

Ms. Alicia Barraza New York State Department of Environmental Conservation Division of Solid & Hazardous Materials Bureau of Solid Waste and Corrective Action 625 Broadway Albany, New York 12233-7258

Subject: Bayer MaterialScience LLC 125 New South Road Hicksville, New York USEPA ID#: NYD002920312 Soil Vapor Investigation Report

Dear Ms. Barraza:

On behalf of Bayer MaterialScience LLC (Bayer), this letter presents the results of a soil vapor investigation performed during September 2007 at the Bayer site in Hicksville, New York ("the site"). The soil vapor investigation was implemented to provide data for a site-wide evaluation of soil vapor conditions, including conditions in and around the former Plant 1 area where volatile organic compound- (VOC-) impacted soils were identified during foundation demolition activities in late December 2005.

The soil vapor investigation field activities were performed by ARCADIS of New York, Inc. (ARCADIS BBL) in accordance with the work plan contained in a letter from ARCADIS BBL to the New York State Department of Environmental Conservation (NYSDEC) dated July 26, 2007. NYSDEC approval of the work plan is provided in a letter dated August 16, 2007.

Relevant background information is presented below, followed by a discussion of the sampling approach, an evaluation of the sampling results, and recommendations for further actions.

ARCADIS of New York, Inc. 6723 Towpath Road Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.4111 www.arcadis-us.com

ENVIRONMENT

Date: December 20, 2007

Contact: John C. Brussel, PE

Phone: 315.671.9441

Email: John.Brussel@arcadisus.com

Our ref: B0032305 #5

I. BACKGROUND

VOC soil vapor sampling activities were previously performed at the site as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigation (RI) in 1989. Soil vapor field screening was performed using a photoionization detector (PID) and confirmatory soil vapor analysis for site-related VOCs, including tetrachloroethene (PCE), trans-1,2-dichloroethylene (trans-1,2-DCE), trichlorethene (TCE), and vinyl chloride monomer, was performed using portable gas chromatography. Based on the analytical results, PCE was the only VOC identified in the soil vapor samples. However, the detection limits were higher than those that can be achieved using current analytical methods, and improvements to soil vapor sampling methodologies have been made since 1989.

VOC soil sampling has also been performed at the site as part of previous investigations. Most recently, VOC soil sampling has been performed as part of the two-phase Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) in 2004, an interim corrective measure (ICM) in 2005, and Phase I through Phase VI pre-design sampling activities between late 2005 and Spring 2007. A total of 19 individual VOC constituents have been detected in the soil samples collected as part of the 2004 RFI, the 2005 ICM, and the 2005-2007 Phase I through Phase VI pre-design soil sampling activities. However, outside the Plant 1 area, no VOCs other than acetone (a common laboratory artifact) were detected in soils at concentrations exceeding the soil guidance values presented in the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) titled "Determination of Soil Cleanup Objectives and Cleanup Levels," HWR-94-4046, dated January 24, 1994 (TAGM 4046). Nine VOCs were identified in the Plant 1 area soils at concentrations exceeding the TAGM 4046 soil guidance values. These VOCs include acetone, 2butanone, methylene chloride, 4-methyl-2-pentanone, PCE, trans-1,2-DCE, TCE, vinyl chloride, and xylenes. Impacted soils in the Plant 1 area will be addressed via a final corrective measure to be determined during the Corrective Measures Study (CMS).

II. SOIL VAPOR INVESTIGATION ACTIVITIES

This section presents a description of the field activities performed as part of the soil vapor investigation, including:

• Soil Vapor Probe Installation and Sampling.

• Ambient Air Sampling.

Temporary soil vapor probes were installed by ARCADIS BBL's drilling subcontractor, Delta Well & Pump Company, Inc. of Ronkonkoma, New York, between September 18 and 25, 2007. Soil vapor sampling at each probe was performed by ARCADIS BBL shortly following probe installation. Representatives from the NYSDEC and New York State Department of Health (NYSDOH) visited the site on September 18, 2007 to observe the soil vapor sampling locations and sampling activities.

A discussion of the soil vapor probe installation and sampling is presented below, followed by a discussion of the ambient air sampling.

A. Soil Vapor Probe Installation and Sampling

Temporary soil vapor probes were installed at 18 locations (locations SG-1 through SG-18, as shown on Figure 1) that were selected to provide coverage across the site, including in areas where building construction may occur during site redevelopment, within/near the footprints of the former plant buildings, near the areas where PCE was previously identified during the 1989 assessment, and in various paved areas. A soil vapor sampling summary, which identifies the soil vapor probe locations and sampling rationale, is presented below.

Sample ID	Sampling Location	Sampling Rationale				
Locations V	Vithin Potential New Building Footpri	int				
Southern	Section of Potential New Building					
SG-1	Immediately Northeast of the Plant 1 Building Footprint (Northeast of the VOC-Impacted Soil area)					
SG-2	Within the Eastern Portion of the Plant 1 Building Footprint (Directly Within the VOC-Impacted Soil Area)	To evaluate potential "worst-case" conditions beneath the future onsite building (i.e., within and near the existing VOC-impacted soil area)				
SG-3	Along South End of the Plant 1 Building Footprint (Southwest of the VOC-Impacted Soil Area)					
Middle Se	ction of Potential New Building					
SG-4	Within the Plant 2 Building Footprint	To evaluate potential soil vapor				
SG-5	West of the Plant 1 Building Footprint	migration from the VOC-impacted soil area and potential conditions beneath the future onsite building				

Sample ID	Sampling Location	Sampling Rationale													
Northern S	Northern Section of Potential New Building														
SG-6	Northwest of the Plant 2 Building Footprint	To evaluate potential conditions beneath the future onsite building. Note													
SG-7	North of the Plant 3 Building Footprint	that location SG-6 is within approximately 50 feet of former location													
SG-8	Within the Plant 3 Building Footprint	SG-76, where PCE was identified during the 1989 soil gas survey													
Locations (Dutside Potential New Building Footp	rint													
SG-9	East of the VOC-Impacted Soil Area	To evaluate potential soil vapor migration													
SG-10		To evaluate potential soil vapor migration and conditions along the													
SG-11	Along the Southern Property Boundary	property boundary. Note that location SG-12 is within approximately 50 feet of former location SG-51, where PCE was identified during the 1989 soil gas													
SG-12		survey													
SG-13		To evaluate potential soil vapor													
SG-14	Along the Eastern Property	migration and conditions near the													
SG-15	Boundary	existing and former rainwater runoff sumps/recharge basins at the property													
SG-16		boundary													
SG-17	Along the Northern Property	To evaluate potential conditions along													
SG-18	Boundary	the property boundary													

Work activities performed in connection with the soil vapor probe installation and sampling included surveying sampling locations, completing soil borings, installing and purging soil vapor probes, completing tracer gas tests, and collecting soil vapor samples for laboratory analysis. Details of these work activities are presented below.

Land Surveying Activities

Before the soil vapor probes were installed, an ARCADIS BBL field survey crew fieldidentified the proposed soil vapor probe locations using coordinates obtained from the sampling locations map included in the work plan. Based on field conditions encountered during the survey activities, the locations for 6 of the 18 probes were adjusted slightly (from the locations shown in the work plan), as follows:

• Four soil vapor probe locations (SG-5, SG-10, SG-12, and SG-18) were moved between approximately 4 and 14 feet to avoid an existing crushed construction

Ms. Alicia Barraza December 20, 2007

and demolition (C&D) debris stockpile, existing railroad tracks, an existing soil stockpile, and a tree, respectively.

- Location SG-9 was moved approximately 26 feet westward, from within the sump identified as Areas of Concern (AOCs) 28 and 29 to just west of the sump, for access considerations (the sidewalls of the sump were too steep to permit access by the truck-mounted Geoprobe[®] sampling rig).
- Location SG-13 was moved approximately 100 feet southward, from just east of AOC 29 to southeast of AOC 29, for access considerations (to avoid trees and thick vegetation).

The changes to the sampling locations were discussed with the NYSDEC and NYSDOH while onsite on September 18, 2007.

Soil Boring and Sampling Activities

Following the surveying activities, soil boring and sampling activities were performed to further evaluate subsurface conditions near the proposed soil vapor probe locations (to evaluate the potential presence of confining layers that, if present, could affect soil vapor migration). The Geoprobe[®] rig was used to drill an exploratory soil boring approximately 5 feet from each proposed soil vapor sampling location. Each boring, except for the boring adjacent to soil vapor probe location SG-9, was completed to a depth of approximately 5.5 feet below the ground surface (bgs). The boring adjacent to soil vapor probe location SG-9 was completed to a greater depth (15.5 feet bgs), which was roughly 5.5 feet below the bottom of the adjacent sumps (AOCs 28 and 29). The bottom of each boring was at approximately the same depth as the bottom of the sampling interval at the adjacent soil vapor probe location (as discussed below).

Soil samples were continuously collected from each boring to the depth of completion. Soils removed from the borings were characterized for color, texture, moisture, density, cohesion, plasticity and indication (if any) of staining or obvious odor. Headspace screening (using a photoionization detector [PID] equipped with an 11.7 electron volt lamp) was performed on the soil samples recovered from each boring.

In general, soils recovered from the borings generally consisted of fine, medium, or coarse sand (with some silt and/or trace gravel at various locations). No apparent

Ms. Alicia Barraza December 20, 2007

confining layers were observed. Staining was observed in soils from only one boring (the boring adjacent to location SG-2, within the VOC-impacted soil area, at a depth of approximately 11 to 18 inches bgs). No odors were noticed in any of the recovered soil samples. PID headspace screening measurements for the soil samples from each boring, except for selected samples from the boring adjacent to location SG-16 (along the eastern property boundary), were 0.0 parts per million (ppm). PID headspace screening measurements greater than 0.0 ppm at the boring adjacent to location SG-16 were 2.3 ppm at 0 to 5 inches bgs, 3.2 ppm at 12 to 27 inches bgs, and 3.4 ppm at 22 to 27 inches bgs.

Soil boring logs are presented in Attachment A. Digital photographs taken to document soil conditions are presented in Attachment B. Each exploratory soil boring was backfilled with bentonite grout following completion.

Temporary Soil Vapor Probe Installation Activities

A temporary soil vapor probe was installed at each soil vapor sampling location after the adjacent exploratory soil boring had been completed and backfilled. At each soil vapor sampling location, the Geoprobe[®] rig was used to advance interconnected 4foot lengths of 1.25"-diameter steel probe rod (casing) with an expendable point holder and expendable point at the downhole end, to the same depth as the adjacent (backfilled) exploratory boring. The final boring depth was 5.5 feet bgs at each soil vapor sampling location, except location SG-9 (where the final depth was 15.5 feet bgs). After the target depth was reached, the expendable point was disengaged by hydraulically retracting the steel casing upwards approximately 0.5-feet to create a void in the subsurface soil for soil vapor collection. A Teflon-lined fluoropolymer sample delivery tube (3/16" inside diameter) with an attached Post-Run-Tubing (PRT) threaded adapter was lowered through the 1.25"-diameter steel casing and threaded into the expendable point holder.

Soil Vapor Purging Activities

Following installation of the temporary soil vapor probe, an initial gas draw (purging) was performed to remove atmospheric gas from the sampling interval and the sample delivery tubing and to charge the tubing with soil vapor in preparation for sampling (as discussed below). At the ground surface, the sample delivery tube was attached to an air sampling pump. An electronic flow sensor was used to measure the pump flow rate (which was maintained less than 100 milliliters per minute [mL/min] during purging activities), and the desired volume was purged based on

pumping duration. After one full purge volume (equivalent to 1½ times the volume inside the sample delivery tubing) was expelled from the sampling system, a swagelock valve on the tubing was closed and the pump was disconnected in preparation for sampling. The swagelock valve was closed prior to disconnecting the pump to prevent atmospheric air from entering the tubing.

Soil Vapor Sample Collection Activities

Following purging, soil vapor sample collection was conducted in accordance with United States Environmental Protection Agency (USEPA) Compendium Method TO-15, titled "Determination of VOCs In Air Collected In Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)." One soil vapor sample was collected from each location using a batch certified, pre-cleaned stainless-steel canister (a 6-liter SUMMA[®] canister) with an attached flow regulator set to a rate of 200 mL/min. The pre-cleaned canisters were provided by the laboratory with an initial vacuum of approximately 30 inches of mercury (in. of Hg). Each soil vapor sample was collected over an approximate 30 minute period (after connecting the sample delivery tubing to the SUMMA[®] canister, opening the swagelock valve on the sample delivery tubing, and then opening the flow valve on the regulator). When the SUMMA[®] canister vacuum reached approximately 1 to 2 in. of Hg, the regulator flow valve was closed, leaving a vacuum in the canister as a means for the laboratory to verify that the canister did not leak while in transit. Vacuum readings obtained prior to and at the end of sampling are presented on the soil vapor sample collection logs included in Attachment C.

After the soil vapor sample was collected, a PID equipped with a 11.7 electron volt lamp was attached to the sample delivery tubing to measure approximate total organic vapor levels in the effluent. PID effluent readings obtained after sampling are presented on the sample collection logs included in Attachment C. As indicated on the logs (refer to the second page for each location), total organic vapors were identified in the effluent at five locations: SG-1 (5.1 ppm); SG-2 (6.8 ppm); SG-3 (23.9 ppm); SG-9 (7.2 ppm); and SG-14 (2.9 ppm). PID effluent readings obtained at the remaining locations were all 0.0 ppm.

Two duplicate soil vapor samples were collected in support of the soil vapor investigation (one duplicate per 10 samples). The duplicate samples, DUP091907 and DUP092407, were collected at soil vapor probe locations SG-16 and SG-3, respectively.

The soil vapor samples (and duplicate samples) were shipped to TestAmerica Laboratories, Inc. (TA Labs) located in Burlington, Vermont for laboratory analysis for:

- VOCs in accordance with USEPA Compendium Method TO-15.
- Helium in accordance with American Society for Testing and Materials (ASTM) Method D1946.

TA has Environmental Laboratory Approval Program (ELAP) certification for air/vapor sample analysis by Method TO-15 in New York State.

Tracer Gas Testing Activities

A tracer gas (helium) was used in the field in connection with the soil vapor purging and sampling to evaluate the integrity of the seals around the soil vapor probes. The tracer gas provided a means to: (1) evaluate whether the soil vapor samples could be diluted by surface air; and (2) determine if improvements to the seals might be needed prior to sampling. A 20-gallon plastic pail (bucket) was inverted and then placed over each soil vapor sampling location following probe installation. Hydrated bentonite was used to create a seal around the rim of the inverted pail (as shown on Figure 2.4(b) of the NYSDOH document titled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006) and also around the penetration of the sample tubing through the bottom of the pail. Helium was then introduced into the pail through a swagelock fitting on the side of the pail.

Helium levels in the purge gas and inside the pail (prior to purging, after purging, and immediately after sampling) were measured in the field using a gas detector. As indicated above, helium levels in the soil vapor samples were measured in the laboratory. Field measurements of helium made in connection with the purging and sampling are presented on the sample collection logs included in Attachment C. Based on the helium field measurements, no modifications to the seals around the soil vapor probes were needed. The laboratory analytical results for helium are discussed below in Section III.

Digital photographs taken during purging and sampling activities to show a typical soil vapor sampling set-up, including the helium enclosure, are presented in Attachment D.

B. Ambient Air Sampling

Two ambient (outdoor) air samples were collected in support of the soil vapor investigation to characterize site-specific outdoor conditions. The first ambient air sample was collected on the first day of sampling (September 18, 2007), and the second ambient air sampling was collected mid-way through sampling (on September 20, 2007). The two ambient air samples were collected from the same location along the northern edge of the Plant 3 footprint (location UW/DW, as shown on Figure 1). The ambient air sampling location was generally downwind relative to locations where soil vapor sampling was performed on September 18, 2007 (locations SG-4, SG-6, and SG-7) and was generally upwind relative to locations where soil vapor sampling was performed on September 20, 2007 (locations SG-1 and SG-12 through SG-14).

Consistent with the soil gas sampling approach, ambient air samples were collected using batch certified, pre-cleaned 6-liter SUMMA[®] canisters with an attached flow regulator. However, the flow regulators used for collecting each ambient air sample were pre-set by the laboratory to provide uniform sample collection over an approximate 8-hour sampling period. Each ambient air sample was shipped to TA Labs and analyzed for VOCs using USEPA Compendium Method TO-15.

Conditions encountered during the ambient air sampling are identified on the sample collection logs included at the end of Attachment C.

III. SOIL VAPOR INVESTIGATION RESULTS

Laboratory analytical results for the soil vapor and ambient air samples were reported by TA Labs using NYSDEC Analytical Services Protocol (ASP) Category B data deliverables. The full laboratory analytical data report is included on the attached compact disc. The laboratory analytical results were validated by ARCADIS BBL in accordance with the USEPA National Functional Guidelines dated October 1999. The data validation report is included in Attachment E.

Validated soil vapor and ambient air analytical results for detected VOCs are presented in Table 1. Validated soil vapor analytical results for helium are presented in Table 2. Soil vapor analytical results for the primary VOCs of interest (those identified at the highest concentrations, which include PCE, TCE, cis-1,2-dichloroethene [cis-1,2-DCE], and vinyl chloride) are shown on Figure 2.

The soil vapor and ambient air analytical results are summarized below.

A. Soil Vapor Analytical Results

The NYSDEC has not established standards, criteria, or guidance values for VOCs in soil vapor. For purposes of this report, the soil vapor sampling results have conservatively been compared to the following (collectively referred to as "potential screening values"):

- The indoor air guidance values presented in Table 3.1 of the NYSDOH document titled "Guidance for Evaluating Soil Vapor in the State of New York", dated October 2006 (NYSDOH, 2006) [hereinafter, "the NYSDOH Indoor Air Guidance Values"]. NYSDOH Indoor Air Guidance Values have been established for three of the VOCs included on the TO-15 compound list (PCE, TCE, and methylene chloride).
- The 90th percentile of background indoor air values observed by the USEPA in a study of public and commercial office buildings, per USEPA database information referenced in Section 3.2.4 of the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" [hereinafter, "the USEPA Background Indoor Air Values"].

Use of the NYSDOH Indoor Air Guidance Values and the USEPA Background Indoor Air Values for comparison purposes is conservative because indoor air concentrations resulting from soil vapor are typically less than soil vapor concentrations due to: (1) the attenuation caused by the floor slab; and (2) dilution of compounds into a large volume of indoor air. Indoor air concentrations attributable to vapor intrusion are often orders of magnitude lower than soil vapor concentrations.

General observations made based on review of the laboratory analytical results are presented below, followed by a comparison of the analytical results to the aboveidentified potential screening values, and a discussion of trends noticed in the data.

General Observations

The following observations have been made based on review of the analytical results:

- Two or more VOCs were identified in soil vapor at each of the 18 soil vapor sampling locations.
- The three VOCs identified in the soil vapor samples at the highest concentrations (PCE, cis-1,2-DCE, and TCE) are also the primary VOC constituents of interest in soils within the footprint of the former Plant 1 building.
- The highest VOC soil vapor concentrations were identified at sampling location SG-9, which is immediately west of the former rainwater runoff sumps identified as AOCs 28 and 29 (east of the former Plant 1 building).
- Tracer gas (helium) was not detected in any soil vapor samples, which indicates that the soil vapor sampling points were adequately sealed and there was no infiltration of atmospheric air into the samples.

Comparison of Soil Vapor Analytical Results to Potential Screening Values

The following observations were made based on comparison of the soil vapor analytical results to the potential screening values identified above.

- Two or more VOCs were identified in each soil vapor sampling location at concentrations exceeding the USEPA Background Indoor Air Values.
- PCE and/or TCE were identified at 12 of the 18 soil vapor sampling locations at concentrations exceeding the NYSDOH Indoor Air Guidance Values. Methylene chloride was not detected above laboratory detection limits in any of the soil vapor samples. The locations where PCE and TCE soil vapor concentrations were less than the indoor air guidance values include:
 - One location in the VOC-impacted soil area in the Plant 1 footprint (location SG-2). However, vinyl chloride and other VOC constituents are a potential concern at location SG-2.
 - Both locations along the northern property boundary (locations SG-17 and SG-18, adjacent to Commerce Place).
 - Two of the three locations along the southern property boundary (locations SG-10 and SG-12, adjacent to the Long Island Railroad).

- One location along the eastern property boundary (location SG-16, adjacent to the neighboring warehouse facility property).

Data Trends

The following data trends were noted during review of the soil vapor analytical results.

