

COUNTY OF NASSAU DEPARTMENT OF PUBLIC WORKS 1194 PROSPECT AVENUE WESTBURY, NEW YORK 11590-2723

October 19, 2009

Cynthia Whitfield, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation, 12th Floor 625 Broadway Albany, New York 12233-7011

Re: Fireman's Training Center (FTC) Periodic Review Report – 2009

Dear Ms. Whitfield:

Please find enclosed two (2) copies of the 2009 "Periodic Review Report" and the Certification form for the Fireman's Training Center project. The report was prepared following the suggested outline provided in your May 14, 2009, "45-Day Reminder Notice: Site management Periodic Review."

If you have any questions regarding the report or activities at the site, please contact Kenneth G. Arnold, P.E. at (516) 571-6850.

Very truly yours,

Jøseph L. Davenport, P.E. Chief Sanitary Engineer Acting Division Head

JLD:KGA:jb Enclosures

c: Walter Parish, Hazardous Waste Remediation Engineer, NYSDEC, Region 1 Kenneth G. Arnold, Unit Head, Water/Wastewater Engineering Unit Michael Flaherty, Hydrogeologist III

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

S	ite No.	130042	Site Details	Ε	Box 1	
S	ite Name Na	ssau County Fire	Training Center			
		Ninding Road	Zip Code: 11714			
C	ity/Town: Old	Bethpage				
C	ounty: Nassau	I				
Ai	lowable Use(s	s) (if applicable, do	es not address local zoning):			
Si	te Acreage: 1	2.0				
			Verification of Site Details		YES	NO
1	Are the Site	Details above, co	rect?		K	
••			n above or included on a separa	ate sheet?		
2.	Has some o	r all of the site pro	perty been sold, subdivided, me initial/last certification?			凶
		ocumentation or ev cluded with this co	idence that documentation has rtification?	been previously		
3.			local permits (e.g., building, dis initial/last certification?	scharge) been issued	G	Ď
		cumentation (or e ncluded with this c	vidence that documentation has ertification?	been previously		
4.	If use of the restrictions?	,	the curent use of the site consi	istent with those	X)	۵
	If NO, is an e	explanation includ	ed with this certification?			}
5.	has any new	information revea	nfield Cleanup Program Sites s led that assumptions made in th ontamination are no longer valio	ne Qualitative Exposu		🗆 N/A
		e new information cluded with this Ce	or evidence that new information rtification?	n has been previously		
6.			nfield Cleanup Program Sites si litative Exposure Assessment s		5.7(c),	
		y five years)?	manye Exposure Assessment s	אמו אמוע נוועסנ שפ		🗆 N/A
	If NO, are ch	anges in the asse	sment included with this certific	ation?		

SITE NO. 130042		Box 3
Description of Institution	al Controls	
Parcel	Institutional Control	
S_B_L Image: 47-153-6		
	Decision Document	
	Soil Management Plan	
S_B_L Image: 47-153-7	-	
	Decision Document	
	Soil Management Plan	
		Box 4

Description of Engineering Controls

Parcel

Engineering Control

S_B_L Image: 47-153-7

S_B_L Image: 47-153-6

Cover System Pump & Treat

Cover System Pump & Treat

Attach documentation if IC/ECs cannot be certified or why IC/ECs are no longer applicable. (See instructions)

Control Description for Site No. 130042

Parcel:

Parcel: 47-153-6

2/9/89 CO calls for Declaration of Covenants and Restrictions to follow deed, and specifically calls for supplemental action(s) if/as needed separate from re-openers for additional information not previously known. CO specifically identitifes a 30 year post active remediation maintain, monitor and report period 2/93 ROD calls for capping of shallow soils combined with deed restrictions to prevent future human exposure to site contaminants, GW P&T (on & off site), and periodic monitoring, reporting, and evaluation of remedy effectivness.

Parcel: 47-153-7

2/9/89 CO calls for Declaration of Covenants and Restrictions to follow deed, and specifically calls for supplemental action(s) if/as needed separate from re-openers for additional information not previously known. CO specifically identitifes a 30 year post active remediation maintain, monitor and report period. 2/93 ROD calls for capping of shallow soils combined with deed restrictions to prevent future human exposure to site contaminants, GW P&T (on & off site), and periodic monitoring, reporting, and evaluation of remedy effectivness.

	Box	5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certificat are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.	ion
	YES NO	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutio or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	nal
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	ince
	(b) nothing has occurred that would impair the ability of such Control, to protect public health a the environment;	nd
	 (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; 	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
3.	If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in the Decision Document);	
	certify by checking "YES" below that the O&M Plan Requirements (or equivalent as required in the	
	Decision Document) are being met.	
	×	
4.	If this site has a Monitoring Plan (or equivalent as required in the remedy selection document);	
	certify by checking "YES" below that the requirements of the Monitoring Plan (or equivalent as required	ł
i	n the Decision Document) is being met. YES NO	

•

		IC CERTIFICA SITE NO. 13		
				Box 6
I certify that all in		nents in Boxes 2 a	nd/or 3 are true.	SIGNATURE I understand that a false Jant to Section 210.45 of th
Raymond A	Ribeiro, P.E.	at <u>1194 Pro</u>	spect Avenue	, Westbury, NY 11590 ess
				ess
am certifying as _	Commissioner	of Public Wor	<u>ks</u>	(Owner or Remedial Pa
\mathbb{R}	d in the Site Details S			10/7/09 Date
		IC/EC CERTIFICA		
punishable as a C	Ribeiro, P.E.	or, pursuant to Se	ction 210.45 of th	, Westbury, NY 11590
•				ment of Public Works
	al Party) for the Site			
			SINE OF N SINE OF N SINUND A	EW JODA AIGENTO HISTORY LIO Date

_

-

ΥZ CENTE TRAINING CE ATER REMEDI REMEN'S TF E R E

DEPARTMENT OF PUBLIC WORKS

Nassau County

Long Island, New York

Periodic Review Report

2009

1.0 INTRODUCTION

A. The Fireman's Training Center (FTC) has conducted fire training activities for County's seventy-one (71) fire districts since 1960. The site and facilities are owned by Nassau County, and the training activities and administrative functions are directed by the Vocational Education and Extension Board of Nassau County. Site operations have consisted of fire fighting exercises in open burn areas and building Mock-ups. Fuel oil (No. 2) and gasoline are the primary sources of ignition for training fires. From 1970 to 1980 various combustible organic solvents were also reported to have been mixed with oil and used in the structures being burned.

Training is presently conducted in three building mockups and three open burn areas, propane training areas were also added to the north side of the site in 1991. Until 1984, unburned fuel and solvents that mixed with fire fighting and cleanup wash water flowed over the FTC surface directly into nearby drywells. The dry wells were constructed with unlined, open bottoms and were conduits for downward migration of the liquids through the subsurface soils into the ground water. Additional subsurface contamination may have occurred by leakage of gasoline and oil from shallow underground pipes used to supply fuels to some burn area mock-ups.

Remedial activities at the site began in 1984 with the implementation of a drainage improvement contract. Work conducted under this contract segregated the storm water runoff from the active burn areas to an oil/water separator and a concrete holding basin that removed the oil prior to discharging to the sanitary sewer. This project eliminated all onsite drywells which had previously received contaminated runoff and separated clean surface runoff from water derived from training activities. All contaminated soils encountered during construction were stockpiled and removed. This project was completed in 1988 and the system is still in operation.

The RI/FS for the site was conducted between 1988 and 1992. Construction of the groundwater treatment facility and installation of all onsite and offsite groundwater recovery wells began in 1996. Groundwater treatment activities began in July 1999.

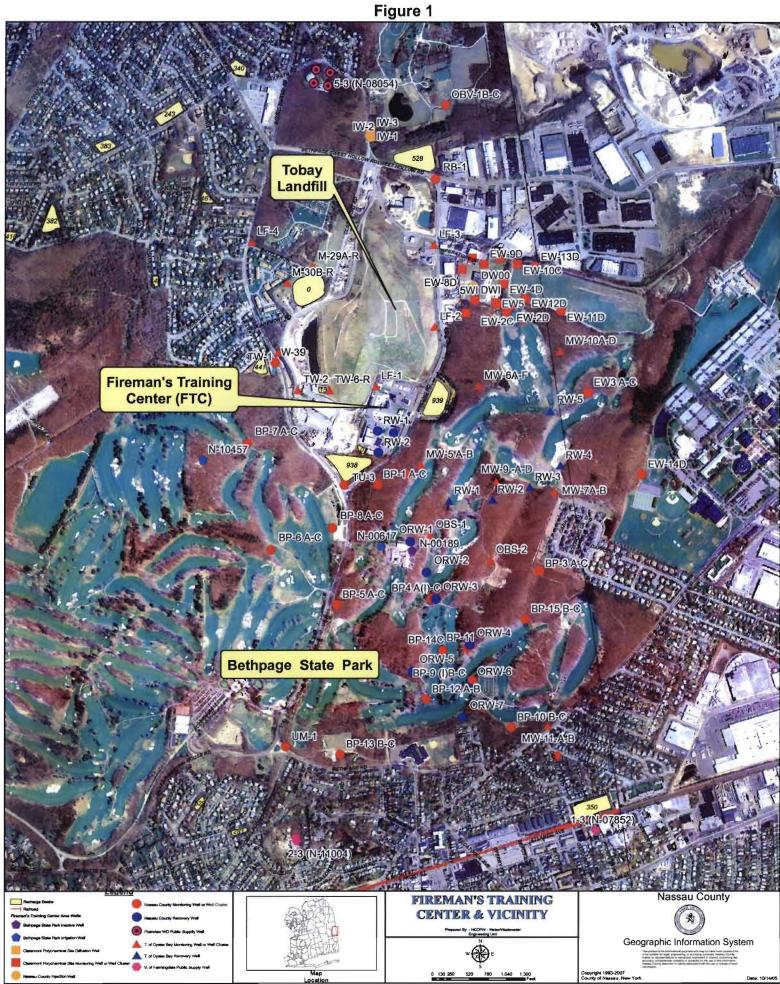
B. Treatment of both onsite and offsite groundwater at the site have been ongoing for over ten years. Over this time period progress in meeting remedial objectives has been made in the following areas:

- Over 4500 gallons of "floating" petroleum product have been removed from onsite groundwater.
- Onsite soil conditions have improved to the point were deed restrictions could be removed from two former "Burn Areas" (Appendix A).
- Total offsite influent concentrations have been reduced from a maximum concentration of 1,005 ppb (6/20/2000) to 36 ppb (6/16/2009).
- Total Volatile Organic Compound (TVOC), concentrations in offsite groundwater has been reduced from over 1400 ppb to less than 50 ppb at six of the seven Offsite Recovery Well (ORW), locations.
- Total Volatile Organic Compound (TVOC), concentrations in onsite groundwater has been reduced from parts per million (ppm) levels to less than 250 ppb (RW-1).
- Onsite Groundwater Quality has improved dramatically, data collected from nine (9) monitoring wells in October 2008 found six wells with TVOC concentrations below detectable limits (BDL) and three wells with TVOC concentrations ranging from (2 8 ppb), one of those wells found to be below detectable limits (W-35) originally had a TVOC of 2,784 ppb in June, 1999.
- Offsite Groundwater Quality has improved dramatically, data collected from twelve (12) monitoring wells in October 2008 found 5 wells with TVOC concentrations below detectable limits (BDL), five wells with TVOC concentrations ranging from (2 16 ppb) and two wells with TVOC concentrations above 200 ppb. Original TVOC concentrations in the offsite plume exceeded 1,000 ppb at some well locations.

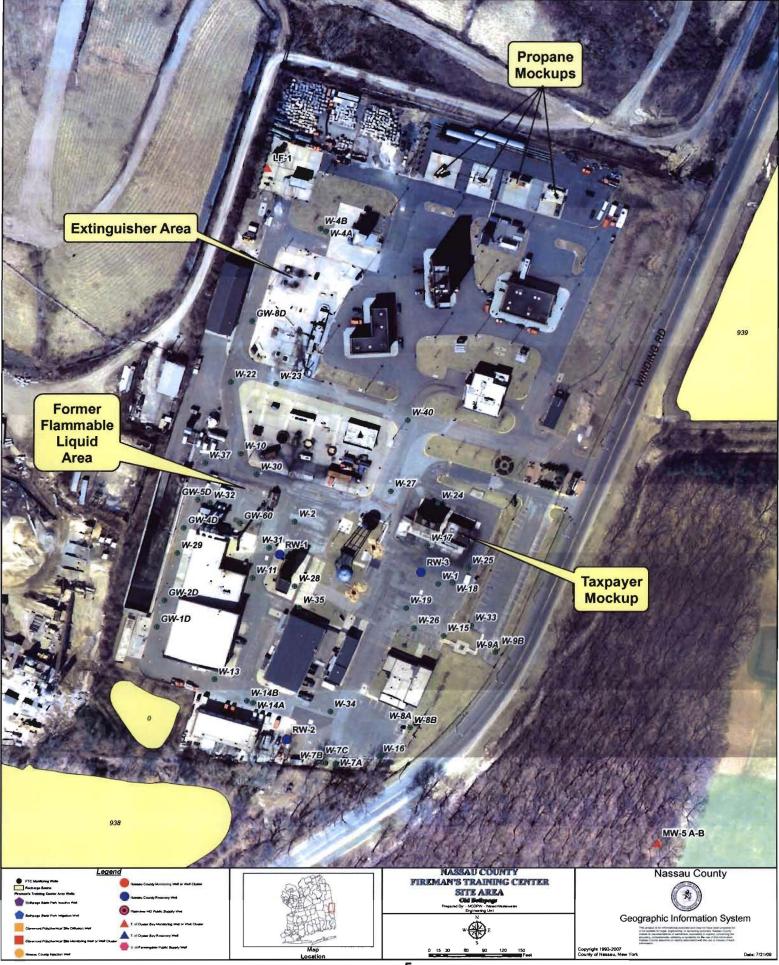
C. The County of Nassau believes that treatment of the original offsite plume of volatile organic compounds which emanated from the Nassau County Fireman's Training Center also known as the Nassau County Fire Service Academy is essentially complete. This assertion is supported by the extremely low concentrations of TVOC's observed in the offsite influent. It is also supported by the results of the groundwater model prepared for the County by CDM in April 2008. *The County believes that the majority of the volatile organic contamination which is currently being treated by the groundwater remediation facility originated from sources other than the FTC located to the north and east of the offsite recovery well network.*

2.0 SITE OVERVIEW

A. The FTC is located on a 12-acre site on Winding Road near Round Swamp Road in Old Bethpage, New York. It is bordered on the north and west by the former Old Bethpage Landfill and on the south and east by Bethpage State Park (Figure 1). The site has been used since 1960 to conduct advanced fire fighting training for volunteer firemen, and continues today to serve these activities. Training exercises occur in open burn areas and in mock-up buildings located across the site (Figure 2).


Between 1970 and 1980, waste solvents, in addition to fuel oil and gasoline, were accepted at the site for use in training exercises. This practice was discontinued in 1980 and, since then, training exercises have been performed using only fuel oil and gasoline to ignite wooden pallets and straw.

The site contamination occurred primarily in the open burn areas, where fuel was poured directly onto the ground, and in the mock-up fields. In the mock-up buildings, unburned fuel and solvents were washed out of the buildings into drywells after each training session. These unlined drywells inadvertently served as conduits, carrying contamination down to the groundwater and contaminating the soils beneath the site.


B. In 1984, site improvements were made by the County to cap the burn areas and seal the drainage system leading to the drywells. A new drainage system was installed, including an oil/water separator to treat training site runoff. The discharge of the oil/water separator is connected to the sanitary sewer system.

Based on the County's investigations conducted at the site, the New York State Department of Environmental Conservation (NYSDEC) added the FTC site to the States Registry of Inactive Hazardous Waste Disposal Sites in December 1987, and upgraded the site to Class 2 level, one that poses a significant threat to the public or the environment, in March 1988. The County signed an Order of Consent in February 1989, requiring a Remedial Investigation/Feasibility Study (RI/FS) to be performed. The RI/FS was completed in 1992.

A record of decision (ROD) that described the remedial program for the site was subsequently approved by the NYSDEC in February 1993. The ROD called for an asphalt/concrete cap with institutional controls for shallow soils, pumping and treating on-site groundwater using up to three extraction wells, and pumping and treating off-site groundwater using up to seven extraction wells. Remedial operations began in July 1999.

The cleanup goals and remedial system termination criteria for the Fireman's Training Center Remediation are included in appendix B. The only significant changes to the selected remedy (pump & treat); involve the number and pumping configuration of the offsite recovery wells (ORW's) used for treatment and the discharge of treated effluent. The original treatment scheme called for the continuous pumping of the three onsite recovery wells (RW-1,2 and 3) and the simultaneous pumping of all seven offsite recovery wells (ORW-1,2,3,4,5,6 and 7). Over time the absence of floating petroleum product and both semi-volatile and volatile organics from onsite groundwater collected from RW-2 and RW-3 led to these wells being turned off. RW-1, the original onsite source area recovery well is the only onsite recovery well currently in service.

The suspected presence of volatile organic compounds derived from non-FTC sources in the offsite plume, led to the County undertaking a Modeling effort. The results of the groundwater model prepared by Camp, Dresser and McKee (CDM), consultants also led to the development of a more efficient pumping scheme using only offsite recovery wells (ORW-3, 4, 6 and 7). The modeling effort also verified that there are non-FTC sources impacting the remediation.

In order to enhance groundwater treatment operations using multiple wells, the County added an effluent connection to the sanitary sewer in July 2006. This connection was necessary due to the poor seasonal recharge characteristics of the existing offsite recharge basin. The addition of this connection allows for the discharge of treated effluent to both the offsite recharge basin and the sanitary sewer which increases Plant's reliability.

3.0 Remedy Performance, Effectiveness, and Protectiveness

The overall remedy performance selected for the FTC Remediation has been very effective over the 10 years of treatment operations. Overall onsite water quality has improved dramatically with many monitoring wells which formerly contained pure petroleum product or exhibited TVOC concentrations in the parts per million range currently containing groundwater which has TVOC concentrations below detectable limits (BDL). Offsite groundwater quality has also shown similar improvement with several monitoring wells which formerly exhibited TVOC concentrations exceeding 1,000 ppb currently below detectable limits. The 2008 sampling results for groundwater collected from both onsite and offsite monitoring wells are presented in the following tables. These tables list only those compounds that have historically been detected at the Firemen's Training Center site.

