SYOSSET LANDFILL 2016 ANNUAL POST-CLOSURE SUMMARY REPORT

Volume 2 of 2 Ground Water-Monitoring Program

TOWN OF OYSTER BAY

DEPARTMENT OF PUBLIC WORKS SYOSSET, NEW YORK 11791 May 2017

LOCKWOOD KESSLER & BARTLETT, INC. SYOSSET, NEW YORK 1179

SYOSSET LANDFILL

2016 ANNUAL POST-CLOSURE SUMMARY REPORT

VOLUME 2 OF 2 GROUND WATER-MONITORING PROGRAM

May 2017

Prepared by:

Lockwood, Kessler and Bartlett, Inc. One Aerial Way Syosset, NY 11791 Prepared for:

Town of Oyster Bay Department of Public Works 150 Miller Place Syosset, NY 11791

SYOSSET LANDFILL 2016 ANNUAL POST-CLOSURE SUMMARY REPORT

VOLUME 2 OF 2 GROUND WATER-MONITORING PROGRAM

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>	Page No.
SECTION 1	INTRODUCTION	1
SECTION 2	RESULTS OF TASK 1 – WELL INSPECTION, MODIFICATION AND/OR REPAIR	2
SECTION 3	RESULTS OF TASK 2 – WATER-LEVEL MEASUREMENT	3
3.1	Horizontal Ground Water-Flow Directions and Gradients 3.1.1 Shallow Zone	3 3
	3.1.2 Intermediate Zone	4
	3.1.3 Deep Zone	4
3.2	Vertical Hydraulic Gradients	4
3.3	Influence of the Buried Glacial Valley on Ground Water- Flow Patterns	5
SECTION 4	RESULTS OF TASK 3 – GROUND-WATER MONITORING	7
4.1	Results of Field Parameter Measurements	8
4.2	Results of Volatile Organic Compound (VOC) Analyses	9
4.3	Results of NYSDEC Part 360 Leachate Indicator Analyses	10
4.4	Results of USEPA Target Analyte List (TAL) and Cyanide Analyses	11
SECTION 5	COMPARISON OF CURRENT MONITORING RESULTS TO PREVIOUS MONITORING RESULTS	13
5.1	Temporal Variation in Water-Level Elevations	13
5.2	Temporal Variation in Ground-Water Quality	14
5.3	Results of Trend Analyses	15
SECTION 6	CONCLUSIONS AND RECOMMENDATIONS	16

TABLE OF CONTENTS (CONT'D)

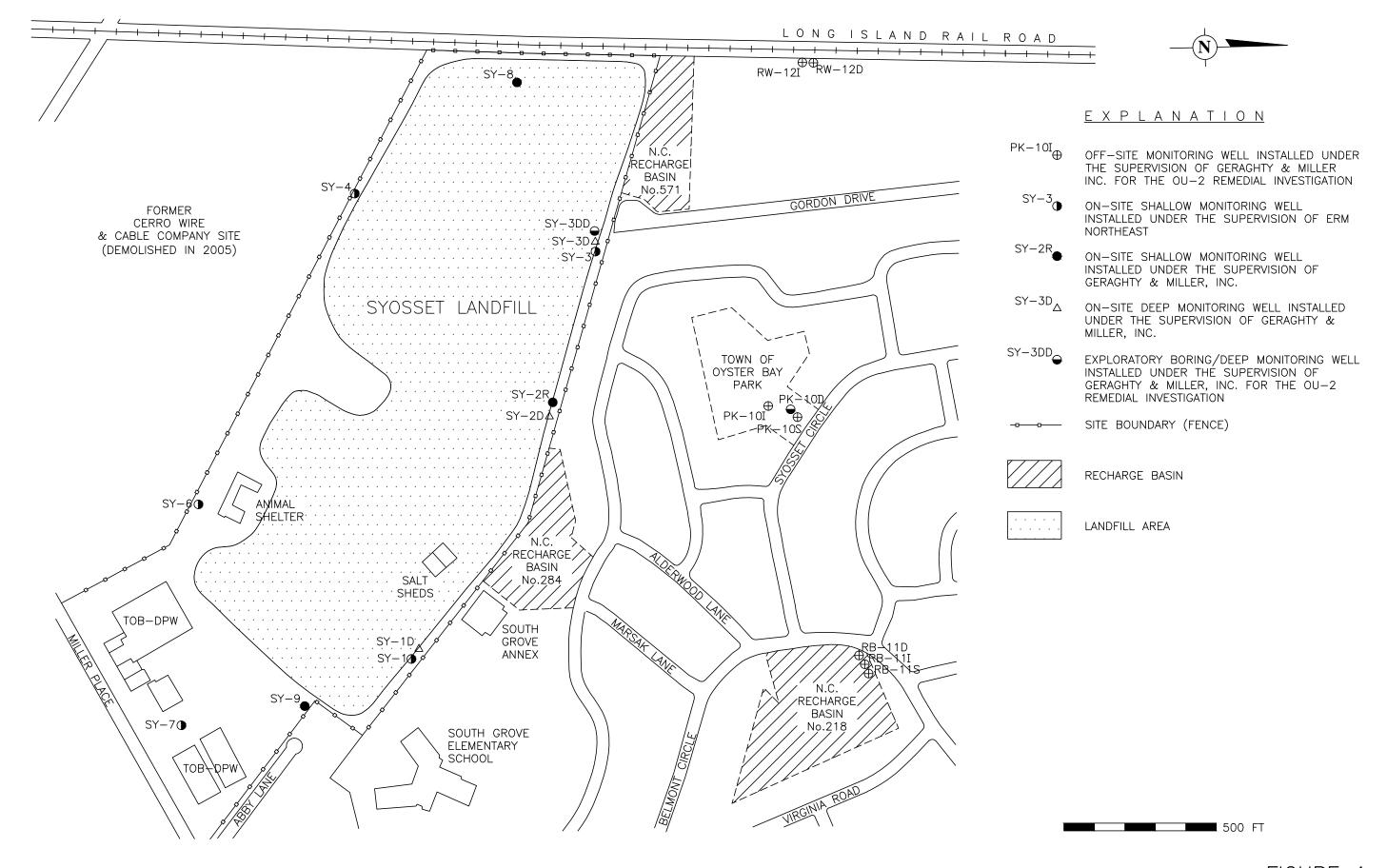
LIST OF TABLES

<u>Ta</u>	ble	Number and Title	Follows Page
	1.	Summary of Water-Level Results	3
	2.	Summary of Construction Details for Monitoring Wells Installed at and near the Syosset Landfill	3
	3.	Summary of Field Parameter Monitoring Results	8
	4.	Summary of Volatile Organic Compound (VOC) Results	9
	5.	Summary of Leachate Indicator Parameter Results	10
	6.	Summary of Total and Dissolved Metals Results	11
	7.	Changes in Ground-Water Elevations	13
	8.	Comparison of Current Total VOC Results to Previous Results	14
	9.	Comparison of Current Leachate Indicator Parameter Exceedance to Previous Exceedances	es 14
	10	 Comparison of Filtered Sample Inorganic Parameter Exceedances to Previous Exceedances 	s 14
	11	.Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters	15
		<u>LIST OF FIGURES</u>	
 Summary of Water-Level Results Summary of Construction Details for Monitoring Wells Installed at and near the Syosset Landfill Summary of Field Parameter Monitoring Results Summary of Volatile Organic Compound (VOC) Results Summary of Leachate Indicator Parameter Results Summary of Total and Dissolved Metals Results Changes in Ground-Water Elevations Comparison of Current Total VOC Results to Previous Results Comparison of Current Leachate Indicator Parameter Exceedances to Previous Exceedances Comparison of Filtered Sample Inorganic Parameter Exceedances Previous Exceedances Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters 			
<u>Fic</u>	ure	e Number and Title	Follows Page
		<u> </u>	
1.	Gr Po	ound Water-Monitoring Well Location Plan otentiometric Surface of the Shallow Zone of the Magothy	1
1. 2.	Gr Po Aq Po	round Water-Monitoring Well Location Plan otentiometric Surface of the Shallow Zone of the Magothy uifer on December 2, 2016 otentiometric Surface of the Intermediate Zone of the Magothy	1 3
1. 2. 3.	Gr Po Aq Po Aq Po	round Water-Monitoring Well Location Plan otentiometric Surface of the Shallow Zone of the Magothy uifer on December 2, 2016 otentiometric Surface of the Intermediate Zone of the Magothy uifer on December 2, 2016 otentiometric Surface of the Deep Zone of the Magothy	1 3 3
1. 2. 3.	Gre Po Aq Po Aq Po Aq Lo	round Water-Monitoring Well Location Plan of tentiometric Surface of the Shallow Zone of the Magothy uifer on December 2, 2016 of tentiometric Surface of the Intermediate Zone of the Magothy uifer on December 2, 2016 of tentiometric Surface of the Deep Zone of the Magothy uifer on December 2, 2016 of tentiometric Surface of the Deep Zone of the Magothy uifer on December 2, 2016 of tention of Syosset Landfill Relative to Regional Ground-Water	1 3 3
1. 2. 3. 4.	Gro Po Aq Po Aq Lo Div Ge	round Water-Monitoring Well Location Plan of tentiometric Surface of the Shallow Zone of the Magothy utifer on December 2, 2016 of tentiometric Surface of the Intermediate Zone of the Magothy utifer on December 2, 2016 of tentiometric Surface of the Deep Zone of the Magothy utifer on December 2, 2016 of tentiometric Surface of the Deep Zone of the Magothy utifer on December 2, 2016 of tention of Syosset Landfill Relative to Regional Ground-Water wide eneralized Structure Contour Map of the Top of the Magothy	1 3 3 3 5
1. 2. 3. 4.	Gro Po Aq Po Aq Lo Div Ge	cound Water-Monitoring Well Location Plan betentiometric Surface of the Shallow Zone of the Magothy guifer on December 2, 2016 betentiometric Surface of the Intermediate Zone of the Magothy guifer on December 2, 2016 betentiometric Surface of the Deep Zone of the Magothy guifer on December 2, 2016 betentiometric Surface of the Deep Zone of the Magothy guifer on December 2, 2016 betention of Syosset Landfill Relative to Regional Ground-Water wide beneralized Structure Contour Map of the Top of the Magothy bermation	1 3 3 3 5
1. 2. 3. 4. 5.	Gr Po Aq Po Aq Lo Div Ge Fo	cound Water-Monitoring Well Location Plan betentiometric Surface of the Shallow Zone of the Magothy uifer on December 2, 2016 betentiometric Surface of the Intermediate Zone of the Magothy uifer on December 2, 2016 betentiometric Surface of the Deep Zone of the Magothy uifer on December 2, 2016 betention of Syosset Landfill Relative to Regional Ground-Water wide beneralized Structure Contour Map of the Top of the Magothy bermation LIST OF APPENDICES	1 3 3 3 5
1. 2. 3. 4. 5. 6.	Gr Po Aq Po Aq Lo Div Ge Fo	cound Water-Monitoring Well Location Plan betentiometric Surface of the Shallow Zone of the Magothy uifer on December 2, 2016 betentiometric Surface of the Intermediate Zone of the Magothy uifer on December 2, 2016 betentiometric Surface of the Deep Zone of the Magothy uifer on December 2, 2016 betentiometric Surface of the Deep Zone of the Magothy uifer on December 2, 2016 betention of Syosset Landfill Relative to Regional Ground-Water wide beneralized Structure Contour Map of the Top of the Magothy bermation LIST OF APPENDICES andix A: Completed Well Inspection Checklist Forms	1 3 3 3 5
1. 2. 3. 4. 5. 6. Ap	Gr Po Aq Po Aq Lo Div Ge Fo	round Water-Monitoring Well Location Plan otentiometric Surface of the Shallow Zone of the Magothy ruifer on December 2, 2016 otentiometric Surface of the Intermediate Zone of the Magothy ruifer on December 2, 2016 otentiometric Surface of the Deep Zone of the Magothy ruifer on December 2, 2016 ocation of Syosset Landfill Relative to Regional Ground-Water roide eneralized Structure Contour Map of the Top of the Magothy ormation LIST OF APPENDICES andix A: Completed Well Inspection Checklist Forms andix B: Validated Laboratory Data	1 3 3 3 5

INTRODUCTION

The Town of Oyster Bay (Town) is required to perform ground-water monitoring at the Syosset Landfill (Landfill) during the post-closure period pursuant to two Records of Decision (RODs) from the United States Environmental Protection Agency (USEPA) Region II for the Landfill. These RODs are enforceable under a Consent Decree (CV-90-4183) entered into by Town and the USEPA.

The scope of the ground water-monitoring program is specified in Section 4 (Groundwater Monitoring System) of the Post-Closure Monitoring and Maintenance Operations Manual (O&M Manual), prepared by Lockwood, Kessler and Bartlett, Inc. (LKB), dated April 2003. The main purpose of the ground water-monitoring program is to track ground water-flow and quality conditions now that capping has been completed, to ensure that the Landfill continues to not pose a significant threat to public health and the environment via the ground-water pathway. The Landfill was removed from the National Priorities List on April 28, 2005.


The ground water-monitoring system for the Landfill is comprised of 20 wells. The locations of the wells are indicated in Figure 1. As shown in this figure, thirteen of the wells are located onsite, along the upgradient (south) boundary, within, and along the downgradient (north) boundary of the Landfill. The other eight wells are located offsite, downgradient of the Landfill, in three clusters. The on-site wells are screened in either the shallow, intermediate or deep zone of the Magothy Aquifer, which is the uppermost aquifer. The overlying Upper Glacial Formation is unsaturated beneath the Landfill, and all of the off-site downgradient wells are screened in the Magothy Aquifer.

The post-closure monitoring well network is comprised of the following 11 wells:

- SY-6 (Upgradient Well);
- SY-2R, SY-2D, SY-3, SY-3D and SY-3DD (On-Site Downgradient Wells); and
- PK-10S, PK-10I, PK-10D, RW-12I and RW-12D (Off-Site Downgradient Wells).

This Report presents the results of the 2016 annual ground water-monitoring round, which was performed on December 2nd, 6th, 7th and 13th. The scope of work for this monitoring round followed Section 4.0 of the O&M Manual, and incorporated the recommendations in the 2015 ground water-monitoring round report.

Sections 2.0 through 4.0 of this Report summarize the results of monitoring well inspections, water-level measurements and ground-water sampling, respectively. Section 5.0 compares the 2016 results to the previous annual post-closure monitoring results obtained since 2003, and to the 1988 OU-1 RI and 1993 OU-2 RI results. Conclusions and recommendations based on the results are provided in Section 6.0. Each section is supported by tables, figures and appendices, as appropriate.

RESULTS OF TASK 1 – WELL INSPECTION, MODIFICATION AND/OR REPAIR

Prior to performing the 2016 ground water-monitoring round, the 20 existing monitoring wells were located and inspected. All appeared to be in usable condition, and no significant modifications or repairs were required to the 11 wells that are monitored for ground-water quality. New locks and grip-plugs were installed on certain wells at the time of inspection. Well SY-9 was found to be dry, which is consistent with the fact that the water-table elevation site-wide had decreased by approximately four feet since the 2015 monitoring round. Water levels could not be taken in Wells RB-11S and RB-11I because of interference from their 3-inch-diameter dedicated submersible pumps and the lower water levels. The water-level elevations in these wells were estimated based on the results for Well RB-11D. The inspection information for each existing ground water-monitoring well was recorded on a Well Inspection Checklist form, copies of which are presented in Appendix A.

RESULTS OF TASK 2 – WATER-LEVEL MEASUREMENT

The 2016 synoptic water-level round was performed on December 2nd. Measurements were made to the nearest 0.01-feet utilizing an electronic water-level meter. Water-level measurements were obtained from 17 of the 20 site monitoring wells. Three wells could not be measured due to the significantly lower water levels in 2016. Specifically, Well SY-9 was dry, and in Wells RB-11S and RB-11I the dedicated pumps prevented the water-level meter probe from reaching the water.

The 2016 water-level data are summarized in Table 1. Monitoring well construction details are provided in Table 2. Ground water-flow maps for the shallow, intermediate, and deep zones of the Magothy Aquifer in the vicinity of the Landfill, based on the 2016 water-level measurements, are provided in Figures 2, 3 and 4, respectively.

3.1 Horizontal Ground Water-Flow Directions and Gradients

3.1.1 Shallow Zone

As shown in Figure 2, the overall horizontal ground water-flow direction in the shallow zone of the Magothy Aquifer beneath the Landfill is from south to north. Downgradient of the Landfill, horizontal ground water-flow directions converge in the vicinity of Well Cluster PK-10. Moreover, based on the ground water-flow directions shown in Figure 2, Well Cluster RW-12 appears to be located sidegradient to, rather than directly downgradient of, the Landfill.

The converging ground water-flow pattern observed in the shallow zone of the Magothy Aquifer downgradient of the Landfill is attributed to the influence of a buried glacial valley that begins beneath the western half of the Landfill and trends to the north-northeast. The Upper Glacial Formation is unconfined and more permeable than the Magothy Formation, which is locally semi-confined. Therefore, in the vicinity of the buried glacial valley, ground water tends to flow out of the section of Magothy Formation in contact with the buried glacial valley and into the Upper Glacial Formation, resulting in the converging flow pattern observed. The buried glacial valley is discussed in more detail in Section 3.3 below.

The horizontal hydraulic gradient for the shallow zone of the Magothy Aquifer, calculated by dividing the difference in water-level elevation between Well SY-6 and Well PK-10S in 2016 (1.58 feet) by the distance between the two wells (1,975 feet), is 0.0008. This gradient similar to the gradients observed from 2013 through 2015, and during the pre-2011 monitoring rounds, and therefore appears to represent typical conditions. In contrast, in 2011 and 2012, lower horizontal hydraulic gradients were observed in this aquifer zone. They were attributed to the unusually rapid rises in the water-table elevation in late 2011 and late 2012 due to the above-normal infiltration from the hurricanes and nor'easters that occurred earlier in these years.

Table 1
Summary of Water-Level Results
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

Well No.	MP Elev.	MP Description	WL Depth	WL Elev.	Vertic	al Gradient (ft/ft)
On-Site Wells:						
SY-1	198.48	Top of 2-inch steel casing.	119.74	78.74	-0.0009	(SY-1 / SY-1D)
SY-1D	197.02	Top of 4-inch PVC cap.	118.23	78.79		
SY-2R	190.86	Top of 4-inch PVC casing.	112.56	78.30	0.0021	(SY-2R / SY-2D)
SY-2D	190.91	Top of 3-inch PVC casing.	112.77	78.14		
SY-3	193.96	Top of 2-inch steel casing.	115.60	78.36	0.0081	(SY-3 / SY-3D)
SY-3D	194.47	Top of 3-inch PVC casing.	116.55	77.92	0.0008	(SY-3D / SY-3DD)
SY-3DD	193.95	Top of 2-inch PVC casing.	116.29	77.66		
SY-4	192.39	Top of 2-inch steel casing.	113.08	79.31		
SY-6	186.94	Top of 2-inch steel casing.	107.59	79.35		
SY-7	197.46	Top of 2-inch steel casing.	117.58	79.88		
SY-8	197.94	Top of 4-inch PVC cap.	119.34	78.60		
SY-9	202.41	Top of 4-inch PVC casing.	DRY	<79.50*		
Off-Site Wells:						
PK-10S	188.73	Top of 4-inch PVC casing.	110.96	77.77	0.0022	(PK-10S/PK-10I)
PK-10I	187.10	Top of 4-inch PVC casing.	109.79	77.31	-0.0001	(PK-10I/PK-10D)
PK-10D	188.25	Top of 4-inch PVC casing.	110.93	77.32		
RW-12I	197.32	Top of 4-inch PVC casing.	120.28	77.04	0.0005	(RW-12I/RW-12D)
RW-12D	197.29	Top of 4-inch PVC casing.	120.32	76.97		
RB-11S	189.91	Top of 4-inch PVC cap.	NM	NA	NA	(RB-11S/RB-11I)
RB-11I	190.32	Top of 4-inch PVC cap.	NM	NA	NA	(RB-11I/RB-11D)
RB-11D	190.60	Top of 4-inch PVC cap.	113.13	77.47		

Water-level data collected on December 2, 2016.

MP - Measuring Point.

NM - Water level not measured. (Dedicated pumps prevented meter probe from reaching water.)

NA - Not available.

^{*} Approximate elevation of bottom of well screen.

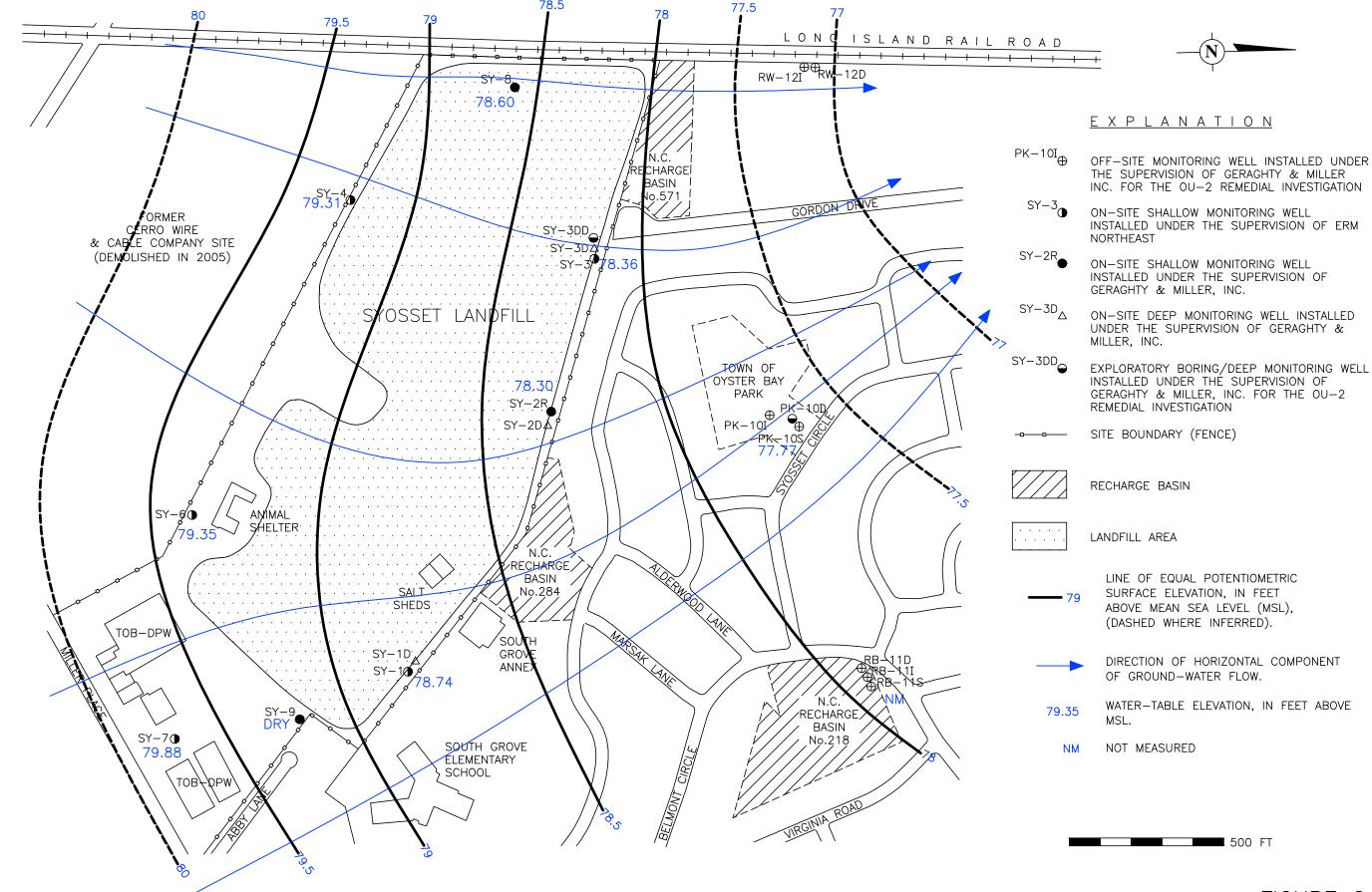
Table 2

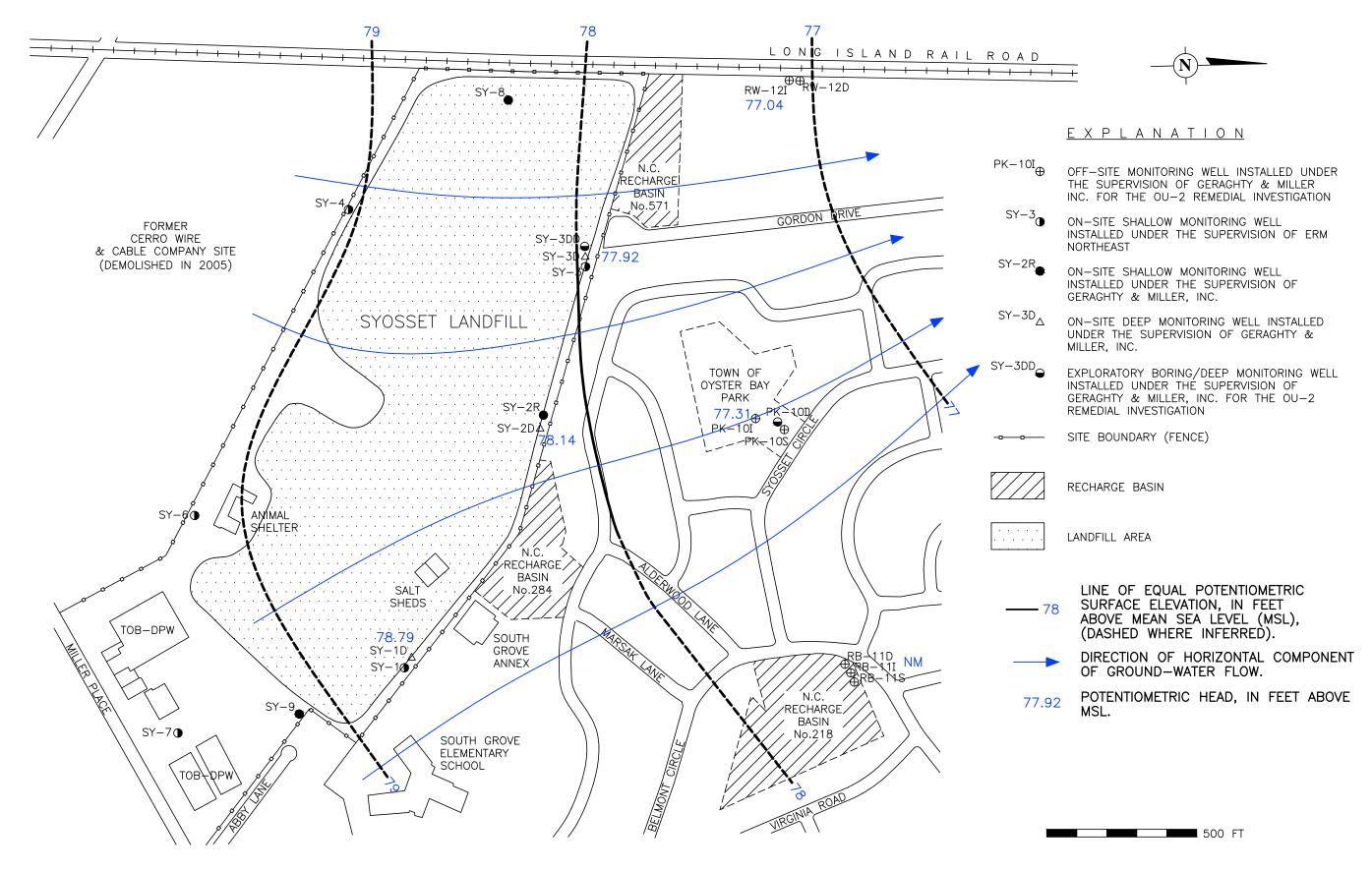
Summary of Construction Details for Monitoring Wells Installed at and Near the Syosset Landfill Syosset Landfill 2014 Annual Post-Closure Ground Water-Monitoring Report (Reference: OU-2 RI Report, 1993)

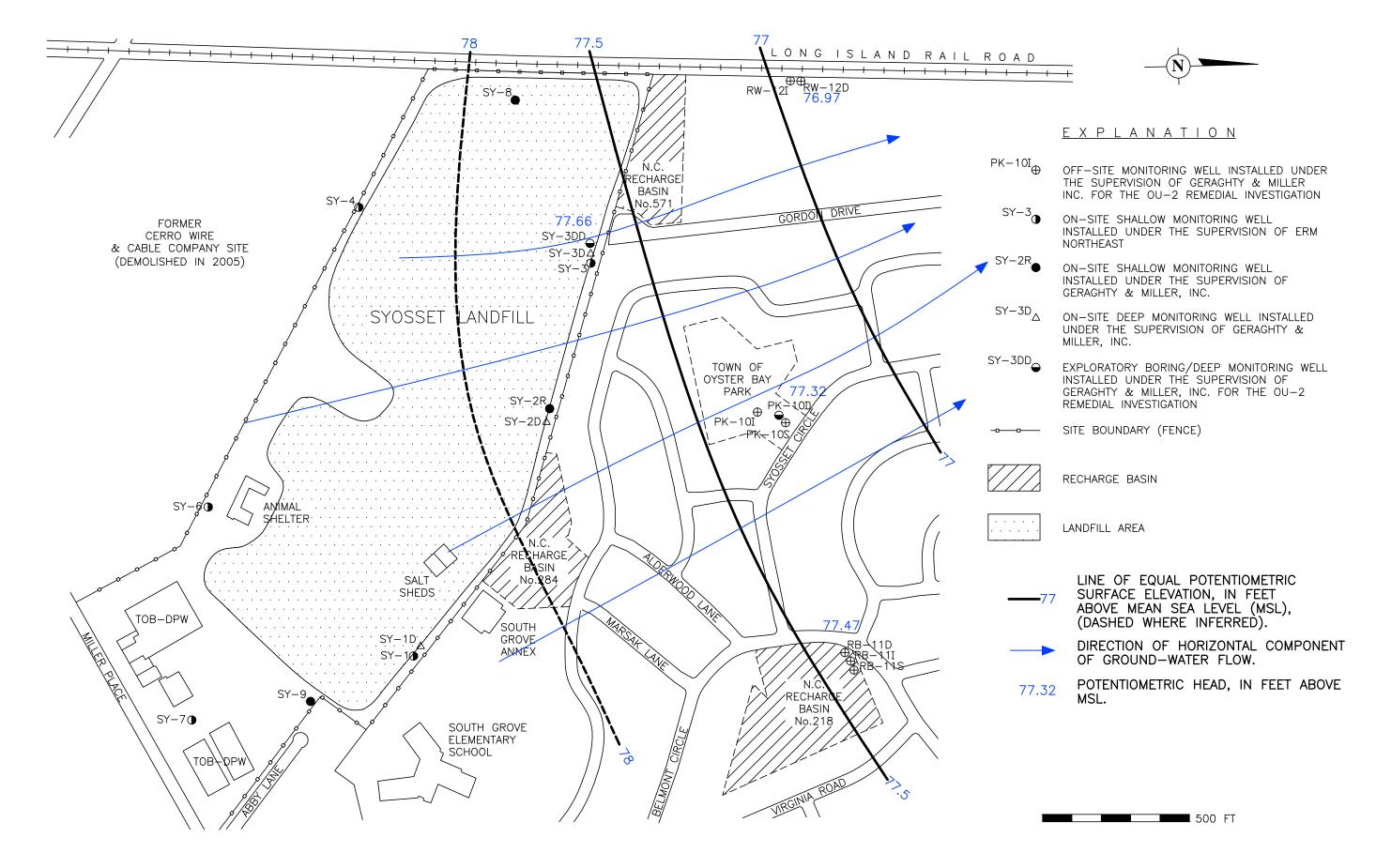
ı																								
Well Casing and Screen Material	Black steel	PVC	PVC	S S	Black steel	PVC.	PVC. stainless steel	Black steel	Galvanized steel	Black steel	PVC	Black steel	PVC) A	D. D.	PVC PVC	PVC, stainless steel	PVC, stainless steel	PVC. stainless steel	PVC. stainless steel	PVC stainless steel	DVC stainless steel	PVC ctainless steel	PVC, stainless steel
Elevation of Measuring Point (b) (feet above mean sea level)	194.52	197.36	187.12	186.33	191.38	194.74	194.23	193.32	188.07	185.92	185.60	197,46	195.84	199.41	190.61	192.82	188.70	187.62	188.23	189.91	190.32	190.60	97.761	197.72
Height of Measuring Point (a) (relative to land surface)	-0.15	+2.31	+1.95	+2.18	9.50	+2.45	0	0.20	+4.20	0.10	0.30	-0.25	+2.25	0.70	+2.63	+2.56	-0.40	•	•	•	•	•		. 0
Interval Sealed With Bentonite Slurny/Volciay (feet below land surface)	8 - 34 (e)	2-177	2-110	2 - 185	4 - 45 (e)	2 - 181	2 - 512	4 - 54 (e)	5 - 44 (e)	5 - 28 (e)	3 - 192	5 - 49 (e)	2-122	2.105	2 - 100	2-100	8	2 - 341.5 (g)	2 - 472 (g)	2 - 115 (g)	2 - 333 (g)	2 - 480 (g)	2 - 330 (g)	2 - 482 (g)
Interval Sealed With Bentonite Pellets (feet below land surface)	34-35	177 - 179	110-112	185 - 187	45 - 47	181 - 184	512 - 517 (f)	54-57	4-46	28-31	190 - 192	49 - 52	122 - 125	105 - 107	100 - 102	100 - 102	•	341.5 - 346.5 (f)	472 - 477 (0)	116 - 120 (f)	333 - 339 (f)	480 - 487 (f)	330 - 338 (D	476 - 482 (1)
Interval Gravel Packed (feet below land surface)	35 - 135 (d)	179-218	112 - 150	187 - 215	47 - 145 (d)	184 - 240	617 - 540	57 - 153 (d)	46 - 135 (d)	31 - 145 (d)	192 - 215	52 - 145 (d)	125 - 142	107 - 140	102 - 120			346.5 - 363				487 - 509	338 - 364	482 - 508
Screen Setting (feet below land surface)	125 - 135 (d)	182 - 192	115 - 125	190 - 200	135 - 145	189 - 199	630 - 640	143 - 153 (d)	125 - 135 (d)	135 - 145 (d)	195 - 205	135 - 145 (d)	127 - 137	110 - 120	105 - 115	104 - 114	139 - 149	352 - 362	489 - 499	133 - 143	348.5 - 358.5	493 - 503	350 - 360	490 - 500
Total Depth (feet below land surface)	135	218	150	215	145	240	95	153	135	145	215	145	142	4	120	120	149	362	499	143	358.5	503	360	200
Well Diameter (inches)	7	4	4	ო	64	ო	~	2	2.5	2	4	7	4	4	7	7	4	₹	₹	₹	4	→	4	-
Completion Date	10/19/82	2/2/88	2/12/88	2/9/88	10/20/82	2/25/88	12/9/92	10/20/82	10/20/82	10/19/82	3/9/88	10/21/82	12/19/87	1/29/88	11/10/87	11/18/87	3/25/93	4/14/93	12/31/92	8/26/93	8/19/93	8/9/93	10/7/93	9/27/93
Well Designation	SY-1 (c)	SY-1D	SY-2R	SY-2D	SY-3 (c)	SY-3D	SY-3DD	SY4	SY-5 (c) (h)	SY-6 (c)	SY-6D	SY-7 (c)	SY-8	SY-9	W-3	W 4 (h)	PK-10S	PK-10	PK-10D	RB-11S	RB-11	RB-11D	RW-12I	RW-12D

The measuring point of each well is the top of the well casing. Survey performed to U.S. Geological Survey (USGS) datum.

Well installed during the ERM-Northeast site investigation.


It appears that this interval consists of formation collapse.


Information not available as to whether grout or backfill (drill cuttings) was used to fill the annular space in this interval.


Volclay grout sealant used (composed of 100 percent bentonite). Destroyed **©£©**۩€©€©

gravel pack to stabilize before a permanant seal was installed. PK-10S is currently sealed at the land surface with a Well PK-10S was installed in the initial PK-10I borehole, which had collapsed at 328 feet due to unstable formation; PK-10S was constructed with the gravel pack extending to within 5 feet of land surface to allow for the

steef plate and rubber gasket. Gravel can be monitored/added through a 1-inch diameter access port

3.1.2 Intermediate Zone

As shown in Figure 3, based on the 2016 data, horizontal ground water-flow directions in the intermediate zone of the Magothy Aquifer are from south-southeast to north-northwest beneath, and downgradient of, the Landfill. They also converge slightly downgradient of the Landfill in the vicinity of Well Cluster PK-10, although the degree of convergence is much less than is observed in the shallow zone of the Magothy Aquifer.

The horizontal hydraulic gradient for the intermediate zone of the Magothy Aquifer, based on difference in water-level elevation in Wells SY-1D and PK-10I (1.48 feet) and the distance between the wells (1,400 feet), is 0.0010, which is similar to, but slightly higher than, the shallow zone gradient.

3.1.3 Deep Zone

As shown in Figure 4, based on the 2016 data, the horizontal ground water-flow direction in the deep zone of the Magothy Aquifer is also from south-southeast to north-northwest in the vicinity of the Landfill. This flow direction is based on data from just four downgradient wells and should therefore be considered approximate. However, it is consistent with the shallow and intermediate zone results, as well as the results from previous monitoring rounds. The convergence noted in the shallower zones of the Magothy Aquifer is not observed in this zone. This finding is consistent with the fact that the deep zone of the Magothy Aquifer is not bisected by the buried glacial valley.

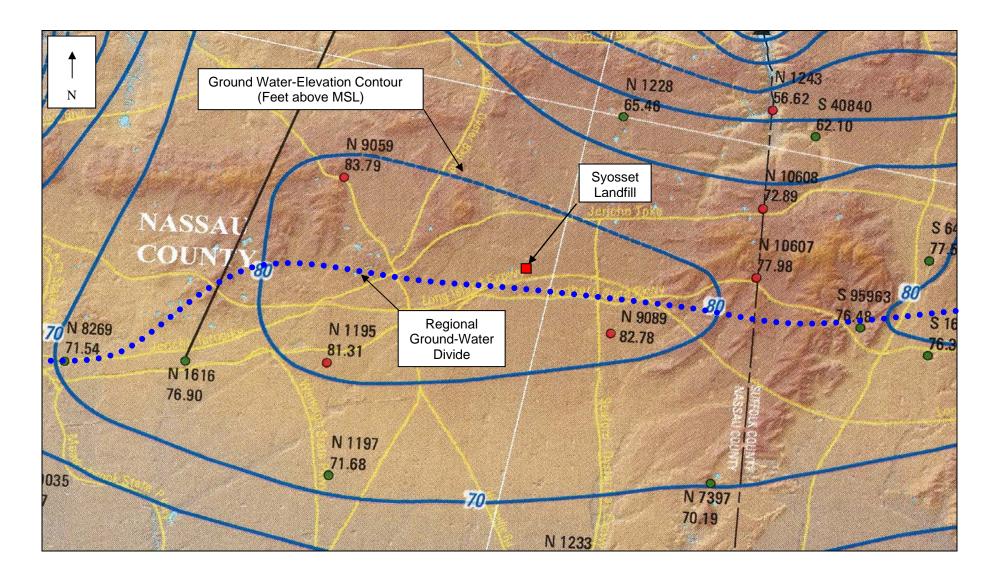
The horizontal hydraulic gradient for the deep zone of the Magothy Aquifer, based on the difference in the water-level elevation in Wells SY-3DD and RW-12D (0.69 feet) and the distance between the wells (900 feet), is approximately 0.0008, which is similar to the horizontal hydraulic gradients in the shallow and intermediate zones of the aquifer. At the time of last year's monitoring round, the horizontal hydraulic gradient in the deep potentiometric zone of the aquifer was slightly lower than in the two shallower zones.

3.2 Vertical Hydraulic Gradients

Vertical hydraulic gradients are an indication of whether vertical ground water-flow directions, in the absence of confining units, are upward, downward or negligible. Vertical hydraulic gradients calculated using the available 2016 water-level data are included in Table 1. A positive value indicates a downward gradient, whereas a negative value indicates an upward gradient. The vertical hydraulic gradients shown in Table 1 indicate that downward gradients predominate, and that the highest-magnitude downward gradients occur between the shallow and intermediate zones of the Magothy Aquifer at On-Site, Downgradient Well Clusters SY-2 and SY-3, and at Off-Site Downgradient Well Cluster PK-10.

A similar-magnitude downward gradient has also typically been observed between the shallow and intermediate zones of the Magothy Aquifer at Well Cluster RB-11. However, gradients could not be calculated for this location in 2016 because water-level data are not available for Wells RB-11S and RB-11I. The vertical hydraulic gradient between the shallow and intermediate zones of the Magothy Aquifer is not calculated for Well Cluster RW-12 because there is no shallow zone well at this location.

