1 SHORE ROAD GLENWOOD LANDING, NEW YORK FORMER PENETREX PROCESSING SITE # 1-30-034

PERIODIC REVIEW REPORT

Submitted To:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233

Prepared For:

Glenwood Realty PO Box 1356 Roslyn Heights, NY 11577

Prepared By:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705

PWGC Project Number: PEN1101

FEBRUARY 2016

Page

TABLE OF CONTENTS

1.0	SITE OVERVIEW	2
2.0	SEMI-ANNUAL GROUNDWATER SAMPLING – APRIL AND OCTOBER 2015	5
	 2.1 Groundwater Laboratory Analysis	6
3.0	ANNUAL INDOOR AIR SAMPLING	8
	3.1 Indoor Air Analytical Results	8
4.0	SITE-WIDE INSPECTION	0
5.0	CONCLUSIONS AND RECOMMENDATIONS 1	1

FIGURES

Figure 1	Vicinity Map
Figure 2	Site Plan
Figure 3	Site Plan with Groundwater Contours
Figure 4	Site Plan with VOC Contours (October 2015)
Figure 5	Site Plan with VOC Contours (September 2008)
Figure 6	Site Plan with Air Sampling Locations (April 2015)
TABLES	

Table 1	Groundwater Analytical Results (October 2015)
Table 2	Historical Groundwater Analytical Results

- Table 3 Indoor Air Analytical Results (April 2015)
- Table 4 Historical Indoor Air Analytical Results

APPENDICES

Appendix A	IC/EC Certification Forms
Appendix B	SSDS As-Built Drawings
Appendix C	Monitoring Well Sampling Logs
Appendix D	Laboratory Reports
Appendix E	Data Usability Summary Report
Appendix F	Site-Wide Inspection Form

LIST OF ACRONYMS

ACRONYM	DEFINITION
DO	Dissolved Oxygen
EC/ICs	Engineering and institutional controls
EE	Environmental Easement
GQS	Groundwater Quality Standards
IRM	Interim Remedial Measure
NYCRR	New York Codes, Rules, and Regulations
NYSDEC	New York State Department of Environmental Conservation
ORP	Oxygen-reduction potential
PE	Professional Engineer
PRAP	Proposed Remedial Action Plan
PWGC	P.W. Grosser Consulting, Inc.
QA/QC	Quality Assurance / Quality Control
ROD	Record of Decision
SMP	Site Management Plan
SSDS	Sub-Slab Depressurization System
SVOC	Semi-Volatile Organic Compound
UIC	Underground Injection Control
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound

EXECUTIVE SUMMARY

This *Periodic Review Report* (PRR) has been prepared by P.W. Grosser Consulting Inc. (PWGC) on behalf of Glenwood Realty of Roslyn Heights, New York, to document the groundwater and indoor air sampling events which occurred at the property located at 1 Shore Road, Glenwood Landing, New York (a Site Location Map is included as **Figure 1**), and to document the compliance with the requirements specified in the NYSDEC-approved *Site Management Plan* (SMP). The site is currently listed as a New York State Department of Environmental Conservation (NYSDEC) Class IV inactive hazardous waste disposal site identified as I.D. No. 130034.

A former dry cleaning business, known as Penetrex Processing, Inc. (Penetrex), is reported to have operated at the site for several years prior to abandoning the facility in 1984. During its operation at the site, Penetrex is reported to have discharged dry cleaning chemicals to an on-site sanitary system and a storm water leaching pool at the property.

PWGC began a Remedial Investigation (RI) in November 2001 at the site to obtain information necessary to determine the need for a remediation. The RI concluded that residual levels of volatile organic compounds (VOCs) in groundwater remained in the area of the eastern portion of the parking lot. The VOCs were likely due to former discharges of PCE to sanitary leaching pool DW-5 and to storm water leaching pool DW-1. An Interim Remedial Measure (IRM) included the injection of a chemical oxidant solution (potassium permanganate) to oxidize VOCs in groundwater. Post-IRM groundwater sampling at the subject site indicated that VOCs in groundwater were substantially reduced as a result of the IRM.

In order to mitigate sub-slab VOC vapors detected beneath the two site buildings, sub-slab depressurization systems (SSDS) were installed. Indoor air sampling results indicate that VOC vapors are not intruding to the interior spaces of these buildings and, therefore, the SSDS are functioning as intended.

Activities performed at the site during this Review Period included monitoring well groundwater sampling in April and October 2015, and indoor air sampling in April 2015. The analytical results of the groundwater sampling indicate residual concentrations of VOCs which are lower than detected in previous sampling rounds. The analytical results of the indoor air sampling indicate that sub-slab VOC vapors, if present, are not intruding into the interior spaces of the subject buildings. These results confirm that the SSDS are functioning as intended.

Based on the results obtained during this Review Period, residual chlorinated VOC concentrations in groundwater have not met requirements for the discontinuation of site management. At this time, PWGC does not recommend changes to the SMP and does not recommend changing the frequency of PRR submittal.

The Institutional and Engineering Controls Certification forms for the site are attached as Appendix A.

1.0 SITE OVERVIEW

The subject site consists of an approximately one-acre parcel located on the east side of Shore Road in the Hamlet of Glenwood Landing, Town of North Hempstead, Nassau County, New York. A site vicinity map is included as **Figure 1**. The property is improved with a two-story steel and masonry industrial building with no basement, a three-story wood-frame house with a basement, asphalt parking, communications tower and other ancillary improvements. A site plan is included as **Figure 2**.

The property is bounded to the west by Shore Road and to the east by West Street. The area to the east of West Street is developed with residential houses. The site is generally located north of Scudders Lane and is situated near and adjoining several major oil storage facilities, coastal terminals, and a municipal power station near Hempstead Harbor. Glenwood Oil Terminal Corp. is located northwest, diagonally across the property. The RI determined that concentrations of several VOCs, including PCE and TCE, exceeded NYSDEC Ambient Water Quality Standards in the Site's groundwater which is apparently the result of the improper discharge of dry cleaning chemicals to sanitary leaching pool DW-5 and/or storm water drywell DW-1 located in the eastern portion of the Site, and that these VOCs had created a potential soil vapor intrusion condition in the Site's buildings.

Soil vapor intrusion sampling was conducted to evaluate the potential for soil vapor intrusion into on-Site structures and to determine if there was substantial soil vapor contamination from the disposal of hazardous wastes. Sub-slab vapor samples were collected from beneath the on-site structures, which revealed soil vapor contamination.

Indoor air samples were collected from the on-site structures. Detected concentrations of VOCs were within the Air Guideline Values specified in the Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006.

The Interim Remedial Measure (IRM) to address subsurface groundwater contamination consisted of the installation of five (5) permanent monitoring wells (A total of 11 permanent monitoring wells are present at the site) and the injection of a chemical oxidant solution, potassium permanganate, in the delineated area of contamination in the eastern portion of the site's parking area. The intent of the chemical oxidant injection, which occurred in December 2008 and January 2009, was to significantly reduce the mass of contamination in the subsurface through the oxidation of VOCs in the high concentration area. Details of the IRM are included in the revised *IRM Report*, submitted by PWGC in August 2009 under separate cover.

Three (3) of the five (5) new wells (MW-8, MW-9, and MW-10) are screened at the water table to monitor the most impacted groundwater. Two (2) of the five (5) new monitoring wells (MW-8D and MW-9D) are screened at a 10-foot interval between 40 and 50 feet bgs to monitor IRM effectiveness at a greater depth. The previously-existing monitoring wells (MW-1 through MW-5 and MW-7) are screened at the water table. Monitoring well MW-6 could not be located during the April 2015 sampling and has apparently been destroyed. Monitoring well MW-6 was located off-property across Shore Road to the west of the subject property.

A baseline round of groundwater sampling was performed on September 18, 2008 to determine VOC concentrations prior to the injection of the chemical oxidant, and the initial post-injection round of sampling was performed on April 6, 2009. The analytical results were compared to NYSDEC Groundwater Standards and to each other, to determine the effectiveness of the chemical injection. The results indicated a substantial reduction in the mass of contamination at the subject site. This was best illustrated in the results from monitoring well MW-8, where the concentration of total VOCs decreased from 7,758 μ g/L to 1,462 μ g/L in the initial post-injection sampling, an 81% reduction in the impacted area were significantly lower than in MW-8.

A site-specific SMP was prepared by PWGC and approved by the NYSDEC in March 2015. The SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the Site. The requirements include operation of two SSDS, maintenance of a ground cover system, semi-annual groundwater sampling, indoor air sampling, and an annual site-wide inspection to confirm that ICs and ECs are properly implemented and functioning as intended.

The SMP specifies that on a semi-annual basis the groundwater data will be evaluated relative to the need for additional ISCO injections. Specifically, the data will be reviewed and inspected for evidence that VOC levels have stabilized, or nearly stabilized (i.e., reached asymptotic levels). If stabilized levels are greater than five times the respective standard (e.g., >25 μ g/L for PCE, using the PCE standard of 5 μ g/L), or it appears that the levels will stabilize at or above this level, then an additional round of ISCO injections will be planned. Alternatively, if stabilized PCE levels are below 25 μ g/L, or it appears that the levels will stabilize below 25 μ g/L, then a petition may be made to NYSDEC to forego additional ISCO injections. If individual monitoring wells exhibit contaminant concentrations below the NYSDEC groundwater standards for two consecutive rounds, a petition may be made to remove them from future sampling events. The rationale for recommending the discontinuation of monitoring will depend on whether goals are achieved at all sampling points for two consecutive monitoring rounds. Any modifications or discontinuance of these monitoring activities will only occur after approval of such changes by the NYSDEC.

Due to the presence of elevated sub-slab VOCs, two SSDS are in operation at the Site to mitigate the potential for exposure. One SSDS was installed in the residential building in April 2007 and one SSDS was installed in the commercial building in June 2007. Both SSDS are active single loop systems with perforated piping located beneath the concrete slabs of the buildings. Riser pipes connect the systems to fans which draw out sub-slab vapors through the discharge vents above the rooflines of the respective buildings, and create a negative pressure beneath the slabs. The locations of the SSDS are indicated on the as-built drawings and are included in **Appendix B**. The fans run continuously to sustain a negative pressure beneath the slabs and mitigate the potential for vapor intrusion into the buildings. Communication tests performed for each system confirmed the effectiveness of the systems, that a negative pressure was created to draw out vapors from beneath the slabs of the structures. Based on the tests, the operation of the SSDS effectively mitigates the potential for soil vapor intrusion.

The active SSDS will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the SSDS are no longer required, a proposal to discontinue the SSDS will be submitted by the property owner to the NYSDEC and NYSDOH.

2.0 SEMI-ANNUAL GROUNDWATER SAMPLING – APRIL AND OCTOBER 2015

Semi-annual groundwater sampling was performed on April 24 and October 28, 2015 to monitor contaminant trends at the subject site in accordance with the site-specific SMP. The April 24 sampling is detailed in PWGC's Semi-Annual Groundwater Sampling Report, previously submitted under separate cover.

During the October 2015 sampling, ten (10) monitoring wells were sampled utilizing a low stress (low flow) method to collect representative samples while producing a minimal amount of purge water. Monitoring well MW-5, located in the southern portion of the property, cross-gradient of the area of residual impact, was inaccessible due to a parked vehicle. Sampling was performed with a submersible pump with an adjustable flow rate. Purging of each well continued until turbidity was substantially reduced. Portable field instruments were used to collect measurements. At locations where turbidity did not decrease to 50 NTUs, the well was considered purged upon the stabilization of other parameters such as pH, conductivity, dissolved oxygen, and oxidation-reduction potential (ORP). Samples were collected directly from the polyethylene tubing into laboratory-supplied glassware upon stabilization of field parameters. Monitoring well sampling logs are included in **Appendix C.** Purge water was containerized in 55-gallon drums and staged on-site pending off-site disposal.

Monitoring well MW-5 was blocked during the October sampling by a parked car. Throughout previous sampling events, MW-5 has remained outside the area of impact.

Depth to water measurements were collected to determine groundwater flow direction. As with previous sampling events, a steep gradient toward Hempstead Harbor was calculated. A groundwater contour map is included as **Figure 3**.

During previous sampling events, the purple color of the potassium permanganate was observed in the water collected from monitoring wells in the injection area. The purple color was last observed in the samples from monitoring wells MW-7 and MW-9 during the April 2010 sampling. A purple color was not observed since that sampling event, indicating that the potassium permanganate is no longer present at the monitoring well locations.

2.1 Groundwater Laboratory Analysis

Collected groundwater samples were placed in a cooler packed with ice for transport to Alpha Analytical Laboratories (Alpha) of Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP) certified laboratory for analysis of VOCs by EPA Method 8260. Laboratory Data Reports are included in **Appendix D**.

2.2 Quality Assurance / Quality Control

QA/QC for the groundwater sampling events included the following of ASP-B protocols, including the analysis of a trip blank, and the collection and analysis of a blind duplicate, a field blank, a matrix spike sample, and a matrix spike duplicate. The accuracy, precision, and completeness requirements were addressed by the laboratory for the data generated. Alpha indicated in an analytical narrative report of the sampling (included in **Appendix D**) that the samples were received in accordance with the chain of custody and no significant deviations were encountered during the preparation or analysis.

The October semi-annual sampling results were submitted to Stone Environmental, Inc. (Stone) of Montpelier, Vermont for a third-party quality assurance evaluation. Two monitoring well samples (MW-4 and MW-10) were considered for full data validation. Stone concluded that the overall quality of the data was acceptable and all results as qualified are considered usable. The Data Usability Summary Report is included as **Appendix E.**

2.3 Groundwater Analytical Results

Analytical results of the October 2015 semi-annual sampling event were compared to NYSDEC Groundwater Standards, and to the results of the baseline sampling event and the previous eight post-injection sampling events in order to evaluate the effectiveness of the IRM and monitor attenuation trends. The analytical results are summarized on **Tables 1** and **2** and the laboratory data sheets are included in **Appendix D**.

Overall, the analytical results indicate that VOC concentrations are similar to the results of the April 2015 sampling event.

PCE was detected in the sample collected at MW-1 (15 μ g/L), which is slightly higher than the concentration detected in the April 2015 sample (10 μ g/L), and slightly lower than the April 2011 Sampling. No other VOCs were detected at MW-1. Historical results indicate that MW-1 is located at the up-gradient perimeter of the impacted area.

PCE was detected at MW-2 (6.1 μ g/L). MW-2 is located down-gradient of the area of residual impact. No other VOCs were detected at MW-2. VOC concentrations at MW-2 have historically remained near Groundwater Standards.

At MW-3, located down-gradient of the impacted area, total VOCs decreased compared to April 2015 results. PCE, TCE, cis-1,2-DCE, and vinyl chloride were detected. The highest VOC concentration at MW-3 remains that of cis-1,2-DCE (67 µg/L), indicating the continued reductive dechlorination of PCE.

VOCs remained below detectable levels in MW-4. This well is located to the south of the residually-impacted area.

The PCE concentration at MW-7, located along the perimeter of the impacted area, has decreased to 110 μ g/L, the lowest concentration detected at that location. TCE was detected at 1 μ g/L. No other VOCs were detected at MW-7.

Total VOCs in MW-8 have increased to 73 μ g/L since the April 2015 sampling, but is significantly lower than the April 2011 sampling. The result is also substantially lower than the pre-IRM concentration of 7,700 μ g/L.

VOCs in MW-9, located down-gradient of the center of impact, have substantially decreased since the previous sampling. PCE (270 μ g/L) is similar to previous sampling events, while the TCE concentration has decreased 1,1,1-TCA concentration has decreased from 5.2 μ g/L to below the detection limit.

The PCE concentration at MW-10 (66 μ g/L) has increased since the April 2015 sampling event, but is lower than the April 2011 event. No other VOCs were detected at MW-10.

PCE was detected in deep well MW-8D at 3.8 μ g/L. No other VOCs were detected at MW-8D. The PCE concentration in deep well MW-9D is 1 μ g/L. No other VOCs were detected in MW-9D. The deep well results indicate that groundwater beneath the historical area of concern has been remediated.

The total mass of VOC impact at the site appears to have been substantially reduced by the chemical injection as evidenced by the analytical results, and as illustrated by the change in the total VOC contours between **Figure 4** and **Figure 5**.

3.0 ANNUAL INDOOR AIR SAMPLING

A total of six (6) ambient air samples were collected by PWGC on April 24, 2015 which included 5 indoor air samples (1 sample from each of the four main ground floor spaces in the commercial building and one from the basement of the house) and 1 outdoor air sample. The sampling was performed in accordance with the site-specific SMP. Sampling locations are indicated on **Figure 6**.

Sampling was conducted in accordance with the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in New York State (NYSDOH Vapor Intrusion Guidance). Samples were collected into 6-liter Summa[®] vacuum canisters fitted with 1-hour flow controllers. The samplers were certified clean by the laboratory. Alpha Analytical Laboratories, a NYSDOH Environmental Laboratory Accreditation Program (ELAP) certified laboratory for analysis of volatile organic compounds (VOCs) by USEPA Method TO-15-SIM.

In accordance with the NYSDOH Vapor Intrusion Guidance, the 5 samples were collected concurrently. Each of the indoor samples was collected from a height representing the breathing zone (between 3 and 5 feet above the floor). Sampling personnel avoided lingering in the sampling areas.

One outdoor air sample was collected approximately 10 feet to the southwest of the commercial building to determine site background concentrations which contribute to indoor air quality. The sample was collected from a height of approximately three feet above the ground in an upwind direction from the building. Sampling personnel avoided lingering in the sampling area. The sample was collected concurrently with the indoor air samples.

3.1 Indoor Air Analytical Results

The indoor air sampling results of this round were compared to the results of two previous indoor air sampling rounds performed prior to the installation of the site's two SSDS and chemical injection remediation. The subslab vapor contaminants of concern at the subject site are chlorinated VOCs. The sampling results are included on the attached **Table 3**. Historical indoor air results are included on **Table 4**. PCE was detected in the fitness center, the commercial space, and the house basement. However, the detected concentrations were substantially lower than the concentrations detected prior to vapor mitigation and groundwater remediation. The detected PCE concentrations are also well below the NYSDOH Air Guidance Value of 30 μ g/m³.

Carbon tetrachloride was detected in each of the samples. However, the highest concentration was detected in the outdoor air sample, indicating that the presence of carbon tetrachloride is a result of background air quality, rather than an on-site source.

Other chlorinated VOCs, including TCE, 1,1,1-Trichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, and vinyl chloride, were not detected.

Acetone was detected in all the indoor air samples and the outdoor air sample, indicating that the detection of acetone is likely the result of laboratory interference. The highest concentration of acetone was detected in the house basement sample at a concentration of 504 μ g/m³. Historical sub-slab vapor sampling did not indicate elevated acetone concentrations. Based on this, the acetone in the basement may also be attributable to a solvent stored in the basement. The laboratory analytical report is included in **Appendix D**.

4.0 SITE-WIDE INSPECTION

The SMP was developed to confirm that the site remedy continues to be effective in protecting public health and the environment. The SMP specifies a site-wide inspection on an annual basis. During these inspections, an inspection form is completed (**Appendix F**). The form is used to compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the SMP; and
- Confirm that site records are up to date.

The site-wide inspection was performed on December 12, 2015 by John Eichler, a representative of PWGC. The components of the SSDS were visually inspected for signs of damage such as cracks in piping, fans, and alarms. The SSDS were deactivated to confirm that the low-pressure alarms were active. Pressure gauge readings were recorded to confirm that the SSDS were active. The inspection indicated that the SSDS were functioning properly.

The soil cover system was observed during the site-wide inspection. There was no evidence of site development or ground-intrusive activities that would disturb the soil cover system.

The groundwater monitoring system was inspected for signs of damage. Off-site monitoring well MW-6, located across Shore Road to the west of the subject site, could not be located and is presumed to be destroyed. The remaining monitoring wells appeared to be in good condition with plugs and protective covers. Based upon the findings of the site-wide inspection, no corrective actions are recommended at this time.

5.0 CONCLUSIONS AND RECOMMENDATIONS

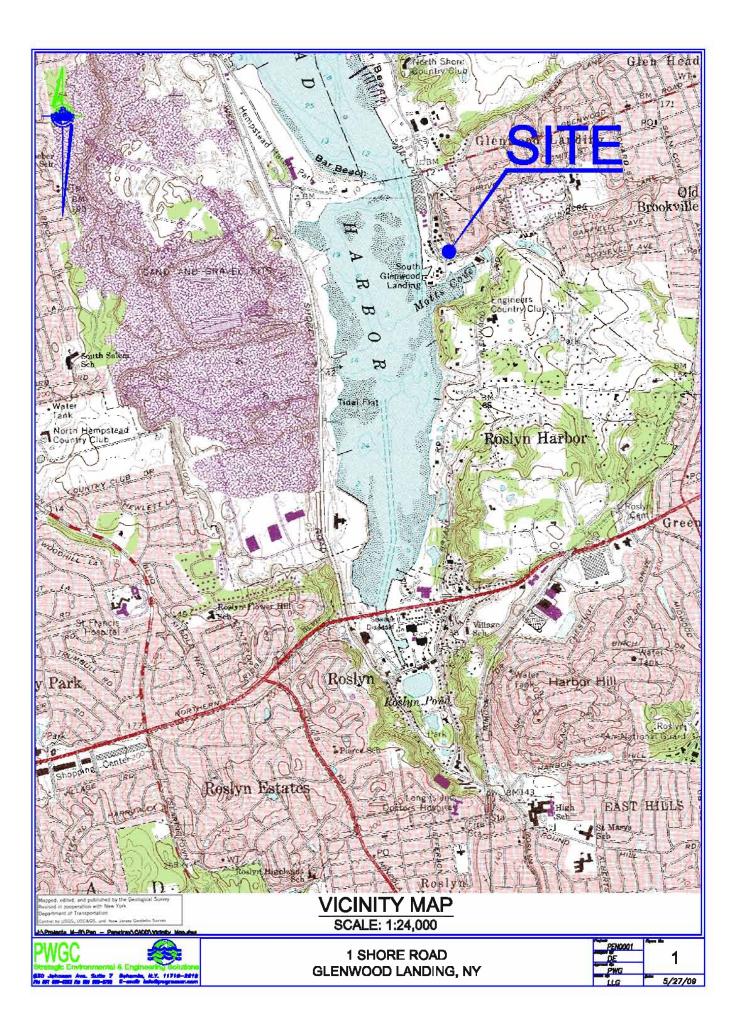
<u>Indoor Air</u>

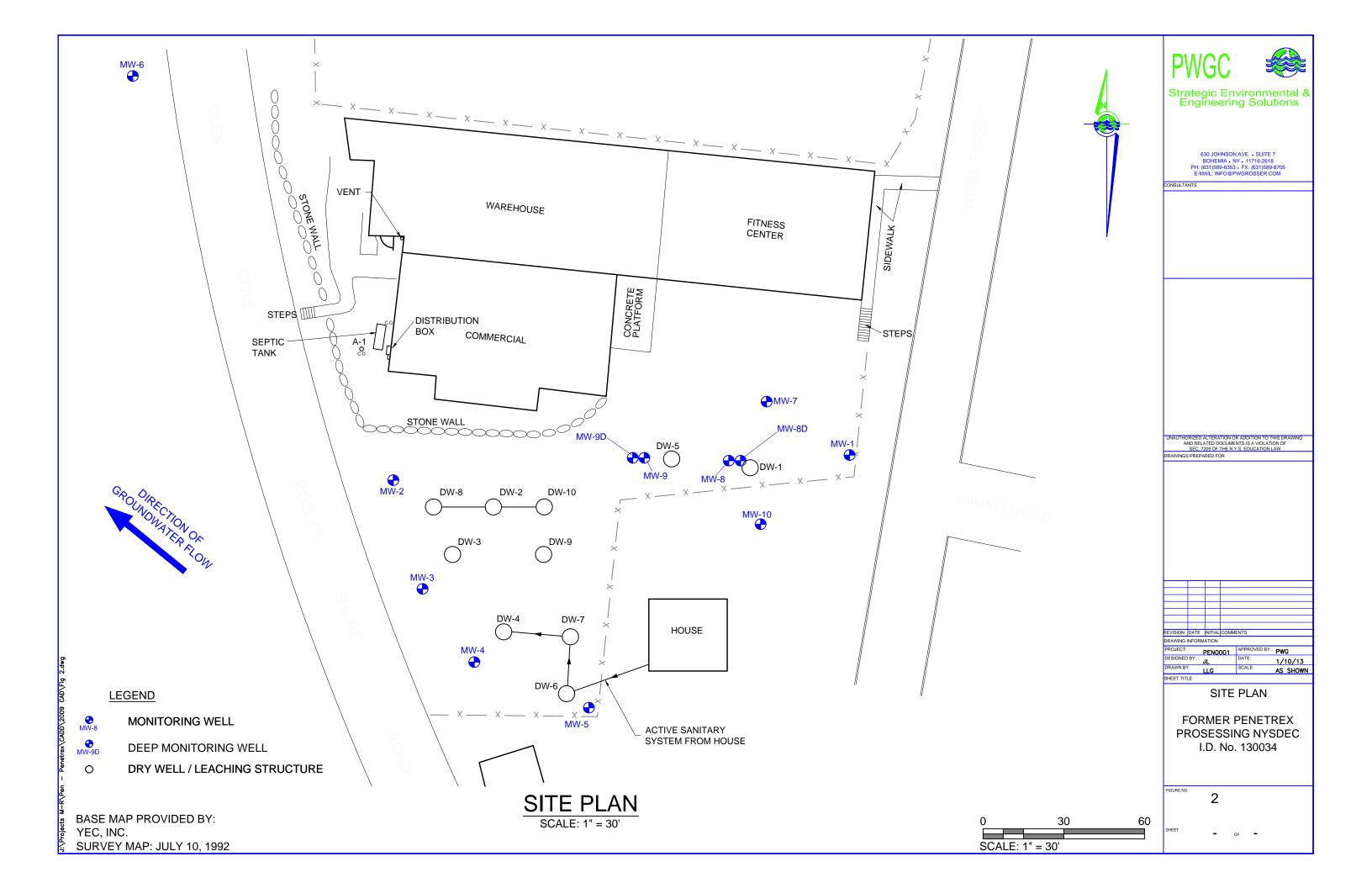
PWGC collected five indoor air samples and one outdoor air sample at the subject site to determine if the subject site's two SSDS are effectively mitigating potential sub-slab chlorinated VOC vapors. The indoor air results of the sampling performed after the installation of the SSDS were compared to the indoor air results of the sampling performed before the installation of the SSDS. Chlorinated VOCs have decreased substantially in the indoor air since the installation of the SSDS. The results indicate that intrusion of sub-slab VOCs into the interior spaces of the buildings is mitigated by the slab and the SSDS.

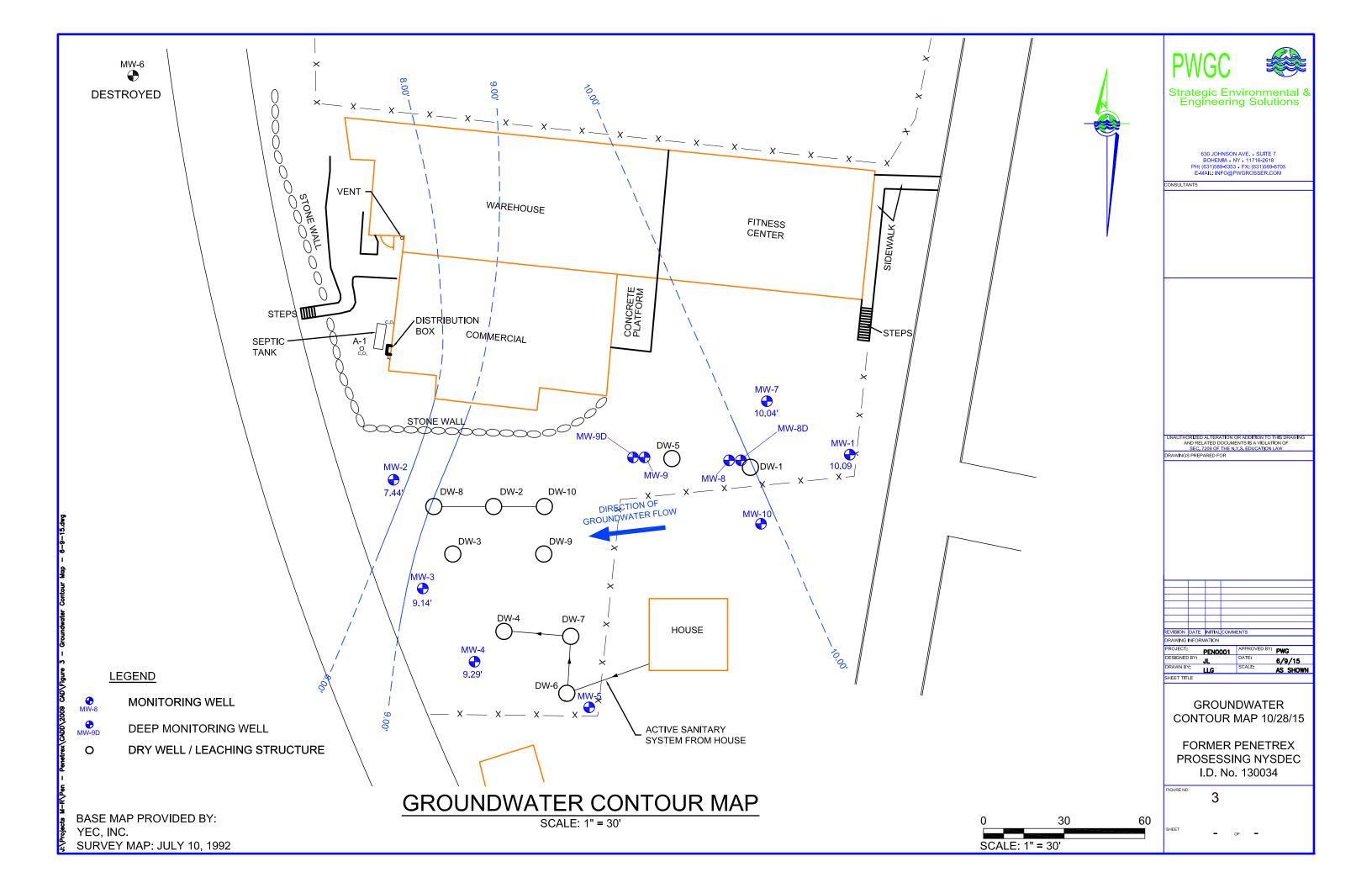
Based on the presence of residual VOCs detected in the groundwater, PWGC recommends continued operation of the SSDS to mitigate potential vapor intrusion and indoor air sampling. The next indoor air sampling event will occur in April 2016.

