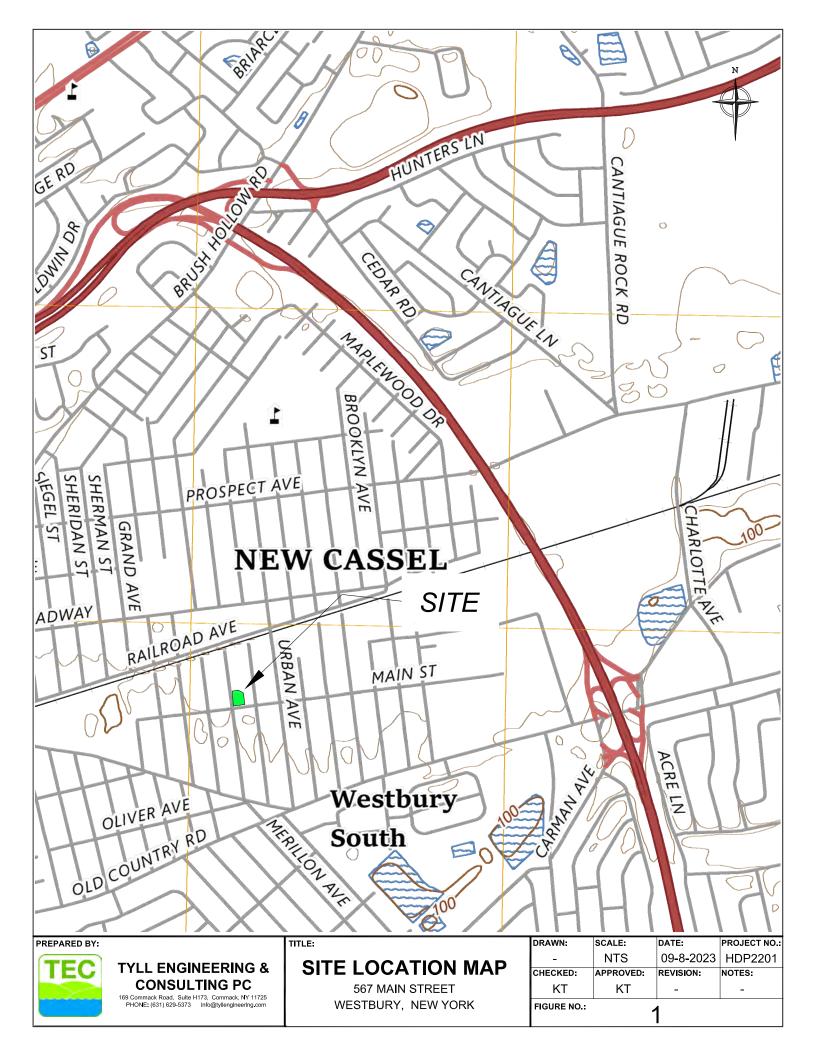
Since contaminated soil vapor remains beneath the site after completion of the Remedial Investigation, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

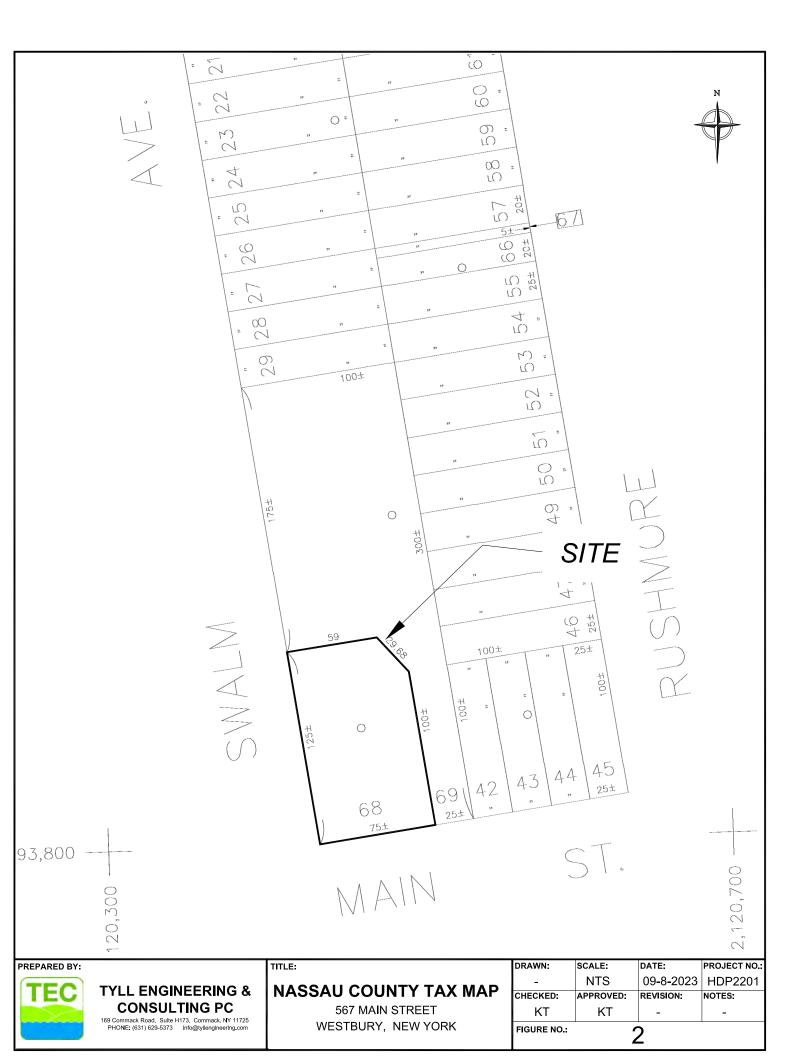
4.5 COVER SYSTEM

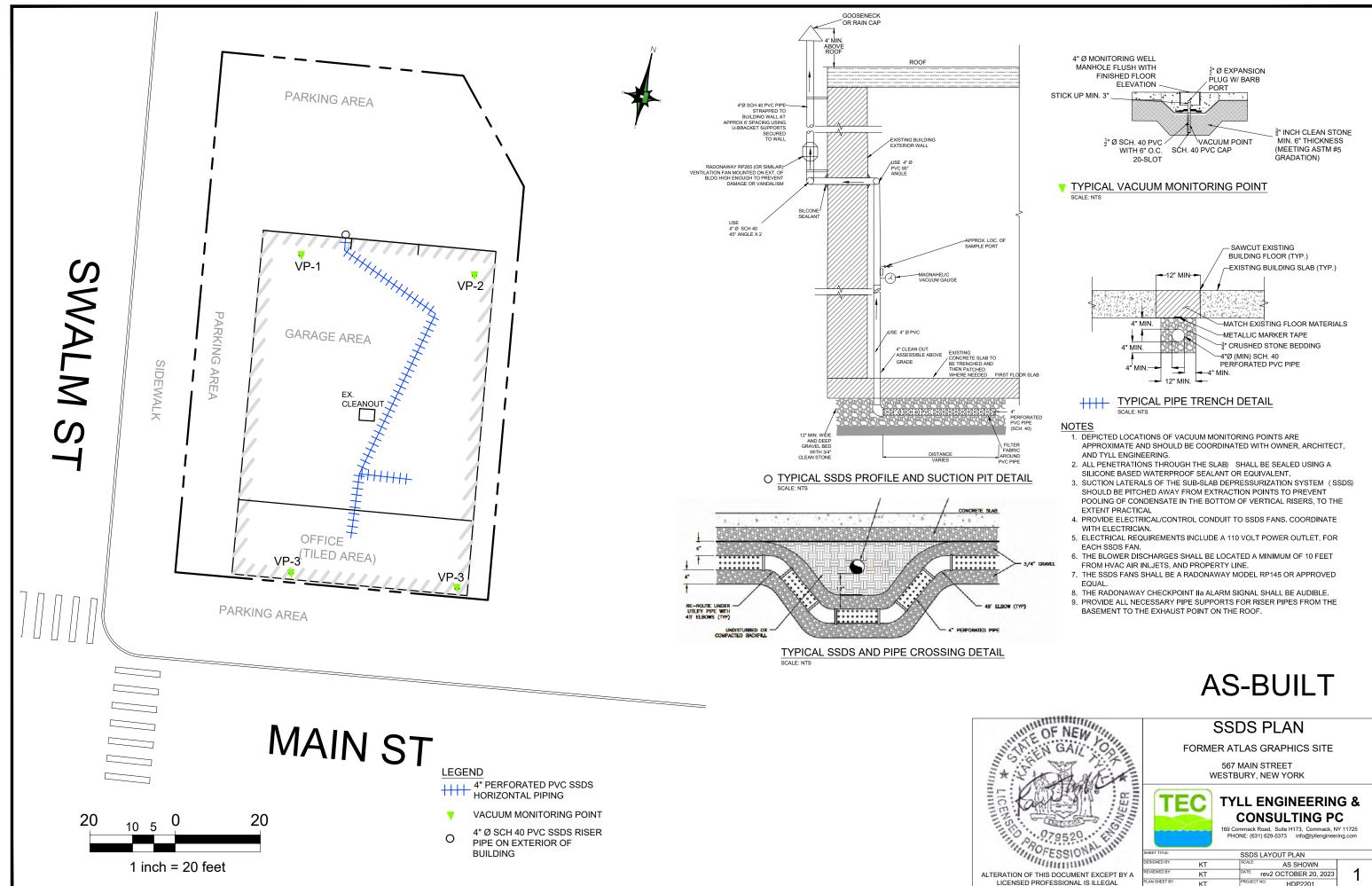
Exposure to remaining contamination in soil/fill at the site is prevented by a concrete and asphalt cover system placed over the site. This cover system is comprised of a minimum of 4" of asphalt pavement around exterior of the building and an approximate 4" concrete building slab.

4.6 INSTITUTIONAL CONTROLS

The site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial/light industrial uses only.


The environmental easement is currently being completed and will be provided in **Appendix D** once available.


4.7 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN


Changes to the alignment occurred once the system was laid out on the first day of construction due to site conditions. Those changes were relayed to the NYSDEC within the daily report from February 27, 2023

No other deviations from the SSDS workplan occurred.

FIGURES

Appendix A

Quality Assurance Project Plan (QAPP)

1.0 QUALITY ASSURANCE PROJECT PLAN (QAPP)

The fundamental QA objective with respect to accuracy, precision, and sensitivity of analysis for laboratory analytical data is to achieve the QC acceptance of the analytical protocol. The accuracy, precision and completeness requirements will be addressed by the laboratory for all data generated.

Collected samples will be appropriately packaged and transported via laboratory dispatched courier to the analytical laboratory.

Laboratory reports will include ASP category B deliverables for use in the preparation of a data usability report (DUSR), if required. The DUSR will be applicable to all samples collected during the RI.

2.0 Subslab Vapor and Indoor /Outdoor Air Samples

Extreme care will be taken during all aspects of sample collection to ensure that sampling error is minimized and high quality data are obtained. The sampling team members will avoid actions (e.g., using permanent marker pens and wearing freshly dry-cleaned clothes or personal fragrances) which can cause sample interference in the field. A tracer gas, helium, will be used in accordance with NYSDOH sampling protocols to serve as a QA/QC device to verify the integrity of the soil vapor probe seals. QA/QC protocols will be followed for sample collection and laboratory analysis, such as use of certified clean sample devices, meeting sample holding times and temperatures, sample accession, and chain of custody.

Samples will be delivered to the analytical laboratory as soon as possible after collection. The laboratory analyzes QC samples with each analytical batch, including a Method Blank (MB), Laboratory Control Sample (LCS), and a Laboratory Control Sample Duplicate (LCSD). Internal standards are added to all calibration standards, samples, and blanks to verify that the analytical system is in control.

3.0 Sample Handling and Decontamination Procedures

Collected samples will be appropriately packaged, placed in coolers and shipped via overnight courier or delivered directly to the analytical laboratory by field personnel. Samples will be containerized in appropriate laboratory provided glassware and shipped in plastic coolers. Samples will be preserved through the use of ice or cold-pak(s) to maintain a temperature of 4°C.

Dedicated disposable sampling materials will be used for soil, groundwater and soil vapor samples (if collected), eliminating the need to prepare field equipment (rinsate) blanks. However, if non- disposable equipment is used, (stainless steel scoop, etc.) field rinsate blanks will be prepared at the rate of one for every eight samples collected. No field filtering will be conducted; any required filtration will be completed by the laboratory.

Decontamination of non-dedicated sampling equipment will consist of the following:

- Gently tap or scrape to remove adhered soil;
- Rinse with tap water;
- Wash with alconox[®] detergent solution and scrub ;
- Rinse with tap water;
- Rinse with distilled or deionized water.

Prepare field blanks by pouring distilled or deionized water over decontaminated equipment and collecting the water in laboratory provided containers. Trip blanks will accompany samples each time they are transported to the laboratory. Matrix spike and matrix spike duplicates (MS/MSD) will be collected at the rate of one per 20 samples submitted to the laboratory and duplicate samples will be collected at a rate of one per ten samples submitted to the laboratory.

4.0 QA / QC Requirements for Analytical Laboratory

Samples will be analyzed by the NYSDOH ELAP laboratory for one or more of the following parameters: VOCs in air by USEPA Method TO15 (Table 2). If any modifications or additions to the standard procedures are anticipated and if any nonstandard sample preparation or analytical protocol is to be used, the modifications and the nonstandard protocol will be explicitly defined and documented.

Data generated from the laboratory will be used to evaluate contaminants such as chlorinated and other volatile organic compounds (VOCs) in soil vapor. The QA requirements for all subcontracted analytical laboratory work performed on this project are described below. QA elements to be evaluated include accuracy, precision, sensitivity, representativeness, and completeness. The data generated by the analytical laboratory for this project are required to be sensitive enough to achieve required quantification limits as specified in NYSDEC Analytical Services Protocol (NYSDEC ASP, 07/2005) and useful for comparison with clean-up objectives. The analytical results meeting the required quantification limits will provide data sensitive enough to meet the data quality objectives of this remedial program as described in the work plan. Reporting of the data must be clear, concise, and comprehensive. The QC elements that are important to this project are completeness of field data, sample custody, sample holding times, sample preservation, sample storage, instrument calibration and blank contamination.

5.0 Reporting of Results

Draft soil vapor intrusion data, sampling location figures and completed Building Questionnaires and Product Inventories (for each sampled building) will be provided to the NYSDEC and the NYSDOH Project Managers as soon as the draft data is available.

Sample analysis will be provided by a New York State certified environmental laboratory.

Laboratory reports will include ASP category B deliverables for use in the preparation of a data usability summary report (DUSR). All results will be provided in accordance with the NYSDEC electronic data deliverable (EDD) format (EQUIS).

6.0 DUSR

The DUSR provides a thorough evaluation of analytical data without third party data validation. The primary objective of a DUSR is to determine whether or not the data, as presented, meets the

site/project specific criteria for data quality and data use. Verification and/or performance monitoring samples collected under this RIWP will be reviewed and evaluated in accordance with the Guidance for the Development of Data Usability Summary Reports as presented in Appendix 2B of DER-10. The completed DUSR for verification/performance samples collected during implementation of this SVI will be included in the SVI Report prior to its formal approval.