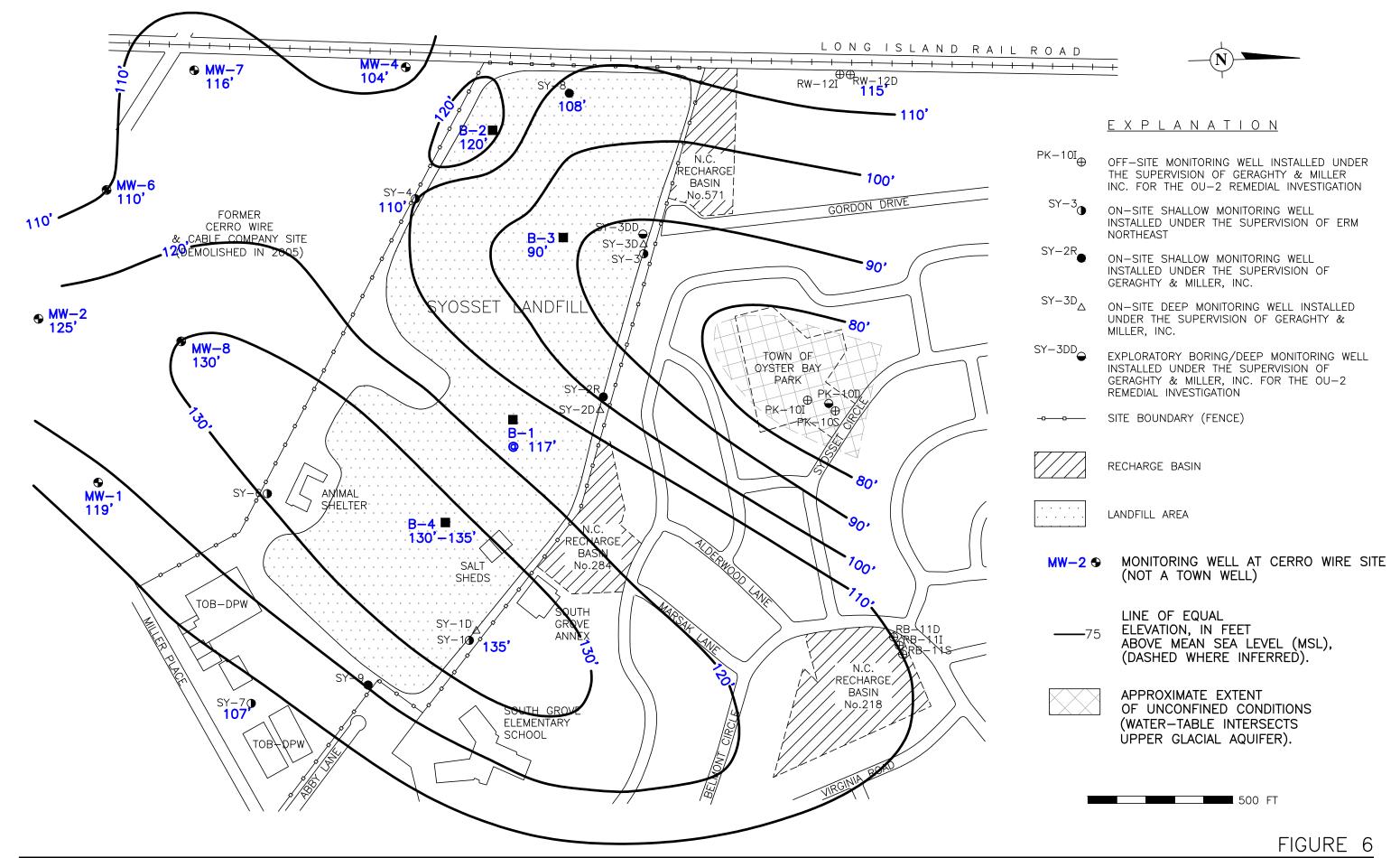
A slightly upward gradient was observed between the shallow and intermediate zones of the Magothy Aquifer at Well Cluster SY-1. During previous monitoring rounds, downward gradients were observed at this location. The anomalous slightly upward gradient observed in 2016 is attributed to a localized response of the shallow zone of the Magothy Aquifer to the below-average recharge from precipitation in 2016.


Vertical hydraulic gradients between the intermediate and deep zones of the Magothy Aquifer are lower in magnitude and varied from downward to slightly upward at the three downgradient well clusters for which data are available.

The predominance of downward vertical hydraulic gradients indicates the potential for ground water to migrate vertically downward in the absence of hydraulic barriers such as clay layers. Comparison of the average vertical gradient between the shallow and intermediate zone wells at each cluster (0.0029) to the horizontal gradient of the shallow zone of the Magothy Aquifer (0.0008) indicates that it is 3.6 times higher. This finding is consistent with the Landfill being located near the regional ground-water divide, as shown in Figure 5. Typically, ground water-flow directions in such areas have a strong downward component. For this reason, assessment of impacts to the intermediate and deep zone wells must also take ground water-flow patterns in the shallow zone of the Magothy Aquifer into consideration.

3.3 Influence of the Buried Glacial Valley on Ground Water-Flow Patterns

Figure 6 shows a generalized structure contour map of the top of Magothy Formation based on the well boring logs from the OU-1 and OU-2 RIs. As shown in Figure 6, a trough in the Magothy Formation begins beneath the western portion of the Landfill and extends off-site to the north-northeast. This feature was formed by erosion of the Magothy Formation by the overlying Upper Glacial Formation, and is known as a buried glacial valley.


Due to differences in the hydraulic properties of Upper Glacial and Magothy Formations, the buried glacial valley influences local ground water-flow patterns. Specifically, the Upper Glacial Formation is more permeable than the Magothy Formation, which is finer-grained and contains localized clay layers that can cause semi-confined conditions. Therefore, in the vicinity of the buried glacial valley, ground water tends to flow out of the Magothy Aquifer and into the Upper Glacial Formation due to the hydraulic pressure differential between the formations. The influence of the buried glacial valley is most pronounced where it intersects the water table. Comparison of the structural contours in Figure 6 to the water-level data in Figure 2 indicates that the buried glacial valley gets

Source: Sheet 1 of USGS Scientific Investigations Map 3326, showing water table-elevation contours during April-May 2013.

FIGURE 5

deeper to the north-northeast and intersects the water table downgradient of the Landfill. This finding explains the converging ground water-flow patterns in the shallow and intermediate zones of the Magothy Aquifer downgradient of the Landfill.

Moreover, it should be noted that as a result of the tendency for horizontal ground water-flow directions in the shallow and intermediate zones of the Magothy Aquifer to converge downgradient of the Landfill, there is potential for contamination that is not associated with the Landfill to migrate into the area downgradient of the Landfill. For example, in 2005, the gasoline service station located on the northwest corner of the intersection of South Oyster Bay Road and Miller Place replaced its underground storage tanks. LKB personnel noted that the excavated soil stockpile exhibited a very strong gasoline odor, indicating that a release had occurred. This gasoline servicestation site could potentially be a source of the gasoline-related VOCs that were previously detected periodically at Well Cluster PK-10. Also during 2005, the former Cerro Wire site, located adjacent to and upgradient of the Landfill, and comprised of a large industrial building, water tower and paved parking areas, was demolished and a large quantity of contaminated soil was reportedly removed. The site was an open excavation for most of 2005, but was eventually re-graded, covered with topsoil and seeded, and is presently vacant land. The changes at the Cerro Wire site in 2005 have resulted in increased recharge directly upgradient of the Landfill and could potentially result in contamination from that site migrating north beneath the Landfill.

RESULTS OF TASK 3 – GROUND-WATER MONITORING

The 2016 ground water-quality monitoring round was performed on December 6th, 7th and 13th, and included the following 11 wells specified in the O&M Manual:

- SY-6 (Upgradient Well);
- SY-2R, SY-2D, SY-3, SY-3D and SY-3DD (On-Site Downgradient Wells); and
- PK-10S, PK-10I, PK-10D, RW-12I and RW-12D (Off-Site Downgradient Wells).

These ground water-monitoring wells were purged and sampled utilizing the modified low-flow procedure. The purge water from the off-site downgradient wells was collected and disposed of at a licensed facility. Daily trip blanks, a field blank, a matrix spike/matrix spike duplicate, and an anonymous duplicate sample from Well SY-3D, labeled "Well SY-7", were also collected.

The samples were analyzed for the following parameters:

- USEPA Target Compound List (TCL) of Volatile Organic Compounds (VOCs),
- New York State Department of Environmental Conservation (NYSDEC) Part 360
 Baseline Field and Leachate Indicator Parameters, and
- Total and Dissolved USEPA Target Analyte List (TAL) inorganic parameters, and
- Total Cyanide.

The ground-water samples were collected by LKB. The water purged from the off-site downgradient wells was collected and disposed of by Eastern Environmental Solutions, Inc. of Manorville, New York. Laboratory analyses were performed by CHEMTECH of Mountainside, New Jersey. The results were validated by Environmental Data Services, Inc. of Newport News, Virginia.

The field parameter readings and validated laboratory results are summarized in Tables 3 through 6. The monitoring results are compared to NYSDEC Part 703 Ambient Water Quality Standards and Guidelines for Class GA (potable) ground water, except for the parameters arsenic and total dissolved solids (TDS). The results for these two parameters are compared to the Federal MCL for arsenic and SMCL for TDS because they are more stringent than the NYSDEC standards for these parameters. The data usability summary reports and validated laboratory data are provided in Appendix B.

4.1 Results of Field Parameter Measurements

Prior to collecting the field parameter readings, a minimum of one well casing volume plus ten percent was purged from each well. Field parameters were then monitored continuously utilizing a YSI Professional Handheld Multiparameter Water Quality Meter equipped with a flow-through cell until the readings stabilized. Turbidity was also monitored with a Hach portable turbidity meter. The final field readings are provided in Table 3. Review of Table 3 indicates noticeable differences for certain field parameters in certain downgradient wells, relative to Well SY-6. The specific differences vary by well and are summarized in the table below:

Well No.	Field Parameter Difference(s) Relative to Upgradient Well SY-6
SY-2R	Lower pH.
SY-2D	Lower DO and pH.
SY-3	Higher temperature; lower DO; negative Eh and ORP.
SY-3D	Higher temperature; lower DO; negative Eh and ORP.
PK-10S	Lower pH.
PK-10I	Lower DO and pH.
PK-10D	Higher conductivity; lower DO and pH.
RW-12I	Lower DO and Eh.
RW-12D	Lower DO and pH.

Most of these differences, while noticeable, actually represent relatively minor ground water-quality impacts; and most occurred in the on-site downgradient wells. Overall, these findings are consistent with previous years' field parameter results. No significant potentially Landfill-related differences were noted for Well SY-3DD.

Standards exist for two of the field parameters – pH and turbidity. The pH of ground water in most of the wells was lower than the 6.5-standard unit range minimum, but these results are attributed to naturally-occurring low-pH of the ground water on Long Island. The turbidity of the ground water in all the wells was less than the 5-NTU limit. Overall, turbidity was slightly lower in the off-site downgradient wells relative to the upgradient well and shallow and intermediate zone on-site downgradient wells.

Table 3
Summary of Field Parameter Monitoring Results
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Downgrad	lient Wells				
Parameter	Units	Quality	Well			On-Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
Temperature	°C		15.4	14.4	15.2	16.8	17.3	15.6	14.9	15.8	15.4	15.0	14.7
Conductivity	μS/cm		319.4	140.1	103.3	110.2	216.9	34.3	134.3	217.0	539.1	212.7	132.2
DO	mg/L		6.47	4.96	0.92	0.13	0.22	8.68	4.28	0.54	0.59	1.46	1.25
pН	SU	6-5-8.5	6.56	<u>5.83</u>	<u>6.26</u>	6.86	6.83	6.51	<u>5.83</u>	<u>6.17</u>	<u>5.74</u>	6.63	<u>6.10</u>
Eh	pHmV		13.2	54.0	30.0	-0.38	-2.0	15.9	54.3	35.3	59.2	9.2	39.2
ORP	mV		128	147	137	-86.1	-24.9	110	185	222	199	227	232
Field Observations	NA		Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,
			No Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor
Turbididty	NTU	5	4.52	4.82	2.71	4.41	1.04	0.40	1.23	1.00	1.70	0.64	1.22

1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.

°C = Degrees Celcius.

 μ S/cm = microSiemens per centimeter.

milligrams per Liter = milligrams per Liter.

SU = Standard Units.

pHmV = pH in milliVolts.

mV = milliVolts.

NA = Not applicable.

NTU = Nephelometric Turbidity Units.

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

-- = No standard or guidance value.

4.2 Results of Volatile Organic Compound (VOC) Analyses

The 2016 VOC results are summarized in Table 4. As shown in Table 4, VOCs were not detected in the upgradient well, Well SY-6. Regarding the on-site downgradient wells, VOCs were not detected in Well SY-2R. VOCs were detected in Well SY-2D and Well Cluster SY-3, but were limited to very low, estimated concentrations of one to three VOCs in each well that are much lower than their respective Class GA ground-water standards. Most of these VOC detections occurred in Wells SY-3 and SY-3D. The VOCs detected in these two wells were the chlorinated solvents cis-1,2-dichloroethene and trichloroethene, and the aromatic hydrocarbon chlorobenzene.

At Off-Site Downgradient Well Cluster PK-10, VOCs were not detected in the shallow zone well, Well PK-10S. VOCs were detected in the two deeper wells, Wells PK-10I and PK-10D, but were limited to relatively low, primarily estimated, concentrations of three to four VOCs in each well. Most of the VOCs detected in these two wells are aromatic hydrocarbons. Which the exception of the 5.6-ug/L concentration of chlorobenzene detected in Well PK-10I, which slightly exceeded the 5-ug/L Class GA ground-water standard, VOC concentrations in these two wells were lower than their respective Class GA ground-water standard or guidance value, as applicable.

At Off-Site Downgradient Well Cluster RW-12, a number of chlorinated solvents and aromatic hydrocarbons were detected in both wells. For the most part, the same VOCs were detected in both wells, however the highest concentration of most of the VOCs occurred in the deep zone well, Well RW-12D. Total VOC concentrations in these two wells were 53.9 ug/L and 96.5 ug/L, respectively. These results represent increases of approximately 32 and 53 percent, respectively, relative to last year's results, but are still consistent with the historical results for these wells.

The concentrations of three VOCs in Well RW-12I (chlorobenzene, 1,2-dichlorobenzene and 1,4-dichlorobenzene) and eight VOCs in Well RW-12D (chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,1-dichloroethane, 1,2-dichloroethane, cis-1,2-dichloroethene and vinyl chloride) were higher than their respective Class GA ground-water standards. However, with the exception of the chlorobenzene detections, which exceeded the 5-ug/L Class GA standard by factors of approximately four and eight in Wells RW-12I and RW-12D, respectively, the magnitudes of the VOC exceedances in these two wells were relatively low.

In summary, the VOC results from the 2016 post-closure monitoring round continue to indicate that the Landfill is not a significant source of VOCs. Specifically, VOC detections in the on-site, downgradient wells were limited to low, estimated concentrations of one to three VOCs in Well SY-2D and Well Cluster SY-3. Moreover, the fact that most of the VOCs detected at Off-Site, Downgradient Well Cluster RW-12 are not present in the on-site downgradient wells indicates that they are not Landfill-related. This finding is consistent with the ground water-flow directions shown in Figures 2 through 4, which indicate that Well Cluster RW-12 is located sidegradient to, rather than directly downgradient of, the Landfill.

Table 4
Summary of Volatile Organic Compound (VOC) Results
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

Analyte		Water ¹	Upgradient					Dow	ngradient	Wells		_		
Allaivie	Units	Quality	Well			On-	Site	2011	. igi aaioi ii	110.10		Off-Site	!	
, mary to	J.III.O	Standard	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-7 ²	SY-3DD	PK-10S	PK-10I			RW-12D
1,1,1-Trichloroethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichlorotrifluoroethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.64 J	3.7	<u>7.9</u>
1,1-Dichloroethene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	ug/L	0.04	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dibromoethane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	ug/L	3	<1	<1	<1	<1	<1	<1	<1	<1	0.45 J	<1	<u>7.1</u>	<u>10.7</u>
1,2-Dichloroethane	ug/L	0.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<u>0.81 J</u>
1,2-Dichloropropane	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	ug/L	3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.8	<u>4.1</u>
1,4-Dichlorobenzene	ug/L	3	<1	<1	<1	<1	<1	<1	<1	<1	1.4	<1	<u>11.5</u>	<u>16</u>
1,4-Dioxane	ug/L		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
2-Butanone	ug/L	50 ^{GV}	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Hexanone	ug/L	50 ^{GV}	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4-Methyl-2-pentanone	ug/L		<1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Acetone	ug/L	50 ^{GV}	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Benzene	ug/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.84 J	0.5 J
Bromochloromethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	ug/L	50 ^{GV}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	ug/L	50 ^{G∀}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	ug/L	5	<1	<1	<1	<1 J	<1 J	<1 J	<1	<1	<1	<1	<1	<1
Carbon disulfide	ug/L	60 ^{GV}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	ug/L	5	<1	<1	<1	0.26 J	0.33 J	0.31 J	<1	<1	5.6	<1	19.9	38.9
Chloroethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1
Chloroform	ug/L	7	<1	<1	<1	<1	<1	<1	0.57 J	<1	<1	4.3	<1	4.7
Chloromethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	ug/L	5	<1	<1	<1	0.32 J	0.4 J	0.36 J	<1	<1	<1	<1	3.3	<u>7.1</u>
cis-1,3-Dichloropropene	ug/L	0.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cyclohexane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	ug/L	50 ^{GV}	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Isopropylbenzene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
m&p-xylenes	ug/L	10*	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Methyl acetate	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	ug/L	10 ^{GV}	<1	<1	<1	<1	<1	<1	<1	<1	0.54 J	<1	<1	<1
Methylcyclohexane	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.24 J	0.26 J	0.55 J
o-xylene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Styrene	ug/L	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrachloroethene	ug/L	5	<1 -1	<1	0.24 J	<1	<1	<1	<1	<1	<1	<1	1.9	1.2
Toluene	ug/L	5 5	<1 -1	<1 -1	<1 -1	<1 -1	<1 -1	<1 -1	<1	<1 -1	<1 -1	<1 -1	<1	<1 -1
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/L	5 0.4	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
Trichloroethene	ug/L ug/L	0.4 5	<1 <1	<1 <1	<1 <1	0.46 J	0.28 J	0.28 J	<1 <1	<1 <1	<1 <1	<1 <1	1.3	1.1
Trichlorofluoromethane	ug/L ug/L	5 5	<1 <1	<1 <1	<1 <1	0.46 J <1	0.26 J <1	0.26 J <1	<1	<1 <1	<1 <1	<1 <1	1.3 <1	1.1 <1
Vinyl chloride	ug/L ug/L	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.3	2.9
		_												
No. of Target VOCs Detected ³ :	out of 52		0/52	0/52	1/52	3/52	3/52	3/52	1/52	0/52	4/52	3/52	11/52	13/52
Total VOC Concentration ⁴ :	ug/L		ND	ND	0.24 J	1.04 J	1.01 J	0.95 J	0.57 J	ND	7.99 J	5.18 J	53.90 J	96.46 J

ug/L = micrograms per Liter.

- 1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.
- 2 = Duplicate sample collected from Well SY-3D.
- 3 = m- and p-xylene counted as one VOC, total excludes total xylenes.
- 4 = Based on all target VOCs detected, including estimated concentrations.
- J = Estimated concentration.
- R = Result qualified as rejected by data validator.
- TIC = Tentatively Identified Compound (not a Target Analyte included in analytical method).

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

- * = Based on 5-ug/L limit for eash isomer.
- ND = None detected.
 - -- = No standard or guidance value.

4.3 Results of NYSDEC Part 360 Leachate Indicator Analyses

The leachate indicator parameters analyzed for included alkalinity, ammonia, BOD₅ (biological oxygen demand), bromide, chloride, color, COD (chemical oxygen demand) total hardness, nitrate, total phenols, sulfate, TDS, TKN (total Kjeldahl nitrogen), and TOC (total organic carbon).

As shown in Table 5, compared to Upgradient Well SY-6, the concentrations of every leachate indicator parameter except bromide, nitrate, total phenols and sulfate were noticeably higher in Wells SY-3 and SY-3D, which monitor the shallow and intermediate zones of the Magothy Aquifer, respectively, at the downgradient Landfill boundary. Elevated levels of leachate-related contaminants were not detected in Well SY-3DD, which monitors the deep zone of the Magothy Aquifer at the downgradient Landfill boundary. At On-Site Downgradient Well Cluster SY-2, only chloride and TDS were present at concentrations significantly higher than in Upgradient Well SY-6.

Comparison of the leachate parameter results for the upgradient and on-site downgradient wells to the Class GA ground-water standards indicates that Landfill-related exceedances in these wells were limited to: chloride and TDS in Wells SY-2R and SY-2D; ammonia, color and TDS in Wells SY-3 and SY-3D; and chloride in Well SY-3D. An exceedance for bromide occurred in the duplicate sample from Well SY-3D, but not in the actual sample, so this exceedance is likely spurious. No exceedances occurred in Upgradient Well SY-6 or On-Site Downgradient Well SY-3DD.

Comparison of the leachate indicator parameter results for the off-site downgradient wells to the Class GA ground-water standards indicates that exceedances were limited to: total phenols in Well PK-10S; ammonia, bromide, chloride and TDS in Well PK-10I; and ammonia, bromide and TDS in Wells RW-12I and RW-12D. No exceedances occurred in Well PK-10D.

Based on comparison of the leachate indicator parameter results for the on-site and off-site downgradient wells, a majority of the parameters detected at elevated concentrations in the on-site downgradient wells were detected at similar concentrations in Off-Site Downgradient Well PK-10I, indicating Landfill-related impacts in this well. However, this comparison also indicates that certain parameters (e.g., alkalinity, ammonia, COD, hardness, nitrate, sulfate, TKN and TOC) were detected at higher concentrations in one or both wells at Well Cluster RW-12 than in the on-site downgradient wells. Moreover, at least one parameter (e.g., chloride) detected at relatively high concentrations in most on-site downgradient wells and Downgradient Off-Site Well PK-10I, was detected at much lower concentrations in Well Cluster RW-12. These disparities, together with the VOC and ground water-flow direction results, suggest that the leachate indicator parameters detected at Well Cluster RW-12 are not Landfill-related.

Table 5
Summary of Leachate Indicator Parameter Results
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Dow	ngradient '	Wells				
Analyte	Units	Quality	Well			On-	Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-7 ²	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
Alkalinity	mg/L		109	29.2	31.9	366	466	474	5.04	9.36	122	20.8	805	101
Ammonia	mg/L	2	0.083 J	0.045 J	0.073 J	<u>10.9 J</u>	<u>16.3 J</u>	<u>15.2 J</u>	0.042 J	0.09 J	<u>5.21</u>	0.067 J	<u>82.5</u>	<u>5.75</u>
BOD5	mg/L		<2 J	<2 J	<2	3.42	3.71	2.35	<2	<2	2	<2	2.73	2.01
Bromide	mg/L	2	1.59	1.51	0.938	1.72	<0.5	<u>2.07</u>	<0.5	0.912	<u>2.55</u>	1.32	<u>6.99</u>	<u>2.35</u>
Chloride	mg/L	250	4.94	<u>398</u>	<u> 266</u>	199	<u>549</u>	<u>541</u>	4.75	11.8	<u>556</u>	119	147	210
COD	mg/L		<5	<5	<5	5.76	5.76	5.76	<5	<5	9.76	<5	52.8	10.8
Color	cu	15	5 J	<5 J	<5	<u>40</u>	<u>60</u>	<u>40</u>	<5	<5	<5	<5	<5	<5
Hardness, Total	mg/L		156	105	76.1	166	192	187	6.76 J	39.4	181	99.2	357	273
Nitrate	mg/L	10	1.54 J	1.57 J	1.04	<0.113	<0.113	<0.113	0.79	2.9	<0.113	4.06	<0.113	9.88
Phenols, Total	mg/L	0.001	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<u>0.011 J</u>	< 0.05	<0.05	< 0.05	< 0.05
Sulfate	mg/L	250	42.3	34.3	10.7	42.2	47.4	47.7	1.95	18.2 J	35.9 J	20.4 J	71 J	199 J
TDS	mg/L	500*	198	<u>787</u>	<u>544</u>	<u>538</u>	<u>1,138</u>	<u>1,209</u>	28	86	<u>1,175</u>	307	<u>974</u>	<u>805</u>
TKN	mg/L		0.338 J	0.354 J	0.228 J	10.8	15.8	15.1	0.158 J	0.24 J	4.82	0.196 J	77	5.66
TOC	mg/L		2.01	1.94	4.23	4.23	4.91	6.4	0.311 J	0.522 J	2.41 J	1.1 J	19.4 J	4.42 J

- 1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.
- 2 = Duplicate sample collected from Well SY-3D.
- * = TDS limit is Federal SMCL, which is more stringent than the 1,000-mg/L NYSDEC limit for Class GA ground water.

mg/L = milligrams per Liter.

cu = color units.

J = Estimated concentration.

BOD5 = Biological oxygen demand, 5-day.

COD = Chemical oxygen demand.

TDS = Total dissolved solids.

TKN = Total Kjeldhal nitrogen.

TOC = Total organic carbon.

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

-- = No standard or guidance value.

Taken as a whole, the 2016 leachate indicator parameter results indicate that the Landfill continues to be a relatively minor source of the Part 360 leachate-related contaminants.

4.4 Results of USEPA Target Analyte List (TAL) and Cyanide Analyses

The samples were analyzed for both total and dissolved TAL parameters, and total cyanide. The RCRA (Resource Conservation and Recovery Act) and PPL (Priority Pollutant List) metals, which are a subset of 14 of the more toxic metals, are included in the TAL parameters. The results are summarized in Table 6, and the RCRA and PPL metals are identified with asterisks.

As shown in Table 6, of the 24 parameters analyzed for total concentrations, six (antimony, cyanide, selenium, silver, thallium and vanadium) were not detected. Of the 18 detected parameters, seven (aluminum, barium, cadmium, cobalt, copper, lead and nickel), were only detected sporadically and/or at low concentrations less than their respective Class GA standard or guidance value. The highest concentrations of copper and one other parameter (zinc) were detected in the upgradient well. The remaining 10 detected TAL parameters include four RCRA/PPL metals (arsenic, beryllium, chromium and mercury), and calcium, iron, magnesium, manganese, potassium and sodium. The results for these 10 parameters are discussed below.

Arsenic was detected in On-Site Downgradient Wells SY-3 and SY-3D at total and dissolved concentrations higher than the 10-ug/L federal MCL. Comparison of the total and dissolved results for these two wells indicates that the arsenic is in dissolved form. The only other detections of arsenic occurred in Off-Site Downgradient Wells PK-10D, RW-12I and RW-12D, and were limited to low, estimated concentrations that are much lower than the federal MCL.

Beryllium was only detected in On-Site Downgradient Well SY-2R, at total and dissolved concentrations approximately 2.5 times higher than the 3-ug/L Class GA guidance value. Comparison of the total and dissolved results for this well indicates that the beryllium is in dissolved form.

Chromium was detected in the unfiltered sample from Off-Site Downgradient Well PK-10D at a concentration slightly higher than the 50-ug/L Class GA standard, but was only detected at a much lower concentration in the filtered sample from this well. As such, the exceedance for chromium in the unfiltered sample appears to be sediment-related. Chromium was also detected in several other downgradient wells, but only at low, primarily estimated, concentrations lower than the Class GA ground-water standard.

Mercury was detected at a concentration slightly higher than the 0.7-ug/L Class GA ground-water standard in both the unfiltered and filtered samples from Off-Site Downgradient Well PK-10D. Comparison of the total and dissolved mercury results for this well indicates that approximately 95 percent of the mercury is in dissolved form. This detection is attributed to natural-occurring mercury rather than the Landfill because

Table 6
Summary of Total and Dissolved Metals Results
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Dow	ngradient \	Vells				
Analyte	Units	Quality	Well			On-	Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-7 ²	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
					TOT	AL META	ALS RES	ULTS						
Aluminum	ug/L	-	20.9 J	244	130 J	<200	<200	<200	<200	<200	<200	<200	<200	<200
Antimony*	ug/L	3	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
Arsenic*	ug/L	10**	<10.0	<10.0	<10.0	44.0	<u>11.9</u>	<u>16.6</u>	<10.0	<10.0	<10.0	4.1 J	4.3 J	5.4 J
Barium*	ug/L	1,000	87.8 J	97.7 J	75.8 J	140 J	187 J	181 J	<200	15.6 J	60.1 J	38.7 J	63.1 J	71.9 J
Beryllium*	ug/L	3 ^{GV}	<5.0	<u>7.4</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium*	ug/L	5	<5.0	<5.0	<5.0	1.0 J	0.74 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	ug/L	-	43,000	32,100	21,700	40,300	53,600	52,100	1,690 J	11,700	49,200	26,200	75,400	71,700
Chromium*	ug/L	50	<10.0	2.2 J	<10.0	<10.0	<10.0	<10.0	6.2 J	1.2 J	59.2	14.3	<10.0	1.7 J
Cobalt	ug/L	-	<50.0	12.0 J	<50.0	<50.0	17.6 J	17.3 J	<50.0	<50.0	61.9	<50.0	<50.0	<50.0
Copper*	ug/L	200	35.1	<25.0	<25.0	10.1 J	5.6 J	4.1 J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Cyanide	ug/L	200	<10.0 J	<10.0 J	<10.0	<10.0	<10.0	<10.0	<10.0					
Iron	ug/L	300	<u>672</u>	126	69.0 J	<u>33,600</u>	22,500	<u>21,800</u>	25.5 J	36.4 J	297	102	67.6 J	16.6 J
Lead*	ug/L	25	<10.0	<10.0	3.7 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Magnesium	ug/L	35,000 ^{GV}	11,700	5,960	5,330	15,800	14,200	13,700	616 J	2,470 J	14,200	8,210	40,900	22,900
Manganese	ug/L	300	43.5	33.9	962	4,240	904	<u>878</u>	<15.0	10.9 J	<u>1,800</u>	20.0	58.7	14.1 J
Mercury*	ug/L	0.7	<0.20	<0.20	< 0.20	<0.20	< 0.20	< 0.20	<0.20	<0.20	0.33	0.92	0.028 J	0.031 J
Nickel*	ug/L	100	6.4 J	37.0 J	<40.0	<40.0	<40.0	<40.0	<40.0	4.0 J	29.5 J	30.6 J	8.1 J	<40.0
Potassium	ug/L	-	<5,000	2,870 J	5,510	14,300	23,500	22,800	<5,000	<5,000	17,000	<5,000	80,000	3,720 J
Selenium*	ug/L	10	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0
Silver*	ug/L	50	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium	ug/L	20,000	6,160	232,000	<u>157,000</u>	115,000	315,000	<u>306,000</u>	3,330 J	5,480	288,000	<u>49,600</u>	<u>135,000</u>	<u>132,000</u>
Thallium*	ug/L	0.5	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Vanadium	ug/L	-	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
Zinc*	ug/L	2,000 ^{GV}	1,660	45.2 J	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
					DISSO	LVED ME	ETALS R	ESULTS						
Aluminum	ug/L	-	<200	215	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
Antimony*	ug/L	3	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
Arsenic*	ug/L	10**	<10.0	<10.0	<10.0	<u>44.3</u>	<u>16.0</u>	<u>16.5</u>	<10.0	<10.0	<10.0	4.9 J	<10.0	<10.0
Barium*	ug/L	1,000	85.8 J	100 J	75.3 J	137 J	188 J	186 J	<200	15.8 J	61.3 J	39.7 J	64.9 J	71.4 J
Beryllium*	ug/L	3 ^{GV}	<5.0	<u>7.9</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium*	ug/L	5	<5.0	<5.0	<5.0	0.97 J	<5.0	0.87 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	ug/L	-	42,000	33,500	22,100	39,200	53,800	53,900	1,660 J	11,600	49,800	27,000	76,900	71,300
Chromium*	ug/L	50	<10.0	2.1 J	<10.0	<10.0	<10.0	2.4 J	<10.0	4.1 J	11.4	1.8 J	<10.0	<10.0
Cobalt	ug/L	-	<50.0	12.0 J	<50.0	<50.0	17.9 J	17.6 J	<50.0	<50.0	60.1	<50.0	<50.0	<50.0
Copper*	ug/L	200	30.6	<25.0	<25.0	7.5 J	5.0 J	5.4 J	<25.0	<25.0	<25.0	<25.0	3.7 J	<25.0
Iron	ug/L	300	251	15.8 J	19.3 J	<u>30,800</u>	<u>22,700</u>	<u>22,600</u>	<100	76.3 J	70.8 J	15.8 J	65.9 J	<100
Lead*	ug/L	25	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Magnesium	ug/L	35,000 ^{GV}	11,400	6,180	5,270	15,600	14,200	14,200	633 J	2,460 J	14,440	8,450	41,800	22,900
Manganese	ug/L	300	40.8	33.5	<u>915</u>	<u>4,040</u>	<u>916</u>	<u>914</u>	<15.0	13.4 J	<u>1,840</u>	18.3	60.1	13.7 J
Mercury*	ug/L	0.7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.26	<u>0.87</u>	0.041 J	0.026 J
Nickel*	ug/L	100	6.0 J	38.1 J	<40.0	<40.0	<40.0	9.7 J	<40.0	18.6 J	34.4 J	15.3 J	12.1 J	<40.0
Potassium	ug/L	-	<5,000	2,990 J	5,410	13,800	23,600	23,500	<5,000	<5,000	17,200	<5,000	82,000	3,710 J
Selenium*	ug/L	10 50	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0
Silver*	ug/L	50	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium Thallium*	ug/L	20,000	6,060	237,000	158,000	112,000	319,000	317,000	3,520 J	5,490	291,000	<u>51,300</u>	139,000	131,000
Thallium* Vanadium	ug/L	0.5	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0	<25.0 <50.0
	ug/L	2,000 ^{GV}												
Zinc*	ug/L	∠,∪∪∪	1,550	56.7 J	<60.0	<60.0	<60.0	<60.0	<60.0	45.1 J	<60.0	<60.0	<60.0	<60.0

ug/L = micrograms per Liter.

- 1 = NYSDEC Part 703 Ambient Water Quality Standard or Guidance Value (GV) for Class GA (Potable) ground water.
- 2 = Duplicate sample collected from Well SY-3D.
- J = Estimated concentration.

Bold & Underlined = Exceeds ground water-quality standard or guidance value.

- * = RCRA/PPL metal.
- ** = USEPA MCL, revised downward from 50 ug/L effective January 2006. NYSDEC TOGS 1.1.1 Ambient Water Quality Standard is 25 ug/L.

mercury has not been detected in any of the on-site wells and elevated levels of contaminants known to be associated with the Landfill were not detected in this well. The presence of mercury at similar concentrations in the stratigraphic equivalent of the Magothy Formation in New Jersey has been well documented in studies by the United States Geological Survey (Refs: USGS Open-File Report 95-475, and USGS Water-Resources Investigations Report 00-4230). Mercury was also detected at low, primarily estimated, concentrations in the other off-site intermediate and deep zone wells. The mercury in these wells was also primarily in dissolved form and attributed to naturally-occurring mercury.

Calcium, iron, magnesium, manganese, potassium and sodium were each detected in one or more downgradient wells at concentrations noticeably higher than in Upgradient Well SY-6. Except for sodium, which had a more widespread occurrence, the highest concentrations of these parameters occurred in Wells SY-3, SY-3D, PK-10I, RW-12I and/or RW-12D.

Comparison of the results for the on-site and off-site downgradient wells indicates that Landfill-related off-site impacts are minimal. For example, arsenic was only detected at significant concentrations in two on-site downgradient wells. The highest concentrations of iron, manganese and sodium also occurred in on-site downgradient wells, whereas the highest concentrations of calcium, magnesium and potassium occurred in Off-Site Downgradient Well RW-12I. The differences in the results for the on-site downgradient wells and Off-Site Downgradient Well RW-12I suggest that certain parameters detected at Well Cluster RW-12 are not Landfill-related. Review of Table 6 also indicates that overall, the detected TAL parameters were present at similar concentrations in unfiltered and filtered samples. This indicates that the detected TAL parameters are primarily present in ground-water in dissolved form.

Taken as a whole, the TAL parameter and cyanide results indicate that the Landfill continues to be a relatively minor source of certain metals/inorganic parameters, but is not a significant source of the RCRA/PPL metals. The only Landfill-related exceedances for the RCRA/PPL metals in 2016 were for arsenic in Wells SY-3 and SY-3D, and beryllium in Well SY-2R. These exceedances appear to be limited to the downgradient landfill boundary as exceedances for these parameters did not occur in the deeper on-site downgradient wells at these two clusters, or in the off-site downgradient wells.

COMPARISON OF CURRENT MONITORING RESULTS TO PREVIOUS MONITORING RESULTS

The 2016 ground water-monitoring results were compared to previous post-closure monitoring results, and the OU-1 RI and the OU-2 RI results, to determine if ground water-flow patterns and/or quality conditions have changed significantly since the Landfill was capped. This entailed 1) comparison of the current and historical post-closure water-level data, 2) comparison of the current and previous overall results for each parameter group, 3) comparison, on a well-to-well basis, of the current and previous results for Landfill-related exceedances of the ground-water standards or guidance values, and 4) trend analyses for the leachate indicator parameters that have historically been detected on a regular basis.

5.1 Temporal Variation in Water-Level Elevations

The 2016 water-level results are compared to post-closure water-level data collected since 2003 in Table 7. Review of Table 7 indicates that in December 2016 water-level elevations were, on average: 1.75 feet higher relative to 2003 data, -0.23 feet lower relative to 2005 data, -5.66 feet lower relative to the 2006 data, -6.89 feet lower relative to the 2007 data, -6.47 feet lower relative to the 2008 data, -5.60 feet lower relative to the 2019 data, -8.20 feet lower relative to the 2010 data, -9.49 feet lower relative to the 2011 data, -7.42 feet lower relative to the 2012 data, -6.01 feet lower relative to the 2013 data, -5.55 feet lower relative to the 2014 data, and -3.78 feet lower relative to the 2015 data. These changes are attributed to natural temporal variations in recharge from precipitation, such as the below-normal precipitation since the last monitoring round and the increased recharge directly upgradient of the Landfill since 2005 resulting from the demolition work at the former Cerro Wire property.

Comparison of the current ground water-contour maps (Figures 2, 3 and 4) to previous post-closure ground water-contour maps indicates that, overall, ground water-flow directions are similar. One notable difference is that during the period from 2005 through 2008, ground water-flow directions in the shallow and intermediate zones of the Magothy Aquifer showed less convergence downgradient of the Landfill. This difference is attributed to the fact that the water-table elevation rose at a faster than normal rate during that period, which temporarily masked the influence of the buried glacial valley on ground water-flow patterns. The other notable difference is that in 2011 and 2012, water-level contours in the shallow and intermediate zones of the aquifer beneath the eastern half of the Landfill extended further south (upgradient) than is typically observed. This difference is attributed to the above-normal infiltration from the hurricanes and nor'easters that occurred earlier in these years.

Table 7
Changes in Ground-Water Elevations
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

Well	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.	Δ Elev.
Number	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	WL Elev.	'15' to '16	'14 to '16	'13 to '16	'12 to '16	'11 to '16	'10 to '16	'09 to '16	'08 to '16	'07 to '16	'06 to '16	'05 to '16	'03 to '16
On-Site W	<u>'ells</u> :																								
SY-1	77.63	79.59	84.87	86.16	85.87	84.63	87.04	88.63	86.20	85.02	84.86	82.78	78.74	-4.04	-6.12	-6.28	-7.46	-9.89	-8.30	-5.89	-7.13	-7.42	-6.13	-0.85	1.11
SY-1D	77.16	79.27	84.62	85.87	85.32	84.48	86.94	88.34	86.13	84.89	84.47	82.63	78.79	-3.84	-5.68	-6.10	-7.34	-9.55	-8.15	-5.69	-6.53	-7.08	-5.83	-0.48	1.63
SY-2R	76.65	78.62	84.06	85.35	84.73	83.91	86.48	87.95	85.81	84.36	83.95	82.15	78.30	-3.85	-5.65	-6.06	-7.51	-9.65	-8.18	-5.61	-6.43	-7.05	-5.76	-0.32	1.65
SY-2D	76.35	78.41	83.31	85.02	84.57	83.61	86.30	87.67	85.60	84.15	83.64	81.92	78.14	-3.78	-5.50	-6.01	-7.46	-9.53	-8.16	-5.47	-6.43	-6.88	-5.17	-0.27	1.79
SY-3	76.77	78.46	84.09	85.27	84.85	83.98	86.70	88.16	85.97	84.35	84.10	82.22	78.36	-3.86	-5.74	-5.99	-7.61	-9.80	-8.34	-5.62	-6.49	-6.91	-5.73	-0.10	1.59
SY-3D	76.04	77.94	83.53	84.74	84.28	83.46	86.14	87.44	85.47	83.86	83.28	81.67	77.92	-3.75	-5.36	-5.94	-7.55	-9.52	-8.22	-5.54	-6.36	-6.82	-5.61	-0.02	1.88
SY-3DD	75.43	77.67	83.24	84.41	84.05	83.25	85.91	86.94	85.22	83.59	82.82	81.31	77.66	-3.65	-5.16	-5.93	-7.56	-9.28	-8.25	-5.59	-6.39	-6.75	-5.58	-0.01	2.23
SY-4	78.04	79.71	84.80	86.24	85.69	84.91	87.40	90.19	86.79	85.55	85.11	83.15	79.31	-3.84	-5.80	-6.24	-7.48	-10.88	-8.09	-5.60	-6.38	-6.93	-5.49	-0.40	1.27
SY-6	77.92	79.98	84.96	86.40	85.88	85.13	87.43	87.84	85.63	85.65	85.16	83.20	79.35	-3.85	-5.81	-6.30	-6.28	-8.49	-8.08	-5.78	-6.53	-7.05	-5.61	-0.63	1.43
SY-7	NA	NA	NA	86.83	86.27	85.48	87.71	89.21	86.82	85.91	85.90	83.64	79.88	-3.76	-6.02	-6.03	-6.94	-9.33	-7.83	-5.60	-6.39	-6.95	NA	NA	NA
SY-8	77.34	78.62	84.40	98.91*	85.28	97.62*	87.02	109.06*	86.23	84.55	84.61	82.56	78.60	-3.96	-6.01	-5.95	-7.63	NA	-8.42	NA	-6.68	NA	-5.80	-0.02	1.26
SY-9	NA	NA	86.21	87.57	87.16	86.31	88.60	88.73	86.44	85.53	85.13	83.11	NM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Off-Site W	<u>'ells</u> :																								
PK-10S	75.84	77.95	83.38	84.52	84.12	83.24	85.98	87.20	85.31	83.7	83.22	81.46	77.77	-3.69	-5.45	-5.93	-7.54	-9.43	-8.21	-5.47	-6.35	-6.75	-5.61	-0.18	1.93
PK-10I	75.31	77.47	83.01	84.12	83.78	82.89	85.57	86.69	84.88	83.27	82.67	81.00	77.31	-3.69	-5.36	-5.96	-7.57	-9.38	-8.26	-5.58	-6.47	-6.81	-5.70	-0.16	2.00
PK-10D	75.32	77.45	83.04	84.10	83.72	82.86	85.55	86.63	84.86	83.25	82.57	80.97	77.32	-3.65	-5.25	-5.93	-7.54	-9.31	-8.23	-5.54	-6.40	-6.78	-5.72	-0.13	2.00
RW-12I	74.99	77.07	82.57	83.65	83.32	82.5	85.28	86.32	84.64	82.90	82.21	80.70	77.04	-3.66	-5.17	-5.86	-7.60	-9.28	-8.24	-5.46	-6.28	-6.61	-5.53	-0.03	2.05
RW-12D	74.66	76.76	82.46	83.57	83.29	82.46	85.25	86.27	84.58	82.82	82.06	80.59	76.97	-3.62	-5.09	-5.85	-7.61	-9.30	-8.28	-5.49	-6.32	-6.60	-5.49	0.21	2.31
RB-11S	76.71	78.57	83.85	85.16	85.28	83.78	86.33	87.65	85.4	84.04	83.91	81.95	NM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
RB-11I	NA	77.58	82.88	84.20	83.82	82.84	85.48	86.61	84.74	83.22	82.56	80.99	NM	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
RB-11D	75.55	77.74	83.26	84.34	83.95	83.07	85.64	86.67	84.87	83.32	82.6	81.16	77.47	-3.69	-5.13	-5.85	-7.40	-9.20	-8.17	-5.60	-6.48	-6.87	-5.79	-0.27	1.92
												Α	verages:	-3.78	-5.55	-6.01	-7.42	-9.49	-8.20	-5.60	-6.47	-6.89	-5.66	-0.23	1.75

WL Elev. - Water-level elevation, in feet above Mean Sea Level.