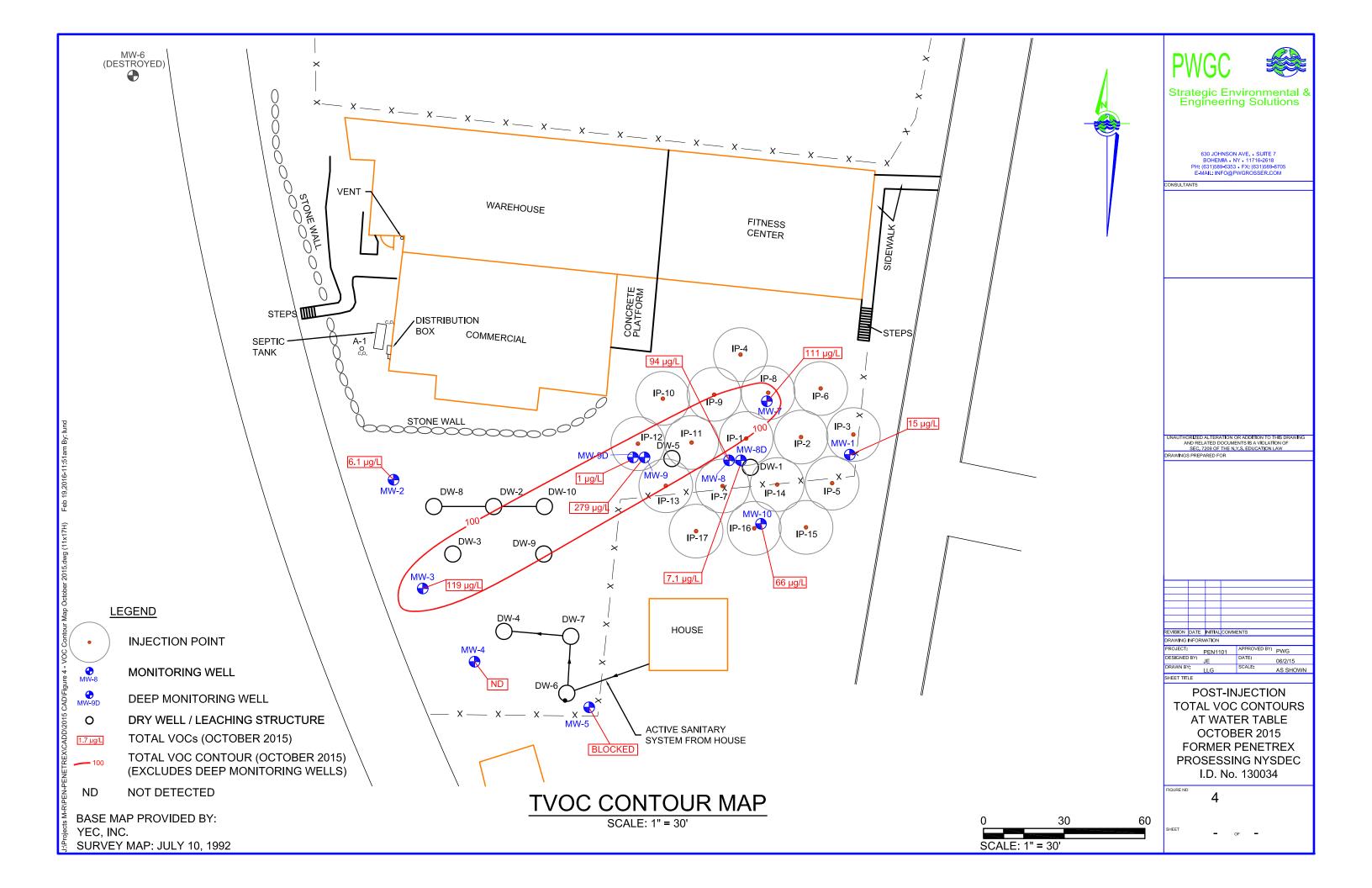
Groundwater

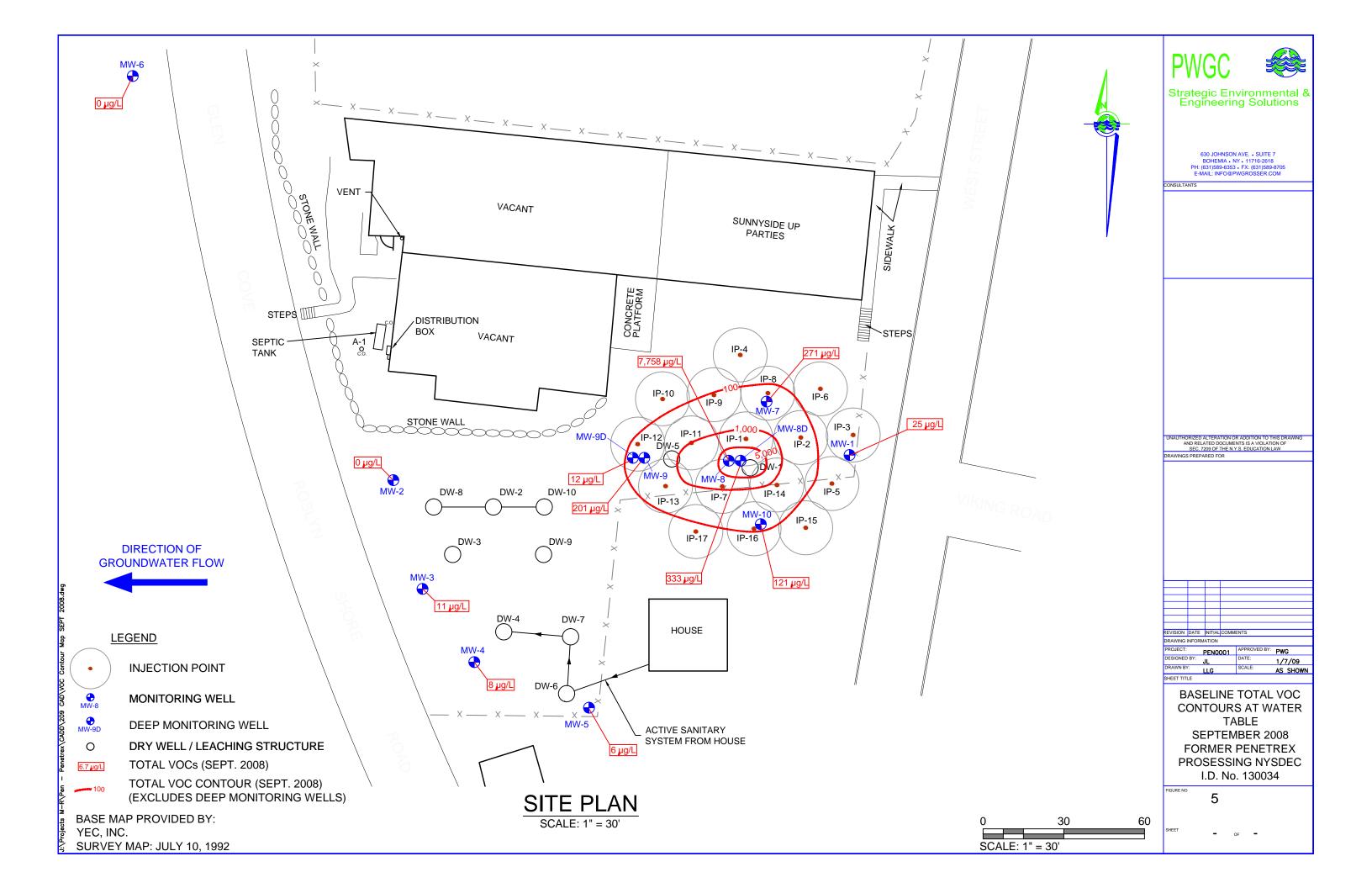
The objective of the IRM was to substantially reduce the mass of VOC impact located at the subject site. The area of impact had been delineated and monitored during the remedial investigation to facilitate a focused remedial practice to accomplish this objective. The injection of the chemical oxidant, potassium permanganate, appears to have been successful at substantially reducing VOCs, including PCE, TCE and cis-1,2-DCE, in the center of the area of impact (monitoring well MW-8).

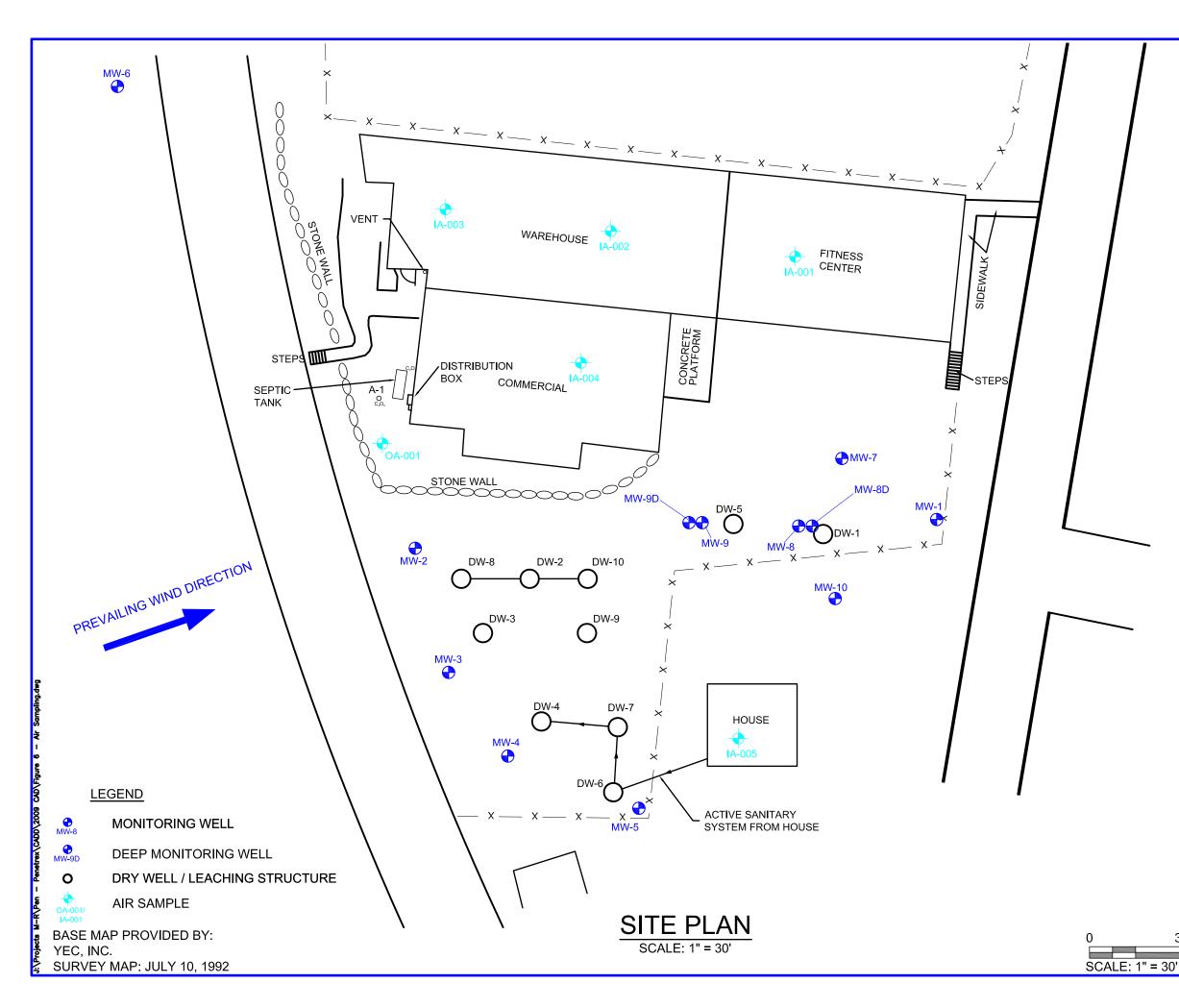

Historical analytical results indicate that down-gradient monitoring wells MW-2 through MW-6 have been outside the central area of impact, indicating that impacted groundwater has not substantially migrated toward the property boundary. The presence of TCE and 1,2-DCE in MW-3 indicate the reductive dechlorination of PCE.

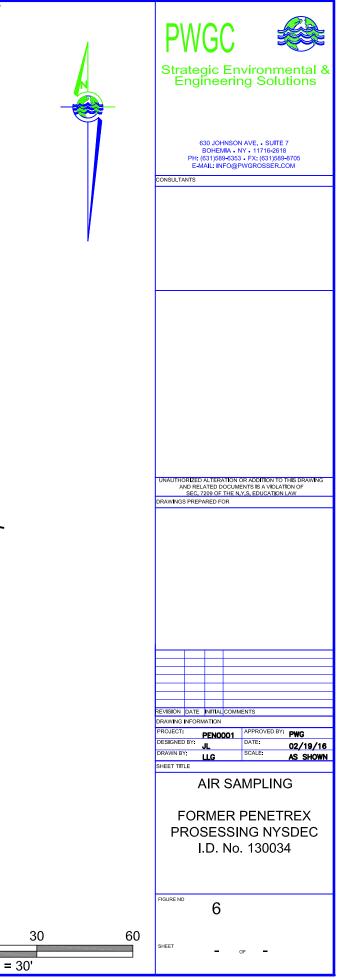

Off-site monitoring well MW-6 could not be located and has apparently been destroyed since the previous sampling. MW-6 was located well outside and cross-gradient of the area of residual impact. Based on this, PWGC does not recommend the replacement of MW-6.


Based on the length of time since the last injection, it is likely that the potassium permanganate has completed its reaction with VOCs at the subject site. This is an indication that natural attenuation processes at the site are responsible for the reduction in VOCs since the previous sampling. VOCs are expected to follow this decreasing trend.


PWGC recommends continued semi-annual groundwater sampling. The next event will occur in April 2016.


FIGURES





TABLES

TABLE 1 October 2015 - Groundwater Analytical Results - VOCs 1 Shore Road, Glenwood Landing, New York

panet and any off and any off and any off any					1 Shore Road	d, Glenwood L	anung, New	TUIK					
particle particle matrixparticle particleparticle particle particleparticle particle particleparticle particle particleparticle particle particleparticle part	Sample ID	NYSDEC Groundwater					MW-5						
Name Name <th< th=""><th>Sampling Date</th><th></th><th>10/28/2015</th><th>10/28/2015</th><th>10/28/2015</th><th>10/28/2015</th><th></th><th>10/28/2015</th><th>10/28/2015</th><th>10/28/2015</th><th>10/28/2015</th><th>10/28/2015</th><th>10/28/2015</th></th<>	Sampling Date		10/28/2015	10/28/2015	10/28/2015	10/28/2015		10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015
1.11 Terr 1.11 Terr <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							-						
		8260 - μg/L											
1.2.1 Productionarie 1.2.1 Pro		-											
		-											
3-0-00-0error 5-0 0 0 0 0 0 <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-											
	, ,												
		-											
		-											
	,												
2.4.7 5.4.7 5.4.7 0 6.7 0 7.7 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 7.8 0 0 0 0 0 <td< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		÷											
2235000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
22000 <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-											
2.2000042000000000000000000000000000000		÷											
2>020instruing 0.6 0.13 0 0.													
2. able monome, frainel NS 0.7 0 NC 0.7 0 1.0 0.7 0 0 0 0 0 <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-											
2 2 Decompany 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 <td>,</td> <td></td>	,												
3.5.7.070076246 5.7 V 0 7.0 V N													
3.bit 3.bit <t< td=""><td>· · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	· · · ·												
3-bolk 3-bolk 5-bolk Corder S <bblack< th=""></bblack<>		-											
3-DeComponent 111 N 0 0 0 0 <	,												
3.400 3.400 3.70 9.70 <	, , ,	÷											
Ables NS 41 U 41 U 41 U 41 U 41 U 150 U <td></td>													
2)2.Dick marging margin	1,4-Dioxane	-											
Bindmone 50 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 10 <	,												
-ideamone S0 1 1 1		÷											
Methy Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
vectorie iso U <thu< th=""> U U <thu< td=""><td>4-Methyl-2-pentanone</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thu<></thu<>	4-Methyl-2-pentanone												
bernominine 5 15 U 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 <	Acetone		1.5 U	1.5 U		1.5 U			1.5 U				1.5 U
incredence 1 0.16 U 0.16 U 0.76 U 0.76		_					1	1					
biomolename 5 0.7 U 0.7	Benzene	1											
isomedicionmethane 5 0.7 U 0.7	Bromobenzene	5											
biomodiformethane 50 0.59 0 0.70 0 0.77 0 0.77 0 0.70 0 0.70 0 0.70 0 0.77 0 0.73 0 0.73 0 0.73 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0 0.77 0	Bromochloromethane	5											
bronnedman 50 65 0 6.8 0 N.C 0.8 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.8.5 0 0.7.5 0 0.8.5 0 0.8.5 0 0.7.5 0 0.8.5 0 0.7.5 0 0.7 0	Bromodichloromethane	50	0.19 U	0.19 U	0.19 U	0.19 U	NC	0.19 U	0.19 U	0.19 U		0.19 U	0.19 U
instron 66 1 0 1 0 N N 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0<	Bromoform												
instron 66 1 0 1 0 N N 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0<	Bromomethane	5	0.7 U	0.7 U	0.7 U		NC	0.7 U	0.7 U	0.7 U		0.7 U	0.7 U
binorestame 5 0.7 U 0.7	Carbon disulfide	60	1 U	1 U	1 U	1 U	NC	1 U	1 U	1 U	4 U	1 U	1 U
bilderedente 5 0.7 0 0.7	Carbon tetrachloride	5	0.13 U	0.13 U	0.13 U	0.13 U	NC	0.13 U	0.13 U	0.13 U	0.54 U	0.13 U	0.13 U
Disprodem 7 0 0.7 0 </td <td>Chlorobenzene</td> <td>5</td> <td>0.7 U</td> <td>0.7 U</td> <td>0.7 U</td> <td>0.7 U</td> <td>NC</td> <td>0.7 U</td> <td>0.7 U</td> <td>0.7 U</td> <td>2.8 U</td> <td>0.7 U</td> <td>0.7 U</td>	Chlorobenzene	5	0.7 U	0.7 U	0.7 U	0.7 U	NC	0.7 U	0.7 U	0.7 U	2.8 U	0.7 U	0.7 U
Intermembane NS 0.7 U 0.7 <thu< th=""> 0.7 U</thu<>	Chloroethane	5	0.7 U	0.7 U	0.7 U	0.7 U	NC	0.7 U	0.7 U	0.7 U	2.8 U	0.7 U	0.7 U
isis 12.0 clubranethene 5 0.7 0 0.7 0 1.1 1.2 J 2.8 0 0.7 0 0.7 0 isis 3.3 Dicharopropen 0.4 0.14 0 0.14 0 0.15 0	Chloroform	7	0.7 U	0.7 U	0.7 U	0.7 U	NC	0.7 U	0.7 U	0.7 U	2.8 U	0.7 U	0.7 U
isis-3.2.be/horporpene 0.4 0 0.14 0 0.14 0 0.14 0 0.14 0 0.14 0 0.14 0 0.14 0 0.14 0 0.14 0 0.15	Chloromethane	NS	0.7 U	0.7 U	0.7 U	0.7 U	NC	0.7 U	0.7 U	0.7 U	2.8 U	0.7 U	0.7 U
bits one other methane 50 0.15 1 0.15 1 0.15 1 0.15 1 0 0.15	cis-1,2-Dichloroethene	5	0.7 U	0.7 U	67	0.7 U	NC	0.7 U	21	1.2 J	2.8 U	0.7 U	0.7 U
bit <	cis-1,3-Dichloropropene	0.4	0.14 U	0.14 U	0.14 U	0.14 U	NC	0.14 U	0.14 U	0.14 U	0.58 U	0.14 U	0.14 U
Dichlordifuromethane S 1 U	Dibromochloromethane	50	0.15 U	0.15 U	0.15 U	0.15 U	NC	0.15 U	0.15 U	0.15 U	0.6 U	0.15 U	0.15 U
thy Implement NS 0.7 U 0.7	Dibromomethane	5	1 U	1 U	1 U	1 U	NC	1 U	1 U	1 U	4 U	1 U	1 U
thylescape 5 0.7 U	Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	NC	1 U	1 U	1 U	4 U	1 U	1 U
iexachlorobutadiene 0.5 0.7 0 0.7 <t< td=""><td>Ethyl ether</td><td>NS</td><td>0.7 U</td><td>0.7 U</td><td>0.7 U</td><td>0.7 U</td><td>NC</td><td>0.7 U</td><td>0.7 U</td><td>0.7 U</td><td>2.8 U</td><td>0.7 U</td><td>0.7 U</td></t<>	Ethyl ether	NS	0.7 U	0.7 U	0.7 U	0.7 U	NC	0.7 U	0.7 U	0.7 U	2.8 U	0.7 U	0.7 U
sopropylbenzene 5 0.7 U 0.7 U <td>Ethylbenzene</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>NC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ethylbenzene	-					NC						
Adethy/iter 10 0.7 U	Hexachlorobutadiene												
Adethylene chloride S 0.7 U 0.7	Isopropylbenzene	-											
Backylbenzene S 0.7 U 0.7 <thu< th=""> 0.7 U</thu<>	Methyl tert butyl ether												
Propylbenzene 5 0.7 U	Methylene chloride	-											
Apphhalene 10 0.7 U													
S 0.7 U 0.7 <th< td=""><td>n-Propylbenzene</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	n-Propylbenzene	-											
Shylene S 0.7 U													
S 0.7 U 0.7 <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-											
be-biethylbenzene NS 0.7 U 0.7 <td>o-Xylene</td> <td></td>	o-Xylene												
bethyloluene NS 0.7 U	1	Ű											
b-isopropyloluene 5 0.7 U 0.7 U<													
ym-xylene 5 0.7 U	. ,						-						
ce-Butylbenzene 5 0.7 U 0.7 U <td></td> <td>-</td> <td></td>		-											
Styrene 5 0.7 U		-											
ert-Butylbenzene 5 0.7 U 0.7 U </td <td></td> <td>Ĵ</td> <td></td>		Ĵ											
retrachtoroethene 5 15 6.1 37 0.18 U NC 110 48 7.1 270 1 66 'oluene 5 0.7 U													
oldene 5 0.7 U	,	-											
rans-1,2-Dichloroethene 5 0.7 U 0.7													
rans-1,3-Dichloropropene 0.4 0.16 U													
rans-1,4-Dichloro-2-butene 5 0.7 U 0.7													
Trichloroethene 5 0.36 J 0.32 J 6.3 0.18 U NC 1 4 0.33 J 8.9 0.18 U 0.26 J Trichlorofluoromethane 5 0.7 U <													
Trichlorofluoromethane 5 0.7 U 0.7 <													
/inyl acetate NS 1 U 1 U 1 U 1 U NC 1 U 1													
/invl chloride 2 0.07 U 0.07 U 0.07 U NC 0.07 U 0.07 U <td></td>													
(ylenes, Total NS 0.7 U 0.7 U 0.7 U 0.7 U 0.7 U NC 0.7 U													
	Vinyl chloride												
otal VOCs NS 15 6.1 118.8 ND NC 111 94 7.1 278.9 1 66	-												
	Total VOCs	NS	15	6.1	118.8	ND	NC	111	94	7.1	278.9	1	66

Notes:

⁽¹⁾ NYSDEC Ambient Water Quality Standards and Guidance Values 6/1998, April 2000 addendum

* - Guidance Value

ND- Nondetect

NC- Not collected

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

 ${\bf Q}$ - Indicates the lab controlled sample did not meet the control limits required.

U - The compound was not detected at the indicated concentration

Bold / Shaded text denotes concentrations exceeding NYSDEC AWQS

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

	NYSDEC							MW-1													MW-2						
	Standards ⁽¹⁾		1/19/05	9/6/06	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/15	11/13/01	1/19/05	9/6/06	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	
Volatile Organic Compounds by EPA 1,1,1,2-Tetrachloroethane	Method 8260 i	n µg/L NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane 1,1-Dichloroethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
1,2,3-Trichlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	0.04 F	NA NA	NA	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	NA	NA	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
1,2,4,5-Tetrametryberizene	5 5	NA	NA NA	ND	NA ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	NA	NA NA	ND ND	NA ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
1,2-Dibromo-3-chloropropane	0.04	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
1,2-Dibromoethane 1,2-Dichlorobenzene	5	NA NA	NA NA	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	NA	NA	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
1,3-Dichlorobenzene 1,3-Dichloropropane	3	NA NA	NA NA	ND	ND ND	ND ND	ND	ND ND	NA	NA NA	ND ND	ND	ND ND	ND ND	ND												
1,3-Dichlorobenzene	3	NA	NA	ND ND	ND	ND	ND ND	ND	NA NA	NA	ND	ND ND	ND	ND	ND ND												
1,4-Diethylbenzene	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
2,2-Dichloropropane	5	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND
2-Chloroethyl vinyl ether	NS 5	NA	NA NA	ND	ND	ND	NA	NA	NA NA	NA	NA	NA NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND
2-Chlorotoluene 2-Hexanone	5 50 G	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND
2-propanol	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
4-Chlorotoulene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
Acetone	50 5 G	ND NA	ND NA	ND	ND NA	ND NA	ND NA	ND	ND NA	ND NA	ND NA	ND NA	ND	ND	ND NA	ND NA	ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND	ND	ND	ND	ND
Acrolein Acrylonitrile	5 G 5	NA NA	NA NA	ND ND	NA NA	NA NA	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND	NA	NA NA	ND ND	NA NA	NA NA	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
Bromochloromethane Bromodichloromethane	NS 5	NA ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	NA	NA ND	NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Bromoform	NS	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorodibromomethane	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
Chlorodifluoromethane	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform Chloromethane	7 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethene	5	ND	1	ND	ND	ND	ND	ND	0.55	ND	ND	ND	ND	ND	11	ND											
cis-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane Dichlorodifluoromethane	5	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA	NA NA	ND ND										
Diisopropyl ether	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
Ethanol	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
Ethyl acetate	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
Ethyl Benzene Freon 113	5 NS	ND NA	ND NA	ND ND	ND NA	ND ND	ND ND		ND NA	ND ND	ND	ND NA	ND ND	ND ND													
Freon-114	NS	NA	NA	ND	NA	ND	ND	NA NA	NA	ND	NA	ND	ND														
Hexachlorobutadiene	0.5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
Isopropyl acetate	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
Isopropylbenzene m + p Xylene	5 10	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND										
Methyl Ethyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Isobutyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Tertiary Butyl Ether	10 Г	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
Methylene Chloride n-Amyl acetate	5 NS	ND NA	ND NA	ND ND	ND NA	ND ND	ND ND	ND NA	ND NA	ND ND	ND NA	ND ND	ND ND														
Naphthalene	10	NA	NA	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	ND	NA	NA	NA	ND	ND
n-Butyl acetate	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
n-Butylbenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
n-Propyl acetate n-Propylbenzene	NS 5	NA NA	NA NA	ND ND	NA ND	ND ND	ND ND	NA NA	NA NA	ND ND	NA ND	ND ND	ND ND														
o Xylene	5	NA ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA ND	NA ND	ND										
p-Diethylbenzene	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
p-Ethyltoluene	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
p-IsopropyItoluene sec-ButyIbenzene	5	NA NA	NA NA	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NA NA	NA NA	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
Styrene	5	NA ND	NA	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND
t-butyl alcohol	NS	NA	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	ND														
tert-Butylbenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND										
Tetrachloroethene	5	100	83	120	25	62	50	19	12 ND	80	11 ND	18 ND	10	15 ND	11 ND	14	ND	ND	5.1	6	3.7	5.2	5.0	3.6	7.5	4.7	6.1
Toluono	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	5																										
trans-1,2-Dichloroethene	5 0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	0.04	ND 4	ND 2	ND ND	ND	3	ND																				
Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane	0.04 5 5	ND 4 NA	ND 2 NA	ND ND ND	ND ND	ND 3 NA	ND NA	ND ND	ND ND		ND ND																
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	0.04	ND 4	ND 2	ND ND	ND	3	ND																				

1 - NYSDEC Class GA Groundwater Standards,

TOGS 1.1.1, June 1998

NS - Not specified.

ND - Not detected. NA - Not analyzed.

Bold / Shaded text denotes concentrations exceeding

the Groundwater Standards.

G - Guidance value.

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

	NYSDEC							MW-	-3													MW-4						
Compound	Standards ⁽¹⁾	11/13/01	1/19/05	2/11/05	9/6/06	9/17/08	4/6/09		-3 10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/15	11/13/01	1/19/05	9/6/06	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15 ⁻	10/28/15
Volatile Organic Compounds by El 1,1,1,2-Tetrachloroethane	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	1	1.2	0.91	0.89	0.87	1	ND	ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethene	5	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichloropropane	0.04	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	NA	NA	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dibromo-3-chloropropane	0.04	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene 1.2-Dichloroethane	0.6	NA ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene 1,3-Dichloropropane	3	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	3	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Diethylbenzene	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
2,2-Dichloropropane 2-Chloroethyl vinyl ether	5 NS	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND
2-Chlorotoluene	5	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND
2-Hexanone	50 G	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-propanol 4-Chlorotoulene	NS 5	NA NA	NA	NA NA	ND	NA	NA	NA	NA	NA ND	NA ND	NA ND	NA ND	ND ND	ND	NA NA	NA NA	ND ND	NA ND	NA ND	NA ND	NA ND	NA	NA	NA	NA	ND ND	ND ND
Acetone	5 50	NA ND	NA 43	NA 15	ND ND	ND ND	ND 8.8	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	NA ND	NA ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND
Acrolein	50 5 G	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Acrylonitrile	5	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Bromobenzene	1	ND NA	ND NA	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromochloromethane	NS	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform Bromomethane	NS 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Disulfide	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chlorodibromomethane	5 NS	ND NA	ND	ND NA	ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND	ND NA	ND NA	ND	ND	ND NA	ND	ND	ND	ND NA	ND NA	ND NA	ND ND	ND ND
Chlorodifluoromethane	NS	NA	NA NA	NA	ND ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA NA	NA	ND ND	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane cis-1,2-Dichloroethene	NS 5	ND 97	ND 14	ND ND	ND ND	ND 6	ND 1.8	ND ND	ND 17	ND 18	ND 6.9	ND 27	ND 100	ND 79	ND 67	ND 3	ND ND	ND ND	ND ND	ND 0.77	ND ND	ND 3	ND 2	ND 0.53	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane Dichlorodifluoromethane	5	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Diisopropyl ether	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Ethanol	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Ethyl acetate Ethyl Benzene	NS 5	NA ND	NA 79	NA 27	ND 26	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND
Freon 113	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Freon-114	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Hexachlorobutadiene	0.5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropyl acetate Isopropylbenzene	NS 5	NA NA	NA NA	NA NA	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND	NA NA	NA NA	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND
m + p Xylene	10	ND	ND	124	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Isobutyl Ketone Methyl Tertiary Butyl Ether	NS 10	ND NA	ND NA	107 NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Amyl acetate	NS 10	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Naphthalene n-Butyl acetate	10 NS	NA NA	NA NA	NA NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND	NA NA	NA NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND
n-Butylbenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propyl acetate	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
n-Propylbenzene o Xylene	5	NA	NA	NA	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	NA ND	NA ND	ND	ND ND	ND ND		ND	ND	ND	ND	ND	ND	ND
o Xylene p-Diethylbenzene	5 NS	ND NA	ND NA	57 NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND
p-Ethyltoluene	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
p-Isopropyltoluene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene Styrene	5	NA ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
t-butyl alcohol	NS	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
tert-Butylbenzene	5	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	54	ND	ND	ND	ND	1.1	3.7	3.2	4.6	2.8	6.4	20	54	37	65	ND	ND	ND	0.82	5.6	1.8	0.98	2.2	2.2	1.2	ND	ND
Toluene trans-1,2-Dichloroethene	5	ND ND	11000	2310 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.1	ND ND	ND ND	ND ND	11 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	9	0.7	ND	ND	ND	1.2	9.1	7.4	6.5	2.2	6.0	7.1	6.9	6.3	7	ND	ND	8	1.8	12	3.9	0.52	0.54	0.64	ND	ND	ND
Trichlorofluoromethane Vinyl acetate	5 NS	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl Chloride	2	5	NA ND	NA ND	ND	ND	ND	ND 4.6	4.3	4.0	2.2	6.2	13	6.5	8.5	NA ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Notes:	•				•	•	•										•	•				•	•	•	<u> </u>		I	

1 - NYSDEC Class GA Groundwater Standards,

TOGS 1.1.1, June 1998

NS - Not specified.

ND - Not detected.

NA - Not analyzed.

Bold / Shaded text denotes concentrations exceeding

the Groundwater Standards.

G - Guidance value.

