
P.W. GROSSER CONSULTING

August 19, 2009

Nathan E. Putnam, NYSDEC Division of Environmental Remediation NYS Department of Environmental Conservation 625 Broadway, 11th Floor Albany, N.Y. 12233-7015

Re: Interim Remedial Measure (IRM) Report – Revised (Site No. 1-30-034), Former Penetrex Processing, Inc., Glenwood Landing, New York

Dear Mr. Putnam:

P.W. Grosser Consulting, Inc. (PWGC) has prepared the enclosed revised Interim Remedial Measure (IRM) Report for the former Penetrex Processing Facility located at 1 Shore Road, Glenwood Landing, New York, to address the comments promulgated by the New York State Department of Environmental Conservation (NYSDEC) in a letter dated August 7, 2009 (attached).

Should you have any questions, or require further information, please do not hesitate to contact me.

Very truly yours, P.W. Grosser Consulting, Inc.

Ellen

John D. Eichler Project Manager

ame P. Made

James P. Rhodes, CPG Vice President

Cc: G. Bobersky, NYSDEC S. Messier, NYSDOH W. Parrish, NYSDEC D. Yudelson, Esq. L. Weinberger, Esq.

New York State Department of Environmental Conservation Division of Environmental Remediation

Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015 Phone: (518) 402-9625 • Fax: (518) 402-9022 / (518) 402-9627 Website: www.dec.ny.gov

August 7, 2009

Mr. John Eichler P.W. Grosser Consulting Engineers P.C. 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Re: Penetrex Processing Company Site No. 130034 Nassau County

The New York State Department of Environmental Conservation, NYSDEC, has reviewed your June 2009 Interim Remedial Measure Report. Please address the following comments:

- Please remove the language recommending the elimination of metals analysis. The concentrations of metals in the groundwater exceed the groundwater drinking standards. Groundwater samples must continue to be analyzed for metals contamination.
- Please correct Table 3 and 4 to indicate that the NYSDEC drinking water standards are in micrograms per liter not milligrams per liter. Additionally please check that the listed standards are for drinking water, some of them are listed incorrectly, e.g., the standard for Barium is 1000 micrograms per liter not 2000 micrograms per liter.
- Please adjust the last sentence in Section 1.3.5 Indoor Air Sampling Report to indicate the subslab depressurization system was installed due to the potential for soil vapor intrusion to occur, not to mitigate the existence of the sub-slab volatile organic compounds.

Please submit a revised report to the NYSDEC within 20 business days of your receipt of this letter.

Sincerely,

MA SKA

Nathan E. Putnam Project Manager Section A

- cc: D. Yudelson, Esq. L. Weinberger R. Weitzman, NCDOH
- ec: G. Bobersky, NYSDEC W. Parish, NYSDEC S. Shearer, NYSDOH

P.W. GROSSER CONSULTING, INC. PROJECT No. PEN0001

INTERIM REMEDIAL MEASURE REPORT

1 SHORE ROAD GLENWOOD LANDING, NEW YORK Site # 1-30-034

Revised August 2009

James P. Mode

James P. Rhodes, P.G. Vice President P.W. Grosser Consulting, Inc.

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
	1.1	Project Background	1
	1.2	Site Location and Description	3
	1.3	Summary of Previous Investigations	4
		1.3.1 Remedial Investigation Report	4
		1.3.2 Interim Groundwater Investigation Report	5
		1.3.3 Groundwater Investigation / Soil Gas Sampling Report	
		1.3.4 Sub-Slab Vapor & Indoor Air Investigation Report	6
		1.3.5 Indoor Air Sampling Report	7
		1.3.6 Subsurface Investigation Report	8
		1.3.7 Sub-Slab Depressurization System Testing and As Built Drawing	8
	1.4	Summary of the Remedial Investigation	
		1.4.1 Summary of the Nature and Extent of Contamination	
2.0	DES	CRIPTION OF INTERIM REMEDIAL MEASURE	10
	2.1	Monitoring Well Installation	10
		2.1.1 Soil Oxidant Demand Testing	11
	2.2	Baseline Monitoring Well Sampling	11
		2.2.1 Laboratory Analysis	12
	2.3	Chemical Oxidant Injection	
3.0	ENG	INEERING SPECIFICATIONS AND CONTROLS	13
	3.1	Chemical Oxidant Injection Program	13
4.0	MON	NITORING AND MAINTENANCE	14
	4.1	Post-Remediation Groundwater Monitoring	14
	4.2	Quality Assurance / Quality Control	
5.0	ANA	LYTICAL RESULTS	16
6.0	CON	CLUSIONS AND RECOMMENDATIONS	19

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Baseline Total VOC Concentrations (September 2008)
Figure 4	Post-Injection Total VOC Concentrations (April 2009)

TABLES

Table 1	Groundwater VOC Analytical Results (April 2009)
Table 2	Historical Groundwater VOC Analytical Results (2 pages)
Table 3	Groundwater Metals Analytical Results (September 2008)
Table 4	Groundwater Metals Analytical Results (April 2009)

APPENDICIES

Appendix A	NYSDEC Correspondence
------------	-----------------------

- Appendix B Monitoring Well Construction Log
- Appendix C Laboratory Analytical Reports
- Appendix D Waste Manifest
- Appendix E Chemical Oxidant Calculation Sheet
- Appendix F Monitoring Well Sampling Log
- Appendix G Data Usability Summary Report

1.0 INTRODUCTION

1.1 Project Background

This Interim Remedial Measure (IRM) Report has been prepared by P.W. Grosser Consulting Inc. (PWGC), on behalf of Glenwood Realty of Roslyn, New York, for the property located at 1 Shore Road, Glenwood Landing, New York (a Site Location Map is included as **Figure 1**). The site is currently listed as a New York State Department of Environmental Conservation (NYSDEC) Class II inactive hazardous waste site identified as I.D. No. 130034. This report details IRM activities including the installation of monitoring wells, baseline sampling of the site's monitoring wells, chemical oxidant injection, and post-injection monitoring well sampling.

One commercial structure and one residential structure are located at the site. The commercial structure is utilized by a wholesale warehouse, a fitness center, and a church organization. The residential structure is a house which is separated into two apartments.

A former dry cleaning business, known as Penetrex Processing, Inc. (Penetrex), is reported to have operated at the site for several years prior to abandoning the facility in 1984. During its operation at the site, Penetrex is reported to have discharged dry cleaning chemicals to an on-site sanitary system and/or drywells at the property. A manufacturer of adhesive nameplates known as the Nameplate Corporation also formerly occupied the site.

In 1984, the Nassau County Department of Health (NCDH) sampled an on-site drywell associated with the former Penetrex facility and determined that constituents of dry-cleaning solvents, trichloroethene (TCE) and tetrachloroethene (PCE), were present in soils at the base of the structure. The impacted drywell was subsequently remediated in 1985 under a summary abatement order, completed by K&W Associates (property owner).

Additional testing and site characterization, which included the installation of six (6) soil borings and four (4) monitoring wells, soil and groundwater sampling, and air monitoring, were performed at

the property in 1989 and 1990 by Blasland and Bouck Engineers under purview of the New York State Department of Conservation (NYSDEC) as part of a PRP (potentially responsible party) Study.

In 1993, Lawler, Matusky and Skelly Engineers (LMS) installed two additional monitoring wells at the site (at the direction of the NYSDEC) and performed additional groundwater sampling at the facility in an effort to confirm the direction of groundwater flow underlying the property and the extent of dissolved VOCs in on-site groundwater. LMS had concluded in their 1993 NYSDEC Inactive Hazardous Waste Site (IHWS) report for the Penetrex Processing site that "an ongoing discharge or continued release from residual waste in the soils . . . from several contaminant source locations on the site . . . appear to remain as a continuing source of groundwater contamination."

PWGC began a Remedial Investigation (RI) in November 2001 at the site to obtain information necessary to determine the need for a remediation. The RI included a soil boring program and sampling of the existing monitoring wells. The sanitary system located to the west of the commercial structure was successfully remediated in response to the results of the soil boring program.

A vertical profile groundwater investigation and a soil gas investigation were conducted at the site in October 2003 through January 2004 in response to the results of the initial groundwater investigation. Results of these investigations indicated elevated concentrations of volatile organic compounds (VOCs) associated with chlorinated solvents.

Based on the results of the October 2003 vertical profile groundwater investigation, shallow soil vapor sampling was required at locations near the commercial building and residential house. Results of the soil vapor sampling indicated elevated concentrations of chlorinated solvents. Based on these results, the NYSDEC required a sub-slab vapor and indoor air investigation in August 2005. A second round of indoor air sampling was conducted in May 2006. Indoor air VOC concentrations were within acceptable levels. However, elevated concentrations of VOCs were detected in sub-slab samples.

Based on the elevated sub-slab vapor concentrations, the NYSDEC in conjunction with the New York State Department of Health (NYSDOH) required the installation of sub-slab depressurization systems (SSDS) in each of the two site structures. Installation of the SSDS was completed in 2007.

The October 2003 Groundwater Investigation was expanded in December 2004 with the installation of one additional groundwater vertical profile and three additional monitoring wells. In order to further delineate the area of impact, additional soil and groundwater sampling was conducted in August 2006. As part of this investigation, a geophysical investigation was conducted at the site in June 2006 in an attempt to locate underground structures which may be acting as sources of the site's contamination. UIC structures were detected and subsequently abandoned. However, based on analytical results, these structures were not identified as sources of contamination.

The RI concluded that residual levels of volatile organic compounds (VOCs) in groundwater remain in the area of the eastern portion of the parking lot. The VOCs are likely due to former discharges of PCE to sanitary leaching pool DW-5 and to storm water leaching pool DW-1. The IRM includes the installation of supplemental monitoring wells and the injection of a chemical oxidant solution to oxidize impact located in the site's groundwater.

1.2 Site Location and Description

The subject site consists of an approximately one-acre parcel located on the east side of Shore Road in the Hamlet of Glenwood Landing, Town of North Hempstead, Nassau County, New York. A site plan is included as **Figures 1**. The property is identified in Nassau County Tax maps as Section 20 - Block K - Lots 10 through 12. The property is improved with a two-story brick industrial building, a three-story wood-frame house, asphalt parking, communications tower and other ancillary improvements.

The property is bounded to the west by Shore Road and to the east by West Street. The area to the east of West Street is developed with residential houses. The site is generally located north of Scudders Lane and is situated near and adjoining several major oil storage facilities, coastal terminals, and a municipal power station near Hempstead Harbor. Glenwood Oil Terminal Corp. is located northwest, diagonally across the property.

1.3 Summary of Previous Investigations

Numerous environmental investigations, remedial studies, and remedial actions have been performed by PWGC at the site and are documented in the NYSDEC file including the following:

- Remedial Investigation Report, 1 Shore Road, Glenwood Landing, PWGC, August 2002
- Interim Groundwater Investigation Report, 1 Shore Road, Glenwood Landing, PWGC, March 2004 (Addendum, August 2004)
- Final Groundwater Investigation / Soil Gas Sampling Report, 1 Shore Road, Glenwood Landing, PWGC, April 2005 (Revised October 2005)
- Sub-Slab Vapor & Indoor Air Investigation Report, 1 Shore Road, Glenwood Landing, PWGC, November 2005
- · Indoor Air Sampling Report, 1 Shore Road, Glenwood Landing, PWGC, June 2006
- · Subsurface Investigation Report, 1 Shore Road, Glenwood Landing, PWGC, November 2006
- Sub-Slab Depressurization System Testing and As Built Drawing, 1 Shore Road, Glenwood Landing, PWGC, August 2007

1.3.1 Remedial Investigation Report

A remedial investigation (RI) was conducted at the site in November 2001 to obtain information necessary to determine the need for remediation at the site. The remedial investigation consisted of a file search (Town of North Hempstead Building Department), site reconnaissance, a soil boring program, the collection and analysis of soil samples, and the collection and analysis of groundwater samples from the four (4) existing on-site monitoring wells.

An underground injection control (UIC) investigation and remediation was performed in response to the results obtained from the soil boring program. This UIC program successfully dealt with soil issues identified during the investigation, and the site has received closure regarding those UIC issues from the Nassau County Department of Health (NCDH) and the United States Environmental Protection Agency (USEPA). Findings from the RI are presented in the Remedial Investigation Report, PWGC, August 2002 and the Storm Drain and Sanitary Leaching Pool Remediation and Closure Report, PWGC, September 2003, each previously submitted under separate cover.

Analytical results from the monitoring well sampling indicated elevated concentrations of VOCs associated with chlorinated solvents in the site's groundwater. Based on this, the NYSDEC required further groundwater investigation.

1.3.2 Interim Groundwater Investigation Report

A groundwater investigation was performed at the site from October 2003 through January 2004 at the request of the NYSDEC and as part of the Remedial Investigation to delineate the horizontal and vertical extent of the dissolved VOCs and to determine if additional investigation/remediation was warranted. Based on the results of the soil boring investigation and monitoring well sampling that was performed as part of the remedial investigation, and correspondence with the NYSDEC, eight locations were chosen for vertical profile groundwater sampling. These vertical profiles were also performed to confirm the location and the depths for additional permanent monitoring wells. The samples were collected in accordance with the protocol established in the Preliminary Remedial Investigation Report, PWGC, July 2002, submitted under separate cover. Results are detailed in the Interim Groundwater Investigation Report, PWGC, March 2004, previously submitted under separate cover.

1.3.3 Groundwater Investigation / Soil Gas Sampling Report

Based on the results of the October 2003 vertical profile groundwater investigation results, one additional temporary groundwater vertical profile well and three permanent groundwater monitoring wells were installed at the site. In addition, four soil gas points were installed as a result of a request by the NYSDEC to address concerns regarding soil vapor intrusion.

Typically, the greatest concentrations of VOCs detected in the groundwater across the site were found at the water table. To further delineate the groundwater contamination at this location, and to confirm the results from the Interim Groundwater performed in October 2003-January 2004, an additional temporary vertical profile was installed and sampled in accordance with the protocol established in the Interim Groundwater Investigation Report, PWGC, March 2004, submitted under separate cover.

Three permanent monitoring wells were constructed on December 28, 2004, to monitor the contamination detected in the groundwater beneath the site. Following installation and development, sampling of the new and existing wells was performed. Groundwater sampling was performed on January 19, 2005. VOCs were detected above the NYSDEC Groundwater Standards in each of the samples collected, with the exception of MW-6, which is located down-gradient of the site, across Shore Road.

To address the NYSDEC's concerns regarding soil vapor intrusion into the adjacent buildings, PWGC conducted soil gas sampling at the following locations:

- SG-1 10 feet from the former Nameplate / former Parabit portion of the building;
- SG-2 10 feet from the former Penetrex portion of the building (Sunnyside Up Parties) and to the north of GW-7;
- SG-3 conducted near the boundary, between GW-7 and the residence to the south;
- SG-4 10 feet from the residence.

Soil gas sampling points were installed on December 20, 2004 in accordance with procedures described in the Revised Addendum to the March 2004 Interim Groundwater Investigation Report prepared by PWGC and approved by the NYSDEC.

Analytical results were compared to the USEPA Target Shallow Soil Gas Concentrations as specified in the USEPA's Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. Analytical Results indicated elevated concentrations of chlorinated VOC vapors in the subsurface of the site. Results are detailed in the Groundwater / Soil Gas Investigation Report, PWGC, April 2005, submitted under separate cover.

1.3.4 Sub-Slab Vapor & Indoor Air Investigation Report

In August 2005, a Sub-Slab Vapor and Indoor Air Sampling Investigation was conducted at the request of the NYSDEC to address concerns regarding soil vapor intrusion into the on-site buildings.

PWGC conducted sub-slab vapor, indoor air, and outdoor air sampling at the following locations:

- SS-1 (Sub-Slab-1) and IA-1 (Indoor Air-1) the office of Landing Wholesale;
- SS-2 and IA-2 the warehouse of Landing Wholesale;
- SS-3 and IA-3 Sunnyside-Up Parties;
- SS-4 and IA-4 Parabit Manufacturing;
- SS-5 and IA-5 the basement of the on-site residence;
- IA-6 the church/religious organization located upstairs from Sunnyside-Up Parties;
- OA-1 (Outdoor Air-1) 15 feet to the southwest of the industrial building;
- OA-2 20 feet to the southwest of the residence.

Sub-slab vapor sampling points were installed on August 25, 2005, in accordance with procedures described in the Revised Sub-Slab Vapor and Indoor Air Sampling Plan, June 2005, prepared by PWGC and approved by the NYSDEC.

Sub-slab vapor and indoor air sampling was conducted by PWGC on August 26, 2005, the day after sub-slab sampling point installation, under the supervision of a NYSDEC representative. Samples were collected directly into six-liter, laboratory supplied Summa® canisters attached to a sampling tube. Indoor air samples were collected to characterize exposures to air within the on-site buildings.

Analytical results indicated elevated concentrations of chlorinated VOCs in the sub-slab vapor samples, but very low concentrations in the indoor air samples. Results are detailed in the Sub-Slab Vapor and Indoor Air Investigation Report, PWGC, November 2005, submitted under separate cover.

The NYSDEC required an additional round of indoor air sampling during the heating season, when vapor intrusion is most likely to occur.

1.3.5 Indoor Air Sampling Report

An additional round of indoor air sampling was conducted at the site in May 2006 to determine if indoor air VOC concentrations remained within target concentrations during the heating season, when the potential for vapor intrusion is the greatest.

Analytical results of the sampling confirmed that indoor air VOC concentrations remained within target concentrations during the heating season. Despite the absence of vapor intrusion at the site, the NYSDEC required installation of sub-slab depressurization systems (SSDS) in both on-site buildings due to the potential for soil vapor intrusion to occur.

1.3.6 Subsurface Investigation Report

A subsurface investigation was conducted in June, August, and September 2006 to locate potential sources of VOC contamination at the site and to further delineate the horizontal and vertical extent of impacted material. The investigation consisted of a geophysical survey, a soil boring program, and vertical profile groundwater sampling.

The geophysical survey detected several subsurface anomalies at the site. The anomalies were excavated. Three of the anomalies were found to be leaching pools and were subsequently sampled and abandoned following NCDH and USEPA procedures. A fourth anomaly was uncovered and found to be miscellaneous metal debris. A soil sample was collected from this test pit and submitted to the laboratory for analysis.

Soil and groundwater analytical results were used to delineate the extent of impact. Based on the results, the impacted area of contamination appears to be centered around storm drain DW-1 and sanitary leaching pool DW-5, in the eastern portion of the parking lot. Total detected VOC concentrations are indicated on **Figure 3**.

1.3.7 Sub-Slab Depressurization System Testing and As Built Drawing

Communication tests were performed on the residential SSDS and the commercial SSDS in April and June 2007, respectively. The communication tests confirmed the effectiveness of the systems, that a negative pressure was created to draw out vapors from beneath the slabs of the structures. Based on the tests, the SSDS effectively mitigate the potential for vapor intrusion within the buildings.

1.4 Summary of the Remedial Investigation

The purpose of the field work portion of the RI completed by PWGC was to collect data of sufficient quality and quantity to supplement the previous investigations conducted at the site and to close gaps in the data set necessary to adequately characterize the nature and extent of contamination at the site and to evaluate contaminant migration.

1.4.1 Summary of the Nature and Extent of Contamination

The results of sampling performed during the RI, identified residual VOCs in soil above NYSDEC Recommended Soil Cleanup Objectives (RSCO) predominantly in the eastern portion of the parking area in the vicinity of storm drain DW-1 and sanitary leaching pool DW-5. These concentrations were detected in soils collected at or below the water table. Soils analyzed above the water table were not impacted.

Groundwater analytical results identified VOCs above NYSDEC Groundwater Standards in the area corresponding to the impacted area of soil. VOC concentrations in the direction of groundwater flow show limited migration, as concentrations are only slightly above Groundwater Standards. Based on the groundwater flow direction (toward the west) and the VOC concentrations at adjacent down-gradient monitoring points, there does not appear to be significant plume migration from the suspect area.

VOCs in soil vapor were detected in samples from beneath both of the site's structures and in points adjacent to the building. The greatest concentrations were detected beneath the former Penetrex facility (currently a fitness center). Due to the presence of VOC vapors, SSDS were installed in both the commercial structure and the residential structure to mitigate the potential for exposure.

2.0 DESCRIPTION OF INTERIM REMEDIAL MEASURE

This Interim Remedial Measure (IRM) consisted of the installation of permanent monitoring wells and the injection of a chemical oxidant solution, potassium permanganate, in the delineated area of contamination in the eastern portion of the site's parking area. IRM activities followed the scope of work specified in the NYSDEC-approved *IRM Work Plan* prepared by PWGC in May 2008. The NYSDEC acceptance letter is included in **Appendix A**. The VOCs in this area have acted as a source of residual contamination in groundwater. The intent of the chemical oxidant injection was to significantly reduce the mass of contamination in the subsurface through the oxidation of VOCs in the high concentration area. A site plan indicating monitoring well locations and injection points is included on **Figure 2**.

2.1 Monitoring Well Installation

Five (5) monitoring wells were installed in the area of contamination. These wells, along with the existing seven (7) wells at the site, are used to monitor the effectiveness of the IRM. Monitoring well locations are indicated on **Figures 2, 3, and 4**. The monitoring wells were constructed of two-inch diameter, schedule 40 PVC casings with 0.010-inch slot screens. Well construction logs are included as **Appendix B**.

Three (3) of the five (5) new wells (MW-8, MW-9, and MW-10) are screened at the water table to monitor the most impacted groundwater. The depth of the water table was measured prior to the installation of the wells. These wells were installed utilizing a Geoprobe® with hollow stem augers. These wells were constructed with 10 feet of screen (3 feet above the water table and 7feet below the water table) and riser to grade. A gravel pack of No. 2 Morie sand was placed in the annulus around the screen. A two-foot bentonite seal was installed above the gravel pack. Above the bentonite layer, the annulus around the well will be backfilled with clean sand.

Two (2) of the five (5) new monitoring wells (MW-8D and MW-9D) are screened at a 10-foot interval between 40 and 50 feet bgs to monitor IRM effectiveness at a greater depth. These wells were installed utilizing a drill rig with hollow stem augers.

The wells were set flush to grade with a protective manhole cover. The riser was fitted with a water tight cap. Drill cuttings were monitored for VOC vapors with a photo-ionization detector (PID). The annuli of the wells were backfilled with soils in which VOCs were not detected. The remaining soils were containerized for off-site disposal. Disposal characterization analysis was performed by American Analytical Laboratories of Farmingdale, New York. The laboratory report is included in **Appendix C**. Drum transport and disposal services were provided by A B Oil Service, LTD. of Bohemia, New York on January 27, 2009. The associated waste manifest is included as **Appendix D**.

The new monitoring wells were developed using a submersible pump to restore the hydraulic properties of the aquifer while preserving soil horizons, water quality, and sample integrity. Development was performed with dedicated instruments to prevent cross-contamination between well locations. The development of each continued until the turbidity, pH, temperature, and conductivity measurements stabilized.

2.1.1 Soil Oxidant Demand Testing

Soil samples were collected during the monitoring well installation process for the purpose of analyzing the natural soil oxidant demand. Two (2) split-spoon soil samples were collected from the MW-8 location from depths of 20 feet and 40 feet and submitted to Carus® for analysis. Soil oxidant demand results were used to calculate the appropriate quantity of chemical oxidant to treat the subject area. A chemical oxidant calculation sheet is included as **Appendix E**.

2.2 Baseline Monitoring Well Sampling

A baseline round of groundwater sampling was performed on September 18, 2008 to determine VOC concentrations prior to the injection of the chemical oxidant. Groundwater samples were collected from each of the 12 monitoring wells, including the seven previously-existing monitoring wells and the five newly installed wells.

The monitoring wells were sampled by a low stress (low flow) method to collect representative samples while producing a minimal amount of purge water. Sampling was performed with a submersible pump with an adjustable flow rate. Monitoring well MW-6 was not accessible to low

flow equipment and was, therefore, purged and sampled with disposable bailers. Purging of each well continued until turbidity was substantially reduced. Portable field instruments were used to collect measurements. At well locations where turbidity did not decrease to 50 NTUs, the well was considered purged upon the stabilization of other parameters such as pH, conductivity, dissolved oxygen, and ORP. Samples were collected directly from the polyethylene tubing into laboratory-supplied glassware upon stabilization of field parameters. Well sampling logs are included in **Appendix F.**

Purge water was containerized in 55-gallon drums and staged on-site pending off-site disposal. Disposal characterization analysis was performed by American Analytical Laboratories of Farmingdale, New York. The laboratory report is included in **Appendix C**. Drum transport and disposal services were provided by A B Oil Service, LTD. of Bohemia, New York on January 27, 2009. The associated waste manifest is included as **Appendix D**.

2.2.1 Laboratory Analysis

Collected groundwater samples were placed in a cooler packed with ice for transport to Alpha Analytical Laboratories (Alpha) of Westborough, Massachussetts, a New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP) certified laboratory for analysis of volatile organic compounds (VOCs) by EPA Method 8260 and metals by EPA Method 6010. Laboratory Data Reports are included in **Appendix C**. Analytical results of the baseline sampling are discussed in Section 5.0.

2.3 Chemical Oxidant Injection

In order to reduce the mass of VOCs in groundwater beneath the site, a chemical oxidant solution (potassium permanganate) was injected through 17 points beneath the eastern portion of the site's parking area.

3.0 ENGINEERING SPECIFICATIONS AND CONTROLS

3.1 Chemical Oxidant Injection Program

Potassium permanganate was delivered to the site as dry crystals and mixed with water. The activated solution was prepared by mixing each 57 lb pail of Carus® potassium permanganate with 158 gallons of water in a large mixing tank. The concentration of the potassium permanganate solution injected was based on the results of a soil oxidant demand test (section 2.1) and calculations performed by Carus®, the manufacturer of the solution. A mixing system consisting of a mixing tank, transfer pump, and appropriate hoses and fittings was connected to injection points.

The injection points were installed throughout the area of contamination. Each injection boring was advanced to a depth of 50 feet bgs. Injection locations are indicated on **Figures 3 and 4**. Direct push rods were driven to the target depth and then partially extracted to release the expendable drive tip. Once the target depth was achieved, an injection cap and hose was secured to the top of the tool string. The injection tool was raised in one-foot intervals as the sodium permanganate solution was injected into the desired subsurface zones. Approximately 24 gallons of solution was injected into each one foot interval. Upon reaching the water table (approximately 20 ft bgs) the hose was disconnected and the remaining rods and the injection tool were removed from the injection point.

Injection services were provided by Associated Environmental Services (AES) of Hauppauge, New York under the supervision of a PWGC hydrogeologist. A representative of the NYSDEC was onsite during a portion of the injection process.

4.0 MONITORING AND MAINTENANCE

4.1 Post-Remediation Groundwater Monitoring

On April 6, 2009, three months after the completion of the injection program, groundwater sampling was performed at the subject site. Groundwater was collected from each of the twelve (12) monitoring wells following the same sampling procedure followed for the baseline sampling, as described in section 2.2 of this report. Well sampling logs are included in **Appendix F.**

Collected groundwater samples were placed in pre-cleaned laboratory supplied glassware, and placed in a cooler packed with ice for transport to the laboratory. Samples were submitted to Alpha for analysis of VOCs by EPA Method 8260 and metals by EPA Method 6010.

The samples collected from monitoring wells MW-7 and MW-8D had a purple color, indicating that the chemical oxidant, potassium permanganate, was present in the sample. The manufacturer of the chemical oxidant, Carus, indicated that the presence of potassium permanganate would interfere with the analysis of VOCs in the sample. Based on this information, the two samples were submitted for the analysis of metals only. During future sampling rounds, groundwater samples which have a purple color will be neutralized, or quenched, during sample collection with an ascorbic acid solution. This procedure will remove the interference caused by the potassium permanganate.

Purged water was containerized in 55-gallon drums and staged on-site pending characterization analysis for off-site disposal.

4.2 Quality Assurance / Quality Control

QA/QC for the first post-injection sampling event included the following of ASP-B protocols, including the analysis of a trip blank, and the collection and analysis of a blind duplicate, a field blank, a matrix spike sample, and a matrix spike duplicate. The accuracy, precision and completeness requirements were addressed by the laboratory for the data generated. Alpha indicated in an analytical narrative report of the post-injection sampling (included in **Appendix C**) that the samples were received in accordance with the chain of custody and no significant deviations were

encountered during the preparation or analysis with the exception of dilutions required to quantitate results within calibration ranges or for spectral interferences.

The post-injection sampling results were submitted to Stone Environmental, Inc. (Stone) of Montpelier, Vermont for a third-party quality assurance evaluation. Two monitoring wells samples (MW-2 and MW-3) along with the blind duplicate, the field blank, and the trip blank were considered for full data validation. Stone concluded that the overall quality of the data was acceptable and all results as qualified are considered usable. The Data Usability Summary Report is included as **Appendix G**.

5.0 ANALYTICAL RESULTS

Analytical results of the baseline sampling event and the post-injection sampling event were compared to evaluate the effectiveness of the IRM. The analytical results are summarized on **Tables 1**, **2**, **3**, and **4** and the laboratory data sheets are included in **Appendix C**.

A substantial decrease in total VOC concentrations was evident in monitoring well MW-8, the location where, historically, the most elevated VOC concentrations have been detected. Baseline (pre-injection) VOCs in MW-8 were detected at a concentration of 7,700 μ g/L. The total VOC concentration decreased to 1,400 μ g/L in the post-injection sample, an 82% decrease.

Results from samples collected from wells located along the perimeter of the area of impact showed mixed results. MW-1, up-gradient of the area of impact indicated a concentration of 62 μ g/L which was higher than the baseline concentration of 25 μ g/L, but lower than previous samples collected. Concentrations of PCE in MW-1, while remaining consistently low, are above the standard of 5 μ g/L.

Concentrations in monitoring well MW-10, located on the perimeter of the area of impact near the house showed a substantial decrease in the concentration of PCE, from $121 \mu g/L$ to $41 \mu g/L$. Other detections of VOCs were within standards.

Monitoring well MW-9, located on the perimeter of the area of impact, down-gradient of the most impacted area indicated an increase in total VOCs, from $200 \mu g/L$ to $410 \mu g/L$. The increase most likely represents a natural fluctuation in VOC concentrations. MW-9 is not located directly adjacent to an injection point. It appears that, as of the date of the post-injection sampling, the oxidant solution had not reached and reacted with VOCs in MW-9. MW-9 is still located along the perimeter of the impacted area, as indicated by the low VOC concentrations, relative to those detected in the center of the impacted area in MW-8.

The concentration of PCE in MW-9D decreased to within the standard. There were no other VOCs detected at this location. Monitoring wells MW-7 and MW-8D were not analyzed during the post-

injection sampling due to the presence of potassium permanganate in the samples. However, the presence of the potassium permanganate most likely indicates that the VOCs have been substantially, if not completely oxidized at those two locations.

Detected concentrations of VOCs in down-gradient wells away from the area of impact (MW-2 through MW-6) have remained consistently low or not detected. The concentration of PCE in MW-2 was $5.1 \mu g/L$. Other detected concentrations of VOCs in the down-gradient wells were within standards.

The total mass of VOC impact at the site appears to have been substantially oxidized by the chemical injection as evidenced by the analytical results, and as illustrated by the change in the total VOC contours between **Figure 3** and **Figure 4**.

The concentrations of aluminum, iron, and sodium in the post-construction samples were comparable to the concentrations detected in the baseline samples. Although they are above NYSDEC Standards, these concentrations represent typical background concentrations for Long Island.

Chromium was detected in the MW-6 baseline sample at a concentration matching the NYSDEC Standard, but was not detected in the other baseline samples. Chromium was detected at concentrations above the Standard in post-injection samples collected from wells located in the injection area. Chromium concentrations in wells located down-gradient of the injection area were generally below the Standard. The increase in the chromium concentrations appears to be related to the injections, and they are expected to decrease to within Standards during the oxidation process.

The concentrations of manganese were higher in the post-injection samples collected from the wells located in the injection area, especially in the samples in which the purple color of the potassium permanganate was observed (MW-7 and MW-8D). Manganese is a component of potassium permanganate, and its concentrations are expected to decrease during the oxidation process.

Lead was detected in post-injection sample MW-3 at a concentration exceeding the Standard.

However, the concentration of lead in MW-3 was within the standard for the baseline sample. Conversely, the lead concentration detected in MW-6 exceeded the standard in the baseline sample, but was within the standard for the post-injection sample.

Cobalt was detected at an elevated concentration in the baseline sample from monitoring well MW-2, but not detected in the post-injection sample. Cobalt was not detected in the other wells for both sampling rounds.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The objective of the IRM is to substantially reduce the mass of VOC impact located at the subject site. The area of impact had been delineated and monitored during the remedial investigation to facilitate a focused remedial practice to accomplish this objective. The additional monitoring wells installed at the site were strategically installed at locations in the center of, and along the perimeter of the area of impact. The monitoring of these wells, along with the previously existing wells is used to evaluate the nature of the impacted area and the effectiveness of the IRM.

The injection of the chemical oxidant, potassium permanganate, appears to be successful at substantially reducing VOCs, including PCE, TCE and cis-1,2-DCE, in the center of the area of impact (monitoring well MW-8).

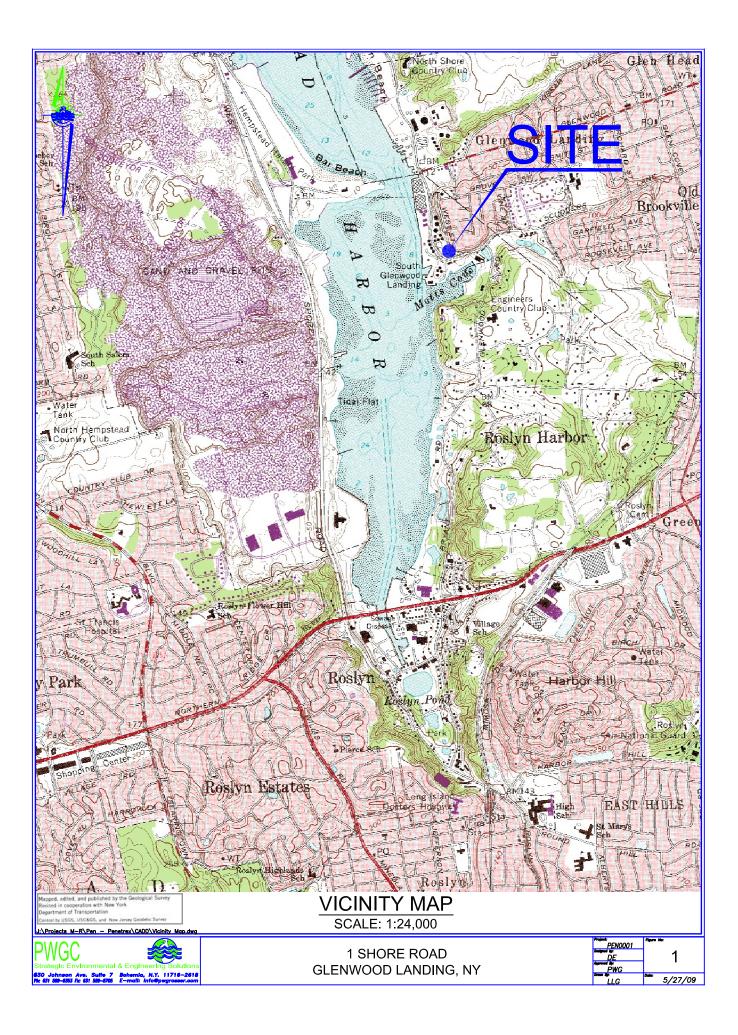
The presence of potassium permanganate in MW-7, located along the perimeter of the impacted area, and in the MW-8D, located below the center of impact, indicates that VOCs have been substantially, if not completely reduced, at those locations. The potassium permanganate observed in these wells is most likely the reason for the elevated manganese concentrations.

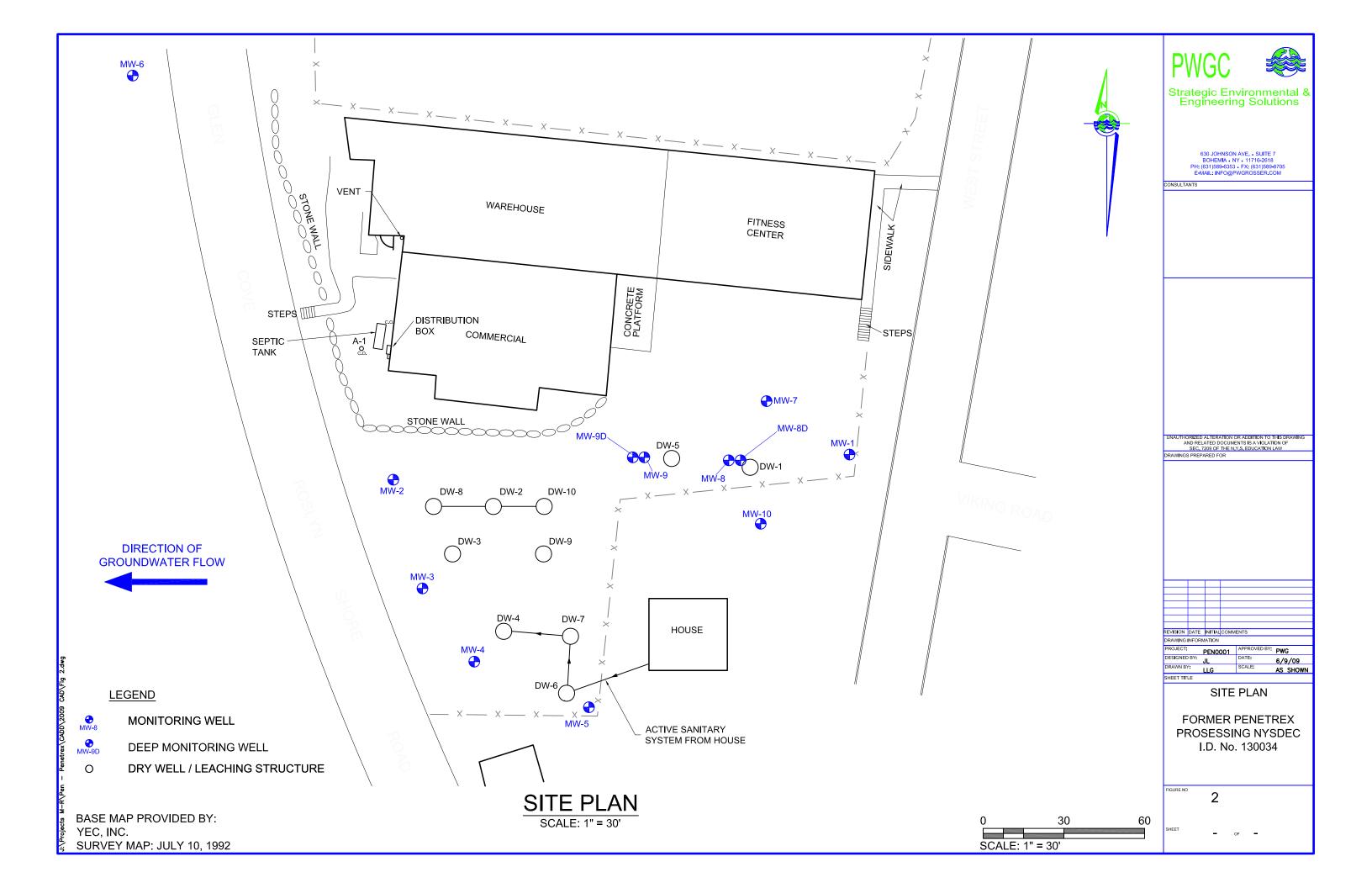
Based on the results, PWGC recommends continued quarterly groundwater sampling at the subject site as specified in the IRM Work Plan. Samples which have a purple color will be neutralized during sample collection with an ascorbic acid solution.

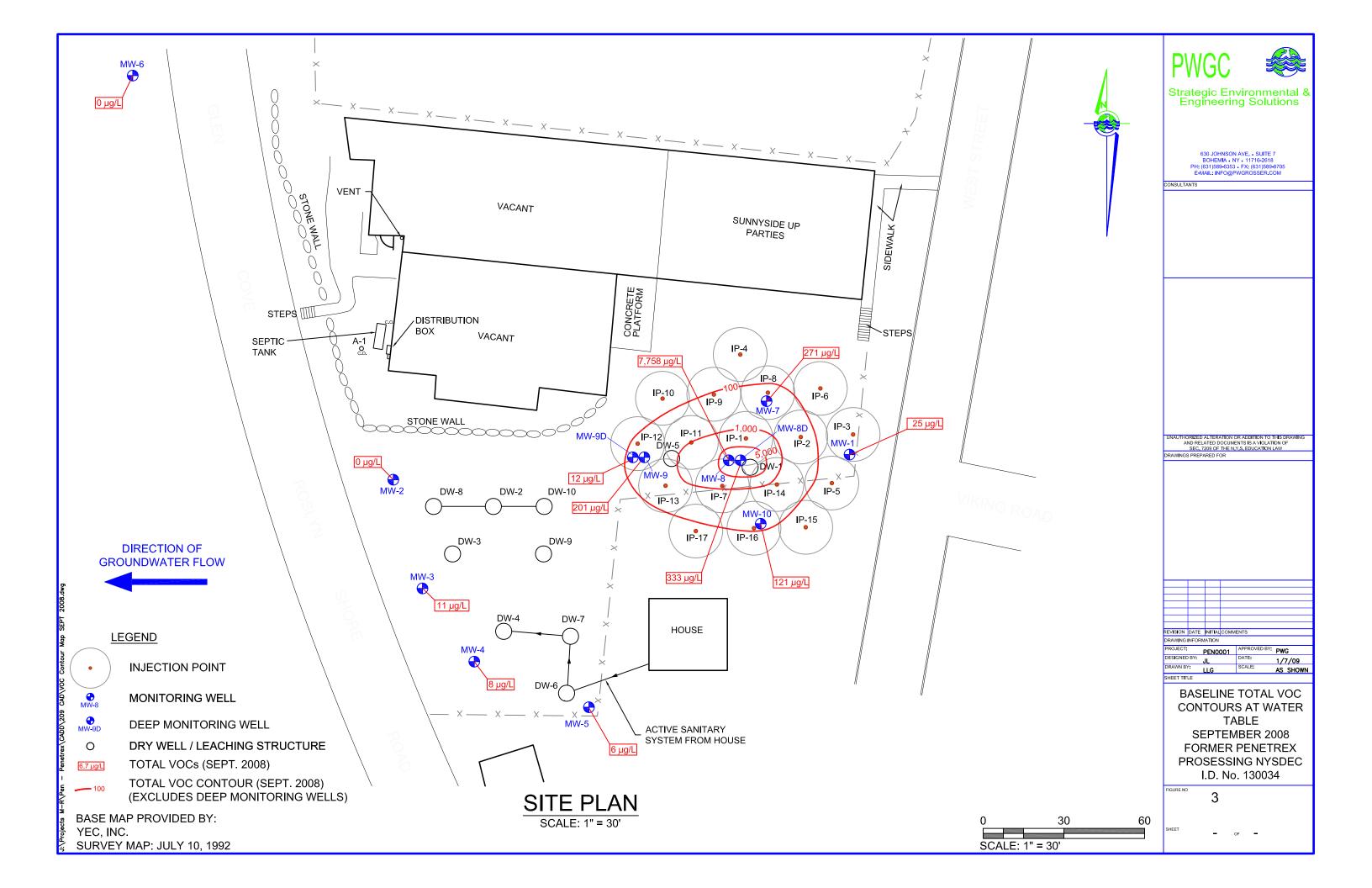
Analytical results indicate that down-gradient monitoring wells MW-2 through MW-6 have been consistently outside the area of impact, that impacted groundwater has not migrated toward the property boundary.

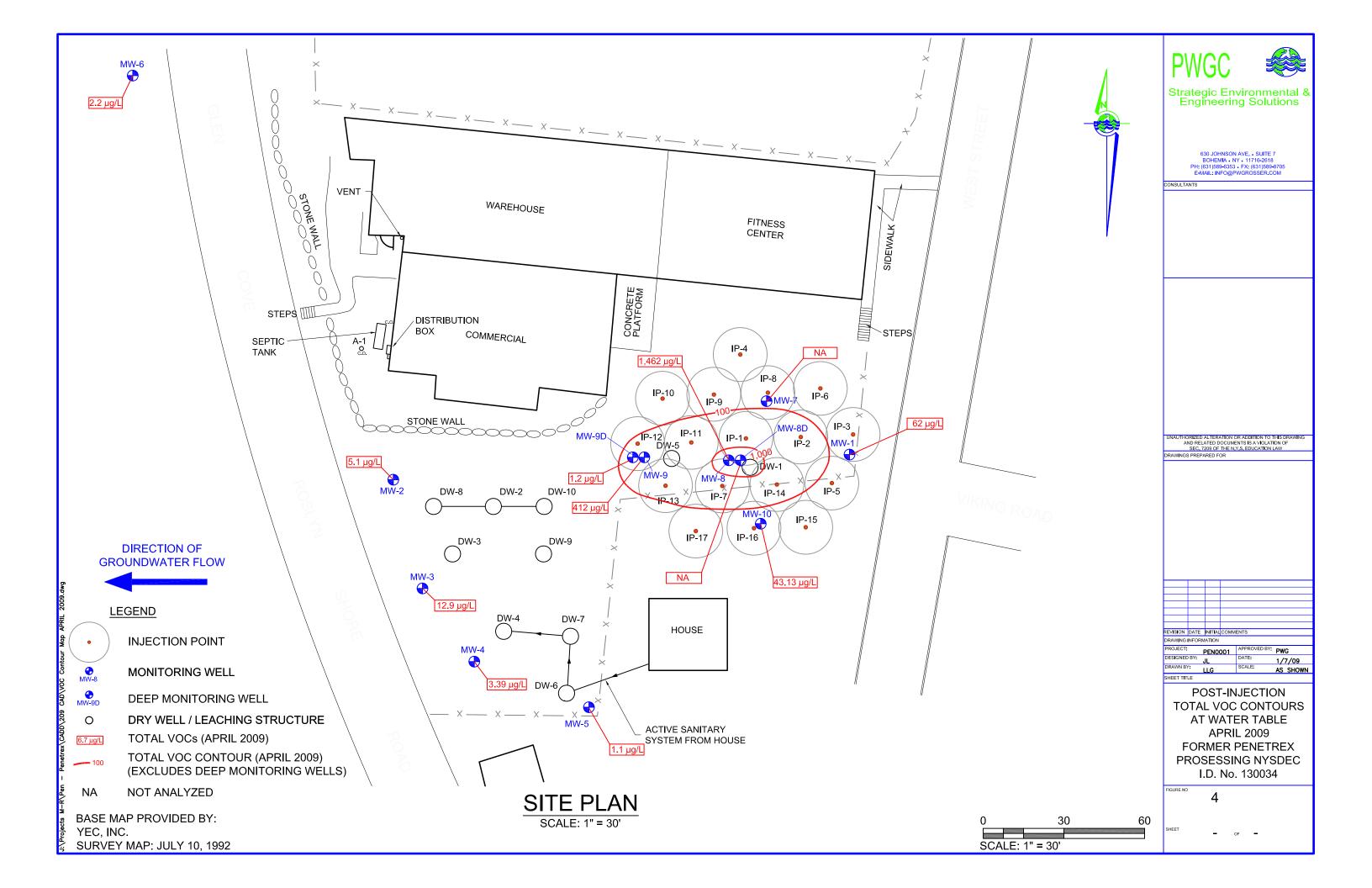
Metals concentrations will continue to be monitored during future sampling rounds. Although some concentrations of aluminum, sodium, and iron are above NYSDEC Standards, these concentrations represent typical background concentrations for the subsurface of Long Island.

The detections of chromium and manganese in the injection area wells are most likely related to the


chemical injection. The chromium concentrations exceeded its standard slightly in the post-injection samples collected from the wells located in the injection area and are expected to decrease to within Standards following the completion of the oxidation process.


The concentrations of manganese were higher in the post-injection samples collected from the wells located in the injection area, especially in the samples in which the purple color of the potassium permanganate was observed (MW-7 and MW-8D). Manganese is a component of potassium permanganate, and its concentrations are expected to decrease during the oxidation process.


Lead was detected in post-injection sample MW-3 at a concentration exceeding the Standard. However, the concentration of lead in MW-3 was within the standard for the baseline sample. Conversely, the lead concentration detected in MW-6 exceeded the standard in the baseline sample, but was within the standard for the post-injection sample. MW-6 is located off the subject site and MW-3 is located near the property boundary indicating that the occurrence of lead may be related to off-site activities.


PWGC recommends continued quarterly groundwater sampling at the subject site as specified in the *IRM Work Plan* to monitor the success of the IRM. Results can be used to complete a feasibility study to evaluate potential final remedies for the de-listing of this site as an inactive hazardous waste disposal site.