 Δ Elev. - Change in water-level elevation, in feet.

* - These water-level data for Well SY-8 appear to be anomalous, and were not used.

NM - Not measured.

NA - Not available.

5.2 Temporal Variation in Ground-Water Quality

The 2016 ground water-quality results are also consistent with the previous post-closure monitoring results and the OU-1 and OU-2 RI results; and continue to indicate that the Landfill is not a significant source of VOCs or toxic metals, but that relatively minor Landfill-related impacts are present in Off-Site Downgradient Well PK-10I. Moreover, based on comparison of the results for on-site and off-site wells, and ground water-flow directions, the elevated levels of VOCs and certain leachate indicator and inorganic parameters at Well Cluster RW-12 do not appear to be Landfill-related. The gasoline-related VOCs detected in Well PK-10S in 2003 and 2008 were not detected in 2016, although the chlorobenzene concentration in this well did increase relative to last year. Semivolatile organic compounds, pesticides and polychlorinated biphenyls were not detected during the July 2003 initial (baseline) post-closure monitoring round, and with USEPA approval samples are no longer collected and analyzed for these parameters.

The 2016 total VOC results are compared to previous results in Table 8. Review of Table 8 indicates that relative to 2015, total VOC concentrations were similar or slightly lower in every well except Off-Site Downgradient Wells PK-10I, RW-12I and RW-12D. In these three wells, total VOC concentrations increased relative to 2015 but are still consistent with the historical results for these wells. Overall, total VOC concentrations in the downgradient wells continue to exhibit stable or decreasing trends. Moreover, no exceedances of a VOC ground water-quality standard or guidance value has occurred in an on-site well since 2003.

The 2016 exceedances for leachate indicator parameters are compared to previous exceedances in Table 9. Review of Table 9 indicates that these exceedances were similar to last year. Overall, the parameters for which exceedances are noted have been stable or decreasing over time in every well. This finding indicates that, with respect to exceedances of the ground-water standards and guidance values for leachate indicator parameters, ground water-quality conditions downgradient of the Landfill have been relatively consistent since 1993. Moreover, the relatively small number of parameters listed in Table 9 demonstrates that the Landfill is not a significant source of Part 360 leachate indicator parameters at concentrations exceeding the Class GA ground water-quality standards or guidance values.

With respect to metals/inorganic parameters, the exceedances noted in the <u>filtered</u> samples from each well since 1993 are compared in Table 10. The results for the filtered samples are utilized because LKB noted that there were marked differences in the total results versus the dissolved results for certain samples collected during the OU-2 RI. This most likely was due to the presence of entrained sediment in the unfiltered samples as they were not collected utilizing a low-flow method. For this reason, only the results for the filtered samples are compared.

Review of Table 10 indicates that the overall distribution of exceedances for dissolved metals/inorganic parameters is similar for all 13 post-closure monitoring rounds since 2003, particularly in the off-site downgradient wells. Taken as a whole, the results of this

Table 8
Comparison of Current Total VOC Results to Previous Results
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

\A/all	Dec. 1993	Jul. 2003	Dec. 2005	Dec. 2006	Dec. 2007	Dec. 2008	Nov. 2009	Dec. 2010	Nov. 2011	Dec. 2012	Dec. 2013	Sept. 2014	Dec. 2015	Dec. 2016
Well	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC						
Number	Results	Results	Results	Results	Results	Results	Results	Results						
						U	pgradient W	/ell						
SY-6	0.0	3.6	1.2	1.4	0.0	0.0	0.65	0.5	1.8	0.4	0.0	0.0	0.5	0.0
						On-Site	Downgradie	ent Wells						
SY-2R	0.6	3.6	0.0	0.2	0.0	4.2	0.0	0.0	0.0	0.0	0.72	0.0	0.0	0.0
SY-2D	7.9	2.8	4.9	3.9	2.1	1.5	0.0	0.0	0.3	0.0	0.2 / 0.0*	0.0	0.0	0.24
SY-3	10.7	23.9	0.7	1.6	5.5	74	1.3	1.8	4.5 / 0.8*	0.0	1.26	0.0	0.74	1.04
SY-3D	11.4	20.9	6	3.8	3.9	2.2	1.9	8.0	2.9	0.7 / 0.0*	0.42	0.0	1.58	1.01 / 0.95*
SY-3DD	0.0	10	0.0	0.6	0.0	0.0	1.9	11.2	2.9	0.44	0.0	0.0	2.03	0.57
						Off-Site	Downgradie	ent Wells						
PK-10S	13.9	218	0.3	0.5	0.0	102	0.5	0.0	0.0	0.0	0.0	0.0	1.1	0.0
PK-10I	15.6	33.4	17	15	11	13.6	7.7	5.3	3.4	2.7	4.34	2.2	4.3	7.99
PK-10D	6.5	21.8	1.8	2.0	3.1	10.2	5.1	5.4	4.4	3.9	1.69	2.7	4.27	5.18
RW-12I	260	154	134	88	72.6	72.2	62.4	66.4	53.1	69.5	62.5	30.7	41.0	53.90
RW-12D	31.9	200	111	73	65.8	87.6	60.8	41.3	64.0	80.5	64.4	34.8	63.2	96.46

Results are in units of ug/L.

Totals include estimated concentrations, totals for 2003-2010 include TICs.

^{* =} Results for duplicate sample.

Table 9
Comparison of Current Leachate Indicator Parameter Exceedances to Previous Exceedances
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

Well Number	Exceedances In July/Dec.'93	Exceedances In July 2003	Exceedances In Dec. 2005	Exceedances In Dec. 2006	Exceedances In Dec. 2007	Exceedances In Dec. 2008	Exceedances In Nov. 2009	Exceedances In Dec. 2010	Exceedances In Nov. 2011	Exceedances In Dec. 2012	Exceedances In Dec. 2013	Exceedances In Sept. 2014	Exceedances In Dec. 2015	Exceedances In Dec. 2016
							Upgradient	Well						
SY-6	None Noted	Color	None Noted	None Noted	None Noted	None Noted	Phenols	Phenols	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted
						On	-Site Downgra	dient Wells						
SY-2R	Chloride and TDS	Color	Bromide (Slight)	Chloride and TDS	Chloride and TDS	Bromide Chloride and TDS	Chloride and TDS	None Noted	None Noted	Chloride and TDS	None Noted	Chloride and TDS	Chloride Phenols and TDS	Chloride and TDS
SY-2D	Ammonia	Ammonia	Ammonia	Ammonia (Very Slight)	Ammonia (Very Slight)	None Noted	None Noted	TDS	Chloride and TDS	Chloride and TDS	Chloride and TDS	Chloride and TDS	Chloride Phenols and TDS	Chloride and TDS
SY-3	Ammonia Chloride and TDS	Ammonia Chloride Color and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia and TDS	Ammonia and Color	Ammonia Color and TDS	Ammonia Color, Phenols and TDS	Ammonia Color and TDS	Ammonia Color and TDS	Ammonia Color and TDS	Ammonia, Color Phenols and TDS	Ammonia, Color and TDS
SY-3D	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride, Color and TDS	Ammonia Chloride, Color and TDS	Ammonia Chloride Color, Phenols and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color, Phenols and TDS	Ammonia Chloride Color and TDS
SY-3DD	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted	None Noted	None Noted	None Noted
	-				1	Off	-Site Downgra	dient Wells	1					1
PK-10S	Sulfate*	Color	None Noted	None Noted	None Noted	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	Phenols
PK-10I	Ammonia Chloride and TDS	Ammonia Color and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride Phenols and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS
PK-10D	None Noted	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted	Phenols	None Noted
RW-12I	Ammonia	Ammonia Bromide and TDS	Ammonia and Color	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide Phenols and TDS	Ammonia Bromide Phenols and TDS	Ammonia Bromide and TDS	Ammonia, Color Phenols and TDS	Ammonia Bromide and TDS
RW-12D	Ammonia and TDS	Ammonia and TDS	Ammonia Color and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia Pheniols and TDS	Ammonia and TDS	Ammonia Phenols and TDS	Ammonia and TDS	Ammonia Bromide and TDS

^{* =} Not Landfill-related.

Table 10
Comparison of Filtered Sample Inorganic Parameter Exceedances to Previous Exceedances
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

Well	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances
Number	In July/Dec.'93	In July 2003	In Dec. 2005	In Dec. 2006	In Dec. 2007	In Dec. 2008	In Nov. 2009	In Dec. 2010	In Nov. 2011	In Dec. 2012	In Dec. 2013	In Sept. 2014	In Dec. 2015	In Dec. 2016
Upgradient Well														
SY-6	Sodium	None Noted	Iron	Iron	Iron and Zinc	Iron and Zinc	Iron and Zinc	Zinc	Antimony and Zinc	Zinc	None Noted	Zinc	Iron and Zinc	None Noted
On-Site Downgradient Wells														
SY-2R	Iron and Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium and Thalliun	Sodium	Antimony and Sodium	Sodium	Sodium	Sodium	Beryllium, Nickel and Sodium	Beryllium and Sodium
SY-2D	Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Antimony Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium
SY-3	Antimony Arsenic, Iron Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Iron Manganese and Sodium	Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Antimony Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium
SY-3D	Iron Magnesium Manganese and Sodium	Magnesium Manganese and Sodium	Manganese and Sodium	Iron Magnesium Manganese and Sodium	Iron Magnesium Manganese and Sodium	Arsenic, Iron Magnesium Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Antimony, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium
SY-3DD	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Thallium	None Noted
						Off-Site	e Downgradier	nt Wells	•			•		
PK-10S	Iron and Sodium	None Noted	Selenium (slight)	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted
PK-10I	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium
PK-10D	Nickel*	Nickel*	Mercury* and Nickel*	Nickel* and Sodium (slight)	Mercury* and Sodium (slight)	Mercury* and Sodium (slight)	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury*, Iron and Sodium	
RW-12I	Sodium	Sodium	Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium Sodium and Thallium	Iron Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium
RW-12D	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium

The 2003 iron results were qualified as rejected by data validator. The 2003 iron concentrations in Wells SY-3, SY-3D, RW-12I and RW-12D likely exceeded the limit but are not listed above. Prior to 2006, the limit for arsenic was 25 ug/L. In 2006 it was lowered to 10 ug/L (new MCL). The 2003 arsenic concentrations in Wells SY-3 and SY-3D exceeded the current limit.

^{* =} Not Landfill-related

comparison indicate that the Landfill is not a significant source of the most toxic metals, and is only a relatively minor source of the other metals/inorganic parameters at concentrations exceeding the Class GA ground-water standards and guidance values.

The mercury detected in Well PK-10D in 2016 is not Landfill-related because mercury has not been detected in any of the on-site wells, and in general parameters attributed with the Landfill have not been detected at elevated concentrations in Well PK-10D. Moreover, as noted previously, mercury is known to occur naturally in the stratigraphic equivalent of the Magothy Formation in New Jersey based on a study by the United States Geological Survey.

5.3 Results of Trend Analyses

Trend analyses were performed to further assess post-closure changes in ground water-quality conditions. The trend analyses were performed for nine NYSDEC Part 360 leachate indicator parameters that have been detected on a relatively consistent basis during the post-closure monitoring rounds. A series of nine graphs showing the trends for each parameter in all wells from 2003 through 2016 is provided in Appendix C. The 2003 through 2016 results for these nine parameters are summarized in Table 11. The earlier results from the 1988 OU-1 RI ground water-monitoring events and the 1993 OU-2 RI ground water-monitoring events, if available for a parameter and/or well, are also included in Table 11. Table 11 also identifies long-term trends (based on all available data) and trends since 2005 (to differentiate changes that may be related to the 2005 demolition work at the upgradient former Cerro Wire property) for each parameter and well, and summarizes the numbers of parameters with flat, decreasing or increasing trends in each well for both time frames.

Review of the 2003 to 2016 trend graphs in Appendix C, and the Long-Term Trend Summary in Table 11, indicates that over the long-term, a majority of the parameters in a majority of the wells exhibit flat or decreasing trends. In fact, only Well RW-12I has more parameters with increasing trends than flat and decreasing trends combined over the long-term. This distinction is further indication that ground water-quality conditions at this off-site downgradient location are not Landfill-related.

Review of the Trend Since 2005 Summary in Table 11 shows that since 2005, no wells have more parameters with increasing trends than flat or decreasing trends combined. Based on this finding, the short-term impacts previously attributed to the increased recharge associated with the demolition work at the former Cerro Wire property in 2005 have dissipated, as predicted in the 2008 Report, and ground-water quality conditions downgradient of the Landfill continue to be stable or improving over time.

Table 11
Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

(Page 1 of 3)

	Upgradient	Downgradient Wells											
Date*	Well SY-6	SY-2R	SY-2D	On-Site SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	Off-Site PK-10D	RW-12I	RW-12D		
	U . U	U	0	U . 0	Alkalinity				1				
OU1 RI 5/2/1988	72	26	270	880	1,300	N/A	N/A	N/A	N/A	N/A	N/A		
OU1 RI 6/6/1988	66	26	280	890	1,200	N/A	N/A	N/A	N/A	N/A	N/A		
OU2 RI 11/2/1993	195	39	100	716	1,180	14	23	404	25	167	74		
OU2 RI 12/1/1993	202	35	82	727	1,020	9.6	24	419	18	162	80		
6/26/2003	99	11	66	710	140	6.0	11	350	22	100	170		
12/27/2005	22	13	71	150	510	8.8	12	320	22	680	230		
12/27/2006 12/21/2007	48 56	12 8.8	66 56	190 180	390 350	7.8 6.6	12 6.0	270 220	23 22	680 950	210 180		
12/21/2007	48	18	66	250	310	6.0	10	150	24	950	140		
11/3/2009	5 7	30	52	200	270	6.32	12	130	28	510	110		
12/6/2010	44	22	46	190	240	8.64	13	95	26	980	70		
11/15/2011	51	11	45	160	220	5.9	10	84	24	1,000	98		
12/13/2012	55	17	42	140	220	6	11	76	20	920	93		
11/11/2013	50.1	9.84	37.7	172	217	8.24	13.3	90.3	22.7	876	86.5		
9/24/2014	49.1	9.92	34.6	180	232	6.16	12.2	91	24.2	858	87.3		
12/4/2015	69.8	10.2	31.1	164	244	4.56	11.6	104	22.5	845	89.8		
12/8/2016	109	29.2	31.9	366	466	5.04	9.36	122	20.8	805	101		
Long-Term Trend:	Flat	Flat	Dec.	Dec.	Dec.	Flat	Flat	Dec.	Flat	Inc.	Flat		
Trend Since 2005:	Inc.	Flat	Dec.	Inc.	Dec.	Flat	Flat	Dec.	Flat	Inc.	Dec.		
OU1 RI 5/2/1988	<0.05	<0.05	18	91	Ammonia 130	N/A	N/A	N/A	N/A	N/A	N/A		
OU1 RI 5/2/1988 OU1 RI 6/6/1988	<0.05 <0.05	<0.05 <0.05	17	90	130	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		
OU2 RI 11/2/1993	0.06	<0.05	4.9	68	146	<0.04	0.35	39	<0.04	16	<0.04		
OU2 RI 12/1/1993	0.00	0.26	7.0	123	84	<0.04	0.05	38	<0.04	15	0.11		
6/26/2003	0.29	0.26	2.7	61	9.9	0.3	0.2	32	0.26	4.7	4.8		
12/27/2005	<0.20	<0.20	2.8	4.3	40	<0.20	<0.20	21	<0.20	55	8.9		
12/27/2006	<0.20	0.70	2.1	4.3	39	<0.20	<0.20	19	<0.20	47	6.8		
12/21/2007	0.23	0.33	2.2	7.5	40	<0.20	<0.20	15	<0.20	84	8.1		
12/29/2008	< 0.20	0.33	1.9	9.7	38	0.20	0.35	15	0.24	89	9.9		
11/3/2009	0.27	0.29	1.77	4.38	3.92	0.20	0.30	4.51	0.27	4.08	5.90		
12/6/2010	0.05	0.1	1.4	9.8	21	0.12	0.04	3.2	0.12	74	3.1		
11/15/2011	< 0.03	< 0.03	0.74	7.96	26.9	0.051	< 0.03	3.58	<0.03	100	5.26		
12/13/2012	0.07	0.091	0.751	7.78	15.7	0.09	< 0.05	4.17	0.049	83.1	6.1		
11/11/2013	0.073	0.188	0.604	8.84	15.2	0.15	0.075	3.2	0.12	73.6	5.7		
9/24/2014	0.062 J	< 0.05	0.378	8.1	14.5	0.042 J	<0.05	4.93	< 0.05	76.5	5.79		
12/4/2015	0.113	0.093 J	0.224	7.6	12.5	0.066 J	0.063 J	4.18	0.13	78.4	5.09		
12/8/2016	0.083 J	0.045	0.073 J	10.9 J	16.3 J	0.042 J	0.09 J	5.21	0.067 J	82.5	5.75		
Long-Term Trend: Trend Since 2005:	Flat Flat	Flat Flat	Dec. Dec.	Dec. Flat	Dec. Dec.	Flat Flat	Flat Flat	Dec. Dec.	Flat Flat	Inc. Flat	Flat Flat		
Trong Cirios 2000.	T ICC	1 100	200.		ical Oxygen		. iac	200.	1 100	ı iac	· iat		
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
OU1 RI 6/6/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
OU2 RI 11/2/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
6/26/2003	2.5	2.5	2.5	45	6	2.5	2.5	29	2.5	2.5	13		
12/27/2005	38	2.5	2.5	5	25	2.5	2.5	2.5	2.5	39	17		
12/27/2006	2.5	2.5	2.5	8	27	2.5	2.5	15	2.5	46	27		
12/21/2007	2.5	2.5	2.5	38	21	2.5	2.5	9.13	2.5	65	18		
12/29/2008	5.92	5.92	2.5	26	22	2.5	2.5	2.5	2.5	16	18		
11/3/2009	2.5	5.98	2.5	38	26	2.5	2.5	5.98	2.5	67	9.83		
12/6/2010 11/15/2011	2.5 1.20	2.5 1.20	2.5 3.79	10.8 11.6	18.1 14.6	2.5 1.20	2.5 4.77	2.5 5.75	2.5 2.81	62.2 71.4	2.5 16.5		
12/13/2012	1.255	5.56	6.55	2.58	17.3	1.20	4.77 1.25	1.25	1.25	71.4 54.1	7.68		
12/4/2015		4.97	4	11.8	18.5	2.5	2.5	7.88	2.5	54.1 52.5	9.82		
12/8/2016		2.5	2.5	5.76	5.76	2.5	2.5	9.76	2.5	52.8	10.8		
Long-Term Trend:	Flat	Flat	Flat	Dec.	Dec.	Flat	Flat	Dec.	Flat	Flat	Dec.		
Trend Since 2005:	Flat	Flat	Flat	Flat	Dec.	Flat	Flat	Flat	Flat	Flat	Dec.		
OLIA DI 5/0/4000					Chloride		N1/A	N1/A	N1/A	N1/A	N1/A		
OU1 RI 5/2/1988		52 57	220	99	340	N/A	N/A	N/A	N/A	N/A	N/A		
OU1 RI 6/6/1988		57 440	200	110	330	N/A	N/A	N/A	N/A	N/A	N/A		
OU2 RI 11/2/1993 OU2 RI 12/1/1993	43 34	449 613	108 97	136 176	269 265	4.2 4.5	15 14	291 287	14 14.2	106 118	122 139		
6/26/2003	34 19	140	120	380	300	4.5 3.5	7.8	19	14.2	26	150		
12/27/2005	18	180	160	380	510	3.5 4.1	7.8 10	340	47	190	160		
12/27/2005	3.4	470	140	430	680	3.3	8.9	350	64	170	190		
12/21/2007	7.2	480	150	490	770	3.9	11	390	90	240	190		
12/29/2008	10	640	170	210	820	4.3	7.2	370	91	170	170		
11/3/2009		420	200	160	910	4.1	7.9	450	120	190	200		
12/6/2010		160	230	170	860	4.71	9.09	440	110	170	170		
11/15/2011	4.7	220	310	180	820	4.5	13	490	110	170	200		
12/13/2012	12	400	320	230	800	4.6	14	470	120	170	200		
11/11/2013	9.54	218	291	228	820	4.15	12.5	469	118	160	199		
9/24/2014	7.47	322	278	200	749	4.22	14.6	504	133	163	207		
12/4/2015	5.14	399	252	190	524	4.5	11.8	506	128	146	197		
12/8/2016	4.94	398	266	199	549	4.75	11.8	556	119	147	210		
											-		
Long-Term Trend: Trend Since 2005:	Dec. Flat	Flat Flat	Inc. Inc.	Flat Dec.	Inc. Flat	Flat Flat	Flat Flat	Inc. Inc.	Inc. Inc.	Flat Dec.	Inc. Flat		

Table 11
Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

(Page 2 of 3)

	Upgradient					Downgra	dient Wells				
Date*	Well SY-6	CV an	SY-2D	On-Site	SY-3D	CV 2DD	DIC 40C	DIC 401	Off-Site	D\W 40I	DW 40D
	51-6	SY-2R	5Y-2D	SY-3	Hardness	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
OU1 RI 5/2/1988	100	50	150	330	440	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	80	54	120	370	460	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	176	138	68.4	362	470	7.6	68.8	285	12.2	169	132
OU2 RI 12/1/1993	181	121	58.4	348	468	6.6	67.8	312	12.2	164	144
6/26/2003	120	54	51	200	490	6.0	53	220	22	42	250
12/27/2005	36	58	69	96	271	10	42	175	49	348	260
12/27/2006 12/21/2007	52 50	178 83	70 74	350 207	359 365	6.1 5.0	42 39	187 195	70 90	350 479	317 316
12/21/2007	100	109	96	185	330	5.0 11	39 46	180	114	479 453	276
11/3/2009	100	57	84	159	273	7	46	162	110	412	223
12/6/2010	66	36	97	159	266	7	43	165	111	409	208
11/15/2011	59.9	84.4	92.3	136	220	7.3	43.4	150	109	410	249
12/13/2012	77.3	127	121	140	112	6.68	42.3	166	112	6.62	110
11/11/2013	64	47.4	92.7	122	229	5.63	39.8	157	101	371	246
9/24/2014	85.13	124	76	131	211	5.73	38.9	160	117	347	253
12/4/2015	135	128	69.7	139	190	6.36 J	40.2	197	127	427	308
12/8/2016	156	105	76.1	166	192	6.76 J	39.4	181	99.2	357	273
Long-Term Trend: Trend Since 2005:	Flat Inc.	Flat Flat	Flat Flat	Dec. Dec.	Dec. Dec.	Flat Flat	Dec. Flat	Dec. Flat	Inc. Inc.	Inc. Flat	Inc. Flat
					Sulfate						
OU1 RI 5/2/1988	50	50	47	42	22	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	40	54	68	16	14	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	10	56	23	33	27	1.8	40	89	16	31	32
OU2 RI 12/1/1993	20	58	17	26	23	11.9	51	110	12	34	54
6/26/2003	12 -1.0	29	19	20	64	<1.0	1,800	21 67	2.8	<1.00	18
12/27/2005 12/27/2006	<1.0 5.9	29 94	22 76	40 90	41 96	<1.0 1.5	29 24	67 120	<1.0 <25	79 120	120 170
12/21/2006	5.9 6.5	39	76 13	36	96 42	1.5 1.5	24 21	120 46	<25 8.1	64	170
12/29/2008	75	36	16	38	45	0.7	22	1.5	8.4	58	130
11/3/2009	54	33	12	36	41	1.6	27	28	9.64	61	190
12/6/2010	20	34	13	35	41	2.21	23	37	10	63	220
11/15/2011	19	27	14	34	40	2.1	20	37	10	64	180
12/13/2012	20	30	17	39	41	2.1	18	37	12	65	180
11/11/2013	15.8	33.8	13.2	43.1	44.7	2.01	17.8	39.3	10.7	61.7	230
9/24/2014	47.2	31.1	11	37.3	46.6	1.93	18.3	39.6	13.6	65.3	191
12/4/2015 12/8/2016	72.7 42.3	26.8 34.3	11.1 10.7	39.1 42.2	45.9 47.4	1.83 1.95	17.1 18.2 J	36.6 35.9 J	17.9 20.4 J	62.1 71 J	204 199 J
Long-Term Trend:	Flat	Flat	Dec.	Flat	Flat	Flat	Dec.	Dec.	Flat	Inc.	Inc.
Trend Since 2005:	Flat	Flat	Dec.	Flat	Flat	Flat	Dec.	Dec.	Inc.	Flat	Inc.
					issolved So						
OU1 RI 5/2/1988	210	210	670	820	1,400	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	180	230	630	830	1,400	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	287	861	282	726	1,240	44	162	918	87	345	320
OU2 RI 12/1/1993	323 175	850	299 334	757	1,400 821	54 125	181 172	1,020	85 114	408 177	511 536
6/26/2003 12/27/2005	64	360 490	33 4 380	1,373 790	1,200	125 42	130	1,004 940	160	940	710
12/27/2006	69	930	320	950	1,400	26	120	880	200	890	750
12/21/2007	83	750	330	1,000	1,400	11	85	840	210	1,000	680
12/29/2008	170	1,100	380	650	1,700	10	90	880	270	1,100	690
11/3/2009	190	800	390	470	1,800	44	100	910	300	1,100	630
12/6/2010	131	474	505	512	1,680	30	95	930	275	1,300	631
11/15/2011	99	458	596	511	1,620	24	95	985	301	1,470	684
12/10/2012	131	753	653	611	1,570	31	89 06	950	314	1,310	725 604
11/11/2013 9/24/2014	94 158	417 720	602 564	708 556	1,800 1,472	9 29	96 105	944 997	298 372	1,110 994	694 756
12/4/2015	215	773	504 503	545	1,472	29 27	90	997 1,074	372	994 1,027	773
12/8/2016	198	787	554	538	1,138	28	86	1,175	307	974	805
Long-Term Trend:	Flat	Inc.	Flat	Dec.	Flat	Flat	Dec.	Flat	Inc.	Inc.	Inc.
Trend Since 2005:	Inc.	Dec.	Inc.	Dec.	Dec.	Flat	Dec.	Inc.	Inc.	Flat	Inc.
OUA DI 5/0/4000	N1/A	N1/A	N1/A		l Kjeldhal N		N1/A	N1/A	N1/A	NI/A	N1/A
OU1 RI 5/2/1988 OU1 RI 6/6/1988	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU1 RI 6/6/1988 OU2 RI 11/2/1993	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 12/1/1993	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
6/26/2003	<1.00	<1.00	2.49	93	11	<1.00	<1.00	37	<1.00	3.53	5.12
12/27/2005	<0.50	<0.50	<0.50	3.8	51	< 0.50	<0.500	21	<0.500	40	7
12/27/2006	0.57	0.66	1.32	2.61	15	0.63	0.56	6.16	0.59	19	16
12/21/2007	1.5	1.5	4.3	10	49	1.1	1.4	18	1.6	95	9.7
12/29/2008	1.5	1.5	3.8	11	40	1.6	1.8	12	1.51	100	8.82
11/3/2009	< 0.50	<0.50	1.25	13	34	< 0.50	<0.50	11	<0.50	55 140	7.45
12/6/2010 11/15/2011	0.486	0.5	1.9 0.758	16 7.8	40 25	0.2	0.2	6.9	0.222	140 04	2.7
11/15/2011 12/13/2012	0.307 <0.25	<0.1 <0.25	0.758 0.86	7.8 8.1	25 17	<0.1 0.1	0.1 0.1	3.9 3.7	0.096 0.22	94 84	5.8 5.2
11/11/2013	0.102	0.181	0.608	8.4	17.5	0.1	<0.25	4.8	0.22	81.5	5.5
9/24/2014	0.102 0.208 J	0.101 0.23 J	0.588	9.7	14.4	0.243 0.172 J	0.152 J	4.89	0.224 0.296 J	84.5	5.79
12/4/2015	0.177 J	0.355 J	0.429 J	12.5	16.6	<0.5	0.251 J	4.9	0.432 J	99.4	5.72
12/8/2016	0.338 J	0.354 J	0.228 J	10.8	15.8	0.158 J	0.24 J	4.82	0.196 J	77	5.66
Long-Term Trend:	Flat	Flat	Dec.	Flat	Flat	Flat	Flat	Dec.	Flat	Inc.	Flat
Trend Since 2005:	Flat	Flat	Dec.	Flat	Flat	Flat	Flat	Dec.	Flat	Flat	Flat

Table 11
Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters
Syosset Landfill 2016 Annual Post-Closure Ground Water-Monitoring Report

(Page 3 of 3)

	Upgradient					Downgra	dient Wells				
Date* Well		On-Site			Off-Site						
	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10l	PK-10D	RW-12I	RW-12D
				Tota	al Organic C	Carbon					
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6/26/2003	1.24	0.74	1.05	17	3.19	< 0.40	< 0.40	5.17	< 0.40	1.27	6.73
12/27/2005	8.88	1.03	1.31	2.61	9.72	< 0.40	0.603	5.21	0.58	17	8.43
12/27/2006	< 0.40	0.5	0.459	2.43	6.51	< 0.40	< 0.40	3.65	< 0.40	16	7.27
12/21/2007	0.75	1.13	0.88	2.63	6.13	< 0.40	0.438	3.18	0.527	3.83	8.14
12/29/2008	1.49	1.21	1.08	3.55	6.4	< 0.40	0.701	2.63	0.885	4.34	7.23
11/3/2009	2.81	2.13	1.55	7.09	9.57	< 0.40	0.721	3.04	1.06	41	7.01
12/6/2010	1.2	1.1	0.859	3	4.3	0.196	0.416	1.7	0.944	24	3.3
11/15/2012	0.79	0.88	1	2.6	3.8	0.29	0.82	1.7	1	27	4.5
12/13/2012	1.2	1.3	1.2	3.7	4.3	0.35	0.71	2.1	1.3	22	5.6
11/11/2013	1.25	1.2	0.863	4.27	4.1	0.755	0.903	2.33	1.36	22	4.39
9/24/2014	1.55	1.07	0.84	4.2	5.25	0.236 J	0.566	2.25	1.53	21.9	4.81
12/4/2015	2.18	1.53	1.05	3.65	5.04	0.705	0.567	2.43	1.37	19.9	4.78
12/8/2016	2.01	1.94	4.23	4.23	4.91	0.311 J	0.522 J	2.41 J	1.1 J	19.4 J	4.42 J
Long-Term Trend:	Flat	Flat	Inc.	Flat	Flat	Flat	Flat	Dec.	Flat	Flat	Flat
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Dec.	Flat	Flat	Flat
				Long-T	erm Trend	Summary					
Total Flat	8	8	3	4	4	9	6	1	6	3	4
Total Dec.	1	0	4	5	4	0	3	7	0	0	1
Total Inc.	0	1	2	0	1	0	0	1	3	6	4
				Trend S	Since 2005	Summary					
Total Flat	6	8	3	5	4	9	7	2	5	7	5
Total Dec.	0	1	4	3	4	0	2	5	0	1	2
Total Inc.	3	0	2	1	0	0	0	2	4	1	2

Notes:

All results are in units of milligrams per Liter (mg/L).

N/A = Not Available (Well not installed yet, not sampled during monitoring round, or sample not analyzed for that parameter).

^{* =} Approximate date (Monitoring rounds typically take place over several days).

J = Result qualitified as estimated by data validator.

SECTION 6

CONCLUSIONS AND RECOMENDATIONS

Based on the above results from the 2016 annual post-closure ground water-monitoring round, LKB concludes the following:

- The ground water-monitoring system, specifically the existing monitoring well network and modified low-flow purging and sampling method specified in the O&M Manual, continues to provide ground water-flow and ground water-quality data of sufficient quantity and quality to monitor the Landfill during the postclosure period.
- 2. The Landfill is not a significant source of VOCs or the toxic RCRA/PPL metals, and is only a relatively minor source of certain leachate-related contaminants and the other TAL inorganic parameters at concentrations exceeding Class GA ground-water standards and guidance values.
- 3. Although arsenic was detected in On-Site Downgradient Wells SY-3 and SY-3D at concentrations exceeding the federal MCL, the fact that arsenic was not detected in the deeper well at this cluster (Well SY-3DD) and was only detected at very low, estimated concentrations in three off-site downgradient wells (Wells PK-10D, RW-12I and RW-12D) indicates that off-site impacts are negligible.
- 4. Although an exceedance for beryllium occurred in Well SY-2R in 2016, it was relatively low in magnitude and the limit for beryllium is a guidance value rather than an actual standard. Moreover, beryllium was not detected in any of the other wells. Therefore, there are no off-site impacts from beryllium.
- 5. The low-magnitude exceedance for total chromium in Off-Site Downgradient Well PK-10I is attributed to entrained sediment in the sample because the chromium concentration in the filtered sample from this well was much lower. The low-magnitude exceedance for mercury in Off-Site Downgradient Well PK-10D is attributed to naturally-occurring mercury because mercury has not been detected in the on-site wells, and is known to occur naturally in this geologic formation. Accordingly, there are no Landfill-related impacts from chromium or mercury.
- 6. Overall, the current results show stable or improving ground water-quality conditions at the downgradient well locations relative to the previous post-closure monitoring rounds, the 1988 OU-1 RI results and the 1993 OU-2 RI results. This finding indicates that the selected remedy has been effective in mitigating ground water-quality impacts associated with the Landfill.

- 7. Based on the distribution of contaminants in ground water and ground water-flow directions, the majority of the contaminants detected in Well Cluster RW-12 do not appear to be Landfill-related. This conclusion is consistent with the conclusions of previous post-closure monitoring reports and the OU-2 RI Report.
- 8. Taken as a whole, the results of the 2016 ground water-monitoring round continue to support the de-listing of the Landfill from the NPL, which occurred on April 28, 2005.
- 9. The stable or improving ground water-quality conditions in the upgradient well and on-site downgradient wells continue to indicate that ground-water conditions have equilibrated following the demolition work at the adjacent former Cerro Wire property in 2005.

In a letter dated March 11, 2016, the Town requested that the USEPA consider reducing the frequency of ground-water monitoring based on the past results. In Section VI of its Fourth Five-Year Review Report, dated February 16, 2017, the USEPA recommended that the frequency of ground-water monitoring be reduced from annually, to every fifth calendar quarter, to provide data once in each season/quarter during the five-year review period. The Town has implemented this recommendation. Accordingly, ground-water monitoring is not required in 2017, and the next round of ground-water monitoring will be performed during the first quarter of 2018.

Based on the above information, LKB recommends that the following work items be implemented during the 2018 annual monitoring round.

- Remove the dedicated pumps and related equipment from Well Cluster RB-11
 prior to the monitoring round to ensure that water-level data can be collected
 from these wells. The pumps were installed during the OU2 RI, and are no longer
 utilized. Due to the decline in water levels over time, they are now interfering with
 the collection of water-level data.
- 2. Continue to collect the duplicate sample from one of the on-site downgradient wells as these wells exhibit the highest degree of Landfill-related impacts.
- 3. Continue to collect and dispose of the purged ground water from the off-site downgradient wells, but discharge the purged ground water from the on-site wells onto the ground surface due to the low levels of contaminants encountered.
- 4. Continue to evaluate ground-water quality conditions at the upgradient well and the on-site downgradient wells for influences related to future development and related construction activities at the former Cerro Wire property which may increase recharge directly upgradient of the Landfill.