- In general, the highest VOC soil vapor concentrations were identified at sampling locations within or near the former building footprints, and the concentrations tend to decrease with increasing distance from the footprints, suggesting that vapors are attenuating with distance from potential sources.
- The soil vapor sample collected at location SG-2 (which is directly within the
 previously-identified VOC-impacted soil area) has a chemical signature that is
 different from the signature observed at the other sampling locations. Vinyl
 chloride was identified in soil vapor at location SG-2, but not at any of the other
 sampling locations. Several other VOCs (cyclohexane, n-heptane, n-hexane, 2hexanone, benzene, chlorobenzene, ethylbenzene, and toluene) identified in the
 soil vapor at location SG-2 were either not detected or were detected at very low
 levels in the other soil vapor sampling locations.
- The sampling locations where elevated VOC soil vapor concentrations were identified, with the exception of locations SG-2 and SG-9, generally have similar relative concentrations of PCE and TCE. PCE typically comprises approximately 90-95% of the total VOCs, while TCE typically comprises approximately 5% of the total VOCs.
- With one exception, the VOC soil vapor concentrations at the sampling locations along the northern property boundary (adjacent to Commerce Place) and along the southern property boundary (adjacent to the Long Island Railroad) are low. The VOC soil vapor concentrations at location SG-11 (south of the Warehouse footprint) appear to be somewhat elevated, but are lower than the concentrations identified at the next closest sampling location (location SG-3, at the south end of the Plant 1 building footprint).
- The VOC soil vapor concentrations at the northernmost sampling location along the eastern property boundary (location SG-16, toward the complex of warehouses) are also low. However, the VOC soil vapor concentrations at the

remaining locations along the eastern property boundary (locations SG-14 and SG-15) are elevated, but in most cases are nearly an order of magnitude lower than the concentrations identified at the next line of sampling locations further from the property boundary (e.g., locations SG-1 and SG-4).

B. Ambient Air Analytical Results

Several VOC constituents (including potential petroleum-related compounds such as benzene, toluene, ethylbenzene, and xylenes [BTEX compounds]; 1,2,4trimethylbenzene; n-heptane; n-hexane; and 4-ethyltoluene) were identified in both outdoor (ambient) air samples. However, only one constituent (4-ethyltoluene in the ambient air sample collected on the first day of sampling) was identified at a concentration exceeding the 90th percentile USEPA background outdoor air values referenced in Section 3.2.4 of the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York". The concentration of 4-ethyltoluene in sample UW-091807 (4.9 μ g/m³) only slightly exceeds the 3.6 μ g/m³ background outdoor air value.

The chlorinated solvents identified in the soil vapor samples (including PCE, cis-1,2-DCE, vinyl chloride, and others) were not detected above laboratory detection limits in either of the ambient air samples.

IV. RESPONSE TO FINDINGS

Actions proposed in response to the findings of the soil vapor investigation are identified below.

- Based on the elevated soil vapor concentrations identified at sampling location SG-9 and the potential presence of a vapor source in this area, additional soil sampling for VOCs will be performed within and around AOCs 28 and 29 (the sumps east of the former Plant 1 building) as part of the CMS. Details of proposed soil sampling will be presented in the CMS Work Plan, and sampling will be performed as a pre-design activity in connection with additional delineation soil sampling for polychlorinated biphenyls (PCBs) in the Pilot Plant area.
- Based on the elevated soil vapor concentrations identified at locations SG-14 and SG-15 (along the eastern property boundary), Bayer will pursue access for a walk-through of the adjacent warehouse building (owned by Simone Development – the party who entered into an agreement to purchase the Bayer

Ms. Alicia Barraza December 20, 2007

Hicksville site) to observe operations and determine if subslab vapor or indoor air sampling is needed.

- The action alternatives evaluated in the CMS will include measures to address the presence/migration of VOCs in soil vapor.
- Follow-up soil vapor sampling will be performed after implementation/ construction of the preferred remedial measure outlined in the CMS to evaluate soil vapor conditions after onsite sources have been addressed.

Please do not hesitate to contact Wayne Baldwin of Bayer at 281.383.6117 or the undersigned at 315.671.9441 if you have any questions or require additional information.

Sincerely,

ARCADIS of New York, Inc.

John C. Brussel

John C. Brussel, PE Senior Engineer II

Copies:

Mr. Paul Olivo, United States Environmental Protection Agency Ms. Katy Murphy, New York State Department of Environmental Conservation Ms. Renata Ockerby, New York State Department of Health Mr. Wayne Baldwin, Bayer MaterialScience LLC Mr. Ramon Simon, Bayer MaterialScience LLC Mr. Joseph Molina III, PE, ARCADIS BBL

Tables

TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µɡ/㎡)

SOIL VAPOR INVESTIGATION SUMMARY REPORT BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

	NYSDOH Indoor Air Guidance	USEPA 90 Background		ent Air al Results /m³)			Soil	Vapor Analy	vtical Result	s (µg/m³)	-	-		
Sampling Location: Date Collected:	Value (Exceedences Shown via	Indoor Air (Exceedences Shown via	Outdoor Air (Exceedences	UW 09/20/07	DW 09/18/07	SG-1 09/20/07	SG-2 09/19/07	SG-3 09/24/07	SG-4 09/18/07	SG-5 09/21/07	SG-6 09/18/07	SG-7 09/18/07	SG-8 09/24/07	SG-9 09/25/07
	Shading)		Shown via Italics)											
1,2,4-Trimethylbenzene		9.5 3.7	5.8 2.7	3.0 <0.79	4.9 1.6	<98 <98	<130 <130	<88 [<88] <88 [<88]	<20 <20	<9.8 <9.8	5.4 <2.5	4.9 1.6	<27 <27	<980 <980
1,3,5-Trimethylbenzene 1,3-Butadiene		3.7	3.4	<0.79	<0.88	<98	<130	<00 [<00]	<20	<9.8	<2.5	<0.88	<27	<980
2,2,4-Trimethylpentane				12	<0.00 34	<93	<120	<84 [<84]	<19	21	7.5	<0.00 8.9	<25	<930
4-Ethvltoluene		3.6	3	2.8	4.9	<93	<120	<88 [<88]	<20	<9.8	4.6	6.9 4.1	<23	<930
Cvclohexane				0.62	4.9 1.3	<69	1.400	<62 [<62]	<14	< 9.0	4.0 <1.7	<0.55	<19	<690
Dichlorodifluoromethane		16.5	8.1	2.7	2.2	<240	<330	<220 [<220]	<49	<25	<6.4	<2.0	<69	<2.500
Freon 11		18.1	4.3	1.5	1.1	<110	<150	<100 [<100]	<22	52	28	1.1	<30	<1.100
n-Heptane				2.2	5.7	<82	1.100	<74 [<74]	<16	<8.2	<2.0	1.8	<22	<820
n-Hexane		10.2	6.4	3.2	7.0	<170	670	<160 [<160]	<35	<18	<4.6	1.6	<49	<1.800
1.1.1-Trichloroethane		20.6	2.6	< 0.87	< 0.87	<110	<140	<98 [<98]	<22	<11	18	< 0.87	<29	<1.100
2-Butanone (MEK)		12	11.3	2.2	<1.2	<140	<190	<130 [<130]	<29	<15	18	3.5	<41	<1,500
2-Hexanone				<1.6	<1.6	<200	490	<180 [<180]	<41	<20	<5.3	<1.6	<57	<2,000
Acetone		98.9	43.7	11	<9.5	<1,200	<1,600	<1,100 [<1,100]	<240	<120	110	16	<330	<12,000
Benzene		9.4	6.6	1.5	2.7	<64	140	<58 [<58]	<13	<6.4	1.7	0.86	<17	<640
Carbon disulfide		4.2	3.7	<1.2	<1.2	<150	<210	<140 [<140]	<31	<16	<4.0	<1.2	<44	<1,600
Chlorobenzene		0.9	0.8	<0.74	<0.74	<92	460	<83 [<83]	<18	<9.2	<2.3	<0.74	<25	<920
Chloroform		1.1	0.6	<0.78	<0.78	<98	<130	<88 [<88]	<20	<9.8	<2.4	<0.78	<26	<980
Chloromethane		3.7	3.7	1.2	0.91	<100	<140	<93 [<93]	<21	<10	<2.7	<0.83	<29	<1,000
cis-1,2-Dichloroethene		1.9	1.8	<0.63	<0.63	590	320	79 [87]	<16	<7.9	<2.0	<0.63	<21	140,000
trans-1,2-Dichloroethene				<0.63	<0.63	<79	520	<71 [<71]	<16	<7.9	<2.0	<0.63	<21	2,900
1,2-Dichloroethene (total)				<0.63	<0.63	590	830	79 [87]	<16	<7.9	<2.0	<0.63	<21	140,000
Ethylbenzene		5.7	3.5	2.5	4.8	<87	330	<78 [<78]	<17	<8.7	2.6	2.3	<23	<870
Tetrachloroethene	100	15.9	6.5	<1.1	<1.1	20,000	<180	16,000 [15,000]	4,600	2,200	430	130	4,500	150,000
Toluene		43	33.7	15	37	<75	720	<68 [<68]	<15	41	12	11	83	<750
Trichloroethene	5	4.2	1.3	<0.86	<0.86	2,500	<140	390 [380]	91	1,100	470	3.0	48	36,000
Vinyl chloride		1.9	1.8	<0.41	<0.41	<51	10,000	<46 [<46]	<10	<5.1	<1.3	<0.41	<14	<510
Xylene (m,p)				6.9	15	<210	<290	<200 [<200]	<43	<22	7.8	7.8	<61	<2,200
Xylene (o)		7.9	4.6	2.6	5.2	<87	<110	<78 [<78]	<17	<8.7	3.4	3.2	<23	<870
Xylenes (total)		22.2	12.8	10	21	<87	<110	<78 [<78]	<17	<8.7	12	11	<23	<870

TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µg/m3)

SOIL VAPOR INVESTIGATION SUMMARY REPORT BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

	NYSDOH Indoor Air Guidance		h Percentile Levels (µg/m³)				Soil Vapo	r Analytical I	Results (µg/	m ³)		
Location ID: Date Collected:	Value (Exceedences Shown via Shading)	Indoor Air (Exceedences Shown via Bold)	Outdoor Air (Exceedences Shown via Italics)	SG-10 09/21/07	SG-11 09/21/07	SG-12 09/20/07	SG-13 09/20/07	SG-14 09/20/07	SG-15 09/19/07	SG-16 09/19/07	SG-17 09/18/07	SG-18 09/24/07
1.2.4-Trimethylbenzene		9.5	5.8	6.9	11	5.9	<15	<37	<6.9	13 [16]	3.7	23
1,3,5,- Trimethylbenzene		3.7	2.7	1.9	<9.8	1.8	<15	<37	<6.9	3.9 [4.9]	1.2	6.4
1,3-Butadiene		3	3.4	4.2	<11	12	<17	<42	<7.7	1.3 [1.4]	1.9	<3.3
2,2,4-Trimethylpentane				7.5	26	4.6	75	<35	8.9	19 [39]	1.6	3.8
4-Ethyltoluene		3.6	3	6.4	11	5.4	<15	<37	<6.9	11 [13]	3.3	18
Cyclohexane				<0.69	<6.9	1.1	<11	<26	<4.8	0.96 [1.8]	<0.69	<2.0
Dichlorodifluoromethane		16.5	8.1	<2.5	<25	<3.1	<38	<94	<17	<2.0 [<2.0]	<2.5	<7.4
Freon 11		18.1	4.3	1.5	22	3.6	<17	<42	<7.9	2.2 [2.3]	1.6	<3.3
n-Heptane				3.7	9.8	6.1	16	<31	<5.7	6.6 [10]	3.4	4.9
n-Hexane		10.2	6.4	4.2	<18	8.1	<27	<67	<12	5.3 [8.8]	3.3	<5.3
1,1,1-Trichloroethane		20.6	2.6	<1.1	<11	14	<17	<41	<7.6	<0.87 [<0.87]	<1.1	<3.2
2-Butanone (MEK)		12	11.3	15	17	27	<23	<56	<10	8.3 [7.4]	13	15
2-Hexanone				3.1	<20	<2.6	<32	<78	<14	<1.6 [<1.6]	<2.0	<6.1
Acetone		98.9	43.7	88	<120	110	<180	<450	<83	40 [33]	74	81
Benzene		9.4	6.6	2.1	<6.4	3.2	<9.9	<24	<4.5	2.1 [3.5]	1.3	<1.9
Carbon disulfide		4.2	3.7	3.0	<16	4.4	<24	<59	<11	2.0 [2.1]	5.3	<4.7
Chlorobenzene		0.9	0.8	<0.92	<9.2	<1.2	<14	<35	<6.4	<0.74 [<0.74]	<0.92	<2.7
Chloroform		1.1	0.6	<0.98	<9.8	<1.2	<15	<37	<6.8	<0.78 [<0.78]	4.9	<2.9
Chloromethane		3.7	3.7	<1.0	<10	<1.3	<16	<39	<7.2	<0.83 [<0.83]	<1.0	<3.1
cis-1,2-Dichloroethene		1.9	1.8	<0.79	<7.9	<0.99	<12	<30	<5.6	<0.63 [<0.63]	<0.79	<2.3
trans-1,2-Dichloroethene				<0.79	<7.9	<0.99	<12	<30	<5.6	<0.63 [<0.63]	<0.79	<2.3
1,2-Dichloroethene (total)				<0.79	<7.9	<0.99	<12	<30	<5.6	<0.63 [<0.63]	<0.79	<2.3
Ethylbenzene		5.7	3.5	4.8	10	4.3	15	<33	<6.1	6.9 [10]	1.9	7.4
Tetrachloroethene	100	15.9	6.5	8.1	2,400	64	2,700	8,100	1,200	2.5 [3.1]	4.5	4.5
Toluene		43	33.7	22	53	17	110	49	27	35 [60]	7.2	21
Trichloroethene	5	4.2	1.3	<1.1	24	1.4	<17	160	120	1.2 [1.6]	<1.1	<3.2
Vinyl chloride		1.9	1.8	<0.51	<5.1	<0.64	<7.9	<19	<3.6	<0.41 [<0.41]	<0.51	<1.5
Xylene (m,p)				14	29	13	41	<83	<15	23 [34]	6.1	23
Xylene (o)		7.9	4.6	5.6	11	4.8	16	<33	<6.1	8.7 [12]	2.6	9.6
Xylenes (total)		22.2	12.8	20	40	17	56	<33	<6.1	33 [48]	9.1	33

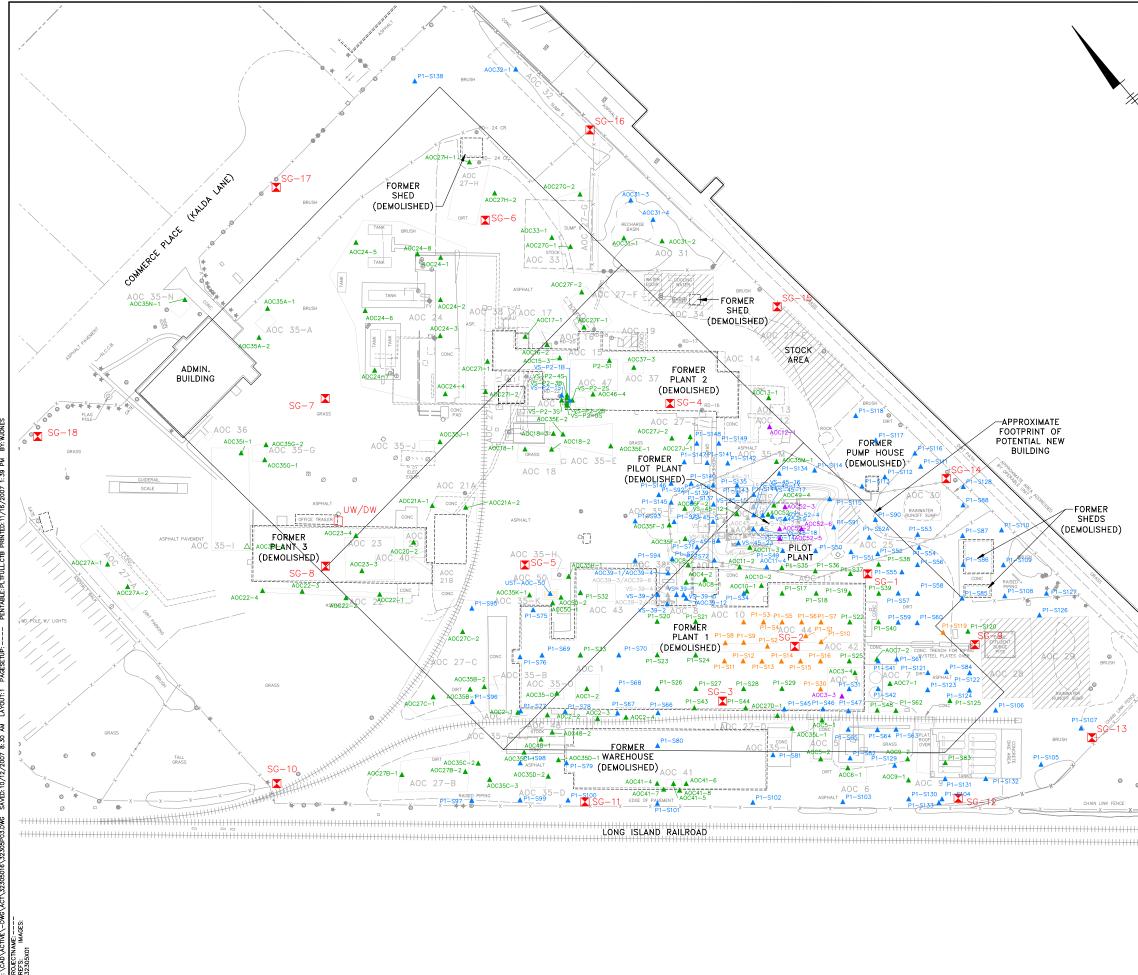
TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µɡ/㎡)

SOIL VAPOR INVESTIGATION SUMMARY REPORT BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

Notes:

- 1. Samples were collected by ARCADIS of New York, Inc. (ARCADIS BBL) on the dates indicated.
- 2. Samples were analyzed for volatile organic compounds (VOCs) by TestAmerica, Inc. (formerly Severn Trent Laboratories, Inc.) of Burlington, Vermont using United States Environmental Protection Agency (USEPA) Compendium Method TO-15.
- 4. New York State Department of Health (NYSDOH) Indoor Air Guidance Values are from Table 3.1 of the document titled "Guidance for Evaluating Soil Vapor in the State of New York" (NYSDOH, October 2006).
- 5. USEPA Indoor Air and Outdoor Air Background Levels are the 90th percentile of background air values observed by the USEPA in a study of public and commercial office buildings, per USEPA database information referenced in Section 3.2.4 of the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006).
- 6. Concentrations reported in micrograms per cubic meter (µg/m3).
- 7. < = Not detected at or above the associated reporting limit.
- 8. -- = Comparison value not available.
- 9. Field duplicate sample results are presented in brackets.
- 10. Shading designates an exceedence of the NYSDOH Indoor Air Guidance Value.
- 11. Bold text designates an exceedence of the USEPA 90th Percentile Background Indoor Air Value.
- 12. Italics designates an exceedence of the USEPA 90th Percentile Background Outdoor Air Value.
- 13. Results have not been validated.