Appendix B

Daily Reports and Camp Information

Prepared By: Karen	DRT Tyll	WEATH ER	Sno w	x	Rain		Overca st	x	Partly Cloud V	Brigh t Sun	
		TEMP.	< 32		30-50	x	50-70		, 70-85	>85	
NYSDEC Site No.:	130043A	Date	: 02/27	/23	3						
Project Name:	567 Main Street	Addr	ess		567 Mai	n S	treet, Wes	stbu	ury, NY		
Project Manager: Karen Tyll, Tyll Eng	gineering						ontractor al Services		С.		
Work Activities Pe	erformed:										
PG Environmental	started to saw cut the	e concrete sl	ab to in	stal	ll the SSI	DS					
An updated map w	vith revised alignment	is included.									
Samples Collected	l: None										
Samples Collected											
Air Monitoring Up		during field	activitie	<u>.</u> es.							
Air Monitoring Up	o date: e dust were observed	during field	activitie	25.							
Air Monitoring Up No odors or visible CAMP Data attach VOC Action Level E	o date: e dust were observed	Background	(Y/N): N	0): No						
Air Monitoring Up No odors or visible CAMP Data attach VOC Action Level B Particulate Action	odate: e dust were observed ed. Exceedance(s) Above E	Background	(Y/N): N	0): No						

<u>PHOTOS</u>

CAMP DATA (See Following Pages)

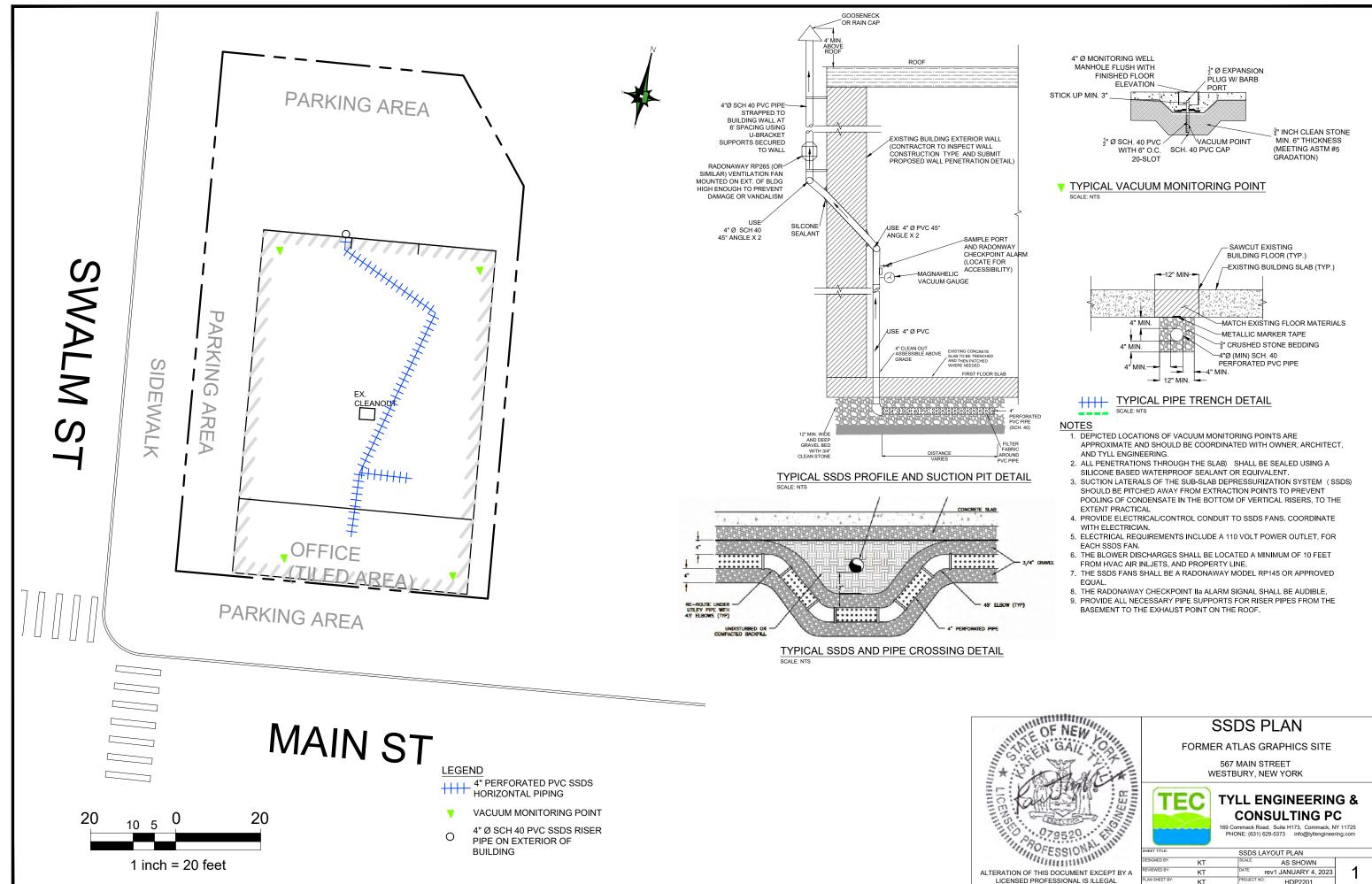
On- Site Dust and Volatile Organic Vapor Monitoring

Project:	567 Ma	ain Street, We	stbury NY		Job No.:			
Location:			On-sit	e Personnel:	Diego Fajardo			
Day & Date	02/27/2	023		Weather: C	loudy scatter showers			
		AM		PM	Sample Interva	al:	15 minutes	
Wind Directio	n	N/A	N/A		Background Reading	g (particulates	s) 0.04	1mg/m ³
Temperature R		36°F	44°F		Background Reading (organic vapors	s) 0.0	ppm
Calibration Da	0	Particulate M	leters: DUST	TRAK Photo	ionization Detector:PID MI	INI RAE 200	0	
Action		Organic va	pors: > 5pp	om above ba	ckground levels/ 15 min	nute readin	gs	
Level/Respons	se:	Particulate	s: 0.100 mg	g/m ³ above u	p wind reading/15 minu	ute period		

	Particulate levels:	ORGANIC VAPOR	
Time	(mg/m ³)	LEVELS (ppm)	NOTES
0800	0.016	0.0	Setting up Station
0815	0.024	0.0	Saw cutting concrete slab
0830	0.029	0.0	SAB
0845	0.036	0.0	SAB
0900	0.041	0.0	SAB
0915	0.045	0.0	SAB
0930	0.053	0.0	SAB
0945	0.058	0.0	SAB
1000	0.064	0.0	SAB
1015	0.073	0.0	SAB
1030	0.068	0.0	SAB
1045	0.063	0.0	SAB
1100	0.056	0.0	SAB
1115	0.047	0.0	SAB
1130	0.043	0.0	SAB
1145	0.039	0.0	SAB
1200	0.035	0.0	Lunch

Page | 1 of 2

Project: 567 Main Street, Westbury NY


Location:

Job No.:

Day & Date: 02/27/2023

Particulate levels:		
(mg/m ³)	ORGANIC VAPOR LEVELS (PPM)	NOTES
0.027	0.0	Lunch
0.019	0.0	Lunch
0.025	0.0	Saw cutting concrete Slab
0.034	0.0	SAB
0.042	0.0	SAB
0.048	0.0	SAB
0.054	0.0	SAB
0.062	0.0	SAB
0.069	0.0	SAB
0.075	0.0	SAB
0.067	0.0	SAB
0.059	0.0	Site inactive / Tech off site
	(mg/m ³) 0.027 0.019 0.025 0.034 0.042 0.048 0.048 0.054 0.054 0.062 0.069 0.075 0.067	(mg/m³) ORGANIC VAPOR LEVELS (PPM) 0.027 0.0 0.019 0.0 0.025 0.0 0.034 0.0 0.042 0.0 0.054 0.0 0.062 0.0 0.069 0.0 0.075 0.0 0.067 0.0

Revised SSDS Layout Plan

DAILY STATUS REPO Prepared By: Karen		WEATH ER	Snow	Rain	x	Overcast	x	Partly Cloudy	x	Bright Sun
		TEMP.	< 32	30-50	х	50-70		70-85		>85
NYSDEC Site No.:	130043A	Date:	02/28/2	23						
Project Name:	567 Main Street	Addres	5S	567 Main	Str	eet, West	bur	y, NY		
Project Manager: Karen Tyll, Tyll Eng	ineering			r onmental nvironmer			Inc			
Work Activities Pe	rformed:									
PG Environmental	rformed: continued to saw cut t ng under the separatic				-	-				
PG Environmental	continued to saw cut				-	-				
PG Environmental	continued to saw cut t				-	-				
PG Environmental Discovered a footii	continued to saw cut to				-	-				
PG Environmental Discovered a footin Samples Collected Air Monitoring Up	continued to saw cut to	on between th	ne shop a	and office	-	-				

VOC Action Level Exceedance(s) Above Background (Y/N): No Particulate Action Level Exceedance(s) Above Background (Y/N): No

Planned Activities for the Next Day/Week:

Finish the trenching below the slab and core through the footing

PHOTOS

Project:	567 Ma	in Street, Westbury NY			Job No.:				
Location:		On-site Personnel: Diego Fajardo							
Day & Date 02/28/2023 Weather: SI				NOW					
		AM		PM	Sample Interval:	15	5 minutes		
Wind Direction	N/A N/A			Background Reading (par	0.041 m	ıg/m ³			
Temperature R		25°F32°FBackground Reading (organic vapors)0.0							
Calibration Da	0	Particulate M	eters: DUST	TRAK Photo	bionization Detector:PID MINI RA	AE 2000			
Action		Organic vapors: > 5ppm above background levels/ 15 minute readings							
Level/Respons	se:	Particulate	s: 0.100 mg	g/m ³ above ı	p wind reading/15 minute p	eriod			

	Particulate levels:		ORGANIC VAPOR	
Time	(mg/m^3)		LEVELS (ppm)	NOTES
0800	0.067		0.0	Setting up Stations
0815	0.073		0.0	Saw cutting concrete slab
0830	0.068		0.0	SAB
0845	0.062		0.0	SAB
0900	0.054		0.0	SAB
0915	0.047		0.0	SAB
0930	0.039		0.0	SAB
0945	0.034		0.0	Breaking and Removing concrete slab
1000	0.026		0.0	SAB
1015	0.019		0.0	SAB
1030	0.024		0.0	SAB
1045	0.031		0.0	SAB
1100	0.038		0.0	SAB
1115	0.045		0.0	SAB
1130	0.052		0.0	SAB
1145	0.059		0.0	SAB
1200	0.065		0.0	Lunch

Project: 567 Main Street, Westbury NY

Job No.:

Location:

Day & Date: 02/28/2023

	Р	articulate levels:		
Time	Time (mg/m ³)		ORGANIC VAPOR LEVELS (PPM)	NOTES
1215	0.074		0.0	Lunch
1230	0.078		0.0	Lunch
1245	0.072		0.0	Breaking and removing slab
1300	0.064		0.0	SAB
1315	0.057		0.0	SAB
1330	0.048		0.0	SAB
1345	0.043		0.0	SAB
1400	0.035		0.0	SAB
1415	0.028		0.0	SAB
1430	0.023		0.0	SAB
1445	0.017		0.0	SAB
1500	0.025		0.0	Site inactive / Tech off site
1515				
1530				
1545				
1600				
1615				
1630				
1645				
1700				

DAILY STATUS REPORT Prepared By: Karen Tyll		WE ER	ATH	Snow		Rain	x	Overcast	x	Partly Cloudy	x	Bright Sun	
		TEI	MP.	< 32		30-50	х	50-70		70-85		>85	
NYSDEC Site No.: 130043A			Date:	03/1/2	23								
Project Name: 567 Main Street			Address		567 Main Street, Westbury, NY								

Project Manager:	Environmental Contractor:
Karen Tyll, Tyll Engineering	PG Environmental Services, Inc.

Work Activities Performed:

PG Environmental continued to clear the trench to install the SSDS. Started to core drill the footing under the separation between the shop and office area to insert the SSDS pipe.

Samples Collected: None

Air Monitoring Update:

No odors or visible dust were observed during field activities.

CAMP Data is attached.

VOC Action Level Exceedance(s) Above Background (Y/N): No Particulate Action Level Exceedance(s) Above Background (Y/N): No

Planned Activities for the Next Day/Week:

Finish the trenching below the slab and excavate the area through the footing to insert the pipe

PHOTOS

Project:	567 Ma	in Street, We	stbury NY		Job No.:				
Location:		On-site Personnel: Diego Fajardo							
Day & Date	03/01/2023Weather: Cloudy & Sunny								
		AM		PM	Sample Interval:	15 minutes			
Wind Direction	n	N/A N/A			Background Reading (particulates) 0.041				
Temperature R		39°F49°FBackground Reading (organic vapors)0.0							
Calibration Da	0	Particulate M	leters: DUST	TRAK Phot	oionization Detector:PID MINI RAE 20	000			
Action		Organic vapors: > 5ppm above background levels/ 15 minute readings							
Level/Respons	se:	Particulate	s: 0.100 mg	g/m ³ above	up wind reading/15 minute perio	d			

	Particulate levels:		
Time	(mg/m ³)	ORGANIC VAPOR LEVELS (ppm)	NOTES
0800	0.056	0.0	Setting up stations
0815	0.062	0.0	Breaking 6" diameter in concrete wall to office
0830	0.055	0.0	SAB
0845	0.049	0.0	SAB
0900	0.042	0.0	Breaking and removing slab
0915	0.035	0.0	SAB
0930	0.027	0.0	Digging soil out of trench and placing soil in drums
0945	0.023	0.0	SAB
1000	0.015	0.0	SAB
1015	0.008	0.0	SAB
1030	0.012	0.0	SAB
1045	0.019	0.0	SAB
1100	0.026	0.0	SAB
1115	0.034	0.0	SAB
1130	0.039	0.0	SAB
1145	0.047	0.0	SAB
1200	0.054	0.0	Lunch

Project: 567 Main Street, Westbury NY

Job No.:

Location:

Day & Date: 03/01/2023

	Particulate levels:				
Time	(mg/m ³)	ORGANIC VAPOR LEVELS (PPM)	NOTES		
1215	0.063	0.0	Lunch		
1230	0.067	0.0	Lunch		
1245	0.059	0.0	Digging soil out of trench and placing soil in drums		
1300	0.052	0.0	SAB		
1315	0.045	0.0	SAB		
1330	0.036	0.0	SAB		
1345	0.032	0.0	SAB		
1400	0.024	0.0	SAB		
1415	0.017	0.0	SAB		
1430	0.011	0.0	SAB		
1445	0.005	0.0	SAB		
1500	0.013	0.0	Site inactive / Tech off site		
1515					
1530					
1545					
1600					
1615					
1630					
1645					
1700					

DAILY STATUS REPORT Prepared By: Karen Tyll		WE ER	ATH	Snow		Rain	x	Overcast	x	Partly Cloudy	x	Bright Sun	
		TEI	MP.	< 32		30-50	х	50-70		70-85		>85	
NYSDEC Site No.: 130043A		Date:	03/2/2	3									
Project Name: 567 Main Street			Address		567 Main Street, Westbury, NY								

Project Manager:	Environmental Contractor:
Karen Tyll, Tyll Engineering	PG Environmental Services, Inc.

Work Activities Performed:

PG Environmental continued to clear the trench to install the SSDS.

Excavating out under the office area and came up with a new way to insert pipe to avoid collapse of the material under the tile floor. PG has proposed to insert a 6" diameter well screen and insert the 4" diameter perforated PVC SSDS pipe inside it.

Samples Collected: None

Air Monitoring Update:

No odors or visible dust were observed during field activities.

CAMP Data is attached.

VOC Action Level Exceedance(s) Above Background (Y/N): No Particulate Action Level Exceedance(s) Above Background (Y/N): No

Planned Activities for the Next Day/Week:

Finish the trenching below the slab and excavate the area through the footing to insert the pipe.