FIGURES

TABLES

Table 1

Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

April 6, 2009 Compound NYSDEC MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-7 MW-8 MW-8D MW-9 MW-9D MW-10													
Compound	Standards ⁽¹⁾	4/6/2009	MW-2 4/6/2009	MW-3 4/6/2009	MW-4 4/6/2009	MW-5 4/6/2009		MW-7 4/6/2009	MW-8 MW-8D 4/6/2009 4/6/2009	MW-9 4/6/2009		MW-10 4/6/2009	
Volatile Organic Compounds b 1,1,1,2-Tetrachloroethane	y EPA Method 82	60 in μg/L 1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	NA	12 U NA	5.0 U	0.50 U	0.50 U	
1,1,1-Trichloroethane	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
1,1,2,2-Tetrachloroethane	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
1,1,2-Trichloroethane	1 5	1.5 U	0.75 U 0.75 U	0.75 U 0.75 U		0.75 U	0.75 U 0.75 U	NA	19 U NA 19 U NA	7.5 U 7.5 U		0.75 U	
1,1-Dichloroethane 1,1-Dichloroethene	5	1.5 U 1.0 U	0.75 U 0.50 U	0.75 U 0.50 U		0.75 U 0.50 U	0.75 U 0.50 U	NA	19 U NA 12 U NA	7.5 U 5.0 U		0.75 U 0.50 U	
1,1-Dichloropropene	5	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
1,2,3-Trichlorobenzene	5	5.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	NA	62 U NA	25 U	2.5 U	2.5 U	
1,2,3-Trichloropropane	0.04	10 U	5.0 U	5.0 U		5.0 U	5.0 U	NA	120 U NA	50 U		5.0 U	
1,2,4,5-Tetramethylbenzene	5	4.0 U	2.0 U	2.0 U		2.0 U	2.0 U	NA	50 U NA	20 U		2.0 U	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	5.0 U 5.0 U	2.5 U 2.5 U	2.5 U 2.5 U		2.5 U 2.5 U	2.5 U 2.5 U	NA	62 U NA 62 U NA	25 U 25 U		2.5 U 2.5 U	
1,2-Dibromo-3-chloropropane	0.04	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
1,2-Dibromoethane	5	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	NA	50 U NA	20 U		2.0 U	
1,2-Dichlorobenzene	3	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
1,2-Dichloroethane	0.6	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
1,2-Dichloropropane 1,3,5-Trimethylbenzene	5	3.5 U 5.0 U	1.8 U 2.5 U	1.8 U 2.5 U		1.8 U 2.5 U	1.8 U 2.5 U	NA NA	44 U NA 62 U NA	18 U 25 U		1.8 U 2.5 U	
1,3-Dichlorobenzene	3	5.0 U 5.0 U	2.5 U 2.5 U	2.5 U 2.5 U		2.5 U 2.5 U	2.5 U 2.5 U	NA	62 U NA	25 U 25 U		2.5 U	
1,3-Dichloropropane	5	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
1,4-Dichlorobenzene	3	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U	2.5 U	2.5 U	
1,4-Diethylbenzene		4.0 U	2.0 U	2.0 U		2.0 U	2.0 U	NA	50 U NA	20 U		2.0 U	
2,2-Dichloropropane 2-Hexanone	5 50 G	5.0 U 10 U	2.5 U 5.0 U	2.5 U 5.0 U		2.5 U 5.0 U	2.5 U 5.0 U	NA	62 U NA 120 U NA	25 U 50 U		2.5 U 5.0 U	
Acetone	50 G	10 U 10 U	5.0 U 5.0 U	5.0 U 8.8	5.0 U 5.0 U	5.0 U	5.0 U	NA	120 U NA	50 U		5.0 U	
Acrylonitrile	5	10 U	5.0 U	5.0 U		5.0 U	5.0 U	NA	120 U NA	50 U		5.0 U	
Benzene	1	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U	0.50 U	0.50 U	
Bromobenzene	5	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
Bromochloromethane	5	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
Bromodichloromethane Bromoform	5 NS	1.0 U 4.0 U	0.50 U 2.0 U	0.50 U 2.0 U		0.50 U 2.0 U	0.50 U 2.0 U	NA	12 U NA 50 U NA	5.0 U 20 U		0.50 U 2.0 U	
Bromomethane	5	4.0 U 2.0 U	2.0 U	1.0 U		1.0 U	1.0 U	NA	25 U NA	10 U		1.0 U	
Carbon Disulfide	NS	10 U	5.0 U	5.0 U		5.0 U	5.0 U	NA	120 U NA	50 U		5.0 U	
Carbon Tetrachloride	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
Chlorobenzene	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
Chlorodibromomethane Chloroethane	NS 5	1.0 U 2.0 U	0.50 U 1.0 U	0.50 U 1.0 U	0.50 U 1.0 U	0.50 U 1.0 U	0.50 U 1.0 U	NA NA	12 U NA 25 U NA	5.0 U 10 U		0.50 U 1.0 U	
Chloroform	7	1.5 U	0.75 U	0.75 U		0.75 U	0.75 U	NA	19 U NA	7.5 U		0.75 U	
Chloromethane	NS	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
cis-1,2-Dichloroethene	5	1.0 U	0.50 U	1.8	0.77	0.50 U	0.50 U	NA	440 NA	5.0 U		0.83	
cis-1,3-Dichloropropene	0.04	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
Dibromomethane Dichlorodifluoromethane	5	10 U 10 U	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U	5.0 U 5.0 U	NA NA	120 U NA 120 U NA	50 U 50 U		5.0 U 5.0 U	
Ethyl Benzene	5	10 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	120 U NA	5.0 U		0.50 U	
Hexachlorobutadiene	0.5	1.2 U	0.60 U	0.60 U		0.60 U	0.60 U	NA	15 U NA	6.0 U		0.60 U	
Isopropylbenzene	5	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	NA	12 U NA	5.0 U	0.50 U	0.50 U	
m + p Xylene	10	2.0 U	1.0 U	1.0 U		1.0 U	1.0 U	NA	25 U NA	10 U		1.0 U	
Methyl Ethyl Ketone Methyl Isobutyl Ketone	NS NS	10 U 10 U	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U	5.0 U 5.0 U	NA NA	120 U NA 120 U NA	50 U 50 U		5.0 U 5.0 U	
Methyl Tertiary Butyl Ether	10	10 U 2.0 U	1.0 U	1.0 U		1.0 U	1.0 U	NA	25 U NA	10 U		1.0 U	
Methylene Chloride	5	10 U	5.0 U	5.0 U		5.0 U	5.0 U	NA	120 U NA	50 U		5.0 U	
Naphthalene	10	5.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
n-Butylbenzene	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
n-Propylbenzene o-Chlorotoluene	5	1.0 U 5.0 U	0.50 U 2.5 U	0.50 U 2.5 U		0.50 U 2.5 U	0.50 U 2.5 U	NA NA	12 U NA 62 U NA	5.0 U 25 U		0.50 U 2.5 U	
o Xylene	2	5.0 U 2.0 U	2.5 U 1.0 U	2.5 U 1.0 U		2.5 U 1.0 U	2.5 U 1.0 U	NA	25 U NA	10 U		2.5 U 1.0 U	
p-Chlorotoluene	4	5.0 U	2.5 U	2.5 U		2.5 U	2.5 U	NA	62 U NA	25 U		2.5 U	
p-Ethyltoluene	NS	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	NA	50 U NA	20 U		2.0 U	
p-Isopropyltoluene	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
sec-Butylbenzene	5	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
Styrene tert-Butylbenzene	5	2.0 U 5.0 U	1.0 U 2.5 U	1.0 U 2.5 U		1.0 U 2.5 U	1.0 U 2.5 U	NA NA	25 U NA 62 U NA	10 U 25 U		1.0 U 2.5 U	
Tetrachloroethylene	5	62	5.1 J	1.1	0.82	0.50 U	2.5 0	NA	930 NA	400	1.2	2.5 U	
Toluene	5	1.5 U	0.75 U	0.75 U		0.75 U	0.75 U	NA	19 U NA	7.5 U		0.75 U	
trans-1,2-Dichloroethene	5	1.5 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	NA	19 U NA	7.5 U	0.75 U	0.75 U	
trans-1,3-Dichloropropene	0.04	1.0 U	0.50 U	0.50 U		0.50 U	0.50 U	NA	12 U NA	5.0 U		0.50 U	
Trichloroethene Trichlorofluoromethane	5	1.0 U 5.0 U	0.50 U 2.5 U	1.2 2.5 U	1.8 2.5 U	1.1 2.5 U	0.50 U 2.5 U	NA NA	92 NA 62 U NA	12 25 II		1.3	
Vinyl Chloride	2	5.0 U 2.0 U	2.5 U 1.0 U	2.5 U 1.0 U		2.5 U 1.0 U	2.5 U 1.0 U	NA	62 U NA 25 U NA	25 U 10 U		2.5 U 1.0 U	
	L -			0						<u> </u>			

<u>Notes:</u> 1 - NYSDEC Class GA Groundwater Standards, TOGS 1.1.1, June 1998

NS - Not specified.

NA - Not analyzed. Chemical oxidant observed in sample.Bold / Shaded text denotes concentrations exceeding the Groundwater Standards.

G - Guidance value.

U - Analyte not detected.

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

Compound	NYSDEC Standards ⁽¹⁾		1/19/05	MW-1 9/6/06	9/17/08	4/6/09	11/13/01	1/19/05	MW-2 9/6/06	9/17/08	4/6/09	11/13/01	1/19/05	M\ 2/11/05	N-3 9/6/06	9/17/08	4/6/09	11/13/01	1/19/05	MW-4 9/6/06	9/17/08	4/6/09
Volatile Organic Compounds by 1,1,1,2-Tetrachloroethane	EPA Method 8260 5	in µg/L NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane 1,1-Dichloroethane	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	5 0.04	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND
1,2,4,5-Tetramethylbenzene	5	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND	NA	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
1,2,4-Trichlorobenzene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	5 0.04	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND
1,2-Dibromoethane	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,2-Dichlorobenzene	3	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,2-Dichloroethane 1,2-Dichloropropane	0.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,3-Dichlorobenzene	3	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
1,3-Dichloropropane 1,4-Dichlorobenzene	5	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND
2,2-Dichloropropane	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
2-Chloroethyl vinyl ether	NS	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
2-Chlorotoluene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
2-Hexanone 2-propanol	50 G NS	ND NA	ND NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND NA	ND NA	ND NA	ND NA	ND ND	ND NA	ND NA
4-Chlorotoulene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
Acetone	50 5. C	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	43	15	ND	ND	8.8	ND	ND	ND	ND	ND
Acrolein Acrylonitrile	5 G 5	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA
Benzene	1	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	ND	NA	ND
Bromobenzene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
Bromochloromethane Bromodichloromethane	NS 5	NA ND	NA ND	NA ND	ND ND	ND ND	NA ND	NA ND	NA ND	ND ND	ND ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND	NA ND	NA ND	NA ND	ND ND	ND ND
Bromoform	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride Chlorobenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorodibromomethane	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Chlorodifluoromethane	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Chloroethane Chloroform	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	1	ND	ND	ND	11	ND	ND	ND	ND	97	14	ND	ND	6	1.8	3	ND	ND	ND	0.77
cis-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane Dibromomethane	NS 5	ND NA	ND NA	ND ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND	ND NA	ND NA	ND NA	ND ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND
Dichlorodifluoromethane	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
Diisopropyl ether	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Ethanol Ethyl acetate	NS NS	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA
Ethyl Benzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	79	27	26	ND	ND	ND	ND	ND	ND	ND
Freon 113	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Freon-114	NS	NA NA	NA	ND	NA	NA	NA	NA	ND	NA	NA ND	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA ND	NA ND
Hexachlorobutadiene Isopropyl acetate	0.5 NS	NA	NA NA	ND ND	ND NA	ND NA	NA NA	NA NA	ND ND	ND NA	ND	NA NA	NA NA	NA NA	ND ND	ND NA	ND NA	NA NA	NA NA	ND ND	ND	ND
Isopropylbenzene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
m + p Xylene Mathul Ethyl Katana	10 NG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	124	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone Methyl Isobutyl Ketone	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 107	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl Tertiary Butyl Ether	10	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Amyl acetate Naphthalene	NS 10	NA NA	NA NA	ND ND	NA ND	NA ND	NA NA	NA NA	ND ND	NA ND	NA ND	NA NA	NA NA	NA NA	ND ND	NA ND	NA ND	NA NA	NA NA	ND ND	NA ND	NA ND
n-Butyl acetate	NS	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
n-Butylbenzene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
n-Propyl acetate	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
n-Propylbenzene o Xylene	5 5	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	NA 57	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND
p-Diethylbenzene	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
p-Ethyltoluene	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
p-Isopropyltoluene	5	NA NA	NA	ND	ND	ND ND	NA	NA	ND	ND ND	ND ND	NA	NA	NA	ND	ND	ND ND	NA	NA	ND	ND ND	ND ND
sec-Butylbenzene Styrene	5	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND
t-butyl alcohol	NS	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
tert-Butylbenzene	5	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND
Tetrachloroethene Toluene	5	100 ND	83 ND	120 ND	25 ND	62 ND	11 ND	14 ND	ND ND	ND ND	5.1 ND	54 ND	ND 11000	ND 2310	ND ND	ND ND	1.1 ND	65 ND	ND 11	ND ND	ND ND	0.82 ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	2310 ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
trans-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	4	2	ND	ND	ND	3	ND	ND	ND	ND	9	0.7	ND	ND	ND	1.2	7	ND	ND	8	1.8
Trichlorofluoromethane	5 NS	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND
Vinyl acetate Vinyl Chloride	NS 2	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND	ND ND	ND ND	NA 5	NA ND	NA ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND
,	-																					

<u>Notes:</u> 1 - NYSDEC Class GA Groundwater Standards, TOGS 1.1.1, June 1998

NS - Not specified. ND - Not detected. NA - Not analyzed. Bold / Shaded text denotes concentrations exceeding the Groundwater Standards

Table 2

Historical Groundwater Monitoring Well Analytical Results for VOCs by EPA Method 8260

Compound	NYSDEC Standards ⁽¹⁾	1/19/05	MV 9/5/06	V-5 9/17/08	4/6/09	1/19/05	MV 9/6/06	V-6 9/17/08	4/6/09	1/19/05	M\ 9/6/06	N-7 9/17/08	4/6/09	M\ 9/17/08	N-8 4/6/09	MW 9/17/08	/-8D 4/6/09	M\ 9/17/08	W-9 4/6/09	MV 9/17/08	V-9D 4/6/09	MW 9/17/08	/-10 4/6/09
Volatile Organic Compounds by 1,1,1,2-Tetrachloroethane	EPA Method 8260 5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5 5	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichloropropane	0.04	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	5 5	NA NA	ND ND	NA ND	ND ND	NA NA	ND ND	NA ND	ND ND	NA NA	ND ND	NA ND	NA NA	NA ND	ND ND	NA ND	NA NA	NA ND	ND ND	NA ND	ND ND	NA ND	ND ND
1,2,4-Trimethylbenzene	5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane 1,2-Dichlorobenzene	5	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	1 5	ND	ND ND	ND ND	ND ND	ND NA	ND	ND ND	ND ND	ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	3	NA NA	ND	ND	ND	NA	ND ND	ND	ND	NA NA	ND	ND	NA	ND	ND	ND	NA NA	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene 2,2-Dichloropropane	3	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloroethyl vinyl ether	NS	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
2-Hexanone 2-propanol	50 G NS	ND NA	ND ND	ND NA	ND NA	ND NA	ND ND	ND NA	ND NA	ND NA	ND ND	ND NA	NA NA	ND NA	ND NA	ND NA	NA NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA
4-Chlorotoulene	5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Acetone	50 5.C	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Acrolein Acrylonitrile	5 G 5	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Bromobenzene	5 NS	NA NA	ND NA	ND ND	ND ND	NA	ND NA	ND ND	ND ND	NA NA	ND NA	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromochloromethane Bromodichloromethane	5	NA	NA	ND	ND	NA ND	ND	ND	ND	NA	NA	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Bromoform	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Bromomethane Carbon Disulfide	5 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Chlorodibromomethane Chlorodifluoromethane	NS NS	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Chloroform Chloromethane	7 NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	27	ND	NA	1022	440	18	NA	17	ND	ND	ND	ND	0.83
cis-1,3-Dichloropropene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Dibromochloromethane Dibromomethane	NS 5	ND NA	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane	5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Diisopropyl ether	NS	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethanol Ethyl acetate	NS NS	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ethyl Benzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Freon 113 Freon-114	NS NS	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Hexachlorobutadiene	0.5	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	NA
Isopropyl acetate	NS	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene m + p Xylene	5 10	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl Ethyl Ketone	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Methyl Isobutyl Ketone	NS 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Methyl Tertiary Butyl Ether Methylene Chloride	10 5	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Amyl acetate	NS	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene n-Butyl acetate	10 NS	NA NA	ND ND	ND NA	ND NA	NA NA	ND ND	ND NA	ND NA	NA NA	ND ND	ND NA	NA NA	ND NA	ND NA	ND NA	NA NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA
n-Butylbenzene	5	NA	ND	NA	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	ND	ND	NA	NA	ND	ND	NA	ND	ND
n-Propyl acetate	NS	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
n-Propylbenzene o Xylene	5	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
p-Diethylbenzene	NS	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p-Ethyltoluene	NS F	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p-Isopropyltoluene sec-Butylbenzene	5 5	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
t-butyl alcohol	NS 5	NA NA	ND ND	NA ND	NA ND	NA NA	ND ND	NA ND	NA ND	NA NA	ND ND	NA ND	NA NA	NA ND	NA ND	NA ND	NA NA	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND
tert-Butylbenzene Tetrachloroethene	5	NA 11	ND	ND	ND	NA 2	ND	ND	ND 2.2	NA 267	530	ND 271	NA	5994	930	308	NA	175	400	ND 12	ND 1.2	ND 121	ND 41
Toluene	5	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	5 0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethene	5	6	ND	6	1.1	ND	ND	ND	ND	16.5	ND	ND	NA	742	92	7	NA	9 9	12	ND	ND	ND	1.3
Trichlorofluoromethane	5	NA	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Vinyl acetate Vinyl Chloride	NS 2	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	-		L															II	1				

Notes: 1 - NYSDEC Class GA Groundwater Standards, TOGS

NS - Not specified.

ND - Not detected. NA - Not analyzed. Bold / Shaded text denotes concentrations exceeding

Table 3

Groundwater Monitoring Well Analytical Results for Metals

September 17, 2008

Compound	NYSDEC	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-8D	MW-9	MW-9D	MW-10
Compound	Standards [®]	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008	9/17/2008
Metals in mg/L													
Silver	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
Aluminum	0.1	0.06	1.08	0.57	<0.05	0.07	30.8	1.22	1.05	1.19	0.9	0.55	0.65
Arsenic	0.025	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Barium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Beryllium	0.003	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
Calcium	NS	73.5	12.6	116	24	27.2	23.3	121	117	18.5	155	18	55.6
Cadmium	0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Cobalt	0.005	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Chromium	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper	0.2	< 0.05	<0.05	<0.05	0.09	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Iron	0.3	0.08	1.99	5.34	2.04	3.3	41.5	0.46	8.26	0.59	0.46	0.34	0.29
Mercury	0.0007	< 0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
Potassium	NS	7.88	1.58	18.4	10.8	12.4	4.6	7.63	6.51	1.26	16.9	1.14	3.2
Magnesium	35	10	1.85	11	4.11	4.67	8.89	13.3	15.5	7.98	23.6	8.08	7.65
Manganese	0.3	<0.05	0.94	0.32	0.39	0.06	0.1	0.08	0.32	<0.05	<0.05	<0.05	<0.05
Sodium	20	274	12.7	138	37	42.9	28.1	128	124	16.7	189	18.5	78.6
Nickel	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Lead	0.025	<0.005	0.005	0.007	<0.005	<0.005	0.039	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Antimony	0.003	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Selenium	0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Thalium	0.0005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vanadium	NS	<0.05	<0.05	<0.05	<0.05	<0.05	0.34	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Zinc	2	<0.05	0.06	0.09	<0.05	<0.05	0.11	<0.05	0.05	<0.05	0.06	<0.05	<0.05

Notes:

* - Standard from

** - 6 NYCRR Part

NS - Not specified.

Bold / Shaded text denotes concentrations exceeding the Groundwater Standards.

Table 4

Groundwater Monitoring Well Analytical Results for Metals

April 6, 2009

Compound	NYSDEC Standards	MW-1 4/6/2009	,	MW-2 4/6/200		MW-3 4/6/200		MW-4 4/6/2009)	MW-5 4/6/200		MW-6 4/6/2009		MW-7 4/6/2009	MW-8 4/6/2009		MW-8D 4/6/2009		MW-9 4/6/200		MW-91 4/6/200		MW-10 4/6/200		DUP-01 4/6/2009		FB-01 4/6/2009
Metals in mg/L																											
Aluminum	0.1	0.1	U	0.1	U	2.6		0.1	U	0.16		7.5		1.3	3.4		0.58		1.2		2.1		0.63		2.5		0.1 U
Antimony	0.003	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05 U	J	0.05 U	0.05 U	1	0.05 l	J	0.05	U	0.05	U	0.05	U	0.05 L	J	0.05 U
Arsenic	0.025	0.005	U	0.005	U	0.005	U	0.009		0.006		0.031		0.005 U	0.021		0.005 l	J	0.005	U	0.012		0.005	U	0.005 L	J	0.005 U
Barium	1	0.18		0.01	U	0.075		0.05		0.032		0.067		0.072	0.05		0.021		0.067		0.051		0.075		0.067		0.01 U
Beryllium	0.003	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005 U	J	0.005 U	0.005 U		0.005 l	J	0.005	U	0.005	U	0.005	U	0.005 L	J	0.005 U
Cadmium	0.005	0.005	U	0.005	U	0.005	U	0.005	U	0.005	U	0.005 U	J	0.005 U	0.005 U		0.005 l	J	0.005	U	0.005	U	0.005	U	0.005 L	J	0.005 U
Calcium	NS	75		11		40		41		26		24		80	82		9.3		150		19		56		35		0.13
Chromium	0.05	0.01		0.01	U	0.07		0.01	U	0.01	U	0.02		0.1	0.03		0.5		0.03		0.1		0.01		0.06		0.01 U
Cobalt	0.005	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U	0.02 U	J	0.02 U	0.02 U		0.02 l	J	0.02	U	0.02	U	0.02	U	0.02 L	J	0.02 U
Copper	0.2	0.011		0.01	U	0.047		0.01	U	0.09		0.026		0.013	0.018		0.01 l	J	0.01		0.015		0.01	U	0.042		0.01 U
Iron	0.3	0.21		0.21		7.8		4.9		1.4		19		2	8.9		1.6		1.9		6.3		0.59		7.2		0.05 U
Lead	0.025	0.01	U	0.01	U	0.043		0.01	U	0.01	U	0.02		0.01 U	0.01 U	1	0.01 l	J	0.01	U	0.01	U	0.01	U	0.041		0.01 U
Magnesium	35	9.8		1.6		9.8		7		4.9		8.8		9.2	13		3.7		30		8		7.9		9.2		0.1 U
Manganese	0.3	0.353		0.131		1.3		0.19		0.061		0.045		42	0.23		5.47		1.08		0.556		0.512		1.26		0.01 U
Mercury	0.0007	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002 U	J	0.0006	0.0002 U	1	0.0002 l	J	0.0002	U	0.0002	U	0.0002	U	0.0002 L	J	0.0002 U
Nickel	0.1	0.025	U	0.025	U	0.049		0.025	U	0.025	U	0.025 U	J	0.032	0.025 U		0.025		0.025	U	0.066		0.025	U	0.045		0.025 U
Potassium	NS	6.8		2.5	U	3.5		11		11		3.3		44	5.4		41		25		2.5	U	43		3		2.5 U
Selenium	0.01	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01 U	J	0.01 U	0.01 U		0.01 l	J	0.01	U	0.01	U	0.01	U	0.01 L	J	0.01 U
Silver	0.05	0.007	U	0.007	U	0.007	U	0.007	U	0.007	U	0.007 U	J	0.07 U	0.007 U		0.007 l	J	0.007	U	0.007	U	0.007	U	0.007 L	J	0.007 U
Sodium	20	380		9		52		79		48		32		120	230		15		210		18		170		43		2 U
Thalium	0.0005	0.02	U	0.02	U	0.02	U	0.02	U	0.02	U	0.02 U	J	0.02 U	0.02 U		0.02 l	J	0.02	U	0.02	U	0.02	U	0.02 L	J	0.02 U
Vanadium	NS	0.01	U	0.01	U	0.015		0.01	U	0.01	U	0.136		0.01 U	0.066		0.01 l	J	0.01	U	0.021		0.01	U	0.015		0.01 U
Zinc	2	0.05	U	0.05	U	0.229		0.05	U	0.05	U	0.053		0.05 U	0.06		0.05 l	J	0.05	U	0.05	U	0.05	U	0.224		0.05 U

Notes:

* - Standard from NYSDEC Ambient Water Quality Standards and Guidance Values Division of Water Technical and Operational Series (1.1.1) 6/1998

** - 6 NYCRR Part 703 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations 8/1999

NS - Not specified.

Bold / Shaded text denotes concentrations exceeding the Groundwater Standards.

<u>APPENDIX A</u> NYSDEC Correspondence

New York State Department of Environmental Conservation Division of Environmental Remediation

Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015 Phone: (518) 402-9625 • Fax: (518) 402-9022 / (518) 402-9627 Website: www.dec.ny.gov

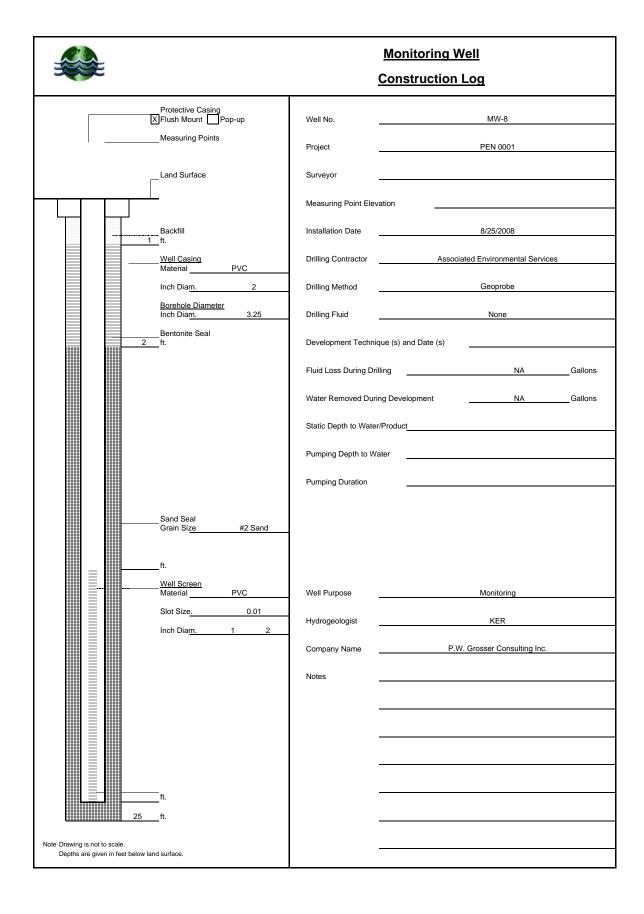
July 11, 2008

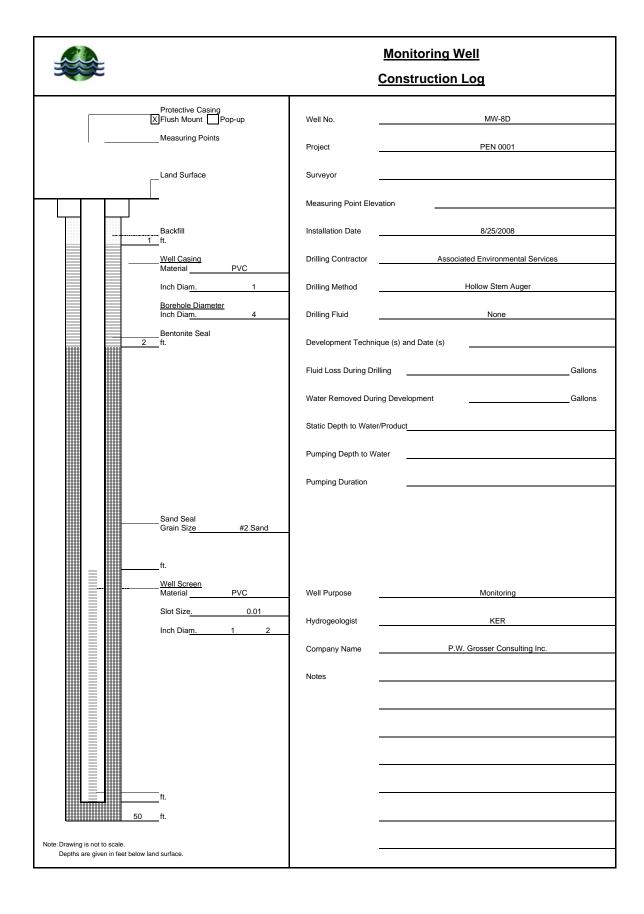
Mr. James Rhodes, CPG P.W. Grosser Consulting Engineers P.C. 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

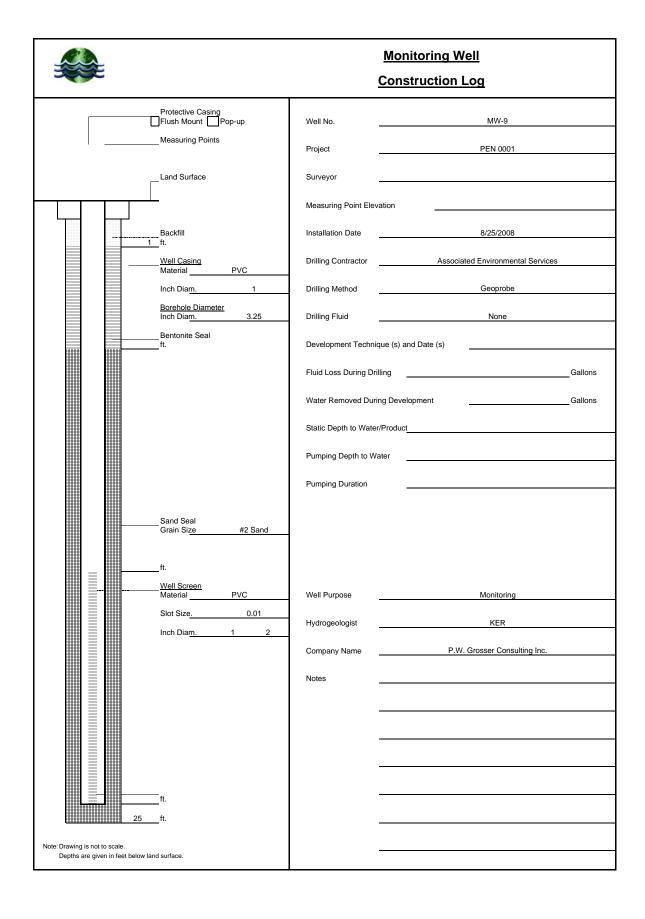
RE: Penetrex Processing Company Site No. 130034 Nassau County

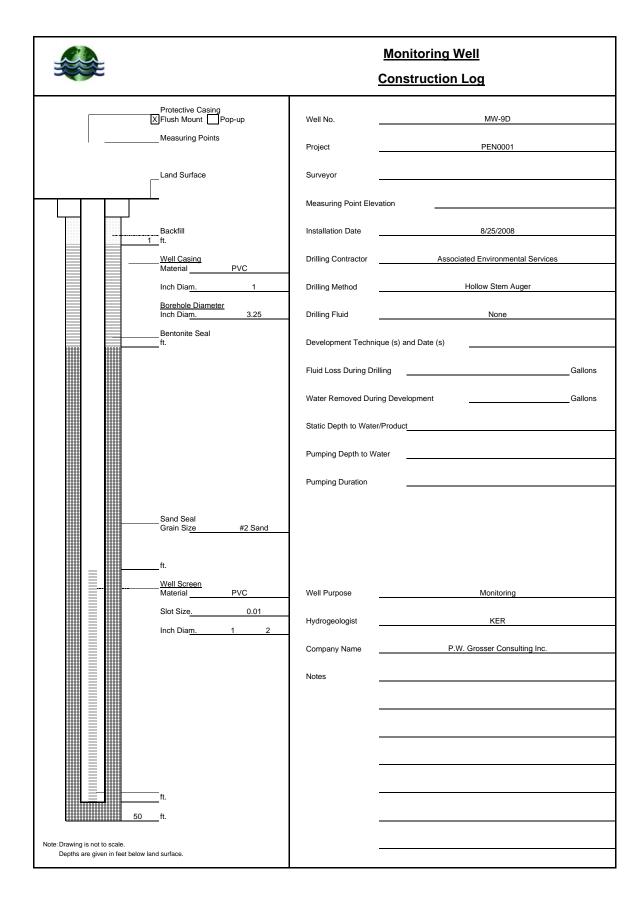
Dear Mr. Rhodes:

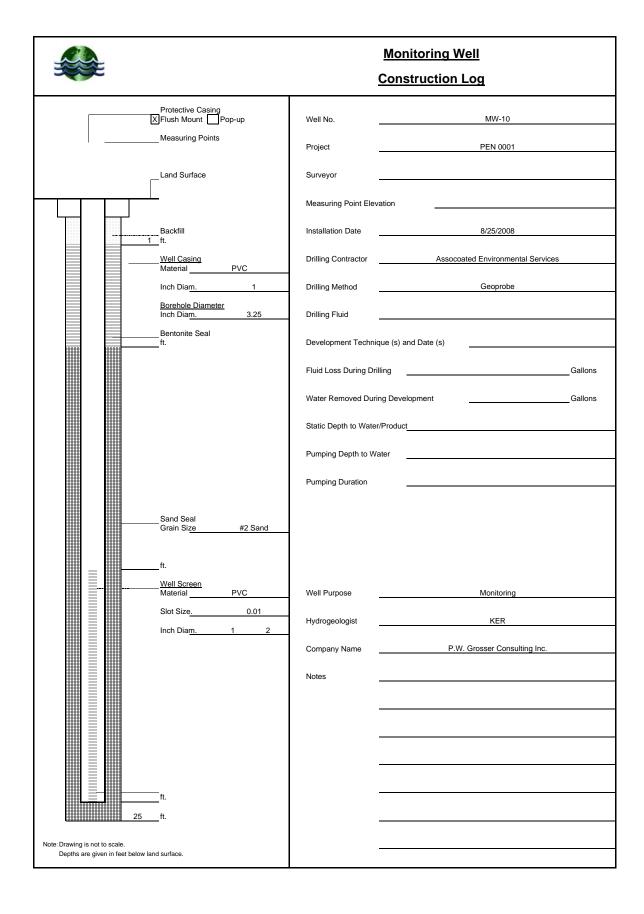
The New York State Department of Environmental Conservation has approved your May 2008 Interim Remedial Measure Work Plan for the Penetrex Processing site. Please submit an updated schedule of site activities to the NYSDEC at least ten business days before the start of field work.


Sincerely,


Nathan E. Putnam


Nathan E. Putnam Project Manager Section A


- cc: D. Yudelson, Esq. L. Weinberger R. Weitzman, NCDOH
- ec: G. Bobersky, NYSDEC W. Parish, NYSDEC S. Messier, NYSDOH


<u>APPENDIX B</u> Monitoring Well Construction Log

<u>APPENDIX C</u> Laboratory Analytical Reports

 NYSDOH
 11418

 NJDEP
 NY050

 CTDOH
 PH-0205

 PADEP
 68-00573

Tuesday, January 20, 2009

John Eichler P.W. Grosser Consulting 630 Johnson Avenue Suite 7 Bohemia, NY 11716 TEL: (631) 589-6353 FAX (631) 589-8705

RE: 1 Shore Rd., Glenwood Landing

Order No.: 0901110

Dear John Eichler:

American Analytical Laboratories, LLC. received 2 sample(s) on 1/9/2009 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOQ) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report or the data is qualified. This package has been reviewed by American Analytical Laboratories' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal. This report consists of 32 pages.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori Beyer Lab Director

56 TOLEDO STREET • FARMINGDALE, NEW YORK 11735 (631) 454-6100 • FAX: (631) 454-8027

Drum- Soil

0901110-02B

1/9/2009

CLIENT: Project: Lab Order:	P.W. Grosser Consulting 1 Shore Rd., Glenwood Landing 0901110	Work Oı	der Sample Summary
Lab Sample ID	Client Sample ID	Date Collected	Date Received
0901110-01A	Drum- Liquid	1/9/2009 2:20:00 PM	1/9/2009
0901110-01B	Drum- Liquid	1/9/2009 2:20:00 PM	1/9/2009
0901110-02A	Drum- Soil	1/9/2009 2:30:00 PM	1/9/2009

1/9/2009 2:30:00 PM

	ي	
NA:	<u>C</u>	<u>I</u> O
ERIC	<u>N</u>	OR
≜ Mi	AN	▲ B(
		H
	Πħ	

56 TOLEDO STREET • FARMINGDALE, NEW YORK 11735 (631) 454-6100 • FAX (631) 454-8027

000
TAG # /

NYSDOH 11418 CTDOH PH-0205 NJDEP NY050 PADEP 68-573

	4	1203-404) 4031) 404-8021			PADEP	NY UCU 68-573
CHAIN	V OF CU	CHAIN OF CUSTODY / REQUEST	QUEST FOR ANALYSIS DOCUMENT	SIS DOCUN		
CLIENT NAME/ADDRESS P.U. Grazer Consultines		CONTACT: Soln Sichler	00			YES / NO
BOHLAR NY 11716	.)		SAMPLER NAME (PRINT) DD FOUL EBDUL	4	CORRECT CONTAINER(S)	YES/ NO
PROJECT LOCATION: 1 Shore Rawd	Raed		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7////		
Color wood Landma,	Lendory NY	74	4202 CO 2015		/// Fo	œ
LABORATORY MATRIX # CON- ID # TAINERS	ON- SAMPLING DATE/ TIME	SAMPLE	100 m		METHANOL PRESERVED SAMPLES I VOLATILE VIAL # 1	RESERVED LES : VIAL #]
	3 1/4/09 1	14:00 Draw - Preich	+			
~ -024BS V	1/9/109	14:30 Drum-Sol	+ 7			
						-
-						
				COOLER TEMPERATURE:	APERATURE:	
MATRIX S=SOIL; L=LIQUID; SL=SLUDG	se; A-AIR; W=WIPE; I	S=SOIL; L=LIQUID; SL=SLUDGE; A-AIR; W=WIPE; P=PAINT CHIPS; B=BULK MATERIAL	TURNAROUND F	COMMENTS	COMMENTS/INSTRUCTIONS	
			NORMAL STAT D BY	/ / /	Ren a	
RELINQUISHED BY (SIGNATURE)	DATE	DATE///// PRINTED NAME	RECEIVED BY LAB (SIGNATURE)	19/01	ERINTED NAME	-
Never Eman	TIME	Darke Ersburg	14-14	TIME 15120	Nick/la	
SHED BY (SIGNATURE)	DATE	PRINTED NAME	RECEIVED BY LAB (SIGNATURE)	DATE	PRINTED NAME	-
	WHITF-OFFIC	E / CANARY-I AB / PINK-SA	WHITE-OFFICE / CANARY-I AB / PINK-SAMPI F CUSTODIAN / GOI DENROD-CUIENT	FNT		

÷

	Sample	Rece	eipt Che	CKIIST		
Client Name PW GROSSER				Date and Tir	ne Receive	1/9/2009 3:42:37 PM
Work Order Numbe 0901110	RcptNo: 1	<i>r</i>		Received by	СВ	
COC_ID: Checklist completed by Signature	r Date	, 7		Reviewed by	Initials	1 9 09 Date
Matrix:	Carrier name	<u>Cour</u>	<u>ier</u>			
Shipping container/cooler in good condition?		Yes	~	No	Not Presen	
Custody seals intact on shippping container/con	oler?	Yes		No	Not Presen	✓
Custody seals intact on sample bottles?		Yes		No	Not Presen	~
Chain of custody present?		Yes	~	No		
Chain of custody signed when relinquished and	l received?	Yes	V	No		
Chain of custody agrees with sample labels?		Yes	~	No 🗌		
Samples in proper container/bottle?		Yes	~	No		
Sample containers intact?		Yes	~	No		
Sufficient sample volume for indicated test?		Yes	~	No		
All samples received within holding time?		Yes	~	No		
Container/Temp Blank temperature in complian	ice?	Yes	~	No		
Water - VOA vials have zero headspace?	No VOA vials subn	nitted		Yes 🗸	No 🗌	
Water - pH acceptable upon receipt?		Yes	~	No	N/A	
	Adjusted?		Ch	ecked b		
Any No and/or NA (not applicable) response mu	ust be detailed in the c	omme	nts sectior	n be		
Client contacted	Date contacted:			Pers	on contacted	
Contacted by:	Regarding:					
Comments: Cooler: Yes Ice: Yes Temp Corrective Action	: -1.0C					

А

Sample Receipt Checklist

Date: 20-Jan-09

ELAP ID: 11418

ng
r

Client Sample ID: Drum- Liquid Collection Date: 1/9/2009 2:20:00 PM Matrix: LIQUID

Certificate of Results							
Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE SW-846 METHOD 8	260		SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1,1-Trichloroethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1,2,2-Tetrachloroethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	e U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1,2-Trichloroethane	U	0,4	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1-Dichloroethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1-Dichloroethene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,1-Dichloropropene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2,3-Trichlorobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2,3-Trichloropropane	U	0.4	1.0		μg/L	1	1/12/2009 3:22:00 PM
1,2,4,5-Tetramethylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2,4-Trichlorobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2,4-Trimethylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2-Dibromo-3-chloropropane	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2-Dibromoethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2-Dichlorobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2-Dichloroethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,2-Dichloropropane	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
1,3,5-Trimethylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,3-Dichlorobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,3-dichloropropane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,4-Dichlorobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
1,4-Dioxane	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
2,2-Dichloropropane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
2-Butanone	U	0.3	3.0		µg/L	1	1/12/2009 3:22:00 PM
2-Chloroethyl vinyl ether	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
2-Chlorotoluene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
2-Hexanone	U	0,3	2.0		μg/L	1	1/12/2009 3:22:00 PM
2-Propanol	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
4-Chlorotoluene	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
4-lsopropyltoluene	U	0.3	1.0		 μg/L	1	1/12/2009 3:22:00 PM
4-Methyl-2-pentanone	U	0.3	2.0		μg/L	1	1/12/2009 3:22:00 PM
Acetone	U	0.3	2.0		μg/L	1	1/12/2009 3:22:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	11	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	LOD	Limit of Detection
	LOQ	Limit of Quantitation	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits	U	Indicates the compound was analyzed but not detected.
	С	Calibration %RSD/%D exceeded for non-CCC analytes		

ELAP ID : 11418

CLIENT:	P.W. Grosser Consulting
Lab Order:	0901110
Project:	1 Shore Rd., Glenwood Landing
Lab ID:	0901110-01A

Client Sample ID: Drum- Liquid Collection Date: 1/9/2009 2:20:00 PM Matrix: LIQUID

Date: 20-Jan-09

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE SW-846 METHO	DD 8260		SW8	260B			Analyst: LA
Acrolein	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
Acrylonitrile	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
Benzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Bromobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Bromochloromethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Bromodichloromethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Bromoform	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
Bromomethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Carbon disulfide	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Carbon tetrachloride	U	0.4	1.0		μg/L	1	1/12/2009 3:22:00 PM
Chlorobenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Chlorodifluoromethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Chloroethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Chloroform	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Chloromethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
cis-1,2-Dichloroethene	48	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
cis-1,3-Dichloropropene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Dibromochloromethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Dibromomethane	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
Dichlorodifluoromethane	U	0,4	1.0		μg/L	1	1/12/2009 3:22:00 PM
Diisopropyl ether	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
Ethanol	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
Ethyl acetate	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
Ethylbenzene	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
Freon-114	U	0.4	1.0		μg/L	1	1/12/2009 3:22:00 PM
Hexachlorobutadiene	U	0.4	1.0		μg/L	1	1/12/2009 3:22:00 PM
Isopropyl acetate	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
Isopropylbenzene	Ŭ	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
m,p-Xylene	υ	0.3	2.0		μg/L	1	1/12/2009 3:22:00 PM
Methyl tert-butyl ether	Ű	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
Methylene chloride	3.4	0.3	1.0	в	μg/L	1	1/12/2009 3:22:00 PM
n-Amyl acetate	Ű	0.3	1.0	-	µg/L	1	1/12/2009 3:22:00 PM
Naphthalene	Ŭ	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte deter
	Е	Value above quantitation range	Н	Holding time
	J	Analyte detected below quantitation limits	LOD	Limit of Dete
	LOQ	Limit of Quantitation	ND	Not Detected
	S	Spike Recovery outside accepted recovery limits	U	Indicates the
	-			

ected in the associated Method Blank

es for preparation or analysis exceeded

tection

ed at the Reporting Limit

e compound was analyzed but not detected.

С Calibration %RSD/%D exceeded for non-CCC analytes

ELAP ID: 11418

CLIENT:	P.W. Grosser Consulting
Lab Order:	0901110
Project:	1 Shore Rd., Glenwood Landing
Lab ID:	0901110-01A

Client Sample ID: Drum-Liquid Collection Date: 1/9/2009 2:20:00 PM Matrix: LIQUID

ID: 0901110-01A Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE SW-846 METHOD	8260		SW8	260B			Analyst: LA
п-Butyl acetate	U	0.3	2.0		µg/L	1	1/12/2009 3:22:00 PM
n-Butylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
n-Propyl acetate	U	0.4	1.0		µg/L	1	1/12/2009 3:22:00 PM
n-Propylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
o-Xylene	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
p-Diethylbenzene	U	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
p-Ethyltoluene	U	0,3	1.0		µg/L	1	1/12/2009 3:22:00 PM
sec-Butylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Styrene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
t-Butyl alcohol	U	0.4	1.0	С	µg/L	1	1/12/2009 3:22:00 PM
tert-Butylbenzene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Tetrachloroethene	190	3	10		µg/L	10	1/14/2009 5:35:00 AM
Toluene	1.1	0.3	1.0		μg/L	1	1/12/2009 3:22:00 PM
trans-1,2-Dichloroethene	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
trans-1,3-Dichloropropene	U	0,3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Trichloroethene	20	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Trichlorofluoromethane	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Vinyl acetate	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Vinyl chloride	U	0.3	1.0		µg/L	1	1/12/2009 3:22:00 PM
Surr: 4-Bromofluorobenzene	99.2	0	60-130		%REC	10	1/14/2009 5:35:00 AM
Surr: 4-Bromofluorobenzene	96.3	0	60-130		%REC	1	1/12/2009 3:22:00 PM
Surr: Dibromofluoromethane	102	0	63-127		%REC	1	1/12/2009 3:22:00 PM
Surr: Dibromofluoromethane	93.5	0	63-127		%REC	10	1/14/2009 5:35:00 AM
Surr: Toluene-d8	97.9	0	61-128		%REC	10	1/14/2009 5:35:00 AM
Surr: Toluene-d8	96.1	0	61-128		%REC	1	1/12/2009 3:22:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	LOD	Limit of Detection
	LOQ	Limit of Quantitation	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits	U	Indicates the compound was analyzed but not detected.
	С	Calibration %RSD/%D exceeded for non-CCC analytes		

Date: 20-Jan-09

.....