TABLE 2 SOIL VAPOR AND AMBIENT AIR HELIUM ANALYTICAL RESULTS (%V/V)

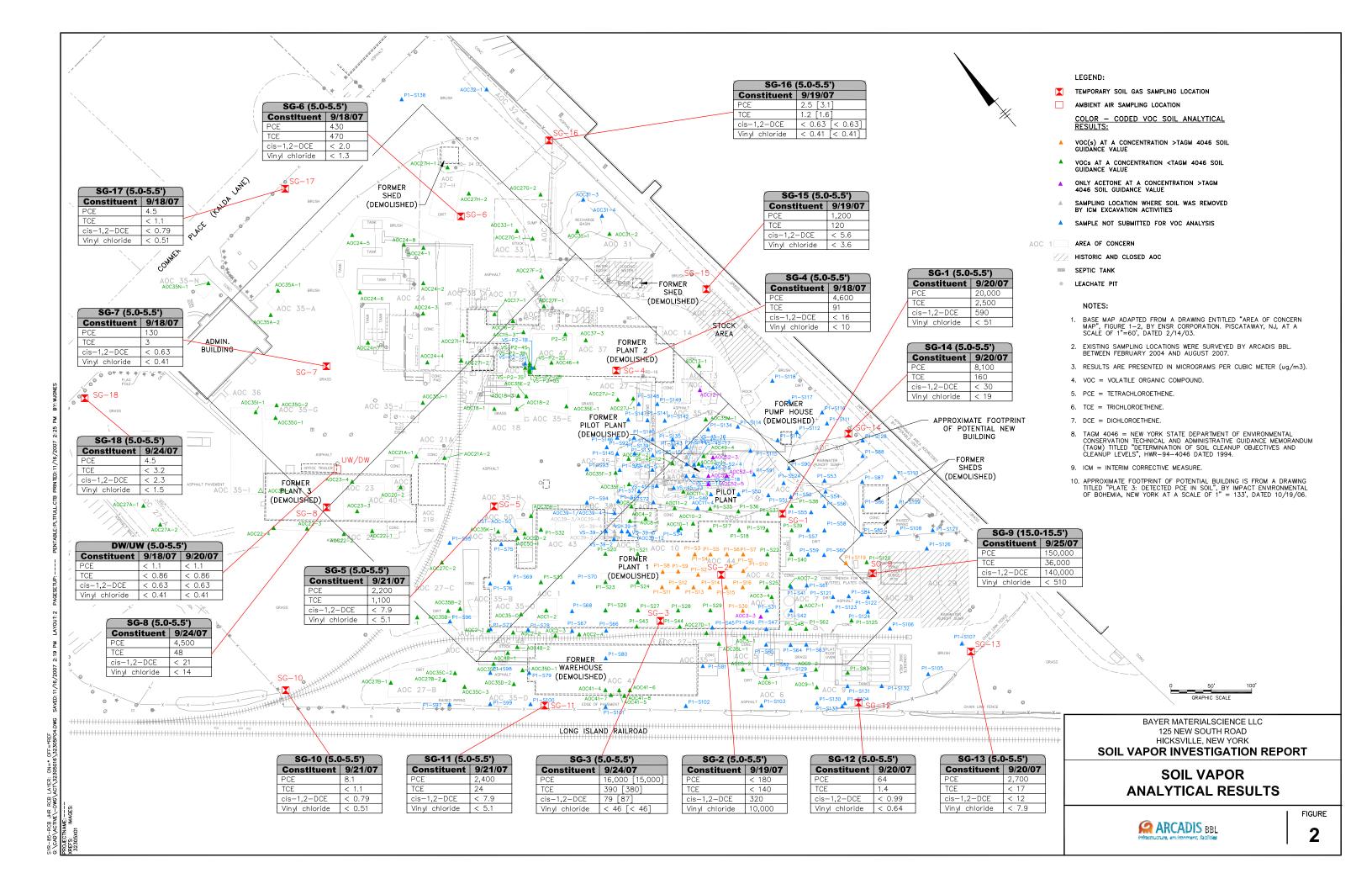

SOIL VAPOR INVESTIGATION SUMMARY REPORT BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

		Helium
Sampling	Date	Concentration
Location	Collected	(%v/v)
Ambient Air A	nalytical Res	sults
UW	09/20/07	<2.4
DW	09/18/07	<2.5
Soil Vapor Ana	alytical Resu	ılts
SG-1	09/20/07	<2.2
SG-2	09/19/07	<2.2
SG-3	09/24/07	<2.3 [<2.2]
SG-4	09/18/07	<2.2
SG-5	09/21/07	<2.3
SG-6	09/18/07	<2.1
SG-7	09/18/07	<2.3
SG-8	09/24/07	<2.3
SG-9	09/25/07	<2.1
SG-10	09/21/07	<2.4
SG-11	09/21/07	<2.2
SG-12	09/20/07	<2.3
SG-13	09/20/07	<2.3
SG-14	09/20/07	<2.3
SG-15	09/19/07	<2.3
SG-16	09/19/07	<2.2 [<2.1]
SG-17	09/18/07	<2.2
SG-18	09/24/07	<2.4

Notes:

- 1. Samples were collected by ARCADIS of New York, Inc. (ARCADIS BBL) on the dates indicated.
- 2. Samples were analyzed for helium by TestAmerica, Inc. (formerly Severn Trent Laboratories, Inc.) of Burlington, Vermont using ASTM Method D1946.
- 3. Concentrations reported in percent volume (% v/v).
- 4. < = Not detected at or above the associated reporting limit.
- 5. Field duplicate sample results are presented in brackets.
- 6. Results have not been validated.

Figures



- TEMPORARY SOIL GAS SAMPLING LOCATION
- AMBIENT AIR SAMPLING LOCATION
- <u>COLOR CODED VOC SOIL ANALYTICAL</u> <u>RESULTS:</u>
- ▲ VOC(s) AT A CONCENTRATION >TAGM 4046 SOIL GUIDANCE VALUE
- VOCs AT A CONCENTRATION <TAGM 4046 SOIL GUIDANCE VALUE
- ONLY ACETONE AT A CONCENTRATION >TAGM 4046 SOIL GUIDANCE VALUE
- SAMPLING LOCATION WHERE SOIL WAS REMOVED BY ICM EXCAVATION ACTIVITIES
- A SAMPLE NOT SUBMITTED FOR VOC ANALYSIS
- AOC 1 AREA OF CONCERN
 - HISTORIC AND CLOSED AOC
 - SEPTIC TANK
 - LEACHATE PIT

NOTES:

- BASE MAP ADAPTED FROM A DRAWING ENTITLED "AREA OF CONCERN MAP", FIGURE 1-2, BY ENSR CORPORATION. PISCATAWAY, NJ, AT A SCALE OF 1"=60', DATED 2/14/03.
- 2. EXISTING SAMPLING LOCATIONS WERE SURVEYED BY ARCADIS BBL. BETWEEN FEBRUARY 2004 AND AUGUST 2007.
- 3. VOC = VOLATILE ORGANIC COMPOUND.
- 4. TAGM 4046 = NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION TECHNICAL AND ADMINISTRATIVE GUIDANCE MEMORANDUM (TAGM) ITILED "DETERMINATION OF SOIL CLEANUP OBJECTIVES AND CLEANUP LEVELS", HWR-94-4046 DATED 1994.
- 5. ICM = INTERIM CORRECTIVE MEASURE.
- APPROXIMATE FOOTPRINT OF POTENTIAL BUILDING IS FROM A DRAWING TITLED "PLATE 3: DETECTED PCE IN SOIL", BY IMPACT ENVIRONMENTAL OF BOHEMIA, NEW YORK AT A SCALE OF 1" = 133', DATED 10/19/06.

GRASS	
0 0	GRAPHIC SCALE
****	BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK SOIL VAPOR INVESTIGATION REPORT
	SOIL VAPOR SAMPLING LOCATIONS
	FIGURE

Attachment A

Soil Boring Logs

Dril Dril Dril	ling C ler's I ling M	Compa Name: Nethoo	sh: 9/ any: D : Patr d: Dire aod: 4	elta W ick Mc ect Pus	Adam sh		o Co.		Northing: NA Easting: NA Casing Elevation: N Borehole Depth: 5.5 Surface Elevation: N Descriptions By: Da	i' bgs NA		g ID: SG-1 /er Corporation Hicksville, New York		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Well/Boring Construction				
-	-										-			
-	-	1	0-4	3.4	0.0		\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$	trace Cla	oderately gray Silty fine to very y decreasing between 1 to 1.2' wn fine to very fine SAND, trace	bgs, moderately dense, moi	st.	Borehole backfilled with Bentonite to grade.		
- 5	-5 -	2	4-5.5	2.5	0.0			Length of	core may be a result of cave ir	n during rod exchange.		-		
10	-10 -											-		
-											-			
												_		
Proje Data	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities roject: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf													

Dri Dri Dri	ling (ler's l ling N	Compa Name: Netho	: Patr d: Dire	Delta V ick Mc ect Pu	/ell & F Adam sh ate Lin		o Co.		Northing: NA Easting: NA Casing Elevation: N/ Borehole Depth: 5.5 Surface Elevation: N Descriptions By: Da	' bgs IA		g ID: SG-2 rer Corporation Hicksville, New York		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Well/Boring Construction				
- -								Madium	roup Clayor Cli T But for th	-				
-	-	1	0-4	2	0.0		₩ <mark>₩</mark> ⊢⊢⊢⊢⊢⊢⊢⊢ ₩ ℃ ⊢⊢⊢⊢⊢⊢⊢⊢	Sand and Medium tr subangula Black, wh Gravel, m Light brow	rown Clayey SILT, little fine to c organics, moderately dense, w b light brown fine SAND and fin ar coarse Sand, moderately der ite and gray-stained Silty SAND oderately dense, wet. wn with orange tint Silty SAND, r Silty CLAY, little fine subround	Borehole backfilled with Bentonite to grade.				
- 5	-5 -	2	4-5.5	1.5	0.0		IIII H: H: H: H: IIII H:	soft, wet.	vn with orange tint Silty SAND,			-		
-												-		
- 10	-10 -													
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities roject: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1													

Dri Dri Dri	lling (ller's lling N	Compa Name: Nethoo	sh: 9/ any: D : Patr d: Dire nod: 4	elta W ick Mc ∋ct Pus	Adam sh) Co.		Northing: NA Easting: NA Casing Elevation: N Borehole Depth: 5.5 Surface Elevation: N Descriptions By: Da	i' bgs IA	Client: Bay	g ID: SG-3 ver Corporation Hicksville, New York	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Well/Boring Construction			
- - -	- - -						:: ::	Decks				-	
-	-	1	0-4	3.4	0.0		1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	Gravel, tr. Medium b subround moist.	In Sandy SILT, some subangul ace Organics (roots and leaves rown Sandy CLAY, some fine f ad coarse Sand, trace subroun	Borehole backfilled with Bentonite to grade.			
- 5	-5 - -5 -	2	4-5.5	2.5	0.0			Gravel, tra	ace Orgánics (roots and leaves yn fine to medium subangular te Ind, Ioose, moist.), moderately dense, moist.			
-	-											-	
- 10 -	-10 -												
- 15													
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities Project: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1 Date:12/20/2007												

Dri Dri Dri	ling (ler's l ling N	Compa Name: Methor	sh: 9/ any: D : Patr d: Dire aod: 4	elta W ick Mc ∋ct Pus	Adam sh) Co.		Northing: NA Easting: NA Casing Elevation: 1 Borehole Depth: 5. Surface Elevation: Descriptions By: D	.5' bgs NA		g ID: SG-4 rer Corporation Hicksville, New York		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraph	Well/Boring Construction				
- -												-		
-	-	1	0-4	2.7	0.0		-	subround Light brov	rown Silty SAND, some fine t ed fine Gravel, medium dense wn with little coarse Sand.	Borehole backfilled with Bentonite to grade.				
- 5	-5 -	2	4-5.5	1.8	0.0			Gravel, so	rown Silty SAND, little coarse oft, moist. vn to white, fine to medium S, ed fine Gravel, soft, moist.		-			
-	-											-		
- 10 - -	-10 -											-		
- 15														
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities Project: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1 Date:12/20/2007													

Dril Dril Dril	ling C ler's I ling N	Compa Name: Aethoo	sh: 9/ any: D Patri d: Dire od: 4	0elta W ick Mc ∋ct Pus	Adam sh		o Co.		Northing: NA Easting: NA Casing Elevation: 1 Borehole Depth: 5 Surface Elevation: Descriptions By: D	.5' bgs NA	Client: Bay	ig ID: SG-5 yer Corporation Hicksville, New York					
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraph	Well/Boring Construction							
-	-							\	and backfill.	-							
-	-	1	0-4	2.9	0.0			subangula Light gray Sand, me Light to m	Dark gray Silty fine subrounded GRAVEL, little subangular fine Gravel and subangular coarse Sand, medium dense, moist, Light gray to orangish brown Silty CLAY, little fine Sand, trace coarse subrounded Sand, medium dense, moist. Light to medium brown very fine to medium subangular SAND, some subangular to subrounded coarse Sand, little subangular fine Gravel, trace medium Gravel, loose, moist.								
5	-5 -	2	4-5.5	1.5	0.0			Orangish-	Silty SAND, trace coarse su brown to light gray at 1.6 to 2 ce subrounded fine Gravel, k	2' bgs Clayey SAND, little s	ubangular medium						
- 10	-10 -											-					
- 15												-					
	15 -15 Image: 15 -15 Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: 10 Remarks: bgs = below ground surface; NA = Not Applicable/Available Image:																

Drii Drii Drii	ling C ler's I ling N	Compa Name: Method	sh: 9/ any: D : Patr d: Dire nod: 4	Delta W ick Mc ect Pus	Adam sh		o Co.		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' Surface Elevation: N/ Descriptions By: Dav	bgs A		g ID: SG-6 er Corporation Hicksville, New York		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic I	Well/Boring Construction				
-	0											-		
-	-	1	0-4	4	0.0	-	└────────────── └ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝ ┝		rown Silty SAND, some subroun oderately dense, moist.	ded coarse Sand, little sub	rounded fine	Borehole backfilled with Bentonite to grade.		
5	-5 -	2	4-5.5	1.3	0.0			Medium b medium s	brown to light brown Clayey SANI tiff, moist.	D, trace coarse subrounded	d Sand,	_		
10	-10 -											-		
-	-													
											-			
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities Project: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1 Date:12/20/2007													

Dri Dri Dri	ling C ler's I ling N	Compa Name: Nethoo	sh: 9/ any: D Patr d: Dire aod: 4	elta W ick Mc ect Pus	Adam sh) Co.		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' Surface Elevation: N Descriptions By: Dav	bgs A	Well/Boring ID: SG-7 Client: Bayer Corporation Location: Hicksville, New York		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Well/Boring Construction			
-	_									-			
-		1	0-4	2.8	0.0			moist. Light brov Gravel, so Light brov	rown Silty SAND, little subround wn Silty SAND, some subrounde off to moderately dense, moist. wn to orangish-brown Silty SANE ed coarse Sand, little subangula	d coarse Sand, little subrou	Borehole backfilled with Bentonite to grade.		
- 5	-5 -	2	4-5.5	1.1	0.0		FFFFF						
- - - 10												-	
-	-15 -											-	
	15 -15 -15 Image: Infrastructure, environment, facilities Remarks: bgs = below ground surface; NA = Not Applicable/Available Image: Infrastructure, environment, facilities Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Dri Dri Dri	ling C ler's I ling N	Compa Name: Nethod	sh: 9/ any: D : Patr d: Dire nod: 4	0elta W ick Mc ∋ct Pus	Adam sh) Co.		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' bgs Surface Elevation: NA Descriptions By: Dave Zuck		Well/Boring ID: SG-8 Client: Bayer Corporation Location: Hicksville, New York		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description	Well/Boring Construction			
-	-									-			
-		1	0-4	2.8	0.0			Subangula Dark brow moist. Light brov	rown Sandy SILT, some subangular coare Sand, t ar fine Gravel, medium dense, moist. IN SILT, trace subangular coarse Sand and Organ whith tints of orange and light gray CLAY, some i rounded coarse Sand, low to no plasticity, medium	Borehole backfilled with Bentonite to grade.			
-5	-5 -	2	4-5.5	2.1	0.0				vn fine SAND, some subrounded coarse Sand, tra- ine Gravel, loose, moist.				
10	-10 -											-	
15	-15 -												
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities Project: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Dril Dril Dril	ling C ler's I ling M	Compa Name Netho	sh: 9/ any: C : Patr d: Dire nod: 4	Delta V ick Mc ect Pu	:Adam sh		o Co.		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 15' bgs Surface Elevation: NA Descriptions By: Dave 2		Well/Borin Client: Bay Location: (
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic De		Well/Boring Construction		
-	-										-		
-	-	1	0-4	.1.7	0.0			Light gray fine subro	and medium brown fine to coarse s unded Gravel, loose, moist.	-	Borehole backfilled ⁻ with Bentonite to grade.		
- 5	-5 -	2	4-8	2.7	0.0	-		Light to m	lium brown 5.1 to 5.3' bgs.				
- 10	-10 -	3	8-12	3.1				Gray. Light brov Sand, trad	/n with orangish-brown tint fine to m e fine subrounded to rounded Grav	edium SAND, little subi el, loose, moist.	rounded coarse		-
15	- 	4	12-15					Light gray Gravel an	and medium brown fine to medium d coarse subangular Sand, loose, rr	SAND, some very fine roist.	Sand, little fine		-
Proje	Infra ect: BC	astruct	ARC ure, en	vironm	ent, fai	cilities Temp	plate:0		arks: bgs = below ground Rockware\LogPlot 2001\Lo				Page: 1 of 1

Dril Dril Dril	ling C ler's I ling N	Compa Name: Nethoo	sh: 9/ any: D : Patr d: Dire nod: 4	elta W ick Mc ect Pus	Adam sh) Co.		Northing: NA Easting: NA Casing Elevation: Borehole Depth: Surface Elevation Descriptions By:	5.5' bgs : NA	Client: Bay	g ID: SG-10 ver Corporation Hicksville, New York	
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigrap	Well/Boring Construction			
- -							- <u></u> -	Medium	roup SII T Field schemen	-			
-	-	1	0-4	2.9	0.0			Light orar fine subro	nics, loose, moist. [TOP SC gish-brown Silty SAND, litt unded Gravel, loose, moist	e medium to coarse subangu	Borehole backfilled with Bentonite to grade.		
- 5	-5 -	2	4-5.5	2	0.0		H: 1 H: H: H: H : 1 H:	Light brov	nics, loose, moist. [TOP SC	im subangular Sand, little sub		-	
-	-											-	
- 10 - -	-10 -												
- 15	-15 -												
Proje Data	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities roject: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Dril Dril Dril	ling C ler's I ling N	Name: Nethod	ny: D Patr d: Dire	elta W ick Mc ect Pus	/ell & F Adam sh ate Lin		o Co.		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' bgs Surface Elevation: NA Descriptions By: Dave Zuck	Well/Boring ID: SG-11 Client: Bayer Corporation Location: Hicksville, New York			
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description	Well/Boring Construction			
-	-									-			
-		1	0-4	3	0.0			Medium b	T. fine GRAVEL, some fine to medium Sand, dry to moist. prown to light brown with orange tint Silty CLAY, some sub ce fine subrounded Gravel, moderately dense, moist.	Borehole backfilled with Bentonite to grade.			
- 5	-5 -	2	4-5.5	2	0.0			Light brov	r fine GRAVEL, some fine to medium Sand, dry to moist. who to white fine to medium subangular SAND, some suban ed coarse Sand, trace subrounded fine Gravel, loose, dry	_			
10	- 10 -										-		
- 15	- 15 -										-		
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities roject: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Dri Dri Dri	lling (ller's l lling N	Compa Name: Nethoo	sh: 9/ any: D : Patr d: Dire nod: 4	elta W ick Mc ect Pus	Adam sh		o Co.		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' bgs Surface Elevation: NA Descriptions By: Dave Zuck	Client: Bay	g ID: SG-12 yer Corporation Hicksville, New York		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description	Well/Boring Construction			
-	_									-			
							<u> </u>		F and crushed GRAVEL in tar.	rately dense, wet.			
-	_	1	0-4	3	0.0			Light brov	vn with tint of white fine SAND, some medium subangula ibangular Sand, trace subangular to subrounded fine Gr	Borehole backfilled with Bentonite to grade.			
-	_					-		Medium b	prown Silty SAND, trace coarse subrounded Sand, mode				
-5	-5 -	2	4-5.5	2	0.0			Light brow coarse su	wn with tint of white fine SAND, some medium subangula abangular Sand, trace subangular to subrounded fine Gr	ar Sand, little avel, soft, moist.			
-	-10 - - - - - - - - - - - - - - - - - - -								wn with a tint of orange subangular to subrounded fine to rounded to subangular coarse Sand, trace fine subroun		- - - - - - - - - - - - -		
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities Project: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Dri Dri Dri	lling (ller's l lling N	Compa Name: /lethoo	sh: 9/ any: C : Patr d: Dire nod: 4	elta W ick Mc ∋ct Pus	Adam sh) Co.		Northing: NA Easting: NA Casing Elevation: N. Borehole Depth: 5.5 Surface Elevation: N Descriptions By: Da	' bgs IA	Client: Bay	g ID: SG-13 ver Corporation Hicksville, New York	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic	Well/Boring Construction			
-							: :	Medium h	rown Sandy SILT, little subrour	nded coarse Sand. trace fine	rounded	-	
-	-	1	0-4	2.9	0.0		1:1: ⊢ ⊢ = = = = = = = = = = = = = = = = =	Gravel an Light brov rounded f Dark brov	vn Silty SAND, some subround ine Gravel, loose, moist. vn SILT and very fine SAND, lit ed Sand, loose, moist. vn, dry, trace subrounded fine C	ed coarse Sand, little subrou tle fine to medium Sand, trac	Borehole backfilled with Bentonite to grade.		
- 5	-5 -	2	4-5.5	2	0.0			trace coar	rown with white and gray tints rse Sand, loose, dry. vn Gravelly SAND, fine subang ar fine Gravel and Silt, loose, dr	ular to subrounded Sand, so			
-	_											-	
- 10 -	-10 -											-	
- 15	-15 -												
Proje	15 -15 Infrastructure, environment, facilities Implate:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Dri Dri Dri	Date Start/Finish: 9/20/07 Drilling Company: Delta Well & Pump Co. Driller's Name: Patrick McAdam Drilling Method: Direct Push Sampling Method: 4' Acetate Liner								Northing: NA Easting: NA Casing Elevation: N/ Borehole Depth: 5.5 Surface Elevation: N Descriptions By: Da	' bgs IA	Client: Bay	g ID: SG-14 ver Corporation Hicksville, New York	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description			Well/Boring Construction	
- -							::	Madium	rown Sandy SILT, little subrour	uded onarse Sand troop fing	a rounded	-	
-	-	1	0-4	2.9	0.0		1:1: ⊢⊢ 1:1	Gravel an Light brov rounded f Dark brov	d Organics, loose, moist. m Silty SAND, some subrounde ine Gravel, loose, dry. m SILT and very fine SAND, litt ad Sand, loose, moist.	ed coarse Sand, little subrou	inded to	Borehole backfilled with Bentonite to grade.	
- 5	-5 -	2	4-5.5	1.5	0.0			trace coar	rown with white and gray tints S ise Sand, loose, dry. wn Gravelly SAND, fine subangu ar fine Gravel and Silt, loose, dr	ular to subrounded Sand, so			
-	_											-	
- 10 - -	-10 -											-	
- - 15	-15 -											-	
Proje	.5 -15 .5 -15 .5 -15 .5 -15 .5 -15 .5 -15 .5 .5												