Review of the 2008 Onsite groundwater quality data indicates that seven of the nine onsite groundwater monitoring wells sampled has volatile and semi-volatile organic concentrations below the groundwater cleanup criteria established for the site.

Groundwater monitoring well FTC-W-32 had a TVOC concentration in groundwater of 48 ppb, two ppb below the guideline of 50 ppb, however groundwater collected from this well did exceed the individual cleanup guideline of 50 ppb established for 2-Methylnapthalene by 6 ppb. Groundwater monitoring well FTC-W-35 had a TVOC concentration in groundwater of 104 ppb and was below detectable limits for all semi-volatile compounds listed in the site cleanup criteria.

Review of the 2008 Offsite groundwater quality data reveals that 11 of the 14 wells sampled had

Table 2a
2008 ONSITE GROUNDWATER SAMPLING RESULTS

			TC-W-4A			F	TC-W-4	B			F	TC-W-7	B			F	TC-W-9	Δ	
	Baseline		<u></u>	-	Baseline					Baseline					Baseline	ne l			
	Water Quality		DATE SA		Water Quality			AMPLED		Water Quality			AMPLED		Water Quality			AMPLED	
VOLATILE ORGANICS COMPOUNDS	6/10/99		9/4/08		6/10/99		9/4/08			6/10/99		9/5/08			6/10/99		9/4/08	MPLEU	(
1,1-Dichloroethane	BDL	_	BDL	_	BDL		BDL			6DL		BDL.			BDL	_	BDL		[
1,1-Dichloroethene	BDL		BDL		BDL		BDL			6DL		BDL			BDL		BDL		
1,2,3-Trichlorobenzene	BDL		BDL		BDL.		BDL			6DL		BDL			BDL		BDL		
1,2,4,5-Tetramethylbenzene	NA		BDL		NA		BDL			NA		BDL			NA		BDL		<u> </u>
1,2,4-Trimethylbenzene	BDL BDL		BDL. BDL		BDL 2.1		BDL BDL			2.7 BDL	<u> </u>	BDL BDL			BOL		BDL BDL		<u> </u>
1,3,5-Trimethylbenzene	BDL		BDL		BDL		BDL			BDL		BDL			BDL		BDL		i
1,4-Dichlorobenzene	BDL		BOL		7.2		BDL			BDL		4.2			BDL		BDL		<u> </u>
2-Methylnaphthalene	NA		BDL	1	NA		BDL			NA		BDL			NA		BDL		
4-Isopropyltoluene	NA		BDL		NA		BDL			NA		BDL			NA		BDL		
Acetone	6DL		BDL		BDL		BDL			BDL		BDL			BDL		BDL		L
Benzene	BDL BDL	Not	BDL BDL		BDL BDL	Not	BDL BDL			1.6	Not	BDL DD			BDL	Not	BDL		⊢
c-1,2-Dichloroethene Chlorobenzene	BDL BDL	Smpld	BDL		1.8	Smpld	BDL			2.1 BDL	Smpld	BDL 3.6			BDL BDL	Smpld	BDL BDL		i
Chloroform	BDL	5th qtr	BDL		BDL	5th qtr	BDL			BDL	5th qtr	BDL			BDL	5th qtr	BDL		i
Ethyl Benzene	BDL	well	BDL		BDL	well	BDL			BDL	well	BDL			BDL	well	BDL		<u> </u>
Hexachlorobutadiene	BDL	1 [BDL		BDL_		BDL			BDL.		BDL			BOL		BDL		
Isopropylbenzene	BDL		BDL.		6DL		BDL.			1.5	· · ·	BDL			BOL		BOL		
m,p-Xylene	BDL		BDL		BOL		BDL			6.6	L	BDL			BDL		BDL		<u> </u>
Methyl t-Butylether (MTBE)	BDL BDL		BDL		BOL BOL		BDL A D			BDL BDL		BDL 5 3 D			BDL		BDL		i
Methylene Chloride	BDL		3.3B BDL	_	BDL		4B BDL			BDL BDL	<u> </u>	5.3B BDL			BDL BDL		3.5B BOL		<u> </u>
N-Butylbenzene	NA		BDL BDL		NA		BDL			NA		BDL			NA		BOL		·
n-Propylbenzene	BDL	1	BDL		BOL		BDL			1.4		BDL			BDL		BOL		
o-Xylene	BDL		BDL		BDL		BDL			BDL		BDL			BDL		BOL		\square
p-Diethylbenzene	NA		BDL		NA		BDL			NA		BDL.			NA		BDL		
p-Ethyltoluene	NA		BDL		NA		BDL			NA		BDL.			NA		BDL		<u> </u>
p-Isopropyltoluene	BDL	ļ	BDL		BDL BDL		BDL			BDL		BDL			BDL		BDL		⊢
sec-Butyl Benzene	BDL BDL		BDL BDL		BDL		BDL BDL			BDL BDL		BDL BDL			BDL BDL		BDL BDL		<u> </u>
Tetrachloroethene	BDL	<u> </u>	BDL		BOL		BDL			BDL		800			BDL		BDL		<u> </u>
Toluene	BDL		BDL		BDL		BDL			BDL		BDL			BOL		BDL		<u> </u>
Trichloroethene	BDL		BDL		BDL		BDL			SDL		BDL			BDL		BDL		
Vinyl Chloride	BOL		BDL		BDL		BDL			BDL		BDL			BDL		BOL		
SEMI-VOLATILE ORGANIC COMPOUN							1			·									
1,2-Dichlorobenzene	BOL	<u> </u>	BDL BDL		2.3 BDL	l	1.3 BDL			BDL BDL		BDL BDL			BDL		BOL		┝─────
1,3-Dichlorobenzene 1,4-Dichlorobenzene	BDL	<u> </u>	BDL		BDL	<u> </u>	BDL			BDL		2.3J			BDL BDL		BDL BDL		⊢
2,4-Dinitrotoluene	BOL		BDL		BDL		BDL			BDL		BDL			BDL		BDL		<u> </u>
2-Methylnaphthalene	NA		BDL		NA		BDL			NA		BDL			NA	_	BDL		r
2-Methylphenol	NA		BÓL		NA		BDL			NA		BDL			NA		BDL		
3+4-Methylphenol	NA		BDL		NA		BDL		_	NA		BDL			NA		BDL		
Acenaphthene	BDL	 	BDL		BDL		BDL			BDL		BDL			BDL		BOL		<u> </u>
Bis(2-Ethylhexyl)Phthalate	BDL BDL		BOL		BDL	L	BDL	<u> </u>		BDL		8DL			BDL		BDL		<u> </u>
Diethyl Phthalate	BDL		BOL BOL		BDL BDL		BDL BDL			BDL BDL		4.9J BDL			BDL BDL		BDL BDL		<u> </u>
Naphthalene	BDL		BDL		BDL		BOL			BDL		BDL			BDL		BDL		<u> </u>
Nitrobenzene	BDL.	1	BDL	<u> </u>	BOL		BDL			BDL		BDL			BDL		BOL		
N-Nitrosodi-n-Propylamine	BDL		BDL		BDL		BOL			BDL		BDL			BDL		BDL		
INORGANIC PARAMETERS								,											
ph	6.73		NA		7.02		NA			6.51		NA			6.28		NA		<u> </u>
Specific Conductance	264 BDL	I —	NA NA		1460	I	NA	┥──┤		698	 	NA			324	L	NA		i
Alkalinity as Calcium Carbonate B.O.D.	BDL BDL	I	NA NA	_	414	<u> </u>	NA NA			<u>158</u> 3	I	NA NA			88 BDL		NA NA		<u> </u>
Chemical Oxygen Demand	BOL	I —	NA		60	-	NA			45	I	NA			BDL BDL		NA		<u> </u>
Hardness, Total	79.5		NA		151	1	NA			87.7		NA			95.7		NA		
Nitrate as N	18.48		NA		1.02	<u>t</u>	NA			BDL		NA			0.6		NA		
Total Phosphorus as P	BDL		NA		BDL		NA			0.09		NA			0.05		NA		
Sodium, Total	14.5	L	5.79		142		29.1			61.6		35.8			125		19.7		
Total Kjeldahl	0.33	<u> </u>	NA		45.1		NA			8.84	<u> </u>	NA			0.62		NA		└───
Ammonia as N	BDL 32.7	<u> </u>	NA NA		<u>35.3</u> 29.5	<u> </u>	NA NA			8.84	<u> </u>	NA NA		—— —	0.35		NA NA		i
Sulfate Chloride	<u> </u>	<u> </u>	NA	<u> </u>	29.5	1	NA			31.5 95	<u> </u>	NA NA			24 22.5		NA NA		i
Total Dissolved Solids	190	1 —	NA		630	<u> </u>	NA			310		NA			164	_	NA		<u> </u>
Total Suspended Solids	BDL		NA		5.5		NA			44	1	NA			6		NA		
Arsenic	BOL		BDL		BDL		BDL			BDL		BDL			BDL		BDL		<u> </u>
Aluminum, Total	BDL		0.014		BDL		0.027			BDL		BDL			BDL		0.009		
Iron, Total	0.052	 	0.476		2.4	I	16.9			31.3		9.36			0.638		0.02		<u> </u>
Manganese, Total	0.034	<u> </u>	0.038 BDL		3.09	I	1.26	<u> </u>		3.1		1.49		<u> </u>	0.565		0.011		<u> </u>
Nickel, Total Chromium, Total	0.010 BDL	<u> </u>	BDL		0.022	I	0.014 BDL			0.008		0.013 BDL			0.023 BDL		BDL BDL		<u> </u>
		L			<u>j 0.002</u>		BUL	<u> </u>		0.009					BUL		OUL		<u> </u>

LABORATORIES: VOAs & Semi-Vols - American Analytical Laboratories, Farmingdale, N.Y Inorganic - Nassau County DPW Special Projects Laboratory, Ceder Creek S T P., Wantagh, New York

Table 2b 2008 ONSITE GROUNDWATER SAMPLING RESULTS

VOLATE CRAVES CONFOLINGS Face Prof Tool Prof Tool Prof Tool Prof Tool Prof Tool Prof Tool Prof P	[FTC-W-14B*				FTC-W-23*			FTC-W-31*			FTC-W-32					FTC-W-35						
Obstantic COMPONE Obstantic COMPONE		Baseline Water				Baseline Water																	—
S1. Optimized problem BO. BC. BD. BC. BD. BC. BD. BC. BD. BC. BD.		Quality			MPLED	Quality	D		D	Quality	DA		ED	Quality			MPLED		Quality		DATE SAM	PLED	
1 Controlling mo.			<u> </u>																		9/4/08		
12.3.5.17 Control PA											_						_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			<u> </u>														_						
12 Decimagenzee ms						NA	-			NA				NA									
13.5.5.7.5.7.5.5.5.1.5. 00.	1,2,4-Trimethylbenzene																			36.0			
1.4_Cph/construence ID 60.											_												
2-Methysgehnigene M. EX. EX																						<u> </u>	—
4-beschungsheiner uit BX							<u> </u>															-+	
Benzere Bit								BOL		NA				NA									
c-1.2Dictorgentering BA BA <td></td> <td>_</td>																							_
Chérodemaine Roy Roy <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
Chronordom EX.																							
Erb Bergel person Bas Or Bas Fig.																		_					
Isocryptenzene BA																			311				
mp.2/kelne PR.							wen																
Methyler (MPE) B0. B0. B0. B0. B0. B2. B2. B3. B3. <thb3.< th=""> <</thb3.<>													_										
Methylene Chorde PA E 2B PO 4 68 PA 5 FK R0 R0 4 18 Naghthalene NX PA BX	Methyl t-Butylether (MTBE)		<u> </u>																				
Naghthalene PS. BO. BO. <th< td=""><td>Methylene Chloride</td><td>BDL</td><td></td><td>6.2B</td><td></td><td>BDL</td><td></td><td>4.6B</td><td></td><td>BDL</td><td></td><td>5</td><td></td><td>BOL</td><td></td><td></td><td></td><td></td><td>BDL.</td><td></td><td>4.1B</td><td></td><td></td></th<>	Methylene Chloride	BDL		6.2B		BDL		4.6B		BDL		5		BOL					BDL.		4.1B		
n-Prodychozarie BD.	Naphthalene			BDL												BOL			140	BDL	BDL.		
c-X_sine BD. BD																						-+	
p-Definition MA BDL BDL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>———</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>—</td>							———										+					<u> </u>	—
p-Entropiculene NA BX NA BX NA BX NA BX NA BX NA BX																							—
sec_Spir/Service BO.		NA		BDL		NA						BDL		NA									
InterNum Box Bo																							_
Tetraphoroethene BX					_								-										
Tochtoreethere BD.																						-+-	
Vind Chipride Box <													_										
SEMI-VOLATILE ORGANIC COMPOUNDS PA	Trichloroethene																						
12-Dehrlorobenzene 92. 80. 97. 80. </td <td>Vinvl Chloride</td> <td></td> <td></td> <td>BDL_</td> <td></td> <td>BDL</td> <td></td> <td>BDL.</td> <td></td> <td>BDL</td> <td></td> <td>BDL</td> <td></td> <td>BDL.</td> <td>BDL</td> <td>BDL</td> <td></td> <td></td> <td>BOL</td> <td>BDL</td> <td>BDL</td> <td></td> <td></td>	Vinvl Chloride			BDL_		BDL		BDL.		BDL		BDL		BDL.	BDL	BDL			BOL	BDL	BDL		
13-Dichlorobenzene BD. BD. </td <td></td> <td></td> <td></td> <td>BDI</td> <td></td> <td>BD1</td> <td>——</td> <td>BD</td> <td></td> <td>BDV</td> <td></td> <td>BÚ</td> <td></td> <td>BD</td> <td>8DI</td> <td></td> <td></td> <td>-</td> <td>BD</td> <td>BO</td> <td>RDI [</td> <td><u> </u></td> <td>—</td>				BDI		BD1	——	BD		BDV		BÚ		BD	8DI			-	BD	BO	RDI [<u> </u>	—
14-Dehlorobenzene BX			<u> </u>													BDL						<u> </u>	—
2-Methylopenol NA BDL		BDL		BOL		BDL		BDL		8DL		BDL											
2-Methylphenol M BDL																							_
34-Methylphenol M BDL NA BDL MA BDL BDL </td <td></td> <td></td> <td><u> </u></td> <td></td>			<u> </u>																				
Acenaphthene BDL BDL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-+</td><td></td></t<>													<u> </u>									-+	
Anthracene Box																		_				-+	—
Fluorene Box Bo	Anthracene					BDL		BDL		BDL		BOL		BDL	BDL				BDL				-
Naphthalene BDL BDL <th< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			_																				
Nitrobenzene BDL BDL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
Phenanthrene BDL NA 6.64 NA NA S5.83 NA NA Specific Conductance 568 NA 832 NA 632 NA 776 NA NA 260 NA NA Alkalinity as Calcium Carbonate 60 NA 182 NA 71 NA 52.9 NA A 650.8 NA 179 NA NA 66 NA NA Chemical Dxygen Demand BDL NA 52.6 NA 50.8 NA 108 NA 407 NA 50.8 NA </td <td></td> <td><u> </u></td> <td></td>																						<u> </u>	
ph 6.17 NA 6.99 NA 6.48 NA 6.64 NA NA 5.83 NA NA Specific Conductance 568 NA 832 NA 632 NA 776 NA NA 263 NA NA Alkalinity as Calcium Carbonate 60 NA 182 NA 71 NA 776 NA NA 260 NA NA B.O.D. BDL NA 182 NA 71 NA 52 NA NA 66 NA NA Chemical Oxygen Demand BDL NA 36 NA 52 NA NA 66 NA NA Hardness, Total 190 NA 52.6 NA 50.8 NA 108 NA NA 40.7 NA 8D. NA 108 NA 10.2 NA NA Sodium, Total 23.9 10.2 10.6 32.0 80.5 21.9			1																			-+-	
Specific Conductance 568 NA 832 NA 632 NA 776 NA NA 280 NA A Alkalinity as Calcium Carbonate 60 NA 182 NA 71 NA 179 NA NA 56 NA NA B.O.D. BDL NA BDL NA 71 NA 179 NA NA 56 NA NA Chemical Oxygen Demand BDL NA 80.L NA 36 NA 54.9 NA NA 66 NA NA Hardness, Total 190 NA 52.6 NA 50.8 NA 108 NA 4.57 NA NA Nitrate as N 2.59 NA 4.07 NA 80L NA 80L NA 108 NA 1.72 NA NA Sodium, Total 23.9 10.2 106 32.0 80.5 21.9 56.7 NA 8.32 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>																							_
Alkalinity as Calcium Carbonate 60 NA 162 NA 71 NA 179 NA NA 56 NA NA B,O,D. BDL NA BDL NA BDL NA 7 NA 5.2 NA NA 66 NA NA Chemical Oxygen Demand BDL NA BDL NA 56. NA 52.9 NA NA 60 NA NA NA 60. NA NA NA 60. NA NA 60. NA NA NA 60. NA NA 60. NA NA 60. NA NA MA 60. NA NA 60.0 NA 108 NA NA 1.72 NA NA Nitate as N 2.59 NA 4.07 NA BD. NA 0.05 NA 0.06 NA NA 1.72 NA NA Sodium, Total 23.9 10.2 <							—												5.83				_
B.O.D. BDL NA BDL NA F NA 52 NA NA 6 NA NA Chemical Oxygen Demand BDL NA BDL NA 36 NA 52,9 NA NA BDL NA NA S2,9 NA NA NA S2,9 NA A A NA							<u> </u>			632	— I								260				
Chemical Oxygen Demand BDL NA BDL NA S6 NA 54.9 NA NA BDL NA NA Hardness, Total 190 NA 52.6 NA 50.8 NA 108 NA NA 45.7 NA NA Nitrate as N 2.59 NA 40.7 NA BDL NA BDL NA BDL NA 108 NA NA 45.7 NA NA Total Phosphorus as P BDL NA BDL NA BDL NA 0.06 NA NA BDL NA 0.05 NA 0.06 NA			1				-				- 1												
Hardness, Total 190 NA 52.6 NA 50.8 NA 108 NA NA 45 NA Nitrate as N 2.59 NA 4.07 NA BDL NA BDL NA BDL NA BDL NA A 1.72 NA NA Total Phosphorus as P BDL NA BDL NA BDL NA NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 -</td> <td></td> <td>-+-</td> <td></td>							1 -															-+-	
Total Phosphorus as P BDL NA BDL NA DBL DBL NA DBL DBL <td>Hardness, Total</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50.8</td> <td></td> <td></td> <td></td> <td>108</td> <td>NA</td> <td></td> <td></td> <td></td> <td>45</td> <td>NA</td> <td></td> <td></td> <td></td>	Hardness, Total									50.8				108	NA				45	NA			
Sodium, Total 23.9 10.2 106 32.0 80.5 21.9 56.7 NA 8.32 16.4 NA 5.22 Total Kjeldahi 0.42 NA 16.9 NA 6.23 NA 2.70 NA NA 0.99 NA NA Ammonia as N Bb. NA 16.9 NA 6.24 NA 2.70 NA NA 0.99 NA NA Sulfate 158 NA 24.9 NA 33.4 NA 48.1 NA 0.76 NA NA Chloride 20 NA 100 NA 80 NA 90 NA NA 20 NA NA Total Dissolved Solids 347 NA 384 NA 306 NA 377 NA NA 140 NA Total Suspended Solids 1 NA 40 NA 102 NA 102 NA NA 140 NA NA																							
Total Kjeldahi 0.42 NA 16.9 NA 6.23 NA 2.70 NA NA 0.99 NA NA Ammonia as N B0X NA 16.9 NA 6.23 NA 2.70 NA NA 0.99 NA NA Sulfate 158 NA 24.9 NA 6.24 NA 2.69 NA NA 0.76 NA NA Chlonde 20 NA 100 NA 80 NA 90 NA NA 20 NA NA Total Disolved Solids 347 NA 384 MA 306 NA 377 NA 140 NA NA Total Disolved Solids 1 NA 40 NA 306 NA 377 NA 140 NA Arsenic 80X B0L B0L B0L B0L B0L NA 0.0358 80X NA 0.0358 80X NA 0.			 								<u> </u>		1										
Ammonia as N BDL NA 16.9 NA 6.24 NA 2.69 NA NA 0.76 NA NA Sulfate 158 NA 24.9 NA 33.4 NA 48.1 NA 26.9 NA NA 26.9 NA NA 26.0 NA NA Chlonde 20 NA 100 NA 80 NA 90 NA 26.0 NA NA Total Dissolved Solids 347 NA 384 NA 306 NA 90 NA 140 NA NA Total Dissolved Solids 1 NA 1 NA 40 NA 102 NA NA Arsenic BDL BDL BDL BDL BDL BDL BDL BDL NA 0.0368 BDL NA 0.0368 BDL NA 0.0368 BDL NA 0.0368 BDL NA 0.028 10.02 NA 0			t —				-																
Sulfate 158 NA 24.9 NA 33.4 NA 48.1 NA NA 26 NA NA Chlonde 20 NA 100 NA 80 NA 90 NA 20 NA NA Total Dissolved Solids 347 NA 384 MA 306 NA 90 NA NA 20 NA NA Total Dissolved Solids 347 NA 384 MA 306 NA 377 NA NA 140 NA NA Total Suspended Solids 1 NA 40 NA 102 NA NA A Arsenic B0L B0L B0L B0L B0L B0L B0L NA 0.0358 B0L NA 0.0358 Aluminum, Total B0L B0L B0L B0L B0L B0L NA 0.0285 Iron, Total 0.422 0.025 0.013 0.028		BDL		NA		16.9							1										
Total Dissolved Solids 347 NA 384 NA 306 NA 377 NA NA 140 NA NA Total Suspended Solids 1 NA 1 NA 40 NA 102 NA NA 80 NA 70.036 Arsenic BDL BDL BDL BDL BDL BDL BDL BDL NA 0.036 Aluminum, Total BDL BDL BDL BDL BDL BDL NA 0.2651 BDL NA 0.264 Iron, Total 0.422 0.025 0.013 0.028 24.3 6.44 64.9 NA 48.1 20.4 NA 70.6										33.4				48.1					26				_
Total Suspended Solids 1 NA 1 NA 40 NA 102 NA NA 8 NA NA Arsenic BDL			I				I															-+	
Arsenic BDL			+		_		<u> </u>															-+	
Aluminum, Total BDL BDL BDL BDL BDL D0.002 0.012 NA 0.0651 BDL NA 0.28 Iron, Total 0.422 0.025 0.013 0.028 24.3 6.44 64.9 NA 48.1 20.4 NA 70.6			1				\vdash														0.0362	-+	
		BDL		BDL																	0.281		
																					70.6		
			┣──								—		<u> </u>								0.52	-+	
			├ ──-				l —				├ ───		<u> </u>				<u> </u>				0.0121	<u> </u>	