PHOTOS

Project:	567 Ma	ain Street, Westbury NY			Job No.:					
Location:		On-site Personnel: Diego Fajardo								
Day & Date: 3/2/2023 Weather				Weather: C	Cloudy					
•		AM		PM	Sample Interval:	Sample Interval: 15 min				
Wind Direction	N/A		N/A		Background Reading (par) 0.027	0.027 mg/m ³			
		34°F	44°F		Background Reading (organi	ic vapors)) 0.0	ppm		
Calibration Da	U	Particulate Met	ers: DUST 7	FRAK Photo	pionization Detector:PID MINI RA	4E 2000)			
Action Organic vapors: > 5ppm above background levels/ 15 minute readings										
Level/Respons	se:	Particulates:	Particulates: 0.100 mg/m ³ above up wind reading/15 minute period							
Wind Direction Temperature R Calibration Da Action	n Range: ntes:	AM N/A 34°F Particulate Mete Organic vapo	44°F ers: DUST 7 prs: > 5pp	PM TRAK Photo m above ba	Sample Interval: Background Reading (par Background Reading (organi bionization Detector:PID MINI RA ackground levels/ 15 minute	ic vapors) AE 2000 reading) 0.0	0		

	Particulate	ORGANIC VAPOR	
Time	ime DUST METER (ppm) (mg/m ³)		NOTES
0800	0.009	0.0	Setting up Stations
0815	0.014	0.0	Cutting and breaking concrete
0830	0.023	0.0	SAB
0845	0.028	0.0	SAB
0900	0.034	0.0	SAB
0915	0.043	0.0	SAB
0930	0.048	0.0	Digging Trench by removing soil
0945	0.054	0.0	SAB
1000	0.061	0.0	SAB
1015	0.065	0.0	SAB
1030	0.059	0.0	SAB
1045	0.055	0.0	SAB
1100	0.052	0.0	SAB
1115	0.045	0.0	Drumming all soil from trench
1130	0.036	0.0	SAB
1145	0.031	0.0	SAB
1200	0.024	0.0	Lunch

Project: 625 Fulton Street, Brooklyn

Job No.:

Location:

Day & Date: 3/2/2023

	Particulate levels:		
Time	DUST METER	ORGANIC VAPOR	NOTES
	(mg/m ³)	LEVELS (PPM)	
1215	0.016	0.0	Lunch
1230	0.011	0.0	Lunch
1245	0.018	0.0	Digging of trench
1300	0.025	0.0	SAB
1315	0.032	0.0	SAB
1330	0.039	0.0	SAB
1345	0.047	0.0	SAB
1400	0.054	0.0	SAB
1415	0.057	0.0	SAB
1430	0.053	0.0	SAB
1445	0.049	0.0	SAB
1500	0.046	0.0	Site inactive / Tech off site
1515			
1530			
1545			
1600			
1615			
1630			
1645			
1700			

DAILY STATUS REPORT Prepared By: Karen Tyll			WEATH ER		Snow		Rain	x	Overcast	x	Partly Cloudy	x	Bright Sun	
			TEI	MP.	< 32		30-50	х	50-70		70-85		>85	
	NYSDEC Site No.:	130043A		Date:	Date: 03/6/23									
Project Name:		567 Main Street		Address		ss 567 Main Street, Westbury, NY								

Project Manager:	Environmental Contractor:			
Karen Tyll, Tyll Engineering	PG Environmental Services, Inc.			

Work Activities Performed:

PG Environmental continued to install the SSDS aboveground piping, SSDS fan, and vacuum monitoring points

Samples Collected: None

Air Monitoring Update:

No odors or visible dust were observed during field activities.

CAMP Data attached.

VOC Action Level Exceedance(s) Above Background (Y/N): No Particulate Action Level Exceedance(s) Above Background (Y/N): No

Planned Activities for the Next Day/Week:

Tenant's concrete contractor to install the concrete over the trench then once concrete cured, will install the final SSDS associated equipment and we will do startup testing procedures.

<u>PHOTOS</u>

Project:	ject: 567 Main Street, Westbury NY				Job No.:				
Location:	Location: On-site				Victor Barraza				
Day & Date: 3/6/23				Weather: S	unny				
		AM		PM	Sample Interval:	15 minutes			
Wind Direction		N/A N/A			Background Reading (particulates)	0.061 r	ng/m ³		
Temperature Ra	11°E 50		59°F		Background Reading (organic vapor	rs) 0.0	ppm		
Calibration Dates: Particulate Meters: DUST TRAK Photoionization Detector: PID MINI RAE 2000									
Action Organic vapors: > 5ppm above background levels/ 15 minute readings									
Level/Response	e:	Particulates: 0.100 mg/m ³ above up wind reading/15 minute period							

	Particulate	ORGANIC VAPOR				
Time	(mg/m ³)	LEVELS (ppm)	NOTES			
0800	0.023	0.0	Setting up stations			
0815	0.015	0.0	Installing pressure point with concrete core drill			
0830	0.009	0.0	SAB			
0845	0.018	0.0	SAB			
0900	0.020	0.0	SAB			
0915	0.029	0.0	Installing vertical 4" dia pipe			
0930	0.036	0.0	SAB			
0945	0.043	0.0	SAB			
1000	0.053	0.0	SAB			
1015	0.058	0.0	SAB			
1030	0.064	0.0	SAB			
1045	0.056	0.0	Installing fan on exterior wall			
1100	0.048	0.0	SAB			
1115	0.041	0.0	SAB			
1130	0.035	0.0	SAB			
1145	0.028	0.0	SAB			
1200	0.024	0.0	Lunch			

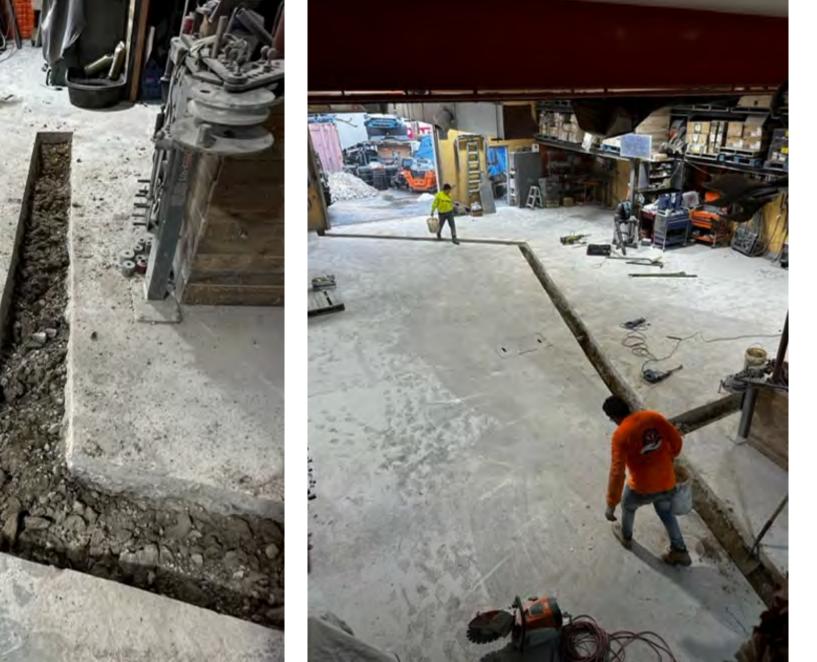
Project: 567 Main Street, Westbury NY

Job No.:

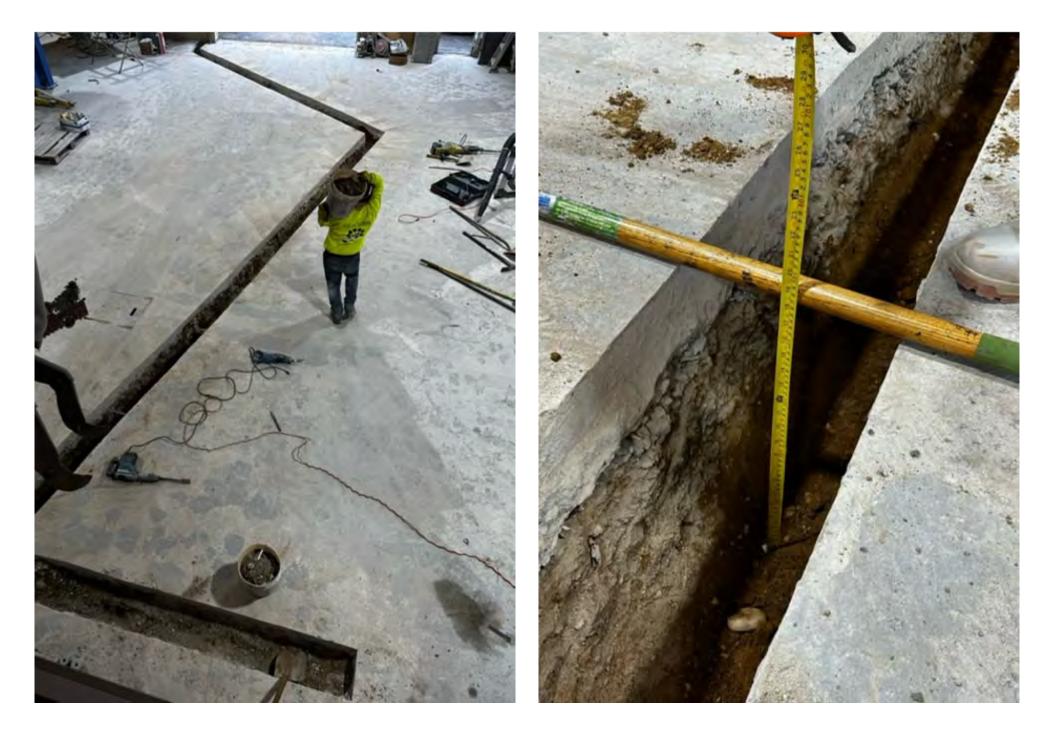
Location:

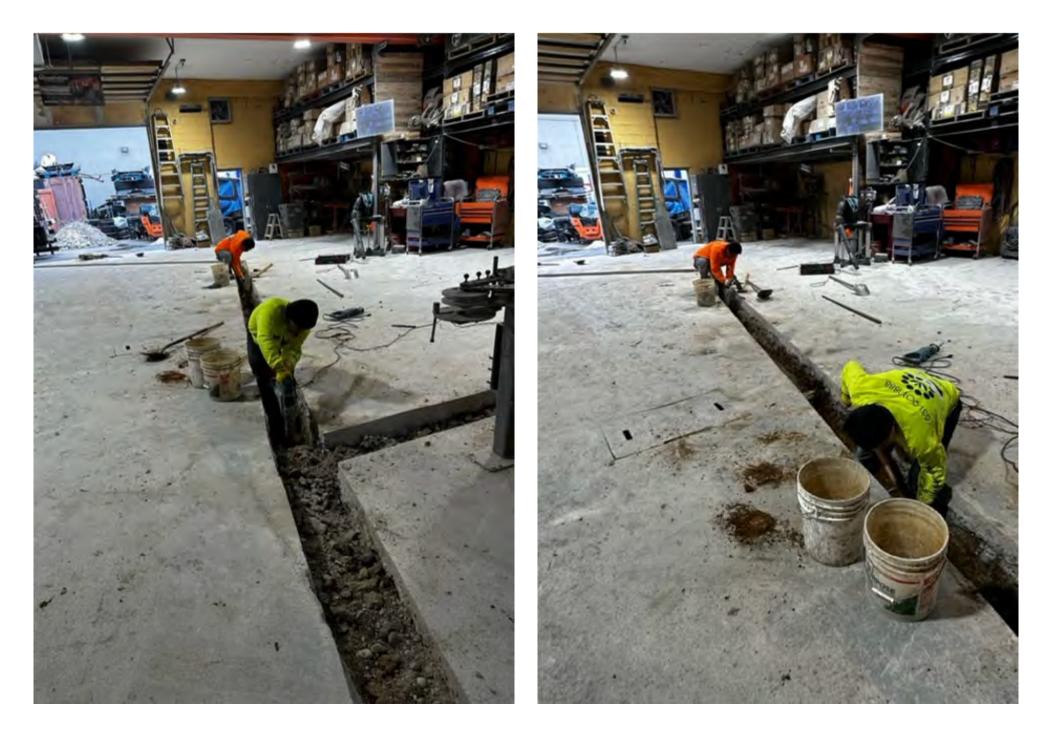
Day & Date: 3/6/2023

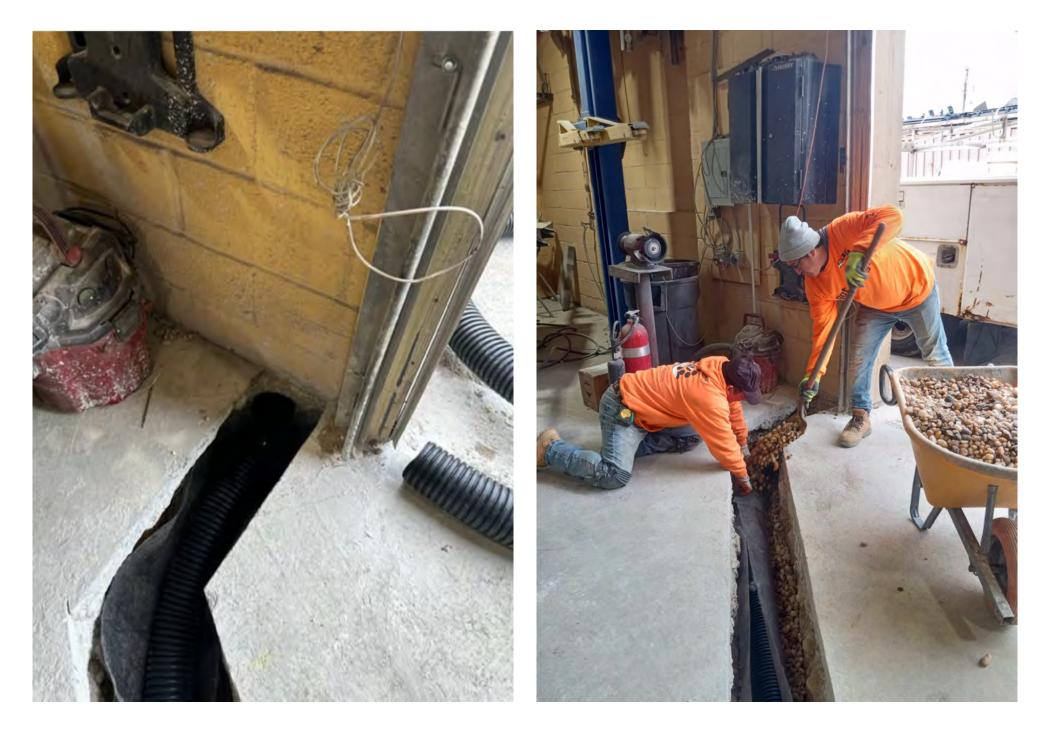
	Particulate levels:		
Time	(mg/m ³)	ORGANIC VAPOR LEVELS (PPM)	NOTES
1215	0.017	0.0	Lunch
1230	0.012	0.0	Lunch
1245	0.019	0.0	Securing all pipes and fan
1300	0.027	0.0	SAB
1315	0.032	0.0	SAB
1330	0.038	0.0	Installing covers on pressure points
1345	0.049	0.0	SAB
1400	0.057	0.0	SAB
1415	0.062	0.0	SAB
1430	0.054	0.0	Cleaning up the site
1445	0.045	0.0	SAB
1500	0.037	0.0	Site inactive / Tech off site
1515			
1530			
1545			
1600			
1615			
1630			
1645			
1700			