Dri Dri Dri	Date Start/Finish: 9/19/07 Drilling Company: Delta Well & Pump Co. Driller's Name: Patrick McAdam Drilling Method: Direct Push Sampling Method: 4' Acetate Liner								Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' bgs Surface Elevation: NA Descriptions By: Dave Zu		Well/Boring ID: SG-15 Client: Bayer Corporation Location: Hicksville, New York	
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Desc	Well/Boring Construction		
-	_											-
		1	0-4	2.4	0.0			Light brov	o dark brown Sandy SILT, little subrou ed Gravel and Organics, loose, moist. wn Sandy SILT, little subrounded to su ed Gravel, loose, moist. n trace to little quartzite fine Gravel.			Borehole backfilled with Bentonite to grade.
- 5	-5 -	2	4-5.5	1.4	0.0			Light brov	rown Clayey SILT, trace coarse Sand, vn to white, fine subangular to subrour ce subrounded to subangular Gravel,	nded SAND, little coa		
-	_											-
- 10	-10 -											
-	-											-
- 15	5 -15 Bremarks: bgs = below ground surface; NA = Not Applicable/Available											
Proje Data	roject: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1								05hick.ldf Page: 1 of 1			

Dri Dri Dri	Date Start/Finish: 9/19/07 Drilling Company: Delta Well & Pump Co. Driller's Name: Patrick McAdam Drilling Method: Direct Push Sampling Method: 4' Acetate Liner								Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' bgs Surface Elevation: NA Descriptions By: Dave Zu		Client: Bay	g ID: SG-16 /er Corporation Hicksville, New York
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Dese	c Description		Well/Boring Construction
-							H H H H H H H H H H H H H H H H H H H	Medium t subround Liaht brov	o dark brown Sandy SILT, some subro ed Gravel and Organics, loose, dry. vn, no Organics at 0.4 bgs.	punded coarse Sand,	trace fine	-
-	-	1	0-4	3	0.0			Medium b Orangish Light brov loose, me	rown, little subrounded coarse Sand. brown. vn fine SAND, little subangular coarse	Borehole backfilled with Bentonite to grade.		
5	-5 -	2	4-5.5	1.4	0.0							
- 10	-10 -											
- 15	- 15 -											-
	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities											

Drill Drill Drill	Date Start/Finish: 9/17/07 Drilling Company: Delta Well & Pump Co. Driller's Name: Patrick McAdam Drilling Method: Direct Push Sampling Method: 4' Acetate Liner								Northing: NA Easting: NA Casing Elevation: Borehole Depth: 5 Surface Elevation: Descriptions By: [5.5' bgs NA	Client: Ba	ng ID: SG-17 yer Corporation Hicksville, New York	
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Description			Well/Boring Construction	
- -	-											-	
-	-	1	0-4	3.1	0.0			Organics, Orangish Light brov Sand, me Light brov Lig ft gra y	rown to light gray Silty SANI soft, moist. brown Sandy SILT, little sub vn with tints of orange and re dium stiff, moist. vn and white SILT, some fine	rounded coarse Sand, mer ed Clayey SAND, little subr e Sand, little subrounded fin	dium dense, moist. ounded coarse ne Gravels, medium	Borehole backfilled with Bentonite to grade.	
5	-5 -	2	4-5.5	2.3	0.0		는 H 는 F F F	medium	soft, dry (slough).				
-										/Available			
Proje	Remarks: bgs = below ground surface; NA = Not Applicable/Available Infrastructure, environment, facilities oject: B0032305.00016 Template:G:\DIV 11\Rockware\LogPlot 2001\LogFiles\B0032305\Geoprobe2005hick.ldf Page: 1 of 1												

Data File:SG-17.dat

Dri Dri Dri	Date Start/Finish: 9/24/07 Drilling Company: Delta Well & Pump Co. Driller's Name: Patrick McAdam Drilling Method: Direct Push Sampling Method: 4' Acetate Liner								Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 5.5' bgs Surface Elevation: NA Descriptions By: Dave Zu	ick	Client: Bay	g ID: SG-18 rer Corporation Hicksville, New York
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column		Stratigraphic Desc	Well/Boring Construction		
-								Dark brov	n SILT, some very fine Sand, little sut	prounded coarse San	d, trace	-
-		1	0-4	3.1	0.0			Light brov rounded f Light gray	ine Gravel and Organics, loose, dry to wn fine SAND, little subrounded coarse ine Gravel, loose, dry.	moist.	rounded to	Borehole backfilled with Bentonite to grade.
- 5	-5 -	2	4-5.5	2.3	0.0			rounded f	rn SILT, some very fine Sand, little sub ine Gravel and Organics, loose, dry to rn fine SAND, little subrounded coarse ine Gravel, loose, dry.	moist.		
-	-											-
- 10 - -	-10 -											
- 15	_ -15 _											-
Proje	ect: B	astruct	ARC ure, en	vironm	ent, fac	cilities Femp	plate:0		arks: bgs = below ground s			

ARCADIS BBL

Attachment B

Soil Boring Photographs

Photo 1 Soil Core from Boring Adjacent to Sampling Location SG-1 East of Former Plant 1 Footprint

Photo 2 Soil Core from Boring Adjacent to Sampling Location SG-2 Within Former Plant 1 Footprint

Photo 3 Close-up of Staining Observed in Soil Core SG-2 Staining Observed in Portions of the Soil Recovered From 11" to 18" Below the Ground Surface

Photo 4 Soil Core from Boring Adjacent to Sampling Location SG-3 Within Former Plant 1 Footprint

Photo 5 Soil Core from Boring Adjacent to Sampling Location SG-4 Within Former Plant 2 Footprint

Photo 6 Soil Core from Boring Adjacent to Sampling Location SG-5 West of Former Plant 1 Footprint

Photo 7 Soil Core from Boring Adjacent to Sampling Location SG-6 North of Former Plant 2 Footprint

Photo 8 Soil Core from Boring Adjacent to Sampling Location SG-7 North of Former Plant 3 Footprint

Photo 9 Soil Core from Boring Adjacent to Sampling Location SG-8 Within Former Plant 3 Footprint

Photo 10 Soil Core from Boring Adjacent to Sampling Location SG-9 West of Former Rainwater Runoff Sump

Photo 11 Soil Core from Boring Adjacent to Sampling Location SG-10 Along Southwest Property Boundary

Photo 12 Soil Core from Boring Adjacent to Sampling Location SG-11 Along Southwest Property Boundary

Photo 13 Soil Core from Boring Adjacent to Sampling Location SG-12 Along Southwest Property Boundary

Photo 14 Soil Core from Boring Adjacent to Sampling Location SG-13 South of Former Rainwater Runoff Sump

Photo 15 Soil Core from Boring Adjacent to Sampling Location SG-14 Along Eastern Property Boundary

Photo 16 Soil Core from Boring Adjacent to Sampling Location SG-15 Along Eastern Property Boundary

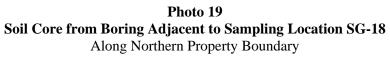


Photo 17 Soil Core from Boring Adjacent to Sampling Location SG-16 Along Eastern Property Boundary

Photo 18 Soil Core from Boring Adjacent to Sampling Location SG-17 Along Northern Property Boundary

ARCADIS BBL

Attachment C

Soil Vapor Sample Collection Logs

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-1

Client:	Bayer	Date/Day:	9/20/07 Thursday
Project:	Bayer Hicksville	Weather:	p/c cool
Location:	Hicksville, NY	Temperature:	73° F
Project #:	32305.016	Wind Speed/Direction:	2.8 mph SE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-1	Moisture Content of	(
Sampling Depth:	5' - 5'6"	Sampling Zone (circle one):	(Dry) / Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 10:05 Finish: 10:38	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 2884

Flow Controller ID: T-82

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):						
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection				
-30.3	-29	-2				

Tracer Gas Concentration (if applicable):						
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling				
0.0	37.4%	Pre-sample: 30.9% Post-sample: 16.7%				

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	73	73
Humidity	57	57
Wind Velocity mph	2.8	4.1
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-1

General Observations/Notes:

Possible outside contamination: drill rig PID @ effluent following sampling: 5.1 ppm Photos: 09.20.2007 (10:04 – 10:05)

11/19/2007 G:\Div10\AMS\2007\260711487-Attachment C (Soil Vapor Sampling Logs).doc

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-2

		-	
Client:	Bayer	Date/Day:	9/19/07
Project:	Bayer Hicksville	Weather:	Clear
Location:	Hicksville, NY	Temperature:	76°F
Project #:	32305.016	Wind Speed/Direction:	1.0 mph NE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-2	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry (Moist)
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1508 Finish: 1554	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 3286

Flow Controller ID: T34

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-30.0	-2

Tracer Gas Concentration (if applied	cable):	
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	20.3%	After purge 18.3% After sample 14.1%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	76°F	76°F
Humidity	40%	42%
Wind Velocity	1.0	1.2
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-2

General Observations/Notes:

Photo of core: see core log

PID @ effluent following sampling: 6.8 ppm

9	AR	CA	D	S	BBI
111				J	DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-3

		Sumple ID:	
Client:	Bayer	Date/Day:	9/24/07 Monday
Project:	Bayer Hicksville	Weather:	Clear
Location:	Hicksville, NY	Temperature:	73°F
Project #:	32305.016	Wind Speed/Direction:	6 mph SE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-3	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 0958 Finish: 1031	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: _____4159

4157

Flow Controller ID: T-79/4403

Tracer Gas Information (if applicable)

Tracer Gas: helium

Measured Prior to Sample Collection	Measured Following Sample Collection
-30	-2
	*

Tracer Gas Concentration (if applicable):		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	20.6%	After purge 14.8% After sample 8.9%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	73.4	72.8
Humidity	47.6	45
Wind Velocity	0.6	4.8
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-3

General Observations/Notes:

PID @ effluent following sampling: 23.9 ppm

Helium loss may be from tilted drum angle on slope

Photo ID: 9.24.2007 (10:23)

9	AR	CA	D	S	BBI
					DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: DUP092407

Client:	Bayer	Date/Day:	9/24/07
Project:	Bayer Hicksville	Weather:	Clear
Location:	Hicksville, NY	Temperature:	73°F
Project #:	32305.016	Wind Speed/Direction:	6 mph SE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-3	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 0958 Finish: 1032	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: _____ 4220

Flow Controller ID: T-11/4403

Tracer Gas Information (if applicable)

Tracer Gas: h

helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-30.25	-2
1		

Tracer Gas Concentration (if applica	ble):	
Measured in Purge Effluent Measured in 'Concentrated' Area		Measured in 'Concentrated' Area
Prior to Purging		Before and After Sampling
0.0	20.6%	Pre-sample 14.8%
		Post-sample 8.9%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	73.4	72.8
Humidity	47.6	45
Wind Velocity	0.6	4.8
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: DUP092407

General Observations/Notes:

PID @ effluent following sampling: 23.9 ppm

Helium loss may be from slope of hill at location

Photo ID: 9.24.2007 (10:23)

Parent sample: SG- 3

Infrastructure, environment, facilities

Soil Gas Sample Collection Log

(Page 1 of 2)

Infrastructure, environme	nt, facilities		Sample ID:	SG-4
Client:	Bayer		Date/Day:	9/18/07 Tuesday
Project:	Bayer Hicksvi	ille	Weather:	p/c
Location:	Hicksville, N	Y	Temperature:	67.5°F
Project #:	32305.016		Wind Speed/Direction:	6.1 mph N, NW
Samplers:	D. Zuck		Subcontractor:	Delta
Logged By:	D. Zuck		Equipment:	Geoprobe
Coordinates:	SG-4		Moisture Content of	
Sampling Depth:	5' - 5'6"		Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanen	t / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1550 Finish: 1625		Background PID Ambient Air Reading:	0.00

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>3236</u>

Flow Controller ID: T103

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-30.5	-2

Tracer Gas Concentration (if applic	cable):	
Measured in Purge Effluent Measured in 'Concentrated' Area Prior to Purging		Measured in 'Concentrated' Area Before and After Sampling
0.0	20.7%	After purge 18.1% After sample 13.9%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	67.5	68
Humidity	29	28
Wind Velocity	6.1	2.2
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-4

General Observations/Notes:

PID @ effluent following sampling: 0.0 ppm

0	AR	CA	D	S	BBI
					DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-5

		Sample ID.	50-5
Client:	Bayer	Date/Day:	9/21/07 Friday
Project:	Bayer Hicksville	Weather:	s/c
Location:	Hicksville, NY	Temperature:	85°F
Project #:	32305.016	Wind Speed/Direction:	3.6 mph SE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-5	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1218 Finish: 1251	Background PID Ambient Air Reading:	0.0 ppm

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>4111</u>

Flow Controller ID: T-76

Tracer Gas Information (if applicable)

Tracer Gas:

Helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-30	-2

Tracer Gas Concentration (if applied		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
Not available – see comments on SG-11	Filled to approximately 20-30%	NA

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	85	83
Humidity	55	49
Wind Velocity	3.6	1.3
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-5

General Observations/Notes:

No helium detector due to failed battery charge
PID @ effluent following sampling: 0.0 ppm
$D_{1} = (1, 10, 0, 0, 1, 2007, (10, 10))$

Photo ID: 9.21.2007 (12:12)

9	AR	CA	D	S	BBI
111		CA		J	DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-6

Client:	Bayer	Date/Day:	9/18/07 Tuesday
Project:	Bayer Hicksville	Weather:	p/c
Location:	Hicksville, NY	Temperature:	62.5°F
Project #:	32305.016	Wind Speed/Direction:	4.6 mph N
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	
Coordinates:	SG-6	Moisture Content of	
Sampling Depth:	5' - 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1410 Finish: 1450	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 2911

Flow Controller ID: T-68

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-31	-2

Tracer Gas Concentration (if applicable):			
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling	
0.0	21.3	18.7	

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	67.5	78.3
Humidity	38%	30.1
Wind Velocity	4.6	2.1
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-6

General Observations/Notes:

PID @ effluent following sampling: 0.0 ppm
--

See Core Log for photo

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-7

		Sec. Pro 22 (
Client:	Bayer	Date/Day:	9/18/07 Tuesday
Project:	Bayer Hicksville	Weather:	p/c
Location:	Hicksville, NY	Temperature:	63°F
Project #:	32305.016	Wind Speed/Direction:	2.4 mph N, NW
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-7	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	144 mL = 1v (300 mL)
Time of Collection:	Start: 1035 Finish: 1101	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>3209</u>

Flow Controller ID: T-63

Tracer Gas Information (if applicable)

Tracer Gas: helium

Measured Prior to Sample Collection	Measured Following Sample Collection
-31	-2

Tracer Gas Concentration (if applied		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	20.8%	13.6%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	63	62.9
Humidity	55	57.8
Wind Velocity	2.4	7.1
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-7

General Observations/Notes:

PID @ effluent following sampling: 0.0 ppm

See Core Log for photo ID

9	AR	CA	D	S	BBI
111				J	DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-8

		Sumple 12.	
Client:	Bayer	Date/Day:	9/24/07 Monday
Project:	Bayer Hicksville	Weather:	clear
Location:	Hicksville, NY	Temperature:	77°F
Project #:	32305.016	Wind Speed/Direction:	0 mph
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-8	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1205 Finish: 1316	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 3529

Flow Controller ID: T-53

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-30	-2

Tracer Gas Concentration (if applicable):			
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling	
0.0	20.2%	Pre-sample 16.7% Post-sample 6.7%	

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	77.1	80.3
Humidity	38.3	34.7
Wind Velocity	0.0	1.0
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-8

General Observations/Notes:

PID @	effluent	follow	ving	sampl	ing:	0.0	ppm

Photo ID: 9.24.2007 (12:04)

0	ARCADI	S BRI	
		שטע 🥑	-

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-9

		Sumple 121	
Client:	Bayer	Date/Day:	9/25/07 Tuesday
Project:	Bayer Hicksville	Weather:	clear
Location:	Hicksville, NY	Temperature:	71°F
Project #:	32305.016	Wind Speed/Direction:	5.0 mph S
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	West by () from original 9	Moisture Content of	
Sampling Depth:	15' – 15'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	432 mL x 2 = 864 mL
Time of Collection:	Start: 0944 Finish: 1054	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>4160</u>

Flow Controller ID: T-16

Tracer Gas Information (if applicable)

Tracer Gas: he

helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-32	-2

Tracer Gas Concentration (if applicable):		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	21.7%	Pre-sample 19.7 % Post-sample 10.6%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	71.2	80
Humidity	64.8	51.4
Wind Velocity	5.0	1.5
PID	0.0	0.0

Approximating One-Well Volume (for purging):

(Page 2 of 2)

Sample ID: SG-9

General Observations/Notes:

Photo ID 9.25.2007 (9:34)

AR	CA	D	S	BBI
				DDL

(Page 1 of 2)

Infrastructure,	environment.	facilities
minusciaciaic,	crivin or inficincy	racincies

Sample ID: SG-10

		Sumple ID.	50 10
Client:	Bayer	Date/Day:	9/21/07 Friday
Project:	Bayer Hicksville	Weather:	clear
Location:	Hicksville, NY	Temperature:	81°F
Project #:	32305.016	Wind Speed/Direction:	1.3 mph SE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-10	Moisture Content of	\bigcirc
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry / Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1414 Finish: 1453	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>4332</u>

Flow Controller ID: T-41

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-30.5	-1.75

Tracer Gas Concentration (if applied			
Measured in Purge EffluentMeasured in 'Concentrated' AreaPrior to Purging		Measured in 'Concentrated' Area Before and After Sampling	
Not available (see comments)	Filled to approx.20-30% in bucket	Filled to approx. 20-30% in bucket	

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	81	85.2
Humidity	43	47
Wind Velocity	1.3	0.0
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-10

General Observations/Notes:

Photo ID: 9.21.2007 (14:19)

PID @ effluent following sampling: 0.0 ppm

Helium detector did not hold charge. Filled up bucket with approx. 20-30% helium (2) 2-second bursts.

9	AR	CA	D	S	BBI
					DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-11

		Sample ID:	56-11
Client:	Bayer	Date/Day:	9/21/07 Friday
Project:	Bayer Hicksville	Weather:	s/c
Location:	Hicksville, NY	Temperature:	79°F
Project #:	32305.016	Wind Speed/Direction:	1.1 mph NE
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-11	Moisture Content of	\bigcirc
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry / Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1029 Finish: 1110	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 2553

Tracer Gas Information (if applicable)

Tracer Gas: helium

Measured Prior to Sample Collection	Measured Following Sample Collection
-31	-2
	21

Tracer Gas Concentration (if applicable):			
Measured in Purge EffluentMeasured in 'Concentrated' AreaPrior to Purging		Measured in 'Concentrated' Area Before and After Sampling	
Not available			

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	79	88
Humidity	62	54
Wind Velocity	1.1	0.0
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-11

General Observations/Notes:

Possible some contamination: drill rig

Helium detector did not hold charge overnight; contacted John Brussel @ 10:25. Filled up bucket with approx. 20-30% helium (2) 2-second bursts of helium.