ELAP ID : 11418

CLIENT:	P.W. Grosser Consulting	Client Sample ID:	Drum- Liquid
Lab Order:	0901110	Collection Date:	1/9/2009 2:20:00 PM
Project:	1 Shore Rd., Glenwood Landing	Matrix:	LIQUID
Lab ID:	0901110-01B		

Certificate of Results

Analyses	Sample Resu	lt LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
TCLP MERCURY			SW1311/7	471B SW	1311	Analyst: AH
Mercury	U	0.0005	0.0200	mg/L	1	1/13/2009 1:31:13 PM
TCLP METALS			SW1311/6	010B SW:	3010A	Analyst: JP
Arsenic	U	0.01	0.0500	mg/L	1	1/14/2009 11:09:11 AM
Barium	0.145	0.005	0.0500	mg/L	1	1/14/2009 11:09:11 AM
Cadmium	U	0.005	0.0500	mg/L	1	1/14/2009 11:09:11 AM
Chromium	U	0.005	0.0500	mg/L	1	1/14/2009 11:09:11 AM
Lead	U	0.005	0.0500	mg/L	1	1/14/2009 11:09:11 AM
Selenium	U	0.01	0.0500	mg/L	1	1/14/2009 11:09:11 AM
Silver	U	0.005	0.0500	mg/L	1	1/14/2009 11:09:11 AM
TOTAL ORGANIC HALIDES (TO	X)		SW902	0B		Analyst: JP
Total Organic Halides (TOX)	Ú	1	2.00	mg/L	1	1/20/2009

				C. 1981
Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	1	Analyte detected below quantitation limits	LOD	Limit of Detection
	LOQ	Limit of Quantitation	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits	U	Indicates the compound was analyzed but not detected.
	С	Calibration %RSD/%D exceeded for non-CCC analytes		

Date: 20-Jan-09

ELAP ID: 11418

CLIENT:	P.W. Grosser Consulting
Lab Order:	0901110
Project:	l Shore Rd., Glenwood Landing
Lab ID:	0901110-02A

Client Sample ID: Drum- Soil Collection Date: 1/9/2009 2:30:00 PM Matrix: SOIL

Certificate of Results

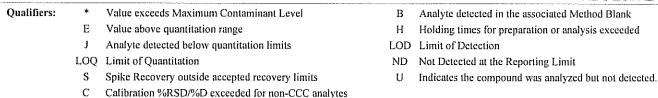
Analyses	Sample Result	LOD	LOQ Qual	Units	DF	Date/Time Analyzed
PERCENT MOISTURE	D2216					Analyst: CB
Percent Moisture	8.69	0	0	wt%	1	1/12/2009
VOLATILE SW-846 METHOD 82	60		SW8260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1,1-Trichloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1,2,2-Tetrachloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1,2-Trichloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1-Dichloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1-Dichloroethene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,1-Dichloropropene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2,3-Trichlorobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2,3-Trichloropropane	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2,4,5-Tetramethylbenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2,4-Trichlorobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2,4-Trimethylbenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2-Dibromo-3-chloropropane	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2-Dibromoethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2-Dichlorobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2-Dichloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,2-Dichloropropane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,3,5-Trimethylbenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,3-Dichlorobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,3-dichloropropane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,4-Dichlorobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
1,4-Dioxane	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
2,2-Dichloropropane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
2-Butanone	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
2-Chloroethyl vinyl ether	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
2-Chlorotoluene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
2-Hexanone	U	0.33	5.4	µg/Kg-dry	i	1/13/2009 3:22:00 PM
2-Propanol	U	0.44	54	µg/Kg-dry	1	1/13/2009 3:22:00 PM
4-Chlorotoluene	U	0.33	5.4	μg/Kg-dry	1	1/13/2009 3:22:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the a
	Е	Value above quantitation range	Н	Holding times for prepar
	J	Analyte detected below quantitation limits	LOD	Limit of Detection
	LOQ	Limit of Quantitation	ND	Not Detected at the Repo
	S	Spike Recovery outside accepted recovery limits	U	Indicates the compound
	С	Calibration %RSD/%D exceeded for non-CCC analytes		

- ration or analysis exceeded
- orting Limit

was analyzed but not detected.


ELAP ID : 11418

P.W. Grosser Consulting
0901110
1 Shore Rd., Glenwood Landing
0901110-02A

Date: 20-Jan-09

Client Sample ID: Drum- Soil Collection Date: 1/9/2009 2:30:00 PM Matrix: SOIL

Certificate of Results						
Analyses	Sample Result	LOD	LOQ Qua	l Units	DF	Date/Time Analyzed
VOLATILE SW-846 METHO	D 8260		SW8260B			Analyst: LA
4-Isopropyltoluene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
4-Methyl-2-pentanone	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Acetone	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Acrolein	U	0.33	27	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Acrylonitrile	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Benzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Bromobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Bromochloromethane	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Bromodichloromethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Bromoform	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Bromomethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Carbon disulfide	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Carbon tetrachloride	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Chlorobenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Chlorodifluoromethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Chloroethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Chloroform	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Chloromethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
cis-1,2-Dichloroethene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
cis-1,3-Dichloropropene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Dibromochloromethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Dibromomethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Dichlorodifluoromethane	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Diisopropyl ether	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Ethanol	U	0.33	27	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Ethyl acetate	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Ethylbenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Freon-114	U	0.44	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Hexachlorobutadiene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Isopropyl acetate	U	0.44	5.4	μg/Kg-dry	1	1/13/2009 3:22:00 PM
lsopropylbenzene	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM
m,p-Xylene	U	0.33	11	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Methyl tert-butyl ether	U	0.33	5.4	µg/Kg-dry	1	1/13/2009 3:22:00 PM

Date: 20-Jan-09

ELAP ID : 11418

P.W. Grosser Consulting
0901110
1 Shore Rd., Glenwood Landing
0901110-02A

Client Sample ID: Drum- Soil Collection Date: 1/9/2009 2:30:00 PM Matrix: SOIL

Certificate of Results

.

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
	0260		SW8	260B			Analyst: LA
VOLATILE SW-846 METHOD	6.7	0.33	5.4	В	µg/Kg-dry	1	1/13/2009 3:22:00 PM
Methylene chloride	U	0.44	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
n-Amyl acetate	Ű	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
Naphthalene	Ŭ	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
n-Butyl acetate	U	0.33	5.4		μg/Kg-dry	1	1/13/2009 3:22:00 PM
n-Butylbenzene	U	0.44	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
n-Propyl acetate	U	0.33	5.4		μg/Kg-dry	1	1/13/2009 3:22:00 PM
n-Propylbenzene	U	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
o-Xylene	U	0.33	5.4		μg/Kg-dry	1	1/13/2009 3:22:00 PM
p-Diethylbenzene	U	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
p-Ethyltoluene	U	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
sec-Butylbenzene	U	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
Styrene	U	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
t-Butyl alcohol	U U	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
tert-Butylbenzene	35	0.44	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
Tetrachloroethene		0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
Toluene	U	0.33	5.4		μg/Kg-dry	1	1/13/2009 3:22:00 PM
trans-1,2-Dichloroethene	U U	0.44	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
trans-1,3-Dichloropropene	U	0.33	5.4		μg/Kg-dry	1	1/13/2009 3:22:00 PM
Trichloroethene	บ บ	0.33	5.4		µg/Kg-dry	1	1/13/2009 3:22:00 PM
Trichlorofluoromethane	U	0.33	5.4		μg/Kg-dry	: 1	1/13/2009 3:22:00 PM
Vinyl acetate	.	0.33	5.4		µg/Kg-dry	t	1/13/2009 3:22:00 PM
Vinyl chloride	U		5.4 64-132		%REC	1	1/13/2009 3:22:00 PM
Surr: 4-Bromofluorobenzene	93.4	0	66-131		%REC	1	1/13/2009 3:22:00 PM
Surr: Dibromofluoromethane Surr: Toluene-d8	106 98.8	0 0	54-131		%REC	1	1/13/2009 3:22:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		Analyte detected in the associated Method Blank
Quanners.		Value above quantitation range	н	Holding times for preparation or analysis exceeded
		Analyte detected below quantitation limits		Limit of Detection
		Limit of Quantitation		Not Detected at the Reporting Limit
		Spike Recovery outside accepted recovery limits	U	Indicates the compound was analyzed but not detected.
	С	Calibration %RSD/%D exceeded for non-CCC analytes		

ELAP ID: 11418

ser Consulting	Client Sample ID:	Drum- Soil
	Collection Date:	1/9/2009 2:30:00
., Glenwood Landing	Matrix:	SOIL
2B		
	., Glenwood Landing	., Glenwood Landing Matrix:

Certificate of Results

Date: 20-Jan-09

PM

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
TCLP MERCURY			SW1311/7	471B SW131	1	Analyst: AH
Mercury	נ ט	0.0005	0.0200	mg/L	1	1/13/2009 1:33:21 PM
TCLP METALS			SW1311/6	010B		Analyst: JP
Arsenic	U	0.01	0.0500	mg/L	1	1/14/2009 11:11:14 AM
Barium	0.897	0.005	0.0500	mg/L	1	1/14/2009 11:11:14 AM
Cadmium	U	0.005	0.0500	mg/L	1	1/14/2009 11:11:14 AM
Chromium	U	0.005	0.0500	mg/L	1	1/14/2009 11:11:14 AM
Lead	0.0840	0.005	0.0500	mg/L	1	1/14/2009 11:11:14 AM
Selenium	U	0.01	0.0500	mg/L	1	1/14/2009 11:11:14 AM
Silver	U	0.005	0.0500	mg/L	1	1/14/2009 11:11:14 AM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	LOD	Limit of Detection
	LOQ	Limit of Quantitation	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits	υ	Indicates the compound was analyzed but not detected.
	С	Calibration %RSD/%D exceeded for non-CCC analytes		

	P.W. Grosser Consulting					VIANA	TTCAL OC SI	ANALYTICAL OC SIIMMARY REPORT	Ē
Work Order: 0901110	0								
Project: 1 Shore	1 Shore Rd., Glenwood Landing						TestCode:	DryFull8260_Soil	
Sample ID: V624LCS-011309Y	9Y SampType: LCS	TestCo	TestCode: DryFull8260	0_ Units: µg/Kg		Prep Date:		RunNo: 40979	
Client ID: LCSS	Batch ID; R40979b	Test	No: SW8260B			Analysis Date:	1/13/2009	SeqNo: 549503	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit (Qual
1,1,1-Trichloroethane	43	5.0	50.00	0	85.5	26	120		
1,1,2,2-Tetrachloroethane	39	5.0	50.00	0	77.9	30	130		
1,1,2-Trichloro-1,2,2-trifluoroethane	ethane 28	5.0	50.00	0	56.2	30	130		с
1,1,2-Trichloroethane	37	5.0	50.00	0	73.1	26	126		I
1,1-Dichloroethane	40	5.0	50.00	o	79.4	20	129		
1,1-Dichloroethene	57	5.0	50.00	0	113	25	130		
1,2,4,5-Tetramethylbenzene	33	5.0	50.00	0	66.8	30	130		
1,2-Dichlorobenzene	35	5.0	50.00	o	70.1	21	120		
1,2-Dichloroethane	39	5.0	50.00	0	79.0	20	120		
1,2-Dichloropropane	36	5.0	50.00	0	72.8	22	126		
1,3-Dichlorobenzene	35	5.0	50.00	0	70.8	23	120		
1,4-Dichlorobenzene	36	5.0	50.00	D	71.3	26	123		
2-Chloroethyl vinyl ether	36	5.0	50.00	0	72.0	20	125		
Benzene	40	5.0	50.00	0	79.2	30	130		
Bromodichloromethane	38	5.0	50.00	0	75.1	30	130		
Bromoform	38	5.0	50.00	0	76.9	20	123		
Bromomethane	59	5.0	50.00	o	118	35	133		
Carbon tetrachloride	42	5.0	50.00	0	84.5	25	125		
Chlorobenzene	40	5.0	50.00	a	80.3	21	133		
Chlorodifluoromethane	44	5.0	50.00	D	88.1	30	130		
Chloroethane	59	5.0	50.00	0	118	40	144		
Chloraform	41	5.0	50.00	0	81.5	26	124		
Chloromethane	51	5.0	50.00	0	102	36	140		с
cis-1,3-Dichloropropene	37 2	5.0	50.00	0	73.0	22	122		
Dibromochloromethane	39	5.0	50.00	0	77.8	22	124		
Ethylbenzene	40	5.0	50.00	0	79.2	15	130		
Methylene chloride	35	5.0	50.00	0	69.6	26	142		BC
p-Diethylbenzene	33	5.0	50.00	0	66.2	30	130		
p-Ethyltoluene	40	5.0	50.00	0	79.4	30	130		
Tetrachloroethene	33	5.0	50.00	D	65.3	20	120		
Qualifiers: E Value abo	Value above quantitation range		H Holding	Holding times for preparation or analysis exceeded	or analysi	s exceeded	J Analyte detected	Analyte detected below quantitation li	
LOD Limit of I	Limit of Detection		LOQ Limit of	Limit of Quantitation			ND Not Detected at	Not Detected at the Reporting Limit	
R RPD outs	RPD outside accepted recovery limits		S Spike R	Soile Recovery outside accented recovery limits	ted recove	rv limite		Indicates the compound was analyzed	
	•					~~~~ (warfimm east minifichi	

Date: 20-Jan-09

American Analytical Laboratories, LLC.

CLIENT: P.W. Grosse	P.W. Grosser Consulting					ANALY	(TICA	AL QC SU	ANALYTICAL QC SUMMARY REPORT	ORT
-	1 Shore Rd., Glenwood Landing							TestCode: I	DryFull8260_Soil	
ll 🗃	SampType: LCS	TestCo	TestCode: DryFull8260	60_ Units: µg/Kg		Prep Date:	11		RunNo: 40979	
Client ID: LCSS	Batch ID: R40979b	Test	TestNo: SW8260B			Analysis Date:	s: 1/13/2009	600	SeqNo: 549503	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	it Qual
Toluene	37	5.0	50.00	o	74.4	20	119			
trans-1,2-Dichloroethene	42	5.0	50.00	D	84.2	20	120			
trans-1,3-Dichloropropene	36	5.0	50.00	0	72.8	14	115			
Trichloroethene	43	5.0	50.00	0	85.6	23	121			
Trichlorofluoromethane	58	5.0	50.00	0	116	38	142			ပ
Vinyl chloride	56	5.0	50.00	0	111	40	145			
Surr: 4-Bromofluorobenzene	54		50.00		107	64	132			
Surr: Dibromofluoromethane	54		50.00		109	99	131			
Surr: Toluene-d8	48		50.00		95.4	54	132			
Sample ID: VBLK-011309Y	SampType: MBLK	TestCo	TestCode: DryFull8260_	60_ Units: µg/Kg		Prep Date:	6		RunNo: 40979	
Client ID: PBS	Batch ID: R40979b	Test	tNo: SW8260B			Analysis Date:	a: 1/13/2009	600	SeqNo: 549504	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	it Qual
1,1,1,2-Tetrachloroethane		5.0								
1,1,1-Trichloroethane	Л	5.0								
1,1,2,2-Tetrachloroethane	D	5.0								
1,1,2-Trichloro-1,2,2-trifluoroethane	ne U	5.0								U
1,1,2-Trichloroethane	D	5.0								
1,1-Dichloroethane	Ð	5.0								
1,1-Dichloraethene	D	5.0								
1,1-Dichloropropene	D	5.0								
1,2,3-Trichlorobenzene	D	5.0								
1,2,3-Trichloropropane	D	5.0								
1,2,4,5-Tetramethylbenzene		5.0								
1,2,4-Trichlorobenzene	Э	5.0								
1,2,4-Trimethylbenzene	Ð	5.0								
1,2-Dibromo-3-chloropropane	D	5.0								
1,2-Dibromoethane	D	5.0								
1,2-Dichiorobenzene	D	5.0								
1,2-Dichloroethane	Э	5.0								
Oualifiers: E Value above	Value above quantitation range		H Holdi	Holding times for preparation or analysis exceeded	1 or analys	is exceeded	7	Analyte detected	Analyte detected below quantitation li	
LOD	sction		LOQ Limit	Limit of Quantitation			ΟN	Not Detected at th	Not Detected at the Reporting Limit	
R RPD outside	RPD outside accepted recovery limits		S Spike	Spike Recovery outside accepted recovery limits	oted recove	rry limits	n	Indicates the com	Indicates the compound was analyzed	
				,						

CLIENT: P.W. Gros Wark Order: 0901110	P.W. Grosser Consulting					ANAL	YTIC/	ANALYTICAL QC SUMMARY REPORT	MMARY	V REPO	RT
	1 Shore Rd., Glenwood Landing						·	TestCode: L	DryFull8260_Soil	0_Soil	
Sample ID: VBLK-011309Y Client ID: PBS	SampType: MBLK Batch ID: R40979b	TestCo Test	TestCode: DryFull8260_ TestNo: SW8260B	Units: µg/Kg		Prep Date: Analysis Date:	te: 1/13/2009	600	RunNo: 40979 SeqNo: 549504	979 9504	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloropropane		5.0								-	
1,3,5-Trimethylbenzene	n	5.0									υ
1,3-Dichlorobenzene	Л	5.0									
1,3-dichloropropane	р	5.0									
1,4-Dichlorobenzene	D	5.0									
1,4-Dioxane	D	5.0									
2,2-Dichloropropane	D	5.0									
2-Butanone	D	5.0									
2-Chloroethyl vinyl ether	D	5.0									
2-Chlorotoluene	D	5.0									
2-Hexanone	D	5.0									
2-Propanol	D	50									U
4-Chlorotoluene	D	5.0									
4-isopropyltoluene	D	5.0									
4-Methyl-2-pentanone	D	5.0									
Acetone	D	5.0									
Acrolein	Þ	25									U
Acrytonitrile		5.0									
Benzene	D	5.0									
Bromobenzene	D	5.0									
Bromochloromethane	Ð	5.0									
Bromodichloromethane	D	5.0									
Bromoform	D	5.0									
Bromomethane	D	5.0									
Carbon disulfide	D	5.0									
Carbon tetrachloride	D	5.0									
Chlorobenzene	D	5.0									
Chlorodifluoromethane	n	5.0									
Chloroethane	Э	5.0									
Chlaroform	n	5.0									
Chloromethane	D	5.0									U
			ri Tahdaa				L	il acimitana andra bobotch stalaa k		;] ===	
а (Ю)	vance above quantitation tange			runung unies ior preparation of analysis exceeded 1 imit of Orionitiation	letining in	א בארכבתכת	- GN	Analyte detected below quainitation Not Detected at the Reporting 1 (mit	ociow quantitati ne Renortine I in	ou u nit	
					-	:			יייין איזעראיז איז	-	
K KPD outside	KPD outside accepted recovery limits		S Spike Ke	Splike Kecovery outside accepted recovery limits	tea recove	ry umus	D	Indicates the compound was analyzed	pound was analy	/ZC0	

	CLIENT: Work Order:	P.W. Gross 0901110	P.W. Grosser Consulting 0901110				7	ANALYTI(ANALYTICAL QC SUMMARY REPORT	JMMARY	REPO	RT
D. Val.K41130Y Sam/Type, Matx Tatcded: DyFull 1940 Perp Date Runko: 4007 2. PSS Banh ID: R4007bb Tatcded: DyFull 1940 Renko: 4007 Seyle: 5464 3. PLL Runko: 10 200. Seyle: 5464 Runko: 4007 Seyle: 5464 3. FLL Runko: 10 SC Seyke: 1460 Seyle: 5464 Seyle: 5464 3. FLL Runko: 4007 Seyle: 5464 Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U SD Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U S Seyke and Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U S Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U S Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U Seyle: 5464 Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U Seyle: 5464 Seyle: 5464 Seyle: 5464 Seyle: 5464 2. Explore U Seyle: 5464	Project:	1 Shore Rd	l., Glenwood Landing						TestCode:]	DryFull8260	Soil	
Rand PCI SPK hark val SREC Loukini High lant RPD hark Val SPD hark Val <th>Sample ID: VBLK-(Client ID: PBS</th> <th>011309Y</th> <th>SampType: MBLK Batch ID: R40979b</th> <th>TestCo Testl</th> <th>de: DryFull82t Vo: SW8260B</th> <th>11</th> <th>Ar Ar</th> <th>11</th> <th>3/2009</th> <th></th> <th>79 504</th> <th></th>	Sample ID: VBLK-(Client ID: PBS	011309Y	SampType: MBLK Batch ID: R40979b	TestCo Testl	de: DryFull82t Vo: SW8260B	11	Ar Ar	11	3/2009		79 504	
1 50 5 0 50 6 0 50 7 0 50 1 50 50 1 <td< th=""><th>Analyte</th><th></th><th>Result</th><th>PQL</th><th>SPK value</th><th></th><th></th><th></th><th></th><th>%RPD</th><th>RPDLimit</th><th>Qual</th></td<>	Analyte		Result	PQL	SPK value					%RPD	RPDLimit	Qual
0 50 1 50 1 50 50 <td>cis-1,2-Dichloroethe</td> <td>ene</td> <td>n</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	cis-1,2-Dichloroethe	ene	n	5.0								
e 1 50 b 5 5 c 5 5	cis-1,3-Dichloroprop	oene	Л	5.0								
1 1	Dibromochlorometh	lane	Э	5.0								
n 1	Dibromomethane		Л	5.0								
1 50 1 50	Dichlorodifluoromet	thane	Л	5.0								
1 25 1 50	Diisopropyl ether		D	5.0								
0 50 1 50 5 <td>Ethanol</td> <td></td> <td>D</td> <td>25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ethanol		D	25								
1 50 5 5 1 1 1 1 1 1 1 1 1 1	Ethyl acetate		Э	5.0								
1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 6 50 7 50 6 50 7 50 6 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50	Ethylbenzene		D	5.0								
1 50 1 <td>Freon-114</td> <td></td> <td>D</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Freon-114		D	5.0								
U 5.0 0.0	Hexachlorobutadier	Je	D	5.0								
1 50 50 50	Isopropyl acetate		D	5.0								
1 10 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lsopropylibenzene		þ	5.0								
1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 3 1 3 1 3 1	m,p-Xylene		D	10								
4.3 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 2 1.0 3 1.0 4.0 1.0 1 1.0 2 1.0 3 1.0 4.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0	Methyl tert-butyl eth	ter	D	5.0								
1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 1.0 1 1.0 1 1.0 1 1.0 2 1.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3 3.0 4.0 1.0 5.0 1.0 5.0 1.0	Methylene chloride		4.3	5.0								U
U 5.0 U 1.0 <tr td=""> 5.0</tr>	n-Amyl acetate		D	5.0								
U 50 1 1 <tr td=""></tr>	Naphthalene		D	5.0								
U 5.0 U 1.0 Dotiotic accored at the contervery limits S <	n-Butyl acetate		D	5.0								
1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 1 1 1 1 1 1 1 1 1 2 1 3 1 3 1 3 1 3 1 3 1	n-Butylbenzene		D	5.0								
U 5.0 Linut of Detection 1 Analyte detected below quantitation in ND Not Detected at the Reporting Linut of Detected at the Rep	n-Propyl acetate		Ð	5.0								
U 5.0 Dimit of Detection 1 Allee acconted recovery limits ND ND ont Detected at the Reporting Limit RPD ontside accented recovery limits 1 And was analyzed 1 ND ont side accented recovery limits 1 ND solution accented recovery limits 1 ND solution accented recovery limits 1	n-Propylbenzene		D	5.0								
U 5.0 I Analyte detected below quantitation li Doutside accented treation 1 Analyte detected below quantitation li Doutside accented treation 1	o-Xylene		n	5.0								
U 5.0 Limit of Detection 1 Analyte detected below quantitation limits Doutside accented tecovery limits 1 RPD outside accented tecovery limits 1 And outside accented tecovery limits 1 And outside accented tecovery limits 1 And outside accented tecovery limits 1 Doutside accented tecovery limits 1	p-Diethylbenzene		D	5.0								
U 5.0 Value above quantitation range H Adulate above quantitation range H Adulation or analysis exceeded J Analyte detected below quantitation lines for preparation or analysis exceeded J Analyte detected at the Reporting Limit of Quantitation ND ontside accented recovery limits Solide accented recovery limits Limit of Detected at the Reporting Limit	p-Ethyłtoluene		D	5.0								
U 5.0 U 5.0 ene U 5.0 U 5.0 ene U 5.0 U 5.0 E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation li LOD Limit of Detection LOQ Limit of Quantitation ND Not Detected at the Reporting Limit R RPD ontside accented recovery limits S Snike Recovery outside accented recovery limits 1 Indicates the command was analyzed	sec-Butylbenzene		D	5.0								
Image: Constraint of the second detected below quantitation line U 5.0 Image: Constraint of the second detected below quantitation line U 5.0 Image: Constraint of Co	Styrene		D	5.0								
enzene U 5.0 bethene U 5.0 U 5.0 U 5.0 U 5.0 E Value above quantitation range H LOD Limit of Detection LOQ R RPD outside accented recovery limits S Snike Recovery limits ND	t-Butyl alcohol		D	5.0								U
Dethene U 5.0 U 5.0 U 5.0 E Value above quantitation range H LOD Limit of Detection LOQ R RPD outside accented recovery limits S	tert-Butylbenzene		D	5.0								
U 5.0 E Value above quantitation range H Holding times for preparation or analysis exceeded J LOD Limit of Detection LOQ Limit of Quantitation ND R RPD outside accented recovery limits S Snike Recovery outside accented recovery limits 1	Tetrachloroethene		D	5.0								
EValue above quantitation rangeHHolding times for preparation or analysis exceededJLODLimit of DetectionLOQLimit of QuantitationNDRRPD outside accented recovery limitsSSnike Recovery outside accented recovery limits1	Toluene		C	5.0								
LOD Limit of Detection LOQ Limit of Quantitation R RPD outside accented recovery limits S Snike Recovery outside accented recovery limits		Value above	quantitation range			g times for preparation of	r analysis c	exceeded J	Analyte detected	below quantitation	n li	
RPD outside accented recovery limits S Snike Recovery outside accented recovery limits 1			setion			of Ouantitation	2			he Reporting Limi		
	a		accented recovery limits			Perovent outride accenter	d recovery			Evlene sew buriou	- po	

Work Order: 0901110						ANAL	YTICAL	oc su	ANALYTICAL QC SUMMARY REPORT	EPOR'	
Project: 1 Shore Rd	1 Shore Rd., Glenwood Landing						Tes	TestCode: I	DryFull8260_Soil	i	
Sample ID: VBLK-011309Y	SampType: MBLK	TestCoc	TestCode: DryFuil8260_	60_ Units: µg/Kg		Prep Date:	le:		RunNo: 40979		
Client ID: PBS	Batch ID: R40979b	Test	TestNo: SW8260B			Analysis Date:	le: 1/13/2009	_	SeqNo: 549504		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD RPI	RPDLimit QI	Qual
trans-1,2-Dichloroethene	n	5.0									
trans-1,3-Dichloropropene	Э	5,0									
Trichloroethene	D	5.0									
Trichlorofluoromethane	л	5.0								-	Ċ
Vinyl acetate	Л	5.0								-) С
Vinyl chloride	ņ	5.0									ł
Surr: 4-Bromofluorobenzene	50		50.00		101	64	132				
Surr: Dibromofluoromethane	56		50.00		111	99	131				
Surr. Toluene-d8	51		50.00		101	54	132				
Sample ID: 0901110-02AMS	SampType: MS	TestCad	le: DryFull8260	50_ Units: µg/Kg-dry	-dry	Prep Date:			RunNo: 40979		
Client ID: Drum-Soil	Batch ID: R40979b	TestN	lo: SW8260B			Analysis Date:	ie: 1/13/2009	_	SeqNo: 549506		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD RPI	RPDLimit Qı	Qual
1,1,1-Trichloroethane	44	5.5	54.76	0	80.8	26	120				
1,1,2,2-Tetrachloroethane	31	5.5	54.76	0	57.4	30	130				
1,1,2-Trichloro-1,2,2-trifluoroethane	tne 20	5.5	54.76	0	37.4	30	130			Ū	с
1,1,2-Trichloroethane	30	5.5	54.76	0	54.1	26	126				
1,1-Dichloroethane	40	5.5	54.76	0	72.5	20	129				
1,1-Dichloroethene	55	5.5	54.76	O	100	25	130				
1,2,4,5-Tetramethylbenzene	30	5.5	54.76	0	54.1	30	130				
1,2-Dichlorobenzene	30	5.5	54.76	0	54.5	21	120				
1,2-Dichloroethane	33	5.5	54.76	o	60.6	20	120				
1,2-Dichloropropane	35	5.5	54.76	0	64.1	22	126				
1,3-Dichlorobenzene	33	5.5	54.76	o	60.2	23	120				
1,4-Dichlorobenzene	32	5.5	54.76	0	58.9	26	123				
2-Chloroethyl vinyl ether	25	5.5	54.76	o	44.9	20	125				
Benzene	38	5.5	54.76	0	69.2	30	130				
Bromodichloromethane	34	5.5	54.76	0	63.0	30	130				
Bromoform	27	5,5	54.76	0	48.6	20	123				
Bromomethane	61	5.5	54.76	0	111	35	133				
Qualifiers: E Value above	Value above quantitation range		H Holdin	Holding times for preparation or analysis exceeded	on or analys	s exceeded	J Ana	alyte detected b	Analyte detected below quantitation li		
LOD Limit of Detection	sction		1.00 Limit o	Limit of Ouantitation			ND ND	Detected at the	Not Detected at the Reporting I imit		
								וקרוררורה מר מיי	The putting a month		

CLJENT: P.W. Gross Work Order: 0901110	P.W. Grosser Consulting 0901110					ANALY	TICA	L QC SU	ANALYTICAL QC SUMMARY REPORT	REPO]	RT
	I Shore Rd., Glenwood Landing						Τe	TestCode: D	DryFull8260_Soil	Soil	
Sample ID: 0901110-02AMS	SampType: MS	TestCot	TestCode: DryFull8260_	Units: µg/Kg-dry	dry	Prep Date:			RunNo: 40979		
Client ID: Drum-Soil	Batch ID: R40979b	Testh	TestNo: SW8260B			Analysis Date:	1/13/2009	6	SeqNo: 549506	g	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit ⁺	HighLimit	RPD Ref Val	%RPD R	RPDLimit	Qual
Carbon tetrachloride	42	5.5	54.76	0	76.5	25	125				
Chlorabenzene	37	5.5	54.76	0	66.7	21	133				
Chtorodifluoromethane	45	5.5	54.76	0	82.9	30	130				
Chloroethane	63	5.5	54.76	0	116	40	144				
Chloroform	40	5.5	54.76	0	72.8	26	124				
Chloromethane	51	5.5	54.76	o	92.9	36	140				v
cis-1,3-Dichloropropene	32	5.5	54.76	o	57.9	22	122				
Dibromochloromethane	32	5.5	54.76	0	59.2	22	124				
Ethylbenzene	38	5.5	54.76	0	69.0	15	130				
Methylene chloride	35	5.5	54.76	6.739	52.4	26	142				BC
p-Diethylbenzene	31	5.5	54.76	o	56.1	30	130				
p-Ethyltoluene	33	5.5	54.76	ο	59.7	30	130				
Tetrachloroethene	180	5.5	54.76	34.65	257	20	120				თ
Taluene	38	5.5	54.76	0	69.1	20	119				
trans-1,2-Dichloroethene	41	5.5	54.76	0	74.0	20	120				
trans-1,3-Dichloropropene	30	5.5	54.76	Ð	54.8	14	115				
Trichloroethene	43	5.5	54.76	O	78.4	23	121				
Trichlorofluoromethane	65	5.5	54.76	0	119	38	142				ပ
Vinyl chloride	57	5.5	54.76	ο	104	40	145				
Surr: 4-Bromofluorobenzene	50		54.76		92.0	64	132				
Surr: Dibromofluoromethane	51		54.76		92.9	66	131				
Surr: Toluene-d8	54		54.76		98.4	54	132				
Sample ID: 0901110-02AMSD	SampType: MSD	TestCo	TestCode: DryFull8260_)_ Units: µg/Kg-dry	-dry	Prep Date:			RunNo: 40979		
Client ID: Drum-Soil	Batch ID: R40979b	Test	TestNo: SW8260B			Analysis Date:	1/13/2009	6(SegNo: 549507	1	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD R	RPDLimit	Qual
1,1,1-Trichloroethane	42	5,5	54.76	o	76.1	26	120	44.24	6.02	20	
1,1,2,2-Tetrachloroethane	24	5.5	54.76	0	44.0	30	130	31.43	26.3	20	œ
1,1,2Trichloro-1,2,2-trifluoroethane	апе 28	5.5	54.76	0	51.3	30	130	20.49	31.3	20	RC
1,1,2-Trichloroethane	29	5.5	54.76	0	53.3	26	126	29.65	1.49	20	
Oualifiers: E Value above	Value above quantitation range		H Holding	Holding times for preparation or analysis exceeded	on or analys	is exceeded	J A	nalyte detected l	Analyte detected below quantitation li	:	
LOD	tection		σ	Limit of Quantitation	I		~	ot Detected at th	Not Detected at the Reporting Limit		
R RPD outside	RPD outside accepted recovery limits		S Spike R	Spike Recovery outside accepted recovery limits	epted recovi	ery limits	11	idicates the comj	Indicates the compound was analyzed	_	

CLJENT: P.W. Gross Work Order: 0901110	P.W. Grosser Consulting 0901110					ANAL	YTICA	r qc su	ANALYTICAL QC SUMMARY REPORT	Y REP(ORT	F .
Project: 1 Shore Rd.	1 Shore Rd., Glenwood Landing						Ē	TestCode: 1	DryFull8260_Soil	i0_Soil		
Sample ID: 0901110-02AMSD	SampType: MSD	TestCo	TestCode: DryFuli8260_	D_ Units: µg/Kg-dry	(g-dry	Prep Date:	ie.		RunNo: 40979	979		
Client ID: Drum-Soil	Batch ID: R40979b	Test	TestNo: SW8260B			Analysis Date:	e: 1/13/2009	6	SeqNo: 549507	9507		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1-Dichloroethane	39	5.5	54.76	0	70.6	20	129	39.68	2.57	20]
1,1-Dichloroethene	64	5,5	54.76	0	116	25	130	54.97	14.5	20		
1,2,4,5-Tetramethylbenzene	10	5.5	54.76	0	18.3	30	130	29.62	98.8	20	SR	~
1,2-Dichlorobenzene	19	5.5	54.76	0	34.3	21	120	29.84	45.4	20	Ľ	
1,2-Dichloroethane	34		54.76	D	62.0	20	120	33.18	2.25	20		
1,2-Dichloropropane	35	5.5	54.76	0	63.2	22	126	35.11	1,41	20		
1,3-Dichlorobenzene	16	5.5	54.76	0	28.9	23	120	32.94	70.3	20		
1,4-Dichlorobenzene	19	5.5	54.76	0	34.9	26	123	32.26	51.2	20	Ľ	
2-Chloroethyl vinyl ether	24	5.5	54.76	0	43.6	20	125	24.59	2.89	20		
Benzene	38	5.5	54.76	0	68.9	30	130	37.90	0.434	20		
Bromodichloromethane	34	5.5	54.76	0	61.4	30	130	34.48	2.44	20		
Bromoform	25	5,5	54.76	0	46.2	20	123	26.63	5.19	20		
Bromomethane	62	5.5	54.76	0	112	35	133	60.73	1.41	20		
Carbon tetrachloride	40	5.5	54.76	0	72.5	25	125	41.88	5.32	20		
Chlorobenzene	30	5.5	54.76	0	54.1	21	133	36.55	20.8	20	£	
Chlorodifluoromethane	45	5.5	54.76	0	82.9	30	130	45.41	0	20		
Chloroethane	66	5.5	54.76	0	120	40	144	63.40	3.55	20		
Chloroform	40	5.5	54.76	0	73.3	26	124	39.85	0.739	20		
Chloromethane	53	5.5	54.76	0	97.7	36	140	50.86	5.04	20	U	
cis-1,3-Dichloropropene	31	5.5	54.76	0	57.1	22	122	31.69	1.39	20		
Dibromochloromethane	31	5.5	54.76	o	57.2	22	124	32.41	3.33	20		
Ethylbenzene	29	5.5	54.76	0	52.6	15	130	37.78	26.9	20	C2	
Methylene chloride	36	5.5	54.76	6.739	53.3	26	142	35.45	1.29	20		
p-Diethylbenzene	9.0	5.5	54.76	0	16.4	30	130	30.74	110	20	SR	~
p-Ethyltoluene	18	5.5	54.76	0	33.1	30	130	32.68	57.2	20	<u>م</u>	
Tetrachloroethene	110	5.5	54.76	34.65	145	20	120	175.3	42.5	20	-	~
Toluene	32	5.5	54.76	0	58.1	20	119	37.83	17.3	20		
trans-1,2-Dichloroethene	39	5.5	54.76	0	70.8	20	120	40.52	4.42	20		
trans-1,3-Dichloropropene	28	5.5	54.76	0	50.7	14	115	30.02	77.7	20		
Trichloroethene	38	5.5	54.76	0	68.8	23	121	42.95	13.2	20		
Trichlorofluoromethane	62	τ. Ω	54.76	0	113	38	142	65.37	5.16	20	O	

 H Holding times for preparation or analysis exceeded
 LOQ Limit of Quantitation
 S Spike Recovery outside accepted recovery limits Spike Recovery outside accepted recovery limits

Value above quantitation range

ш

Qualifiers:

LOD Limit of Detection

Analyte detected below quantitation li Not Detected at the Reporting Limit Indicates the compound was analyzed

- Q D

R RPD outside accepted recovery limits

CLIENT: Work Order:	P.W. Grosse 0901110	P.W. Grosser Consulting 0901110					ANAL'	YTICA	ANALYTICAL QC SUMMARY REPORT	MMARY	V REPO	RT
Project:	1 Shore Rd.	l Shore Rd., Glenwood Landing						Η	TestCode: DryFull8260_Soil)ryFull826(0_Soil	
Sample ID: 0901110-02AMSD Client ID: Drum- Soil	10-02AMSD Soii	SampType: MSD Batch ID: R40979b	TestCod TestN	stCode: DryFull826 TestNo: SW8260B	TestCode: DryFull8260_ Units: µg/Kg-dry TestNo: SW8260B		Prep Date: Analysis Date: 1/13/2009	e: 1/13/20(60	RunNo: 40979 SeqNo: 549507	979 3507	
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Vinyl chloride		57	5.5	54.76	0	104	40	145	56.94	0.270	20	
Surr: 4-Bromofluorobenzene	orobenzene	49		54.76		88.8	64	132		0	0	
Surr: Dibromofluoromethane	oromethane	59		54.76		108	99	131		0	0	
Surr: Taluene-d8	£	59		54.76		108	54	132		0	0	

E Value above quantitation rangeLOD Limit of DetectionR RPD outside accepted recovery linits Qualifiers:

H Holding times for preparation or analysis exceeded
 LOQ Limit of Quantitation
 S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation li Not Detected at the Reporting Limit

r qu n

Indicates the compound was analyzed

Protect. Totale RL, Glavood Landing. Tento Canadian TentoCanadian T	CLIENT: P.W. Grosser Consulting Work Order: 0901110	lting					ANAL	ANALYTICAL QC SUMMARY REPORT	C SUI	AMARY RI	CPORT
ID: VR24LCS-011204L Samo Type: LCS TestCode: Fund Society Monitorial Fund 400% 2: LCSW Barth ID: R40373 TestCode: FastCode: FastCode: </th <th></th> <th>od Landing</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>TestCo</th> <th>ode: Fu</th> <th>d18260_W</th> <th></th>		od Landing						TestCo	ode: Fu	d18260_W	
D. LOW Buth D. Roots Tenko: SWeeter Analysis Date: 1.72004 Series: Geno:		pe: LCS	TestCoo	le: Full8260_V			Prep Da	te.		RunNo: 40979	
Real POL SFX retrival Sector Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	LCSW	ID: R40979	TestN	lo: SW8260B			Analysis Da			SeqNo: 549489	
Controlement 5 10 50.00 0 104 43 148 Chinochathene 7 10 50.00 0 101 32 148 Chinochathene 7 10 50.00 0 101 32 148 Chinochathene 7 10 50.00 0 101 32 148 Chinochathene 7 10 50.00 0 102 133 Controlmane 7 10 50.00 0 102 133 Controlmane 7 10 50.00 0 103 134 Controlmane 10 50.0	Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit		tef Val	%RPD RPDI	
Inter-cholonethane 1 0 0.0 0 0.0 0.0 0.0 Chrone-12-2thinochane 27 10 500 0 <t< td=""><td>1,1,1-Trichloroethane</td><td>52</td><td>1.0</td><td>50.00</td><td>c</td><td>104</td><td>44</td><td>875</td><td></td><td></td><td></td></t<>	1,1,1-Trichloroethane	52	1.0	50.00	c	104	44	875			
Circle 12.2.1/flutocerthane 27 10 500 0 640 42 135 Circlor-12.2.1/flutocerthane 5 10 500 0 100 42 135 Circlor-12.2.1/flutocerthane 5 10 500 0 122 30 155 Circlor-12.2.1/flutocerthane 5 10 500 0 122 30 155 Circlor-12.4.flutocerthane 5 10 500 0 122 30 155 Circlor-12.4.flutocerthane 5 10 500 0 122 30 125 Circlor-12.4.flutocerthane 5 10 500 0 122 30 135 Circlor-12.4.flutocerthane 5 10 500 0 135 141 Circlor-12.4.flutocerthane 5 10 500 0 135 141 Circlor-12.4.flutocerthane 5 10 500 0 156 141 Circlor-12.4.flutocerthane	1,1,2,2-Tetrachioroethane	51	1.0	50.00		101		148			
Chiloconclatation 50 10 500 0 100 42 150 Information 61 10 500 0 101 40 150 Information 61 10 500 0 101 40 150 Information 61 10 500 0 953 35 154 Information 61 10 500 0 973 40 123 Information 20 10 500 0 964 133 Information 20 10 500 0 96 141 Information 20 10 500 0 104 40 133 Information 20 10 500 0 107 45 141 Information 20 10 500 0 107 25 144 Information 20 10 500 0 107 25 135 <td>1,1,2-Trichtoro-1,2,2-triftuoroethane</td> <td>27</td> <td>1.0</td> <td>50.00</td> <td>0</td> <td>54.0</td> <td>42</td> <td>136</td> <td></td> <td></td> <td></td>	1,1,2-Trichtoro-1,2,2-triftuoroethane	27	1.0	50.00	0	54.0	42	136			
	1,1,2-Trichloroethane	50	1.0	50.00	0	100	42	136			
$ \ $	1,1-Dichloroethane	50	1.0	50.00	Ο	101	40	150			
	1,1-Dichloroethene	61	1.0	50.00	0	122	30	154			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2,4,5-Tetramethylbenzene	48	1.0	50.00	D	95.3	35	135			
Incretant 49 10 50.00 0 97.0 41 138 Incohorzane 2 10 50.00 0 97.0 4 138 Incohorzane 2 10 50.00 0 104 40 133 Incohorzane 2 10 50.00 0 104 23 144 Incohorzane 5 10 50.00 0 104 24 133 Incohorzane 5 10 50.00 0 104 24 144 Incohorzane 5 10 50.00 0 104 24 142 Incohorzane 5 10 50.00 0 10	1,2-Dichlorobenzene	51	1.0	50.00	0	103	40	129			
Optionpane 4 10 50.00 0 97.0 44 13 Information 3 10 50.00 0 105 40 133 ethyl vinyl ether 3 10 50.00 0 105 50 135 ethyl vinyl ether 4 10 50.00 0 101 45 144 ethyl vinyl ether 4 10 50.00 0 101 45 144 ethome 3 10 50.00 0 104 25 144 ethome 3 10 50.00 0 104 26 144 ethome 3 10 50.00 0 107 45 144 ethome 4 10 50.00 0 107 45 144 filo 50.00 0 107 45 144 142 filo 50.00 0 107 45 144 142 </td <td>1, 2-Utchloroethane</td> <td>49</td> <td>1.0</td> <td>50.00</td> <td>0</td> <td>97.9</td> <td>36</td> <td>141</td> <td></td> <td></td> <td></td>	1, 2-Utchloroethane	49	1.0	50.00	0	97.9	36	141			
Incomparison 52 10 5000 0 105 40 133 Incomparison 52 10 5000 0 104 40 135 Introductance 53 10 5000 0 101 45 113 Introductance 53 10 5000 0 101 45 133 Introductance 53 10 5000 0 101 45 134 Introductance 53 10 5000 0 107 45 141 Introductance 53 10 5000 0 107 45 141 Introductance 54 10 5000 0 107 43 142 Introductance 51 10 5000 0 101 43 143 Introductance 51 10 5000 0 101 142 137 Introductance 10 10 5000 0	1,2-Dichloropropane	48	1.0	50.00	0	97.0	44	138			
	1,3-Uichiorobenzene	52	1.0	50.00	0	105	40	133			
Her 10 500 0 95.5 21 139 Informethane 50 10 5000 0 101 45 144 Informethane 50 10 5000 0 101 45 144 Informethane 52 10 5000 0 119 26 144 Informethane 54 10 5000 0 107 45 141 Informethane 54 10 5000 0 107 45 141 Informethane 54 10 5000 0 94.3 36 141 Informethane 61 10 5000 0 94.3 36 141 Informethane 61 10 5000 0 107 42 137 Informethane 61 10 5000 0 101 123 136 Informethane 51 10 5000 0 101 <	1.4-Uichlorobenzene	52	1.0	50.00	0	104	40	135			
3 50 10 500 0 101 45 144 athornethane 3 10 5000 0 96.1 35 136 athornethane 59 1.0 5000 0 104 28 136 attrachloride 59 1.0 5000 0 107 45 141 attrachloride 54 1.0 5000 0 107 45 141 attrachloride 53 1.0 5000 0 107 45 141 attrachloride 53 1.0 5000 0 107 45 141 attrachloride 53 1.0 5000 0 107 45 141 attrachloride 61 1.0 5000 0 107 45 141 attrach 50 1.0 5000 0 123 142 142 attrach 50 1.0 5000 0 <t< td=""><td>2-Chloroethyl vinyl ether</td><td>48</td><td>1.0</td><td>50.00</td><td>Q</td><td>95.5</td><td>21</td><td>139</td><td></td><td></td><td></td></t<>	2-Chloroethyl vinyl ether	48	1.0	50.00	Q	95.5	21	139			
Chlocomethane 48 1.0 50.00 0 96.1 35 138 m 52 1.0 50.00 0 104 28 138 m 53 1.0 50.00 0 107 45 141 m 53 1.0 50.00 0 161 142 Incomethane 52 1.0 50.00 0 94.3 36 141 Incomethane 51 1.0 50.00 0 94.3 36 142 hane 61 1.0 50.00 0 94.3 36 143 hane 61 1.0 50.00 0 94.3 36 143 hane 61 1.0 50.00 0 103 36 143 hane 61 0 50.00 0 123 36 143 hane 1.1 50.00 0 123 36 143	benzene	50	1.0	50.00	D	101	45	144			
Image: constraint for the constraint foreconstraint for the constraint for the constraint for the constr	Bromodichloromethane	48	1.0	50.00	0	96.1	35	136			
ethane 53 1.0 50.00 0 173 26 14 etrachloride 54 1.0 50.00 0 107 45 14 arrachloride 52 1.0 50.00 0 107 45 14 arrachloride 52 1.0 50.00 0 98.2 35 135 hane 47 1.0 50.00 0 107 42 13 hane 61 1.0 50.00 0 123 35 151 m 50 1.0 50.00 0 123 35 135 chloroptopene 61 1.0 50.00 0 123 35 134 chloroptopene 51 1.0 50.00 0 101 21 34 chloroptopene 51 1.0 50.00 0 123 134 chloroptopene 51 1.0 50.00 0 108 14	Bromoform	52	1.0	50.00	0	104	28	138			
etrachloride 54 1.0 50.00 0 107 45 141 Intromethane 52 1.0 50.00 0 105 41 142 Intromethane 49 1.0 50.00 0 98.2 35 135 Intromethane 47 1.0 50.00 0 101 42 137 Intromethane 50 1.0 50.00 0 101 21 137 Intromethane 61 1.0 50.00 0 107 21 137 Intromethane 61 1.0 50.00 0 101 21 134 Intromethane 51 1.0 50.00 0 101 21 134 Intromethane 51 1.0 50.00 0 106 146 146 Intromethane 51 1.0 50.00 0 101 134 146 Intromethane 50 1.0 50.00 <td>Bromomethane</td> <td>59</td> <td>1.0</td> <td>50.00</td> <td>0</td> <td>119</td> <td>26</td> <td>148</td> <td></td> <td></td> <td></td>	Bromomethane	59	1.0	50.00	0	119	26	148			
interent 52 1.0 50.00 0 105 41 142 Informethane 49 1.0 50.00 0 94.3 36 135 hane 47 1.0 50.00 0 94.3 36 143 hane 61 1.0 50.00 0 101 42 137 thane 61 1.0 50.00 0 101 42 137 thane 61 1.0 50.00 0 101 42 137 thane 61 1.0 50.00 0 103 43 146 chloropropene 51 1.0 50.00 0 101 134 chloropropene 50 1.0 50.00 0 108 146 chloropropene 51 1.0 50.00 0 101 134 chloropropene 50 1.0 50.00 0 56.00 100 134	Carbon tetrachloride	54	1.0	50.00	0	107	45	141			
	Chlorobenzene	52	1.0	50.00	0	105	41	142			
hane 47 1.0 50.00 0 94.3 36 143 mm 50 1.0 50.00 0 101 42 137 ethane 61 1.0 50.00 0 123 35 151 ichloropropene 61 1.0 50.00 0 96.7 42 130 chloropropene 51 1.0 50.00 0 96.7 42 130 chloropropene 51 1.0 50.00 0 96.7 42 130 chloropropene 51 1.0 50.00 0 96.7 43 136 chloropropene 54 1.0 50.00 0 99.4 30 148 benzene 50 1.0 50.00 0 99.4 35 132 uche 50 1.0 50.00 0 99.4 35 134 uche 50 1.0 50.00 0	Chlorodifluoromethane	49	1.0	50.00	D	98.2	35	135			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chloroethane	47	1.0	50.00	0	94.3	36	143			
ethane 61 1.0 50.00 0 123 35 151 ichloropropene 48 1.0 50.00 0 96.7 42 130 chloromethane 51 1.0 50.00 0 101 21 134 chloromethane 50 1.0 50.00 0 101 21 146 zene 50 1.0 50.00 0 108 30 148 benzene 54 1.0 50.00 0 108 30 148 benzene 50 1.0 50.00 0 99.4 35 135 uene 50 1.0 50.00 0 96.7 35 135 uene 50 1.0 50.00 0 100 45 136 uene 50 1.0 50.00 0 100 45 136 uene 50 1.0 50.00 0 100 <t< td=""><td>Chloroform</td><td>50</td><td>1.0</td><td>50.00</td><td>0</td><td>101</td><td>42</td><td>137</td><td></td><td></td><td></td></t<>	Chloroform	50	1.0	50.00	0	101	42	137			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chloromethane	61	1.0	50.00	D	123	35	151			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	cis-1,3-Dichloropropene	48	1.0	50.00	0	96.7	42	130			
Zene501.050.00099.84514le chloride541.050.00010830148benzene501.050.00099.435135benzene481.050.00099.435135luene501.050.00099.435135luene501.050.00010045136strethene501.050.00010045136strethene501.050.00010043136strethene501.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.050.00010043136strethene1.01.050.000100136strethene1.01.0100100136strethene1.01.0100100136str	Dibromochloromethane	51	1.0	50.00	0	101	21	134			
le chloride541.050.0001083014benzene501.050.00099.435135benzene501.050.00099.435135luene501.050.00096.735135strethene501.050.00010045136strethene501.050.00010043136strethene501.050.00010043134strethene1.050.00010043134strethene1.050.00010043134strethene1.050.00010043134strethene1.050.00010043134strethene1.050.00010043134strethene1.01.01.01.001.001.00the Recovery limits1.01.001.001.001.01the RPD outside accepted recovery limits1.0Analysis exceeded1.0Analysis for common of was analysisthe RPD outside accepted recovery limits1.01.001.001.001.001.01the RPD outside accepted recovery limits1.01.001.001.001.001.00the RPD outside accepted recovery limits2.001.001.001.001.001.00the RPD outside acc	Ethylbenzene	50	1.0	50.00	ο	93.8	45	146			
$ \begin{array}{c cccc} \mbox{Denzene} & 50 & 1.0 & 50.00 & 0 & 99.4 & 35 & 135 \\ \mbox{Iuene} & 48 & 1.0 & 50.00 & 0 & 95.7 & 35 & 135 \\ \mbox{Simethene} & 50 & 1.0 & 50.00 & 0 & 100 & 45 & 136 \\ \mbox{Simethene} & 50 & 1.0 & 50.00 & 0 & 100 & 43 & 134 \\ \mbox{Simethene} & 50 & 1.0 & 50.00 & 0 & 100 & 43 & 134 \\ \mbox{Simethene} & 1 & Molding times for preparation or analysis exceeded & J & Analyte detected below quantitation li \\ \mbox{I.OD Limit of Detection} & LOQ Limit of Quantitation \\ \mbox{R } \mbox{ RPD outside accepted recovery limits} & 11 & Indicates the common diverse analysis exceeded at the Reporting Limit \\ \mbox{R } \mbox{ RPD outside accepted recovery limits} & 11 & Indicates the common diverse analysis} \end{array} $	Methylene chloride	54	1.0	50.00	o	108	30	148			сс
Iubene 48 1.0 50.00 0 95.7 35 135 proethene 50 1.0 50.00 0 100 45 136 sreethene 50 1.0 50.00 0 100 45 136 sr E Value above quantitation range 1.0 50.00 0 100 43 134 sr E Value above quantitation range H Holding times for preparation or analysis exceeded J LOD Limit of Detection LOQ Limit of Quantitation ND ND R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits U ND	p-Ulethylbenzene	50	1.0	50.00	0	99.4	35	135			1
Arrow Transmission 50 1.0 50.00 0 100 45 136 50 1.0 50.00 0 100 43 134 s: E Value above quantitation range LOD Limit of Detection LOQ Limit of Quantitation ND R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND	p-Ethyltoluene	48	1.0	50.00	ο	95.7	35	135			
50 1.0 50.00 0 100 43 134 s: E Value above quantitation range H Holding times for preparation or analysis exceeded J LOD Limit of Detection LOQ Limit of Quantitation ND ND R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits U	l etrachioroethene	50	1.0	50.00	0	100	45	136			
E Value above quantitation range H Holding times for preparation or analysis exceeded J LOD Limit of Detection LOQ Limit of Quantitation ND R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits U	loluene	20	1.0	50.00	a	100	43	134			
Limit of Detection LOQ Limit of Quantitation ND RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits U	11	ange			times for preparation	n or analysis	exceeded		otected helo	w quantitation li	
RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits []					Quantitation	,			ted at the R	erortino Limit	
		overy limits			coverv outside acce	nted recover	v limite			d must emited	