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

Compound	NYSDEC						MW-5										MV	V-6				
Compound	Standards ⁽¹⁾	1/19/05	9/5/06	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	1/19/05	9/6/06	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/1
Volatile Organic Compounds by EP 1,1,1,2-Tetrachloroethane	PA Method 8260 i	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,1,1-Trichloroethane	5	NA ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA ND	ND								
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND								
1,2,3-Trichloropropane	0.04	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA NA	ND								
1,2,4,5-Tetramethylbenzene	5	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND						
1,2,4-Trichlorobenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,2,4-Trimethylbenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,2-Dibromo-3-chloropropane	0.04	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,2-Dibromoethane	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND ND	ND						
1,2-Dichlorobenzene 1,2-Dichloroethane	0.6	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND	ND ND						
1,2-Dichloropropane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,3-Dichlorobenzene	3	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,3-Dichloropropane	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,4-Dichlorobenzene	3	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
1,4-Diethylbenzene	NS F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2,2-Dichloropropane 2-Chloroethyl vinyl ether	5 NS	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Chlorotoluene	5	NA NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	NA NA	ND	ND	ND	NA	NA NA	NA	NA	NA	NA NA
2-Hexanone	50 G	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-propanol	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
4-Chlorotoulene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
Acetone	50	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	5 G	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
Acrylonitrile	5	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	ND	ND	ND	ND
Benzene Bromobenzene	5	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND								
Bromochloromethane	NS	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND							
Bromodichloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	NS	ND	ND	ND	ND	6.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane Chlorodifluoromethane	NS NS	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	ND ND	NA NA							
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane Dichlorodifluoromethane	5	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND								
Diisopropyl ether	NS	NA NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA NA	ND	NA							
Ethanol	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
Ethyl acetate	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
Ethyl Benzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
Freon-114	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
Hexachlorobutadiene	0.5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
Isopropyl acetate Isopropylbenzene	NS 5	NA NA	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	NA NA	ND ND	NA ND							
m + p Xylene	10	NA ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
Methyl Ethyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Isobutyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Tertiary Butyl Ether	10	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Amyl acetate	NS 10	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
Naphthalene n-Butyl acetate	10 NS	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND NA	ND	ND	ND	ND	
n-Butyl acetate n-Butylbenzene	NS 5	NA NA	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	NA NA	ND ND	NA ND							
n-Propyl acetate	NS	NA NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA NA	ND	NA	NA	NA	ND	NA	NA	NA	NA
n-Propylbenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
o Xylene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Diethylbenzene	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
o-Ethyltoluene	NS	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA							
p-Isopropyltoluene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
sec-Butylbenzene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND								
2	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NA
Styrene		NA	ND ND	NA ND	NA ND	NA ND	NA ND	NA	NA	NA ND	NA ND	ND ND	NA NA	ND ND	NA ND							
Styrene t-butyl alcohol	NS 5	NIA		I ND	IND		ND ND	ND ND	ND 4.8	ND ND	ND 0.53	ND ND	NA	ND ND	ND ND	ND 2.2	ND 2.3	ND 2.1			ND	
Styrene t-butyl alcohol tert-Butylbenzene	5	NA 11			ND	NIL Y			4 (1)			1111	,						// 2	65	ΣQ	15
Styrene t-butyl alcohol tert-Butylbenzene Tetrachloroethene	5 5	11	ND	ND	ND ND	ND 2.2							2 4.9						4.3 ND	6.5	2.8 ND	
Styrene t-butyl alcohol tert-Butylbenzene Tetrachloroethene Toluene	5	11 ND	ND ND	ND ND	ND	2.2	1.3	ND	ND	ND	ND	ND	4.9	ND								
Styrene t-butyl alcohol tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene	5 5 5	11	ND	ND																		15 ND ND ND
Styrene t-butyl alcohol	5 5 5 5 5	11 ND ND	ND ND ND	ND ND ND	ND ND	2.2 ND	1.3 ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.9 ND	ND ND								
Styrene t-butyl alcohol tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene	5 5 5 5 0.04	11 ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	2.2 ND ND	1.3 ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	4.9 ND ND	ND ND ND								
Styrene t-butyl alcohol tert-Butylbenzene Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	5 5 5 5 0.04 5	11 ND ND 6	ND ND ND ND ND	ND ND ND ND 6	ND ND ND 1.1	2.2 ND ND ND	1.3 ND ND 1.1	ND ND ND ND	ND ND ND 2.5	ND ND ND 1.2	ND ND ND ND	ND ND ND ND	4.9 ND ND ND	ND ND ND ND								

Notes:

1 - NYSDEC Class GA Groundwater Standards, TOGS 1.1.1, June 1998 NS - Not specified. ND - Not detected. NA - Not analyzed.

Bold / Shaded text denotes concentrations exceeding the Groundwater Standards. G - Guidance value.

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

Compound	NYSDEC						M	W-7										MV	N-8				
Compound	Standards ⁽¹⁾	1/19/05	9/6/06	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/15	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/1
Volatile Organic Compounds by EP 1,1,1,2-Tetrachloroethane	A Method 8260 i	NA	ND	ND	NA	ND																	
1,1,1,Trichloroethane	5 5	3	ND	ND	NA	ND																	
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	NA	ND																	
1,1,2-Trichloroethane	1	ND	ND	ND	NA	ND																	
1,1-Dichloroethane	5	3	ND	ND	NA	ND																	
1,1-Dichloroethene	5	ND	ND	ND	NA	ND																	
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	NA NA	ND ND	ND ND	NA NA	ND ND																	
1,2,3-Trichloropropane	0.04	NA NA	ND	ND	NA	ND																	
1,2,4,5-Tetramethylbenzene	5	NA	ND	NA	NA	ND	NA	ND															
1,2,4-Trichlorobenzene	5	NA	ND	ND	NA	ND																	
1,2,4-Trimethylbenzene	5	NA	ND	ND	NA	ND																	
1,2-Dibromo-3-chloropropane	0.04	NA	ND	ND	NA	ND																	
1,2-Dibromoethane	5	NA	ND	ND	NA	ND																	
1,2-Dichlorobenzene 1,2-Dichloroethane	0.6	NA ND	ND ND	ND ND	NA NA	ND ND																	
1,2-Dichloropropane	1	ND	ND	ND	NA	ND																	
1,3,5-Trimethylbenzene	5	NA	ND	ND	NA	ND																	
1,3-Dichlorobenzene	3	NA	ND	ND	NA	ND																	
1,3-Dichloropropane	5	NA	ND	ND	NA	ND																	
1,4-Dichlorobenzene	3	NA	ND	ND	NA	ND																	
1,4-Diethylbenzene	NS F	NA	ND	ND	NA	ND	ND																
2,2-Dichloropropane 2-Chloroethyl vinyl ether	5 NS	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND						
2-Chlorotoluene	5	NA NA	ND	ND	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND						
2-Hexanone	50 G	ND	ND	ND	NA	ND																	
2-propanol	NS	NA	ND	NA	ND	ND	NA	ND	ND														
4-Chlorotoulene	5	NA	ND	ND	NA	ND																	
Acetone	50	ND	ND	ND	NA	ND																	
Acrolein	5 G	NA	ND	NA	ND	ND	NA	ND	ND														
Acrylonitrile Benzene	5 1	NA ND	ND ND	NA ND	NA NA	ND ND	NA ND	NA ND	ND ND														
Bromobenzene	5	ND NA	ND	ND	NA	ND																	
Bromochloromethane	NS	NA	NA	ND	NA	ND																	
Bromodichloromethane	5	ND	ND	ND	NA	ND																	
Bromoform	NS	ND	ND	ND	NA	ND																	
Bromomethane	5	ND	ND	ND	NA	ND																	
Carbon Disulfide	NS	ND	ND	ND	NA	ND																	
Carbon Tetrachloride	5	ND	ND	ND	NA	ND																	
Chlorobenzene Chlorodibromomethane	D NS	ND NA	ND ND	ND NA	NA NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND							
Chlorodifluoromethane	NS	NA	ND	NA	ND	ND	NA	ND	ND														
Chloroethane	5	ND	ND	ND	NA	ND																	
Chloroform	7	ND	ND	ND	NA	ND																	
Chloromethane	NS	ND	ND	ND	NA	ND																	
cis-1,2-Dichloroethene	5	ND	27	ND	NA	ND	1022	440	210	15	ND	ND	4.2	14	ND	21							
cis-1,3-Dichloropropene Dibromochloromethane	0.04 NS	ND ND	ND ND	ND ND	NA NA	ND ND																	
Dibromomethane	5	ND NA	ND	ND	NA	ND																	
Dichlorodifluoromethane	5	NA	ND	ND	NA	ND																	
Diisopropyl ether	NS	NA	ND	NA	ND	ND	NA	ND	ND														
Ethanol	NS	NA	ND	NA	ND	ND	NA	ND	ND														
Ethyl acetate	NS	NA	ND	NA	ND	ND	NA	ND	ND														
Ethyl Benzene	5 NS	ND NA	ND	ND NA	NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND		ND NA	ND NA		ND NA	ND NA	ND NA	ND NA	ND NA	ND	ND
Freon 113 Freon-114	NS NS	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND														
Hexachlorobutadiene	0.5	NA	ND	ND	NA	ND																	
Isopropyl acetate	NS	NA	ND	NA	ND	ND	NA	ND	ND														
Isopropylbenzene	5	NA	ND	ND	NA	ND																	
m + p Xylene	10 NG	ND	ND	ND	NA	ND																	
Methyl Ethyl Ketone	NS	ND	ND	ND	NA	ND																	
Methyl Isobutyl Ketone Methyl Tertiary Butyl Ether	NS 10	ND NA	ND ND	ND ND	NA NA	ND ND																	
Methylene Chloride	5	ND	ND	ND	NA	ND																	
n-Amyl acetate	NS	NA	ND	NA	ND	ND	NA	ND	ND														
Naphthalene	10	NA	ND	ND	NA	ND																	
n-Butyl acetate	NS	NA	ND	NA	ND	ND	NA	ND	ND														
n-Butylbenzene	5	NA	ND	ND	NA	ND																	
n-Propyl acetate	NS 5	NA NA	ND	NA	ND	ND	NA	ND	ND														
n-Propylbenzene o Xylene	5 5	NA ND	ND ND	ND ND	NA NA	ND ND																	
p-Diethylbenzene	NS	ND	ND	NA	NA	NA	NA	ND	NA	ND	NA	ND	ND	NA	NA	ND	NA	ND	NA	NA	ND	ND	ND
p-Ethyltoluene	NS	NA	ND	NA	ND	ND	NA	ND	ND														
p-Isopropyltoluene	5	NA	ND	ND	NA	ND																	
sec-Butylbenzene	5	NA	ND	ND	NA	ND																	
Styrene	5	ND	ND	ND	NA	ND																	
t-butyl alcohol	NS	NA	ND	NA	ND	ND	NA	ND	ND														
tert-Butylbenzene	5	NA 267	ND	ND	NA	ND 240	ND	ND 020	ND	ND	ND	ND 240	ND	ND	ND 21	ND							
Tetrachloroethene	5 F	267 ND	530 ND	271 ND	NA NA	240 ND	120	130 ND	400 ND	140	290	190 ND	110	5994	930 ND	700	120 ND	120 ND	240	190	320 ND	21	48 ND
Toluene trans-1,2-Dichloroethene	<u>ე</u> ნ	ND ND	ND ND	ND ND	NA NA	ND ND																	
trans-1,3-Dichloropropene	0.04	ND	ND	ND	NA	ND																	
	5	16.5	ND	ND	NA	ND	ND	ND	5.3	ND	4.9	2.6	1	742	92	25	ND	ND	ND	ND	18	0.55	4
Trichloroethene	0		-	-																			1 .
Trichloroethene Trichlorofluoromethane	5	NA	ND	ND	NA	ND																	
	5 NS	NA NA ND	ND ND ND	ND ND ND	NA NA NA	ND ND ND																	

Notes:

1 - NYSDEC Class GA Groundwater Standards, TOGS 1.1.1, June 1998 NS - Not specified. ND - Not detected. NA - Not analyzed.

Bold / Shaded text denotes concentrations exceeding the Groundwater Standards. G - Guidance value.

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

Norman Norman<	Compound	NYSDEC					MW-8D									MV	V-9				
M. J. Ales N. B. N. B. N. B. N. B.	Compound			4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/15
Displacemente Fiel VI VI VI VI VI VI VI VI <		5 5		NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N111 N11 N1 N1 N1 N1 N1<		-								1											ND
Distantine 1 0 0 0 0		5																			ND
11200		5																			ND
Destrongene S No No No No <t< td=""><td>1,1-Dichloroethene</td><td>5</td><td>ND</td><td>NA</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>	1,1-Dichloroethene	5	ND	NA	ND																ND
12) 1 1. 1.0<															-						ND
12.157 13.15 13.9 <		-																			ND ND
12.11012.11012.0010.00 <t< td=""><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>	· ·																				ND
2)Depart 1 1 1 1 </td <td>1,2,4-Trichlorobenzene</td> <td>5</td> <td>ND</td> <td>NA</td> <td>ND</td>	1,2,4-Trichlorobenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S120-30x S NO NO NO NO N	· · · · · · · · · · · · · · · · · · ·																				ND
Discriptione 3 100 100 100 1																					ND ND
>>>>>>>>>>>>>>>>>>>>>>>>>>>>	,	-																			ND
Sheensee S No No No No N	,	0.6																			ND
Substrate S No.	· · · · ·	<u>1</u>													+ +						ND
Subsymporphi 5 67 67 <		-																			ND ND
Schulescepter No. NA NA NA NA NA		-																			ND
2 Descr Mo No No No No No </td <td></td> <td>ND</td>																					ND
Constant N N N N </td <td>· ,</td> <td></td> <td>ND</td>	· ,																				ND
Charactery S No No No No <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND ND</td></th<>		-																			ND ND
Silsborner Sing																					ND
Chrintales S NO NO NO NO <t< td=""><td>2-Hexanone</td><td>50 G</td><td>ND</td><td>NA</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	2-Hexanone	50 G	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
schesn 57 10 90 90 90 9			NA																		ND
vicknim 56 KA WA WA WA WA		-																			ND ND
selame 1 90 MA 90 90 90 90																					ND
Bit Produzing § No. Mo. No. No. No. No.	Acrylonitrile		NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
vironextonomethen Vis No No No		1 r																			ND
Boundame 5 N0 N0 N0 N0		-																			ND ND
Dispresentation S NO NO NO NO NO																					ND
Chard Double N5 N0 N4 N0	Bromoform																				ND
Caton Trenchtrige S NO MA MO NO		-																			ND
Chronesnene S ND NA																					ND ND
Chronorthinorume NA																					ND
Observentive S ND NA ND																					ND
Cheroner 7 ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>																					ND
Oblemendanie NS NO NA ND															+ +						ND ND
bits Diff Diff ND <		NS																			ND
Disconscientame NS ND		-										17		ND		ND					ND
Dieromethane S ND																					ND
Dichborghungenumene 5 ND NA ND																					ND ND
Enand INS INA INA </td <td></td> <td>-</td> <td></td> <td>ND</td>		-																			ND
Ery accelate NA	Diisopropyl ether		NA	NA		NA		NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Einyl Berzene 5 ND NA ND																					ND
From 113 NS NA ND <																					ND ND
Frees-114 NS NA NA <	5																				ND
isogroppi acetale NS NA ND	Freon-114	NS	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Soproprienzene 5 ND NA ND																					ND
n - p. Sylene 10 ND NA ND																					ND ND
Methyl Ethyl Kelone NS ND NA ND ND <td></td> <td>ND</td>																					ND
Methyl Tertlary Butyl Ether 10 ND NA ND ND <t< td=""><td>Methyl Ethyl Ketone</td><td>NS</td><td>ND</td><td>NA</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></t<>	Methyl Ethyl Ketone	NS	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chioride 5 ND NA ND																					ND
n-Amylacetate NS NA																					ND ND
Naphthalene 10 ND NA ND																					ND
h-Bufylbenzene 5 ND NA ND	Naphthalene																				ND
n-Propylacetate NS NA ND ND ND																					ND
h-Propylenzene 5 ND NA ND																					ND ND
o Xylene 5 ND NA ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></t<>																					ND
p-Ethylfoluene NS NA ND ND ND	o Xylene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene5NDNAND	, <u> </u>																				ND
sec-Butybenzene5NDNAND <td>1 5</td> <td></td> <td>ND ND</td>	1 5																				ND ND
Styrene5NDNAND																					ND
tert-Butylbenzene5NDNAND<	Styrene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene 5 308 NA 4.6 6.4 5.5 12 1.3 3.6 3.8 175 400 280 300 330 210 280 170 53 27 Toluene 5 ND NA ND																					ND
Toluene5ND	· · · · · · · · · · · · · · · · · · ·																				ND 270
trans-1,2-Dichloroethene5NDNAND																					270 ND
Trichloroethene 5 7 NA ND ND <td></td> <td>ND</td>																					ND
Trichlorofluoromethane 5 ND ND </td <td></td> <td>ND</td>																					ND
Vinyl acetate NS ND NA ND			/																		8.9
																					ND ND
Vinyl Chloride 2 ND NA ND	Vinyl Chloride	2	ND	NA	ND														ND	ND	ND

1 - NYSDEC Class GA Groundwater Standards, TOGS 1.1.1, June 1998 NS - Not specified. ND - Not detected. NA - Not analyzed.

Bold / Shaded text denotes concentrations exceeding the Groundwater Standards.

G - Guidance value.

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

	NYSDEC					MM	/-9D									MV	V-10				
Compound	Standards ⁽¹⁾	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/15	9/17/08	4/6/09	7/7/09	10/7/09	1/20/10	4/8/10	10/13/10	4/20/11	4/24/15	10/28/15
Volatile Organic Compounds by El	PA Method 8260 i		ND	ND	ND	ND		ND		ND											
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5	ND ND	ND 1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,1-Dichloropropene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	5 0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND											
1,2,4,5-Tetramethylbenzene	0.04	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND										
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2-Dibromo-3-chloropropane	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2-Dibromoethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,2-Dichloroethane 1,2-Dichloropropane	0.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND											
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,3-Dichloropropane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND											
1,4-Diethylbenzene	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
2,2-Dichloropropane 2-Chloroethyl vinyl ether	5 NS	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND
2-Chlorotoluene	5	ND	ND	NA	NA	NA	NA	NA	NA NA	ND	ND	ND	ND	NA NA	NA	NA	NA	NA	NA	ND	ND
2-Hexanone	50 G	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	NA	ND	ND	ND
2-propanol	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
4-Chlorotoulene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Acrolein	5 G	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Acrylonitrile	5	NA ND	NA	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	NA	NA	ND ND		ND	ND	ND ND	ND ND	ND	ND
Benzene Bromobenzene	5	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
Bromochloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Bromodichloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Bromoform	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Carbon Disulfide	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Carbon Tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Chlorobenzene Chlorodibromomethane	5 NS	ND NA	ND ND	ND ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND ND							
Chlorodifluoromethane	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Chloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND											
cis-1,2-Dichloroethene	5	ND	0.83	ND	1.4	1.4	ND	ND	ND	ND	ND										
cis-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Dibromochloromethane Dibromomethane	NS 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND											
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Diisopropyl ether	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Ethanol	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Ethyl acetate	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Ethyl Benzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Freen 113	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Freon-114 Hexachlorobutadiene	NS 0.5	NA ND	ND ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND							
Isopropyl acetate	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
m + p Xylene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Methyl Ethyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Methyl Isobutyl Ketone	NS 10	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Methyl Tertiary Butyl Ether Methylene Chloride	10 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND											
n-Amyl acetate	5 NS	ND NA	ND	ND NA	ND NA	ND NA	ND	ND	ND NA	ND ND	ND	ND NA	ND	ND NA	ND	ND NA	ND	ND	ND	ND	ND ND
Naphthalene	10	ND	ND	ND	ND	NA	ND	ND	ND	ND											
n-Butyl acetate	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
n-Propyl acetate	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
o Xylene	5 NS	ND	ND	ND	ND	ND NA	ND	ND	ND NA	ND	ND	ND	ND	ND	ND ND						
p-Diethylbenzene p-Ethyltoluene	NS NS	NA NA	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND							
p-Eurynoldene p-Isopropyltoluene	5	ND	NA ND	NA	NA ND	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	ND	NA	NA	NA	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Styrene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
t-butyl alcohol	NS	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND							
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Tetrachloroethene	5	12	1.2	ND	1	121	41	140	17	120	50	69	80	22	66						
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND											
trans-1,2-Dichloroethene	5 0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND											
trans_1 3_Dichloropropono			ND	ND	NU																
trans-1,3-Dichloropropene Trichloroethene		ND	1 ?	15	ND	14	0.67	0.62	1 3	078	ND										
trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane	5	ND ND	1.3 ND	1.5 ND	ND ND	1.4 ND	0.67 ND	0.62 ND	1.3 ND	0.78 ND	ND ND										
Trichloroethene	5																				

1 - NYSDEC Class GA Groundwater Standards, TOGS 1.1.1, June 1998 NS - Not specified. ND - Not detected. NA - Not analyzed.

Bold / Shaded text denotes concentrations exceeding the Groundwater Standards.

G - Guidance value.

TABLE 3 Indoor Air Analytical Results - VOCs - April 24, 2015 1 Shore Road, Glenwood Landing, New York

				Glenwood		0.							
LOCATION	NYSDOH	FITNESS CE		WAREHO		OFFIC		COMMER		HOUS		OUTDO	
SAMPLE ID	AGV ¹	IA-001		IA-002		IA-00		IA-004		IA-00		OA-001	
SAMPLING DATE		4/24/20		4/24/20		4/24/20		4/24/20		4/24/2		4/24/20	
LAB SAMPLE ID SAMPLE TYPE		L1508648 Indoor			L1508648-02 L1508648-03 Indoor Air Indoor Air			L1508648 Indoor <i>ا</i>		L150864 Indoor		L1508648-06 Outdoor Air	
Volatile Organic Compounds		muoor	AII		AII	muoon	All		-\11	muoor	All	Outuooi	All
1,1,1-Trichloroethane	NS	0.109	U	0.109	U	0.109	U	0.109	U	0.109	U	0.276	U
1,1,2,2-Tetrachloroethane	NS	0.137	U	0.137	U	0.137	U	0.137	U	0.137	U	0.347	U
1,1,2-Trichloroethane	NS	0.109	U	0.109	U	0.109	U	0.109	U	0.109	U	0.276	U
1,1-Dichloroethane	NS	0.081	U	0.081	U	0.081	U	0.081	U	0.081	U	0.204	U
1,1-Dichloroethene	NS	0.079	U	0.079	U	0.079	U	0.079	U	0.079	U	0.2	U
1,2,4-Trichlorobenzene	NS	0.371	U	0.371	U	0.371	U	0.371	U	0.371	U	0.935	U
1,2,4-Trimethylbenzene	NS	1.73		0.423		0.162		4.64		0.28		0.261	
1,2-Dibromoethane	NS	0.154	U	0.154	U	0.154	U	0.154	U	0.154	U	0.388	U
1,2-Dichlorobenzene	NS	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.304	U
1,2-Dichloroethane	NS	0.081	U	0.081	U	0.081	U	0.081	U	0.081	U	0.204	U
1,2-Dichloropropane	NS	0.092	U	0.092	U	0.092	U	0.092	U	0.092	U	0.233	U
1,3,5-Trimethylbenzene	NS	0.398		0.098		0.098	U	1.17		0.098	U	0.248	U
1,3-Butadiene	NS	0.155		0.044	U	0.044	U	0.044	U	0.044	U	0.112	U
1,3-Dichlorobenzene	NS	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.304	U
1,4-Dichlorobenzene	NS	0.12	U	0.12	U	0.12	U	0.12	U	0.12	U	0.304	U
1,4-Dioxane	NS	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U	0.908	U
2,2,4-Trimethylpentane	NS	0.934	U	0.934	U	0.934	U	8.41		0.934	U	2.36	U
2-Butanone	NS	10.3		1.47	U	1.47	U	1.47	U	1.47	U	3.72	U
2-Hexanone	NS	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	2.07	U
3-Chloropropene	NS	0.626	U	0.626	U	0.626	U	0.626	U	0.626	U	1.58	U
4-Ethyltoluene	NS	0.413		0.108		0.098	U	1.07		0.098	U	0.248	U
4-Methyl-2-pentanone	NS	2.05	U	2.05	U	2.05	U	2.05	U	2.05	U	5.16	U
Acetone	NS	20.4		12		5.49		6.79		504		9.93	
Benzene	NS	0.45		0.361		0.319	U	1.33		0.361		0.805	U
Benzyl chloride	NS	1.04	U	1.04	U	1.04	U	1.04	U	1.04	U	2.61	U
Bromodichloromethane	NS	0.134	U	0.134	U	0.134	U	0.134	U	0.134	U	0.338	U
Bromoform	NS	0.207	U	0.207	U	0.207	U	0.207	U	0.207	U	0.522	U
Bromomethane	NS	0.078	U	0.078	U	0.078	U	0.078	U	0.078	U	0.196	U
Carbon disulfide	NS	0.623	U	0.623	U	0.623	U	0.623	U	0.623	U	1.57	U
Carbon tetrachloride	NS	0.346		0.327		0.352		0.333		0.359		0.493	
Chlorobenzene	NS	0.092	U	0.092	U	0.092	U	0.092	U	0.092	U	0.233	U
Chloroethane	NS	0.053	U	0.053	U	0.053	U	0.053	U	0.053	U	0.133	U
Chloroform	NS	0.098	U	0.098	U	0.127		0.098	U	0.098	U	0.247	U
Chloromethane	NS	1.26		0.999		0.985		0.95		1.07		1.36	
cis-1,2-Dichloroethene	NS	0.079	<u>U</u>	0.079	U	0.079	U	0.079	U	0.079	U	0.2	U
cis-1,3-Dichloropropene	NS	0.091	U	0.091	U	0.091	U	0.091	U	0.091	U	0.229	U
Cyclohexane	NS	0.747		0.699		0.688	U	0.847		0.688	U	1.74	U
Dibromochloromethane	NS	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U	0.43	U
Dichlorodifluoromethane	NS	1.57		1.57		1.87		1.72		1.37		2.5	U
Ethanol Ethul Acatata	NS	7.18		4.71	U	4.71	U	23.2		25.2		11.9	<u>U</u>
Ethyl Acetate	NS	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	4.54	U
Ethylbenzene	NS	0.743		0.5		0.178		2.79		0.43		0.539	
Freon-113	NS	0.498		0.491		0.475		0.475		38.6		0.966	<u>U</u>
Freon-114	NS	0.078	U	0.349	U	0.349 0.82	U	0.349	U	0.349	U U	0.881	<u>U</u>
Heptane	NS	2.27		0.82	U		U	2.17		0.82	-	2.07	<u> </u>
Hexachlorobutadiene	NS	0.533	U	0.533	U	0.533	U	0.533	U	0.533	U U	1.34	<u> </u>
Isopropanol	NS	1.41		1.23	U	1.23	U	1.23	U	1.23	-	3.1	<u>U</u>
Methyl tert butyl ether	NS	0.072	U	0.072	U	0.072	U	0.072	U	0.072	U	0.182	<u>U</u>
Methylene chloride	60 NG	10.6		41		1.74	U	3.27		1.74	U U	4.38	<u>U</u>
n-Hexane	NS	0.881		2.63		0.705	U	3.09		0.705	0	1.78	U
o-Xylene	NS NS	0.812 2.68		0.5 1.71		0.182 0.56		3.64 9.56		0.304 1.27		0.362	
p/m-Xylene Styrene		0.192		0.085	U	0.085		0.085			U	0.215	U
Tetrachloroethene	NS 30	1.15		0.085	U	0.085	U U	0.085		0.085 2.45	0	0.215	U
Tetrahydrofuran	NS	1.15	U	1.47	U	1.47	U	1.47	U	2.45 1.47	U	3.72	U
Toluene		1.47 4.41	0	7.16	U		U	1.47 17.2	U		U		0
trans-1,2-Dichloroethene	NS NS	4.41 0.079	U	0.079		0.957 0.079	U	0.079	U	4.86 0.079	U	0.81 0.2	
trans-1,2-Dichloropthene trans-1,3-Dichloropropene					U		U U		_		U U		U
	NS F	0.091	U U	0.091	U	0.091	U U	0.091	U	0.091		0.229	<u>U</u>
Trichloroethene	5	0.107	U	0.107	U	0.107	U	0.107	U	0.107	U	0.271	U
Trichlorofluoromethane	NS	1.12		1.11		1.08		1.05		1.21		1.36	
Vinyl bromide	NS	0.874	<u> </u>	0.874	U	0.874	U	0.874	U	0.874	<u>U</u>	2.21	<u>U</u>
Vinyl chloride	NS	0.051	U	0.051	U	0.051	U	0.051	U	0.051	U	0.129	U

Notes:

All Concentrations are ug/m3

1 - Air Guideline Values, NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (applies to indoor/ambient air only)

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL).

U - Not detected at the reported detection limit for the sample.