LABORATORIES: VOAs & Semi-Vols - American Analytical Laboratories, Farmingdale, N.Y inorganic - Nassau County DPW Special Projects Laboratory, Ceder Creek S.T.P., Wanlagh, New York

Inorganic = mg/l

3/3

Table 3a

2008 OFFSITE GROUNDWATER SAMPLING RESULTS

	BP-3B*						BP-3C				BP-4B		
	Baseline				Baseline				Baseline	<u> </u>			
	Water				Water				Water				
	Quality		DATE SA	MPLED	Quality			AMPLED	Quality		DATE S	MPLED	
VOLATILE ORGANICS COMPOUNDS	11/00/90	4/17/08	10/10/08		11/00/90	4/17/08	10/9/08		6/8/99	3/4/08	9/10/08		
1,1,1 Trichloroethane	BDL	BDL	BDL		2.0	1.9	1.5		BOL	BDL	BDL		
1,1,1-Trichloromethane	NA	BDL	BDL		NA	BDL	BDL		BOL	BDL	BDL		
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA BDL	BDL BDL	BDL		NA BDL	1.7	BDL	——————————————————————————————————————	NA BOL	BDL	BDL		
1,1,2 Trichloroethane 1,1-Dichloroethane	BDL	BDL	BOL BOL		0.9	BDL 3.6	BDL BDL		4.8	BDL BDL	BDL BDL		
1,1-Dichloroethene	BDL	BDL	BDL			1.3	BDL		4.0	BDL	BDL		
1.2.4-Trimethylbenzene	NA	BDL	BDL		BDL	BDL	BDL	<u> </u>	80L	BDL	BDL		
1,2-Dibromoethane	NA	BDL	BDL		NA	BDL	BDL		BDL	BDL	BDL		
1,2-Dichlorobenzene	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL		
1,2-Dichloroethane	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL		
1,3,5-Trimethylbenzene	NA	BDL	BDL		BOL	BDL	BDL		BDL	BDL	BDL		
1,4-Dichlorobenzene	BDL	BDL	BDL		NA	BDL	BDL		BDL	BDL	BDL		
Benzene	BDL	BDL	BDL		BOL	BOL	BDL		8.5	2.1	BDL	1	
Carbon Tetrachloride	NA	BDL	BDL		80L	BDL	BDL		BDL	BDL	BDL		
Chlorobenzene	BOL	BDL	BDL		BOL	BDL	BDL		26.2	BDL	BDL		
Chlorodifluoromethane	NA	BDL	BDL		NA	BDL	BDL		NA	BDL	BDL		
Chloroform	BDL	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL		
Chloromethane	NA	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL		
cis-1,2-Dichloroethene	NA	5.3	3.3		11.0	95.0	99.0		117.0	1.6	BDL		
Dichlorodifluoromethane	NA	BDL	BDL	_	NA	BDL	BDL		BDL	BDL	BDL		
Ethyl Benzene	BDL	BDL	BDL		BDL	BDL	BDL		155.0	BDL	BDL		
	NA	BDL	BDL		NA	BDL	BDL		9.8	BDL	BDL		
m,p-Xylene	BDL	BDL	BDL		NA	BDL	BDL		4.6	BDL	BDL		
Methyl t-Butylether (MTBE)	BDL	8DL	BDL		BOL	BDL	BDL		5.7	BDL	BDL		
Methylene Chloride	BDL BDL	3.2B	BDL BDL		BDL BDL	4.3B	4.8B		BDL	BDL BDL	3.7B		
Naphthalene	NA BDL	BDL BDL	BDL		BDL NA	BDL BDL	BDL BDL		20.0	BDL	BDL BDL		i
n-Propylbenzene	2.0	BDL	BDL		NA	BDL	BDL		BDL 37.3	BDL	BOL		
p-Ethyltoluene	Z.U NA	BDL	BDL		NA	BDL	BDL		<u>37.3</u>	BDL	BDL		
t -1,2-Dichloroethene	NA	BDL	BDL		BDL	BDL	BDL		BDL	BDL	BDL		
Tetrachloroethene	BDL	19.0	18.0		12.0	17.0	10.0		597.0	2.8	1.8		
Toluene	BDL	BDL	BDL		BDL	BDL	BDL		32.1	BDL	BOL		
Trichloroethene	BDL	BOL	BDL		3.0	9.8	12.0		BDL	BDL	BDL		
Trichlorofluoromethane	BDL	BDL	BDL		NA NA	BDL	BDL		BDL	BDL	BDL		
Vinyl Chloride	BDL	BDL	BDL		BDL	1.5	BDL		10.6	BDL	BDL		
SEMI-VOLATILE ORGANIC COMPOUN	DS		<u> </u>					L I					
1,2-Dichlorobenzene	BDL	NA	NA		BDL	NA	NA	<u> </u>	BDL	NA	NA		
2,4-Dinitrotoluene	BDL	NA	NA		BDL	NA	NA		BDL	NA	NA		
Bis(2-Ethylhexyl) Phthalate	BDL	NA	NA		BDL	NA	NA		BDL	NA	NA		
INORGANIC PARAMETERS													
ph	5.03	NA	NA		5.64	NA	NA		4.96	NA	NA		
Specific Conductance	81.8	NA	NA		30.0	NA	NA		248	NA	NA		
Alkalinity as Calcium Carbonate	BDL	NA	NA		BDL	NA	NA		9	NA	NA		
B.O.D.	BDL	NA	NA		1.0	NA	NA		BDL	NA	NA		
Chemical Oxygen Demand	BDL	NA	NA		40.6	NA	NA	┣━━┤━━	BDL	NA	NA		
Hardness, Total	<u>14.9</u> 4.15	NA NA	NA NA		1.9	NA NA	NA NA	┣───┤───	49.8	NA	NA NA		
Nitrate as N Total Phosphorus as P	4.15 BDL	NA NA	NA NA		BDL BDL	NA NA	NA NA		0.53	NA NA	NA NA		
Sodium, Total	6.30	NA NA	2.2		1.91	NA NA	NA 8.31	<u>├──</u>	BDL 23.4	NA NA	13.8		
Total Kjeldahl	0.24	NA	Z.Z NA		0.16	NA NA	0.31 NA	╞─────-	0.16	NA NA	13.0 NA		
Ammonia as N	BDL	NA	NA		BDL	NA	NA		BDL	NA	NA		
Sulfate	BDL	NA	NA		6.4	NA	NA		40.8	NA	NA		
Chloride	10.0	NA	NA		5.0	NA	NA		30	NA	NA		
Total Dissolved Solids	92	NA	NA		47	NA	NA		132	NA	NA		
Total Suspended Solids	BDL	NA	NA		1.0	NA	NA		BDL	NA	NA		
Aluminum, Total	BDL	NA	0.024		0.045	NA	0.028		BDL	NA	0.026		
Iron, Total	0.106	NA	0.020		1.39	NA	0.032		0.015	NA	0.012		
Manganese, Total	0.011	NA	0.012		0.006	NA	0.024		0.13	NA	0.360		
Nickel, Total	BDL BDL	NA NA	0.031		BDL	NA NA	0.007	├───┤───	0.020	NA	0.008		
Chromium, Total		NA	0.008		BDL		BDL		BDL	NA	BDL		

LABORATORIES: INORGANIC: Nassau County DPW Special Projects Laboratory, Ceder Creek S.T.P., Wantagh, New York NOTE: VOC and Semi Vol. results = ug/l VOA & SEMI-VOL: American Analytical Laboratories, Farmingdale, N.Y. Inorganic = mg/l

Table 3b

2008 OFFSITE GROUNDWATER SAMPLING RESULTS

[BP-4C*						BP-98*					BP-10C	*		BP-12B				
	Baseline Water Quality		DATE SAMPLED G/4/99				DATE S		-	Baseline Water Quality			AMPLED		Baseline Water Quality		DATES	AMPLED		
VOLATILE ORGANICS COMPOUNDS	6/8/99		DATE 5/		_			9/10/08			6/4/99	3/7/08	10/2/08	AMPLED		6/4/99	3/6/008	9/10/08	AMPLED	
1,1,1 Trichloroethane	BDL					BDL	_	BDL		_	BOL	BDL	BOL			BDL	BDL	BDL		
1,1,1-Trichloromethane	BDL					BDL		BDL			BDL	BDL	BDL			3.3	BDL	BDL		
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA					NA		BOL			NA	BDL	BDL			NA	BDL	BDL		
1,1,2 Trichloroethane	BDL					BDL		BOL			BDL	BDL	BDL			BDL	BDL	BDL		
1,1-Dichloroethane	3.3					6.4		BDL			BDL	2.1	2.8			9.2	BDL	BDL		
1,1-Dichloroethene	4.0					3.6		BDL			BOL	BOL	BDL			BDL	BDL	BDL	_	
1,2,4-Trimethylbenzene	BDL					BDL		BDL			BDL	BDL	BDL			BDL	BDL.	BDL		
1,2-Dibromoethane	BDL					BDL		BDL			BDL	BDL	BDL		Ĩ	BDL	BDL BDL	BDL		
1,2-Dichlorobenzene	BDL BDL			└ <u>─</u> ─		BDL BDL		BDL BDL			BDL BDL	BDL BDL	BDL BDL			BDL BDL	BDL	BDL BDL		
1,2-Dichloroethane 1,3,5-Trimethylbenzene	BDL	_				BDL	_	BDL			BDL	BDL	BDL	<u> </u>		BDL	BDL	BDL	_	
1,4-Dichlorobenzene	BDL					BDL		BDL			BOL	BOL	BDL			BDL	BDL	BDL		
Benzene	9.0					BDL	—	1.7			BDL	BDL	BDL			BDL	BDL	BDL		
Carbon Tetrachloride	BDL	Not Smpld			_	BDL	Not Smpld	BDL			BDL	BDL	BOL			BDL	BDL	BDL	_	
Chlorobenzene	34.4	5th				BOL	5th	BDL			BDL	BDL	BOL			BDL	BDL	BDL		
Chlorodifluoromethane	NA NA	Qtr.	t — –			NA	Qtr.	BDL			NA	BDL	BOL			NA	BDL	BDL		
Chloroform	BDL	Well			_	BDL	Well	BDL		-	BDL	BDL	BOL			BDL	BDL	BDL	_	
Chloromethane	BDL					BDL	H 1	BDL			BDL	BDL	BDL			BDL	BDL	BDL		
cis-1,2-Dichloroethene	152.0					106.0		9.5	_		BDL	1.5	2.2			78.9	BOL	BDL		
Dichlorodifluoromethane	BOL					BDL		BOL			BDL	BDL	BOL			BDL	BDL	BDL		
Ethyl Benzene	206.0					BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
Isopropylbenzene	BOL					BDL		BDL			BDL	BDL	BDL			BOL	BDL	BDL		
m,p-Xylene	BOL					BOL		BDL			BDL	BDL	BOL			BDL	BDL	BDL		
Methyl t-Butylether (MTBE)	BDL					BDL		BDL			BDL	BDL	BOL			BDL	BDL	BDL		
Methylene Chloride	BDL					BDL		4B			BDL	2.1B	7.2B			BDL	3.2B	3.1B		
Naphthalene	BOL					BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
n-Propylbenzene	BDL					BDL	<u> </u>	BDL			BDL	BDL	BDL			BDL	BDL	BDL		
o-Xylene	1.4					BDL	i	BOL			BDL	BOL	BDL			BDL	BDL	BDL]
p-Ethyltoluene	NA					NA		BDL			NA	BDL	BDL			NA	BDL	BDL		
t -1,2-Dichloroethene	BDL 30,4					8DL 98.9	-	BDL			BDL BDL	BDL BDL	BDL BDL			BOL 30.7	BDL .89J	BDL BDL		
Tetrachloroethene	80L					80.9 BDL		2.3 BDL			BDL	BDL BDL	BOL			30.7 BDL	BDL	BOL		
Trichloroethene	BDL					BDL	I	BDL			BDL	BDL	BDL			19.8	BDL	BDL		
Trichlorofluoromethane	BDL					BDL	1	BDL			BDL	BDL	BDL	<u> </u>		BDL	BDL	BDL		ł
Vinyl Chloride	5.0		┣───			BDL	-	2.3			BDL	BDL	BDL	<u> </u>		BDL	BDL	BDL		
SEMI-VOLATILE ORGANIC COMPOUN				1				2.0												
1,2-Dichlorobenzene	BDL		[BDL		NA			NA	NA	NA			BDL	NA	NA		
2,4-Dinitrotoluene	3.9				_	BDL		NA			BDL	NA	NA			3.3	NA	NA	-	
Diethyl Phthalate	BDL					BDL		NA			BDL	NA	NA			BDL	NA	NA		
INORGANIC PARAMETERS														_						
ph	5.08					4.97		NA			5	NA	NA			4.86	NA	NA		
Specific Conductance	119					89.6		NA			44.2	NA	NA			454	NA	NA		
Alkalinity as Calcium Carbonate	8					5		NA			BDL	NA	NA			BDL	NA	NA		
<u>B.O.D.</u>	BDL					BDL		NA			BDL	NA	NA			BDL	NA	NA		
Chemical Oxygen Demand	BDL		ļ			BDL	<u> </u>	NA	ļ		BDL	NA	NA			BDL	NA	NA		
Hardness, Total	24.1					16.2		NA		Ļ	6.7	NA	NA			41.2	NA	NA	L	I
Nitrate as N	2.3	┣───				3.62	<u> </u>	NA			1.8	NA	NA	<u> </u>		3.53	NA	NA		
Total Phosphorus as P	BDL		-			BDL	I	NA	<u> </u>		BDL LA	NA NA	NA 7.26	+		BDL	NA NA	NA		
Sodium, Total	10.3 BDL	<u> </u>	<u> </u>	<u> </u>		L/A 0.13	<u> </u>	11.20 NA				NA NA	7.36 NA			L/A BDL	NA NA	12.50 NA		
Ammonia as N	BDL	├ ──				0.13 BDL	<u> </u>	NA NA		<u> </u>	BOL	NA NA	NA NA	┟───┤	<u> </u>	BDL.	NA NA	NA NA		
Sulfate	5.06	I				BDL	 	NA NA		<u> </u>	BDL	NA	NA NA		——	23.2	NA	NA NA		
Chloride	15	<u> </u>	<u>├</u> ──			12.5	<u> </u>	NA			7.5	NA	NA			<u></u> 95	NA	NA	-	
Total Dissolved Solids	64		<u> </u>			48		NA		-	16	NA	NA			223	NA	NA		
Total Suspended Solids	BDL	—	t	<u> </u>		BDL		NA		<u> </u>	BDL	NA	NA		——-	BDL	NA	NA		
Aluminum, Total	BDL	<u> </u>	<u> </u>	<u> </u>	<u> </u>	BDL	1	BDL			BDL	NA	0.038			BDL	NA	0.016		
Iron, Total	0.003	<u> </u>				BDL	I – – –	0.006		1	BDL	NA	0.018			BDL	NA	0.085		
Manganese, Total	0.005	<u> </u>	<u> </u>			0.003		0.042			0.001	NA	0.019			0.015	NA	0.024		
Nickel, Total	0.019	t		<u> </u>	i —	0.005	t	0.006		I —	BDL	NA	0.006			0.011	NA	0.020		
Chromium, Total	BDL					BDL	1	BDL			BDL	NA	BDL			8DL	NA	0.017		
	<u> </u>		<u> </u>	•			-	·	<u> </u>	<u> </u>				-						

LABORATORIES: INORGANIC: Nassau County DPW Special Projects Laboratory, Ceder Creek S.T.P., Wantagh, New York VOA & SEMI-VOL: American Analytical Laboratories, Farmingdale, N.Y.