	recovel	
	e accepted recove	
	outside	
,	covery	

CLIENT: P.W. Gross Work Order: 0901110	P.W. Grosser Consulting 0901110					ANAL	YTICA	AL QC SU	ANALYTICAL QC SUMMARY REPORT	[
	1 Shore Rd., Glenwood Landing						~	TestCode: I	Full8260_W	
Sample ID: V624LCS-011209L	SampType: LCS	TestCode	TestCode: Full8260_W	Units: µg/L		Prep Date			RunNo: 40979	
Client ID: LCSW	Batch ID: R40979	TestNo	TestNo: SW8260B		•	Analysis Date:	le: 1/12/2009	60(SeqNo: 549489	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Q	Qual
trans-1,2-Dichloroethene	54	1.0	50.00	0	108	42	135			
trans-1,3-Dichloropropene	47	1.0	50.00	0	94.6	37	133			
Trichloroethene	52	1.0	50.00	0	105	43	140			
Trichlorofluoromethane	58	1.0	50.00	0	116	50	148			
Vinyl chloride	61	1.0	50.00	0	123	35	142			
Surr: 4-Bromofluorobenzene	48		50.00		96.1	60	130			
Surr: Dibromofluoromethane	50		50.00		100	63	127			
Surr: Toluene-d8	49		50.00		97.6	61	128			
Sample ID: VBLK-011209L	SampType: MBLK	TestCode	TestCode: Full8260_W	Units: µg/L		Prep Date:			RunNo: 40979	
Client ID: PBW	Batch ID: R40979	TestNo	TestNo: SW8260B			Analysis Date:	te: 1/12/2009	60(SeqNo: 549490	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Q	Qual
1,1,1,2-Tetrachloroethane		1.0]
1,1,1-Trichloroethane	D	1.0								
1,1,2,2-Tetrachloroethane	D	1.0								
1,1,2-Trichloro-1,2,2-trifluoroethane	ne U	1.0								
1,1,2-Trichtoroethane	D	1.0								
1,1-Dichloroethane	D	1.0								
1,1-Dichloroethene	D	1.0								
1,1-Dichloropropene	D	1.0								
1,2,3-Trichtorobenzene	D	1.0								
1,2,3-Trichloropropane	D	1.0								
1,2,4,5-Tetramethylbenzene	D	1.0								
1,2,4-Trichlorobenzene	D	1.0								
1,2,4-Trimethylbenzene	n	1.0								
1,2-Dibromo-3-chloropropane	О	1.0								
1,2-Dibromoethane	О	1.0								
1,2-Dichlorobenzene	n	1.0								
1,2-Dichloroethane	n	1.0								
1,2-Dichloropropane	ņ	1.0								
Qualifiers: E Value above	Value above quantitation range		H Holding t	Holding times for preparation or analysis exceeded	n or analysis	s exceeded	ſ	Analyte detected l	Analyte detected below quantitation li	
LOD	sction		\sim	Limit of Quantitation	7		~	Not Detected at the	Not Detected at the Reporting Limit	
R RPD outside	RPD outside accepted recovery limits		S Spike Rei	Spike Recovery outside accepted recovery limits	spted recover	ry limits		Indicates the com	Indicates the compound was analyzed	
				•	-	ŕ			ž	

CLIENT: P.W. Gross	P.W. Grosser Consulting					
Work Order: 0901110			ANALY IIC/	NL VC SUI	ANALY HCAL QC SUMINARY REPORT	-
Project: 1 Shore Rd	1 Shore Rd., Glenwood Landing			TestCode: Full8260_W	ull8260_W	
Sample ID: VBLK-011209L Client ID: DRW	SampType: MBLK Batch ID: DA0020	TestCode: Full8260_W Units: µg/L	11		RunNo: 40979	
		PQL SPK value SPK Ref Val	Analysis Date: 1/1/2/2009 %REC LowLimit HighLimit R	J09 RPD Ref Val	SeqNo: 549490 %RPD RPDLimit O	Ottal
1,3.5-Trimethvlbenzene						
1,3-Dichlorobenzene		1.0				
1,3-dichloropropane	Л	1.0				
1,4-Dichlorobenzene	D	1.0				
1,4-Dioxane	D	1.0				
2,2-Dichloropropane	D	1.0				
2-Butanone	D	3.0				
2-Chloroethyl vinyl ether		1.0				
2-Chlorotoluene	Л	1.0				
2-Hexanone	D	2.0				
2-Propanol	Π	1.0				
4-Chlorototuene	Л	1.0				
4-lsopropyltoluene	D	1.0				
4-Methyl-2-pentanone	р	2.0				
Acetone	n	2.0				
Acrolein	J	1.0				
Acrylanitrile	Ð	1.0				
Benzene	J	1.0				
Bromobenzene		1.0				
Bramochloromethane	П	1.0				
Bromodichloromethane	Л	1.0				
Bromoform	n	1.0				
Bromomethane	n	1.0				
Carbon disulfide	D	1.0				
Carbon tetrachloride	D	1.0				
Chlorobenzene	Э	1.0				
Chlorodifluoromethane	Э	1.0				
Chloroethane	П	1.0				
Chloroform	Л	1.0				
Chloromethane	7	1.0				
cis-1,2-Dichloroethene	Э	1.0				
Qualifiers; E Value above	Value above guantitation range	Holding times for menaration or analysis exceeded	L	Analyte detected below anantitation 1	low anantitation li	
LOD	ection	0	, CIN	Not Detected at the Reporting Limit	Reporting Limit	
R RPD outside	RPD outside accepted recovery limits		-	Indicates the commoning was analyzed	ture analysis of the second	
	а 		C	יקימטי יווו כאזפטוטוזי	חווח אינס מוומואדרת	

CLIENT: F	P.W. Grosser Consulting	onsulting	an da mana a da mana ana da a sa da na da	n in year an a su an an anna an anna an anna an anna an an			LIVNA		TUDE OC SIMMARY BEDDE	MM A D'	Janav	La
Work Order: 0	0111060						AINAL			INIMALIA	I NELO	IVI
	l Shore Rd., Glt	1 Shore Rd., Glenwood Landing							TestCode: Full8260_W	ul18260_M	>	
Sample ID: VBLK-011209L Client ID: PRW	ŭ	SampType: MBLK Batch ID: R40979	TestCo	TestCode: Full8260_W TestNo: SW8260B	/ Units: µg/L		Prep Date: Anatvsis Date	e: 1/12/2009	60	RunNo: 40979 SedNo: 549490	979 9490	
	1	Result	PQL		SPK Ref Val	%REC	LowLimit	- C1	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	ne	Π	1,0									
Dibromochloromethane	ne	5	1.0									
Dibromomethane		D	1.0									
Dichlorodifluoromethane	ane	D	1.0									
Diisopropyl ether		D	1.0									
Ethanol		Ð	1.0									
Ethyl acetate		D	1.0									
Ethylbenzene		D	1.0									
Freon-114		D	1.0									
Hexachlorobutadiene	-	D	1.0									
Isopropyl acetate		D	1.0									
Isopropylbenzene		D	1.0									
m,p-Xylene		D	2.0									
Methyl tert-butyl ether	L	D	1.0									
Methylene chloride		7.6	1.0									
n-Amyl acetate		D	1.0									
Naphthalene		D	1.0									
n-Butyl acetate		D	2.0									
n-Butylbenzene		D	1.0									
n-Propyl acetate		Ð	1.0									
n-Propylbenzene		D	1.0									
o-Xylene		D	1.0									
p-Diethylbenzene		D	1.0									
p-Ethyitaluene		D	1.0									
sec-Butylbenzene		D	1.D									
Styrene		D	1.0									
t-Butyl alcohoi		Л	1.0									υ
tert-Butylbenzene		D	1.0									
Tetrachloroethene		D	1.0									
Toluene		D	1.0									
trans-1,2-Dichloroethene	iene	D	1.0									
Onalifiore: F	Value above quantitation range	itation rance		H Haldine	Holdino times for menuration or analysis eveeded	or analysis	s eveneded	-	Analyte detected below auantitation li	elow gentitati	ion li	
LOD	Limit of Detection				Limit of Ouantitation	in the second		_	Not Detected at the Reporting Limit	e Reporting Lir	mit .	
	RPD onteide accen	RDD outside accented exconent limits			Shiles Recovery cutside accented recovery fimite	wed recorder	ny limite		Indicates the compound was analyzed	viene aver puilor	vzed	
	IN D DURING WITH	and receivery minutes			יררטירון טעשומי אייין	ALM LEVEL	ly unus		מוחורמורם הוה הרייין		jeru	

Work Order: 0901110						ANAL	YTICA	ANALYTICAL QC SUMMARY REPORT	MMARY	REPO	RT
	1 Shore Rd., Glenwood Landing						1. 1.	TestCode: Full8260_W	ull8260_W		
Sample ID: VBLK-011209L Client ID: PBW	SampType: MBLK Batch ID: R40979	TestCoo	TestCode: Full8260_W TestNo: SW8260B	/ Units: µg/L		Prep Date: Analysis Date:	e: 1/12/2009	600	RunNo: 40979 SeqNo: 549490	179 1490	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	MRPD	RPDLimit	Qual
trans-1,3-Dichloropropene	n	1.0									
Trichloraethene	Э	1.0									
Trichlorofluoromethane		1.0									
Vinyl acetate	Л	1.0									
Vinyl chloride	D	1.0									
Surr: 4-Bromofluorobenzene	51		50.00		101	60	130				
Surr: Dibromofluoromethane	53		50.00		106	63	127				
Surr: Toluene-d8	49		50.00		98.6	61	128				
Sample ID: V624LCS-011309aL	L SampType: LCS	TestCo	TestCode: Full8260_W	/ Units: µg/L		Prep Date:	ü		RunNo: 40979	620	
Client ID: LCSW	Batch ID: R40979a	Test	TestNo: SW8260B			Analysis Date:	e: 1/13/2009	600	SeqNo: 549492	1492	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	048%	RPDLimit	Qual
1,1,1-Trichloroethane	46	1.0	50.00	0	92.9	43	148				
1,1,2,2-Tetrachloroethane	49	1.0	50.00	0	98.3	32	148				
1,1,2-Trichloro-1,2,2-trifluoroethane	ane 24	1.0	50.00	0	48.4	42	136				
1,1,2-Trichloroethane	47	1.0	50.00	0	94.8	42	136				
1,1-Dichloroethane	45	1.0	50.00	0	90.5	40	150				
1,1-Dichloroethene	59	1.0	50.00	o	119	30	154				
1,2,4,5-Tetramethylbenzene	42	1.0	50.00	0	84.7	35	135				
1,2-Dichlorobenzene	47	1.0	50.00	D	93.6	40	129				
1,2-Dichloroethane	44	1.0	50.00	0	88.5	36	141				
1,2-Dichloropropane	45	1.0	50.00	ο	90.9	44	138				
1,3-Dichlorobenzene	46	1.0	50.00	0	91.0	40	133				
1,4-Dichlorabenzene	47	1.0	50.00	o	93.8	40	135				
2-Chloroethyt vinyl ether	45	1.0	50.00	0	89.3	21	139				
Benzene	47	1.0	50.00	0	93.2	45	144				
Bromodichloromethane	45	1.0	50.00	0	89.4	35	136				
Bromoform	48	1.0	50.00	0	95.7	28	138				
Bromomethane	53	1.0	50.00	0	106	26	148				
Carbon tetrachloride	48	1.0	50.00	0	95.0	45	141				
Qualifiers: E Value abov	Value above quantitation range		H Holding	Holding times for preparation or analysis exceeded	ion or analys	is exceeded	ſ	Analyte detected below quantitation h	below quantitatic	il nc	
LOD Limit of Detection	tection		LOQ Limit o	Limit of Quantitation			QN	Not Detected at the Reporting Limit	he Reporting Lim	uit	

CLIENT: P.W. Grosse Work Order: 0901110	P.W. Grosser Consulting 0901110					ANAL	YTIC	ANALYTICAL QC SUMMARY REPORT	MMAR	KEPO	RT
	l Shore Rd., Glenwood Landing						[TestCode: F	Full8260_W	_	
Sample ID: V624LCS-011309aL	SampType: LCS	TestCo	TestCode: Full8260_W	Units: µg/L		Prep Date			RunNo: 40979	979	
Client ID: LCSW	Batch ID: R40979a	Test	TestNo: SW8260B			Analysis Date:	e: 1/13/2009	60(SeqNo: 549492	9492	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	47	1.0	50.00	o	93.9	41	142				
Chlorodifluoromethane	43	1.0	50.00	0	85.8	35	135				
Chloroethane	62	1.0	50.00	0	124	36	143				
Chlarofarm	46	1.0	50.00	0	91.5	42	137				
Chloromethane	53	1.0	50.00	ο	107	35	151				
cis-1,3-Dichloropropene	45	1.0	50.00	0	90.3	42	130				
Dibromochloromethane	48	1.0	50.00	0	96.1	21	134				
Ethylbenzene	44	1.0	50.00	Ð	88.6	45	146				
Methylene chloride	57	1.0	50.00	O	114	30	148				в
p-Diethylbenzene	43	1.0	50.00	Ð	85.2	35	135				
p-Ethyltoluene	42	1.0	50.00	0	83.8	35	135				
Tetrachloroethene	44	1.0	50.00	0	88.9	45	136				
Toluene	45	1.0	50.00	o	90.4	43	134				
trans-1,2-Dichloroethene	48	1.0	50.00	0	96.4	42	135				
trans-1,3-Dichloropropene	45	1.0	50.00	O	89.6	37	133				
Trichloroethene	49	1.0	50.00	0	97.7	43	140				
Trichlorofluoromethane	58	1.0	50.00	0	116	50	148				
Vinyl chloride	53	1.0	50.00	٥	105	35	142				
Surr: 4-Bromofluorobenzene	48		50.00		95.2	60	130				
Surr: Dibromofluoromethane	51		50.00		102	63	127				
Surr: Toluene-d8	48		50.00		96.5	61	128				
Sample ID: VBLK-011309aL	SampType: MBLK	TestCo	TestCode: Fuil8260_W	Units: µg/L		Prep Date:	, Ŭ		RunNo: 40979	379	
Client ID: PBW	Batch ID: R40979a	Test	TestNo: SW8260B			Analysis Date:	ie: 1/13/2009	600	SeqNo: 549493	9493	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%КРО	RPDLimit	Qual
1,1,1,2-Tetrachloroethane		1,0									-
1,1,1-Trichtoroethane	Л	1.0									
1,1,2,2-Tetrachloroethane		1.0									
1,1,2-Trichloro-1,2,2-trifluoroethane		1.0									
1,1,2-Trichtoroethane	D	1.0									
Oualifiers: E Value above e	Value above quantitation range		H Holding	Holding times for preparation or analysis exceeded	on or anafys	is exceeded	J	Analyte detected below quantitation li	oelow guantitatic	il no	
LOD	sction		\sim	Limit of Quantitation			QN	Not Detected at the Reporting Limit	e Reporting Lim	H.	
R RPD outside a	RPD outside accepted recovery limits		S Spike Re	Spike Recovery outside accepted recovery limits	pited recover	ery limits	n	Indicates the compound was analyzed	ound was analy	zcd	

Work Order: 0901110				ANALYIIC	AL VC SU	ANALY I ICAL VC SUMMARY KEFUKI	IVI
	I Shore Rd., Glenwood Landing				TestCode: Full8260_W	ull8260_W	
Sample ID: VBLK-011309aL Client ID: PBW	SampType: MBLK Batch ID: R40979a	TestCade: Full8260_W TestNo: SW8260B	Units: µg/L	Prep Date: 1/13/2009 Analysis Date: 1/13/2009	2009	RunNo: 40979 SeqNo: 549493	
Analyte	Result	PQL SPK value SPK	SPK Ref Val %REC	LowLimit HighLimit	t RPD Ref Val	%RPD RPDLimit	Qual
1,1-Dichloroethane	n	1.0					
1,1-Dichloroethene	D	1.0					
1,1-Dichloropropene	D	1.0					
1,2,3-Trichlorobenzene	О	1.0					
1,2,3-Trichloropropane		1.0					
1,2,4,5-Tetramethylbenzene	D	1.0					
1,2,4-Trichlorobenzene	D	1.0					
1,2,4-Trimethylbenzene	Ð	1.0					
1,2-Dibromo-3-chloropropane	D	1.0					
1,2-Dibromoethane	D	1.0					
1,2-Dichlorobenzene	D	1.0					
1,2-Dichloroethane	D	1.0					
1,2-Dichloropropane		1.0					
1,3,5-Trimethylbenzene	Ð	1.0					
1,3-Dichlorobenzene	D	1.0					
1,3-dichloropropane	D	1.0					
1,4-Dichlorobenzene	D	1.0					
1,4-Dioxane	D	1.0					
2,2-Dichloropropane	D	1.0					
2-Butanone	D	3.0					
2-Chloroethyl vinyl ether	D	1.0					
2-Chlorotoluene	Ð	1.0					
2-Hexanone	D	2.0					
2-Propanol	D	1.0					
4-Chiorotoluene	D	1.0					
4-Isopropyltoluene	5	1.0					
4-Methyl-2-pentanone	П	2.0					
Acetone	D	2.0					
Acrolein		0. 1					
Acrylonitrile	D	1.0					
Benzene	D	1.0					
Qualifiers: E Value abov	Value above quantilation range	H Hotding tim	Holding times for preparation or analysis exceeded	sis exceeded J	Analyte detected t	Analyte detected below quantitation li	
LOD	atertion -	~	mulitation	UN		e Reporting Limít	

Project: 1 Shore Rd., Gl Sample ID: VBLK-011309aL Sa Client ID: PBW 8 Analyte Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	1 Shore Rd., Glenwood Landing 11309aL SampType: MBLK	Tastforda: E.,ilanson M			TestCode: Full8260_W	ull8260_W	
ID: VBLK-011309aL Si D: PBW enzene hloromethane ichloromethane orm	ampType: MBLK	TostCode: Eilogen					
Analyte Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	Dalch ID. K409/98	TestNo: SW8260B	W Units: µg/L	Prep Date: Analysis Date: 1/13	1/13/2009	RunNo: 40979 SeqNo: 549493	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit	nit RPD Ref Val	%RPD RPDLimit	t Qual
Bromochloromethane Bromodichloromethane Bromoform	n	1.0					
Bromodichloromethane Bromoform	D	1.0					
Bromaform	D	1.0					
	n	1.0					
Bromomethane	D	1.0					
Carbon disulfide	D	1.0					
Carbon tetrachloride	D	1.0					
Chlorabenzene	n	1.0					
Chlorodifluoromethane	n	1.0					
Chloroethane	D	1.0					
Chlaroform	D	1.0					
Chloromethane	Ð	1.0					
cis-1,2-Dichloroethene	Ð	1.0					
cis-1,3-Dichloropropene	D	1.0					
Dibromochloromethane	D	1.0					
Dibromomethane	D	1.0					
Dichlorodifluoromethane	D	1.0					
Diisopropyl ether	D	1,0					
Ethanoi	D	1.0					
Ethyl acetate	D	1,0					
Ethylbenzene	Ð	1.0					
Freon-114	D	1.0					
Hexachlorobutadiene	J	1.0					
Isopropyl acetate	Ð	1.0					
lsopropylbenzene	Э	1.0					
m,p-Xylene		2.0					
Methyl tert-butyl ether	D	1.0					
Methylene chloride	7.6	1.0					
n-Amyl acetate	D	1.0					
Naphthalene	D	1.0					
n-Butyl acetate	n	2.0					
Qualifiers: E Value above quantitation range	ttitation range	H Holdin	Holding times for preparation or analysis exceeded	analvsis exceeded		Analyte detected below auantitation li	
LOD	u	\sim	Limit of Ouantitation	<i></i>		e Renorting Limit	
R RPD outside accer	RPD autside accented menvery limits		Suite Recovery outride seconted recovery limits			Indivator the compound we wedered	

CLIENT: P.W. Work Order: 090	P.W. Grosser Consulting	nsulting					ANAL	'YTIC	ANALYTICAL QC SUMMARY REPORT	MMAR	Y REPO	RT
	hore Rd., Gle	1 Shore Rd., Glenwood Landing							TestCode: Full8260_W	¹ ull8260_V	Λ	
ll ਲ	ŭ	SampType: MBLK	TestCor	TestCode: Fult8260_W	Units: µg/L		Prep Date:	11		RunNo: 40979	979	
Client ID: PBW	ä	Batch ID: R40979a	Test	TestNo: SW8260B		-	Analysis Date:	ite: 1/13/2009	6003	SeqNo: 549493	19493	
Analyte		Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Butylbenzene		n	1.0									Ē
n-Propyl acetate		D	1.0									
n-Propylbenzene		D	1.0									
o-Xylene		n	1.0									
p-Diethylbenzene		D	1.0									
p-Ethyitoluene		C	1.0									
sec-Butylbenzene			1.0									
Styrene		D	1.0									
t-Butyl alcohol		n	1.0									
tert-Butylbenzene		7	1.0									
Tetrachloroethene		IJ	1.0									
Toluene		D	1.0									
trans-1,2-Dichloroethene	41		1.0									
trans-1,3-Dichloropropene	a	D	1.0									
Trichloroethene		ņ	1.0									
Trichlorofluoromethane		D	1.0									
Vinyl acetate		Л	1.0									
Vinyl chloride		J	1.0									
Surr: 4-Bromofluorobenzene	ene	49		50.00		97.8	60	130				
Surr: Dibromofluoromethane	ethane	50		50.00		100	63	127				
Surr: Toluene-d8		48		50.00		96.6	ΰ	128	_			
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Qualifiers: E Vali	Value above quantitation range	lation range			Holding times for preparation or analysis exceeded	n or analysi	is exceeded	L N	Analyte detected below quantitation li	below quantitat	ion lí	
	outside accepte	LIMITUL DETECTION RPD outside accepted recovery limits		S Spike Re	Littuu oi Quantilation Spike Recovery outside accepted recovery limits	pted recove	rry limits	n n	not refected at the reporting Limit Indicates the compound was analyzed	te feepururg Lu	mit lyzed	

CLIENT: F Work Order: 0 Project: 1	P.W. Gross 0901110 1 Shore Rd	P.W. Grosser Consulting 0901110 1 Shore Rd., Glenwood Landing					ANALY	ANALYTICAL QC SUMMARY REPORT TestCode: TCLP_HG	AL QC SUMMAR TestCode: TCLP_HG	ARY F HG	EPOI	Ъ
Sample ID: LCSW-011209A Client ID: LCSS	11209A	SampType: LCS Batch ID: 24231	TestCoc TestN	TestCode: TCLP_HG Units: n TestNo: SW1311/7471 SW1311	Units: mg/L 471 SW1311		Prep Date: Analysis Date: 1/13/2009	1/13/2009	RunNo SeqNo	RunNo: 40829 SeqNo: 546708		
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit F.	%REC LowLimit HighLimit RPD Ref Val		RPD RF	%RPD RPDLimit Qual	Qual
Mercury		0.00391	0.0200	0.004000	0	97.8	61	129				-
Sample ID: PBW-011209A Client ID: PBS	1209A	SampType: MBLK Batch ID: 24231	TestCoc TestN	TestCode: TCLP_HG TestNo: SW1311/74	stCode: TCLP_HG Units: mg/L TestNo: SW1311/7471 SW1311		Prep Date: Analysis Date: 1/13/2009	1/13/2009	RunNa SeqN	RunNo: 40829 SeqNo: 546709		
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLímit F	%REC LowLimit HighLimit RPD Ref Val		%RPD RPDLimit		Qual
Mercury		Ъ	0.0200									

E Value above quantitation rangeLOD Limit of DetectionR RPD outside accepted recovery li Qualifiers:

RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded
 LOQ Limit of Quantitation
 S Spike Recovery outside accented recovery limits

Analyte detected below quantitation li Not Detected at the Reporting Limit Indicates the compound was analyzed r Q n

CLIENT: Work Order:	P.W. Gros 0901110	P.W. Grosser Consulting 0901110					ANALY	TICAL QC SU	ANALYTICAL QC SUMMARY REPORT	RT
Project:	1 Shore R	1 Shore Rd., Glenwood Landing						TestCode: 7	TCLP_M	
Sample ID: PBW-011209A Client ID: PBS	-011209A	SampType: MBLK Batch ID: 24292	TestCc Test	TestCode: TCLP_M Units: mc TestNo: SW1311/6010 SW3010A	Units: mg/L 010 SW3010A		Prep Date: Analysis Date:	1/12/2009 1/14/2009	RunNo: 40882 SeqNo: 547538	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		5	0.0500							
Barium		D	0.0500							
Cadmium		D	0.0500							
Chromium		D	0.0500							
Lead		D	0.0500							
Selenium Silver		ם כ	0.0500 0.0500							
Sample ID: LCSW-011209A	V-011209A	SampType: LCS	TestCo	TestCode: TCLP M	Units: ma/L		Prep Date:	1/12/2009	RunNo: 40882	
			ł							
	•	BATCH ID: 24292	lesi	lestino: SW1311/6010 SW3010A	010 SW3010A		Analysis Date:	1/14/2009	SeqNo: 547539	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		2.03	0.0500	2.000	0	101	63	120		
Barium		2.00	0.0500	2.000	0	100	65	125		
Cadmium		2.00	0.0500	2.000	a	100	66	124		
Chramium		2.05	0.0500	2.000	Q	103	<u>66</u>	128		
Lead		2.01	0.0500	2.000	0	101	63	123		
Selenium		2.00	0.0500	2.000	O	99.9	66	124		
Silver		1.98	0.0500	2.000	0	98.9	67	123		
Qualifiers: E		Value above quantitation range		H Holding	Holding times for preparation or analysis exceeded	n or analysi	is exceeded	J Analyte detected b	Analyte detected below quantitation li	

E Value above quantitation rangeLOD Limit of DetectionR RPD outside accepted recovery limits

H Holding times for preparation or analysis exceededLOQ Limit of QuantitationS Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation li
 ND Not Detected at the Reporting Limit
 U Indicates the compound was analyzed

	P.W. Grosser Consulting				1	ANALYTIC	AL QC SUI	ANALYTICAL QC SUMMARY REPORT	ORT
Project: 1 Shore Re	Shore Rd., Glenwood Landing						TestCode: TOX_L	JX_L	
Sample ID: MB-R41011 Client ID: PBW	SampType: MBLK Batch ID: R41011	TestCode: TOX_L TestNo: SW9020B	FOX_L SW9020B	Units: mg/L	A	Prep Date: Analysis Date: 1/20/2009	2009	RunNo: 41011 SeqNo: 549882	
Analyte	Result	PQL SF	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	t RPD Ref Val	%RPD RPDLimit	it Qual
Total Organic Halides (TOX)	n	2.00							
Sample ID: LCS-R41011	SampType: LCS	TestCode: TOX_L	TOX_L	Units: mg/L		Prep Date:		RunNo: 41011	
Client ID: LCSW	Batch ID: R41011	TestNo:	TestNo: SW9020B		đ	Analysis Date: 1/20/2009	2009	SeqNo: 549883	
Analyte	Result	PQL SI	SPK value	SPK Ref Val	%REC	LowLimit HighLim	HighLimit RPD Ref Val	%RPD RPDLimit	iit Qual
Total Organic Halides (TOX)	30.0	2.00	31.50	0	95.2	72 123	e		
Sample ID: 0901255-01A-MS	SampType: MS	TestCode: TOX_L	TOX_L	Units: mg/L		Prep Date:		RunNo: 41011	
Client ID: ZZZZZ	Batch ID: R41011	TestNo:	TestNo: SW9020B		4	Analysis Date: 1/20/2009	2009	SegNo: 549886	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	it RPD Ref Val	%RPD RPDLimit	nit Qual
Total Organic Halides (TOX)	23.0	2.00	31.50	0	73.0	72 123	e		
Sample ID: 0901255-01A-MSD) SampType: MSD	TestCode: TOX_L	TOX_L	Units: mg/L		Prep Date:		RunNo: 41011	
Client ID: ZZZZZ	Batch ID: R41011	TestNo:	TesiNo: SW9020B		-	Analysis Date: 1/20/2009	/2009	SegNo: 549887	
Analyte	Result	PQL S	SPK value	SPK Ref Val	%REC	LowLimit HighLim	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Total Organic Halides (TOX)	26.0	2.00	31.50	0	82.5	72 123	3 23.00	12.2	20

H Holding times for preparation or analysis exceeded LOQ Limit of Quantitation
 S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation li
 ND Not Detected at the Reporting Limit
 U Indicates the compound was analyzed

32

RPD outside accepted recovery limits

E Value above quantitation range
 LOD Limit of Detection
 R RPD outside accepted recovery 1

Qualifiers:

"TOMORROWS ANALYTICAL SOLUTIONS TODAY"

1 of 39 pages

September 23, 2008

P.W. Grosser Consulting John Etchler 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Re: 1 Shore Road, Glenwood Landing, NY

Dear Mr. Etchler:

Enclosed please find the Laboratory Analysis Report(s) for sample(s) received on September 18, 2008 Long Island Analytical Laboratories analyzed the samples on September 22, 2008 for the following:

CLIENT ID	ANALYSIS
MVV-1	EPA 8260, Total (23) Metals
MVV-2	EPA 8260, Total (23) Metals
MVV-3	EPA 8260, Total (23) Metals
MW-4	EPA 8260, Total (23) Metals
MW-5	EPA 8260, Total (23) Metals
MVV-6	EPA 8260, Total (23) Metals
MVV-7	EPA 8260, Total (23) Metals
MVV-8	EPA 8260, Total (23) Metals
MW-8D	EPA 8260, Total (23) Metals
MVV-9	EPA 8260, Total (23) Metals
MW-9D	EPA 8260, Total (23) Metals
MW-10	EPA 8260, Total (23) Metals
Trip Blank	EPA 8260

Samples received at 2°C.

If you have any questions or require further information, please call at your convenience. Long Island Analytical Laboratories Inc. is a NELAP accredited laboratory. All reported results meet the requirements of the NELAP standards unless noted with the appropriate flag. Report shall not be reproduced except in full, without the written approval of the laboratory. Long Island Analytical Laboratories would like to thank you for the opportunity to be of service to you.

Best Regards,

Long Island Analytical Laboratories, Inc.

"TOMORROWS ANALYTICAL SOLUTIONS TODAY"

NYSDOH ELAP# 11693 USEPA# NY01273 CTDOH# PH-0284 AIHA# 164456 NJDEP# NY012 PADEP# 68-2943

LONG ISLAND ANALYTICAL LABORATORIES, INC. DATA REPORTING FLAGS

For reporting results, the following "Flags" are used:

- A: Time not supplied by client, may have exceeded holding time
- B: Holding time exceeded, results cannot be used for regulatory purposes
- C: Minimum detection limit raised due to matrix interference
- D: Minimum detection limit raised due to target compound interference
- E: Minimum detection limit raised due to non-target compound interference
- F: Minimum detection limit raised due to insufficient sample volume
- G: Sample received in incorrect container
- H: Sample not preserved, corrected upon receipt
- I: Dilution Water does not meet QC Criteria
- J: Estimated concentration, exceeds calibration range
- K: Target compound found in blank
- L: Subcontractor ELAP #11398
- M: Subcontractor ELAP #10320
- N: Subcontractor NVLAP #102047.0
- O: Subcontractor AIHA #103005
- P: Subcontractor A2LA 2004-01
- Q: Subcontractor ELAP #11026
- R: Subcontractor ELAP #10155
- S: Subcontractor ELAP #11501
- T: Subcontractor CTC
- U: Subcontractor ELAP #11685
- V: QC affected by matrix
- W: Subcontractor ELAP #10248
- X: QC does not meet acceptance criteria
- Y: Sample container received with head space
- Z: Insufficient sample volume received
- AA: Preliminary results, cannot be used for regulatory purposes.
- BB: Spike recovery does not meet QC criteria due to high target concentration
- CC: Date reported below the lower limit of quantitation and should be considered to have an increased quantitative uncertainty.
- DD: Sampling information not supplied and/or sample not taken by qualified technician, therefore verifiability of the report is limited to results only. Report cannot be used for regulatory purposes.
- EE: Subcontractor ELAP : #11777
- FF: Unable to verify that the wipe samples submitted conform to ASTM E1792 or specifications issued by the EPA.
- GG: Level found exceeds the maximum contaminant level (MCL) as set by local, state or federal agencies.
- HH: Subcontractor ELAP #10750
- II: Subcontractor ELAP #10145
- JJ: Subcontractor ELAP #11838

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-1)
Date received: 9/18/08	Laboratory ID: 1164667
Date extracted: 9/19/08	Matrix: Liguid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS u	g/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	. <u></u>	<u></u>
CHLOROMETHANE	74-87-3	5 ug/L	<5		
VINYL CHLORIDE	75-01-4	5 ug/L	<5		
BROMOMETHANE	74-83-9	5 ug/L	<5		
CHLOROETHANE	75-00-3	5 ug/L	<5		
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5		
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5		
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5		
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5		
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5		
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5		
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5		<u>_</u>
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5		
CHLOROFORM	67-66-3	5 ug/L	<5		
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5		
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5		
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5		
BENZENE	71-43-2	0.7 ug/L	<0.7		
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5		
TRICHLOROETHENE	79-01-6	5 ug/L	<5		
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5		
DIBROMOMETHANE	74-95-3	5 ug/L	<5		{
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5		
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5		
TOLUENE	108-88-3	5 ug/L	<5		
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5		
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5		
TETRACHLOROETHYLENE	127-18-4	5 ug/L	25		
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5		
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5		
CHLOROBENZENE	108-90-7	5 ug/L	<5		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5		
ETHYLBENZENE	100-41-4	5 ug/L	<5	_	
STYRENE	100-42-5	5 ug/L	<5		
BROMOFORM	75-25-2	5 ug/L	<5		

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-1)
Date received: 9/18/08	Laboratory ID: 1164667
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	<u> </u>
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	<u> </u>
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	<u> </u>
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	<u>+</u>
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	[
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	· -· ·
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	——————————————————————————————————————
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5 0	
IDL = Minimum Detection Limit.		- 4	Mil a Al.	11

Michael Venald

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-1)
Date received: 9/18/08	Laboratory ID: 1164667
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	0.06	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	73.5	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	< 0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	· • • • • • • • • • • • • • • • • • • •
IRON, Fe	0.05 mg/L	9/19/08	0.08	
MERCURY, Hg•	0.002 mg/L	9/19/08	<0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	7.88	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	10.0	
MANGANESE, Mn	0.05 mg/L	9/19/08	< 0.05	
SODIUM, Na	0.05 mg/L	9/19/08	274	
NICKEL, NI	0.05 mg/L	9/19/08	< 0.05	
LEAD, Pb	0.005 mg/L	9/19/08	< 0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	< 0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	<0.05	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Veneld:

Michael Veraldi-Laboratory Director

110 Colin Drive · Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-2)
Date received: 9/18/08	Laboratory ID: 1164668
Date extracted: 9/19/08	Matrix: Liguid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5		
CHLOROMETHANE	74-87-3	5 ug/L	<5		
VINYL CHLORIDE	75-01-4	5 ug/L	<5		
BROMOMETHANE	74-83-9	5 ug/L	<5		
CHLOROETHANE	75-00-3	5 ug/L	<5		
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5		
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5		
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5		
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5		
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5		
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5		
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5		
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5		
CHLOROFORM	67-66-3	5 ug/L	<5		
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5		
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5		
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5		
BENZENE	71-43-2	0.7 ug/L	<0.7		
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5		
TRICHLOROETHENE	79-01-6	5 ug/L	<5		
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5		
DIBROMOMETHANE	74-95-3	5 ug/L	<5		
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5		
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5		
TOLUENE	108-88-3	5 ug/L	<5		
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	_	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5		
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5	· · · · · · · · · · · · · · · · · · ·	
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5		
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5		
CHLOROBENZENE	108-90-7	5 ug/L	<5	1	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	· · · · ·	
ETHYLBENZENE	100-41-4	5 ug/L	<5		
STYRENE	100-42-5	5 ug/L	<5		
BROMOFORM	75-25-2	5 ug/L	<5		

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-2)		
Date received: 9/18/08	Laboratory ID: 1164668		
Date extracted: 9/19/08	Matrix: Liguid		
Date analyzed: 9/19/08	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	<u> </u>
BROMOBENZENE	108-86-1	5 ug/L	<5	<u> </u>
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	<u> </u>
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	<u> </u>
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	<u> </u>
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	<u> </u>
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	·····-
VINYL ACETATE	108-05-4	5 ug/L	<5	<u></u>
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-2)
Date received: 9/18/08	Laboratory ID: 1164668
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	<0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	1.08	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	1
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	12.6	1
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	0.06	
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	1.99	
MERCURY, Hg•	0.002 mg/L	9/19/08	<0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	1.58	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	1.85	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.94	+
SODIUM, Na	0.05 mg/L	9/19/08	12.7	
NICKEL, Ni	0.05 mg/L	9/19/08	<0.05	
LEAD, Pb	0.005 mg/L	9/19/08	0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	<0.05	<u> </u>
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	<u>+</u>
VANADIUM, V	0.05 mg/L	9/19/08	<0.05	<u> </u>
ZINC, Zn	0.05 mg/L	9/19/08	0.06	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive · Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 · Fax (631) 472-8505 · Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-3)
Date received: 9/18/08	Laboratory ID: 1164669
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	
CHLOROMETHANE	74-87-3	5 ug/L	<5	
VINYL CHLORIDE	75-01-4	5 ug/L	<5	
BROMOMETHANE	74-83-9	5 ug/L	<5	
CHLOROETHANE	75-00-3	5 ug/L	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	6	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CHLOROFORM	67-66-3	5 ug/L	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
BENZENE	71-43-2	0.7 ug/L	<0.7	
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5	
TRICHLOROETHENE	79-01-6	5 ug/L	5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	
DIBROMOMETHANE	74-95-3	5 ug/L	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
TOLUENE	108-88-3	5 ug/L	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5	··· · ·· ·· ··
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	·
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	
CHLOROBENZENE	108-90-7	5 ug/L	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	
ETHYLBENZENE	100-41-4	5 ug/L	<5	•••
STYRENE	100-42-5	5 ug/L	<5	
BROMOFORM	75-25-2	5 ug/L	<5	

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-3)		
Date received: 9/18/08	Laboratory ID: 1164669		
Date extracted: 9/19/08	Matrix: Liquid		
Date analyzed: 9/19/08	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	<u> </u>
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	<u> </u>
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	<u> </u>
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	+
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	1
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	<u> </u>
NAPHTHALENE	91-20-3	5 ug/L	<5	<u> </u>
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	<u>5</u> ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

"Michael Venald:

Michael Veraldi-Laboratory Director

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-3)			
Date received: 9/18/08	Laboratory ID: 1164669			
Date analyzed: See Below	Matrix: Liquid			

PARAMETER	MDL		RESULTS	FLAG
SILVER, Ag	0.05 mg/L	ANALYZED 9/19/08	mg/L	
ALUMINUM, AI	0.05 mg/L	9/19/08	< 0.05	
ARSENIC, As	0.05 mg/L	9/19/08	0.57	
BARIUM, Ba	1.00 mg/L	9/19/08	<0.05 <1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	<0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	116	
CADMIUM, Cd	0.05 mg/L	9/19/08	<0.05	<u>_</u>
COBALT, Co	0.05 mg/L	9/19/08		
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	<0.05	
IRON, Fe	0.05 mg/L	9/19/08	< 0.05	
MERCURY, Hg•	0.002 mg/L		5.34	
POTASSIUM, K		9/19/08	<0.002	
	0.05 mg/L	9/19/08	18.4	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	11.0	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.32	
SODIUM, Na	0.05 mg/L	9/19/08	138	
NICKEL, Ni	0.05 mg/L	9/19/08	<0.05	
LEAD, Pb	0.005 mg/L	9/19/08	0.007	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	+
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	0.09	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

"Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

11 of 39 pages

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-4)
Date received: 9/18/08	Laboratory ID: 1164670
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

EPA METHOD 8260B

PARAMETER	CAS No.	MDL	RESULTS ug/l	. Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	
CHLOROMETHANE	74-87-3	5 ug/L	<5	
VINYL CHLORIDE	75-01-4	5 ug/L	<5	·
BROMOMETHANE	74-83-9	5 ug/L	<5	
CHLOROETHANE	75-00-3	5 ug/L	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CHLOROFORM	67-66-3	5 ug/L	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
BENZENE	71-43-2	0.7 ug/L	<0.7	
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5	
TRICHLOROETHENE	79-01-6	5 ug/L	8	
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	
DIBROMOMETHANE	74-95-3	5 ug/L	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
TOLUENE	108-88-3	5 ug/L	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5	
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	
CHLOROBENZENE	108-90-7	5 ug/L	<5	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	
ETHYLBENZENE	100-41-4	5 ug/L	<5	
STYRENE	100-42-5	5 ug/L	<5	
BROMOFORM	75-25-2	5 ug/L	<5	

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-4)
Date received: 9/18/08	Laboratory ID: 1164670
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	1
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	1
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	1
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-4)
Date received: 9/18/08	Laboratory ID: 1164670
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	< 0.05	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	24.0	
CADMIUM, Cd	0.05 mg/L	9/19/08	<0.05	
COBALT, Co	0.05 mg/L	9/19/08	<0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	<0.05	
COPPER, Cu	0.05 mg/L	9/19/08	0.08	
IRON, Fe	0.05 mg/L	9/19/08	2.04	
MERCURY, Hg•	0.002 mg/L	9/19/08	<0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	10.8	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	4.11	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.39	
SODIUM, Na	0.05 mg/L	9/19/08	37.0	
NICKEL, NI	0.05 mg/L	9/19/08	< 0.05	
LEAD, Pb	0.005 mg/L	9/19/08	< 0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	<0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	<0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	< 0.05	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-5)
Date received: 9/18/08	Laboratory ID: 1164671
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	Ŭ	V
CHLOROMETHANE	74-87-3	5 ug/L	<5		
VINYL CHLORIDE	75-01-4	5 ug/L	<5		
BROMOMETHANE	74-83-9	5 ug/L	<5		
CHLOROETHANE	75-00-3	5 ug/L	<5		
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5		
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5		
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5		
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5		
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5		
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5		
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5		
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5		-
CHLOROFORM	67-66-3	5 ug/L	<5		
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5		
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5		
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5		
BENZENE	71-43-2	0.7 ug/L	<0.7		
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5		
TRICHLOROETHENE	79-01-6	5 ug/L	6		
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5		
DIBROMOMETHANE	74-95-3	5 ug/L	<5		
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5		
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5		
TOLUENE	108-88-3	5 ug/L	<5		
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5		
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5		
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5		
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5		
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5		
CHLOROBENZENE	108-90-7	5 ug/L	<5		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5		
ETHYLBENZENE	100-41-4	5 ug/L	<5		. <u> </u>
STYRENE	100-42-5	5 ug/L	<5		
BROMOFORM	75-25-2	5 ug/L	<5		

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-5)
Date received: 9/18/08	Laboratory ID: 1164671
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	<u> </u>
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	·
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	<u> </u>
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	[
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	<u> </u>
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive · Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-5)
Date received: 9/18/08	Laboratory ID: 1164671
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	0.07	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	27.2	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	<0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	3.30	· · · · · · · · · · · · · · · · · · ·
MERCURY, Hg•	0.002 mg/L	9/19/08	< 0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	12.4	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	4.67	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.06	
SODIUM, Na	0.05 mg/L	9/19/08	42.9	
NICKEL, NI	0.05 mg/L	9/19/08	<0.05	
LEAD, Pb	0.005 mg/L	9/19/08	< 0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	<0.05	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 · Fax (631) 472-8505 · Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-6)
Date received: 9/18/08	Laboratory ID: 1164672
Date extracted: 9/19/08	Matrix: Liguid
Date analyzed: 9/19/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	· • • -	
CHLOROMETHANE	74-87-3	5 ug/L	<5		
VINYL CHLORIDE	75-01-4	5 ug/L	<5		
BROMOMETHANE	74-83-9	5 ug/L	<5		<u>_</u>
CHLOROETHANE	75-00-3	5 ug/L	<5		
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	• • • • •	···
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5		
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5		
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	• •	<u> </u>
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	~	
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5		
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5		
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5		
CHLOROFORM	67-66-3	5 ug/L	<5		
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5		
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5		
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	- 1	
BENZENE	71-43-2	0.7 ug/L	<0.7		
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5		· · ·
TRICHLOROETHENE	79-01-6	5 ug/L	<5		
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5		
DIBROMOMETHANE	74-95-3	5 ug/L	<5		
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5		
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5		
TOLUENE	108-88-3	5 ug/L	<5	_	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5		
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5		
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5		
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5		
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	_	
CHLOROBENZENE	108-90-7	5 ug/L	<5		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5		
ETHYLBENZENE	100-41-4	5 ug/L	<5		
STYRENE	100-42-5	5 ug/L	<5		
BROMOFORM	75-25-2	5 ug/L	<5		

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-6)		
Date received: 9/18/08	Laboratory ID: 1164672		
Date extracted: 9/19/08	Matrix: Liguid		
Date analyzed: 9/19/08	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	[
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	<u> </u>
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	<u> </u>
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	<u> </u> ,
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	<u> </u>
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	• <u> </u>
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	<u> </u>
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5	
IDL = Minimum Detection Limit				,

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive · Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 · Fax (631) 472-8505 · Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-6)
Date received: 9/18/08	Laboratory ID: 1164672
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	<0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	30.8	
ARSENIC, As	0.05 mg/L	9/19/08	0.06	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	23.3	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	< 0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	0.05	
COPPER, Cu	0.05 mg/L	9/19/08	0.05	
IRON, Fe	0.05 mg/L	9/19/08	41.5	
MERCURY, Hg•	0.002 mg/L	9/19/08	< 0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	4.60	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	8.89	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.10	
SODIUM, Na	0.05 mg/L	9/19/08	28.1	
NICKEL, Ni	0.05 mg/L	9/19/08	<0.05	
LEAD, Pb	0.005 mg/L	9/19/08	0.039	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	0.34	
ZINC, Zn	0.05 mg/L	9/19/08	0.11	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-7)
Date received: 9/18/08	Laboratory ID: 1164673
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

DICHLORODIFLUOROMETHANE 75-71-8 5 ug/L <5	PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
VINYL CHLORIDE 75-01-4 5 ug/L <5 BROMOMETHANE 74-83-9 5 ug/L <5	DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	
BROMOMETHANE 74-83-9 5 ug/L <5 CHLOROETHANE 75-00-3 5 ug/L <5	CHLOROMETHANE	74-87-3	5 ug/L	<5	
CHLOROETHANE 75:00-3 5 ug/L <5 TRICHLOROFLUOROMETHANE 75:69-4 5 ug/L <5	VINYL CHLORIDE	75-01-4	5 ug/L	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/L <5 1.1-DICHLOROETHENE 75-35-4 5 ug/L <5		74-83-9	5 ug/L	<5	
TRICHLOROFLUOROMETHANE 75-69-4 5 ug/L <5 1,1-DICHLOROETHENE 75-35-4 5 ug/L <5	CHLOROETHANE	75-00-3	5 ug/L	<5	
1,1-DICHLOROETHENE 75-36-4 5 ug/L <5	TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	
trans-1,2-DICHLOROETHENE 156-60-5 5 ug/L <5 1,1-DICHLOROETHANE 75-34-3 5 ug/L <5	1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
1,1-DICHLOROETHANE 75-34-3 5 ug/L <5	METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	
2,2-DICHLOROPROPANE 594-20-7 5 ug/L <5 cis-1,2-DICHLOROETHENE 156-59-2 5 ug/L <5		156-60-5	5 ug/L	<5	
cis-1,2-DICHLOROETHENE 156-59-2 5 ug/L <5 BROMOCHLOROMETHANE 74-97-5 5 ug/L <5		75-34-3	5 ug/L	<5	
BROMOCHLOROMETHANE 74-97-5 5 ug/L <5 CHLOROFORM 67-66-3 5 ug/L <5	2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
CHLOROFORM 67-66-3 5 ug/L <5 1,1,1-TRICHLOROETHANE 71-55-6 5 ug/L <5	cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5	
1,1,1-TRICHLOROETHANE 71-55-6 5 ug/L <5	BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CARBON TETRACHLORIDE 56-23-5 5 ug/L <5 1,1-DICHLOROPROPENE 563-58-6 5 ug/L <5	CHLOROFORM	67-66-3	5 ug/L	<5	
1,1-DICHLOROPROPENE 563-58-6 5 ug/L <5	1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	
BENZENE 71-43-2 0.7 ug/L <0.7 1,2-DICHLOROETHANE 107-06-2 5 ug/L <5	CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/L <5	1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
1,2-DICHLOROETHANE 107-06-2 5 ug/L <5	BENZENE	71-43-2	0.7 ug/L	<0.7	
TRICHLOROETHENE 79-01-6 5 ug/L <5 1,2-DICHLOROPROPANE 78-87-5 5 ug/L <5	1,2-DICHLOROETHANE	107-06-2		<5	
DIBROMOMETHANE 74-95-3 5 ug/L <5 BROMODICHLOROMETHANE 75-27-4 5 ug/L <5	TRICHLOROETHENE	79-01-6	5 ug/L	<5	
BROMODICHLOROMETHANE 75-27-4 5 ug/L <5 cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/L <5	1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE 10061-01-5 5 ug/L <5 TOLUENE 108-88-3 5 ug/L <5		74-95-3	5 ug/L	<5	
TOLUENE 108-88-3 5 ug/L <5 trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/L <5	BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
trans-1,3-DICHLOROPROPENE 10061-02-6 5 ug/L <5 1,1,2-TRICHLOROETHANE 79-00-5 5 ug/L <5	cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
1,1,2-TRICHLOROETHANE 79-00-5 5 ug/L <5		108-88-3	5 ug/L	<5	
TETRACHLOROETHYLENE 127-18-4 5 ug/L 271 1,3-DICHLOROPROPANE 142-28-9 5 ug/L <5	trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,3-DICHLOROPROPANE 142-28-9 5 ug/L <5		79-00-5	5 ug/L	<5	
DIBROMOCHLOROMETHANE 124-48-1 5 ug/L <5 1,2-DIBROMOETHANE 106-93-4 5 ug/L <5	TETRACHLOROETHYLENE	127-18-4	5 ug/L	271	· · ·
DIBROMOCHLOROMETHANE 124-48-1 5 ug/L <5 1,2-DIBROMOETHANE 106-93-4 5 ug/L <5	1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	
CHLOROBENZENE 108-90-7 5 ug/L <5 1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/L <5	DIBROMOCHLOROMETHANE	124-48-1		<5	
CHLOROBENZENE 108-90-7 5 ug/L <5 1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/L <5	1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	
1,1,1,2-TETRACHLOROETHANE 630-20-6 5 ug/L <5 ETHYLBENZENE 100-41-4 5 ug/L <5		108-90-7		<5	
ETHYLBENZENE 100-41-4 5 ug/L <5 STYRENE 100-42-5 5 ug/L <5		630-20-6		<5	
STYRENE 100-42-5 5 ug/L <5	ETHYLBENZENE	100-41-4		<5	
	STYRENE	100-42-5		<5	• •
	BROMOFORM	75-25-2			· · · · · · · · ·

MDL = Minimum Detection Limit.

