EDWARD P. MANGANO COUNTY EXECUTIVE

SHILA SHAH-GAVNOUDIAS, P.E. COMMISSIONER

COUNTY OF NASSAU DEPARTMENT OF PUBLIC WORKS 1194 PROSPECT AVENUE WESTBURY, NEW YORK 11590-2723

July 29, 2011

Benjamin Rung, P.E., Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Hazardous Site Control 625 Broadway Albany, New York 12233

Re: 2011 – Periodic Review Report Nassau County Firemen's Training Center, Site #1-30-042

Dear Mr. Rung:

Please find enclosed two (2) copies of the 2011 "<u>Periodic Review Report (PRR)</u>" and the certification form for the Firemen's Training Center Site. The report was prepared following the suggested outline provided in your April 27, 2011, "45-Day Reminder Notice: Site Management Periodic Review" and addresses the Bureau's technical comments regarding the 2009 PRR.

If you have any questions regarding the report or activities at the site, please contact Michael Flaherty, Hydrogeologist III at (516) 571-7514.

Very truly yours,

Shila Shah-Gavnoudias, P.E. Commissioner of Public Works

SSG:KGA:JLD:cs Attachment

c: Kenneth G. Arnold, Assistant to Commissioner of Public Works Michael Flaherty, Hydrogeologist III Walter J. Parish, NYSDEC, Region 1

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	130042	Site Details	Box 1	
Sit	e Name Na	ssau County Fire Training	l Center		
Sit Cit Co		800 Winding Road Zi I Bethpage	p Code: 11804		
Re	porting Perio	od: June 05, 2009 to June 0	01, 2011		
				YES	NO
1.	Is the infor	nation above correct?		X	
	If NO, inclu	de handwritten above or on	a separate sheet.		
2.		or all of the site property been nendment during this Report	en sold, subdivided, merged, or undergone a ting Period?		x
3.		een any change of use at t RR 375-1.11(d))?	he site during this Reporting Period	¢	
4.		ederal, state, and/or local pe property during this Report	ermits (e.g., building, discharge) been issued ting Period?		ø
			thru 4, include documentation or evidence ously submitted with this certification form.		
5.	Is the site o	urrently undergoing develop	oment?		×
				Box 2	
				YES	NO
6.		nt site use consistent with tl I and Industrial	he use(s) listed below?	X	
7.	Are all ICs/	ECs in place and functioning	g as designed?		×
	IF TH	E ANSWER TO EITHER QU DO NOT COMPL	ESTION 6 OR 7 IS NO, sign and date below a ETE THE REST OF THIS FORM.	nd	
AC	Corrective M	easures Work Plan must be	submitted along with this form to address th	iese issi	ues.
Sig	nature of Ow	ner, Remedial Party or Desig	nated Representative Date		
	(

FTC – Corrective Measures Work plan June 2011

Engineering Controls (EC)

Onsite Groundwater Recovery and treatment

Onsite groundwater recovery and treatment was modified during the current reporting period (June 2009 through June 2011). Due to another pump failure in recovery well RW-1 in the spring of 2009. Onsite recovery well RW-2, which is located at the down gradient edge of the property was operated for approximately eight weeks to assure that there were no volatile organic compounds leaving the site while RW-1 was out of service. *RW-1* was repaired and operated for less than two months before the *well screen collapsed* on February 24, 2010. RW-2 was operated briefly again in the spring of 2010, due to the absence of onsite petroleum product and non-detectable levels of VOC's in RW-2's influent the onsite system has not been operated since May 3, 2010.

Offsite Groundwater Recovery and treatment

In late December 2010, the offsite recovery well system began experiencing a number of disruptions and plant shutdowns. These disruptions were categorized as system faults caused by interruptions in a signal being received by the computers in the treatment plant sent from the Remote Transmitting Units (RTU's) located in the electronics panel of each well. Diagnostic tests performed on the system indicated that the RTU faults might also be occurring due to problems with the fiber-optic connections within each panel. The offsite recovery well system continued to operate with the same well configuration, however disruptions and shutdowns became more frequent and the entire treatment plant was shut down on Aril 30, 2011.

Proposed Corrective Measures

Onsite Groundwater Recovery and treatment

The Nassau County Department of Public Works – Water and Wastewater Engineering Unit has replaced the submersible pump and re-developed groundwater recovery well **RW-1** three times since the beginning of treatment operations in July 1999. The presence of high levels of landfill leachate generated by the Town of Oyster Bay Landfill has caused continuous fouling of the well screen, submersible pump and its associated influent piping. The county also believes that the leachate enriched groundwater beneath the Nassau County Fire Service Academy was a contributing factor in the collapse of the well screen in recovery well **RW-1** on February 24, 2010. Review of onsite groundwater quality for the presence of volatile and semi-volatile organic compounds generated by training activities indicates that the treatment of onsite groundwater is no longer necessary. The county of Nassau understands that a soil – vapor pathway investigation for the site must be completed before the it can be de-listed and would therefore like to propose with NYSDEC concurrence, that due to the technical infeasibility of continued onsite pumping and the effectiveness of previous onsite groundwater treatment that all onsite treatment activities be terminated with the completion of the soil vapor pathway investigation.

Offsite Groundwater Recovery and treatment

The Nassau County Department of Public Works – Water and Wastewater Engineering Unit has completed trouble-shooting the offsite telemetry system and is in the process of contracting a qualified electrical contractor to repair the fiber-optic connections and replace any faulty RTU's which may be present in the system. These repairs are expected to be complete in the summer of 2011.

BY UPS NEXT DAY DELIVERY

14 April 2011

Ms. Kelly Lewandowski New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7020

Re: Notice of Change Nassau County Fire Service Academy – Burn Buildings C & D Site No. 130042

Dear Ms. Lewandowski:

Cashin Associates, P.C. (CA) has been retained by Nassau County to develop designs, construction and demolition plans and specifications required to replace two existing fire training buildings located at the Fire Service Academy (FSA) in Bethpage, New York and has authorized CA to issue this letter in its behalf. The buildings are designated Buildings "C" and "D" and are depicted on the attached aerial photograph of the FSA premises. The FSA facility is listed as a New York State Superfund site. The Record of Decision (ROD) dated February 1993 among other remedial actions required that the use of portions of the property be restricted. Nassau County's Declaration of Restrictions, dated 16 December 1996 and its Resolution No. 612 – 1996 dated 18 December 1996 (copies enclosed) which were in response to the ROD placed covenants on five discrete areas within the overall property. Those areas are also shown on the attached aerial photograph. Buildings "C" and "D" are outside the encumbered areas.

This communiqué is to advise the New York State Department of Environmental Conservation, that CA plans to obtain soil borings, concrete cores of the existing building walls and slabs, construct test pits and perform asbestos sampling all within or in close proximity to the existing footprints of Buildings "C" and "D". The proposed soil boring locations are also shown on the attached aerial photograph. CA plans to commence the exploratory investigations shortly. Kindly let me know whether your Department has any comments on these proposed activities. It is our understanding that the exploratory program described above is not a restricted action and may proceed immediately.

CA has just started the Programming phase of its design assignment, part of which includes obtaining soil boring and concrete cores. We do not know the details of the final design at this time. Preliminarily, however, the Building "C" and "D" superstructures will be replaced in their entirety

1200 Veterans Memorial Highway • Hauppauge, NY 11788 • (631) 348-7600 • FAX (631) 348-7601 601 Brickell Key Drive • Suite 606 • Miami, FL 33131 • (305) 579-2206 • FAX (305) 579-2035 841 Broadway • Suite 500 • New York, NY 10003 • (917) 546-0741

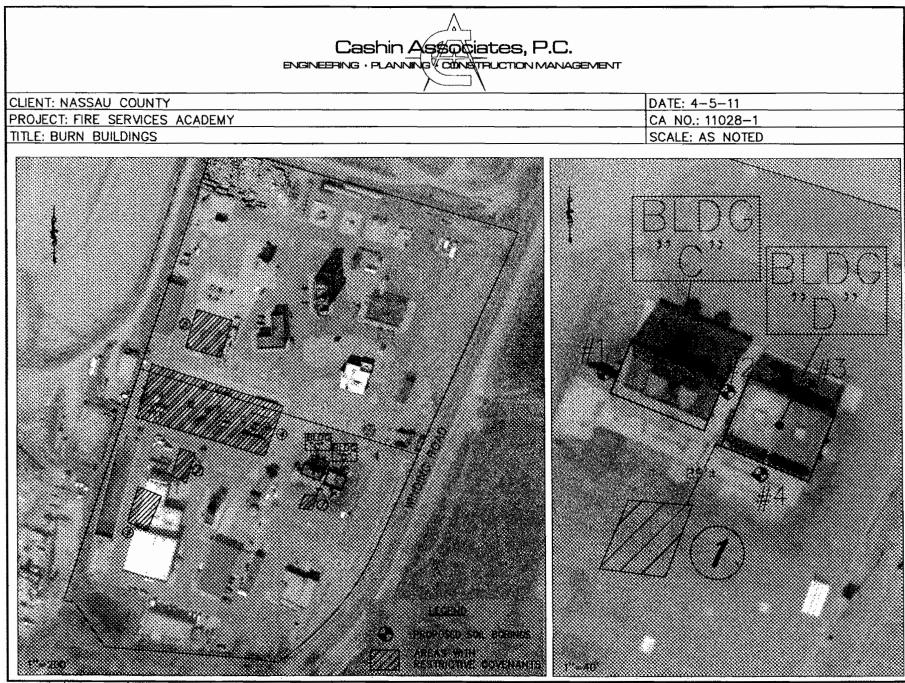
Kelly Lewandowski April 14, 2011 Page 2 of 2

and new superstructures will be constructed on the existing foundations. In order to comply with the intent of NFPA 1402, Section 10.1.5 (copy attached) it may be necessary to expand the "walkout" areas from the basements for safety reasons. Preliminarily, the "walk out" areas may be expanded as shown on the attached sketches. Some site drainage improvements may also be required. All construction work is expected to be outside the five (5) parcels that have restrictive covenants on their deeds and construction work is planned to commence in October 2011. As required by NYS Superfund regulations, please consider this letter as Nassau County's "Notice of Change of Use".

Should you have any questions, please call me at 631-348-7600.

Very truly yours,

CASHIN ASSOCIATES, P.C.


Club Matte

Aldo Marletti, P.E. Executive Vice President

AM/ck

cc: P. Scully, Regional Director, NYSDEC
S. Shah, PE, Commissioner, NCDPW
R. Maitra, PE, Deputy Commissioner, NCDPW
M. Flaherty, Hydrogeologist, NCDPW
B. Rung, NYSDEC
W. Parish, NYSDEC

1 (PROJECTS) NASSAU (COUNTY) (1628) Bano Bidge C& D/CORRESPONDENCE/NVSDEC for & Lewandowskildor

PRINT: 04/14/11-12:10pm X:\COUNTY OF NASSAU\11028-1 Burn Buildings C-D\PL.dwg

DECLARATION OF RESTRICTIONS

ŧ.

3.5

The Declaration is hereby effective as of $\frac{12}{16}$

WITNESSETH

WHEREAS, soil contemination at certain areas within the Fireman's Training Center in Bothpage consists of the chemicals listed in Attachment No. 1 at levels that potentially threaten public health, and

WHEREAS, the New York State Department of Environmental Conservation and the County of Nassau have agreed on the remediation steps to be taken in connection with said contamination which include restrictions to be recorded in the Nassau County Clerk's Office against the use of the contaminated areas at the Fireman's Training Center, as stated in the Record of Decision, dated February, 1993 attached as Attachment No. 2, and

WHEREAS, the Fireman's Training Center is identified as Section 47, Block 133, Lots 6 and 7 on the Land and Tax Map of Nassau County, and the contaminated areas to be restricted within the Fireman's Training Center are identified by the attached actes and bounds descriptions and map and are estached as Attachment No. 3. 416-94

WHEREAS, this Declaration of Restrictions shall just affect the aforesaid contaminated areas identified in Attachment No. 3.

having stilling is the country of Nassay for itself and its Marcha, NDH, THEREFORE, the Country of Nassay for itself and its Marchae successors and assigns, covenants and declares that:

1. Unless prior written approval by the New York State Department of Environmental Conservation and the New York State Department of Health (or any subsequently delegated agencies) is first obtained, there shall be no construction, use or occupancy of the contaminated areas which results in the disturbance or excavation of the waste materials on site, which threatens the integrity of the asphelt cap or soil cover materials, or which results in human exposure to contaminated soils.

.. .

:

.

. 2. . . . E.

2. Unless prior written approval by the above stated agencies is obtained, there shall be no change in the use of the contaminated areas in any way that is inconsistent with its use as a fire training center. If such a new use of the contaminated areas is approved, any and all further remedial activities at the aforesaid contaminated areas deemed necessary and appropriate by the above stated agencies will be performed by the County of Nasseu.

3. The County of Nassau, its successors and assigns will not disturb the contaminated areas in any way, except to properly maintain the integrity of the ramadial measures undertaken and maintained at the areas of contamination as stated in the Record of Decision dated February, 1993 attached hursto as Attachment No. 2. which is incorporated herein and made a part hereof as if herein set forth at length.

4. This Declaration is and shall be deemed to be a covenant running with the land, binding the County of Nassau, its successors and essigns, and eny agent, lesses or invitee of the County of Nassau in perpetuity or until such time the New York State Department of Environmental Conservation and the New York State Department of Health (or any subsequently delegated agencies) determine, in writing, that the

Declaration is no longer necessary for the protection of human health and the environment. At such tigs, the covenant shall be null and void and have no effect upon the lond.

name. have no effect ... country of haspail Materia By John Materia haded a present of inter the

APPROVED Lid not a siane VEEB Michael R. Cilpoy, Executive Director

Ŧ

•_

,

• • •

ť.,

FORM APPROVED:

RESOLUTION NO. 617 -1996

٠.

.;

APPROVED

VEBB

ų B A RESOLUTION AUTHORIZING THE COUNTY EXECUTIVE TO EXECUTE A DECLARATION OF RESTRICTIONS REGARDING COUNTY OWNED PROPERTY BEING LOCATED AT THE FIREMAN'S TRAINING CENTER, OLD BETHPAGE. TOWN OF DYSTER BAY, IN ORDER THAT ONLY CERTAIN AND SPECIFIED CONTAMINATED LOCATIONS WITHIN THE SAID PROPERTY HILL BE COVERED BY THE DECLARATION OF RESTRICTIONS AND THE REMAINING PROPERTY CAN BE USED PRODUCTIVELY.

WHEREAS. THE COUNTY OF NASSAU, hereinafter referred to as the County, is the owner of property known as the fireman's Training Center, Old Bethpage, Town of Oyster Bay which is identified as Section 47, Block 153, Lots 6 and 7 on the Land and Tax Map of Nassau County; and

WHEREAS. there are certain areas within said property that contain chemicals at levels that potentially threaten public health; and

WHEREAS, the New York State Department of Environmental Conservation and the County have agreed on the remediation steps to be taken in connection with the said contaminated areas within the above stated property; and

WHEREAS, there shall be no change in the present use of the contaminated areas in any way that is inconsistent with its use as a fire training center, unless prior written approval of the New York State Department of Environmental Conservation and the New York State Department of Health is obtained: and

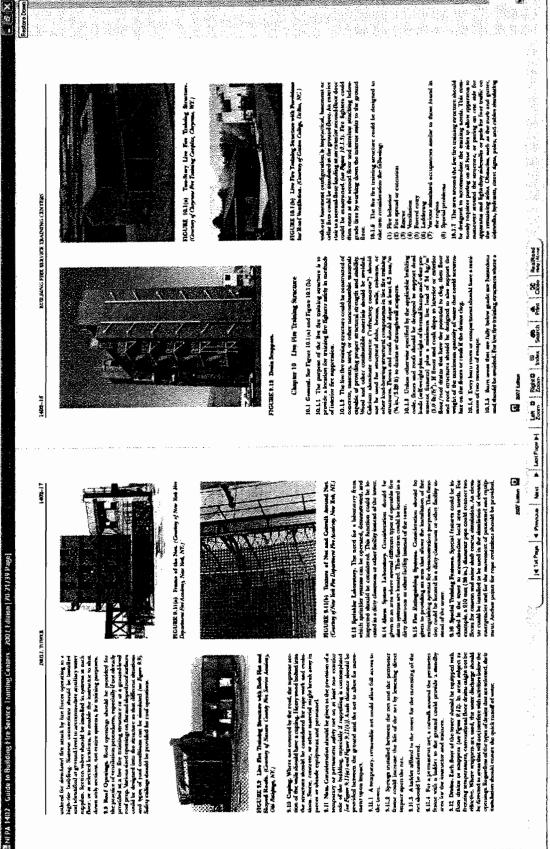
> Passed by Nessau County Legislature on DEC 1 6 1996 A voice vote as taken with 19 Legislators present. Voting: aye 19 ; nay ______ abstained/______ Secame st resolution on DEC 1 8 1996 with the approval of the Deputy County Executive atting for the Sounty Executive.

WHEREAS, the Declaration of Restrictions will refer only to the areas contaminated by chemicals and the remaining areas will be free from sold restrictions, therefore avoiding the loss of other uses for the remaining property located at the Fireman's Training Center; now therefore be it

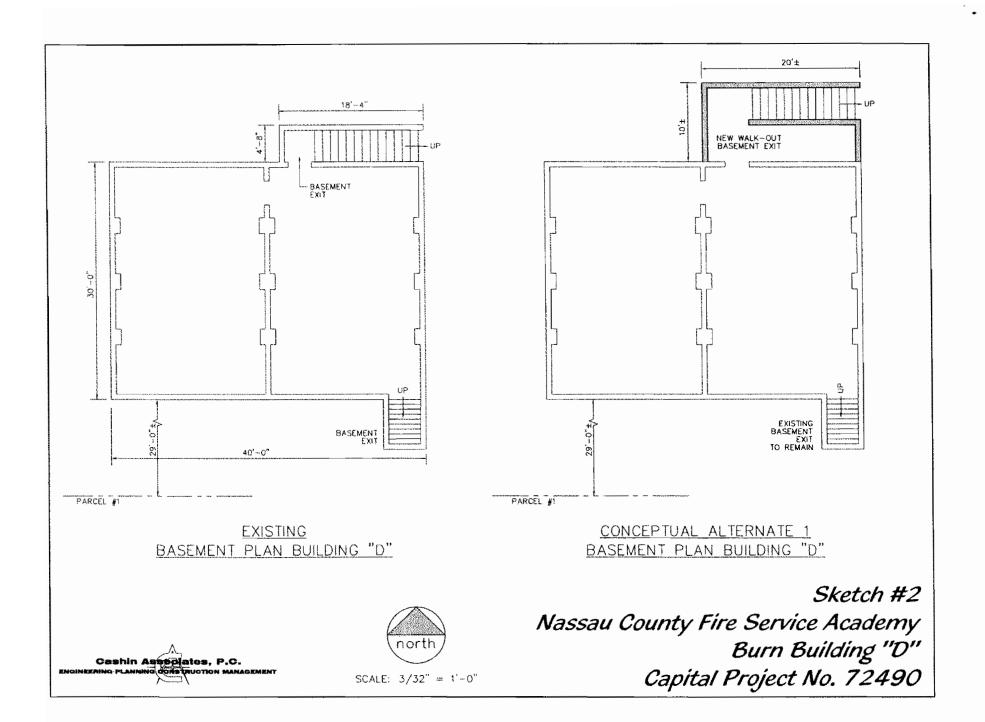
ey 🔭 e

Sector Sector

;ì


RESOLVED, that the COUNTY EXECUTIVE be, and he hereby is authorized to execute, on behalf of the COUNTY OF NASSAU, a Declaration of Restrictions in connection with certain County owned property located at the Fireman's Training Center in Did Bethpage in order that the use of only certain and specified contaminated locations, as referred to and identified in the seid Declaration of Restrictions, be restricted by the declaration of restrictions and the remaining property at the Fireman's Training Center be used productively] and be it further

RESOLVED that the COUNTY ATTORNEY of Nassau County be, and he is hereby directed to record said Declaration of Restrictions and to file the map in connection with same in the Office of the Clerk of the County of Nassaus and be it further


RESOLVED that the COUNTY EXECUTIVE or the COUNTY ATTURNEY be, and they are hereby authorized to execute any other instrument that may be required to carry out this Resolution; and be it further

RESOLVED that this Resolution shall take effect immediately.

DEC 1 8 1996

🐹 Ni PA 1402 - Guide to Building Fire Service Training Centers - 2007 Edition | 70-27.139 Page

Щ И И И И И И И EN I TER REME N'S ROUN II.

DEPARTMENT OF PUBLIC WORKS

Long Island, New York

Periodic Review Report

1.0 INTRODUCTION

A. The Fireman's Training Center (FTC) has conducted fire training activities for the County's seventy-one (71) fire districts since 1960. The site and facilities are owned by Nassau County, and the training activities and administrative functions are directed by the Vocational Education and Extension Board of Nassau County. Site operations have consisted of fire fighting exercises in open burn areas and building Mock-ups. Fuel oil (No. 2) and gasoline are the primary sources of ignition for training fires. From 1970 to 1980 various combustible organic solvents were also reported to have been mixed with oil and used in the structures being burned.

Training is presently conducted in three building mockups and three open burn areas, propane training areas were also added to the north side of the site in 1991. Until 1984, unburned fuel and solvents that mixed with fire fighting and cleanup wash water flowed over the FTC surface directly into nearby drywells. The dry wells were constructed with unlined, open bottoms and were conduits for downward migration of the liquids through the subsurface soils into the ground water. Additional subsurface contamination may have occurred by leakage of gasoline and oil from shallow underground pipes used to supply fuels to some burn area mock-ups.

Remedial activities at the site began in 1984 with the implementation of a drainage improvement contract. Work conducted under this contract segregated the storm water runoff from the active burn areas to a concrete holding basin and an oil/water separator that removed the oil prior to discharge into the sanitary sewer. This project eliminated all onsite drywells which had previously received contaminated runoff and separated clean surface runoff from water derived from training activities. All contaminated soils encountered during construction were stockpiled and removed. This project was completed in 1988 and the system is still in operation.

The RI/FS for the site was conducted between 1988 and 1992. Construction of the groundwater treatment facility and installation of all onsite and offsite groundwater recovery wells began in 1996. Groundwater treatment activities began in July 1999 and are ongoing.