<u>NOTE:</u> VOC and Semi Vol. results = ug/l Inorganic = mg/l

2/6

Tabl	e 3c
------	------

2008 OFFSITE GROUNDWATER SAMPLING RESULTS

							i	BP-13C	•				BP	14B			BP-14C*			
						Baseline					Baseline					Baseline				
	Water Quality		DATE S	AMPLED		Water Quality		DATE S	AMPLED		Water Quality		DATE S	AMPLED		Water Quality		DATE S	MPLED	
VOLATILE ORGANICS COMPOUNDS	2/1/00		9/8/08			2/1/00		9/8/08			4/11/02	3/7/08	10/3/08			4/11/02	3/7/08	10/3/08	1	
1,1,1 Trichloroethane	BOL		BDL			BDL		BOL			50.6	9.7	6.6			BDL	9.7	BDL		
1,1,1-Trichloromethane	BDL		BDL	_		BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA		BDL			NA		BDL			NA	BDL	BDL			NA	BDL	BDL		
1,1,2 Trichloroethane	BOL		BDL			BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
1,1-Dichloroethane	BDL		BDL			BDL		BDL			<u>5</u> .1	2.0	1.3			BDL	BDL	BOL		
1,1-Dichloroethene	BDL		BDL			BDL		BDL			25	6.1	4.3			BDL	BDL	BDL		
1,2,4-Trimethylbenzene	BDL		BDL			BDL		BDL			1.4	5.1	BDL			BDL	BDL	BDL		
1,2-Dibromoethane	BDL BDL		BDL BDL			BDL BDL		BDL BDL			BDL	BDL BDL	BDL			BDL	BDL	BDL		
1,2-Dichlorobenzene	BDL		BDL			BDL	-	BDL			BDL 15.4		BDL 5.7			BDL BDL	BDL BDL	BDL		
1,2-Dichloroethane	BDL		BDL			BDL BDL		BDL			15.4 BDL	7.2 3.5	5.7			BDL	BDL	BDL		———
1.4-Dichlorobenzene	BDL		BDL			BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
Benzene	BDL		BDL			BDL		BDL			83.7	190.0	150.0			BDL	BDL	BDL	_	
Carbon Tetrachloride	BDL	Not	BDL	_		BDL	Not	BDL			BDL	BDL	BDL			BDL	BDL	BDL	-	
Chlorobenzene	BDL	Smpld	BDL	_		BDL	ISmold	BOL			BDL	BDL	BOL			BDL	BDL	BDL		
Chlorodifluoromethane	NA	5th	BDL			NA	5th	BDL			NA	BDL	BDL			NA	BDL	BDL		
Chloroform	BDL	Qtr.	BDL			BDL	Qtr.	BDL			BDL	BDL	BDL			BDL	BDL	BDL		
Chloromethane	BDL	Well	BDL			BDL	Well	BDL			BOL	BDL	BDL			BDL	BDL	BDL		1
cis-1,2-Dichloroethene	BDL		BDL			BDL		BDL			244	100.0	74.0			BDL	4.8	9.4		
Dichlorodifluoromethane	BDL		BDL			BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
Ethyl Benzene	BDL		BDL	_		BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
Isopropylbenzene	BDL		BDL			BDL		BDL			BDL	2.6	1.8			BOL	BDL	BDL		
m,p-Xylene	BOL		BDL			BDL		8DL			BDL	BDL	BDL			BDL	BDL	BDL		
Methyl t-Butylether (MTBE)	BDL		BDL			BDL		BDL			BDL	BDL	BDL			BDL	BDL.	BDL		
Methylene Chloride	BDL		3.3B			BDL		4.3B			BDL	2.4B	5.3B			BDL	LA	8.1B		
Naphthalene	BDL		BDL			BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL		
	BDL BDL		BDL BDL			BDL BDL		BDL BDL			BDL	BDL	BDL			BDL	BDL BDL	BDL BDL		
p-Ethyltoluene	NA		BDL			NA		BDL			4.3 NA	5.9 BDL	3.6 BDL			NA	BDL	BDL	-	
t -1,2-Dichloroethene	BDL	<u> </u>	BDL			BDL		BDL			BDL	BDL	BOL			BDL	BDL	BDL		
Tetrachloroethene	BOL		BDL			BDL		BDL			375	260.0	140.0			BDL	2.4	6.4		
Toluene	BDL	1	BDL			BDL		BOL			BOL	BDL	BDL			BDL	BOL	BDL		
Trichloroethene	BDL	<u>i</u>	BDL			BDL		BDL			40.8	27.0	17.0			BDL	BDL	.66J	- 1	
Trichlorofluoromethane	BDL		BDL			BDL		BDL			BDL	BDL	BDL			BDL	BDL	BDL	_	
Vinyl Chloride	BDL		BDL			BDL		BDL			9.2	5.0	2.9			BDL	BDL	BDL		
SEMI-VOLATILE ORGANIC COMPOUN	DS	•												·						
1,2-Dichlorobenzene	NA		NA			NA		NA	_		BDL	NA	NA			NA	NA	NA		
2,4-Dinitrotoluene	BDL		NA	_		NA	_	NA			BDL	NA	NA			NA	NA	NA	- ,	
Bis(2-Ethylhexyl) Phthalate	BDL		NA			NA		NA			BDL	NA	NA			NA	NA	NA		
INORGANIC PARAMETERS									-											
ph	NA	I	NA			NA		NA			5.64	NA	NA			NA	NA	NA		
Specific Conductance	NA	I	NA			NA		NA			30.0	NA	NA	<u> </u>		NA	NA	NA		
Alkalinity as Calcium Carbonate	NA NA	I	NA NA			NA NA		NA NA			BDL 1.0	NA	NA NA		—I	NA NA	NA	NA NA		—
B.O.D. Chemical Oxygen Demand	NA NA		NA NA			NA NA	 	NA NA			40.6	NA NA	NA NA			NA NA	NA NA	NA	{	
Hardness, Total	NA NA	l	NA NA	<u> </u>	├───	NA		NA NA		├	1.9	NA	NA			NA	NA	NA		
Nitrate as N	NA	<u> </u>	NA		<u> </u>	NA		NA			BDL	NA	NA			NA	NA	NA		
Total Phosphorus as P	NA	<u> </u>	NA			NA		NA		<u> </u>	BDL	NA	NA		——	NA NA	NA	NA		——
Sodium, Total	NA		2.50			NA		0.541			1.91	NA	15.2			NA	NA	4.37		
Total Kjeldahl	NA		NA			NA		NA			0.16	NA	NA			NA	NA	NA		
Ammonia as N	NA	1	NA			NA		NA		(BDL	NA	NA			NA	NA	NA	-	
Sulfate	NA		NA			NA		NA			6.4	NA	NA		-	NA	NA	NA	-	
Chloride	NA		NA			NA		NA			5.0	NA	NA			NA	NA	NA		
Total Dissolved Solids	NA		NA			NA		NA			47	NA	NA			NA	NA	NA		
Total Suspended Solids	NA		NA			NA		NA			1.0	NA	NA			NA	NA	NA		
Aluminum, Total	NA		0.014			NA		0.070			0.045	NA	0.015			NA	NA	0.014		
Iron, Total	NA		0.011			NA		0.025			1.39	NA	0.023			NA	NA	0.014	_	
Manganese, Total	NA	<u> </u>	0.008	L		NA	L	BDL	<u> </u>		0.006	NA	0.025			NA	NA	0.004		
Nickel, Total	NA	L——	BDL	<u> </u>		NA		BDL	L		BDL	NA	BDL			NA	NA	BDL		
Chromium, Total	NA	<u> </u>	BDL	<u> </u>		NA		BDL			BDL	NA	BDL			NA	NA	BDL		

Beginning in June (Semi-Vol) & July (VOAs) American Analytical Laboratories, Farmingdale, N.Y. NOTE: VOC and Semi Vol. results = ug/l Inorganic = mg/l

4/6

2008 OFFSITE GROUNDWATER SAMPLING RESULTS

	BP-15B						BP-15C*				OBV-1B*					OBV-1C*			<u> </u>
	Baseline		-			Baseline					Baseline				Baseline				
	Water Quality		DATE S			Water Quality		DATE S	AMPLED		Water Quality			AMPLED	Water Quality		DATE S		
VOLATILE ORGANICS COMPOUNDS	10/28/05	3/11/08	9/29/08			10/28/05		9/30/08			9/19/05		9/30/08		9/19/05		9/11/08		
1,1,1 Trichloroethane	22.1	17.0	14.0			BDL		BDL			1.6		BOL		4.8		4.4		<u> </u>
1,1,1-Trichloromethane	BDL	BDL	BDL	-		BDL		BDL			BDL		BDL		BDL		BDL	_	
1,1,2-Trichloro-1,2,2-Trifluoroethane	NA	3.3	BDL			NA		BDL			NA		BDL		NA		BOL		· · · · · ·
1,1,2 Trichloroethane	BDL	BDL	BDL			BDL		BDL			BDL		BDL		BDL	_	BDL		
1,1-Dichloroethane	28.4	31.0	31.0			BDL		BDL			1.0		BDL		6.9		4.7	_	<u> </u>
1,1-Dichloroethene	11.4	7.0	8.3			BDL		BDL			BOL	_	BDL		3.4		1.4		
1,2 Dichloroethane	1.6	BDL	BDL			BDL BDL		BOL			BDL	<u> </u>	BDL	┨───┥──	BDL		BDL		<u> </u>
1,2,4-Trimethylbenzene 1,2-Dibromoethane	BDL BDL	BDL BDL	BDL BDL	_		BDL		BOL BDL			BDL BDL		BDL BDL		BDL BDL	<u> </u>	BDL BDL		⊢—
1,2-Dichlorobenzene	BOL	BDL	BDL			BDL		BDL			BDL BDL		BOL		BDL	┣───	BDL		ł
1,3,5-Trimethylbenzene	BDL	BDL	BDL			BDL		BDL	-		BDL		BDL		BDL		BDL		<u> </u>
1.4-Dichlorobenzene	BDL	BOL	BDL			BDL		BDL	<u> </u>		BDL	Not	BDL		BDL		BDL		<u> </u>
Benzene	1.7	6.1	6.0			BDL	Not Smpld	BDL			BDL	Smpld	BDL		BOL	Not	BDL		
Carbon Tetrachloride	BDL	BDL	BDL			BDL	5th	BDL			BDL	5th	BDL		BDL	Smpld	BDL	_	
Chlorobenzene	BDL	BDL	BDL			BDL	Qtr.	BDL			BDL	Qtr.	BDL		BOL	5th	BDL		
Chlorodifluoromethane	NA	BDL	BDL			NA	Weil	BDL			NA	Well	BDL		NA	Qtr.	BDL		
Chloroform	0.7	BDL	BDL			BDL		BDL			BDL		BDL		BOL	Well	BDL		
Chloromethane	1.8	BDL	BDL			BDL		BDL			BDL	L	BDL	├──┼─	BDL	 	BDL		
cis-1,2-Dichloroethene	40.7	83.0	96.0 BOL			BDL BDL	<u> </u>	BDL BDL	<u> </u>		BDL BDL	I	BDL BDL	├ ──┼─	BDL BDL	 	BDL BDL		<u> </u>
Dichlorodifluoromethane	10.0 BDL	BDL BDL	BOL			BOL		BDL			BDL		BOL	├ ──┼──	BDL	<u> </u>	BOL		⊢—
Isopropylbenzene	BDL	BDL	BOL		<u> </u>	BDL		BOL			BDL	——	BOL	┨──┤──	BDL	┣───	BDL		├───
m,p-Xylene	BDL	BDL.	BOL		————	BDL		BOL			BDL		BOL		BDL	I	BDL		<u> </u>
Methyl t-Butylether (MTBE)	BDL	BDL	BDL			BDL		BDL			BDL		BDL		BOL		BDL		<u> </u>
Methylene Chloride	5.0	9.7B	29B			BDL		4.6B			BDL		6.8B		BOL		4.5B		<u> </u>
Naphthalene	BOL	BDL	BDL			BDL		BDL			BDL		BDL		BDL		BDL		
n-Propylbenzene	BOL	BDL	BDL			BDL		BDL			BDL		BOL		BDL		BDL		
o-Xylene	0.3	2.3	BDL			BDL		BDL			BDL		BDL		BDL		BOL		
p-Ethyltoluene	NA	BDL	BDL			NA		BDL			NA		BDL		NA		BDL		<u> </u>
t -1,2-Dichloroethene Tetrachloroethene	0.7	1.3 40.0	BDL			BOL BDL		BDL BDL			BDL BDL	<u> </u>	BDL BDL	┞───┠──	BDL BDL	I	1.9 BDL		<u> </u>
Toluene	7.5 BDL	BDL	40.0 BOL			BDL		BDL			BOL		BDL		BDL		BDL		<u> </u>
Trichloroethene	10.5	16.0	16.0			BDL		BOL			BDL		BOL		3.4	<u> </u>	2.2		⊢—
Trichlorofluoromethane	3.2	2.8	BDL			BDL		BOL			BDL	├──	BDL		BOL	┣──	BDL		┝───
Vinyl Chloride	8.8	21.0	27.0			BDL		BDL			BDL		BOL		BDL	ł	BDL		
SEMI-VOLATILE ORGANIC COMPOUN	DS		·					·				· · · ·		·		-			
1,2-Dichlorobenzene	BDL	NA	NA			BDL		NA			BDL		NA		BDL		NA		
2,4-Dinitrotoluene	BDL	NA	NA			BDL		NA			BDL		NA		BDL		NA		
Bis(2-Ethylhexyl) Phthalate	BDL	NA	NA			BDL		NA			BDL		NA		BDL		NA		L
	4 74					4.00					547								
ph Specific Conductance	<u>4.74</u> 192	NA NA	NA NA			4.69 52		NA NA	<u> </u>		<u>5.17</u> 152	<u> </u>	NA NA	\vdash	5.21		NA NA		┢───
Alkalinity as Calcium Carbonate	192	NA	NA NA	<u> </u>		BDL		NA	├──	<u> </u>	152	}	NA NA	┼──┼─	5	├ ───	NA NA		├───
B.O.D.	3.4	NA	NA			BDL		NA	<u> </u>		10	┣───	NA	+ $+$	3.6		NA		├ ────
Chemical Oxygen Demand	BOL	NA	NA			BDL		NA			BDL		NA		BDL	<u> </u>	NA		<u> </u>
Hardness, Total	9.4	NA	NA			36.9		NA			35.7	1	NA		27.2		NA		<u> </u>
Nitrate as N	0.79	NA	NA			0.7		NA			2.31		NA		8.15		NA		
Total Phosphorus as P	BDL	NA	NA			BDL		NA			BOL		NA		BDL		NA		
Sodium, Total	4.76	NA	20.40			17.4		5.51			10.9		6.44		13		12.9		
Total Kjeldahl	0.15	NA	NA			BDL		NA			BDL		NA		BDL		NA		
Ammonia as N	BDL	NA	NA			BDL		NA	 		BDL	<u> </u>	NA		BOL		NA		⊢
Sulfate	BDL	NA	NA			BDL	L	NA	┝──	I	24.3	┣──	NA		BOL 10	 	NA		──
Chloride	45.0	NA	NA NA	└───┤	<u> </u>	5		NA	┝────		10	┣───	NA		10	1	NA NA		┣────
Total Dissolved Solids Total Suspended Solids	90 BDL	NA NA	NA NA			37 BOL		NA NA	<u> </u>		109 2	├ ──	NA NA	┝──┼-	110 BDL	<u> </u>	NA NA		<u> </u>
Aluminum, Total	0.047	NA	0.023			0.037		0.033	\vdash	<u> </u>	0.17	┣───	0.049	}}	0.051	<u> </u>	0.072		
Iron, Total	0.047	NA	0.013			0.026		0.033	<u>+</u>		0.388		0.058	┼──┼─	0.039	<u>├</u> ──	0.256		├───
Manganese, Total	0.024	NA	0.019			0.005		BDL		<u> </u>	0.073	1	0.028		0.038		0.015		
Nickel, Total	0.007	NA	BDL			0.002		BDL	F		0.005	1	BDL		0.003	t	0.008		r
Chromium, Total	BDL	NA	BDL			BDL		BDL			BDL		BDL	T I	BOL		BDL		

TVOC concentrations below the 50 ppb guideline established for the site. Two of the wells which exceeded the closure criteria for total organics BP-3C (127 ppb) and BP-15B (267 ppb) have been impacted by volatile organics originating from sources other than the FTC, based on composition of the sample and groundwater modeling. The third offsite monitoring well BP-14B had a TVOC concentration of 413 ppb.