110 Colin Drive · Holbrook, New York 11741

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-7)			
Date received: 9/18/08	Laboratory ID: 1164673			
Date extracted: 9/19/08	Matrix: Liquid			
Date analyzed: 9/19/08	ELAP #: 11693			

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	T
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	<u> </u>
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	+
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	·
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	+
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	·
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	+
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	<u> </u>
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	1
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	·
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	•
МТВЕ	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-7)
Date received: 9/18/08	Laboratory ID: 1164673
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	1.22	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	121	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	< 0.05	+
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	0.46	
MERCURY, Hg•	0.002 mg/L	9/19/08	<0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	7.63	†
MAGNESIUM, Mg	0.05 mg/L	9/19/08	13.3	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.08	- <u> </u>
SODIUM, Na	0.05 mg/L	9/19/08	128	
NICKEL, NI	0.05 mg/L	9/19/08	< 0.05	
LEAD, Pb	0.005 mg/L	9/19/08	<0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	<0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	<u> -</u>
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	***
ZINC, Zn	0.05 mg/L	9/19/08	< 0.05	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-8)
Date received: 9/18/08	Laboratory ID: 1164674
Date extracted: 9/22/08	Matrix: Liguid
Date analyzed: 9/22/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<50	D
CHLOROMETHANE	74-87-3	5 ug/L	<50	D
VINYL CHLORIDE	75-01-4	5 ug/L	<50	D
BROMOMETHANE	74-83-9	5 ug/L	<50	D
CHLOROETHANE	75-00-3	5 ug/L	<50	D
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<50.	D
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<50	D
METHYLENE CHLORIDE	75-09-2	5 ug/L	<50	D
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<50	D
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<50	D
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<50	D
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	1,022	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<50	D
CHLOROFORM	67-66-3	5 ug/L	<50	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<50	D
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<50	
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<50	
BENZENE	71-43-2	0.7 ug/L	<7.0	D
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<50	D
TRICHLOROETHENE	79-01-6	5 ug/L	742	
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<50	D
DIBROMOMETHANE	74-95-3	5 ug/L	<50	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<50	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<50	 D
TOLUENE	108-88-3	5 ug/L	<50	D
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<50	D
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<50	<u>D</u>
TETRACHLOROETHYLENE	127-18-4	5 ug/L	5,994	
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<50	D
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<50	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<50	D
CHLOROBENZENE	108-90-7	5 ug/L	<50	D
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<50	D
ETHYLBENZENE	100-41-4	5 ug/L	<50	D
STYRENE	100-42-5	5 ug/L	<50	D
BROMOFORM	75-25-2	5 ug/L	<50	D

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-8)			
Date received: 9/18/08	Laboratory ID: 1164674			
Date extracted: 9/22/08	Matrix: Liguid			
Date analyzed: 9/22/08	ELAP #: 11693			

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<50	D
BROMOBENZENE	108-86-1	5 ug/L	<50	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<50	D
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<50	
n-PROPYLBENZENE	103-65-1	5 ug/L	<50	D
2-CHLOROTOLUENE	95-49-8	5 ug/L	<50	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<50	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<50	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<50	D
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<50	D
sec-BUTYLBENZENE	135-98-8	5 ug/L	<50	D
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<50	D
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<50	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<50	D
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<50	D
n-BUTYLBENZENE	104-51 - 8	5 ug/L	<50	D
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<50	D
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<50	D
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<50	D
NAPHTHALENE	91-20-3	5 ug/L	<50	D
1,2,3-TRICHLOROBENZENE	87 - 61-6	5 ug/L	<50	D
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<50	D
ACETONE	67-64-1	50 ug/L	<500	D
METHYL ETHYL KETONE	78-93-3	10 ug/L	<100	D
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<50	D
p & m-XYLENES	1330-20-7	10 ug/L	<100	D
o-XYLENE	1330-20-7	5 ug/L	<50	D
CARBON DISULFIDE	751-15-0	5 ug/L	<50	D
MTBE	1634-04-4	5 ug/L	<50	D
VINYL ACETATE	108-05-4	5 ug/L	<50	
2-HEXANONE	591-78-6	5 ug/L	<50	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-8)
Date received: 9/18/08	Laboratory ID: 1164674
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	1.05	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	-
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	117	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	<0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	<0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	8.26	
MERCURY, Hg•	0.002 mg/L	9/19/08	< 0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	6.51	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	15.5	
MANGANESE, Mn	0.05 mg/L	9/19/08	0.32	
SODIUM, Na	0.05 mg/L	9/19/08	124	
NICKEL, Ni	0.05 mg/L	9/19/08	<0.05	
LEAD, Pb	0.005 mg/L	9/19/08	< 0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	<0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	<0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	0.05	······

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-8D)
Date received: 9/18/08	Laboratory ID: 1164675
Date extracted: 9/22/08	Matrix: Liquid
Date analyzed: 9/22/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	. Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	
CHLOROMETHANE	74-87-3	5 ug/L	<5	
VINYL CHLORIDE	75-01-4	5 ug/L	<5	
BROMOMETHANE	74-83-9	5 ug/L	<5	
CHLOROETHANE	75-00-3	5 ug/L	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	_
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	18	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CHLOROFORM	67-66-3	5 ug/L	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	<u> </u>
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
BENZENE	71-43-2	0.7 ug/L	<0.7	
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5	
TRICHLOROETHENE	79-01-6	5 ug/L	7	
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	+
DIBROMOMETHANE	74-95-3	5 ug/L	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
TOLUENE	108-88-3	5 ug/L	<5	+
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5	
TETRACHLOROETHYLENE	127-18-4	5 ug/L	308	
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	<u>+</u>
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	— —
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	
CHLOROBENZENE	108-90-7	5 ug/L	<5	+
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	
ETHYLBENZENE	100-41-4	5 ug/L	<5	┼╍───┥
STYRENE	100-42-5	5 ug/L	<5	
BROMOFORM	75-25-2	5 ug/L	<5	

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-8D)
Date received: 9/18/08	Laboratory ID: 1164675
Date extracted: 9/22/08	Matrix: Liguid
Date analyzed: 9/22/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	1-
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	†·
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	<u> </u>
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	<u>├</u> ─────
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	· · · · ·
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	[
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

"Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-8D)
Date received: 9/18/08	Laboratory ID: 1164675
Date analyzed: See Below	Matrix: Liquid

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	_0.05 mg/L	9/19/08	1.19	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	<0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	18.5	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	< 0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	0.59	
MERCURY, Hg•	0.002 mg/L	9/19/08	< 0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	1.26	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	7.98	
MANGANESE, Mn	0.05 mg/L	9/19/08	<0.05	
SODIUM, Na	0.05 mg/L	9/19/08	16.7	
NICKEL, NI	0.05 mg/L	9/19/08	< 0.05	<u> </u>
LEAD, Pb	0.005 mg/L	9/19/08	< 0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	< 0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	<0.05	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive · Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 · Fax (631) 472-8505 · Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-9)
Date received: 9/18/08	Laboratory ID: 1164676
Date extracted: 9/22/08	Matrix: Liguid
Date analyzed: 9/22/08	ELAP #: 11693

PARAMETER	CAS No.	MDL	RESULTS	ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	. <u> </u>	
CHLOROMETHANE	74-87-3	5 ug/L	<5		
VINYL CHLORIDE	75-01-4	5 ug/L	<5	-	
BROMOMETHANE	74-83-9	5 ug/L	<5		
CHLOROETHANE	75-00-3	5 ug/L	<5		
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5		
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5		
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5		
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5		
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5		
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5		
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	17		
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5		
CHLOROFORM	67-66-3	5 ug/L	<5		
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5		
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5		
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5		
BENZENE	71-43-2	0.7 ug/L	<0.7		
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5		
TRICHLOROETHENE	79-01-6	5 ug/L	9		
1.2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	-	
DIBROMOMETHANE	74-95-3	5 ug/L	<5		
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5		
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5		
TOLUENE	108-88-3	5 ug/L	<5	····	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5		
1,1,2-TRICHLOROETHANE	79 - 00-5	5 ug/L	<5		
TETRACHLOROETHYLENE	127-18-4	5 ug/L	175		
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5		
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5		
CHLOROBENZENE	108-90-7	5 ug/L	<5	-	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5		
ETHYLBENZENE	100-41-4	5 ug/L	<5		
STYRENE	100-42-5	5 ug/L	<5		
BROMOFORM	75-25-2	5 ug/L	<5		

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-9)		
Date received: 9/18/08	Laboratory ID: 1164676		
Date extracted: 9/22/08	Matrix: Liguid		
Date analyzed: 9/22/08	ELAP #: 11693		

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	_
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	<u>+</u>
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	1
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	
P-ISOPROPYLTOLUENE	99-87 - 6	5 ug/L	<5	
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	<u> </u>
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	···· · ·
NAPHTHALENE	91-20-3	5 ug/L	<5	·
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L		j
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald

Michael Veraldi-Laboratory Director

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-9)
Date received: 9/18/08	Laboratory ID: 1164676
Date analyzed: See Below	Matrix: Liquid

Target Compound List-Metals

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	1
ALUMINUM, AI	0.05 mg/L	9/19/08	0.90	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	155	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	< 0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	0.46	
MERCURY, Hg•	0.002 mg/L	9/19/08	< 0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	16.9	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	23.6	
MANGANESE, Mn	0.05 mg/L	9/19/08	<0.05	
SODIUM, Na	0.05 mg/L	9/19/08	189	
NICKEL, Ni	0.05 mg/L	9/19/08	< 0.05	
LEAD, Pb	0.005 mg/L	9/19/08	<0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	< 0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	0.06	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-9D)
Date received: 9/18/08	Laboratory ID: 1164677
Date extracted: 9/22/08	Matrix: Liguid
Date analyzed: 9/22/08	ELAP #: 11693

EPA METHOD 8260B

PARAMETER	CAS No.	MDL	RESULTS	ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	_¥	
CHLOROMETHANE	74-87-3	5 ug/L	<5		<u>_</u>
VINYL CHLORIDE	75-01-4	5 ug/L	<5		
BROMOMETHANE	74-83-9	5 ug/L	<5		
CHLOROETHANE	75-00-3	5 ug/L	<5		
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5		
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5		<u> </u>
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5		
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5		
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5		<u> </u>
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5		
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5	_	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5		
CHLOROFORM	67-66-3	5 ug/L	<5		
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5		
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5		
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5		
BENZENE	71-43-2	0.7 ug/L	<0.7		
1.2-DICHLOROETHANE	107-06-2	5 ug/L	<5		
TRICHLOROETHENE	79-01-6	5 ug/L	<5		
1.2-DICHLOROPROPANE	78-87-5	5 ug/L	<5		
DIBROMOMETHANE	74-95-3	5 ug/L	<5		
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5		
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5		
TOLUENE	108-88-3	5 ug/L	<5		
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5		
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5		
TETRACHLOROETHYLENE	127-18-4	5 ug/L	12		
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5		
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	-	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5		
CHLOROBENZENE	108-90-7	5 ug/L	<5		
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5		
ETHYLBENZENE	100-41-4	5 ug/L	<5		
STYRENE	100-42-5	5 ug/L	<5		
BROMOFORM	75-25-2	5 ug/L	<5		

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-9D)
Date received: 9/18/08	Laboratory ID: 1164677
Date extracted: 9/22/08	Matrix: Liguid
Date analyzed: 9/22/08	ELAP #: 11693

EPA METHOD 8260B

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	_
BROMOBENZENE	108-86-1	5 ug/L	<5	<u> </u>
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	<u> -</u>
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	1
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	·
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	<u> </u>
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	<u> </u>
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	· · · · ·
n-BUTYLBENZENE	104-51 - 8	5 ug/L	<5	<u> </u>
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	·····
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87-68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	<u> </u>
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	<u> </u>
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	<u> </u>
p & m-XYLENES	1330-20-7	10 ug/L	<10	<u> </u>
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	i
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78 - 6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741

"TOMORROWS ANALYTICAL SOLUTIONS TODAY" Phone (631) 472-3400 · Fax (631) 472-8505 · Email: LIAL@lialinc.com

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-9D)
Date received: 9/18/08	Laboratory ID: 1164677
Date analyzed: See Below	Matrix: Liquid

Target Compound List-Metals

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	<0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	0.55	+
ARSENIC, As	0.05 mg/L	9/19/08	<0.05	
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	<u> </u>
CALCIUM, Ca	0.05 mg/L	9/19/08	18.0	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	< 0.05	†
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	-[
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	0.34	+
MERCURY, Hg•	0.002 mg/L	9/19/08	<0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	1.14	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	8.08	
MANGANESE, Mn	0.05 mg/L	9/19/08	<0.05	+
SODIUM, Na	0.05 mg/L	9/19/08	18.5	
NICKEL, Ni	0.05 mg/L	9/19/08	<0.05	
LEAD, Pb	0.005 mg/L	9/19/08	<0.005	
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	
SELENIUM, Se	0.05 mg/L	9/19/08	<0.05	
THALIUM, TI	0.05 mg/L	9/19/08	< 0.05	┼╼──┤
VANADIUM, V	0.05 mg/L	9/19/08	<0.05	<u>†</u>
ZINC, Zn	0.05 mg/L	9/19/08	< 0.05	

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-10)
Date received: 9/18/08	Laboratory ID: 1164678
Date extracted: 9/19/08	Matrix: Liguid
Date analyzed: 9/19/08	ELAP #: 11693

EPA METHOD 8260B

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	
CHLOROMETHANE	74-87-3	5 ug/L	<5	<u>+</u>
VINYL CHLORIDE	75-01-4	5 ug/L	<5	
BROMOMETHANE	74-83-9	5 ug/L	<5	
CHLOROETHANE	75-00-3	5 ug/L	<5	1
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	<u> </u>
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	-
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	-
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CHLOROFORM	67-66-3	5 ug/L	<5	
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	<u> </u>
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
BENZENE	71-43-2	0.7 ug/L	<0.7	
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5	
TRICHLOROETHENE	79-01-6	5 ug/L	<5	
1,2-DICHLOROPROPANE	78-87-5	5 ug/L	<5	· · · · · ·
DIBROMOMETHANE	74-95-3	5 ug/L	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
TOLUENE	108-88-3	5 ug/L	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5	· · · · · · · · · · · · · · · · · · ·
TETRACHLOROETHYLENE	127-18-4	5 ug/L	121	
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	<u>├─</u> ──
CHLOROBENZENE	108-90-7	5 ug/L	<5	+
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	<u> </u>
ETHYLBENZENE	100-41-4	5 ug/L	<5	<u>├</u> {
STYRENE	100-42-5	5 ug/L	<5	╆────┦
BROMOFORM	75-25-2	5 ug/L	<5	<u>├────</u> ┤

MDL = Minimum Detection Limit.

110 Colin Drive • Holbrook, New York 11741

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-10)
Date received: 9/18/08	Laboratory ID: 1164678
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

EPA METHOD 8260B

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
ISOPROPYLBENZENE	98-82-8	5 ug/L	<5	
BROMOBENZENE	108-86-1	5 ug/L	<5	
1,1,2,2-TETRACHLOROETHANE	79-34-5	5 ug/L	<5	
1,2,3-TRICHLOROPROPANE	96-18-4	5 ug/L	<5	† -
n-PROPYLBENZENE	103-65-1	5 ug/L	<5	
2-CHLOROTOLUENE	95-49-8	5 ug/L	<5	·
4-CHLOROTOLUENE	106-43-4	5 ug/L	<5	
1,3,5-TRIMETHYLBENZENE	108-67-8	5 ug/L	<5	<u> </u>
tert-BUTYLBENZENE	98-06-6	5 ug/L	<5	<u> </u>
1,2,4-TRIMETHYLBENZENE	95-63-6	5 ug/L	<5	<u> </u>
sec-BUTYLBENZENE	135-98-8	5 ug/L	<5	
1,3-DICHLOROBENZENE	541-73-1	5 ug/L	<5	<u> </u>
P-ISOPROPYLTOLUENE	99-87-6	5 ug/L	<5	<u> </u>
1,4-DICHLOROBENZENE	106-46-7	5 ug/L	<5	
1,2-DICHLOROBENZENE	95-50-1	5 ug/L	<5	
n-BUTYLBENZENE	104-51-8	5 ug/L	<5	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	5 ug/L	<5	
1,2,4-TRICHLOROBENZENE	120-82-1	5 ug/L	<5	
HEXACHLOROBUTADIENE	87 - 68-3	5 ug/L	<5	
NAPHTHALENE	91-20-3	5 ug/L	<5	
1,2,3-TRICHLOROBENZENE	87-61-6	5 ug/L	<5	
2-CHLOROETHYLVINYL ETHER	110-75-8	5 ug/L	<5	
ACETONE	67-64-1	50 ug/L	<50	
METHYL ETHYL KETONE	78-93-3	10 ug/L	<10	
METHYL ISOBUTYL KETONE	108-10-1	5 ug/L	<5	
p & m-XYLENES	1330-20-7	10 ug/L	<10	
o-XYLENE	1330-20-7	5 ug/L	<5	
CARBON DISULFIDE	751-15-0	5 ug/L	<5	
MTBE	1634-04-4	5 ug/L	<5	
VINYL ACETATE	108-05-4	5 ug/L	<5	
2-HEXANONE	591-78-6	5 ug/L	<5	

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

110 Colin Drive • Holbrook, New York 11741Phone (631) 472-3400 • Fax (631) 472-8505 • Email: LIAL@lialinc.com "TOMORROWS ANALYTICAL SOLUTIONS TODAY"

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (MW-10)
Date received: 9/18/08	Laboratory ID: 1164678
Date analyzed: See Below	Matrix: Liquid

Target Compound List-Metals

PARAMETER	MDL	DATE ANALYZED	RESULTS mg/L	FLAG
SILVER, Ag	0.05 mg/L	9/19/08	< 0.05	
ALUMINUM, AI	0.05 mg/L	9/19/08	0.65	
ARSENIC, As	0.05 mg/L	9/19/08	< 0.05	+
BARIUM, Ba	1.00 mg/L	9/19/08	<1.00	
BERYLLIUM, Be	0.05 mg/L	9/19/08	< 0.05	
CALCIUM, Ca	0.05 mg/L	9/19/08	55.6	
CADMIUM, Cd	0.05 mg/L	9/19/08	< 0.05	
COBALT, Co	0.05 mg/L	9/19/08	<0.05	
CHROMIUM, Cr	0.05 mg/L	9/19/08	< 0.05	1
COPPER, Cu	0.05 mg/L	9/19/08	< 0.05	
IRON, Fe	0.05 mg/L	9/19/08	0.29	
MERCURY, Hg•	0.002 mg/L	9/19/08	< 0.002	
POTASSIUM, K	0.05 mg/L	9/19/08	3.20	
MAGNESIUM, Mg	0.05 mg/L	9/19/08	7.65	
MANGANESE, Mn	0.05 mg/L	9/19/08	< 0.05	
SODIUM, Na	0.05 mg/L	9/19/08	78.6	
NICKEL, NI	0.05 mg/L	9/19/08	< 0.05	
LEAD, Pb	0.005 mg/L	9/19/08	<0.005	<u> </u>
ANTIMONY, Sb	0.05 mg/L	9/19/08	< 0.05	· · · · · · · · · · · · · · · · · · ·
SELENIUM, Se	0.05 mg/L	9/19/08	<0.05	
THALIUM, TI	0.05 mg/L	9/19/08	<0.05	
VANADIUM, V	0.05 mg/L	9/19/08	< 0.05	
ZINC, Zn	0.05 mg/L	9/19/08	<0.05	<u>+</u> [

MDL = Minimum Detection Limit. Method: EPA 200.7 •Method: EPA 245.2

Michael Venald:

Michael Veraldi-Laboratory Director

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (Field Blank)
Date received: 9/18/08	Laboratory ID: 1164679
Date extracted: 9/19/08	Matrix: Liguid
Date analyzed: 9/19/08	ELAP #: 11693

EPA METHOD 8260B

PARAMETER	CAS No.	MDL	RESULTS ug/L	Flag
DICHLORODIFLUOROMETHANE	75-71-8	5 ug/L	<5	_
CHLOROMETHANE	74-87-3	5 ug/L	<5	
VINYL CHLORIDE	75-01-4	5 ug/L	<5	
BROMOMETHANE	74-83-9	5 ug/L	<5	
CHLOROETHANE	75-00-3	5 ug/L	<5	
TRICHLOROFLUOROMETHANE	75-69-4	5 ug/L	<5	
1,1-DICHLOROETHENE	75-35-4	5 ug/L	<5	
METHYLENE CHLORIDE	75-09-2	5 ug/L	<5	
trans-1,2-DICHLOROETHENE	156-60-5	5 ug/L	<5	
1,1-DICHLOROETHANE	75-34-3	5 ug/L	<5	<u> </u>
2,2-DICHLOROPROPANE	594-20-7	5 ug/L	<5	
cis-1,2-DICHLOROETHENE	156-59-2	5 ug/L	<5	
BROMOCHLOROMETHANE	74-97-5	5 ug/L	<5	
CHLOROFORM	67-66-3	5 ug/L	<5	+
1,1,1-TRICHLOROETHANE	71-55-6	5 ug/L	<5	+
CARBON TETRACHLORIDE	56-23-5	5 ug/L	<5	<u> </u>
1,1-DICHLOROPROPENE	563-58-6	5 ug/L	<5	
BENZENE	71-43-2	0.7 ug/L	<0.7	
1,2-DICHLOROETHANE	107-06-2	5 ug/L	<5	
TRICHLOROETHENE	79-01-6	5 ug/L	<5	
1,2-DICHLOROPROPANE	78-87 - 5	5 ug/L	<5	
DIBROMOMETHANE	74-95-3	5 ug/L	<5	
BROMODICHLOROMETHANE	75-27-4	5 ug/L	<5	
cis-1,3-DICHLOROPROPENE	10061-01-5	5 ug/L	<5	
TOLUENE	108-88-3	5 ug/L	<5	
trans-1,3-DICHLOROPROPENE	10061-02-6	5 ug/L	<5	
1,1,2-TRICHLOROETHANE	79-00-5	5 ug/L	<5	· · · · · · · · · · · · · · · · · · ·
TETRACHLOROETHYLENE	127-18-4	5 ug/L	<5	<u>├────</u>
1,3-DICHLOROPROPANE	142-28-9	5 ug/L	<5	
DIBROMOCHLOROMETHANE	124-48-1	5 ug/L	<5	
1,2-DIBROMOETHANE	106-93-4	5 ug/L	<5	
CHLOROBENZENE	108-90-7	5 ug/L	<5,	
1,1,1,2-TETRACHLOROETHANE	630-20-6	5 ug/L	<5	
ETHYLBENZENE	100-41-4	5 ug/L	<5	
STYRENE	100-42-5	5 ug/L	<5	
BROMOFORM	75-25-2	5 ug/L	<5	

MDL = Minimum Detection Limit.

Client: PW Grosser	Client ID: 1 Shore Rd, Glenwood Landing (Field Blank)
Date received: 9/18/08	Laboratory ID: 1164679
Date extracted: 9/19/08	Matrix: Liquid
Date analyzed: 9/19/08	ELAP #: 11693

EPA METHOD 8260B

	MDL		Flag
98-82-8	5 ug/L	RESULTS ug/L	1 149
108-86-1			<u> </u>
79-34-5			
96-18-4			
103-65-1			
95-49-8	5 ug/L		
106-43-4			<u> </u>
108-67-8	5 ug/L		
98-06-6	5 ug/L		
95-63-6	5 ug/L		<u> </u>
135-98-8			
541-73-1			- -
99-87-6			
106-46-7			
95-50-1			
104-51-8	5 ua/L		
	5 ug/L		
		the second se	
	50 µa/l		
78-93-3			
108-10-1			
			i.n
751-15-0			
1634-04-4			<u> </u>
108-05-4			
	108-86-1 79-34-5 96-18-4 103-65-1 95-49-8 106-43-4 108-67-8 98-06-6 95-63-6 135-98-8 541-73-1 99-87-6 106-46-7 95-50-1 104-51-8 96-12-8 120-82-1 87-68-3 91-20-3 87-61-6 110-75-8 67-64-1 78-93-3 108-10-1 1330-20-7 751-15-0 1634-04-4	108-86-1 5 ug/L 79-34-5 5 ug/L 96-18-4 5 ug/L 103-65-1 5 ug/L 95-49-8 5 ug/L 106-43-4 5 ug/L 108-67-8 5 ug/L 98-06-6 5 ug/L 98-06-6 5 ug/L 99-87-6 5 ug/L 104-51-8 5 ug/L 96-12-8 5 ug/L 104-51-8 5 ug/L 91-20-3 5 ug/L 91-20-3 5 ug/L 91-20-3 5 ug/L 100-75-8 5 ug/L 1010-75-8 5 ug/L 108-10-1 5 ug/L 108-10-1 5 ug/L	$108-86-1$ 5 ug/L <5 $79\cdot34-5$ 5 ug/L <5 $96\cdot18\cdot4$ 5 ug/L <5 $103\cdot65\cdot1$ 5 ug/L <5 $103\cdot65\cdot1$ 5 ug/L <5 $95\cdot49\cdot8$ 5 ug/L <5 $106\cdot43\cdot4$ 5 ug/L <5 $106\cdot43\cdot4$ 5 ug/L <5 $108\cdot67\cdot8$ 5 ug/L <5 $98\cdot06\cdot6$ 5 ug/L <5 $99\cdot67\cdot6$ 5 ug/L <5 $99\cdot87\cdot6$ 5 ug/L <5 $90\cdot12\cdot8$ 5 ug/L <5 $96\cdot12\cdot8$ 5 ug/L <5 $96\cdot12\cdot8$ 5 ug/L <5 $96\cdot12\cdot8$ 5 ug/L <5 $91\cdot20\cdot3$ 5 ug/L <5 $10\cdot75\cdot8$ <

MDL = Minimum Detection Limit.

Michael Venald:

Michael Veraldi-Laboratory Director

ALPHA ANALYTICAL

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LAO00065 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client:	P.W. Grosser	Laboratory Job Number: L0904242
Address:	630 Johnson Avenue Suite 7	Date Received: 07-APR-2009
	Bohemia, NY 11716	Date Reported: 13-APR-2009
Attn:	Mr. John Eichler	Delivery Method: Alpha
Project 1	Number: PEN0001	Site: PENETREX

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0904242-01	MW-1	GLENWOOD LANDING, NY
L0904242-02	MW-2	GLENWOOD LANDING, NY
L0904242-03	MW-3	GLENWOOD LANDING, NY
L0904242-04	MW-4	GLENWOOD LANDING, NY
L0904242-05	MW-5	GLENWOOD LANDING, NY
L0904242-06	MW-6	GLENWOOD LANDING, NY
L0904242-07	MW-7	GLENWOOD LANDING, NY
L0904242-08	MW-8	GLENWOOD LANDING, NY
L0904242-09	MW-8D	GLENWOOD LANDING, NY
L0904242-10	MW-9	GLENWOOD LANDING, NY
L0904242-11	MW-9D	GLENWOOD LANDING, NY
L0904242-12	MW-10	GLENWOOD LANDING, NY
L0904242-13	DUP-01	GLENWOOD LANDING, NY
L0904242-14	FB-01	GLENWOOD LANDING, NY
L0904242-15	TRIP BLANK	GLENWOOD LANDING, NY

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Monio Authorized by: Technical Representative

04130912:19 Page 1 of 49

ALPHA ANALYTICAL NARRATIVE REPORT

Laboratory Job Number: L0904242

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

Total Metals

L0904242-01 has an elevated detection limit for Sodium due to the 5x dilution required to quantitate the result within the calibration range.

L0904242-07 has an elevated detection limit for Silver due to the 10x dilution required by spectral interferences encountered during analysis.

Volatile Organics

The following samples have elevated detection limits due to the following dilutions required by the elevated concentrations of target compounds in the samples:

L0904242-01: 2x

L0904242-08: 25x

L0904242-10: 10x

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-01	Date Collected: 06-APR-2009 11:33
	MW-1	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

		INTEG	RDL	DBB	NEELIOP			
PARAMETER	R RESULT UI	UNITS	UNIIS RDL RE	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
	- 1							
Total Metals - Westborough	Lab							
Aluminum, Total	ND	mg/l	0.10	1	6010B	0409 13:50	0410 14:2	27 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:2	27 AI
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:2	27 AI
Barium, Total	0.180	mg/l	0.010	1	6010B	0409 13:50	0410 14:2	27 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:2	27 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:2	27 AI
Calcium, Total	75	mg/l	0.10	1	6010B	0409 13:50	0411 18:4	4 TD
Chromium, Total	0.01	mg/l	0.01	1	6010B	0409 13:50	0410 14:2	27 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:2	27 AI
Copper, Total	0.011	mg/l	0.010	1	6010B	0409 13:50	0410 14:2	27 AI
Iron, Total	0.21	mg/l	0.05	1	6010B	0409 13:50	0410 14:2	27 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:2	27 AI
Magnesium, Total	9.8	mg/l	0.10	1	6010B	0409 13:50	0411 18:4	4 TD
Manganese, Total	0.353	mg/l	0.010	1	6010B	0409 13:50	0410 14:2	27 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:0	2 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 14:2	27 AI
Potassium, Total	6.8	mg/l	2.5	1	6010B	0409 13:50	0410 14:2	27 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:2	27 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:2	27 AI
Sodium, Total	380	mg/l	10	1	6010B	0409 13:50	0410 15:3	80 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:2	27 AI
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:2	27 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:2	27 AI
Volatile Organics by GC/MS	- Westborou	gh Lab		1	8260B		0408 12:1	.7 PD
Methylene chloride	ND	ug/l	10.					
1,1-Dichloroethane	ND	ug/l	1.5					
Chloroform	ND	ug/l	1.5					
Carbon tetrachloride	ND	ug/l	1.0					
1,2-Dichloropropane	ND	ug/l	3.5					
Dibromochloromethane	ND	ug/l	1.0					
1,1,2-Trichloroethane	ND	ug/l	1.5					
Tetrachloroethene	62	ug/l	1.0					
Chlorobenzene	ND	ug/l	1.0					
Trichlorofluoromethane	ND	ug/l	5.0					
		5	1.0					
1,2-Dichloroethane	ND	ug/l	1.0					

Laboratory Sample Number: L0904242-01

MW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Valatila Organiza hu GG/MG	Weatheway	t ab acot	- 1 - 2	1 00007	
Volatile Organics by GC/MS -				1 8260B	0408 12:17 PD
Bromodichloromethane	ND	ug/l	1.0		
trans-1,3-Dichloropropene	ND	ug/l	1.0		
cis-1,3-Dichloropropene	ND	ug/l	1.0		
1,1-Dichloropropene	ND	ug/l	5.0		
Bromoform	ND	ug/l	4.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0		
Benzene	ND	ug/l	1.0		
Toluene	ND	ug/l	1.5		
Ethylbenzene	ND	ug/l	1.0		
Chloromethane	ND	ug/l	5.0		
Bromomethane	ND	ug/l	2.0		
Vinyl chloride	ND	ug/l	2.0		
Chloroethane	ND	ug/l	2.0		
1,1-Dichloroethene	ND	ug/l	1.0		
trans-1,2-Dichloroethene	ND	ug/l	1.5		
Trichloroethene	ND	ug/l	1.0		
1,2-Dichlorobenzene	ND	ug/l	5.0		
1,3-Dichlorobenzene	ND	ug/l	5.0		
1,4-Dichlorobenzene	ND	ug/l	5.0		
Methyl tert butyl ether	ND	ug/l	2.0		
p/m-Xylene	ND	ug/l	2.0		
o-Xylene	ND	ug/l	2.0		
cis-1,2-Dichloroethene	ND	ug/l	1.0		
Dibromomethane	ND	ug/l	10.		
1,2,3-Trichloropropane	ND	ug/l	10.		
Acrylonitrile	ND	ug/l	10.		
Styrene	ND	ug/l	2.0		
Dichlorodifluoromethane	ND	ug/l	10.		
Acetone	ND	ug/1	10.		
Carbon disulfide	ND	ug/l	10.		
2-Butanone	ND	ug/1	10.		
Vinyl acetate	ND	ug/l	10.		
4-Methyl-2-pentanone	ND ND	ug/l ug/l	10.		
a		- (7	10.		
2-Hexanone Promochloromothano	ND	ug/l			
Bromochloromethane 2,2-Dichloropropane	ND	ug/l	5.0		
	ND	ug/l	5.0		
1,2-Dibromoethane	ND	ug/l	4.0		
1,3-Dichloropropane	ND	ug/l	5.0		
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		
Bromobenzene	ND	ug/l	5.0		
n-Butylbenzene	ND	ug/l	1.0		
sec-Butylbenzene	ND	ug/l	1.0		
tert-Butylbenzene	ND	ug/l	5.0		
o-Chlorotoluene	ND	ug/l	5.0		
p-Chlorotoluene	ND	ug/l	5.0		
1,2-Dibromo-3-chloropropane	ND	ug/l	5.0		
Hexachlorobutadiene	ND	ug/l	1.2		
Isopropylbenzene	ND	ug/l	1.0		
p-Isopropyltoluene	ND	ug/l	1.0		

Laboratory Sample Number: L0904242-01

MW-1

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
		- 1					
Volatile Organics by GC/MS -				1 8260B		0408 12:17	PD
Naphthalene	ND	ug/l	5.0				
n-Propylbenzene	ND	ug/l	1.0				
1,2,3-Trichlorobenzene	ND	ug/l	5.0				
1,2,4-Trichlorobenzene	ND	ug/l	5.0				
1,3,5-Trimethylbenzene	ND	ug/l	5.0				
1,2,4-Trimethylbenzene	ND	ug/l	5.0				
1,4-Diethylbenzene	ND	ug/l	4.0				
4-Ethyltoluene	ND	ug/l	4.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	4.0				
Surrogate(s)	Recovery		QC Crit	teria			
1,2-Dichloroethane-d4	103	00	70-130				
Toluene-d8	100	00	70-130				
4-Bromofluorobenzene	104	010	70-130				
Dibromofluoromethane	104	90	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-02	Date Collected: 06-APR-2009 07:59
	MW-2	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 3-Plastic,6-Vial

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE		
						PREP	ANAL	
Total Metals - Westborough	Lab							
Aluminum, Total	ND	mg/l	0.10	1	6010B	0409 13:50	0410 14:1	5 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:1	5 AI
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:1	5 AI
Barium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:1	5 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:1	5 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:1	5 AI
Calcium, Total	11	mg/l	0.10	1	6010B	0409 13:50	0411 18:3	4 TD
Chromium, Total	ND	mg/l	0.01	1	6010B	0409 13:50	0410 14:1	5 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:1	5 AI
Copper, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:1	5 AI
Iron, Total	0.21	mg/l	0.05	1	6010B	0409 13:50	0410 14:1	5 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:1	5 AI
Magnesium, Total	1.6	mg/l	0.10	1	6010B	0409 13:50	0411 18:3	4 TD
Manganese, Total	0.131	mg/l	0.010	1	6010B	0409 13:50	0410 14:1	5 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:0	3 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 14:1	5 AI
Potassium, Total	ND	mg/l	2.5	1	6010B	0409 13:50	0410 14:1	5 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:1	5 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:1	5 AI
Sodium, Total	9.0	mg/l	2.0	1	6010B	0409 13:50	0410 14:1	5 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:1	5 AI
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:1	5 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:1	5 AI
Valatila Organiza bu CC/MC	Magthomas	ah Ioh		-	00505			
Volatile Organics by GC/MS Methylene chloride	ND	gn Lab ug/l	5.0	1	8260B		0408 12:5	3 PD
1,1-Dichloroethane	ND ND	ug/l ug/l	5.0 0.75					
Chloroform	ND	5	0.75					
		ug/l						
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane 1,1,2-Trichloroethane	ND	ug/l	0.50					
	ND	ug/l	0.75					
Tetrachloroethene	5.1	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-02

MW-2

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID PREP ANAL		
Valatila Ouranian ha CC/NC		Tala and	- 1 - 7					
Volatile Organics by GC/MS - Bromodichloromethane			0.50	1	8260B	0408 12:53 PD		
	ND	ug/l						
trans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
1,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/l	0.50					
Toluene	ND	ug/l	0.75					
Ethylbenzene	ND	ug/l	0.50					
Chloromethane	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
Vinyl chloride	ND	ug/l	1.0					
Chloroethane	ND	ug/l	1.0					
1,1-Dichloroethene	ND	ug/l	0.50					
trans-1,2-Dichloroethene	ND	ug/l	0.75					
Trichloroethene	ND	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
1,3-Dichlorobenzene	ND	ug/l	2.5					
1,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
p/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	ND	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
1,2,3-Trichloropropane	ND	ug/l	5.0					
Acrylonitrile	ND	ug/l	5.0					
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l ug/l	2.5					
Hexachlorobutadiene	ND	ug/l ug/l	0.60					
Isopropylbenzene	ND ND	ug/l ug/l	0.50					
p-Isopropyltoluene			0.50					
P-reobrobλrcorneme	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-02

MW-2

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
		- 1					
Volatile Organics by GC/MS -				1 8260B		0408 12:53	B PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	eria			
1,2-Dichloroethane-d4	104	00	70-130				
Toluene-d8	101	00	70-130				
4-Bromofluorobenzene	105	00	70-130				
Dibromofluoromethane	103	8	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-03	Date Collected: 06-APR-2009 09:08
	MW-3	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE		
						PREP	ANAL	
	T .].							
Total Metals - Westborough	. Lap							
Aluminum, Total	2.6	mg/l	0.10	1	6010B	0409 13:50	0410 14:3	0 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:3	0 AI
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:3	0 AI
Barium, Total	0.075	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	0 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:3	0 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:3	0 AI
Calcium, Total	40	mg/l	0.10	1	6010B	0409 13:50	0411 18:4	7 TD
Chromium, Total	0.07	mg/l	0.01	1	6010B	0409 13:50	0410 14:3	0 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:3	0 AI
Copper, Total	0.047	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	0 AI
Iron, Total	7.8	mg/l	0.05	1	6010B	0409 13:50	0410 14:3	0 AI
Lead, Total	0.043	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	0 AI
Magnesium, Total	9.8	mg/l	0.10	1	6010B	0409 13:50	0411 18:4	7 TD
Manganese, Total	1.30	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	0 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:0	9 EZ
Nickel, Total	0.049	mg/l	0.025	1	6010B	0409 13:50	0410 14:3	0 AI
Potassium, Total	3.5	mg/l	2.5	1	6010B	0409 13:50	0410 14:3	0 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	0 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:3	0 AI
Sodium, Total	52	mg/l	2.0	1	6010B	0409 13:50	0410 14:3	0 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:3	0 AI
Vanadium, Total	0.015	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	0 AI
Zinc, Total	0.229	mg/l	0.050	1	6010B	0409 13:50	0410 14:3	0 AI
Volatile Organics by GC/MS	- Westborou	gh Lab		1	8260B		0408 13:2	8 PD
Methylene chloride	ND	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	1.1	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-03

MW-3

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID PREP ANAL		
Valatila our siza ha CC/MC		T ala araat						
Volatile Organics by GC/MS - Bromodichloromethane			0.50	1	8260B	0408 13:28 PD		
	ND	ug/l						
trans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
1,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/l	0.50					
Toluene	ND	ug/l	0.75					
Ethylbenzene	ND	ug/l	0.50					
Chloromethane	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
Vinyl chloride	ND	ug/l	1.0					
Chloroethane	ND	ug/l	1.0					
1,1-Dichloroethene	ND	ug/l	0.50					
trans-1,2-Dichloroethene	ND	ug/l	0.75					
Trichloroethene	1.2	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
1,3-Dichlorobenzene	ND	ug/l	2.5					
1,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
p/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	1.8	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
1,2,3-Trichloropropane	ND	ug/l	5.0					
Acrylonitrile	ND	ug/l	5.0					
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	8.8	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND		0.50					
		ug/l						
p-Isopropyltoluene	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-03

MW-3

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID
					PREP	ANAL	
		- 1					
Volatile Organics by GC/MS -				1 8260B		0408 13:28	PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	ceria			
1,2-Dichloroethane-d4	101	00	70-130				
Toluene-d8	101	00	70-130				
4-Bromofluorobenzene	104	010	70-130				
Dibromofluoromethane	106	8	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-04	Date Collected: 06-APR-2009 10:02
	MW-4	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	ਜਤਸ	METHOD	DATE			
PARAMEIER	RESULT	UNIIS	RDL	KEF	MEIHOD	PREP	ANAL	ID	
Total Metals - Westborough	Tab								
iotai Metais - Westborough									
Aluminum, Total	ND	mg/l	0.10	1	6010B	0409 13:50	0410 14:3	3 AI	
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:3	3 AI	
Arsenic, Total	0.009	mg/l	0.005	1	6010B	0409 13:50	0410 14:3	3 AI	
Barium, Total	0.050	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	3 AI	
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:3	3 AI	
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:3	3 AI	
Calcium, Total	41	mg/l	0.10	1	6010B	0409 13:50	0411 18:49	9 TD	
Chromium, Total	ND	mg/l	0.01	1	6010B	0409 13:50	0410 14:3	3 AI	
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:3	3 AI	
Copper, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	3 AI	
Iron, Total	4.9	mg/l	0.05	1	6010B	0409 13:50	0410 14:3	3 AI	
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	3 AI	
Magnesium, Total	7.0	mg/l	0.10	1	6010B	0409 13:50	0411 18:4	9 TD	
Manganese, Total	0.190	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	3 AI	
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:12	l EZ	
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 14:3	3 AI	
Potassium, Total	11	mg/l	2.5	1	6010B	0409 13:50	0410 14:3	3 AI	
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	3 AI	
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:3	3 AI	
Sodium, Total	79	mg/l	2.0	1	6010B	0409 13:50	0410 14:3	3 AI	
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:3	3 AI	
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:3	3 AI	
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:3	3 AI	
Volatile Organics by GC/MS	- Westborou	gh Lab		1	8260B		0408 14:03	3 PD	
Methylene chloride	ND	ug/l	5.0						
1,1-Dichloroethane	ND	ug/l	0.75						
Chloroform	ND	ug/l	0.75						
Carbon tetrachloride	ND	ug/l	0.50						
1,2-Dichloropropane	ND	ug/l	1.8						
Dibromochloromethane	ND	ug/l	0.50						
1,1,2-Trichloroethane	ND	ug/l	0.75						
Tetrachloroethene	0.82	ug/l	0.50						
Chlorobenzene	ND	ug/l	0.50						
Trichlorofluoromethane	ND	ug/l	2.5						
1,2-Dichloroethane	ND	ug/l	0.50						
1,1,1-Trichloroethane	ND	ug/l	0.50						