B. Treatment of both onsite and offsite groundwater at the site have been ongoing for over eleven years. Over this time period progress in meeting remedial objectives has been made in the following areas:

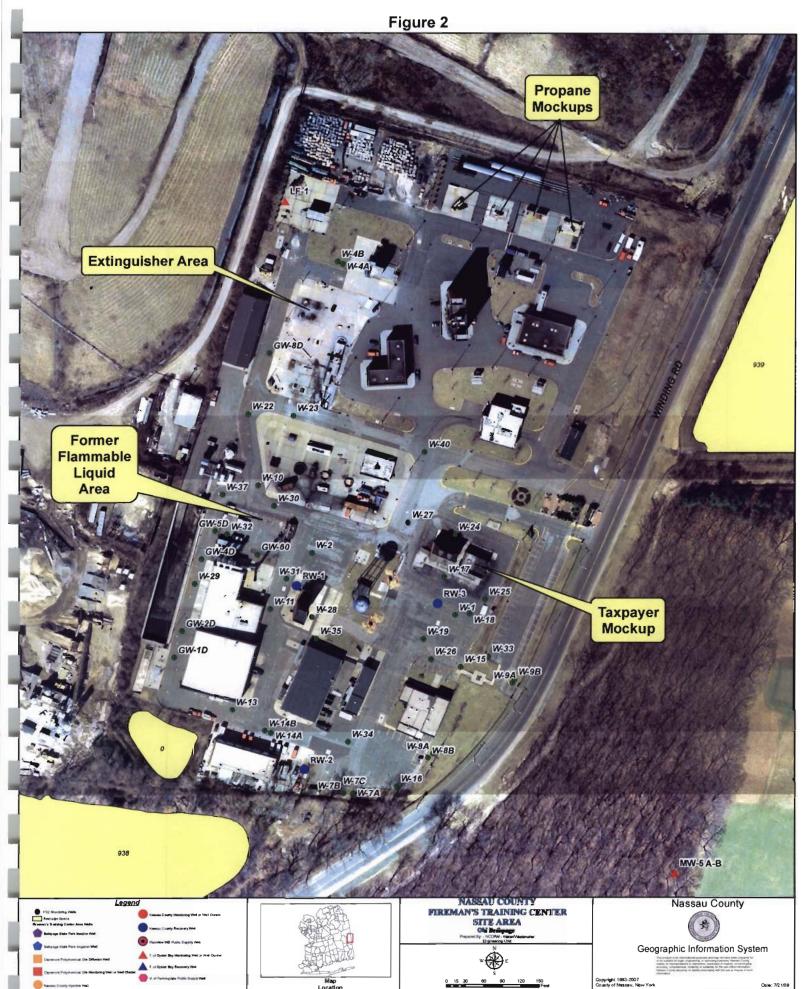
- Over 4500 gallons of "floating" petroleum product (gasoline / No. 2 fuel oil) have been removed from onsite groundwater.
- Onsite soil conditions have improved to the point were deed restrictions could be removed from two former "Burn Areas" (Appendix A).
- Total offsite influent concentrations have been reduced from a maximum concentration of 1,005 ppb (6/20/2000) to a minimum of 9 ppb (3/7/2011).
- Total Volatile Organic Compound (TVOC), concentrations in offsite groundwater has been reduced from over 1400 ppb to less than 50 ppb, meeting groundwater cleanup criteria established for the site at six of the seven Offsite Recovery Well (ORW) locations.
- Total Volatile Organic Compound (TVOC), concentrations in onsite groundwater has been reduced from parts per million (ppm) levels to less than 250 ppb (RW-1).
- Onsite Groundwater Quality has improved dramatically, data collected from eleven (11) monitoring wells in the spring of 2011 found ten wells with TVOC and SVOC concentrations below detectable limits (BDL) and one well (W-35) with detectable levels of TVOC's and SVOC's below all individual and total volatile organic concentration guidelines. Groundwater monitoring well (W-35) originally had a Total Volatile Organic Concentration of 2,784 ppb in June, 1999.
- Offsite Groundwater Quality has improved dramatically, data collected from fifthteen (15) monitoring wells in March 2011 found five wells with TVOC concentrations below detectable limits (BDL), seven wells with TVOC concentrations (< 5ppb) and three wells with TVOC concentrations ranging from 19 to 154 ppb. Fourteen of the fifteen offsite monitoring wells sampled had TVOC concentrations below the groundwater cleanup criteria (50 ppb) established for the site. Original TVOC concentrations in the offsite plume exceeded 1,000 ppb at some well locations.

C. The County of Nassau believes that treatment of the original offsite plume of volatile organic compounds which emanated from the Nassau County Fireman's Training Center also known as the Nassau County Fire Service Academy is essentially complete. This assertion is supported by the extremely low concentrations of TVOC's observed in the offsite influent. It is also supported by the results of the groundwater model prepared for the County by CDM in April 2008. *The County believes that the majority of the volatile organic contamination which is currently being treated by the groundwater remediation facility originated from sources other than the FTC located to the north (American Louvre, Claremont Polychemical) and east of the offsite recovery well network.*

2.0 SITE OVERVIEW

A. The FTC is located on a 12-acre site on Winding Road near Round Swamp Road in Old Bethpage, New York. It is bordered on the north and west by the former Old Bethpage Landfill and on the south and east by Bethpage State Park (Figure 1). The site has been used since 1960 to conduct advanced fire fighting training for volunteer firemen, and continues today to serve these activities. Training exercises occur in open burn areas and in mock-up buildings located across the site (Figure 2).


Between 1970 and 1980, waste solvents, in addition to fuel oil and gasoline, were accepted at the site for use in training exercises. This practice was discontinued in 1980 and, since then, training exercises have been performed using only fuel oil and gasoline to ignite wooden pallets and straw.


The site contamination occurred primarily in the open burn areas, where fuel was poured directly onto the ground, and in the mock-up fields. In the mock-up buildings, unburned fuel and solvents were washed out of the buildings into drywells after each training session. These unlined drywells inadvertently served as conduits, carrying contamination down to the groundwater and contaminating the soils beneath the site.

B. In 1984, site improvements were made by the County to cap the burn areas and seal the drainage system leading to the drywells. A new drainage system was installed, including a concrete holding basin and an oil/water separator to treat training site runoff. The discharge from the oil/water separator is connected to the sanitary sewer system.

Based on the County's investigations conducted at the site, the New York State Department of Environmental Conservation (NYSDEC) added the FTC site to the States Registry of Inactive Hazardous Waste Disposal Sites in December 1987, and upgraded the site to Class 2 level, one that poses a significant threat to the public or the environment, in March 1988. The County signed an Order of Consent in February 1989, requiring a Remedial Investigation/Feasibility Study (RI/FS) to be performed. The RI/FS was completed in 1992.

A record of decision (ROD) that described the remedial program for the site was subsequently approved by the NYSDEC in February 1993. The ROD called for an asphalt/concrete cap with institutional controls for shallow soils, pumping and treating on-site groundwater using up to three extraction wells, and pumping and treating off-site groundwater using up to seven extraction wells. Remedial operations began in July 1999. The County of Nassau received notification of a site re-classification from class 2 to class 4 from the NYSDEC, Division of Environmental Remediation in May 2011 (appendix C).

The cleanup goals and remedial system termination criteria for the Fireman's Training Center Remediation are included in appendix B. The only significant changes to the selected remedy (pump & treat); involve the number and pumping configuration of the offsite recovery wells (ORW's) used for treatment and the discharge of treated effluent. The original treatment scheme called for the continuous pumping of the three onsite recovery wells (RW-1,2 and 3) and the simultaneous pumping of all seven offsite recovery wells (ORW-1,2,3,4,5,6 and 7). Over time the absence of floating petroleum product and both semi-volatile and volatile organic compounds in groundwater collected from onsite recovery wells RW-2 and RW-3 led to these wells being turned off. RW-1, the original onsite source area recovery well was most recently operated intermittently from September 2006 through February 2010. The well became inoperable due to a massive screen failure on February 24, 2010.

The suspected presence of volatile organic compounds derived from non-FTC sources in the offsite plume, led to the County undertaking a Modeling effort. The results of the groundwater model prepared by Camp, Dresser and McKee (CDM), consultants also led to the development of a more efficient pumping scheme using only offsite recovery wells (ORW-3, 4, 6 and 7). The modeling effort also verified that there are non-FTC sources impacting the remediation.

In order to enhance groundwater treatment operations using multiple wells, the County added an effluent connection to the sanitary sewer in July 2006. This connection was necessary due to the poor seasonal recharge characteristics of the existing offsite recharge basin. The addition of this connection allows for the discharge of treated effluent to both the offsite recharge basin and the sanitary sewer which increases Plant's reliability.

Based upon the steady progress observed in the treatment of both offsite and onsite groundwater and the mechanical failure of onsite recovery well RW-1 and the high cost and technical infeasibility of its replacement, the NCDPW Water and Wastewater Engineering Unit issued an RFP for a review of overall remedial system (onsite / offsite) performance and a comparison with groundwater termination criteria in June 2010.

3.0 Remedy Performance, Effectiveness, and Protectiveness

The overall remedy performance selected for the FTC Remediation has been very effective over the past 11 years of treatment operations. The county of Nassau recently received notification of a site reclassification from *Class 2* to *Class 4* indicating that the site *no longer presents a significant threat to public health and the environment*. Both onsite and offsite groundwater quality have shown great improvement with several monitoring wells which formerly contained pure petroleum product or exhibited TVOC concentrations exceeding 1,000 ppb currently below detectable limits.

The 2011 sampling results for groundwater collected from both onsite and offsite monitoring wells are presented in the following tables. These tables list only those compounds that have historically been detected at the Firemen's Training Center site.

		TONSITE GROUNDWATER SAMPLING RESULTS															
		FTC-	N-4A*			FTC-	W-4B*			FTC-	W-78*		FTC-W-9A*				
	Baseline Water				Baseline Water			_	Baseline Water				Baseline Water				
	Quality	DA	TE SAMPL		Quality	D	ATE SAMPL		Quality	D	ATE SAMPL		Quality	0	ATE SAMPL	ED	
VOLATILE ORGANICS COMPOUNDS	6/10/99		9/4/08	6/24/11	6/10/99		9/4/08	6/24/11	6/10/99	<	9/5/08	6/22/11	6/10/99	_	9/4/08	6/23/11	
1,1-Dichloroethane	BDL.		BOL	BDL	BOL		BDL	BDL	BDL BDL	_	BDL	BDL	BDL BDL	-	BDL	BDL	
1,1-Dichloroethene 1,2,3-Trichlorobenzene	BOL		BOL BDL	BDL BDL	BDL		BDL BDL	BDL BDL	BOL	-	BDL BDL	BDL BDL	BOL	-	BDL BDL	BDL BDL	
1,2,4,5-Tetramethylbenzene	NA	- 1	BDL	BDL	NA		BOL	BDL	NA		BDL	BDL	NA	-	BDL	BDL	
1,2,4-Trimethylbenzene	BOL		BDL	8DL	BOL	-	BDL	BDL	2.7		BDL	BDL	BDL	t	BDL	BDL	
1,2-Dichlorobenzene	BDL		BDL	BDL	2.1		BDL	BDL	BDL	1	BDL	BOL	BDL		BDL	BDL	
1,3,5-Trimethylbenzene	BOL		BOL	BDL	BDL		BDL	BDL	BOL		BDL	BDL	BDL		BDL	BDL	
1,4-Dichlorobenzene	BDL	_	BOL	BDL	7.2 NA	<u> </u>	8DL	BDL	BDL	-	4.2	22	BDL	1	BDL	BDL	
2-Methylnaphthalene	NA		BDL	BDL	NA		BDL	BDL	NA	-	BDL	BDL	NA	+	BDL	BDL	
4-Isopropyitoluene	BDL	-	8DL 8DL	BDL BDL	BDL	<u> </u>	BDL BDL	BDL BDL	BDL	<u> </u>	BDL BDL	BDL BDL	BDL	t	BDL BDL	BDL BDL	
Benzene	BDL	-	BDL	BDL	BDL	-	BDL	BDL	1.6		BDL	BOL	BDL	t	BDL	BDL	
c-1,2-Dichloroethene	BDL	Not	BDL	BDL	BDL	Not	BDL	BDL	2.1	Not	BDL	BDL	BDL.	Not	BDL	BDL	
Chlorobenzene	BDL	Smpld	BDL	BDL	1.8	Smpld	BDL	BOL	BDL	Smpld	3.6	4.9	BDL	Smpld	BDL	BDL	
Chloroform	BDL	5th qtr well	BOL	BDL	BDL	5th qtr well	BDL	BDL	BDL	5th qtr well	BDL	BOL	BDL	Sth qtr	8DL	BDL	
Ethyl Benzene	BOL	"°"	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BOL	- Tell	BOL	BOL	
Hexachlorobutadiene	BDL	- 4	BDL BDL	BDL BDL	BDL BDL		BDL BDL	BDL BDL	BDL 1.5		BDL BDL	BDL BDL	BOL		BDL	BOL	
Isopropylbenzene m,p-Xylene	BDL		BDL BDL	BDL BDL	BOL	-	BDL BDL	BDL	6.6	-	BDL	BDL BDL	BOL	<u> </u>	BDL	BDL	
Methyl t-Butylether (MTBE)	BDL		BDL	BDL	BDL	1	BDL	BDL	BDL		BDL	BDL	BOL	<u> </u>	BDL	BDL	
Methylene Chloride	BOL		3.3B	BDL	BOL		4B	BDL	BDL		5.3B	BDL	BDL	<u> </u>	3.5B	BDL	
Naphthalene	BDL		BDL	BDL	BOL		BDL	BDL	BDL		BDL	BDL	BDL		BDL	BICK	
N-Butylbenzene	NA	1	BOL	BDL	NA		BDL	BDL	NA		BDL	BDL	NA	1	BDL	BDL	
n-Propylbenzene	BDL		BDL	BDL	BDL		BDL	BDL	1.4		BDL	BDL	BDL		BDL	BDL	
o-Xylene	BDL NA		BDL	BDL	BDL NA	-	BDL	BDL	BDL		BDL	BDL	BDL	-	BDL	BDL	
p-Diethylbenzene	NA	-	BOL BOL	BDL BDL	NA NA	-	BDL BDL	BDL BDL	NA NA		BDL BDL	BDL BDL	NA NA	<u> </u>	BDL BDL	BDL	
p-Ethyltoluene p-isopropyltoluene	BDL	-	BOL	BDL	BDL	-	BDL	BOL	BDL	-	BDL	BDL	BDL	-	BDL	BOL	
sec-Butyl Benzene	BOL		BDL	BDL	BDL	1	BDL	BOL	BOL	-	BDL	BDL	BDL	-	BDL	BDL	
tert-Butyl Benzene	BOL		BDL	BDL	BDL	1	BDL	BDL	BDL		BDL	BDL	BDL	-	BDL	BDL	
Tetrachloroethene	BOL		BOL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	<u> </u>	BDL	BDL	
Toluene	BDL		BÔL	BDL	BOL		BDL	BDL	BDL	1	BDL	BDL	BDL		BDL	BDL	
Trichloroethene	BOL	_	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	_	BDL	BDL	
Vinyl Chloride	BOL		BDL	BDL	BOL		BDL	BDL	BDL	-	BDL	BDL	BDL		BDL	BDL	
SEMI-VOLATILE ORGANIC COMPOUN	NDS	-	001	001	3.2		1.2		BDL	-		0.01	-			-	
1,2-Dichlorobenzene 1,3-Dichlorobenzene	BDL	-	BDL BDL	BDL BDL	BOL	-	1.3 BDL	BDL BDL	BDL	-	8DL BDL	80L BDL	BDL		BDL BDL	BDL BDL	
1,4-Dichlorobenzene	BDL		BDL	BDL	BDL	-	BDL	81J	BDL	-	2.3J	1.1J	BDL	<u> </u>	BDL	BDL	
2,4-Dinitrotoluene	BDL		BÖL	BDL	BOL	1	BDL	BDL	BOL		BDL	BDL	BDL	<u> </u>	BDL	BDL	
2-Methylnaphthalene	NA		BDL	BDL	NA		BDL	BDL	NA		BDL,	BDL	NA.	-	BDL	BDL	
2-Methylphenol	NA		BDL	BOL	NA		BDL	BDL	NA		BDL	BDL	NA :		8DL	BDL	
3+4-Methylphenoi	NA		BDL	BDL	NA		BDL	BDL	NA .		BDL	BDL	NA		BDL	BDL	
Acenaphthene	BDL	2	BDL	BDL	BOL		BDL	BDL	BDL.		BDL	BDL	BDL		BDL	BDL	
Bis(2-Ethylhexyl)Phthalate	BDL		BDL	BDL	BOL	<u> </u>	BDL	BDL	BOL		BDL	1.6	BDL		BDL	BDF	
Diethyl Phthalate	BDL BDL	-	BDL BDL	BDL BDL	BDL	<u> </u>	BDL	BDL	BDL BDL	<u> </u>	4.9J	BOL	BDL	4	BDL	BDL	
Fluorene	BDL		BDL	BOL	BOL	<u> </u>	BDL BDL	BDL	BDL		BDL BDL	BDL	BOL	<u>+</u>	BDL BDL	BDL	
Nitrobenzene	BOL		BDL	BDL	BOL	-	BDL	BDL	BOL	1	BDL	BDL	BDL	+	BDL	BDL	
N-Nitrosodi-n-Propylamine	BOL		BDL	BDL	BOL		BDL	BOL	BOL		BDL	8DL	BDL	1	BDL	BDL	
INORGANIC PARAMETERS		1										3		1			
ph	6.73		NA	7.2	7.02		NA	6.6	6.51		NA	6.5	6.28		NA	6.15	
Specific Conductance	264	2	NA	192.0	1460		NA	1020	698		NA	2150	324		NA	430	
Alkalinity as Calcium Carbonate	BDL		NA	28.0	414	-	NA	212.0	158		NA	450.0	88		NA	82	
B.O.D.	BOL	-	NA	BDL	3 60	-	NA	82.6	3 45	-	NA	37.1	BDL	-	NA	BDL	
Chemical Oxygen Demand	80L 79.5		NA NA	BDL	60 151		NA NA	122.0	45 87.7	-	NA NA	228.0	95.7	+	NA	39.5	
Hardness, Total	18.48		NA NA	56.0 5.0	1.02	<u>+</u>	NA	56.8	BDL	t	NA NA	223.0	0.6	+	NA NA	93.2	
Total Phosphorus as P	BDL		NA	3.0 8DL	BDL	-	NA	BDL	0.09	-	NA	BDL	0.05	+	NA	BDL	
Sodium, Total	14.5		5.79	12.5	142		29.1	104 0	61.6		35.8	112.0	125	1	19.7	55.1	
Total Kjeldahl	0.33		NA	3.4	45.1		NA	28.0	8.84		NA	42.6	0.62		NA	BDL	
Ammonia as N	BOL		NA	3.7	35.3		NA	28.5	8.84	-	NA	16.5	0.35		NA	BDL	
Sulfate	32.7		NA	32.6	29.5		NA	BDL	31.5		NA	18.9	24		NA	19.4	
Chloride	5		NA	8.0	162		NA	145.0	95	-	NA	170.0	22.5		NA	52	
Total Dissolved Solids	190 BDL		NA	80.0	630	<u> </u>	NA	346.0	310	-	NA	589.0	164	4	NA	179	
Total Suspended Solids	BOL	-	NA BDL	BDL	5.5 BDL		NA BDL	28.0	44		NA BDL	21.0	80		NA	BDL	
Arsenic	BOL		0.014	BDL	BDL	-	0.027	BOL BDL	BDL	-	BDL	BDL BDL	BDL	+	BDL 0.009	BDL BDL	
Iron, Total	0.052		0.014	0.20	2.4	-	16.9	25.6	31.3	t	9.36	15.1_	0.638	+	0.009	0.011	
Manganese, Total	0.034		0.470	0.064	3.09	1	1.26	2.9	3.1	t	1.49	2.2	0.565	<u>+</u>	0.02	2.51	
	0.040		BDL		0.022	1			0.008	1		BDL	0.000	t		BDL	
Nickel, Total	0.010		DDL	BDL	0.022		0.014	0.013	0.000		0.013	BDL	0.023		adl	1 801	

Table 1a 2008 - 2011 ONSITE GROUNDWATER SAMPLING RESULTS

LABORATORIES: Inorganics, VOAs & Semi-Vois - American Analytical Laboratories, Farmingdale, N.Y "5th Ouarter Weil VOC and Semi Vol. results = ug/l Inorganic = mg/l 10