APPENDIX A

Completed Well Inspection Checklist Forms

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-1</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact	\boxtimes		
4.	Steel Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked	\boxtimes		On inside of lid
	CHECKLIST FOR IN INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	OK_		
3.	Bottom of Well Below Grade	N/A		
4.	Remarks on Integrity of Casing	OK		
5	Denth to Water from Top of PVC	110	74'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-1D</u> **DATE**: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact			
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	N/A		
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	118.	.23'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-2R</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
1.	Cement Seal						
	Intact			(Presumed, under veg/soil)			
	Cracked		\boxtimes				
	Missing		\boxtimes				
2.	Ponding of Water Around Cement Seal		\boxtimes				
3.	Protective Steel Pipe & Lock (if used)						
	Pipe – Intact						
	Lock - Intact						
4.	PVC Casing (Stick-up) Straight	\boxtimes					
5.	Designated Leveling Point Clearly Marked	\boxtimes					
6.	PVC Cap Vented Properly						
7.	Well is Protected	\boxtimes					
8.	Well is Clearly Marked	\boxtimes					
	CHECKLIST FOR INSPECTION OF INSIDE OF EXISTING WELLS						
1.	Bottom of Well from Top of PVC Casing	N/A					
2.	Stick-Up	OK					
3.	Bottom of Well Below Grade	N/A					
6.	Remarks on Integrity of Casing	OK					
De	epth to Water from Top of PVC	112.5	66'				

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-2D___ **DATE**: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		Casing lid missing
	Lock – Intact		\boxtimes	No Lock
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A	<u></u>	
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	<u>N/A</u>		
4.	Remarks on Integrity of Casing	<u>Nev</u>	v Grip-F	Plug Installed
5.	Depth to Water from Top of PVC	_112.7	77'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-3</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		
4.	Steel Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			On Cap
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	N/A		
4.	Remarks on Integrity of Casing	_OK		
5.	Depth to Water from Top of PVC	115.0	60'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-3D___ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			Inside of Lid
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	<u>N/A</u>	·	
4.	Remarks on Integrity of Casing	_OK		
5.	Depth to Water from Top of PVC	116.	55'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-3DD__ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact		\boxtimes	Casing lid hinge broken
	Lock - Intact			Not locked, broken hinge
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	<u>N/A</u>	<u></u>	
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	<u>N/A</u>	_	
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	_116.2	29'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-4__ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under rip-rap)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			
4.	Steel Casing (Stick-up) Straight			Slightly bent, but okay
5.	Designated Leveling Point Clearly Marked		\boxtimes	No room on steel
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR IN			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	OK_		
3.	Bottom of Well Below Grade	N/A		
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	113.0	08'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-6__ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact			
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR I			:
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	N/A	·	
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	_107.	59'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-7</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	Road sand in curb box
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact		\boxtimes	Not used, flush mount
	Lock - Intact		\boxtimes	N/A, curb box
4.	Steel Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR INSIDE OF EXIST	_		
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	N/A	(Flush-l	Mount)
3.	Bottom of Well Below Grade	N/A	<u>. </u>	
4.	Remarks on Integrity of Casing	<u>OK</u>		
5.	Depth to Water from Top of PVC	117	.58 <u>'</u>	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-8__ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		Intact, but lower than PVC
	Lock - Intact			Cannot lock
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	<u>N/A</u>	<u> </u>	
2.	Stick-Up	OK_		
3.	Bottom of Well Below Grade	<u>N/A</u>	\	
4.	Remarks on Integrity of Casing	<u>OK</u>		
5.	Depth to Water from Top of PVC	_119.3	34'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-9___ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under new soil)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR IN			F
1.	Bottom of Well from Top of PVC Casing	N/	Α	
2.	Stick-Up	<u>Oł</u>	K_(New	Extension)
3.	Bottom of Well Below Grade	N/	Α	
4.	Remarks on Integrity of Casing	Oł	K (New	Casing)
5.	Depth to Water from Top of PVC	Dr	У	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __PK-10S__ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact			Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			Inside of Lid, Closet to Road
	CHECKLIST FOR INSIDE OF EXIS)F
1.	Bottom of Well from Top of PVC Casing	1	<u> </u>	
2.	Stick-Up		<u>√Α (Flu</u>	ush-Mount)
3.	Bottom of Well Below Grade	1	N/A	
4.	Remarks on Integrity of Casing		OK	
5.	Depth to Water from Top of PVC	1	10.96	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>PK-10I</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		Bolted
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked		\boxtimes	
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			Closest to ball court
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	_ <u>N/A_</u>		
2.	Stick-Up	<u>N/A (</u>	Flush-N	Mount)
3.	Bottom of Well Below Grade	_N/A_		
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	_109.7	79'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __PK-10D__ DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			Needs new bolts
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR IN			=
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	<u>N/A</u>	(Flush-	Mount)
3.	Bottom of Well Below Grade	N/A	:	
4.	Remarks on Integrity of Casing	<u>OK</u>		
5.	Depth to Water from Top of PVC	110	.93'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RW-12I</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		Bolted, flush-mount
4	DVC Cooling (Otiole con) Chrolinka	∇		
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR I INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N	I/A	
2.	Stick-Up	N	I/A (Flu	sh-Mount)
3.	Bottom of Well Below Grade		I/A	
4.	Remarks on Integrity of Casing)K	
5.	Depth to Water from Top of PVC	1	20.28'	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __RW-12D__

DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N/	Α	
2.	Stick-Up	<u>N/</u>	A (Flus	sh-Mount)
3.	Bottom of Well Below Grade	N/	Α	
4.	Remarks on Integrity of Casing	<u>Oł</u>	<	
5.	Depth to Water from Top of PVC	12	0.32'_	

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RB-11S</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	1	N/A	
2.	Stick-Up		N/A (Flu	sh-Mount)
3.	Bottom of Well Below Grade		N/A	
4.	Remarks on Integrity of Casing		OK	
5.	Depth to Water from Top of PVC	١	VM, pum	np in way

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RB-111</u> DATE: <u>12/2/2016</u>

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		Bolted
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/	Α	
2.	Stick-Up	N/	A (Flusi	n-Mount)
3.	Bottom of Well Below Grade	N/	Α	
4.	Remarks on Integrity of Casing	Oł	<	
5.	Depth to Water from Top of PVC	N	Л, pump	o in way

2016 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RB-11D</u>
DATE: 12/2/2016

PERSONNEL: M. Geddish & C. Sicurella

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact			Bolted
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing		N/A_	
2.	Stick-Up		N/A (FI	ush-Mount)
3.	Bottom of Well Below Grade		<u>N/A</u>	
4.	Remarks on Integrity of Casing		OK	
5.	Depth to Water from Top of PVC		113.13	,

APPENDIX B Validated Laboratory Results

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: H5920

Laboratory: ChemTech, Mountainside, New Jersey
Site: Syosset Landfill, Syosset, New York

Date: February 15, 2017

	VOCs/Wet Chemistry						
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix				
1	SY-6	H5920-01	Water				
2	SY-2R	H5920-02	Water				
2DL†	SY-2RDL	H5920-02DL	Water				
3	SY-2D	H5920-03	Water				
3DL†	SY-2DDL	H5920-03DL	Water				
4	SY-3DD	H5920-04	Water				
5MS**	SY-3DDMS	H5920-05MS	Water				
6MSD**	SY-3DDMSD	H5920-06MSD	Water				
7*	TRIPBLANK	H5920-07	Water				
8	FIELDBLANK	H5920-08	Water				

	Total & D	Pissolved Metals/Mercury/Cn	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1T	SY-6	H5920-01	Water
2T	SY-2R	H5920-02	Water
3T	SY-2D	H5920-03	Water
4T	SY-3DD	H5920-04	Water
5TMS	SY-3DDMS	H5920-05MS	Water
6TMSD	SY-3DDMSD	H5920-06MSD	Water
8	FIELDBLANK	H5920-08	Water
9D	SY-6	H5920-09	Water
10D	SY-2R	H5920-10	Water
11D	SY-2D	H5920-11	Water
12D	SY-3DD	H5920-12	Water
13DMS	SY-3DDMS	H5920-13MS	Water
14DMSD	SY-3DDMSD	H5920-14MSD	Water

T - Total Metals & Mercury & Cyanide

D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for eight water samples, one aqueous trip blank sample, and one aqueous field blank sample collected November 16, 2016 and December 6, 2016 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract

Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

<u>Analysis</u>	Method References
VOCs	USEPA SW846 8260C
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Superfund Organic Methods Data Review," August 2014;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Data Review," August 2014;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

All samples were analyzed within 14 days for preserved water samples except for the following.

Sample ID	Date Sampled	Date Extracted	# of Days	Qualifier
7	11/16/16	12/15/16	29	J/UJ

GC/MS Tuning

All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

The field QC samples are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		
TRIPBLANK	None - ND	:=1	-	14
FIELD BLANK	None - ND	(9)	=	=

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

A MS/MSD sample was not collected.

Laboratory Control Samples

The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELDBLANK	None - ND	-	5	

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/DUP Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
4	Cyanide	73%/OK	UJ	1, 2, 3, 4, 8

ICP Serial Dilution

• ICP serial dilution percent differences (%D) were within acceptance limits.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis except for the following. Positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ).

Sample ID	Compound(s)	Date Sampled	Date Extracted	# of Days	Qualifier
1	Nitrate, BOD5, Color	Outside HT	Outside HT	Outside HT	J
	BOD5	Outside HT	Outside HT	Outside HT	UJ
	Color	Outside HT	Outside HT	Outside HT	Ĵ
2	Nitrate	Outside HT	Outside HT	Outside HT	Ī
	BOD5	Outside HT	Outside HT	Outside HT	UJ
	Color	Outside HT	Outside HT	Outside HT	UJ

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		-
FIELDBLANK	Ammonia as N	0.068	None	
	TDS	1	None	None for Wet Chemistry
	TKN	0.168	None	parameters
	TOC	0.25	None	-

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
4	Ammonia as N	OK/21.3	J	All Samples

Laboratory Control Samples

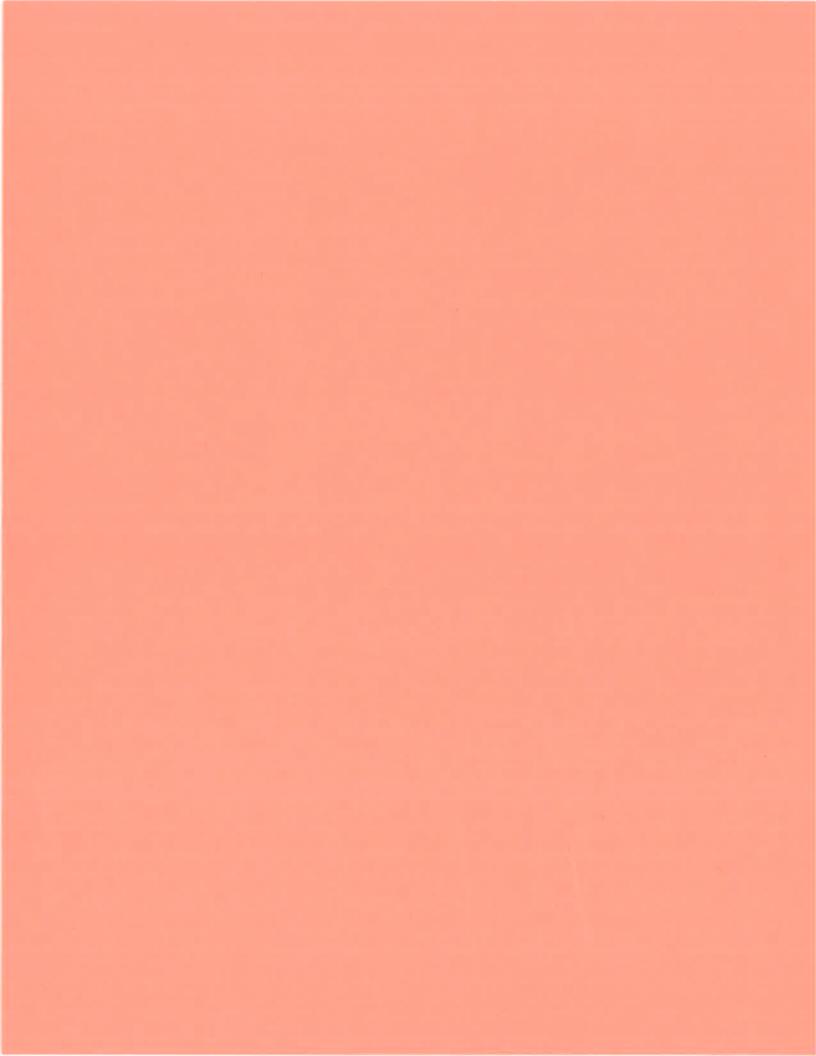
• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

• EDS Sample ID #s 2, and 3 exhibited high concentrations of chloride and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.


Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Nancy Weaver

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

GC Column:

RXI-624

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/06/16 Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: SY-6 SDG No.: H5920 Lab Sample ID: H5920-01 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VN037715.D I 12/15/16 18:17 VN121516

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0,2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/06/16 Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: SDG No.: H5920 SY-6 Lab Sample ID: H5920-01 Matrix: Water Analytical Method: % Moisture: 100 SW8260 Final Vol: 5000 Sample Wt/Vol: 5 Units: mL uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037715.D 1 12/15/16 18:17 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	47.2		61 - 141		94%	SPK: 50
1868-53-7	Dibromofluoromethane	47.8		69 - 133		96%	SPK: 50
2037-26-5	Toluene-d8	48.5		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.5		58 - 135		85%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1352440	7.86				
540-36-3	1,4-Difluorobenzene	2041600	8.77				
3114-55-4	Chlorobenzene-d5	1709080	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	650423	13.52				

Client: Lockwood, Kessler, & Bartlett Date Collected: 12:06 16 Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: SDG No.: H5920 SY-2R Lab Sample ID: H5920-02 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Final Vol: Sample Wt/Vol: 5 Units: mL 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group 1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037716,D 1 12/15/16 18:44 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	I	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

Client: Lockwood, Kessler. & Bartlett Date Collected: 12/06/16 Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: SY-2R SDG No.: H5920 Lab Sample ID: H5920-02 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL5000 uL Soil Aliquot Vol: uLTest: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution Prep Date Date Analyzed Prep Batch ID VN037716,D 12/15/16 18:44 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							• ,
17060-07-0	1,2-Dichloroethane-d4	46.8		61 - 141		94%	SPK: 50
1868-53-7	Dibromofluoromethane	48.7		69 - 133		97%	SPK: 50
2037-26-5	Toluene-d8	48.8		65 - 126		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.3		58 - 135		85%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1350600	7.86				
540-36-3	1,4-Difluorobenzene	2020060	8.77				
3114-55-4	Chlorobenzene-d5	1694790	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	652896	13.52				

Client: Lockwood, Kessler, & Bartlett Date Collected: 12-06-16 Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: SDG No.: H5920 SY-2D Lab Sample ID: H5920-03 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Final Vol: Sample Wt/Vol: Units: mL5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037717.D 1 12/15/16 19:11 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			92				
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/06/16 Date Received: 12/08/16 Project: Syosset Landfill Client Sample ID: SY-2D SDG No.: H5920 H5920-03 Lab Sample ID: Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: Final Vol: 5000 Units: $\mathrm{m}\mathrm{L}$ uL Soil Aliquot Vol: Test: VOCMS Group1 иL

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN037717.D 1 12/15/16 19:11 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2,5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	0.24	J	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47 - 6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	T	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	46.6		61 - 141		93%	SPK: 50
1868-53-7	Dibromofluoromethane	48.2		69 - 133		96%	SPK: 50
2037-26-5	Toluene-d8	48.5		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.4		58 - 135		83%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1355190	7.86				
540-36-3	1,4-Difluorobenzene	2044080	8.77				
3114-55-4	Chlorobenzene-d5	1690050	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	626558	13.52				

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/06/16 Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: SY-3DD SDG No.: H5920 H5920-04 Lab Sample ID: Matrix: Water Analytical Method: SW8260 100 % Moisture: Sample Wt/Vol: Final Vol: 5000 Units: mLuLSoil Aliquot Vol: VOCMS Group1 $\mathfrak{u} L$ Test: GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037718.D 1 12/15/16 19:38 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	11	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	(1)	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	11	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	0.57	J	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

GC Column:

RXI-624

Report of Analysis

12/06/16 Client: Lockwood. Kessler. & Bartlett Date Collected: Date Received: 12/08/16 Project: Syosset Landfill Client Sample ID: SY-3DD SDG No.: H5920 Lab Sample ID: H5920-04 Matrix: Water % Moisture: 100 Analytical Method: SW8260 Final Vol: 5000 Sample Wt/Vol: Units: mL uL Test: VOCMS Group1 Soil Aliquot Vol: uL

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VN037718.D 1 12/15/16 19:38 VN121516

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	47.1		61 - 141		94%	SPK: 50
1868-53-7	Dibromofluoromethane	48.4		69 - 133		97%	SPK: 50
2037-26-5	Toluene-d8	48.4		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.9		58 - 135		84%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1337840	7.86				
540-36-3	1,4-Difluorobenzene	2018020	8.77				
3114-55-4	Chlorobenzene-d5	1684500	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	639761	13.52				

D

Report of Analysis

Client: Lockwood, Kessler. & Bartlett Date Collected: 11/16/16 Project: Date Received: 12/08/16 Syosset Landfill Client Sample ID: TRIPBLANK SDG No.: H5920 Lab Sample ID: H5920-07 Water Matrix: Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: $\mathrm{m}\mathrm{L}$ Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037714.D 1 12/15/16 17:51 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			1170				
75-71-8	Dichlorodifluoromethane	1 K	J W	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	Ψ	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	Ų	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	u	0.2	0.5	1	ug/L
75 - 69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	u	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	Ų	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	ψ	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	ψ	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	ψ	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	Ψ	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	u	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	u	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	u	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	u	0.2	0.2	1	ug/L

Client: Lockwood, Kessler, & Bartlett Date Collected: 11 16 16 12/08/16 Project: Syosset Landfill Date Received: Client Sample ID: TRIPBLANK SDG No:: H5920 Lab Sample ID: H5920-07 Water Matrix: Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 LOW

Level:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VN037714.D 12/15/16 17:51 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1 レブ	Ψ	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	ψ	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	ſħ	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	Ψ	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	Ψ	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	Ψ	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	Ų	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	Ų	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	τþ	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	τþ	100	100	100	ug/L
SURROGATES			1				
17060-07-0	1,2-Dichloroethane-d4	47.2		61 - 141		94%	SPK: 50
1868-53-7	Dibromofluoromethane	48.3		69 - 133		97%	SPK: 50
2037-26-5	Toluene-d8	48.3		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.2		58 - 135		84%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1307900	7.86				
540-36-3	1,4-Difluorobenzene	1975620	8.77				
3114-55-4	Chlorobenzene-d5	1652540	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	633849	13.52				

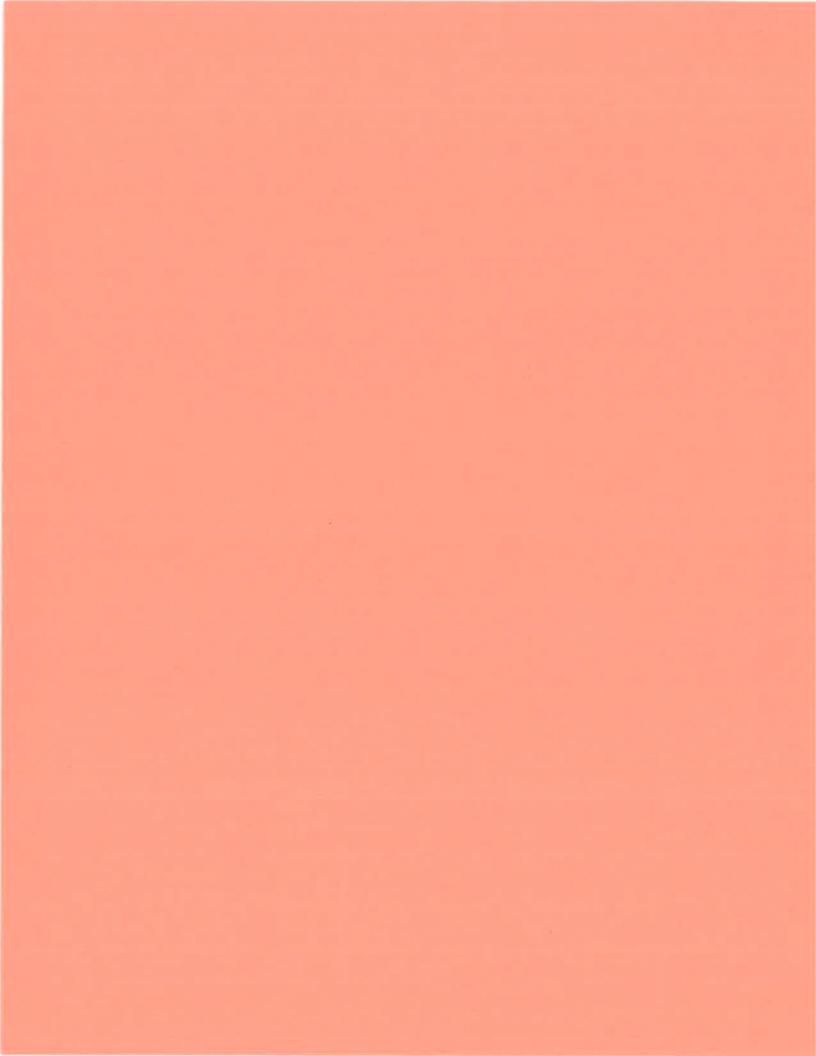
Lockwood, Kessler, & Bartlett Date Collected: 12/07/16 Client: Date Received: 12/08/16 Project: Syosset Landfill H5920 Client Sample ID: **FIELDBLANK** SDG No.: H5920-08 Matrix: Water Lab Sample ID: 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037713.D 1 12/15/16 17:24 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

8


Report of Analysis

Client: Date Collected: 12/07/16 Lockwood, Kessler. & Bartlett 12/08/16 Project: Syosset Landfill Date Received Client Sample ID: **FIELDBLANK** SDG No.: H5920 Lab Sample ID: H5920-08 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: $\mathsf{m}\mathsf{L}$ Final Vol: 5000 uL Soil Aliquot Vol: Test: VOCMS Group1 иL

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch; Dilution: Prep Date Date Analyzed Prep Batch ID VN037713,D 1 12/15/16 17:24 VN121516

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	47.5		61 - 141		95%	SPK: 50
1868-53-7	Dibromofluoromethane	47.5		69 - 133		95%	SPK: 50
2037-26-5	Toluene-d8	48.7		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	43.5		58 - 135		87%	SPK: 50
INTERNAL STANI							
363-72-4	Pentafluorobenzene	1303820	7.86				
540-36-3	1,4-Difluorobenzene	1974180	8.77				
3114-55-4	Chlorobenzene-d5	1668780	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	647688	13.52				

EPA	SAMPLE	NO.

EPA	SAMPLE	NO.	
			7
SY-6			- 1

Lab Name:	Chemtech	Consu.	lting Grou	<u>p</u>	Contract:	EPW14	030			
Lab Code:	CHM		Case No.:	Syosset Landfi	MA No.:			SDG No.:	SY-6	
Matrix: _	WATER				Lab Sample	e ID:	Н5920-	-01		
% Solids:					Date Rece	ived:	12/08	/2016		
Analytical N	Method:	ICP-A	ES							
Concontration	on Unite	/ /T	/T/	1 d		110 /T				

Concentration Units (μg/L, mg/L, mg/kg dry weight or μg) ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	20.9	J	12/18/2016	1644
7440-36-0	Antimony	60.0	U	12/18/2016	1644
7440-38-2	Arsenic	10.0	U	12/18/2016	1644
7440-39-3	Barium	87.8	J	12/18/2016	1644
7440-41-7	Beryllium	5.0	U	12/18/2016	1644
7440-43-9	Cadmium	5.0	Ū	12/18/2016	1644
7440-70-2	Calcium	43000		12/18/2016	1644
7440-47-3	Chromium	10.0	U	12/18/2016	1644
7440-48-4	Cobalt	50.0	U	12/18/2016	1644
7440-50-8	Copper	35.1		12/18/2016	1644
7439-89-6	Iron	672		12/18/2016	1644
7439-92-1	Lead	10.0	U	12/18/2016	1644
7439-95-4	Magnesium	11700		12/18/2016	1644
7439-96-5	Manganese	43.5		12/18/2016	1644
7440-02-0	Nickel	6.4	J	12/18/2016	1644
7440-09-7	Potassium	5000	U	12/18/2016	1644
7782-49-2	Selenium	35.0	U	12/18/2016	1644
7440-22-4	Silver	10.0	U	12/18/2016	1644
7440-23-5	Sodium	6160		12/18/2016	1644
7440-28-0	Thallium	25.0	U	12/18/2016	1644
7440-62-2	Vanadium	50.0	U	12/18/2016	1644
7440-66-6	Zinc	1660		12/18/2016	1644
Hardness	Hardness (total)	156		12/18/2016	1644

SY-2R	
21-71	

		_
_	_	-
	-1	
-/-	- 1	
10	- 1	

Lab Name:	Chemtech Con	sulting Grou	ıp	Contract: EPW1	4030	
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :	SDG No.: SY-6	5
Matrix:	WATER			Lab Sample ID:	Н5920-02	
% Solids:	*			Date Received:	12/08/2016	
Analytical	Method: ICP	-AES				

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	244		12/18/2016	1648
7440-36-0	Antimony	60.0	Ū	12/18/2016	1648
7440-38-2	Arsenic	10.0	U	12/18/2016	1648
7440-39-3	Barium	97.7	J	12/18/2016	1648
7440-41-7	Beryllium	7.4		12/18/2016	1648
7440-43-9	Cadmium	5.0	U	12/18/2016	1648
7440-70-2	Calcium	32100		12/18/2016	1648
7440-47-3	Chromium	2.2	J	12/18/2016	1648
7440-48-4	Cobalt	12.0	J	12/18/2016	1648
7440-50-8	Copper	25.0	U	12/18/2016	1648
7439-89-6	Iron	126		12/18/2016	1648
7439-92-1	Lead	10.0	U	12/18/2016	1648
7439-95-4	Magnesium	5960		12/18/2016	1648
7439-96-5	Manganese	33.9		12/18/2016	1648
7440-02-0	Nickel	37.0	J	12/18/2016	1648
7440-09-7	Potassium	2870	J	12/18/2016	1648
7782-49-2	Selenium	35.0	U	12/18/2016	1648
7440-22-4	Silver	10.0	U	12/18/2016	1648
7440-23-5	Sodium	232000		12/18/2016	1648
7440-28-0	Thallium	25.0	U	12/18/2016	1648
7440-62-2	Vanadium	50.0	U	12/18/2016	1648
7440-66-6	Zinc	45.2	J	12/18/2016	1648
Hardness	Hardness (total)	105		12/18/2016	1648

Comments:			
•			

11177	DIATIT III	140.	
SY-2D			

~	_
4	7
-)	- 1
_	

Lab Name:	Chemtech Cons	ulting Grou	р	Contract:	EPW14	030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :			SDG No.:	SY-6
Matrix:	WATER			Lab Sample	ID:	Н5920-	-03	
% Solids:				Date Receiv	red:	12/08	/2016	
Analytical I	Method: ICP-	AES	0					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	130	J	12/18/2016	1652
7440-36-0	Antimony	60.0	U	12/18/2016	1652
7440-38-2	Arsenic	10.0	U	12/18/2016	1652
7440-39-3	Barium	75.8	J	12/18/2016	1652
7440-41-7	Beryllium	5.0	U	12/18/2016	1652
7440-43-9	Cadmium	5.0	U	12/18/2016	1652
7440-70-2	Calcium	21700		12/18/2016	1652
7440-47-3	Chromium	10.0	Ū	12/18/2016	1652
7440-48-4	Cobalt	50.0	Ū	12/18/2016	1652
7440-50-8	Copper	25.0	Ū	12/18/2016	1652
7439-89-6	Iron	69.0	J	12/18/2016	1652
7439-92-1	Lead	3.7	J	12/18/2016	1652
7439-95-4	Magnesium	5330		12/18/2016	1652
7439-96-5	Manganese	962		12/18/2016	1652
7440-02-0	Nickel	40.0	U	12/18/2016	1652
7440-09-7	Potassium	5510		12/18/2016	1652
7782-49-2	Selenium	35.0	Ū	12/18/2016	1652
7440-22-4	Silver	10.0	U	12/18/2016	1652
7440-23-5	Sodium	157000		12/18/2016	1652
7440-28-0	Thallium	25.0	U	12/18/2016	1652
7440-62-2	Vanadium	50.0	U	12/18/2016	1652
7440-66-6	Zinc	60.0	Ū	12/18/2016	1652
Hardness	Hardness (total)	76.1		12/18/2016	1652

3 t			
Comments:			

		OTHIL DD	
~-	- 25	_	- 1
S	Y-3D	D	- 1
-		_	- 1
			_

4	T
4	

Lab Name:	Chemtech	Consu	ılting G	roup		Contract:	EPW14	030
Lab Code:	СНМ		Case No	.: Sy	osset Landf	i MA No. :		SDG No.: SY-6
Matrix:	WATER					Lab Sample	ID:	Н5920-04
% Solids:	-					Date Recei	ved:	12/08/2016
Analytical	Method:	ICP-F	AES					
Concentrati	on Units	(µg/L	mg/L,	mg/kg	dry weight	or μg) :	ug/I	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	Ü	12/18/2016	1656
7440-36-0	Antimony	60.0	Ū	12/18/2016	1656
7440-38-2	Arsenic	10.0	Ū	12/18/2016	1656
7440-39-3	Barium	200	U	12/18/2016	1656
7440-41-7	Beryllium	5.0	U	12/18/2016	1656
7440-43-9	Cadmium	5.0	U	12/18/2016	1656
7440-70-2	Calcium	1690	J	12/18/2016	1656
7440-47-3	Chromium	6.2	J	12/18/2016	1656
7440-48-4	Cobalt	50.0	U	12/18/2016	1656
7440-50-8	Copper	25.0	U	12/18/2016	1656
7439-89-6	Iron	25.5	J	12/18/2016	1656
7439-92-1	Lead	10.0	U	12/18/2016	1656
7439-95-4	Magnesium	616	J	12/18/2016	1656
7439-96-5	Manganese	15.0	U	12/18/2016	1656
7440-02-0	Nickel	40.0	U	12/18/2016	1656
7440-09-7	Potassium	5000	Ū	12/18/2016	1656
7782-49-2	Selenium	35.0	U	12/18/2016	1656
7440-22-4	Silver	10.0	U	12/18/2016	1656
7440-23-5	Sodium	3330	J	12/18/2016	1656
7440-28-0	Thallium	25.0	U	12/18/2016	1656
7440-62-2	Vanadium	50.0	U	12/18/2016	1656
7440-66-6	Zinc	60.0	U	12/18/2016	1656
Hardness	Hardness (total)	6.76	J	12/18/2016	1656

FIELDBLANK

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

		_
	C	7
	п	٨
	1	' 1

Lab Name:	Chemtech	Consu	ılting Grou	ıp	Contract:	EPW14	030			
Lab Code:	СНМ		Case No.:	Syosset Landfi	MA No. :		=======================================	SDG No.:	SY-6	
Matrix:	WATER				Lab Sample	ID:	Н5920-	-08		
% Solids:					Date Recei	ved:	12/08	/2016		
Analytical M	ethod:	ICP-P	AES							
a	_ =====================================		1=	/1 1 1 1 1	,	~ /T				

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg) : $\underline{ug/L}$

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1712
7440-36-0	Antimony	60.0	U	12/18/2016	1712
7440-38-2	Arsenic	10.0	U	12/18/2016	1712
7440-39-3	Barium	200	U	12/18/2016	1712
7440-41-7	Beryllium	5.0	Ū	12/18/2016	1712
7440-43-9	Cadmium	5.0	U	12/18/2016	1712
7440-70-2	Calcium	5000	U	12/18/2016	1712
7440-47-3	Chromium	10.0	U	12/18/2016	1712
7440-48-4	Cobalt	50.0	U	12/18/2016	1712
7440-50-8	Copper	25.0	U	12/18/2016	1712
7439-89-6	Iron	100	Ü	12/18/2016	1712
7439-92-1	Lead	10.0	U	12/18/2016	1712
7439-95-4	Magnesium	5000	U	12/18/2016	1712
7439-96-5	Manganese	15.0	U	12/18/2016	1712
7440-02-0	Nickel	40.0	U	12/18/2016	1712
7440-09-7	Potassium	5000	U	12/18/2016	1712
7782-49-2	Selenium	35.0	U	12/18/2016	1712
7440-22-4	Silver	10.0	U	12/18/2016	1712
7440-23-5	Sodium	5000	U	12/18/2016	1712
7440-28-0	Thallium	25.0	U	12/18/2016	1712
7440-62-2	Vanadium	50.0	U	12/18/2016	1712
7440-66-6	Zinc	60.0	U	12/18/2016	1712
Hardness	Hardness (total)	33.1	U	12/18/2016	1712

Comments:				

	SAMPLE	NO.
EPA		

	~	
SY-6		

Lab Name: Chemtech Consulting Group Contract: EPW14030

Lab Code: CHM Case No.: Syosset Landfi MA No.: SDG No.: SY-6

Matrix: WATER Lab Sample ID: H5920-09

% Solids: Date Received: 12/08/2016

Analytical Method: ICP-AES

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1717
7440-36-0	Antimony	60.0	U	12/18/2016	1717
7440-38-2	Arsenic	10.0	U	12/18/2016	1717
7440-39-3	Barium	85.8	J	12/18/2016	1717
7440-41-7	Beryllium	5.0	U	12/18/2016	1717
7440-43-9	Cadmium	5.0	U	12/18/2016	1717
7440-70-2	Calcium	42000		12/18/2016	1717
7440-47-3	Chromium	10.0	U	12/18/2016	1717
7440-48-4	Cobalt	50.0	U	12/18/2016	1717
7440-50-8	Copper	30.6		12/18/2016	1717
7439-89-6	Iron	251		12/18/2016	1717
7439-92-1	Lead	10.0	Ū	12/18/2016	1717
7439-95-4	Magnesium	11400		12/18/2016	1717
7439-96-5	Manganese	40.8		12/18/2016	1717
7440-02-0	Nickel	6.0	J	12/18/2016	1717
7440-09-7	Potassium	5000	U	12/18/2016	1717
7782-49-2	Selenium	35.0	U	12/18/2016	1717
7440-22-4	Silver	10.0	U	12/18/2016	1717
7440-23-5	Sodium	6060		12/18/2016	1717
7440-28-0	Thallium	25.0	U	12/18/2016	1717
7440-62-2	Vanadium	50.0	U	12/18/2016	1717
7440-66-6	Zinc	1550		12/18/2016	1717

Comments:		
*		

EPA	SAMPLE	

	1
SY-2R	
	lop

Lab Name:	Chemtech Cons	ulting Grou	ıp	Contract:	EPW14	1030	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.:	SY-6
Matrix: _	WATER			Lab Sample	ID:	<u>Н5920-10</u>	
% Solids:	4			Date Receiv	ved:	12/08/2016	

Analytical Method: ICP-AES

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	215		12/18/2016	1721
7440-36-0	Antimony	60.0	U	12/18/2016	1721
7440-38-2	Arsenic	10.0	U	12/18/2016	1721
7440-39-3	Barium	100	J	12/18/2016	1721
7440-41-7	Beryllium	7.9		12/18/2016	1721
7440-43-9	Cadmium	5.0	U	12/18/2016	1721
7440-70-2	Calcium	33500		12/18/2016	1721
7440-47-3	Chromium	2.1	J	12/18/2016	1721
7440-48-4	Cobalt	12.0	J	12/18/2016	1721
7440-50-8	Copper	25.0	U	12/18/2016	1721
7439-89-6	Iron	15.8	J	12/18/2016	1721
7439-92-1	Lead	10.0	U	12/18/2016	1721
7439-95-4	Magnesium	6180		12/18/2016	1721
7439-96-5	Manganese	33.5		12/18/2016	1721
7440-02-0	Nickel	38.1	J	12/18/2016	1721
7440-09-7	Potassium	2990	J	12/18/2016	1721
7782-49-2	Selenium	35.0	Ū	12/18/2016	1721
7440-22-4	Silver	10.0	U	12/18/2016	1721
7440-23-5	Sodium	237000		12/18/2016	1721
7440-28-0	Thallium	25.0	U	12/18/2016	1721
7440-62-2	Vanadium	50.0	U	12/18/2016	1721
7440-66-6	Zinc	56.7	J	12/18/2016	1721

encs.		

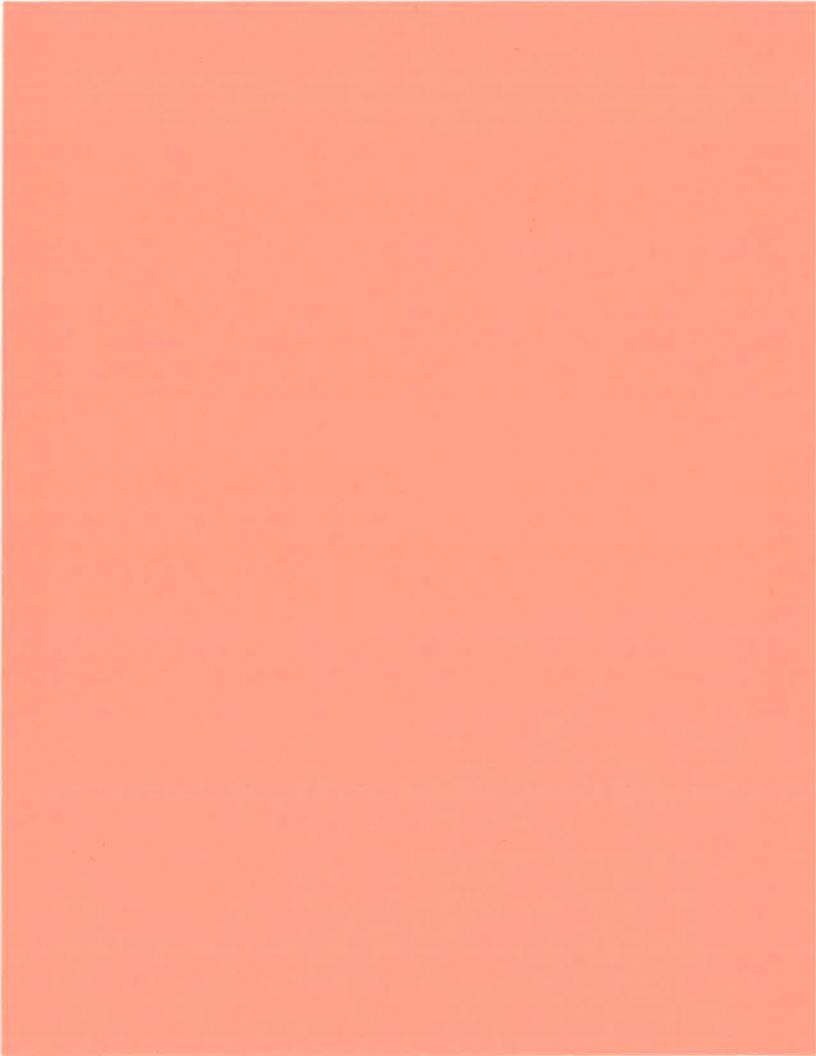
EFA	SHITE	IAO.
SY-2D		

110

Lab Name:	Chemtech	Consulting	g Grou	р	Contract:	EPW14	030		
Lab Code:	СНМ	Case	No.:	Syosset Landf:	MA No. : _			SDG No.:	SY-6
Matrix:	WATER				Lab Sample	ID:	Н5920-	11	
% Solids:					Date Recei	ved:	12/08	/2016	
Analytical	Method:	ICP-AES							
Concentrati	on Units	(μg/L, mg/	L, mg/	kg dry weight	or μg) :	ug/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1725
7440-36-0	Antimony	60.0	U	12/18/2016	1725
7440-38-2	Arsenic	10.0	U	12/18/2016	1725
7440-39-3	Barium	75.3	J	12/18/2016	1725
7440-41-7	Beryllium	5.0	U	12/18/2016	1725
7440-43-9	Cadmium	5.0	U	12/18/2016	1725
7440-70-2	Calcium	22100		12/18/2016	1725
7440-47-3	Chromium	10.0	U	12/18/2016	1725
7440-48-4	Cobalt	50.0	U	12/18/2016	1725
7440-50-8	Copper	25.0	U	12/18/2016	1725
7439-89-6	Iron	19.3	J	12/18/2016	1725
7439-92-1	Lead	10.0	U	12/18/2016	1725
7439-95-4	Magnesium	5270		12/18/2016	1725
7439-96-5	Manganese	915		12/18/2016	1725
7440-02-0	Nickel	40.0	U	12/18/2016	1725
7440-09-7	Potassium	5410		12/18/2016	1725
7782-49-2	Selenium	35.0	U	12/18/2016	1725
7440-22-4	Silver	10.0	U	12/18/2016	1725
7440-23-5	Sodium	158000		12/18/2016	1725
7440-28-0	Thallium	25.0	U	12/18/2016	1725
7440-62-2	Vanadium	50.0	U	12/18/2016	1725
7440-66-6	Zinc	60.0	U	12/18/2016	1725

EPA SAMPLE NO.


FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

	OTHIL DI	110.	
SY-3D	D		

Lab Name:	Chemtech	Consu	lting Grou	р		Contract:	EPW14	030		120
Lab Code:	СНМ	(Case No.:	Syosset	Landfi	MA No. :			SDG No.: SY-	-6
Matrix: _	WATER					Lab Sample	e ID:	Н5920-	-12	
Solids:						Date Recei	.ved:	12/08	/2016	
Analytical	Method:	ICP-A	ES							

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg) : ug/L CAS No. Analyte Concentration Date Analyzed Time Analyzed 7429-90-5 200 12/18/2016 1729 Aluminum IJ 7440-36-0 60.0 U 12/18/2016 1729 Antimony 1729 7440-38-2 Arsenic 10.0 U 12/18/2016 7440-39-3 12/18/2016 1729 Barium 200 U 7440-41-7 12/18/2016 1729 Beryllium 5.0 U 7440-43-9 12/18/2016 1729 Cadmium 5.0 U 7440-70-2 Calcium 1660 J 12/18/2016 1729 1729 7440-47-3 Chromium U 10.0 12/18/2016 7440-48-4 12/18/2016 1729 Cobalt 50.0 U 7440-50-8 12/18/2016 1729 Copper 25.0 U 7439-89-6 1729 Iron 100 U 12/18/2016 7439-92-1 1729 Lead 10.0 U 12/18/2016 1729 7439-95-4 Magnesium 633 J 12/18/2016 7439-96-5 12/18/2016 1729 Manganese 15.0 U 7440-02-0 1729 Nickel 40.0 U 12/18/2016 7440-09-7 1729 Potassium 5000 IJ 12/18/2016 7782-49-2 Selenium 35.0 U 12/18/2016 1729 7440-22-4 1729 Silver 10.0 U 12/18/2016 7440-23-5 1729 12/18/2016 Sodium 3520 J 7440-28-0 1729 Thallium 25.0 U 12/18/2016 7440-62-2 Vanadium 12/18/2016 1729 50.0 U 1729 7440-66-6 Zinc 60.0 U 12/18/2016

Comments:	
 	

EPA SAI	MPLE	NO.
---------	------	-----

Dr. * *	01411111	110	
~ ~			
SY-6			

Lab Name:	Chemtech Cons	ulting Grou	p		Contract:	EPW14	1030		
Lab Code:	CHM	Case No.:	Syosset	Landfi	MA No. :			SDG No.:	SY-6
Matrix: _	WATER				Lab Sample	ID:	Н5920-	-01	

% Solids: ______ Date Received: 12/08/2016

Analytical Method: CVAA

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	12/09/2016	1641

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.
-----	--------	-----

	OTHIT III	LIO.	
SY-2R			
21-5K			
			_

	1	
-	/	
7	9	

Lab Name: Chemtech Consulting Group					Cont	ract:	EPW14030							
Lab (Code:	СНМ		Case	No.:	Syc	sset Landf	i MA N	io. :			SDG N	No.: SY-6	
Matr:	ix:	WATER						Lab	Sample	ID:	H5920-	02		
% So.	lids:							Date	Recei	ved:	12/08/	2016		
Anal	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/	L, mg,	/kg	dry weight	or µg) :	ug/I	- -			
	CAS N	lo.	Analyte				Concentra	tion	Q	Date	Analyz	ed T	ime Analyze	d
	7439-9	97-6	Mercury	7			0.20		U	12/	09/2016	5	1643	

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

	OTHIL DE	1101	_
SY-2D			

31

Lab 1	Name:	Chemt	ech Cons	ultin	g Grou	р	Cont	Contract: EPW14030					
Lab (Code:	СНМ		Case	No.:	Syosset Landf	i MA N	o. :			SDG	No.: SY-6	
Matr:	ix:	WATER					Lab	Sample	ID:	н5920-	-03		
% So.	lids:						Date	Receiv	ved:	12/08	/201	6	
Analy	ytical	Method	: CVAA										
Conce	entrati	lon Uni	ts (μg/L	, mg/	L, mg/	kg dry weight	or μg)) <u>*</u>	ug/I				
	CAS N	No.	Analyte)		Concentra	tion	Q	Date	Analyz	zed	Time Analy	zed
	7439-9	97-6	Mercur	У		0.20		U	12/0	09/201	6	1645	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN

SY-3DD	

_
- 1

_	0111	_	111	
TNORGANIC	ΔΝΔΤ.	YSTS	מידעמ	CHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030 Lab Code: Case No.: Syosset Landfi MA No.: SDG No.: SY-6 Matrix: WATER Lab Sample ID: H5920-04 % Solids: Date Received: 12/08/2016 Analytical Method: CVAA Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L CAS No. Analyte Concentration Date Analyzed Time Analyzed 7439-97-6 Mercury 0.20 12/09/2016 1647

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

FORM 1 - IN

	_	-	_	-	_	-		
NORGANIC	Α	N	12	λL	YSIS		DATA	SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030 Lab Code: Case No.: Syosset Landfi MA No.: SDG No.: SY-6 Matrix: WATER Lab Sample ID: H5920-08 % Solids: Date Received: 12/08/2016 Analytical Method: CVAA Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	Ū	12/09/2016	1654

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO

DLA	OMIT III	140.	
SY-6			

_	01111	_		
TNORGANIC	ANAT	YSTS	ΔΤΑΠ	SHEET

Lab Name: Chemtech Consulting Group						Cont	Contract: EPW14030						
Lab (Code:	CHM		Case	No.:	Syosset Landf	i MA N	lo.:			SDG	No.: SY-6	
Matr:	ix:	WATER					Lab	Sample	ID:	H5920-	09		
so.	lids:						Date	Receiv	zed:	12/08/	/201	6	
Analy	ytical 1	Method	: CVAA										
Conce	entrati	on Uni	ts (µg/L	, mg/1	L, mg/}	kg dry weight	or µg) :	ug/I	Ĺ			
	CAS N	0.	Analyte			Concentra	tion	Q	Date	Analyz	ed	Time Analyzed	Ĺ
	7439-9	97-6	Mercur	У		0.20		U	12/	09/2016	5	1656	\neg

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-2R		
DI-ZK		

(0)

Lab N	Name:	Chemt	ech Cons	ılting Gro	up			Cont	ract:	EPW14	030			
Lab (Code:	CHM	•	Case No.:	Syc	sset La	ndfi	MA No	o. :			SDG	No.: SY-6	
Matri	ix:	WATER						Lab S	Sample	ID:	H5920-	10		
% Sol	lids:	-						Date	Receiv	red:	12/08	/201	6	
Analy	ytical 1	Method	: CVAA											
Conce	entrati	on Uni	ts (μg/L	, mg/L, mg	/kg	dry weig	ght o	r μg)	%	ug/I	1			
[CAS N	0.	Analyte	2		Concen	trat	ion	Q	Date	Analyz	ed	Time Analyzed	E
- 1	7439-9	7-6	Mercur			0.20			U	12/0	09/201	6	1658	

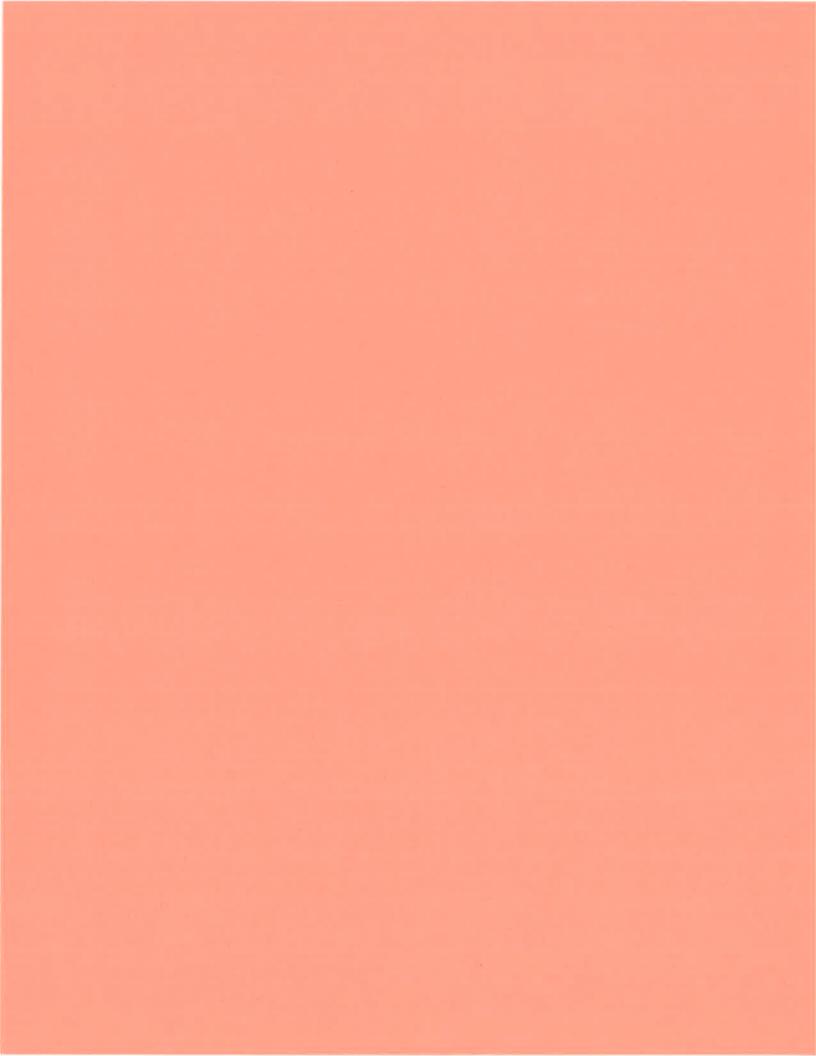
NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

EFA	DAME DE	NO.	
SY-2D	1		- 1
			_

Ι.		ä	
		1	
		1	J
1		ı	/


Lab 1	Name:	Chemt	ech Consi	ulting Grou	p	Cont	ract:	EPW14	030			
Lab (Code:	СНМ		Case No.:	Syosset Landfi	MA N	o. : _			SDG No	SY-6	
Matri	ix: _	WATER				Lab	Sample	ID:	H5920-	11		
% Sol	lids:					Date	Receiv	red:	12/08/	/2016		
Analy	ytical 1	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg/	kg dry weight	or µg)	:	ug/L				
[CAS N	0.	Analyte	2	Concentrat	ion	Q	Date	Analyz	ed Ti	me Analyze	d
Ì	7439-9	7-6	Mercury	.7	0.20		ΓŢ	12/0	0/2016	5	1700	

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.	_
SY-3D	D		
			-(2)

Lab 1	b Name: Chemtech Consulting Group						Contract: EPW14030								
Lab (Code:	CHM		Case	No.:	Syc	sset	Landfi	MA N	o. : ॄ			SDG	No.:	SY-6
Matr:	ix: _	WATER							Lab	Sample	ID:	Н5920	-12		
% So	lids:	-							Date	Recei	ved:	12/08	3/201	.6	
Analy	analytical Method: CVAA														
Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L															
	CAS N	о.	Analyte	<u> </u>			Conc	entrat	ion	Q	Date	Analy	zed	Time .	Analyzed
	7439-9	97-6	Mercur	У			0.20	0		Ū	12/	09/201	16	170)2

NOTE: Hardness (total) is reported in mg/L

	EPA	SAMPLE	NO.
--	-----	--------	-----

		DIMIL DD	2.0.	
~ .				
S	Y-6			
_				

Lab 1	Name:	Chemte	ech Cons	ulting Grou	ір	Cont	ract:	EPW14	030		
Lab (Code:	СНМ		Case No.:	Syosset Landfi	MA N	o. : _		SDG	No.: SY-6	
Matr:	atrix: WATER Lab Sample ID: H5920-01										
so.	lids:					Date	Receiv	ved:	12/08/201	6	
\nal	analytical Method: Spectrophotometry										
Conce	oncentration Units (μg/L, mg/L, mg/kg dry weight or μg) : ug/L										
	CAS N	0.	Analyte	9	Concentrat	ion	Q	Date	Analyzed	Time Analyzed	
	57-12-	5	Cuanid	^	10.0	_	Tilde	12/0	10/2016	1325	7

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.
-----	--------	-----

	 	1
		l
SY-2R		ı
		l
		•

	_
	1
٠,	-1
L	

Lab 1	Name:	Chemtech Consulting Group					Contract: EPW14030					
Lab (Code:	СНМ	-	Case No.:	Sy	osset Landfi	MA N	o. : _		SDO	S No.: SY-6	
Matr:	ix: _	WATER						Lab Sample ID: H5920-02				
% So.	lids:						Date	Date Received:		12/08/2016		
Analytical Method: Spectrophotometry												
Concentration Units (μg/L, mg/L, mg/kg dry weight or μg) : ug/L												
	CAS N	0.	Analyte	9	Concentration		Q	Date Analyzed		Time Analyzed	i	
	57-12-	·5	Cyanid	е		10.0	uj	Live	12/0	9/2016	1325	

NOTE: Hardness (total) is reported in mg/L

	EPA	SAMPLE	NO.
--	-----	--------	-----

=

		_
つ	-	1
ר		1
_		

Lab N	Name:	Chemte	ech Consu	llting Gr	oup		Cont	ract:	EPW14	030	
Lab (Code:	CHM		Case No.	Sy.	osset Landfi	MA N	o. : _		SDG	No.: SY-6
Matri	ix:	WATER					Lab	Sample	ID:	н5920-03	
% Sol	lids:						Date	Receiv	red:	12/08/201	. 6
Analy	tical	Method	: Spect	rophotom	netry	7					
Conce	entrati	on Uni	ts (µg/L	mg/L, m	g/kg	dry weight	or μg)		ug/L		
[CAS N	0.	Analyte			Concentrat	ion	Q	Date	Analyzed	Time Analyzed
i i	57_12_	.5	Cuanida			10 0		TTake	12/0	0/2016	1325

NOTE: Hardness (total) is reported in mg/L

Comments:

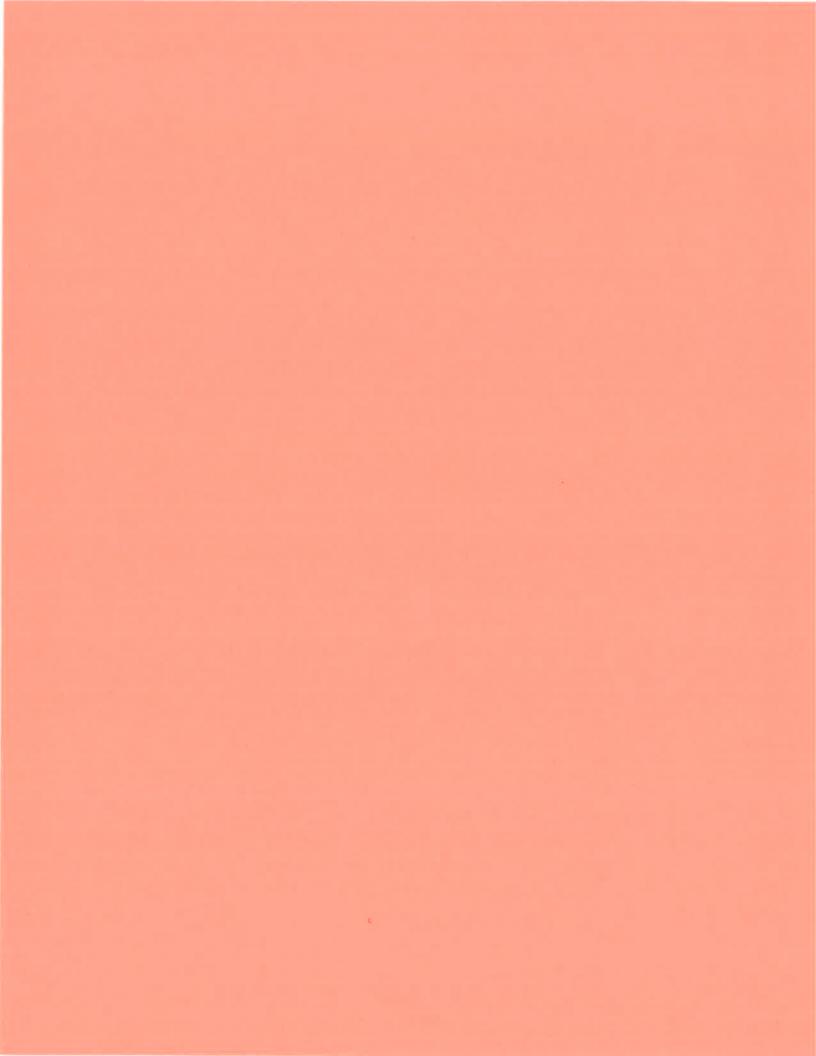
	\neg
QV 200	- 1
SY-3DD	- 1
	- 1
	_

41

Lab 1	Name:	Chemt	ech Cons	ulting Grou	ıp	Cont	ract:	EPW140	30		
Lab (Code:	CHM	-	Case No.:	Syosset Lan	dfi MA N	o. : _		SDG	No.: SY-6	
Matri	ix: _	WATER				Lab	Sample	ID: H	15920-04		
sol	lids:					Date	Receiv	/ed: <u>1</u>	.2/08/201	. 6	
Analy	ytical	Method	: Spec	trophotome	try						
Conce	entrati	on Uni	ts (µg/I	, mg/L, mg/	kg dry weig	ht or µg) 1:	ug/L			
1	CAS N	lo.	Analyt	e	Concent	ration	Q	Date A	nalyzed	Time Analyzed	1
	57-12-	-5	Cyanid	е	10.0	hJ	U	12/09	9/2016	1325	

NOTE: Hardness (total) is reported in mg/L

Comments:


	DIA	DENTI DE	140	
F	CELD	BLANK		- 1
E I	עתבים.	DHAM		- 1
				_

3

Lab N	Name:	Chemt	ech Cons	ulting Grou	ıp		Cont	ract:	EPW14	030			
Lab (Code:	СНМ		Case No.:	Syc	osset Landfi	MA N	o. : _			SDG No.:	SY-6	
Matri	ix:	WATER					Lab	Sample	ID:	н5920-0)8		
% Sol	ids:						Date	Receiv	red:	12/08/	2016		
Analy	tical	Method	: Spec	trophotome	etry								
Conce	entrati	on Uni	ts (µg/I	, mg/L, mg	/kg	dry weight	or µg)	g	ug/L				
[CAS N	lo.	Analyt	e		Concentrat	ion	Q	Date	Analyze	ed Time	Analyzed	1
	57-12-	-5	Cyanid	е		10.0	14-1	LL	12/0	9/2016	13	331	1

NOTE: Hardness (total) is reported in mg/L

Comments:

Report of Analysis

Client: Lockwood, Kessler, & Bartlett

Project: Syosset Landfill

Client Sample ID: SY-6

Lab Sample ID: H5920-01

Date Collected:

12/06/16 10:15

Date Received: 12/08/16

SDG No.: H5920

Matrix: WATER

% Solid: 0

Parameter	Conc. Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	109	1	0.4	1	2	mg/L		12/12/16 13:27	SM2320 B
Ammonia as N	0.083 🏅 🏏	1	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 10:36	SM 4500-NH3 B
									plus G
Bromide	1.59	1	0.066	0.25	0.5	mg/L		12/08/16 11:33	300
Chloride	4.94	1	0.075	0.075	0.15	mg/L		12/08/16 11:33	300
Nitrate	1.54 🐧 🔏	1	0.027	0.057	0.113	mg/L		12/08/16 11:33	300
Sulfate	42.3	1	0.132	0.375	0.75	mg/L		12/08/16 11:33	300
BOD5	2 47 HU	1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD	5 U	1	2.43	2.5	5	mg/L		12/14/16 15:02	SM5220 D
Color	5 J H	1	5	5	5	cu		12/08/16 13:15	SM2120 B
Phenolics	0.05 U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:26	9065
TDS	198	1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN	0.338 J	1	0.096	0.25	0.5	mg/L	12/12/16 09:50	12/13/16 13:22	SM4500-N Org
									B or C plus NH3
									G
TOC	2.01	1	0.08	0.25	0.5	mg/L		12/09/16 11:27	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range

N = Spiked sample recovery not within control limits

Client:

Project:

Client Sample ID: Lab Sample ID:

Report of Analysis

Lockwood, Kessler, & Bartlett

Syosset Landfill

SY-2R

H5920-02

Date Collected: 12/06/16 11:15

H5920

Date Received: 12/08/16

Matrix: WATER

% Solid: 0

SDG No.:

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		29.2		1	0.4	1	2	mg/L		12/12/16 13:31	SM2320 B
Ammonia as N		0.045 J	1	1	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 10:36	SM 4500-NH3 B
											plus G
Bromide		1.51		1	0.066	0.25	0.5	mg/L		12/08/16 12:02	300
Chloride	398	573	OR	10	0.075	0.075	3.75 0.15 7.5	mg/L		12/08/16 12:02	300
Nitrate		1.57 丁	И	1	0.027	0.057	0.113	mg/L		12/08/16 12:02	300
Sulfate		34.3		1	0.132	0.375	0.75	mg/L		12/08/16 12:02	300
BOD5		2 UJ	HU	1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD		5	U	1	2.43	2.5	5	mg/L		12/14/16 15:03	SM5220 D
Color		5 WJ	HU	1	5	5	5	cu		12/08/16 13:20	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:26	9065
TDS		787		1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN		0.354	J	1	0.096	0.25	0.5	mg/L	12/12/16 09:50	12/13/16 13:22	SM4500-N Org
											B or C plus NH3
											G
TOC		1.94		1	0.08	0.25	0.5	mg/L		12/09/16 10:51	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Report of Analysis

2DL

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/06/16 11:15

Project: Syosset Landfill Date Received: 12/08/16

Client Sample ID: SY-2RDL SDG No.: H5920

Lab Sample ID: H5920-02DL Matrix: WATER

% Solid:

Parameter	Conc.	Qua.	DF MDL	LOD	LOQ+CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	398	B (50 3.75	3.75	7.5	mg/L		12/08/16 20:14	300

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

73 of 126

12/06/16 13:30

Client:

Report of Analysis

Lockwood, Kessler, & Bartlett Date Collected:

Project: Syosset Landfill Date Received: 12/08/16

Client Sample ID: SY-2D SDG No.: H5920
Lab Sample ID: H5920-03 Matrix: WATER

% Solid: 0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		31.9		1	0.4	1	2	mg/L		12/12/16 13:35	SM2320 B
Ammonia as N		0.073	1 8	1	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 10:36	SM 4500-NH3 B
											plus G
Bromide		0.938		1	0.066	0,25	0.5	mg/L		12/08/16 12:31	300
Chloride	266	399	OR	15	0.075	0.075	1.75 0.15 7.5	mg/L		12/08/16 12:31	300
Nitrate		1.04		1	0.027	0.057	0.113	mg/L		12/08/16 12:31	300
Sulfate		10.7		1	0.132	0.375	0.75	mg/L		12/08/16 12:31	300
BOD5		2	U	1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD		5	U	1	2.43	2.5	5	mg/L		12/14/16 15:03	SM5220 D
Color		5	U	1	5	5	5	cu		12/08/16 13:30	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:26	9065
TDS		544		1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN		0.228	J	T	0.096	0.25	0.5	mg/L	12/12/16 09:50	12/13/16 13:22	SM4500-N Org
											B or C plus NH3
											G
TOC		4.23		1	0.08	0.25	0.5	mg/L		12/09/16 11:09	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Client Sample ID:

SY-2DDL

300

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected 12/06/10/13:30

Project: Syosset Landfill Date Received: 12/08/16

Lab Sample ID: H5920-03DL Matrix: WATER

% Solid: 0

SDG No.

H5920

Parameter	Conc.	Qua.	DF MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	266	Ø	50 3.75	3.75	7.5	mg/L		12/08/16 20:43	300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

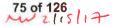
LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value


B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

Client:

Report of Analysis

Project: Syosset Landfill Date Received: 12/08/16

Client Sample ID: SY-3DD SDG No.: H5920
Lab Sample ID: H5920-04 Matrix: WATER

Lockwood, Kessler, & Bartlett

% Solid:

12/06/16 15:00

Date Collected:

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	5.04		1	0.4	1/	2	mg/L		12/12/16 14:31	SM2320 B
Ammonia as N	0.042	1	1	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 10:36	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	mg/L		12/08/16 13:00	300
Chloride	4.75		1	0.075	0.075	0.15	mg/L		12/08/16 13:00	300
Nitrate	0.79		1	0.027	0.057	0.113	mg/L		12/08/16 13:00	300
Sulfate	1.95		1	0.132	0.375	0.75	mg/L		12/08/16 13:00	300
BOD5	2	U	1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD	5	U	1	2.43	2.5	5	mg/L		12/14/16 15:04	SM5220 D
Color	5	U	1	5	5	5	cu		12/08/16 13:35	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:26	9065
TDS	28		1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN	0.158	J	1	0.096	0.25	0.5	mg/L	12/12/16 09:50	12/13/16 13:22	SM4500-N Org
										B or C plus NH3 G
TOC	0.311	J	1	0.08	0.25	0.5	mg/L		12/09/16 11:43	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

 $\mathbf{E} = \mathbf{Indicates}$ the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

Report of Analysis

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

12/07/16 08:30

Project:

Syosset Landfill

Date Received:

12/08/16

Client Sample ID:

FIELDBLANK

SDG No.:

H5920 WATER

Lab Sample ID:

H5920-08

Matrix: % Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	2	U	-1	0.4	1)	2	mg/L		12/12/16 13:41	SM2320 B
Ammonia as N	0.068 🕤	X	1	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 11:52	SM 4500-NH3 B
	_									plus G
Bromide	0.5	U	L	0.066	0.25	0.5	mg/L		12/08/16 14:27	300
Chloride	0.15	U	1	0.075	0.075	0.15	mg/L		12/08/16 14:27	300
Nitrate	0.113	U	-1	0.027	0.057	0.113	mg/L		12/08/16 14:27	300
Sulfate	0.75	U	1	0.132	0.375	0.75	mg/L		12/08/16 14:27	300
BOD5	2	U	1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD	5	U	1	2.43	2.5	5	mg/L		12/14/16 15:06	SM5220 D
Color	5	U	1	5	5	5	cu		12/08/16 13:40	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:33	9065
TDS	1	J	1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN	0.168	J	1	0.096	0.25	0.5	mg/L	12/12/16 09:50	12/13/16 14:28	SM4500-N Org
							_			B or C plus NH3
										G
TOC	0.25	J	1	0.08	0.25	0.5	mg/L		12/09/16 12:00	SM5310B

~			
Com	m	en	ıts

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: H5921

Laboratory: ChemTech, Mountainside, New Jersey
Site: Syosset Landfill, Syosset, New York

Date: February 15, 2017

	VOCs/Wet Chemistry							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix					
1	SY-3D	H5921-01	Water					
1DL**	SY-3DDL	H5921-01DL	Water					
2	SY-7	H5921-02	Water					
2DL**	SY-7DL	H5921-02DL	Water					
3	SY-3	H5921-03	Water					
3DL**	SY-3DL	H5921-03DL	Water					
4*	TRIPBLANK	H5921-04	Water					

* - VOC Only ** - Ammonia, Chloride, TKN only

	Total & Dissolved Metals/Mercury/Cn							
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix					
1T	SY-3D	H5921-01	Water					
2T	SY-7	H5921-02	Water					
3T	SY-3	H5921-03	Water					
5D	SY-3D	H5921-05	Water					
6D	SY-7	H5921-06	Water					
7D	SY-3	H5921-07	Water					

T - Total Metals & Mercury & Cyanide D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for six water samples, one aqueous trip blank sample, and one aqueous field blank sample collected November 16, 2016 and December 7, 2016 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

<u>Analysis</u> Method References VOCs USEPA SW846 8260C Metals/Mercury/Cn USEPA CLP Method ISM02.3 Alkalinity Standard Method SM2320 B Ammonia (as N) Standard Method SM4500-NH3 Bromide USEPA Method 300.0 Chloride USEPA Method 300.0 Nitrate USEPA Method 300.0 Sulfate USEPA Method 300.0 BOD5 Standard Method SM5210 B COD Standard Method SM5220D

Color Standard Method SM2120 B Phenolics USEPA SW-846 Method 9065 Total Dissolved Solids Standard Method SM2540C

Total Kjeldahl Nitrogen Standard Method SM4500-N Org B or C

Total Organic Carbon Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Superfund Organic Methods Data Review," August 2014;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Data Review," August 2014;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination

- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples except for the following.

Sample ID	Date Sampled	Date Extracted	# of Days	Qualifier
4	11/16/16	12/14/16	28	J/UJ

GC/MS Tuning

All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

The field QC samples are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
TRIPBLANK	None - ND	ug/L	÷	*
FIELD BLANK (SDG H5920)	None - ND	-	3	Fi.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• A MS/MSD sample was not collected.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values except for the following.

LCS ID	Compound	%R	Qualifier	Affected Samples
VN1213WS01	Bromomethane	42%	UJ	1, 2, 3

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	SY-3D ug/L	SY-7 ug/L	RPD	Qualifier
cis-1,2-Dichloroethene	0.4	0.36	11%	None
Trichloroethene	0.28	0.28	0%	None
Chlorobenzene	0.33	0.31	6%	

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELDBLANK (SDG H5920)	None - ND	-	-	79E

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/DUP Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
REFERENCE	Cyanide	73%/OK	UJ	1, 2, 3

ICP Serial Dilution

• ICP serial dilution percent differences (%D) were within acceptance limits.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

	To	otal Metals		
Compound	SY-3D ug/L	SY-7 ug/L	RPD	Qualifier
Arsenic	11.9	16.6	33%	None
Barium	187	181	3%	
Cadmium	0.74	5.0U	NC	
Calcium	53600	52100	3%	
Cobalt	17.6	17.3	2%	
Copper	5.6	4.1	31%	
Iron	22500	21800	3%	
Magnesium	14200	13700	4%	72
Manganese	904	878	3%	
Potassium	23500	22800	3%	
Sodium	315000	306000	3%	
Hardness (Total)	192	187	3%	

	Disso	lved Metals		
Compound	SY-3D ug/L	SY-7 ug/L	RPD	Qualifier
Arsenic	16.0	16.5	3%	None
Barium	188	186	1%	
Cadmium	5.0U	0.87	NC	
Calcium	53800	53900	0%	
Chromium	10.0U	2.4	NC	

	Disso	olved Metals		
Compound	SY-3D ug/L	SY-7 ug/L	RPD	Qualifier
Cobalt	17.9	17.6	2%	None
Copper	5.0	5.4	8%	
Iron	22700	22600	0%	1
Magnesium	14200	14200	0%	1
Manganese	916	914	0%	
Nickel	40.0U	9.7	NC	
Potassium	23600	23500	0%	
Sodium	319000	317000	1%	

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		
FIELDBLANK	Ammonia as N	0.068	None	
(SDG H5920)	TDS	1	None	None for Wet Chemistry
	TKN	0.168	None	parameters
	TOC	0.25	None	_

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
REFERENCE	Ammonia as N	OK/21.3	J	All Samples

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

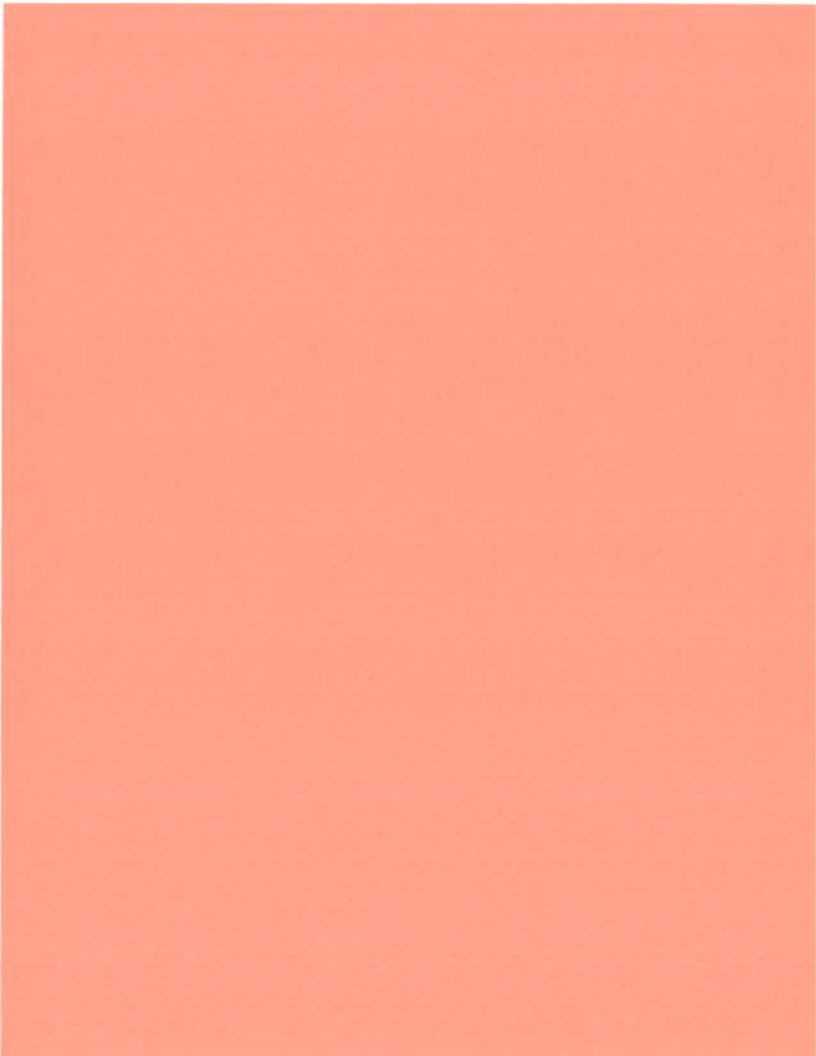
Compound Quantitation

• EDS Sample ID #s 1, 2, and 3 exhibited high concentrations of ammonia as N, chloride, and TKN and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	SY-3D mg/L	SY-7 mg/L	RPD	Qualifier
Alkalinity	466	474	2%	None
Ammonia as N	16.3	15.2	7%	
Bromide	0.5U	2.07	NC	
Chloride	549	541	1%	
Sulfate	47.4	47.7	1%	
BOD5	3.71	2.35	45%	
COD	5.76	5.76	0%]
Color	60	40	40%	
TDS	1138	1209	6%	
TKN	15.8	15.1	5%	
TOC	4.91	6.4	26%	


Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Nancy Weaver Senior Chemist

any beaver Dated: 2/16/17

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/07/16 Date Received: 12/08/16 Project: Syosset Landfill Client Sample ID: SY-3D SDG No.: H5921 Lab Sample ID: H5921-01 Matrix: Water 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: Units: mL Final Vol: 5000 uL Test: VOCMS Group1 Soil Aliquot Vol: uL GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed
VN037627.D 1 12/13/16 16:37

Date Analyzed Prep Batch ID 12/13/16 16:37 VN121316

LOQ / CRQL **CAS Number** Parameter Conc. Qualifier MDL LOD Units **TARGETS** 75-71-8 Dichlorodifluoromethane 1 U 0.2 0.2 1 ug/L 74-87-3 IJ 1 Chloromethane 0.2 0.2 ug/L 75-01-4 Vinyl Chloride U 0.2 0.2 1 ug/L uJ 74-83-9 Bromomethane UQ 0.2 0.2 1 ug/L 75-00-3 Chloroethane U 0.5 0.2 1 ug/L 75-69-4 Trichlorofluoromethane IJ 0.2 1 1 0.2 ug/L 76-13-1 1,1,2-Trichlorotrifluoroethane U 0.2 0.2 1 ug/L 75-35-4 1,1-Dichloroethene U 0.2 0.2 1 ug/L 67-64-1 5 U 5 Acetone 0.5 ug/L 75-15-0 Carbon Disulfide U 0.2 0.2 1 ug/L 1634-04-4 Methyl tert-butyl Ether IJ 0.35 0.5 1 ug/L 79-20-9 IJ Methyl Acetate 0.2 0.5 1 ug/L 75-09-2 Methylene Chloride U 0.2 0.2 1 ug/L 156-60-5 trans-1,2-Dichloroethene U 0.2 0.2 1 ug/L U 75-34-3 1,1-Dichloroethane 0.2 1 1 0.2 ug/L 110-82-7 Cyclohexane 1 U 0.2 0.2 1 ug/L 78-93-3 2-Butanone 5 U 5 1.3 2.5 ug/L 56-23-5 Carbon Tetrachloride 1 U 0.2 0.2 1 ug/L 156-59-2 cis-1,2-Dichloroethene 0.4 J 0.2 0.2 1 ug/L 74-97-5 Bromochloromethane U 0.2 0.5 1 1 ug/L 67-66-3 Chloroform 1 IJ 0.2 0.2 1 ug/L IJ 0.2 71-55-6 1,1,1-Trichloroethane 0.2 1 ug/L 108-87-2 Methylcyclohexane U 0.2 0.2 1 ug/L U 71-43-2 Benzene 1 0.2 0.2 1 ug/L 107-06-2 U 0.2 ug/L 1.2-Dichloroethane 0.2 1 1 79-01-6 Trichloroethene 0.28 J 0.2 0.2 1 ug/L 78-87-5 1.2-Dichloropropane U 0.2 0.2 1 ug/L U 75-27-4 Bromodichloromethane 1 0.2 0.2 1 ug/L 5 U 5 108-10-1 4-Methyl-2-Pentanone 1 1 ug/L 108-88-3 Toluene U 0.2 0.2 1 ug/L 10061-02-6 t-1,3-Dichloropropene U 0.2 0.2 1 ug/L 10061-01-5 cis-1,3-Dichloropropene 0.2 0.2 1 ug/L

Report of Analysis

Date Collected: 12/07/16 Client: Lockwood, Kessler, & Bartlett Project: Syosset Landfill Date Received: 12/08/16 SDG No.: H5921 Client Sample ID: SY-3D Lab Sample ID: H5921-01 Matrix: Water SW8260 % Moisture: 100 Analytical Method: Final Vol: 5000 uL Sample Wt/Vol: 5 Units: mLSoil Aliquot Vol: Test: VOCMS Group1 иL

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037627.D 1 12/13/16 16:37 VN121316

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	0.33	J	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	52.5		61 - 141		105%	SPK: 50
1868-53-7	Dibromofluoromethane	51		69 - 133		102%	SPK: 50
2037-26-5	Toluene-d8	50.2		65 - 126		100%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.4		58 - 135		107%	SPK: 50
INTERNAL STANI							
363-72-4	Pentafluorobenzene	829728	7.86				
540-36-3	1,4-Difluorobenzene	1421890					
3114-55-4	Chlorobenzene-d5	1371770	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	588936	13.52				

H5921

D

Lab Sample ID:

Client:

Report of Analysis

Lockwood, Kessler, & Bartlett Date Collected:

12/07/16

2

Project: Syosset Landfill

Date Received: 12/08/16

Client Sample ID: SY-7

SDG No.: H5921 Matrix: Water

Analytical Method: SW8260

% Moisture: 100

Sample Wt/Vol: 5 Units: mL

Final Vol: 5000 uL

Soil Aliquot Vol: uL

Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25

Level: LOW

File ID/Qc Batch:

Dilution:

H5921-02

Prep Date

Date Analyzed

Prep Batch ID

VN037628.D

12/13/16 17:04

VN121316

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 WJ	UQ	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.36	J	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.28	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

24 of 167 ~~~~ (15), +

Report of Analysis

Lockwood, Kessler, & Bartlett

Syosset Landfill

Client Sample ID:

Client:

Project:

SY-7

Lab Sample ID:

H5921-02

Analytical Method:

SW8260 5

Units: mL

Sample Wt/Vol:
Soil Aliquot Vol:

GC Column:

RXI-624

uL ID: 0.25 Date Collected:

12 07 16

Date Received:

12/08/16

SDG No.:

H5921

Matrix:

Final Vol:

Water

% Moisture:

100

5000

uL

Test:

VOCMS Group1

Level:

LOW

File ID/Qc Batch:

VN037628.D

H5921

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

12/13/16 17:04

VN121316

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	0.31	J	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12 - 8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
37-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
23-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
URROGATES							
17060-07-0	1,2-Dichloroethane-d4	46.2		61 - 141		92%	SPK: 50
1868-53-7	Dibromofluoromethane	48.3		69 - 133		97%	SPK: 50
2037-26-5	Toluene-d8	48.7		65 - 126		97%	SPK: 50
460 - 00-4	4-Bromofluorobenzene	43		58 - 135		86%	SPK: 50
NTERNAL STA							
363-72-4	Pentafluorobenzene	1055040	7.86				
540-36-3	1,4-Difluorobenzene	1567020	8.78				
3114-55-4	Chlorobenzene-d5	1321610	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	516472	13.52				

25 of 167

GC Column:

RXI-624

Report of Analysis

Date Collected: 12 07:16 Lockwood, Kessler. & Bartlett Client: Syosset Landfill Date Received: 12/08/16 Project: SDG No.: H5921 Client Sample ID: SY-3 Lab Sample ID: H5921-03 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Final Vol: 5000 Sample Wt/Vol: Units: uL mLTest: VOCMS Group1 Soil Aliquot Vol: uL

Level:

LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date VN037629.D 1 12/13/16 17:31 VN121316

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 ルブ	LIC	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0,2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.32	J	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.46	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

27 of 167 puzlisht

H5921

GC Column:

3

LOW

Level:

Report of Analysis

Date Collected: 12:07 16 Client: Lockwood, Kessler, & Bartlett Project: Syosset Landfill Date Received: 12/08/16 H5921 Client Sample ID: SY-3 SDG No.: Lab Sample ID: H5921-03 Matrix: Water SW8260 100 Analytical Method: % Moisture: Sample Wt/Vol: Final Vol: 5000 Units: mLuL Soil Aliquot Vol: Test: VOCMS Group1 $\mathfrak{u}L$

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037629.D 1 12/13/16 17:31 VN121316

ID: 0.25

RXI-624

AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	0.26	J	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
37-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
URROGATES							
17060-07-0	1,2-Dichloroethane-d4	45.7		61 - 141		91%	SPK: 50
1868-53-7	Dibromofluoromethane	49.1		69 - 133		98%	SPK: 50
2037-26-5	Toluene-d8	48.9		65 - 126		98%	SPK: 50
160-00-4	4-Bromofluorobenzene	41.1		58 - 135		82%	SPK: 50
NTERNAL STAN							
363-72-4	Pentafluorobenzene	1015500	7.86				
540-36-3	1,4-Difluorobenzene	1500070	8.78				
3114-55-4	Chlorobenzene-d5	1240420	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	455509	13,52				

VOCMS Group1

4

CHEMITECH

Soil Aliquot Vol:

Report of Analysis

11/16/16 Client: Lockwood, Kessler, & Bartlett Date Collected: Project: Syosset Landfill Date Received: 12/08/16 Client Sample ID: TRIPBLANK SDG No.: H5921 Lab Sample ID: H5921-04 Water Matrix: Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: Final Vol: 5000 uL mL

Test:

GC Column: RXI-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037667.D 1 12/14/16 16:42 VN121416

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			100				
75-71-8	Dichlorodifluoromethane	1 ルブ	Ų	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	Ų	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	ψ	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	Ψ	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	IJ	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	n	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	n	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	W	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	ψ	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1 🦠	u	0.2	0.2	1	ug/L

4

uL

11/16/16

12/08/16

H5921

Water 100

5000

VOCMS Group1

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

Client:

Report of Analysis

Lockwood, Kessler, & Bartlett

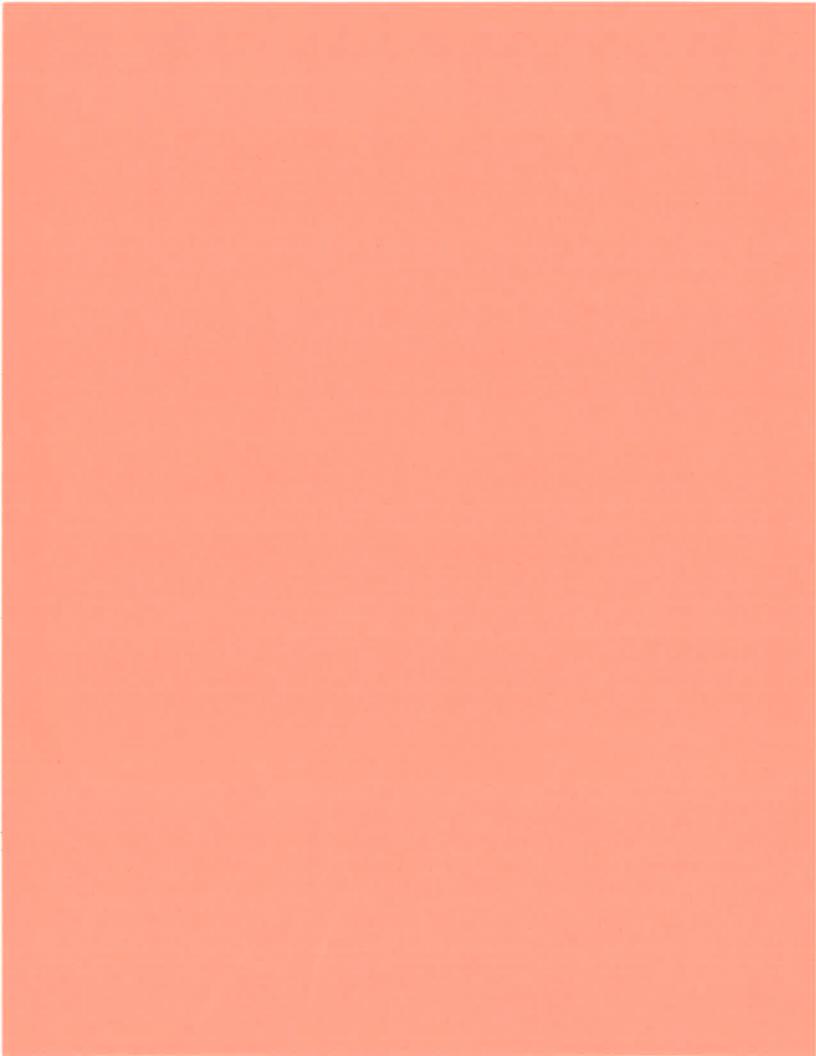
Project: Syosset Landfill

Client Sample ID: TRIPBLANK

Lab Sample ID: H5921-04
Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: uL


GC Column: RXI-624 ID: 0.25

XI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN037667.D 1 12/14/16 16:42 VN121416

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79 - 00-5	1,1,2-Trichloroethane	1 UJ	ų	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	Ų	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	Ų	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	Ψ	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	Ψ	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	IJ	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	t u	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES		20					
17060-07-0	1,2-Dichloroethane-d4	45.2		61 - 141		90%	SPK: 50
1868-53-7	Dibromofluoromethane	47.3		69 - 133		95%	SPK: 50
2037-26-5	Toluene-d8	48.8		65 - 126		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.6		58 - 135		85%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1011920	7.86				
540-36-3	1,4-Difluorobenzene	1494900	8.78				
3114-55-4	Chlorobenzene-d5	1239540	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	470099	13.52				

SY-3D	
-------	--

Lab Name:	Chemtech	Consulting Grou	ıp	Contract:	EPW14	1030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No.:		SDG No.: SY-3D
Matrix:	WATER			Lab Sample	ID:	H5921-01
% Solids:				Date Receiv	ved:	12/08/2016
Analytical	Method:	ICP-AES				
Concentrat:	ion Units	(μg/L, mg/L, mg/	/kg dry weight	or μg) :	ug/I	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1745
7440-36-0	Antimony	60.0	U	12/18/2016	1745
7440-38-2	Arsenic	11.9		12/18/2016	1745
7440-39-3	Barium	187	J	12/18/2016	1745
7440-41-7	Beryllium	5.0	U	12/18/2016	1745
7440-43-9	Cadmium	0.74	J	12/18/2016	1745
7440-70-2	Calcium	53600		12/18/2016	1745
7440-47-3	Chromium	10.0	U	12/18/2016	1745
7440-48-4	Cobalt	17.6	J	12/18/2016	1745
7440-50-8	Copper	5.6	J	12/18/2016	1745
7439-89-6	Iron	22500		12/18/2016	1745
7439-92-1	Lead	10.0	U	12/18/2016	1745
7439-95-4	Magnesium	14200		12/18/2016	1745
7439-96-5	Manganese	904		12/18/2016	1745
7440-02-0	Nickel	40.0	U	12/18/2016	1745
7440-09-7	Potassium	23500		12/18/2016	1745
7782-49-2	Selenium	35.0	U	12/18/2016	1745
7440-22-4	Silver	10.0	U	12/18/2016	1745
7440-23-5	Sodium	315000		12/18/2016	1745
7440-28-0	Thallium	25.0	U	12/18/2016	1745
7440-62-2	Vanadium	50.0	U	12/18/2016	1745
7440-66-6	Zinc	60.0	U	12/18/2016	1745
Hardness	Hardness (total)	192		12/18/2016	1745

Comments:	 		

EPA SAMPLE NO.