The evaluation of remedy performance with regard to the occurrence and treatment of volatile organic compounds which originated at the FTC in offsite groundwater monitoring and recovery wells is complicated by the presence of multiple offsite sources of these compounds. Currently, there are at least three potential sources (Figure 3), including Old Bethpage Landfill, Claremont Polychemical Corp. and American Louvre Corp. which have contributed volatile organic compounds to local groundwater. During the ten years of groundwater treatment all offsite recovery wells have exhibited a decrease in TVOC concentrations; similarly total offsite influent concentrations have also decreased over this time period. Offsite influent concentrations for the ten years of treatment operations are presented in Figures 4 and 5. Review of Figure 4 indicates that largest reductions in offsite volatile organic compound concentrations in groundwater occurred in the first five years of treatment. Overall TVOC concentrations were reduced from a maximum of 1,005 ppb in June of 2000 to 30 ppb in July of 2004. Initially all seven offsite recovery wells were pumped in various configurations to identify those wells which had the highest total volatile organic compound concentrations. Offsite Recovery Wells ORW-3 and ORW-4 were pumped in almost all pumping schemes due to the highest overall initial volatile organic concentrations in groundwater. Between July 2003 and July 2004, overall reductions in offsite plume TVOC concentrations and restrictions in effluent discharge capacity caused by poor drainage characteristics in the offsite recharge basin led to a reduction in offsite pumpage. Hydraulic control of what was perceived to be the "lead edge" of the plume of volatile organics became the focus of the treatment program and offsite recovery wells ORW-5, 6 and 7 were employed for this purpose.

Figure 3

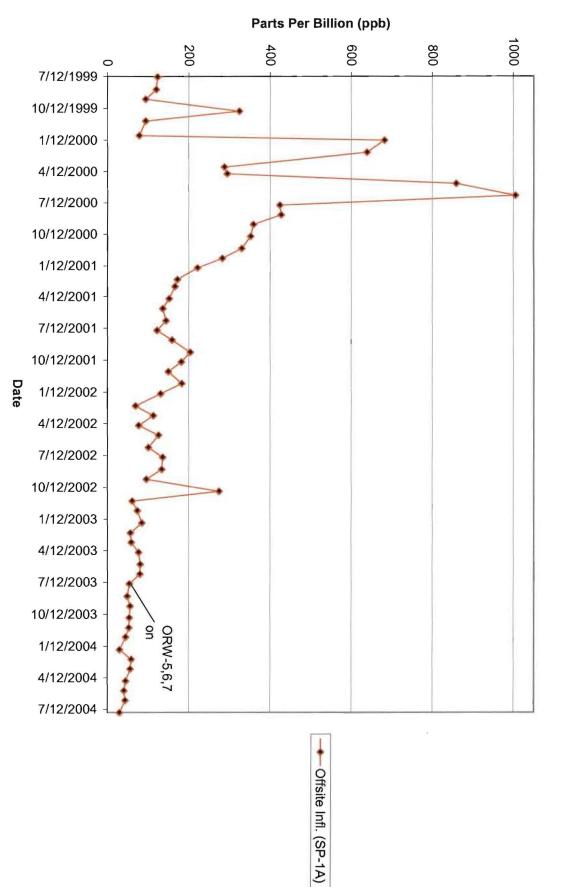
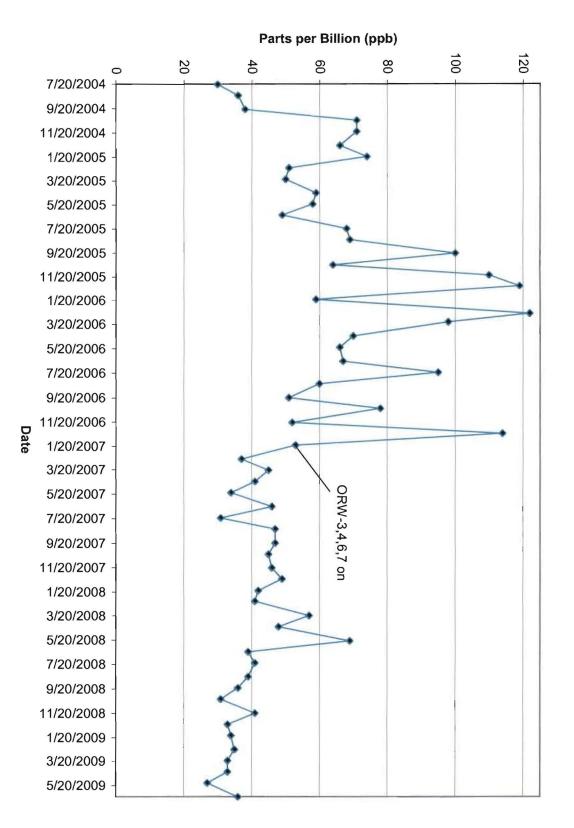



Figure 4 FTC - Offsite Influent trends July 1999 - July 2004

Offsite influent concentration trends for the next five years of treatment are presented in Figure 5. During this period offsite influent concentrations ranged from 27 ppb to 122 ppb. Recharge restrictions continued to influence offsite pumpage and no more than two offsite recovery wells were pumped between January 2005 and August 2006. ORW-7 was pumped in tandem with ORW-6 and occasionally ORW-4. The County completed its effluent connection to the sanitary sewer in July 2006; this connection augmented the existing recharge basin and injection wells allowing for increased offsite pumpage. An offsite pumping scenario was developed as part of the CDM modeling effort to increase recovery efficiency using ORW-3, 4, 6 and ORW-7. This pumping scenario was initiated in August 2006; it has been employed continuously to date. TVOC concentrations in the offsite influent have primarily been below 50 ppb since January 2007.

A review of onsite remedy performance can also be made by examining monthly TVOC levels in onsite influent. Onsite influent trends for the first three years of treatment operations are provided in Figure 6. Onsite influent TVOC concentrations vary depending on which onsite well is being pumped. Onsite recovery well RW-1 was installed in the former flammable liquids area, which was historically impacted by gasoline and its break-down products; exhibited TVOC concentrations ranging from 43 ppb to 588 ppb during plant start up. In contrast, onsite recovery well RW-3, which was installed in a floating body of No. 2 fuel oil located in the Taxpayer Mock-up Burn Area exhibited TVOC concentrations ranging from 4 ppb to 27 ppb.

The duration of operation of each well was based on the need to depress the water table to enhance the recovery of free-phase product and the levels of volatile and semi-volatile organic compounds present in the influent. Each time recovery well RW-1 was pumped the levels of volatile organic compounds dropped within months to low ppb levels. Groundwater recovered from recovery well RW-3 had extremely low levels of volatile organic compounds but the well was operated as long as recoverable floating product was present.

Due to the absence of recoverable product in RW-3 and the low onsite levels of volatile organics observed in groundwater collected from RW-1 there was no onsite treatment of groundwater from November 18, 2002 through September 26, 2006. The onsite influent trends from September 2006 to the present are presented in Figure 7.

Review of Figure 7 indicates that there were two distinct periods of operation; the first was from September 26, 2006 through October 16, 2007 and the second was from July 15, 2008 through March 17, 2009. Both treatment periods reduced TVOC concentrations in the well but ended with mechanical failure of the submersible pump. These failures are caused by aggressive environmental conditions within the well. RW-1 is impacted by high concentrations of landfill leachate from the neighboring Town of Oyster Bay Landfill. The leachate has extremely high concentrations of Iron and Manganese which over time cause iron-fouling of the pump and its associated piping.

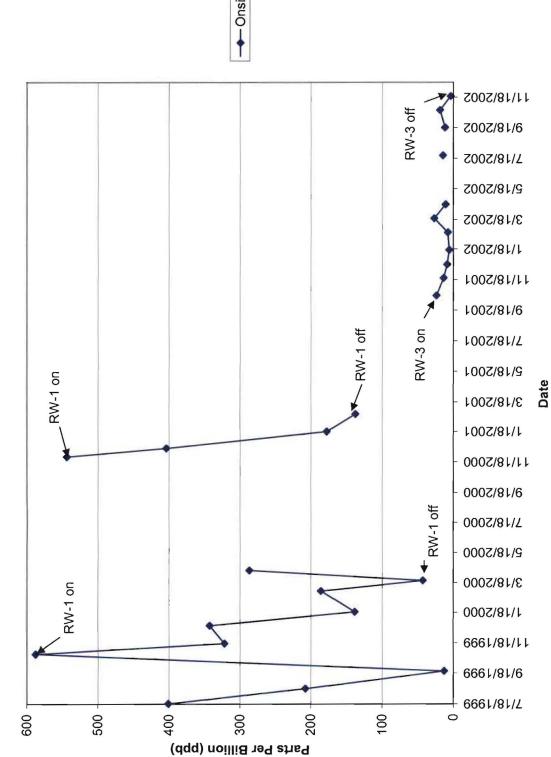


Figure 6 FTC - Onsite Influent Trends (July 1999 - December 2002)

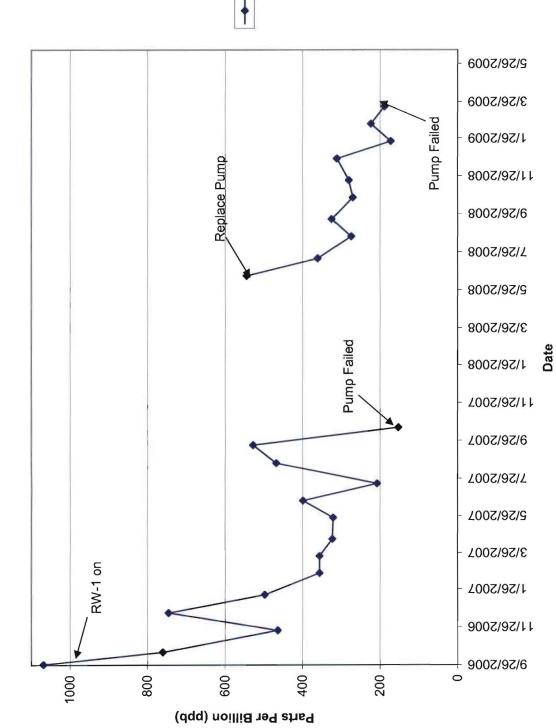
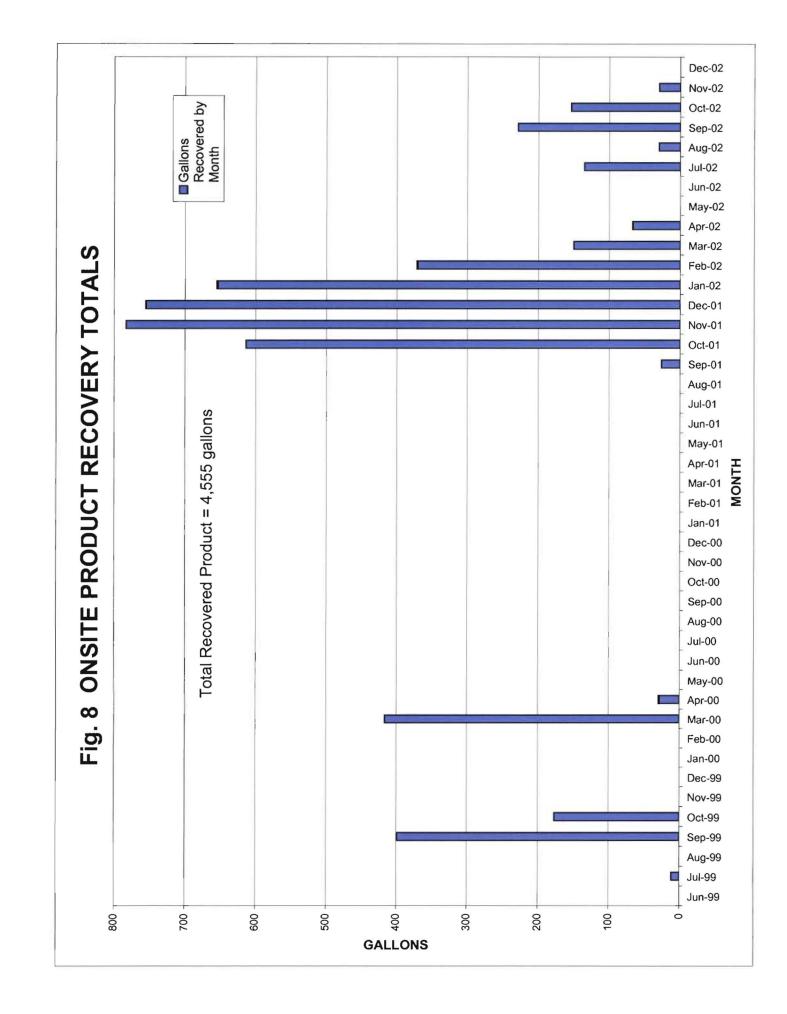



Figure 7 Onsite Influent Trends (Sept. 2006 - June 2009)

Onsite influent (SP-1B)

The product recovery system installed at the Nassau County Firemen's Training Center site has been extremely effective in removing free-phase petroleum product from onsite groundwater. The system operated from July 1999 through November 2002. The monthly product recovery totals are provided in figure 8. During the recovery period a total of 4,555 gallons of petroleum product (No. 2 fuel oil) was collected. The highest rates of recovery occurred between October 2001 and February 2002, this time period was marked by exceptionally low water table conditions which were further enhanced by pumpage at RW-3. The efficiency of the product removal and a natural rise in the local water table has prevented any free phase petroleum product from entering both the recovery and onsite monitoring wells since the end of 2002.

4.0 IC/EC Compliance Report (not applicable)

This section is not applicable as remediation at this site is governed by the terms outlined in the Record of Decision (ROD), prepared for the site and approved by NYSDEC in February 1993.

5.0 Monitoring Plan Compliance Report (not applicable)

This section is not applicable as remediation at this site is governed by the terms outlined in the Record of Decision (ROD), prepared for the site and approved by NYSDEC in February 1993.

6.0 Operation & Maintenance (O&M) Plan Compliance Report (not applicable)

This section is not applicable as remediation at this site is governed by the terms outlined in the Record of Decision (ROD), prepared for the site and approved by NYSDEC in February 1993.

7.0 Overall PRR Conclusions and Recommendations

A. Over the last 10 years the FTC Groundwater Remediation has operated in compliance with all aspects of the components outlined in the Record of Decision (ROD), signed with the New York State Department of Environmental Conservation in 1993. Onsite and offsite pumpage and effluent recharge have been modified over the course of treatment to improve the efficiency of groundwater recovery. The County will provide the NYSDEC with electronic summaries of groundwater data collected as part of the monitoring program since 2006.

B. The selected remedy for the site; cover system used in conjunction with a large scale pump and treat has proven to be highly effective in the ten years of groundwater treatment operations. Shallow onsite soils have been remediated to the point where no further treatment was required and deed restrictions could be removed (7/18/01). Over 4,500 gallons of floating petroleum product (No. 2 fuel oil), have been removed from onsite groundwater and measurable product has not been seen in any onsite monitoring wells since November 2002. Offsite influent concentrations have been below 50 ppb since May 2008 and Onsite VOC contamination in groundwater appears to be limited to two monitoring well locations (FTC-W 32, FTC-W-35) within the former flammable liquid area.

It is recommended that the frequency of submittal of the PRR for this site remain at one C. year. The County believes that the onsite cleanup of volatile organic contamination associated with the original spill is essentially complete with onsite contamination being confined to a relatively small zone within the original source area. Since 1992 overall source area contamination has been reduced from pure product with parts per million (ppm) levels in groundwater to less than 200 ppb. The County also believes that the offsite cleanup is nearing completion. Two of the three monitoring well locations with the highest levels of volatile organic contamination (BP-15B and BP-3C), have been impacted by sources other than the FTC. The remaining contaminated offsite monitoring well (BP-14B), has significant levels of volatile organics (> 400 ppb), which must continue to be treated, however this has become problematic and costly to the County due to the impact of the previously identified non-FTC sources. Offsite influent levels have been below 50 ppb for over a year, with the highest levels of volatile organic compounds being collected from recovery wells ORW-6 and ORW-7. Both of these wells have also been impacted by non-FTC sources. On numerous occasions, the County has brought up the issue of impacts from these non-FTC sources and the potential for financial assistance for the continued operation and maintenance at various Offsite Recovery Well locations including ORW-6 and ORW-7. The County is reaching a point in the remediation where a more localized treatment may be warranted for the contamination surrounding BP-14, resulting in the cessation of pumping from recovery wells ORW-6 and ORW-7.

Appendix A

THOMAS'S. GULOTTA COUNTY EXECUTIVE

COUNTY OF NASSAU DEPARTMENT OF PUBLIC WORKS MINEOLA, NEW YORK 11501-4822

July 18, 2001

Mr. Carl Hoffman New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Hazardous Site Control 625 Broadway Albany, NY 12233

Re: Deed Restrictions - Soil Quality Testing at Former Burn Areas Nassau County Fireman's Training Center, Site #1-30-042

Dear Mr. Hoffman:

As I informed you several weeks ago, the Nassau County Department of Public Works (NCDPW), Water Resources Unit would be collecting soil samples at the Fireman's Training Center (FTC) site to monitor changes in the level of contamination relative to past sampling events. The site's contaminated soil areas were established in the FTC's Record of Decision (ROD), dated February 26, 1993. These areas are described below, in detail. All locations, the sampling, and analytical testing methods for this field work followed the site's State approved Remediation Monitoring Plan, dated September 1994. The following is a summary of the work and our findings.

Three former Burn Areas at the FTC were designated contaminated soil areas in the site's ROD. These areas are identified as the Mock-Up Field (MUF), Corrugated Metal Building Field (CMB), and the Burn Area Field (BAF), see attached site map, Numbers 1, 2 and 3. The following depth intervals were sampled at each specific location:

Sample Location	Depth Below Grade (ft.)			
MUF-1	25-27			
MUF-3	, 32-34			
MUF-4	25-27			
MUF-5	33-35			
CMB-1	16-18			
CMB-2	34-36			
CMB-5	26-28			
BAF-1	34-36			
BAF-2	34-36			
BAF-3	37-39*			
BAF-4	30-32			
BAF-5	32-34*			

*Sampling interval adjusted based on field conditions

Mr. Carl Hoffman, NYSDEC July 18, 2001 Page Two Re: Deed Restrictions - Soil Quality Testing at Former Burn Areas Nassau County Fireman's Training Center, Site #1-30-042

All soil samples were collected using decontaminated split spoons driven through hollow stem augers to the selected interval. The soil samples were then logged by NCDPW hydrogeologists and stored in coolers for delivery at the end of each day to Environmental Testing Labs of Farmingdale, NY, a New York State ELAP-CERTIFIED Laboratory.