12.4.6 Haranghubersee 0. 0. 0. 0.0 </th <th></th> <th></th> <th>JUO - 2011 (</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>K 0/</th> <th></th> <th>2.114</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			JUO - 2011 (K 0/		2.114											
Unit Unit <th< th=""><th></th><th>_</th><th>FTC-W-14B*</th><th>1</th><th>FTC-W-23*</th><th></th><th>-</th><th>FTC-</th><th>W-31*</th><th></th><th></th><th>F</th><th>TC-W-3</th><th>2</th><th></th><th>F</th><th colspan="6">FTC-W-35</th></th<>		_	FTC-W-14B*	1	FTC-W-23*		-	FTC-	W-31*			F	TC-W-3	2		F	FTC-W-35					
UDALE ORGANICS COMPONINGS INVER IN		Water		Water			Water				Water					Water	1					
1.1.Schwarter Ed. M. Ed. M.		Quality		Quality			Quality	-		-	Quality	01000				Quality						
1.1.Octorestream 00 00.		BDI		801				100			801					6/11/99 BDL						
12-5-7 forestrongeneral EX		BDL		BDL							BDL					BDL						
12.4 Proc.		BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL				BOL				BDL		
12-Decomposingness 65. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BDL</td> <td></td> <td>48</td> <td>BDL</td> <td>29</td> <td>19</td>								_							BDL		48	BDL	29	19		
1.3.5 FriendlyBergare Ex. Ex. <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.5</td>				1							-									9.5		
1.4.Detrongenzyme 60. 100.				-8	-	_	-	-												BDL		
2. Methyspheringeringeringering 50. 60.				-																-		
4.4.560/mp/langening 50. 60.															_							
Accorde DD Eds. DD Eds. DD Eds. DD Eds. DD		NA		NA							1											
c1.2.2.0circlosoperane BS. B	Acetone	BDL	BDL BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL				BDL		
Chrodoszere DD. Hol.								-												BDL		
Chergering BD.																6-	-			BDL		
Ehry Bergere Bio.																						
Hexaechinocoladene Bio																	_					
Issogravityenzere Ins. Ins. <td></td>																						
mp. Zylere mo. for.		BDL		BDL			23.1				17.0									BDL		
Methyler (MISC) Bio.	m,p-Xylene	_							BDL		33.8	1.6	BDL	BDL	BDL		2.8	ØDL		1.7J		
Nachthann IBC I												-								BDL		
n-Burgheargame NA Box <																				5.3B		
n-Programme BN				_								-								3.9		
0-Xindre BD <																						
p-Detryburgenzene M. BO. BD.		BDL		BDL			194				10,1					457				BDL		
p-bspropyholuene BN.	p-Diethylbenzene	NA	BDL BDL	BDL	BDL	BDL		BDL		BDL	NA			BDL								
sec_Buyl Berzene BDL DDL DDL BDL																				3		
Inter-Bully Benzene B0. D0. B0.												-								BDL		
Tetrachonorethene BDL											_											
Torchiorgehne BDL <		_									-	-				-						
Theoreethene BDL BDL <t< td=""><td></td><td>BDL</td><td></td><td>BDL</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.7</td><td></td><td></td><td></td><td></td><td>392</td><td></td><td></td><td></td><td></td></t<>		BDL		BDL							2.7					392						
SEMI-VOLATILE ORGANIC COMPONIDS Image: Proceeding of the system of the sys	Trichloroethene	BDL	BDL 8DL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			BDL		
1.2.Dehrorbenzene BD. BD. <td></td> <td>BDL</td> <td>BDL BDL</td> <td>BDL</td> <td>BOL</td> <td>BDL</td> <td>BDL</td> <td>BDL</td> <td>BDL</td>		BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL		
13.Dechlorobenzene BDL		IDS													_			,				
14-Dichlorobenzene BD.		BDL				_																
2:4-Dintroduene 90. 95.		<u>.</u>														·						
2-Methylhaphtheine MA BOL BUL BOL				_		_		-														
2-Methylphenol NA BOL BUL MA BDL BDL <t< td=""><td></td><td>NA</td><td></td><td>NA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.9J</td></t<>		NA		NA																2.9J		
Acenaphtherie BDL <											8	BDL		BDL	BDL			BDL		BDL		
Anthracene B0L				_		_		-								-				BDL		
Dietnyl Prithalate BDL																				.58J		
Fluorene BDL BD											0						-					
Naphthalene BDL BDL <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td></th<>				-							0					-	-					
Nitrobenzene BDL BDL <t< td=""><td></td><td>BDL</td><td></td><td>-</td><td></td><td></td><td>()</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		BDL		-			()	-														
Inbrammer Doc Doc <thdoc< th=""> Doc <thdoc< th=""> <thdoc<< td=""><td></td><td></td><td>BDL BDL</td><td></td><td></td><td>BDL</td><td>BOL</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ð</td><td></td><td></td><td></td><td>BDL</td></thdoc<<></thdoc<></thdoc<>			BDL BDL			BDL	BOL									ð				BDL		
ph 6.17 NA 6.91 6.99 NA 6.56 6.48 NA 6.57 6.89 6.64 6.68 6.64 6.56 6.34 5.83 6.41 6.19 6.08 6.57 Alkalinity as Calcium Carbonate 60 NA 528 NA 648 632 NA 445 443 776 446 495 454 466 260 266 252 215 417 Alkalinity as Calcium Carbonate 600 NA 52 NA 414 71 NA 433 52 NA 600 430 6 600 800 <		BDL	BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	_ 0.66	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
Specific Conductance 568 NA 400 832 NA 648 632 NA 445 443 776 448 495 454 466 280 266 202 215 417 Alkalinity as Calcium Carbonate 60 NA 52 182 NA 114 71 NA 197 190 179 231 201 204 197 56 76.8 69.7 54.5 101. B.O.D. BDL NA 8DL NA 146 28.9 54.9 43 BDL 17.70 4.51 80. BDL		6 17		0.00		0.00	8.40		0.07	0.00	0.04	1 0.05				F 00						
Alkalinity as Calculum Carbonate 60 NA 52 182 NA 114 71 NA 197 190 120 231 201 204 197 56 76.8 697 54.5 101 B. D. NA BDL NA BDL NA BDL 7 NA BDL 43.3 52 NA BDL 43.0 6 BDL BDL BDL BDL NA 231 201 204 137 56 76.8 697 54.5 101 BDL BDL NA 231 201 204 130 50 BDL BDL BDL NA 120 231 201 204 137 156 160 130 130 6.5 BDL BDL BDL ADD ADD ADD ADD 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110											776					5.83				6.51		
B.O.D. BOL NA BDL NA BDL T NA BDL AA BDL T NA BDL BDL BDL BDL BDL AA BDL AA BDL AA BDL AA BDL AA Chemical Oxygen Demand BDL NA 262 36 NA 146 28.9 43 BDL 17.70 4.51 BDL BDL BDL NA 26.2 36 NA 146 28.9 54.9 43 BDL 17.70 4.51 BDL <																56						
Chemical Oxygen Demand BDL NA 28.9 BDL NA 26.2 36 NA 14.6 28.9 54.9 43 BDL 17.70 4.51 BDL BDL <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0					7				0											
Hardness, Total 190 NA 103 52.6 NA 752 50.8 NA 119 156 108 137 156 160 152 45 60.1 66.3 56.9 90.0 Nitrate as N 2.59 NA 1.24 4.07 NA 11.10 BDL NA 0.84 2.25 BDL 0.72 0.482 0.61 0.33 1.72 178 3.96 1.74 0.83 Total Phosphorus as P BDL NA BDL 10.6 32.0 65.8 80.5 NA 13.1 26.0 56.7 21.9 6.49 15.50 BDL BDL BDL BDL 18.0 13.3 13.0 26.0 1.42 16.9 NA 35.1 BDL 2.70 6.14 1.08 1.10 3.80 12.3 18.0 Total Kjeldahl 0.42 NA 36.7 24.9 NA 40.3 33.4 NA 10.7 8.50 6.60 2.60<		BOL		-0			36													8DL		
Total Phosphorus as P BDL NA BDL DOS NA BDL BDL <t< td=""><td></td><td></td><td></td><td></td><td></td><td>75.2</td><td></td><td>NA</td><td>119</td><td>156</td><td></td><td>137</td><td>156</td><td>160</td><td>152</td><td></td><td>60 1</td><td>66.3</td><td>56.9</td><td>90.0</td></t<>						75.2		NA	119	156		137	156	160	152		60 1	66.3	56.9	90.0		
Sodium, Total 23.9 10.2 14.2 106 32.0 65.8 80.5 NA 13.1 26.0 56.7 21.9 6.49 15.50 eo. 18.4 8.02 5.830 12.3 18.0 Total Kjeldahi 0.42 NA BDL 16.9 NA BDL 623 NA 3.51 BDL 2.70 6.14 1.08 1.10 3.85 0.99 eu. 0.294 0.57 2.83 Armonia as N BDL NA 36.7 24.9 NA 403 33.4 NA BDL 6.85 0.69 2.6 19.5 11.2 80.0 6.87 Suffate 158 NA 36.7 24.9 NA 403 33.4 NA 80. R0. 16.0 6.69 26 19.5 11.2 80.0 6.87 Chloride 20 NA 400 NA 40.3 33.4 NA 80.1 80.1 13.0 13.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>0.36</td><td></td><td></td><td></td><td>1.74</td><td>0.82</td></t<>											_				0.36				1.74	0.82		
Total Kjeldahl 0.42 NA BDL 16.9 NA BDL 6.23 NA 3.51 BDL 2.70 6.14 1.08 1.10 3.85 0.99 BDL 0.294 0.57 2.87 Ammonia as N BDL NA 0.92 16.9 NA 8DL 6.24 NA 1.17 1.84 2.69 1.42 0.855 0.59 0.76 0.188 0.078 BDL BDL Sulfate Sulfate 156 NA 36.7 24.9 NA 40.3 33.4 NA BDL 48.1 10.50 29.90 1.68 1.12 BDL 6.87 Chloride 20 NA 40 100 NA 50 80 NA 22 3 90 22 2.0 48 11 2.0 14.7 2.15 44.0 Total Dissolved Solids 347 NA 2.91 3.84 NA 4.09 3.06 NA 2.38 186		23.0																		BDL		
Ammonia as N BDL NA 0.92 16.9 NA BDL RA BDL BDL RA LT T 1.84 2.69 T.42 D.855 D.65 D.47 D.76 D.188 D.278 BDL BDL SUIfate Suifate 158 NA 36.7 24.9 NA 403 33.4 NA BDL BBL 48.1 10.50 29.90 15.60 6.69 26 19.5 11.2 BDL 68.3 Chlonde 20 NA 40 306 NA 238 186 377 217 276 29.9 240 140 115 13.20 147.0 207.1 Total Suspended Solids 1 NA 409		0.42									2.70					0.00						
Suffate 158 NA 36.7 24.9 NA 40.3 33.4 NA BDL BDL 48.1 10.50 29.90 15.60 6.69 26 19.5 11.2 BDL 6.87 Chloride 20 NA 40 100 NA 50 80 NA 22 3 90 22 20 48 11 20 24 14.5 21.5 44.0 20.7		BDL									2.69					0.76						
Chloride 20 NA 40 100 NA 50 80 NA 22 3 90 22 20 48 11 20 24 14.5 21.5 44.0 Total Dissolved Solids 347 NA 291 384 NA 409 306 NA 238 186 377 217 276 299 240 140 115 132.0 147.0 207.1 Total Suspended Solids 1 NA 80L 40 NA 401 10 102 70 30 31 37 8 9 12.0 80L		158									48.1									6.87		
Total Dissolved Solids 347 NA 291 384 NA 409 306 NA 238 186 377 217 276 299 240 140 115 132.0 147.0 207.0 Total Suspended Solids 1 NA BDL 1 NA BDL 40 NA 40 10 102 70 30 31 37 8 9 12.0 BDL BDL <td>Chloride</td> <td>20</td> <td>NA 40</td> <td>100</td> <td></td> <td>50</td> <td>80</td> <td></td> <td></td> <td></td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td></td> <td></td> <td></td> <td>44.0</td>	Chloride	20	NA 40	100		50	80				90					20				44.0		
Arsenic BDL BDL BDL BDL BDL BDL D1 BDL D1 BDL D1 BDL D1 BDL D1 BDL D1 BDL BDL BDL D1 BDL D1 BDL D1 BDL								NA	238	186		217	276	299	240		115	132.0		207.0		
Aluminum, Total BDL DDL D002 BDL D012 D012 <thd012< th=""> D012 <thd012< th=""> <thd0< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.50</td></thd0<></thd012<></thd012<>																				3.50		
Iron, Total 0.422 0.025 0.018 0.013 0.028 0.100 24.3 NA 24.0 16.2 64.9 46.50 26.80 29.10 33.40 20.4 6.2 4.320 2.1 4.85 Manganese, Total 4.37 0.322 0.22 0.277 0.57 0.25 2.31 NA 10.60 1.26 5.39 1.49 1.71 1.29 1.48 3.25 0.34 0.525 0.50 0.49 Nickel, Total BDL																				BDL		
Manganese Total 4.37 0.322 0.22 0.277 0.57 0.25 2.31 NA 10.60 1.26 5.39 1.49 1.71 1.29 1.48 3.25 0.34 0.525 0.04 Nickel, Total BDL BDL BDL 0.014 BDL BDL 0.014 BDL 0.006 NA 0.012 BDL 0.008 BDL 0.005 0.008 0.0114 0.008 BDL											0.012									0.008		
Nickel, Total BDL BDL BDL BDL BDL BDL D. D.0.014 BDL BDL D.0.006 NA 0.012 BDL 0.008 BDL 0.008 BDL 0.006 0.0114 0.008 BDL											5.39											
											0.002									BDL		
	Chromium, Total	0.002	BDL BDL		BDL	8DL	0.006	NA	BDL	0.016		BDL	0.014		BDL					BOL		

Table 1b 2008 - 2011 ONSITE GROUNDWATER SAMPLING RESULTS

8DL LABORATORIES Inorganics, VOAs & Semi-Vols - American Analytical Laboratories, Farmingdale, N.Y

*5th Quarter Well

BDL NOTE; VOC and Semi Vol. results = ug/ Inorganic = mg/l

8

Table 2a

2011 OFFSITE GROUNDWATER SAMPLING RESULTS

		BP-	3B*			BP	-3C			BP-4B					
	Baseline				Baseline				Baseline						
	Water Quality	DA	TE SAMPL	ED	Water Quality	DA	TE SAMPL	ED	Water Quality	DA	TE SAMPLE	D			
VOLATILE ORGANICS COMPOUNDS	11/00/90	4/8/10	7/15/10	3/3/11	11/00/90	4/7/10	7/12/10	3/2/11	6/8/99	3/18/10	9/2/10	3/7/11			
1,1,1 Trichloroethane	BDL	BDL	BDL	BDL	2.0	1.0	0.6	BDL	BDL	BDL	BDL	BDL			
1,1,1-Trichloromethane	NA	BDL	8DL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	BDL	BDL	BDL	NA	BDL	1.1	BDL	NA	BDL	8DL	BDL			
1,1,2 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,1-Dichloroethane	BOL	BDL	BDL	BDL	0.9	3.1	3.5	BDL	4.8	BDL	BDL	BDL			
1,1-Dichloroethene	BDL	8DL	BDL BDL	8DL BDL	BDL	BDL BDL	BDL BDL	BDL BDL	4.4	BDL BDL	BDL BDL	BDL BDL			
1,2,4-Trimethylbenzene	NA NA	BDL	BDL	BDL	BDL NA	BDL	BDL	BDL	BDL BDL	BDL	BDL	BDL			
1,2-Dibromoethane 1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,2-Dichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL	BDL	BDL			
1,3,5-Trimethylbenzene	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
1,4-Dichlorobenzene	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	8.5	BDL	.56J	BDL			
Carbon Tetrachloride	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Chlorobenzene	BDL	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	26.2	BDL	BDL	BDL			
Chlorodifluoromethane	NA	BDL	BDL	BDL	NA	BDL	BDL	BDL	NA	BDL	BDL	BDL			
Chloroform	BDL	BDL	.39J	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Chloromethane	NA	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
cis-1,2-Dichloroethene	NA	3.8	1.9	0.7	11.0	80.0	66.0	15.0	117.0	.41J	8DL	BDL			
Dichlorodifluoromethane	NA	BDL	8DL	BDL	NA	8DL	BDL	BDL	BDL	BDL	BDL	BDL			
Ethyl Benzene	BDL	BDL	8DL	BDL	BDL	8DL	BDL	BDL	155.0	BDL	BDL BDL	8DL			
Isopropylbenzene	NA	BDL BDL	BDL BDL	BDL BDL	NA	BDL	BDL BDL	BDL	9.8	BDL BDL	BDL	BDL BDL			
	BDL	BDL	BDL	BDL	NA BDL	BDL	BDL	BDL	4.6	BDL	BDL	BDL			
Methyl t-Butylether (MTBE)	BDL	4.7B	1,1B	3.8B	BDL	6.2B	BDL	5.2B	5.7 BDL	BDL	6.6B	5.8B			
Methylene Chloride	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	20.0	BDL	BDL	8DL			
n-Propylbenzene	NA	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
o-Xylene	2.0	BDL	BDL	BDL	NA	BDL	BDL	BDL	37.3	8DL	BDL	BDL			
p-Ethyltoluene	NA	BDL	BDL	BDL	NA	BDL	BDL	BDL	NA	BDL	BDL	BDL			
t -1.2-Dichloroethene	NA	BDL	BDL	BDL	BDL	BDL	1.1	BDL	BDL	BDL	BDL	BDL			
Tetrachloroethene	BDL	16.0	11.0	3.4	12.0	6.6	5.2	1.6	597.0	1.10	BDL	BDL			
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	32.1	BDL	BDL	BDL			
Trichloroethene	BDL	BDL	BDL	BDL	3.0	BDL	8.5	2.1	BOL	BDL	BDL	BDL			
Trichlorofluoromethane	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Vinyl Chloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	10.6	BDL	BDL	BDL			
SEMI-VOLATILE ORGANIC COMPOUNDS		_						_							
1,2-Dichlorobenzene	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA			
2,4-Dinitrotoluene	BDL	NA	NA	NA	BDL	NA	NA	NA	BDE	NA	NA	NA			
Bis(2-Ethylhexyl) Phthalate	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA			
INORGANIC PARAMETERS				0.00				1 11		6.54	E 40	6 75			
ph	5.03	NA	NA	6.26	5.64	NA NA	NA	NA NA	4.96	6.51	5.10	5.75 507.0			
Specific Conductance	81.8 BDL	NA NA	NA NA	56.8 9.1	30.0 BDL	NA NA	NA NA	NA NA	248 9	501.0 10.1	7.07	11.10			
Alkalinity as Calcium Carbonate	BDL	NA NA	NA NA	9.1	8DL 1.0	NA	NA NA	NA	BDL	BDL	BDL	BDL			
Chemical Oxygen Demand	BDL	NA	NA	BDL	40.6	NA	NA	NA	BDL	BDL	BDL	BDL			
Hardness, Total	14.9	NA	NA	11.8	1.9	NA	NA	NA	49.8	89.9	91.6	86.7			
Nitrate as N	4.15	NA	NA	1.1	BDL	NA	NA	NA	0.53	3.12	2.45	1.18			
Total Phosphorus as P	BDL	NA	NA	BDL	BDL	NA	NA	NA	8DL	BDL	BDL	BDL			
Sodium, Total	6.30	NA	NA		1.91	NA	NA	NA	_23.4	17.5	32.40				
Total Kjeldahl	0.24	NA	NA	2.8	0.16	NA	NA	NA	0.16	1.3	2.14	3.98			
Ammonia as N	BDL	NA	NA	8DL	BDL	NA	NA	NA	BOL	1.19	2.15	2.06			
Sulfate	BDL	NA	NA NA	BDL 9.0	6.4	NA NA	NA NA	NA NA	40.8	98.4 84.0	66.10 85.00	70.40			
Chloride Total Dissolved Solids	10.0	NA NA	NA NA	27.0	<u>5.0</u> 47	NA NA	NA NA	NA NA	30 132	278.0	302.0	307.0			
Total Dissolved Solids Total Suspended Solids	BDL	NA NA	NA NA	BDL	1.0	NA	NA	NA	BDL	4.0	BDL	8DL			
Aluminum, Total	BDL	NA	NA	0.01	0.045	NA NA	NA	NA	BDL	0.091	0.040	0.029			
Iron, Total	0.106	NA	NA	0.03	1.39	NA	NA	NA	0.015	0.363	0.035	0.043			
Manganese, Total	0.011	NA	NA	0.01	0.006	NA	NA	NA	0.13	0.316	0.343	0.325			
Nickel, Total	BDL	NA	NA	0.01	BOL	NA	NA	NA	0.020	0.011	0.008	0.008			
Chromium, Total	BDL	NA	NA	BDL	BDL	NA	NA	NA	BDL	0.010	BDL	BDL			

LABORATORIES: Inorganic, VOA & SEMI-VOL: American Analytical Laboratones, Farmingdale, N.Y

5th Quarter Well

NOTE: VOC and Semi Vol. results = ug/l

Table 2b

2011 OFFSITE GROUNDWATER SAMPLING RESULTS

		BP-4C*		BP-9B*		BP-1	10C*		BP-12B					
	Baseline Water		Baseline Water		Baseline Water				Baseline Water					
	Quality	DATE SAMPLED	Quality	DATE SAMPLED	Quality		TE SAMPL	ED	Quality		BDL BDL			
VOLATILE ORGANICS COMPOUNDS	6/8/99	3/11/11	6/4/99	3/17/11	6/4/99	9/9/09	7/28/10	3/14/11	6/4/99	3/19/10		3/14/11		
1,1,1 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
1,1,1-Trichloromethane 1,1,2-Trichloro-1,2,2-Trifluoroethane	BDL NA	BDL BDL	BDL	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL	3.3 NA			BDL		
1,1,2-Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			BDL BDL		
1,1-Dichloroethane	3.3	BDL	6.4	0.5	BDL	3.2	3.2	1.7	9.2	BDL		BDL		
1,1-Dichloroethene	4.0	BDL	3.6	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
1,2,4-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	8DL	BDL	BDL	BDL	BDL		BDL		
1,2-Dibromoethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
1,2-Dichloroethane	BDL	8DL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
1,3,5-Trimethylbenzene	BDL	8DL	8DL	BDL	BDL	8DL	BDL	BDL	BDL			BDL		
1,4-Dichlorobenzene Benzene	BDL 9.0	BDL	BDL	0.6	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BDL BDL			BDL BDL		
Carbon Tetrachloride	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL			BDL		
Chlorobenzene	34.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL .		
Chlorodifluoromethane	NA	BDL	NA	BDL	NA	BOL	BDL	BDL	NA	BDL		BDL		
Chloroform	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
Chloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL		
cis-1,2-Dichloroethene	152.0	0.7	106.0	1.7	BDL	2.9	3.7	1.8	78.9	BDL		BDL		
Dichlorodifluoromethane	BDL	8DL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
Ethyl Benzene	206.0	BDL	BDL	8DL	BDL	BDL	BDL	BDL	BDL	BDL		BDL		
Isopropylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL			BDL		
m,p-Xylene Methyl t-Butylether (MTBE)	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL			BDL BDL		
Methylene Chloride	BOL	3.38	BDL	4.6B	BDL	3.4B	BDL	BDL	BDL			4.3B		
Naphthalene	BDL	8DL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
n-Propylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
o-Xylene	1.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
p-Ethyltoluene	NA	BDL	NA	BDL	NA	BDL	BDL	BDL	NA	BDL	BDL	BDL		
t -1,2-Dichloroethene	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
Tetrachloroethene	30.4	2.3	98,9	0.9	BDL	BDL	BDL	BDL	30.7	.96J	BDL	BDL		
Toluene	BDL	BDL .	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL		
Trichloroethene	BDL BDL	BDL BDL	BDL BDL	BDL	BÒL BÒL	BDL BDL	BDL	BDL	19.8 BDL	BDL	BDL	BDL		
Trichlorofluoromethane Vinyl Chloride	5.0	BDL	BUL	BDL BDL	BDL	BDL	BDL 2.5	BDL BDL	BDL	BDL BDL	BDL BDL	BDL BDL		
SEMI-VOLATILE ORGANIC COMPOUN		BUL	DUL	OUL	DUL	BUL	2.3	BUL	DUL	BUL	BUL	BDL		
1,2-Dichlorobenzene	BDL	NA	BDL	NA	NA	NA	NA	NA	BDL	NA	NA	NA		
2,4-Dinitrotoluene	3.9	NA	BDL	NA	BDL	NA	NA	NA	3.3	NA	NA	NA		
Diethyl Phthalate	BOL	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA	NA	NA		
INORGANIC PARAMETERS														
ph	5.08	5.3	4.97	4.92	5	5.10	NA	4.81	4.86	5.71	5.30	5.06		
Specific Conductance	119	217.0	89.6	364.0	44.2	227	NA	398	454	328	398	485		
Alkalinity as Calcium Carbonate	8	7.1	5	9.09	BDL	5.05	NA	5	BDL	5.05	4.0	6.1		
B.O.D. Chemical Oxygen Demand	BDL	8.0	BDL BDL	BDL 15.40	BDL BDL	BDL BDL	NA	BDL BDL	BDL.	BDL BDL	BDL BDL	BDL 11.C		
Hardness, Total	24.1	44.6	16.2	15.40 36	6.7	44.80	NA	62	41.2	31.90	33.1	11.6 40.9		
Nitrate as N	2.3	3.3	3.62	1.82	1.8	1.61	NA	0.85	3.53	4.16	3.04	2.86		
Total Phosphorus as P	BDL	BDL	BDL	4.57	BDL	BDL	NA	BDL	BDL	8DL	BDL	BDL		
Sodium, Total	10.3	7.7	L/A	20.20	LA	5.34	NA		L/A	15.50	33.00	24.50		
Total Kjeldahl	BDL.	0.220	0.13	0.638	BDL	BDL	NA	0.566	BDL	BDL	0.59	1.83		
Ammonia as N	BDL	0.026	BDL	BDL	BDL	BDL	NA	0.032	BDL	BDL	BDL	BDL		
Sulfate	5.06	5.0	BDL	BDL	BDL	2.530	NA	BDL	23.2	5.32	6.2	3.9		
Chloride	15	32.0	12.5	75.00	7.5	69.00	NA	91	95	80.50	92	101		
Total Dissolved Solids	64	102.0	48	176	16	141.0	NA	221	223	174	203	240		
Total Suspended Solids	BDL.	BDL	BDL BDL	BDL	BDL BDL	1.00	NA	BDL	BDL	4	BDL	BDL		
Aluminum, Total	0.003	0.012	BDL	0.018	BDL	0.046	NA NA	0.065	BDL	0.124	0.028	0.037		
Manganese, Total	0.005	0.028	0.003	0.025	0.001	0.025	NA	0.019	0.015	0.051	0.051	0.028		
Nickel, Total	0.019	BDL	0.005	0.006	BDL	0.0023	NA	0.009	0.011	0.036	0.043	0.038		
Chromium, Total	BDL.	BDL	BDL	BDL	BDL	BDL	NA	BDL	BDL		0.006			
P	-													