SY-7	
	1

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No. : SDG No.: SY-3D Lab Code: CHM Lab Sample ID: H5921-02 Matrix: WATER Date Received: 12/08/2016 % Solids: Analytical Method: ICP-AES

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1749
7440-36-0	Antimony	60.0	U	12/18/2016	1749
7440-38-2	Arsenic	16.6		12/18/2016	1749
7440-39-3	Barium	181	J	12/18/2016	1749
7440-41-7	Beryllium	5.0	U	12/18/2016	1749
7440-43-9	Cadmium	5.0	U	12/18/2016	1749
7440-70-2	Calcium	52100		12/18/2016	1749
7440-47-3	Chromium	10.0	U	12/18/2016	1749
7440-48-4	Cobalt	17.3	J	12/18/2016	1749
7440-50-8	Copper	4.1	J	12/18/2016	1749
7439-89-6	Iron	21800		12/18/2016	1749
7439-92-1	Lead	10.0	U	12/18/2016	1749
7439-95-4	Magnesium	13700		12/18/2016	1749
7439-96-5	Manganese	878		12/18/2016	1749
7440-02-0	Nickel	40.0	U	12/18/2016	1749
7440-09-7	Potassium	22800		12/18/2016	1749
7782-49-2	Selenium	35.0	U	12/18/2016	1749
7440-22-4	Silver	10.0	U	12/18/2016	1749
7440-23-5	Sodium	306000		12/18/2016	1749
7440-28-0	Thallium	25.0	U	12/18/2016	1749
7440-62-2	Vanadium	50.0	U	12/18/2016	1749
7440-66-6	Zinc	60.0	U	12/18/2016	1749
Hardness	Hardness (total)	187		12/18/2016	1749

omments:		 	
_			

SY-	3		

•	

Lab	Name	:

Chemtech Consulting Group

Contract: EPW14030

Lab Code: CHM Case No.: Syosset Landfi MA No.: SDG No.: SY-3D

Matrix:

WATER

Lab Sample ID: H5921-03

% Solids:

Date Received: 12/08/2016

Analytical Method: ICP-AES

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1753
7440-36-0	Antimony	60.0	U	12/18/2016	1753
7440-38-2	Arsenic	44.0		12/18/2016	1753
7440-39-3	Barium	140	J	12/18/2016	1753
7440-41-7	Beryllium	5.0	U	12/18/2016	1753
7440-43-9	Cadmium	1.0	J	12/18/2016	1753
7440-70-2	Calcium	40300		12/18/2016	1753
7440-47-3	Chromium	10.0	U	12/18/2016	1753
7440-48-4	Cobalt	50.0	U	12/18/2016	1753
7440-50-8	Copper	10.1	J	12/18/2016	1753
7439-89-6	Iron	33600		12/18/2016	1753
7439-92-1	Lead	10.0	U	12/18/2016	1753
7439-95-4	Magnesium	15800		12/18/2016	1753
7439-96-5	Manganese	4240	1	12/18/2016	1753
7440-02-0	Nickel	40.0	U	12/18/2016	1753
7440-09-7	Potassium	14300		12/18/2016	1753
7782-49-2	Selenium	35.0	U	12/18/2016	1753
7440-22-4	Silver	10.0	U	12/18/2016	1753
7440-23-5	Sodium	115000		12/18/2016	1753
7440-28-0	Thallium	25.0	U	12/18/2016	1753
7440-62-2	Vanadium	50.0	U	12/18/2016	1753
7440-66-6	Zinc	60.0	U	12/18/2016	1753
Hardness	Hardness (total)	166	1	12/18/2016	1753

Com	me	n	t	s	:
			_	_	_

SY-3D	/
	- 6.

Lab Name:	Chemtech	Consulting Grou	nsulting Group			EPW14030		
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :		SDG No.:	SY-3D	
Matrix:	WATER			Lab Sample	ID:	н5921-05		
% Solids:				Date Receiv	red:	12/08/2016		
Analytical	Method:	ICP-AES						
Concentrati	ion Units	(µg/L, mg/L, mg,	/kg dry weight o	or μg) :	ug/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1805
7440-36-0	Antimony	60.0	U	12/18/2016	1805
7440-38-2	Arsenic	16.0		12/18/2016	1805
7440-39-3	Barium	188	J	12/18/2016	1805
7440-41-7	Beryllium	5.0	U	12/18/2016	1805
7440-43-9	Cadmium	5.0	U	12/18/2016	1805
7440-70-2	Calcium	53800		12/18/2016	1805
7440-47-3	Chromium	10.0	U	12/18/2016	1805
7440-48-4	Cobalt	17.9	J	12/18/2016	1805
7440-50-8	Copper	5.0	J	12/18/2016	1805
7439-89-6	Iron	22700		12/18/2016	1805
7439-92-1	Lead	10.0	U	12/18/2016	1805
7439-95-4	Magnesium	14200		12/18/2016	1805
7439-96-5	Manganese	916		12/18/2016	1805
7440-02-0	Nickel	40.0	U	12/18/2016	1805
7440-09-7	Potassium	23600		12/18/2016	1805
7782-49-2	Selenium	35.0	U	12/18/2016	1805
7440-22-4	Silver	10.0	U	12/18/2016	1805
7440-23-5	Sodium	319000		12/18/2016	1805
7440-28-0	Thallium	25.0	U	12/18/2016	1805
7440-62-2	Vanadium	50.0	U	12/18/2016	1805
7440-66-6	Zinc	60.0	U	12/18/2016	1805

SY-7

6D

FORM 1 - IN

INORGANIC ANALYSIS DATA SHEET

Lab Name	Chemtech	Consulting Group	Contract:	EPW14030		
Lab Code	CHM	Case No.: Syosset L	andfi MA No. :		SDG No.:	SY-3D

Matrix: WATER Lab Sample ID: H5921-06

% Solids: Date Received: 12/08/2016

Analytical Method: ICP-AES

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1810
7440-36-0	Antimony	60.0	U	12/18/2016	1810
7440-38-2	Arsenic	16.5		12/18/2016	1810
7440-39-3	Barium	186	J	12/18/2016	1810
7440-41-7	Beryllium	5.0	U	12/18/2016	1810
7440-43-9	Cadmium	0.87	J	12/18/2016	1810
7440-70-2	Calcium	53900		12/18/2016	1810
7440-47-3	Chromium	2.4	J	12/18/2016	1810
7440-48-4	Cobalt	17.6	J	12/18/2016	1810
7440-50-8	Copper	5.4	J	12/18/2016	1810
7439-89-6	Iron	22600		12/18/2016	1810
7439-92-1	Lead	10.0	U	12/18/2016	1810
7439-95-4	Magnesium	14200		12/18/2016	1810
7439-96-5	Manganese	914		12/18/2016	1810
7440-02-0	Nickel	9.7	J	12/18/2016	1810
7440-09-7	Potassium	23500		12/18/2016	1810
7782-49-2	Selenium	35.0	U	12/18/2016	1810
7440-22-4	Silver	10.0	U	12/18/2016	1810
7440-23-5	Sodium	317000		12/18/2016	1810
7440-28-0	Thallium	25.0	U	12/18/2016	1810
7440-62-2	Vanadium	50.0	U	12/18/2016	1810
7440-66-6	Zinc	60.0	U	12/18/2016	1810

NOTE: Hardness (total) is reported in mg/L

Comments:			

H5921

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-3		

	0	
_		1)
1		~

Lab Name: Chemtech Consulting Group

Contract: EPW14030

Lab Code:

CHM

Case No.: Syosset Landfi MA No.: SDG No.: SY-3D

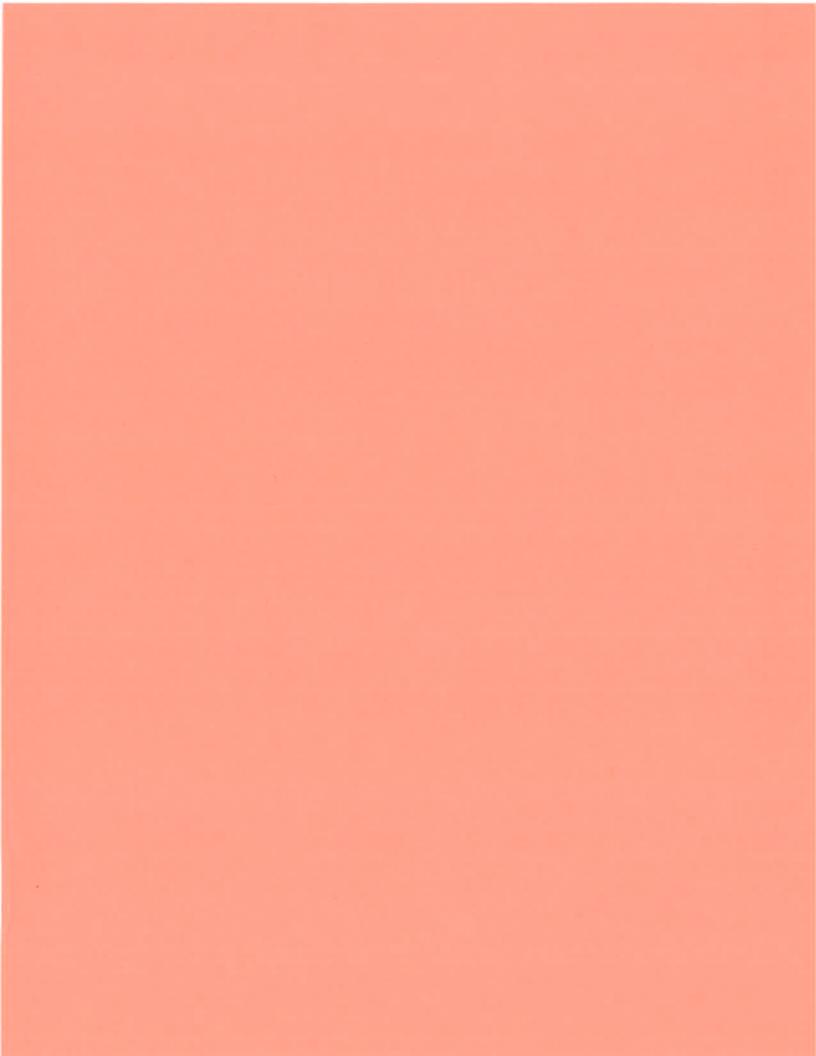
Matrix:

WATER

Lab Sample ID: H5921-07

% Solids:

Date Received: 12/08/2016


Analytical Method: ICP-AES

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/18/2016	1814
7440-36-0	Antimony	60.0	U	12/18/2016	1814
7440-38-2	Arsenic	44.3		12/18/2016	1814
7440-39-3	Barium	137	J	12/18/2016	1814
7440-41-7	Beryllium	5.0	U	12/18/2016	1814
7440-43-9	Cadmium	0.97	J	12/18/2016	1814
7440-70-2	Calcium	39200		12/18/2016	1814
7440-47-3	Chromium	10.0	U	12/18/2016	1814
7440-48-4	Cobalt	50.0	U	12/18/2016	1814
7440-50-8	Copper	7.5	J	12/18/2016	1814
7439-89-6	Iron	30800		12/18/2016	1814
7439-92-1	Lead	10.0	U	12/18/2016	1814
7439-95-4	Magnesium	15600		12/18/2016	1814
7439-96-5	Manganese	4040		12/18/2016	1814
7440-02-0	Nickel	40.0	U	12/18/2016	1814
7440-09-7	Potassium	13800		12/18/2016	1814
7782-49-2	Selenium	35.0	U	12/18/2016	1814
7440-22-4	Silver	10.0	U	12/18/2016	1814
7440-23-5	Sodium	112000		12/18/2016	1814
7440-28-0	Thallium	25.0	U	12/18/2016	1814
7440-62-2	Vanadium	50.0	U	12/18/2016	1814
7440-66-6	Zinc	60.0	U	12/18/2016	1814

NOTE: Hardness (total) is reported in mg/L

Com	men	t	S	:

EPA SAMPLE NO.

FORM 1

SY-3D

- 3		_	i
- 1	_	7	
		-1	
•		•	

1	ORM	т –	Т	IN	
INORGANIC	ANAL	YSI	3	DATA	SHEET

Lab Name: Che	emtech Consulti	ng Group	Cont	ract:	EPW14030			
Lab Code: CHM	ſ Cas	e No.: Syosset	Landfi MA N	o. : _		SDG No.:	SY-3D	
Matrix: WAT	ER		Lab .	Sample	ID: H5921-	01		
% Solids:			Date	Receiv	red: 12/08,	/2016		
Analytical Meth	nod: CVAA							
Concentration (Jnits (µg/L, mo	g/L, mg/kg dry	weight or µg)	ĵ;	ug/L			
CAS No.	Analyte	Cor	ncentration	Q	Date Analyz	ed Time	Analyzed	
7439-97-6	Mercury	0.	20	U	12/09/201	6 17	08	

NOTE: Hardness (total) is reported in $\ensuremath{\text{mg/L}}$

Comments:

EPA SAMPLE NO.

INO

FORM 1 - IN	SY-7
DRGANIC ANALYSIS DATA SHEET	

Lab 1	Name:	Chemt	ech Cons	ulting Gro	up		Cont	ract:	EPW14	1030				
Lab (Code:	CHM		Case No.:	Sy	osset Landfi	MA N	o. : _			SDG N	o.: SY-	3D	
Matri	ix:	WATER					Lab	Sample	ID:	Н5921-	-02			
% Sol	lids:						Date	Recei	ved:	12/08	/2016			
Analy	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	ı/kg	dry weight o	or µg)	:	ug/I	<u> </u>				
Ī	CAS N	lo.	Analyte	9		Concentrat	ion	Q	Date	Analyz	zed T	ime Anal	yzed	
	7439-9	97-6	Mercur	У		0.20		U	12/	09/201	6	1711		

NOTE: Hardness (total) is reported in $\ensuremath{\text{mg/L}}$

Comments:

Form 1-IN

m alisto

EPA SAMPLE NO.

FORM 1 - IN	SY-3
INORGANIC ANALYSIS DATA SHEET	<u>. </u>

Lab 1	Name:	Chemte	ech Cons	ulting	Group		Cont	ract:	EPW14	030		
Lab (Code:	CHM		Case	No.:	Syosset Landfi	L MA N	o. : _		S	DG No.:	SY-3D
Matri	ix:	WATER					Lab	Sample	ID:	H5921~0	3	
% So]	lids:						Date	Receiv	ved:	12/08/2	2016	
Analy	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/I	, mg/k	g dry weight	or μg)	:	ug/I	1		
[CAS N	lo.	Analyte)		Concentrat	ion	Q	Date	Analyze	d Time	Analyzed
	7439-9	97-6	Mercur	Y		0.20		U	12/0	9/2016	17	13

NOTE: Hardness (total) is reported in mg/L

Comments:

5D

EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

		_
SY-3D		
DI JU		

Lab 1	Name:	Chemt	ech Consi	ulting Gro	up		Cont	ract:	EPW14	030			
Lab (Code:	СНМ		Case No.:	Sy	osset Landf	L MA N	o. : _		SDG	No.:	SY-3D	
Matri	ix:	WATER					Lab	Sample	ID:	H5921-05			
% Sol	lids:						Date	Receiv	ved:	12/08/201	. 6		
Analy	ytical	Method	: CVAA										
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	/kg	dry weight	or μg)	:	ug/I	1			
[CAS N	lo.	Analyte			Concentra	ion	Q	Date	Analyzed	Time A	Analyzed	ĺ
	7439-9	97-6	Mercury	1		0.20		Ü	12/0	09/2016	171	5	

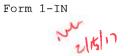
NOTE: Hardness (total) is reported in $\mbox{mg/L}$

Comments:

60

EPA SAMPLE NO.

SY-7


FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consi	ulting Grou	р	Contract:	EPW14	030		
Lab Code:	CHM		Case No.:	Syosset Landfi	MA No. :			SDG No.:	SY-3D
Matrix: _	WATER				Lab Sample	ID:	H5921~0	06	
Solids:	9				Date Recei	ved:	12/08/	2016	
Analytical	Method:	CVAA							
Concentrati	on Units	(µg/L	, mg/L, mg/	kg dry weight o	r μg) :	ug/L	1		

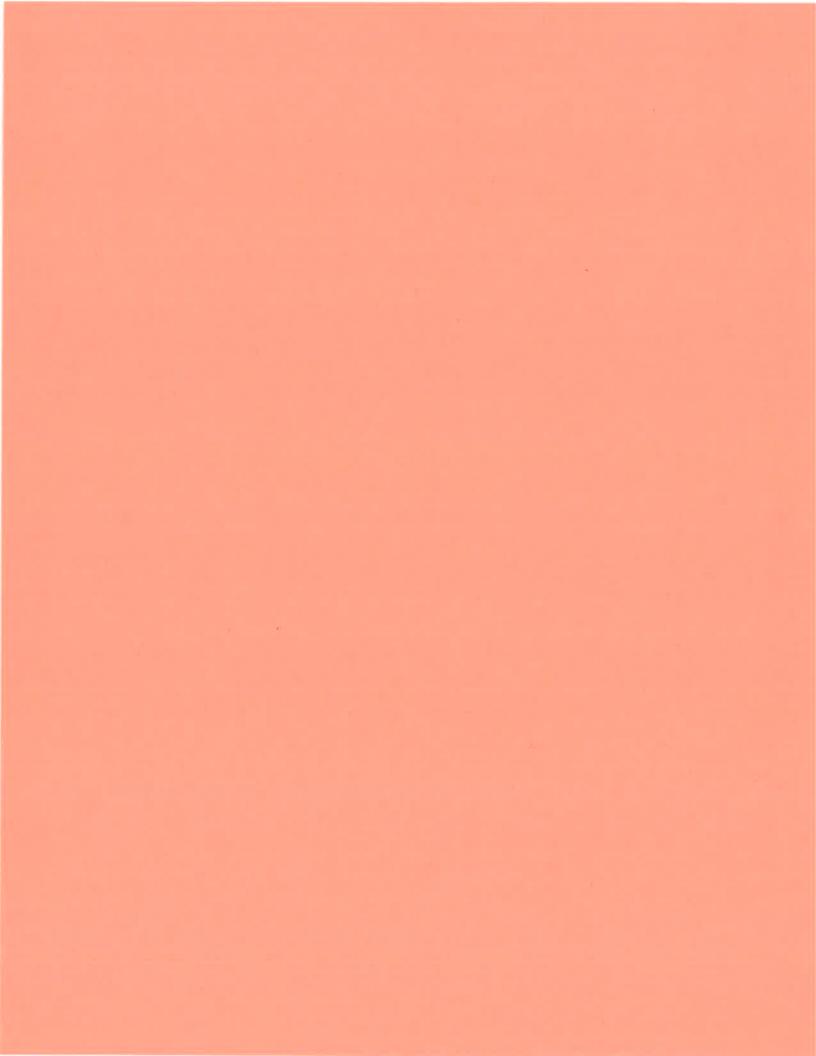
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	Ū	12/09/2016	1717

NOTE: Hardness (total) is reported in $\ensuremath{\text{mg/L}}$

Comments:

FORM 1 - IN

SY-3			


INORGANIC ANALYSIS DATA SHEET

Lab N	Name:	Chemt	ech Cons	ultin	g Grou	р		Con	tract:	EPW1403	0			
Lab (Code:	СНМ		Case	No.:	Syosse	t Landf	i MA	No.: _		SDG	No.: _	SY-3D	
Matri	Lx: _	WATER						Lab	Sample	ID: H5	921-07			
% Sol	lids:							Dat	e Receiv	red: 12	2/08/201	L 6		
Analy	ytical	Method	: CVAA					e:						
Conce	entrati	on Uni	ts (µg/L	, mg/	L, mg/	kg dry	weight	or µg	g) :	ug/L				_
[CAS N	0.	Analyte)		Co	ncentra	ation	Q	Date Ar	nalyzed	Time A	Analyzed	ĺ
Ī	7439-9	7-6	Mercur	Y		0	.20		U	12/09.	/2016	171	9	ĺ

NOTE: Hardness (total) is reported in mg/L

Comments:

2/15/17

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Uブ

EPA SAMPLE NO. SY-3D

Lab 1	Name:	Chemt	ech Cons	ulting Grou	ıp		Cont	ract:	EPW14	1030			t	
Lab (Code:	СНМ		Case No.:	Syc	osset Landfi	MA N	o. : _			SDG	No.:	SY-3D	
Matri	ix:	WATER					Lab	Sample	ID:	н5921-	-01			
≹ Sol	lids:						Date	Receiv	ved:	12/08	/201	6		
Analy	ytical	Method	: Spec	trophotome	etry									
Conce	entrati	on Uni	ts (μg/I	L, mg/L, mg	/kg	dry weight	or μg)) :	ug/I	1				
[CAS N	lo.	Analyt	e		Concentrat	ion	Q	Date	Analy	zed	Time	Analyzed	ī
	57-12-	-5	Cyanid	le		10.0	u T	J/K	12/0	09/201	6	133	31	

NOTE: Hardness (total) is reported in mg/L

Comments:

FORM 1 - IN

EPA SAMPLE NO. SY-7

INORGANIC ANALYSIS DATA SHEET

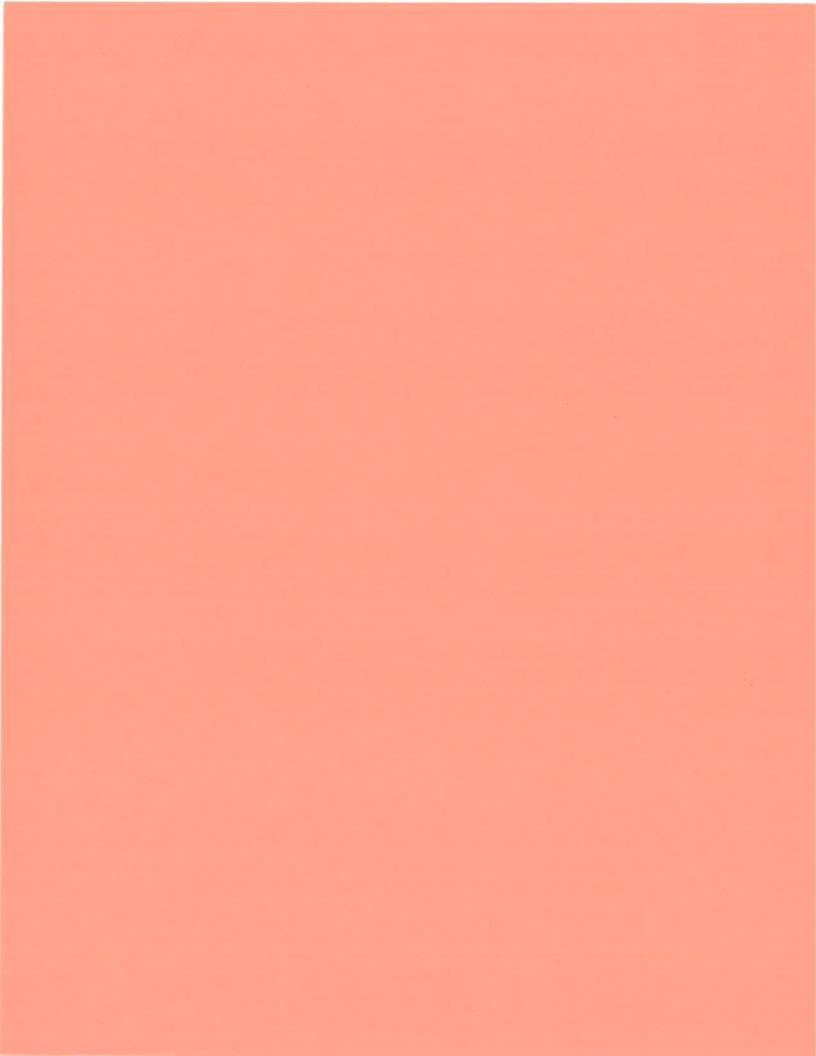
Lab Name: Chemtech Consulting Group Contract: EPW14030 Lab Code: Case No.: Syosset Landfi MA No.: SDG No.: SY-3D WATER Matrix: Lab Sample ID: H5921-02 % Solids: Date Received: 12/08/2016 Analytical Method: Spectrophotometry ug/L Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): CAS No. Analyte Concentration Date Analyzed Time Analyzed 57-12-5 Cyanide 10.0 12/09/2016 1331

NOTE: Hardness (total) is reported in mg/L

Comments:

	EPA	SAMPLE	NO.
_			

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET


	LPA	SAMPLE	NO,	
S'	Y-3			

Lab Name:	Chemtech	Consulting Gro	oup	Contract:	EPW14	030	
Lab Code:	СНМ	Case No.	: Syosset Landfi	MA No.:		SDG No.: SY	7-3D
Matrix:	WATER			Lab Sample	ID:	H5921-03	
% Solids:	÷			Date Receiv	ved:	12/08/2016	
Analytical	Method: S	Spectrophoton	netry				
Concentrati	on Units (μg/L, mg/L, m	g/kg dry weight o	or μg)	ug/I		

CAS No. Analyte Concentration Date Analyzed Time Analyzed 57-12-5 Cyanide 10.0 12/09/2016 1331

NOTE: Hardness (total) is reported in mg/L

Comments:

Report of Analysis

Client: Lockwood, Kessler, & Bartlett

Date Collected:

12/07/16 10:30

Project:

Syosset Landfill

Date Received:

12/08/16

Client Sample ID: Lab Sample ID: SY-3D

H5921-01

SDG No.:

H5921

Matrix:

WATER

0

% Solid:

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		466		1	0.4	1	2	mg/L		12/12/16 13:43	SM2320 B
Ammonia as N	16.3 J	14.7	OR	7+	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 10:47	SM 4500-NH3 B
					0.34						plus G
Bromide		0.5	U	1	0.066	0.25	75 0.5	mg/L		12/08/16 18:18	300
Chloride	549	720	OR 5	0 }	0.075	0.075	0.15 7.5	mg/L		12/08/16 18:18	300
Nitrate		0.113	U	1	0.027	0.057	0.113	mg/L		12/08/16 18:18	300
Sulfate		47.4		1	0.132	0.375	0.75	mg/L		12/08/16 18:18	300
BOD5		3.71		1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD		5.76		1	2.43	2.5	5	mg/L		12/14/16 15:07	SM5220 D
Color		60		1	5	5	5	cu		12/08/16 13:45	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:33	9065
TDS		1138		1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN	15.8	12.5	OR:	5 2	0.096	0.25	as 2.5	mg/L	12/12/16 09:50	12/13/16 13:33	SM4500-N Org
					0.48	1.25					B or C plus NH3
											G
TOC		4.91		1	0.08	0.25	0.5	mg/L		12/09/16 12:55	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

0

Report of Analysis

IDL

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/07/16 10:30

Project: Syosset Landfill Date Received: 12/08/16

Client Sample ID: SY-3DDL SDG No.: H5921

Lab Sample ID: H5921-01DL Matrix: WATER

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQI	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	16.3 J	10	10	0.34	0.5	1	mg/L	12/09/16 11:36	12/13/16 11:23	SM 4500-NH3 B
		1 /				V				plus G
Chloride	549	D	50	3.75	3.75	7.5	mg/L		12/12/16 16:13	300
TKN	15.8	B	5	0.48	1.25	2.5	mg/L		12/13/16 14:28	SM4500-N Org
										B or C plus NH3
										G

% Solid:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

80 of 167 Lu zlislit

Client:

Project:

Client Sample ID:

Lab Sample ID:

Report of Analysis

Lockwood, Kessler, & Bartlett

Syosset Landfill

SY-7

H5921-02

Date Collected: 12/07 16 09:30

H5921

12/08/16 Date Received:

WATER

% Solid:

SDG No.:

Matrix:

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		474		1	0.4	1	2	mg/L		12/12/16 13:49	SM2320 B
Ammonia as N	15.23	13.8	OR	04	0.034	0.05	0.1	mg/L	12/09/16 11:36	12/13/16 10:47	SM 4500-NH3 B
Bromide		2.07		1	0.066		75 0.5	mg/L		12/08/16 18:47	plus G 300
Chloride	541	703	OR.	50 F	0.075	0.075	75 0.15 7.5	mg/L		12/08/16 18:47	300
Nitrate		0.113	U	1	0.027	0.057	0.113	mg/L		12/08/16 18:47	300
Sulfate		47.7		1	0.132	0.375	0.75	mg/L		12/08/16 18:47	300
BOD5		2.35		1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD		5.76		1	2.43	2.5	5	mg/L		12/14/16 15:07	SM5220 D
Color		40		1	5	5	5	cu		12/08/16 13:50	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:33	9065
TDS		1209		1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN	15.1	14-	OR.	5 k	0.096	1.25	2.5	mg/L	12/12/16 09:50	12/13/16 13:33	SM4500-N Org B or C plus NH3 G
TOC		6.4		1	0.08	0.25	0.5	mg/L		12/09/16 14:00	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

H8921

Client Sample ID:

SY-7DL

Report of Analysis

20L

Client: Lockwood, Kessler, & Bartlett Date Collected 12/07/16/09:30

Project: Syosset Landfill Date Received: 12/08/16

Project. Syosset Landini Date Received. 12/08/16

Lab Sample ID: H5921-02DL Matrix: WATER

% Solid: 0

SDG No.:

Parameter	Cone. Q	ua. D	F MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	/ 15.2 J	1 0	0.34	0.5	1	mg/L	12/09/16 11:36	12/13/16 11:23	SM 4500-NH3 B
	(/			plus G
Chloride	541	B 50	3.75	3.75	7.5	mg/L		12/12/16 16:42	300
TKN	15.1	D 5	0.48	1.25	2,5	mg/L	12/12/16 09:50	12/13/16 13:33	SM4500-N Org
									B or C plus NH3
									G

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Client:

Report of Analysis

Lockwood, Kessler, & Bartlett Date Collected: 12/07/16 11:15

Project: Syosset Landfill Date Received: 12/08/16

Client Sample ID: SY-3 SDG No.: H5921

Lab Sample ID: H5921-03 Matrix: WATER

% Solid: 0

Parameter		Conc.	Qua.	DF	MDL	LOD I	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		366		1	0.4	1	2	mg/L		12/12/16 13:55	SM2320 B
Ammonia as N	10.95	10.4	OR I	1	0.34	0.03	0.1	mg/L	12/09/16 11:36	12/13/16 10:47	SM 4500-NH3 B
Bromide		1.72		1	0.066	0.25	0.5	mg/L		12/08/16 19:16	plus G 300
Chloride	199	253	OR 2	01.	50.075	0.075 1.5	0.15 3	mg/L		12/08/16 19:16	300
Nitrate		0.113	U	1	0.027	0.057	0.113	mg/L		12/08/16 19:16	300
Sulfate		42.2		1	0.132	0.375	0.75	mg/L		12/08/16 19:16	300
BOD5		3.42		1	2	2	2	mg/L		12/08/16 11:30	SM5210 B
COD		5.76		1	2.43	2.5	5	mg/L		12/14/16 15:08	SM5220 D
Color		40		1	5	5	5	cu		12/08/16 13:55	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/09/16 11:57	12/09/16 16:33	9065
TDS		538		1	0.031	5	10	mg/L		12/12/16 16:40	SM2540C
TKN	10.8	19.6	OK5	+	0.48	0.25	2.5	mg/L	12/12/16 09:50	12/13/16 13:33	SM4500-N Org B or C plus NH3 G
TOC		4.23		1	0.08	0.25	0.5	mg/L		12/09/16 14:18	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Lab Sample ID:

WATER

12/07/16 11:15

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected:

H5921-03DL

Date Received: 12/08/16 Syosset Landfill

Project:

Client Sample ID: SY-3DL SDG No.: H5921

> % Solid: 0

Matrix:

Parameter	Conc. C	Qua, DI	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	10.9 🗊	P 10	0.34	0.5	1	mg/L	12/09/16 11:36	12/13/16 11:23	SM 4500-NH3 B
Chloride	199	1 20	1.5	1.5	3	mg/L		12/12/16 17:11	300
TKN	10.8	5	0.48	1.25	2,5	mg/L	12/12/16 09:50	12/13/16 13:33	SM4500-N Org B or C plus NH3
									G

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: H6071

Laboratory: ChemTech, Mountainside, New Jersey
Site: Syosset Landfill, Syosset, New York

Date: February 16, 2017

	VOCs/Wet Chemistry								
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix						
1	PK-10D	H6071-01	Water						
1MS**	PK-10DMS	H6071-01MS	Water						
1MSD**	PK-10DMSD	H6071-01MSD	Water						
2	PK-10S	H6071-02	Water						
3	PK-10I	H6071-03	Water						
4	RW-12D	H6071-04	Water						
5	RW-12I	H6071-05	Water						
5MS†	RW-12IMS	H6071-05MS	Water						
5MSD†	RW-12IMSD	H6071-05MSD	Water						
6*	TRIPBLANK	H6071-06	Water						

^{* -} VOC Only ** - Ammonia, Phenolics, & TKN only † - Bromide, Chloride, Nitrate, Sulfate, COD, & TOC only

	Total &	Dissolved Metals/Mercury/Cn	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1T	PK-10D	H6071-01	Water
1TMS*	PK-10DMS	H6071-01MS	Water
1TMSD*	PK-10DMSD	H6071-01MSD	Water
2T	PK-10S	H6071-02	Water
2TMS	PK-10SMS	H6071-02MS	Water
2TMSD	PK-10SMSD	H6071-02MSD	Water
3T	PK-10I	H6071-03	Water
4T	RW-12D	H6071-04	Water
5T	RW-12I	H6071-05	Water
7D	PK-10D	H6071-07	Water
8D	PK-10S	H6071-08	Water
9D	PK-10I	H6071-09	Water
10D	RW-12D	H6071-10	Water
11D	RW-12I	H6071-11	Water

^{* -} Mercury & Cyanide only T - Total Metals & Mercury & Cyanide D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for ten water samples and one aqueous trip blank sample collected November 16, 2016 and December 13, 2016 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were

analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

<u>Analysis</u>	Method References
VOCs	USEPA SW846 8260C
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Superfund Organic Methods Data Review," August 2014;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Data Review," August 2014;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation

Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		
TRIPBLANK	None - ND			¥
FIELD BLANK (SDG H5920)	None - ND	=	15	±.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

A MS/MSD sample was not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELDBLANK (SDG H5920)	None - ND	×	Xe:	

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The method blanks were free of contamination.

ICP Serial Dilution

• ICP serial dilution percent differences (%D) were within acceptance limits.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		
FIELDBLANK	Ammonia as N	0.068	None	
(SDG H5920)	TDS	1	None	None for Wet Chemistry
	TKN	0.168	None	parameters
	TOC	0.25	None	

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

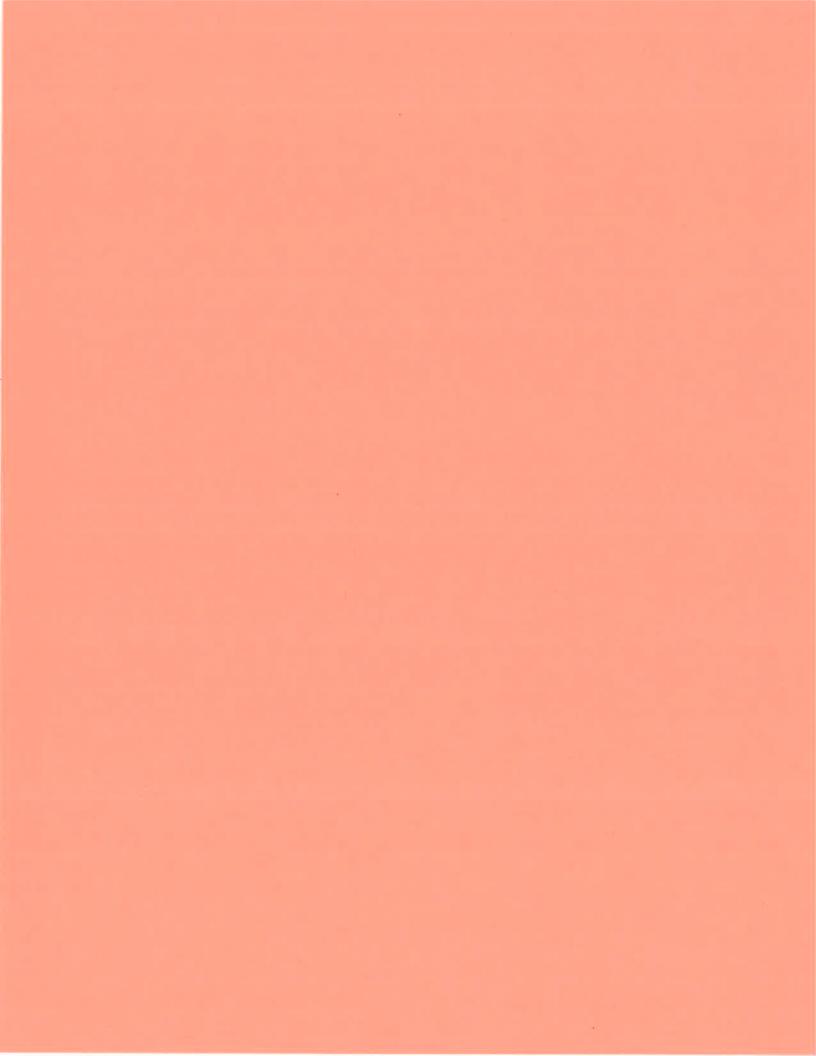
MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
5	TOC	126%/OK	J	All Samples
	Sulfate	54%/OK	J	

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

EDS Sample ID #s 1, 3, 4, and 5 exhibited high concentrations of ammonia as N, chloride, and TKN and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.


Field Duplicate Sample Precision

Field duplicate samples were not collected.