The split spoon samples were collected at predetermined intervals throughout the vadose zone which matched locations with historically high levels of contamination. Each sample was analyzed for volatile and semi-volatile organic compounds using EPA methods 8260 and 8270B.

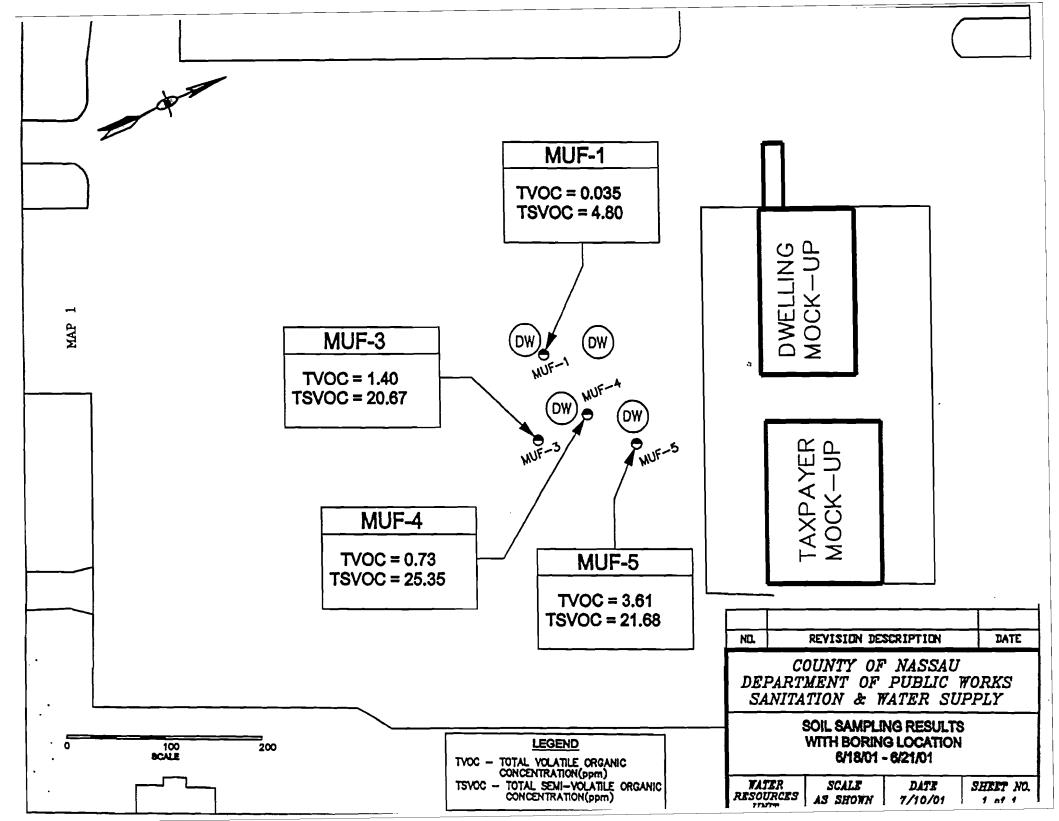
The results of the sample analyses are provided for your review in Tables 1 through 4 attached. Review of the semivolatile organic analysis summary indicates that the concentrations of semi-volatile organic compounds in eleven of the twelve soil samples collected were found to be below both the recommended soil cleanup objectives and the recommended soil cleanup objectives to protect groundwater, as identified in the NYSDEC TAGM No. 4046. The concentration of 2-Methylnapalthalene in the BAF-3 boring at the 37-39 ft. interval was found to be 37.2 ppm or 0.80 ppm above the recommended soil cleanup objective of 36.4 ppm.

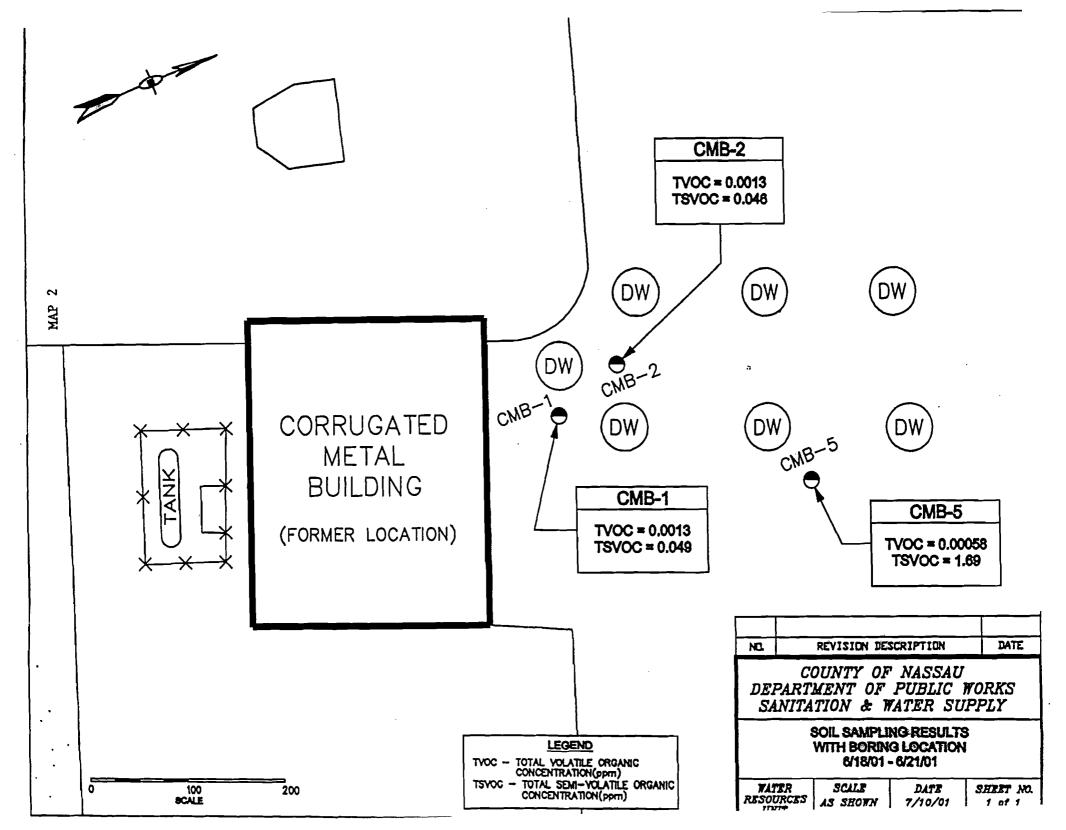
Review of the volatile organic analysis summary indicates that volatile organic compounds also were below the levels identified in the NYSDEC TAGM No. 4046 at all twelve sampling intervals with the exception of two compounds, Acetone and Methylene Chloride. Methylene Chloride concentrations in soil exceeded the recommended soil cleanup objective of 0.1 ppm at all five Burn Area Field boring locations and at one Mock-Up Field boring location (MUF-1, 25-27 ft.). Acetone exceeded its recommended soil cleanup objective of 0.2 ppm at the BAF-1, 37-39 ft. interval, and the BAF-5, 32-34 ft. interval, with values of .219 ppm and .230 ppm, respectively.

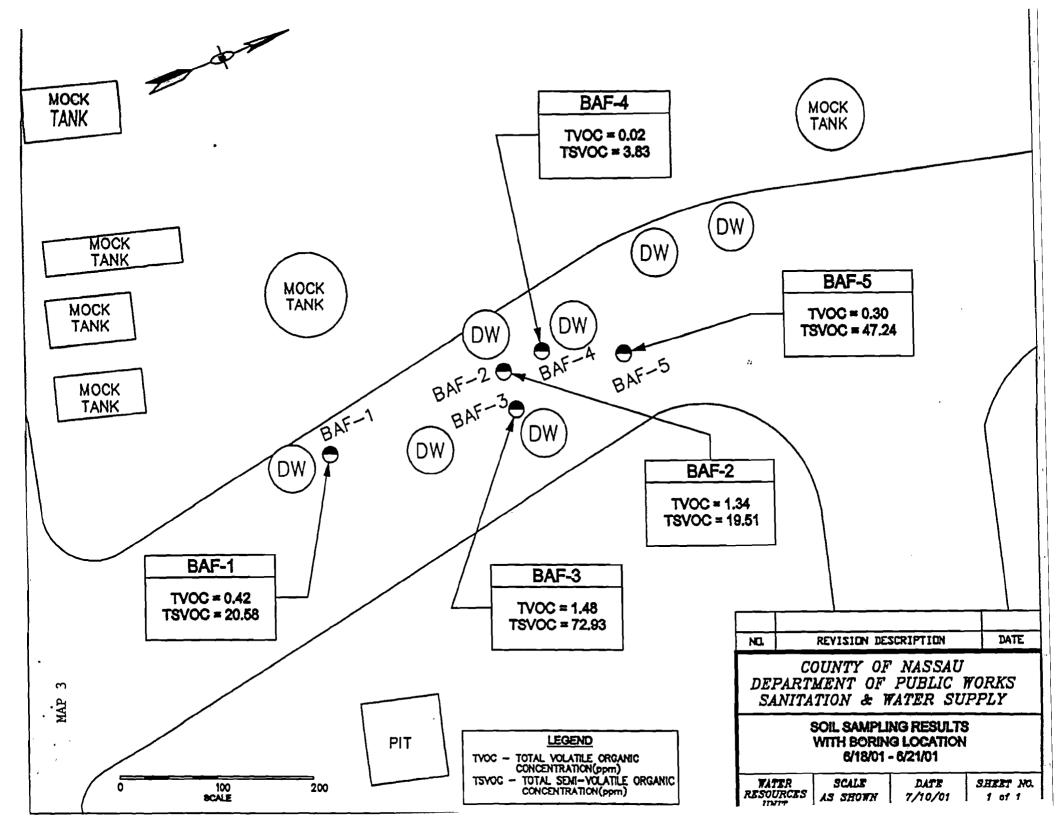
All methylene chloride results were "flagged" with a "B," indicating that the analyte was found in the associated method blank as well as the sample. The acetone results were "flagged" with a "J," indicating that it is an estimated value with a concentration found below the method detection limit. Both compounds at low concentrations may be lab artifacts which are not indicative of their actual presence in the soil sample.

A review of the results collected from the three most highly contaminated soil zones onsite support the contention that natural aeration of the vadose zone beneath the Fireman's Training Center has provided enough oxygen to maintain biological activity; thus, causing the breakdown of the volatile and semi-volatile organic compounds which were previously identified in the 1986 and 1994 soil sampling events. This most recent sampling event has demonstrated that the site's three designated soil contamination areas consistently show levels of contamination below the NYSDEC's TAGM 4046. Therefore, the NCDPW/Water Resources Unit respectfully requests the State's concurrence that the designated contaminated soil areas at the FTC site have met their remediation goals, and that all deed restrictions associated with these areas can be removed by the County.

If you have any questions regarding the above results or our request, please contact Mr. Michael Flaherty at (516) 571-6850.


Very truly yours,


Peter J. Witkowski Director of Hazardous Waste Services


PJW:MF:jb

Attachments

c: Joseph L. Davenport, Acting Division Head of Sanitation and Water Supply Michael Flaherty, Hydrogeologist III 🗸

TABLE 1

.

....

FTC - REMEDIATION SEMIVOLATILE ORGANIC ANALYSIS SUMMARY SOIL

SAMPLING DATE :6/18 -21/2001

	SAMPLING DATE :6/18 -21/2001							
	BAF - 4	BAF - 5	MUF -1	MUF -4	MUF -5	MUF -3	Reconsidended Soll Cleanup	
COMPOUND (MG/KG)	30 - 32 ft.	32 - 34 ft.	25 -27 ft.	25 -27 ft.	33 -35 ft.	32 -34 ft.	Objective to Protect GW(ppm)	Cleanup Objective (com)
Phenol	<u> </u>	<u> </u>	U	U	υ	U	0.03	.03 or MDL
bis(2-Chloroethyt)Ether	U	U	U	<u> </u>	U	U	NA	NA
2-Chlorophenol	<u> </u>	U	U	U	U	<u> </u>	0.8	0.8
1,3-Dichlorobenzene	U	U	U	U	U	<u> </u>	1.55	1.6
1,4-Dichlorobenzene	U	U	U	U	U	U	8.5	8.5
1,2-Dichlorobenzene	U	U	U	U	U	U	7.9	7.9
2-Methylphenol	<u> </u>	U	<u> </u>	<u> </u>	U	U	0.1	0.1 or MDL
2,2*-oxbis(1-Chloropropane)	U	U	U	<u> </u>	<u> </u>	U	NA	<u>NA</u>
4-Methylphenol	U	U	<u> </u>	<u>v</u>	<u> </u>	<u> </u>	0.9	0.9
N-Nitroso-di-n-propylamine	U	<u>U</u>	<u> </u>	<u> </u>	<u> </u>	U	NA	NA
Hexachloroethane	<u> </u>	U	<u> </u>	<u> </u>	<u> </u>	U	<u>NA</u>	<u>NA</u>
	U	U U	U U	<u>U</u>	U U	<u> </u>	0.2	0.2 or MDL
Isophorone	U			U U		<u> </u>	4.4	4.4
2-Nitrophenol	<u> </u>	<u> </u>	<u> </u>	U U	<u> </u>	<u> </u>	0.33	0.33 or MDL
2,4-Dimethylphenol	U	U	<u> </u>	U	<u> </u>	U U	NA	NA
bis(2-Chloroethoxy)methane	U	<u> </u>	<u> </u>		<u> </u>	U	NA	NA
2,4-Dichlorophenol	U	<u> </u>	<u> </u>	<u> </u>	<u> </u>	U	0.4	0.4
1,2,4-Trichlorobenzene	<u> </u>	U	U	U	U	U	NA	<u>NA</u>
Naphthalene	U	0.787	0.267	0.538	0.727	2.65	13	13
1-Chloroaniline	<u> </u>	<u>U</u>	U	<u> </u>	<u> </u>	U	0.22	0.22 or MDL
Hexachlorobutadiene	<u> </u>	<u> </u>	<u> </u>	U	<u> </u>	<u> </u>	NA	NA
-Chioro-3-methylphenol	U	U	<u> </u>	U	Ú	U	0.24	0.24 or MDL
2-Methylnaphthalene	U	30.9	2.36	21.2	15.7	9.22	36.4	36.4
lexachlorocyclopentadiene	<u> </u>	U	υ	U	<u>U</u>	U	NA	NA
2,4,6-Trichlorophenol	U	U	U	U	U	U	NA	NA
2,4,5-Trichlorophenol	U	U	<u> </u>	U	<u> </u>	U	0.1	0.1
2-Chloronaphthalene	U	U	U	<u> </u>	U	U	NA	NA
2-Nitroaniline	U	U	U	U	U	U	0.43	0.43 or MDL
Dimethylphthalate	C	U	U	υ	U	U	2.0	2.0
cenaphthylene	0.604	1.72	0.247	0.569	0.359	1.1	41	41
2,6-Dinitrololuene	U	U	U	Ų	U	U	1.0	1.0
Nitroaniline	U	U	U	Ú	U	<u> </u>	0.5	0.5 or MDL
cenaphthene	U	U	U U	<u> </u>	U	U	90	50*
,4-Dinitrophenol	U	U	U	U	U	U	0.2	0.2 or MDL
-Nitrophenol	U	U	U	U	U	U	0.1	0.1 or MDL
ibenzofuran	<u> </u>	U	U	<u> </u>	0.385	U	6.2	6.2
,4-Dinitrololuene	U	U	<u> </u>	<u>Ú</u>	U	U	NA	NA
iethylphthalate	<u> </u>	U	υ	U	υ	U	7.1	7.1
-Chlorophenyl-phenylether	U	U	<u> </u>	<u>U ·</u>	Ŭ_	U	<u>NA</u>	<u>NA</u>
luorene	1.91	3.71	0.465	0.814	1.27	2.26	350	50*
Nitroanaline	υ	U	U	U	U	U	NA	NA
6-Dinitro-2-Methylphenol	U	U	<u> </u>	U	U	<u> </u>	NA	NA
Nitrosodiphenylamine (1)	U	UU	<u> </u>	U	U	U	NA	NA
Bromophenyl-phenylether	U	U	U	U	U	U	NA	<u>NA</u>
exachiorobenzene	<u> </u>	U	<u> </u>	<u> </u>	υ	U	1.4	0.41
entachlorophenol	U	U	U	U	<u> </u>	υ	1.0	1.0 or MDL
henanthrene	0.456	8.2	1.09	1.74	2.41	4.01	220	50*
nthracene	0.267	0.673	0.089	0.147	0.26	0.448	700	50*
arbazole	<u> </u>	<u>u</u>	U	U	Ú	U	NA	NA
-n-Butylphthalate	U	U	U	U	U	U	8.1	8.1
voranthene	0.152	0.348	0.0595	0.0896	0.147	0.279	1900	50*
rene	0.444	0.9	0.131	0.172	0.242	0.563	665	50*
tylbenzylphthalate	υ	<u> </u>	U	U	U	U	122	50*
3-Dichlorobenzidine	U	U	U	U	U	U	<u>NA</u>	NA
nzo(a)anthracene	U	U	U	0.0094	0.0147	0.0219	3.0	^0.24 or MDL
rysene	U	U	U	0.0177	<u> </u>	0.0447	0.4	0.4
(2-Ethylhexi)phthalate	U	U	0.0914	0.0514	0.145	0.0687	435	50*
n-octylphthalate	U	U	U	บั	U	υ	120	50*
nzo(b)fluoranthene	U	U	U	υ	U	U	1.1	1.1
nzo(k)fluoranthene	<u> </u>	U	<u> </u>	<u> </u>	0.0088	U	1.1	1.1
nzo(a)pyrene	U	U	<u> </u>	υ	0.0081	U	11	.061 or MDL
leno(1,2,3-cd)pyrene	U	U	υ	υ	υ	υ	3.2	3.2
enzo(a,h)anthracene	<u> </u>	U	υ	U	U	U	165,000	.014 or MDL
nzo(g,h,l)perylene	U	U	U	U	U	U	800	50*

Note:

Samples Analyzed By: Roy F. Weston

Lionville Analytical Laboratory Samples Analyzed For:

÷

••

TCL Semivolatiles

LEGEND

÷.