Laboratory Sample Number: L0904242-04

MW-4

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAT PREP	'E ANAL	ID
						- FREF	ЛІЛАЦ	
Volatila Organiza by CC/MC	Wagtharaugh	Job cont	- I d	-	00000		0400 14.	0.2
Volatile Organics by GC/MS - Bromodichloromethane	ND	ug/l	0.50	T	8260B		0408 14:	03 PD
trans-1,3-Dichloropropene	ND	ug/l ug/l	0.50					
			0.50					
cis-1,3-Dichloropropene 1,1-Dichloropropene	ND ND	ug/l	2.5					
Bromoform	ND	ug/l ug/l	2.5					
1,1,2,2-Tetrachloroethane			2.0					
Benzene	ND ND	ug/l	0.50					
Toluene		ug/l						
	ND	ug/l	0.75					
Ethylbenzene Chloromethane	ND	ug/l	0.50					
	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
Vinyl chloride	ND	ug/l	1.0					
Chloroethane	ND	ug/l	1.0					
1,1-Dichloroethene	ND	ug/l	0.50					
trans-1,2-Dichloroethene	ND	ug/l	0.75					
Trichloroethene	1.8	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
1,3-Dichlorobenzene	ND	ug/l	2.5					
1,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
p/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	0.77	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
1,2,3-Trichloropropane	ND	ug/l	5.0					
Acrylonitrile	ND	ug/l	5.0					
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
=	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane		2						
	ND	uq/l	0.60					
1,2-Dibromo-3-chloropropane Hexachlorobutadiene Isopropylbenzene	ND ND	ug/l ug/l	0.60 0.50					

Laboratory Sample Number: L0904242-04

MW-4

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID
					PREP	ANAL	
		- 1					
Volatile Organics by GC/MS -				1 8260B		0408 14:03	3 PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	eria			
1,2-Dichloroethane-d4	101	00	70-130				
Toluene-d8	102	00	70-130				
4-Bromofluorobenzene	102	00	70-130				
Dibromofluoromethane	102	010	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-05	Date Collected: 06-APR-2009 10:45
	MW-5	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT UNITS		RDL REF METHOD			DATE II		
FARAMEIER	RESULI	UNIIS	RDL	KEF	MEIHOD	PREP	ANAL	ш
Total Metals - Westborough	Lab							
Aluminum, Total	0.16	mg/l	0.10	1	6010B	0409 13:50	0410 14:4	4 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:4	4 AI
Arsenic, Total	0.006	mg/l	0.005	1	6010B	0409 13:50	0410 14:4	4 AI
Barium, Total	0.032	mg/l	0.010	1	6010B	0409 13:50	0410 14:4	4 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:4	4 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:4	4 AI
Calcium, Total	26	mg/l	0.10	1	6010B	0409 13:50	0411 19:0	3 TD
Chromium, Total	ND	mg/l	0.01	1	6010B	0409 13:50	0410 14:4	4 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:4	4 AI
Copper, Total	0.090	mg/l	0.010	1	6010B	0409 13:50	0410 14:4	4 AI
Iron, Total	1.4	mg/l	0.05	1	6010B	0409 13:50	0410 14:4	4 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:4	4 AI
Magnesium, Total	4.9	mg/l	0.10	1	6010B	0409 13:50	0411 19:0	3 TD
Manganese, Total	0.061	mg/l	0.010	1	6010B	0409 13:50	0410 14:4	4 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:1	2 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 14:4	4 AI
Potassium, Total	11	mg/l	2.5	1	6010B	0409 13:50	0410 14:4	4 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:4	4 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:4	4 AI
Sodium, Total	48	mg/l	2.0	1	6010B	0409 13:50	0410 14:4	4 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:4	4 AI
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:4	4 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:4	4 AI
Volatile Organics by GC/MS	- Westborou	qh Lab		1	8260B		0408 14:3	9 PD
Methylene chloride	ND	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
	ND	ug/1	0.50					
1,2-Dichloroethane								

Comments: Complete list of References and Glossary of Terms found in Addendum I

04130912:19 Page 15 of 49

Laboratory Sample Number: L0904242-05

MW-5

PARAMETER	RESULT	UNITS	RDL	ספפ	METHOD	DATE ID
PARAMEIER	RESULI	UNIIS	RDL	KEF	MEIHOD	PREP ANAL
Valatila Organiza by CC/MC	Weathomaus	h Tab aant	- 1 4	-	0000-	
Volatile Organics by GC/MS -				T	8260B	0408 14:39 PD
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
Vinyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	1.1	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/l	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
p/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	ND	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
1,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
		,				

Laboratory Sample Number: L0904242-05

MW-5

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID
					PREP	ANAL	
		- 1					
Volatile Organics by GC/MS -				1 8260B		0408 14:39) PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Cri	teria			
1,2-Dichloroethane-d4	101	00	70-130				
Toluene-d8	103	00	70-130				
4-Bromofluorobenzene	102	010	70-130				
Dibromofluoromethane	103	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-06	Date Collected: 06-APR-2009 14:25
	MW-6	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

RESULT 7.5 ND 0.031 0.067 ND 24 0.02 ND 0.026 19	<pre>mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l</pre>	RDL 0.10 0.050 0.005 0.010 0.005 0.005 0.10 0.01 0.020	1 1 1 1 1 1 1 1	6010B 6010B 6010B 6010B 6010B	PREP 0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50	ATE ANAL 0 0410 14:47 0 0411 19:06	7 AI 7 AI 7 AI 7 AI 7 AI 7 AI
7.5 ND 0.031 0.067 ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.050 0.005 0.010 0.005 0.005 0.10 0.01	1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47	7 AI 7 AI 7 AI 7 AI 7 AI 7 AI
7.5 ND 0.031 0.067 ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.050 0.005 0.010 0.005 0.005 0.10 0.01	1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47	7 AI 7 AI 7 AI 7 AI 7 AI 7 AI
7.5 ND 0.031 0.067 ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.050 0.005 0.010 0.005 0.005 0.10 0.01	1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47	7 AI 7 AI 7 AI 7 AI 7 AI 7 AI
ND 0.031 0.067 ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.050 0.005 0.010 0.005 0.005 0.10 0.01	1 1 1 1 1	6010B 6010B 6010B 6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47	7 AI 7 AI 7 AI 7 AI 7 AI 7 AI
0.031 0.067 ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l mg/l	0.005 0.010 0.005 0.005 0.10 0.01	1 1 1 1	6010B 6010B 6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47 0 0410 14:47	7 AI 7 AI 7 AI 7 AI 7 AI
0.067 ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l	0.010 0.005 0.005 0.10 0.01	1 1 1 1	6010B 6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47 0 0410 14:47	7 AI 7 AI 7 AI
ND ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l mg/l	0.005 0.005 0.10 0.01	1 1 1	6010B 6010B 6010B	0409 13:50 0409 13:50 0409 13:50	0 0410 14:47 0 0410 14:47	7 AI 7 AI
ND 24 0.02 ND 0.026	mg/l mg/l mg/l mg/l	0.005 0.10 0.01	1 1	6010B 6010B	0409 13:50 0409 13:50	0 0410 14:47	7 AI
24 0.02 ND 0.026	mg/l mg/l mg/l	0.10 0.01	1	6010B	0409 13:50		
0.02 ND 0.026	mg/l mg/l	0.01				0411 19:00	5 היד
ND 0.026	mg/l		1	6010B	0400 10.5		
0.026		0.020			0409 13:50	0 0410 14:47	7 AI
	mg/l		1	6010B	0409 13:50	0 0410 14:43	7 AI
19		0.010	1	6010B	0409 13:50	0 0410 14:47	7 AI
	mg/l	0.05	1	6010B	0409 13:50	0 0410 14:47	7 AI
0.020	mg/l	0.010	1	6010B	0409 13:50	0 0410 14:47	7 AI
8.8	mg/l	0.10	1	6010B	0409 13:50	0 0411 19:00	6 TD
0.045	mg/l	0.010	1	6010B	0409 13:50	0410 14:43	7 AI
ND	mg/l	0.0002	1	7470A	0408 13:45	5 0409 12:14	4 EZ
ND	mg/l	0.025	1	6010B	0409 13:50	0 0410 14:47	7 AI
3.3	mg/l	2.5	1	6010B	0409 13:50	0410 14:43	7 AI
ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:43	7 AI
ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:43	7 AI
32	mg/l	2.0	1	6010B	0409 13:50	0410 14:43	7 AI
ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:47	7 AI
0.136	mg/l	0.010	1	6010B	0409 13:50	0410 14:47	7 AI
0.053	mg/l	0.050	1	6010B	0409 13:50	0 0410 14:47	7 AI
Westborough	Lab		1	8260B		0408 15:14	4 PD
ND	ug/l	5.0					
ND	ug/l	0.75					
ND		0.75					
ND	-						
ND	5	1.8					
ND	-	0.50					
	5						
	-						
	5						
	8.8 0.045 ND ND 3.3 ND 0.136 0.053 Westborough ND ND ND ND ND	8.8 mg/l 0.045 mg/l ND mg/l ND mg/l 3.3 mg/l ND mg/l 3.3 mg/l ND mg/l 3.3 mg/l ND mg/l 3.3 mg/l ND mg/l ND mg/l 0.136 mg/l 0.136 mg/l ND ug/l ND ug/l	8.8 mg/l 0.10 0.045 mg/l 0.010 ND mg/l 0.0002 ND mg/l 0.025 3.3 mg/l 2.5 ND mg/l 0.010 ND mg/l 0.025 3.3 mg/l 0.010 ND mg/l 0.007 32 mg/l 0.007 32 mg/l 0.007 32 mg/l 0.020 ND mg/l 0.020 0.136 mg/l 0.010 0.053 mg/l 0.050 Westborough Lab ND ug/l 0.75 ND ug/l 0.75 ND ug/l 0.50 ND ug/l 0.50	8.8 mg/l 0.10 1 0.045 mg/l 0.010 1 ND mg/l 0.0002 1 ND mg/l 0.025 1 3.3 mg/l 2.5 1 ND mg/l 0.010 1 ND mg/l 0.007 1 3.3 mg/l 0.010 1 ND mg/l 0.007 1 3.2 mg/l 0.007 1 ND mg/l 0.020 1 0.136 mg/l 0.010 1 0.053 mg/l 0.050 1 Westborough Lab 1 ND ug/l 0.75 1 ND ug/l 0.75 1 ND ug/l 0.50 1 ND ug/l	8.8 mg/l 0.10 1 6010B 0.045 mg/l 0.010 1 6010B ND mg/l 0.0002 1 7470A ND mg/l 0.025 1 6010B 3.3 mg/l 2.5 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.010 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.007 1 6010B ND mg/l 0.020 1 6010B 0.136 mg/l 0.010 1 6010B 0.136 mg/l 0.050 1 6010B 0.053 mg/l 0.050 1 6010B ND ug/l 0.75 1 6010B ND ug/l 0.75 1 6010B ND ug/l 0.50 1 8260B ND ug/l	8.8 mg/l 0.10 1 6010B 0409 13:50 0.045 mg/l 0.010 1 6010B 0409 13:50 ND mg/l 0.0002 1 7470A 0408 13:50 ND mg/l 0.025 1 6010B 0409 13:50 3.3 mg/l 2.5 1 6010B 0409 13:50 ND mg/l 0.010 1 6010B 0409 13:50 ND mg/l 0.010 1 6010B 0409 13:50 ND mg/l 0.010 1 6010B 0409 13:50 ND mg/l 0.007 1 6010B 0409 13:50 ND mg/l 0.0020 1 6010B 0409 13:50 ND mg/l 0.020 1 6010B 0409 13:50 0.136 mg/l 0.010 1 6010B 0409 13:50 ND ug/l 0.75 ND ug/l 0.50 ND	8.8 mg/l 0.10 1 6010B 0409 13:50 0411 19:00 0.045 mg/l 0.010 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.002 1 7470A 0408 13:50 0410 14:4' ND mg/l 0.025 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.025 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.010 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.010 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.007 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.020 1 6010B 0409 13:50 0410 14:4' ND mg/l 0.050 1 6010B 0409 13:50 0410 14:4' ND ug/l

Laboratory Sample Number: L0904242-06

MW-6

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAI PREP	'E ANAL	ID
						PREP	ANAL	
	_		_					
Volatile Organics by GC/MS -				1	8260B		0408 15:	14 PD
Bromodichloromethane	ND	ug/l	0.50					
trans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/l	0.50					
1,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50					
Benzene	ND	ug/l	0.50					
Toluene	ND	ug/l	0.75					
Ethylbenzene	ND	ug/l	0.50					
Chloromethane	ND	ug/l	2.5					
Bromomethane	ND	ug/l	1.0					
Vinyl chloride	ND	ug/l	1.0					
Chloroethane	ND	ug/1	1.0					
1,1-Dichloroethene	ND	ug/l	0.50					
trans-1,2-Dichloroethene	ND	ug/1	0.75					
Trichloroethene	ND	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
		-	2.5					
1,3-Dichlorobenzene	ND	ug/l						
1,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
p/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/l	1.0					
cis-1,2-Dichloroethene	ND	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
1,2,3-Trichloropropane	ND	ug/l	5.0					
Acrylonitrile	ND	ug/l	5.0					
Styrene	ND	ug/l	1.0					
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/1	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND ND	ug/l ug/l	2.5					
Bromobenzene								
	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-06

MW-6

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
			_				
Volatile Organics by GC/MS -	0			1 8260B		0408 15:14	l PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	ceria			
1,2-Dichloroethane-d4	105	90	70-130				
Toluene-d8	98.0	00	70-130				
4-Bromofluorobenzene	104	010	70-130				
Dibromofluoromethane	104	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-07	Date Collected:	06-APR-2009 13:58
	MW-7	Date Received :	07-APR-2009
Sample Matrix:	WATER	Date Reported :	13-APR-2009
Condition of Sample:	Satisfactory	Field Prep:	None

Number & Type of Containers: 3-Plastic

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					PREP ANAL
Total Metals - Westboro	ugh Lab				
Aluminum, Total	1.3	mg/l	0.10	1 6010B	0409 13:50 0410 15:27 AI
Antimony, Total	ND	mg/l	0.050	1 6010B	0409 13:50 0410 15:27 AI
Arsenic, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 15:27 AI
Barium, Total	0.072	mg/l	0.010	1 6010B	0409 13:50 0410 15:27 AI
Beryllium, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 15:27 AI
Cadmium, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 15:27 AI
Calcium, Total	80	mg/l	0.10	1 6010B	0409 13:50 0411 19:08 TD
Chromium, Total	0.10	mg/l	0.01	1 6010B	0409 13:50 0410 15:27 AI
Cobalt, Total	ND	mg/l	0.020	1 6010B	0409 13:50 0410 15:27 AI
Copper, Total	0.013	mg/l	0.010	1 6010B	0409 13:50 0410 15:27 AI
Iron, Total	2.0	mg/l	0.05	1 6010B	0409 13:50 0410 15:27 AI
Lead, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:27 AI
Magnesium, Total	9.2	mg/l	0.10	1 6010B	0409 13:50 0411 19:08 TD
Manganese, Total	42.0	mg/l	0.010	1 6010B	0409 13:50 0410 15:27 AI
Mercury, Total	0.0006	mg/l	0.0002	1 7470A	0408 13:45 0409 12:16 EZ
Nickel, Total	0.032	mg/l	0.025	1 6010B	0409 13:50 0410 15:27 AI
Potassium, Total	44	mg/l	2.5	1 6010B	0409 13:50 0410 15:27 AI
Selenium, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:27 AI
Silver, Total	ND	mg/l	0.070	1 6010B	0409 13:50 0410 14:50 AI
Sodium, Total	120	mg/l	2.0	1 6010B	0409 13:50 0410 15:27 AI
Thallium, Total	ND	mg/l	0.020	1 6010B	0409 13:50 0410 15:27 AI
Vanadium, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:27 AI
Zinc, Total	ND	mg/l	0.050	1 6010B	0409 13:50 0410 15:27 AI

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-08	Date Collected: 06-APR-2009 16:11
	MW-8	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

		TINTE	DDI	חחר	NERIOP			т. ъ
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA1 PREP	ANAL	ID
							минш	
Tetel Motels Nestherough	Tab							
Total Metals - Westborough	Lad							
Aluminum, Total	3.4	mg/l	0.10	1	6010B	0409 13:50	0410 14:5	3 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:5	3 AI
Arsenic, Total	0.021	mg/l	0.005	1	6010B	0409 13:50	0410 14:5	3 AI
Barium, Total	0.050	mg/l	0.010	1	6010B	0409 13:50	0410 14:5	3 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:5	3 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:5	3 AI
Calcium, Total	82	mg/l	0.10	1	6010B	0409 13:50	0411 19:1	1 TD
Chromium, Total	0.03	mg/l	0.01	1	6010B	0409 13:50	0410 14:5	3 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:5	3 AI
Copper, Total	0.018	mg/l	0.010	1	6010B	0409 13:50	0410 14:5	3 AI
Iron, Total	8.9	mg/l	0.05	1	6010B	0409 13:50	0410 14:5	3 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:5	3 AI
Magnesium, Total	13	mg/l	0.10	1	6010B	0409 13:50	0411 19:1	1 TD
Manganese, Total	0.230	mg/l	0.010	1	6010B	0409 13:50	0410 14:5	3 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:1	8 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 14:5	3 AI
Potassium, Total	5.4	mg/l	2.5	1	6010B	0409 13:50	0410 14:5	3 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:5	3 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:5	3 AI
Sodium, Total	230	mg/l	2.0	1	6010B	0409 13:50	0410 14:5	3 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:5	3 AI
Vanadium, Total	0.066	mg/l	0.010	1	6010B	0409 13:50	0410 14:5	3 AI
Zinc, Total	0.060	mg/l	0.050	1	6010B	0409 13:50	0410 14:5	3 AI
Volatile Organics by GC/MS	- Westborou	qh Lab		1	8260B		0408 15:4	9 PD
Methylene chloride	ND	uq/l	120					
1,1-Dichloroethane	ND	ug/l	19.					
Chloroform	ND	ug/l	19.					
Carbon tetrachloride	ND	ug/l	12.					
1,2-Dichloropropane	ND	ug/l	44.					
Dibromochloromethane	ND	ug/l	12.					
1,1,2-Trichloroethane	ND	ug/l	19.					
Tetrachloroethene	930	ug/l	12					
Chlorobenzene	ND	ug/l	12.					
Trichlorofluoromethane	ND	ug/l	62.					
	ND	ug/1	12.					
1,2-Dichloroethane								

Laboratory Sample Number: L0904242-08

MW-8

					VERTICE			
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE PREP	E ANAL	ID
Volatile Organics by GC/MS -	Westhorouc	th Lab cont	- ' d	1	8260B	04	08 15:	49 DD
Bromodichloromethane	ND	ug/l	12.	Ŧ	02005	0-	200 13.	17 10
trans-1,3-Dichloropropene	ND	ug/l	12.					
cis-1,3-Dichloropropene	ND	ug/l	12.					
1,1-Dichloropropene	ND	ug/l	62.					
Bromoform	ND	ug/l	50.					
1,1,2,2-Tetrachloroethane	ND	ug/l	12.					
Benzene	ND	ug/l	12.					
Toluene	ND	ug/l	19.					
Ethylbenzene	ND	ug/l	12.					
Chloromethane	ND	ug/l	62.					
Bromomethane	ND	ug/l	25.					
Vinyl chloride	ND	ug/l ug/l	25.					
Chloroethane	ND	ug/l ug/l	25.					
1,1-Dichloroethene	ND	ug/l ug/l	12.					
trans-1,2-Dichloroethene			12.					
Trichloroethene	ND 92	ug/l	19.					
1,2-Dichlorobenzene		ug/l	12 62.					
	ND	ug/l						
1,3-Dichlorobenzene	ND	ug/l	62.					
1,4-Dichlorobenzene	ND	ug/l	62.					
Methyl tert butyl ether	ND	ug/l	25.					
p/m-Xylene	ND	ug/l	25.					
o-Xylene	ND	ug/l	25.					
cis-1,2-Dichloroethene	440	ug/l	12					
Dibromomethane	ND	ug/l	120					
1,2,3-Trichloropropane	ND	ug/l	120					
Acrylonitrile	ND	ug/l	120					
Styrene	ND	ug/l	25.					
Dichlorodifluoromethane	ND	ug/l	120					
Acetone	ND	ug/l	120					
Carbon disulfide	ND	ug/l	120					
2-Butanone	ND	ug/l	120					
Vinyl acetate	ND	ug/l	120					
4-Methyl-2-pentanone	ND	ug/l	120					
2-Hexanone	ND	ug/l	120					
Bromochloromethane	ND	ug/l	62.					
2,2-Dichloropropane	ND	ug/l	62.					
1,2-Dibromoethane	ND	ug/l	50.					
1,3-Dichloropropane	ND	ug/l	62.					
1,1,1,2-Tetrachloroethane	ND	ug/l	12.					
Bromobenzene	ND	ug/l	62.					
n-Butylbenzene	ND	ug/l	12.					
sec-Butylbenzene	ND	ug/l	12.					
tert-Butylbenzene	ND	ug/l	62.					
o-Chlorotoluene	ND	ug/l	62.					
p-Chlorotoluene	ND	ug/l	62.					
1,2-Dibromo-3-chloropropane	ND	ug/l	62.					
Hexachlorobutadiene	ND	ug/l	15.					
	ND	ug/l	12.					
Isopropylbenzene		ug/1	±2.					

Laboratory Sample Number: L0904242-08

MW-8

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
		_ 1					
Volatile Organics by GC/MS -	0			1 8260B		0408 15:49	PD
Naphthalene	ND	ug/l	62.				
n-Propylbenzene	ND	ug/l	12.				
1,2,3-Trichlorobenzene	ND	ug/l	62.				
1,2,4-Trichlorobenzene	ND	ug/l	62.				
1,3,5-Trimethylbenzene	ND	ug/l	62.				
1,2,4-Trimethylbenzene	ND	ug/l	62.				
1,4-Diethylbenzene	ND	ug/l	50.				
4-Ethyltoluene	ND	ug/l	50.				
1,2,4,5-Tetramethylbenzene	ND	ug/l	50.				
Surrogate(s)	Recovery		QC Crit	ceria			
1,2-Dichloroethane-d4	105	00	70-130				
Toluene-d8	99.0	00	70-130				
4-Bromofluorobenzene	105	010	70-130				
Dibromofluoromethane	107	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-09	Date Collected: 06-APR-2009 15:35
	MW-8D	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT	RDL	REF METHOD	DATE ID	
					PREP ANAL
Total Metals - Westboro	ugh Lab				
Aluminum, Total	0.58	mg/l	0.10	1 6010B	0409 13:50 0410 15:24 AI
Antimony, Total	ND	mg/l	0.050	1 6010B	0409 13:50 0410 15:24 AI
Arsenic, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 15:24 AI
Barium, Total	0.021	mg/l	0.010	1 6010B	0409 13:50 0410 15:24 AI
Beryllium, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 15:24 AI
Cadmium, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 15:24 AI
Calcium, Total	9.3	mg/l	0.10	1 6010B	0409 13:50 0411 19:13 TD
Chromium, Total	0.50	mg/l	0.01	1 6010B	0409 13:50 0410 15:24 AI
Cobalt, Total	ND	mg/l	0.020	1 6010B	0409 13:50 0410 15:24 AI
Copper, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:24 AI
Iron, Total	1.6	mg/l	0.05	1 6010B	0409 13:50 0410 15:24 AI
Lead, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:24 AI
Magnesium, Total	3.7	mg/l	0.10	1 6010B	0409 13:50 0411 19:13 TD
Manganese, Total	5.47	mg/l	0.010	1 6010B	0409 13:50 0410 15:24 AI
Mercury, Total	ND	mg/l	0.0002	1 7470A	0408 13:45 0409 12:23 EZ
Nickel, Total	0.025	mg/l	0.025	1 6010B	0409 13:50 0410 15:24 AI
Potassium, Total	41	mg/l	2.5	1 6010B	0409 13:50 0410 15:24 AI
Selenium, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:24 AI
Silver, Total	ND	mg/l	0.007	1 6010B	0409 13:50 0410 15:24 AI
Sodium, Total	15	mg/l	2.0	1 6010B	0409 13:50 0410 15:24 AI
Thallium, Total	ND	mg/l	0.020	1 6010B	0409 13:50 0410 15:24 AI
Vanadium, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 15:24 AI
Zinc, Total	ND	mg/l	0.050	1 6010B	0409 13:50 0410 15:24 AI

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-10	Date Collected: 06-APR-2009 14:50
	MW-9	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
						PREP	ANAL	
Total Metals - Westborough	Lab							
Aluminum, Total	1.2	mg/l	0.10	1	6010B	0409 13:50	0410 14:59	9 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:59	9 AI
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:59	9 AI
Barium, Total	0.067	mg/l	0.010	1	6010B	0409 13:50	0410 14:59	9 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:59	9 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 14:59	9 AI
Calcium, Total	150	mg/l	0.10	1	6010B	0409 13:50	0411 19:10	6 TD
Chromium, Total	0.03	mg/l	0.01	1	6010B	0409 13:50	0410 14:59	9 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:59	9 AI
Copper, Total	0.010	mg/l	0.010	1	6010B	0409 13:50	0410 14:59	9 AI
Iron, Total	1.9	mg/l	0.05	1	6010B	0409 13:50	0410 14:59	9 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:59	9 AI
Magnesium, Total	30	mg/l	0.10	1	6010B	0409 13:50	0411 19:10	6 TD
Manganese, Total	1.08	mg/l	0.010	1	6010B	0409 13:50	0410 14:59	9 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:25	5 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 14:59	9 AI
Potassium, Total	25	mg/l	2.5	1	6010B	0409 13:50	0410 14:59	9 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:59	9 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 14:59	9 AI
Sodium, Total	210	mg/l	2.0	1	6010B	0409 13:50	0410 14:59	9 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 14:59	9 AI
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 14:59	9 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 14:59	9 AI
Volatile Organics by GC/MS	- Westborou	qh Lab		1	8260B		0408 16:2	5 PD
Methylene chloride	ND	uq/l	50.					
1,1-Dichloroethane	ND	ug/l	7.5					
Chloroform	ND	ug/l	7.5					
Carbon tetrachloride	ND	ug/l	5.0					
1,2-Dichloropropane	ND	ug/l	18.					
Dibromochloromethane	ND	ug/l	5.0					
1,1,2-Trichloroethane	ND	ug/l	7.5					
Tetrachloroethene	400	ug/l	5.0					
Chlorobenzene	ND	ug/l	5.0					
Trichlorofluoromethane	ND	ug/l	25.					
1,2-Dichloroethane	ND	ug/1	5.0					
1,1,1-Trichloroethane	ND	ug/l	5.0					

Laboratory Sample Number: L0904242-10

MW-9

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID
	-				-	PREP ANAL
Volatile Organics by GC/MS -	Westboroug	gh Lab cont	c'd	1	8260B	0408 16:25 PD
Bromodichloromethane	ND	ug/l	5.0			
trans-1,3-Dichloropropene	ND	ug/l	5.0			
cis-1,3-Dichloropropene	ND	ug/l	5.0			
1,1-Dichloropropene	ND	ug/l	25.			
Bromoform	ND	ug/l	20.			
1,1,2,2-Tetrachloroethane	ND	ug/l	5.0			
Benzene	ND	ug/l	5.0			
Toluene	ND	ug/l	7.5			
Ethylbenzene	ND	ug/l	5.0			
Chloromethane	ND	ug/l	25.			
Bromomethane	ND	ug/l	10.			
Vinyl chloride	ND	ug/l	10.			
Chloroethane	ND	ug/l	10.			
1,1-Dichloroethene	ND	ug/l	5.0			
trans-1,2-Dichloroethene	ND	ug/l	7.5			
Trichloroethene	12	ug/l	5.0			
1,2-Dichlorobenzene	ND	ug/l	25.			
1,3-Dichlorobenzene	ND	ug/l	25.			
1,4-Dichlorobenzene	ND	ug/l	25.			
Methyl tert butyl ether	ND	ug/l	10.			
p/m-Xylene	ND	ug/l	10.			
o-Xylene	ND	ug/l	10.			
cis-1,2-Dichloroethene	ND	ug/l	5.0			
Dibromomethane	ND	ug/l	50.			
1,2,3-Trichloropropane	ND	ug/l	50.			
Acrylonitrile	ND	ug/l	50.			
Styrene	ND	ug/l	10.			
Dichlorodifluoromethane	ND	ug/l	50.			
Acetone	ND	ug/l	50.			
Carbon disulfide	ND	ug/l	50.			
2-Butanone	ND	ug/l	50.			
Vinyl acetate	ND	ug/l	50.			
4-Methyl-2-pentanone	ND	ug/l	50.			
2-Hexanone	ND	ug/l	50.			
Bromochloromethane	ND	ug/l	25.			
2,2-Dichloropropane	ND	ug/l	25.			
1,2-Dibromoethane	ND	ug/l	20.			
1,3-Dichloropropane	ND	ug/l ug/l	20.			
1,1,1,2-Tetrachloroethane	ND	ug/l ug/l	5.0			
Bromobenzene			25.			
n-Butylbenzene	ND	ug/l	5.0			
-	ND	ug/l				
sec-Butylbenzene	ND	ug/l	5.0			
tert-Butylbenzene	ND	ug/l	25.			
o-Chlorotoluene	ND	ug/l	25.			
p-Chlorotoluene	ND	ug/l	25.			
1,2-Dibromo-3-chloropropane	ND	ug/l	25.			
Hexachlorobutadiene	ND	ug/l	6.0			
Isopropylbenzene	ND	ug/l	5.0			
p-Isopropyltoluene	ND	ug/l	5.0			

Laboratory Sample Number: L0904242-10

MW-9

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Valatila organiza ka 00/M0		T ala araad	L 1 3				
Volatile Organics by GC/MS -				1 8260B		0408 16:25	> PD
Naphthalene	ND	ug/l	25.				
n-Propylbenzene	ND	ug/l	5.0				
1,2,3-Trichlorobenzene	ND	ug/l	25.				
1,2,4-Trichlorobenzene	ND	ug/l	25.				
1,3,5-Trimethylbenzene	ND	ug/l	25.				
1,2,4-Trimethylbenzene	ND	ug/l	25.				
1,4-Diethylbenzene	ND	ug/l	20.				
4-Ethyltoluene	ND	ug/l	20.				
1,2,4,5-Tetramethylbenzene	ND	ug/l	20.				
Surrogate(s)	Recovery		QC Crit	ceria			
1,2-Dichloroethane-d4	110	00	70-130				
Toluene-d8	102	00	70-130				
4-Bromofluorobenzene	101	00	70-130				
Dibromofluoromethane	106	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-11	Date Collected: 06-APR-2009 12:23
	MW-9D	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

	D.0	101784		D-	VERMON			
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	re ANAL	ID
						FREF	ANAL	
	T . 1-							
Total Metals - Westborough	Lab							
Aluminum, Total	2.1	mg/l	0.10	1	6010B	0409 13:50	0410 15:0	2 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:0	2 AI
Arsenic, Total	0.012	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	2 AI
Barium, Total	0.051	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	2 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	2 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	2 AI
Calcium, Total	19	mg/l	0.10	1	6010B	0409 13:50	0411 19:1	8 TD
Chromium, Total	0.10	mg/l	0.01	1	6010B	0409 13:50	0410 15:0	2 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:0	2 AI
Copper, Total	0.015	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	2 AI
Iron, Total	6.3	mg/l	0.05	1	6010B	0409 13:50	0410 15:0	2 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	2 AI
Magnesium, Total	8.0	mg/l	0.10	1	6010B	0409 13:50	0411 19:1	8 TD
Manganese, Total	0.556	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	2 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:2	7 EZ
Nickel, Total	0.066	mg/l	0.025	1	6010B	0409 13:50	0410 15:0	2 AI
Potassium, Total	ND	mg/l	2.5	1	6010B	0409 13:50	0410 15:0	2 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	2 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 15:0	2 AI
Sodium, Total	18	mg/l	2.0	1	6010B	0409 13:50	0410 15:0	2 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:0	2 AI
Vanadium, Total	0.021	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	2 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:0	2 AI
Volatile Organics by GC/MS	- Westborou	qh Lab		1	8260B		0408 17:0	0 PD
Methylene chloride	ND	uq/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	1.2	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
	ND	ug/l	0.50					
1,2-Dichloroethane								

Laboratory Sample Number: L0904242-11

MW-9D

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID PREP ANAL
Valatila Ouropian ha CC/NC		T ala araat	- 1 - 7			
Volatile Organics by GC/MS - Bromodichloromethane			0.50	1	8260B	0408 17:00 PD
	ND	ug/l				
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
Vinyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	ND	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/l	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
p/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	ND	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
1,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l ug/l	0.60			
Isopropylbenzene	ND		0.50			
		ug/l				
p-Isopropyltoluene	ND	ug/l	0.50			

Laboratory Sample Number: L0904242-11

MW-9D

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
		T - la su a su a	- 1 - 3				
Volatile Organics by GC/MS -	0			1 8260B		0408 17:00) PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	eria			
1,2-Dichloroethane-d4	103	00	70-130				
Toluene-d8	103	00	70-130				
4-Bromofluorobenzene	104	010	70-130				
Dibromofluoromethane	103	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-12	Date Collected: 06-APR-2009 13:14
	MW-10	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

	ספמיי ש	INTEG	DDT	ספס	METHOD			
PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA' PREP	TE ANAL	ID
							MIAL	
Tatal Matala Magthawayah	Tab							
Total Metals - Westborough								
Aluminum, Total	0.63	mg/l	0.10	1	6010B	0409 13:50	0410 15:0	5 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:0	5 AI
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	5 AI
Barium, Total	0.075	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	5 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	5 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	5 AI
Calcium, Total	56	mg/l	0.10	1	6010B	0409 13:50	0411 19:2	1 TD
Chromium, Total	0.01	mg/l	0.01	1	6010B	0409 13:50	0410 15:0	5 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:0	5 AI
Copper, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	5 AI
Iron, Total	0.59	mg/l	0.05	1	6010B	0409 13:50	0410 15:0	5 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	5 AI
Magnesium, Total	7.9	mg/l	0.10	1	6010B	0409 13:50	0411 19:2	1 TD
Manganese, Total	0.512	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	5 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:2	8 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 15:0	5 AI
Potassium, Total	43	mg/l	2.5	1	6010B	0409 13:50	0410 15:0	5 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	5 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 15:0	5 AI
Sodium, Total	170	mg/l	2.0	1	6010B	0409 13:50	0410 15:0	5 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:0	5 AI
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	5 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:0	5 AI
Volatile Organics by GC/MS	- Westborou	gh Lab		1	8260B		0408 17:3	5 PD
Methylene chloride	ND	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	41	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-12

MW-10

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID
						PREP ANAL
Volatile Organics by GC/MS -	Waatharaugh	Ish cont!	2	1	22625	0400 12:25 55
				T	8260B	0408 17:35 PD
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
Vinyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	1.3	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/l	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
p/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	0.83	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
1,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l ug/l	2.5			
Hexachlorobutadiene			2.5			
	ND ND	ug/l				
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			

Laboratory Sample Number: L0904242-12

MW-10

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
		_	_				
Volatile Organics by GC/MS -	- Westborough	Lab con		1 8260B		0408 17:35	5 PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	eria			
1,2-Dichloroethane-d4	109	00	70-130				
Toluene-d8	104	00	70-130				
4-Bromofluorobenzene	105	010	70-130				
Dibromofluoromethane	108	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-13	Date Collected: 06-APR-2009 00:00
	DUP-01	Date Received : 07-APR-2009
Sample Matrix:	WATER	Date Reported : 13-APR-2009
Condition of Sample:	Satisfactory	Field Prep: None

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	DL REF M		DA	TE	IL	
	-				-	PREP	ANAL		
Cotal Metals - Westborough	Lab								
Aluminum, Total	2.5	mg/l	0.10	1	6010B	0409 13:50	0410 15:0	8 AI	
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:0	8 AI	
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	8 AI	
Barium, Total	0.067	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	8 AI	
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	8 AI	
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:0	8 AI	
Calcium, Total	35	mg/l	0.10	1	6010B	0409 13:50	0411 19:2	3 TD	
Chromium, Total	0.06	mg/l	0.01	1	6010B	0409 13:50	0410 15:0	8 AI	
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:0	8 AI	
Copper, Total	0.042	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	8 AI	
Iron, Total	7.2	mg/l	0.05	1	6010B	0409 13:50	0410 15:0	8 AI	
Lead, Total	0.041	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	8 AI	
Magnesium, Total	9.2	mg/l	0.10	1	6010B	0409 13:50	0411 19:2	3 TD	
Manganese, Total	1.26	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	8 AI	
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:3	0 EZ	
Nickel, Total	0.045	mg/l	0.025	1	6010B	0409 13:50	0410 15:0	8 AI	
Potassium, Total	3.0	mg/l	2.5	1	6010B	0409 13:50	0410 15:0	8 AI	
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	8 AI	
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 15:0	8 AI	
Sodium, Total	43	mg/l	2.0	1	6010B	0409 13:50	0410 15:0	8 AI	
Fhallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:0	8 AI	
Janadium, Total	0.015	mg/l	0.010	1	6010B	0409 13:50	0410 15:0	8 AI	
Zinc, Total	0.224	mg/l	0.050	1	6010B	0409 13:50	0410 15:0	8 AI	
Volatile Organics by GC/MS	- Westborou	gh Lab		1	8260B		0408 18:1	1 PE	
Methylene chloride	ND	ug/l	5.0						
,1-Dichloroethane	ND	ug/l	0.75						
Chloroform	ND	ug/l	0.75						
Carbon tetrachloride	ND	ug/l	0.50						
,2-Dichloropropane	ND	ug/l	1.8						
Dibromochloromethane	ND	ug/l	0.50						
1,1,2-Trichloroethane	ND	ug/l	0.75						
Tetrachloroethene	1.3	ug/l	0.50						
Chlorobenzene	ND	ug/l	0.50						
Trichlorofluoromethane	ND	ug/l	2.5						
1,2-Dichloroethane	ND	ug/l	0.50						
1,1,1-Trichloroethane	ND	ug/l	0.50						

Comments: Complete list of References and Glossary of Terms found in Addendum I

04130912:19 Page 35 of 49

Laboratory Sample Number: L0904242-13

DUP-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID
						PREP ANAL
Volatile Organics by GC/MS -	Westborough	Lab cont'	d	1	8260B	0408 18:11 PD
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
Vinyl chloride	ND	ug/l ug/l	1.0			
Chloroethane	ND	ug/l ug/l	1.0			
1,1-Dichloroethene	ND	ug/l ug/l	0.50			
trans-1,2-Dichloroethene	ND ND		0.50			
Trichloroethene	ND 1.2	ug/l	0.75			
		ug/l				
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/l	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
p/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	1.7	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
1,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	10	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	0.60			
Isopropylbenzene	ND	ug/l	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			

Laboratory Sample Number: L0904242-13

DUP-01

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Volatile Organics by GC/MS -				1 8260B		0408 18:11	. PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crit	eria			
1,2-Dichloroethane-d4	106	00	70-130				
Toluene-d8	101	00	70-130				
4-Bromofluorobenzene	104	010	70-130				
Dibromofluoromethane	105	00	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-14	Date Collected: 06-A	PR-2009 10:05.
	FB-01	Date Received : 07-A	.PR-2009
Sample Matrix:	WATER	Date Reported : 13-A	PR-2009
Condition of Sample:	Satisfactory	Field Prep: None	

Number & Type of Containers: 1-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	ספפ	METHOD	עת	TE	ID
PARAMEIER	RESULT	UNIIS	RDL	REF	MEIHOD	PREP	ANAL	עד
Total Matala Masthawayah	Tab							
Total Metals - Westborough	Цар							
Aluminum, Total	ND	mg/l	0.10	1	6010B	0409 13:50	0410 15:1	2 AI
Antimony, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:1	2 AI
Arsenic, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:1	2 AI
Barium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:1	2 AI
Beryllium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:1	2 AI
Cadmium, Total	ND	mg/l	0.005	1	6010B	0409 13:50	0410 15:1	2 AI
Calcium, Total	0.13	mg/l	0.10	1	6010B	0409 13:50	0411 19:2	6 TD
Chromium, Total	ND	mg/l	0.01	1	6010B	0409 13:50	0410 15:1	2 AI
Cobalt, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:1	2 AI
Copper, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:1	2 AI
Iron, Total	ND	mg/l	0.05	1	6010B	0409 13:50	0410 15:1	2 AI
Lead, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:1	2 AI
Magnesium, Total	ND	mg/l	0.10	1	6010B	0409 13:50	0411 19:2	6 TD
Manganese, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:1	2 AI
Mercury, Total	ND	mg/l	0.0002	1	7470A	0408 13:45	0409 12:3	2 EZ
Nickel, Total	ND	mg/l	0.025	1	6010B	0409 13:50	0410 15:1	2 AI
Potassium, Total	ND	mg/l	2.5	1	6010B	0409 13:50	0410 15:1	2 AI
Selenium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:1	2 AI
Silver, Total	ND	mg/l	0.007	1	6010B	0409 13:50	0410 15:1	2 AI
Sodium, Total	ND	mg/l	2.0	1	6010B	0409 13:50	0410 15:1	2 AI
Thallium, Total	ND	mg/l	0.020	1	6010B	0409 13:50	0410 15:1	2 AI
Vanadium, Total	ND	mg/l	0.010	1	6010B	0409 13:50	0410 15:1	2 AI
Zinc, Total	ND	mg/l	0.050	1	6010B	0409 13:50	0410 15:1	2 AI
Volatile Organics by GC/MS	- Westborou	gh Lab		1	8260B		0408 11:4	2 PD
Methylene chloride	6.8	ug/l	5.0					
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/l	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					

Laboratory Sample Number: L0904242-14

FB-01

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE ID PREP ANAL
Valatila Ouropian ha CC/NC		T ala araat	- 1 - 7			
Volatile Organics by GC/MS - Bromodichloromethane			0.50	1	8260B	0408 11:42 PD
	ND	ug/l				
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/l	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50			
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0			
Vinyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	ND	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/l	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			
p/m-Xylene	ND	ug/l	1.0			
o-Xylene	ND	ug/l	1.0			
cis-1,2-Dichloroethene	ND	ug/l	0.50			
Dibromomethane	ND	ug/l	5.0			
1,2,3-Trichloropropane	ND	ug/l	5.0			
Acrylonitrile	ND	ug/l	5.0			
Styrene	ND	ug/l	1.0			
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0			
4-Methyl-2-pentanone	ND	ug/l	5.0			
2-Hexanone	ND	ug/l	5.0			
Bromochloromethane	ND	ug/l	2.5			
2,2-Dichloropropane	ND	ug/l	2.5			
1,2-Dibromoethane	ND	ug/l	2.0			
1,3-Dichloropropane	ND	ug/l	2.5			
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			
Bromobenzene	ND	ug/l	2.5			
n-Butylbenzene	ND	ug/l	0.50			
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/l	2.5			
p-Chlorotoluene	ND	ug/l ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l ug/l	0.60			
Isopropylbenzene	ND		0.50			
		ug/l				
p-Isopropyltoluene	ND	ug/l	0.50			

Laboratory Sample Number: L0904242-14

FB-01

PARAMETER	RESULT	UNITS	RDL I	REF METHOD	DA	TE	ID
					PREP	ANAL	
		- 1					
Volatile Organics by GC/MS -				1 8260B		0408 11:42	2 PD
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
1,4-Diethylbenzene	ND	ug/l	2.0				
4-Ethyltoluene	ND	ug/l	2.0				
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0				
Surrogate(s)	Recovery		QC Crite	eria			
1,2-Dichloroethane-d4	103	00	70-130				
Toluene-d8	102	00	70-130				
4-Bromofluorobenzene	105	00	70-130				
Dibromofluoromethane	105	8	70-130				

MA:M-MA086 NH:2003 CT:PH-0574 ME:MA0086 RI:LA000065 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number:	L0904242-15	Date Collected:	06-APR-2009 00:00
	TRIP BLANK	Date Received :	07-APR-2009
Sample Matrix:	WATER	Date Reported :	13-APR-2009
Condition of Sample:	Satisfactory	Field Prep:	None
Number & Type of Containe	ers: 1-Vial		

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by GC/MS	- Westborou	ah Lah		1	8260B		0408 18:4	
Methylene chloride	ND	uq/l	5.0	Ŧ	0200B		0400 10.4	IO PD
1,1-Dichloroethane	ND	ug/l	0.75					
Chloroform	ND	ug/l	0.75					
Carbon tetrachloride	ND	ug/l	0.50					
1,2-Dichloropropane	ND	ug/l	1.8					
Dibromochloromethane	ND	ug/l	0.50					
1,1,2-Trichloroethane	ND	ug/l	0.75					
Tetrachloroethene	ND	ug/l	0.50					
Chlorobenzene	ND	ug/l	0.50					
Trichlorofluoromethane	ND	ug/1 ug/1	2.5					
1,2-Dichloroethane	ND	ug/l	0.50					
1,1,1-Trichloroethane	ND	ug/l	0.50					
Bromodichloromethane	ND	ug/1 ug/1	0.50					
trans-1,3-Dichloropropene	ND	ug/l	0.50					
cis-1,3-Dichloropropene	ND	ug/1	0.50					
1,1-Dichloropropene	ND	ug/l	2.5					
Bromoform	ND	ug/l	2.0					
1,1,2,2-Tetrachloroethane	ND	ug/1	0.50					
Benzene	ND	ug/l	0.50					
Toluene	ND	ug/1	0.75					
Ethylbenzene	ND	ug/l	0.50					
Chloromethane	ND	ug/1	2.5					
Bromomethane	ND	ug/l	1.0					
Vinyl chloride	ND	ug/l	1.0					
Chloroethane	ND	ug/1	1.0					
1,1-Dichloroethene	ND	ug/l	0.50					
trans-1,2-Dichloroethene	ND	ug/1	0.75					
Trichloroethene	ND	ug/l	0.50					
1,2-Dichlorobenzene	ND	ug/l	2.5					
1,3-Dichlorobenzene	ND	ug/1	2.5					
1,4-Dichlorobenzene	ND	ug/l	2.5					
Methyl tert butyl ether	ND	ug/l	1.0					
p/m-Xylene	ND	ug/l	1.0					
o-Xylene	ND	ug/1	1.0					
cis-1,2-Dichloroethene	ND	ug/l	0.50					
Dibromomethane	ND	ug/l	5.0					
1,2,3-Trichloropropane	ND	ug/1	5.0					
Acrylonitrile	ND	ug/l	5.0					

Laboratory Sample Number: L0904242-15

TRIP BLANK

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
Volatile Organics by GC/MS -	Westborough	Lab cont	.'d	1	8260B		0408 18:4	6 PD
Styrene	ND	uq/l	1.0	-	02000		0100 1011	0 1 0
Dichlorodifluoromethane	ND	ug/l	5.0					
Acetone	ND	ug/l	5.0					
Carbon disulfide	ND	ug/l	5.0					
2-Butanone	ND	ug/l	5.0					
Vinyl acetate	ND	ug/l	5.0					
4-Methyl-2-pentanone	ND	ug/l	5.0					
2-Hexanone	ND	ug/l	5.0					
Bromochloromethane	ND	ug/l	2.5					
2,2-Dichloropropane	ND	ug/l	2.5					
1,2-Dibromoethane	ND	ug/l	2.0					
1,3-Dichloropropane	ND	ug/l	2.5					
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50					
Bromobenzene	ND	ug/l	2.5					
n-Butylbenzene	ND	ug/l	0.50					
sec-Butylbenzene	ND	ug/l	0.50					
tert-Butylbenzene	ND	ug/l	2.5					
o-Chlorotoluene	ND	ug/l	2.5					
p-Chlorotoluene	ND	ug/l	2.5					
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5					
Hexachlorobutadiene	ND	ug/l	0.60					
Isopropylbenzene	ND	ug/l	0.50					
p-Isopropyltoluene	ND	ug/l	0.50					
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC Cri	teria	a			
1,2-Dichloroethane-d4	106	010	70-130					
Toluene-d8	102	010	70-130					
4-Bromofluorobenzene	106	00	70-130					
Dibromofluoromethane	105	00	70-130					

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH SPIKE ANALYSES

Parameter	% Recovery QC Criteria	
Total Metals - West	tborough Lab LCS for sample(s) 01-14 (WG358342-2)	
Aluminum, Total	100 80-120	
Antimony, Total	102 80-120	
Arsenic, Total	105 80-120	
Barium, Total	98 80-120	
Beryllium, Total	98 80-120	
Cadmium, Total	108 80-120	
Calcium, Total	98 80-120	
Chromium, Total	95 80-120	
Cobalt, Total	100 80-120	
Copper, Total	100 80-120	
Iron, Total	100 80-120	
Lead, Total	101 80-120	
Magnesium, Total	100 80-120	
Manganese, Total	99 80-120	
Nickel, Total	99 80-120	
Potassium, Total	96 80-120	
Selenium, Total	104 80-120	
Silver, Total	98 80-120	
Sodium, Total	99 80-120	
Thallium, Total	99 80-120	
Vanadium, Total	98 80-120	
Zinc, Total	104 80-120	
Total Metals - West	tborough Lab LCS for sample(s) 01-14 (WG358207-2)	
Mercury, Total	106 80-120	