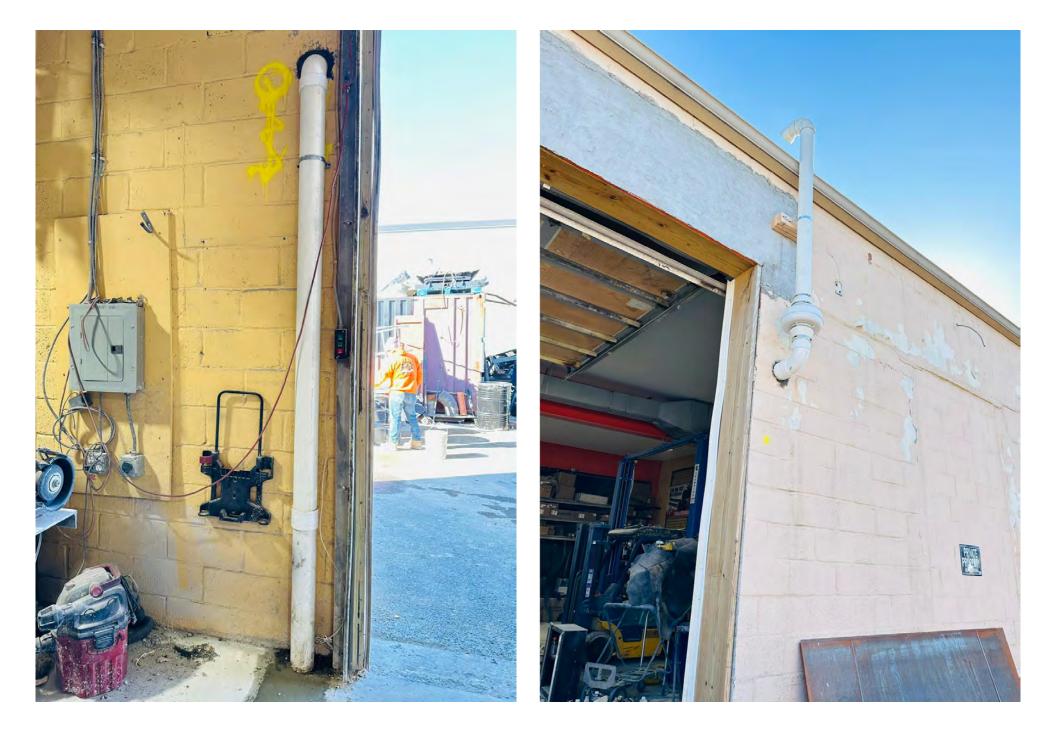

Appendix C

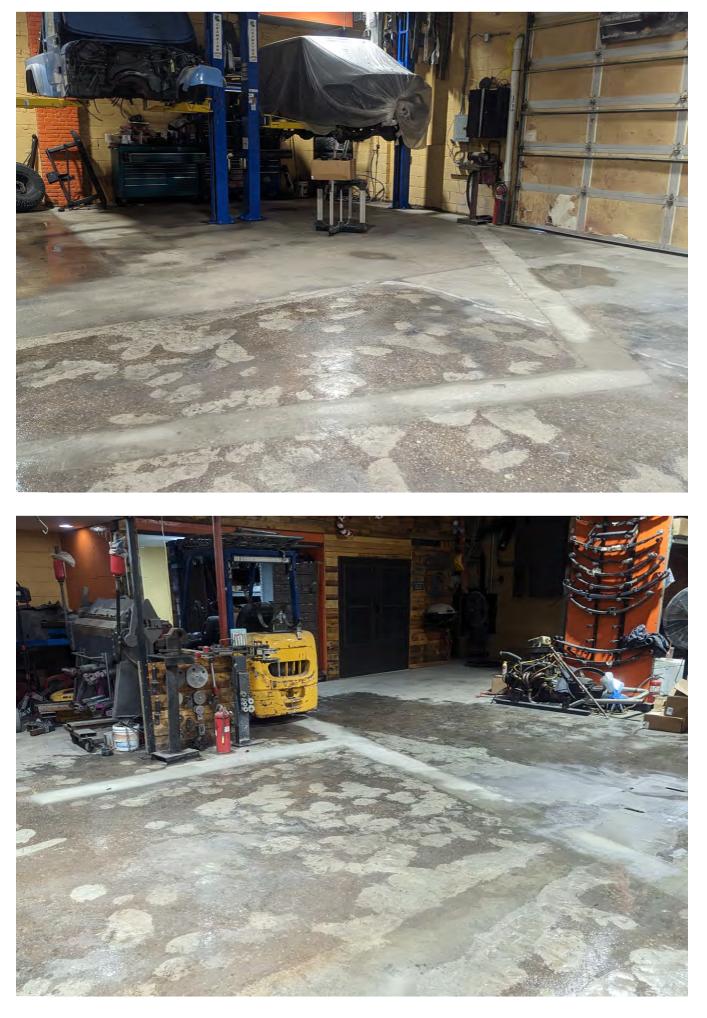
SSDS Installation Photos

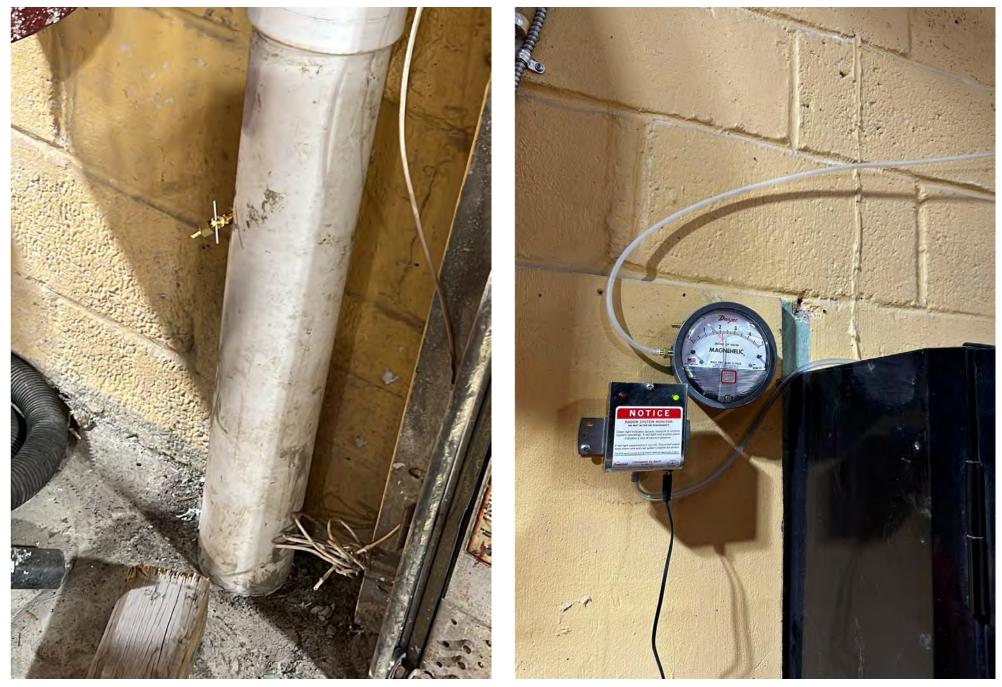


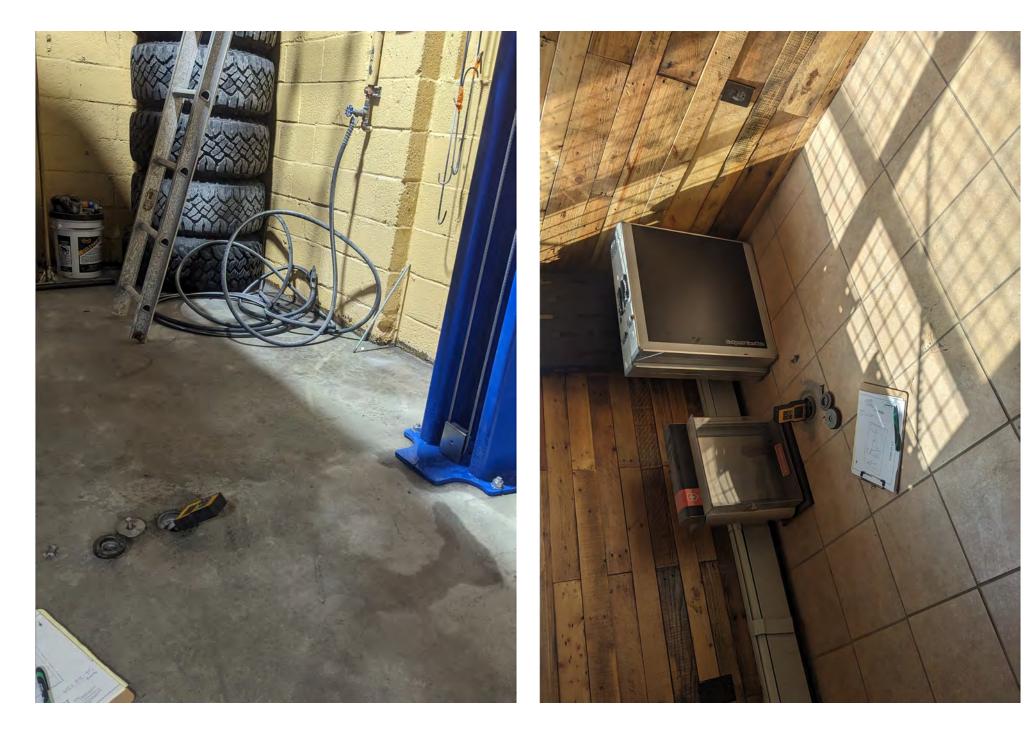












3/22/23

pressure alarm and sample tap were added after 3/22/23 inspection, The Magnahelic gauge was replaced out for a more appropriate range.

Appendix D

Manifests

and

Waste Characterization Lab Report

	NON-HAZARDOUS 1. Generator ID Number	2. Page 1 of	3. Emergend	y Response	Phone	4. Waste Tra	acking Numbe	er		
1	WASTE MANIFEST N / A	1		406-00				4557	>=	10
11	5. Generator's Name and Mailing Address				a sale of the second second	han mailing addre	ss)		1	
	H.D.P. Printing Industries Corp. 2459 Broadmoor Lane Spring Hill FL 34606 Generator's Phone:	1	567 M	Printing ain Stree iry NY	38	es Corp.			1	
11	6. Transporter 1 Company Name					U.S. EPA ID I	Number			
	Innovative Recycling Technologies, Inc. 7. Transporter 2 Company Name	_				U.S. EPA ID I	2 0 0 0 Number	134	94	0
-	Republic Environmental Systems (Trans Group)	10				PAL	982 Number	661	38	1
	8. Designated Facility Name and Site Address Republic Environmental Systems (PA), LLC 2859 Sandstone Drive Hattleid PA 19440		1			U.S. EPA ID I	Number			0.016.000
	Facility's Phone: 245 822-3685					PAT		690	59	2
	9. Waste Shipping Name and Description		-	10. Conti No.	ainers Type	11. Total Quantity	12. Unit Wt./Vol.			
GENERATOR	1. Non Hazerdous Soll Non-DOT Regulated Material			5	pm	6000	P			
GENI	2.									
	3.									
	4.	-	-							
							100			2.4
	Doc# 14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport	according to appli	cable internati	ccurately de onal and na	scribed abov	e by the proper sh mental regulations	ipping name, a	and are classified	l, packago	ed,
¥	Generator's/Offeror's Printed/Typed Name	Si 4-	gnature 7	2	and the second s			Month	Day 20	Year 23
I'T'L	15. International Shipments Import to U.S. Transporter Signature (for exports only):	Export from	U.S.		ntry/exit: ving U.S.:					
TER	16. Transporter Acknowledgment of Receipt of Materials Transporter Printed/Typed Name	Si	gnature	-7-				Month	Bay	Year
POF	Francis Mc hanc	>		7.	~	~		141	10	B
TRANSPORTER	Transporter 2 Printed/Typed Name	Si	gnature	-				Month	Day	Year
F	17 Distances									-
	17. Discrepancy 17a. Discrepancy Indication Space Quantity Type	4		Residue		Partial Re	jection	E Fo	ull Rejecti	on
- 111	17b. Alternate Facility (or Generator)		Manifes	t Reference	Number:	U.S. EPA ID	Number			
FACILITY	Facility's Phone:					Ť.				
VATED	17c. Signature of Alternate Facility (or Generator)	1						Month	Day	Year
- DESIGNATED										
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by			Item 17a						
₩	Printed/Typed Name	S	ignature	•				Month	Day	Year

Technical Report

prepared for:

PG Environmental Services

175 Commerce Dr Suite P Hauppauge NY, 11788 Attention: Carlos Quinonez

Report Date: 03/31/2023 Client Project ID: 567 Main Street Westbury, NY York Project (SDG) No.: 23C1302

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com Report Date: 03/31/2023 Client Project ID: 567 Main Street Westbury, NY York Project (SDG) No.: 23C1302

> PG Environmental Services 175 Commerce Dr Suite P Hauppauge NY, 11788 Attention: Carlos Quinonez

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 23, 2023 and listed below. The project was identified as your project: 567 Main Street Westbury, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23C1302-01	Drum 1	Soil	03/22/2023	03/23/2023

General Notes for York Project (SDG) No.: 23C1302

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.

- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Och I most

Date: 03/31/2023

Cassie L. Mosher Laboratory Manager

Client Sample ID: Drum 1

<u>Client Sample ID:</u> D	rum 1		York Sample ID:	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

	Volatile Organics, 8260 - Comprehensive					<u>Notes:</u>	VOA-CONT <u>Sample Notes:</u>					
CAS No	•	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PA
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 1-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PA
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PA
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 1-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	03/24/2023 09:00 ¥10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	03/24/2023 09:00 Y10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP	FTR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	03/24/2023 09:00 Y10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 1-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 1-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	
123-91-1	1,4-Dioxane	ND		ug/kg dry	52	100	1	EPA 8260C Certifications:	NELAC-N	03/24/2023 09:00 Y10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10		FTR 58,NJDEP,PAI
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 H-0723,NELAC-NY10	03/24/2023 13:16 0854,NELAC-NY1205	FTR 58,NJDEP,PAI
												,

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418 Page 3 of 32 ClientServices@

Client Sample ID:	Drum 1

Client Sample ID: Drum 1			<u>York Sample ID:</u>	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

	Organics, 8260 - Comprehensiv red by Method: EPA 5035A	<u>vc</u>			Log-in	tores.	VOA-C	<u>Sam</u>	<u>ple Notes:</u>			
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
67-64-1	Acetone	ND		ug/kg dry	5.2	10	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
107-02-8	Acrolein	ND		ug/kg dry	5.2	10	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
107-13-1	Acrylonitrile	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
71-43-2	Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 /10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
75-15-0	Carbon disulfide	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
75-00-3	Chloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
110-82-7	Cyclohexane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 /10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 /10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
74-95-3	Dibromomethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 /10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 (10854,NELAC-NY12	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:		03/24/2023 09:00	03/24/2023 13:16 2058,NJDEP,PADEP	FTR

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418 Page 4 of 32

ClientServices@

Client Sample ID:	Drum 1

Client Sample ID: Drum 1			York Sample ID:	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

	latile Organics, 8260 - Comprehensive ple Prepared by Method: EPA 5035A							ple Notes:			
CAS No		Result Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
8-82-8	Isopropylbenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
9-20-9	Methyl acetate	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 (10854,NELAC-NY1)	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
08-87-2	Methylcyclohexane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 (10854,NELAC-NY1)	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
5-09-2	Methylene chloride	ND	ug/kg dry	5.2	10	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
04-51-8	n-Butylbenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
03-65-1	n-Propylbenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
5-47-6	o-Xylene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,PADEP
79601-23-1	p- & m- Xylenes	ND	ug/kg dry	5.2	10	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,PADEP
9-87-6	p-Isopropyltoluene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
35-98-8	sec-Butylbenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
00-42-5	Styrene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
5-65-0	tert-Butyl alcohol (TBA)	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/24/2023 09:00 (10854,NELAC-NY1)	03/24/2023 13:16 2058,NJDEP,PADEP	FTR
8-06-6	tert-Butylbenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
27-18-4	Tetrachloroethylene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
08-88-3	Toluene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
56-60-5	trans-1,2-Dichloroethylene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
0061-02-6	trans-1,3-Dichloropropylene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
10-57-6	* trans-1,4-dichloro-2-butene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723	03/24/2023 13:16	FTR
9-01-6	Trichloroethylene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
5-69-4	Trichlorofluoromethane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
5-01-4	Vinyl Chloride	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP,PA
330-20-7	Xylenes, Total	ND	ug/kg dry	7.7	15	1	EPA 8260C Certifications:	CTDOH-PH	03/24/2023 09:00 I-0723,NELAC-NY10	03/24/2023 13:16 854,NELAC-NY1205	FTR 58,NJDEP
	Surrogate Recoveries	Result	Acce	ptance Rang	e						

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 5 of 32 ClientServices@

<u>Client Sample ID:</u> Drum 1			York Sample ID:	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

<u>Volatile (</u>	Organics, 8260 - Comprehensive				Log-in Notes:	VOA-CO	NT <u>Sample Notes</u>	<u>:</u>		
Sample Prepar	red by Method: EPA 5035A									
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			77-125					
2037-26-5	Surrogate: SURR: Toluene-d8	100 %			85-120					
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			76-130					

Log-in Notes: VOA-CONT

Sample Notes:

Sample Notes:

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

CAS N	No. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 08:05 Y10854,CTDOH-PH-0	03/30/2023 09:10 723,NJDEP,PADEP	BCJ
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0171	1	EPA 8082A Certifications:		03/28/2023 08:05	03/30/2023 09:10	BCJ
	Surrogate Recoveries	Result		Acceptanc	e Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	74.5 %		30-1	40						
2051-24-3	Surrogate: Decachlorobiphenyl	71.5 %		30-1	40						