Shaded text denotes indoor air concentrations exceed NYSDOH AGV

TABLE 4 Historical Indoor Air Analytical Results - VOCs 1 Shore Road, Glenwood Landing, New York

bolden bolden<	LOCATION	NYSDOH	FI	TNESS CENTE	ĒR	١	WAREHOUS	Ε		OFFICE		(COMMERCIAL			HOUSE	
Note of a processing of a set of a	SAMPLE ID	AGV⁺															
L1.1.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0			Aug-05	May-06	Apr-15	Aug-05	May-06	Apr-15	Aug-05	May-06	Apr-15	Aug-05	May-06	Apr-15	Aug-05	May-06	Apr-15
11.12-2 11.12-2 11.12-2 12.0 12.0 13.0 13.0																	
Lipherioantene NS I.I. I.I.I. I.I. I.I.I.I.I.I						1.1 U			-			1.1 U					
Löcks serveterier ISS 0 0												-					
1) bole 1) bole 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0						_						-					
12.4.7.4.1																	
12.4.7.6.6.8.6 14.7.0 5.6.8 6.7.0 5.7.0	,	_															
12.0h0.endommethane NS 15 0 10.0 0 10.0 0 10.0 10.0 0 10.0 0 10.0 10.0																	
12 12 10 10 10 10 <td>· · ·</td> <td></td>	· · ·																
12.Dicorregregame NS 0.92 1 1.08 0.072 1 0.072 1 0.072 1 0.072 1 0.072 1 0.072 0 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0 0.072 0.072 0 0.072	1,2-Dichlorobenzene	NS	1.2 U	8.56 U	0.12 U	1.2 U	1.55 U	0.12 U	1.2 U	1.55 U	0.12 U	1.2 U	1.62 U	0.12 U	1.2 U	1.65 U	0.12 U
13.5 13.5 6.98 0 0 0 0 0 0 </td <td>1,2-Dichloroethane</td> <td>NS</td> <td>0.81 U</td> <td>5.77 U</td> <td>0.081 U</td> <td>0.81 U</td> <td>1.04 U</td> <td>0.081 U</td> <td>0.81 U</td> <td>1.04 U</td> <td>0.081 U</td> <td>0.81 U</td> <td>1.09 U</td> <td>0.081 U</td> <td>0.81 U</td> <td>1.11 U</td> <td>0.081 U</td>	1,2-Dichloroethane	NS	0.81 U	5.77 U	0.081 U	0.81 U	1.04 U	0.081 U	0.81 U	1.04 U	0.081 U	0.81 U	1.09 U	0.081 U	0.81 U	1.11 U	0.081 U
j.s.burnene Ns 0.4. 0 5.7. 0 0.4. 0 0.7.4. 0 0.998 0 0.014 0 0.998 0 0.014 0 0.014 0 0.024 0 0.02 0 0.02 0 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0 0.02 0 0.02 0 0.02 0 0.02 0 0 0 0 <td>1,2-Dichloropropane</td> <td>NS</td> <td>0.92 U</td> <td>6.60 U</td> <td>0.092 U</td> <td>0.92 U</td> <td>1.19 U</td> <td>0.092 U</td> <td>0.92 U</td> <td>1.19 U</td> <td>0.092 U</td> <td>0.92 U</td> <td>1.25 U</td> <td>0.092 U</td> <td>0.92 U</td> <td>1.27 U</td> <td>0.092 U</td>	1,2-Dichloropropane	NS	0.92 U	6.60 U	0.092 U	0.92 U	1.19 U	0.092 U	0.92 U	1.19 U	0.092 U	0.92 U	1.25 U	0.092 U	0.92 U	1.27 U	0.092 U
13 13<	1,3,5-Trimethylbenzene	NS	1.3	6.98 U	0.398	0.98 U	1.26 U	0.098	0.98 U	2.00	0.098 U	0.98 U			7.4		0.098 U
Labeleficies Ns Labeleficies Ns Labeleficies Labeleficies <thlabeleficies< th=""> Labeleficies <thlabel< td=""><td></td><td>NS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.571 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlabel<></thlabeleficies<>		NS								0.571 U							
LADBOARD NS 11.1 6.50 9.74 9.75 1 9.74 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 9.75 1 1 </td <td>,</td> <td></td>	,																
L2.4-Final NS 11 6.6 0 0.94 0.7 1.4 0.05 0 0.94 0.7 1.4 0.75 0.84 0.7 0.84 0.85 0 1.7 0.85 0.85 0.85 0.85 0.85 0.85	_, · _ ·																
Departmen NS 7.4 4.18 0 3.0 9.4 0.756 0 1.27 0.756 0 1.27 0.756 0 1.27 0.756 0 1.27 0.756 0 1.27 0.757 1.33 0.757 1.33 0.757 0.733 0.757 0.737	· · · · · · · · · · · · · · · · · · ·																
betweene NS 0.65 0.62 0.62 0.75 0.67 0.75 0.67 0.75 0.75 0.75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
Echiongenen NS 0 NS NS 0 NS 0 NS NS 0 NS 0 NS 1 NS NS 1 NS 1 NS 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-		_									
LEPhyduone NS 6.58 0 0.74 0 0.75 0																	
Heakery-Jeantanone NS S NS 2.05 U 0.05 U U U U U U U	4-Ethyltoluene																
Network NS S38 20.4 100 12.0 12.0 12.0 12.4 13.0 5.45 6.85 0.82 0.83 0.89 0.82 0.83 0.89 0.82 0.83 0.89 0.85	4-Methyl-2-pentanone			NS	2.05 U	NS								2.05 U	NS	NS	
Bengy chycle NS 9 9 10	Acetone		50			100	21.0		120				33.8		16	29.0	
Bromode/horomethane NS 1.3 U 0.134 U 1.3 U 1.3 U 1.3 U 1.3 U 1.34 U 0.324 U 1.34 U 0.334 U 0.324 U 0.334 U 0.324 U 0.334 <thu< th=""> 0.334 U</thu<>	Benzene	NS	0.83	4.56 U	0.45	1.3	0.823 U	0.361	1.4	0.823 U	0.319 U	0.86	0.862 U	1.33	0.89	7.15	0.361
bicomoder NS 2.1 9 2.1 2.1 1.1 <	Benzyl chloride	NS	NS	9.39 U	1.04 U	NS	1.70 U	1.04 U	NS	1.70 U	1.04 U	NS	1.78 U	1.04 U	NS	1.81 U	1.04 U
anomentane NS 0 0 0 0 0 0 1 1 0 0 0	Bromodichloromethane				0.134 U												
Carbon displicit NS 1 0 0 0 0	Bromoform																
Carbon terxenchonde NS 1.3 U 6.80 9.2 U 6.51 0.92 U 6.51 0.92 U 6.51 0.92 U 6.51 0.92 U 0.53 U 0.92 U 0.53 U 0.92 U 1.3 U 1.61 U 0.92 U 1.3 U 1.02 U 0.92 U 1.3 U 1.03 U 0.92 U 0.93 U 0.93 </td <td></td>																	
Chorobenene NS 0.52 U 6.51 U 0.92 U 1.18 U 0.052 U 1.23 U 0.92 U 1.25 U 0.92 U 1.25 U 0.92 U 1.25 U 0.053 U 0.073 U 0.073																	
Chiomedhane NS 0.53 U 0.53 U 0.53 U 0.97 U 0.83 U 0.957 U 0.058 U 0.058 U 0.058 U 0.058 U 0.058 U 0.058 U 0.057 U 0.058 U 0.057																	
Chordorm NS 0.98 0 6.88 0 0.98 0 0.98 0 1.24 0 0.97 0 0.98 0 0.98 0 1.24 0 0.998 0 0.998 0 0.998 0 0.998 0 0.998 0 0.998 0 0.998 0 0.098 0 0.098 0 0.098 0 0.098 0 0.098 0 0.098 0 0.098 0 0.098 0 0.098 0 0.099 0 0.076 0 0.071																	
Chiromethane NS 2.1 3.9.1 V 2.62 1.0.4 0.706 0 0.985 1.1 0.708 0 0.733 0 0.752 V 1.753 V 0.753 V 0.753 </td <td></td>																	
cish2-bolchorogenee NS 0.79 U 7.33 U 0.79 U 1.36 U 0.79 U 1.43 U 0.79 U 0.78 U 0																	
Cyclohexane NS 0.69 U 0.49 U 0.69 0.69 U 0.689 U 0.69 U 0.933 U 0.847 0.69 U 0.688 U 0.690 U 0.687 U 0.373 U 0.847 U 0.349 U NS NS U 0.249 U 0.249 U <td>cis-1,2-Dichloroethene</td> <td></td>	cis-1,2-Dichloroethene																
Dispronchloromethane NS 1.7 U 1.17 U 1.18 U </td <td>cis-1,3-Dichloropropene</td> <td>NS</td> <td>0.91 U</td> <td>6.42 U</td> <td>0.091 U</td> <td>0.91 U</td> <td>1.16 U</td> <td>0.091 U</td> <td>0.91 U</td> <td>1.16 U</td> <td>0.091 U</td> <td>0.91 U</td> <td>1.21 U</td> <td>0.091 U</td> <td>0.91 U</td> <td>1.24 U</td> <td>0.091 U</td>	cis-1,3-Dichloropropene	NS	0.91 U	6.42 U	0.091 U	0.91 U	1.16 U	0.091 U	0.91 U	1.16 U	0.091 U	0.91 U	1.21 U	0.091 U	0.91 U	1.24 U	0.091 U
Dicklorodifluoromethane NS 2.5 0 9.39 0 1.57 1.3 1.70 0 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 <	Cyclohexane	NS	0.69 U	4.93 U	0.747	0.86	0.890 U	0.699	0.69	0.890 U	0.688 U	0.69 U	0.933 U	0.847	0.69 U	0.949 U	0.688 U
Ethanol NS NS 7.18 NS NS 4.71 U NS 0.87 0.87 0.77 U NS 0.741 U NS 0.741 U NS 0.77 U NS 0.743 U NS 0.743 U NS 0.741 U NS 0.475 NS 0.421 NS 0.421	Dibromochloromethane	NS															
EthylAcetate NS S.21 U 1.8 U N.S 0.941 U 1.8 U N.S 0.941 U 0.775 0.43 U N.S N.S 0.441 N.S N.S 0.449 U N.S 0.441 U 0.425 U 0.453 U 0.533 U 0.10 0.533 U 0.10 0.533 U 0.10 0.533 U 0.12 U 0.562 U 0.432 U 0.533 U 0.12 U 0.662 U 0.72 U 1.24 U 0.662 U 0.72 U 1.24 U 0.662 U 0.72 <																	
Ethylbenzene NS 2.3 6.14 U 0.743 2.3 1.77 0.5 2.7 1.11 U 0.178 2.0 1.16 U 2.79 96 7.95 0.43 Freon-113 NS NS NS 0.478 NS NS 0.475 NS 0.43 U NS NS 0.439 U NS NS 0.439 U NS NS 0.430 U NS 0.43 U 0.42 U 0.534 U 0.514 U 0.524 U 0.534 U 0.513 U 1.23 U			_														
Freen-113 NS NS NS 0.498 NS NS 0.491 NS NS 0.475 NS <td>· · ·</td> <td></td>	· · ·																
Freen-114 NS NS NS 0.778 U 2.77 U 2.27 1.8 1.04 U 0.82 U 1.04 U 0.82 U 1.09 U 2.17 1.8 1.17 0.82 U Hexachlorobutadiene NS 1.2 U 1.06 U 0.533 U 1.92 U 0.533 U 2.1 U 2.01 U 2.01 U 2.01 U 2.01 U 2.01 U 0.0622 U 1.23 U 0.621 U 2.13 U 0.533 U 2.1 U 0.521 U 0.522 U 1.23 U 0.622 U 1.23 U 0.622 U 1.23 U 0.621 1.23 U 0.622 U 1.25 U 3.07 U 1.74 U 0.662 U 1.06 1.07 1.14 U 0.762 U 1.8 U 0.944 U 0.72 U 1.8 U 0.072 U 1.8 U	•																
Heptane NS 1.5 5.77 0 2.27 1.8 1.04 0 0.2 1.04 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.82 0 0.83 0 0.10 0 0.533 0 0.82 0 0.82 0 0.82 0 0.83 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.533 0 0.622 0 0.622 0 0.622 0 0.622 0 0.662 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0																	
Hexachlorobutadiene NS 2.1 U 1.0.6 U 0.533 U 1.1 1.2 U 0.533 U 1.2 U 0.533 U 1.2 U 0.533 U 1.2 U 0.633 U 1.2 U 0.662 U 1.23 U 0.661 U 0.533 U 0.662 U 1.23 U 0.651 U 0.533 U 0.662 U 0.651 U 0.533 U 0.661 U 0.651 U 0.651 U 0.662 U 0.662 U 0.661 U 0.651 U 0.662 U 0.707 U 0.707 U 0.707 U 1.71 0.707 U 0.707 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
Image: separation of the separation	Hexachlorobutadiene																
Methyl tert butyl ether NS 1.8 U 5.12 U 0.072 U 1.8 U 0.072 U 1.71 U 1.71 U 0.070 U 1.71 0.56 5.6 3.09 U 0.38 U 1.07 0.56 5.6 3.09 0.55 U 1.63 U 0.305 U 1.63 U 0.305 U 0.305 U 0.305 U 0.	Isopropanol																
n-Hexane NS 1.2 5.02 0 0.81 3.3 0.907 0 2.63 2.8 0.907 0 0.75 0 1.7 0.950 0 3.09 1.2 7.51 0.705 0 o-Xylene NS 2.6 6.14 0 0.812 2.6 2.21 0.5 3.2 1.11 0 0.82 2.0 2.21 3.64 65 12.4 0.304 op/m-Xylene NS 7.4 6.14 0 2.68 7.4 3.97 1.71 8.7 1.77 0.56 5.6 3.09 9.56 27.0 16.3 0 1.2 7.51 0.304 0.304 p/m-Xylene NS 6 6.05 0 0.192 2.6 1.09 0 0.85 0 0.44 1.14 0 0.85 0 1.6 0 0.85 0 0.85 0 0.85 0 0.16 1.14 0 0.85 0 0.85 0 0.85 0 0.85 0 0.85 0 0.85	Methyl tert butyl ether	NS				1.8 U										0.984 U	
o-Xylene NS 2.6 6.14 0 0.812 2.6 2.21 0.5 3.2 1.11 0 0.82 2.0 2.21 3.64 65 12.4 0.304 p/m-Xylene NS 7.4 6.14 0 2.68 7.4 3.97 1.71 8.7 1.77 0.56 5.6 3.09 9.56 27.0 16.3 0 1.24 0.304 Styrene NS 6 6.05 0 0.192 2.6 1.09 0 0.85 0 6.4 1.14 0 0.85 0 1.63 0 1.24 0.304 Tetrachloroethene 30 55 28.3 1.15 9.5 6.90 0.136 0 7.5 4.83 0.16 1.4 0 0.85 0 1.6 0 0.75 0 1.47 0 0.55 0 1.47 0 0.55 0 1.47 0 0.57 1.43 0 0.75 0 1.47 0 0.75 0 1.47 0 0.75 0	Methylene chloride	60	6.3	6.60 U	10.6	110	1.19 U	41	170	1.19 U	1.74 U	800	1.25 U	3.27	1.7 U	1.27 U	1.74 U
p/m-Xylene NS 7.4 6.14 U 2.68 7.4 3.97 1.71 8.7 1.77 0.56 5.6 3.09 9.56 270 16.3 U 1.27 Styrene NS 6 6.05 U 0.192 2.6 1.09 U 0.085 U 0.085 U 6.4 1.14 U 0.085 U 1.16 U 0.085 U 0.16 1.14 U 0.085 U 1.16 U 0.085 U 0.16 1.14 U 0.085 U 1.16 U 0.085 U 0.16 1.14 U 0.085 U 1.07 0.16 1.47 U 0.085 U 0.085 <td>n-Hexane</td> <td>NS</td> <td></td>	n-Hexane	NS															
NS 6 6.05 0 0.192 2.6 1.09 0 0.085 0 0.08	o-Xylene																
And the problem 30 55 28.3 1.15 9.5 6.90 0.136 7.5 4.83 0.136 14 6.90 0.136 11 10.4 2.45 Tetrahydrofuran NS 15 U 4.18 U 1.47 U 1.5 U 0.756 U 1.47 U 1.5 U 0.757 U 1.47 U 1.5 U 0.757 U 1.47 U 0.757 U 1.47 U 0.757 U 1.67 U 0.957 34 0.907 U 0.79 U 1.66 U 0.979 U 1.67 U 0.79 U 1.66 U 0.979 U 1.67 <td></td>																	
Tetrahydrofuran NS 15 U 4.18 U 1.47 U 1.47 U 1.5 U 0.756 U 0.756 U 0.756 U 0.756 U 0.756 U 0.756 U 0.792 U 1.47 U 0.805 U 0.805 U 0.792 U 1.47 U 0.805 U <th0< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<>																	
NS 27 11.1 4.41 31 5.75 7.16 26 8.43 0.957 34 6.90 17.2 9.0 38.3 4.86 trans-1,2-Dichloroethene NS 0.79 0 5.58 0 0.079 0 1.01 0 0.79 0 1.07 0.079 0 0.79 0 1.07 7 0.079 0 0.79																	
trans-1,2-Dichloroethene NS 0.79 U 5.58 U 0.079 U 1.01 U 0.79 U 1.06 U 0.079 U 0.79 U 1.07 V 0.079 U trans-1,3-Dichloropropene NS 0.91 U 6.42 U 0.91 U																	
trans-1,3-Dichloropropene NS 0.91 U 6.42 U 0.091 U 0.91 U																	
Trichloroethene 5 1.1 U 7.63 U 0.107 U 1.38 U 0.107 U 1.44 U 0.107 U 1.47 U 0.107 U 0.107 U 1.44 U 0.107 U 0.10																	
Trichlorofluoromethane NS 1.6 10.6 U 1.12 6.7 1.92 U 1.92 U 1.08 2.2 2.01 U 1.05 2.6 2.04 U 1.21 Vinyl bromide NS NS 6.23 U 0.874 U NS 1.13 U 0.874 U NS 1.18 U 0.874 U 0.874 <t< td=""><td>Trichloroethene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Trichloroethene																
Vinyl bromide NS NS 6.23 U 0.874 U NS 1.13 U 0.874 U NS 1.13 U 0.874 U NS 1.13 U 0.874 U NS 1.18 U 0.874 U NS 1.20 U 0.874 U	Trichlorofluoromethane																
	Vinyl bromide																
, ,	Vinyl chloride																

Notes:

All Concentrations are ug/m3

1 - Air Guideline Values, NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (applies to indoor/ambient air only)

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL).

U - Not detected at the reported detection limit for the sample.

Shaded text denotes indoor air concentrations exceed NYSDOH AGV

APPENDIX A

IC/EC Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	No.	130034	Site	Details		Box 1	
Site	Name	Penetrex Process	ing Company				
City/ Coun	Town: hty: Na	s: 1 Shore Road Glenwood Landing ssau e: 1.0	Zip Code: 11547				
Repo	orting F	Period: March 09, 2	015 to January 01, 2	2016			
						YES	NO
1.	ls the ir	nformation above co	rrect?			×	
I	lf NO, i	nclude handwritten	above or on a separ	ate sheet.			
			property been sold, this Reporting Peri		l, or undergone a		Ø
	 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 						×
	4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?						×
			uestions 2 thru 4, been previously su				
5.	is the s	site currently underg	oing development?				网
				6		Box 2	
						YES	NO
			sistent with the use(s mmercial, and Indus			×	
7	Are all	ICs/ECs in place ar	nd functioning as de	signed?		×	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Co	orrectiv	ve Measures Work I	Plan must be submit	ted along with this	form to address the	se issues.	
Sign	Signature of Owner, Remedial Party or Designated Representative Date						

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

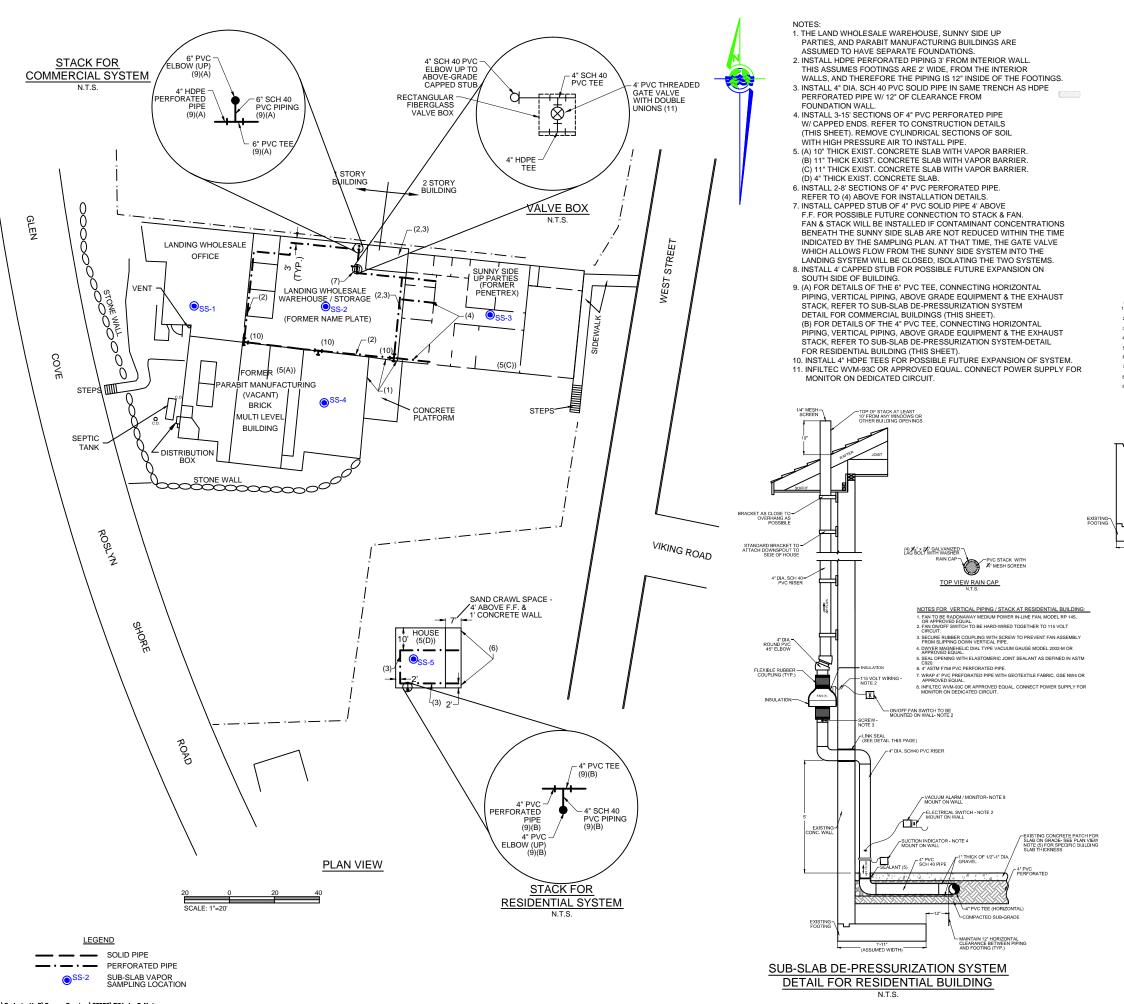
If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

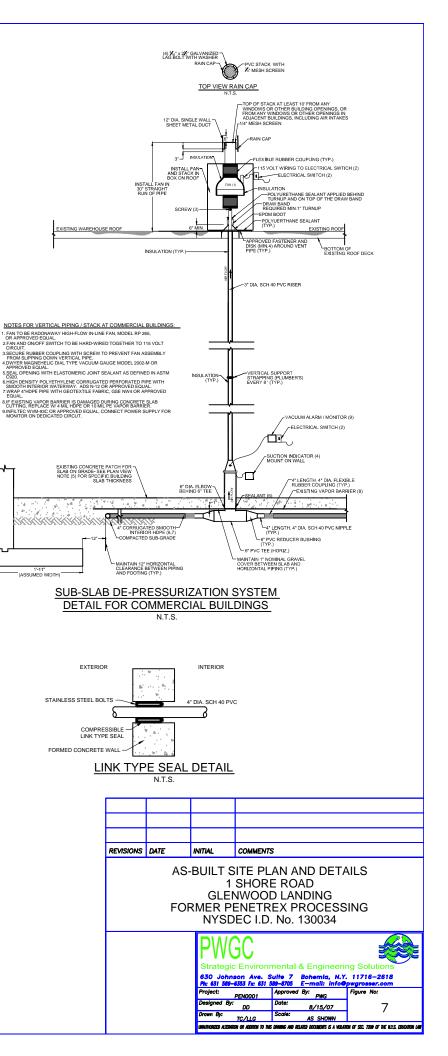
- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Box 3 SITE NO. 130034 of Institutional Controls <u>Owner</u> <u>G lenwood</u> Real ty LLC <u>Institutional Control</u> <u>Clo</u> Lawrence Weinberger Ground West **Description of Institutional Controls** Parcel Ground Water Use Restriction 20-K-10 Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan The Institutional Controls (ICs) for the site consist of compliance with the Environmental Easement and Site Management Plan (SMP); Operation and maintenance (O&M) of the Engineering Controls per the O&M Plan in the SMP; Inspection of the Environmental Controls per the SMP; Monitoring of groundwater, soil vapor, and other environmental/public health monitoring per the SMP; and Reporting per the SMP. ICs at the site also include the following restrictions: Only Restricted Residential Use is allowed unless there is additional remediation and amendment of the EE; Use of groundwater underlying the property without treatment is prohibited; The potential for vapor impacts must be evaluated prior to future building in area noted on Figure 2 in SMP; Vegetable gardens and farming on the property are prohibited; and certification statements are to be submitted in accordance with the SMP. Glenwood Realty LLC C/o Lawrence Weinberger **O&M Plan** 20-K-11 IC/EC Plan Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan The Institutional Controls (ICs) for the site consist of compliance with the Environmental Easement and Site Management Plan (SMP); Operation and maintenance (O&M) of the Engineering Controls per the O&M Plan in the SMP: Inspection of the Environmental Controls per the SMP; Monitoring of groundwater, soil vapor, and other environmental/public health monitoring per the SMP; and Reporting per the SMP. ICs at the site also include the following restrictions: Only Restricted Residential Use is allowed unless there is additional remediation and amendment of the EE; Use of groundwater underlying the property without treatment is prohibited: The potential for vapor impacts must be evaluated prior to future building in area noted on Figure 2 in SMP; Vegetable gardens and farming on the property are prohibited; and certification statements are to be submitted in accordance with the SMP. Glenwood Realty LLC Clo Lawrence Weinberger Ground Water Use Restriction 20-K-12 Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan The Institutional Controls (ICs) for the site consist of compliance with the Environmental Easement and Site Management Plan (SMP); Operation and maintenance (O&M) of the Engineering Controls per the O&M Plan in the SMP; Inspection of the Environmental Controls per the SMP; Monitoring of groundwater, soil vapor, and other environmental/public health monitoring per the SMP; and Reporting per the SMP. ICs at the site also include the following restrictions: Only Restricted Residential Use is allowed unless there is additional remediation and amendment of the EE; Use of groundwater underlying the property without treatment is prohibited; The potential for vapor impacts must be evaluated prior to future building in area noted on Figure 2

in SMP; Vegetable gardens and submitted in accordance with th	farming on the property are prohibited; and certification s e SMP.	statements are to be						
Description of Engir	pooring Controls	Box 4						
Description of Engir								
Parcel	Engineering Control							
20-K-10	Groundwater Treatment System Vapor Mitigation							
	Cover System							
addressing breaches in the cover Plan have been installed in two	Engineering Controls consist of a soil cover system with an excavation work plan containing procedures for addressing breaches in the cover system; Sub-slab depressurization systems (SSDSs) operated per the O&M Plan have been installed in two site buildings; and In-Situ Chemical Treatment via the existing on-site system can be completed as needed based on semi-annual groundwater monitoring data.							
20-K-11	Groundwater Treatment System Vapor Mitigation Cover System							
addressing breaches in the cov Plan have been installed in two	a soil cover system with an excavation work plan contain er system; Sub-slab depressurization systems (SSDSs) of site buildings; and In-Situ Chemical Treatment via the ex I on semi-annual groundwater monitoring data.	operated per the O&M						
20-K-12	Groundwater Treatment System Vapor Mitigation							
	Cover System							
addressing breaches in the cov Plan have been installed in two	f a soil cover system with an excavation work plan contair rer system; Sub-slab depressurization systems (SSDSs) site buildings; and In-Situ Chemical Treatment via the ex d on semi-annual groundwater monitoring data.	operated per the O&M						

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	X =
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X 🗆
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remodial Party or Designated Representative
	Signature of Owner, Remedial Party or Designated Representative Date


IC CERTIFICATIONS SITE NO. 130034	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATE I certify that all information and statements in Boxes 1,2, and 3 are true. I unders statement made herein is punishable as a Class "A" misdemeanor, pursuant to S Penal Law.	tand that a false
i <u>David Weinberger</u> at <u>99 Mineola Ave</u> , <u>Roskyn H</u> print name print business address	kights, NY 115 77
am certifying as Owner - Manager (Ow	/ner or Remedial Party)
J	
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Date Rendering Certification	<u>2/23/16</u>


. . . .

IC/EC CERTIFICATIONS	
Signature	Box 7
I certify that all information in Boxes 4 and 5 are true. I understand that a false statemen punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	t made herein is
I David Weinberger at 99 Mineola Are, Roslyn Heights, print name print business address	NY 11577.
am certifying as a for the <u>Owner - Manager</u> . (Owner or Remedial Pa	arty)
	2/23/16
Signature of , for the Owner or Remedial Party,StampDateRendering Certification(Required for PE)	ate

APPENDIX B

SSDS As-Built Drawings

APPENDIX C

Monitoring Well Sampling Logs

					Impling Log				
Well Designation	on:			1W-1		Sampled By:			KC
Site Address:				enwood Landi	-	Project Manag	ger:	Johr	n Eichler
Project Name:		Forr	ner Penetre>	Processing Face Processing	acility	Project Numb	er:	PE	N1101
Reference Elev				M	Well Use:			Monitoring	g/Observatior
Depth to Produ				NP	Product Elev				NP
Depth to Wate				8.97		er Elevation (ft):		#\	/ALUE!
Depth to Botto				7.08	Bottom Eleva	.,			NM
Height of Wate				MM	Well Diamet				4
Standing Wate	er Volume (ga	al):		VM		Purge Volume (gal):		N/A
Sample Date:				8/2015	Begin Purge				905
Sample Time:				9:20	Complete Pu				9:17
Purge Method:	:		Low Flow	/ - Grundfos	Sample Met	hod:		Low Flow	v - Grundfos
Purge Rate (gp	om):		C).17	Purge Time ((min):			12
Actual Purge \	Volume (gal):			2	Casing Volu	mes Removed:			N/A
Sample Appea	arance:		С	lear	Odors Obser	rved:		Ν	lone
Analytical Lab	oratory:		Alpha /	Analytical	Notes:				
Date Shipped:	-		-	9/2015					
Headsnace (n	nm)			/ 3					
Analyses Requ	-			7.3					
Analyses Requ	-				ator Paramete	rc			
Analyses Requ	uested:	Iemp		Field Indica	ator Paramete				
Headspace (p Analyses Requ NYTCL-8260 Reading	-	Temp. (°C)	рН	Field Indica Turbidity	ORP	Cond.	DO ma/L		
Analyses Requ	uested:	Temp. (°C) 14.54		Field Indica			DO mg/L 4.20		
Analyses Requ NYTCL-8260 Reading	Time	(°C)	рН	Field Indica Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time	(°C) 14.54	рН 6.29	Field Indica Turbidity NTU 10.5	ORP mV 190	Cond. (mS/cm) 1.600	mg/L 4.20		
Analyses Requ NYTCL-8260 Reading 1 2	Time 9:05 9:08	(°C) 14.54 15.25	рН 6.29 6.26	Field Indica Turbidity NTU 10.5 3.3	ORP mV 190 187	Cond. (mS/cm) 1.600 2.490	mg/L 4.20 3.59		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 9:05 9:08 9:11	(°C) 14.54 15.25 15.31	рН 6.29 6.26 6.25	Field Indica Turbidity NTU 10.5 3.3 2.0	ORP mV 190 187 186	Cond. (mS/cm) 1.600 2.490 2.54	mg/L 4.20 3.59 3.59		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 9:05 9:08 9:11 9:14	(°C) 14.54 15.25 15.31 15.34	рН 6.29 6.26 6.25 6.26	Field Indica Turbidity NTU 10.5 3.3 2.0 1.1	ORP mV 190 187 186 186	Cond. (mS/cm) 1.600 2.490 2.54 2.56	mg/L 4.20 3.59 3.59 3.63		

				Well	Sampling Log				
Well Designation	on:			MW-2		Sampled By:			KC
Site Address:				lenwood Lan	-	Project Manag			n Eichler
Project Name:		For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	N1101
					I				1
Reference Elev				M	Well Use:			-	/Observation
Depth to Produ				NP	Product Ele				NP
Depth to Wate				1.44		er Elevation (ft):			ALUE!
Depth to Botto				3.15	Bottom Elev				NM
Height of Wate Standing Wate				NM NM	Well Diame	eter (in): Purge Volume (g			4 N/A
Sample Date:	r volume (ga	ai):		8/2015	Begin Purge		jai):		6:00
-									
Sample Time:				:15	Complete F				6:12
Purge Method:				- Grundfos	Sample Me				v - Grundfos
Purge Rate (gp				.13	Purge Time				12
Actual Purge V	-			1.5		umes Removed:			N/A
Sample Appea	arance:		С	lear	Odors Obse			Ν	lone
Analytical Lab	oratory:		Alpha A	Analytical	Notes:	MS/MSD colle	cted		
Date Shipped:			10/2	9/2015					
Headspace (p	nm)			0					
neauspace (p	'ping								
Analyses Requ	• •								
Analyses Requ	• •			Field Indi	cator Parame	ators			
Analyses Requ	iested:	Iemp	04		cator Parame			1	
Analyses Requ	• •	Temp.	рН	Turbidity	ORP	Cond.	DO ma/L		
Analyses Requ	iested:	(°C)	-		ORP mV		DO mg/L 2.75		
Analyses Requ NYTCL-8260 Reading	Time		рН 6.41 6.1	Turbidity NTU	ORP	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time	(°C) 16.76	6.41	Turbidity NTU 3.78	ORP mV 131	Cond. (mS/cm) 0.185	mg/L 2.75		
Analyses Requined NYTCL-8260 Reading 1 2	Time 6:00 6:03	(°C) 16.76 17.47	6.41 6.1	Turbidity NTU 3.78 3.08	ORP mV 131 143	Cond. (mS/cm) 0.185 0.18	mg/L 2.75 0.86		
Analyses Requining	Time 6:00 6:03 6:06	(°C) 16.76 17.47 18.51	6.41 6.1 6.08	Turbidity NTU 3.78 3.08 3.7	ORP mV 131 143 143	Cond. (mS/cm) 0.185 0.18 0.181	mg/L 2.75 0.86 0.83		
Analyses Requined and a second	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Required Analyses Req	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Required Analyses Req	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Required Analyses Req	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Required Analyses Req	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Requined and a second	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Requined and a second	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Requined and a second	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Requined and a second	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		
Analyses Required Analyses Req	Time 6:00 6:03 6:06 6:09	(°C) 16.76 17.47 18.51 19.31	6.41 6.1 6.08 6.08	Turbidity NTU 3.78 3.08 3.7 3.94	ORP mV 131 143 143 143	Cond. (mS/cm) 0.185 0.18 0.181 0.183	mg/L 2.75 0.86 0.83 0.85		