U = UNDETECTED

NA = NOT AVAILABLE B - FOUND IN BLANK J - ESTIMATED CONCENTRATION MOL - METHOD DETECTION LIMIT

:

* - As per proposed TAGM, total VOC's <10ppm, Total Semi VOC's <500 ppm, and individual semi VOC's < 50 ppm

TABLE 2

FTC - REMEDIATION SEMIVOLATILE ORGANIC ANALYSIS SUMMARY SOIL

SAMPLING DATE :6/18-6/21/2001

		SAMPLING DATE (A18- 6/21/201							
Chein Could 20 20 40 30 10 20		CMB-5	CMB -2			BAF-2	BAF-3	Recommended Soll Cleanup	Recommerstal Soli
Phend U U U U U U U U Operating 13-Debrokensenin U U U U U U U U D	COMPOUND (MG/KG)	26 -28 ft.	34 -36 ft.	16 -18 ft.	34 - 36 ft.	34 -36 ft.	37 -39 ft.	Objective to Protect GW(ppm)	cleanup objective oo
2-Chitocobaradi U <thu< th=""> U U</thu<>	Phenol	U	U	U	U	U	U	0.03	
1_2-Dickobancene U <thu< th=""> U U</thu<>	bis(2-Chloroethyl)Ether	U	U	U		U	U U	NA	NA
1,4-Discoberations U <thu< th=""> U U</thu<>	2-Chlorophenol	U	U	υ		U	U	0.8	0.8
12-06-10-00-00-00-00-00-00-00-00-00-00-00-00-	1,3-Dichlorobenzene	U	U	U		U	υ	1.55	1.6
2xbest-genord U U U U U U U A.1 for MpC 4xbetty-barod U U U U U U U NA 4xbetty-barod U U U U U U NA NA Neacchorogram U U U U U NA NA Neacchorogram U U U U U NA NA Neacchorogram U U U U U U A Calchorogram V U U U U U U A A Calchorogram V U U U U U U A A A Chickspond U U U U U A A A Chickspond U U U U U A A A A	1,4-Dichlorobenzene		υ	υ			υ	8.5	
2.2-ability/chlorogonam) U <thu< th=""> U U U</thu<>	1,2-Dichlorobenzene							7.9	<u> </u>
4 Hebrychenol U U U U U U U U O.B. 00-B. Neitoscoli-groupsdania U U U U U U U NA NA Interdances U U U U U U U 0.0 0.2	2-Methylphenol	U					U	0.1	0.1 or MDL
NHitoso-di-popplanine U U U U U U U NA Nitobanzana U U U U U U Na NA Nitobanzana U U U U U U U A A Sinobanza U U U U U U A A Adinashykhand U U U U U A A Adinashykhand U U U U U NA NA Adinashykhand U U U U U NA NA Signhand U U U U <t< td=""><td>2,2"-oxbis(1-Chloropropane)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td><td>NA</td></t<>	2,2"-oxbis(1-Chloropropane)							NA	NA
Headshorsgånne U <thu< th=""> U U <</thu<>		U	<u> </u>			U	υ	0,9	0.9
Nikobanzane U <thu< th=""> U U <thu< td=""><td>N-Nitroso-di-n-propylamine</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thu<></thu<>	N-Nitroso-di-n-propylamine								
isophoona U NA NA 24-Octoorsalion U U U U U U U NA NA NA 1dephratene U U U U U U U U 0	Hexachloroethane							NA	
2+Nicophand U U U U U U U NA 2-Nicophynehane U U U U U U NA NA big2-Choneshoxymehane U U U U U U NA NA big2-Choneshoxymehane U U U U U NA NA 5.2.4-Findiscobarzane U U U U U U NA NA 6-Chorozanine U U U U U U NA NA NA 6-Choroz-Anstryfsherol U U U U U U NA NA NA 6-Choroz-Anstryfsherol U U U U U U NA NA NA 6-Choroz-Anstryfsherol U U U U U U NA NA NA 6-Choroz-Anstryfsherol U U <t< td=""><td>Nitrobenzene</td><td></td><td></td><td></td><td></td><td></td><td>υ</td><td>0.2</td><td>0.2 or MDL</td></t<>	Nitrobenzene						υ	0.2	0.2 or MDL
24-Dimetryphenol U <thu< th=""> U U</thu<>								4.4	
big2 U U U U U U NA 12,4-frictorbanzane U U U U U U NA 12,4-frictorbanzane U U U U U U NA 12,4-frictorbanzane U U U U U NA NA 14,2-trictorbanzane U U U U U U 0.22 0.22 cr MA 14-Chicosoftane U U U U U NA NA 14-Chicosoftane U U U U U NA NA 14-Chicosoftane U U U U U NA NA 14-Schrifticophrenol U U U U U NA NA 14-Schrifticophrenol U U U U U NA NA 14-Schrifticophrenol U U U U <t< td=""><td>2-Nitrophenol</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.33</td><td>0.33 or MDL</td></t<>	2-Nitrophenol							0.33	0.33 or MDL
24-Dicktosphend U U U U U U U O.4 0.4 VaphBalene U U U U U U NA NA VaphBalene U U U U U 0.22 0.22 cm/DL Folaco-Smethyphenel U U U U U 0.24 0.24 cm/AU Folaco-Smethyphenel U U U U U 0.24 0.24 cm/AU Add-TridicocyphenyDend U U U U U NA NA Add-TridicocyphenyDend U U U U U NA NA Add-TridicocyphenyDend U U U U U 0.43 0.443 cm/AU Add-TridicocyphenyDend U U U 0.43 0.443 cm/AU 0.44 Add-TridicocyphenyDend U U U 0.40 0.40 0.43 0.452 cm/DU Add-Trid	2,4-Dimethylphenol								
12,4-Trichiochenzene U					_		<u> </u>	NA	
Naphthalane U <thu< th=""> U U <thu< td=""><td>2,4-Dichlorophenol</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.4</td></thu<></thu<>	2,4-Dichlorophenol								0.4
Chieronaline U <thu< th=""> U U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thu<>									
search/orbutadione U U U U U U U NA Chloro-S-methyphend U U U U U U 0.24 0.24 or MQ/ Athefrykaphthalone U U U U U NA NA Athefrykaphthalone U U U U U NA NA Athefrykaphthalone U U U U U NA NA Athefrykaphthalone U U U U U U NA NA Athornaline U U U U U U Athornaline Athor									
Choros-Anaphylphanol U					-				
EventPrivate U <thu< th=""> U U <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<></thu<>				-					
Jeachtonsyndopentaliene U U U U U U NA NA 24.5-Tridlorophend U U U U U NA NA 24.5-Tridlorophend U U U U U NA NA 24.5-Tridlorophend U U U U 0.43 0.43 or MOL 2Nitroaphthene U U U U U 2.0 2.0 Ventaphthene U U U U U 0.0 1.0 1.0 Ventaphthene U U U U U 0.0 5.0 0.5 or MOL Schnitzburghenel U U U U U 0.0 0.0 50' Achintzburghenel U U U U U 0.0 0.1 or MDL Sempolithene U U U U U 0.0 0.1 or MDL Sempolithene U									
24.6-Trichlorophand U U U U U NA NA 2chlorophand U U U U U 0.1 0.1 2chloropphhalene U U U U U 0.43 cr AdA NA Nethyphinale U U U U U 0.43 cr AdA 0.43 cr AdA Consophinale U U U U U 0.653 0.622 3.77 41 41 Consophinale U U U U U 0 0.65 0.5 cr MDL Consophinale U U U U U 0 0.65 0.5 cr MDL Adminine U U U U U 0 0.65 0.600 500 Adminine U U U U U U 0.62 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2									
2,4,5-Tricherophenal U U U U U U U U O NA NA Exhiboranitire U U U U U U 0.43 0.43 or MOL Netbyphthalate U U U U U 0.43 0.43 or MOL Sendpringhame U U U U U 0.663 0.622 3.77 4.1 4.1 6-Ointrototuene U U U U U U 0.65 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.620 <t< td=""><td>lexachlorocyclopentadiene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	lexachlorocyclopentadiene								
Cohorosphthalene U <thu< th=""> U U</thu<>	2,4,6-Trichlorophenol	U	U	U		<u> </u>	Ŭ	NA	NA
Philtognamine U U U U U U U O.43 or MOL Veenaphthylene U U U U U 2.0 2.0 LeGinkrobuene U U U U U U 1.0 1.0 LeGinkrobuene U U U U U 0.0.5 0.5 or MDL Altimonaline U U U U U 0.0.5 0.5 or MDL Altimonaline U U U U U 0.0 0.0.5 0.5 or MDL Altimonaline U U U U U 0.0 0.0.5 0.2 or MDL Kenzakan U U U U U 0.0.1 of MDL 0.0.1 of MDL Kenzakan U U U U U 0.0.1 of MDL 0.0.1 of MDL Kenzakan U U U U U U 0.0.1 of MDL 0.0.1 of MDL </td <td>2,4,5-Trichlorophenol</td> <td></td> <td>U</td> <td>U</td> <td></td> <td></td> <td></td> <td>0.1</td> <td></td>	2,4,5-Trichlorophenol		U	U				0.1	
Nmethyphraliala U U U U U U U 2.0 venaghthylene U U 0.653 0.622 3.77 41 41 12.6 Olinitotikune U U U U U 1.0 1.0 1.0 14/transline U U U U U 0.65 0.5 or MDL cenaghtinene U U U U U 0.62 0.2 or MDL Atlitisphenol U U U U U 0.62 0.2 or MDL Meensphralate 1.4 0.0214 0.0238 U U NA NA Merryphenyl-	2-Chioronaphthalene					U U		NA	
Vomaphylene U U U 0.653 0.622 3.77 41 41 15-Dinitrobluene U U U U U 10 10 10 Alivanaline U U U U U 0.65 0.50 mMDL Constraine U U U U U 0.66 0.50 mMDL Alivanalizatione U U U U U 0.62 0.22 cMDL Alivanalizatione U U U U U 0.643 0.1 0.62 6.2 Alivanalizatione 1.4 0.0214 0.0238 U U NA NA Nitropheni-phenylether U U U U NA NA Alivanaline 1.4 0.0214 0.0238 U U NA NA Schorphenyl-phenylether U U U U NA NA NA Schorphenyl-phenyleth	t-Nitroaniline	υ	U	U	U	Ű	U	0.43	0.43 or MDL
Is-Diritizableane U U U U U U U U I.0 Nitroaniline U U U U U U 0.5 0.5 or MDL Aclinitrophenol U U U U U 0.6.2 0.2 or MDL Aclinitrophenol U U U U 0.1 0.1.0 0.7 MDL Netrophenol U U U U U 0.2 or MDL 0.6.2 0.2 or MDL Netrophenol U U U U U 0.4 or MDL 0.6.2 6.2 Achintrobuene U U U U U NA NA Netrophythenytelten U U U U NA NA Norene U U U U U NA NA Nacorene U U U U U NA NA Nacorene/Hybenol U </td <td>Dimethylphthalate</td> <td>V</td> <td>UU</td> <td>U</td> <td>U</td> <td>U</td> <td>ບ</td> <td>2.0</td> <td>2.0</td>	Dimethylphthalate	V	UU	U	U	U	ບ	2.0	2.0
Nitosaniline U <t< td=""><td>cenaphthylene</td><td>υ</td><td>U</td><td>U</td><td>0.653</td><td>0.822</td><td>3.77</td><td>41</td><td>41</td></t<>	cenaphthylene	υ	U	U	0.653	0.822	3.77	41	41
vanaphtrene U U U U U U U U O S0* 4.40introphenol U U U U U U 0.2 or MDL Nitrophenol U U U U U U 0.2 or MDL Nitrophenol U U U U U 0.2 or MDL Abilitrophenol U U U U U 0.2 or MDL Abilitrophenol U U U U U NA NA Abilitrophenol U U U U U NA NA Chiloro-Abilitrophenol U U U U U NA NA Schiloro-Abilitrophenol U U U U NA NA Abilitrophenol U U U U NA NA Schiloro-Abilitrophenol U U U U NA NA	.6-Dinitrotoluene	5	U	υ		U		1.0	1.0
A-Dinitophenol U U U U U U U U O.2 O.2 of MDL Nitrophenol U U U U U U 0.1 or MDL Newsonance 4-Dinitrophuene U U U U U U A.Dinitrophuene NA NA heityhpithalaie 1.4 0.0214 0.0238 U U U NA NA Chlorophenyl-phenylether U U U U U NA NA Nitrosanline U U U U U NA NA Sitrosodiphenyl-phenylether U U U U NA NA	Nitroaniline	υ	U	υ	U	U	U	0.5	0.5 or MDL
Nitrophenol U U U U U U U O.1 O.1 or MDL Nenzouran U U U U U 0.543 U U 6.2 6.2 4Chintrocluene U U U U U U NA NA Netropheny-phenylether U U U U U NA NA Norene U U U U U NA NA Nationaline U U U U U NA NA Schinto-2Abethylphenol U U U U U NA NA Schinto-2Abethylphenol U	cenaphthene	U	U	U	U	U	U	90	50*
Nbenzofuran U <th< td=""><td>4-Dinitrophenol</td><td>υ</td><td>U</td><td>υ</td><td>υ</td><td>5</td><td>U</td><td>0.2</td><td>0.2 or MDL</td></th<>	4-Dinitrophenol	υ	U	υ	υ	5	U	0.2	0.2 or MDL
4-Dinitrotohuene U U U U U U U U NA NA Mehryphnhalae 1.4 0.0214 0.0238 U U U T.1 7.1 Chloropheny/phenytether U U U U U U NA NA Nitranaline U U U U U U NA NA Scinitro-2-Methyphenol U U U U U NA NA Altrosodiphenytether U U U U U NA NA Bromophenytether U U U U U NA NA Bromophenytether U U U U U NA NA Bromophenytether U U U U U NA NA Bromophenytenetee U U U U U U U It A	-Nitrophenol	U	U	U	υ	_υ	υ	0.1	0.1 or MDL
Nethylphthalate 1.4 0.0214 0.0238 U U U 7.1 7.1 Chlorophenylphenylether U U U U U U NA NA Scorene U U U U U U NA NA Scorene U U U U U U NA NA Scorene U U U U U U NA NA Scorene U U U U U U NA NA Altrosodphenylamine (1) U U U U U NA NA Romophenyl-phenylaterise U U U U U NA NA Racchlorobenzene U U U U U 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	Nibenzofuran	U	U	U	0.543	υ	υ	6.2	6.2
Chlorophenyl-phenylether U U U U U U U NA NA buorene U U U U 1.58 8.42 350 50* Allroansline U U U U U NA NA 6-Dinitro-2-Methylphenol U U U U U NA NA 6-Dinitro-2-Methylphenylether U U U U U NA NA 6-Dinitro-2-Methylphenylether U U U U U NA NA Stromophenyl-phenylether U U U U U NA NA exachlorobenzene U U U U U 1.6 1.6 1.6 henanthrene 0.0078 U U 0.333 0.522 1.6.4 700 50* arbazole U U U 0.222 0.865 50* - <t< td=""><td>4-Dinitrotoluene</td><td>U</td><td>υ</td><td>U</td><td>U</td><td>U</td><td>U</td><td>NA</td><td>NA</td></t<>	4-Dinitrotoluene	U	υ	U	U	U	U	NA	NA
Chlorophenyl-phenylether U U U U U U U NA NA Nuorene U U U U 1.29 1.58 8.42 350 50* A:Dinitro-2-Methylphenol U U U U U NA NA A:Dinitro-2-Methylphenol U U U U U NA NA A:Dinitro-2-Methylphenol U U U U U NA NA A:Dinitro-2-Methylphenylether U U U U U NA NA B:comophenyl-phenylether U U U U U NA NA B:comophenyl-phenylether U U U U U NA NA B:comophenyl-phenylether U U U U U NA NA Benarthrene U U U 2.777 2.9 17.5 2200 50*	lethylphthalate	1.4	0.0214	0.0238	U	U	U	7.1	7.1
Norene U U U U 1.29 1.58 8.42 350 50* Altronabline U U U U U U NA NA Altronabline U U U U U NA NA Altrosodiphenylphenylamine (1) U U U U U NA NA Bromophenyl-phenylather U U U U U NA NA exachlorobenzene U U U U U NA NA exachlorobenzene U U U U U 1.6 1.0 1.0 1.0 1.0 MA exachlorobenzene U U U U U U 1.0 1.0 1.0 0.0078 nbrazene U U U U U U NA NA enazole U U U U <		U	υ	υ	U	U	U	NA	NA
Nitroanaline U U U U U U U U U NA NA 6-Dinitro-2-Methylphenol U U U U U U NA NA Altrosodjihovghamie (1) U U U U U NA NA Bromophenyl-phenylether U U U U U NA NA Bromophenyl-phenylether U U U U U NA NA exachlorophenol U U U U U 1.0 1.0 or MDL benanthrene 0.0078 U U 2.77 2.9 17.5 220 50* nthracene U U U 0.0374 U U U NA NA hrbazole U U U 0.222 0.669 1900 50* rene U U U U U U <td< td=""><td></td><td>U</td><td>U U</td><td>U</td><td>1.29</td><td>1.58</td><td>8.42</td><td>350</td><td>50*</td></td<>		U	U U	U	1.29	1.58	8.42	350	50*
&Dinitro-2-Methylphenol U U U U U U U U NA NA Attrosodiphenylamine (1) U U U U U U U NA NA Bromophenyl-phenylether U U U U U U NA NA Bromophenyl-phenylether U U U U U NA NA exachloroberzene U U U U U 1.4 0.41 exachloroberzene 0.0078 U U 2.77 2.9 17.5 220 60° arbazole U U U U U NA NA hrbracene U U U U U NA NA usrantnene 0.022 U 0.0074 U U NA NA sorantnene U U U U U NA NA	Nitroanaline			U	U		υ	NA	NA
Nitrosodiphenylamine (1) U U U U U U U NA NA Bromophenyl-phenylether U U U U U U U NA NA exachlorobenzene U U U U U U 0.016 U NA NA exachlorobenzene U U U U U U 1.4 0.0.41 henanthrene 0.0078 U U U U U 1.5 220 50' inbracene U U U 0.33 0.522 1.54 700 50' inbracene U U U U U U NA NA inbracene U U U U U U S0' 50' inbracene U U U 0.221 0.665 50' inscholorobenzidine U U U	6-Dinitro-2-Methylphenol	U	U	U	U		U	NA	NA
Bromophenyl-phenylether U U U U 0.0196 U U NA NA exachlorobenzene U U U U U U 0.41 0.41 entachlorophenol U U U U U 1.0 1.0 1.0 of MDL entachlorophenol U U U U U 1.5 220 50° antbracene U U U 0.393 0.522 1.54 700 50° arbazole U U U U U NA NA nn-Butylphthalate 0.022 U 0.0074 U U U 8.1 8.1 8.1 8.1 8.1 1.1 </td <td></td> <td></td> <td>U</td> <td></td> <td>U</td> <td>U</td> <td></td> <td>NA</td> <td>NA</td>			U		U	U		NA	NA
exachlorobenzene U			U		0.0196	Ū U			NA
entachlorophenol U Ú U U U U U 1.0 1.0 or MDL henanthrene 0.0078 U U 2.77 2.9 17.5 220 60* nthracene U U U 0.393 0.522 1.54 700 50* arbazole U U U U U NA NA n-Butytphthalate 0.022 U 0.0074 U U U 8.1 8.1 uoranthene U U U 0.222 0.869 1900 50* rene U U U 0.261 0.361 1.88 6655 50* stytenzytphthalate U U U U U NA NA anzo(a)anthracene U U U U NA NA el(2-Ethythext)phthalate 0.259 0.0245 0.0175 0.118 0.355 120 60*									0.41
henanthrene 0.0078 U U 2.77 2.9 17.5 220 50* hthracene U U U 0.393 0.522 1.54 700 50* arbazole U U U U U U NA NA n-Butylphhalate 0.022 U 0.0074 U U U 8.1 8.1 uoranthene U U U 0.222 0.869 1900 50* rene U U U 0.281 0.361 1.88 665 50* 3'-Dichlorbenzidine U U U U U NA NA anzo(a)antracene U U U U U NA NA n-octylphthalate 0.259 0.0245 0.0175 0.118 0.181 3.0 ^0.24 or MDL ky'benzylphthalate 0.259 0.0245 0.0175 0.118 0.121 0.435			Ű	Ū		Ŭ			1.0 or MDL
nthracene U U U U 0.393 0.522 1.54 700 50* anbazole U U U U U U NA NA In-Butylphthalate 0.022 U 0.0074 U U U 8.1 8.1 uoranthene U U U U U 8.1 8.1 uoranthene U U U 0.0674 U U U 8.1 8.1 uoranthene U U U 0.361 1.88 6655 50* rene U U U U U U 122 50* st/ptberzylphthalate U U U U U NA NA anzo(a)antracene U U U 0.014 0.0196 0.181 3.0 ^*0.24 or MDL rysene U U U 0.0251 0.0407 0.275 <									
urbazole U U U U U U U U U NA NA -n-Butylphthalate 0.022 U 0.0074 U U U 8.1 8.1 8.1 8.1 uoranthene U U U 0.169 0.222 0.869 1900 50* rene U U U 0.281 0.361 1.88 665 50* rene U U U U U U 122 50* 3*Dichlorobenzidine U U U U U NA NA nzo(a)anthracene U U U 0.014 0.0196 0.181 3.0 ^0.24 or MDL krysene U U U 0.0281 0.0407 0.275 0.4 0.4 (2-Ethylhexl)phthalate 0.259 0.0245 0.0175 0.118 0.131 0.261 435 50* nzo(b/fl									
In-Butylphhalate 0.022 U 0.0074 U U U 8.1 8.1 uoranthene U U U 0.169 0.222 0.869 1900 50° rene U U U 0.221 0.361 1.88 665 50° tylbenzylphhalate U U U U U U 50° s/bichorobenzidine U U U U U NA NA anzo(a)anthracene U U U 0.014 0.0196 0.181 3.0 ^0.24 or MDL xysene U U U 0.0261 0.0407 0.275 0.4 0.4 s(2-Etrylhexi)phthalate 0.259 0.0245 0.0175 0.118 0.131 0.261 435 50° n-ocytylphthalate U U U U 1.1 1.1 noc(b/locranthene U U U U 1.1 1.1									NA
U U U U 0.281 0.361 1.88 665 50* tybenzylphthalate U U U U U U U 122 50* 3*Dichlorobenzighthalate U U U U U U NA NA 3*Dichlorobenzighthalate U U U U U U NA NA snzo(a)anthracene U U U 0.014 0.0196 0.181 3.0 ^0.24 or MDL snzo(a)anthracene U U U 0.0281 0.0407 0.275 0.4 0.4 (2-Ethylnexi)phthalate 0.259 0.0245 0.0175 0.118 0.121 0.355 120 60*		0.022	<u> </u>	0.0074	U	Ų		8.1	8.1
U U U U 0.281 0.361 1.88 665 50* tydenzylphthalate U U U U U U U 122 50* 3*-Dichlorobenzidine U U U U U U NA NA anzo(a)anthracene U U U U U NA NA NA nzo(a)anthracene U U U 0.014 0.0196 0.181 3.0 ^0.24 or MDL nysene U U U 0.0261 0.0407 0.275 0.4 0.4 (2-Ethylhexl)phthalate 0.259 0.0245 0.0175 0.118 0.121 0.355 120 60* ncoc(b)fluoranthene U U U U U 1.1 1.1 1.1 nzo(b)fluoranthene U U U U U 1.1 1.1 1.1 nzo(b)fluoranthene U U<			U		0.169		0.869		50*
hybenzylphthalate U								665	
Introde U U U U U 0.014 0.0196 0.181 3.0 ^0.24 or MDL vrysene U U U U 0.0261 0.0407 0.275 0.4 0.4 (2-Ethylhext)phthalate 0.259 0.0245 0.0175 0.118 0.131 0.261 4335 50° n-octylphthalate U U U 0.149 0.12 0.355 120 50° nzo(b)fluoranthene U U U U U 1.1 1.1 nzo(k)fluoranthene U U U U U 1.1 1.1 nzo(k)fluoranthene U U U U 0.013 U 11 .061 or MDL eno(1,2,3-cd)pyrene U U U U 3.2 3.2 eno(2,4,3-adhpathracene U U U U 3600 .014 or MDL	itylbenzylphthalate	U	U						50*
U U U U 0.0281 0.0407 0.275 0.4 0.4 (2-Ethylhex)phthalate 0.259 0.0245 0.0175 0.118 0.131 0.261 435 50* n-octylphthalate U U U 0.149 0.12 0.355 120 50* nzo(b)fluoranthene U U U U U 1.1 1.1 nzo(b)fluoranthene U U U U U 1.1 1.1 nzo(b)fluoranthene U U U U U 1.1 1.1 nzo(a)pyrene U U U U 0.013 U 11 .061 or MDL eno(1,2,3-cd)pyrene U U U U 3.2 3.2 eno(2,4,3-dipyrene U U U U 165,000 .014 or MDL eno(2,4,3-anthracene U U U U 3.2 3.2 eno(2,6,1)anthracene		υ	U	U	U	U	U	NA	
(2-Ethylhexl)phthalate 0.259 0.0245 0.0175 0.118 0.131 0.261 435 50* n-octylphthalate U U U 0.149 0.12 0.355 120 50* ncot()fluoranthene U U U U U U 1.1 1.1 ncot()fluoranthene U U U U U 1.1 1.1 ncot()fluoranthene U U U U U 1.1 1.1 ncot()fluoranthene U U U U U 1.1 1.1 nzo(a)pyrene U U U U 0.013 U 11 .061 or MDL eno(1,2,3-cd)pyrene U U U U 3.2 3.2 enzo(a, h_i)parylene U U U U 165,000 .014 or MDL	nzo(a)anthracene	U		U	0.014	0.0196	0,181	3.0	^0.24 or MDL
n-oct/phthalate U U U U 0.149 0.12 0.355 120 50* nzo(b)fluoranthene U U U U U U U 1.1 1.1 nzo(k)fluoranthene U U U U U U 1.1 1.1 nzo(k)fluoranthene U U U U 1.1 1.1 nzo(k)fluoranthene U U U U 1.1 0.61 or MDL eno(1,2,3-cd)pyrene U U U U 3.2 3.2 enzo(a, h)anthracene U U U U 165,000 .014 or MDL nzo(g,h.l)parylene U <t< td=""><td>rysene</td><td>U</td><td>U</td><td>U</td><td>0.0281</td><td></td><td></td><td>0.4</td><td></td></t<>	rysene	U	U	U	0.0281			0.4	
n-octylphthalate U U U U 0.149 0.12 0.355 120 50* nzo(b)fluoranthene U U U U U U 1.1 1.1 nzo(b)fluoranthene U U U U U U 1.1 1.1 nzo(b)fluoranthene U U U 0.013 U 1.1 .061 or MDL leno(1,2,3-cd)pyrene U U U U 3.2 3.2 penzo(a, h)anthracene U U U U 185,000 .014 or MDL nzo(g), h.j)perylene U U U U 800 50*		0.259	0.0245	0.0175				435	50*
Introduction U U U U U U U U I.1 1.1									50*
Inzo(k)(fluoranthene U U U U U U U I.1 1.1 1.1 Inzo(a)pyrene U U U U 0.013 U 11 .061 or MDL Ieno(1,2,3-cd)pyrene U U U U U 3.2 3.2 penzo(a,h)anthracene U U U U U 165,000 .014 or MDL nzo(g,h.i)parylene U U U U 800 50*									1.1
U U U U U U 0.013 U 11 .061 or MDL Ieno(1,2,3-cd)pyrene U U U U U 3.2 3.2 benzo(a,h)anthracene U U U U U 165,000 .014 or MDL nzo(g,h.i)perylene U U U U 0 50*									1,1
Jency(1,2,3-cd)pyrene U U U U U U 3.2 3.2 benzo(a,h)anthracene U U U U U U 3.2 3.2 nzo(g,h.i)perylene U U U U U 165,000 .014 or MDL									
Denzo(g,h)anthracene U U U U U U U 165,000 .014 or MDL nzo(g,h,i)perylene U U U U U 0 50*									
nzo(g,h.i)perviene U U U U U U U 800 50*									
	DTALS	1.6888	0.0459	0.0487	20,5777	19.5113	72.931		