Photo ID: 9.21.2007 (10:32)

AR	CA	D	S	BBI
				DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-12

		F	
Client:	Bayer	Date/Day:	9/20/07 Thursday
Project:	Bayer Hicksville	Weather:	s/c
Location:	Hicksville, NY	Temperature:	81°F
Project #:	32305.016	Wind Speed/Direction:	0.4 mph SW
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-12	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1626	Background PID	0.0
	Finish: 1706	Ambient Air Reading:	

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>4342</u>

Flow Controller ID: T-64

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-31	-2
1		

Tracer Gas Concentration (if applied		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	20.7%	Pre-sample 17.8% Post-sample 12.8%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	81	80
Humidity	50.7	52
Wind Velocity	0.4	1.2
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-12

General Observations/Notes:

9	ARCA	DIS	BBL
			DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-13

Client:	Bayer	Date/Day:	9/20/07 Thursday
Project:	Bayer Hicksville	Weather:	clear
Location:	Hicksville, NY	Temperature:	81°F
Project #:	32305.016	Wind Speed/Direction:	0.3 mph SW
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-13 (approx.10' South)	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1427 Finish: 1458	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 2962

Flow Controller ID: T-85

Tracer Gas Information (if applicable)

Tracer Gas: helium

easured Prior to Sample Collection	Measured Following Sample Collection
-27.75	-2
e	

Tracer Gas Concentration (if applied		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	21.8%	Pre-sample 21.1% Post-sample 14.1 %

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	81	80
Humidity	43	49
Wind Velocity	0.3	1.2
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-13

General Observations/Notes:

Photo ID: 9.20.2007 (1434)

0	ARCADIS BBL	
THE L		

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-14

Client:	Bayer		Date/Day:	9/20/07
Project:	Bayer Hicksville		Weather:	Clear
Location:	Hicksville, NY		Temperature:	77°F
Project #:	32305.016		Wind Speed/Direction:	2.7 mph SW
Samplers:	D. Zuck		Subcontractor:	Delta
Logged By:	D. Zuck		Equipment:	Geoprobe
Coordinates:	SG-14 (minus 20)' South)	Moisture Content of	
Sampling Depth:	5' - 5'6"		Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent /	Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1225 Finish: 1258		Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>4132</u>

Tracer Gas Information (if applicable)

Tracer Gas: helium

Measured Prior to Sample Collection	Measured Following Sample Collection
-29	-2

Tracer Gas Concentration (if applied		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	20.4%	After purge 18.2% After sample 8.6%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	77	80
Humidity	51	46
Wind Velocity	2.7	1.8
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-14

General Observations/Notes:

At 12:25 checked on SUMMA Forgot to open check valve, SUMMA purging at 12:25

Photo ID: 9.20.2007 (12:29)

9	AR	CA	D	S	BBL
					DDL

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-15

			2010
Client:	Bayer	Date/Day:	9/19/07 Wednesday
Project:	Bayer Hicksville	Weather:	Clear, cool
Location:	Hicksville, NY	Temperature:	68°F
Project #:	32305.016	Wind Speed/Direction:	1.0 mph N
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-15	Moisture Content of	
Sampling Depth:	5' - 5'6"	Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1228 Finish: 1300	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: <u>3398</u>

Flow Controller ID: T-127

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-29.75	-2

Tracer Gas Concentration (if applicable):		
Measured in Purge Effluent	Measured in 'Concentrated' Area Prior to Purging	Measured in 'Concentrated' Area Before and After Sampling
0.0	20.3%	After purge 17.6% After sample 11.4%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	68	72
Humidity	59	44
Wind Velocity	1.0	1.3
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-15

General Observations/Notes:

See Core Log for photo

Infrastructure, environment, facilities

ARCADIS BBL

(Page 1 of 2)

Infrastructure, environme	nt, facilities		Sample ID:	SG-16
Client:	Bayer		Date/Day:	9/19/07 Wednesday
Project:	Bayer Hicksville		Weather:	Clear and cool
Location:	Hicksville, NY		Temperature:	64°F
Project #:	32305.016		Wind Speed/Direction:	1.5 mph N
Samplers:	D. Zuck		Subcontractor:	Delta
Logged By:	D. Zuck		Equipment:	Geoprobe
Coordinates:	SG-16		Moisture Content of	
Sampling Depth:	5' – 5'6"		Sampling Zone (circle one):	Dry Moist
Probe (circle one):	Permanent /	Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1005 Finish: 1040		Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 4571

Flow Controller ID: T-75

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-31	-1.5

Tracer Gas Concentration (if applicable):		
Measured in Purge EffluentMeasured in 'Concentrated' AreaMeasured in 'Concentrated' AreaPrior to PurgingBefore and After Sampling		
0.0	21.3%	After purge 19.1% After sample 11.8%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	64	66
Humidity	65	67
Wind Velocity	1.5	2.4
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: SG-16

General Observations/Notes:

See Core Log for Photo ID

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: DUP091907

Client:	Bayer	Date/Day:	9/18/07 Wednesday
Project:	Bayer Hicksville	Weather:	Clear, cool
Location:	Hicksville, NY	Temperature:	64°F
Project #:	32305.016	Wind Speed/Direction:	1.5 mph SW
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-16	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry (Moist)
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL/ (144=1V)
Time of Collection:	Start: 1005 Finish: 1048	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 4125

Flow Controller ID: T-182/4413 dup pipe

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):			
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection	
-30.3	-29.5	-2	

Tracer Gas Concentration (if applicable):		
Measured in Purge EffluentMeasured in 'Concentrated' AreaMeasured in 'Concentrated' AreaPrior to PurgingBefore and After Sampling		
0.0	21.3%	After purge 19.1% After sample 11.8%

Weather Conditions	Start of Sample Collection	End of Sample Collection
Temperature	64	66
Humidity	65	67
Wind Velocity	1.5	2.4
PID	0.0	0.0

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Sample ID: DUP091907

General Observations/Notes:

Parent sample: SG-16

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-17

		-	
Client:	Bayer	Date/Day:	9/18/07 Tuesday
Project:	Bayer Hicksville	Weather:	p/c
Location:	Hicksville, NY	Temperature:	64.2°F
Project #:	32305.016	Wind Speed/Direction:	2.3 mph N/NW
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-17	Moisture Content of	
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	Dry (Moist)
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL (144=1V)
Time of Collection:	Start: 1220 Finish: 1255	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: _____4348

Flow Controller ID: T-81

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-31	-2

Tracer Gas Concentration (if applicable):					
Measured in Purge EffluentMeasured in 'Concentrated' AreaMeasured in 'Concentrated' AreaPrior to PurgingBefore and After Sampling					
0.0	20.9%	Pump completion 19.3% Samma completion 13.2%			

Weather Conditions	Start of Sample Collection	End of Sample Collection	
Temperature	64	63.2	
Humidity	45	42	
Wind Velocity	2.3	2.0	
PID	0.0	0.0	

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¼-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Infrastructure, environment, facilities

Sample ID: SG-17

General Observations/Notes:

See Core Log for Photo ID

(Page 1 of 2)

Infrastructure, environment, facilities

Sample ID: SG-18

Client:	Bayer	Date/Day:	9/24/07 Monday
Project:	Bayer Hicksville	Weather:	Clear
Location:	Hicksville, NY	Temperature:	83°F
Project #:	32305.016	Wind Speed/Direction:	0 mph
Samplers:	D. Zuck	Subcontractor:	Delta
Logged By:	D. Zuck	Equipment:	Geoprobe
Coordinates:	SG-18	Moisture Content of	(
Sampling Depth:	5' – 5'6"	Sampling Zone (circle one):	(Dry) / Moist
Probe (circle one):	Permanent / Temporary	Approximate Purge Volume:	300 mL
Time of Collection:	Start: 1454 Finish: 1531	Background PID Ambient Air Reading:	0.0

Nearby Groundwater Monitoring Wells/Water Levels:

Well ID	Depth to Groundwater (feet)
NA	

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 3272

Flow Controller ID: T-55

Tracer Gas Information (if applicable)

Tracer Gas: helium

Canister Pressure (inches Hg):		
Reported By Laboratory	Measured Prior to Sample Collection	Measured Following Sample Collection
-30.3	-31	-2

Tracer Gas Concentration (if applicable):				
Measured in Purge Effluent Measured in 'Concentrated' Area Prior to Purging		Measured in 'Concentrated' Area Before and After Sampling		
0.0	21.1%	Pre-sample 13.8% Post-sample 8.6%		

Weather Conditions	Start of Sample Collection	End of Sample Collection	
Temperature	83	77	
Humidity	35	36	
Wind Velocity	0.0	1.0	
PID	0.0	0.0	

Approximating One-Well Volume (for purging):

When using 1¹/₄-inch "Dummy Point" and a 6-inch sampling interval, the sampling space will have a volume of approximately 150 mL. Each foot of ¹/₄-inch tubing will have a volume of approximately 10 mL.

(Page 2 of 2)

Infrastructure, environment, facilities

Sample ID: SG-18

General Observations/Notes:

Photo ID: 9.24.2007 (14:49)

Indoor/Ambient Air Sample Collection Log

Sample ID: UW092007

Client:	Bayer	Date/Day:	9/20/07 Thursday
Project:	Bayer Hicksville	Sample Intake Height:	2' above land surface
Location:	Hicksville, NY	Subcontractor:	Delta
Project #:	32305.016	Miscellaneous	
Samplers:	D. Zuck	Equipment:	N/A
Coordinates:	UW	Time Start:	0855
Outdoor/Indoor:	Outdoor	Time Stop:	1715

Instrument Readings:

Time	Canister Pressure (inches Hg)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure	PID (ppm or ppb)
0855	-34	68	62	1.5	30.08	0.0
1715	-10	78.1	54	0.8	29.97	0.0

SUMMA Canister Information

Size (circle one):	1 L	6 L
--------------------	-----	-----

Canister ID: 2959

Flow Controller ID: 3695

General Observations/Notes:

Possible VOCs: truck driving by

Indoor/Ambient Air Sample Collection Log

Sample ID: **DW091807 Client:** Bayer Date/Day: 9/18/07 Tuesday **Project:** Bayer Hicksville Sample Intake Height: 2' above land surface Hicksville, NY Location: Subcontractor: Delta 32305.016 **Project #:** Miscellaneous N/A D. Zuck **Equipment:** Samplers: **Coordinates:** See map **Time Start:** 0935 **Outdoor/Indoor:** Outdoor **Time Stop:** 1650

Instrument Readings:

Time	Canister Pressure (inches Hg)	Temperature (F or C)	Relative Humidity (%)	Air Speed (ft/min)	Barometric Pressure	PID (ppm or ppb)
0935	29.5	63	55	2.4		0.0
1650	-4	67	37	4.1	30.23	0.0

SUMMA Canister Information

Size (circle one): 1 L 6 L

Canister ID: 3417

Flow Controller ID: 3764

General Observations/Notes:

ARCADIS BBL

Attachment D

Soil Vapor Sampling Photos

ATTACHMENT D - SOIL VAPOR SAMPLING PHOTOS

SOIL VAPOR SAMPLING SEPTEMBER 18 – 25, 2007 BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD, HICKSVILLE, NEW YORK

Photo 1 Sampling Location SG-12 Typical Soil Vapor Sampling Set-Up

ATTACHMENT D - SOIL VAPOR SAMPLING PHOTOS

SOIL VAPOR SAMPLING SEPTEMBER 18 – 25, 2007 BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD, HICKSVILLE, NEW YORK

Photo 2 Sampling Location SG-13 Typical Soil Vapor Sampling Set-Up

ARCADIS BBL

Attachment E

Data Validation Reports

DATA USABILITY SUMMARY REPORT

BAYER

HICKSVILLE, NEW YORK

SDG #NY122058

AIR VOLATILE AND HELIUM ANALYSIS

Analyses performed by:

Severn Trent Laboratories South Burlington, Vermont

Review performed by:

Syracuse, New York Report #7466R

Summary

The following is an assessment of the data package for Sample Delivery Group (SDG) #NY122058 for sampling from the Bayer – Hicksville site. Included with this assessment are the corrected sample results, the sample compliance report and chain of custody. Analyses were performed on the following samples:

		Sample	Analysis					
Sample ID	Lab ID	DID Matrix Date	VOC	SVOC	РСВ	MET	MISC	
SG-7	724990	AIR	9/18/2007	Х				Х
SG-17	724991	AIR	9/18/2007	Х				Х
SG-6	724992	AIR	9/18/2007	Х				Х
SG-4	724993	AIR	9/18/2007	Х				Х
DW091807	724994	AIR	9/18/2007	Х				Х
SG-16	724995	AIR	9/19/2007	Х				Х
SG-2	724996	AIR	9/19/2007	Х				Х
SG-15	724997	AIR	9/19/2007	Х				Х
DUP091907	724998	AIR	9/19/2007	Х				Х

Note:

1. Sample location DUP091907 is the field duplicate of parent sample location SG-16.

2. Miscellaneous parameters include helium.

AIR VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

Introduction

Analyses were performed according to (United Stated Environmental Protection Agency) USEPA Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-18- Validating Canisters of Volatile Organics in Ambient Air of August 1994, and New York State ASP 2005- R9 TO-15 QC.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Method TO-15	Air	14 days from collection to analysis	Ambient temperature

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

No compounds were detected in the associated blanks.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less then the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

7. Laboratory Duplicates (Laboratory Replicates)

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for air matrices.

Laboratory duplicates were not performed as part of this SDG.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,4-Trimethylbenzene	13	16	20.6 %
	1,3,5-Trimethylbenzene	3.9	4.9	AC
	1,3-Butadiene	1.3	1.4	AC
	2,2,4-Trimethylpentane	19	39	68.9 %
	4-Ethyltoluene	11	13	16.6 %
	Acetone	40	33	AC
	Benzene	2.1	3.5	49.9 %
	Carbon Disulfide	2	2.1	AC
	Cyclohexane	0.96	1.8	AC
SG-16/DUP091907	Ethylbenzene	6.9	10	36.6 %
	Methyl Ethyl Ketone	8.3	7.4	11.4 %
	n-Heptane	6.6	10	40.9 %
	n-Hexane	5.3	8.8	49.6 %
	Tetrachloroethene	2.5	3.1	AC
	Toluene	35	60	52.6 %
	Trichloroethene	1.2	1.6	AC
	Trichlorofluoromethane	2.2	2.3	AC
	Xylene (m,p)	23	34	38.5 %
	Xylene (o)	8.7	12	31.8 %
	Xylene (total)	33	48	37.0 %

ND = Not detected.

AC = The field duplicate is acceptable when the difference between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

HELIUM ANALYSES

Introduction

Analyses were performed according to the following methods:

Helium ASTM D1946

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Helium by ASTM D1946	Air	14 days from collection to analysis	Ambient Temperature

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less then the control limit (30%).

All calibration criteria were within the control limits.

5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

7. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SG-16/DUP091907	Helium	ND(2.2)	ND(2.1)	AC

ND = Not detected.

AC = The field duplicate is acceptable when the difference between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The calculated RPDs between the parent sample and field duplicate were acceptable.

8. Compound Identification

Compounds are identified on the GC by using the analytes relative retention time.

No target compounds were identified in the samples.

9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

CORRECTED SAMPLE ANALYSIS DATA SHEETS

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-7

Lab Sample No.: 724990

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppb∨	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	υ	0.16	0.62	υ	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.20		0.16	1.1		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	6.9		4.0	16		9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.45	********************************	0.40	1.6		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	υ	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	1.2		0.40	3.5		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	1.9		0,16	8.9	ð.	0.75
Benzene	71-43-2	0.27		0.16	0.86		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.45	1	0.16	1.8		0.66

CLIENT SAMPLE NO.

SG-7

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

Lab Sample No.: 724990

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.56		0.16	3.0		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0,16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	2.8		0.16	11		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0,87	U	0.87
Tetrachloroethene	127-18-4	19		0.16	130		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.54		0.16	2.3		0.69
Xylene (m,p)	1330-20-7	1.8		0.40	7.8		1.7
Xylene (o)	95-47-6	0.73		0,16	3.2		0,69
Xylene (total)	1330-20-7	2.5	1	0.16	11		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.83		0.16	4.1		0.79
1,3,5-Trimethylbenzene	108-67-8	0.32		0.16	1.6		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	1.0		0.16	4.9		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-17

Lab Sample No.: 724991

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	U	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	U	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
/inyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
I,3-Butadiene	106-99-0	0.88		0.50	1.9		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.28		0.20	1.6		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	31		5.0	74		12
sopropyl Alcohol	67-63-0	5.0	U	5.0	12	υ	12
Carbon Disulfide	75-15-0	1.7		0.50	5.3		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	U	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	0.93		0.50	3.3		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0.79	U	0.79
Methyl Ethyl Ketone	78-93-3	4.4		0.50	13		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Tetrahydrofuran	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	1.0		0.20	4.9		0.98
1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	0.34		0.20	1.6		0.93
Benzene	71-43-2	0.41		0.20	1.3		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.82		0.20	3.4		0.82

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-17

Lab Sample No.: 724991

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppb∨	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	υ	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	1.9		0.20	7.2		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	0.66		0.20	4.5		1.4
Methyl Butyl Ketone	591-78-6	0.50	U	0.50	2.0	U	2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	0.43		0.20	1.9		0.87
Xylene (m,p)	1330-20-7	1.4		0.50	6.1		2.2
Xylene (o)	95-47-6	0.59		0.20	2.6		0.87
Xylene (total)	1330-20-7	2.1		0.20	9.1		0.87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2,1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	U	1.4
4-Ethyltoluene	622-96-8	0.67		0.20	3.3		0,98
1,3,5-Trimethylbenzene	108-67-8	0.25		0.20	1.2		0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	0.75		0.20	3.7		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	U	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	U	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

CLIENT SAMPLE NO.

SG-6

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

Lab Sample No.: 724992

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.3	U	1.3	6.4	U	6.4
1,2-Dichlorotetrafluoroethane	76-14-2	0.50	U	0.50	3.5	υ	3.5
Chloromethane	74-87-3	1.3	U	1.3	2.7	U	2.7
Vinyl Chloride	75-01-4	0.50	U	0.50	1.3	U	1.3
1,3-Butadiene	106-99-0	1.3	U	1.3	2.9	U	2.9
Bromomethane	74-83-9	0.50	U	0.50	1.9	U	1.9
Chloroethane	75-00-3	1.3	U	1.3	3.4	U	3.4
Bromoethene	593-60-2	0.50	U	0.50	2.2	U	2.2
Trichlorofluoromethane	75-69-4	5.0		0.50	28		2.8
Freon TF	76-13-1	0.50	U	0.50	3.8	U	3.8
1,1-Dichloroethene	75-35-4	0.50	U	0.50	2.0	U	2.0
Acetone	67-64-1	45		13	110		31
Isopropyl Alcohol	67-63-0	13	U	13	32	U	32
Carbon Disulfide	75-15-0	1.3	U	1.3	4.0	U	4.0
3-Chloropropene	107-05-1	1.3	U	1.3	4.1	U	4.1
Methylene Chloride	75-09-2	1.3	U	1.3	4.5	U	4.5
tert-Butyl Alcohol	75-65-0	13	U	13	39	U	39
Methyl tert-Butyl Ether	1634-04-4	1.3	U	1.3	4.7	U	4.7
trans-1,2-Dichloroethene	156-60-5	0.50	U	0.50	2.0	U	2.0
n-Hexane	110-54-3	1.3	U	1.3	4.6	U	4.6
1,1-Dichloroethane	75-34-3	0.50	U	0.50	2.0	U	2.0
1,2-Dichloroethene (total)	540-59-0	0.50	U	0.50	2.0	U	2.0
Methyl Ethyl Ketone	78-93-3	6.1		1.3	18		3.8
cis-1,2-Dichloroethene	156-59-2	0.50	U	0.50	2.0	U	2.0
Tetrahydrofuran	109-99-9	13	U	13	38	U	38
Chloroform	67-66-3	0.50	U	0.50	2.4	U	2.4
1,1,1-Trichloroethane	71-55-6	3.3		0.50	18		2.7
Cyclohexane	110-82-7	0.50	U	0.50	1.7	U	1.7
Carbon Tetrachloride	56-23-5	0.50	U	0.50	3.1	U	3.1
2,2,4-Trimethylpentane	540-84-1	1.6	1	0.50	7.5	1	2.3
Benzene	71-43-2	0.52		0.50	1.7	1	1.6
1,2-Dichloroethane	107-06-2	0.50	U	0.50	2.0	U	2.0
n-Heptane	142-82-5	0.50	U	0.50	2.0	U	2.0

CLIENT SAMPLE NO.

SG-6

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

Lab Sample No.: 724992

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	87		0.50	470		2.7
1,2-Dichloropropane	78-87-5	0.50	U	0.50	2.3	U	2.3
1,4-Dioxane	123-91-1	13	U	13	47	U	47
Bromodichloromethane	75-27-4	0.50	U	0.50	3.4	U	3.4
cis-1,3-Dichloropropene	10061-01-5	0.50	υ	0.50	2.3	U	2.3
Methyl Isobutyl Ketone	108-10-1	1.3	U	1.3	5.3	U	5.3
Toluene	108-88-3	3.1		0.50	12		1.9
trans-1,3-Dichloropropene	10061-02-6	0.50	U	0.50	2.3	U	2.3
1,1,2-Trichloroethane	79-00-5	0.50	U	0.50	2.7	U	2.7
Tetrachloroethene	127-18-4	64		0.50	430		3.4
Methyl Butyl Ketone	591-78-6	1.3	U	1.3	5.3	U	5.3
Dibromochloromethane	124-48-1	0.50	U	0.50	4.3	U	4.3
1,2-Dibromoethane	106-93-4	0.50	U	0.50	3.8	U	3.8
Chlorobenzene	108-90-7	0.50	U	0.50	2.3	U	2.3
Ethỳlbenzene	100-41-4	0.61		0.50	2.6		2.2
Xylene (m,p)	1330-20-7	1.8		1.3	7.8		5.6
Xylene (o)	95-47-6	0.78		0.50	3.4		2.2
Xylene (total)	1330-20-7	2.7		0.50	12		2.2
Styrene	100-42-5	0.50	U	0,50	2.1	U	2.1
Bromoform	75-25-2	0.50	U	0.50	5.2	U	5.2
1,1,2,2-Tetrachloroethane	79-34-5	0.50	U	0.50	3.4	U	3.4
4-Ethyltoluene	622-96-8	0.94		0.50	4.6		2.5
1,3,5-Trimethylbenzene	108-67-8	0.50	U	0.50	2.5	U	2.5
2-Chlorotoluene	95-49-8	0.50	U	0.50	2.6	U	2.6
1,2,4-Trimethylbenzene	95-63-6	1.1		0.50	5.4		2.5
1,3-Dichlorobenzene	541-73-1	0.50	U	0.50	3.0	U	3.0
1,4-Dichlorobenzene	106-46-7	0.50	U	0.50	3.0	U	3.0
1,2-Dichlorobenzene	95-50-1	0.50	U	0.50	3.0	U	3.0
1,2,4-Trichlorobenzene	120-82-1	1.3	U	1.3	9.6	U	9.6
Hexachlorobutadiene	87-68-3	0.50	U	0.50	5.3	U	5.3
Naphthalene	91-20-3	1.3	U	1.3	6.8	U	6.8

CLIENT SAMPLE NO.