LABORATORIES Inorganic, VOA & SEMI-VOL⁻ American Analytical Laboratones, Farmingdale, N.Y. *5th Quarter Well VOC and Semi Vol. results = ug/l Inorganic = mg/l

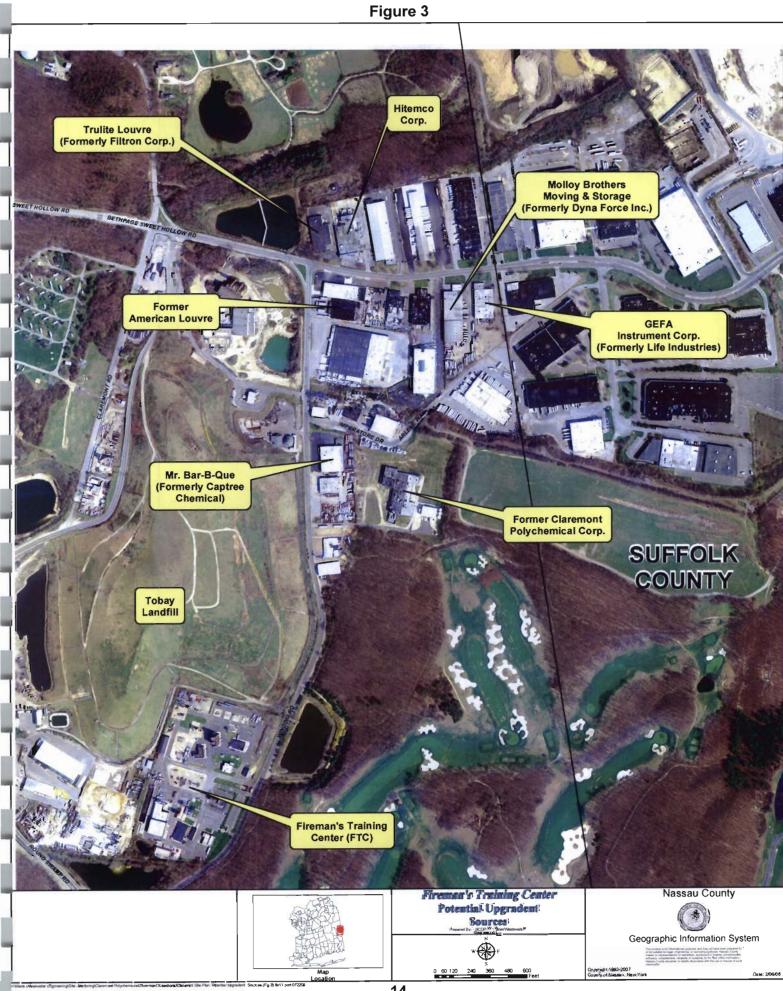
Table 2c
2011 OFFSITE GROUNDWATER SAMPLING RESULTS

		BP-1	3B*	_		BP-1	13C*				BP-14B			BP-	14C*	
	Baseline Water			1	Baseline Water				Baseline Water				Baseline Water			
	Quality	DA	TE SAMPL	ED	Quality		TE SAMPL	ED	Quality		TE SAMPL		Quality		TE SAMPLE	D
VOLATILE ORGANICS COMPOUNDS	2/1/00		5/24/11		2/1/00	9/8/08	5/24/11		4/11/02	3/19/10	8/30/10	3/4/11	4/11/02	3/7/08	3/4/11	
1,1,1 Trichloroethane	BDL	BDL	BDL		BDL	BDL	BDL		50.6	3.0	1.5	BDL	BDL	9.7	BDL	
1,1,1-Trichloromethane	BDL	BDL	BDL		BDL	BDL	BDL	_	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	BDL	BDL		NA	BDL	BDL		NA	BDL	BDL	BDL	NA	BDL	BDL	
1,1,2 Trichloroethane	BDL	BDL	BDL	2	BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,1-Dichloroethane	BDL	BDL	.52J		BDL	BDL	BDL		5.1	1.3	BDL	BDL BDL	BDL	BDL BDL	BDL BDL	
1,1-Dichloroethene	BDL	BDL	BDL BDL		BDL	BDL BDL	BDL BDL	_	25	2.6	1.0 BDL	BDL	BDL	BDL	BDL	
1,2,4-Trimethylbenzene	BDL	BDL BDL	BDL	_	BDL BDL	BDL	BDL	_	1.4	1.6 BDL	BDL	BDL	BDL BDL	BDL	BDL	
1,2-Dibromoethane	BDL.	BDL	BDL	-	BDL	BDL	BDL BDL		BDL BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,2-Dichlorobenzene 1,2-Dichloroethane	BDL	BDL	BDL	-	BDL	BDL	BDL	_	15.4	3.3	.72J	BDL	BDL	BDL	BDL	
1.3.5-Trimethylbenzene	BDL	BDL	BDL	-	BDL	BDL	BDL	-	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
1,4-Dichlorobenzene	BOL	BDL	BDL		BDL	BDL	BDL	_	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Benzene	BDL	BDL	BDL	-	BDL	BDL	BDL	_	83.7	79.0	42.0	9.8	BDL	BDL	BDL	
Carbon Tetrachloride	BDL	BDL	BDL		8DL	BDL	BDL	-	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Chlorobenzene	BDL	BDL	BDL	1	BDL	BDL	BDL	-	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Chlorodifluoromethane	NA	BDL	BDL		NA	BDL	BDL		NA	BDL	BDL	BDL	NA	BDL	BDL	
Chloroform	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Chloromethane	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
cis-1,2-Dichloroethene	BDL	BDL	BDL		BDL	BDL	BDL		244	34.0	19.0	5.4	BDL	4.8	1.1	
Dichlorodifluoromethane	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Ethyl Benzene	BDL	BDL	BÔL		BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BOL	BDL	
Isopropylbenzene	BDL	BDL	BDL		BDL	BDL	BDL		BDL	1.5	BDL	BDL	BDL	BDL	BDL	
m,p-Xylene	BDL	BDL	BDL	0	BOL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Methyl t-Butylether (MTBE)	BDL	BDL	BDL		BOL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Methylene Chloride	BDL.	3.3B	6.4B		BDL	4.3B	6.9B		BDL	.77B	12B	4.9B	BDL	LA	4.9B	
Naphthalene	BDL	BDL	BDL	1	BDL	BDL	BDL	_	BDL	BDL	BDL	BDL	BDL	BDL	BDL	
n-Propylbenzene	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	BDL	BDL	BDL	BDL	
o-Xylene	BDL	BDL	BDL		BDL	BDL	BDL		4.3	2.7	BDL	BDL	BDL	BDL	BDL BDL	
p-Ethyltoluene	NA	BDL	BDL		NA	BDL	BDL	-	NA	BDL	BDL BDL	BDL BDL	NA	BDL BDL	BDL	
t -1,2-Dichloroethene	BDL	BDL	BDL	-	BDL	BDL BDL	BDL BDL		BDL	BDL 59,0	32.0	15.0	BDL	2.4	3.0	
Tetrachloroethene	BDL	BDL BDL	BDL BDL		BDL	BDL	BDL	-	375	59.0 BDL	BDL	BDL	BDL	BDL	BDL	
Toluene	BOL	BDL	BDL	-	BDL BDL	BDL	BDL	-	80L 40.8	8.0	3.0	1.4	BDL BDL	BDL	BDL	
Trichloroethene	BOL	BDL	BDL	-	BDL	BDL	BDL	-	40.8 BDL	BDL	BDL	BDL	BDL	BDL	BDL	
Trichlorofluoromethane Vinyl Chloride	BDL	BDL	BDL		BDL	BDL	BDL	-	9.2	2.8	1.4	BDL	BDL	BDL	BDL	
SEMI-VOLATILE ORGANIC COMPOUN		BUL	BDL		BUL	BDL	DDL		9.2	2.0	1.7	DOL	BUL	DDL	DOL	
1,2-Dichlorobenzene	NA	NA	NA		NA	NA	NA	_	8DL	NA	NA	NA	NA	NA	NA	
2.4-Dinitrotoluene	BDL	NA	NA		NA	NA	NA		BDL	NA	NA	NA	NA	NA	NA	
Bis(2-Ethylhexyl) Phthalate	BDL	NA	NA	-	NA	NA	NA		BDL	NA	NA	NA	NA	NA	NA	
INORGANIC PARAMETERS								_						-		
ph	NA	NA	NA		NA	NA	NA		5.64	6.02	5.29	6.02	NA	NA	6.29	
Specific Conductance	NA	NA	NA		NA	NA	NA		30.0	406	433	503	NA	NA	91.2	
Alkalinity as Calcium Carbonate	NA	NA	NA		NA	NA	NA		BDL	9.09	7.07	11.1	NA	NA	6.1	
B.O.D.	NA	NA	NA		NA	NA	NA		1.0	BDL	BDL	BDL	NA	NA	BDL	
Chemical Oxygen Demand	NA	NA	NA		NA	NA	NA		40.6	BDL	BDL	BDL	NA	NA	BDL	
Hardness, Total	NA	NA	NA		NA	NA	NA		1.9	67.7	70.8	80.9	NA	NA	19.7	
Nitrate as N	NA	NA	NA		NA	NA	NA		BDL	2.33	2.3	1.75	NA	NA	2.6	
Total Phosphorus as P	NA	NA	NA		NA	NA	NA		BDL	BDL	BDL	0.764	NA	NA	BDL	
Sodium, Total	NA	2.50	NA		NA	0.541	NA		1.91	15.1	15.2	22.1	NA	NA	3.53	
Total Kjeldahl	NA	NA	NA		NA	NA	NA		0.16	BDL	0.374	1.8	NA	NA	2.4	
Ammonia as N	NA	NA	NA		NA	NA	NA		BDL	BDL	BDL	BDL	NA	NA	BDL	
Sulfate	NA	NA	NA		NA	NA	NA		6.4	23	21.1	12.3	NA	NA	BDL	
Chloride	NA	NA	NA	1	NA	NA	NA		5.0	97.5	107	117	NA	NA	15.5	
Total Dissolved Solids	NA	NA	NA		NA	NA	NA		47	232	256	285	NA	NA	57.0	
Total Suspended Solids	NA	NA	NA		NA	NA 0.070	NA		1.0	2	BDL	BDL	NA	NA	BDL 0.045	
Aluminum, Total	NA	0.014	NA	<u> </u>	NA	0.070	NA		0.045	0.044	0.014	0.02	NA	NA NA	0.015	
Iron, Total	NA	0.011	NA		NA	0.025 BDL	NA	-	1.39	0.184	0.020	0.230	NA	NA NA	0.020	
Manganese, Total	NA	0.008	NA NA	-	NA	BDL BDL	NA NA		0.006	0.028	0.031 BDL	0.037	NA		BDL	
Nickel, Total	NA	BDL BDL	NA NA	-	NA	BDL	NA		BDL	0.008	BDL	BDL	NA NA		BOL	
Chromium, Total	NA	BDL	I NA	1	NA_	BUL		L	L BOL	0.014	L ODL	BUL	I NA	L NA	BUL	

LABORATORY: Inorganic. VOA & SEMI-VOL. Amencan Analytical Laboratories, Farmingdale, N Y. *5th Quarter Well VOC and Semi Vol. results = ug/l Inorganic ≈ mg/l Table 2d

2011 OFFSITE GROUNDWATER SAMPLING RESULTS

		BP-	15B			BP-	15C*			OBV	-1B*			OBV	-1C*	
	Baseline Water				Baseline Water				Baseline Water				Baseline Water			
	Quality	DA	TE SAMPL	ED	Quality	DA	TE SAMPL	ED	Quality	DA	TE SAMPL	ED	Quality	DA	TE SAMPLED	
VOLATILE ORGANICS COMPOUNDS	10/28/05	3/18/10	8/31/10	3/7/11	10/28/05	9/30/08	3/24/11		9/19/05	9/30/08	5/27/11		9/19/05	9/11/08	5/27/11	
1,1,1 Trichloroethane	22.1	8.4	6.7	1.9	BDL	BDL	BDL		1.6	BDL	BDL		4.8	4.4	BDL	
1,1,1-Trichloromethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	4.6	2.7	1.6	NA	BDL	BDL	_	NA	BDL	BDL		NA	BDL	BDL	
1,1,2 Trichloroethane	BDL	BDL	BDL	BDL	BDL	BDL BDL	BDL BDL	_	BDL	BDL BDL	BDL BDL		BDL	BDL	BDL BDL	
1,1-Dichloroethane	28.4	31.0 4.7	32.0 3.6	14.0	BDL BDL	BDL	BDL		1.0	BDL	BDL		6.9	4.7	BDL	
1,1-Dichloroethene 1,2 Dichloroethane	11.4	2.2	1.1	0.9	BDL	BDL	BDL		BDL	BDL	BDL	-	3.4 BDL	BDL	BDL	
1,2,4-Trimethylbenzene	BOL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
1,2-Dibromoethane	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
1,2-Dichlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
1,3,5-Trimethylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL	Ī	BDL	BDL	BDL	
1,4-Dichlorobenzene	BOL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Benzene	1.7	8.2	8.9	3.7	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Carbon Tetrachloride	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Chlorobenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Chlorodifluoromethane	NA 0.7	BDL .81J	7.4 BDL	2.6 BDL	NA BDL	BDL BDL	BDL BDL		NA	BDL BDL	BDL BDL		NA	BDL BDL	BDL BDL	
Chloroform Chloromethane	0.7	.81J BDL	BDL	BDL	BDL BDL	BDL	BDL		BDL BDL	BDL	BDL	-	BDL BDL	BDL	BDL	
cis-1,2-Dichloroethene	40.7	150.0	180.0	71.0	BDL	BDL	1.4		BDL	BDL	BDL	-	BDL	BDL	BDL	
Dichlorodifluoromethane	10.0	BDL	39.0	15.0	BDL	BDL	0.8		BDL	BDL	BDL	<u> </u>	BDL	BDL	BDL	
Ethyl Benzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Isopropylbenzene	BDL	1.7	BDL	0.56	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
m,p-Xylene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Methyl t-Butylether (MTBE)	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Methylene Chloride	5.0	6.9B	18B	7.2B	BDL	4.6B	BDL		BDL	6.8B	3B		BDL	4.5B	BDL	
Naphthalene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
n-Propylbenzene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
o-Xylene	0.3 NA	5.2 BDL	5.2 BDL	3.7 BDL	BDL NA	BDL BDL	BDL BDL		BDL NA	BDL BDL	BDL BDL	-	BDL	BDL BDL	BDL BDL	
p-Ethyltoluene t -1,2-Dichloroethene	0.7	1.8	1.4	0.7	8DL	BDL	BDL		BDL	BDL	BDL		NA BDL	1.9	BDL	
Tetrachloroethene	7.5	35.0	30.0	11.0	BDL	BDL	BDL	<u> </u>	BOL	BDL	BDL		BDL	BDL	BDL	
Toluene	BDL	BDL	BDL	BDL	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Trichloroethene	10.5	14.0	14.0	5.5	BDL	BDL	BDL		BDL	BDL	BDL		3.4	2.2	BDL	
Trichlorofluoromethane	3.2	4.4	2.2	1.1	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
Vinyl Chloride	8.8	42.0	47.0	20.0	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL	
SEMI-VOLATILE ORGANIC COMPOUNDS							-									
1,2-Dichlorobenzene	BDL	NA	NA	NA	BDL	NA	NA		BDL	NA	NA		BDL	NA	NA	
2,4-Dinitrotoluene	BDL	NA	NA	NA	BDL	NA	NA		BDL	NA	NA		BDL	NA	NA	
Bis(2-Ethylhexyl) Phthalate	BDL	NA	NA	NA	BDL	NA	NA		BDL	NA	NA		BDL	NA	NA	
ph	4.74	6.18	4.94	5.44	4.69	NA	5.21		5.17	NA	NA		5.21	NA	NA	
Specific Conductance	192	340	358	401	52	NA	95		152	NA	NA NA		140	NA	NA	
Alkalinity as Calcium Carbonate	7	8	7.070	9.090	BDL	NA	8.08		7	NA	NA	<u> </u>	5	NA	NA	
B.O.D.	3.4	BDL	BDL		BDL	NA	BDL		10	NA	NA		3.6	NA	NA	
Chemical Oxygen Demand	BDL	BDL	BDL	BDL	BDL	NA	BDL		BDL	NA	NA		BDL	NA	NA	
Hardness, Total	9.4	62	63	72	36.9	NA	16		35.7	NA	NA		1 27.2	NA	NA	
Nitrate as N	0.79	0.96	0.817	0.599	0.7	NA	0.633		2.31	NA	NA		8.15	NA	NA	
Total Phosphorus as P	BDL	BDL	BDL	BDL	BDL	NA	5.68		BDL.	NA	NA		BOL	NA	NA	
Sodium, Total	4.76	12.50	23	16	17.4	5.51	5.47		10.9	6.44	NA	<u> </u>	13	12.9	NA	
Total Kjeldahl	0.15	0.22	0.636	1.790	BDL	NA	0.676		BDL	NA NA	NA		BDL	NA	NA	
Ammonia as N Sulfate	BDL BDL	BDL 2.99	BDL	BDL	BDL BDL	NA NA	BDL BDL		BDL 24.3	NA NA	NA NA	<u> </u>	BDL	NA NA	NA	
Chloride	45.0	93	95	105	5	NA	21		<u>24.3</u> 10	NA	NA		10	NA	NA	
Total Dissolved Solids	90	216	265	266	37	NA	45		109	NA	NA	<u> </u>	110	NA	NA	
Total Suspended Solids	BDL	BDL	BDL	BDL	BDL	NA	BDL		2	NA	NA	1	BDL	NA	NA	
Aluminum, Total	0.047	0.134	0.025		0.037	0.033	0.053		0.17	0.049	NA	1	0.051	0.072	NA	
Iron, Total	0.088	0.301	0.022		0.026	0.017	0.360		0.388	0.058	NA		0.039	0.256	NA	
Manganese, Total	0.024	0.028	0.027			BDL	0.005		0.073	0.028	NA		0.038	0.015	NA	
Nickel, Total	0.007	0.008	0.006			BDL	0.005		0.005	BDL	NA		0.003	0.008	NA	
Chromium, Total	BDL	0.009	BDL	BDL	8DL	BDL	BDL		BDL	BDL	NA		BDL	BDL	NA	


LABORATORIES: Inorganic, VOA & SEMI-VOL. American Analytical Laboratones, Farmingdale, N.Y. *5th Quarter Well VOC and Semi Vol results = ug/l Inorganic = mg/l Review of the 2011 Onsite groundwater quality data indicates that all eleven of the onsite groundwater monitoring wells sampled have volatile and semi-volatile organic concentrations below the groundwater cleanup criteria established for the site.

Groundwater monitoring well FTC-W-32 was found to have TVOC and SVOC concentrations below detectable limits for all compounds tested. Groundwater monitoring well FTC-W-35 had a TVOC concentration in groundwater of 42 ppb and was below detectable limits for most semi-volatile compounds listed in the site cleanup criteria. Three compounds were detected at concentrations below their individual cleanup guidelines, Napthalene (15 ppb), 2-Methylnapthalene (2.9 ppb) and Acenaphthene (.58 ppb).

Review of the 2011 offsite groundwater quality data reveals that 14 of the 15 monitoring wells sampled had TVOC concentrations below the 50 ppb guideline established for the site. The only well which exceeded the closure criteria for total organics was BP-15B (154 ppb). Based on composition of the sample and groundwater modeling, this well has been impacted by volatile organics originating from sources other than the FTC. Monitoring well BP-14B had the second highest concentration of volatile organics in groundwater with a total of 32 ppb.

The evaluation of remedy performance with regard to the occurrence and treatment of volatile organic compounds which originated at the FTC in offsite groundwater monitoring and recovery wells is complicated by the presence of multiple offsite sources of these compounds. Currently, there are at least three potential sources (Figure 3), including Old Bethpage Landfill, Claremont Polychemical Corp. and American Louvre Corp. which have contributed volatile organic compounds to local groundwater.

During the eleven years of groundwater treatment all offsite wells have exhibited a decrease in TVOC concentrations; similarly total offsite influent concentrations have also decreased over this time period. Offsite influent concentrations for the eleven years of treatment operations are presented in Figures 4, 5 and 6. Review of Figure 4 indicates that largest reductions in offsite volatile organic compound concentrations in groundwater occurred in the first five years of treatment. Overall TVOC concentrations were reduced from a maximum of 1,005 ppb in June of 2000 to 30 ppb in July of 2004. Initially all seven offsite recovery wells were pumped in various configurations to identify those wells which had the highest total volatile organic compound concentrations of ORW-3 and ORW-4 were pumped in almost all pumping schemes due to the highest overall initial volatile organic concentrations in groundwater. Between July 2003 and July 2004, overall reductions in offsite plume TVOC concentrations and restrictions in effluent discharge capacity caused by poor drainage characteristics in the offsite recharge basin led to a reduction in offsite pumpage. Hydraulic control of what was perceived to be the "lead edge" of the plume of volatile organics became the focus of the treatment program and offsite recovery wells ORW-5, 6 and 7 were employed for this purpose.