Metals, RCRA

Sample Prepared by Method: EPA 3050B

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		2.52		mg/kg dry	1.07	1	EPA 6010D		03/28/2023 16:58	03/30/2023 14:45	CW
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7440-39-3	Barium		630		mg/kg dry	1.78	1	EPA 6010D		03/28/2023 16:58	03/30/2023 14:45	CW
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7440-43-9	Cadmium		0.255		mg/kg dry	0.214	1	EPA 6010D		03/28/2023 16:58	03/30/2023 14:45	CW
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7440-47-3	Chromium		11.1		mg/kg dry	0.357	1	EPA 6010D		03/28/2023 16:58	03/30/2023 14:45	CW
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

Log-in Notes: VOA-CONT

RICHMOND HILL, NY 11418 ClientServices@ Page 6 of 32

Client Sample ID: Drum 1			York Sample ID:	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

<u>Metals, l</u>	RCRA					Log-in Notes:	VOA-C	ont <u>Sam</u>	ple Note	es:		
Sample Prepa	red by Method: EPA	3050B										
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		116	n	ng/kg dry	0.357	1	EPA 6010D Certifications:	CTDOH-P	03/28/2023 16:58 H-0723,NELAC-NY1	03/30/2023 14:45 0854,NJDEP,PADEP	CW
7782-49-2	Selenium		ND	n	ng/kg dry	1.78	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 16:58 H-0723,NELAC-NY10	03/30/2023 14:45 854,NJDEP,PADEP	CW
7440-22-4	Silver		ND	n	ng/kg dry	0.359	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 16:58 H-0723,NELAC-NY10	03/30/2023 14:45 854,NJDEP,PADEP	CW
<u>Metals,</u>	<u>FCLP RCRA</u>					<u>Log-in Notes:</u>	VOA-C	ONT <u>Sam</u>	ple Note	<u>es:</u>		

Sample Prepared by Method: EPA 3015A/1311

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		ND		mg/L	0.375	1	EPA 6010D/1311 Certifications: CTDOH-PI	03/29/2023 15:34 1-0723,NELAC-NY10	03/30/2023 19:03 854,NJDEP,PADEP	CW
7440-39-3	Barium		ND		mg/L	0.625	1	EPA 6010D/1311 Certifications: CTDOH-PI	03/29/2023 15:34 I-0723,NELAC-NY10	03/30/2023 19:03 854,NJDEP,PADEP	CW
7440-43-9	Cadmium		ND		mg/L	0.075	1	EPA 6010D/1311 Certifications: CTDOH-PI	03/29/2023 15:34 1-0723,NELAC-NY10	03/30/2023 19:03 854,NJDEP,PADEP	CW
7440-47-3	Chromium		ND		mg/L	0.125	1	EPA 6010D/1311 Certifications: CTDOH-PI	03/29/2023 15:34 I-0723,NELAC-NY10	03/30/2023 19:03 854,NJDEP,PADEP	CW
7439-92-1	Lead		0.630		mg/L	0.125	1	EPA 6010D/1311 Certifications: CTDOH-P	03/29/2023 15:34 H-0723,NELAC-NY10	03/30/2023 19:03 0854,NJDEP,PADEP	CW
7782-49-2	Selenium		ND		mg/L	0.625	1	EPA 6010D/1311 Certifications: CTDOH-PI	03/29/2023 15:34 1-0723,NELAC-NY10	03/30/2023 19:03 854,NJDEP,PADEP	CW
7440-22-4	Silver		ND		mg/L	0.125	1	EPA 6010D/1311 Certifications: CTDOH-PI	03/29/2023 15:34 H-0723,NELAC-NY10	03/30/2023 19:03 854,NJDEP,PADEP	CW

CAS No.	Parameter	Result	Flag	Units	Reported to LOO	Dilution	Reference Metho	Date/Time od Prepared	Date/Time Analyzed	Analyst
439-97-6 Mercury		0.441	g	mg/kg dry	0.0308	1	EPA 7473	03/30/2023 18:28	03/30/2023 19:04	ZTS
							Certifications: CTDC	OH-PH-0723,NJDEP,NELA	AC-NY10854,PADEP	
Mercury, TCLP					Log-in Notes:	VOA-C	ONT <u>Sample N</u>	otes:		
Sample Prepared by Method: E	PA SW846-7470A									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho	Date/Time od Prepared	Date/Time Analyzed	Analyst
439-97-6 Mercury		ND		mg/L	0.000200	1	EPA 7470/1311 Certifications: CTDO	03/30/2023 08:09 H-PH-0723,NJDEP,PADE	03/30/2023 08:09 P,NELAC-NY10854	MR
Corrosivity (pH) by	<u>SM 4500/EPA 904:</u>	5 <u>D</u>			Log-in Notes:	VOA-C	ONT <u>Sample N</u>	otes:		
Sample Prepared by Method: A	nalysis Preparation								D (/T)	
	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho	Date/Time od Prepared	Date/Time Analyzed	Analyst
CAS No.										
CAS No.	!VE	STRATFORD, C	T 06615		■ 132-	02 89th A	VENUE	RICHMOND HIL	L, NY 11418	

Client Sample ID: Drum 1			York Sample ID:	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

pli 7.31 pli unis 0.500 1 EDA 804575 00232021214.43 0023202121.44 Reactivity-Cyanide VOA-CONT Sample Notes: VOA-CONT Sample Notes: CAS No. Parameter Result Flag Units Reported to Log-in Notes: VOA-CONT Sample Notes: CAS No. Parameter Result Flag Units Reported to Log-in Notes: VOA-CONT Sample Notes: Reactivity-Cyanide ND mpkg 0.250 1 EPA 804566 (h.3.3) 002402114.00 002402118.57 CAS No. Parameter Result Flag Units Reported to Log-in Notes: VOA-CONT Sample Notes: Sample Prograved by Medoud: Analysis Progravation Iog in Notes: VOA-CONT Sample Notes: Outer/Time Analyzed A CAS No. Parameter Result Flag Units Reported to Log-in Notes: VOA-CONT Sample Notes: Temperature Log-in Notes: VOA-CONT Sample Notes: Outer/Time Analyzed A CAS No. Parameter Result Flag Units Reported to Log-in Notes: VOA-CONT Sample Notes: Temperature 22.3 TC 1.00 1 EPA 1004	Corrosivity (pH) by	SM 4500/EPA 9045	D			Log-in Notes:	VOA-C	CONT Sample Not	tes:		
CAS No. Parameter Result Flag Units Too Duture Resure Addition Property Addition Analyzed A pH 7.31 pH umin 0.50 1 EDX-9915D 02/20/2011-03 02/20/201	Sample Prepared by Method: A	Analysis Preparation									
International properties Description Constitution Relation Description Rescription Constitution Rescription Constitution Reference Method Date/Time Date/Time Analyzed Analyzed CAS No. Parameter Result Flag Units Repetited to Date/Time Analyzed Analyze	CAS No.	Parameter	Result	Flag	Units			Reference Method			Analyst
Name Image: Distribution Image: Distribution Standple Progrand by Method: Analysis Programmeter Result Flag Units Regeneration Date/Time Date/Time <td>рН</td> <td></td> <td>7.31</td> <td></td> <td>pH units</td> <td>0.500</td> <td>1</td> <td></td> <td></td> <td></td> <td>SL</td>	рН		7.31		pH units	0.500	1				SL
CAS No. Parameter Result Fig Units TOO Dilution Reference Method Prepared Analyzed A * Reactivity - Cynnide ND mg/kg 0.250 1 ENS W-36 (C.L7.3.3) 003/20023 (4.8)		Analysis Preparation				<u>Log-in Notes:</u>	VOA-C	CONT <u>Sample Not</u>	tes:		
Certification: CTD0H-PH-0723.PADEP Control-PH-0723.PADEP Control-PH-0723.PADEP Control-PH-0723.PADEP CAS No. Parameter Result Fig Units Control-PH-0723.PADEP Log-in Notes: VOA-CONT Sample Notes: CAS No. Parameter Result<	CAS No.	Parameter	Result	Flag	Units			Reference Method			Analyst
CASE No. Parameter Result Flag Units Reported to LOQ Dilution Reference Vethod Date/Time Analyzed A CAS No. Parameter Result Flag Units Reported to LOQ Dilution Reference Vethod Date/Time Analyzed A * Reactivity - Sulfide ND mg/kg 15.0 1 EXX-SW6.6 (L.7.3.4 Certifications: 0/02/2023 31:4.3 0/	* Reactivity	- Cyanide	ND		mg/kg	0.250	1			03/24/2023 18:57	SL
CAS No. Parameter Result Flag Units Log Dilution Reference Method Prepared Analyzed Analyzed * Reactivity - Sulfide ND mg/kg 15.0 1 EAX SMAGE Ch.7.3.4 00/24/00/23 14/45 00/24/04/25 00/24/04/25 00/24/04/25		Analysis Preparation				<u>Log-in Notes:</u>	VOA-C	CONT <u>Sample Not</u>	tes:		
Configuration: CTDOH-PH-0723.PADEP Cas No. Parameter Result Flag Units Reference Method Date/Time Analysis CAS No. Parameter Result Flag Units Reference Method Date/Time Analysis Initiability OA-CONT Sample Notes: Log-in Notes: VOA-CONT Sample Notes: Jante/Time Analysis Perparation Date/Time Analyzed An Oracle Sample Notes: Initiability Initiability OA-CONT Sample Notes: Sample Preparation VOA-CONT Sample Notes: CAS No. Parameter Result Flag Unitis Reported to Dilution Reference Method Preparat Natized An Total Solids Parameter Result Flag Units Colspan="6" Date/Time Date/Time Date/Time Date/Time Date/Time Dat	CAS No.	Parameter	Result	Flag	Units			Reference Method			Analyst
Construction on the symple Prepared by Method: Analysis Preparation Result Flag Units Responded to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed Analyzed<	* Reactivity	- Sulfide	ND		mg/kg	15.0	1			03/24/2023 21:23	SL
CAS No. Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed A * Temperature 22.3 °C 1.00 1 EPA 170.1 03/23/2023 1443 03/23/2023 2141 Ignitability Log-in Notes: VOA-CONT Sample Notes: VOA-CONT Sample Notes: Ignitability Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed A * Ignitability Non-Ignit. None 1 1 EPA 1030P Certifications: 03/27/2023 08:13 03/27/2023 08:53 Total Solids Log-in Notes: VOA-CONT Sample Notes: VOA-CONT Sample Notes: Sample Prepared by Method: % Solids Prep Reported to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed A solids * % Solids 97.4 % 0.100 1 SM 2540G 03/30/2023 07/41 03/30/2023 14:05 CLIP Extraction for METALS EPA 1311 Log-in Notes: VOA-CONT Sample Notes: EXT-Temp Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals Log-in Notes: VOA-CONT Sample Note		Analysis Proporation				<u>Log-in Notes:</u>	VOA-C	CONT <u>Sample Not</u>	tes:		
Certifications: Cartifications: Sample Prepared by Method: Analysis Preparation CAS No. Parameter Result Flag Units Reported to Log Dilution Reference Method Parate/Time Date/Time Analyzed Analyzed * Ignitability Non-Ignit. None 1 EPA 1030P 03/27/2023 08:13 03/27/2023 08:53 03/20/2023 07/41 </td <td></td> <td></td> <td>Result</td> <td>Flag</td> <td>Units</td> <td></td> <td></td> <td>Reference Method</td> <td></td> <td></td> <td>Analyst</td>			Result	Flag	Units			Reference Method			Analyst
Sample Prepared by Method: Analysis Preparation CAS No. Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed A * Ignitability Non-Ignit. None 1 1 EPA 1030P Certifications: 03/27/2023 08:13 03/27/2023 08:53 03/27/2023	* Temperat	ture	22.3		°C	1.00	1		03/23/2023 14:43	03/23/2023 21:41	SL
CAS No. Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Analyzed Analyze		Analysis Preparation				<u>Log-in Notes:</u>	VOA-C	CONT <u>Sample Not</u>	tes:		
Certifications: Certifications: Cont Solids Sample Prepared by Method: % Solids Prep CAS No. Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed Analyzed Analyzed solids * % Solids 97,4 % 0.100 1 SM 2540G 03/30/2023 07:41 03/30/2023 14:05 Certifications: CTDOH-PH-0723 TCLP Extraction for METALS EPA 1311 Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals Reported to Date/Time Mate/Time Sample Notes: EXT-Temp Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals Reported to Date/Time			Result	Flag	Units			Reference Method			Analyst
Total Solids Interference Date/Time Date/Time Sample Prepared by Method: % Solids Prep Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Date/Time Analyzed A	* Ignitability	у	Non-Ignit.		None	1	1		03/27/2023 08:13	03/27/2023 08:53	AD2
CAS No. Parameter Result Flag Units Reported to LOQ Dilution Reference Method Date/Time Prepared Date/Time Analyzed Analyzed Analyzed solids * % Solids 97.4 % 0.100 1 SM 2540G 03/30/2023 07:41 03/30/2023 14:05 Certifications: CTDOH-PH-0723 Certifications: CTDOH-PH-0723 TCLP Extraction for METALS EPA 1311 Log-in Notes: VOA-CONT Sample Notes: EXT-Temp Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals Reported to Date/Time Date/Time		/ Calida Dura				<u>Log-in Notes:</u>	VOA-C	CONT <u>Sample Not</u>	tes:		
solids *% Solids 97.4 % 0.100 1 SM 2540G 03/30/2023 07.41 03/30/2023 14:05 Certifications: CTDOH-PH-0723 TCLP Extraction for METALS EPA 1311 Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals Reported to Date/Time Date/Time		_	Result	Flag	Units			Reference Method			Analyst
Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals Reported to Date/Time Date/Time	***					-	1	SM 2540G	03/30/2023 07:41	•	sgs
						<u>Log-in Notes:</u>	VOA-C	CONT <u>Sample Not</u>	<u>tes:</u> EXT-Temp		
	CAS No.	Parameter	Result	Flag	Units			Reference Method			Analyst
120 RESEARCH DRIVE STRATFORD, CT 06615 I 132-02 89th AVENUE RICHMOND HILL, NY 11418	120 RESEARCH DR	IVE	STRATFORD. C	T 06615		132	-02 89th A	AVENUE	RICHMOND HIL	L, NY 11418	
www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 8 of 3											of 32

<u>Client Sample ID:</u> Drum 1			York Sample ID:	23C1302-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23C1302	567 Main Street Westbury, NY	Soil	March 22, 2023 1:00 pm	03/23/2023

TCLP Extraction for METALS EPA 1311

Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals

CAS No.	Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference M	Date/Time lethod Prepared	Date/Time Analyzed	Analyst
TCLP Ext	traction	Completed	N/A	1.00	1	EPA 1311 Certifications: N	03/25/2023 16:17 ELAC-NY10854,CTDOH-PH-0	03/26/2023 09:21 723,NJDEP,PADEP	LC

Log-in Notes: VOA-CONT Sample Notes: EXT-Temp

Page 9 of 32

Analytical Batch Summary

Batch ID: BC31600	Preparation Method:	Analysis Preparation	Prepared By:	SL
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/23/23		
BC31600-DUP1	Duplicate	03/23/23		
Batch ID: BC31624	Preparation Method:	EPA 5035A	Prepared By:	BMT
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/24/23		
BC31624-BLK1	Blank	03/24/23		
BC31624-BS1	LCS	03/24/23		
BC31624-BSD1	LCS Dup	03/24/23		
BC31624-MS1	Matrix Spike	03/24/23		
BC31624-MSD1	Matrix Spike Dup	03/24/23		
Batch ID: BC31674	Preparation Method:	Analysis Preparation	Prepared By:	SL
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/24/23		
BC31674-BLK1	Blank	03/24/23		
Batch ID: BC31675	Preparation Method:	Analysis Preparation	Prepared By:	SL
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/24/23		
BC31675-BLK1	Blank	03/24/23		
BC31675-DUP1	Duplicate	03/24/23		
Batch ID: BC31700	Preparation Method:	EPA SW 846-1311 TCLP ext. for meta	Prepared By:	AGNR
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/25/23		
BC31700-BLK1	Blank	03/25/23		
Batch ID: BC31726	Preparation Method:	Analysis Preparation	Prepared By:	AD2
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/27/23		
Batch ID: BC31759	Preparation Method:	EPA 3550C	Prepared By:	JLM
YORK Sample ID	Client Sample ID	Preparation Date		
23C1302-01	Drum 1	03/28/23		
120 RESEARCH DRIVE	STRATFORD, CT 06615	1 32-02 89th AVENUE	RICHMON	ND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166	ClientServ	vices@ Page 10 of 32