SG-4

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

Lab Sample No.: 724993 Date Analyzed: 9/25/2007

Date Received: 9/21/2007

-

-

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	10	U	10	49	U	49
1,2-Dichlorotetrafluoroethane	76-14-2	4.0	U	4.0	28	U	28
Chloromethane	74-87-3	10	U	10	21	U	21
Vinyl Chloride	75-01-4	4.0	U	4.0	10	U	10
1,3-Butadiene	106-99-0	10	U	10	22	U	22
Bromomethane	74-83-9	4.0	U	4.0	16	U	16
Chloroethane	75-00-3	10	U	10	26	U	26
Bromoethene	593-60-2	4.0	U	4.0	17	U	17
Trichlorofluoromethane	75-69-4	4.0	U	4.0	22	U	22
Freon TF	76-13-1	4.0	U	4.0	31	U	31
1,1-Dichloroethene	75-35-4	4.0	U	4.0	16	U	16
Acetone	67-64-1	100	U	100	240	U	240
Isopropyl Alcohol	67-63-0	100	U	100	250	U	250
Carbon Disulfide	75-15-0	10	U	10	31	U	31
3-Chloropropene	107-05-1	10	U	10	31	U	31
Methylene Chloride	75-09-2	10	U	10	35	U	35
tert-Butyl Alcohol	75-65-0	100	U	100	300	U	300
Methyl tert-Butyl Ether	1634-04-4	10	U	10	36	U	36
trans-1,2-Dichloroethene	156-60-5	4.0	U	4.0	16	U	16
n-Hexane	110-54-3	10	U	10	35	U	35
1,1-Dichloroethane	75-34-3	4.0	U	4.0	16	U	16
1,2-Dichloroethene (total)	540-59-0	4.0	U	4.0	16	U	16
Methyl Ethyl Ketone	78-93-3	10	U	10	29	U	29
cis-1,2-Dichloroethene	156-59-2	4.0	U	4.0	16	U	16
Tetrahydrofuran	109-99-9	100	U	100	290	U	290
Chloroform	67-66-3	4.0	U	4.0	20	U	20
1,1,1-Trichloroethane	71-55-6	4.0	U	4.0	22	U	22
Cyclohexane	110-82-7	4.0	U	4.0	14	U	14
Carbon Tetrachloride	56-23-5	4.0	U	4.0	25	U	25
2,2,4-Trimethylpentane	540-84-1	4.0	U	4.0	19	U	19
Benzene	71-43-2	4.0	U	4.0	13	U	13
1,2-Dichloroethane	107-06-2	4.0	U	4.0	16.	U	16
n-Heptane	142-82-5	4.0	U	4.0	16	U	16

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-4

Lab Sample No.: 724993

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results ín ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	17		4.0	91		21
1,2-Dichloropropane	78-87-5	4.0	U	4.0	18	U	18
1,4-Dioxane	123-91-1	100	U	100	360	U	360
Bromodichloromethane	75-27-4	4.0	U	4.0	27	U	27
cis-1,3-Dichloropropene	10061-01-5	4.0	U	4.0	18	U	18
Methyl Isobutyl Ketone	108-10-1	10	U	10	41	U	41
Toluene	108-88-3	4.0	U	4.0	15	U	15
trans-1,3-Dichloropropene	10061-02-6	4.0	U	4.0	18	U	18
1,1,2-Trichloroethane	79-00-5	4.0	U	4.0	22	U	
Tetrachloroethene	127-18-4	680		4.0	4600		27
Methyl Butyl Ketone	591-78-6	10	U	10	41	U	41
Dibromochloromethane	124-48-1	4.0	U	4.0	34	U	
1,2-Dibromoethane	106-93-4	4.0	U	4.0	31	U	31
Chlorobenzene	108-90-7	4.0	U	4.0	18	U	
Ethylbenzene	100-41-4	4.0	U	4.0	17	U	17
Xylene (m,p)	1330-20-7	10	U	10	43	U	43
Xylene (o)	95-47-6	4.0	U	4.0	17	U	
Xylene (total)	1330-20-7	4.0	U	4.0	17	U	
Styrene	100-42-5	4.0	U	4.0	17	U	17
Bromoform	75-25-2	4.0	U	4.0	41	U	41
1,1,2,2-Tetrachloroethane	79-34-5	4.0	U	4.0	27	U	27
4-Ethyltoluene	622-96-8	4.0	U	4.0	20	U	20
1,3,5-Trimethylbenzene	108-67-8	4.0	U	4.0	20	U	20
2-Chlorotoluene	95-49-8	4.0	U	4.0	21	U	21
1,2,4-Trimethylbenzene	95-63-6	4.0	U	4.0	20	U	20
1,3-Dichlorobenzene	541-73-1	4.0	U	4.0	24	U	24
1,4-Dichlorobenzene	106-46-7	4.0	U	4.0	24	U	24
1,2-Dichlorobenzene	95-50-1	4.0	U	4.0	24	U	24
1,2,4-Trichlorobenzene	120-82-1	10	U	10	74	U	
Hexachlorobutadiene	87-68-3	4.0	U	4.0	43	U	43
Naphthalene	91-20-3	10	U	10	52	U	52

CLIENT SAMPLE NO.

DW091807

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

Lab Sample No.: 724994

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.45		0.40	2.2		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.44		0.40	0.91		0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.19		0.16	1,1		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	2.0		0.40	7.0		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0,16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.40	U	0.40	1.2	U	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0,16	0.87	U	0.87
Cyclohexane	110-82-7	0.39		0.16	1.3		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	7.2		0.16	34		0.75
Benzene	71-43-2	0.83	***	0.16	2.7	*****	0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	1.4		0.16	5.7		0.66

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

DW091807

Lab Sample No.: 724994

Date Analyzed: 9/24/2007

-1-

Date Received: 9/21/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	9.8		0.16	37		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	1.1		0.16	4.8		0.69
Xylene (m,p)	1330-20-7	3.5		0.40	15		1.7
Xylene (o)	95-47-6	1.2		0.16	5.2		0.69
Xylene (total)	1330-20-7	4.8		0.16	21		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.99		0.16	4.9		0.79
1,3,5-Trimethylbenzene	108-67-8	0.33		0.16	1.6		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0,99		0.16	4.9		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-16

Lab Sample No.: 724995

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.60		0.40	1.3		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.39		0.16	2.2		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	17		4.0	40		9,5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9,8	U	9.8
Carbon Disulfide	75-15-0	0.63		0.40	2.0		1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	1.5		0.40	5.3		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	2.8		0.40	8.3		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.28		0.16	0.96	······································	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane		4.0		0.16	19		0.75
Benzene	71-43-2	0.65		0.16	2.1		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	1.6	-	0.16	6.6		0.66

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-16

Lab Sample No.: 724995

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.23		0.16	1.2		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27 - 4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	9.2		0.16	35		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.37		0.16	2.5		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1,6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	1.6		0.16	6.9		0.69
Xylene (m,p)	1330-20-7	5.4		0.40	23		1.7
Xylene (o)	95-47-6	2.0		0.16	8.7		0.69
Xylene (total)	1330-20-7	7.5		0.16	33		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	2.2		0.16	11		0.79
1.3.5-Trimethylbenzene	108-67-8	0.80		0.16	3.9		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0,83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	2.7		0,16	13		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0,96
1.2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

CLIENT SAMPLE NO.

SG-2

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

Lab Sample No.: 724996

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	66	U	66	330	U	330
1,2-Dichlorotetrafluoroethane	76-14-2	26	U	26	180	U	180
Chloromethane	74-87-3	66	U	66	140	U	140
/inyl Chloride	75-01-4	3900		26	10000		66
1,3-Butadiene	106-99-0	66	U	66	150	U	150
Bromomethane	74-83-9	26	U	26	100	U	100
Chloroethane	75-00-3	66	U	66	170	U	170
Bromoethene	593-60-2	26	U	26	110	U	110
Trichlorofluoromethane	75-69-4	26	U	26	150	U	150
Freon TF	76-13-1	26	U	26	200	U	200
1,1-Dichloroethene	75-35-4	26	U	26	100	U	100
Acetone	67-64-1	660	U	660	1600	U	1600
sopropyl Alcohol	67-63-0	660	U	660	1600	U	1600
Carbon Disulfide	75-15-0	66	U	66	210	U	210
3-Chloropropene	107-05-1	66	U	66	210	U	210
Methylene Chloride	75-09-2	66	U	66	230	U	230
tert-Butyl Alcohol	75-65-0	660	U	660	2000	U	2000
Methyl tert-Butyl Ether	1634-04-4	66	U	66	240	U	240
trans-1,2-Dichloroethene	156-60-5	130		26	520		100
n-Hexane	110-54-3	190		66	670		230
1,1-Dichloroethane	75-34-3	26	U	26	110	U	110
1,2-Dichloroethene (total)	540-59-0	210		26	830		100
Methyl Ethyl Ketone	78-93-3	66	U	66	190	U	190
cis-1,2-Dichloroethene	156-59-2	81		26	320		100
Tetrahydrofuran	109-99-9	660	U	660	1900	U	1900
Chloroform	67-66-3	26	U	26	130	U	130
1,1,1-Trichloroethane	71-55-6	26	U	26	140	U	140
Cyclohexane	110-82-7	410		26	1400		89
Carbon Tetrachloride	56-23-5	26	U	26	160	U	160
2,2,4-Trimethylpentane	540-84-1	26	U	26	120	U	120
Benzene	71-43-2	45		26	140		83
1,2-Dichloroethane	107-06-2	26	U	26	110	U	110
n-Heptane	142-82-5	280		26	1100		110

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-2

Lab Sample No.: 724996

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	26	U	26	140	U	140
1,2-Dichloropropane	78-87-5	26	U	26	120	U	120
1,4-Dioxane	123-91-1	660	U	660	2400	U	2400
Bromodichloromethane	75-27-4	26	U	26	170	U	170
cis-1,3-Dichloropropene	10061-01-5	26	U	26	120	U	120
Methyl Isobutyl Ketone	108-10-1	66	U	66	270	U	270
Toluene	108-88-3	190		26	720		98
trans-1,3-Dichloropropene	10061-02-6	26	U	26	120	U	120
1,1,2-Trichloroethane	79-00-5	26	U	26	140	U	140
Tetrachloroethene	127-18-4	26	U	26	180	U	180
Methyl Butyl Ketone	591-78-6	120		66	490		270
Dibromochloromethane	124-48-1	26	U	26	220	. U	220
1,2-Dibromoethane	106-93-4	26	U	26	200	U	200
Chlorobenzene	108-90-7	99		26	460		120
Ethylbenzene	100-41-4	77		26	330		110
Xylene (m,p)	1330-20-7	66	U	66	290	U	290
Xylene (o)	95-47-6	26	U	26	110	U	110
Xylene (total)	1330-20-7	26	U	26	110	U	110
Styrene	100-42-5	26	U	26	110	U	110
Bromoform	75-25-2	26	U	26	270	U	270
1,1,2,2-Tetrachloroethane	79-34-5	26	U	26	180	U	180
4-Ethyltoluene	622-96-8	26	U	26	130	U	130
1,3,5-Trimethylbenzene	108-67-8	26	U	26	130	U	130
2-Chlorotoluene	95-49-8	26	U	26	130	U	130
1,2,4-Trimethylbenzene	95-63-6	26	U	26	130	U	130
1,3-Dichlorobenzene	541-73-1	26	U	26	160	U	160
1,4-Dichlorobenzene	106-46-7	26	U	26	160	U	160
1,2-Dichlorobenzene	95-50-1	26	U	26	160	U	160
1,2,4-Trichlorobenzene	120-82-1	66	U	66	490	U	490
Hexachlorobutadiene	87-68-3	26	U	26	280	U	280
Naphthalene	91-20-3	66	U	66	350	U	350

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-15

Lab Sample No.: 724997

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	3.5	U	3.5	17	U	17
1,2-Dichlorotetrafluoroethane	76-14-2	1.4	U	1.4	9.8	U	9.8
Chloromethane	74-87-3	3.5	U	3.5	7.2	U	7.2
Vinyl Chloride	75-01-4	1.4	U	1.4	3.6	U	3.6
1,3-Butadiene	106-99-0	3.5	U	3.5	7.7	U	7.7
Bromomethane	74-83-9	1.4	U	1.4	5.4	U,	5.4
Chloroethane	75-00-3	3.5	U	3.5	9.2	U	9.2
Bromoethene	593-60-2	1.4	U	1.4	6.1	U	6.1
Trichlorofluoromethane	75-69-4	1.4	U	1.4	7.9	U	7.9
Freon TF	76-13-1	1.4	U	1.4	11	U	11
1,1-Dichloroethene	75-35-4	1.4	U	1.4	5.6	U	5.6
Acetone	67-64-1	35	U	35	83	U	83
Isopropyl Alcohol	67-63-0	35	U	35	86	U	86
Carbon Disulfide	75-15-0	3.5	U	3.5	11	U	11
3-Chloropropene	107-05-1	3.5	U	3.5	11	U	11
Methylene Chloride	75-09-2	3.5	U	3.5	12	U	12
tert-Butyl Alcohol	75-65-0	35	U	35	110	U	110
Methyl tert-Butyl Ether	1634-04-4	3.5	U	3.5	13	U	13
trans-1,2-Dichloroethene	156-60-5	1.4	U	1.4	5.6	U	5.6
n-Hexane	110-54-3	3.5	U	3.5	12	U	12
1,1-Dichloroethane	75-34-3	1.4	U	1.4	5.7	U	5.7
1,2-Dichloroethene (total)	540-59-0	1.4	U	1.4	5.6	U	5.6
Methyl Ethyl Ketone	78-93-3	3.5	U	3.5	10	U	10
cis-1,2-Dichloroethene	156-59-2	1.4	U	1.4	5.6	U	5.6
Tetrahydrofuran	109-99-9	35	U	35	100	U	100
Chloroform	67-66-3	1.4	U	1.4	6.8	U	6.8
1,1,1-Trichloroethane	71-55-6	1.4	U	1.4	7.6	U	7.6
Cyclohexane	110-82-7	1.4	U	1.4	4.8	U	4.8
Carbon Tetrachloride	56-23-5	1.4	U	1.4	8.8	U	8.8
2,2,4-Trimethylpentane	540-84-1	1.9		1.4	8.9		6.5
Benzene	71-43-2	1.4	U	1.4	4.5	U	4.5
1,2-Dichloroethane	107-06-2	1.4	U	1.4	5.7	U	5.7
n-Heptane	142-82-5	1.4	U	1.4	5.7	U	5.7

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

SG-15

Lab Sample No.: 724997

Date Analyzed: 9/25/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	23		1.4	120		7.5
1,2-Dichloropropane	78-87-5	1.4	U	1.4	6.5	U	6.5
1,4-Dioxane	123-91-1	35	U	35	130	U	130
Bromodichloromethane	75-27-4	1.4	U	1.4	9.4	υ	9.4
cis-1,3-Dichloropropene	10061-01-5	1.4	U	1.4	6.4	U	6.4
Methyl Isobutyl Ketone	108-10-1	3.5	U	3.5	. 14	U	14
Toluene	108-88-3	7.2		1.4	27		5.3
trans-1,3-Dichloropropene	10061-02-6	1.4	U	1.4	6.4	U	6.4
1,1,2-Trichloroethane	79-00-5	1.4	U	1.4	7.6	U	7.6
Tetrachloroethene	127-18-4	180		1.4	1200		9.5
Methyl Butyl Ketone	591-78-6	3.5	U	3.5	14	U	14
Dibromochloromethane	124-48-1	1.4	U	1.4	12	U	12
1,2-Dibromoethane	106-93-4	1.4	U	1.4	11	U	11
Chlorobenzene	108-90-7	1.4	U	1.4	6.4	U	6.4
Ethylbenzene	100-41-4	1.4	U	1.4	6.1	U	6.1
Xylene (m,p)	1330-20-7	3.5	U	3.5	15	U	15
Xylene (o)	95-47-6	1.4	U	1.4	6.1	U	6.1
Xylene (total)	1330-20-7	1.4	U	1.4	6.1	U	6.1
Styrene	100-42-5	1.4	U	1.4	6.0	U	6.0
Bromoform	75-25-2	1.4	U	1.4	14	U	14
1,1,2,2-Tetrachloroethane	79-34-5	1.4	U	1.4	9.6	U	9.6
4-Ethyltoluene	622-96-8	1.4	U	1.4	6.9	U	6.9
1,3,5-Trimethylbenzene	108-67-8	1.4	U	1.4	6.9	U	6.9
2-Chlorotoluene	95-49-8	1.4	υ	1.4	7.2	U	7.2
1,2,4-Trimethylbenzene	95-63-6	1.4	U	1.4	6.9	U	6.9
1,3-Dichlorobenzene	541-73-1	1.4	U	1.4	8.4	U	8.4
1,4-Dichlorobenzene	106-46-7	1.4	U	1.4	8.4	U	8.4
1,2-Dichlorobenzene	95-50-1	1.4	U	1.4	8.4	υ	8.4
1,2,4-Trichlorobenzene	120-82-1	3.5	υ	3.5	26	U	26
Hexachlorobutadiene	87-68-3	1.4	U	1.4	15	U	15
Naphthalene	91-20-3	3.5	U	3.5	18	U	18

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

DUP091907

Lab Sample No.: 724998

Date Analyzed: 9/24/2007

Date Received: 9/21/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	υ	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.64		0.40	1.4		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.41		0.16	2.3		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	14		4.0	33		9.5
sopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9,8
Carbon Disulfide	75-15-0	0.68		0.40	2.1		1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	2.5		0.40	8.8		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	2.5		0.40	7.4		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.51		0.16	1.8		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	8,4		0.16	39		0.75
Benzene	71-43-2	1.1	****	0.16	3.5		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	2.5		0.16	10		0.66

Lab Name: TAL Burlington

SDG Number: NY122058

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

DUP091907

Lab Sample No.: 724998

Date Analyzed: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.30		0.16	1.6		0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	16		0.16	60		0,60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	0.46		0.16	3.1		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	2.4		0.16	10		0.69
Xylene (m,p)	1330-20-7	7.8		0.40	34		1.7
Xylene (o)	95-47-6	2.8		0.16	12		0.69
Xylene (total)	1330-20-7	11		0.16	48		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	2.7		0.16	13		0.79
1,3,5-Trimethylbenzene	108-67-8	1.0		0.16	4.9		0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	3.2		0.16	16		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-7
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724990
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R011
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-17 Contract: 27000
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724991
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R021
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.2 U

VOLATILE ORGAN	FORM 1 IICS ANALYSIS	DATA SHEET	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	С	ontract: 27000	SG-6
Lab Code: STLV Case N	ío.: 27000	SAS No.: S	DG No.: NY122058
Matrix: (soil/water) AIR		Lab Sample	ID: 724992
Sample wt/vol:	_(g/mL) ML	Lab File ID	: 28SE071024-R031
Level: (low/med) LOW		Date Receiv	ed: 09/21/07
% Moisture: not dec.		Date Analyz	ed: 09/28/07
GC Column: CTR-1 ID: 6	5.35 (mm)	Dilution Fa	ctor: 1.2
Soil Extract Volume:	(uL)	Soil Aliquo	t Volume:(uL)
CAS NO. CON	IPOUND	CONCENTRATION UNI (ug/L or ug/Kg) %	
7440-59-7He	ium		2.1 U

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-4
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724993
Sample wt/vol: (g/mL) ML	Lab File ID: 24SE071233-R011
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec	Date Analyzed: 09/24/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.2 U

.

FORM 1 VOLATILE ORGANICS ANALYSI	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	DW091807
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724994
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R041
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.5
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.5 U

FORM 1 VOLATILE ORGANICS ANALYS		DI SAMPLE NO.
Lab Name: STL BURLINGTON	Contract: 27000	SG-16
Lab Code: STLV Case No.: 27000	SAS No.: SDG No	.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 7	24995
Sample wt/vol: (g/mL) ML	Lab File ID: 2	8SE071024-R051
Level: (low/med) LOW	Date Received: 0	9/21/07
% Moisture: not dec.	Date Analyzed: 0	9/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor:	1.3
Soil Extract Volume:(uL)	Soil Aliquot Vol [.]	ume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V	Q
7440-59-7Helium		2.2 U

FORM 1 VOLATILE ORGANICS ANALYSI	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	Contract: 27000
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724996
Sample wt/vol: (g/mL) ML	Lab File ID: 24SE071233-R021
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec.	Date Analyzed: 09/24/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.2 U

	FOI	RM 1		
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

ARCADI SAMPLE NO.