Please contact the u	indersigned at (757) 564-0090 if y	ou have any questions or need further
information.	A	
Signed:	Many Weave	Dated: 2116/17
-	Nancy Weaver ^l	

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 Syosset Landfill Date Received: 12/14/16 Project: PK-10D SDG No.: H6071 Client Sample ID: Lab Sample ID: H6071-01 Matrix: Water % Moisture: 100 Analytical Method: SW8260 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037799.D 1 12/17/16 18:27 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	0.24	J	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	0.64	J	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	4.3		0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

GC Column:

RXI-624

Report of Analysis

Client: Lockwood. Kessler. & Bartlett Date Collected: 12/13/16 Project: Syosset Landfill Date Received: 12/14/16 PK-10D SDG No.: H6071 Client Sample ID: Lab Sample ID: H6071-01 Matrix: Water 100 % Moisture: Analytical Method: SW8260 Final Vol: Sample Wt/Vol: 5 Units: mL5000 uL VOCMS Group1 Soil Aliquot Vol: $\mathfrak{u}L$ Test:

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037799.D 1 12/17/16 18:27 VN121716

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34 - 5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.7		61 - 141		97%	SPK: 50
1868-53-7	Dibromofluoromethane	49.1		69 - 133		98%	SPK: 50
2037-26-5	Toluene-d8	48.6		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.9		58 - 135		84%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1228020	7.86				
540-36-3	1,4-Difluorobenzene	1886690	8.78				
3114-55-4	Chlorobenzene-d5	1579610	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	603620	13.52				

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 Date Received: 12/14/16 Project: Syosset Landfill H6071 Client Sample ID: PK-10S SDG No.: H6071-02 Matrix: Water Lab Sample ID: 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: 5 Units: $\mathsf{m}\mathsf{L}$ Final Vol: 5000 uL Soil Aliquot Vol: Test: VOCMS Group1 uL GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed VN037800.D 12/17/16 18:54 VN121716 1

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS			<u> </u>				
75-71 - 8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01 - 4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83 - 9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

GC Column:

RXI-624

Report of Analysis

Date Collected: 12/13/16 Client: Lockwood, Kessler, & Bartlett Date Received: 12/14/16 Syosset Landfill Project: SDG No:: H6071 Client Sample ID: PK-10S Matrix: Water Lab Sample ID: H6071-02 100 % Moisture: Analytical Method: SW8260 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Test: VOCMS Group1 Soil Aliquot Vol: uL Level: LOW

Prep Batch ID Dilution: Prep Date Date Analyzed File ID/Qc Batch: VN121716 12/17/16 18:54 VN037800.D 1

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00 - 5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49		61 - 141		98%	SPK: 50
1868-53-7	Dibromofluoromethane	49.1		69 - 133		98%	SPK: 50
2037-26-5	Toluene-d8	49		65 - 126		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.8		58 - 135		84%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1230750	7.86				
540-36-3	1,4-Difluorobenzene	1893010	8.78				
3114-55-4	Chlorobenzene-d5	1609210	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	620757	13.52				

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 12/14/16 Syosset Landfill Date Received: Project: SDG No.: H6071 Client Sample ID: PK-10I Lab Sample ID: H6071-03 Matrix: Water 100 % Moisture: Analytical Method: SW8260 Final Vol: Sample Wt/Vol: 5 Units: mL5000 uL VOCMS Group1 Soil Aliquot Vol: $\mathfrak{u}L$ Test: GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037801.D 12/17/16 19:21 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69 - 4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	0.54	J	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01 - 6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87 - 5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 Date Received: 12/14/16 Project: Syosset Landfill SDG No:: H6071 Client Sample ID: PK-10I Lab Sample ID: H6071-03 Matrix: Water 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch; Dilution: Prep Date Date Analyzed Prep Batch ID VN037801.D 1 12/17/16 19:21 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	5.6		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47 - 6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1.4		0.2	0.2	1	ug/L
95-50 - 1	1,2-Dichlorobenzene	0.45	J	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.8		61 - 141		98%	SPK: 50
1868-53-7	Dibromofluoromethane	48.9		69 - 133		98%	SPK: 50
2037-26-5	Toluene-d8	48.4		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	40.9		58 - 135		82%	SPK: 50
INTERNAL STANI							
363-72-4	Pentafluorobenzene	1183660	7.86				
540-36-3	1,4-Difluorobenzene	1804810	8.78				
3114-55-4	Chlorobenzene-d5	1498390	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	572447	13.52				

H6071

Client: Lockwood, Kessler, & Bartlett Date Collected: 12 13 16 Date Received: 12/14/16 Project: Syosset Landfill H6071 Client Sample ID: RW-12D SDG No.: Matrix: Water Lab Sample ID: H6071-04 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037802.D 12/17/16 19:48 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	2.9		0.2	0.2	l	ug/L
74-8 3-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0,2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	0.55	J	0.2	0,2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	7.9		0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	7.1		0.2	0.2	1	ug/L
74- 97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	4.7		0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	0.5	J	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	0.81	J	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1.1		0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

Client: Lockwood, Kessler, & Bartlett Date Collected: 12:13:16 Date Received: 12/14/16 Project: Syosset Landfill H6071 Client Sample ID: RW-12D SDG No.: H6071-04 Matrix: Water Lab Sample ID: 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed VN037802.D 12/17/16 19:48 VN121716 1

CAS Number	Parameter Conc. Qualifier MDL LOD LOQ/Cl		LOQ / CRQL	Units			
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1.2		0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	38.9		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	4.1		0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	16		0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	10.7		0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	i i	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.4		61 - 141		99%	SPK: 50
1868-53-7	Dibromofluoromethane	48.7		69 - 133		97%	SPK: 50
2037-26-5	Toluene-d8	48.9		65 - 126		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	43.5		58 - 135		87%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	1229620	7.86				
540-36-3	1,4-Difluorobenzene	1892740	8.78				
3114-55-4	Chlorobenzene-d5	1632920	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	646084	13.52				
	ENTIFIED COMPOUNDS		_				σ.
60-29-7	Diethyl Ether	0.84	J			3.55	ug/L
109-99-9	Tetrahydrofuran	3.3	J			7.47	ug/L

M2/16/17

29 of 125

Lockwood. Kessler. & Bartlett Date Collected: 12/13/16 Client: Date Received: 12/14/16 Project: Syosset Landfill Client Sample ID: RW-12D SDG No.: H6071 H6071-04 Water Lab Sample ID: Matrix: 100 Analytical Method: SW8260 % Moisture: Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: Test: VOCMS Group1 uLGC Column: RXI-624 ID: 0.25 Level: LOW

Dilution: Prep Batch ID File ID/Qc Batch: Prep Date Date Analyzed VN037802.D 12/17/16 19:48 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
95-49-8	2-Chlorotoluene	1.9	Ĩ			12.85	119/[.	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

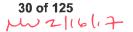
LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value


B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

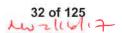
() = Laboratory InHouse Limit

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 12/14/16 Project: Syosset Landfill Date Received: Client Sample ID: RW-12I SDG No.: H6071 Lab Sample ID: H6071-05 Matrix: Water 100 Analytical Method: SW8260 % Moisture: Final Vol: 5000 Sample Wt/Vol: 5 Units: mL uL VOCMS Group1 Soil Aliquot Vol: uL Test: GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN037803.D 12/17/16 20:16 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71 - 8	Dichlorodifluoromethane	1	U	0.2	0.2	l	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1,3		0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67 - 64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79 - 20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75 - 09-2	Methylene Chloride	0.26	J	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	3.7		0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0,2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	3,3		0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	0.84	J	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1.3		0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L


D

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 Project: Syosset Landfill Date Received: 12/14/16 Client Sample ID: RW-12I SDG No.: H6071 Lab Sample ID: H6071-05 Matrix: Water Analytical Method: % Moisture: 100 SW8260 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 $\mathfrak{u}L$ Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037803.D 12/17/16 20:16 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1.9		0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	19.9		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	2.8		0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	11.5		0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	7.1		0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1.	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.8		61 - 141		100%	SPK: 50
1868-53-7	Dibromofluoromethane	49.2		69 - 133		98%	SPK: 50
2037-26-5	Toluene-d8	48.9		65 - 126		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	43		58 - 135		86%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1196080	7.86				
540-36-3	1,4-Difluorobenzene	1833930	8.78				
3114-55-4	Chlorobenzene-d5	1573550	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	623682	13.52				
	NTIFIED COMPOUNDS	22.0	7			5.03	п
75-65-0	Tert butyl alcohol	22.9	J			5.03	ug/L
109-99-9	Tetrahydrofuran	5.9	J			7.48	ug/L

13.34

ug/L

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 12/13/16 Project: Syosset Landfill Date Received: 12/14/16 Client Sample ID: RW-12I SDG No.: H6071 H6071-05 Lab Sample ID: Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

	95-49-8	2-Chlorotoluene	0.78	J			12.85	ug/L	_
•	CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
l	VN037803 D	1			12/17/16 20:16		VN121716		
١	File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed		Prep Batch ID		

J

0.47

U = Not Detected

135-98-8

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E =Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

sec-Butylbenzene

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

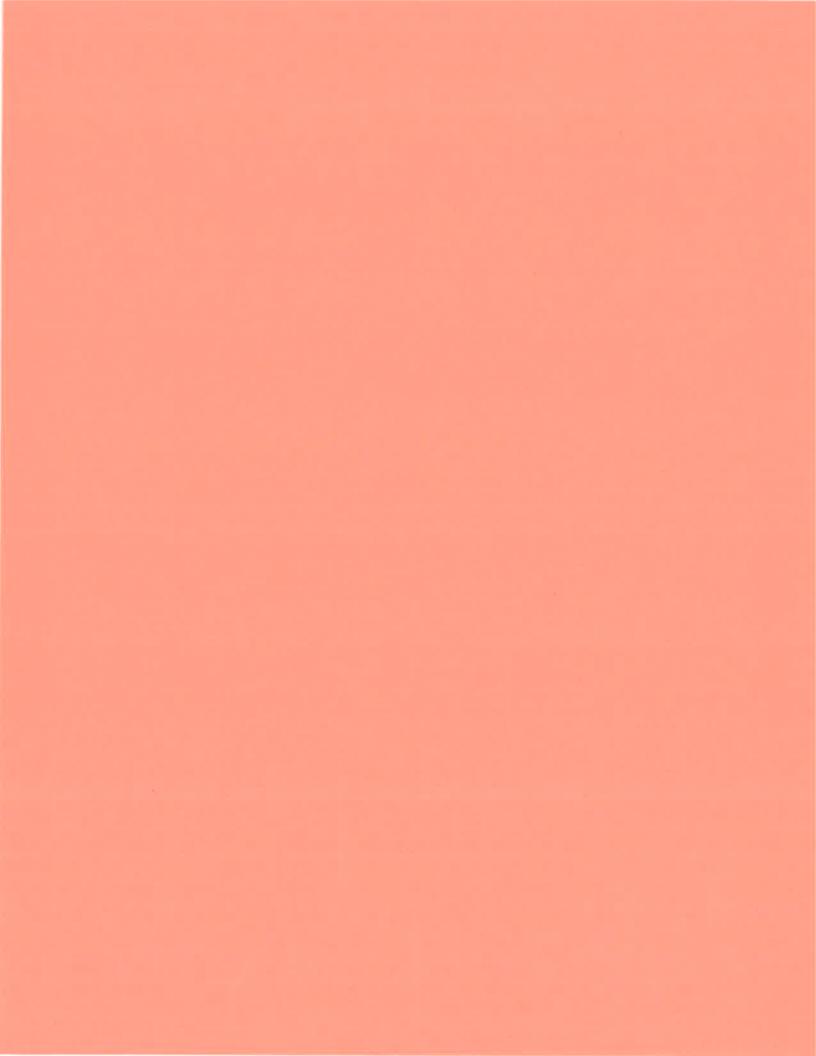
D = Dilution

() = Laboratory InHouse Limit

Client: Lockwood, Kessler. & Bartlett Date Collected: 11/16/16 Project: Syosset Landfill Date Received: 12/14/16 Client Sample ID: TRIPBLANK SDG No.: H6071 Lab Sample ID: H6071-06 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: Units: Final Vol: 5000 mL uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037790.D 1 12/17/16 14:22 VN121716

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	31	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20 - 9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	ì	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	4	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L



Client: Lockwood, Kessler, & Bartlett Date Collected: 11/16/16 Project: Syosset Landfill Date Received: 12/14/16 Client Sample ID: TRIPBLANK SDG No.: H6071 Lab Sample ID: H6071-06 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: Units: Final Vol: mL 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN037790.D 1 12/17/16 14:22 VN121716