					Sampling Log				
Well Designation	on:			MW-3		Sampled By:			
Site Address:				lenwood Lan		Project Manag	-		n Eichler
Project Name:		For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	N1101
Reference Elev				M	Well Use:			Monitoring	g/Observatior
Depth to Produ				NP	Product Elev				NP
Depth to Wate				9.72		er Elevation (ft):		#\	/ALUE!
Depth to Botto				9.23	Bottom Elev				NM
Height of Wate				MM	Well Diame		N.		4
Standing Wate	er volume (ga	II):		NM 8/2015		Purge Volume (jai):		N/A 6:28
Sample Date:					Begin Purge				
Sample Time:				:40	Complete P				6:37
Purge Method:				- Grundfos	Sample Me			Low Flow	w - Grundfos
Purge Rate (gp			C	0.17	Purge Time	(min):			9
Actual Purge \				1.5		imes Removed:			N/A
Sample Appea	arance:		С	lear	Odors Obse			1	None
Analytical Lab	oratory:		Alpha A	Analytical	Notes:	DUP001 collec	ted		
Date Shipped:			10/2	9/2015					
Headspace (p	opm)			0					
Headspace (p Analyses Requ NYTCL-8260	• •			0					
Analyses Requ	• •				ester Parame	tors			
Analyses Requ	uested:	Iemn	08	Field Indi	cator Parame				
Analyses Requ	• •	Temp. (°C)	рН		cator Parame ORP mV	ters Cond. (mS/cm)	DO mg/L		
Analyses Requ	uested:		рН 6.36	Field Indi Turbidity	ORP	Cond.			
Analyses Requ	Time	(°C) 18.83 18.8	-	Field Indi Turbidity NTU 32.1 13.2	ORP mV 148 91	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2	Time 6:28 6:31	(°C) 18.83 18.8	6.36 6.6	Field Indi Turbidity NTU 32.1 13.2	ORP mV 148 91	Cond. (mS/cm) 1.04 2.31	mg/L 1.57 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 6:28 6:31 6:34	(°C) 18.83 18.8 19.22	6.36 6.6 6.6	Field Indi Turbidity NTU 32.1 13.2 12.5	ORP mV 148 91 79	Cond. (mS/cm) 1.04 2.31 2.3	mg/L 1.57 0 0		

					Sampling Log				
Well Designati	on:			MW-4		Sampled By:			KC
Site Address:				lenwood Lan		Project Manag			n Eichler
Project Name:	:	For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	N1101
Reference Elev	vation (ft):		Ν	IM	Well Use:			Monitoring	g/Observation
Depth to Produ				NP	Product Elev	vation (ft):			NP
Depth to Wate				0.07		er Elevation (ft):		#\	/ALUE!
Depth to Botto				3.91	Bottom Elev				NM
Height of Wate):	Ν	IM	Well Diame				4
Standing Wate			Ν	IM		Purge Volume (g	jal):		N/A
Sample Date:	_		10/2	8/2015	Begin Purge	e Time:	-		10:15
Sample Time:			10):45	Complete P	urae Time:			10:42
Purge Method	:			- Grundfos	Sample Met				v - Grundfos
Purge Rate (gr				.11	Purge Time				27
Actual Purge \			0	3	-	imes Removed:			N/A
Sample Appea		•	Slight	y turbid	Odors Obse				None
Analytical Lab				Analytical	Notes:				
Date Shipped:	5		-	9/2015					
Headspace (p	-			0					
• •	uested:								
	Jested:			Field Indi	cator Parame	ters			
Analyses Requ		Iemp	рН		cator Parame				
	Jested: Time	Temp.	рН	Turbidity	ORP	Cond.	DO ma/L		
NYTCL-8260	Time	(°C)		Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
NYTCL-8260 Reading			рН 6.88 6.89	Turbidity	ORP	Cond.			
Reading	Time 10:15	(°C) 19.07	6.88	Turbidity NTU 146	ORP mV -101	Cond. (mS/cm) 0.575	mg/L 3.28		
Reading 1 2	Time 10:15 10:18	(°C) 19.07 18.96	6.88 6.89	Turbidity NTU 146 94.5	ORP mV -101 -121	Cond. (mS/cm) 0.575 0.546	mg/L 3.28 0.06		
Reading 1 2 3	Time 10:15 10:18 10:21	(°C) 19.07 18.96 18.87	6.88 6.89 6.91	Turbidity NTU 146 94.5 82	ORP mV -101 -121 -124	Cond. (mS/cm) 0.575 0.546 0.541	mg/L 3.28 0.06 0.1		
Reading 1 2 3 4	Time 10:15 10:18 10:21 10:24	(°C) 19.07 18.96 18.87 20.68	6.88 6.89 6.91 6.9	Turbidity NTU 146 94.5 82 82.1	ORP mV -101 -121 -124 -127	Cond. (mS/cm) 0.575 0.546 0.541 0.53	mg/L 3.28 0.06 0.1 0		
Reading 1 2 3 4 5 6 7	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7	ORP mV -101 -121 -124 -127 -127 -127 -129 -136	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538	mg/L 3.28 0.06 0.1 0 0		
Reading 1 2 3 4 5 6 7 8	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.538 0.541	mg/L 3.28 0.06 0.1 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8 9	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36 10:39	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15 21.24	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3 52.6	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138 -141	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.541 0.547	mg/L 3.28 0.06 0.1 0 0 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.538 0.541	mg/L 3.28 0.06 0.1 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8 9	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36 10:39	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15 21.24	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3 52.6	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138 -141	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.541 0.547	mg/L 3.28 0.06 0.1 0 0 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8 9	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36 10:39	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15 21.24	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3 52.6	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138 -141	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.541 0.547	mg/L 3.28 0.06 0.1 0 0 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8 9	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36 10:39	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15 21.24	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3 52.6	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138 -141	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.541 0.547	mg/L 3.28 0.06 0.1 0 0 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8 9	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36 10:39	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15 21.24	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3 52.6	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138 -141	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.541 0.547	mg/L 3.28 0.06 0.1 0 0 0 0 0 0 0 0		
Reading 1 2 3 4 5 6 7 8 9	Time 10:15 10:18 10:21 10:24 10:27 10:30 10:33 10:36 10:39	(°C) 19.07 18.96 18.87 20.68 21.01 21.02 21.13 21.15 21.24	6.88 6.89 6.91 6.9 6.9 6.9 6.9 6.9 6.9 6.91 6.92	Turbidity NTU 146 94.5 82 82.1 82.8 79.1 63.7 58.3 52.6	ORP mV -101 -121 -124 -127 -127 -127 -129 -136 -138 -141	Cond. (mS/cm) 0.575 0.546 0.541 0.53 0.529 0.53 0.538 0.541 0.547	mg/L 3.28 0.06 0.1 0 0 0 0 0 0 0 0		

					Sampling Log	-			
Well Designation	on:			MW-5		Sampled By:			
Site Address:				ilenwood Lan		Project Manag		Johr	n Eichler
Project Name:		For	mer Penetre	ex Processing	acility Project Number:			PEN1101	
					T				
Reference Elev			١	MM	Well Use:			-	g/Observation
Depth to Produ					Product Ele				NP
Depth to Water						er Elevation (ft):			ALUE!
Depth to Bottor				0.04	Bottom Elev				NM
Height of Wate				MM	Well Diame	• •			4
Standing Wate Sample Date:	r volume (ga	I):	ľ	MM	Begin Purge	Purge Volume (g	jai):		N/A
-									
Sample Time:			Law Flaw	Cruce alfae		Purge Time:			Crunalfaa
Purge Method:				- Grundfos	Sample Me			LOW FION	v - Grundfos
Purge Rate (gp			#D	0/V/0!	Purge Time				
Actual Purge V						umes Removed:			N/A
Sample Appea					Odors Obse				
Analytical Lab	oratory:		Alpha A	Analytical	Notes:	Inacessible; no	ot sampled		
Date Shipped:									
Headspace (p	pm)								
Headspace (p Analyses Requ NYTCL-8260									
Analyses Requ				Field Indi	actor Parama	blor			
Analyses Requ	ested:	Temp	рН		cator Parame		DO		
Analyses Requ		Temp. (°C)	рН	Field Indi Turbidity NTU	cator Parame ORP mV	Cond.	DO mg/L		
Analyses Requ	ested:	Temp. (°C)	рН	Turbidity	ORP		DO mg/L		
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		рН	Turbidity	ORP	Cond.			
Analyses Requ	ested:		pН	Turbidity	ORP	Cond.			

Site Address: 1 Shore Road, Glenwood Landing, NY Proj Project Name: Proj Former Penetrex Processing Facility Proj Project Reference Elevation (ft): NM Well Use: Product Elevation Depth to Product (ft): NP Product Elevation Groundwater Elev Depth to Water (ft): 19.14 Groundwater Elev Bottom Elevation Depth to Bottom (ft): 29.15 Bottom Elevation Well Diameter (in) Standing Water Column (ft): NM Well Diameter (in) Standing Water Volume (gal): NM Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Time: 10:05 Complete Purge T Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes F Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Notes: Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 Time Temp.	oled By: ct Manager: ct Number:	KC John Eichler
Project Name: Former Penetrex Processing Facility Proj Reference Elevation (ft): NM Well Use: Product Elevation Depth to Product (ft): 19.14 Groundwater Elev Bottom Elevation Depth to Bottom (ft): 29.15 Bottom Elevation Groundwater Elev Depth to Bottom (ft): NM Well Diameter (in) Standing Water Volume (gal): NM Calculated Purge Standing Water Volume (gal): 10/28/2015 Begin Purge Time: Complete Purge I Sample Date: 10/28/2015 Begin Purge Time: Complete Purge I Sample Date: 10/29/2015 Begin Purge Time: Casing Volumes R Sample Appearance: Clear Odors Observed: Notes: Analytical Laboratory: Alpha Analytical Notes: Notes: NYTCL-8260 4.8 Analyses Requested: NTU mV (r 1 9:36 15.47 6.54 93.8 17.3 2 2 9:39 16.05 6.63 201 17.5 3 3	-	John Eichler
Reference Elevation (ft): NM Well Use: Depth to Product (ft): NP Product Elevation Depth to Bottom (ft): 19.14 Groundwater Elev Depth to Bottom (ft): 29.15 Bottom Elevation I Height of Water Column (ft): NM Well Diameter (in) Standing Water Volume (gal): NM Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Time: 10:05 Complete Purge Time: Sample Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes F Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Hedd Indicator Parameters Reading Time Temp. PH Turbidity ORP NYTCL-8260 (°C) NTU mV (r 1 9:36 15.47 6.54 93.8 173 </td <td>ct Number:</td> <td></td>	ct Number:	
Depth to Product (ft): NP Product Elevation Depth to Water (ft): 19.14 Groundwater Elevation Depth to Bottom (ft): 29.15 Bottom Elevation Height of Water Column (ft): NM Well Diameter (in) Standing Water Volume (gal): NM Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Time: 10:05 Complete Purge T Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 YTU MV (r 1 9:36 15.47 6.54 93.8 173 175 3 9.42 17.06 6.59 708 178 14 14.8 16.6 513 </td <td></td> <td>PEN1101</td>		PEN1101
Depth to Product (ft): NP Product Elevation Depth to Water (ft): 19.14 Groundwater Elevation Depth to Bottom (ft): 29.15 Bottom Elevation Height of Water Column (ft): NM Well Diameter (in) Standing Water Volume (gal): NM Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Time: 10:05 Complete Purge T Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 YIT MV (r 1 9:36 15.47 6.54 93.8 173 1 2 9:39 16.05 6.63 201 175 3 178 1		Monitoring/Observatior
Depth to Water (ft): 19.14 Groundwater Elevention of the section of t	ft):	NP
Depth to Bottom (ft): 29.15 Bottom Elevation of Well Diameter (in) Height of Water Column (ft): NM Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Date: 10:05 Complete Purge Time: Sample Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Analyses Requested: 10/29/2015 Headspace (ppm) 4.8 Manalyses Requested: (°C) NTU mV (r NYTCL-8260 (°C) NTU mV (r 1 9:36 15.47 6.54 93.8 173 1 2 9:39 16.05 6.63 201 175 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		#VALUE!
Height of Water Column (ft): NM Well Diameter (in) Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Time: 10:05 Complete Purge T Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 Ville QRP (r NYTCL-8260 Time Temp. pH Turbidity ORP (r 1 9:36 15.47 6.54 93.8 173 1 2 9:39 16.05 6.63 201 175 1 3 9:42 17.06 6.59 708 178 1 4 9:45 16.83 6.6 474 181 1		NM
Standing Water Volume (gal): NM Calculated Purge Sample Date: 10/28/2015 Begin Purge Time: Sample Time: 10:05 Complete Purge T Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 Field Indictor Parameters Reading Time Temp. pH Turbidity ORP 1 9:36 15.47 6.54 93.8 173 1 2 9:39 16.05 6.63 201 175 1 3 9:42 17.06 6.59 708 178 1 4 9:45 16.83 6.6 474 181 1 1 5	,	4
Sample Time: 10:05 Complete Purge T Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 Field Indicator Parameters Reading Time Temp. pH Turbidity ORP 1 9:36 15.47 6.54 93.8 173 173 2 9:39 16.05 6.63 201 175 173 173 175 173 173 175 173 175 <td< td=""><td>/olume (gal):</td><td>N/A</td></td<>	/olume (gal):	N/A
Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 YITU ORP (r NTU 1 9:36 15.47 6.54 93.8 173 2 9:39 16.05 6.63 201 175 175 3 9:42 17.06 6.59 708 178 181 5 9:48 16.81 6.6 513 181 166 9:51 182 182 182 182 182 182 182 184 183 184 185 186 185 186 185 186 185 186 185 186 185 186 185 186	_	9:36
Purge Method: Low Flow - Grundfos Sample Method: Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 4.8 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 VITU MV Manalyses Requested: Pield Indicator Parameters Reading Time Temp. (°C) NTU mV 1 9:36 15.47 0.659 708 178 2 9:39 16.05 6.63 3 9:42 17.06 6.59 3 9:42 17.06 6.59 4 9:45 16.83 6.6 4 9:45 16.81 6.6 5 9:48 16.9 6.59 349 7 9:54 16.9 6	ne:	10:03
Purge Rate (gpm): 0.19 Purge Time (min): Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 4.8 NTU VTCL-8260 0 9:36 15.47 6.54 93.8 173 2 9:39 16.05 6.63 201 175 175 3 9:42 17.06 6.59 708 178 181 5 9:48 16.81 6.6 513 181 166 6 9:51 16.96 6.6 557 182 173 181 1		Low Flow - Grundfos
Actual Purge Volume (gal): 5 Casing Volumes R Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Notes: Headspace (ppm) 4.8 Analyses Requested: NYTCL-8260 NYTCL-8260 Field Indicator Parameters Field Indicator Parameters Reading Time Temp. pH Turbidity ORP (°C) NTU mV (r 1 9:36 15.47 6.54 93.8 173 2 9:39 16.05 6.63 201 175 3 9:42 17.06 6.59 708 178 4 9:45 16.83 6.6 474 181 5 9:48 16.96 6.6 557 182 7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 <td< td=""><td></td><td>27</td></td<>		27
Sample Appearance: Clear Odors Observed: Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: 4.8 Keading Time NYTCL-8260 Time Temp. pH Turbidity ORP (°C) NTU mV (r 1 9:36 15.47 6.54 93.8 17.3 2 9:39 16.05 6.63 201 175 17.3 3 9:42 17.06 6.59 708 178 181 5 9:48 16.81 6.6 513 181 16.6 4 9:45 16.96 6.6 557 182 182 7 9:54 16.9 6.59 349 184 184 8 9:57 17.26 6.58 162 185 186	moved	N/A
Analytical Laboratory: Alpha Analytical Notes: Date Shipped: 10/29/2015 4.8 4.8 Headspace (ppm) 4.8 4.8 4.8 Analyses Requested: NYTCL-8260 Field Indicator Parameters Reading Time Temp. pH Turbidity ORP 0 1 9:36 15.47 6.54 93.8 173 0 2 9:39 16.05 6.63 201 175 0 3 9:42 17.06 6.59 708 178 0 4 9:45 16.83 6.6 474 181 0 5 9:48 16.96 6.6 557 182 0 7 9:54 16.9 6.59 349 184 0 8 9:57 17.26 6.58 162 185 0 9 10:00 17.33 6.6 98.5 186 0	inovea.	None
Date Shipped: 10/29/2015 Headspace (ppm) 4.8 Analyses Requested: 4.8 NYTCL-8260 Field Indicator Parameters Reading Time Temp. pH Turbidity ORP of the second seco		
4.8 Analyses Requested: NYTCL-8260 Field Indicator Parameters Field Indicator Parameters Reading Time Temp. pH Turbidity ORP off 1 9:36 15.47 6.54 93.8 173 0 2 9:39 16.05 6.63 201 175 0 3 9:42 17.06 6.59 708 178 0 4 9:45 16.83 6.6 474 181 0 5 9:48 16.81 6.6 557 182 0 7 9:54 16.9 6.59 349 184 0 8 9:57 17.26 6.58 162 185 0 9 10:00 17.33 6.6 98.5 186 0		
Field Indicator Parameters Reading Time Temp. (°C) pH Turbidity ORP org 1 9:36 15.47 6.54 93.8 173 0 2 9:39 16.05 6.63 201 175 0 3 9:42 17.06 6.59 708 178 0 4 9:45 16.83 6.6 474 181 0 5 9:48 16.81 6.6 513 181 0 6 9:51 16.96 6.59 349 184 0 7 9:54 16.9 6.59 349 184 0 8 9:57 17.26 6.58 162 185 0 9 10:00 17.33 6.6 98.5 186 0		
NYTCL-8260 Field Indicator Parameters Reading Time Temp. (°C) pH Turbidity ORP of 1 9:36 15.47 6.54 93.8 173 of 2 9:39 16.05 6.63 201 175 of 3 9:42 17.06 6.59 708 178 of 4 9:45 16.83 6.6 474 181 of 5 9:48 16.81 6.6 513 181 of 6 9:51 16.96 6.59 349 184 of 7 9:54 16.9 6.59 349 184 of 8 9:57 17.26 6.58 162 185 of 9 10:00 17.33 6.6 98.5 186 of		
Reading Time Temp. (°C) pH Turbidity NTU ORP (r 1 9:36 15.47 6.54 93.8 173 (r 2 9:39 16.05 6.63 201 175 (r 3 9:42 17.06 6.59 708 178 (r 4 9:45 16.83 6.6 474 181 (r 5 9:48 16.81 6.6 513 181 (r 6 9:51 16.96 6.69 349 184 (r 7 9:54 16.9 6.58 162 185 (r 9 10:00 17.33 6.6 98.5 186 (r		
(°C) NTU mV (r 1 9:36 15.47 6.54 93.8 173 173 2 9:39 16.05 6.63 201 175 175 3 9:42 17.06 6.59 708 178 181 4 9:45 16.83 6.6 474 181 166 5 9:48 16.81 6.6 513 181 166 6 9:51 16.96 6.6 557 182 184 8 9:57 17.26 6.58 162 185 186 9 10:00 17.33 6.6 98.5 186 186	ond. DO	
1 9:36 15.47 6.54 93.8 173 2 9:39 16.05 6.63 201 175 3 9:42 17.06 6.59 708 178 4 9:45 16.83 6.6 474 181 5 9:48 16.81 6.6 513 181 6 9:51 16.96 6.6 557 182 7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	S/cm) mg/L	
2 9:39 16.05 6.63 201 175 3 9:42 17.06 6.59 708 178 4 9:45 16.83 6.6 474 181 5 9:48 16.81 6.6 513 181 6 9:51 16.96 6.6 557 182 7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	2.22 5.66	
3 9:42 17.06 6.59 708 178 4 9:45 16.83 6.6 474 181 5 9:48 16.81 6.6 513 181 6 9:51 16.96 6.6 557 182 7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	1.95 4.9	
5 9:48 16.81 6.6 513 181 6 9:51 16.96 6.6 557 182 7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	1.91 4.51	
6 9:51 16.96 6.6 557 182 7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	1.98 4.5	
7 9:54 16.9 6.59 349 184 8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	1.99 4.49	
8 9:57 17.26 6.58 162 185 9 10:00 17.33 6.6 98.5 186	2.05 4.15	
9 10:00 17.33 6.6 98.5 186	2.16 3.81	
	2.23 3.06	
10 10:03 17.44 6.61 47.6 186	2.22 3.25	
	2.17 3.59	

				Wells	Sampling Log				
Nell Designati	on:			MW-8		Sampled By:			KC
Site Address:				lenwood Lan	-	Project Manag		Johr	n Eichler
Project Name:		For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	N1101
					-				
Reference Elev				IM	Well Use:			Monitoring	g/Observation
Depth to Produ				NP	Product Elev				NP
Depth to Wate				5.35		er Elevation (ft):			/ALUE!
Depth to Botto				3.28	Bottom Elev				NM
Height of Wate				M	Well Diame				4
Standing Wate	er Volume (ga	al):		IM N/2015		Purge Volume (g	jal):		N/A
Sample Date:				8/2015	Begin Purge				8:06
Sample Time:				:25	Complete P				8:24
Purge Method	:		Low Flow	- Grundfos	Sample Me			Low Flow	v - Grundfos
Purge Rate (gr	o m) :		0	.17	Purge Time	(min):			18
Actual Purge \	Volume (gal)	:		3	Casing Volu	umes Removed:			N/A
Sample Appea	arance:		С	lear	Odors Obse	erved:		Ν	lone
Analytical Lab	oratory:		Alpha A	Analytical	Notes:				
Date Shipped:	-		-	9/2015					
				0					
Headspace (p	nmi								
Headspace (p Analyses Requ NYTCL-8260	-								
Analyses Requ	-			-	cator Parame	aters			
Analyses Requ	uested:	Iemp		Field Indi	cator Parame		DO	1	1
Analyses Requ	-	Temp. (°C)	рН	-	cator Parame ORP mV	Cond.	DO mg/L		
Analyses Requ	uested:	Temp. (°C) 15.85		Field Indi	ORP		DO mg/L 8.76		
Analyses Requ NYTCL-8260 Reading	Time	(°C)	рН	Field Indi Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time	(°C) 15.85	рН 6.51	Field Indi Turbidity NTU 1000	ORP mV 164	Cond. (mS/cm) 2.38	mg/L 8.76		
Analyses Requ NYTCL-8260 Reading 1 2	Time 8:06 8:09	(°C) 15.85 16.77	рН 6.51 6.44	Field Indi Turbidity NTU 1000 464	ORP mV 164 161	Cond. (mS/cm) 2.38 2.44	mg/L 8.76 7.98		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 8:06 8:09 8:12	(°C) 15.85 16.77 17.28	рН 6.51 6.44 6.44	Field Indi Turbidity NTU 1000 464 316	ORP mV 164 161 158	Cond. (mS/cm) 2.38 2.44 2.44	mg/L 8.76 7.98 7.58		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.44 2.45	mg/L 8.76 7.98 7.58 7.14		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:06 8:09 8:12 8:15 8:18	(°C) 15.85 16.77 17.28 17.67 17.57	рН 6.51 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102	ORP mV 164 161 158 152 150	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.45 2.46	mg/L 8.76 7.98 7.58 7.14 6.86		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 8:06 8:09 8:12 8:15 8:18 8:21	(°C) 15.85 16.77 17.28 17.67 17.57 18.03	pH 6.51 6.44 6.44 6.44 6.44 6.44	Field Indi Turbidity NTU 1000 464 316 154 102 64.7	ORP mV 164 161 158 152 150 146	Cond. (mS/cm) 2.38 2.44 2.44 2.45 2.46 2.46 2.46	mg/L 8.76 7.98 7.58 7.14 6.86 6.33		

					Sampling Log				
Well Designati	on:			MW-8D		Sampled By:			(C
Site Address:				lenwood Lan		Project Manag	-		Eichler
Project Name:		For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PEN	11101
Reference Elev	vation (ft)		1	NM	Well Use:			Monitorina	Observation
Depth to Produ				NP	Product Ele	vation (ft).			NP
Depth to Wate				7.88		er Elevation (ft):			ALUE!
Depth to Botto				2.50	Bottom Elev				IM
Height of Wate):		MM	Well Diame				4
Standing Wate		-		MM		Purge Volume (g	gal):		/A
Sample Date:	.5		10/2	8/2015	Begin Purge		,	7	:46
Sample Time:			8	:00	Complete F			7	:58
Purge Method	:			- Grundfos	Sample Me				- Grundfos
Purge Rate (gr).17	Purge Time				12
Actual Purge \			C	2	-	umes Removed:			/A
Sample Appea		•	C	lear	Odors Obse				one
Analytical Lab				Analytical	Notes:				лс
-	-		Арпа	Analytical	10105.				
Date Shipped:									
leadspace (p	opm)								
				Field Indi	cator Parame	eters			
Reading	Time	Temp.		To colo 1 all to 1			DO		
			рН	Turbidity	ORP	Cond.	DO mg/l		
1	7:46	(°C)		NTU	mV	Cond. (mS/cm)	mg/L		
1	7:46	(°C) 15.3	6.47	NTU 106	mV 195	Cond. (mS/cm) 1.22	mg/L 7.35		
2	7:49	(°C) 15.3 15.57	6.47 6.52	NTU 106 15.1	mV 195 178	Cond. (mS/cm) 1.22 1.99	mg/L 7.35 7.48		
	7:49 7:52	(°C) 15.3 15.57 15.35	6.47 6.52 6.53	NTU 106 15.1 7.87	mV 195 178 169	Cond. (mS/cm) 1.22 1.99 2.01	mg/L 7.35		
2 3	7:49	(°C) 15.3 15.57	6.47 6.52	NTU 106 15.1	mV 195 178	Cond. (mS/cm) 1.22 1.99	mg/L 7.35 7.48 7.15		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		
2 3 4	7:49 7:52 7:55	(°C) 15.3 15.57 15.35 15.08	6.47 6.52 6.53 6.53	NTU 106 15.1 7.87 5.53	mV 195 178 169 165	Cond. (mS/cm) 1.22 1.99 2.01 2.01	mg/L 7.35 7.48 7.15 6.77		

					Sampling Log				
Nell Designati	on:			MW-9		Sampled By:			KC
Site Address:				ilenwood Lan	-	Project Manag			n Eichler
Project Name:		For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	N1101
	(th)				Well Hees			Manitarin	
Reference Elev				MM	Well Use:			Ivionitoring	g/Observation
Depth to Produ				NP	Product Elev			"	NP
Depth to Wate				5.29		er Elevation (ft):			ALUE!
Depth to Botto Height of Wate		λ.		3.26 NM	Bottom Elev				NM 4
Standing Wate				NM	Well Diame	Purge Volume (g	nal).		4 N/A
Sample Date:	er volume (g	al).		8/2015	Begin Purge		jai).		7:00
-									
Sample Time:				:20	Complete P				7:18
Purge Method				- Grundfos	Sample Me			LOW FIO	v - Grundfos
Purge Rate (gp			0	0.17	Purge Time				18
Actual Purge \):		3		umes Removed:			N/A
Sample Appea			С	lear	Odors Obse	erved:		١	lone
Analytical Lab	ooratory:		Alpha A	Analytical	Notes:				
Date Shipped:			10/2	9/2015					
	(mm)		(0.6					
Headspace (p	pin)			010					
Analyses Requ	-								
Analyses Requ	-				cator Parame	sters			
Analyses Requ	uested:	Temp		Field Indi	cator Parame		DO	1	
Analyses Requ	-	Temp.	рН		cator Parame ORP mV	Cond.	DO mg/L		
Analyses Requ	uested:	Temp. (°C) 18.29		Field Indi	ORP		DO mg/L 1.94		
Analyses Requ NYTCL-8260 Reading	Time	(°C)	рН	Field Indi Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time	(°C) 18.29	рН 6.44	Field Indi Turbidity NTU 857	ORP mV 130	Cond. (mS/cm) 2.32	mg/L 1.94		
Analyses Requ NYTCL-8260 Reading 1 2	Time 7:00 7:03	(°C) 18.29 17.89	рН 6.44 6.41	Field Indi Turbidity NTU 857 669	ORP mV 130 142	Cond. (mS/cm) 2.32 2.34	mg/L 1.94 1.83		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:00 7:03 7:06	(°C) 18.29 17.89 18.54	рН 6.44 6.41 6.38	Field Indi Turbidity NTU 857 669 0	ORP mV 130 142 150	Cond. (mS/cm) 2.32 2.34 2.29	mg/L 1.94 1.83 0.28		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 7:00 7:03 7:06 7:09 7:12	(°C) 18.29 17.89 18.54 18.23 18.49	рН 6.44 6.41 6.38 6.4 6.41	Field Indi Turbidity NTU 857 669 0 1000 335	ORP mV 130 142 150 153 156	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.23 2.19	mg/L 1.94 1.83 0.28 0.4 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5 6	Time 7:00 7:03 7:06 7:09 7:12 7:15	(°C) 18.29 17.89 18.54 18.23 18.49 18.7	pH 6.44 6.41 6.38 6.4 6.41 6.41 6.42	Field Indi Turbidity NTU 857 669 0 1000 335 51.4	ORP mV 130 142 150 153 156 158	Cond. (mS/cm) 2.32 2.34 2.29 2.23 2.19 2.14	mg/L 1.94 1.83 0.28 0.4 0.47 0.47		