VOLATILE ORGANICS ANALISI	S DATA SHEET
Lab Name: STL BURLINGTON	SG-15
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724997
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R061
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.4
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

FORM 1 VOLATILE ORGANICS ANALYSI	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	DUP091907
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122058
Matrix: (soil/water) AIR	Lab Sample ID: 724998
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R071
Level: (low/med) LOW	Date Received: 09/21/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.1 U

SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

Sample						Compliancy ¹			Noncompliance	
Sample Delivery Group	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	PCB/PEST /HERB	МЕТ	MISC	
NY122058	9/18/2007	TO-15	SG-7	Air	Yes				Yes	
NY122058	9/18/2007	TO-15	SG-17	Air	Yes				Yes	
NY122058	9/18/2007	TO-15	SG-6	Air	Yes	-			Yes	
NY122058	9/18/2007	TO-15	SG-4	Air	Yes	-			Yes	
NY122058	9/18/2007	TO-15	DW091807	Air	Yes				Yes	
NY122058	9/19/2007	TO-15	SG-16	Air	Yes	-			Yes	
NY122058	9/19/2007	TO-15	SG-2	Air	Yes				Yes	
NY122058	9/19/2007	TO-15	SG-15	Air	Yes	-			Yes	
NY122058	9/19/2007	TO-15	DUP091907	Air	Yes	-			Yes	

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

CHAIN OF CUSTODY

		ved Winna	
CHAIN OF CUSTODY RECORD	Image: Control of the content of t	Control Values ave Packed Difectly above pui tense Report Results to John Brussel Via E-Mail	ples constitutes ontained in the
	97-610 pany and interview interview	Remark 2 Lout	Client's delivery of sam terms and conditions co Sludge 0 - 0ii
	ANALYSIS ANALYSIS Requested I	Time ///O Time	Time SL -
1 Tel: 802 660 1990	No/Type of Containers ²	Date <i>4-21-07</i> Date	Date C - Charcoal Tube P/O - Plastic
ve, Suite 1 VT 05403	IN: SAME Invoice to: Invoice to: act SAME act SAME act SAME act Name act SAME act Name Invoice to: act SAME act Name Invoice to: act SAME act SAME Invoice to: act SAME Invoice to: Invoice to: Inv	Received by: (Signature	Received by: (Signature L - Liquid A - Air bag 250 ml - Glass wide mouth
STL Burlington 30 Community Dri South Burlington,		Time Time	Date Time W - Water S - Soil A/G - Amber / Or Glass 1 Liter
DRIES, INC.	$\frac{dh}{dt} RD$	Date Date	Date W - Water A/G - Amber
SEVERN STL TRENT BORATORIES, INC.	Report to: Company: Arcadic BBL Address: $\overrightarrow{b} 723$ Tow path Syratuses, WY 13: Contact: \overrightarrow{John} Brussel Phone: $\overrightarrow{315} - \overrightarrow{b}71 - \overrightarrow{94} + \overrightarrow{11}$ Fax: $\overrightarrow{315} - \overrightarrow{b}71 - \overrightarrow{94} + \overrightarrow{11}$ Fax: $\overrightarrow{315} - \overrightarrow{b}71 - \overrightarrow{94} + \overrightarrow{11}$ Contract, $\overrightarrow{0}$ oute: $\overrightarrow{315} - \overrightarrow{b}71 - \overrightarrow{94} + \overrightarrow{11}$ Fax: $\overrightarrow{315} - \overrightarrow{b}71 - \overrightarrow{94} + \overrightarrow{11}$ Contract, $\overrightarrow{0}$ oute: $\overrightarrow{B} 323 \overrightarrow{505}$, $\overrightarrow{0}$, $\overrightarrow{16}$ Proj. No. Project Name \overrightarrow{Aq} \overrightarrow{q} \overrightarrow{N} $\overrightarrow{S6} - \overrightarrow{14}$ \overrightarrow{q} \overrightarrow{q} $\overrightarrow{26} - \overrightarrow{14}$ \overrightarrow{q} \overrightarrow{q} \overrightarrow{q} $\overrightarrow{26} - \overrightarrow{14}$ \overrightarrow{q} \overrightarrow{q} $$	Relinquished by: (Schature)	Reifinquished by: (Signature) •Matrix WW - Wastewater *Container VOA - 40 ml vial
			S0) 002-4528JT2

110	1050	1534-500	2110
LU	1001	000 100	0 110

DATA USABILITY SUMMARY REPORT

BAYER

HICKSVILLE, NEW YORK

SDG #NY122098

AIR VOLATILE AND HELIUM ANALYSIS

Analyses performed by:

Severn Trent Laboratories South Burlington, Vermont

Review performed by:

Syracuse, New York Report #7468R

Summary

The following is an assessment of the data package for Sample Delivery Group (SDG) #NY122098 for sampling from the Bayer – Hicksville site. Included with this assessment are the corrected sample results, the sample compliance report and chain of custody. Analyses were performed on the following samples:

	Sample			Analysis					
Sample ID	Lab ID	Matrix	Date	voc	SVOC	РСВ	MET	MISC	
SG-14	725418	AIR	9/20/2007	Х				Х	
SG-1	725419	AIR	9/20/2007	Х				Х	
UW092007	725420	AIR	9/20/2007	Х				Х	
SG-13	725421	AIR	9/20/2007	Х				Х	
SG-12	725422	AIR	9/20/2007	Х				Х	
SG-11	725423	AIR	9/21/2007	Х				Х	
SG-5	725424	AIR	9/21/2007	Х				Х	
SG-10	725425	AIR	9/21/2007	Х				Х	
SG-3	725686	AIR	9/24/2007	Х				Х	
SG-8	725687	AIR	9/24/2007	Х				Х	
SG-18	725688	AIR	9/24/2007	Х				Х	
SG-9	725689	AIR	9/25/2007	Х				Х	
DUP092407	725690	AIR	9/24/2007	Х				Х	

Note:

1. Sample location DUP092407 is the field duplicate of parent sample location SG-3.

2. Miscellaneous parameters include helium.

AIR VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

Introduction

Analyses were performed according to (United Stated Environmental Protection Agency) USEPA Method TO-15. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-18- Validating Canisters of Volatile Organics in Ambient Air of August 1994, and New York State ASP 2005- R9 TO-15 QC.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Method TO-15	Air	14 days from collection to analysis	Ambient temperature

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

No compounds were detected in the associated blanks.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less then the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
All sample locations within this SDG	ICV %RSD	Hexachlorobutadiene	31.9%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	BRF <0.05		R
		Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or		No Action
	RRF >0.01 ¹	Detect	NO ACIION
	%RSD > 30% or a	Non-detect	UJ
Initial Calibration	correlation coefficient <0.99	Detect	J
	%D >30%	Non-detect	No Action
Continuing	Continuing(increase in sensitivity)Calibration%D >30% (decrease in sensitivity)		J
Calibration			UJ
			J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e. ketones, 1,4-Dioxane, etc.)

5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	Recovery
SG-14 SG-1 UW092007 SG-13 SG-12 SG-11 SG-5 SG-10 SG-3 SG-8 SG-8 SG-18 DUP092407	Naphthalene	>UL

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	J
	Detect	J
< 10%	Non-detect	R
	Detect	J

7. Laboratory Duplicates (Laboratory Replicates)

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for air matrices.

Laboratory duplicates were not performed as part of this SDG.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2-Dichloroethene (total)	79	87	AC
SG-3/DUP092407	cis-1,2-Dichloroethene	79	87	AC
00 3/001 032407	Tetrachloroethene	16000	15000	6.4 %
	Trichloroethene	390	380	AC

Results for duplicate samples are summarized in the following table.

- ND = Not detected.
- AC = The field duplicate is acceptable when the difference between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

HELIUM ANALYSES

Introduction

Analyses were performed according to the following methods:

Helium ASTM D1946

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Helium by ASTM D1946	Air	14 days from collection to analysis	Ambient Temperature

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less then the control limit (30%).

All calibration criteria were within the control limits.

5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

A MS/MSD was not performed on a sample location associated with this SDG.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the established acceptance limits.

The LCS analysis exhibited recoveries within the control limits.

7. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SG-3/DUP092407	Helium	ND(2.3)	ND(2.2)	AC

ND = Not detected.

AC = The field duplicate is acceptable when the difference between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The calculated RPDs between the parent sample and field duplicate were acceptable.

8. Compound Identification

Compounds are identified on the GC by using the analytes relative retention time.

No target compounds were identified in the samples.

9. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

CORRECTED SAMPLE ANALYSIS DATA SHEETS

,

CLIENT SAMPLE NO.

SG-14

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

Lab Sample No.:725418Date Analyzed:9/29/2007Date Received:9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	19	U	19	94	U	94
1,2-Dichlorotetrafluoroethane	76-14-2	7.5	U	7.5	52	U	52
Chloromethane	74-87-3	19	U	19	39	U	39
Vinyl Chloride	75-01-4	7.5	U	7.5	19	U	19
1,3-Butadiene	106-99-0	19	U	19	42	U	42
Bromomethane	74-83-9	7.5	U	7.5	29	U	29
Chloroethane	75-00-3	19	U	19	50	U	50
Bromoethene	593-60-2	7.5	U	7.5	33	U	33
Trichlorofluoromethane	75-69-4	7.5	U	7.5	42	U	42
Freon TF	76-13-1	7.5	U	7.5	57	υ	57
1,1-Dichloroethene	75-35-4	7.5	U	7.5	30	U	30
Acetone	67-64-1	190	U	190	450	U	450
Isopropyl Alcohol	67-63-0	190	U	190	470	U	470
Carbon Disulfide	75-15-0	19	U	19	59	U	59
3-Chloropropene	107-05-1	19	U	19	59	U	59
Methylene Chloride	75-09-2	19	U	19	66	U	66
tert-Butyl Alcohol	75-65-0	190	U	190	580	U	580
Methyl tert-Butyl Ether	1634-04-4	19	U	19	69	U	69
trans-1,2-Dichloroethene	156-60-5	7.5	U	7.5	30	U	30
n-Hexane	110-54-3	19	U	19	67	U	67
1,1-Dichloroethane	75-34-3	7.5	U	7.5	30	U	30
1,2-Dichloroethene (total)	540-59-0	7.5	U	7.5	30	U	30
Methyl Ethyl Ketone	78-93-3	19	U	19	56	U	56
cis-1,2-Dichloroethene	156-59-2	7.5	U	7.5	30	U	30
Tetrahydrofuran	109-99-9	190	U	190	560	U	560
Chloroform	67-66-3	7.5	U	7.5	37	U	37
1,1,1-Trichloroethane	71-55-6	7.5	U	7.5	41	U	41
Cyclohexane	110-82-7	7.5	U	7.5	26	U	26
Carbon Tetrachloride	56-23-5	7.5	U	7,5	47	U	47
2,2,4-Trimethylpentane	540-84-1	7.5	U	7.5	35	U	35
Benzene	71-43-2	7.5	U	7.5	24	U	24
1,2-Dichloroethane	107-06-2	7.5	U	7.5	30	U	30
n-Heptane	142-82-5	7.5	U	7.5	31	U	31

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-14

Lab Sample No.: 725418 Date Analyzed: 9/29/2007

Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	29		7.5	160		40
1,2-Dichloropropane	78 - 87-5	7.5	U	7.5	35	U	35
1,4-Dioxane	123-91-1	190	U	190	680	U	680
Bromodichloromethane	75-27-4	7.5	U	7.5	50	υ	50
cis-1,3-Dichloropropene	10061-01-5	7.5	U	7.5	34	υ	34
Methyl Isobutyl Ketone	108-10-1	19	U	19	78	U	78
Toluene	108-88-3	13		7.5	49		28
trans-1,3-Dichloropropene	10061-02-6	7.5	U	7.5	34	U	34
1,1,2-Trichloroethane	79-00-5	7.5	U	7.5	41	U	41
Tetrachloroethene	127-18-4	1200		7.5	8100		51
Methyl Butyl Ketone	591-78-6	19	U	19	78	U	78
Dibromochloromethane	124-48-1	7.5	U	7.5	64	U	64
1,2-Dibromoethane	106-93-4	7.5	υ	7.5	58	U	58
Chlorobenzene	108-90-7	7.5	U	7.5	35	υ	35
Ethylbenzene	100-41-4	7.5	U	7,5	33	U	33
Xylene (m,p)	1330-20-7	19	U	19	83	U	83
Xylene (o)	95-47-6	7.5	υ	7.5	33	υ	33
Xylene (total)	1330-20-7	7.5	U	7.5	33	U	33
Styrene	100-42-5	7.5	U	7.5	32	U	32
Bromoform	75-25-2	7.5	U	7.5	78	U	78
1,1,2,2-Tetrachloroethane	79-34-5	7.5	U	7.5	51	U	51
4-Ethyltoluene	622-96-8	7.5	U	7.5	37	U	37
1,3,5-Trimethylbenzene	108-67-8	7.5	U	7,5	37	U	37
2-Chlorotoluene	95-49-8	7.5	U	7.5	39	U	39
1,2,4-Trimethylbenzene	95-63-6	7.5	U	7.5	37	U	37
1,3-Dichlorobenzene	541-73-1	7.5	U	7.5	45	U	45
1,4-Dichlorobenzene	106-46-7	7.5	U	7.5	45	U	45
1,2-Dichlorobenzene	95-50-1	7.5	U	7.5	45	U	45
1,2,4-Trichlorobenzene	120-82-1	19	U	19	140	U	140
Hexachlorobutadiene	87-68-3	7.5	ΓΩ	7,5	80	U.)	80
Naphthalene	91-20-3	19	Ų	19	100	U	100

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-1

Lab Sample No.: 725419 Date Analyzed: 9/28/2007 Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	49	U	49	240	U	240
1,2-Dichlorotetrafluoroethane	76-14-2	20	U	20	140	U	140
Chloromethane	74-87-3	49	U	49	100	U	100
Vinyl Chloride	75-01-4	20	U	20	51	U	51
1,3-Butadiene	106-99-0	49	υ	49	110	U	110
Bromomethane	74-83-9	20	U	20	78	U	78
Chloroethane	75-00-3	49	U	49	130	U	130
Bromoethene	593-60-2	20	U	20	87	U	87
Trichlorofluoromethane	75-69-4	20	U	20	110	U	110
Freon TF	76-13-1	20	U	20	150	U	150
1,1-Dichloroethene	75-35-4	20	U	20	79	U	79
Acetone	67-64-1	490	U	490	1200	υ	1200
Isopropyl Alcohol	67-63-0	490	U	490	1200	U	1200
Carbon Disulfide	75-15-0	49	U	49	150	U	150
3-Chloropropene	107-05-1	49	U	49	150	U	150
Methylene Chloride	75-09-2	49	U	49	170	υ	170
tert-Butyl Alcohol	75-65-0	490	U	490	1500	U	1500
Methyl tert-Butyl Ether	1634-04-4	49	U	49	180	U	180
trans-1,2-Dichloroethene	156-60-5	20	U	20	79	U	79
n-Hexane	110-54-3	49	U	49	170	U	170
1,1-Dichloroethane	75-34-3	20	U	20	81	U	81
1,2-Dichloroethene (total)	540-59-0	150		20	590		79
Methyl Ethyl Ketone	78-93-3	49	U	49	140	U	140
cis-1,2-Dichloroethene	156-59-2	150		20	590		79
Tetrahydrofuran	109-99-9	490	U	490	1400	υ	1400
Chloroform	67-66-3	20	U	20	98	U	98
1,1,1-Trichloroethane	71-55-6	20	U	20	110	U	110
Cyclohexane	110-82-7	20	U	20	69	U	69
Carbon Tetrachloride	56-23-5	20	U	20	130	U	130
2,2,4-Trimethylpentane	540-84-1	20	U	20	93	U	93
Benzene	71-43-2	20	U	20	64	U	64
1,2-Dichloroethane	107-06-2	20	U	20	81	U	81
n-Heptane	142-82-5	20	U	20	82	U	82

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-1

Lab Sample No.:	725419
Date Analyzed:	9/28/2007
Date Received:	9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	470		20	2500		110
1,2-Dichloropropane	78-87-5	20	U	20	92	U	92
1,4-Dioxane	123-91-1	490	U	490	1800	U	1800
Bromodichloromethane	75-27-4	20	U	20	130	U	130
cis-1,3-Dichloropropene	10061-01-5	20	U	20	91	U	91
Methyl Isobutyl Ketone	108-10-1	49	U	49	200	U	200
Toluene	108-88-3	20	U	20	75	U	75
trans-1,3-Dichloropropene	10061-02-6	20	U	20	91	U	91
1,1,2-Trichloroethane	79-00-5	20	U	20	110	U	110
Tetrachloroethene	127-18-4	3000		20	20000		140
Methyl Butyl Ketone	591-78-6	49	U	49	200	U	200
Dibromochloromethane	124-48-1	20	U	20	170	U	170
1,2-Dibromoethane	106-93-4	20	U	20	150	U	150
Chlorobenzene	108-90-7	20	U	20	92	U	92
Ethylbenzene	100-41-4	20	U	20	87	υ	87
Xylene (m,p)	1330-20-7	49	U	49	210	U	210
Xylene (o)	95-47-6	20	U	20	87	U	87
Xylene (total)	1330-20-7	20	U	20	87	U	87
Styrene	100-42-5	20	U	20	85	U	85
Bromoform	75-25-2	20	U	20	210	U	210
1,1,2,2-Tetrachloroethane	79-34-5	20	U	20	140	U	140
4-Ethyltoluene	622-96-8	20	U	20	98	U	98
1,3,5-Trimethylbenzene	108-67-8	20	U	20	98	U	98
2-Chlorotoluene	95-49-8	20	U	20	100	U	100
1,2,4-Trimethylbenzene	95-63-6	20	U	20	98	U	98
1,3-Dichlorobenzene	541-73-1	20	U	20	120	U	120
1,4-Dichlorobenzene	106-46-7	20	U	20	120	U	120
1,2-Dichlorobenzene	95-50-1	20	U	20	120	U	120
1,2,4-Trichlorobenzene	120-82-1	49	U	49	360	U	360
Hexachlorobutadiene	87-68-3	20	υJ	20	210	ζυ	210
Naphthalene	91-20-3	49	U	49	260	U	260

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

UW092007

Lab Sample No.: 725420 Date Analyzed: 9/26/2007

Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.54		0.40	2.7		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.56		0.40	1.2		0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0.16	.0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.27		0.16	1.5		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.8		4.0	11		9,5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1,3
Methylene Chloride	75-09 - 2	0.40	U	0.40	1.4	U	1,4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.91		0.40	3.2		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0,65
1,2-Dichloroethene (total)	540 - 59-0·	0,16	U	0.16	0.63	U	0.63
Methyl Ethyl Ketone	78-93-3	0.73		0.40	2.2		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.18		0,16	0.62		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	2.6		0.16	12		0.75
Benzene	71-43-2	0.46		0.16	1.5		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.53		0.16	2.2		0.66

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

UW092007

Lab Sample No.: 725420 Date Analyzed: 9/26/2007 Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	υ	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1,1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	υ	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	3.9		0.16	15		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	υ	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	υ	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1,4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0,16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.58		0.16	2.5		0.69
Xylene (m,p)	1330-20-7	1.6		0.40	6.9		1.7
Xylene (o)	95-47-6	0.59		0,16	2.6		0.69
Xylene (total)	1330-20-7	2.3		0.16	10		0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	υ	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.56		0.16	2.8		0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	υ	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	υ	0.83
1,2,4-Trimethylbenzene	95-63-6	0.61		0.16	3.0		0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	υŠ	0.16	1.7	Γυ	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

CLIENT SAMPLE NO.