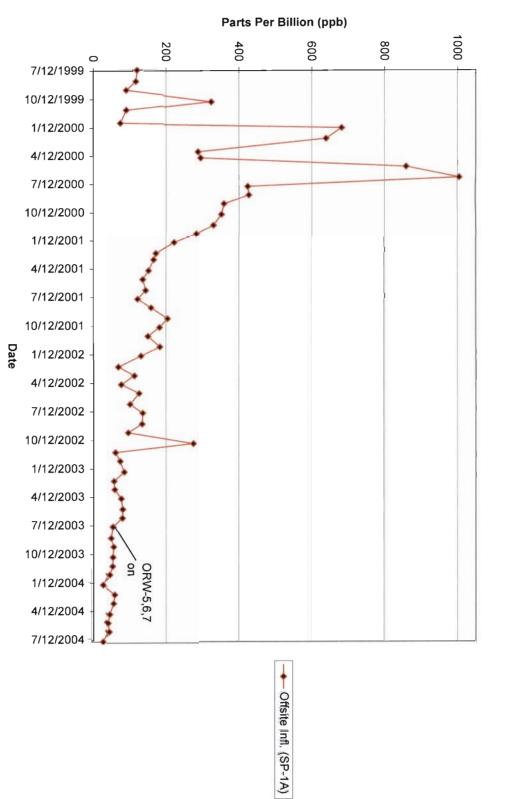
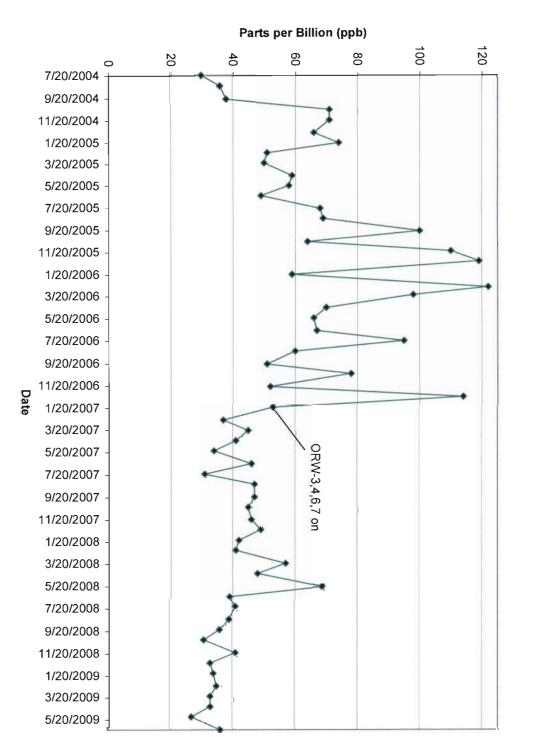


Figure 4 FTC - Offsite Influent trends July 1999 - July 2004

۶l


Offsite influent concentration trends for the next five years of treatment are presented in Figure 5. During this period offsite influent concentrations ranged from 27 ppb to 122 ppb. Recharge restrictions continued to influence offsite pumpage and no more than two offsite recovery wells were pumped between January 2005 and August 2006. ORW-7 was pumped in tandem with ORW-6 and occasionally ORW-4. The County completed its effluent connection to the sanitary sewer in July 2006; this connection augmented the existing recharge basin and injection wells allowing for increased offsite pumpage. An offsite pumping scenario was developed as part of the CDM modeling effort to increase recovery efficiency of FTC- based contamination using ORW-3, 4, 6 and 7. This pumping scenario was initiated in August 2006; it has been employed almost continuously to date. The resulting TVOC concentrations in the offsite influent have primarily been below 50 ppb between January 2007 and May 2009.

The offsite influent concentrations for the latest period of operation, from June 2009 through April 2011 are presented in Figure 6. TVOC concentrations for this period ranged from 67 to 9 ppb. As previously observed offsite influent TVOC concentrations had dropped to below 40 ppb in May of 2008 and remained at that level or lower until October 20, 2009 when the pump in offsite recovery well ORW-7 failed. The offsite pumping scheme was than re-configured using only ORW-3, 4 and 6. This pumping configuration lowered influent concentrations further to 23 ppb on December 15, 2009, possibly as a result of the loss those volatile organic compounds being contributed from the east which were previously collected by ORW-7.

ORW-7 was redeveloped and placed back in service with a new pump on December 29, 2009; the addition of ORW-7 resulted in an initial increase in offsite volatile organic concentrations to over 60 ppb. Following the restoration of ORW-7 concentrations dropped slowly but remained between 40 and 60 ppb for the next twelve months of operation.

Offsite influent concentrations fell to below 20 ppb in late December 2010 due to a series of random offsite recovery system shutdowns of varying duration caused by the failure of the Remote Transmitting Units or RTU's located in each of the offsite recovery well's electronics panel. These shutdowns reduced the combined zone of hydraulic influence created by the offsite recovery wells resulting in a smaller contribution of contamination from non-FTC sources located to the north and east and lower offsite influent concentrations. The NCDPW attempted to troubleshoot and correct the problem with the RTU's and possibly the fiber-optic cables but the shutdowns became so frequent that all remedial operations were suspended on April 30, 2011.

A review of onsite remedy performance can also be made by examining monthly TVOC levels in onsite influent. Onsite influent trends for the first three years of treatment operations are provided in Figure 7. Onsite influent TVOC concentrations and composition vary depending on which onsite well is being pumped. Onsite recovery well RW-1 was installed in the former flammable liquids area, which was historically impacted by gasoline and its break-down products; exhibited TVOC concentrations ranging from 558 ppb to 43 ppb during plant start up. In contrast, onsite recovery well RW-3, which was installed in a floating body of No. 2 fuel oil located in the Taxpayer Mock-up Burn Area exhibited TVOC concentrations ranging from 27 ppb to 4 ppb.

LI

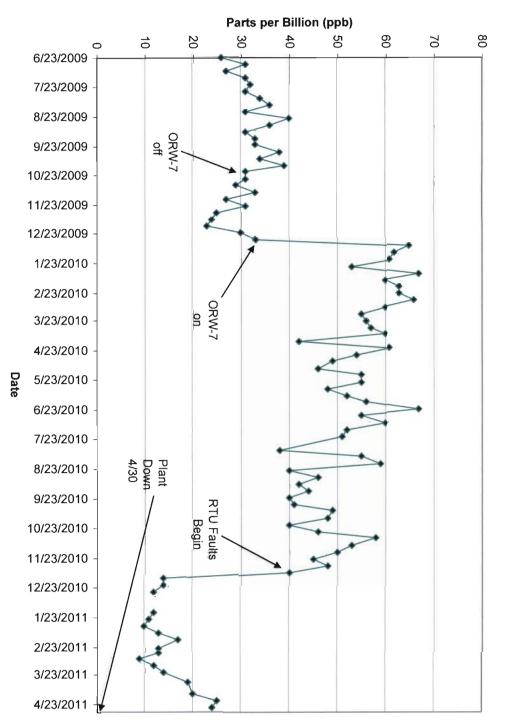


Figure 6 Offsite Influent Trends June 2009 - April 2011

8 I

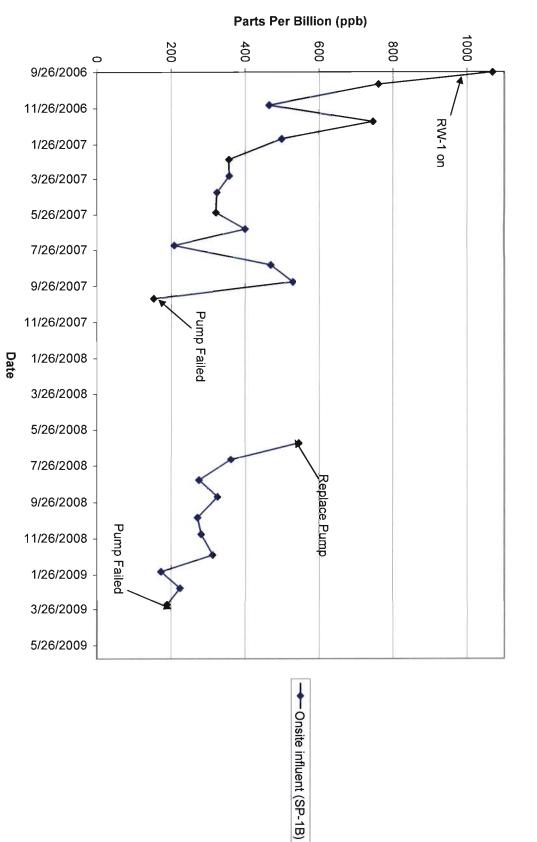
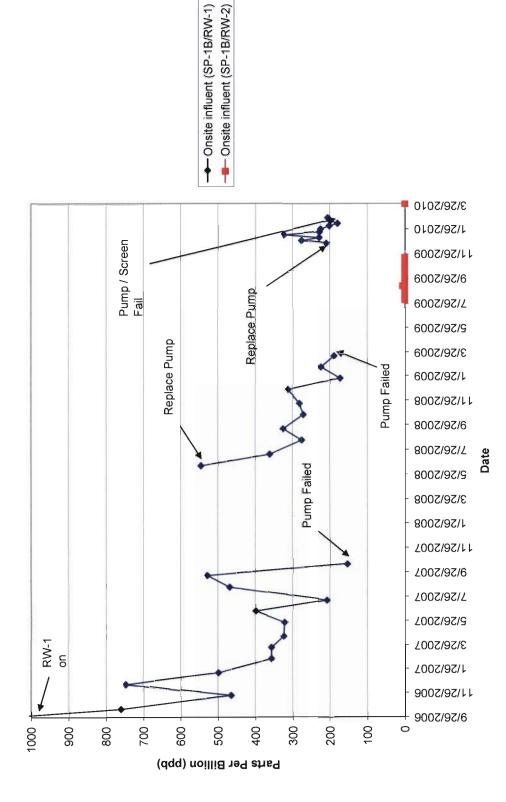


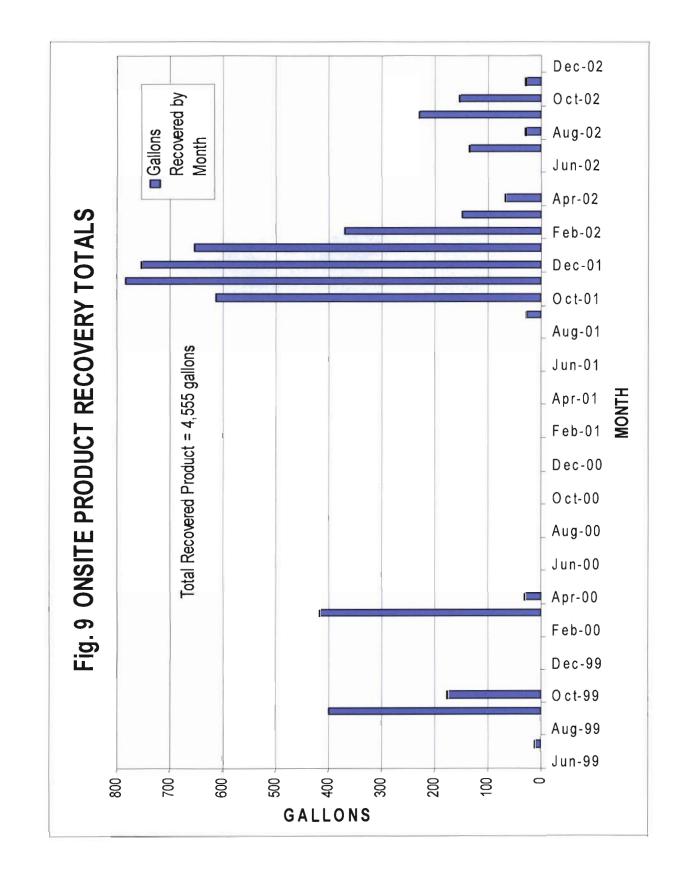
Figure 7 Onsite Influent Trends (Sept. 2006 - June 2009)

61


The duration of operation of each well was based on the need to depress the water table to enhance the recovery of free-phase product and the levels of volatile and semi-volatile organic compounds present in the influent. Each time recovery well RW-1 was pumped the levels of volatile organic compounds dropped within months to low ppb levels. Groundwater recovered from recovery well RW-3 had extremely low levels of volatile organic compounds but the well was operated as long as recoverable floating product was present.

Due to the absence of recoverable product in RW-3 and the low onsite levels of volatile organics observed in groundwater collected from RW-1 there was no onsite treatment of groundwater from November 18, 2002 through September 26, 2006. The onsite influent trends from September 2006 to the present are presented in Figure 8.

Review of Figure 8 indicates that there were three distinct periods of operation: the first was from September 26, 2006 through October 16, 2007; and the second was from June 2, 2008 through April 6, 2009; and the third was from August 10, 2009 through May 3, 2010, using both RW-1 and RW-2. All three treatment periods reduced TVOC concentrations in recovery well RW-1 but ended with mechanical failure of the submersible pump. These failures are caused by aggressive environmental conditions within the well. RW-1 is impacted by high concentrations of landfill leachate from the neighboring Town of Oyster Bay Landfill. The leachate has extremely high concentrations of Iron and Manganese which over time cause iron-fouling of the pump and its associated piping (see below).



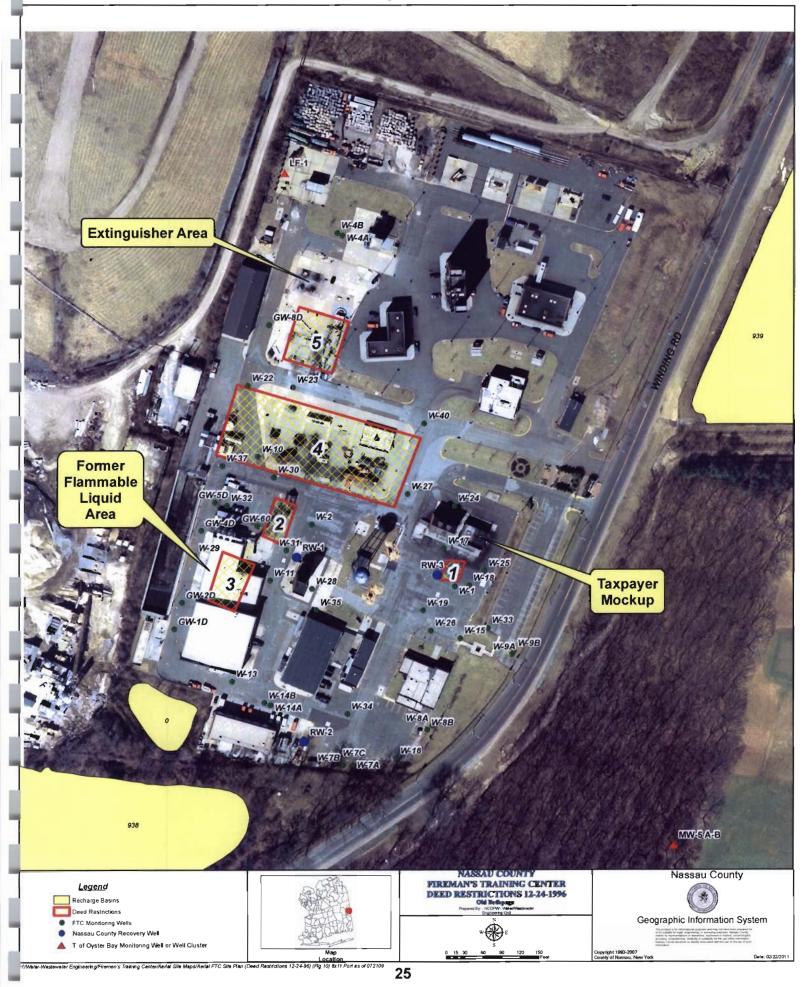
These aggressive subsurface conditions eventually led to a massive screen failure in RW-1 on February 4, 2010. While onsite recovery well RW-1 was out of service, onsite recovery well RW-2 which is located at the down gradient edge of the Fire Service Academy property was operated twice. The first period of operation was from August 2009 through November 2009. During this five-month period TVOC concentrations in onsite groundwater were found to be below detectable limits in all samples but one, 6 ppb of Toluene was detected on September 8, 2009. The second period of operation was in April 2010 after the screen collapse; again all TVOC's were found to be below detectable limits while influent concentrations of SVOC's were found to be either below detectable or quantitation limits so the recovery well (RW-2) was shut down.

The product recovery system installed at the Nassau County Firemen's Training Center site has been extremely effective in removing free-phase petroleum product from onsite groundwater. The system operated from July 1999 through November 2002. The monthly product recovery totals are provided in figure 9. During the recovery period a total of 4,555 gallons of petroleum product (No. 2 fuel oil) was collected. The highest rates of recovery occurred between October 2001 and February 2002, this time period was marked by exceptionally low water table conditions which were further enhanced by pumpage at RW-3. The efficiency of the product removal and a natural rise in the local water table has prevented any free phase petroleum product from entering both the recovery and onsite monitoring wells since the end of 2002.

4.0 IC/EC Compliance Report

A.) IC / EC Requirements and Compliance

Institutional Controls (IC)


The institutional controls prescribed for the site as part of the Record of Decision (ROD, 1993) include *capping* and the establishment of *deed restrictions* for five areas associated with live burn training. These areas include the Extinguisher Area, the former Flammable Liquids Area and the Taxpayer Mockup (Figure 10). The County of Nassau requested removal of Deed Restrictions from area number 1, 2 and area 4 (see figure) in July 2001, following testing of soil conditions in the drywell fields associated with the burn areas. These burn area drywell fields included the Mock up Field (MUF), the Corrugated Metal Building Field (CMB) and the Burn Area Field (BAF), (Appendix A). The concrete / asphalt caps associated with these areas continue to be properly maintained. Modifications to the existing Taxpayer Mock up Field building(s) (Appendix D), have been proposed during the current reporting period (April 2011), however they will not involve excavation in any of the restricted areas.

Engineering Controls (EC)

The engineering Controls selected for the site include both a seven well offsite and three well onsite groundwater recovery and treatment system(s). The offsite recovery system utilized a pumping configuration including offsite recovery wells ORW-3, 4, 6 and 7, (which was determined to be the most efficient way to collect remaining FTC contamination based on the 2008 groundwater model) from June 1, 2009 through November 2, 2009. The offsite pumping scheme was temporarily changed to include ORW-3, 4 and 6 through the remainder of the calendar year due to a pump failure in recovery well ORW-7.

Recovery well ORW-7 was re-developed and put back online in January 2011. The offsite recovery well system was once again altered in February due to a pump failure in ORW-6. The system was continuously operated using ORW-3, 4 and 7 until re-development and pump replacement could be completed in the spring. The system was restored to its normal operating configuration (ORW-3, 4, 6, 7) on May 17, 2010 and ran this way until December 6, 2010.

In late December 2010, the offsite recovery well system began experiencing a number of disruptions and plant shutdowns. These disruptions were categorized as system faults caused by interruptions in a signal being received by the computers in the treatment plant sent from the Remote Transmitting Units (RTU's) located in the electronics panel of each well. Diagnostic tests performed on the system indicated that the RTU faults might also be occurring due to problems with the fiber-optic connections within each panel. The offsite recovery well system continued to operate with the same well configuration, however disruptions and shutdowns became more frequent and the entire treatment plant was shut down on Aril 30, 2011.

Onsite groundwater recovery and treatment was modified during the current reporting period (June 2009 through June 2011) due to another pump failure in recovery well RW-1 in the spring of 2009. Onsite recovery well RW-2, which is located at the down gradient edge of the property was operated for approximately eight weeks to assure that there were no volatile organic compounds leaving the site while RW-1 was out of service. RW-1 was repaired and operated for less than two months before the well screen collapsed on February 4, 2010. RW-2 was operated briefly again in the spring of 2010, due to the absence of onsite petroleum product and non-detectable levels of VOC's in RW-2's influent the onsite system has not been operated since May 3, 2010.

Corrective Measures

Offsite Groundwater Recovery and treatment

The Nassau County Department of Public Works – Water and Wastewater Engineering Unit has completed trouble-shooting the offsite telemetry system and is in the process of contracting a qualified electrical contractor to repair the fiber-optic connections and replace any faulty RTU's which may be present in the system. These repairs are expected to be complete in the summer of 2011.

B.) IC / EC Certification

Please see enclosed.

5.0 Monitoring Plan Compliance Report

The original Remediation Monitoring Plan (RMP) for the Nassau County Fireman's Training Center was submitted and approved by the New York State Department of Environmental Conservation in September 1994. This plan required a selected group of onsite and offsite monitoring wells to be sampled on a quarterly basis for those compounds specified in the RMP. All wells were sampled on a quarterly basis as specified in the RMP using approved methods and protocols from 1999 through 2007.

In 2007 the Nassau County Department of Public Works – Water and Wastewater Engineering Unit requested and received relief from the NYSDEC – Bureau of Environmental Remediation regarding its sampling program at the Fireman's Training Center, the sampling program was modified in both the number of wells to be sampled and their sampling frequency. Wells which were found to have contaminant levels below detectable limits for the eight year sampling program were dropped and the frequency of sampling was reduced from quarterly to semiannually. The sampling of select wells were further reduced to a fifth quarter sampling schedule, based on the consistently low levels of VOC's or SVOC's detected. Semi-volatile organic compounds (SVOC's) were also removed from the sampling program requirements in all offsite monitoring and recovery wells due to there 8 year absence in all offsite groundwater samples.

All monitoring wells were sampled on either a semi-annual or fifth quarter schedule as required during the current reporting period. Additional groundwater samples were collected onsite in the spring of 2010 following the collapse of the well screen in onsite recovery well RW-1. Groundwater samples were also collected onsite in June 2011 following treatment plant shutdown on April 30, 2011.

The groundwater monitoring results collected during the current reporting period (June 2009 – June 2011) for those wells and compounds listed in the Remedial Monitoring Plan (Sept. 1994)) are compared with Remedial Objectives or Clean up criteria in the following tables.

Onsite Groundwater

Review of the onsite comparison indicates that all eleven wells originally selected for sampling in the *Remedial Monitoring Plan* (Sept. 1994) met their remedial objectives for Total Volatile Organic Compound concentrations (50 ppb) in groundwater and their remedial objectives for each of the five semi-volatile organic compounds listed among the cleanup criteria. The cleanup objectives for individual volatile organic compounds were met in each of the eleven wells sampled in 2011. Two wells sampled on September 4, 2009 exceeded their guidance values for individual volatile organic compounds. Groundwater collected from FTC-W-32 contained Benzene at a concentration of 1.2 ppb and the sample collected from FTC-W-35 contained o-xylene at a concentration of 5.6 ppb.

Offsite Groundwater

Review of offsite groundwater quality in comparison to the remedial objectives established for the wells sampled (RMP 1994), indicates that all eight wells met their remedial objective (50ppb) for TVOC's in groundwater. All eight wells were also below individual cleanup criteria in their most recent sampling; however, three wells exceeded their individual cleanup objectives for TVOC's at various times in the past. Groundwater collected from BP-9B previously contained Benzene at concentrations ranging from 1.7 to 2.2 ppb and vinyl chloride from 2.3 to 4.1 ppb. Monitoring well BP-4C had Benzene concentrations ranging from 2.6 to 4.1 ppb and Tetrachloroethylene was detected at a maximum concentration of 26 ppb. There was also a single detection of vinyl chloride in BP-10C at 2.5 ppb on July 28, 2010.

There were no monitoring deficiencies to report; all wells were sampled as required. Based on the results of the comparisons with remedial objectives established in the Remediation Monitoring Plan it is recommended that sampling of onsite groundwater be discontinued and that the county begins termination monitoring in its offsite wells.