					Sampling Log				
Well Designation	on:		N	ЛW-9D		Sampled By:			KC
Site Address:		1 Sho	ore Road, G	lenwood Lan	ding, NY	Project Manag	jer:	Joh	n Eichler
Project Name:		For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	EN1101
Reference Elev	vation (ft):		Ν	IM	Well Use:			Monitorin	g/Observation
Depth to Produ	uct (ft):		1	NP	Product Ele	vation (ft):			NP
Depth to Water	r (ft):		17	7.28	Groundwat	er Elevation (ft):		#`	VALUE!
Depth to Bottor			46	5.62	Bottom Elev				NM
Height of Wate				M	Well Diame				4
Standing Wate	er Volume (ga	al):		IM		Purge Volume (g	jal):		N/A
Sample Date:			10/28	8/2015	Begin Purge	e Time:			7:24
Sample Time:			7	:35	Complete F	Purge Time:			7:33
Purge Method:	:		Low Flow	- Grundfos	Sample Me	thod:		Low Flo	w - Grundfos
Purge Rate (gp	om):		0	.17	Purge Time	(min):			9
Actual Purge V	/olume (gal)	:	1	1.5	Casing Volu	umes Removed:			N/A
Sample Appea	-		CI	lear	Odors Obse				
Analytical Lab	oratory:		Alpha A	Analytical	Notes:				
Date Shipped:	-		10/29/2015						
Headspace (p	Headspace (ppm)								
Analyses Requ	-								
	-								
Analyses Requ	-								
Analyses Requ	-				cator Parame	eters			
Analyses Requ	-	Temp.	рН	Turbidity	ORP	Cond.	DO		
Analyses Requ NYTCL-8260 Reading	Time	(°C)		Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time	(°C) 17.24	6.73	Turbidity NTU 239	ORP mV 170	Cond. (mS/cm) 0.739	mg/L 6.25		
Analyses Requ NYTCL-8260 Reading 1 2	Time 7:24 7:27	(°C) 17.24 16.24	6.73 6.56	Turbidity NTU 239 26	ORP mV 170 156	Cond. (mS/cm) 0.739 0.17	mg/L 6.25 5.1		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2	Time 7:24 7:27	(°C) 17.24 16.24	6.73 6.56	Turbidity NTU 239 26	ORP mV 170 156	Cond. (mS/cm) 0.739 0.17	mg/L 6.25 5.1		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		
Analyses Requ NYTCL-8260 Reading 1 2 3	Time 7:24 7:27 7:30	(°C) 17.24 16.24 14.46	6.73 6.56 6.27	Turbidity NTU 239 26 9.28	ORP mV 170 156 173	Cond. (mS/cm) 0.739 0.17 0.212	mg/L 6.25 5.1 4.08		

					Sampling Log				
Well Designati	ion:			VW-10		Sampled By:			KC
Site Address:				lenwood Lan	-	Project Manag			n Eichler
Project Name:	:	For	mer Penetre	ex Processing	Facility	Project Numbe	er:	PE	N1101
Reference Elev	vation (ft):		٢	NM	Well Use:			Monitoring	g/Observation
Depth to Produ				NP	Product Elev	vation (ft):			NP
Depth to Wate				4.47		er Elevation (ft):		#\	/ALUE!
Depth to Botto			2	2.59	Bottom Elev				NM
Height of Wate):	١	M	Well Diame	ter (in):			4
Standing Wate			1	M	Calculated	Purge Volume (g	jal):		N/A
Sample Date:			10/2	8/2015	Begin Purge	e Time:			8:35
Sample Time:			8	:50	Complete P	urge Time:			8:50
Purge Method	:		Low Flow	- Grundfos	Sample Met				w - Grundfos
Purge Rate (gr			C).17	Purge Time				15
Actual Purge \		:		2.5	-	imes Removed:			N/A
Sample Appea	-	-		lear	Odors Obse				None
Analytical Lab				Analytical	Notes:				
Date Shipped:	5		-	9/2015					
allo emppour		0							
Haadsnaca (n	nm)								
Headspace (p Analyses Requ NYTCL-8260	-			0					
Analyses Requ	-				cator Parame	eters			
Analyses Requ	-	Temp.	На	Field India	cator Parame	t ers Cond.	DO	1	
Analyses Requ	uested:	Temp. (°C)	рН				DO mg/L		
Analyses Requ	uested:		рН 6.72	Field Indi	ORP	Cond.			
Analyses Requ NYTCL-8260 Reading	Time	(°C) 15 15		Field Indi Turbidity NTU	ORP mV	Cond. (mS/cm)	mg/L		
Analyses Requ NYTCL-8260 Reading	Time 8:35 8:38 8:41	(°C) 15 15 15.04	6.72 6.6 6.53	Field India Turbidity NTU 0 201 141	ORP mV 137 150 160	Cond. (mS/cm) 1.66 1.63 1.61	mg/L 5.72 4.05 3.11		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 8:35 8:38 8:41 8:44	(°C) 15 15 15.04 15.03	6.72 6.6 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9	ORP mV 137 150 160 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6	mg/L 5.72 4.05 3.11 3.03		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4	Time 8:35 8:38 8:41 8:44	(°C) 15 15 15.04 15.03	6.72 6.6 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9	ORP mV 137 150 160 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6	mg/L 5.72 4.05 3.11 3.03		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		
Analyses Requ NYTCL-8260 Reading 1 2 3 4 5	Time 8:35 8:38 8:41 8:44 8:47	(°C) 15 15 15.04 15.03 15.02	6.72 6.6 6.53 6.53 6.53	Field India Turbidity NTU 0 201 141 89.9 62.1	ORP mV 137 150 160 162 162	Cond. (mS/cm) 1.66 1.63 1.61 1.6 1.6 1.6	mg/L 5.72 4.05 3.11 3.03 2.97		

APPENDIX D Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L1508648
Client:	P. W. Grosser
	630 Johnson Avenue
	Suite 7
	Bohemia, NY 11716
ATTN:	John Eichler
Phone:	(631) 589-6353
Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101
Report Date:	04/30/15

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101

Lab Number:	L1508648
Report Date:	04/30/15

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1508648-01	IA-001	AIR	1 SHORE RD, GLENWOOD LANDING, NY	04/24/15 11:02	04/24/15
L1508648-02	IA-002	AIR	1 SHORE RD, GLENWOOD LANDING, NY	04/24/15 11:15	04/24/15
L1508648-03	IA-003	AIR	1 SHORE RD, GLENWOOD LANDING, NY	04/24/15 11:19	04/24/15
L1508648-04	IA-004	AIR	1 SHORE RD, GLENWOOD LANDING, NY	04/24/15 11:23	04/24/15
L1508648-05	IA-005	AIR	1 SHORE RD, GLENWOOD LANDING, NY	04/24/15 11:30	04/24/15
L1508648-06	OA-001	AIR	1 SHORE RD, GLENWOOD LANDING, NY	04/24/15 11:36	04/24/15

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 20, 2015. The canister certification results are provided as an addendum.

Sample L1508648-04 results for Acetone should be considered estimated due to co-elution with a non-target peak.

Sample L1508648-06 : The canister vacuum measured on receipt at the laboratory was > 15 in. Hg and a smaller sample volume was used for analysis. The reporting limits have been elevated accordingly.

Sample Receipt

The sample designated OA-001 (L1508648-06) had a RPD for the pre- and post-flow controller calibration check (132% RPD) that was outside of the control limit (20% RPD). The initial flow rate for the flow controller was 36.0 mL/minute; the final flow rate was 7.4 mL/minute. The final pressure recorded by the laboratory of the associated canister was -23.2 inches of mercury.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ized Signature:

Christoph J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 04/30/15

AIR

L1508648 04/30/15

Project Name:	FORMER PENETREX PROCESSING	Lab Number:
Project Number:	PEN1101	Report Date:

Lab ID:	L1508648-01	Date Collected:	04/24/15 11:02
Client ID:	IA-001	Date Received:	04/24/15
Sample Location:	1 SHORE RD, GLENWOOD LANDING,	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/29/15 18:46		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Dichlorodifluoromethane	0.317	0.200		1.57	0.989			1
Chloromethane	0.609	0.200		1.26	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	0.070	0.020		0.155	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethanol	3.81	2.50		7.18	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	8.58	1.00		20.4	2.38			1
Trichlorofluoromethane	0.199	0.050		1.12	0.281			1
Isopropanol	0.573	0.500		1.41	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	3.06	0.500		10.6	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	0.065	0.050		0.498	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	3.48	0.500		10.3	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1

Project Name:FORMER PENETREX PROCESSINGProject Number:PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-01 IA-001 1 SHORE RD,	GLENWOO	D LANDII ppbV	NG,			Collecte Receive Prep:		04/24/15 11:02 04/24/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	. Factor
Volatile Organics in	Air by SIM - Mar	nsfield Lab							
Tetrahydrofuran		ND	0.500		ND	1.47			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
n-Hexane		0.250	0.200		0.881	0.705			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		0.141	0.100		0.450	0.319			1
Carbon tetrachloride		0.055	0.020		0.346	0.126			1
Cyclohexane		0.217	0.200		0.747	0.688			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Heptane		0.553	0.200		2.27	0.820			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroprope	ne	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		1.17	0.050		4.41	0.188			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		0.169	0.020		1.15	0.136			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		0.171	0.020		0.743	0.087			1
p/m-Xylene		0.616	0.040		2.68	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		0.045	0.020		0.192	0.085			1
1,1,2,2-Tetrachloroetha	าย	ND	0.020		ND	0.137			1

Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-01 IA-001 1 SHORE RD,	GLENWOC	D LANDI	NG,			Collecto Receivo Prep:		04/24/15 11:02 04/24/15 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	n Air by SIM - Mar	sfield Lab							
o-Xylene		0.187	0.020		0.812	0.087			1
4-Ethyltoluene		0.084	0.020		0.413	0.098			1
1,3,5-Trimethybenzene		0.081	0.020		0.398	0.098			1
1,2,4-Trimethylbenzene		0.352	0.020		1.73	0.098			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	93		60-140

L1508648 04/30/15

Project Name:	FORMER PENETREX PROCESSING	Lab Number:
Project Number:	PEN1101	Report Date:

Lab ID:	L1508648-02	Date Collected:	04/24/15 11:15
Client ID:	IA-002	Date Received:	04/24/15
Sample Location:	1 SHORE RD, GLENWOOD LANDING,	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/29/15 19:50		
Analyst:	RY		

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
tile Organics in Air by SIM - Ma	ansfield Lab							
orodifluoromethane	0.317	0.200		1.57	0.989			1
omethane	0.484	0.200		0.999	0.413			1
-114	ND	0.050		ND	0.349			1
chloride	ND	0.020		ND	0.051			1
utadiene	ND	0.020		ND	0.044			1
omethane	ND	0.020		ND	0.078			1
pethane	ND	0.020		ND	0.053			1
ol	ND	2.50		ND	4.71			1
promide	ND	0.200		ND	0.874			1
ne	5.04	1.00		12.0	2.38			1
profluoromethane	0.197	0.050		1.11	0.281			1
panol	ND	0.500		ND	1.23			1
chloroethene	ND	0.020		ND	0.079			1
lene chloride	11.8	0.500		41.0	1.74			1
propropene	ND	0.200		ND	0.626			1
n disulfide	ND	0.200		ND	0.623			1
-113	0.064	0.050		0.491	0.383			1
1,2-Dichloroethene	ND	0.020		ND	0.079			1
chloroethane	ND	0.020		ND	0.081			1
l tert butyl ether	ND	0.020		ND	0.072			1
anone	ND	0.500		ND	1.47			1
2-Dichloroethene	ND	0.020		ND	0.079			1
Acetate	ND	0.500		ND	1.80			1
oform	ND	0.020		ND	0.098			1
anone 2-Dichloroethene Acetate	ND ND ND	0.500 0.020 0.500		ND ND ND	1.47 0.079 1.80			

Project Name:FORMER PENETREX PROCESSINGProject Number:PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-02 IA-002 1 SHORE RD,	GLENWOC	D LANDII ppbV	NG,			Collecte Receive Prep:		04/24/15 11:1 04/24/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Eastar
Volatile Organics in	Air by SIM - Mar	nsfield Lab							
Tetrahydrofuran		ND	0.500		ND	1.47			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
n-Hexane		0.746	0.200		2.63	0.705			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		0.113	0.100		0.361	0.319			1
Carbon tetrachloride		0.052	0.020		0.327	0.126			1
Cyclohexane		0.203	0.200		0.699	0.688			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ne	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		1.90	0.050		7.16	0.188			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		0.115	0.020		0.500	0.087			1
p/m-Xylene		0.394	0.040		1.71	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethar	ne	ND	0.020		ND	0.137			1

Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID:	L1508648-02					Date Collecte			04/24/15 11:15
Client ID:	IA-002				Date Receive			ed: 04/24/15	
Sample Location:	1 SHORE RD,	GLENWOC	D LANDI	۱G,		Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics ir	n Air by SIM - Mar	nsfield Lab							
o-Xylene		0.115	0.020		0.500	0.087			1
4-Ethyltoluene		0.022	0.020		0.108	0.098			1
1,3,5-Trimethybenzene		0.020	0.020		0.098	0.098			1
1,2,4-Trimethylbenzene		0.086	0.020		0.423	0.098			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	90		60-140

L1508648

04/30/15

Project Name:	FORMER PENETREX PROCESSING	Lab Number:
Project Number:	PEN1101	Report Date:

Lab ID:	L1508648-03	Date Collected:	04/24/15 11:19
Client ID:	IA-003	Date Received:	04/24/15
Sample Location:	1 SHORE RD, GLENWOOD LANDING,	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/29/15 20:22		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Dichlorodifluoromethane	0.378	0.200		1.87	0.989			1
Chloromethane	0.477	0.200		0.985	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.31	1.00		5.49	2.38			1
Trichlorofluoromethane	0.193	0.050		1.08	0.281			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	0.062	0.050		0.475	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.026	0.020		0.127	0.098			1

Project Name:FORMER PENETREX PROCESSINGProject Number:PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-03 IA-003 1 SHORE RD,	GLENWOO		NG,		Date Field	Collecte Receive Prep:		04/24/15 11:1 04/24/15 Not Specified
Deveryor		Desults	ppbV		Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Parameter Volatile Organics in	Air by SIM - Mar	Results	RL	MDL	Results	RL	WDL	Quaime	
Tetrahydrofuran		ND	0.500		ND	4 47			4
1,2-Dichloroethane		ND	0.020		ND	1.47			1
n-Hexane		ND	0.020		ND ND	0.081			1
1,1,1-Trichloroethane									
Benzene		ND	0.020		ND	0.109			1
Carbon tetrachloride		ND	0.100		ND	0.319			1
Cyclohexane		0.056	0.020		0.352	0.126			1
1,2-Dichloropropane		ND	0.200		ND	0.688			1
Bromodichloromethane		ND	0.020		ND	0.092			1
1,4-Dioxane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.100		ND	0.360			1
		ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		0.254	0.050		0.957	0.188			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		0.041	0.020		0.178	0.087			1
p/m-Xylene		0.129	0.040		0.560	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1

Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-03 IA-003 1 SHORE RD,	GLENWOC		۱G,		Date Field	Collecte Receive Prep:		04/24/15 11:19 04/24/15 Not Specified
_			ppbV		<u> </u>	ug/m3		o	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in	Air by SIM - Man	sfield Lab							
o-Xylene		0.042	0.020		0.182	0.087			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		0.033	0.020		0.162	0.098			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	92		60-140

L1508648 04/30/15

Project Name:	FORMER PENETREX PROCESSING	Lab Number:
Project Number:	PEN1101	Report Date:

Lab ID:	L1508648-04	Date Collected:	04/24/15 11:23
Client ID:	IA-004	Date Received:	04/24/15
Sample Location:	1 SHORE RD, GLENWOOD LANDING,	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/29/15 20:54		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Dichlorodifluoromethane	0.347	0.200		1.72	0.989			1
Chloromethane	0.460	0.200		0.950	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethanol	12.3	2.50		23.2	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.86	1.00		6.79	2.38			1
Trichlorofluoromethane	0.186	0.050		1.05	0.281			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	0.940	0.500		3.27	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	0.062	0.050		0.475	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1

Project Name:FORMER PENETREX PROCESSINGProject Number:PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-04 IA-004 1 SHORE RD,	GLENWOO	D LANDII ppbV	NG,			Collecte Receive Prep:		04/24/15 11:23 04/24/15 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in	Air by SIM - Mar								
Tetrahydrofuran		ND	0.500		ND	1.47			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
n-Hexane		0.878	0.200		3.09	0.705			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		0.416	0.100		1.33	0.319			1
Carbon tetrachloride		0.053	0.020		0.333	0.126			1
Cyclohexane		0.246	0.200		0.847	0.688			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane		1.80	0.200		8.41	0.934			1
Heptane		0.530	0.200		2.17	0.820			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ie	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		4.56	0.050		17.2	0.188			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		0.020	0.020		0.136	0.136			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		0.643	0.020		2.79	0.087			1
p/m-Xylene		2.20	0.040		9.56	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		0.020	0.020		0.085	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1

Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID:	L1508648-04					Date	Collecte	ed:	04/24/15 11:23
Client ID:	IA-004					Date	Receive	ed:	04/24/15
Sample Location:	1 SHORE RD,	GLENWOC	D LANDI	۱G,		Field	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics ir	n Air by SIM - Mar	nsfield Lab							
o-Xylene		0.838	0.020		3.64	0.087			1
4-Ethyltoluene		0.218	0.020		1.07	0.098			1
1,3,5-Trimethybenzene		0.237	0.020		1.17	0.098			1
1,2,4-Trimethylbenzene		0.943	0.020		4.64	0.098			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	93		60-140

L1508648

04/30/15

Project Name:	FORMER PENETREX PROCESSING	Lab Number:
Project Number:	PEN1101	Report Date:

Lab ID:	L1508648-05	Date Collected:	04/24/15 11:30
Client ID:	IA-005	Date Received:	04/24/15
Sample Location:	1 SHORE RD, GLENWOOD LANDING,	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/29/15 21:26		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Dichlorodifluoromethane	0.278	0.200		1.37	0.989			1
Chloromethane	0.520	0.200		1.07	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethanol	13.4	2.50		25.2	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	212	1.00		504	2.38			1
Trichlorofluoromethane	0.215	0.050		1.21	0.281			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	5.04	0.050		38.6	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: L1508648-05 Client ID: IA-005 Sample Location: 1 SHORE RE		GLENWOOD LANDING, ppbV				Date Collecte Date Receive Field Prep: ug/m3			04/24/15 11:30 04/24/15 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in	Air by SIM - Mar	nsfield Lab							
Tetrahydrofuran		ND	0.500		ND	1.47			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
n-Hexane		ND	0.200		ND	0.705			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		0.113	0.100		0.361	0.319			1
Carbon tetrachloride		0.057	0.020		0.359	0.126			1
Cyclohexane		ND	0.200		ND	0.688			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ie	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		1.29	0.050		4.86	0.188			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		0.362	0.020		2.45	0.136			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		0.099	0.020		0.430	0.087			1
p/m-Xylene		0.292	0.040		1.27	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethar	e	ND	0.020		ND	0.137			1

Project Name:	FORMER PENETREX PROCESSING
Project Number:	PEN1101

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-05 IA-005 1 SHORE RD,	GLENWOC	D LANDIN	NG,			Collecte Receive Prep:		04/24/15 11:30 04/24/15 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	r Factor
Volatile Organics in	n Air by SIM - Mar	sfield Lab							
o-Xylene		0.070	0.020		0.304	0.087			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		0.057	0.020		0.280	0.098			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	79		60-140
chlorobenzene-d5	90		60-140

L1508648

04/30/15

Project Name:	FORMER PENETREX PROCESSING	Lab Number:
Project Number:	PEN1101	Report Date:

Lab ID:	L1508648-06 D	Date Collected:	04/24/15 11:36
Client ID:	OA-001	Date Received:	04/24/15
Sample Location:	1 SHORE RD, GLENWOOD LANDING,	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/29/15 18:14		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Dichlorodifluoromethane	ND	0.505		ND	2.50			2.525
Chloromethane	0.659	0.505		1.36	1.04			2.525
Freon-114	ND	0.126		ND	0.881			2.525
Vinyl chloride	ND	0.051		ND	0.129			2.525
1,3-Butadiene	ND	0.051		ND	0.112			2.525
Bromomethane	ND	0.051		ND	0.196			2.525
Chloroethane	ND	0.051		ND	0.133			2.525
Ethanol	ND	6.31		ND	11.9			2.525
Vinyl bromide	ND	0.505		ND	2.21			2.525
Acetone	4.18	2.52		9.93	5.99			2.525
Trichlorofluoromethane	0.242	0.126		1.36	0.708			2.525
Isopropanol	ND	1.26		ND	3.10			2.525
1,1-Dichloroethene	ND	0.051		ND	0.200			2.525
Methylene chloride	ND	1.26		ND	4.38			2.525
3-Chloropropene	ND	0.505		ND	1.58			2.525
Carbon disulfide	ND	0.505		ND	1.57			2.525
Freon-113	ND	0.126		ND	0.966			2.525
trans-1,2-Dichloroethene	ND	0.051		ND	0.200			2.525
1,1-Dichloroethane	ND	0.051		ND	0.204			2.525
Methyl tert butyl ether	ND	0.051		ND	0.182			2.525
2-Butanone	ND	1.26		ND	3.72			2.525
cis-1,2-Dichloroethene	ND	0.051		ND	0.200			2.525
Ethyl Acetate	ND	1.26		ND	4.54			2.525
Chloroform	ND	0.051		ND	0.247			2.525

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-06 OA-001 1 SHORE RD,	D GLENWOC		NG,		Date Field	Collecte Receive Prep:		04/24/15 11:36 04/24/15 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution Factor
Volatile Organics in	n Air by SIM - Ma			MDL					
Tetrahydrofuran		ND	1.26		ND	3.72			2.525
1,2-Dichloroethane		ND	0.051		ND	0.204			2.525
n-Hexane		ND	0.505		ND	1.78			2.525
1,1,1-Trichloroethane		ND	0.051		ND	0.276			2.525
Benzene		ND	0.252		ND	0.805			2.525
Carbon tetrachloride		0.078	0.051		0.493	0.318			2.525
Cyclohexane		ND	0.505		ND	1.74			2.525
1,2-Dichloropropane		ND	0.051		ND	0.233			2.525
Bromodichloromethane		ND	0.051		ND	0.338			2.525
1,4-Dioxane		ND	0.252		ND	0.908			2.525
Trichloroethene		ND	0.051		ND	0.271			2.525
2,2,4-Trimethylpentane		ND	0.505		ND	2.36			2.525
Heptane		ND	0.505		ND	2.07			2.525
cis-1,3-Dichloropropene		ND	0.051		ND	0.229			2.525
4-Methyl-2-pentanone		ND	1.26		ND	5.16			2.525
trans-1,3-Dichloroprope	ne	ND	0.051		ND	0.229			2.525
1,1,2-Trichloroethane		ND	0.051		ND	0.276			2.525
Toluene		0.215	0.126		0.810	0.475			2.525
2-Hexanone		ND	0.505		ND	2.07			2.525
Dibromochloromethane		ND	0.051		ND	0.430			2.525
1,2-Dibromoethane		ND	0.051		ND	0.388			2.525
Tetrachloroethene		ND	0.051		ND	0.342			2.525
Chlorobenzene		ND	0.051		ND	0.233			2.525
Ethylbenzene		0.124	0.051		0.539	0.219			2.525
p/m-Xylene		0.364	0.101		1.58	0.439			2.525
Bromoform		ND	0.051		ND	0.522			2.525
Styrene		ND	0.051		ND	0.215			2.525
1,1,2,2-Tetrachloroethar	ne	ND	0.051		ND	0.347			2.525

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Lab ID: Client ID: Sample Location:	L1508648-06 OA-001 1 SHORE RD,	D GLENWOO		NG.			Collecte Receive Prep:		04/24/15 11:36 04/24/15 Not Specified
	,		ppbV	- ,		ug/m3	-1		Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Faster
Volatile Organics in	n Air by SIM - Ma	nsfield Lab							
o-Xylene		0.083	0.051		0.362	0.219			2.525
4-Ethyltoluene		ND	0.051		ND	0.248			2.525
1,3,5-Trimethybenzene		ND	0.051		ND	0.248			2.525
1,2,4-Trimethylbenzene		0.053	0.051		0.261	0.248			2.525
Benzyl chloride		ND	0.505		ND	2.61			2.525
1,3-Dichlorobenzene		ND	0.051		ND	0.304			2.525
1,4-Dichlorobenzene		ND	0.051		ND	0.304			2.525
1,2-Dichlorobenzene		ND	0.051		ND	0.304			2.525
1,2,4-Trichlorobenzene		ND	0.126		ND	0.935			2.525
Hexachlorobutadiene		ND	0.126		ND	1.34			2.525

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	64		60-140
bromochloromethane	73		60-140
chlorobenzene-d5	68		60-140

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/29/15 14:52

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab fo	or sample	(s): 01-06	Batch: V	VG780410	-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1

 Lab Number:
 L1508648

 Report Date:
 04/30/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/29/15 14:52

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab f	or sample	e(s): 01-06	Batch: W	/G780410)-4		
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1

Lab Number: L1508648 Report Date: 04/30/15

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/29/15 14:52

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab fo	or sample	(s): 01-06	Batch: W	/G780410	-4		
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Lab Control Sample Analysis Batch Quality Control

Project Number: PEN1101 Lab Number: L1508648 Report Date: 04/30/15

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics in Air by SIM - Mansfield La	ab Associated sa	mple(s): 01-06 Batch: W	G780410-3		
Propylene	101	-	70-130	-	25
Dichlorodifluoromethane	81	-	70-130	-	25
Chloromethane	86	-	70-130	-	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	91	-	70-130	-	25
Vinyl chloride	86	-	70-130	-	25
1,3-Butadiene	89	-	70-130	-	25
Bromomethane	91	-	70-130	-	25
Chloroethane	81	-	70-130	-	25
Ethyl Alcohol	81	-	70-130	-	25
Vinyl bromide	87	-	70-130	-	25
Acetone	97	-	70-130	-	25
Trichlorofluoromethane	88	-	70-130	-	25
iso-Propyl Alcohol	95	-	70-130	-	25
Acrylonitrile	75	-	70-130	-	25
1,1-Dichloroethene	84	-	70-130	-	25
Methylene chloride	88	-	70-130	-	25
3-Chloropropene	87	-	70-130	-	25
Carbon disulfide	79	-	70-130	-	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	88	-	70-130	-	25
Halothane	85	-	70-130	-	25
trans-1,2-Dichloroethene	78	-	70-130	-	25

Lab Control Sample Analysis

Batch Quality Control

Project Number: PEN1101

Lab Number: L1508648 Report Date: 04/30/15

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-06 Batch: WG780410-3 1,1-Dichloroethane 87 70-130 25 --Methyl tert butyl ether 83 70-130 25 --Vinyl acetate 108 70-130 25 --25 70-130 2-Butanone 97 -cis-1.2-Dichloroethene 104 70-130 25 --Ethyl Acetate 70-130 25 109 --25 Chloroform 94 70-130 --Tetrahydrofuran 90 70-130 25 --1.2-Dichloroethane 70-130 25 89 _ -70-130 25 n-Hexane 87 --1,1,1-Trichloroethane 70-130 25 86 --Benzene 90 70-130 25 --Carbon tetrachloride 87 70-130 25 --Cyclohexane 70-130 25 88 --70-130 25 1,2-Dichloropropane 94 --Bromodichloromethane 70-130 25 89 --1,4-Dioxane 96 70-130 25 --70-130 25 Trichloroethene 95 --2,2,4-Trimethylpentane 70-130 25 90 --70-130 25 cis-1,3-Dichloropropene 99 --4-Methyl-2-pentanone 101 70-130 25 --

Lab Control Sample Analysis Batch Quality Control

Project Number: PEN1101 Lab Number: L1508648 Report Date: 04/30/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-06 Batch: W	G780410-3				
trans-1,3-Dichloropropene	88		-		70-130	-		25
1,1,2-Trichloroethane	97		-		70-130	-		25
Toluene	100		-		70-130	-		25
2-Hexanone	115		-		70-130	-		25
Dibromochloromethane	99		-		70-130	-		25
1,2-Dibromoethane	107		-		70-130	-		25
Tetrachloroethene	104		-		70-130	-		25
1,1,1,2-Tetrachloroethane	92		-		70-130	-		25
Chlorobenzene	105		-		70-130	-		25
Ethylbenzene	105		-		70-130	-		25
p/m-Xylene	105		-		70-130	-		25
Bromoform	101		-		70-130	-		25
Styrene	112		-		70-130	-		25
1,1,2,2-Tetrachloroethane	106		-		70-130	-		25
o-Xylene	104		-		70-130	-		25
Isopropylbenzene	101		-		70-130	-		25
4-Ethyltoluene	105		-		70-130	-		25
1,3,5-Trimethylbenzene	91		-		70-130	-		25
1,2,4-Trimethylbenzene	108		-		70-130	-		25
Benzyl chloride	105		-		70-130	-		25
1,3-Dichlorobenzene	111		-		70-130	-		25

Lab Control Sample Analysis Batch Quality Control

Project Number: PEN1101 Lab Number: L1508648 Report Date: 04/30/15

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-06 Batch: WG	6780410-3					
1,4-Dichlorobenzene	108		-		70-130	-		25	
sec-Butylbenzene	100		-		70-130	-		25	
p-Isopropyltoluene	94		-		70-130	-		25	
1,2-Dichlorobenzene	110		-		70-130	-		25	
n-Butylbenzene	108		-		70-130	-		25	
1,2,4-Trichlorobenzene	125		-		70-130	-		25	
Naphthalene	117		-		70-130	-		25	
1,2,3-Trichlorobenzene	119		-		70-130	-		25	
Hexachlorobutadiene	119		-		70-130	-		25	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
1,2-Dichloroethane-d4	102				70-130	

Project Name:FORMER PENETREX PROCESSINGProject Number:PEN1101

Lab Number: Report Date:

L1508648 04/30/15

olatile Organics in Air by SIM - Mansfield La Dichlorodifluoromethane Chloromethane Freon-114 Vinyl chloride	0.317 0.609 ND ND 0.070 ND	QC Batch ID: WG78 0.314 0.646 ND 0.072 ND	ppbV ppbV ppbV ppbV ppbV	Cample: L150	D8648-01 Client ID: IA-001 25 25 25 25 25 25 25 25 25 25 25 25 25 25
Chloromethane Freon-114	0.609 ND ND 0.070 ND	0.646 ND ND 0.072	ppbV ppbV ppbV ppbV	6 NC NC	25 25 25
Freon-114	ND ND 0.070 ND	ND ND 0.072	ppbV ppbV ppbV	NC NC	25 25
	ND 0.070 ND	ND 0.072	ppbV ppbV	NC	25
Vinyl chloride	0.070 ND	0.072	ppbV		
	ND			3	25
1,3-Butadiene		ND			
Bromomethane			ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Ethanol	3.81	4.01	ppbV	5	25
Vinyl bromide	ND	ND	ppbV	NC	25
Acetone	8.58	9.16	ppbV	7	25
Trichlorofluoromethane	0.199	0.213	ppbV	7	25
Isopropanol	0.573	0.608	ppbV	6	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
Methylene chloride	3.06	3.25	ppbV	6	25
3-Chloropropene	ND	ND	ppbV	NC	25
Carbon disulfide	ND	ND	ppbV	NC	25
Freon-113	0.065	0.071	ppbV	9	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25

Project Name:FORMER PENETREX PROCESSINGProject Number:PEN1101

Lab Number: Report Date:

L1508648 04/30/15

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG78	30410-5 QC	C Sample: L15086	48-01 Client ID: IA-001
Methyl tert butyl ether	ND	ND	ppbV	NC	25
2-Butanone	3.48	3.68	ppbV	6	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	0.250	0.249	ppbV	0	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	0.141	0.146	ppbV	3	25
Carbon tetrachloride	0.055	0.055	ppbV	0	25
Cyclohexane	0.217	0.220	ppbV	1	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	0.553	0.558	ppbV	1	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101 Lab Number: Report Date:

L1508648 04/30/15

RPD **Native Sample Duplicate Sample** Units RPD Limits Parameter Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG780410-5 QC Sample: L1508648-01 Client ID: IA-001 4-Methyl-2-pentanone ND ND ppbV NC 25 trans-1,3-Dichloropropene ND ND ppbV NC 25 1,1,2-Trichloroethane ND ND ppbV NC 25 Toluene 1.17 1.20 ppbV 3 25 2-Hexanone ND ND ppbV NC 25 Dibromochloromethane ND ND ppbV NC 25 1,2-Dibromoethane ND ND ppbV NC 25 Tetrachloroethene 0.169 0.176 ppbV 4 25 Chlorobenzene ND ND ppbV NC 25 Ethylbenzene 0.171 0.175 ppbV 2 25 p/m-Xylene 0.616 0.632 ppbV 3 25 Bromoform ND ND ppbV NC 25 Styrene 0.045 0.048 6 25 ppbV 1,1,2,2-Tetrachloroethane ND ND ppbV NC 25 o-Xylene 0.187 0.195 ppbV 4 25 4-Ethyltoluene 0.084 0.087 ppbV 4 25 1,3,5-Trimethybenzene 0.081 0.084 ppbV 4 25 1,2,4-Trimethylbenzene 0.352 0.360 ppbV 2 25 Benzyl chloride ND ND ppbV NC 25