Note;

Samples Analyzed By: Roy F. Weston Lionville Analytical Laboratory Samples Analyzed For: TCL Semivolatiles

LEGEND

U = UNDETECTED

NA = NOT AVAILABLE B - FOUND IN BLANK

J - ESTIMATED CONCENTRATION

MDL - METHOD DETECTION LIMIT
 As per proposed TAGM, total VOC's <10ppm, Total Semi VOC's <500 ppm, and individual semi VOC's < 50 ppm

TABLE 4

FTC - REMEDIATION VOLATILE ORGANIC ANALYSIS SUMMARY SOIL

SAMPLING DATE :6/18 - 21/2001

			SOIL	ORING				
	BAF-4	BAF-5	MUF-1	MUF-4	MUF-5	MUF-3	Recommended Soll Cleanup	Recontinencedisoli
COMPOUND (MG/KG)	30 - 32 ft.	32- 34 ft.	25 - 27 ft	25 - 27 ft.	33 -35 ft.	32 -34 ft.	Objective to Protect GW(ppm)	Cleanup Objective (ppm
Dichlorodifloromethane	U	<u> </u>	U	U	Ŭ	U		
Chloromethane	<u> </u>	<u> </u>	U	U	<u> </u>	U		
Vinyl Chloride	U	<u> </u>	U	υ	U	U	0.12	0.2
Bromomethane	U	U	U	U	U			
Chloroethane	U	U	U	U	U	U	1.9	1.9
Trichlorflouromethane	U	<u> </u>	υ	U	U	U –		
Acetone	U	.230J	U	<u>U</u>	U	U	0.11	0.2
1,1-Dicloroethane	U	U	U	U	U	U	0.2	0.2
Methlylene Chloride	.0162B	.488B	.0137B	.0074B	U	υ	0.1	0.1
Carbon disulfide	υ	U	U	U	U	U	2.7	2.7
I-1,2-Dichloroethane	υ	U	Ū	υ	U	U		
1,1-Dichloroethane	U	U	U	U	U	υ	0.2	0.2
2-Butanone	U	υ	U	U	U	υ	0.3	0.3
Chloroform	U	U	U	U	Ų	U	0.3	0.3
1,1,1-Trichloroethane	U	U	U	U	<u> </u>	U	0.76	0.8
Carbon Tetrachloride	υ	U	υ	C		U	0.6	0.6
1,2-Dichloroethane	U	U	υ	U	U	U	0.1	0.1
Benzene	U	υ	υ	0.0038	U	U	0.06	0.06
Trichloroethene	U	U	υ	Ŭ	U	U	0.7	0.7
1,2-Dichloropropane	U	U	Ū	υ	- U	υ		
Bromodichloromethane	U	U	U	υ	U	U		
4-Methly-2-Pentanone	U	U	U	U	U	U	1	1
2-Hexanone	U	<u>ບ</u>	υ	U	U	υ		
c-1,3-Dichloropropene	U	Ū	U	- U	Ċ	U		
Toluene	0.0035		U	0.0052	Ū	Ū	1.5	1.5
I-1,3-Dichloropropene	υ	U	U	υ	Ú	U		
1,1,2-Trichloroethane	U	U		U	U	U		
Tetrachloroethene	U	U	U	0.0015	U	U	1.4 _	1.4
Dibromochloromethane	<u> </u>	U	U	U	υ		N/A	N/A
1,2-Dibromomethane	υ	U	υ	U	υJ	U		
Chlorobenzene	U	υ	U	U	υ	U	1.7	1.7
Ethylbenzene	U	0.299	0.0168	0.15	0.393	0.233	5.5	5.5
n,p-xylene	0.011	U	0.0181	0.321	2.24	1.01	1.2	1.2
)-xylene	0.0046		U	0.247	0.841	0.157	1.2	1.2
Styrene	U		U	U		U –		
Bromoform	U	U	υ	U	U	U		
1,2,2-Tetrachloroethane	U	U	υ	U	<u> </u>	υ	0.6	0.6
,2,3-Trichloropropane	U	U	U	U	Ū	Ū	0.34	0.4
3-Dichlorobenzene	Ū	Ū	Ū	Ū	Ŭ	Ū	1.55	1.6
4-Dichlorobenzene	Ŭ	Ū	U	Ū	Ū	Ū	8.5	8.5
,2-Dichlorobenzene	Ū	Ű	Ū	Ū	0.139	U	7.9	7.9
2-Dibromo-3-chloropropane	U	Ū	Ŭ	Ŭ	U	U		
TOTALS	0.0191	0.299	0.0349	0.7285	3.613	1.4	<u> </u>	

Note:

Samples Analyzed By: Roy F. Weston Lionville Analytical Laboratory Samples Analyzed For: TCL Semivolatiles

•

LEGEND U = UNDETECTED NA = NOT AVAILABLE B - FOUND IN BLANK J - ESTIMATED CONCENTRATION MDL - METHOD DETECTION LIMIT * - As per proposed TAGM, total VOC

 As per proposed TAGM, total VOC's <10ppm, Total Semi VOC's <500 ppm, and individual semi VOC's < 50 ppm
 volsoil2

Appendix **B**

2.5 Remedial System Termination

The standards/guideline values for VOCs and semi-VOCs presented in Table 2-3 are the criteria that must be achieved in the monitoring wells for termination of site remedial system operation. These criteria must be met for a period of 2 years (8 quarters) prior to termination of system operation, unless the zero slope condition for groundwater remediation is demonstrated.

The zero slope condition refers to a demonstrated condition at which contaminant concentrations in all termination monitoring wells (see Section 3.6) are lowered by the remediation, but do not achieve required standards and/or guidance values (see Table 2-5). Instead of continuing to be lowered, the concentrations reach a certain level and remain at that level during the two-year termination monitoring period. This condition is demonstrated if a plot of concentration versus time data for the two-year termination monitoring period indicates that the slope of the line is statistically indistinguishable from zero.

For the purposes of determining the zero slope condition, organic compound concentrations will be summed over each quarter to produce a total VOC (TVOC) concentration versus time plot for each termination monitoring well (i.e., 21 plots). It will be required that the zero slope condition exists in each termination monitoring well (see Section 3.6.2).

To determine whether the zero slope condition has been achieved, termination monitoring data will be tested for normality. The selected statistical test will be determined as follows:

- 1. Plot concentrations obtained over time on probability paper.
- 2. Evaluate for normality by an agreed-upon objective method.
- 3. If data is not normally distributed, transformations such as lognormal may be employed in an attempt to obtain a normal distribution. Transformed data will be tested for normality.
- 4. If the data is normally distributed, the most powerful parametric test will be used.
- 5. If the data is not normally distributed, an appropriate non-parametric test will be applied.

In addition, if one or more of the sample analytical results for termination monitoring do not meet the required criteria, the NCDPW may still agek termination of the remediation if all other data meets the criteria and it can be demonstrated, subject to NYSDEC concurrence, that the contamination in the non-complying wells is attributable to sources of contamination other than the FTC site. The NYSDEC will continue to make available for the NCDPW all data to obtain souther contained to make available for the NCDPW all data to obtain souther contained to the contained sources of contamination maturing contained the contained to the contained sources of containmation in the the NYSDEC will continue to make available for the NCDPW all data to obtain souther contained to the contained sources of containmation maturing contained to the contained to the contained sources of containmation in the the contained of the contained sources of containmation in the the contained of the contained sources of containmation in the the contained of the contained sources of containmation in the the contained of the contained sources of containmation in the the contained of the contained of the contained sources of containmation in the source of the contained of the contained of the contained of the complex (CDS-WLCO) (so the One for the contained of the contained o

CDM Camp Dresser & McKee

NASSAU COUNTY FTC								
GROUNDWATER CLEANUP CRITERIA								
Constituents Identified In Risk Assessment	NYS State Groundwater Standards 6 NYCRR 703.5 (ug/l)							
Volatile Compounds								
Benzene	0.7							
Toluene	5							
Ethyl Benzene	5							
Xylenes (each Isomer)	5							
Acetone	50*							
Methyl Ethyl Ketone	50*							
Carbon Disulfide	50*							
Vinyl Chloride	2							
Methylene Chloride	5							
1,1-dichloroethene	5							
1,1-dichloroethane	5							
trans-1,2-dichloroethene	5							
1,1,1-trichloroethane	5							
Trichloroethene	5							
Tetrachloroethene	5							
2-hexanone	50							
Total Volatiles	50							
Semi-Volatile Compounds								
Phenanthrene	50*							
Fluorene	50*							
Naphthalene	50*							
di-n-octyl phthalate	50*							
2-methylnaphthalene 50*								

* - NYS Drinking Water Standards 10 NYCRR 5-1 (ug/l)