BC31759-BLK2	Blank	03/28/23
BC31759-BS2	LCS	03/28/23

Batch ID: BC31886	Preparation Method:	EPA 3050B	Prepared By:	KMQ			
YORK Sample ID	Client Sample ID	Preparation Date					
23C1302-01	Drum 1	03/28/23					
BC31886-BLK1	Blank	03/28/23					
BC31886-DUP1	Duplicate	03/28/23					
BC31886-MS1	Matrix Spike	03/28/23					
BC31886-PS1	Post Spike	03/28/23					
BC31886-SRM1	Reference	03/28/23					
Batch ID: BC31988	Preparation Method:	EPA 3015A/1311	Prepared By:	MCS			
YORK Sample ID	Client Sample ID	Preparation Date					
23C1302-01	Drum 1	03/29/23					
BC31988-BLK1	Blank	03/29/23					
BC31988-BS1	LCS	03/29/23					
BC31988-DUP1	Duplicate	03/29/23					
BC31988-LBK1	Leach Fluid Blank	03/29/23					
BC31988-MS1	Matrix Spike	03/29/23					
BC31988-PS1	Post Spike	03/29/23					
Batch ID: BC32005	Preparation Method:	% Solids Prep	Prepared By:	sgs			
YORK Sample ID	Client Sample ID	Preparation Date					
23C1302-01	Drum 1	03/30/23					
BC32005-DUP1							
Batch ID: BC32012	Preparation Method:	EPA SW846-7470A	Prepared By:	MR			
YORK Sample ID	Client Sample ID	Preparation Date					
23C1302-01	Drum 1	03/30/23					
BC32012-BLK1	Blank	03/30/23					
BC32012-BLK2	Blank	03/30/23					
BC32012-BS1	LCS	03/30/23					
BC32012-BS2	LCS	03/30/23					
Batch ID: BC32070	Preparation Method:	EPA 7473 soil	Prepared By:	BML			
YORK Sample ID	Client Sample ID	Preparation Date					
23C1302-01	Drum 1	03/30/23					
BC32070-BLK1	Blank	03/30/23					
BC32070-DUP1	Duplicate	03/30/23					
BC32070-MS1	Matrix Spike	03/30/23					
BC32070-SRM1	Reference	03/30/23					
120 RESEARCH DRIVE	STRATFORD, CT 06615	■ 132-02 89th AVENUE	RICHMOND HILL, NY 11418				
www.YORKLAB.com	w.YORKLAB.com (203) 325-1371		ClientSer	vices@ Page 11 of 32			

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

			Spike	Source*		%REC			RPD		
Analyte	Result	Reporting Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31624 - EPA 5035A											
Blank (BC31624-BLK1)							Prep	ared & Anal	yzed: 03/24/	2023	
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet								
1,1,1-Trichloroethane	ND	5.0	"								
1,1,2,2-Tetrachloroethane	ND	5.0	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	5.0	"								
113)											
1,1,2-Trichloroethane	ND	5.0	"								
1,1-Dichloroethane	ND	5.0	"								
1,1-Dichloroethylene	ND	5.0	"								
1,2,3-Trichlorobenzene	ND	5.0	"								
1,2,3-Trichloropropane	ND	5.0	"								
1,2,4-Trichlorobenzene	ND	5.0	"								
1,2,4-Trimethylbenzene	ND	5.0	"								
1,2-Dibromo-3-chloropropane	ND	5.0	"								
1,2-Dibromoethane	ND	5.0	"								
1,2-Dichlorobenzene	ND	5.0	"								
1,2-Dichloroethane	ND	5.0	"								
1,2-Dichloropropane	ND	5.0	"								
1,3,5-Trimethylbenzene	ND	5.0	"								
,3-Dichlorobenzene	ND	5.0	"								
,4-Dichlorobenzene	ND	5.0	"								
l,4-Dioxane	ND	100	"								
2-Butanone	ND	5.0	"								
2-Hexanone	ND	5.0	"								
4-Methyl-2-pentanone	ND	5.0	"								
Acetone	ND	10	"								
Acrolein	ND	10	"								
Acrylonitrile	ND	5.0	"								
Benzene	ND	5.0	"								
Bromochloromethane	ND	5.0	"								
Bromodichloromethane	ND	5.0	"								
Bromoform	ND	5.0	"								
Bromomethane	ND	5.0	"								
Carbon disulfide	ND	5.0									
Carbon tetrachloride	ND	5.0									
Chlorobenzene	ND	5.0									
Chloroethane	ND	5.0	"								
Chloroform	ND	5.0									
Chloromethane	ND	5.0									
sis-1,2-Dichloroethylene	ND	5.0									
cis-1,3-Dichloropropylene	ND	5.0									
Cyclohexane	ND	5.0									
Dibromochloromethane	ND	5.0									
Dibromomethane Dichlorodifluoromethane	ND	5.0									
	ND	5.0									
Ethyl Benzene	ND	5.0									
Hexachlorobutadiene	ND	5.0									
[sopropylbenzene	ND	5.0									
Methyl acetate	ND	5.0									
Methyl tert-butyl ether (MTBE)	ND	5.0	"								
Methylcyclohexane	ND	5.0	"								

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BC31624 - EPA 5035A											
Blank (BC31624-BLK1)							Prej	pared & Anal	yzed: 03/24	/2023	
Methylene chloride	ND	10	ug/kg wet								
n-Butylbenzene	ND	5.0	"								
n-Propylbenzene	ND	5.0	"								
o-Xylene	ND	5.0	"								
p- & m- Xylenes	ND	10	"								
p-Isopropyltoluene	ND	5.0	"								
sec-Butylbenzene	ND	5.0	"								
Styrene	ND	5.0	"								
tert-Butyl alcohol (TBA)	ND	5.0	"								
tert-Butylbenzene	ND	5.0	"								
Tetrachloroethylene	ND	5.0	"								
Toluene	ND	5.0	"								
trans-1,2-Dichloroethylene	ND	5.0	"								
trans-1,3-Dichloropropylene	ND	5.0	"								
trans-1,4-dichloro-2-butene	ND	5.0	"								
Trichloroethylene	ND	5.0	"								
Trichlorofluoromethane	ND	5.0	"								
Vinyl Chloride	ND	5.0	"								
Xylenes, Total	ND	15	"								
Surrogate: SURR: 1,2-Dichloroethane-d4	50.9		ug/L	50.0		102	77-125				
Surrogate: SURR: Toluene-d8	49.8		"	50.0		<i>99.7</i>	85-120				
Surrogate: SURR: p-Bromofluorobenzene	49.4		"	50.0		98.9	76-130				
LCS (BC31624-BS1)							Prej	pared & Anal	yzed: 03/24	/2023	
1,1,1,2-Tetrachloroethane	50		ug/L	50.0		101	75-129				
1,1,1-Trichloroethane	51		"	50.0		101	71-137				
1,1,2,2-Tetrachloroethane	50		"	50.0		100	79-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	51		"	50.0		102	58-146				
1,1,2-Trichloroethane	51		"	50.0		102	83-123				
1,1-Dichloroethane	52		"	50.0		103	75-130				
1,1-Dichloroethylene	52		"	50.0		104	64-137				
1,2,3-Trichlorobenzene	50		"	50.0		100	81-140				
1,2,3-Trichloropropane	48		"	50.0		96.9	81-126				
1,2,4-Trichlorobenzene	50		"	50.0		99.7	80-141				
1,2,4-Trimethylbenzene	50		"	50.0		99.9	84-125				
1,2-Dibromo-3-chloropropane	50		"	50.0		100	74-142				
1,2-Dibromoethane	52		"	50.0		104	86-123				
1,2-Dichlorobenzene	51		"	50.0		102	85-122				
1,2-Dichloroethane	54		"	50.0		108	71-133				
1,2-Dichloropropane	52		"	50.0		105	81-122				
1,3,5-Trimethylbenzene	51		"	50.0		101	82-126				
1,3-Dichlorobenzene	50		"	50.0		99.8	84-124				
1,4-Dichlorobenzene	49		"	50.0		98.3	84-124				
1,4-Dioxane	1000		"	1050		98.5	10-228				
2-Butanone	51		"	50.0		102	58-147				
2-Hexanone	50		"	50.0		99.8	70-139				
4-Methyl-2-pentanone	53		"	50.0		106	72-132				
Acetone	39		"	50.0		78.5	36-155				
Acrolein	53		"	50.0		106	10-238				
Acrylonitrile	53		"	50.0		107	66-141				
120 RESEARCH DRIVE	STRATFORD, CT 066	515		13	2-02 89th A\	/ENUE		RICHMOND	HILL, NY	11418	
www.YORKLAB.com	(203) 325-1371		_		X (203) 357			ClientServic		age 14	of 32
WWW. I OKKLAD.COM	(200) 020-10/1			ГA	A (200) 001	-0100		Giericervic	P	aye 14	UI 32

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag		
Batch BC31624 - EPA 5035A													
LCS (BC31624-BS1)							Prepa	repared & Analyzed: 03/24/2023					
Benzene	50		ug/L	50.0		101	77-127						
Bromochloromethane	54		"	50.0		108	74-129						
Bromodichloromethane	51		"	50.0		102	81-124						
Bromoform	56		"	50.0		112	80-136						
Bromomethane	49		"	50.0		98.0	32-177						
Carbon disulfide	50		"	50.0		99.7	10-136						
Carbon tetrachloride	53		"	50.0		107	66-143						
Chlorobenzene	53		"	50.0		105	86-120						
Chloroethane	53		"	50.0		106	51-142						
Chloroform	53		"	50.0		107	76-131						
Chloromethane	39		"	50.0		77.5	49-132						
is-1,2-Dichloroethylene	53		"	50.0		106	74-132						
is-1,3-Dichloropropylene	49		"	50.0		98.7	81-129						
Cyclohexane	48		"	50.0		95.0	70-130						
Dibromochloromethane	52		"	50.0		104	10-200						
Dibromomethane	51		"	50.0		102	83-124						
Dichlorodifluoromethane	27		"	50.0		54.7	28-158						
thyl Benzene	51		"	50.0		103	84-125						
Iexachlorobutadiene	51		"	50.0		101	83-133						
sopropylbenzene	49		"	50.0		97.3	81-127						
Methyl acetate	50		"	50.0		99.9	41-143						
Methyl tert-butyl ether (MTBE)	51		"	50.0		101	74-131						
Aethylcyclohexane	46		"	50.0		92.8	70-130						
Methylene chloride	51		"	50.0		103	57-141						
n-Butylbenzene	50		"	50.0		101	80-130						
n-Propylbenzene	49		"	50.0		97.9	74-136						
o-Xylene	52		"	50.0		104	83-123						
- & m- Xylenes	100		"	100		104	82-128						
o-Isopropyltoluene	50		"	50.0		99.2	85-125						
ec-Butylbenzene	51		"	50.0		101	83-125						
Styrene	50		"	50.0		99.2	86-126						
ert-Butyl alcohol (TBA)	250		"	250		100	70-130						
ert-Butylbenzene	50		"	50.0		100	80-127						
Tetrachloroethylene	43		"	50.0		86.9	80-129						
oluene	50		"	50.0		99.8	85-121						
rans-1,2-Dichloroethylene	51		"	50.0		103	72-132						
rans-1,3-Dichloropropylene	48		"	50.0		96.3	78-132						
rans-1,4-dichloro-2-butene	50		"	50.0		101	75-135						
Trichloroethylene	51		"	50.0		102	84-123						
Trichlorofluoromethane	47			50.0		93.5	62-140						
Vinyl Chloride	45		"	50.0		90.3	52-130						
Surrogate: SURR: 1,2-Dichloroethane-d4	51.2		"	50.0		102	77-125				-		
Surrogate: SURR: Toluene-d8	50.0		"	50.0		100	85-120						
Surrogate: SURR: p-Bromofluorobenzene	46.1		"	50.0		92.2	76-130						

120 RESEARCH DRIVE www.YORKLAB.com

York Analytical Laboratories, Inc. - Stratford

		Reporting	Spike	Source*		%REC			RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31624 - EPA 5035A										
LCS Dup (BC31624-BSD1)						Prej	pared & Analy	/zed: 03/24/	/2023	
1,1,1,2-Tetrachloroethane	49	ug/L	50.0		98.9	75-129		1.64	30	
1,1,1-Trichloroethane	49	"	50.0		98.6	71-137		2.50	30	
1,1,2,2-Tetrachloroethane	53	"	50.0		105	79-129		4.86	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	49	"	50.0		98.5	58-146		3.33	30	
1,1,2-Trichloroethane	48	"	50.0		95.7	83-123		6.53	30	
1,1-Dichloroethane	47	"	50.0		93.4	75-130		10.1	30	
1,1-Dichloroethylene	48	"	50.0		96.5	64-137		7.21	30	
1,2,3-Trichlorobenzene	51	"	50.0		101	81-140		1.09	30	
1,2,3-Trichloropropane	52	"	50.0		104	81-126		7.15	30	
1,2,4-Trichlorobenzene	51	"	50.0		102	80-141		2.18	30	
1,2,4-Trimethylbenzene	51	"	50.0		102	84-125		2.22	30	
1,2-Dibromo-3-chloropropane	49	"	50.0		98.7	74-142		1.53	30	
1,2-Dibromoethane	48	"	50.0		95.9	86-123		7.99	30	
1,2-Dichlorobenzene	53	"	50.0		105	85-122		3.03	30	
1,2-Dichloroethane	51	"	50.0		102	71-133		5.60	30	
1,2-Dichloropropane	47	"	50.0		94.2	81-122		10.6	30	
1,3,5-Trimethylbenzene	52	"	50.0		104	82-126		2.56	30	
1,3-Dichlorobenzene	51	"	50.0		102	84-124		2.08	30	
1,4-Dichlorobenzene	50	"	50.0		101	84-124		2.35	30	
1,4-Dioxane	960	"	1050		91.6	10-228		7.24	30	
2-Butanone	23	"	50.0		46.6	58-147	Low Bias	74.2	30	Non-dir.
2-Hexanone	47	"	50.0		93.1	70-139		6.95	30	
4-Methyl-2-pentanone	49	"	50.0		98.6	72-132		7.03	30	
Acetone	38	"	50.0		75.2	36-155		4.29	30	
Acrolein	47	"	50.0		93.5	10-238		12.7	30	
Acrylonitrile	50	"	50.0		99.4	66-141		7.21	30	
Benzene	51	"	50.0		101	77-127		0.396	30	
Bromochloromethane	51	"	50.0		101	74-129		5.15	30	
Bromodichloromethane	47	"	50.0		94.0	81-124		8.19	30	
Bromoform	53	"	50.0		106	80-136		5.04	30	
Bromomethane	47	"	50.0		94.6	32-177		3.53	30	
Carbon disulfide	48		50.0		96.4	10-136		3.30	30	
Carbon tetrachloride	52	"	50.0		104	66-143		2.77	30	
Chlorobenzene	52		50.0		104	86-120		0.953	30	
Chloroethane	50	"	50.0		99.3	51-142		6.85	30	
Chloroform	50	"	50.0		101	76-131		5.64	30	
Chloromethane	30	"	50.0			49-132		3.49	30	
cis-1,2-Dichloroethylene		"			74.8			7.77	30	
cis-1,3-Dichloropropylene	49	"	50.0		98.0	74-132		8.67	30	
Cyclohexane	45	"	50.0		90.5	81-129		2.54	30 30	
-	46		50.0		92.6	70-130				
Dibromochloromethane Dibromomethane	50		50.0		99.6	10-200		4.30 11.0	30 30	
Dibromomethane Dichlorodifluoromethane	46		50.0		91.1	83-124				
	28		50.0		55.3	28-158		1.13	30	
Ethyl Benzene Hoveshlarsbutedians	50		50.0		99.6	84-125		3.10	30	
Hexachlorobutadiene	51		50.0		102	83-133		0.749	30	
Isopropylbenzene	51		50.0		103	81-127		5.44	30	
Methyl acetate	46		50.0		92.1	41-143		8.06	30	
Methyl tert-butyl ether (MTBE)	48	"	50.0		95.9	74-131		5.63	30	
Methylcyclohexane	43	"	50.0		86.2	70-130		7.31	30	
Methylene chloride	50		50.0		100	57-141		2.44	30	
120 RESEARCH DRIVE	STRATFORD, CT 066	\$15	1:	32-02 89th A\			RICHMOND		11/12	
								-		(
www.YORKLAB.com	(203) 325-1371		F	AX (203) 357-	-0166		ClientServic	es@Pa	age 16	of 32