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101

Lab Number: L1508648 Report Date:

04/30/15

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
/olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG780	0410-5 QC	C Sample: L1508648-	01 Client ID: IA-001
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Διρήα

Project Name: FORMER PENETREX PROCESSING

Project Number: PEN1101

Serial_No:04301516:00 Lab Number: L1508648

Report Date: 04/30/15

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check		on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1508648-01	IA-001	0574	#90 AMB	04/20/15	202604		-	-	-	Pass	35.4	36.1	2
L1508648-01	IA-001	150	2.7L Can	04/20/15	202604	L1507336-01	-	-29.7	-4.6	-	-	-	-
L1508648-02	IA-002	0453	#30 SV	04/20/15	202604		-	-	-	Pass	36.0	34.9	3
L1508648-02	IA-002	459	2.7L Can	04/20/15	202604	L1507336-01	-	-29.7	-4.8	-	-	-	-
L1508648-03	IA-003	0208	#16 AMB	04/20/15	202604		-	-	-	Pass	35.1	43.0	20
L1508648-03	IA-003	251	2.7L Can	04/20/15	202604	L1507336-01	-	-29.5	1.4	-	-	-	-
L1508648-04	IA-004	0252	#90 AMB	04/20/15	202604		-	-	-	Pass	35.9	37.0	3
L1508648-04	IA-004	507	2.7L Can	04/20/15	202604	L1507336-01	-	-29.7	-2.7	-	-	-	-
L1508648-05	IA-005	0454	#30 AMB	04/20/15	202604		-	-	-	Pass	29.3	27.5	6
L1508648-05	IA-005	321	2.7L Can	04/20/15	202604	L1507336-01	-	-29.7	-9.5	-	-	-	-
L1508648-06	OA-001	0336	#90 SV	04/20/15	202604		-	-	-	Pass	36.0	7.4	132
L1508648-06	OA-001	468	2.7L Can	04/20/15	202604	L1507336-01	-	-29.7	-23.2	-	-	-	-

Serial_No:04	4301516:00
Lab Number:	L1507336
Report Date:	04/30/15

Lab ID:	L1507336-01	Date Collected:	04/13/15 10:03
Client ID:	CAN 234 SHELF 15	Date Received:	04/13/15
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	04/14/15 00:33		
Analyst:	MB		

		ppbV	ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1507336 Report Date: 04/30/15

Lab ID: Client ID: Sample Location:	L1507336-01 CAN 234 SHEL	₋F 15	ppbV			Date Collected: Date Received: Field Prep: ug/m3			04/13/15 10:0 04/13/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	
Volatile Organics in A	vir - Mansfield Lab	I.							
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene		ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1507336 Report Date: 04/30/15

Lab ID: L1507336-01 Client ID: CAN 234 SHELF 15 Sample Location:ppbV						Date Collected: Date Received: Field Prep: ug/m3			04/13/15 10:0 04/13/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	F 4
Volatile Organics in A	Air - Mansfield Lab								
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloroproper	ie	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1507336 Report Date: 04/30/15

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1507336-01 CAN 234 SHEL	_F 15					Collecte Receive Prep:		04/13/15 10:03 04/13/15 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter	A	Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in A	Air - Mansfield Lab								
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	pane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	91		60-140

Report Date: 04/30/15

Lab ID:	L1507336-01	Date Collected:	04/13/15 10:03
Client ID:	CAN 234 SHELF 15	Date Received:	04/13/15
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	04/14/15 00:33		
Analyst:	MB		

		ppbV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1507336 Report Date: 04/30/15

Lab ID: Client ID: Sample Location:	L1507336-01 CAN 234 SHEI	ррЬV				Date Collected: Date Received: Field Prep: ug/m3			04/13/15 10:03 04/13/15 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	E t
Volatile Organics in A	ir by SIM - Mansf	ield Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	е	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-lsopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1507336 Report Date: 04/30/15

Lab ID: Client ID: Sample Location:	-F 15	ppbV		Date Collect Date Receiv Field Prep: ug/m3					
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Faster
Volatile Organics in A	Air by SIM - Mansf	ield Lab							
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101 Lab Number: L1508648 Report Date: 04/30/15

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A Present/Intact

Container Info	Temp						
Container ID	Container Type	Cooler	рΗ	deg C Pı	res	Seal	Analysis(*)
L1508648-01A	Canister - 2.7 Liter	N/A	NA		Y	Absent	TO15-SIM(30)
L1508648-02A	Canister - 2.7 Liter	N/A	NA		Y	Absent	TO15-SIM(30)
L1508648-03A	Canister - 2.7 Liter	N/A	NA		Y	Absent	TO15-SIM(30)
L1508648-04A	Canister - 2.7 Liter	N/A	NA		Y	Absent	TO15-SIM(30)
L1508648-05A	Canister - 2.7 Liter	N/A	NA		Y	Absent	TO15-SIM(30)
L1508648-06A	Canister - 2.7 Liter	N/A	NA		Y	Absent	TO15-SIM(30)

Project Name: FORMER PENETREX PROCESSING

Project Number: PEN1101

Lab Number: L1508648

Report Date: 04/30/15

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Project Name: FORMER PENETREX PROCESSING

Project Number: PEN1101

Lab Number: L1508648

Report Date: 04/30/15

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1508648

 Report Date:
 04/30/15

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised December 16, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility EPA 8270D: Biphenyl. EPA 2540D: TSS EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	AIR A	NALYSIS		Date Rec'd in I	.ab: 4/ 75 /	15		p#: L1508649
	CHAIN OF CUSTODY	Project Information			mation - Data De		Billing Info	
320 Forbes Blvd, Ma	ansfield, MA 02048 FAX: 508-822-3288	Project Name: Former PG	hat a forces		nation - Data De	Inverables	Same as Cli	
Client Information		Project Location: IShore Re	J Glenwood NIK				<u>/</u>	
Client: PWG-C		Project #: 3 PENII	1, Londing, 11		hecker:			
	Johnson Ave	Project Manager: John		Other For	mats:		Regulatory	Requirements/Report Limits
Rohamia	NY (1716	ALPHA Quote #:	Lichler	Additional D	idard pdf report) eliverables:		State/Fed	Program Criteria
Phone: 631- <	NY 11716 589-6353	Turn-Around Time		ASP Report to: (if differ	rent than Project Manager)			
Fax:	-							
Email: The		Standard D RUSH (only	confirmed if pre-approved!)				ANAL	YSIS
These samples have	e been previously analyzed by Alpha	Date Due: 5/1/15	Time:					
	pecific Requirements/Con			<u>l</u>		/		/ / / /
						245	c / / / s	
	All	Columns Belov	v Must Be	Filled 0	Dut	2	TO-15 SIM APH FIXED GASES TO-173	4/70-10
ALPHA Lab ID		Collect		Sample Sample		D - Flow ontroller	TO.15 SIM APH FIXED GASE	5 x
(Lab Use Only)	Sample ID	Date Start Time End Time	Vacuum Vacuum	Matrix* Initials	Size Can C	سراها .	TO.1 Helk FIXEL	/Sample Comments (i.e. PID)
08648-01	TA-00	4-24-15 1002 1102	-29.7 - 5.0	AA KC			X	
-02	IA-002	1015 1115	-29.7 -6.2		459 (CH53		
503 × 503	IA -003	1019 1119	-29,5 -0.1		251 0	208		
-04	IA-004	1023 1123	-29.7 -3.8		507	0252		
1 # 2 # - 05	IA - 005	1030 1130	-29.7 -10.4		321	0454		
-06	0A - 001	V 1033 1136		$\sqrt{}$	44	5336		
	\			• •				
Menganakata personakan menorokan paramanggan menanggan personakan personakan personakan personakan personakan p	· · · · · · · · · · · · · · · · · · ·	AA = Ambient Air (Indoor/Outdoor)		·····				10 Here -
*SAMPLE	E MATRIX CODES	SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify			Container Type		S	Please print clearly, legibly and completely. Samples can not be
	1	Relinquished By:	Date/Time		eived By:	/ D	ate/Time:	logged in and turnaround time clock will not start until any ambi-
	Ken	the more	ant i ani	Will Ell	121-AAL	4/24	15 143	guities are resolved. All samples submitted are subject to Alpha's
Form No: 101 02 (10 Jun 0)	Maulo	Here . AM	4/24/15-1900	10ent 10		4727	15 1900	Terms and Conditions. See reverse side.
50rm No: 101-02 (19-Jun-09 age 48 of 48	-100	· joo w ~	7-35-12-01	700GC			15 0040	7

APPENDIX E Data Usability Summary Report

DATA USABILITY SUMMARY REPORT (DUSR)

Site Name:	Penetrex Site, Glenwood Landing, New York				
Performing Laboratory:	Alpha Analytical Laboratories, Westborough, Massachusetts				
P.W. Grosser Project No.	PEN1101, October 2015 Sampling				
Project Manager	John D. Eichler, Project Manager				
Stone Project Number:	14020 – Penetrex Site, October 2015 Sampling.				
Analyses/Methods:	VOAs by Method 8260C				
Data Validation Level	Full on 10% or two samples in the SDG.				
Prepared by: Kim Watson	, Stone Environmental, Inc.	Completed on: 12/8/2015			
Reviewed by: Morgan Gree	enwald, Stone Environmental, Inc.	SDG No.: L1527896			

Stone Environmental, Inc. (Stone) has completed the validation and quality assurance (QA) evaluation on the analytical data prepared by Alpha Analytical Laboratories in Westborough, Massachusetts for 11 water samples, one field blank, and one trip blank collected October 28, 2015. The laboratory reported the data under Sample Delivery Group (SDG) No. L1527896 received by Stone on November 20, 2015. The sample and laboratory identifiers and the selected analyses as shown on the chain of custody records are provided in Attachment A. Volatile organic analyses were performed according to SW846 Methods 5030B and 8260C. The target compound lists were limited to the standard New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B list for volatiles in waters. This DUSR is based on review of the laboratory SDG case narrative and the full "Tier III" third-party data validation report, which are provided in Attachment B and Attachment C, respectively. Full Tier III data validation was performed on 10% of the data, or two samples for volatiles, in accordance with EPA Region II's Standard Operating Procedures (SOPs) for validating organic analyses and NYSDEC's Technical Guidance for Site Investigation and Remediation (DRAFT DER-10, Nov. 2009) Appendix 2B, Guidance for Data Deliverables and Development of Data Usability Summary Reports. Professional judgment was applied as necessary and appropriate. The remaining data in this SDG received a summary validation or Tier II validation as defined by EPA Region I guidelines.

This DUSR data evaluation included a review of the following as based on the case narrative, data summary tables, and the full data validation:

- Technical holding times
- Sample preservation
- Instrument tuning and calibration
- Instrument and preparation blanks
- Surrogate and internal standard recoveries
- Laboratory control and field sample spike recoveries
- Field and laboratory duplicates

- Sample quantitation and quantitation limits
- Calculation checks (not evaluated in a Tier II validation)

All laboratory deliverables were received in accordance with the work plan and general reporting requirements from NYSDEC's ASP (2005) with the exception that the original case narrative did not include a summary of the unacceptable QC outages. Upon request, the narrative was corrected and updated to include the unacceptable QC outages observed in the QC samples. Any deviations from acceptable QC specifications are discussed in detail in the case narrative and data validation report, and laboratory qualifiers (as defined in the data deliverables) were added to the data, when appropriate, to indicate potential concerns with data usability. These qualifiers were reported on the Form I's by the laboratory and by the third-party validator on the validator EDD. Final validated results are annotated with the following codes, as defined in EPA Region II SOPs.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. The "J" data may be biased high or low.
- UJ -The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantitation limit. In some instances such as dilutions and reanalyses, a result may be indicated as "rejected" to avoid confusion when a more quantitatively accurate result is available.

Summary of Data Usability

The validation and usability assessments indicate that the data from this sample set are usable as qualified during the validation assessment with the exception of the rejected data for 1,2,3-trichlorobenzene in MW-2, MW-3, MW-9 and MW-9D. The overall quality control data provided in the laboratory report and in the case narrative indicate that the data are representative of adequate method accuracy and precision with regard to project objectives. As noted in the full data validation report, results for several compounds were qualified as estimated (J, UJ) due to laboratory quality control outliers. These qualifications are summarized in the full validation report and are summarized below:

- Based on unacceptable percent relative standard deviation (%RSD) and percent difference (%D) values in the associated calibration standards, results for dichlorodifluoromethane, chloromethane, carbon disulfide, vinyl acetate, 2,2-dichloropropane, carbon tetrachloride, trans-1,3-dichloropropene, bromoform, trans-1,4-dichloro-2-butene, bromochloromethane, 1,2dichloroethane, tetrachloroethene, 1,2-dibromo-3-chloropropane, 1,2,4-trichlorobenzene, hexachlorobutadiene and naphthalene in MW-3 and MW-9D were qualified as estimated (J, UJ).
- Based on the extremely high %D (>90%) in the associated continue calibration standard, results for 1,2,3-trichlorobenzene were rejected (R) in MW-3 and MW-9D. Other affected samples in the associated batch include MW-2 and MW-9.

- Based on laboratory contamination, the result for acetone in MW-9 was qualified as less than the reported limit (U).
- Based on the low recoveries in the LCS/LCSD pair, results for chloromethane in MW-3 and MW-9D were qualified as estimated biased low (UJ).
- Based on the low recoveries in the MS/MSD pair, results for vinyl acetate, chloromethane and trans-1,4-dichloro-2-butene in MW-2 were qualified as estimated biased low (J, UJ). Compounds that were acceptable in the MS sample but not in the MSD sample were qualified since the LCS/LCSD recoveries were not acceptable. No data were qualified for the compounds with high recoveries since these compounds were not detected in the associated sample.

Although data were rejected, the overall completeness level attained for the analysis of the field samples was greater than 95%. With the exceptions of 1,2,3-trichlorobenzene in MW-2, MW-3, MW-9 and MW-9D, the overall quality of the data was acceptable and all results as qualified (estimated results) are considered usable.

ATTACHMENT A

CHAIN OF CUSTODY RECORD SDG No. L1527896 Volatiles in Water Samples

ALPHA JOB# 77 31	Billing Information	Same as Client Info		Disposal Site Information	Please identify below location of	applicable disposal facilities.	Disposal Facility:		Other:	Sample Filtration	Done	Lab to do		(Please Specify below)		Sample Specific Comments e	0	M				5	TUCN I	L P)	->	Please print clearly, legibly and completely. Samiles can	not be logged in and	turnaround time clock will not start until any ambiguities are	resolved. BY EXECUTING	HAS READ AND AGREES	TO BE BOUND BY ALPHA'S	(See reverse side.)
Date Rec'd 10/39/15		ASP-A X ASP-B EQuIS (1 File) EQUIS (4 File)		Regulatory Requirement	GS 🛛 🗍 NY Part 375	AWQ Standards NY CP-51	NY Restricted Use	NY Unrestricted Use	NYC Sewer Discharge				(2								Date/Time	44 10 Rg/15 8251	10- 129-15 1530	stel stille for a star
0	Deliverables		other	Regulatory	NY TOGS	AWQ S	NY Re		NYC S	ANALYSIS	070	8-7.	410	N-	Sampler's	Initials	K X	-							1 1.	77	Container Type		Preservative &	A Received By:	Hard Marie 1	Matter 100h	Marianan Maria
Page		Proce	4		(Due Date:	# of Days:						Sample	ne Matrix	S GW	0	1 00	25	2	1	0	1 0	5	2				Date/Time		5 1830 -	11 0010
y Rd, Suite 5 Way ooper Ave, Suite 105		ormer Penetrex	172	roject #)	John Fichle			X							Collection	Date Time	10-29-15 0615	0640	1 070	1 073	080	082	1 0350	0690	1, 100	V 1045				13	will	141 x 29/	What .
<u>Service Centers</u> Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105	Project Information	Project Name: Former Project Location: / Shore		(Use Project name as Project #	Project Manager: 5	ALPHAQuote #:	Turn-Around Time	Standard 🕅	Rush (only if pre approved)	ed by Alpha	nents:				Sample ID		MW-3/m5/m50	MW-3	P-WM	06-WW	MW- 80	MW - 8	01 - MW	I-MW	L-MW	H-MW	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Relinquished By:	Moutor C	Plan Steint &	1.2.1
NEW YORK CHAIN OF CUSTODY	Mansfield, MA 02048 320 Forbes Blvd	TEL: 508-822-9300 FAX: 508-822-3288			Filmson Ave.	gilli	-6352)	resser.com	een previously analyz	c requirements/comn		s or TAL.		Sa				1	-							Container Code P = Plastic A = Amber Glass	V = Vial G = Glass	G = Glass B = Bacteria Cup	C = Cube O = Other		ע - פטע פטווופ	J-Sept-2013)
Дина	Westborough, MA 01581 8 Walkup Dr.	TEL: 508-898-9220 FAX: 508-898-9193	Client Information	Client: VW (& C	0	Bohemia, NYI	Phone: 631-589	Fax:	Email: John Co angrasser.com	These samples have been previously analyzed by Alpha	Other project specific requirements/comments:		Please specify Metals or TAL.	P	ab ALPHA Lab ID	(Lab Use Unity)	10- 96,11/2	10	0	60	S	CB	5	Co Co	04	01	Preservative Code: A = None B = HCI	C = HNO ₃ D = H-SO	U = H ₂ SO ₄ E = NaOH	F = MeOH G = NaHSO4		K/E = Zn Ac/NaOH D = Other	Form No: 01-25 HC (rev. 30-Sept-2013)

Page 18 of 1756

ALPHA Job # 7796	Billing Information	X Same as Client Info Po #		Disposal Site Information	Please identify below location of	applicable disposal facilities.	Disposal Facility:		Other:	Sample Filtration	Done	Lab to do		(Please Specify below)	4	Sample Specific Comments		1 20	1		1/11	VON 14	A C I)		Please print clearly, legibly and completely. Samples can	not be logged in and	turnaround time clock will not start until any ambiguities are	resolved. BY EXECUTING	THIS COC, THE CLIENT	TO BE BOUND BY ALPHA'S	TERMS & CONDITIONS.	(ספפ ובגבו אם מפי)
10/39/15		ASP-B		ent	NY Part 375	NY CP-51	Other	96	arge											-	\langle		9	2					, Date/Time	10/29/15 8-54	24-15 1830	saler salecter	/ /
Date Rec'd in Lab	Deliverables	ASP-A	□ Other	Regulatory Requirement	NY TOGS	AWQ Standards	NY Restricted Use	NY Unrestricted Use	NYC Sewer Discharge	ANALYSIS	C	926	5-7	24		DON		/ ×	X)					>	d	9	Received By:	OCUN AAL	10022 10.	who flower	
Page O of O		Processing													Sample Sampler's		GW KC	GW 14	WT MS							Container Type	Preservative		110	RM21	12311 7 pm	Dryf 11.00fer	
, Suite 5 · Ave, Suite 105		Penetrex e Rd, Glennu		ct #)	Eichler			Due Date:] # of Days:						Collection	Date Time	128/15 1160	10/28/15 XX	XX 51/12/01							A935 AA015			Date/Time	4 1 1	A1- 10/20/16	11/2 (a)	1 2
Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105	Project Information	Project Name: Former	Project # 0ENII01	(Use Project name as Project #	Project Manager: John	ALPHAQuote #:	Turn-Around Time	Standard 🕅	Rush (only if pre approved)	d by Alpha	ents:				<u>4</u>	Sample ID	Blank 101		BLANK 10							Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Relinquished By:	Martty Un 1	Here Jucore P	1 mars 1 war	
NEW YORK CHAIN OF CUSTODY	Mansfield, MA 02048 320 Forbes Blvd	TEL: 508-822-9300 FAX: 508-822-3288			ichnson Ave	NY 11716	89-6353		WAY TO SPORT	These samples have been previously analyzed by Alpha	Other project specific requirements/comments:		s or TAL.			San	Field 1	00200	TATP	-		~				Container Code P = Plastic A = Amber Glass		B = Bacteria Cup	C = Cube O = Other		1		0-Sept-2013)
Анча	Westborough, MA 01581 8 Walkup Dr.	TEL: 508-898-9220 FAX: 508-898-9193	Client Information	Client: VWG-C	50	Bohomia, 1	S	Fax:	Email: Johne @ 9 WorrdSencem	These samples have	Other project specifi		Please specify Metals or TAL	P	G ALPHA Lab ID	9 (Lab Use Only)	11- 96 8/2	0	13					and Malifan		Preservative Code: A = None B = HCI	C = HNO ₃ D = H ₅ SO ₄	E = NaOH	F = MeOH G = NaHSO,	$H = Na_2 S_2 O_3$	K/E = Zn Ac/NaOH 0 = Other		Form No: 01-25 HC (rev. 30-Sept-2013)

Page 19 of 1756

ATTACHMENT B

CASE NARRATIVE SDG No. L1527896 Volatiles in Water Samples

Project Name: Project Number:	FORMER PENETREX PROCESSING PEN1101	ESSING		Lab Number: Report Date:	L1527896 11/24/15
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1527896-01	MW-2	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 06:15	10/29/15
L1527896-02	MW-3	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 06:40	10/29/15
L1527896-03	6-MW	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 07:20	10/29/15
L1527896-04	D6-WM	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 07:35	10/29/15
L1527896-05	MW-8D	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 08:00	10/29/15
L1527896-06	MW-8	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 08:25	10/29/15
டங்27896-07 இ	MW-10	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 08:50	10/29/15
L 😚 27896-08	MW-1	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 09:20	10/29/15
L1527896-09	7-WM	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 10:05	10/29/15
L1527896-10	MW-4	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 10:45	10/29/15
L1527896-11	FIELD BLANK	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 11:00	10/29/15
L1527896-12	DUP001	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 00:00	10/29/15
L1527896-13	TRIP BLANK	WATER	1 SHORE RD., GLENWOOD LANDING, NY	10/28/15 00:00	10/29/15

Serial_No:11241511:27

Page 2 of 89

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101

Lab Number: L1527896 Report Date: 11/24/15

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101

 Lab Number:
 L1527896

 Report Date:
 11/24/15

Case Narrative (continued)

Report Submission

This report replaces the report issued November 5, 2015. At the client's request, all sample narratives are now included.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG836780-1/-2 LCS/LCSD recoveries, associated with L1527896-01 through -04, are outside the acceptance criteria for chloromethane (60%/54%), vinyl acetate (LCSD 68%), bromochloromethane (LCS 141%), hexachlorobutadiene (LCS 137%), naphthalene (181%/180%), 1,2,3-trichlorobenzene (196%/178%), 1,2,4-trichlorobenzene (158%/140%), and trans-1,4-dichloro-2-butene (LCSD 66%), but within the overall method allowances.

The WG836780-1/-2 LCS/LCSD RPDs, associated with L1527896-01 through -04, are above the acceptance criteria for bromoform (21%), n-butylbenzene (21%), p-isopropyltoluene (22%), 1,2,4-trimethylbenzene (21%), 1,4-dioxane (22%) and 1,2,4,5-tetramethylbenzene (22%).

The WG836927-1/-2 LCS/LCSD recoveries, associated with L1527896-07, -08, -09, -11,-12, and -13, are outside the acceptance criteria for chloromethane (LCS 62%), naphthalene (165%/183%), 1,2,3-trichlorobenzene (176%/186%), 1,2,4-trichlorobenzene (148%/150%), and trans-1,4-dichloro-2-butene (67%/69%), but within the overall method allowances.

The WG837225-1/-2 LCS/LCSD recoveries, associated with L1527896-05, are outside the acceptance criteria for 4-methyl-2-pentanone (142%/144%) and 2,2-dichloropropane (143%/138%), but within the overall method allowances.

The WG837278-1/-2 LCS/LCSD recoveries, associated with L1527896-06 and -10, are outside the acceptance criteria for trans-1,3-dichloropropene (LCSD 68%), 4-methyl-2-pentanone (LCSD 55%), 2-hexanone (LCSD 53%), naphthalene (65%/55%), and trans-1,4-dichloro-2-butene (LCSD 60%), but within the overall method allowances.

The WG837278-1/-2 LCS/LCSD RPDs, associated with L1527896-06 and -10, are above the acceptance

Project Name: FORMER PENETREX PROCESSING Project Number: PEN1101 Lab Number: L1527896 Report Date: 11/24/15

Case Narrative (continued)

criteria for methylene chloride (27%), 1,1-dichloroethane (28%), chloroform (28%), carbon tetrachloride (29%), 1,2-dichloropropane (28%), dibromochloromethane (31%), 1,1,2-trichloroethane (30%), tetrachloroethene (27%), chlorobenzene (29%), trichlorofluoromethane (30%), 1,2-dichloroethane (29%), 1,1,1-trichloroethane (30%), bromodichloromethane (30%), trans-1,3-dichloropropene (31%), cis-1,3-dichloropropene (30%), 1,1dichloropropene (29%), bromoform (29%), 1,1,2,2-tetrachloroethane (27%), benzene (29%), toluene (29%), ethylbenzene (28%), chloromethane (27%), bromomethane (32%), vinyl chloride (30%), chloroethane (33%), 1,1-dichloroethene (27%), trans-1,2-dichloroethene (28%), trichloroethene (28%), 1,2-dichlorobenzene (26%), 1,3-dichlorobenzene (27%), 1,4-dichlorobenzene (27%), methyl tert butyl ether (29%), p/m-xylene (29%), o-xylene (29%), cis-1,2-dichloroethene (27%), dibromomethane (30%), 1,2,3-trichloropropane (26%), acrylonitrile (28%), styrene (30%), dichlorodifluoromethane (28%), acetone (28%), carbon disulfide (30%), 2butanone (25%), vinyl acetate (31%), 4-methyl-2-pentanone (25%), 2-hexanone (23%), bromochloromethane (28%), 2,2-dichloropropane (29%), 1,2-dibromoethane (31%), 1,3-dichloropropane (29%), 1,1,1,2tetrachloroethane (29%), bromobenzene (26%), n-butylbenzene (28%), sec-butylbenzene (28%), tertbutylbenzene (30%), o-chlorotoluene (27%), p-chlorotoluene (27%), 1,2-dibromo-3-chloropropane (24%), hexachlorobutadiene (27%), isopropylbenzene (28%), p-isopropyltoluene (29%), n-propylbenzene (29%), 1,2,4-trichlorobenzene (24%), 1,3,5-trimethylbenzene (29%), 1,2,4-trimethylbenzene (29%), 1,4diethylbenzene (30%), 4-ethyltoluene (28%), 1,2,4,5-tetramethylbenzene (31%), ethyl ether (31%), and trans-1,4-dichloro-2-butene (27%).

The WG836780-4/-5 MS/MSD recoveries, performed on L1527896-01, are outside the acceptance criteria for chloromethane (MSD 60%), vinyl acetate (68%/67%), naphthalene (138%/140%), 1,2,3-trichlorobenzene (139%/137%) and trans-1,4-dichloro-2-butene (57%/57%); however, the associated LCS/LCSD recoveries are within overall method allowances. No further action was required.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609, Jendon Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 11/24/15

ATTACHMENT C

DATA VALIDATION REPORT SDG No. L1527896 Volatiles in Water Samples

DATA VALIDATION

FOR

PENETREX SITE GLENWOOD LANDING, NEW YORK

October 2015 Sampling Round

ORGANIC ANALYSIS DATA Volatiles in Water Samples

Sample Delivery Group (SDG) No. L1527896

Chemical Analyses Performed By:

Alpha Analytical Eight Walkup Drive Westborough, MA 01581-101

For:

John D. Eichler P.W. Grosser Consulting 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Data Validation Report By:

Kim B. Watson, RGAP-GLP Stone Environmental, Inc. 535 Stone Cutters Way Montpelier, VT 05602

December 8, 2015

Reference #14-020 Penetrex 10/2015 Validation Report_L1527896/kbw

EXECUTIVE SUMMARY

Stone Environmental, Inc. (Stone) has completed third-party data validation on volatile organic analyses (VOA) data in water samples as prepared by Alpha Analytical from the Penetrex Site in Glenwood Landing, New York. The laboratory reported the data under Sample Delivery Group (SDG) No. L1527896 that was submitted as a single data package received by Stone (electronically) on November 20, 2015. As requested in the Project Plan and by P.W. Grosser, approximately 10% or two samples from this SDG were considered for full data validation. The samples below were selected for validation as follows:

Sample No.	Laboratory ID	Parameter
MW-3	L1527896-02	VOA
MW-9D	L1527896-04	VOA

The samples in this data set represent samples collected on October 28, 2015. The samples were received at the laboratory the following day (October 29, 2015). Other samples reviewed during the validation effort were the field duplicates (DUP001) and the field QC samples identified as the field blank and the trip blank.

Based on the validation effort, results in all samples were determined to be valid as reported with the following exceptions:

- Results for dichlorodifluoromethane, chloromethane, carbon disulfide, vinyl acetate, 2,2dichloropropane, carbon tetrachloride, trans-1,3-dichloropropene, bromoform, trans-1,4dichloro-2-butene, bromochloromethane, 1,2-dichloroethane, tetrachloroethene, 1,2dibromo-3-chloropropane, 1,2,4-trichlorobenzene, hexachlorobutadiene and naphthalene in MW-3 and MW-9D were qualified as estimated (J, UJ).
- Results for 1,2,3-trichlorobenzene were rejected (R) in MW-3 and MW-9D. Other affected samples in the associated batch include MW-2 and MW-9.
- The result for acetone in MW-9 was qualified as less than the reported limit (U).
- Results for chloromethane in MW-3 and MW-9D were qualified as estimated biased low (UJ).

Stone Environmental, Inc. December 8, 2015

• Results for vinyl acetate, chloromethane and trans-1,4-dichloro-2-butene in MW-2 were qualified as estimated biased low (J, UJ). Compounds that were acceptable in the MS sample but not in the MSD sample were qualified since the LCS/LCSD recoveries were not acceptable. No data were qualified for the compounds with high recoveries since these compounds were not detected in the associated sample.

The laboratory appropriately applied "J" qualifiers to the sample Form I's when the concentration of an analyte was less than the sample-specific quantitation limit. The validator did not remove these qualifiers. All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column on the Form 1 summaries. All non-detects have been reported with a "U" on the EDD. The validator recommends that the non-detects reported to the MDL be reported as estimated "UJ" since these values are not supported with a calibration point on the initial calibration curve.

Documentation problems observed in the data package and on the chain of custody records are described in Section XIII.

This validation report shall be considered <u>part of the data package</u> for all future distributions of the volatiles analysis data.

The Overall Evaluation of Data (Section XII) presents the rationale for the decisions that have been implemented and are summarized above. The validation findings and conclusions for each analytical parameter are detailed in the remaining sections of this report and are based on the following information.

QC Criteria	Were acceptance	criteria met for C Concern?	ontaminants of
	Yes	No	NA
Chain of custody (COC)/sample integrity/holding times	\checkmark		
Data completeness	\checkmark		
Holding times and sample preservation	\checkmark		
GC/MS performance checks	\checkmark		
Calibrations		√	
Laboratory method blanks/equipment blanks		√	
Matrix spike/matrix spike duplicate (MS/MSD) results		√	
Laboratory control samples		√	
Field duplicate results	\checkmark		
Surrogate recoveries	\checkmark		
Internal standard results	\checkmark		
Compound identification	\checkmark		
Sample results	\checkmark		

Stone Environmental, Inc. December 8, 2015

SDG No. L1527896

QC Criteria	Were acceptance	criteria met for C Concern?	ontaminants of								
	Yes	No	NA								
Calculations/transcriptions	\checkmark										
NA - Not applicable; indicates that either the QC is not applicable to this data set or is not required by the method. Note: Upon request the case narrative was corrected and updated in the data package.											