CAS Number	Parameter Conc. Qualifier MDL		LOD	LOQ / CRQL	Units		
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	Ĭ	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	Ĩ	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
123-91-1	1,4-Dioxane	100	U	100	100	100	ug/L
SURROGATES							.,
17060-07-0	1,2-Dichloroethane-d4	46.9		61 - 141		94%	SPK: 50
1868-53-7	Dibromofluoromethane	47.7		69 - 133		95%	SPK: 50
2037-26-5	Toluene-d8	48.5		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.6		58 - 135		83%	SPK: 50
INTERNAL STANI							
363-72-4	Pentafluorobenzene	1355520	7.86				
540-36-3	1,4-Difluorobenzene	2083710	8.78				
3114-55-4	Chlorobenzene-d5	1749440	11.58				
3855-82-1	1,4-Dichlorobenzene-d4	664541	13.52				


		~~~~	 	
PK-	10	D		

Lab Name:	Chemtech	Consulting Grou	Р	Contract: EP	W14030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.:	PK-10D
Matrix:	WATER		100	Lab Sample ID	э: н6071-	01	
% Solids:	4			Date Received	12/14/	/2016	
Analytical N	Method:	ICP-AES					
Concentratio	on Moite	(1) = /I == /I == /	1		ια / T		

Concentration Units ( $\mu g/L$ , mg/L, mg/kg dry weight or  $\mu g$ ) :  $\underline{ug/L}$ 

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2041
7440-36-0	Antimony	60.0	Ū	12/24/2016	2041
7440-38-2	Arsenic	4.1	J	12/24/2016	2041
7440-39-3	Barium	38.7	J	12/24/2016	2041
7440-41-7	Beryllium	5.0	U	12/24/2016	2041
7440-43-9	Cadmium	5.0	U	12/24/2016	2041
7440-70-2	Calcium	26200		12/24/2016	2041
7440-47-3	Chromium	14.3		12/24/2016	2041
7440-48-4	Cobalt	50.0	Ū	12/24/2016	2041
7440-50-8	Copper	25.0	U	12/24/2016	2041
7439-89-6	Iron	102		12/24/2016	2041
7439-92-1	Lead	10.0	U	12/24/2016	2041
7439-95-4	Magnesium	8210		12/24/2016	2041
7439-96-5	Manganese	20.0		12/24/2016	2041
7440-02-0	Nickel	30.6	J	12/24/2016	2041
7440-09-7	Potassium	5000	U	12/24/2016	2041
7782~49-2	Selenium	35.0	U	12/24/2016	2041
7440-22-4	Silver	10.0	U	12/24/2016	2041
7440-23-5	Sodium	49600		12/24/2016	2041
7440-28-0	Thallium	25.0	U	12/24/2016	2041
7440-62-2	Vanadium	50.0	U	12/24/2016	2041
7440-66-6	Zinc	60.0	U	12/24/2016	2041
Hardness	Hardness (total)	99.2		12/24/2016	2041

	А	SHITE	110.	
PK-1	0.5	3		
_				

Lab Name:	Chemtech Co	onsulting Grou	ıp	Contract:	EPW14	030			
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. : _			SDG No.:	PK-10D	
Matrix: _	WATER			Lab Sample	ID:	Н6071	-02		
Solids:	*			Date Receiv	ved:	12/14	/2016		
Analytical	Method: IC	CP-AES							

Concentration Units ( $\mu g/L$ , mg/L, mg/kg dry weight or  $\mu g$ ) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2046
7440-36-0	Antimony	60.0	U	12/24/2016	2046
7440-38-2	Arsenic	10.0	U	12/24/2016	2046
7440-39-3	Barium	15.6	J	12/24/2016	2046
7440-41-7	Beryllium	5.0	U	12/24/2016	2046
7440-43-9	Cadmium	5.0	U	12/24/2016	2046
7440-70-2	Calcium	11700		12/24/2016	2046
7440-47-3	Chromium	1.2	J	12/24/2016	2046
7440-48-4	Cobalt	50.0	U	12/24/2016	2046
7440-50-8	Copper	25.0	U	12/24/2016	2046
7439-89-6	Iron	36.4	J	12/24/2016	2046
7439-92-1	Lead	10.0	U	12/24/2016	2046
7439-95-4	Magnesium	2470	J	12/24/2016	2046
7439-96-5	Manganese	10.9	J	12/24/2016	2046
7440-02-0	Nickel	4.0	J	12/24/2016	2046
7440-09-7	Potassium	5000	U	12/24/2016	2046
7782-49-2	Selenium	35.0	U	12/24/2016	2046
7440-22-4	Silver	10.0	U	12/24/2016	2046
7440-23-5	Sodium	5480		12/24/2016	2046
7440-28-0	Thallium	25.0	U	12/24/2016	2046
7440-62-2	Vanadium	50.0	U	12/24/2016	2046
7440-66-6	Zinc	60.0	Ü	12/24/2016	2046
Hardness	Hardness (total)	39.4		12/24/2016	2046

NOTE: Hardness (total) is reported in mg/L

Comments:

Form 1-IN

LIFA	SHITELE	MO.	
PK-10	I		

Lab Name:	Chemtech	Consi	ılting Grou	р	Contract:	EPW14	030			
Lab Code:	СНМ		Case No.:	Syosset Landfi	MA No. :			SDG No.:	PK-10D	
Matrix: _	WATER				Lab Sample	ID:	Н6071	-03		
% Solids:					Date Recei	ved:	12/14	/2016		
Analytical M	Method:	ICP-F	AES							
700000+40+4	on IIndha	/ / T	/T	/1		/T				

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2102
7440-36-0	Antimony	60.0	U	12/24/2016	2102
7440-38-2	Arsenic	10.0	U	12/24/2016	2102
7440-39-3	Barium	60.1	J	12/24/2016	2102
7440-41-7	Beryllium	5.0	U	12/24/2016	2102
7440-43-9	Cadmium	5.0	U	12/24/2016	2102
7440-70-2	Calcium	49200		12/24/2016	2102
7440-47-3	Chromium	59.2		12/24/2016	2102
7440-48-4	Cobalt	61.9		12/24/2016	2102
7440-50-8	Copper	25.0	U	12/24/2016	2102
7439-89-6	Iron	297		12/24/2016	2102
7439-92-1	Lead	10.0	Ū	12/24/2016	2102
7439-95-4	Magnesium	14200		12/24/2016	2102
7439-96-5	Manganese	1800		12/24/2016	2102
7440-02-0	Nickel	29.5	J	12/24/2016	2102
7440-09-7	Potassium	17000		12/24/2016	2102
7782-49-2	Selenium	35.0	U	12/24/2016	2102
7440-22-4	Silver	10.0	U	12/24/2016	2102
7440-23-5	Sodium	288000		12/24/2016	2102
7440-28-0	Thallium	25.0	U	12/24/2016	2102
7440-62-2	Vanadium	50.0	U	12/24/2016	2102
7440-66-6	Zinc	60.0	Ū	12/24/2016	2102
Hardness	Hardness (total)	181		12/24/2016	2102

Comments:			

	OTHIL DD	110.	
RW-12	D		

Lab Name:	Chemtech	Consulting	Group	0	Contract:	EPW14	030			_
Lab Code:	CHM	Case N	١٥٠:	Syosset Landfi	MA No. :			SDG No.:	PK-10D	
Matrix: _	WATER				Lab Sample	ID:	н6071-	-04		
% Solids:					Date Recei	ved:	12/14	/2016		
Analytical	Method:	ICP-AES								
~		, ,,	,			. /-				

Concentration Units ( $\mu g/L$ , mg/L, mg/kg dry weight or  $\mu g$ ) : ug/L CAS No. Analyte Date Analyzed Time Analyzed Concentration 7429-90-5 Aluminum 200 12/24/2016 2106 7440-36-0 2106 Antimony 60.0 U 12/24/2016 7440-38-2 Arsenic 5.4 J 12/24/2016 2106 7440-39-3 Barium 71.9 J 12/24/2016 2106 7440-41-7 Beryllium 5.0 U 12/24/2016 2106 7440-43-9 Cadmium 5.0 Ü 12/24/2016 2106 7440-70-2 Calcium 2106 71700 12/24/2016 7440-47-3 Chromium 1.7 J 12/24/2016 2106 7440-48-4 Cobalt 50.0 12/24/2016 2106 U 7440-50-8 2106 Copper 25.0 U 12/24/2016 7439-89-6 Iron 2106 16.6 J 12/24/2016 7439-92-1 Lead 2106 10.0 12/24/2016 U 7439-95-4 Magnesium 22900 12/24/2016 2106 7439-96-5 Manganese 14.1 12/24/2016 2106 J 7440-02-0 Nickel 40.0 U 12/24/2016 2106 7440-09-7 Potassium 3720 J 12/24/2016 2106 7782-49-2 2106 Selenium 35.0 U 12/24/2016 7440-22-4 Silver 10.0 12/24/2016 2106 7440-23-5 Sodium 2106 132000 12/24/2016 7440-28-0 Thallium 25.0 12/24/2016 2106 U 7440-62-2 Vanadium 2106 50.0 U 12/24/2016 7440-66-6 Zinc 60.0 IJ 12/24/2016 2106 Hardness Hardness (total) 273 12/24/2016 2106

NOTE: Hardness (total) is reported in mg/L

Form 1-IN

EFA	SAMPLE	140	
RW-12	?I		

-	OIVI	_	TIA	
INORGANIC	ANAT	YSTS	DATA	SHEET

Lab Name:	Chemtech	Consu	lting G	roup	<u></u>		Contract:	EPW14	030			フ
Lab Code:	СНМ		Case No	.: 5	Syosset L	andfi	MA No. :			SDG No.:	PK-10D	1
Matrix: _	WATER						Lab Sample	ID:	Н6071-	-05		
% Solids:							Date Recei	ved:	12/14	/2016		
Analytical 1	Method:	ICP-A	ES									
Concentrati	on Units	(ug/L.	ma / I.	ma/k	a dry wei	aht o	r 11g) *	nα/I				

Aluminum				Time Analyzed
	200	U	12/24/2016	2110
Antimony	60.0	U	12/24/2016	2110
Arsenic	4.3	J	12/24/2016	2110
Barium	63.1	J	12/24/2016	2110
Beryllium	5.0	U	12/24/2016	2110
Cadmium	5.0	U	12/24/2016	2110
Calcium	75400		12/24/2016	2110
Chromium	10.0	U	12/24/2016	2110
Cobalt	50.0	Ū	12/24/2016	2110
Copper	25.0	U	12/24/2016	2110
Iron	67.6	J	12/24/2016	2110
Lead	10.0	U	12/24/2016	2110
Magnesium	40900		12/24/2016	2110
Manganese	58.7		12/24/2016	2110
Nickel	8.1	J	12/24/2016	2110
Potassium	80000		12/24/2016	2110
Selenium	35.0	U	12/24/2016	2110
Silver	10.0	U	12/24/2016	2110
Sodium	135000		12/24/2016	2110
Thallium	25.0	U	12/24/2016	2110
Vanadium	50.0	U	12/24/2016	2110
Zinc	60.0	U	12/24/2016	2110
Hardness (total)	357		12/24/2016	2110
	Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	Barium       63.1         Beryllium       5.0         Cadmium       5.0         Calcium       75400         Chromium       10.0         Cobalt       50.0         Copper       25.0         Iron       67.6         Lead       10.0         Magnesium       40900         Manganese       58.7         Nickel       8.1         Potassium       80000         Selenium       35.0         Silver       10.0         Sodium       135000         Thallium       25.0         Vanadium       50.0         Zinc       60.0	Barium       63.1       J         Beryllium       5.0       U         Cadmium       5.0       U         Calcium       75400         Chromium       10.0       U         Cobalt       50.0       U         Copper       25.0       U         Iron       67.6       J         Lead       10.0       U         Magnesium       40900         Manganese       58.7         Nickel       8.1       J         Potassium       80000         Selenium       35.0       U         Sodium       135000         Thallium       25.0       U         Vanadium       50.0       U         Zinc       60.0       U	Barium       63.1       J       12/24/2016         Beryllium       5.0       U       12/24/2016         Cadmium       5.0       U       12/24/2016         Calcium       75400       12/24/2016         Chromium       10.0       U       12/24/2016         Cobalt       50.0       U       12/24/2016         Copper       25.0       U       12/24/2016         Iron       67.6       J       12/24/2016         Lead       10.0       U       12/24/2016         Magnesium       40900       12/24/2016         Manganese       58.7       12/24/2016         Nickel       8.1       J       12/24/2016         Potassium       80000       12/24/2016         Selenium       35.0       U       12/24/2016         Silver       10.0       U       12/24/2016         Sodium       135000       12/24/2016         Thallium       25.0       U       12/24/2016         Vanadium       50.0       U       12/24/2016

NOTE: Hardness (total) is reported in mg/L

Comments: Form 1-IN

рги	DIMIL	ייי	110.	
PK-10	D			

INORGANIC	ANALYSIS	DATA	SHEET	

Lab Name:	Chemtech	Consulting Gro	up	Contract:	EPW14	030	1
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No.:		SDG No.:	PK-10D
Matrix: _	WATER			Lab Sample	ID:	H6071-07	
% Solids:				Date Receiv	ved:	12/14/2016	
Analytical	Method:	ICP-AES					
Concentrati	on Units	$(\mu g/L, mg/L, mg$	/kg dry weight o	or μg) :	ug/L	1	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2122
7440-36-0	Antimony	60.0	U	12/24/2016	2122
7440-38-2	Arsenic	4.9	J	12/24/2016	2122
7440-39-3	Barium	39.7	J	12/24/2016	2122
7440-41-7	Beryllium	5.0	U	12/24/2016	2122
7440-43-9	Cadmium	5.0	Ü	12/24/2016	2122
7440-70-2	Calcium	27000		12/24/2016	2122
7440-47-3	Chromium	1.8	J	12/24/2016	2122
7440-48-4	Cobalt	50.0	U	12/24/2016	2122
7440-50-8	Copper	25.0	U	12/24/2016	2122
7439-89-6	Iron	15.8	J	12/24/2016	2122
7439-92-1	Lead	10.0	U	12/24/2016	2122
7439-95-4	Magnesium	8450		12/24/2016	2122
7439-96-5	Manganese	18.3		12/24/2016	2122
7440-02-0	Nickel	15.3	J	12/24/2016	2122
7440-09-7	Potassium	5000	U	12/24/2016	2122
7782-49-2	Selenium	35.0	U	12/24/2016	2122
7440-22-4	Silver	10.0	U	12/24/2016	2122
7440-23-5	Sodium	51300	1	12/24/2016	2122
7440-28-0	Thallium	25.0	U	12/24/2016	2122
7440-62-2	Vanadium	50.0	U	12/24/2016	2122
7440-66-6	Zinc	60.0	U	12/24/2016	2122

EFA	SAMELL	140	
PK-10	S		

Lab Name:	Chemtech	Consulting G	Group	Contract: EPW1	4030	8 D
Lab Code:	CHM	Case No	Syosset Landf	i MA No. :	SDG No.: PK-	-10D
Matrix: _	WATER			Lab Sample ID:	H6071-08	
% Solids:				Date Received:	12/14/2016	
Analytical	Method:	ICP-AES				
Concentrati	on Units	$(\mu g/L, mg/L,$	mg/kg dry weight	or μg) : ug/	'L	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2126
7440-36-0	Antimony	60.0	U	12/24/2016	2126
7440-38-2	Arsenic	10.0	U	12/24/2016	2126
7440-39-3	Barium	15.8	J	12/24/2016	2126
7440-41-7	Beryllium	5.0	U	12/24/2016	2126
7440-43-9	Cadmium	5.0	U	12/24/2016	2126
7440-70-2	Calcium	11600		12/24/2016	2126
7440-47-3	Chromium	4.1	J	12/24/2016	2126
7440-48-4	Cobalt	50.0	U	12/24/2016	2126
7440-50-8	Copper	25.0	U	12/24/2016	2126
7439-89-6	Iron	76.3	J	12/24/2016	2126
7439-92-1	Lead	10.0	U	12/24/2016	2126
7439-95-4	Magnesium	2460	J	12/24/2016	2126
7439-96-5	Manganese	13.4	J	12/24/2016	2126
7440-02-0	Nickel	18.6	J	12/24/2016	2126
7440-09-7	Potassium	5000	U	12/24/2016	2126
7782-49-2	Selenium	35.0	U	12/24/2016	2126
7440-22-4	Silver	10.0	U	12/24/2016	2126
7440-23-5	Sodium	5490		12/24/2016	2126
7440-28-0	Thallium	25.0	U	12/24/2016	2126
7440-62-2	Vanadium	50.0	U	12/24/2016	2126
7440-66-6	Zinc	45.1	J	12/24/2016	2126

LPA	SAMPLE	NO.	
PK-10	I		

Lab Name:	Chemtech Cons	sulting Grou	р		Contract:	EPW14	1030			9
Lab Code:	СНМ	Case No.:	Syosset	Landfi	MA No. :			SDG No.:	PK-10D	
Matrix: _	WATER				Lab Sample	e ID:	н6071-	-09		
Solids:					Date Recei	ved:	12/14	/2016		
Analytical	Method: ICP-	-AES								

Concentration Units ( $\mu g/L$ , mg/L, mg/kg dry weight or  $\mu g$ ) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2130
7440-36-0	Antimony	60.0	U	12/24/2016	2130
7440-38-2	Arsenic	10.0	U	12/24/2016	2130
7440-39-3	Barium	61.3	J	12/24/2016	2130
7440-41-7	Beryllium	5.0	U	12/24/2016	2130
7440-43-9	Cadmium	5.0	U	12/24/2016	2130
7440-70-2	Calcium	49800		12/24/2016	2130
7440-47-3	Chromium	11.4		12/24/2016	2130
7440-48-4	Cobalt	60.1		12/24/2016	2130
7440-50-8	Copper	25.0	U	12/24/2016	2130
7439-89-6	Iron	70.8	J	12/24/2016	2130
7439-92-1	Lead	10.0	U	12/24/2016	2130
7439-95-4	Magnesium	14400		12/24/2016	2130
7439-96-5	Manganese	1840		12/24/2016	2130
7440-02-0	Nickel	34.4	J	12/24/2016	2130
7440-09-7	Potassium	17200		12/24/2016	2130
7782-49-2	Selenium	35.0	U	12/24/2016	2130
7440-22-4	Silver	10.0	U	12/24/2016	2130
7440-23-5	Sodium	291000		12/24/2016	2130
7440-28-0	Thallium	25.0	U	12/24/2016	2130
7440-62-2	Vanadium	50.0	U	12/24/2016	2130
7440-66-6	Zinc	60.0	U	12/24/2016	2130

DITT OTHER IS	.0
RW-12D	

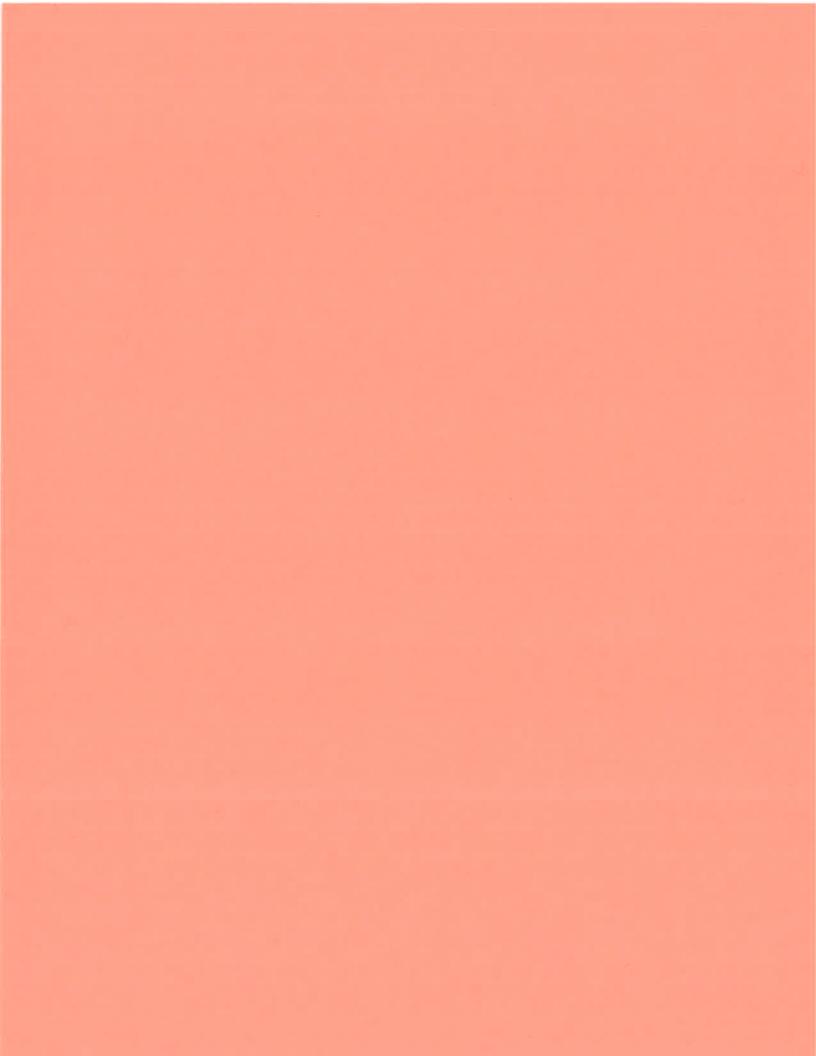
INORGANIC	ANALYSIS	DATA	SHEET	

Lab Name:	Chemtech	Cons	ulting	Grou	ρ	Contract:	EPW14	030			10 D
Lab Code:	СНМ		Case N	10.:	Syosset Landfi	MA No. :			SDG No.:	PK-10D	
Matrix: _	WATER					Lab Sample	ID:	Н6071-	10		
% Solids:						Date Recei	ved:	12/14	/2016		
Analytical	Method:	ICP-	AES								
Concentrati	on Units	(µg/L	, mg/L	, mg/	kg dry weight	or μg) :	ug/I	1			

CAS No. Analyte Concentration O Date Analyzed Time Analyzed

CAS No.	Analyte	Concentration	L Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2134
7440-36-0	Antimony	60.0	U	12/24/2016	2134
7440-38-2	Arsenic	10.0	U	12/24/2016	2134
7440-39-3	Barium	71.4	J	12/24/2016	2134
7440-41-7	Beryllium	5.0	U	12/24/2016	2134
7440-43-9	Cadmium	5.0	U	12/24/2016	2134
7440-70-2	Calcium	71300		12/24/2016	2134
7440-47-3	Chromium	10.0	U	12/24/2016	2134
7440-48-4	Cobalt	50.0	U	12/24/2016	2134
7440-50-8	Copper	25.0	U	12/24/2016	2134
7439-89-6	Iron	100	U	12/24/2016	2134
7439-92-1	Lead	10.0	U	12/24/2016	2134
7439-95-4	Magnesium	22900		12/24/2016	2134
7439-96-5	Manganese	13.7	J	12/24/2016	2134
7440-02-0	Nickel	40.0	U	12/24/2016	2134
7440-09-7	Potassium	3710	J	12/24/2016	2134
7782-49-2	Selenium	35.0	U	12/24/2016	2134
7440-22-4	Silver	10.0	U	12/24/2016	2134
7440-23-5	Sodium	131000		12/24/2016	2134
7440-28-0	Thallium	25.0	U	12/24/2016	2134
7440-62-2	Vanadium	50.0	U	12/24/2016	2134
7440-66-6	Zinc	60.0	U	12/24/2016	2134
I	1			1	

ELA	DAMI DE	140	
RW-12	I		


Lab Name:	Chemtech	n Consu	lting Grou	р	Contract:	EPW14	030			$\frac{II}{II}$
Lab Code:	CHM		Case No.:	Syosset Landfi	MA No. :			SDG No.:	PK-10D	
Matrix:	WATER				Lab Sample	ID:	н6071-	11		
Solids:					Date Recei	ved:	12/14	/2016		
Analytical	Method:	ICP-A	ES							

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	12/24/2016	2138
7440-36-0	Antimony	60.0	Ū	12/24/2016	2138
7440-38-2	Arsenic	10.0	U	12/24/2016	2138
7440-39-3	Barium	64.9	J	12/24/2016	2138
7440-41-7	Beryllium	5.0	U	12/24/2016	2138
7440-43-9	Cadmium	5.0	U	12/24/2016	2138
7440-70-2	Calcium	76900		12/24/2016	2138
7440-47-3	Chromium	10.0	U	12/24/2016	2138
7440-48-4	Cobalt	50.0	Ū	12/24/2016	2138
7440-50-8	Copper	3.7	J	12/24/2016	2138
7439-89-6	Iron	65.9	J	12/24/2016	2138
7439-92-1	Lead	10.0	υ	12/24/2016	2138
7439-95-4	Magnesium	41800		12/24/2016	2138
7439-96-5	Manganese	60.1		12/24/2016	2138
7440-02-0	Nickel	12.1	J	12/24/2016	2138
7440-09-7	Potassium	82000		12/24/2016	2138
7782-49-2	Selenium	35.0	U	12/24/2016	2138
7440-22-4	Silver	10.0	U	12/24/2016	2138
7440-23-5	Sodium	139000		12/24/2016	2138
7440-28-0	Thallium	25.0	U	12/24/2016	2138
7440~62-2	Vanadium	50.0	U	12/24/2016	2138
7440-66-6	Zinc	60.0	U	12/24/2016	2138

NOTE: Hardness (total) is reported in mg/L

Form 1-IN



PK-10D
--------

TNORGANIC	ANALYSTS	מדמת	SHEET

Lab 1	Name:	Chemtech Consulting Group				Contract: EPW14030				30				
Lab (	Code:	CHM		Case No	.: <u>Sy</u>	osset Landfi	MA N	o. : _			SDG N	٠	PK-10D	)
Matr:	ix: _	WATER					Lab :	Sample	ID:	Н6071-	-01			
§ So	lids:						Date	Recei	ved:	12/14	/2016			
Anal	ytical :	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/L,	mg/kg	dry weight	or µg)	:	ug/I	ı				
	CAS N	0.	Analyte	9		Concentrat	ion	Q	Date	Analyz	zed T	ime A	Analyze	ed
	7439-9	7-6	Mercur	У		0.92			12/	16/201	6	151	2	

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

# FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

PK-10S

Lab Name:	Chemtech	Cons	alting Grou	ıp	Contract: EPW	14030		7
Lab Code:	СНМ		Case No.:	Syosset Landfi	MA No.:		SDG No.:	PK-10D
Matrix: _	WATER				Lab Sample ID:	Н6071-	-02	
Solids:					Date Received:	12/14	/2016	
Analytical	Method:	CVAA						
Concentrati	on Units	(ug/I.	ma/I ma	/kg dry weight	)	/T.		

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	12/16/2016	1523

NOTE: Hardness (total) is reported in mg/L

#### EPA SAMPLE NO

# FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

EPF	A SAMPLE	NO.	
PK-1	OI		

Lab 1	Name:	Chemt	ech Cons	ulting Grou	ıp	Cont	ract:	EPW14	1030		-	2 1
Lab (	Code:	СНМ		Case No.:	Syosset Land	fi MA N	· . :		SI	G No.:	PK-10D	
latr:	ix: _	WATER				Lab	Sample	ID:	<u>н6071-03</u>			
so.	lids:					Date	Recei	ved:	12/14/20	016		
Analy	ytical	Method	: CVAA			_						
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	/kg dry weigh	or µg	) :	ug/I				
	CAS N	lo.	Analyte	9	Concentr	ation	Q	Date	Analyzed	Time	Analyzed	Γi
	7439-9	97-6	Mercur	V	0.33			12/	16/2016	15:	2.5	_

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

### FORM 1 - IN

RW-12D	

		-		
INORGANIC	ANAI	YSTS	מידעת	SHEET

					INOROZINIE ZIMEDI	DID D	AIA DIII	10.1				41
Lab	Name:	Chemt	ech Cons	ulting Grou	ıp	Cont	ract:	EPW14	030			י ך
Lab	Code:	CHM		Case No.:	Syosset Landfi	MA N	o. : _			SDG No	.: PK-10	D
latr.	ix: _	WATER				Lab	Sample	ID:	н6071-0	)4		
s So.	lids:					Date	Receiv	red:	12/14/	2016		
Anal	ytical N	Method	: CVAA									
Conc	entratio	on Uni	ts (µg/L	, mg/L, mg/	/kg dry weight o	or µg)	•	ug/L	1			
	CAS N	0.	Analyte	e	Concentrat	ion	Q	Date	Analyze	ed Ti	me Analyz	ed
	7439-9	7-6	Mercur	У	0.031		J	12/1	6/2016		1527	
								_				

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.

	OZ II I DD	110.
RW-12	т.	
KW-IZ	1	

INORGANIC	ANALYSIS	DATA	SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030 Lab Code: Case No.: Syosset Landfi MA No.: SDG No.: PK-10D WATER Matrix: Lab Sample ID: H6071-05 % Solids: Date Received: 12/14/2016 Analytical Method: CVAA Concentration Units ( $\mu g/L$ , mg/L, mg/kg dry weight or  $\mu g$ ) : ug/L CAS No. Analyte Date Analyzed Time Analyzed Concentration 7439-97-6 0.028 1529 12/16/2016 Mercury

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.	_
PK-10	D		

### INORGANIC ANALYSIS DATA SHEET

					INORG	ANIC ANAL	YSIS DA	ATA SHE	SET			1	T
Lab 1	Name:	Chemt	ech Cons	ulting Grou	up		Cont	ract:	EPW1	4030			
Lab (	Code:	СНМ		Case No.:	Syos	set Landf	i MA N	o. : _			SDG	No.: PK-10D	
Matr:	ix: _	WATER					Lab :	Sample	ID:	Н6071-	-07		
& Sol	lids:						Date	Receiv	red:	12/14	/201	.6	
Analy	ytical	Method	: CVAA										
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	/kg d	ry weight	or µg)	*	ug/I	L			
	CAS N	lo.	Analyte	9		Concentra	tion	Q	Date	Analyz	zed	Time Analyzed	]
	7439-9	97-6	Mercur	У		0.87			12/	16/201	6	1531	1

NOTE: Hardness (total) is reported in mg/L

PK-	-10S		

8	D
1)	1

Lab 1	Name:	Chemt	ech Cons	ılting Gro	ıp	Cont	ract:	EPW14	030		0
Lab (	Code:	СНМ		Case No.:	Syosset Landfi	MA N	o. : _		S	DG No.:	PK-10D
Matri	ix: _	WATER				Lab	Sample	ID:	н6071-08	3	
% Sol	lids:					Date	Receiv	ved:	12/14/2	016	
Analy	ytical	Method	: CVAA								
Conce	entrati	on Uni	ts (μg/L	, mg/L, mg	/kg dry weight	or µg)		ug/I	ı		
1	CAS N	lo.	Analyte		Concentrat	ion	Q	Date	Analyze	d Time	Analyzed
	7439-9	97-6	Mercur	1	0.20		U	12/	L6/2016	15	33

NOTE: Hardness (total) is reported in  $\ensuremath{\text{mg/L}}$ 

	EPA	SAMPLE	NO.
--	-----	--------	-----

		OTHIL DO	
			٦
			-1
DI	K-10	т	1
	$V = T \cap$	1	1

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No.: SDG No.: PK-10D Lab Code: Lab Sample ID: H6071-09 Matrix: WATER % Solids: Date Received: 12/14/2016 Analytical Method: CVAA Concentration Units ( $\mu g/L$ , mg/L, mg/kg dry weight or  $\mu g$ ) : ug/L CAS No. Analyte Concentration Date Analyzed Time Analyzed 7439-97-6 0.26 1535 Mercury 12/16/2016

NOTE: Hardness (total) is reported in mg/L

Comments:

Form 1-IN

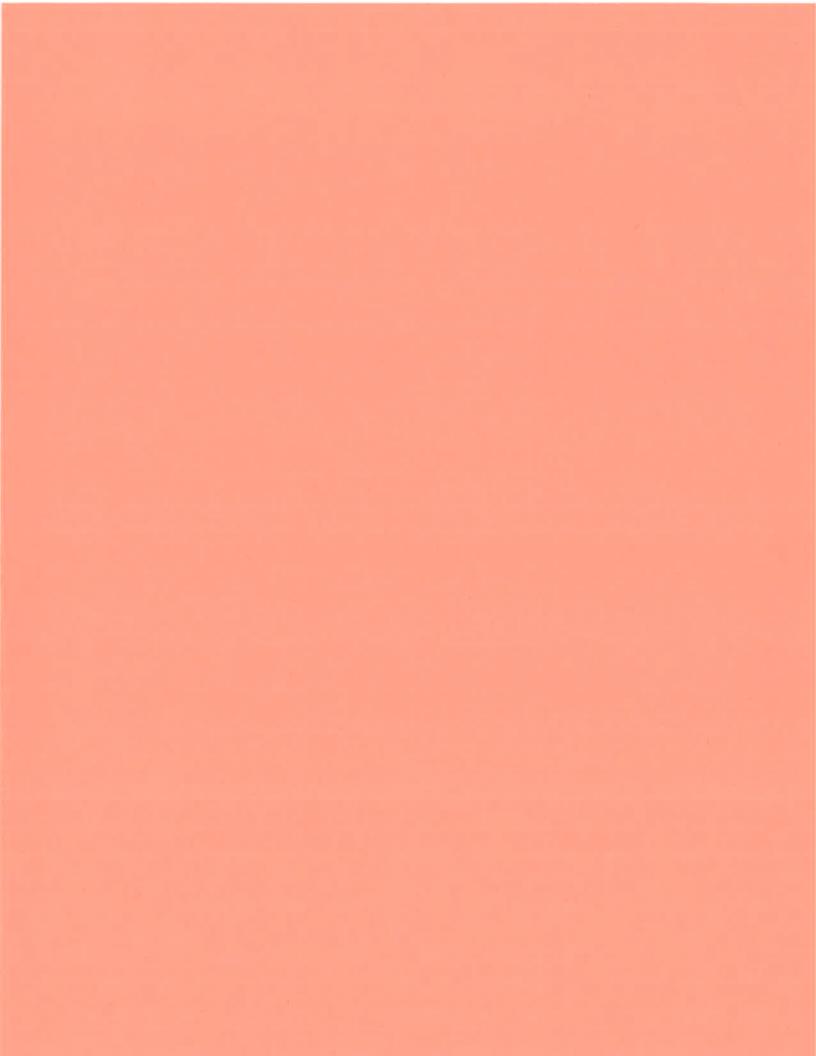
EPA SAMPLE NO.

### FORM 1 - IN

RW-12D

#### INORGANIC ANALYSIS DATA SHEET

						Ortornizo Intili	1010 0		J.D. L			INT
Lab 1	Name:	Chemt	ech Cons	ulting	Group		Cont	ract:	EPW1403	30		(01
Lab (	Code:	СНМ		Case N	10.; <u>s</u>	yosset Landf	i MA N	o. :		SDG	No.: PK-1	0 D
Matr	ix:	WATER					Lab	Sample	ID: H	6071-10		
% So.	lids:						Date	Receiv	ved: 1	2/14/201	. 6	
Analy	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/L	, mg/kg	g dry weight	or µg)	*	ug/L			
	CAS N	lo.	Analyte	9		Concentra	tion	Q	Date A	nalyzed	Time Analy	zed
	7439-9	97-6	Mercur	У		0.026		J	12/16	/2016	1537	


NOTE: Hardness (total) is reported in mg/L

RW-12I

		21
١.	- 7	ь.
ш		Ð
		~

Lab 1	Name:	Chemte	ech Cons	ulting Grou	ip:	Conti	ract:	EPW140	030		
Lab (	Code:	СНМ		Case No.:	Syosset Landfi	MA No	o. : _		s	DG No.:	PK-10D
Matri	ix: _	WATER			3	Lab S	Sample	ID:	н6071-1	1	
% Sol	lids:					Date	Recei	ved:	12/14/2	2016	
Analy	ytical N	Method	: CVAA								
Conce	entratio	on Uni	ts (µg/L	, mg/L, mg/	kg dry weight	or μg)	:	ug/L			
Ĭ	CAS N	ο,	Analyte	9	Concentrat	ion	Q	Date	Analyze	d Time	Analyzed
	7439-9	7-6	Mercur	У	0.041		J	12/1	6/2016	15	40

NOTE: Hardness (total) is reported in mg/L



EPA	SAMPLE	NO.

LPA	SAMPLE	NO.	
PK-10	D		

Lab 1	Name:	Chemt	ech Cons	ulting Grou	ıр		Cont	ract:	EPW14	030			
Lab (	Code:	СНМ		Case No.:	Syc	sset Landf	i MA N	o. : _		SD	G No.:	PK-10D	
Matri	.x: _	WATER					Lab	Sample	ID:	H6071-01			
% Sol	ids:						Date	Recei	ved:	12/14/20	16		
Analy	tical	Method	: Spec	trophotome	etry								
Conce	entrati	on Uni	ts (µg/I	, mg/L, mg	/kg	dry weight	or μg)	:	ug/L	,			
[	CAS N	0.	Analyt	e		Concentra	tion	0	Date	Analyzed	Time	Analyzed	
	57-12-	-5	Cyanid	е		10.0		U	12/	15/2016	15	16	

NOTE: Hardness (total) is reported in  $\ensuremath{\text{mg/L}}$ 

EPA	SAMPLE	NO.
PK-108	S	

S DATA SHEET

Lab 1	Name:	Chemt	Chemtech Consulting Group					ct:	EPW14030					
Lab Code: CHM				Case No.:	Syosset I	andfi M	AA No.	: _			SDG No.	: PK-10D		
Matr	ix: _	WATER			.5	I	Lab Sa	ample	ID:	н6071-C	)2			
% So.	lids:						Date Received: 12/14/2016							
Analytical Method: Spectrophotometry														
Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L														
	CAS N	0.	Analyte		Conce	entratio	tion Q		Date Analyzed		ed Tim	e Analyzed	1	
57-12-5		Cyanid	е	10.0			U	12/1	5/2016		1517			

NOTE: Hardness (total) is reported in  $\ensuremath{\text{mg/L}}$ 

INORGANIC ANALYSIS DATA SHEET

	_	·										フ
Lab 1	Name:	Chemte	ech Cons	ulting Grou	ıp	Contract: EPW14030						
Lab (	Code:	CHM		Case No.:	Syosset Landfi	MA No	. : "			SDG No.:	PK-10D	
/atr	ix: _	WATER				Lab S	ample	ID:	н6071-0	)3		
so.	lids:					Date	Recei	ved:	12/14/	2016		
Analytical Method: Spectrophotometry												
Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L												
×	CAS N	0.	Analyt	е	Concentrat	ion	Q	Date	Analyze	ed Time	Analyze	E
	57-12-	.5	Cyanid	е	10.0		Ü	12/	15/2016	15	17	

NOTE: Hardness (total) is reported in mg/L

Comments:

Form 1-IN

EPA	SAMPLE	NO.	
RW-12	D		

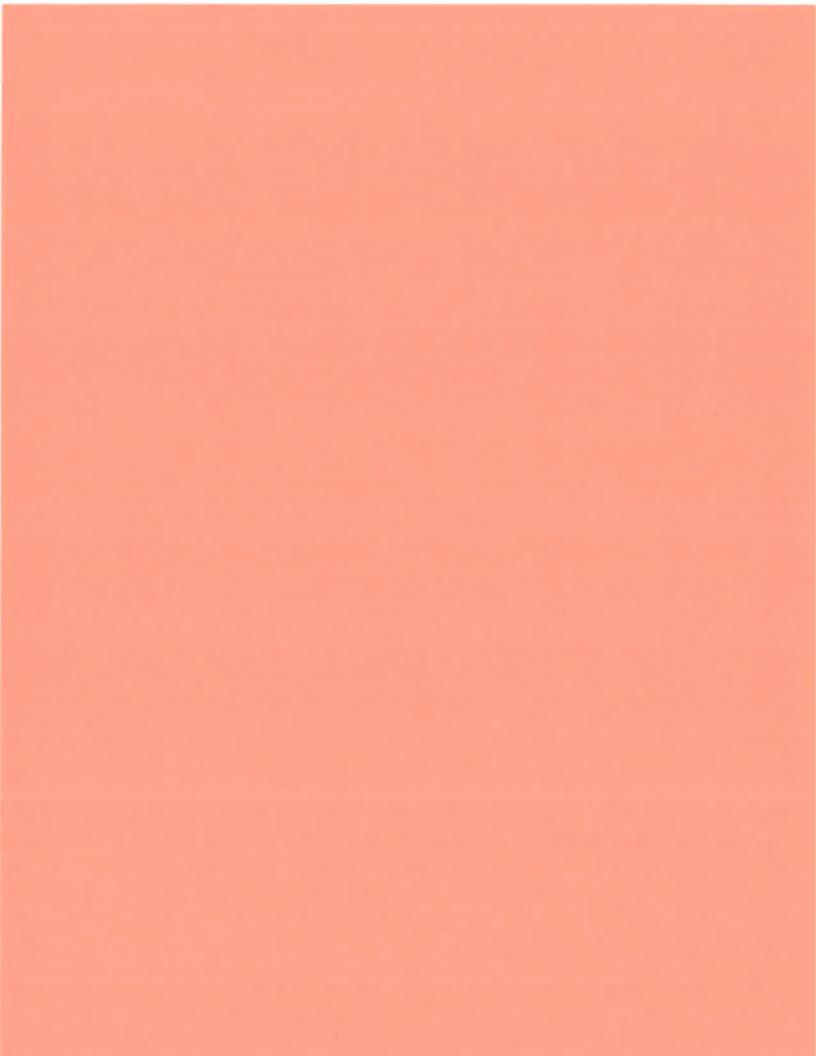
		_

Lab Name: Chemtech Consulting Group							Contract: EPW14030						J		
Lab (	Code:	СНМ		Case No.:	Syos	set L	andfi	MA No	· : _			SDG	No.:	PK-101	)
Matr	ix: _	WATER						Lab S	Sample	ID:	Н6071-	-04			
% Solids:								Date Received: 12			12/14	12/14/2016			
Analytical Method: Spectrophotometry															
Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L															
[	CAS N	0.	Analyt	9		Conce	entrat	ion	Q	Date	Analy	zed	Time	Analyz	ed
	57-12-	-5	Cyanid	е		10.0			U	12/	15/201	6	151	17	

NOTE: Hardness (total) is reported in mg/L

### FORM 1 - IN

RW-12I		


INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consu	lting Gro	up		Contra	ct:	EPW14	030			
Lab Code:	СНМ		Case No.:	Syosse	t Landfi	MA No.	: =			SDG No.:	PK-10D	
Matrix: _	WATER					Lab Sa	mple	ID:	н6071-	-05		
% Solids:						Date R	ecei	ved:	12/14	/2016		
Analytical	Method:	Spect	rophotom	etry								
Concentrati	on Units	$(\mu g/L,$	mg/L, mg	/kg dry	weight	or µg)	;	ug/L				

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	12/15/2016	1520

NOTE: Hardness (total) is reported in mg/L

Comments:





Client: Lockwood, Kessler, & Bartlett Date Collected:

12/13/16 09:30

Project:

Syosset Landfill

Date Received:

12/14/16

Client Sample ID: Lab Sample ID:

PK-10D H6071-01 SDG No.:

H6071 WATER

Matrix: % Solid:

0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		20.8		1	0.4	1	2	mg/L		12/19/16 13:52	SM2320 B
Ammonia as N		0.067	J	1	0.034	0.05	0.1	mg/L	12/19/16 10:35	12/20/16 09:54	SM 4500-NH3 B
											plus G
Bromide		1.32		1	0.066	0.25	0.5	mg/L		12/15/16 09:05	300
Chloride	119	164	OR	2021.	0.075	0.075	5 _{0:45} 3	mg/L		12/15/16 09:05	300
Nitrate		4.06		1	0.027	0.057	0.113	mg/L		12/15/16 09:05	300
Sulfate		20.4 J	•	1	0.132	0.375	0.75	mg/L		12/15/16 09:05	300
BOD5		2	U	1	2	2	2	mg/L		12/15/16 09:10	SM5210 B
COD		5	U	1	2.43	2.5	5	mg/L		12/19/16 15:17	SM5220 D
Color		5	U	1	5	5	5	cu		12/15/16 09:05	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/16/16 08:30	12/16/16 14:42	9065
TDS		307		1	0.031	5	10	mg/L		12/15/16 15:00	SM2540C
TKN		0.196	J	1	0.096	0.25	0.5	mg/L	12/19/16 09:38	12/20/16 13:34	SM4500-N Org
								-			B or C plus NH3
											G
TOC		1.1	_	1	0.08	0.25	0.5	mg/L		12/15/16 10:58	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits





1DL

12/13/16 09:30 Client: Lockwood, Kessler, & Bartlett Date Collected:

12/14/16 Project: Syosset Landfill Date Received:

H6071 PK-10DDL SDG No.: Client Sample ID:

WATER Lab Sample ID: H6071-01DL Matrix: 0

Parameter	Conc. Q	ua. DF MDL	LOD LOQ/CRQL	Units Prep Date	Date Ana. Ana Met.	
Chloride	(119)	<b>1</b> 20 1.5	1.5 3	mg/L	12/15/16 13:26 300	

% Solid:

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

malle 7 125



Client:

Lockwood, Kessler, & Bartlett

Date Collected:

12 13/16 10:00

Project:

Syosset Landfill

Date Received:

12/14/16

Client Sample ID: Lab Sample ID:

PK-10S H6071-02 SDG No.:

H6071 WATER

Matrix:

0

% Solid:

П		÷	ч	
П	К	е	۹	
н	В			

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	9.36		ï	0.4	1	2	mg/L		12/19/16 14:23	SM2320 B
Ammonia as N	0.09	J	1	0.034	0.05	0.1	mg/L	12/19/16 10:35	12/20/16 09:54	SM 4500-NH3 B
										plus G
Bromide	0.912		1	0.066	0.25	0.5	mg/L		12/15/16 09:34	300
Chloride	11.8		1	0.075	0.075	0.15	mg/L		12/15/16 09:34	300
Nitrate	2.9		1	0.027	0.057	0.113	mg/L		12/15/16 09:34	300
Sulfate	18.2 👅		1	0.132	0.375	0.75	mg/L		12/15/16 09:34	300
BOD5	2	U	1	2	2	2	mg/L		12/15/16 09:10	SM5210 B
COD	5	U	1	2.43	2.5	5	mg/L		12/19/16 15:17	SM5220 D
Color	5	U	1	5	5	5	cu		12/15/16 09:15	SM2120 B
Phenolics	0.011	J	1	0.01	0.025	0.05	mg/L	12/16/16 08:30	12/16/16 14:43	9065
TDS	86		1	0.031	5	10	mg/L		12/15/16 15:00	SM2540C
TKN	0.24	J	1	0.096	0.25	0.5	mg/L	12/19/16 09:38	12/20/16 13:34	SM4500-N Org
										B or C plus NH3 G
TOC	0.522	<b>ゴ</b>	1	0.08	0.25	0.5	mg/L		12/15/16 11:14	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

M = Spike N = Spike 70 of 125



Client:

### **Report of Analysis**

Date Collected: 12/13/16 12:00

Project: Syosset Landfill Date Received: 12/14/16

Client Sample ID: PK-10I SDG No.: H6071
Lab Sample ID: H6071-03 Matrix: WATER

Lockwood, Kessler, & Bartlett

% Solid: 0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		122		1	0.40.3	1	2	mg/L		12/19/16 14:02	SM2320 B
Ammonia as N	5.21	5-12	OR	10	0.034	6.05 0.	≶ 0 <del>.</del> 1 \	mg/L	12/19/16 10:35	12/20/16 09:54	SM 4500-NH3 B
											plus G
Bromide		2.55	4	.1	0.066	0.25	.5 0.5	mg/L		12/15/16 11:01	300
Chloride	556	830	OR	4	0.075	0.075	0.45 15	mg/L		12/15/16 11:01	300
Nitrate	•	0.113	U	1	0.027	0.057	0.113	mg/L		12/15/16 11:01	300
Sulfate		35.9 J		1	0.132	0.375	0.75	mg/L		12/15/16 11:01	300
BOD5		2		1	2	2	2	mg/L		12/15/16 09:10	SM5210 B
COD		9.76		1	2.43	2.5	5	mg/L		12/19/16 15:17	SM5220 D
Color		5	U	1	5	5	5	cu		12/15/16 09:20	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/16/16 08:30	12/16/16 14:50	9065
TDS		1175		1	0.031	5	10	mg/L		12/15/16 15:00	SM2540C
TKN		4.82		1	0.096	0.25	0.5	mg/L	12/19/16 09:38	12/20/16 13:34	SM4500-N Org
											B or C plus NH3
											G
TOC		2.41 J	•	1	0.08	0.25	0.5	mg/L		12/15/16 11:47	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits





3DL

Client:

Lockwood, Kessler, & Bartlett

Date Collected

12/13/16 12:00

Project:

Date Received:

Syosset Landfill

12/14/16

Client Sample ID:

PK-10IDL

SDG No.:

H6071

Lab Sample ID:

H6071-03DL

Matrix: % Solid: WATER

0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	5.21	B	10	0.34	0.5	1	mg/L	12/19/16 10:35	12/20/16 10:39	SM 4500-NH3 B
							/			plus G
Chloride	556	D	100	7.5	7.5	15	mg/L		12/15/16 14:53	300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

m 2/14/17 N=Spike



Client:

Project:

### **Report of Analysis**

Date Collected: 12/13/16 14:00 4

Syosset Landfill Date Received: 12/14/16

Client Sample ID: RW-12D SDG No.: H6071 H6071-04 Matrix: WATER Lab Sample ID:

Lockwood, Kessler, & Bartlett

% Solid: 0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		101		1	0.4	1	2	mg/L		12/19/16 14:10	SM2320 B
Ammonia as N	5.45	6.16	O _R	10 r	0.034	0:05	0.1	mg/L	12/19/16 10:35	12/20/16 10:01	SM 4500-NH3 B
											plus G
Bromide		2.35		1	0.066	0.25	0.5	mg/L		12/15/16 11:30	300
Chloride	210	284	Ø₽.	20+	0.075	0:075	1.5 0.15 3	mg/L		12/15/16 11:30	300
Nitrate		9.88		1	0.027	0.057	0.113	mg/L		12/15/16 11:30	300
Sulfate	199	233 J	OR	20 ₁	$0.132^{2}$	0.375	1.5 0.75 15	mg/L		12/15/16 11:30	300
BOD5	, ,	2.01		1	2	2	2	mg/L		12/15/16 09:10	SM5210 B
COD		10.8		1	2.43	2.5	5	mg/L		12/19/16 15:18	SM5220 D
Color		5	U	1	5	5	5	cu		12/15/16 09:25	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/16/16 08:30	12/16/16 14:50	9065
TDS		805		1	0.031	5	10	mg/L		12/15/16 15:00	SM2540C
TKN		5.66		1	0.096	0.25	0.5	mg/L	12/19/16 09:38	12/20/16 13:41	SM4500-N Org
											B or C plus NH3
											G
TOC		4.42 🗇		1	0.08	0.25	0.5	mg/L		12/15/16 12:05	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits



H6071



Client: Lockwood, Kessler, & Bartlett Date Collected: 12:13:16-14:00

Project: Syosset Landfill Date Received: 12/14/16

Client Sample ID: RW-12DDL SDG No.: H6071
Lab Sample ID: H6071-04DL Matrix: WATER

% Solid:

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQI	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	5.75	D	10	0.34	0.5	1	mg/L	12/19/16 10:35	12/20/16 10:39	SM 4500-NH3 B
1		1 1								plus G
Chloride	210	D	20	1.5	1.5	3	mg/L		12/15/16 15:22	300
Sulfate	199	D	20	2.64	7.5	15	mg/L		12/15/16 15:22	300



U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range

N =Spiked sample recovery not within control limits



## 5

### **Report of Analysis**

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

12/13/16 16:00

Project:

Syosset Landfill

Date Received:

12/14/16

Client Sample ID:

RW-12I

Jaic Roccivod.

H6071

Lab Sample ID:

H6071-05

Matrix:

WATER

% Solid:

SDG No.:

id: 0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		805		i	0.4	1	2 _	mg/L		12/19/16 14:14	SM2320 B
Ammonia as N	82.5	41-1	OR	50 F	0.0347	0.05 2	5 0-1 5	mg/L	12/19/16 10:35	12/20/16 10:01	SM 4500-NH3 B
	0-10										plus G
Bromide		6.99		1	0.066	0.25	1.5 0.5	mg/L		12/15/16 11:59	300
Chloride	147	193	OR	20+	0.075	0.075	0.15 3	mg/L		12/15/16 11:59	300
Nitrate		0.113	U	1	0.027	0.057	0.113	mg/L		12/15/16 11:59	300
Sulfate		71 J		1	0.132	0.375	0.75	mg/L		12/15/16 11:59	300
BOD5		2.73		1	2	2	2	mg/L		12/15/16 09:10	SM5210 B
COD		52.8		1	2.43	2.5	5	mg/L		12/19/16 15:18	SM5220 D
Color		5	U	1	5	5	5	cu		12/15/16 09:30	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	12/16/16 08:30	12/16/16 14:50	9065
TDS		974		1	0.031	5	10	mg/L		12/15/16 15:00	SM2540C
TKN	77	37.5	ОR	10+	0.096	0.25	0.5	mg/L	12/19/16 09:38	12/20/16 13:41	SM4500-N Org
	37 1				0.96	2.5	5				B or C plus NH3
											G
TOC		19.4	ſ	1	0.08	0.25	0.5	mg/L		12/15/16 12:23	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

 $\mathbf{E} = \mathbf{Indicates}$  the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

1 75 of 125



Client: Lockwood, Kessler. & Bartlett Date Collected:

12/13/16 16:00

Project:

Syosset Landfill

Date Received:

12/14/16

Client Sample ID:

RW-12IDL

SDG No.:

H6071

Lab Sample ID:

H6071-05DL

Matrix:

WATER

% Solid:

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	82.5	R	50	1.7	2.5	5	mg/L	12/19/16 10:35	12/20/16 11:03	SM 4500-NH3 B
Chloride	147	Ø	20	1.5	1.5	3	mg/L		12/15/16 15:51	300
TKN	77	B	10	0.96	2.5	5	mg/L	12/19/16 09:38	12/20/16 13:41	SM4500-N Org B or C plus NH3 G



U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

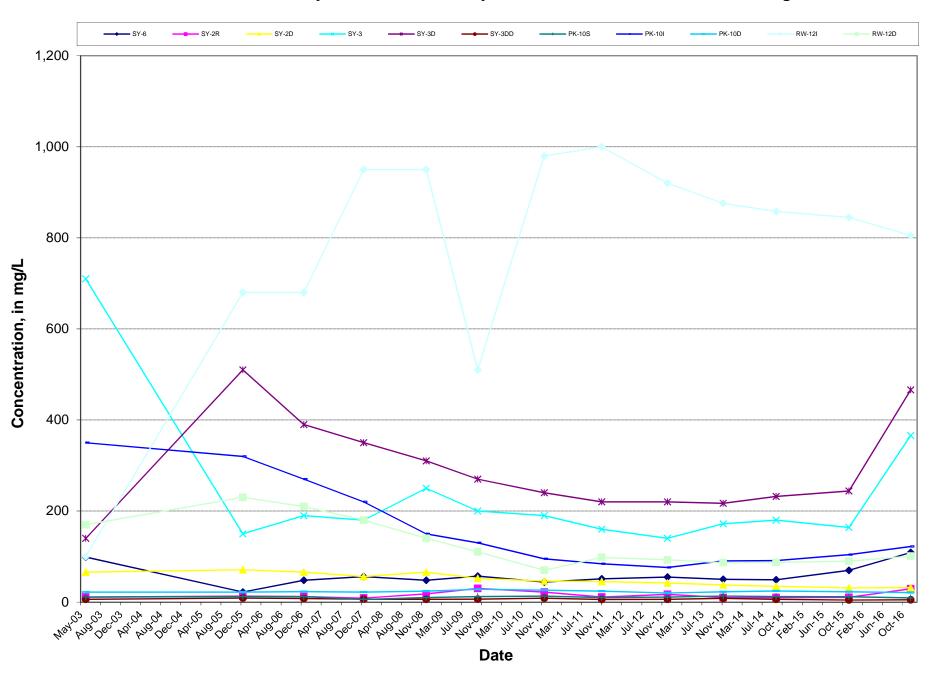
J = Estimated Value

B = Analyte Found in Associated Method Blank

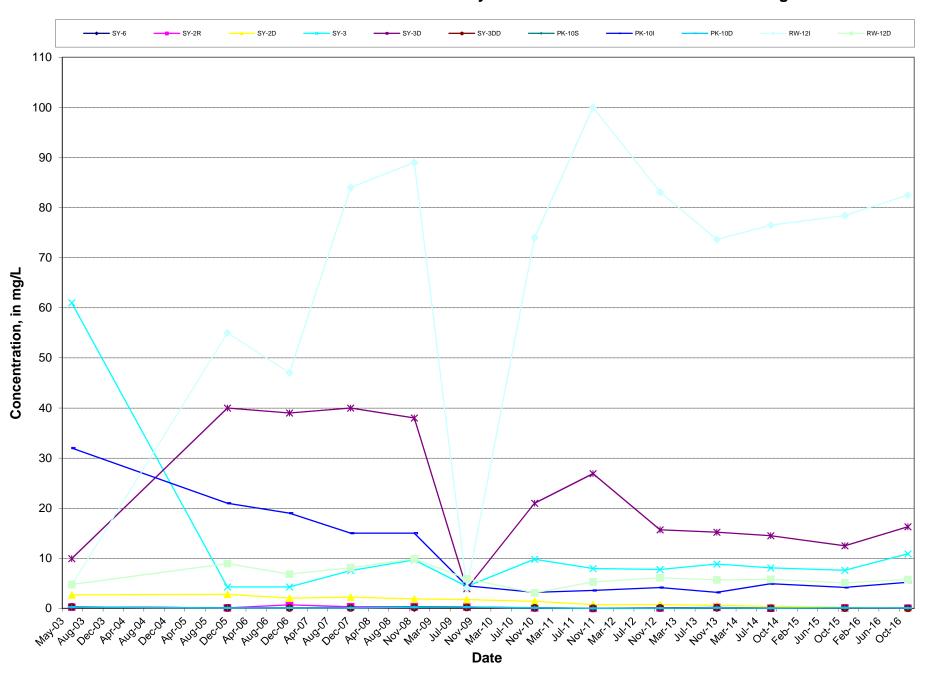
* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

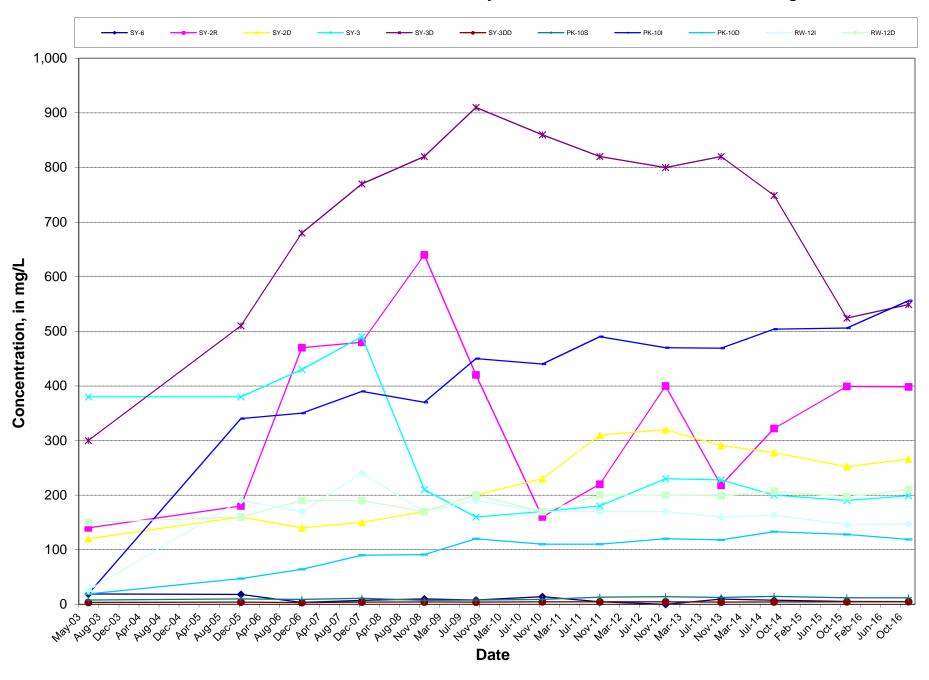
OR = Over Range


N =Spiked sample recovery not within control limits

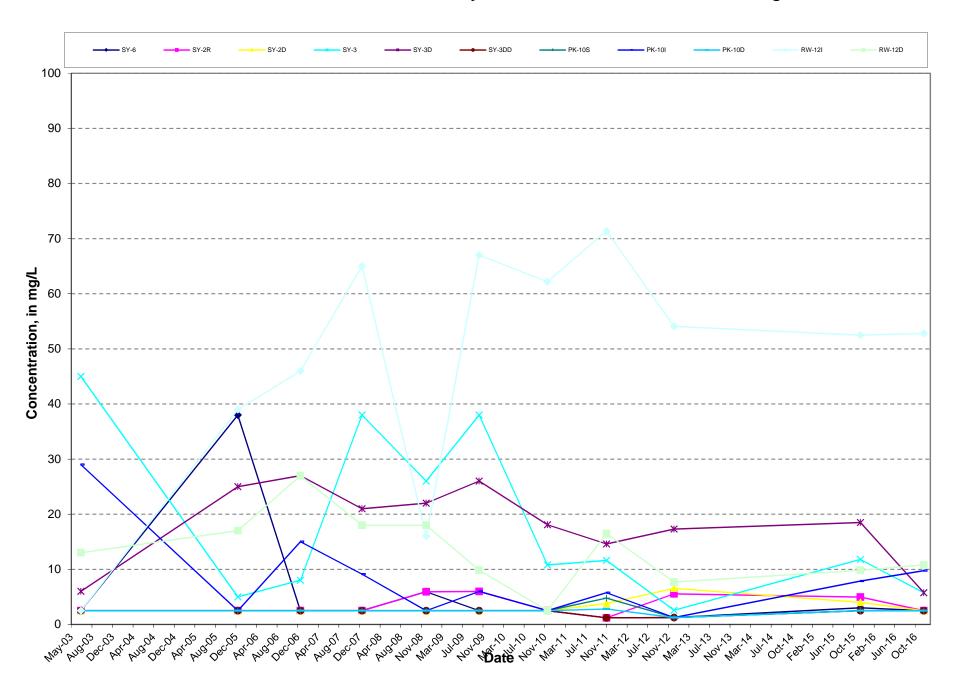
W2/16/17 76 of 125


# APPENDIX C

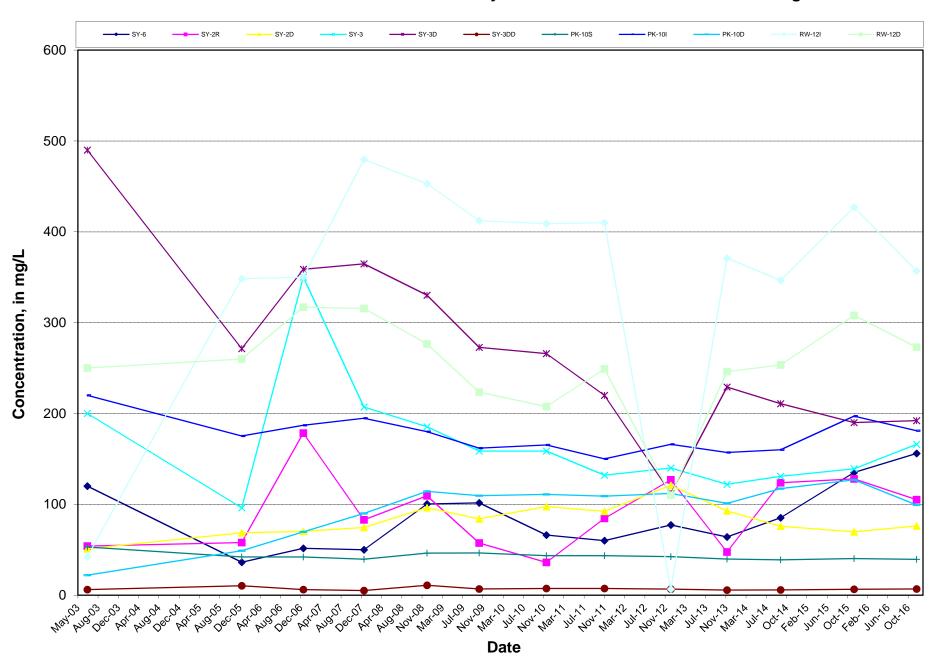
**Trend Analysis Charts** 


### Post-Closure Alkalinity Concentrations in Syosset Landfill Ground Water-Monitoring Wells

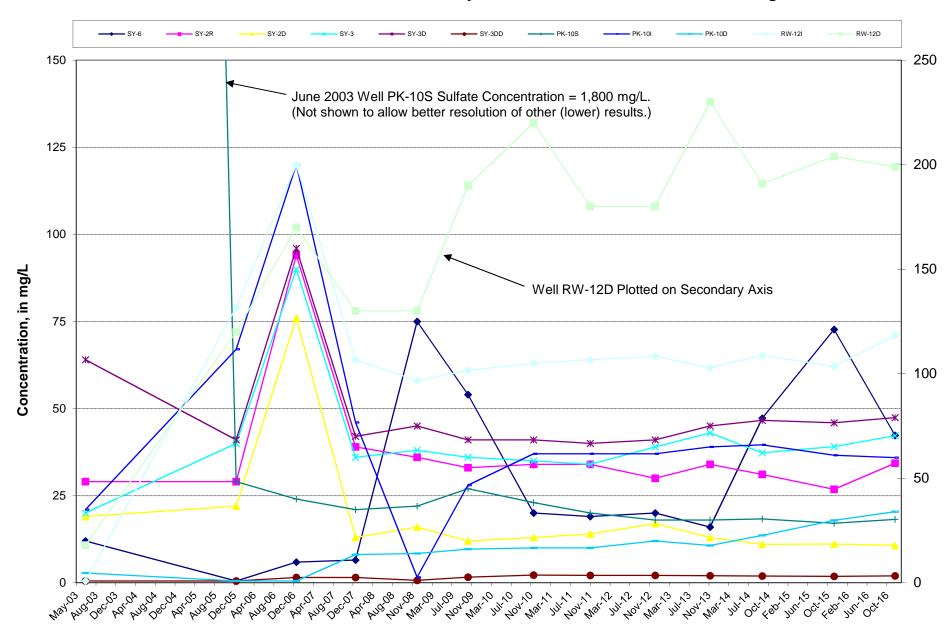



### Post-Closure Ammonia Concentrations in Syosset Landfill Ground Water-Monitoring Wells

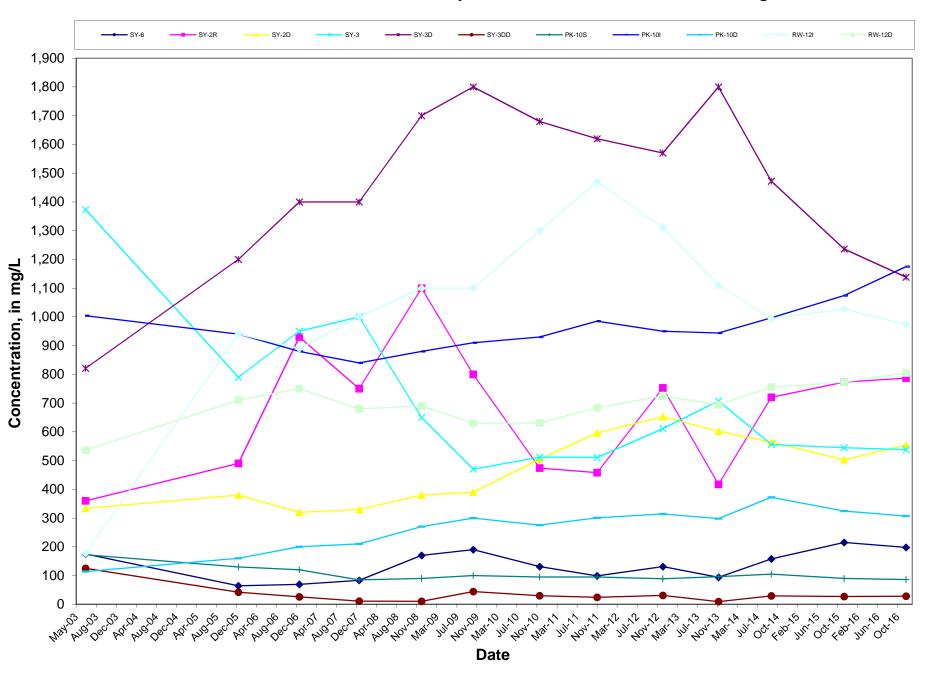



### Post-Closure Chloride Concentrations in Syosset Landfill Ground Water-Monitoring Wells




### Post-Closure COD Concentrations in Syosset Landfill Ground Water-Monitoring Wells

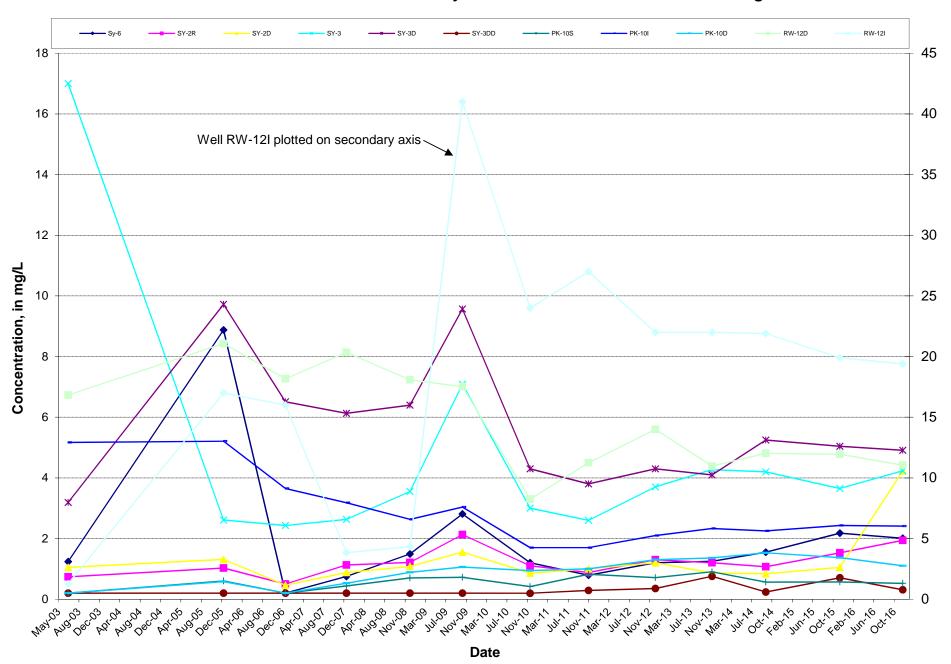



### Post-Closure Hardness Concentrations in Syosset Landfill Ground Water-Monitoring Wells




### Post-Closure Sulfate Concentrations in Syosset Landfill Ground Water-Monitoring Wells




### Post-Closure TDS Concentrations in Syosset Landfill Ground Water-Monitoring Wells



### Post-Closure TKN Concentrations in Syosset Landfill Ground Water-Monitoring Wells



### Post-Closure TOC Concentrations in Syosset Landfill Ground Water-Monitoring Wells