FTC - COMPARISON of ONSITE WELLS w/ Cleanup Criteria

1		FTC-W-4A*					FTC-W-4B*					FTC-W-7A					FTC-W-7B*				
	FTC Cleanup Cntena		DATE S	AMPLED		FTC Cleanup Critena		DATE S	AMPLED		FTC Cleanup Criteria		DATE S	AMPLED		FTC Cleanup Critena		DATE SA	AMPLED		
VOLATILE ORGANICS COMPOUNDS	(ppb)	9/17/07	12/17/07	9/4/08	6/24/11	(ppb)	9/17/07	12/17/07	9/4/08	6/24/11	(ppb)	7 /2/0 7	9/17/07	12/13/07	6/23/11	(ppb)	9/17/07	12/13/07	9/5/08	6/22/11	
1,1,1 Trichloroethane	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL		BDL	BDL	BDL	BDL	
1,1-Dichloroethane	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
1,1-Dichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
2-Butanone (MEK)	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	_50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
2-Hexanone	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
Acetone	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
Benzene	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL	
Carbon Disulfide	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
Ethyl Benzene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
m,p-Xylene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
o-Xylene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
Methylene Chloride	5	BDL	BDL	3.3B	BDL	5	BDL	BDL	4B	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	5.3B	BDL	
Tetrachloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
Toluene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
t -1,2-Dichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
Trichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	
Vinyl Chloride	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL	
Total	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	
SEMI-VOLATILE ORGANIC COMPOUN	DS												_								
2-methylnaphthalene	_50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
di-n-octyl phthalate	50	BDL.	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
Flourene	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
Naphthalene	50	BDL.	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	
Phenanthrene	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	_50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	

LABORATORIES: Inorganic, VOA & SEMI-VOL: American Analytical Laboratories, Farmingdale, N.Y.

*5th Quarter Well

VOC and Semi Vol. results = ug/l Inorganic = mg/l

- compound detected at conc. below cleanup criteria

- compound detected at conc. above cleanup criteria

FTC - COMPARISON of ONSITE WELLS w/ Cleanup Criteria

		F	TC-W-7	С	_		F	TC-W-9	A *			F	TC-W-9	в			F	TC-W-14	4A	
	NY State GW Stnd		DATE S	AMPLED		NY State GW Stnd		DATE S	AMPLED		NY State GW Stnd		DATE S	AMPLED		NY State GW Stnd		DATE S	AMPLED	
VOLATILE ORGANICS COMPOUNDS	(ppb)	7/2/07	9/17/07	12/13/07	6/23/11	(ppb)	9/17/07	12/19/07	9/4/08	6/23/11	(ppb)	6/19/07	9/17/07	12/19/07	6/23/11	(ppb)	7/2/07	9/24/07	12/19/07	6/27/11
1,1,1 Trichloroethane	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
1,1-Dichloroethane	_ 5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
1,1-Dichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
2-Butanone (MEK)	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
2-Hexanone	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Acetone	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Benzene	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL
Carbon Disulfide	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Ethyl Benzene	_5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
m,p-Xylene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
o-Xylene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Methylene Chloride	5	BDL	BDL	BDL	BDL	5	BDL	BDL	3.5B	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Tetrachloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Toluene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
t -1,2-Dichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Trichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Vinyl Chloride	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL
Total	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0
SEMI-VOLATILE ORGANIC COMPOUN	DS																			
2-methylnaphthalene	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
di-n-octyl phthalate	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Flourene	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Naphthalene	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Phenanthrene	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL

LABORATORIES: Inorganic, VOA & SEMI-VOL: American Analytical Laboratories, Farmingdale, N.Y

*5th Quarter Well

VOC and Semi Vol. results = ug/l Inorganic = mg/l

compound detected at conc. below cleanup criteria

- compound detected at conc. above cleanup criteria

1

		FCW-14	B*		F	TC-W-3	2		FTC-W-35						
	NY State GW					NY State GW					NY State GW				
VOLATILE ORGANICS COMPOUNDS	Stnd (ppb)	7/2/07	DATE S/ 12/19/07	AMPLED 9/5/08	6/27/11	Stnd (ppb)	9/4/09	DATE S/ 3/11/10	8/30/10	3/3/11	Stnd (ppb)	9/4/09	3/11/10	AMPLED 8/31/10	3/3/11
1.1.1 Trichloroethane	(ppb) 5	BDL	BDL	BDL	BDL	(ppb) 5	3/4/03 BDL	BDL	BDL	BDL	5	3/4/03 BDL	BDL	BDL	BDL
1,1,1 Thendolethane	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
1,1-Dichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
2-Butanone (MEK)	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
2-Becanone	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Acetone	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Benzene	0.7	BDL	BDL	BDL	BDL	0.7	12	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL
Carbon Disulfide	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Ethyl Benzene	5	BDL	BDL	BDL	BDL	5	4.9	BDL	BDL	BDL	5	BDL	BDL	BDL	.51J
m.p-Xylene	5	BDL	BDL	BDL	BDL	5	1.6	BDL	BDL	BDL	5	2.8	BDL	BDL	1.7J
o-Xylene	5	BDL	BDL	BDL	BDL	5	1.1	BDL	BDL	BDL	5	5.6	BDL	.85J	BDL
Methylene Chloride	5	BDL	BDL	6.2B	BDL	5	6.3B	3.2B	20B	4.8B	5 1	9.3B	3.3B	7.7B	5.3B
Tetrachloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Toluene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
t -1,2-Dichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Trichloroethene	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL	5	BDL	BDL	BDL	BDL
Vinyl Chloride	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL	2	BDL	BDL	BDL	BDL
Total	50.0	0.0	0.0	0.0	0.0	50.0	8.8	0.0	0.0	0.0	50.0	8.4	0.0	0.0	0.0
SEMI-VOLATILE ORGANIC COMPOUN															
2-methylnaphthalene	50	BDL	NA	BDL	BDL	50	20.0	BDL	BDL	BDL	50	9.5	BDL	3.7J	2.9
di-n-octyl phthalate	50	BDL	NA	BDL	BDL	50	BDL	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL
Flourene	50	BDL	NA	BDL	BDL	50	1.7	BDL	BDL	BDL	50	50L	BDL	SCL	SCL
Naphthalene	50	BDL	NA	BDL	BDL	50	.94J	BDL	BDL	BDL	50	6.3	BDL	6.7	15.0
Phenanthrene	50	BDL	NA	BDL	BDL	50	.66J	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL

LABORATORIES: Inorganic, VOA & SEMI-VOL: American Analytical Laboratories, Farmingdale, N.Y

VOC and Semi Vol. results = ug/l

*5th Quarter Well

NA- not analyzed B - found in laboratory blank

J - detected below quantitation limits

- compound detected at conc. *below* cleanup criteria

- compound detected at conc. above cleanup criteria

FTC COMPARISON of OFFSITE GROUNDWATER w/ CLEANUP CRITERIA

	BP-2B					BP-4B					BP-4C					BP-12B				
	FTC Cleanup Critena		DATE S	AMPLED		FTC Cleanup Critena		DATE S	AMPLED		FTC Cleanup Criteria		DATE S	AMPLED		FTC Cleanup Critería		DATE S	AMPLED	
VOLATILE ORGANICS COMPOUNDS		3/28/07	9/18/07	1/8/08	7/6/11		9/10/09	3/18/10	9/2/10	3/7/11		6/19/07	9/21/07	12/12/07	6/29/11		9/18/09	3/19/10	9/1/10	3/14/11
1,1,1 Trichloroethane	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
1,1-Dichloroethane	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
1,1-Dichloroethene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	2.2	BDL	5.0	BDL	BDL	BDL	BDL
Benzene	0.7	BDL	BDL	BDL	BDL	0.7	0.98	BDL	BDL	BDL	0.7	4.1	2.6	BDL	BDL	0.7	BDL	BDL	BDL	BDL
Ethyl Benzene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	EDL	EDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
m,p-Xylene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Methylene Chloride	5.0	BDL	BDL	BDL	BDL	5.0	6.6B	6.6B	6.6B	5.8B	5.0	BDL	BDL	BDL	BDL	5.0	9B	BDL	8.2B	4.3B
o-Xylene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
t -1,2-Dichloroethene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	ESEDE	BOL	BGL	5.0	4DL	4DL	BDL	BDL
Tetrachloroethene	5.0	BDL	BDL	BDL	BDL	5.0	0.90	1.10	BDL	BDL	5.0	26	23	23	3.71J	5.0	1.1J	.96J	BDL	BDL
Toluene	5.0	BDL	BDL	BDL	BDL	5.0	4.6	BDL	BDL	BDL	5.0	BDL	BDL	BCL	BDL	5.0	EDL	EDL	BDL	BDL
Trichloroethene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	3.0	2.5	BDL	5.0	BDL	BDL	BDL	BDL
Acetone	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL
Methyl Ethyl Ketone	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL
2 - hexanone	50.0	BDL	BDL	BDL	BDL	<u>50.0</u>	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDŁ
Vinyl Chloride	2.0	BDL	BDL	BDL	BDL	2.0	BDL	BDL	BDL	BDL	2.0	BDL	BDL	BDL	BDL	2.0	BDL	BDL	BDL	BDL
Total	50.0	0.0	0.0	0.0	0.0	50.0	6,5		0.0	0.0	50.0	30.1	28.6	27.7	0.0	50.0	0.0	0.0	0.0	0.0
SEMI-VOLATILE ORGANIC COMPOUN										_										
phenanthrene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
flourene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
napthalene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
di-n-octyl pthalate	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
2 - methylnapthalene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
Total																				

- compound detected at conc. below cleanup criteria

- compound detected at conc. above cleanup criteria

			BP-9B*			i		BP-9C					BP-10B					3P-10C'	•	
	FTC Cleanup Criteria		DATE SA	AMPLED		FTC Cleanup Critena		DATE S	AMPLED		FTC Cleanup Critena		DATE SA	AMPLED		FTC Cleanup Criteria		DATE S		
VOLATILE ORGANICS COMPOUNDS		12/11/07	9/10/08	3/17/11	7/5/11		6/27/07	9/24/07	12/11/07	7/5/11		6/2/07	9/18/07	1/8/08	6/29/11		3/7/08	9/9/09	7/28/10	3/14/11
1,1,1 Trichloroethane	5.0	BDL	BDL	BOL	IBDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	SOL	5,0	GOL.	GDI-	BDIL	BDL
1,1-Dichloroethane	5.0	4.0	BDL	.5J	1.48J	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	2.37J	5.0	2.1	3.2	3.2	1.7
1,1-Dichloroethene	5.0	80L	8DL	BDL	BOL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Benzene	0.7	2.2	1.7	0.6	BDL	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL	0.7	BDL	BDL	BDL	BDL
Ethyl Benzene	5.0	RDL	BDL	B/DL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
m,p-Xylene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Methylene Chloride	5.0	BDL	4B	4.6B	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	2.1B	3.4B	BDL	BDL
o-Xylene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
t -1,2-Dichloroethene	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Tetrachloroethene	5.0	2.2	2.3	0.9	1.2	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Toluene	5.0	BDL	BOL	E:DL	EIDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Trichloroethene	5.0	2.1	BDL	2.2	.89J	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL	5.0	BDL	BDL	BDL	BDL
Acetone	50.0	BDL	BDL /	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL
Methyl Ethyl Ketone	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL
2 - hexanone	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDL	BDL	50.0	BDL	BDL	BDI	BDL
Vinyl Chloride	2.0	BOL	2.3	4.1	.93J	2.0	BDL	BDL	BDL	BDL	2.0	BDL	BDL	BDL	BDL	2.0	BDL	BDL	2.5	BDL
Total	50.0	10.5	6.3	7.8	1.2	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	50.0	2.1	3.2	5.7	1.7
SEMI-VOLATILE ORGANIC COMPOUN	DS																			
phenanthrene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
flourene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
napthalene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
di-n-octyl pthalate	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
2 - methylnapthalene	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA	50.0	NA	NA	NA	NA
		I						_												

FTC COMPARISON of OFFSITE GROUNDWATER w/ CLEANUP CRITERIA

- Compound

- Compound detected at conc. below cleanup criteria

* fifth quarter well

- Co

- Compound detected at conc. above clenaup criteria

6.0 Operation & Maintenance (O&M) Plan Compliance Report

A site specific O&M plan was not required by the State as part of the Consent Judgment (February, 1989), the Record of Decision (February, 1993) or the Preliminary Design Report (June 1994) developed for the Fireman's Training Center Groundwater Treatment Facility and Remediation. The facility was designed for autonomous operation with minimal staffing. The majority of scheduled maintenance activities take place onsite in the treatment building. Preventative maintenance is performed on various remedial components at the frequency recommended by the various manufacturers. Some of the scheduled maintenance activities are listed below:

<u>Item / Component</u>	Description of Required Maintenance	Frequency
Supply Air Blowers	check condition	weekly
Effluent Pumps	lubricate / re-pack annually	weekly
Intermediate Pumps	lubricate / re-pack annually	weekly
Vent Duct Fan	check belt	weekly
Plenum Filters	check condition	monthly
Davco	lubricate	monthly
Intermediate Pump Motors	lubricate	monthly
Blower Motors	lubricate	monthly
Heating Pumps	lubricate	monthly
Heating Pump Motors	lubricate	monthly
Mixers	lubricate	monthly
AODDs &ZEKs	clean mufflers	monthly
AHU-1	operate unit	quarterly
AHU-2	operate unit	quarterly
AHU-3	operate unit	quarterly
AHU-4	operate unit	quarterly
AHU-5	operate unit	quarterly
AHU-6	operate unit	quarterly
AHU-7	operate unit	quarterly
AHU-8	operate unit	quarterly
AHU-9	operate unit	quarterly
EF-1	operate unit	quarterly
EF-2	operate unit	quarterly
EF-4	operate unit	quarterly
SF-2	operate unit	quarterly
Backwash Pump	operate unit	quarterly
Hot water Re-circulator	lubricate	quarterly
Auger Chains	lubricate	quarterly
Effluent Pump Motors	change oil	annual

All O&M activities were completed as specified during the reporting period. All remedial components contained within the treatment plant performed nominally throughout the reporting period. Those components external to the plant, specifically the groundwater recovery wells and associated pumps failed in offsite recovery well ORW-7 on October 20, 2009 and in onsite recovery well RW-1 on February 4, 2010. These failures did not reflect any deficiencies in scheduled O&M activities.

Onsite recovery well RW-1 was being operated within the specified range, with its pump discharging approximately 100 gpm on a continuous basis. There is no maintenance schedule for these submersible pumps as they are designed for continuous service. There is also no scheduled maintenance for the recovery wells as they are re-developed anytime a pump fails through normal use. The failure in onsite recovery well RW-1, followed the replacement of its submersible pump and re-development. The well failed due to the collapse of the well screen, caused by the effects of landfill leachate and the age of the well (> 20 years).

The plant has experienced numerous non-scheduled interruptions in operation during the reporting period beginning in December 2010 due to Remote Transmitting Unit (RTU) faults and possible problems with in the offsite fiber-optic cables and their associated connecters. These components include solid state electronics and do not require maintenance and their failure does not reflect deficiencies with the sites O&M plan.

The operational problems which occurred at the site during this reporting period (June 2009 – June 2011) are not related to any deficiencies in the Operations and Maintenance practices used at the site and there are no revisions proposed at this time.

7.0 Overall PRR Conclusions and Recommendations

A. Over the last 11 years the FTC Groundwater Remediation has operated in compliance with all aspects of the components outlined in the Record of Decision (ROD), signed with the New York State Department of Environmental Conservation in 1993. Onsite and offsite pumpage and effluent recharge have been modified over the course of treatment to improve the efficiency of groundwater recovery.

B. The selected remedy for the site; cover system (IC) used in conjunction with a large scale pump and treat (EC) has proven to be highly effective in the eleven years of groundwater treatment operations. Shallow onsite soils have been remediated to the point where no further treatment was required and deed restrictions could be removed (7/18/01). Over 4,500 gallons of floating petroleum product (No. 2 fuel oil), have been removed from onsite groundwater and measurable product has not been seen in any onsite monitoring wells since November 2002. Offsite influent concentrations during the current reporting period have ranged from 67 to 9 ppb and have been below 50 ppb since November 2010.

Onsite VOC contamination in groundwater appears to be limited to two monitoring well locations (FTC-W 32, FTC-W-35) within the former flammable liquid area.

C. The County of Nassau was notified by the New York State Department of Environmental Conservation, Bureau of Environmental Remediation on May 18, 2011 that the Fireman's Training Center site had been reclassified as a class 4 site indicating that it no longer presents a significant threat to public health and the environment. Based on this re-classification and the significant and continued improvements in groundwater quality observed since the submittal of the last PRR (2009), the county would like to recommend the following:

Onsite Groundwater

The County believes that the onsite cleanup of volatile organic contamination associated with the original spill is complete, with any remaining onsite soil contamination being confined to a relatively small zone within the original source area. Since 1992 overall source area contamination has been reduced from several feet of pure product with parts per million (ppm) levels in groundwater to concentrations of less than 50 ppb. The most recent onsite groundwater quality data indicates that all eleven onsite groundwater monitoring wells met their remedial objectives as outlined in the Remediation Monitoring Plan (Sept. 1994) for individual volatile / semi-volatile organic compounds and total volatile organic compound concentrations (50 ppb) in groundwater. *Based upon these findings the county would like to propose with NYSDEC concurrence that all onsite groundwater treatment and monitoring be terminated upon completion of a NYSDEC- approved soil vapor intrusion investigation.*

Offsite Groundwater

The County also believes that the offsite cleanup is complete. Comparison of the most recent groundwater quality data collected for the offsite monitoring wells with their remedial objectives indicates that all eight wells designated in the remedial monitoring plan (1994) met their remedial objective (50 ppb) for total volatile organic compounds in groundwater. Although volatile organic compounds were detected in other offsite monitoring wells, these wells were never impacted by FTC contamination (BP-3B, 3C, BP-10B, 10C) or they were installed to detect contamination from non-FTC sources (BP-15B, 15C). *Based upon these findings the County of Nassau plans to formally petition the State to begin post termination monitoring of the eight wells designated for sampling in the remedial monitoring plan established for the site in 1994*.

Appendix A

COUNTY OF NASSAU DEPARTMENT OF PUBLIC WORKS MINEOLA, NEW YORK 11501-4822

July 18, 2001

Mr. Carl Hoffman New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Hazardous Site Control 625 Broadway Albany, NY 12233

Re: Deed Restrictions - Soil Quality Testing at Former Burn Areas Nassau County Fireman's Training Center, Site #1-30-042

Dear Mr. Hoffman:

As I informed you several weeks ago, the Nassau County Department of Public Works (NCDPW), Water Resources Unit would be collecting soil samples at the Fireman's Training Center (FTC) site to monitor changes in the level of contamination relative to past sampling events. The site's contaminated soil areas were established in the FTC's Record of Decision (ROD), dated February 26, 1993. These areas are described below, in detail. All locations, the sampling, and analytical testing methods for this field work followed the site's State approved Remediation Monitoring Plan, dated September 1994. The following is a summary of the work and our findings.

Three former Burn Areas at the FTC were designated contaminated soil areas in the site's ROD. These areas are identified as the Mock-Up Field (MUF), Corrugated Metal Building Field (CMB), and the Burn Area Field (BAF), see attached site map, Numbers 1, 2 and 3. The following depth intervals were sampled at each specific location:

Sample Location	Depth Below Grade (ft.)
MUF-1	25-27
MUF-3	32-34
MUF-4	25-27
MUF-5	33-35
CMB-1	16-18
CMB-2	34-36
CMB-5	26-28
BAF-1	34-36
BAF-2	34-36
BAF-3	37-39*
BAF-4	30-32
BAF-5	32-34*

*Sampling interval adjusted based on field conditions

Mr. Carl Hoffman, NYSDEC July 18, 2001 Page Two Re: Deed Restrictions - Soil Quality Testing at Former Burn Areas Nassau County Fireman's Training Center, Site #1-30-042

All soil samples were collected using decontaminated split spoons driven through hollow stem augers to the selected interval. The soil samples were then logged by NCDPW hydrogeologists and stored in coolers for delivery at the end of each day to Environmental Testing Labs of Farmingdale, NY, a New York State ELAP-CERTIFIED Laboratory.

The split spoon samples were collected at predetermined intervals throughout the vadose zone which matched locations with historically high levels of contamination. Each sample was analyzed for volatile and semi-volatile organic compounds using EPA methods 8260 and 8270B.

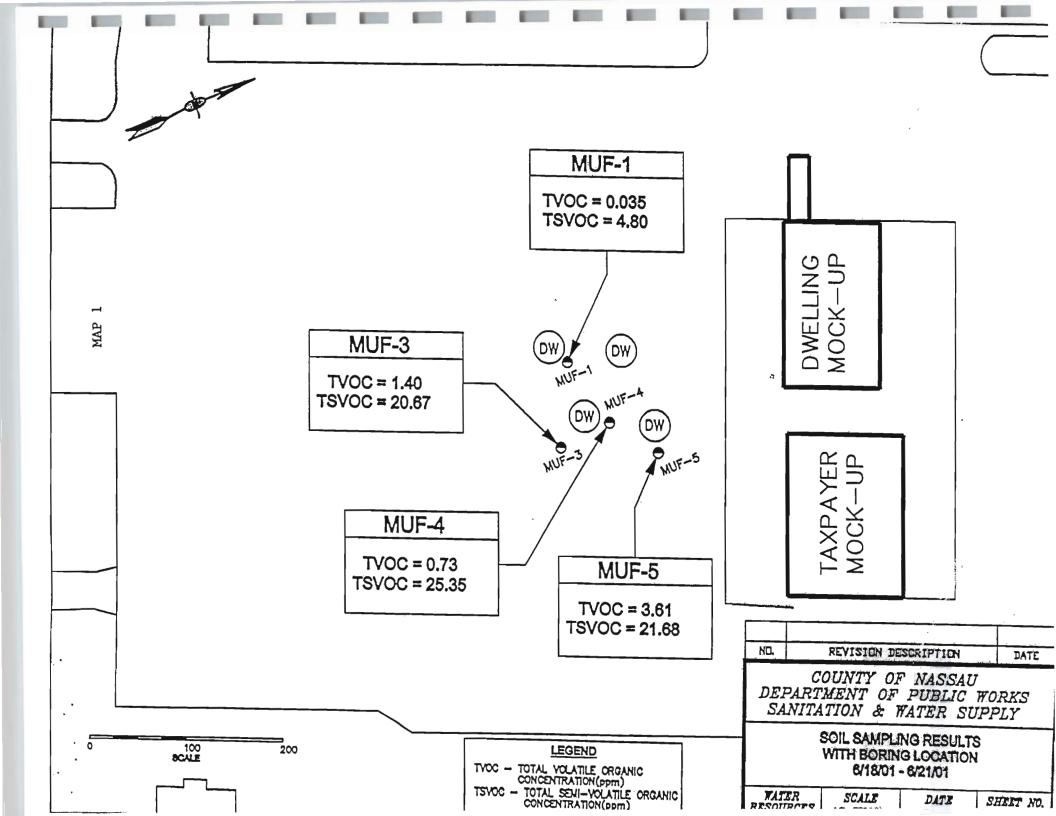
The results of the sample analyses are provided for your review in Tables 1 through 4 attached. Review of the semivolatile organic analysis summary indicates that the concentrations of semi-volatile organic compounds in eleven of the twelve soil samples collected were found to be below both the recommended soil cleanup objectives and the recommended soil cleanup objectives to protect groundwater, as identified in the NYSDEC TAGM No. 4046. The concentration of 2-Methylnapalthalene in the BAF-3 boring at the 37-39 ft. interval was found to be 37.2 ppm or 0.80 ppm above the recommended soil cleanup objective of 36.4 ppm.