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
5	Kesült	Limit Units	Level	Result	70KEU	Limits	riag	KrD	LIINI	гад
Batch BC31624 - EPA 5035A										
LCS Dup (BC31624-BSD1)						Prep	ared & Anal			
n-Butylbenzene	51	ug/L	50.0		102	80-130		0.948	30	
n-Propylbenzene	51	"	50.0		102	74-136		3.85	30	
o-Xylene	50	"	50.0		99.7	83-123		4.05	30	
p- & m- Xylenes	98	"	100		97.6	82-128		6.31	30	
p-Isopropyltoluene	51	"	50.0		102	85-125		2.39	30	
sec-Butylbenzene	52	"	50.0		104	83-125		2.81	30	
Styrene	48	"	50.0		96.4	86-126		2.88	30	
tert-Butyl alcohol (TBA)	250	"	250		99.6	70-130		0.692	30	
tert-Butylbenzene	52	"	50.0		104	80-127		3.99	30	
Tetrachloroethylene	42	"	50.0		83.5	80-129		4.04	30	
Toluene	48	"	50.0		96.6	85-121		3.24	30	
trans-1,2-Dichloroethylene	48	"	50.0		97.0	72-132		5.88	30	
trans-1,3-Dichloropropylene	47	"	50.0		93.5	78-132		2.91	30	
trans-1,4-dichloro-2-butene	52	"	50.0		103	75-135		1.98	30	
Trichloroethylene	47	"	50.0		93.0	84-123		9.33	30	
Trichlorofluoromethane	47	"	50.0		93.8	62-140		0.363	30	
Vinyl Chloride	44	"	50.0		87.9	52-130		2.69	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	50.7	"	50.0		101	77-125				
Surrogate: SURR: Toluene-d8	48.7	"	50.0		97.5	85-120				
Surrogate: SURR: p-Bromofluorobenzene	49.4	"	50.0		98.9	76-130				
Matrix Spike (BC31624-MS1)	*Source sample: 23C1	302-01 (Drum 1)				Prep	ared & Anal	yzed: 03/24	/2023	
1,1,1,2-Tetrachloroethane	41	ug/L	50.0	0.0	81.1	15-161				
1,1,1-Trichloroethane	41		50.0	0.0	82.5	42-145				
1,1,2,2-Tetrachloroethane	41	"	50.0	0.0	82.9	16-167				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	38	"	50.0	0.0	76.3	11-160				
1,1,2-Trichloroethane	43	"	50.0	0.0	86.6	44-145				
1,1-Dichloroethane	43	"	50.0	0.0	85.0	46-142				
1,1-Dichloroethylene	40	"	50.0	0.0	80.5	30-153				
1,2,3-Trichlorobenzene	29	"	50.0	0.0	57.1	10-157				
1,2,3-Trichloropropane	43		50.0	0.0	86.8	38-155				
1,2,4-Trichlorobenzene	28		50.0	0.0	55.7	10-151				
1,2,4-Trimethylbenzene	35	"	50.0	0.0	69.3	10-170				
1,2-Dibromo-3-chloropropane	42		50.0	0.0	84.5	36-138				
1,2-Dibromoethane	44		50.0	0.0	87.6	40-142				
1,2-Dichlorobenzene	37	"	50.0	0.0	73.2	10-147				
1,2-Dichloroethane	46	"	50.0	0.0	91.0	48-133				
1,2-Dichloropropane	45	"	50.0	0.0	90.0	47-141				
1,3,5-Trimethylbenzene	34	"	50.0	0.0	69.0	10-150				
1,3-Dichlorobenzene	34	"	50.0	0.0	68.5	10-144				
1,4-Dichlorobenzene	34	"	50.0	0.0	68.4	10-144				
1,4-Dioxane	950	"	1050	0.0	90.1	10-100				
2-Butanone	37	"	50.0	0.0	74.3	10-191				
2-Hexanone	34		50.0	0.0	68.2	10-189				
4-Methyl-2-pentanone	44		50.0	0.0	87.7	10-181				
Acetone	44 33			0.0	87.7 66.9	10-166 10-196				
Acrolein	33 1.5		50.0 50.0	0.0	2.98	10-196	Low Bias			
Acrylonitrile	35	"					LOW DIdS			
Benzene			50.0	0.0	69.8 81.4	13-161				
Bromochloromethane	41 47		50.0 50.0	0.0 0.0	81.4 94.8	43-139 38-145				
Bromoenforoniculaite	47		30.0	0.0	74.0	30-143				
120 RESEARCH DRIVE	STRATFORD, CT 066	15 🔳	13	32-02 89th A	VENUE	ŀ	RICHMONE	HILL, NY	11418	

York Analytical Laboratories, Inc. - Stratford

	~ •	Reporting	T T 1	Spike	Source*	0/550	%REC	FI	DDD	RPD	F ¹
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31624 - EPA 5035A											
Matrix Spike (BC31624-MS1)	*Source sample: 23	C1302-01 (Dr	rum 1)				Pre	pared & Analy	zed: 03/24/	2023	
Bromodichloromethane	42	`	ug/L	50.0	0.0	83.8	38-147				
Bromoform	47		"	50.0	0.0	93.9	29-156				
Bromomethane	46		"	50.0	0.0	91.0	10-166				
Carbon disulfide	34		"	50.0	0.29	68.4	10-131				
Carbon tetrachloride	43		"	50.0	0.0	85.5	35-145				
Chlorobenzene	41		"	50.0	0.0	81.7	21-154				
Chloroethane	47		"	50.0	0.0	93.1	15-160				
Chloroform	43		"	50.0	0.0	86.9	47-142				
Chloromethane	30		"	50.0	0.0	59.2	10-159				
cis-1,2-Dichloroethylene	42		"	50.0	0.0	84.3	42-144				
cis-1,3-Dichloropropylene	39		"	50.0	0.0	78.1	18-159				
Cyclohexane	34		"	50.0	0.0	68.6	70-130	Low Bias			
Dibromochloromethane	44		"	50.0	0.0	87.5	10-179				
Dibromomethane	43		"	50.0	0.0	85.1	47-143				
Dichlorodifluoromethane	19		"	50.0	0.0	37.7	10-145				
Ethyl Benzene	38		"	50.0	0.0	76.5	11-158				
Hexachlorobutadiene	21		"	50.0	0.0	42.9	10-158				
Isopropylbenzene	36		"	50.0	0.0	71.0	10-162				
Methyl acetate	50		"	50.0	0.0	99.5	10-149				
Methyl tert-butyl ether (MTBE)	44		"	50.0	0.0	88.5	42-152				
Methylcyclohexane	29		"	50.0	0.0	58.3	70-130	Low Bias			
Methylene chloride	44		"	50.0	1.4	86.1	28-151				
n-Butylbenzene	29		"	50.0	0.0	57.5	10-162				
n-Propylbenzene	33		"	50.0	0.0	66.9	10-155				
o-Xylene	39		"	50.0	0.0	77.4	10-158				
p- & m- Xylenes	76		"	100	0.0	76.2	10-156				
p-Isopropyltoluene	31		"	50.0	0.0	62.4	10-147				
sec-Butylbenzene	32		"	50.0	0.0	64.7	10-157				
Styrene	37		"	50.0	0.0	74.4	13-171				
tert-Butyl alcohol (TBA)	230		"	250	0.0	90.3	34-179				
tert-Butylbenzene	35		"	50.0	0.0	69.6	10-160				
Tetrachloroethylene	31		"	50.0	0.0	62.2	30-167				
Toluene	39		"	50.0	0.0	77.5	21-160				
trans-1,2-Dichloroethylene	40		"	50.0	0.0	80.1	29-153				
trans-1,3-Dichloropropylene	38		"	50.0	0.0	75.5	18-155				
trans-1,4-dichloro-2-butene	41		"	50.0	0.0	82.2	17-154				
Trichloroethylene	38		"	50.0	0.0	76.7	24-169				
Trichlorofluoromethane	43		"	50.0	0.0	86.3	35-142				
Vinyl Chloride	40			50.0	0.0	79.1	12-160				
Surrogate: SURR: 1,2-Dichloroethane-d4	50.1		"	50.0		100	77-125				
Surrogate: SURR: Toluene-d8	48.6		"	50.0		97.3	85-120				
Surrogate: SURR: p-Bromofluorobenzene	46.7		"	50.0		93.4	76-130				

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31624 - EPA 5035A											
Matrix Spike Dup (BC31624-MSD1)	*Source sample: 23C	1302-01 (Dr	rum 1)				Prep	pared & Analy	zed: 03/24/	2023	
1,1,1,2-Tetrachloroethane	41		ug/L	50.0	0.0	82.3	15-161		1.47	33	
1,1,1-Trichloroethane	41		"	50.0	0.0	81.5	42-145		1.22	30	
1,1,2,2-Tetrachloroethane	40		"	50.0	0.0	80.8	16-167		2.59	56	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	40		"	50.0	0.0	80.2	11-160		4.98	31	
1,1,2-Trichloroethane	43		"	50.0	0.0	85.2	44-145		1.68	40	
1,1-Dichloroethane	41		"	50.0	0.0	82.7	46-142		2.79	36	
1,1-Dichloroethylene	42		"	50.0	0.0	83.3	30-153		3.42	31	
1,2,3-Trichlorobenzene	29		"	50.0	0.0	57.2	10-157		0.140	47	
1,2,3-Trichloropropane	42		"	50.0	0.0	84.9	38-155		2.21	48	
1,2,4-Trichlorobenzene	27		"	50.0	0.0	54.5	10-151		2.18	52	
1,2,4-Trimethylbenzene	33		"	50.0	0.0	66.4	10-170		4.22	242	
1,2-Dibromo-3-chloropropane	39		"	50.0	0.0	77.6	36-138		8.53	54	
1,2-Dibromoethane	41		"	50.0	0.0	82.8	40-142		5.66	39	
1,2-Dichlorobenzene	35		"	50.0	0.0	70.8	10-147		3.44	52	
1,2-Dichloroethane	45		"	50.0	0.0	89.7	48-133		1.44	32	
1,2-Dichloropropane	42		"	50.0	0.0	84.1	47-141		6.78	37	
1,3,5-Trimethylbenzene	33		"	50.0	0.0	66.6	10-150		3.48	62	
1,3-Dichlorobenzene	33		"	50.0	0.0	65.4	10-144		4.75	51	
1,4-Dichlorobenzene	33		"	50.0	0.0	65.4	10-160		4.51	52	
1,4-Dioxane	930		"	1050	0.0	88.4	10-191		1.82	196	
2-Butanone	40		"	50.0	0.0	79.5	10-189		6.66	67	
2-Hexanone	31		"	50.0	0.0	61.2	10-181		10.8	60	
4-Methyl-2-pentanone	41		"	50.0	0.0	82.0	10-166		6.70	47	
Acetone	35		"	50.0	0.0	70.1	10-196		4.67	150	
Acrolein	1.1		"	50.0	0.0	2.22	10-192	Low Bias	29.2	128	
Acrylonitrile	39		"	50.0	0.0	77.4	13-161		10.4	48	
Benzene	42		"	50.0	0.0	84.1	43-139		3.36	64	
Bromochloromethane	47		"	50.0	0.0	93.4	38-145		1.49	30	
Bromodichloromethane	41		"	50.0	0.0	82.5	38-147		1.66	37	
Bromoform	45		"	50.0	0.0	90.3	29-156		3.91	51	
Bromomethane	43		"	50.0	0.0	85.5	10-166		6.28	42	
Carbon disulfide	34		"	50.0	0.29	68.3	10-131		0.205	36	
Carbon tetrachloride	43		"	50.0	0.0	85.6	35-145		0.140	31	
Chlorobenzene	40		"	50.0	0.0	79.9	21-154		2.25	32	
Chloroethane	47		"	50.0	0.0	94.0	15-160		0.898	40	
Chloroform	44		"	50.0	0.0	88.1	47-142		1.37	29	
Chloromethane	31		"	50.0	0.0	62.8	10-159		5.93	31	
cis-1,2-Dichloroethylene	42		"	50.0	0.0	84.0	42-144		0.333	30	
cis-1,3-Dichloropropylene	37		"	50.0	0.0	74.9	18-159		4.18	39	
Cyclohexane	34		"	50.0	0.0	68.9	70-130	Low Bias	0.524	30	
Dibromochloromethane	43		"	50.0	0.0	86.7	10-179		1.01	41	
Dibromomethane	41		"	50.0	0.0	81.7	47-143		4.03	41	
Dichlorodifluoromethane	20		"	50.0	0.0	40.2	10-145		6.42	34	
Ethyl Benzene	37		"	50.0	0.0	74.3	11-158		2.92	42	
Hexachlorobutadiene	19		"	50.0	0.0	38.9	10-158		9.82	45	
Isopropylbenzene	35		"	50.0	0.0	69.3	10-162		2.51	57	
Methyl acetate	45		"	50.0	0.0	90.2	10-149		9.85	64	
Methyl tert-butyl ether (MTBE)	45		"	50.0	0.0	89.9	42-152		1.55	47	
Methylcyclohexane	28		"	50.0	0.0	55.6	70-130	Low Bias	4.74	30	
Methylene chloride	44		"	50.0	1.4	85.9	28-151		0.279	49	
120 RESEARCH DRIVE	STRATFORD, CT 06	615		13	2-02 89th A\	/ENUE		RICHMOND	HILL, NY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 19 of 32

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BC31624 - EPA 5035A											
Matrix Spike Dup (BC31624-MSD1)	*Source sample: 23	3C1302-01 (D	rum 1)				Prep	ared & Anal	yzed: 03/24/	2023	
n-Butylbenzene	27		ug/L	50.0	0.0	53.8	10-162		6.58	96	

	bouree sumple. 2501502	OI (DIGHII)				1	2	
n-Butylbenzene	27	ug/L	50.0	0.0	53.8	10-162	6.58	96
n-Propylbenzene	33	"	50.0	0.0	66.6	10-155	0.479	56
o-Xylene	39	"	50.0	0.0	77.3	10-158	0.233	51
p- & m- Xylenes	73	"	100	0.0	73.1	10-156	4.22	47
p-Isopropyltoluene	30	"	50.0	0.0	60.1	10-147	3.76	60
sec-Butylbenzene	31	"	50.0	0.0	61.8	10-157	4.52	56
Styrene	35	"	50.0	0.0	70.3	13-171	5.64	39
tert-Butyl alcohol (TBA)	240	"	250	0.0	94.3	34-179	4.29	35
tert-Butylbenzene	35	"	50.0	0.0	69.0	10-160	0.866	79
Tetrachloroethylene	31	"	50.0	0.0	61.0	30-167	1.85	33
Toluene	38	"	50.0	0.0	76.1	21-160	1.74	50
trans-1,2-Dichloroethylene	39	"	50.0	0.0	78.9	29-153	1.46	30
trans-1,3-Dichloropropylene	36	"	50.0	0.0	72.8	18-155	3.67	30
trans-1,4-dichloro-2-butene	42	"	50.0	0.0	83.4	17-154	1.45	30
Trichloroethylene	37	"	50.0	0.0	74.8	24-169	2.53	30
Trichlorofluoromethane	44	"	50.0	0.0	88.0	35-142	1.93	30
Vinyl Chloride	38	"	50.0	0.0	75.0	12-160	5.29	35
Surrogate: SURR: 1,2-Dichloroethane-d4	51.0	"	50.0		102	77-125		
Surrogate: SURR: Toluene-d8	49.0	"	50.0		98.0	85-120		
Surrogate: SURR: p-Bromofluorobenzene	46.8	"	50.0		93.7	76-130		