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH LCS/LCSD ANALYSIS

Parameter	LCS %	LCSI	0% RPD	RPD Limi	t QC Limits
Volatile Organics by GC/	MS - Westborough	Lab for s	ample(s) 01	-06,08,10-15 (W	WG358283-1, WG3 <mark>58283</mark>
Chlorobenzene	102	104	2	20	75-130
Benzene	101	102	1	20	76-127
Toluene	104	105	1	20	76-125
1,1-Dichloroethene	101	107	б	20	61-145
Trichloroethene	101	101	0	20	71-120
Surrogate(s)					
1,2-Dichloroethane-d4	97	98	1		70-130
Toluene-d8	100	102	2		70-130
4-Bromofluorobenzene	98	102	4		70-130
Dibromofluoromethane	106	103	3		70-130

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD L	imits
Total Metals - Westboroug	n Lab for sample	e(s) 01-14	(L0904242-02,	WG358342-4)		
Aluminum, Total	100	100	0	20	75-125	
Antimony, Total	103	102	1	20	75-125	
Arsenic, Total	108	108	0	20	75-125	
Barium, Total	101	98	3	20	75-125	
Beryllium, Total	101	99	2	20	75-125	
Cadmium, Total	109	107	2	20	75-125	
Calcium, Total	100	100	0	20	75-125	
Chromium, Total	100	100	0	20	75-125	
Cobalt, Total	103	101	2	20	75-125	
Copper, Total	106	103	3	20	75-125	
Iron, Total	99	99	0	20	75-125	
Lead, Total	102	100	2	20	75-125	
Magnesium, Total	104	104	0	20	75-125	
Manganese, Total	100	97	3	20	75-125	
Nickel, Total	101	100	1	20	75-125	
Potassium, Total	120	110	9	20	75-125	
Selenium, Total	106	106	0	20	75-125	
Silver, Total	98	96	2	20	75-125	
Sodium, Total	100	100	0	20	75-125	
Thallium, Total	99	98	1	20	75-125	
Vanadium, Total	100	98	2	20	75-125	
Zinc, Total	110	108	2	20	75-125	
Total Metals - Westborough	n Lab for sample	e(s) 01-14	(L0904242-02,	WG358207-4)		
Mercury, Total	115	126	9	20	70-130	
Volatile Organics by GC/MS ·	- Westborough La	ab for samp	ole(s) 01-06,0	8,10-15 (L09	04242-02,	WG3582
Chlorobenzene	95	91	4	20	75-130	
Benzene	96	90	б	20	76-127	
Toluene	97	92	5	20	76-125	
1,1-Dichloroethene	101	94	7	20	61-145	
Trichloroethene	101	96	5	20	71-120	
Surrogate(s)						
1,2-Dichloroethane-d4	105	105	0		70-130	
Toluene-d8	101	101	0		70-130	
4-Bromofluorobenzene	100	102	2		70-130	
Dibromofluoromethane	103	108	5		70-130	

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

PARAMETER	RESULT	UNITS	RDL	REF METH	IOD DATE ID
					PREP ANAL
Blank Analy	ysis for samp)]e(g) 01-1	4 (WC358)	342-1)	
Total Metals - Westborough		JIC(5) 01 -	14 (W0550.	512 1)	
Aluminum, Total	ND	mg/l	0.10	1 6010B	0409 13:50 0410 14:06 AI
Antimony, Total	ND	mg/l	0.050	1 6010B	0409 13:50 0410 14:06 AI
Arsenic, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 14:06 AI
Barium, Total	ND	mg/l	0.010	1 6010E	0409 13:50 0410 14:06 AI
Beryllium, Total	ND	mg/l	0.005	1 6010E	0409 13:50 0410 14:06 AI
Cadmium, Total	ND	mg/l	0.005	1 6010B	0409 13:50 0410 14:06 AI
Calcium, Total	ND	mg/l	0.10	1 6010B	0409 13:50 0411 18:26 TD
Chromium, Total	ND	mg/l	0.01	1 6010B	0409 13:50 0410 14:06 AI
Cobalt, Total	ND	mg/l	0.020	1 6010B	0409 13:50 0410 14:06 AI
Copper, Total	ND	mg/l	0.010	1 6010E	0409 13:50 0410 14:06 AI
Iron, Total	ND	mg/l	0.05	1 6010E	0409 13:50 0410 14:06 AI
Lead, Total	ND	mg/l	0.010	1 6010B	0409 13:50 0410 14:06 AI
Magnesium, Total	ND	mg/l	0.10	1 6010B	
Manganese, Total	ND	mg/l	0.010	1 6010E	
Nickel, Total	ND	mg/1	0.025	1 6010E	
Potassium, Total	ND	mg/1	2.5	1 6010E	
Selenium, Total	ND	mg/1	0.010	1 6010E	
Silver, Total	ND	mg/l	0.010	1 6010E	
Sodium, Total	ND	mg/l	2.0	1 6010E	
Thallium, Total	ND	-	0.020		
Vanadium, Total		mg/l mg/l	0.020	1 6010B	
-	ND	mg/l		1 6010B	
Zinc, Total	ND	mg/l	0.050	1 6010B	0409 13:50 0410 14:06 AI
Blank Analy	ysis for samp	ole(s) 01-1	4 (WG3582	207-1)	
	Lab				
Fotal Metals - Westborough	Lab ND	mg/l	0.0002	1 7470A	0408 13:45 0409 11:54 EZ
Fotal Metals - Westborough	ND				
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS	ND for sample(s	s) 01-06,08 h Lab			3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride	ND for sample(s - Westboroug ND	s) 01-06,08 gh Lab ug/l	3,10-15 (T 5.0	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride	ND for sample(s - Westboroug	s) 01-06,08 h Lab	3,10-15 (1	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane	ND for sample(s - Westboroug ND	s) 01-06,08 gh Lab ug/l	3,10-15 (T 5.0	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform	ND for sample(s - Westboroug ND ND	3) 01-06,08 gh Lab ug/l ug/l	3,10-15 (1 5.0 0.75	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride	ND for sample(s - Westboroug ND ND ND	<pre>3) 01-06,08 gh Lab ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND for sample(s - Westboroug ND ND ND ND ND	<pre>3) 01-06,08 gh Lab ug/l ug/l ug/l ug/l ug/l ug/l</pre>	5.0 0.75 0.75 0.50	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND for sample(s - Westborous ND ND ND ND ND ND	<pre>3) 01-06,08 gh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (T 5.0 0.75 0.75 0.50 1.8	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane	ND for sample(s - Westborous ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 gh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (T 5.0 0.75 0.75 0.50 1.8 0.50 0.75	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND for sample(s - Westboroug ND ND ND ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 gh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene	ND for sample(s - Westboroug ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 yh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 0.50	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane	ND for sample(s - Westboroug ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 yh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 2.5	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane	ND for sample(s - Westboroug ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 yh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 2.5 0.50	WG358283-	3)
Total Metals - Westborough Mercury, Total Blank Analysis Volatile Organics by GC/MS Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethane Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,2-Dichloroethane	ND for sample(s - Westboroug ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 yh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 2.5 0.50 0.50 0.50	WG358283-	3)
Total Metals - Westborough Mercury, Total	ND for sample(s - Westboroug ND ND ND ND ND ND ND ND ND ND ND ND ND	<pre>3) 01-06,08 yh Lab ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l</pre>	3,10-15 (N 5.0 0.75 0.75 0.50 1.8 0.50 0.75 0.50 0.50 2.5 0.50	WG358283-	3)

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0904242

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analysis	<pre>for sample(s)</pre>	01-06,08	3,10-15	(WG358283-3)	
Volatile Organics by GC/MS	- Westborough	Lab cont	c'd	1 8260B	0408 08:45 PD
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	1.0		
o-Xylene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Acrylonitrile	ND	ug/l	5.0		
Styrene	ND	ug/l ug/l	1.0		
Dichlorodifluoromethane	ND	ug/l ug/l	5.0		
Acetone	ND	ug/l ug/l	5.0		
Carbon disulfide	ND	ug/l ug/l	5.0		
2-Butanone	ND	_	5.0		
		ug/l	5.0		
Vinyl acetate	ND	ug/l			
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone Bromochloromethane	ND ND	ug/l	5.0 2.5		
2,2-Dichloropropane		ug/l			
	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.0		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane Bromobenzene	ND	ug/l	0.50		
	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane		ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.60		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		

ALPHA ANALYTICAL QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0904242

Continued

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA	TE	ID
						PREP	ANAL	
Blank Analysis		-	-	(WG35	8283-3)			
Volatile Organics by GC/MS	- Westborough	Lab cont	c'd	1	8260B		0408 08:4	5 PD
Naphthalene	ND	ug/l	2.5					
n-Propylbenzene	ND	ug/l	0.50					
1,2,3-Trichlorobenzene	ND	ug/l	2.5					
1,2,4-Trichlorobenzene	ND	ug/l	2.5					
1,3,5-Trimethylbenzene	ND	ug/l	2.5					
1,2,4-Trimethylbenzene	ND	ug/l	2.5					
1,4-Diethylbenzene	ND	ug/l	2.0					
4-Ethyltoluene	ND	ug/l	2.0					
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0					
Surrogate(s)	Recovery		QC C1	riteria	a			
1,2-Dichloroethane-d4	99.0	00	70-13	30				
Toluene-d8	101	00	70-13	30				
4-Bromofluorobenzene	101	00	70-13	30				
Dibromofluoromethane	101	00	70-13	30				

ALPHA ANALYTICAL ADDENDUM I

REFERENCES

 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

- METHOD Method number by which analysis was performed.
- ID Initials of the analyst.
- ND Not detected in comparison to the reported detection limit.
- NI Not Ignitable.
- ug/cart Micrograms per Cartridge.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

04130912:19 Page 49 of 49

Certificate/Approval Program Summary

Last revised February 18, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).) Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kieldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine,

Maine Department of Human Services Certificate/Lab ID: MA0086.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate) 353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, EPA 150.1, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 <u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil **Massachusetts Department of Environmental Protection** <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Microbiology Parameters: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. <u>Organic Parameters</u>: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500CI-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 3540C, 3545, 3550B, 3580A, 5035L, 5035H.)

New York Department of Health Certificate/Lab ID: 11148.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500CI-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, SM2540B, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Pennsylvania Department of Environmental Protection Certificate/Lab ID : 68-03671. Registered Laboratory.

PLEASE ANSWER QUESTIONS IS YOUR PROJECT MA MCP or CT RC FORM NO: 01-01 (rev. 14-OCT-07)	0000	2 2 1 . ener	ALPHA Lab ID (Lab Use Only)	Email: 30h <u>n</u> e() These samples have the same the sam	e (20)	Mansfield WESTBORO, MA TEL: 508-888-9220 FAX: 508-888-9193 FAX: 508-898-9193 FAX: 508-89193
PLEASE ANSWER QUESTIONS ABOVE S YOUR PROJECT MA MCP or CT RCP?	1-9-MM MW-28- MM-28- MM-1-1- MM-1-1-1- MM-1-1-1-1-1-1-1-1-1	SW/SW/ C-MW		Email: $jah n e o puy razer, can These samples have been previously analyzed by Alpha Other Project Specific Requirements/Com$	284-6252 284-6252 284-6252 284-6252 284-6252	
Relinquished By:		4/6/09	Collection Date T	Date Due:	 Project Managel. <u>VM A</u> ALPHA Quote #: Turn-Around Time 	
	14:32 CM DE 19:32 CM DE 19:32 CM DE 19:32 CM DE	10:47 CM DE 10:07 CM DE 10:07 CM DE 10:07 CM DE 10:07 CM DE 11:33 CM DE	ion Sample Sampler's Time Matrix Initials	Dr Limits:	1 Erenter	
10 MINUS	$\begin{array}{c} + & \bullet \\ + & \bullet \\ + & + \\$	$\begin{array}{c} x \\ x $	8360	ANALYSIS Ctals	MA MCP PRESUMP	Date Rec'd in Lab: Report Information □ FAX □ X ADEX □ / Regulatory Require State /Fed Program
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					MPTIVE CERTAINTY CT REAS Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence P	$H_{1} = \frac{4}{5} \frac{1}{7} \frac{69}{69}$ tion - Data Deliverables EMAIL Hadd' Deliverables airements/Report Limits airements/Report Limits
Please print clearly, legibly and pletely. Samples can not be ic in and turnaround time clock w start until any ambiguities are All samples submitted are sub Alpha's Terms and Conditions See reverse side.	Hold 8260		Preservation Lab to do (Please specify below) Sample Specific Comments	Fittration	JMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO- Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?	ALPHA Job #:
Please print clearly, legibly and com- pletely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.	tu tu tu tu tu	$\omega \omega_{\omega_{-}\omega_{-}\omega_{-}\omega_{-}\omega_{-}\omega_{-}\omega_{-}\omega_$	tion do Comments	IDLING	ENCE PROTO-	

ALPHA Lab ID (Lab Use Only) Sample (Lab Use Only) MW - 10 (2) MW - 10 (MW - 10) (MW - 10 (MW - 10) (MW - 10 (MW - 10 (MW - 10 (MW - 10) (MW - 10 (MW - 10)	tion FAX 508-8 FAX 508-8 FAX 508-8 FAX 508-9 FAX 509-9 FAX 509-9 F
Sample ID MW - 1D MW - 10 Du P- 01 FB-01 FB-01 FB-01 FB-01 FB-01 FB-01 FB-01 FB-01 FB-01 FB-01 FB-01	
Collection Date Tim 4/6/09 13:23 4/16/09 13:17 4/16/09 10:20 4/16/09 10:20 4/16/00 4	CHAIN OF CUSTODY PAGE 2 Project Information Project Name: Paned rex 223288 Project Name: Paned rex 223288 Project Location: 1 Strade Red Project Location: 1 Strade Red Project Manager: Jahn Erchtt ALPHA Quote #: 16 Standard RUSH (only continued # project in RUSH (only continued # #) Page Due: 4 (14) (04) Time: iously analyzed by Alpha equirements/Comments/Detection Limits: al
ee Sample Matrix 5 DV 5 DV DV DV DV Pre Pre	PAGE 2 c and harding H (only confirmed If pre-app Time:
$\begin{array}{c c} \text{amplers} \\ \text{Infittals} \\$	ANALYSIS
Received By:	eed in Lab: L Information - Data Deliver C
DateFime 	ables imits ia hable Conf
	ALPHA Job #: (Billing Information Same as Client info equired? idence Protocols) Requi
Sample Specific Comments 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ALPHA Job #: (OG UY24) Billing Information Same as Client info P0 #: Same as Client info P0 #: Shequired? Sheq

Jan. 28. 20091 3:47PM 16315698705	P				
Non-Hazardous Manifest			Manif	est Doc N	lo.54626
Generator			Transi	oorter	
Generator ID: 18115 GLENWOOD REALTY LLC 1 SHORE ROAD GLENWOOD LANDING, NY 11547 631.589.6353		ABLE ENVII 6315676545 NYR000003 1A-392	RONMENTAL		
<u>Facility</u> A B OIL SERVICE LTD. 1599 Ocean Avenue Bohemia, NY 11716 6315676545 NYD987023371					
Shipping Name and Description I NON HAZARDOUS LIQUID NON HAZARDOUS SOLIDS	NumCont	ContType DM DM	- Quantity /65 2800	G P	^{∼⊷} "Profite II NONHAZ NONHAŻ
Additional Descriptions for Materials Listed Above		ŀ	landling Code	es Listed A	<u>So (</u>
		F	landling Cod	es Listed A	
Additional Descriptions for Materials Listed Above Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128		F	landling Cod	es Listed A	·
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545	nation				bove
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128 Generator's Certification: Locrity the materials descri- Hazardous Waste. Printed / Typed Name <u>ALawrence Weinberger</u> , 1	The first of the f	not subject to fede			bove ber disposel of
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128 Generator's Certification: Lecrify the materials descri- Hazardous Waste.	Ibed above are matrices	not subject to fede		r reporting prop	bove bove her disposel of te $26 - 87$
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128 Generator's Certification: 1 certify the materials description Hezardous Waste. Printed / Typed Name <u>Lawrence Weinberger</u> 1 Transporter 1 Acknowledgement of Receipt of Mate	mation Ibed above are in Mgr. Signat	not subject to fede		r reporting prop	bove ber disposel of
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128 Generator's Certification: 1 certify the materials description Hazardous Wasta. Printed / Typed Name Lawrence Weinberger , 1 Transporter 1 Acknowledgement of Receipt of Mater Printed / Typed Name Transporter 1 Acknowledgement of Receipt of Mater	mation Ibed above are in Mgr. Signat			r reporting prop	bove ber disposel of te $1 - 26 - 67$ te $1 - 76 - 67$
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128 Generator's Certification: 1 certify the materials describered Hazardous Wasta Printed / Typed Name Lawrence Weinberger (1) Transporter 1 Acknowledgement of Receipt of Mate Printed / Typed Name Transporter 2 Acknowledgement of Receipt of Mate	mation Ibed above are Ibed above are Inials Signat			r reporting prop	bove ber disposel of te $1 - 26 - 67$ te $1 - 76 - 67$
Special Handling Instructions and Additional Inform 24 Hour Emergency # (631) 567 - 6545 ERG# 128 Generator's Certification: 1 certify the materials description Hazardous Waste. Printed / Typed Name Lawrence Weinberger (1) Transporter 1 Acknowledgement of Receipt of Mate Printed / Typed Name Transporter 2 Acknowledgement of Receipt of Mate Printed / Typed Name Transporter 2 Acknowledgement of Receipt of Mate Printed / Typed Name Transporter 2 Acknowledgement of Receipt of Mate Printed / Typed Name Transporter 2 Acknowledgement of Receipt of Mate	mation Ibed above are in matrices Signat	not subject to fede	ral regulations for	r reporting prop <i>Wb1</i> Da Da Da	bove bove $\operatorname{disposel of}$ te $1 - 76 - 07$ te $1 - 76 - 07$ te

- White = Original
- Yellow = Transporter

Pink = TSDP

Gold = Generator Copy

<u>APPENDIX E</u> Chemical Oxidant Calculation Sheet

1 Shore Road, Glenwood Landing, New York

Version 3.0 0104 **Parameters** Units Estimates Assumption Basis 40% NaMnO4 Injection Options *** Site Description *** Length 84.00 provided Width 64.00 provided Pounds of 40% Price per Lb of Total Cost of Gallons of 40% Sq. Ft. Number of Pails Number of Drums Area Number of Totes NaMnO4 Solution Solution Solution Chemical provided Thickness Ft. 30.00 **Total Volume** Cu. Yd. 5,973.33 12.584 1,103.86 220.77 23.00 5.02 2.60 \$ 32,718.49 \$ 30.00 provided Porositv Plume Total Pore Volume Gal. 361,984.00 Total Gallons of NaMnO4 40% Dilution Water Dilution Water Dilution Water Dilution Water provided OR Avg. Contaminant Conc 23.00 *difficult to est **Dilution Water** Flow Rate -Solution Flow Rate mag Gals per Pail Gals per Drum Gals per Tote Mass of Contaminant Required GPM - GPM 69.48 lh. NOD Determined by Laboratory Test--CARUS LABs 28,668.67 1.50 BNL value 77.03 2.97 129.86 1,246.62 5,713.67 g/kg Empirical "rule of thumb" because the subsurface Effective NOD % 0.15 BNL value is not a well mixed system cf. NOD test NOD lb/yd3 0.45 NOD Oxidant Demand 2,661.12 lb Primary Contaminant PCE Avg. Stoichiometric Demand b/lb 2.40 166.75 Contaminant Oxidant Demand lb. **Dry KMnO4 Injection Options** Theoretical Oxidant Demand lb. 2,827.87 Some uncertainty of subsurface characterization SWAG Factor ??? 2.00 and ability to get 100% contact in the silt layer Calculated Oxidant Demand 5.655.75 Pounds of KMnO4 Total Cost of Number of Pails Number of Drums Number of Totes Price per Lb (Dry) (Dry Crystals) Chemical *** Injection Design *** KMnO4 NaMnO4 Based on lithogeology (I.e silt) and empirical Radius of Influence 10.00 10 experience 5,656 102.83 17.14 1.71 \$0.00 Number of Injection Points 17.11 17.11 A compromise between enough volume and not **Total Gallons of Dilution Water** Injection Concentration 6 wt/w 4.00% 2.00% too much injection time **Dilution Water Dilution Water Dilution Water Dilution Water** Flow Rate -OR Gals per Pail Gals per Drum Gals per Tote Flow Rate - Per Injection Point GPM 10.00 1 SWAG Required GPM 16,275.53 80.00 158.27 949.64 Number of Wells per Phase 8 8 Practical limitation with one geoprobe rig. 9,496.40 GPM Total Injection Flow Rate 80.00 80 Necessary to achieve laminar flow away from the Estimated Injection Pressure 40.00 40 injection point SIG Gal 951.10 1,739.83 Injection Volume/Hole *** Injection Schedule *** Instructions: Fill in all white colored blanks. Leave all shaded cells - these calculate themselves. Hours per Day 8.00 8 provided Please call Carus at 800/435-6856 for current chemical pricing. Irs Days Per Week Days 5.00 5 provided Number of Inj. Days Days 0.42 0.78 Result 0.08 a KMnO4 lb KMnO4 kg soil 454 g soil 110 lb soil 27 ft^3 soil 2.97 Number of Inj. Weeks 0.16 Weeks kg soil 454 g KMnO4 1000 g soil Ib soil ft^3 yd^3 soil

This calculation is a reasonable approximation of the amount of permanganate that would be needed to fully oxidize the contaminant in the treatment area. The assumptions made for this calculation are the same that have been made for other successful permanganate projects. This calculation assumes relatively even distribution in the injection zone and even advection and diffusion from the injection zones.

^ Use a 2 swag factor because we aleady assumed elevated average contaminant concentration.

Chemical pricing based upon April 7, 2008 conversation with Kelly Frasco (Carus).

<u>APPENDIX F</u> Monitoring Well Sampling Log

Monitoring Well	MW-1		Depth Interval		_	Date	9/17/2008
Begin Purging	14:49		Complete Purging	15:10	_	Sample Time	15:09
Notes:			Depth to Water(ft):	18.94			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
14:51	375	16.20	6.68	1.193	173		17
14:55	375	16.30	6.82	1.208	174		10
14:59	375	16.60	6.46	1.197	174		7
15:03	375	16.70	6.64	1.195	173		5
15:07	375	16.70	6.62	1.198	175		5
						_	
					t i i i i i i i i i i i i i i i i i i i	1	
						_	

Notes:

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3% ORP - ±10 mV DO - ±10% Turbidity - ±10%

Monitoring Well	MW-2		Depth Interval		_	Date	9/17/2008
Begin Purging	6:49		Complete Purging	7:19	_	Sample Time	7:25
Notes:			Depth to Water(ft):	11.89			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
6:51	500	18.80	7.70	0.137	137		81
6:55	500	19.70	7.40	0.138	155		27
6:59	500	20.10	7.01	0.137	168		25
7:03	500	20.50	6.74	0.139	175		20
7:07	500	20.50	6.61	0.139	180		19
7:11	500	20.30	6.47	0.143	183		18
7:15	500	20.40	6.33	0.144	189		4
7:19	500	20.80	6.35	0.144	186		4
					1		
					1		
					1		

Notes:

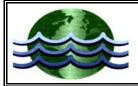
Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3% ORP - ±10 mV DO - ±10% Turbidity - ±10%

Monitoring Well	MW-3		Depth Interval		_	Date	9/17/2008
Begin Purging	7:49		Complete Purging	8:11	_	Sample Time	8:16
Notes:			Depth to Water(ft):	9.68			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
7:51	250	16.90	6.50	1.006	-60		19
7:55	250	17.70	6.66	1.011	-45		16
7:59	250	18.00	6.85	0.983	-46		14
8:03	250	18.10	6.84	0.975	-34		15
8:07	250	18.20	6.86	0.965	-29		16
8:11	250	18.40	6.88	0.953	-25		13
							1
							1
							1
							1

Notes:

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3%

Monitoring Well	MW-4		Depth Interval		-	Date	9/17/2008
Begin Purging	8:35		Complete Purging	9:01	-	Sample Time	9:00
Notes:			Depth to Water(ft):	10.19			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
8:36	325	16.50	7.25	0.413	80		396
8:40	325	17.00	7.06	0.405	96		82
8:44	325	17.20	6.94	0.405	112		14
8:47	325	17.40	6.85	0.403	120		18
8:51	325	17.60	6.83	0.405	109		13
8:55	325	17.90	6.70	0.403	93		11


Notes:

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3%

Monitoring Well	MW-5		Depth Interval		_	Date	9/17/2008
Begin Purging	9:19		Complete Purging	9:47	_	Sample Time	9:46
Notes:			Depth to Water(ft):	11.03			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
9:20	350	16.00	6.96	0.599	71		300
9:24	350	16.10	6.92	0.593	48		186
9:28	350	16.40	6.86	0.585	58		234
9:32	350	16.70	6.85	0.580	-6		16
9:36	350	16.80	6.74	0.596	-26		37
9:40	350	17.00	6.86	0.590	-24		22
9:44	350	17.00	6.78	0.593	-24		8

Notes:

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3%

P.W. GROSSER CONSULTING, INC.

	WELL SAM	PLING LOG	July 8, 2008
--	----------	-----------	--------------

CLIENT/PROJECT No.		Glenwood Realty / PEN0001							
WELL No./OWNER				MW-6 / Gler	wood Realty	,			
SAMPLE I.D.				MV	V-6				
SAMPLING POINT	M	IW-6	_	SAMPLED E	βY		DNE		
DATE SAMPLED	9/1	7/2008	_	TIME SAMP	LED		16:15		
WELL USE		Groundwater Monitoring							
STATIC WATER ELEVATION	_	12.23 ft FT. BELOW MEASURING POINT					тос		
WELL DIAMETER	2 Inches								
TOTAL WELL DEPTH	_	<u>19.61</u> ft FT. BELOW MEASURING POINT <u>TOC</u>							
		SAMPLIN	IG INFC	DRMATION					
PURGE METHOD	Bailer		_	SAMPLE ME		B	ailer		
PURGE RATE	0.5	5GPM		PURGE TIM	E	7.5	Min		
CASING VOLUMES REMOVED) _	3		GALLONS		3	8.75		
SAMPLE APPEARANCE	Silty	Brown	_	ODORS OBSERVED			None		
LABORATORY Long	g Island A	nalytical	_	DATE SHIPPED			3/2008		
ANALYSIS		VOC	(Metho	od 8260) / Met	als (Method 6	6010)			
		<u>SAMPLIN</u>	IG PAR	AMETERS					
Conductivity Temperature pH	Initial - - -	1 Vol 283 15.3 6.88		2 Vol 282 15.2 6.59	3 Vol 281 15.2 6.43	Units uS ºC			

Monitoring Well	MW-7		Depth Interval		_	Date	9/17/2008
Begin Purging	15:22		Complete Purging	15:53	_	Sample Time	15:52
Notes:			Depth to Water(ft):	19.1			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
15:23	375	17.70	6.90	0.867	172		543
15:27	375	18.60	6.82	0.846	175		945
15:31	375	18.90	6.84	0.832	176		1000
15:35	375	19.20	6.59	0.830	173		838
15:39	375	19.00	6.85	0.846	174		146
15:43	375	18.90	6.88	0.852	187		66
15:47	375	19.00	6.95	0.835	183		54
15:51	375	18.80	6.86	0.837	183		26

Notes:

Monitoring Well	MW-8		Depth Interval		-	Date	9/17/2008
Begin Purging	11:49		Complete Purging	12:21	_	Sample Time	12:20
Notes:			Depth to Water(ft):	16.37			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
11:50	300	16.80	7.38	0.755	-43		>1,000
11:54	300	16.30	6.90	0.763	24		>1,000
11:58	300	16.30	6.82	0.789	31		>1,000
12:02	300	16.30	6.65	0.850	36		1000
12:06	300	16.30	6.74	0.847	33		307
12:10	300	16.30	6.68	0.848	36		81
12:14	300	16.40	6.72	0.84	38		44
12:18	300	16.60	6.67	0.839	39		30

Notes:

Monitoring Well	MW-8D		Depth Interval		_	Date	9/17/2008
Begin Purging	12:52		Complete Purging	13:43	_	Sample Time	13:42
Notes:			Depth to Water(ft):	16.96			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
12:53	275	15.90	7.61	0.267	17		>1,000
12:57	275	15.10	7.30	0.240	83		>1,000
13:01	275	15.00	7.23	0.235	87		471
13:05	275	15.20	6.86	0.199	98		397
13:09	275	15.40	6.95	0.199	115		319
13:13	275	15.50	6.83	0.199	131		202
13:17	275	15.80	6.79	0.231	139		199
13:21	275	15.90	6.65	0.230	146		129
13:25	275	15.9	6.74	0.230	149		75
13:29	275	15.8	6.65	0.230	157		68
13:33	275	15.6	6.70	0.231	155		55
13:37	275	15.8	6.65	0.230	166		57
13:41	275	15.9	6.70	0.230	167		50
						_	

Notes:

Monitoring Well	MW-9		Depth Interval		_	Date	9/17/2008
Begin Purging	10:57		Complete Purging	11:32	_	Sample Time	11:31
Notes:			Depth to Water(ft):	15.59			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
10:58	350	18.00	6.41	0.948	137		>1,000
11:02	350	17.80	6.81	0.965	122		>1,000
11:06	350	17.80	6.81	0.975	121		305
11:10	350	17.80	6.80	0.960	130		87
11:20	400	17.80	6.91	0.980	124		24
11:24	400	17.70	6.79	0.933	122		54
11:28	400	17.70	6.82	0.952	126		48

Notes: Ran out of gas for generator at 11:13. Refilled and started pumping again at 11:17.

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3% ORP - ±10 mV DO - ±10% Turbidity - ±10%

Monitoring Well	MW-9D		Depth Interval		-	Date	9/17/2008
Begin Purging	10:09		Complete Purging	10:38	_	Sample Time	10:37
Notes:			Depth to Water(ft):	17.32			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
10:10	250	15.70	7.42	0.246	92		>1,000
10:14	250	15.20	6.91	0.238	115		>1,000
10:18	250	15.40	6.91	0.238	119		661
10:22	250	15.20	6.74	0.235	122		192
10:26	250	15.30	6.62	0.239	130		57
10:30	250	15.20	6.62	0.236	127		36
10:34	250	15.10	6.68	0.238	131		31
					Ì		1

Notes:

Monitoring Well	MW-10		Depth Interval		_	Date	9/17/2008
Begin Purging	14:01		Complete Purging	14:32	_	Sample Time	14:31
Notes:			Depth to Water(ft):	15.48			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
14:02	350	17.10	6.53	0.532	167		>1,000
14:06	350	16.80	6.86	0.503	160		>1,000
14:10	350	16.50	6.70	0.570	167		1000
14:14	350	16.60	6.79	0.610	164		350
14:18	350	16.90	6.73	0.583	170		118
14:22	350	17.00	6.82	0.582	175		70
14:26	350	16.70	6.63	0.563	179		51
14:30	350	16.60	6.80	0.563	175		37

Notes:

Monitoring Well	MW-1	-	Depth Interval		-	Date	4/6/2009
Begin Purging	11:15	-	Complete Purging	11:30	_	Sample Time	11:33
Notes:			Depth to Water(ft):	18.71			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
11:15	350	11.70	6.04	2.570	116	6.46	165
11:18	350	11.68	5.98	2.690	115	5.94	137
11:21	350	12.09	5.97	2.690	114	5.91	95
11:24	350	12.49	5.97	2.660	114	5.95	106
11:27	350	12.95	5.97	2.660	115	6.01	111
11:30	350	13.37	5.96	2.640	116	6.08	99

Notes:

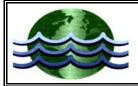
Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3% ORP - ±10 mV DO - ±10% Turbidity - ±10%

Monitoring Well	MW-2		Depth Interval		-	Date	4/6/2009
Begin Purging	7:38		Complete Purging	7:56	_	Sample Time	7:59
Notes:			Depth to Water(ft):	11.41			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
7:38	350	11.67	5.35	0.127	187	1.42	56.3
7:41	350	12.66	5.39	0.122	177	1.03	36.4
7:44	350	13.55	5.51	0.118	158	0.98	18.7
7:47	350	13.96	5.57	0.112	144	0.93	12.8
7:50	350	14.07	5.59	0.109	138	0.89	9.2
7:53	350	14.23	5.59	0.107	135	0.89	6.9
7:56	350	14.37	5.59	0.106	133	0.92	7.3

Notes:

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3% ORP - ±10 mV DO - ±10% Turbidity - ±10%

Monitoring Well	MW-3		Depth Interval		_	Date	4/6/2009
Begin Purging	8:41		Complete Purging	9:05	_	Sample Time	9:08
Notes:			Depth to Water(ft):	9.36			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
8:41	400	10.93	6.08	0.748	-30	0	239
8:44	400	11.20	6.26	0.776	-51	0	135
8:47	400	11.90	6.39	0.750	-73	0	145
8:50	400	11.66	6.46	0.779	-76	0	185
8:53	400	11.47	6.48	0.716	-53	0.05	172
8:56	400	11.58	6.52	0.677	-27	2.2	217
8:59	400	11.45	6.51	0.645	-13	2.67	140
9:02	400	11.42	6.52	0.634	-4	3.18	179
9:05	400	11.72	6.51	0.632	5	3.18	175


Notes:

Monitoring Well	MW-4		Depth Interval		_	Date	4/6/2009
Begin Purging	9:35		Complete Purging	9:59	_	Sample Time	10:02
Notes:			Depth to Water(ft):	9.78			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
9:35	300	10.43	6.47	0.688	46	0.61	891
9:38	300	11.15	6.32	0.688	51	0	724
9:41	300	11.63	6.31	0.688	50	0	215
9:44	300	11.89	6.31	0.683	47	0	166
9:47	300	12.07	6.30	0.683	42	0	150
9:50	300	12.20	6.31	0.684	29	0	119
9:53	300	12.37	6.31	0.686	1	0	97.2
9:56	300	12.51	6.31	0.684	-12	0	85.5
9:59	300	12.56	6.31	0.686	-20	0	84

Notes:

Monitoring Well MW-5			Depth Interval		_	Date	4/6/2009
Begin Purging	10:24		Complete Purging	10:42	_	Sample Time	10:45
Notes:			Depth to Water(ft):	10.65			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
10:24	400	11.49	5.57	0.438	159	0	190
10:27	400	11.86	5.38	0.459	126	0	126
10:30	400	12.17	5.83	0.508	51	0	44.6
10:33	400	12.22	5.98	0.523	17	0	26.2
10:36	400	12.27	5.95	0.512	15	0	35.2
10:39	400	12.27	5.98	0.516	7	0	23.2
10:42	400	12.27	6	0.523	0	0	21.1

Notes:

P.W. GROSSER CONSULTING, INC.

WELL SAMPLING LOG July 8, 2008									
CLIENT/PROJECT No.				Glenwood Realt	y / PEN0001				
WELL No./OWNER	MW-6 / Glenwood Realty								
SAMPLE I.D.				MW-	6				
SAMPLING POINT	MV	V-6		SAMPLED BY			MJB		
DATE SAMPLED	4/6/2	2009		TIME SAMPLE	D		14:25		
WELL USE				Groundwater	Monitoring				
STATIC WATER ELEVATION			ft	FT. BELOW M	EASURING P		тос		
WELL DIAMETER		2	Inches	3					
TOTAL WELL DEPTH			ft	FT. BELOW M	EASURING P		TOC		
SAMPLING INFORMATION									
PURGE METHOD	Bailer			SAMPLE MET		Ba	iler		
PURGE RATE	0.5	GPM		PURGE TIME			Min		
CASING VOLUMES REMOVED)	3		GALLONS					
SAMPLE APPEARANCE				ODORS OBSE	RVED				
LABORATORY	Alpha			DATE SHIPPE	:D	4/7/2	2009		
ANALYSIS		VO	C (Metho	od 8260) / Metals	s (Method 601	0)			
		SAMPLI	NG PAR	AMETERS					
Conductivity Temperature pH	Initial	1 Vo	I	2 Vol	3 Vol	Units uS ⁰ C			

Monitoring Well	MW-7		Depth Interval		_	Date	4/6/2009
Begin Purging	13:37		Complete Purging	13:55	_	Sample Time	13:58
Notes: Purple water			Depth to Water(ft):	18.95			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
13:37	400	12.01	6.21	1.13	565	5.71	675
13:40	400	12.12	6.08	1.15	598	5.03	546
13:43	400	12.78	6.05	1.14	624	4.96	730
13:46	400	13.05	6.04	1.14	636	5.11	993
13:49	400	13.32	6.03	1.14	649	5.09	>1,000
13:52	400	13.45	6.02	1.17	657	5.05	>1,000
13:55	400	13.74	6.02	1.23	663	4.87	>1,000

Notes:

Monitoring Well	MW-8		Depth Interval		_	Date	4/6/2009
Begin Purging	15:50		Complete Purging	16:08	_	Sample Time	16:11
Notes:			Depth to Water(ft):	16.14			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
15:50	350	11.93	5.77	1.67	582	0.61	>1,000
15:53	350	12.15	5.84	1.67	551	0	>1,000
15:56	350	12.39	5.87	1.66	529	0	>1,000
15:59	350	12.67	5.90	1.67	520	0	>1,000
16:02	350	12.95	5.92	1.68	515	0	>1,000
16:05	350	13.18	5.94	1.70	510	0	>1,000
16:08	350	13.32	5.95	1.71	507	0	>1,000
						1	

Notes:

Monitoring Well	MW-8D	-	Depth Interval		-	Date	4/6/2009
Begin Purging	15:11	-	Complete Purging	15:32	_	Sample Time	15:35
Notes: Pink water			Depth to Water(ft):	17.67			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
15:11	250	12.43	6.64	0.251	628	7.31	591
15:14	250	13.53	6.02	0.247	657	6.72	>1,000
15:17	250	13.76	5.81	0.244	665	6.94	>1,000
15:20	250	13.83	5.73	0.242	669	6.98	998
15:23	250	13.91	5.69	0.242	673	6.9	654
15:26	250	13.97	5.67	0.242	676	6.96	487
15:29	250	13.99	5.66	0.241	679	6.95	325
15:32	250	13.95	5.65	0.242	680	7.06	270

Notes:

Monitoring Well	MW-9		Depth Interval		_	Date	4/6/2009	
Begin Purging 14:20			Complete Purging	14:50	_	Sample Time 14:53		
Notes:			Depth to Water(ft):	15.14				
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)	
14:20	450	11.69	6.03	2.51	633	1.98	>1,000	
14:23	450	12.04	5.97	2.50	634	0.45	>1,000	
14:26	450	12.59	5.98	2.45	626	0.13	>1,000	
14:29	450	12.72	6.01	2.38	616	0	>1,000	
14:32	450	12.69	6.06	2.36	599	3.35	>1,000	
14:35	450	12.91	6.05	2.36	595	0.27	>1,000	
14:38	450	12.90	6.05	2.35	590	0.01	>1,000	
14:41	450	12.79	6.05	2.36	584	0.13	347	
14:44	450	12.89	6.06	2.37	590	0	106	
14:47	450	12.86	6.06	2.36	591	0	32.9	
14:50	450	12.54	6.06	2.33	592	0	32	

Notes: Ran out of gas for generator at 11:13. Refilled and started pumping again at 11:17.

Flow Rate - between 200 - 500 mL/min pH - ±0.1 Conductivity - ±3% ORP - ±10 mV DO - ±10% Turbidity - ±10%

Monitoring Well	MW-9D		Depth Interval		_	Date	4/6/2009	
Begin Purging	11:56		Complete Purging	12:20	_	Sample Time	12:23	
Notes:			Depth to Water(ft):	15.86				
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)	
11:56	350	11.65	6.34	0.239	157	7.44	>1,000	
11:59	350	11.33	5.82	0.223	164	7.33	>1,000	
12:02	350	11.13	5.63	0.218	167	7.25	>1,000	
12:05	350	11.31	5.56	0.217	170	7.21	>1,000	
12:08	350	11.44	5.56	0.217	173	7.27	>1,000	
12:11	350	11.36	5.55	0.216	176	7.35	>1,000	
12:14	350	11.54	5.54	0.217	180	7.3	>1,000	
12:17	350	11.75	5.54	0.216	182	7.24	>1,000	
12:20	350	11.84	5.54	0.216	184	7.29	>1,000	

Notes:

Monitoring Well			_	Date	4/6/2009		
Begin Purging			13:11	_	Sample Time	e 13:14	
Notes:			Depth to Water(ft):	15.62			
Time	Flow Rate (mL/min)	Temp. (°C)	рН	Cond. (mS/cm)	ORP (mV)	DO (mg/L)	Turb. (NTU)
12:44	300	11.13	5.97	1.49	172	0.42	>1,000
12:47	300	11.32	6.08	1.53	166	0	>1,000
12:50	300	11.86	6.08	1.47	161	0	>1,000
12:53	300	12.57	6.07	1.39	160	0.08	>1,000
12:56	300	12.97	6.08	1.39	158	0	>1,000
12:59	300	12.83	6.08	1.43	157	0	>1,000
13:02	300	12.79	6.07	1.47	156	0	786
13:05	300	12.65	6.07	1.51	156	0	485
13:08	300	12.61	6.07	1.52	155	0	380
13:11	300	12.56	6.07	1.51	155	0	317

Notes:

<u>APPENDIX G</u> Data Usability Summary Report

DATA USABILITY SUMMARY REPORT (DUSR)

Site Name:	Pentrex Site, Glenwood Landing, NY				
Performing Laboratory:	Alpha Analytical Laboratories, Massachusetts				
P.W. Grosser Project No.	PEN001				
Project Manager	John D. Eichler, Project Manager				
Stone Project Number:	082074-F, Phase IV				
Analyses/Methods:	VOAs by Method 8260, 23 Metals by Method 6010/7000				
Data Validation Level	Limited. Full on 10% or two sample	es from the SDG.			
Prepared by: Kim Watson,	Stone Environmental, Inc.	Completed on: 5/7/09			
Reviewed by: Amy Macrel	lis, Stone Environmental, Inc.	SDG Nos.: L0904242			

Stone Environmental, Inc. (Stone) has performed a quality assurance (QA) evaluation on the data reports from Alpha Analytical Laboratories in Massachusetts. The samples were collected and analyzed for the parameters as listed on the chain of custody records provided in Attachment A. The DUSR was based on a review of the laboratory sample delivery group (SDG) case narrative and the full "Tier III" third-party data validation report, which are provided in Attachment B and Attachment C, respectively. Full data validation in accordance with Region II SOPs for validating organic and inorganic analyses was performed on 10% of the data or two samples from the SDG as requested by the client for volatiles and metals in water samples. The remaining data received a summary validation as outlined in this report. The laboratory met all commitments and the final data package was received at P.W. Grosser by April 14, 2009 and received at Stone for evaluation on April 30, 2009. The laboratory reported the data under SDG No. L0904242. The DUSR data evaluation included a review of the following as based on the case narrative and the full data validation: data package completeness, holding times, initial and continuing calibrations, reporting limits, laboratory and field blanks, laboratory control samples, field duplicates, sample result verification, and method-specific QC samples (e.g., GC/MS tunes).

The data selected for full validation were qualified following the guidelines in EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW-24 "SOP for the Validation of Organic Data Acquired Using SW-846 Method 8260" (Rev. 2, December 1996) and SOP#HW-2 "Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3" (SOP Revision 13). In addition, the EPA's "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008, October 1999), EPA's "National Functional Guidelines for Inorganic Data Review" (EPA 540-R-04-004, October 2004), and professional judgment were considered during the data validation effort.

All laboratory deliverables were received in accordance with the work plan and general reporting requirements from the NYSDEC's Analytical Services Protocol (ASP) (2005). Any deviations from acceptable QC specifications are discussed in detail in the case narrative and laboratory qualifiers (as defined in the data deliverables) were added to the data, when appropriate, to indicate potential concerns with data usability. These qualifiers were reported on the Form Is by the laboratory and by the third-party validator.

Summary of Data Usability

Based on review of the results reported by the laboratory, the overall Quality Control data provided in the laboratory reports, and the case narrative; the data are representative of adequate method accuracy and precision with regard to project objectives. As noted in the full data validation report, results for dichlorodifluoromethane were qualified as estimated (UJ) due to a laboratory percent difference outlier. However, the completeness level attained for the analysis of the field samples was greater than 95%. For all data, the overall quality of the data was acceptable and all results as qualified are considered usable.

ATTACHMENT A

CHAIN OF CUSTODY RECORDS SDG No. L0904242 Volatiles and Metals in Water Samples

CHCHOD @ # MONTHATA	Billing Information Same as Client info PO #:	REASONABLE CONFIDENCE PROTO- quired? ence Protocols) Required?	SAMPLE HANDLING Filtration Done Done	I Lab to do B Preservation 0 Preservation 0 I Lab to do P (Preservation specify below) Sample Specific Comments			Hold 8260	Hold 82.60	Please print clearly, legibly and com- pletely. Samples can not be logged	Sing 2
Dete Rec'd in Lats: 4/7/69	ion - Data Deliverables D EMAIL Add'1 Deliverables irements/Report Limits	MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO- TY S D No Are MCP Analytical Methods Required? TY S D No Are CT RCP (Reasonable Confidence Protocols) Required?	SISATUND	~~ ~ U I						Received By: Date/Time Pate/Time C. C. C. C. March 11 11, M. C. D. C. C. March 17, 05, 13 11, M. C. D. C. C. M. 71, 05, 13 11, M. C. D. C. C. M. 71, 05, 13 11, M. C. C. C. C. C. M. 71, 05, 18 11, M. C. C. C. C. C. M. 71, 05, 18 11, M. C. C. C. C. C. M. 71, 05, 18 11, M. C. C. C. C. C. M. 71, 05, 18 11, M. C. C. C. C. C. M. 71, 05, 18 11, M. C. C. C. C. C. C. M. 71, 05, 18 11, M. C. C. C. C. C. C. M. 71, 05, 18 11, M. C.
PAGE LOF 2	Project Information Project Name: Pley Life Rd Project Location: 15 Nork Rd Project Location: Such Jest Lock 23, NY Project # 7 & N 0G0	Eathler	ISH iony continued & pro-approveds	<u>Collection</u> Sample Sampler's Date Time Matrix Initials	Helog 11:33 GW DE	4/1/09 09:45 GU DE 4/1/09 10:45 GU DE	14.95	4/1/109/1535 64 DE	ĺ	Relinquished By: Date/Time 2011 22
CHAIN OF CUSTODY	MANSFIELD, MA TEL: 508-822-8300 FAX: 508-822-3288 tion	D 4	2 54 - 8 + 2 e de pujs rezer r. Ca 2 s have been previously analyzed by Alpha st Specific Requirements/Comm	Sample ID	- Mar - Mar - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MW-6 	MW-80	PLEASE ANSWER QUESTIONS ABOVEI	R PROJECT
	MANSFIE WESTBORO, MANSFIE TEL: 508-3089-9220 FAX: 508-398-9133 FAX: 508 Client Information	Address (30) SOMASA AN SU. Balna V. A. N.4 11 7.16. Phone (1-3) 5 84 - 63 5 3	$\begin{bmatrix} Fax & (b^{2}_{2}I) & 5 & 54 - 8 \\ Fanali & 3 & 0h & 4 & 0 \\ \hline \\ \hline \\ \hline \\ These samples have been p_{1}Other Project Specific A = 0$	ALPHALab ID ALPHALab ID (Lab Use Only)	 	833 M24		88	PLEASE ANSWER QUE	MAMCP or CTRCP?

į

Setting and the set of the

ATTACHMENT B

CASE NARRATIVE SDG No. L0904242 Volatiles and Metals in Water Samples

SDG NARRATIVE

Total Metals

L0904242-01 has an elevated detection limit for Sodium due to the 5x dilution required to quantitate the result within the calibration range.

L0904242-07 has an elevated detection limit for Silver due to the 10x dilution required by spectral interferences encountered during analysis.