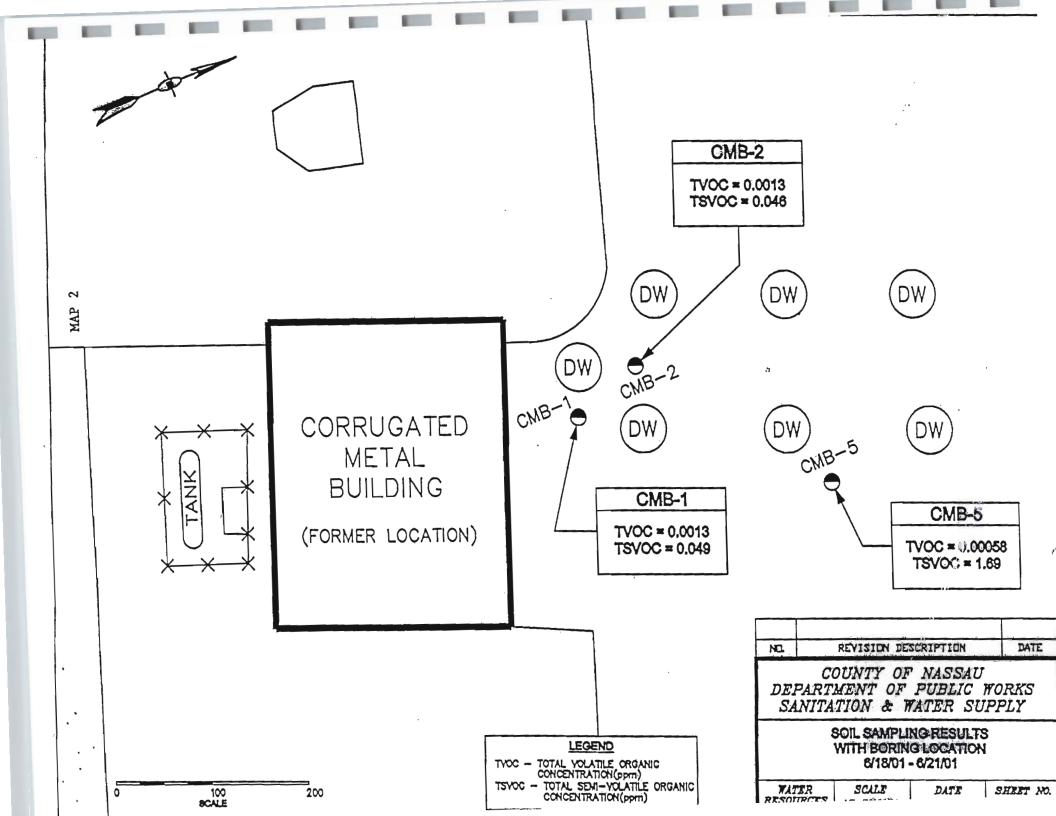
Review of the volatile organic analysis summary indicates that volatile organic compounds also were below the levels identified in the NYSDEC TAGM No. 4046 at all twelve sampling intervals with the exception of two compounds, Acetone and Methylene Chloride. Methylene Chloride concentrations in soil exceeded the recommended soil cleanup objective of 0.1 ppm at all five Burn Area Field boring locations and at one Mock-Up Field boring location (MUF-1, 25-27 ft.). Acetone exceeded its recommended soil cleanup objective of 0.2 ppm at the BAF-1, 37-39 ft. interval, and the BAF-5, 32-34 ft. interval, with values of .219 ppm and .230 ppm, respectively.

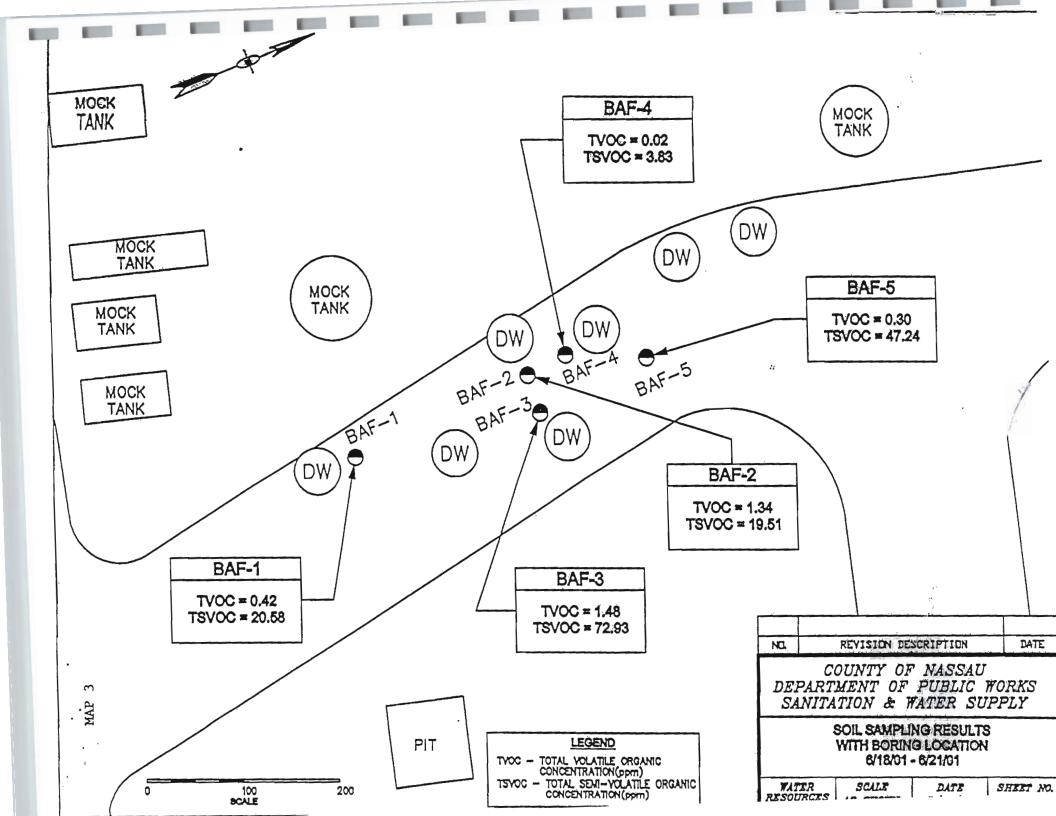
All methylene chloride results were "flagged" with a "B," indicating that the analyte was found in the associated method blank as well as the sample. The acetone results were "flagged" with a "J," indicating that it is an estimated value with a concentration found below the method detection limit. Both compounds at low concentrations may be lab artifacts which are not indicative of their actual presence in the soil sample.

A review of the results collected from the three most highly contaminated soil zones onsite support the contention that natural aeration of the vadose zone beneath the Fireman's Training Center has provided enough oxygen to maintain biological activity; thus, causing the breakdown of the volatile and semi-volatile organic compounds which were previously identified in the 1986 and 1994 soil sampling events. This most recent sampling event has demonstrated that the site's three designated soil contamination areas consistently show levels of contamination below the NYSDEC's TAGM 4046. Therefore, the NCDPW/Water Resources Unit respectfully requests the State's concurrence that the designated contaminated soil areas at the FTC site have met their remediation goals, and that all deed restrictions associated with these areas can be removed by the County.

If you have any questions regarding the above results or our request, please contact Mr. Michael Flaherty at (516) 571-6850.


Very truly yours,


Peter J. Witkowski Director of Hazardous Waste Services


PJW:MF:jb

Attachments

c: Joseph L. Davenport, Acting Division Head of Sanitation and Water Supply Michael Flaherty, Hydrogeologist III 🗸

BLE 1

FTC - REIN. _ PATION SEMIVOLATILE ORGANIC AIN SIS SUMMARY SOIL

SAMPLING DATE :6/18 -21/2001

				BORING	<u>G DATE :6/18</u>		10	
COM DUND (MG/KG)	BAF - 4	BAF - 5 32 - 34 ft	MUF -1 25 -27 ft	MUF -			Recommended Stilleamup Objective to Protect GV (com)	Recommended So
Phenol	U	U	U	U	U	U	0.03	,03 or MOL
bis(2-Chloroethy1)Esher	U	U	U	U		<u> </u>	NA	NA
2-Chlorophenol	U	U	U	U	U	Ŭ	0.8	0.8
1,3-Dichlorobenzene	U	U	U	U	U	υ	1.55	1.6
1,4-Dichlorobenzene	U	υ	υ	U	U	U	8.5	8.5
1,2-Dichlorobenzene	U	U	U	U	U	U	7.9	7.9
2-Methylphenol	U	U	U	U	U	υ	0.1	0.1 or MDL
2,2'-oxbis(1-Chloropropane)	U	U	U	U	U	υ	NA	NA
4-Methylphenol	U	<u> </u>	U	U	U	U	0.9	0.9
N-Nitroso-di-n-propylamine	U	U	U	U	υ	U	NA	NA
Hexachloroethane	U	U	U	U	U	U	NA	NA
Nitrobenzene	<u> </u>	<u> </u>	U	U	U	U	0.2	0.2 or MDL
Isophorone	U	U	U	U	U	U	4.4	4.4
2-Nitrophenol	U	U	U	U		U	0.33	0.33 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	NA	NA
bis(2-Chloroethoxy)methane	U	U	U U	U	U	U	NA	NA
2,4-Dichlorophenol	U	U	U	U	U	U	0.4	0.4
1,2,4-Trichlorobenzene	U	U	U	U	U	U	NA	NA
Naphthalene	U	0.787	0.267	0.538	0.727	2.65	13	13
4-Chloroaniline	U	U	U	U	U	U	0.22	0.22 or MDL
Hexachlorobutadiene	U	U	U	U	Ŭ	Ū	NA	NA
4-Chloro-3-methylphenol	U	U	U	U	Ŭ	U U	0.24	0.24 or MDL
2-Methylnaphthalene	U	30.9	2.36	21.2	15.7	9.22	36.4	36,4
Hexachlorocyclopentadiene	υ	U		U	U	U	NA	NA
2,4,6-Trichlorophenol	U	U	U	U	U	Ŭ	NA	NA
2,4,5-Trichlorophenol	U	U	Ū	U	Ŭ	U U	0.1	0.1
2-Chloronaphthalene	U	U	U	U	Ū	- ŭ	NA	NA
2-Nitroaniline	U	U	U	U	U		0.43	0.43 or MDL
Dimethylphthalate	U	U	υ	U	U	Ú	2.0	2.0
cenaphthylene	0.604	1.72	0.247	0.569	0.359	1.1	41	41
6-Dinitrololuene	U	U	U	U	U	U	1.0	1.0
Nitroaniline	U	U	U	υ	Ū	U	0.5	0.5 or MDL
cenaphthene	U	U	, U	U	<u> </u>	Ŭ	90	50°
4-Dinitrophenol	U	U	U	<u>U</u>	<u> </u>	Ū	0.2	0.2 or MDL
Nitrophenol	- U	U	υ	U	<u> </u>	Ŭ	0.1	0.1 or MDL
ibenzofuran	U	U	U I	Ū	0.385	U U	6.2	6.2
4-Dinitrololuene	U	U	Ŭ	Ŭ	U	U	NA	NA
iethylphthalate	U	U	U	<u> </u>	Ū	Ŭ T	7.1	7.1
Chlorophenyl-phenylether	- U	U	Ū	U ·	<u> </u>	Ŭ	NA	NA
uorene	1.91	3.71	0.465	0.814	1.27	2.26	350	50*
Nitroanaline	υ	- U	U	U	U	<u> </u>	NA	NA
6-Dinitro-2-Methylphenol	U	U	U	U	U	U	NA	NA
Nitrosodiphenylamine (1)	U	U	U	U	Ū	Ū	NA	NA
Bromophenyl-phenylether	U	U	υ	U	U	U	NA	NA
xachlorobenzene	U	U	U	Ū	<u>U</u>	<u> </u>	1.4	0.41
ntachlorophenol	U	U	Ŭ	<u> </u>	- <u> </u>	U U	1.0	1.0 or MDL
enanthrene	0.456	8.2	1.09	1.74	2,41	4.01	220	50°
thracene	0.267	0.673	0.089	0.147	0.26	0.448	700	50*
rbazole	U	U	U	U	U	U	NA	NA
n-Butylphthalate	U	U	U	U	Ū	U	8.1	8.1
oranthene	0.152	0.348	0.0595	0.0896	0.147	0.279	1900	50*
ene	0.444	0.9	0.131	0.172	0.242	0.563	665	50*
ylbenzylphthalate	U	υ	U	U	U	U	122	50*
-Dichlorobenzidine	U	U	U	Ŭ	U	U	NA	NA
zo(a)anthracene	U	U	U	0.0094	0.0147	0.0219	3.0	^0.24 or MDL
ysene	U	U	U	0.0177	U	0.0447	0.4	0.4
2-Ethylhexl)phthalate	U	U	0.0914	0.0514	0.145	0.0687	435	50*
i-octylphthalate	U	U	U	U	U	U	120	50*
zo(b)fluoranthene	U	U	U	Ŭ	U	Ū U	1.1	1.1
zo(k)fluoranthene	U	Ŭ	U	U	0.0088	U	1.1	1.1
zo(a)pyrene	U	U	Ū	Ŭ	0.0081	U	11	.061 or MDL
no(1,2,3-cd)pyrene	U	Ŭ	U	U	U.0001	U	3.2	3.2
nzo(a,h)anthracene	U	Ū	Ŭ	- <u>u</u>	<u> </u>		165,000	.014 or MDL
zo(g.h.l)perylene	υ	Ū	Ŭ	Ŭ	- U	- U	800	50*
	-	- 1	~ 1	~	~	v 1		

Note:

Samples Analyzed By: Roy F. Weston Lionville Analytical Laboratory

Samples Analyzed For:

•

TCL Semivolatiles

LEGEND U = UNDETECTED NA = NOT AVAILABLE **B - FOUND IN BLANK** J - ESTIMATED CONCENTRATION

MOL - METHOD DETECTION LIMIT

2

As per proposed TAGM, total VOC's <10ppm, Total Semi VOC's <500 ppm, and individual semi VOC's < 50 ppm

TABLE 2

• •

FTC - REIL EDIATION SEMIVOLATILE ORGANIC A. ALYSIS SUMMARY SOIL

SAMPLING DATE :6/18-6/21/2001

			\$0	BORING		112001		
	CMB -	5 CMB -2				BAF-3	Reconvoendes Shil Cleamup	Recommerated Soll
GC POUND (MG/KG)	26 -28	ft 34 -36 ft	L 16-18 ft	. 34 - 36			Objective to Protect SW(ppm)	Cleanup Objective pom
Phenol	U	ບ	U	U	U	U	0.03	.03 or MDL
bis(2-Chloroethyl)Ether	U	U	U	U	U	U	NA	NA
2-Chlorophenol	U	U	U	U	U	Ū	0.8	0.8
1,3-Dichlorobenzene	U	U	U	U	U	U	1.65	1.6
1,4-Dichlorobenzene	U	U	U	U	<u> </u>	<u> </u>	8.5	8.5
1,2-Dichlorobenzene	U	U	U U	U	Ū	T Ŭ	7.9	
2-Methylphenol	U	U		- Ŭ	<u> </u>	1 U	0.1	7.9
2,2'-oxbis(1-Chloropropane)	U	<u>U</u>	Ū	U U				0.1 or MDL
4-Methylphenol	- U		<u> </u>	U U	<u> </u>	- U	<u>NA</u>	NA
N-Nitroso-di-n-propylamine	Ŭ	- Ŭ	U	- - U	<u> </u>		0:9	0.9
Hexachloroethane		- Ŭ	U				NA	NA
Nitrobenzene	U	- Ŭ		T ü		U	NA	NA
Isophorone			U U	U U	<u> </u>	U	0.2	0.2 or MDL
2-Nitrophenol	U	U	- <u>u</u> -		<u> </u>	U	4.4	4.4
2,4-Dimethylphenol	U			U	U	U	0.33	0.33 or MDL
bis(2-Chloroethoxy)methane		<u> </u>	U	U	U	U	NA	NA
2,4-Dichlorophenol		<u> </u>	U	U	U	U	NA	NA
1,2,4-Trichlorobenzene		<u> </u>	<u> </u>	U	U	U	0.4	0.4
	U U	<u> </u>	U	U	U	U	<u>NA</u>	NA
Naphthalene	<u> </u>	U	U	1.25	1.68	0.68	13	13
4-Chloroaniline	<u> </u>	U	U	U	U	U	0.22	0.22 or MDL
Hexachlorobutadiene	U	<u> </u>	U	U	U	U	NA	NA
4-Chloro-3-methylphenol	<u> </u>	U	U	U	U	U	0.24	0.24 or MDL
2-Methylnaphthalene	U	U	U	12.9	11.1	37.2	36.4	36.4
Hexachlorocyclopentadiene	U	U	U	U	U U	U	NA	NA
2,4,6-Trichlorophenol	U	U	U	U	U	<u> </u>	NA	NA
2,4,5-Trichlorophenol	U	U	U	U	U U	U	0,1	0,1
2-Chloronaphthalene	U	U	U U	Ŭ	- <u> </u>	- ŭ	NA	NA
2-Nitroaniline	U	U U	Ŭ	Ŭ	- Ŭ	U U	0.43	
Dimethylphthalate	U	Ŭ	1 Ŭ	<u> </u>		<u> </u>		0.43 or MDL
Acenaphthylene	t <u> </u>	Ŭ	U U	0.653	0.822		2.0	2.0
2,6-Dinitrotoluene	Ū	1 ŭ	U U	U U		3.77	41	41
3-Nitroaniline	T U	<u> </u>			<u> </u>	U	1.0	1.0
Acenaphthene		- 0		U	U	U	0,5	0.5 or MDL
2,4-Dinitrophenol			<u>U,</u>	U	U	<u> </u>	90	<u> </u>
4-Nitrophenol	<u> </u>	<u> </u>	U	U	U	U	0.2	0.2 or MDL
Dibenzofuran	U	U	U	U	U	U	0.1	0.1 or MOL
	U	U	U	0.543	U	U	6.2	6.2
2,4-Dinitrotoluene	U	U	U	U	U	U	NA	NA
Diethylphthalate	1.4	0.0214	0.0238	U	U	U	7.1	7.1
4-Chlorophenyl-phonylether	U	<u> </u>	U	<u> </u>	U	U	NA	NA
Fluorene	<u> </u>	U	U	1.29	1.58	8.42	350	50'
4-Nitroanaline	υ	U	U	U	U	U	NA	NA
4,6-Dinitro-2-Methylphenol	U	U	Ū	U	U	U	NA	NA
N-Nitrosodiphenylamine (1)		U	U	U	U		NA	NA
4-Bromophenyl-phenylether	U	U	U	0.0196	U	U	NA	NA
Hexachlorobenzene	U	U	U	U	<u> </u>		1.4	0.41
Pentachlorophenol	U	Ū	Ŭ	U	U U		1.0	1.0 or MOL
Phenanthrene	0.0078	Ŭ	U U	2.77	2.9	17.5	220	
Anthracene	U	U	Ŭ	0.393	0.522	1.54	700	50'
Carbazole	Ŭ	U		U.035	U U			50'
Di-n-Butylphthalate	0.022		0.0074		<u> </u>	U	NA	NA
Fluoranthene	U		U.00/4			U	8.1	8.1
Pyrene			U U	0.169	0.222	0.869	1900	50*
Butytbenzylphthalate	Ū			0.281	0.361	1.88	665	50*
J-Dichlorobenzidine	U U	<u> </u>	U	<u> </u>	<u> </u>	U	122	50*
Benzo(a)anthracene		<u> </u>	U	U	υ	U	NA	<u>NA</u>
Chrysene	<u> </u>	U	U	0.014	0.0196	0.181	3.0	^0.24 or MDL
	U	U	U	0.0281	0.0407	0.275	0.4	0.4
bis(2-Ethylhexl)phthalate	0.259	0.0245	0.0175	0.118	0.131	0.261	435	50*
<u>Din-octylphthalate</u>	U	U	U	0.149	0.12	0.355	120	50*
enertherouth(d)	U	U	U	υ	U	U	1.1	1.1
#1zo(k)fluoranthene	U	U	U	υ	U	U	1.1	1.1
			U	U	0.013	U	11	.061 or MDL
Benzo(a)pyrene	U	U	0					
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	UUU	U U	U U	U				
Benzo(a)pyrene				U	U	U	3.2	3.2
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	U	U	U					

te:

imples Analyzed By:

Roy F. Weston

Lionville Analytical Laboratory

Samples Analyzed For:

TCL Semivolatiles

LEGEND

U = UNDETECTED

NA = NOT AVAILABLE

B - FOUND IN BLANK

J - ESTIMATED CONCENTRATION

MDL - METHOD DETECTION LIMIT

 As per proposed TAGM, total VOC's <10ppm, Total Semi VOC's <500 ppm, and Individual semi VOC's < 50 ppm

TABLE 4

FTC - KL SDIATION VOLATILE ORGANIC AN. SIS SUMMARY SOIL

SAMPLING DATE :6/18 - 21/2001

			SOIL	JORING	DATE :6/18 - 2	1/2001	1	
	BAF-4	BAF-5	MUF -1	MUF-4	MUF-5	MUF -3	Recommended Soil Cleanup	Recommended Solt
COMPOUND (MG/KG)	30 - 32 ft.	32- 34 ft.	25 - 27 ft	25 - 27 ft.	33 -35 ft.	32 -34 ft.	Objective to Protect GW(ppm)	Cleanup Objective (po
Dichlorodifloromethane	<u> </u>	<u> </u>	<u> </u>	U	UU	U		
Chloromethane	U	U	<u> </u>	U	U .	U		
Vinyl Chloride	U	U	U	U	υ	U	0.12	0.2
Bromomethane	U	U	UU	U	U	U		
Chloroethane	U	U I	U	U	U	U	1.9	1.9
Trichlorflouromethane	U	U	U	U	U	U		
Acetone	U	.230J	U	U	<u>-</u>	U	0.11	0.2
1,1-Dicloroethane	U	U	U	U	U	U	0.2	0.2
Methlylene Chloride	.0162B	.488B	.0137B	.0074B	U	U	0.1	0.1
Carbon disulfide	U	U	U	U	U	U	2.7	2.7
I-1,2-Dichloroethane	U	U	U	<u>u</u>	U	U		
1,1-Dichloroethane	U	U	U	U	U	U	0.2	0.2
2-Butanone	U	U	U	U	U	U U	0.3	0.3
Chloroform	U		U	U	U		0.3	0.3
1,1,1-Trichloroethane	U	U	U	U	U	Ū	0.76	0.8
Carbon Tetrachloride	U		U	Ū	<u> </u>	U	0.6	0.6
1,2-Dichloroethane	U	U	U	Ū	U	U	0.1	0.1
Benzene	U	U	U	0.0038	Ū	U	0.06	0.06
frichloroethene	U	U	U	U	υ	- Ŭ	0.7	0.7
,2-Dichloropropane	U	U	U	Ŭ	Ŭ			0.7
Bromodichloromethane	U	U	Ū	Ū	Ŭ	Ū		
-Methly-2-Pentanone	Ū	- Ŭ		U	U U	· U	1	1
-Hexanone	Ū	U U	Ū	U	U	<u> </u>		
-1,3-Dichloropropene	U.	Ū		<u> </u>	Ŭ	Ŭ		
oluene	0.0035	Ū	U	0.0052	Ū	U I	1.5	1,5
1,3-Dichloropropene	U	- Ŭ	U	U	U	U	1.5	1.5
1,2-Trichloroethane	U	U	U	U U	U	<u></u>		
etrachloroethene	U	<u> </u>	Ŭ	0.0015	U	U	1.4	1.4
ibromochloromethane	Ŭ	U	'U	U	- ŭ	U	N/A	<u>1.4</u>
2-Dibromomethane	Ū		Ŭ	Ū	- ŭ	U		
hlorobenzene	Ŭ	Ū I	Ū	Ŭ	Ŭ	U	1.7	1.7
hylbenzene	- Ŭ	0.299	0.0168	0.15	0.393	0.233	5.5	5.5
,p-xylene	0.011	U	0.0181	0.321	2.24	1.01	1.2	1.2
xylene	0.0046	U	U	0.247	0.841	0.157	1.2	1.2
yrene	U	U	-U	U.247	U.041	U.157		
omolom	U I	- U	U	- <u>U</u>	<u> </u>	<u>u</u>		
1,2,2-Tetrachioroethane	- U -	U	U	- <u>U</u>	- U	- U -	0.6	
2,3-Trichloropropane	<u> </u>	U +	U	U	U			0.6
B-Dichlorobenzene		U	U		<u> </u>	U U	0.34	0.4
-Dichlorobenzene	U -	- <u>u</u>	<u> </u>					1.6
P-Dichlorobenzene		<u> </u>	U	U		<u> </u>	8.5	8.5
-Dibromo-3-chloropropane		<u> </u>	<u> </u>	<u>-</u> U	0.139 U	U U	7.9	7.9
	<u> </u>	0	0	U	U	U		

Note:

Samples Analyzed By: Roy F. Weston Lionville Analytical Laboratory Samples Analyzed For: TCL Semivolatiles

. -

s2

LEGEND

U = UNDETECTED

NA = NOT AVAILABLE

B - FOUND IN BLANK

J - ESTIMATED CONCENTRATION

MDL - METHOD DETECTION LIMIT

* - As per proposed TAGM, total VOC's <10ppm, Total Semi VOC's <500 ppm, and individual semi VOC's < 50 ppm volsoil2

Appendix **B**

2.5 Remedial System Termination

The standards/guideline values for VOCs and semi-VOCs presented in Table 2-3 are the criteria that must be achieved in the monitoring wells for termination of site remedial system operation. These criteria must be met for a period of 2 years (8 quarters) prior to termination of system operation, unless the zero slope condition for groundwater remediation is demonstrated.