Polychlorinated Biphenyls by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31759 - EPA 3550C											
Blank (BC31759-BLK2)							Prep	ared & Anal	yzed: 03/28/	2023	
Aroclor 1016	ND	0.0166	mg/kg wet								
Aroclor 1221	ND	0.0166									
Aroclor 1232	ND	0.0166	"								
Aroclor 1242	ND	0.0166	"								
Aroclor 1248	ND	0.0166	"								
Aroclor 1254	ND	0.0166									
Aroclor 1260	ND	0.0166									
Total PCBs	ND	0.0166	"								
Surrogate: Tetrachloro-m-xylene	0.0548		"	0.0664		82.5	30-140				
Surrogate: Decachlorobiphenyl	0.0468		"	0.0664		70.5	30-140				
LCS (BC31759-BS2)							Prep	ared & Anal	yzed: 03/28/	2023	
Aroclor 1016	0.248	0.0166	mg/kg wet	0.332		74.8	40-130				
Aroclor 1260	0.232	0.0166	"	0.332		69.7	40-130				
Surrogate: Tetrachloro-m-xylene	0.0518		"	0.0664		78.0	30-140				
Surrogate: Decachlorobiphenyl	0.0429		"	0.0664		64.5	30-140				

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31886 - EPA 3050B											
Blank (BC31886-BLK1)							Prep	ared: 03/28/2	2023 Analyz	ed: 03/30/2	2023
Arsenic	ND	1.04	mg/kg wet								
Barium	ND	1.73	"								
Cadmium	ND	0.208	"								
Chromium	ND	0.348	"								
Lead	ND	0.348	"								
Selenium	ND	1.74	"								
Silver	ND	0.350	"								
Duplicate (BC31886-DUP1)	*Source sample: 2	3C1472-02 (E	Duplicate)				Prep	ared: 03/28/2	2023 Analyz	ed: 03/30/2	2023
Arsenic	ND	1.30	mg/kg dry		1.33					35	
Barium	157	2.16	"		138				12.8	35	
Cadmium	0.540	0.259	"		0.591				9.01	35	
Chromium	75.4	0.433	"		83.7				10.4	35	
Lead	48.7	0.433	"		44.0				10.2	35	
Selenium	ND	2.16	"		ND					35	
Silver	ND	0.436	"		ND					35	
Matrix Spike (BC31886-MS1)	*Source sample: 2	3C1472-02 (N	Aatrix Spike)				Prep	ared: 03/28/2	2023 Analyz	ed: 03/30/2	2023
Arsenic	185	1.30	mg/kg dry	208	1.33	88.5	75-125				
Barium	332	2.16	"	208	138	93.0	75-125				
Cadmium	5.30	0.259	"	5.19	0.591	90.8	75-125				
Chromium	169	0.433	"	20.8	83.7	412	75-125	High Bias			
Lead	101	0.433	"	51.9	44.0	110	75-125				
Selenium	81.0	2.16	"	208	ND	39.0	75-125	Low Bias			
Silver	ND	0.436	"	5.19	ND		75-125	Low Bias			
Post Spike (BC31886-PS1)	*Source sample: 2	3C1472-02 (P	ost Spike)				Prep	ared: 03/28/2	2023 Analyz	ed: 03/30/2	2023
Arsenic	2.13		mg/L	2.00	0.013	106	75-125				
Barium	3.58		"	2.00	1.33	112	75-125				
Cadmium	0.060		"	0.0500	0.006	108	75-125				
Chromium	1.08		"	0.200	0.807	139	75-125	High Bias			
Lead	0.958		"	0.500	0.424	107	75-125				
Selenium	1.27		"	2.00	-0.503	63.5	75-125	Low Bias			

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
-								8			8
Batch BC31886 - EPA 3050B											
Reference (BC31886-SRM1)							Prep	ared: 03/28/	2023 Analyz	ed: 03/30/2	2023
Arsenic	222	1.04	mg/kg wet	183		121	69.9-130.1				
Barium	349	1.73	"	297		117	75.1-125.3				
Cadmium	259	0.208	"	221		117	75.1-124.9				
Chromium	227	0.348	"	200		114	70-130				
Lead	295	0.348	"	257		115	73.9-126.1				
Selenium	200	1.74	"	217		92.0	69.1-131.3				
Silver	72.1	0.350	"	67.8		106	70.6-129.2				
Batch BC31988 - EPA 3015A/1311											
Blank (BC31988-BLK1)							Prep	ared: 03/29/	2023 Analyz	ed: 03/30/2	2023
Arsenic	ND	0.017	mg/L								
Barium	ND	0.028	"								
Cadmium	ND	0.003	"								
Chromium	ND	0.006	"								
Lead	ND	0.006	"								
Selenium	ND	0.028	"								
Silver	ND	0.006	"								
LCS (BC31988-BS1)							Prep	ared: 03/29/	2023 Analyz	ed: 03/30/2	2023
Arsenic	1.73		ug/mL	2.00		86.3	80-120				
Barium	1.93		"	2.00		96.7	80-120				
Cadmium	0.044		"	0.0500		88.3	80-120				
Chromium	0.185		"	0.200		92.4	80-120				
Lead	0.455		"	0.500		91.1	80-120				
Selenium	1.43		"	2.00		71.7	80-120	Low Bias			

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
i indi ye	Result	Link	Omts	Lever	resur	, site e	Linits	1 100	10.5	2	Thug
Batch BC31988 - EPA 3015A/1311											
Duplicate (BC31988-DUP1)	*Source sample: 2	3C1557-06 (Di	uplicate)				Prep	ared: 03/29/2	2023 Analyz	ed: 03/30/2	023
Arsenic	ND	0.375	mg/L		ND					20	
Barium	ND	0.625			ND					20	
Cadmium	ND	0.075	"		ND					20	
Chromium	ND	0.125	"		ND					20	
Lead	ND	0.125	"		ND					20	
Selenium	ND	0.625	"		ND					20	
Silver	ND	0.125			ND					20	
Leach Fluid Blank (BC31988-LBK1)							Prep	ared: 03/29/2	2023 Analyz	ed: 03/30/2	023
Arsenic	ND	0.375	mg/L								
Barium	ND	0.625	"								
Cadmium	ND	0.075									
Chromium	ND	0.125									
Lead	ND	0.125									
Selenium	ND	0.625									
Silver	ND	0.125									
Matrix Spike (BC31988-MS1)	*Source sample: 2	3C1557-06 (M	atrix Spike)			Prep	ared: 03/29/2	2023 Analyz	ed: 03/30/2	023
Arsenic	40.9	0.375	mg/L	50.0	ND	81.9	75-125				
Barium	45.3	0.625		50.0	ND	90.6	75-125				
Cadmium	1.02	0.075	"	1.25	ND	81.8	75-125				
Chromium	4.30	0.125	"	5.00	ND	86.1	75-125				
Lead	10.6	0.125		10.5		84.4	75-125				
Selenium	10.0	0.125		12.5	ND	04.4	10 120				
Selenium	39.1	0.625		12.5 50.0	ND ND	84.4 78.1	75-125				
Silver											
	39.1	0.625 0.125		50.0	ND	78.1	75-125 75-125	pared: 03/29/2	2023 Analyz	zed: 03/30/2	.023
Silver	39.1 1.02	0.625 0.125		50.0	ND	78.1	75-125 75-125	pared: 03/29/2	2023 Analyz	red: 03/30/2	023
Silver Post Spike (BC31988-PS1)	39.1 1.02 *Source sample: 2	0.625 0.125	" ost Spike)	50.0 1.25	ND ND	78.1 81.3	75-125 75-125 Prep	bared: 03/29/2 Low Bias	2023 Analyz	zed: 03/30/2	023
Silver Post Spike (BC31988-PS1) Arsenic	39.1 1.02 *Source sample: 2 1.80	0.625 0.125	" ost Spike) ug/mL	50.0 1.25 2.00	ND ND -0.052	78.1 81.3 90.0	75-125 75-125 Prep 75-125		2023 Analyz	zed: 03/30/2	.023
Silver Post Spike (BC31988-PS1) Arsenic Barium	39.1 1.02 *Source sample: 2 1.80 1.85	0.625 0.125	" ost Spike) ug/mL "	50.0 1.25 2.00 2.00	ND ND -0.052 0.432	78.1 81.3 90.0 70.9	75-125 75-125 Prep 75-125 75-125		2023 Analyz	zed: 03/30/2	023
Silver Post Spike (BC31988-PS1) Arsenic Barium Cadmium	39.1 1.02 *Source sample: 2 1.80 1.85 0.045	0.625 0.125	" ost Spike) ug/mL "	50.0 1.25 2.00 2.00 0.0500	ND ND -0.052 0.432 0.007	78.1 81.3 90.0 70.9 75.8	75-125 75-125 Prep 75-125 75-125 75-125		2023 Analyz	zed: 03/30/2	023
Silver Post Spike (BC31988-PS1) Arsenic Barium Cadmium Chromium	39.1 1.02 *Source sample: 2 1.80 1.85 0.045 0.178	0.625 0.125	" ost Spike) ug/mL "	50.0 1.25 2.00 2.00 0.0500 0.200	ND ND -0.052 0.432 0.007 -0.003	78.1 81.3 90.0 70.9 75.8 88.8	75-125 75-125 Prep 75-125 75-125 75-125 75-125 75-125		2023 Analyz	zed: 03/30/2	023

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BC32012 - EPA SW846-7470A											
Blank (BC32012-BLK1)							Prep	ared & Analy	/zed: 03/30/2	2023	
Mercury	ND	0.000200	mg/L								
Blank (BC32012-BLK2)							Prep	ared & Analy	zed: 03/30/2	2023	
Mercury	ND	0.000200	mg/L								
LCS (BC32012-BS1)							Prep	ared & Analy	zed: 03/30/	2023	
Mercury	0.00209	0.000200	mg/L	0.00200		105	80-120				
LCS (BC32012-BS2)							Prep	ared & Analy	zed: 03/30/2	2023	
Mercury	0.00203	0.000200	mg/L	0.00200		102	80-120				
Batch BC32070 - EPA 7473 soil											
Blank (BC32070-BLK1)							Prep	ared & Analy	/zed: 03/30/2	2023	
Mercury	ND	0.0300	mg/kg wet								
Duplicate (BC32070-DUP1)	*Source sample: 23	3C1302-01 (D	rum 1)				Prep	ared & Analy	zed: 03/30/	2023	
Mercury	0.333		mg/kg dry		0.441				27.9	35	
Matrix Spike (BC32070-MS1)	*Source sample: 23	3C1302-01 (D	Drum 1)				Prep	ared & Analy	zed: 03/30/	2023	
Mercury	0.740		mg/kg	0.500	0.429	62.2	75-125	Low Bias			
Reference (BC32070-SRM1)							Prep	ared & Analy	/zed: 03/30/2	2023	
Mercury	31.387		mg/kg	27.2		115	59.9-140.1				

Wet Chemistry Parameters - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

										RPD	
		Reporting		Spike	Source*		%REC	F1	DDD		121
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31600 - Analysis Preparation											
Duplicate (BC31600-DUP1)	*Source sample: 23	C1224-09 (D	uplicate)				Prepa	ared & Analy	/zed: 03/23/2	2023	
pH	6.86	0.500	pH units		6.91				0.726	10	
Temperature	22.3	1.00	°C		21.9				1.81	200	
Batch BC31674 - Analysis Preparation Blank (BC31674-BLK1)							Prepa	ared & Analy	/zed: 03/24/2	2023	
Reactivity - Cyanide	ND	0.250	mg/kg								
Batch BC31675 - Analysis Preparation											
Blank (BC31675-BLK1)							Prepa	ared & Analy	zed: 03/24/2	2023	
Reactivity - Sulfide	ND	15.0	mg/kg								
Duplicate (BC31675-DUP1)	*Source sample: 23	C1343-01 (D	uplicate)				Prepa	ared & Analy	zed: 03/24/2	2023	

Miscellaneous Physical Parameters - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC32005 - % Solids Prep											
Duplicate (BC32005-DUP1)	*Source sample: 23	C1681-03 (Di	uplicate)				Prep	ared & Anal	yzed: 03/30/	2023	
% Solids	88.2	0.100	%		87.6				0.767	20	

Leachate Preparations - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31700 - EPA SW 846-1311	TCLP ext. for metals										
Batch BC31700 - ETA 5 W 840-1311	ICLI ext. for metals										

N/A

TCLP Extraction

Completed

1.00

Volatile Analysis Sample Containers

Lab ID

Client Sample ID

23C1302-01

Drum 1

Volatile Sample Container

8 oz. WM Clear Glass Cool to $4^\circ\,C$

Sample and Data Qualifiers Relating to This Work Order

VOA-CON	Non-Compliant - the container(s) provided by the client for soil volatiles do not meet the requirements of EPA SW846-5035A. Results reported below 200 ug/kg may be biased low due to samples not being collected according to EPA SW846 5035A requirements.
QR-04	The RPD exceeded control limits for the LCS/LCSD QC.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data are acceptable.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
M-SPKM	The spike recovery is not within acceptance windows due to sample non-homogeneity, or matrix interference.
IGN-01	Non-Ignit.
EXT-Temp	Extraction temperture slightly exceeded acceptance range.
EXT-COMP	Completed
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

ALTOLAL AND ALTOLA				0,000
AMALTTICAL LABORATORIES IN	York Analytical Laborate	pries, Inc. (YORK)'s Standard Terms &	York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document.	221200
		ves as your written authorization for YORK to proceed with the analys Your signature binds you to YORK's Standard Terms & Conditions.	This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.)
r 06615	132-02 89th Ave Queens, NY 11418	clientservices@yorklab.com www.	www.yorklab.com 800-306-YORK 800-306-9675	Page 1 of 1
YOUR Information	Report To:	Invoice To:	YOUR Project Number	Turn-Around Time
19 Eminutert	Company	Company		RUSH - Next Day
4	Adress >	Address		RUSH - Two Day
175 Commerce dure	t	4	YOUR Project Name	RUSH - Three Day
Ē	Phone: M	Phote A	157 Main Struct	RUSH - Four Day
(Inf)	Dontact C	Contact	Weitburgs NY	Standard (5-7 Day)
Carles @ pagarviro- Bur =	E-mail	E-mail	YOUR PO#:	r
Please print clearly dhd legibly. All information must be complete. Samnlas will not be locored in and the two social time clock will not	Matrix Code	s Samples From	Report / EDD Type (circle selections)	YORK Reg. Comp.
begin until any questions by YORK are resolved.	GW - groundwater	New York A Summary F New Jersev QA Report	Summary Report CT RCP Standard Excel EDD QA Report CT RCP DQA/DUE EQUIS (Standard)	
AF Cul	Cult and DW - drinking water	Connecticut Pennsylvania	Package NJDEP Reduced Package Deliverables	0
Samples Collected by: (print AND sign your name)			NJDKQP	
Sample Identification	Sample Matrix	c Date/Time Sampled	Analysis Requested	Container Description
	C			802, W
TWMM	7	5/22/2023 1pm 8260	0, 8CB, Telp, Repart HETALS	(2) out pur
Comments:			Preservation: (check all that apply)	Special Instruction
X	Samples toed/chilled at thr	HCI Samples toed/chilled at time of tab pickup? circle Yes or No ZhAc	MeOHHNO3H2SO4NaOH Ascorbic Acid Other:	Field Filtered
de M	years Party E	en 10ex 3/22/	23 crice Jun	3/23/23 1200
(KBach, pick 3(23/23	12.PM Kanner Contractor Kanner	adyroik 3/23/23 1	16:30 Samples Received in LAB by 2100	
			C.E.IC.E.C. Nelohu	5.1 06:21 5.8

Appendix E

Imported Material Information

SALLES RECEIPT / INVOICE

STATE MATERIAL MASON SUPPLY

245 Grand Blvd. Westbury Nº 11590 PHONE: 513-833-1979 FAX: 516-333-7796

Appendix F

Environmental Easement

To be attached once

obtained