Volatile Organics

The following samples have elevated detection limits due to the following dilutions required by the elevated concentrations of target compounds in the samples: L0904242-01: 2x

L0904242-08: 25x L0904242-10: 10x

Volatile Organics: Elaine

Instrument: Agilent 5973 MSD Trap: Supelco K Trap (VOACARB 3000) Concentrator: Teledyne Velocity Autosampler: Teledyne Solatek Purge time: 11 min Column Type: Restek RTX-502.2 Column Length: 40 Meters df: 1.00 um ID: 0.18 mm Desorb: 2 min

Note: Sample calculations to final concentration for each specific fraction are located in each fraction section of the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data Package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Michelle M. Morris Technical Representative

Dat

Westborough, MA 508.898.9220 | Manstield, MA 508.822.9300 800.624.9220 | www.alphalab.com

Page 2 / 883

ATTACHMENT C

DATA VALIDATION REPORT SDG No. L0904242 Volatiles and Metals in Water Samples

DATA VALIDATION

FOR

PENTREX SITE GLENWOOD LANDING, NEW YORK

April 2009 Sampling Round

ANALYSIS DATA Volatiles and Metals in Water Samples

Sample Delivery Group (SDG) No. L0904242

Chemical Analyses Performed By:

Alpha Analytical Eight Walkup Drive Westborough, MA 01581-101

For:

John D. Eichler P.W. Grosser Consulting 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Data Validation Report By:

Kim B. Watson Stone Environmental, Inc. 535 Stone Cutters Way Montpelier, VT 05602

May 7, 2009

Reference #082074-F Phase IV Validation Report_L0904242/kbw

SDG No. L0904242

Stone Environmental, Inc. May 7, 2009

EXECUTIVE SUMMARY

Stone Environmental, Inc. (Stone) has completed third-party data validation on the organics and inorganic analyses for volatile organic (VOA) and metals data in water samples as prepared by Alpha Analytical from the Pentrex Site in Glenwood Landing, New York. The laboratory reported the data under Sample Delivery Group (SDG) No. L0904242 that was submitted as a single data package received by Stone (electronically) on April 30, 2009. As requested in the Project Plan and by P.W. Grosser, approximately 10%, or two samples from this SDG, was considered for full data validation. The samples below were selected for validation as follows:

Sample No.	Laboratory ID	Parameter		
MW-2	L0904242-02	VOA, metals		
MW-3	L0904242-03	VOA, metals		
DUP-01	L0904242-13	VOA, metals		
FB-01	L0904242-14	VOA, metals		
Trip Blank	L0904242-15	VOA, metals		

The samples in this data set represent samples collected on April 6, 2009. The samples were received at the laboratory on April 7, 2009.

Findings of the validation effort deemed the sample results valid as reported with a single exception. Results for dichlorodifluoromethane in all samples were qualified as estimated (UJ).

Documentation problems observed in the data package and on the chain of custody records are described in Section XVIII.

This validation report shall be considered <u>part of the data package</u> for all future distributions of the volatiles and metals analysis data.

The Overall Evaluation of Data (Section XVII) presents the rationale for the decisions that have been implemented and are summarized above. The validation findings and conclusions for each analytical parameter are detailed in the remaining sections of this report and are based on the following information.

QC Criteria	Were acceptance criteria met for Contaminants of Concern?			
	Yes	No	NA	
Chain of custody (COC)/sample integrity/holding times	\checkmark			
Data completeness	\checkmark			
Holding times and sample preservation	\checkmark			
GC/MS performance checks	\checkmark			
Calibrations		\checkmark		
CRQL Standards (metals only)	√			
Laboratory method blanks/equipment blanks		\checkmark		
ICP Interference Check Sample (metals only)	\checkmark			
Matrix spike/matrix spike duplicate (MS/MSD) results	\checkmark			
Post Digestion Spike (metals only)	\checkmark			
Laboratory control samples and reference materials	\checkmark			
Field duplicate results				
ICP Serial Dilution				
Surrogate recoveries				
Internal standard results				
Compound identification	\checkmark			
Sample results	\checkmark			
Calculations/transcriptions	\checkmark			
NA - Not applicable; indicates that either the QC is not appli	cable to this data set or	is not required by	the method.	

Stone Environmental, Inc. May 7, 2009

INTRODUCTION

Analyses of water samples were performed according to US EPA SW846 Methodologies: Method 8260 GC/MS analyses for volatiles, and 6010B/7140 for metals/mercury. The target compound lists included all standard target analytes typically specified under these methods.

To the extent possible, Stone's validation was performed in conformance with Tier III guidelines as defined by EPA Region I, "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", dated March 1996. The data were evaluated in accordance with EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW-24 "SOP for the Validation of Organic Data Acquired Using SW-846 Method 8260" (Rev. 2, December 1996) and SOP#HW-2 "Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3" (SOP Revision 13). EPA's "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008, October 1999) and EPA's "National Functional Guidelines for Inorganic Data Review" (EPA 540-R-04-004, October 2004) were also considered during the evaluation, and professional judgment was applied as necessary and appropriate.

As requested by P.W. Grosser, an independent third party data validation was performed on 10% of the sample data. In addition, the validation effect was used to complete the data usability evaluation for the data collected during the remediation investigation. The data usability summary report (DUSR) was prepared based on findings in this validation report and extrapolated to all deliverables.

The data validation process evaluates data on a technical basis for chemical analyses conducted under the CLP or other well-defined methods. Contract compliance is evaluated only in specific situations. Issues pertaining to contractual compliance are noted where applicable. It is assumed that the data package is presented in accordance with the CLP requirements. It is also assumed that the data package represents the best efforts of the laboratory and has already been subjected to adequate and sufficient quality review prior to submission for validation.

Results of sample analyses are reported by the laboratory as either qualified or unqualified; various qualifier codes are used by the laboratory to denote specific information regarding the analytical results. During the validation process, laboratory data are verified against all available supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data validator as necessary and appropriate. Raw data is examined in detail to check calculations, compound identification, and/or transcription errors in reference to samples in the Executive Summary only. Validated results are either qualified or unqualified; if results are unqualified, this means that the reported values may be used without reservation. Final validated results are annotated with the following codes, as defined in EPA Region II Standard Operating Procedures:

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated numerical value is the sample quantitation limit. The sample quantitation limit accounts for sample-specific dilution factors and percent solids corrections or

Stone Environmental, Inc. May 7, 2009

sample sizes that deviate from those required by the method.

J - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R - The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. The R replaces the numerical value or sample quantitation limit. In some instances (e.g., a dilution) a result may be indicated as "rejected" to avoid confusion when a more quantitatively accurate result is available.

N - The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

JN - The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

These codes are recorded in the Analysis Data Sheets (Form I) in Attachment A of this validation report to indicate qualifications placed on the data as a result of the validation effort. They are recorded on the Organic Analysis Data Sheets (Form I) in Attachment A of this validation report and in the Validation EDD submitted electronically. The electronic data file is L0904242_ny8wdatavalidationquals.xls which contains the validated data in tabular format.

All data users should note two facts. First, the "R" qualifier means that the laboratoryreported value is completely unusable. The analysis is invalid due to significant quality control problems and provides no information as to whether the compound is present or not. Rejected values should not appear on data tables because they have no useful purpose under any circumstances. Second, no analyte concentration is guaranteed to be accurate even if all associated quality control is acceptable. While strict quality control conformance provides welldefined confidence in the reported results, any analytical result will always contain some uncertainty as demonstrated in the laboratory-derived control limits.

The user is also cautioned that the validation effort is based on the materials provided by the laboratory. Software manipulation, resulting in misleading raw data printouts, cannot be routinely detected during validation; unless otherwise stated in the report, these kinds of issues are outside the scope of this review.

Detailed Findings of Measurement Error Associated with the Analytical Analysis

I. Preservation and Technical Holding Times (Sample Integrity)

The water samples for these analyses were collected on April 6, 2009. The samples were received at the laboratory on April 7, 2009. According to chain of custody records and laboratory records, all samples were appropriately preserved in the field prior to collection. All holding times for analysis were met for all samples. All samples were received at the laboratory at the appropriate temperature (<10°C).

According to the chain of custody, samples MW-7 and MW-8D were put on hold and not analyzed for volatiles. In addition, the log in summary made note that the samples required dequenching or de-colorizing prior to analysis due to the presence of permanganate in the samples.

II. GC/MS Instrument Performance Check (Tuning) and Calibration Verification

The tuning of the instruments for VOA analyses was demonstrated with the analysis of 4bromofluorobenzene (BFB). Tunes were analyzed for each shift (12-hour period) during which the samples or associated standards were analyzed. All three tunes as recorded on Form V-like summaries in this data set were acceptable.

Initial and continuing calibration verification (ICV/CCV) standards were run at the required frequencies in the ICP/CV analysis series for all target elements. Results for all ICV/CCV standards bracketing samples were correctly reported on the summary forms and recoveries of all target analytes were within the applicable acceptance limits. The reported correlation coefficient of the initial calibration for the mercury analysis was greater than the minimum acceptance limit of 0.995.

Contract required quantitation limit (CRQL) standards as specified in the EPA Inorganic (ILM) Statement of Work were analyzed at the required frequencies and concentrations for selected metals and all applicable analytes on the ICP analyzers. Percent recoveries were accurately reported and were acceptable.

Initial and continuing calibration verifications were performed for all organic analyses and were acceptable with the following exceptions:

Analysis Date	Analysis Time	Compound	% D	Action
4/8/09 (0408A02)	0810	dichlorodifluoromethane	31	Est.
4/9/09 (0409A02)	0807	dichlorodifluoromethane	31	Est.
4/9/09 (0409A02)	0807	Trichlorofluoromethane	-31	No Action*

Initial Calibration (IC) limits = \leq 15%RSD or <0.995, Continuing Calibration (CC) limits = 25%D Est. = Estimate (J, UJ) associated samples. * QC samples only in sequence

SDG No. L0904242

Stone Environmental, Inc. May 7, 2009

It should be noted that negative % difference values will result in a low bias for positive detects, and a positive % difference will result in a high bias for positive detects.

Based on unacceptable %D values in the associated calibration standards, results for dichlorodifluoromethane in all samples were qualified as estimated (UJ).

III. Blanks: Laboratory, Preparation and Method Blanks, and Trip Blanks

Preparation blanks and/or laboratory method blanks (MB) were prepared with each preparation batch and were acceptable with the following exceptions as noted below.

No target analytes were detected in any of the VOA method blanks.

No target compounds were detected in any metals continuing calibration or preparation blanks.

A Trip blank (TB) and a field blank (FB) were submitted with the samples in this data set. No target analytes were detected in the TB. Methylene chloride and calcium were detected in the FB at 6.8 ppb and 0.13 ppm, respectively. Since methylene chloride was not detected in any field samples and calcium was detected in all field samples above the action limit, no data was qualified on this basis.

IV. Surrogate Compounds

Percent recoveries of the VOA surrogates (1,2-dichloroethane-d4, 4-bromofluorobenzene, dibromofluoromethane, toluene-d8) were correctly reported on the Form summaries and were within acceptance limits for the samples.

V. Internal Standards (IS)

All IS areas and retention times (RT), as reported on the Form VIII summaries, were within the established QC limits for all reported sample analyses in these data packages.

VI. Matrix Spike/Matrix Spike Duplicate/Laboratory Duplicate (MS/MSD/Dup)

Sample MW-2 was prepared as a water-matrix MS/MSD pair. Percent recoveries (%R) and relative percent differences (%RPD) between paired recoveries were correctly calculated and accurately reported on the Form III summaries for the OLM spiked analytes in the organic analyses and on the Form–V summary in the inorganic analyses. All reported %Rs were acceptable and reproducible.

SDG No. L0904242

Stone Environmental, Inc. May 7, 2009

VII. Field Duplicate Precision

Sample DUP-01 was identified as a field duplicate of MW-3. All target analytes greater than the quantitation limit exhibited excellent reproducibility (0-19RPD; <30%RPD).

VIII. Performance Evaluation Samples (PES)/Accuracy Check/ICP Serial Dilution Analysis

Zero blank PES, commonly known as laboratory control samples or laboratory control sample duplicates (LCS/LCSD), were performed at the required frequency and results were provided on Form III-like (organic) and Form VII-like (inorganic) summaries for all analyses. Recoveries were acceptable and within the laboratory derived recovery limits.

An ICP serial dilution was performed on the same sample as the MS/MSD pair. Percent difference (%D) values were less than the maximum acceptance limit of 15% for all target analytes in which the original concentration (in the undiluted sample) was greater than 50 times the MDL.

IX. Target Compound Identification

Reported target compounds were correctly identified with supporting spectra present for all field samples in this data set.

X. Compound Quantitation and Reported Quantitation Limits

Target compound concentrations and quantitation limits were appropriately reported on Form I. Several samples were analyzed at a dilution due to the presence of target analytes above the calibration range of the instruments and are noted in the case narrative. Reporting limits were adjusted accordingly by the laboratory.

Sample-specific results for all analytes may be found on the laboratory-generated Form Is for each sample. The laboratory generated Form Is have been annotated with the data validation qualifiers as defined in this report and provided in Attachment A.

XI. System Performance

The analytical systems appear to have been working well at the time of these analyses based on evaluation of the available raw data.

SDG No. L0904242

Stone Environmental, Inc. May 7, 2009

XII. Overall Evaluation of Data

Findings of the validation effort deemed the sample results valid as reported with a single exception. Based on unacceptable %D values in the associated calibration standards, results for dichlorodifluoromethane in all samples were qualified as estimated (UJ).

XIII. Documentation

The chain of custody records were present and accurately completed for all reported samples in this data set and the data package was complete.

This validation report shall be considered <u>part of the data package</u> for all future distributions of the volatiles and metals analysis data.

ATTACHMENT A

ANALYSIS DATA SUMMARY SHEETS (Form I) SDG No. L0904242 Volatiles and Metals in Water Samples

CLIENT SAMPLE NO.

Lab Name: Alpha Ana	alytical Labs		 FB-01
SDG No.: L0904242	-	GC Column:	
	·		
Matrix: (soil/wate)	C) WATER	Lab Sample ID: L	0904242→14
Sample wt/vol: 10.0) (g/mL) ml	Lab File ID: 0408	3A08
Level: (low/med)	LOW	Date Received: 04	4/07/09
%Solids: N/A		Date Analyzed: 04	4/08/09 11:42
Dilution Factor: 1			
Soil Extract Volume	e: (uL)	Soil Aliquot Volu	ume: (uL)
CAS NO.	COMPOUND CONC	. UNITS: ug/L	Q
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon tetrachloride -1,2-Dichloropropane -Dibromochloromethane -1,1,2-Trichloroethane -Tetrachloroethene -Chlorobenzene -Trichlorofluoromethane -1,2-Dichloroethane -1,1,1-Trichloroethane -trans-1,3-Dichloroprope -trans-1,3-Dichloroprope -trans-1,3-Dichloroprope -1,1-Dichloropropene -Bromoform -1,1,2,2-Tetrachloroet -Benzene -Toluene -Ethylbenzene -Chloromethane -Vinyl chloride -trans-1,2-Dichloroethene -trans-1,2-Dichloroethene -trans-1,2-Dichloroethene -trans-1,2-Dichloroethene -trans-1,2-Dichloroethene -trans-1,2-Dichloroethene -1,3-Dichlorobenzene -1,4-Dichlorobenzene -Methyl tert butyl eth -p/m-Xylene	0.75 0.50 1.8 0.50 0.75 0.50 2.5	

FORM I VOA-1

CLIENT SAMPLE NO.

	GANICS ANALISIS DAIA	, UIRDI ''	
Lab Name: Alpha Analy	tical labs		FB-01
	VEICAI LADS	١.	
SDG No.: L0904242		GC Column:	
Matrix: (soil/water)	WATER	Lab Sample ID: L0	904242-14
Sample wt/vol: 10.0	(g/mL) ml	Lab File ID: 0408	A08
Level: (low/med)	LOW	Date Received: 04	/07/09
%Solids: N/A		Date Analyzed: 04,	/08/09 11:42
Dilution Factor: 1			
Soil Extract Volume:	(uL)	Soil Aliquot Volu	me: (uL)
CAS NO.	COMPOUND CONC.	UNITS: ug/L	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2,3-Trichloropropane Acrylonitrile Styrene Dichlorodifluoromethane Carbon disulfide 2-Butanone 2-Butanone 2-Butanone 2-Butanone 2-Butanone 2-Butanone 2-Butanone 3-Methyl-2-pentanone 2-Hexanone 3-Oichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 3-Trichloropenzene 3-Dich	5.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.5 2	

KR84 6/09

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALISIS DE	AIA SUBET '-	
	 	1W-2
Lab Name: Alpha Analytical Labs	_ ا	
SDG No.: L0904242	GC Column:	
Matrix: (soil/water) WATER	Lab Sample ID: L09	04242-02
Sample wt/vol: 10.0 (g/mL) ml	Lab File ID: 0408A	10
Level: (low/med) LOW	Date Received: 04/	(07/09
%Solids: N/A	Date Analyzed: 04/	'08/09 12 : 53
Dilution Factor: 1		
Soil Extract Volume: (uL)	Soil Aliquot Volum	ne: (uL)
CAS NO. COMPOUND CC	DNC. UNITS: ug/L 🤇	2
75-09-2Methylene chloride 75-34-31, 1-Dichloroethane 67-66-3	de 0.75 he 0.50 he 0.50 he 0.75 he 0.50 he 1.0 he 1.0 he 1.0 he 1.0 he 1.0 <td></td>	

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA	SHEET
Lab Name: Alpha Analytical Labs	 MW-2
	· · · · · ·
SDG No.: L0904242	GC Column:
Matrix: (soil/water) WATER	Lab Sample ID: L0904242-02
Sample wt/vol: 10.0 (g/mL) ml	Lab File ID: 0408A10
Level: (low/med) LOW	Date Received: 04/07/09
%Solids: N/A	Date Analyzed: 04/08/09 12:53
Dilution Factor: 1	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL
CAS NO. COMPOUND CONC	. UNITS: ug/L Q
74-95-3Dibromomethane 96-18-41,2,3-Trichloropropane 107-13-1Acrylonitrile 100-42-5Styrene 75-71-8Dichlorodifluoromethan 67-64-1Acetone 75-15-0Carbon disulfide 78-93-32-Butanone 108-05-4Vinyl acetate 108-10-14-Methyl-2-pentanone 591-78-62-Hexanone 74-97-5Bromochloromethane 594-20-72, 2-Dichloropropane 106-93-41, 2-Dibromoethane 594-20-72, 2-Dichloropropane 106-93-41, 3-Dichloropropane 106-93-41, 1, 1, 2-Tetrachloroethane 108-86-1Bromobenzene 104-51-8Bromobenzene 104-51-8Bromobenzene 104-51-8Bromobenzene 105-98-8Bromobenzene 98-06-6	5.0 U 1.0 U 1.0 U 5.0 U 2.5 U 0.50 U 0.50 U 2.5 U

KBrd 5/6/09

CLIENT SAMPLE NO.

AOTALIA OVANICO VNILI DI DULU	/ + • • • • • • • • • • • • • • • • • •	
Teh News, Nucha Duplation I Taba		MW-3
Lab Name: Alpha Analytical Labs	I	
SDG No.: L0904242 G	GC Column:	
Matrix: (soil/water) WATER L	ab Sample ID: L(904242-03
Sample wt/vol: 10.0 (g/mL) ml L	ab File ID: 0408	A11
Level: (low/med) LOW D	ate Received: 04	/07/09
%Solids: N/A D	ate Analyzed: 04	/08/09 13:28
Dilution Factor: 1		
Soil Extract Volume: (uL) S	oil Aliquot Volu	nme: (uL)
CAS NO. COMPOUND CONC.	UNITS: ug/L	Q
75-09-2Methylene chloride 75-34-3	e 0.50 2.5 2.0 ne 0.50 0.50 0.75 0.50 2.5 1.0 1.0 1.0 0.50 2.5 1.2 2.5 1.2 2.5 2.5 2.5 2.5	

1A

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET	
ab Name, Alaba Analytical Isha	MW-3
ab Name: Alpha Analytical Labs	I
DG No.: L0904242 GC Colu	umn :
atrix: (soil/water) WATER Lab Sam	ple ID: L0904242-03
ample wt/vol: 10.0 (g/mL) ml Lab Fil	e ID: 0408A11
evel: (low/med) LOW Date Re	eceived: 04/07/09
Solids: N/A Date An	alyzed: 04/08/09 13:28
ilution Factor: 1	
oil Extract Volume: (uL) Soil Al	iquot Volume: (uL)
CAS NO. COMPOUND CONC. UNITS:	ug/L Q
74-95-3Dibromomethane 96-18-4Acrylonitrile 107-13-1Acrylonitrile 100-42-5Styrene 75-71-8Styrene 75-71-8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

FORM I VOA-1

D 51

CLIENT SAMPLE NO.

	DUP-01	
Lab Name: Alpha Analytical Labs		
SDG No.: L0904242 GC Colum	nn:	
Matrix: (soil/water) WATER Lab Samp	ple ID: L0904242-	13
Sample wt/vol: 10.0 (g/mL) ml Lab File	e ID: 0408A19	
Level: (low/med) LOW Date Red	ceived: 04/07/09	
%Solids: N/A Date Ana	alyzed: 04/08/09 :	18:11
Dilution Factor: 1		
Soil Extract Volume: (uL) Soil Ali	iquot Volume:	(uL)
CAS NO. COMPOUND CONC. UNITS:	ug/L Q	
75-09-2Methylene chloride 75-34-31, 1-Dichloroethane 67-66-3Chloroform 56-23-5Carbon tetrachloride 78-87-5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

CLIENT SAMPLE NO.

Lab Name: Alpha Analytical Labs		 DUP-01 	
SDG No.: L0904242 GC Colu	י ממונ	·	
Matrix: (soil/water) WATER Lab Sar	mple ID: L()904242-13	
Sample wt/vol: 10.0 (g/mL) ml Lab Fil	le ID: 0408	3A19	
Level: (low/med) LOW Date Re	eceived: 04	1/07/09	
%Solids: N/A Date Ar	nalyzed: 04	4/08/09 18:	11
Dilution Factor: 1			
Soil Extract Volume: (uL) Soil Al	liquot Volu	ıme:	(uL)
CAS NO. COMPOUND CONC. UNITS	ug/L	Q	
74-95-3Dibromomethane 96-18-41,2,3-Trichloropropane 107-13-1Acrylonitrile 100-42-5Styrene 75-71-8Dichlorodifluoromethane 67-64-1Acetone 75-15-0Carbon disulfide 78-93-3	$\begin{array}{c} 5.0\\ 5.0\\ 1.0\\ 5.0\\ 1.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5$		

FORM I VOA-1

#2ml 109

CLIENT SAMPLE NO.

TRIP BLANK

Lab Sample ID: L0904242-15

Date Analyzed: 04/08/09 18:46

Q

Date Received: 04/07/09

Lab File ID: 0408A20

Lab	Name:	Alpha	Analytical	Labs
-----	-------	-------	------------	------

GC Column:

Matrix: (soil/water) WATER

Sample wt/vol: 10.0 (g/mL) ml

Level: (low/med) LOW

%Solids: N/A

Dilution Factor: 1

SDG No.: L0904242

Soil Extract Volume:

CAS NO.

COMPOUND CONC. UNITS: ug/L

(uL) Soil Aliquot Volume:

(uL)

75-09-2Methylene chloride	5.0	U
75-34-31,1-Dichloroethane	0.75	Ū
67-66-3Chloroform	0.75	Ŭ
56-23-5Carbon tetrachloride	0.50	
78-87-51,2-Dichloropropane	1.8	
124-48-1Dibromochloromethane	0.50	υ
79-00-51,1,2-Trichloroethane	0.75	Ū
127-18-4Tetrachloroethene	0.50	Ū
108-90-7Chlorobenzene	0.50	Ū
75-69-4Trichlorofluoromethane	2.5	υ
107-06-21,2-Dichloroethane	0.50	Ŭ
71-55-61,1,1-Trichloroethane	0.50	Ιŭ
75-27-4Bromodichloromethane	0.50	Ιŭ
10061-02-6trans-1,3-Dichloropropene	0.50	Ū
10061-01-5cis-1,3-Dichloropropene	0.50	Ŭ
563-58-61,1-Dichloropropene	2.5	Ŭ
75-25-2Bromoform	2.0	Ιŭ
79-34-51,1,2,2-Tetrachloroethane	0.50	Ŭ
71-43-2Benzene	0.50	υ
108-88-3Toluene	0.75	Ŭ
100-41-4Ethylbenzene	0.50	Ŭ
74-87-3Chloromethane	2.5	l ŭ
74-83-9Bromomethane	1.0	Ιŭ
75-01-4Vinyl chloride	1.0	υ
75-00-3Chloroethane	1.0	Ŭ
75-35-41,1-Dichloroethene	0.50	υ
156-60-5trans-1,2-Dichloroethene	0.75	Ū
79-01-6Trichloroethene	0.50	1 ŭ
95-50-11,2-Dichlorobenzene	2.5	Ŭ
541-73-11,3-Dichlorobenzene	2.5	Ŭ
106-46-71,4-Dichlorobenzene	2.5	U
1634-04-4Methyl tert butyl ether	1.0	Ŭ
106-42-3/108-38-p/m-Xylene	1.0	U
95-47-6o-Xylene	1.0	υ
156-59-2cis-1,2-Dichloroethene	0.50	U
	0.50	l ĭ

FORM I VOA-1

i

CLIENT SAMPLE NO.

AODULTED OUOLUATOD LANUDIOTC	
Lab Name: Alpha Analytical Labs	TRIP BLANK
SDG No.: L0904242	GC Column:
Matrix: (soil/water) WATER	Lab Sample ID: L0904242-15
Sample wt/vol: 10.0 (g/mL) ml	Lab File ID: 0408A20
Level: (low/med) LOW	Date Received: 04/07/09
%Solids: N/A	Date Analyzed: 04/08/09 18:46
Dilution Factor: 1	
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONC. UNITS: ug/L Q
74-95-3Dibromomethane 96-18-41,2,3-Trichlorog	5.0 U propane 5.0 U

	Dibromomethane	5.0	10
96-18-4	l,2,3-Trichloropropane	5.0	U
107-13-1	Acrylonitrile	5.0	U
100-42-5	Styrene	1.0	U /
75-71-8	Dichlorodifluoromethane	5.0	[U IJ
67-64-1	Acetone	5.0	U
75-15-0	Carbon disulfide	5.0	U
78-93-3	2-Butanone	5.0	U
108-05-4	Vinyl acetate	5.0	ט
108-10-1	4-Méthyl-2-pentanone	5.0	U
591-78-6	2-Hexanone	5.0	U U
74-97-5	Bromochloromethane	2,5	U U
594-20-7	2,2-Dichloropropane	2.5	U U
106-93-4	1,2-Dibromoethane	2.0	U
142-28-9	1,3-Dichloropropane	2,5	U U
630-20-6	1,1,1,2-Tetrachloroethane	0.50	U U
108-86-1	Bromobenzene	2,5	U U
104-51-8	n-Butylbenzene	0.50	U [
135-98-8	sec-Butylbenzene	0.50	U [
98-06-6	tert-Butylbenzene	2.5	U U
95-49-8	o-Chlorotoluene	2.5	U [
106-43-4	p-Chlorotoluene	2.5	U [
96-12-8	1,2-Dibromo-3-chloropropane	2,5	U U
87-68-3	Hexachlorobutadiene	0.60	U U
98-82-8	Isopropylbenzene	0.50	U U
99-87-6	p-Isopropyltoluene	0.50	U
91-20-3	Ñaphtĥalene	2.5	U U
103-65-1	Propylbenzene	0.50	υ
87-61-6	1,2,3-Trichlorobenzene	2.5	υ
120-82-1	l,2,4-Trichlorobenzene	2.5	U U
108-67-8	1,3,5-Trimethylbenzene	2.5	U U
95-63-6	1,2,4-Trimethylbenzene	2.5	U [
105-05-5	1,4-Diethylbenzene	2.0	U
622-96-8	4-Ethvltoluene	2.0	U
95-93-2	1,2,4,5-Tetramethylbenzene	2.0	υ
	······································		_1

FORM I VOA-1

5/10/09

CLIENT SAMPLE NO.

MW-2

Lab	Code:	AAL

Lab Name: Alpha Analytical

Matrix (soil/water): WATER

SDG No.: L0904242

Lab Sample ID: <u>L0904242-02</u> Date Received: 04/07/09

% Solids:

N/A

Date Analyzed: 4/10/09 14:15

Concentration Units: mg/l

CAS No. Analyte Concentration С 7429-90-5 Aluminum 0.10 U Antimony 0.050 7440-36-0 U Arsenic 7440-38-2 0.005 Ū 7440-39-3 Barium 0.010 U 7440-41-7 Beryllium 0.005 U Cadmium 0.005 Ũ 7440-43-9 7440-70-2 Calcium 7440-47-3 Chromium 0.01 U 7440-48-4 Cobalt 0.020 υ 7440-50-8 0.010 Copper U 0.21 7439-89-6 Íron 7439-92-1 0.010 U Lead 7439-95-4 Magnesium 0.131 7439-96-5 Manganese 7439-97-6 Mercury 7439-98-7 Molybdenum 7440-02-0 Nickel 0.025 U 7440-09-7 Potassium 2.5 U 0.010 7782-49-2 Selenium Ù 0.007 Silver 7440-22-4 U 7440-23-5 Sodium 9.0 Strontium 7440-24-6 Thallium 7440-28-0 0.020 U 7440-62-2 Vanadium 0,010 U 7440-66-6 Zinc 0.050 Ù 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

CLIENT SAMPLE NO.

MW-2

Lab	Code:	AAL
LUN N	couc.	1 11 113

SDG No.: L0904242

Matrix (soil/water): <u>WATER</u>

Lab Name: Alpha Analytical

Lab Sample ID: <u>L0904242-02</u> Date Received: <u>04/07/09</u>

Date Analyzed: 4/11/09 18:34

% Solids:

N/A

Concentration Units: mg/l

7440-36-0 Antimony		1			 <u> </u>
7429-90-5 Aluminum	CAS No.	Analvte	Concentration	с	
7440-36-0 Antimony					
7440-38-2 Arsenic	7429-90-5	Aluminum			
7440-39-3 Barium 1 7440-41-7 Beryllium 1 7440-43-9 Cadmium 1 7440-70-2 Calcium 11 7440-47-3 Chromium 1 7440-48-4 Cobalt 1 7440-48-4 Cobalt 1 7440-50-8 Copper 1 7439-89-6 Iron 1 7439-92-1 Lead 1 7439-95-4 Magnesium 1.6 7439-95-5 Magnese 1 7439-97-6 Mercury 1 7440-02-0 Nickel 1 7440-02-0 Nickel 1 7440-22-4 Silver 1 7440-22-4 Silver 1 7440-22-4 Silver 1 7440-22-5 Sodium 1 7440-22-4 Strontium 1 7440-22-5 Sodium 1 7440-22-6 Strontium 1 7440-22-7 Vanadum 1 7440-22-8 Boron 1 7440-6	7440-36-0	Antimony			 <u> </u>
7440-41-7 Beryllium 1 7440-43-9 Cadmium 11 7440-70-2 Calcium 11 7440-47-3 Chromium 11 7440-48-4 Cobalt 11 7440-48-4 Cobalt 11 7440-50-8 Copper 11 7439-89-6 Iron 11 7439-92-1 Lead 11 7439-95-4 Magnesium 11.6 7439-95-5 Magnesium 11.6 7439-96-5 Magnese 11 7440-02-0 Nickel 11 7440-02-0 Nickel 11 7440-02-0 Nickel 11 7440-22-4 Silver 11 7440-22-4 Silver 11 7440-22-4 Strontium 11 7440-22-5 Sodium 11 7440-22-6 Strontium 11 7440-22-7 Vanadum 11 7440-22-8 Boron 11 7440-22-8 Boron 11 7440-42-8 Boron 11	7440-38-2	Arsenic			
7440-43-9 Cadmium 11 7440-70-2 Calcium 11 7440-47-3 Chromium 1 7440-48-4 Cobalt 1 7440-50-8 Copper 1 7439-89-6 Iron 1 7439-92-1 Lead 1 7439-95-4 Magnesium 1.6 7439-95-5 Magnaese 1 7439-96-5 Manganese 1 7439-97-6 Mercury 1 7440-02-0 Nickel 1 7440-02-0 Nickel 1 7440-02-4 Silver 1 7440-22-4 Silver 1 7440-23-5 Sodium 1 7440-23-5 Sodium 1 7440-24-6 Strontium 1 7440-28-0 Thallium 1 7440-66-6 Zinc 1 7440-62-2 Vanadium 1 7440-62-8 Boron 1 7440-42-8 Boron 1 7440-42-8 Boron 1	7440-39-3	Barium			
7440-70-2 Calcium 11 11 7440-47-3 Chromium 11 11 7440-48-4 Cobalt 11 11 7440-48-4 Cobalt 11 11 7440-48-4 Cobalt 11 11 7440-50-8 Copper 11 11 11 7439-92-1 Lead 11 11 11 7439-95-4 Magnesium 11.6 11 11 7439-95-4 Magnesium 11.6 11 11 11 7439-95-5 Magnesium 11.6 11	7440-41-7	Beryllium			
7440-47-3 Chromium	7440-43-9	Cadmium			
7440-48-4 Cobalt	7440-70-2	Calcium	11		
7440-50-8 Copper	7440-47-3	Chromium			
7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-95-4 Magnese 7439-96-5 Manganese 7439-97-6 Mercury 7439-98-7 Molybdenum 7440-02-0 Nickel 7440-09-7 Potassium 7440-22-4 Silver 7440-23-5 Sodium 7440-24-6 Strontium 7440-28-0 Thallium 7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide	7440-48-4	Cobalt			
7439-92-1 Lead 1.6 7439-95-4 Magnesium 1.6 7439-96-5 Manganese 7 7439-97-6 Mercury 7 7439-98-7 Molybdenum 7 7440-02-0 Nickel 7 7440-09-7 Potassium 1 7440-22-4 Silver 1 7440-23-5 Sodium 1 7440-24-6 Strontium 1 7440-28-0 Thallium 1 7440-66-6 Zinc 1 7440-31-5 Tin 1 7440-42-8 Boron 1 7440-42-8 Soron 1	7440-50-8	Copper			
7439-95-4 Magnesium 1.6 7439-96-5 Manganese 7 7439-97-6 Mercury 7 7439-98-7 Molybdenum 7 7440-02-0 Nickel 7 7440-09-7 Potassium 7 7440-22-4 Silver 7 7440-23-5 Sodium 7 7440-24-6 Strontium 7 7440-28-0 Thallium 7 7440-66-6 Zinc 7 7440-31-5 Tin 7 7440-42-8 Boron 7 7440-42-8 Soron 7	7439-89-6	Iron	,		
7439-96-5 Manganese 7 7439-97-6 Mercury 7 7439-98-7 Molybdenum 7 7440-02-0 Nickel 7 7440-09-7 Potassium 7 782-49-2 Selenium 7 7440-22-4 Silver 7 7440-23-5 Sodium 7 7440-24-6 Strontium 7 7440-28-0 Thallium 7 7440-66-6 Zinc 7 7440-31-5 Tin 7 7440-42-8 Boron 7 57-12-5 Cyanide 1	7439-92-1	Lead			[
7439-97-6 Mercury 7 7439-98-7 Molybdenum 7 7440-02-0 Nickel 7 7440-09-7 Potassium 7 7782-49-2 Selenium 7 7440-22-4 Silver 7 7440-23-5 Sodium 7 7440-24-6 Strontium 7 7440-28-0 Thallium 7 7440-62-2 Vanadium 7 7440-66-6 Zinc 7 7440-31-5 Tin 7 7440-42-8 Boron 7 57-12-5 Cyanide 9	7439-95-4	Magnesium	1.6		
7439-98-7 Molybdenum	7439-96-5	Manganese			
7440-02-0 Nickel	7439-97-6	Mercury	,		ľ
7440-09-7 Potassium	7439-98-7	Molybdenum			
7782-49-2 Selenium	7440-02-0	Nickel	,		
7440-22-4 Silver 7440-23-5 7440-23-5 Sodium 7440-24-6 7440-24-6 Strontium 7440-24-6 7440-28-0 Thallium 7440-24-2 7440-62-2 Vanadium 7440-24-2 7440-66-6 Zinc 7440-31-5 7440-42-8 Boron 7440-42-8 57-12-5 Cyanide 1	7440-09-7	Potassium			
7440-23-5 Sodium	7782-49-2	Selenium			 [
7440-24-6 Strontium	7440-22-4	Silver			
7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide	7440-23-5	Sodium			
7440-62-2 Vanadium	7440-24-6	Strontium			 [
7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 7440-42-8 Soron 57-12-5 Cyanide 1000000000000000000000000000000000000	7440-28-0	Thallium			ŀ
7440-31-5 Tin	7440-62-2	Vanadium			
7440-42-8 Boron 57-12-5 Cyanide	7440-66-6	Zinc			
57-12-5 Cyanide	7440-31-5	Tin		Ì	
	7440-42-8	Boron			
	57-12-5	Cyanide			
	END				
			· · · · · · · · · · · · · · · · · · ·		

Comments:

. .

CLIENT SAMPLE NO.

MW-2

Lab Name:	Alpha Analytical	
Lab Code:	AAL	

SDG No.: L0904242

Matrix (soil/water): WATER

Lab Sample ID;	L0904242-02
Date Received:	04/07/09
Date Analyzed:	4/9/09 12:03

% Solids:

N/A

Concentration Units: mg/1

CAS No. Analyte Concentration С 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manqanese 7439-97-6 Mercury 0.0002 U 7439-98-7 Molybdenum 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-24-6 Strontium 7440-28-0 Thallium Vanadium 7440-62-2 Zinc 7440-66-6 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

. .

CLIENT SAMPLE NO.

MW-3

Lab Name: Alpha Analytical

Lab Code: AAL

SDG No.: L0904242

Matrix (soil/water): <u>WATER</u>

Lab Sample ID: L0904242-03

% Solids:

N/A

Date Analyzed: <u>4/10/09 14:30</u>

Date Received: 04/07/09

Concentration Units: mg/1

CAS No.	Analyte	Concentration	С	
7429-90-5	Aluminum	2.6		
7440-36-0	Antimony	0.050	U	Ι
7440-38-2	Arsenic	0.005	U	
7440-39-3	Barium	0,075		
7440-41-7	Beryllium	0.005	U	
7440-43-9	Cadmium	0.005	U	1
7440-70-2	Calcium			
7440-47-3	Chromium	0.07		
7440-48-4	Cobalt	0.020	U	
7440-50-8	Copper	0.047		
7439-89-6	Iron	7.8		
7439-92-1	Lead	0.043		
7439-95-4	Magnesium			
7439-96-5	Manganese	1.30		
7439-97-6	Mercury			
7439-98-7	Molybdenum			
7440-02-0	Nickel	0.049		
7440-09-7	Potassium	, 3,5		
7782-49-2	Selenium	0.010	U	
7440-22-4	Silver	0.007	Ŭ	
7440-23-5	Sodium	52		
7440-24-6	Strontium			
7440-28-0	Thallium	0,020	ប	
7440-62-2	Vanadium	0.015		
7440-66-6	Zinc	0,229		
7440-31-5	Tin			
7440-42-8	Boron			
57-12-5	Cyanide			
END				
			1	
,		• • • •		
		· · ·		

Comments:

2

CLIENT SAMPLE NO.

MW-3

Lab Name: Alpha Analytical

Lab Code: AAL

SDG No.: L0904242

Matrix (soil/water): WATER

Lab Sample ID: <u>L0904242-03</u> Date Received: <u>04/07/09</u> Date Analyzed: <u>4/11/09</u> 18:47

% Solids:

N/A_____

Concentration Units: mg/l

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum				<u> </u>
7440-36-0	Antimony				
7440-38-2	Arsenic				
7440-39-3	Barium	······			
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium	40			
7440-47-3	Chromium				
7440-48-4	Cobalt	·····			
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead				
7439-95-4	Magnesium	9.8			
7439-96-5	Manganese				
7439-97-6	Mercury	· · · · · · · · · · · · · · · · · · ·			
7439-98-7	Molybdenum				
7440-02-0	Nickel				
7440-09-7	Potassium	********			
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-24-6	Strontium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					
				,,	
		· · · · · · · · · · · · · · · · · · ·			

CLIENT SAMPLE NO.

MW-3

Lab Name: Alpha Analytical

Lab Code: _____AAL

SDG No.: L0904242

Matrix (soil/water): <u>WATER</u>

Lab Sample ID: <u>L0904242-03</u> Date Received: 04/07/09

Date Analyzed: 4/9/09 12:09

Concentration Units: mg/1

% Solids:

N/A

CAS No.	Analyte	Concentration	С	
7429-90-5	Aluminum			
7440-36-0	Antimony			
7440-38-2	Arsenic			
7440-39-3	Barium	······································		
7440-41-7	Beryllium			
7440-43-9	Cadmium			
7440-70-2	Calcium			
7440-47-3	Chromium			
7440-48-4	Cobalt			
7440-50-8	Copper			
7439-89-6	Iron			
7439-92-1	Lead			
7439-95-4	Magnesium			
7439-96-5	Manganese			
7439-97-6	Mercury	0.0002	U	
7439-98-7	Molybdenum			
7440-02-0	Nickel			
7440-09-7	Potassium			
7782-49-2	Selenium			
7440-22-4	Silver			
7440-23-5	Sodium			
7440-24-6	Strontium			
7440-28-0	Thallium			
7440-62-2	Vanadium			
7440-66-6	Zinc			
7440-31-5	Tin			
7440-42-8	Boron			
57-12-5	Cyanide			
END				

CLIENT SAMPLE NO.

DUP-01

Г	ab	Name:	Alpha	Analytical	
L	ab	Code :	A	LIA	

SDG No.: L0904242

Matrix (soil/water): WATER

Lab Sample ID: <u>L0904242-13</u> Date Received: <u>04/07/09</u>

Date Analyzed: 4/10/09 15:08

% Solids:

N/A

Concentration Units: mg/l

CAS No. Analyte Concentration С Aluminum 2.5 7429-90-5 Antimony 0.050 U 7440-36-0 Arsenic 0.005 U 7440-38-2 0.067 7440-39-3 Barium 7440-41-7 Beryllium 0.005 U 0.005 Ũ 7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 0.06 7440-48-4 Cobalt 0.020 U 0.042 7440-50-8 Copper 7.2 7439-89-6 Iron 7439-92-1 0.041 Lead 7439-95-4 Magnesium 1,26 7439-96-5 Manganese Mercury 7439-97-6 Molybdenum 7439-98-7 0.045 7440-02-0 Nickel Potassium 3.0 7440-09-7 Selenium 0.010 Ũ 7782-49-2 0.007 Silver Ũ 7440-22-4 7440-23-5 Sodium 43 7440-24-6 Strontium 7440-28-0 Thallium 0.020 U Vanadium 0.015 7440-62-2 0.224 7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

CLIENT SAMPLE NO.

DUP-01

Lab Name: Alpha Analytical

Lab Code: AAL

SDG No.: L0904242

Matrix (soil/water): WATER

Lab Sample ID: <u>L0904242-13</u> Date Received: <u>04/07/09</u> Date Analyzed: <u>4/11/09 19:23</u>

% Solids:

N/A

Concentration Units: mg/1

CAS No.	Analyte	Concentration	с		
7429-90-5	Aluminum				\vdash
7440-36-0	Antimony				<u> </u>
7440-38-2	Arsenic				
7440-39-3	Barium				
7440-41-7	Beryllium	······			
7440-43-9	Cadmium				
7440-70-2	Calcium	35			
7440-47-3	Chromium				1
7440-48-4	Cobalt	···· · ·		<u> </u>	
7440-50-8	Copper				Γ
7439-89-6	Iron				
7439-92-1	Lead				
7439-95-4	Magnesium	9.2			1
7439-96-5	Manganese	· · · · · · · · · · · · · · · · · · ·	·		1
7439-97-6	Mercury				<u>†</u>
7439-98-7	Molybdenum			· · · · · · · · · · · · · · · · · · ·	
7440-02-0	Nickel				
7440-09-7	Potassium				1
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sođium		-		T
7440-24-6	Strontium				
7440-28-0	Thallium				
7440-62-2	Vanadium	····· ··· ··· ··· ··· ··· ··· ··· ···		,, ,, ,	1
7440-66-6	Zinc				
7440-31-5	Tin				
7440-42-8	Boron				[
57-12-5	Cyanide				
END					
				l	<u> </u>

CLIENT SAMPLE NO.

DUP-01

Lab	Name:	Alpha	Analytical
-----	-------	-------	------------

Lab Code: AAL

SDG No.: L0904242

Matrix (soil/water): WATER

Lab Sample ID: <u>L0904242-13</u> Date Received: <u>04/07/09</u> Date Analyzed: 4/9/09 12:30

% Solids:

N/A

Concentration Units: mg/l

CAS NO. Analyte Concentration С 7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese Mercury 7439-97-6 0.0002 U 7439-98-7 Molybdenum Nickel 7440-02-0 Potassium 7440-09-7 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-24-6 Strontium 7440-28-0 Thallium Vanadium 7440-62-2 7440-66-6 Zinc 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

CLIENT SAMPLE NO.

FB-01

Lab	Code:	AAL

Lab Name: Alpha Analytical

SDG No.: L0904242

Matrix (soil/water): WATER

Lab Sample ID: L0904242-14

Date Analyzed: 4/10/09 15:12

Date Received: 04/07/09

% Solids:

N/A

Concentration Units: mg/l

С CAS No. Concentration Analyte Aluminum 0.10 U 7429-90-5 7440-36-0 Antimony 0.050 U Arsenic 0.005 Ū 7440-38-2 0.010 7440-39-3 Barium Ũ 7440-41-7 Beryllium 0.005 Ü 0.005 IJ 7440-43-9 Cadmium 7440-70-2 Calcium 7440-47-3 Chromium 0.01 U 7440-48-4 Cobalt 0.020 U 7440-50-8 Copper 0.010 U 0.05 U 7439-89-6 Iron 0.010 U 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 0,010 U Manganese 7439-97-6 Mercury 7439-98-7 Molybdenum 7440-02-0 Nickel 0.025 U 7440-09-7 Potassium 2.5 U Selenium 0.010 U 7782-49-2 0.007 7440-22-4 Silver υ 2.0 Ü 7440-23-5 Sodium 7440-24-6 Strontium Thallium 0.020 7440-28-0 TT. Vanadium 0.010 7440-62-2 IJ 7440-66-6 Zinc 0.050 U 7440-31-5 Tin 7440-42-8 Boron 57-12-5 Cyanide *END*

CLIENT SAMPLE NO.

FB-01

Lab	Name:	Alpha Alpha	Analytical

Lab Code: AAL

SDG No.: L0904242

Matrix (soil/water): WATER Lab Sample ID: L0904242-14 Date Received: 04/07/09

Date Analyzed: 4/11/09 19:26

% Solids:

N/A

Concentration Units: mg/1

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum				<u> </u>
7440-36-0	Antimony				
7440-38-2	Arsenic	· · · · · · · · · · · · · · · · · · ·			
7440-39-3	Barium				
7440-41-7	Beryllium				
7440-43-9	Cadmium				
7440-70-2	Calcium	0.13			
7440-47-3	Chromium				
7440-48-4	Cobalt				
7440-50-8	Copper				
7439-89-6	Iron				
7439-92-1	Lead				
7439-95-4	Magnesium	0.10	U		
7439-96-5	Manganese				1
7439-97-6	Mercury				
7439-98-7	Molybdenum				
7440-02-0	Nickel				
7440-09-7	Potassium				1
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-24-6	Strontium				1
7440-28-0	Thallium	· · · · · · · · · · · · · · · · · · ·			
7440-62-2	Vanadium				
7440-66-6	Zinc	· · · · · · · · · · · · · · · · · · ·			1
7440-31-5	Tin				1
7440-42-8	Boron				<u> </u>
57-12-5	Cyanide			· · · · · · · · · · · · · · · · · · ·	
END					
			İ		1
·			1		1

CLIENT SAMPLE NO.

FB-01

Lab Name: <u>Alpha Analyti</u>	lcal			
Lab Code: <u>AAL</u>			SDG No.:	L0904242
Matrix (soil/water):	WATER	Lab Sample ID: L0904242-14		
		Date Received: 04/07/09		
% Solids:	N/A	Date Analyzed: <u>4/9/09 12:32</u>		

Concentration Units: mg/l

CAS No.	Analyte	Concentration	С		
7429-90-5	Aluminum			····	┼──
7440-36-0	Antimony		1		1
7440-38-2	Arsenic				Γ
7440-39-3	Barium				Γ
7440-41-7	Beryllium				
7440-43-9	Cadmium		1		
7440-70-2	Calcium				[
7440-47-3	Chromium				-
7440-48-4	Cobalt				
7440-50-8	Copper		1		
7439-89-6	Iron	· · · · · · · · · · · · · · · · · · ·			
7439-92-1	Lead			ľ	[
7439-95-4	Magnesium	····			
7439-96-5	Manganese			,	
7439-97-6	Mercury	0.0002	Ü		
7439-98-7	Molybdenum				
7440-02-0	Nickel				
7440-09-7	Potassium				T
7782-49-2	Selenium				
7440-22-4	Silver				
7440-23-5	Sodium				
7440-24-6	Strontium				
7440-28-0	Thallium				
7440-62-2	Vanadium				
7440-66-6	Zinc				
7440-31-5	Tin				
7440-42-8	Boron				
57-12-5	Cyanide				
END					
				1	

Comments:

•