SDG No. L1527896

Stone Environmental, Inc. December 8, 2015

INTRODUCTION

Analyses of water samples were performed according to US EPA SW846 Methodologies: Method 8260 GC/MS analyses for volatiles. The target compound lists included all standard target analytes typically specified under these methods under the NYS ASP Category B Deliverables.

To the extent possible, Stone's validation was performed in conformance with Tier III guidelines as defined by EPA Region I, "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", dated March 1996. The data were evaluated in accordance with EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW-24 "SOP for the Validation of Organic Data Acquired Using SW-846 Method 8260" (Rev. 2, December 1996). EPA's "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008, October 1999) were also considered during the evaluation, and professional judgment was applied as necessary and appropriate.

As requested by P.W. Grosser, an independent third party data validation was performed on 10% of the sample data. In addition, the validation effort was used to complete the data usability evaluation for the data collected during the remediation investigation. The data usability summary report (DUSR) was prepared based on findings in this validation report and extrapolated to all samples in the deliverables for usability.

The data validation process evaluates data on a technical basis for chemical analyses conducted under the CLP or other well-defined methods. Contract compliance is evaluated only in specific situations. Issues pertaining to contractual compliance are noted where applicable. It is assumed that the data package is presented in accordance with the CLP requirements. It is also assumed that the data package represents the best efforts of the laboratory and has already been subjected to adequate and sufficient quality review prior to submission for validation.

Results of sample analyses are reported by the laboratory as either qualified or unqualified; various qualifier codes are used by the laboratory to denote specific information regarding the analytical results. During the validation process, laboratory data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data validator as necessary and appropriate. Raw data are examined in detail to check calculations, compound identification, and/or transcription errors in reference to samples in the Executive Summary only. Validated results are either qualified or unqualified; if results are unqualified, this means that the reported values may be used without reservation. Final validated results are annotated with the following codes, as defined in EPA Region II Standard Operating Procedures:

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample-specific dilution factors and percent solids corrections or sample sizes that deviate from those required by the method. Stone Environmental, Inc. December 8, 2015

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. The "J" data may be biased high or low.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantitation limit. In some instances (e.g., a dilution), a result may be indicated as "rejected" to avoid confusion when a more quantitatively accurate result is available.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- JN The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

These codes indicate qualifications placed on the data as a result of the validation effort. They are recorded on the Validation EDD submitted electronically as Attachment A. The electronic data file is L1527896_ny1_validationcodes.xls, which contains the validated data in tabular format.

All data users should note two facts. First, the "R" qualifier means that the laboratoryreported value is completely unusable. The analysis is invalid due to significant quality control problems and provides no information as to whether the compound is present or not. Rejected values should not appear on data tables because they have no useful purpose under any circumstances. Second, no analyte concentration is guaranteed to be accurate even if all associated quality control is acceptable. While strict quality control conformance provides welldefined confidence in the reported results, any analytical result will always contain some uncertainty as demonstrated in the laboratory-derived control limits.

The user is also cautioned that the validation effort is based on the materials provided by the laboratory. Software manipulation, resulting in misleading raw data printouts, cannot be routinely detected during validation; unless otherwise stated in the report, these kinds of issues are outside the scope of this review.

Detailed Findings of Measurement Error Associated with the Analytical Analysis

I. Preservation and Technical Holding Times (Sample Integrity)

The water samples for these analyses were collected on October 28, 2015. The samples were received at the laboratory the following day (October 29, 2015). Other samples reviewed during the validation effort were the field duplicates (DUP001) and the field QC samples identified as the field blank and the trip blank. According to chain of custody records, laboratory receipt records, and laboratory runlogs, all samples were appropriately preserved in the field prior to collection and confirmed by the laboratory to have a ph<2. All holding times for analysis were met for all samples. All samples were received at the laboratory at the appropriate temperature ($4.3 \,^\circ$ C; < 10° C limit).

II. GC/MS Instrument Performance Check (Tuning)

The tuning of the instruments for VOA analyses was demonstrated with the analysis of 4bromofluorobenzene (BFB). Tunes were analyzed for each shift (12-hour period) during which the samples or associated standards were analyzed. All tunes as recorded on Form V-like summaries in this data set were acceptable.

Initial and continuing calibration verifications were performed for the VOA analyses and were acceptable with the following exceptions:

Analysis Date (file Id)	Analysis Time	Compound	%RSD % D/ Average RRF ¹	Action	Associated Samples	
IC 10/11/2015	17:26-	acrolein	0.01728	None	All	
Gonzo.i	21:18	1,4-dioxane	0.00196	None	All	
		dichlorodifluoromethane	-29.0	UJ		
		chloromethane	-23.1	UJ		
		carbon disulfide	-22.3	UJ		
10/12/2015		vinyl acetate	-60.0	UJ		
(1011A16.D)	00:38	2,2-dichloropropane	-41.6	UJ	All	
ICV		carbon tetrachloride	-34.5	UJ		
		trans-1,3-dichloropropene	-23.9	UJ		
		bromoform	-21.2	UJ		
		trans-1,4-dichloro-2-butene	-21.0	UJ		
		chloromethane	-39.7	UJ		
		vinyl acetate	-21.0	UJ		
11/2/2015	12:09	bromochloromethane	41.0 UJ		MW-3	
(1102A01.D)	12.09	1,2-dichloroethane	22.7	MW-9D		
		tetrachloroethene	25.2			
		Trans-1,4-dichloro-2-butene	-22.5	UJ		

SDG No. L1527896

Stone Environmental, Inc. December 8, 2015

Analysis Date (file Id)	Analysis Time	Compound	%RSD % D/ Average RRF ¹	Action	Associated Samples
		1,2-dibromo-3-chloropropane	23.9	UJ	
		1,2,4-trichlorobenzene	58.6	UJ	
		hexachlorobutadiene	37.4	UJ	
		naphthalene	81.0	UJ	
		1,2,3-trichlorobenzene	96.0	R	

Initial Calibration (IC) limits = <20%RSD or <0.995, Continuing Calibration (CC) limits = 20%D, AVE RRF <0.050

¹It should be noted that pursuant to the National Functional Guidelines document, results for certain compounds such as 1,4-dioxane in all samples in this data set warranted qualification based on the low average RRF achieved. However, this compound was spiked into the laboratory control samples and the matrix spike pairs and satisfactory recoveries were demonstrated on the recovery summaries, therefore, results for this compound were not qualified. The CLP methodology and the SW846 8260 methodology specify that some compounds may exhibit RRFs <0.05, which is acceptable. Therefore, based on professional judgment, no data were qualified on this basis.

It should be noted that negative percent difference values will result in a low bias for positive detects and a positive percent difference will result in a high bias for positive detects.

Based on unacceptable percent relative standard deviation (%RSD) and percent difference (%D) values in the associated calibration standards, results for dichlorodifluoromethane, chloromethane, carbon disulfide, vinyl acetate, 2,2-dichloropropane, carbon tetrachloride, trans-1,3-dichloropropene, bromoform, trans-1,4-dichloro-2-butene, bromochloromethane, 1,2-dichloroethane, tetrachloroethene, 1,2-dibromo-3-chloropropane, 1,2,4-trichlorobenzene, hexachlorobutadiene and naphthalene in MW-3 and MW-9D were qualified as estimated (J, UJ).

Based on the extremely high %D (>90%) in the associated continue calibration standard, results for 1,2,3-trichlorobenzene were rejected (R) in MW-3 and MW-9D. Other affected samples in the associated batch include MW-2 and MW-9.

III. Blanks: Laboratory Method Blanks, Field and Trip Blanks

Laboratory method blanks (MB) were prepared with each analytical batch and reviewed by the validator. No target analytes were detected in any of the VOA MBs with the exception of acetone in MB WG836927Blank and WG837225-3BLANK (2.0 ug/L and 2.1 ug/L, respectively) on 11/03/2015. Based on laboratory contamination, the result for acetone in MW-9 was qualified as less than the reported limit (U).

A trip blank (TB) and a field blank (FB) were submitted with the samples in this data set. No target analytes were detected in the TB and no target analytes were detected in the FB.

Stone Environmental, Inc. December 8, 2015

IV. Surrogate Compounds (Organic)

Percent recoveries of the VOA surrogates (1,2-dichloroethane-d4, 4-bromofluorobenzene, dibromofluoromethane, toluene-d8) were correctly reported on the Form summaries and were within acceptance limits for the samples.

V. Internal Standards (IS)

All IS areas and retention times (RT), as reported on the Form VIII summaries, were within the established QC limits for all reported sample analyses in this data package.

VI. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Sample MW-2 was prepared as a water-matrix MS/MSD pair. Percent recoveries (%R) and relative percent differences (%RPD) between paired recoveries were correctly calculated and accurately reported on the Form III summaries for the spiked analytes in the organic analyses. All reported %Rs and RPD values for laboratory precision were acceptable with the following exceptions: recoveries were below the acceptance criteria in the MS/MSD pair for vinyl acetate (68%/67%), trans-1,4-dichloro-2-butene (57%/57%) and for chloromethane (60%) in the MSD. Recoveries exceeded the limits for naphthalene (138%/140%) and 1,2,3-trichlorobenzene (139%/137%).

Based on the low recoveries in the MS/MSD pair, results for vinyl acetate, chloromethane and trans-1,4-dichloro-2-butene in MW-2 were qualified as estimated biased low (J, UJ). Compounds that were acceptable in the MS sample but not in the MSD sample were qualified since the LCS/LCSD recoveries were not acceptable. No data were qualified for the compounds with high recoveries since these compounds were not detected in the associated sample.

VII. Field Duplicate Precision

Sample DUP001 was identified as a field duplicate of MW-3. All target analytes greater than the quantitation limit exhibited acceptable reproducibility (0-7%RPD; <30%RPD-Limit).

VIII. Laboratory Control Samples/Accuracy Check

Laboratory control samples and/or laboratory control sample duplicates (LCS/LCSD) were performed at the required frequency and results were provided on Form III-like summaries for all analyses. Recoveries were acceptable and within the laboratory derived recovery limits with the exceptions noted below:

SDG No. L1527896

Stone Environmental, Inc. December 8, 2015

Sample ID	Compound	LCS %R	LCSD %R	RPD	RPD limits/QC Limits	Actio n	Associate d Samples
	chloromethane	60	54	11	20/64-130	UJ	MW-3
	Bromochloromethan e	141	118	20	20/70-130	None	MW-9D
	Hexachlorobutadiene	137	112	20	20/70-130	None	
	Naphthalene	181	180	1	20/70-130	None	
	1,2,3- Trichlorobenzene	196	178	10	20/70-130	Q-note	
WG836780-1/2	1,2,4- Trichlorobenzene	158	140	12	20/70-130	None	
LCS/LCSD 11/2/2015	1,2,4- Trimethylbenzene	95	77	21	20/70-130	None	
11/2/2015	Bromoform	114	92	21	20/70-130	None	
	Vinyl acetate		68	15	20/70-130	None	
	n-butylbenzene	90	73	21	20/53-136	None	
	p-Isopropyltoluene		80	22	20/70-130	None	
	1,4-dioxane	118	95	22	20/56-162	None	
	1,2,4,5- tetramathylbenze	97	78	22	20/70-130	None	
	trans-1,4-Dichloro-2- butene	78	66	20	20/70-130	UJ	

Q-note: results for 1,2,3-trichlorobenzene were subsequently rejected due to the CCV and the R qualifier takes precedence. As does the J, UJ based on the calibration standards.

No action was taken on the RPD values alone that were marginally outside the limits since recoveries were acceptable in both the LCS/LCSD analyses. In addition, no action was taken on recoveries that exceeded the limits since these compounds were non-detect in the samples.

Based on the low recoveries in the LCS/LCSD pair, results for chloromethane in MW-3 and MW-9D were qualified as estimated biased low (UJ).

IX. Target Compound Identification

Reported target compounds were correctly identified with supporting spectra present for all field samples in this data set.

X. Compound Quantitation and Reported Quantitation Limits

Target compound concentrations and quantitation limits were appropriately reported on the Form Is.

Stone Environmental, Inc. December 8, 2015

The laboratory appropriately applied "J" qualifiers to the sample Form I's when the concentration of an analyte was less than the sample-specific quantitation limit. The validator did not remove these qualifiers. All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column on the Form 1 summaries. All non-detects have been reported with a "U" on the EDD. The validator recommends that the non-detects reported to the MDL be reported as estimated "UJ" since these values are not supported with a calibration point on the initial calibration curve.

The laboratory-generated quantitation limits are provided on the Form I and on the electronic data deliverables. Qualifications placed on the data as a result of the validation effort are highlighted and recorded on the validation electronic data deliverables (EDD) (L1527896_ny1_validationcodes.xls). The validation EDDs are submitted electronically in Attachment A.

XI. System Performance

The analytical systems appear to have been work satisfactorily at the time of these analyses based on evaluation of the available raw data. Due to the unacceptable calibration exceedances and the recoveries outside the limits in the LCS/LCSD it is highly suggested that new initial calibrations be performed.

XII. Overall Evaluation of Data

Based on the validation effort, results for the VOA analytes in these samples were determined to be valid as reported with the following exceptions:

- Based on unacceptable percent relative standard deviation (%RSD) and percent difference (%D) values in the associated calibration standards, results for dichlorodifluoromethane, chloromethane, carbon disulfide, vinyl acetate, 2,2dichloropropane, carbon tetrachloride, trans-1,3-dichloropropene, bromoform, trans-1,4dichloro-2-butene, bromochloromethane, 1,2-dichloroethane, tetrachloroethene, 1,2dibromo-3-chloropropane, 1,2,4-trichlorobenzene, hexachlorobutadiene and naphthalene in MW-3 and MW-9D were qualified as estimated (J, UJ).
- Based on the extremely high %D (>90%) in the associated continue calibration standard, the result for 1,2,3-trichlorobenzene was rejected (R) in MW-3 and MW-9D. Other affected samples in the associated batch include MW-2 and MW-9.
- Based on laboratory contamination, the result for acetone in MW-9 was qualified as less than the reported limit (U).

Stone Environmental, Inc. December 8, 2015

- Based on the low recoveries in the LCS/LCSD pair, results for chloromethane in MW-3 and MW-9D were qualified as estimated biased low (UJ).
- Based on the low recoveries in the MS/MSD pair, results for vinyl acetate, chloromethane and trans-1,4-dichloro-2-butene in MW-2 were qualified as estimated biased low (J, UJ). Compounds that were acceptable in the MS sample but not in the MSD sample were qualified since the LCS/LCSD recoveries were not acceptable. No data were qualified for the compounds with high recoveries since these compounds were not detected in the associated sample.

The laboratory appropriately applied "J" qualifiers to the sample Form I's when the concentration of an analyte was less than the sample-specific quantitation limit. The validator did not remove these qualifiers. All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column on the Form 1 summaries. All non-detects have been reported with a "U" on the EDD. The validator recommends that the non-detects reported to the MDL be reported as estimated "UJ" since these values are not supported with a calibration point on the initial calibration curve.

XIII. Documentation

The chain of custody records were present and accurately completed for all reported samples in this data set and the data package was complete with the following exception:

- The original case narrative did not note any of the QC failures that were observed in the data package as required by the NYS ASP Appendix B deliverables and NELAP reporting. The validator requested that a revised narrative be provided so that the unacceptable QC data were documented by the laboratory. The updated narrative was provided on December 7, 2015.
- It should be noted that the method detection limits (MDL) study provided in the data package is over a year old (2009) and according to the SW846 methodologies these should be updated annually. The MDLs reported on the Form 1 do not match the MDLs reported on the MDL Summary Form; however, the values are within the documented LOD range specified.

These issues do not directly affect the validity of the analytical data, but could be problematic if the results were to be used in a litigation situation. These data packages were submitted to the validator electronically. Data are archived at the analytical laboratory.

This validation report shall be considered <u>part of the data package</u> for all future distributions of the volatiles analysis data.

ATTACHMENT A

Electronic Data Deliverables Summary Tables SDG No. L1527896 Volatiles in Water Samples (Submitted Electronically)

Sample Results Comparison with New	w York TAGM	Criteri																						
CLIENT SAMPLE ID SAMPLING DATE				MW-2 28-OCT-15	MW-3 28-OCT-15		MW-9 28-OCT-15	MW-9D 28-OCT-15		MW-8D 28-OCT-15		MW-8 28-OCT-15		MW-10 28-OCT-15		MW-1 28-OCT-15		MW-7 28-OCT-15	MW-4 28-OCT-15		FIELD BLANK 28-OCT-15	DUP001 28-OCT-15		TRIP BLANK 28-OCT-15
LAB SAMPLE ID				L1527896-01	L1527896-02		L1527896-03	L1527896-04		L1527896-05		L1527896-06		L1527896-07		L1527896-08		L1527896-09	L1527896-10		L1527896-11	L1527896-12		L1527896-13
	CAS Number	-TAGM-G	Units		Qual	Qual		Qual	Qua	1	Qual	1	Qual		Qual		Qual	Qual		Qual		Qual	Qual	Qua
Volatile Organics by GC/MS - Westb	orough Lal																							
1,1,1,2-Tetrachloroethane	630-20-6		ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
1,1,1-Trichloroethan	71-55-6	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	79-34-5	5	ug/l ug/l	0.14	U 0.14 U 0.5	U	0.58	U 0.14 U 0.5	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14 U 0.5 U	0.14	U	0.14	U 0.14	U	0.14 U 0.5 U
1,1-Dichloroethane	75-34-3	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.5	U	0.5	U	0.5	U	0.7	U	0.5 U	0.7	U	0.7	U 0.7	U	0.5 U
1,1-Dichloroethen	75-35-4	5	ug/l	0.14	U 0.14	U	0.57	U 0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14 U	0.14	U	0.14	U 0.14	U	0.14 U 0.7 U
1,1-Dichloropropens 1,2,3-Trichlorobenzens	563-58-6 87-61-6		ug/l ug/l	0.7 0.7	U 0.7 R 0.7	P U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U 0.7 U	0.7	U	0.7	U 0.7 U 0.7	U	0.7 U 0.7 U
1,2,3-Trichloropropans	96-18-4	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7	Ũ	0.7 U	0.7	Ŭ	0.7	U 0.7	Ŭ	0.7 U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	95-93-2 120-82-1		ug/l	0.65	U 0.65	U	2.6 2.8	U 0.65	U	0.65	U	0.65	U	0.65	U	0.65	U	0.65 U 0.7 U	0.65	U	0.65	U 0.65	U	0.65 U 0.7 U
1,2,4-1 richlorobenzen(1.2.4-Trimethylbenzen(95-63-6	5	ug/l ug/l	0.7	U 0.7	U	2.8	U 0.7	UJ	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	
1,2-Dibromo-3-chloropropan	96-12-8		ug/l	0.7	U 0.7	UJ	2.8	U 0.7	UJ	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U 0.7 U
1,2-Dibromoethans 1,2-Dichlorobenzens	106-93-4 95-50-1	4.7	ug/l ug/l	0.65	U 0.65 U 0.7	U	2.6 2.8	U 0.65 U 0.7	UU	0.65	U	0.65	U	0.65	U	0.65	U	0.65 U 0.7 U	0.65	U	0.65	U 0.65 U 0.7	U	0.65 U 0.7 U
1,2-Dichloroethane	107-06-2	5	ug/I ug/I	0.13	U 0.13	UJ	0.53	U 0.13	UJ	0.13	U	0.13	U	0.13	U	0.13	U	0.13 U	0.13	U	0.13	U 0.13	U	0.13 U
1,2-Dichloroethene, Tota	540-59-0		ug/l	0.7	U 68	J	2.8	U 0.7	U	1.2	J	21		0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 73	J	0.7 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	78-87-5 108-67-8	-	ug/l ug/l	0.13	U 0.13 U 0.7	U	0.53	U 0.13 U 0.7	UU	0.13	U	0.13	U	0.13	U	0.13	U	0.13 U 0.7 U	0.13	U	0.13 0.7	U 0.13 U 0.7	U	0.13 U 0.7 U
1.3-Dichlorobenzene	541-73-1	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
1,3-Dichloropropane	142-28-9	5	ug/l	0.7	U 0.7	U	2.8	U 0.7 U 0.14	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
1,3-Dichloropropene, Tota 1.4-Dichloropenzene	542-75-6 106-46-7	5	ug/l ug/l	0.14	U 0.14 U 0.7	U	0.58	U 0.14	U	0.14	UU	0.14	U	0.14	U	0.14	U	0.14 U 0.7 U	0.14	U	0.14	U 0.14 U 0.7	U	0.14 U 0.7 U
1,4-Dioxane	123-91-1		ug/l	41	U 41	Ŭ	160	U 41	Ŭ	41	Ŭ	41	Ŭ	41	Ŭ	41	Ŭ	41 U	41	Ŭ	41	U 41	Ŭ	41 Ū
2,2-Dichloropropane	594-20-7	F0.	ug/l	0.7	U 0.7	UJ	2.8	U 0.7	UJ	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
2-Butanone 2-Hexanone	78-93-3 591-78-6	50	ug/l ug/l	1.9 1	U 1.9 U 1	U 11	7.8 4	U 1.9 U 1	UUU	1.9	U 11	1.9	U 11	1.9	U 11	1.9 1	U 11	1.9 U 1 U	1.9	U	1.9	U 1.9 U 1	U U	1.9 U 1 U
4-Methyl-2-pentanone	108-10-1	50	ug/l	i	Ŭ 1	Ŭ	4	U 1	U	1	Ŭ	i	Ŭ	i	Ŭ	1	Ŭ	1 U	i	Ŭ	1	Ŭ i	Ŭ	1 U
Acetone	67-64-1	50	ug/l	1.5	U 1.5	U	6	U 1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5 U	1.5	U	1.5	U 1.5	U	1.5 U 1.5 U
Acrylonitrik Benzene	107-13-1 71-43-2	0.7	ug/l ug/l	1.5 0.16	U 1.5 U 0.16	0	6 0.64	U 1.5 U 0.16	UU	0.16	U 11	0.16	U 1	0.16	U 11	1.5 0.16	U	1.5 U 0.16 U	0.16	U	1.5 0.16	U 1.5 U 0.16	U U	1.5 U 0.16 U
Bromobenzens	108-86-1		ug/l	0.7	U 0.7	Ŭ	2.8	U 0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7 U	0.7	Ŭ	0.7	U 0.7	Ŭ	0.7 U
Bromochloromethan Bromodichloromethan	74-97-5 75-27-4		ug/l	0.7	U 0.7 U 0.19	UJ	2.8 0.77	U 0.7 U 0.19	UJ	0.7	UUU	0.7	U	0.7	UU	0.7 0.19	UU	0.7 U 0.19 U	0.7	U	0.7 0.19	U 0.7 U 0.19	U	0.7 U 0.19 U
Bromodichioromethan Bromoform	75-27-4		ug/l ug/l	0.19	U 0.19	UI UI	2.6	U 0.19	U U	0.19	U	0.19	U	0.19	U	0.19	U	0.19 U	0.19	U	0.19	U 0.19	U	0.19 U 0.65 U
Bromomethan	74-83-9		ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7 U	0.7	Ŭ	0.7	U 0.7	Ŭ	0.65 U 0.7 U
Carbon disulfide	75-15-0 56-23-5	50	ug/l	1 0.13	U 1 U 0.13	UJ UJ	4 0.54	U 1 U 0.13	UJ UJ	0.13	U	0.13	U	0.13	U	0.13	U	1 U 0.13 U	0.13	U	0.13	U 1 U 0.13	U	1 U 0.13 U
Carbon tetrachloride Chlorobenzene	108-90-7	5	ug/l ug/l	0.13	U 0.13	U	2.8	U 0.7	U	0.13	U	0.13	U	0.13	U	0.13	U	0.13 U	0.13	U	0.13	U 0.7	U	0.13 U
Chloroethan	75-00-3	50	ug/l	0.7	U 0.7	Ŭ	2.8	U 0.7	U	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7	Ŭ	0.7 U	0.7	Ŭ	0.7	U 0.7	Ŭ	0.7 U
Chloroforn Chloromethan	67-66-3 74-87-3	7	ug/l ug/l	0.7 0.7	U 0.7 UJ 0.7	UUJ	2.8 2.8	U 0.7 UJ 0.7	U	0.7	UUJ	0.7	UUU	0.7	U	0.7 0.7	U	0.7 U 0.7 U	0.7	U	0.7 0.7	U 0.7 UJ 0.7	U	0.7 U 0.7 UJ
cis-1.2-Dichloroethene	156-59-2		ug/l	0.7	U 67	UJ	2.8	U 0.7	U	1.2	J	21	UJ	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 72	- CJ	
cis-1,3-Dichloropropens	10061-01-5		ug/l	0.14	U 0.14	U	0.58	U 0.14	U	0.14	Ŭ	0.14	U	0.14	Ŭ	0.14	Ŭ	0.14 U	0.14	U	0.14	U 0.14	U	0.14 U
Dibromochloromethan Dibromomethan	124-48-1 74-95-3	50	ug/l ug/l	0.15	U 0.15	U	0.6	U 0.15	U	0.15	U	0.15	U	0.15	U	0.15	U	0.15 U	0.15	U	0.15	U 0.15	U	0.15 U 1 U 1 U
Dichlorodifluoromethan	75-71-8		ug/l	1	U 1	UJ	4	U 1	UJ	1	U	1	U	1	U	1	U	1 U	1	U	1	U 1	U	1 U
Ethyl ether	60-29-7		ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
Ethylbenzene Hexachlorobutadien	100-41-4 87-68-3	5	ug/l	0.7 0.7	U 0.7 U 0.7	U	2.8 2.8	U 0.7 U 0.7	U	0.7	U	0.7	U	0.7	U	0.7 0.7	U	0.7 U 0.7 U	0.7	U	0.7 0.7	U 0.7 U 0.7	U	0.7 U 0.7 U
Isopropylbenzene	98-82-8	5	ug/l ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
Methyl tert butyl ether	1634-04-4	10	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U 0.7 U
Methylene chlorids n-Butylbenzens	75-09-2 104-51-8	5	ug/l ug/l	0.7	U 0.7 U 0.7	U	2.8 2.8	U 0.7 U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U 0.7 U	0.7	U	0.7	U 0.7 U 0.7	U	
n-Propylbenzen	103-65-1	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
Naphthalene	91-20-3	10	ug/l	0.7	U 0.7	UJ	2.8	U 0.7	UJ	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
o-Chlorotoluen o-Xylene	95-49-8 95-47-6		ug/l ug/l	0.7 0.7	U 0.7	U	2.8 2.8	U 0.7 U 0.7	UU	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7 U 0.7	U	0.7 U 0.7 U
p-Chlorotoluena	106-43-4		ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
p-Diethylbenzen(105-05-5		ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
p-Ethyltoluens p-Isopropyltoluens	622-96-8 99-87-6	5	ug/l ug/l	0.7 0.7	U 0.7 U 0.7	0	2.8	U 0.7 U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U 0.7 U	0.7	U	0.7	U 0.7 U 0.7	U	0.7 U 0.7 U
p/m-Xylene	179601-23-1	6	ug/l ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
sec-Butylbenzene	135-98-8	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U 0.7 U
Styrene tert-Butvlbenzene	100-42-5 98-06-6	5	ug/l ug/l	0.7 0.7	U 0.7 U 0.7	U	2.8 2.8	U 0.7 U 0.7	UUU	0.7	UUU	0.7	UUU	0.7	UU	0.7	UUU	0.7 U 0.7 U	0.7	U	0.7	U 0.7 U 0.7	UU	0.7 U 0.7 U
Tetrachloroethen	127-18-4	5	ug/l	6.1	37	Ĵ	270	1	J	7.1		48		66		15		110	0.18	Ŭ	0.28	J 38		0.18 U
Toluene	108-88-3 156-60-5	5	ug/l	0.7	U 0.7 U 0.86	UJ	2.8 2.8	U 0.7 U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U 0.7 U	0.7	U	0.7	U 0.7 U 0.9	U	0.7 U 0.7 U
trans-1,2-Dichloroethen(trans-1,3-Dichloropropen	156-60-5 10061-02-6	5	ug/l ug/l	0.7 0.16	U 0.86 U 0.16	J	2.8 0.66	U 0.7 U 0.16	UJ	0.7	U 11	0.7	U U	0.7	U	0.7	U	0.7 U 0.16 U	0.7	U 1	0.7	U 0.9 U 0.16	J	
trans-1,4-Dichloro-2-buten	110-57-6		ug/l	0.7	UJ 0.7	UJ	2.8	U 0.7	UJ	0.7	U	0.7	U	0.7	U	0.7	Ŭ	0.10 U	0.7	Ŭ	0.7	U 0.7	U	0.7 U
Trichloroethen	79-01-6 75-69-4	5	ug/l	0.32	J 6.3		8.9	0.18	U	0.33	J	4		0.26	J	0.36	J	1	0.18	U	0.18	U 6.4		0.18 U
Trichlorofluoromethan Vinyl acetate	75-69-4 108-05-4	+	ug/l ug/l	0.7 1	U 0.7 UJ 1	UJ	2.8	U 0.7 U 1	U	0.7	UU	0.7	U	0.7	UU	0.7 1	UU	0.7 U 1 U	0.7	UU	0.7	U 0.7 U 1	UU	0.7 U 1 U
Vinyl chloride	75-01-4	2	ug/l	0.07	U 8.5		0.28	U 0.07	U	0.07	U	0.35	J	0.07	Ŭ	0.07	U	0.07 U	0.07	U	0.07	U 8.6	_	0.07 U
Xylenes, Total	1330-20-7	5	ug/l	0.7	U 0.7	U	2.8	U 0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7 U	0.7	U	0.7	U 0.7	U	0.7 U
													1				1							
Alpha Analytical Labs provides this, format as a convenience to our clier cannot be held liable for errors or or with the regulatory standards listed asample results highlighted by compu- STARS current as of 1/1994. TAGN Only compounds detected with rego the corresponding regulatory standa are included on the summary sheets Refer to the laboratory report in Ado	nts. As such, i nissions assor above and/or i arison with the A current as of riting limits that and in at least of a. be Acrobat (.f.	we ciated the standards 8/1992) tt exceed one sample PDF)																						
format to check results or read any	associated pro	oject				1																		
narrative that may be present. In all	cases, the sig	ned,				1			_				1											
hardcopy Alpha Analytical Labs labor	pratory report i	s the				-			-															·
official document for reporting labor	atory results.					1	J	I	. J		l		J	1				1			L	l		

APPENDIX F Site-Wide Inspection Form

Annual Inspection Checklist FORMER PENETREX PROCESSING FACILITY 1 SHORE ROAD GLENWOOD LANDING, NEW YORK

Date/time: 12/12/15

Inspector (name/organization): John Eichler / P.W. Grosser Consulting, Inc.

Detail the condition of the first floor concrete slab, make note of any significant penetrations through the concrete slab: The condition of the slabs are good. No significant penetrations were observed.

Detail the condition of sub-slab depressurization system, including, above grade piping, two blowers, and two pressure alarms: <u>No damage was observed in the above-grade</u> piping and the two blowers. The pressure readings indicated that the blowers were functioning as intended. The pressure alarms were tested by deactivating the SSDS, at which time the alarms sounded, indicating that the alarms were functioning properly.

Are any repairs and/or maintenance needed at this time? If so, conduct another inspection following repairs.

No repairs are needed at this time. There were no signs of development or groundintrusive activities having been performed since the implementation of the SMP. Off-site monitoring well MW-6 was destroyed before the April 2015 groundwater sampling. The other monitoring wells were not damaged.

	110'		
John Eichler	the	2/22/16	
Name	Signature	Date	
-	1/		