The zero slope condition refers to a demonstrated condition at which contaminant concentrations in all termination monitoring wells (see Section 3.6) are lowered by the remediation, but do not achieve required standards and/or guidance values (see Table 2-5). Instead of continuing to be lowered, the concentrations reach a certain level and remain at that level during the two-year termination monitoring period. This condition is demonstrated if a plot of concentration versus time data for the two-year termination monitoring period indicates that the slope of the line is statistically indistinguishable from zero.

For the purposes of determining the zero slope condition, organic compound concentrations will be summed over each quarter to produce a total VOC (TVOC) concentration versus time plot for each termination monitoring well (i.e., 21 plots). It will be required that the zero slope condition exists in each termination monitoring well (see Section 3.6.2).

To determine whether the zero slope condition has been achieved, termination monitoring data will be tested for normality. The selected statistical test will be determined as follows:

- 1. Plot concentrations obtained over time on probability paper.
- 2. Evaluate for normality by an agreed-upon objective method.
- If data is not normally distributed, transformations such as lognormal may be employed in an attempt to obtain a normal distribution. Transformed data will be tested for normality.
- 4. If the data is normally distributed, the most powerful parametric test will be used.
- If the data is not normally distributed, an appropriate non-parametric test will be applied.

In addition, if one or more of the sample analytical results for termination monitoring do not meet the required criteria, the NCDPW may still seek termination of the remediation if all other data meets the criteria and it can be demonstrated, subject to NYSDEC concurrence, that the contamination in the non-complying wells is attributable to sources of contamination other than the FTC site. The NYSDEC will continue to make available to the NCDPW all data it obtains with respect to other potential sources of contamination including, without limitation, the Oyster Bay Solid Waste Disposal Complex (OBSWDC) (i.e., the Old Bethpage Landfill) and the Claremont Polychemical Site.

(fto/wp2/sec2)

NASSAU COUNTY FTC

GROUNDWATER CLEANUP CRITERIA

Constituents Identified In Risk Assessment Volatile Compounds	NYS State Groundwater Standards 6 NYCRR 703.5 (ug/l)
Benzene	0.7
Toluene	5
Ethyl Benzene	5
Xylenes (each Isomer)	5
Acetone	50*
Methyl Ethyl Ketone	50*
Carbon Disulfide	50*
Vinyl Chloride	2
Methylene Chloride	5
1,1-dichloroethene	5
1,1-dichloroethane	5
trans-1,2-dichloroethene	5
1,1,1-trichloroethane	5
Trichloroethene	5
Tetrachloroethene	5
2-hexanone	50
Total Volatiles	50
Semi-Volatile Compounds	5
Phenanthrene	50*
Fluorene	50*
Naphthalene	50*
di-n-octyl phthalate	50*
2-methylnaphthalene	50*

* - NYS Drinking Water Standards 10 NYCRR 5-1 (ug/l)

Appendix C

.....

.....

in York State Department of Environmental Conservation

Division of Environmental Remediation Bureau of Connical Support, 11th Floor 625 Broadway, Albai NY 12233-7020 Phone: (518) 402-9553 • Fax: (518) 402-9547 Website: www.dec.ny.gov

May 18, 2011

Honorable Shila Shah-Gavnoudias Commissioner County of Nassau, Department of Public Works 1194 Prospect Avenue Westbury, New York 11590-2723

Dear Commissioner Shah-Gavnoudias:

As mandated by Section 27-1305 of the Environmental Conservation Law (ECL), the New York State Department of Environmental Conservation (Department) must maintain a Registry of all inactive disposal sites suspected or known to contain hazardous waste. The ECL also mandates that this Department notify the owner of all or any part of each site or area included in the Registry of Inactive Hazardous Waste Disposal Sites as to changes in site classification.

Our records indicate that you are the owner or part owner of the site listed below. Therefore, this letter constitutes notification of change in the classification of such site in the Registry of Inactive Hazardous Waste Disposal Sites in New York State.

DEC Site No.:130042Site Name:Nassau County Fire Training CenterSite Address:300 Winding Road, Old Bethpage, NY 11804-1323

Classification change from 2 to 4

The reason for the change is as follows:

- The remedial actions outlined in the Record of Decision (ROD) have been implemented and groundwater monitoring has shown a decrease in site-related contaminants. Long-term groundwater monitoring will continue to evaluate the effectiveness of the implemented remedial measures. An on-site evaluation is necessary to determine the potential for exposure to site-related contaminants via soil vapor intrusion.

Enclosed is a copy of the Department's Inactive Hazardous Waste Disposal Site Report form as it appears in the Registry. An explanation of the site classifications is available at <u>http://www.dec.ny.gov/chemical/8663.html</u>. The Law allows the owner and/or operator of a site listed in the Registry to petition the Commissioner of the New York State Department of Environmental Conservation for deletion of such site, modification of site classification, or modification of any information regarding such site, by submitting a written statement setting forth the grounds of the petition.

Such petition may be addressed to:

Honorable Joseph J. Martens Commissioner New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-1010

For additional information, please contact Benjamin Rung, the project manager at (518) 402-9813.

Sincerely,

uindad.

Kelly A. Lewandowski, P.E. Chief Site Control Section

Enclosures

ec: D. Desnoyers D. Weigel

A. English

K. Lewandowski

B. Rung

M. Flaherty, Cedar Creek WPCP

Appendix D

BY UPS NEXT DAY DELIVERY

14 April 2011

Ms. Kelly Lewandowski New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7020

Re: Notice of Change Nassau County Fire Service Academy – Burn Buildings C & D Site No. 130042

Dear Ms. Lewandowski:

Cashin Associates, P.C. (CA) has been retained by Nassau County to develop designs, construction and demolition plans and specifications required to replace two existing fire training buildings located at the Fire Service Academy (FSA) in Bethpage, New York and has authorized CA to issue this letter in its behalf. The buildings are designated Buildings "C" and "D" and are depicted on the attached aerial photograph of the FSA premises. The FSA facility is listed as a New York State Superfund site. The Record of Decision (ROD) dated February 1993 among other remedial actions required that the use of portions of the property be restricted. Nassau County's Declaration of Restrictions, dated 16 December 1996 and its Resolution No. 612 – 1996 dated 18 December 1996 (copies enclosed) which were in response to the ROD placed covenants on five discrete areas within the overall property. Those areas are also shown on the attached aerial photograph. Buildings "C" and "D" are outside the encumbered areas.

This communiqué is to advise the New York State Department of Environmental Conservation, that CA plans to obtain soil borings, concrete cores of the existing building walls and slabs, construct test pits and perform asbestos sampling all within or in close proximity to the existing footprints of Buildings "C" and "D". The proposed soil boring locations are also shown on the attached aerial photograph. CA plans to commence the exploratory investigations shortly. Kindly let me know whether your Department has any comments on these proposed activities. It is our understanding that the exploratory program described above is not a restricted action and may proceed immediately.

CA has just started the Programming phase of its design assignment, part of which includes obtaining soil boring and concrete cores. We do not know the details of the final design at this time. Preliminarily, however, the Building "C" and "D" superstructures will be replaced in their entirety

1200 Veterans Memorial Highway • Hauppauge, NY 11788 • (631) 348-7600 • FAX (631) 348-7601 601 Brickell Key Drive • Suite 606 • Miami, FL 33131 • (305) 579-2206 • FAX (305) 579-2035 841 Broadway • Suite 500 • New York, NY 10003 • (917) 546-0741

www.cashinassociates.com

Kelly Lewandowski April 14, 2011 Page 2 of 2

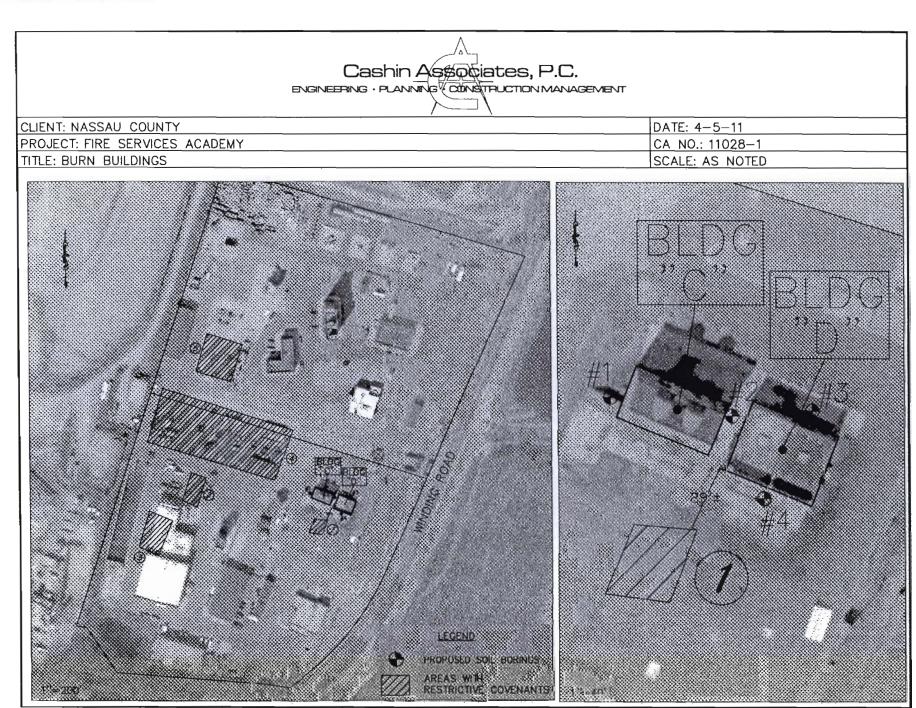
and new superstructures will be constructed on the existing foundations. In order to comply with the intent of NFPA 1402, Section 10.1.5 (copy attached) it may be necessary to expand the "walkout" areas from the basements for safety reasons. Preliminarily, the "walk out" areas may be expanded as shown on the attached sketches. Some site drainage improvements may also be required. All construction work is expected to be outside the five (5) parcels that have restrictive covenants on their deeds and construction work is planned to commence in October 2011. As required by NYS Superfund regulations, please consider this letter as Nassau County's "Notice of Change of Use".

Should you have any questions, please call me at 631-348-7600.

Very truly yours,

CASHIN ASSOCIATES, P.C.

Leles Met


Aldo Marletti, P.E. Executive Vice President

.AM/ck

cc: P. Scully, Regional Director, NYSDEC
S. Shah, PE, Commissioner, NCDPW
R. Maitra, PE, Deputy Commissioner, NCDPW
M. Flaherty, Hydrogeologist, NCDPW
B. Rung, NYSDEC
W. Parish, NYSDEC

1/PROBUTS/NASSAU/COUNTY/11/28/1 Bene Blags C & D/CORRESPONDES/CES/STRDC. Lee & Leennadessikular

Cashin Associates, P.C. · Engineering · Planning · Construction Management

PRINT: 04/14/11-12:10pm X:\COUNTY OF NASSAU\11028-1 Burn Buildings C-D\PL.dwg

DECLARATION OF RESTRICTIONS The Declaration is hereby effective as of $\frac{2}{16}/96$

WITNESSETH

7

ŧ.

WHEREAS, soil contentiation at certain areas within the Fireman's Training Center in Bethpage consists of the chemicals listed in Attachment No. 1 at levels that potentially threatem public health, and

HHEREAS, the New York State Department of Environmental Conservation and the County of Nassau have agreed on the remediation steps to be taken in connection with said contemination which include restrictions to be recorded in the Nassau County Clerk's Office against the use of the contaminated areas at the Fireman's Training Center, as stated in the Record of Decision, dated February, 1993 attached as Attachment No. 2, and

WHEREAS, the Fireman's Training Center is identified as Section 47, Block 133, Lots 6 and 7 on the Land and Tax Map of Nassau County, and the contaminated areas to be restricted within the Fireman's Training Center are identified by the attached metes and bounds descriptions and map and are attached as Attachment No. 3. 416-94

WHEREAS, this Declaration of Restrictions shall just affect the aforesaid contaminated areas identified in Attachment No. 3.

havy stics (setted at / lest-St. NDW, THEREFORE, the County of Nassay for itself and its Marcela, successors and essigns, covenants and declares that: 1. Unless prior written approval by the New York State

Department of Environmental Conservation and the New York

State Department of Health (or any subsequently delegated agencies) is first obtained, there shall be no construction, use or occupancy of the contaminated areas which results in the disturbance or excavation of the waste materials on site, which threatens the integrity of the asphalt cap or soil cover materials, or which results in human exposure to contaminated soils.

2. Unless prior written approval by the above stated agencies is obtained, there shall be no change in the use of the contaminated areas in any way that is inconsistent with its use as a fire training center. If such a new use of the contaminated areas is approved, any and all further remedial activities at the aforesaid contaminated areas deemed necessary and appropriate by the above stated agencies will be performed by the County of Nassau.

3. The County of Nassau, its successors and assigns will not disturb the contaminated areas in any way, except to properly maintain the integrity of the remedial exagures undertaken and maintained at the areas of contamination as stated in the Record of Decision dated February, 1993 attached hursto as Attachment No. 2. which is incorporated herein and made a part hereof as if herein set forth at length.

4. This Declaration is and shall be deemed to be a covenant running with the land, binding the County of Nassau, its successors and essigns, and any agent, lessee or invitee of the County of Nassau in perpetuity or until such time the New York State Department of Environmental Conservation and the New York State Department of Health (or any subsequently delegated agencies) determing, in writing, that the

• • • •

Declaration is no longer necessary for the protection of human health and the environment. At such tigs, the covenant shall be null and void and have no effect upon the land.

COUNTY OF MAGENIE ${\bf s}_{i},$ St. problem and and a star and a s

APPROVED FORST SSIANE is thomas 61 VEEB Michael R. Gilloy, Executive Diffector

Ŧ

معمد بر بر بر معرف ا

;°

FORM APPROVED:

RESOLUTION NO. 517 -1996

A RESOLUTION AUTHORIZING THE COUNTY EXECUTIVE TO EXECUTE A DECLARATION OF RESTRICTIONS REGARDING COUNTY OWNED PROPERTY BEING LOCATED AT THE FIREMAN'S TRAINING CENTER, OLD BETHPAGE. TOWN OF DYSTER BAY, IN ORDER THAT DNLY CERTAIN AND SPECIFIED CONTAMINATED LOCATIONS WITHIN THE SAID PROPERTY WILL BE COVERED BY THE DECLARATION OF RESTRICTIONS AND THE REMAINING PROPERTY CAN BE USED PRODUCTIVELY.

WHEREAS, THE COUNTY OF NASSAU, hereinafter referred to as the County, is the owner of property known as the Fireman's Training Center, Old Bethpage, Town of DySter Bay which is identified as Section 47, Block 153, Lots 6 and 7 on the Land and Tax Map of Nassau County; and

WHEREAS. there are certain areas within said property that contain chemicals at levels that potentially threaten public health; and

Direct

5

Michae

VEBB

ų v

APPROVED

WHEREAS, the New York State Department of Environmental Conservation and the County have agreed on the remediation steps to be taken in connection with the said contaminated areas within the above stated property; and

WHEREAS, there shall be no change in the present use of the contaminated areas in any way that is inconsistent with its use as a fire training center, unless prior written approval of the New York State Department of Environmental Conservation and the New York State Department of Health is obtained; and

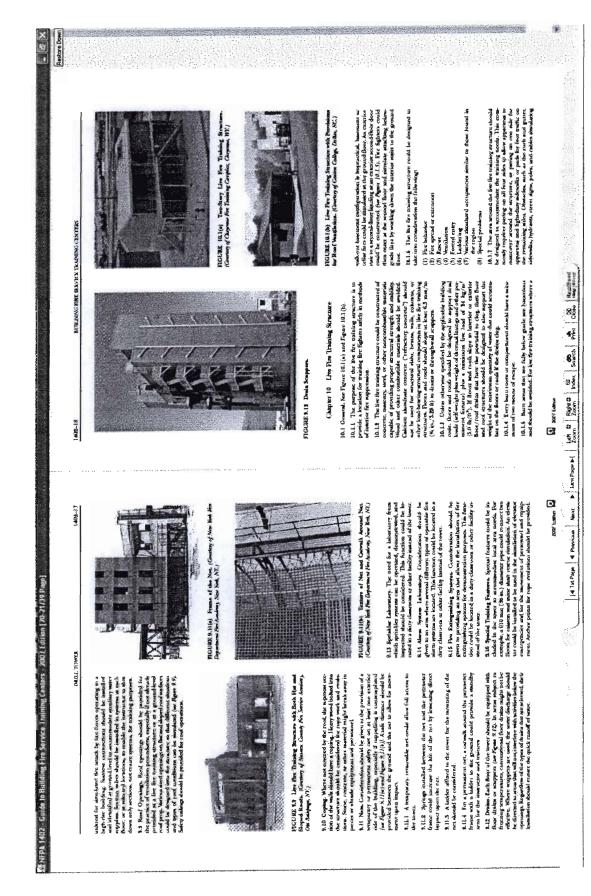
> Passed by Nessau County Legislature on DEC 1.6 1996 A voice vote as taken with 19 Legislators present. Voting: aye 19 ; nay ______ abstained Became a resolution on DEC 1.8 1996 with the approval of the Deputy County Executive atting for the County Executive.

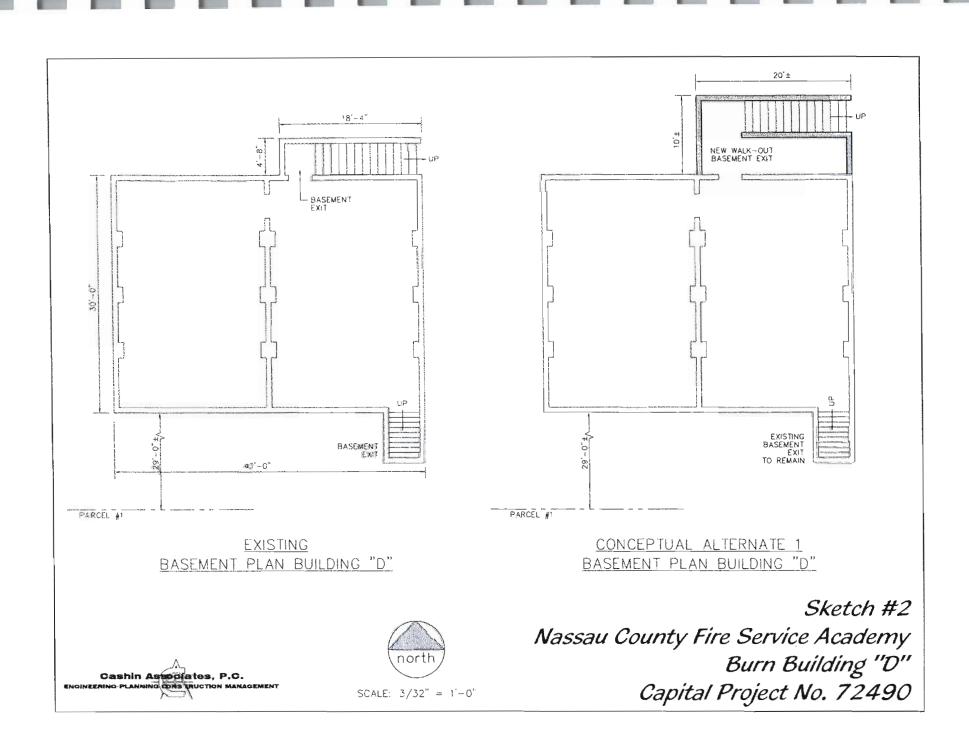
WHEREAS, the Declaration of Restrictions will refer only to the areas contaminated by chemicals and the remaining areas will be free from said restrictions. therefore avoiding the loss of other uses for the remaining property located at the Fireman's Training Center: now therefore be it

REBOLVED, that the COUNTY EXECUTIVE be, and he hereby is authorized to execute, on behalf of the COUNTY OF NASSAU, a Declaration of Restrictions in connection with certain County owned property located at the Fireman's Training Center in Did Bethpage in order that the use of only certain and specified contaminated locations, as referred to and identified in the said Declaration of Restrictions, be restricted by the declaration of restrictions and the remaining property at the Fireman's Training Center be used productively] and be it further

RESOLVED that the COUNTY ATTORNEY of Nassau County be, and he is hereby directed to record said Declaration of Restrictions and to file the map in connection with same in the Office of the Clerk of the County of Nassau; and be it further

RESOLVED that the COUNTY EXECUTIVE or the COUNTY ATTORNEY be, and they are hereby authorized to execute any other instrument that may be required to carry out this Resolution; and be it further


REBOLVED that this Resolution shall take effect


imendiately.

r., * /

DEC 1 8 1996

- H