SG-13

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

Lab Sample No.: 725421 Date Analyzed: 9/26/2007

Date Received: 9/24/2007

Tľ

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	7.7	υ	7.7	38	U	38
1,2-Dichlorotetrafluoroethane	76-14-2	3.1	U	3.1	22	U	22
Chloromethane	74-87-3	7.7	U	7.7	16	U	16
Vinyl Chloride	75-01-4	3.1	U	3.1	7.9	U	7.9
1,3-Butadiene	106-99-0	7.7	U	7.7	17	U	17
Bromomethane	74-83-9	3.1	U	3.1	12	U	12
Chloroethane	75-00-3	7.7	U	7.7	20	U	20
Bromoethene	593-60-2	3.1	U	3.1	14	U	14
Trichlorofluoromethane	75-69-4	3.1	U	3.1	17	U	17
Freon TF	76-13-1	3.1	U	3.1	24	U	24
1,1-Dichloroethene	75-35-4	3.1	U	3.1	12	U	12
Acetone	67-64-1	77	U	77	180	U	180
Isopropyl Alcohol	67-63-0	77	U	77	190	U	190
Carbon Disulfide	75-15-0	7.7	U	7.7	24	U	24
3-Chloropropene	107-05-1	7.7	U	7.7	24	U	24
Methylene Chloride	75-09-2	7.7	U	7.7	27	U	27
tert-Butyl Alcohol	75-65-0	77	U	77	230	U	230
Methyl tert-Butyl Ether	1634-04-4	7.7	U	7.7	28	U	28
trans-1,2-Dichloroethene	156-60-5	3.1	U	3.1	12	U	12
n-Hexane	110-54-3	7.7	U	7.7	27	U	27
1,1-Dichloroethane	75-34-3	3.1	U	3.1	13	U	13
1,2-Dichloroethene (total)	540-59-0	3.1	U	3.1	12	U	12
Methyl Ethyl Ketone	78-93-3	7.7	U	7.7	23	U	23
cis-1,2-Dichloroethene	156-59-2	3.1	U	3.1	12	U	12
	109-99-9	77	U	77	230	U	230
Chloroform	67-66-3	3.1	U	3.1	15	U	15
1,1,1-Trichloroethane	71-55-6	3.1	U	3.1	17	U	17
Cyclohexane	110-82-7	3.1	U	3.1	11	U	11
Carbon Tetrachloride	56-23-5	3.1	U	3.1	20	U	20
2,2,4-Trimethylpentane	540-84-1	16		3.1	75		14
Benzene	71-43-2	3.1	U	3.1	9,9	U	9.9
1,2-Dichloroethane	107-06-2	3.1	U	3.1	13	U	13
n-Heptane	142-82-5	3.9		3,1	16		13

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-13

Lab Sample No.: 725421 Date Analyzed: 9/26/2007

Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	3.1	U	3.1	17	U	17
1,2-Dichloropropane	78-87-5	3.1	U	3.1	14	U	14
1,4-Dioxane	123-91-1	77	U	77	280	U	280
Bromodichloromethane	75-27-4	3.1	U	3.1	21	U	21
cis-1,3-Dichloropropene	10061-01-5	3.1	U	3.1	14	U	14
Methyl Isobutyl Ketone	108-10-1	7.7	U	7.7	32	U	32
Toluene	108-88-3	29		3.1	110		12
trans-1,3-Dichloropropene	10061-02-6	3.1	U	3.1	14	U	14
1,1,2-Trichloroethane	79-00-5	3.1	U	3.1	17	U	17
Tetrachloroethene	127-18-4	400		3.1	2700		21
Methyl Butyl Ketone	591-78-6	7.7	U	7.7	32	U	32
Dibromochloromethane	124-48-1	3.1	U	3.1	26	U	26
1,2-Dibromoethane	106-93-4	3.1	U	3.1	24	U	24
Chlorobenzene	108-90-7	3.1	U	3.1	14	υ	14
Ethylbenzene	100-41-4	3.4		3.1	15		13
Xylene (m,p)	1330-20-7	9.5		7.7	41		33
Xylene (o)	95-47-6	3.6		3.1	16		13
Xylene (total)	1330-20-7	13		3.1	56		13
Styrene	100-42-5	3.1	U	3.1	13	U	13
Bromoform	75-25-2	3.1	U	3,1	32	U	32
1,1,2,2-Tetrachloroethane	79-34-5	3.1	U	3.1	21	U	21
4-Ethyltoluene	622-96-8	3.1	U	3.1	15	U	15
1,3,5-Trimethylbenzene	108-67-8	3.1	. U	3.1	15	U	15
2-Chlorotoluene	95-49-8	3.1	U	3.1	16	U	16
1,2,4-Trimethylbenzene	95-63-6	3.1	U	3.1	15	U	15
1,3-Dichlorobenzene	541-73-1	3.1	U	3.1	19	U	19
1,4-Dichlorobenzene	106-46-7	3.1	U	3.1	19	U	19
1,2-Dichlorobenzene	95-50-1	3.1	U	3.1	19	U	19
1,2,4-Trichlorobenzene	120-82-1	7.7	U	7.7	57	U	57
Hexachlorobutadiene	87-68-3	3.1	υJ	3.1	33	U	33
Naphthalene	91-20-3	7.7	U	7.7	40	U	40

TO-14/15 **Result Summary**

TAL Burlington Lab Name:

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-12

Lab Sample No.: 725422 Date Analyzed: 9/27/2007

Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0,63	U	0.63	3.1	υ	3.1.
1,2-Dichlorotetrafluoroethane	76-14-2	0.25	U	0.25	1.7	U	1.7
Chloromethane	74-87-3	0.63	U	0.63	1.3	U	1.3
Vinyl Chloride	75-01-4	0.25	U	0.25	0.64	U	0.64
1,3-Butadiene	106-99-0	5.6		0.63	12		1.4
Bromomethane	74-83-9	0.25	U	0.25	0.97	U	0.97
Chloroethane	75-00-3	0.63	U	0.63	1.7	U	1.7
Bromoethene	593-60-2	0.25	U	0.25	1.1	U	1.1
Trichlorofluoromethane	75-69-4	0.64		0.25	3.6		1.4
Freon TF	76-13-1	0.25	U	0.25	1.9	U	1.9
1,1-Dichloroethene	75-35-4	0.25	U	0.25	0.99	U	0.99
Acetone	67-64-1	47		6.3	110		15
Isopropyl Alcohol	67-63-0	6.3	U	6.3	15	U	15
Carbon Disulfide	75-15-0	1.4		0.63	4.4		2.0
3-Chloropropene	107-05-1	0.63	U	0,63	2,0	U	2.0
Methylene Chloride	75-09-2	0.63	U	0.63	2.2	U	2.2
tert-Butyl Alcohol	75-65-0	6,3	υ	6.3	19	U	19
Methyl tert-Butyl Ether	1634-04-4	0.63	U	0.63	2.3	U	2.3
trans-1,2-Dichloroethene	156-60-5	0.25	U	0.25	0,99	U	0.99
n-Hexane	110-54-3	2.3		0.63	8.1		2.2
1,1-Dichloroethane	75-34-3	0.25	U	0.25	1.0	U	1.0
1,2-Dichloroethene (total)	540-59-0	0.25	U	0.25	0,99	U	0.99
Methyl Ethyl Ketone	78-93-3	9,3	1	0.63	27		1.9
cis-1,2-Dichloroethene	156-59-2	0.25	U	0.25	0.99	Ų	0.99
Tetrahydrofuran	109-99-9	6,3	U	6.3	19	U	19
Chloroform	67-66-3	0.25	U	0.25	1.2	U,	1.2
1,1,1-Trichloroethane	71-55-6	2.5		0.25	14		1.4
Cyclohexane	110-82-7	0.33		0.25	1.1		0.86
Carbon Tetrachloride	56-23-5	0.25	U	0.25	1.6	U	1.6
2,2,4-Trimethylpentane	540-84-1	0.98		0.25	4.6		1.2
Benzene	71-43-2	1.0		0.25	3.2		0.80
1,2-Dichloroethane	107-06-2	0.25	U	0.25	1.0	U	1.0
n-Heptane	142-82-5	1.5		0.25	6.1	1	1.0

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-12

Lab Sample No.: 725422 Date Analyzed: 9/27/2007 Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.26		0.25	1.4		1.3
1,2-Dichloropropane	78-87-5	0.25	U	0.25	1.2	U	1.2
1,4-Dioxane	123-91-1	6.3	U	6.3	23	U	23
Bromodichloromethane	75-27-4	0.25	U	0.25	1.7	υ	1.7
cis-1,3-Dichloropropene	10061-01-5	0.25	U	0.25	1.1	U	1.1
Methyl Isobutyl Ketone	108-10-1	0.63	U	0.63	2.6	U	2.6
Toluene	108-88-3	4.6		0.25	17		0.94
trans-1,3-Dichloropropene	10061-02-6	0.25	U	0.25	1.1	U	1.1
1,1,2-Trichloroethane	79-00-5	0.25	U	0.25	1.4	U	1.4
Tetrachloroethene	127-18-4	9.5		0.25	64		1.7
Methyl Butyl Ketone	591-78-6	0.63	U	0.63	2.6	U	2.6
Dibromochloromethane	124-48-1	0.25	U	0.25	2.1	U	2.1
1,2-Dibromoethane	106-93-4	0.25	U	0.25	1.9	U	1.9
Chlorobenzene	108-90-7	0.25	U	0.25	1.2	U	1.2
Ethylbenzene	100-41-4	0.98		0.25	4.3		1.1
Xylene (m,p)	1330-20-7	2.9		0.63	13		2.7
Xylene (o)	95-47-6	1.1		0.25	4.8	1	1.1
Xylene (total)	1330-20-7	4.0	1	0.25	17		1.1
Styrene	100-42-5	0.25	U	0.25	1.1	U	1.1
Bromoform	75-25-2	0.25	U	0.25	2.6	U	2.6
1,1,2,2-Tetrachloroethane	79-34-5	0.25	U	0.25	1.7	U	1.7
4-Ethyltoluene	622-96-8	1.1	1	0.25	5.4		1.2
1,3,5-Trimethylbenzene	108-67-8	0.37	1	0.25	1.8		1.2
2-Chlorotoluene	95-49-8	Q.25	U	0.25	1.3	U	1.3
1,2,4-Trimethylbenzene	95-63-6	1.2		0.25	5.9		1.2
1,3-Dichlorobenzene	541-73-1	0.25	U	0.25	1.5	U	1.5
1,4-Dichlorobenzene	106-46-7	0.25	U	0.25	1.5	U	1.5
1,2-Dichlorobenzene	95-50-1	0.25	U	0.25	1.5	U	1.5
1,2,4-Trichlorobenzene	120-82-1	0.63	U	0.63	4.7	U	4.7
Hexachlorobutadiene	87-68-3	0.25	U_1	0.25	2.7	υJ	2.7
Naphthalene	91-20-3	0.63	U	0.63	3.3	U	3.3

TO-14/15 Result Summary

Lab Name: TAL Burlington

,

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-11

Lab Sample No.: 725423 Date Analyzed: 9/26/2007

Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	5.0	U	5.0	25	U	25
1,2-Dichlorotetrafluoroethane	76-14-2	2.0	U	2.0	14	U	14
Chloromethane	74-87-3	5.0	U	5.0	10	U	10
Vinyl Chloride	75-01-4	2.0	U	2.0	5.1	U	5.1
1,3-Butadiene	106-99-0	5.0	U	5.0	11	U	11
Bromomethane	74-83-9	2.0	U	2.0	7.8	U	7.8
Chloroethane	75-00-3	5.0	U	5.0	13	U	13
Bromoethene	593-60-2	2.0	U	2.0	8.7	U	8.7
Trichlorofluoromethane	75-69-4	4.0		2.0	22		11
Freon TF	76-13-1	2.0	U	2.0	15	U	15
1,1-Dichloroethene	75-35-4	2.0	U	2.0	7.9	U	7.9
Acetone	67-64-1	50	U	50	120	U	120
Isopropyl Alcohol	67-63-0	50	U	50	120	U	120
Carbon Disulfide	75-15-0	5.0	U	5.0	16	U	16
3-Chloropropene	107-05-1	5.0	U	5.0	16	U	16
Methylene Chloride	75-09-2	5.0	U	5.0	17	U	17
tert-Butyl Alcohol	75-65-0	50	U	50	150	U	150
Methyl tert-Butyl Ether	1634-04-4	5.0	υ	5.0	18	U	18
trans-1,2-Dichloroethene	156-60-5	2.0	U	2.0	7.9	U	7.9
n-Hexane	110-54-3	5.0	U	5.0	18	U	18
1,1-Dichloroethane	75-34-3	2.0	U	2.0	8.1	U	8.1
1,2-Dichloroethene (total)	540-59-0	2.0	U	2.0	7.9	U	7.9
Methyl Ethyl Ketone	78-93-3	5.7		5.0	17		15
cis-1,2-Dichloroethene	156-59-2	2.0	U	2.0	7.9	U	7.9
Tetrahydrofuran	109-99-9	50	U	50	150	U	150
Chloroform	67-66-3	2.0	U	2.0	9.8	U	9.8
1,1,1-Trichloroethane	71-55-6	2.0	U	2.0	11	U	11
Cyclohexane	110-82-7	2.0	U	2.0	6.9	U	6.9
Carbon Tetrachloride	56-23-5	2.0	U	2.0	13	U	13
2,2,4-Trimethylpentane	540-84-1	5.6		2.0	26		9.3
Benzene	71-43-2	2.0	U	2.0	6.4	U	6.4
1,2-Dichloroethane	107-06-2	2.0	U	2.0	8,1	U	8.1
n-Heptane	142-82-5	2.4		2.0	9.8		8.2

TAL Burlington Lab Name:

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-11

Lab Sample No.: 725423 Date Analyzed: 9/26/2007

Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	4.4		2.0	24		11
1,2-Dichloropropane	78-87-5	2.0	U	2.0	9.2	U	9.2
1,4-Dioxane	123-91-1	50	U	50	180	U	180
Bromodichloromethane	75-27-4	2.0	U	2.0	13	U	13
cis-1,3-Dichloropropene	10061-01-5	2.0	U	2.0	9.1	U	9.1
Methyl Isobutyl Ketone	108-10-1	5.0	U	5.0	20	U	20
Toluene	108-88-3	14		2.0	53		7.5
trans-1,3-Dichloropropene	10061-02-6	2.0	U	2.0	9.1	U	9.1
1,1,2-Trichloroethane	79-00-5	2.0	U	2.0	11	U	11
Tetrachloroethene	127-18-4	360		2.0	2400		14
Methyl Butyl Ketone	591-78-6	5.0	U	5.0	20	U	20
Dibromochloromethane	124-48-1	2.0	υ	2.0	17	U	17
1,2-Dibromoethane	106-93-4	2.0	U	2.0	15	U	15
Chlorobenzene	108-90-7	2.0	U	2.0	9.2	U	9.2
Ethylbenzene	100-41-4	2.4		2.0	10		8.7
Xylene (m,p)	1330-20-7	6.6		5.0	29		22
Xylene (o)	95-47-6	2.5		2.0	11		8.7
Xylene (total)	1330-20-7	9.3		2.0	40	1	8.7
Styrene	100-42-5	2.0	U	2.0	8.5	U	8.5
Bromoform	75-25-2	2.0	U	2.0	21	U	21
1,1,2,2-Tetrachloroethane	79-34-5	2.0	U	2.0	14	U	14
4-Ethyltoluene	622-96-8	2.2		2.0	11		9.8
1,3,5-Trimethylbenzene	108-67-8	2,0	U	2.0	9.8	U	9.8
2-Chlorotoluene	95-49-8	2.0	U	2.0	10	U	10
1,2,4-Trimethylbenzene	95-63-6	2.3		2.0	11		9.8
1,3-Dichlorobenzene	541-73-1	2.0	U	2.0	12	U	12
1,4-Dichlorobenzene	106-46-7	2,0	U	2.0	12	U	12
1,2-Dichlorobenzene	95-50-1	2.0	U	2.0	12	U	12
1,2,4-Trichlorobenzene	120-82-1	5.0	U	5.0	37	U	37
Hexachlorobutadiene	87-68-3	2.0	Ľ U	2.0	21	υĴ	21
Naphthalene	91-20-3	5.0	U	5.0	26	U	26

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-5

Lab Sample No.: 725424 Date Analyzed: 9/26/2007 Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	5.0	U	5.0	25	U	25
,2-Dichlorotetrafluoroethane	76-14-2	2.0	U	2.0	14	U	14
Chloromethane	74-87-3	5.0	U	5.0	10	U	10
/inyl Chloride	75-01-4	2.0	U	2.0	5.1	U	5.1
I,3-Butadiene	106-99-0	5.0	U	5.0	11	U	11
Bromomethane	74-83-9	2.0	U	2.0	7.8	U	7.8
Chloroethane	75-00-3	5.0	U	5.0	13	U	13
Bromoethene	593-60-2	2.0	U	2.0	8.7	υ	8.7
Trichlorofluoromethane	75-69-4	9.2		2.0	52	ļ	11
Freon TF	76-13-1	2.0	U	2.0	15	U	15
1,1-Dichloroethene	75-35-4	2.0	U	2.0	7.9	U	7.9
Acetone	67-64-1	50	U	50	120	U	120
Isopropyl Alcohol	67-63-0	50	U	50	120	U	120
Carbon Disulfide	75-15-0	5.0	υ	5.0	16	U	16
3-Chloropropene	107-05-1	5.0	υ	5.0	16	U	16
Methylene Chloride	75-09-2	5.0	U	5.0	17	U	17
tert-Butyl Alcohol	75-65-0	50	U	50	150	U	150
Methyl tert-Butyl Ether	1634-04-4	5.0	U	5.0	18	U	18
trans-1,2-Dichloroethene	156-60-5	2.0	U	2.0	7.9	U	7.9
n-Hexane	110-54-3	5.0	U	5.0	. 18	U	18
1,1-Dichloroethane	75-34-3	2.0	U	2.0	8.1	U	8.1
1,2-Dichloroethene (total)	540-59-0	2.0	U	2.0	7.9	U	7.9
Methyl Ethyl Ketone	78-93-3	5.0	U	5.0	15	U	15
cis-1,2-Dichloroethene	156-59-2	2.0	U	2.0	7.9	U	7.9
Tetrahydrofuran	109-99-9	50	U	50	150	U	150
Chloroform	67-66-3	2.0	U	2.0	9.8	U	9.8
1,1,1-Trichloroethane	71-55-6	2.0	U	2.0	11	U	11
Cyclohexane	110-82-7	2.0	U	2.0	6.9	U	6.9
Carbon Tetrachloride	56-23-5	2.0	U	2.0	13	U	13
2.2,4-Trimethylpentane	540-84-1	4.4		2.0	21		9.3
Benzene	71-43-2	2.0	U	2.0	6.4	U	6.4
1,2-Dichloroethane	107-06-2	2.0	U	2.0	8.1	U	8.1
n-Heptane	142-82-5	2.0	U	2.0	8.2	U	8.2

CLIENT SAMPLE NO.

SG-5

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

Lab Sample No.: 725424 Date Analyzed: 9/26/2007 Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	210		2.0	1100		11
1,2-Dichloropropane	78-87-5	2.0	U	2.0	9.2	υ	9.2
1,4-Dioxane	123-91-1	50	U	50	180	U	180
Bromodichloromethane	75-27-4	2.0	υ	2.0	13	U	13
cis-1,3-Dichloropropene	10061-01-5	2.0	U	2.0	9.1	U	9.1
Methyl Isobutyl Ketone	108-10-1	5.0	U	5.0	20	υ	20
Toluene	108-88-3	11		2.0	41		7.5
trans-1,3-Dichloropropene	10061-02-6	2.0	U	2.0	9.1	U	9,1
1,1,2-Trichloroethane	79-00-5	2.0	U	2.0	11	U	11
Tetrachloroethene	127-18-4	330		2.0	2200		14
Methyl Butyl Ketone	591-78-6	5.0	U	5.0	20	U	20
Dibromochloromethane	124-48-1	2.0	U	2.0	17	U	17
1,2-Dibromoethane	106-93-4	2.0	U	2.0	15	U	15
Chlorobenzene	108-90-7	2.0	U	2.0	9.2	U	9.2
Ethylbenzene	100-41-4	2,0	U	2.0	8.7	U	8.7
Xylene (m,p)	1330-20-7	5.0	U	5.0	22	U	22
Xylene (o)	95-47-6	2.0	U	2.0	8.7	U	8.7
Xylene (total)	1330-20-7	2.0	U	2.0	8.7	U	8.7
Styrene	100-42-5	2.0	U	2.0	8.5	U	8.5
Bromoform	75-25-2	2.0	U	2.0	21	U	21
1,1,2,2-Tetrachloroethane	79-34-5	2.0	U	2.0	14	U	14
4-Ethyltoluene	622-96-8	2.0	U	2.0	9.8	U	9.8
1,3,5-Trimethylbenzene	108-67-8	2.0	U	2.0	9.8	U	9.8
2-Chlorotoluene	95-49-8	2.0	U	2.0	10	U	10
1,2,4-Trimethylbenzene	95-63-6	2.0	U	2.0	9.8	U	9.8
1,3-Dichlorobenzene	541-73-1	2.0	U	2.0	12	U	12
1,4-Dichlorobenzene	106-46-7	2.0	U	2.0	12	U	12
1,2-Dichlorobenzene	95-50-1	2.0	U	2.0	12	U	12
1,2,4-Trichlorobenzene	120-82-1	5.0	U	5.0	37	U	37
Hexachlorobutadiene	87-68-3	2.0	υŢ	2.0	21	Lυ	21
Naphthalene	91-20-3	5.0	U	5.0	26	U	26

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-10

Lab Sample No.: 725425 Date Analyzed: 9/27/2007 Date Received: 9/24/2007

		Results		RL	Results		RL
Target Compound	CAS Number	in ppbv	Q	in ppbv	in ug/m3	Q	in ug/m3
Dichlorodifluoromethane	75-71-8	0.50	U	0.50	2.5	υ	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	υ	0.20	1.4	U	1.4
Chloromethane	74-87-3	0.50	U	0.50	1.0	U	1.0
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	1.9		0.50	4.2		1.1
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.50	U	0.50	1.3	U	1.3
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	0.26		0.20	1.5		1.1
Freon TF	76-13-1	0.20	U	0.20	1.5	U	1.5
1,1-Dichloroethene	75-35-4	0.20	U	0.20	0.79	U	0.79
Acetone	67-64-1	37		5.0	88		12
Isopropyl Alcohol	67-63-0	5.0	U	5.0	12	U	12
Carbon Disulfide	75-15-0	0.95		0.50	3.0		1.6
3-Chloropropene	107-05-1	0.50	U	0.50	1.6	U	1.6
Methylene Chloride	75-09-2	0.50	υ	0.50	1.7	U	1.7
tert-Butyl Alcohol	75-65-0	5.0	U	5.0	15	U	15
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
n-Hexane	110-54-3	1.2		0.50	4.2		1.8
1,1-Dichloroethane	75-34-3	0.20	U	0.20	0.81	U	0.81
1,2-Dichloroethene (total)	540-59-0	0.20	U	0.20	0,79	U	0.79
Methyl Ethyl Ketone	78-93-3	5.1		0.50	15		1.5
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
	109-99-9	5.0	U	5.0	15	U	15
Chloroform	67-66-3	0.20	U	0.20	0,98	U	0.98
 1,1,1-Trichloroethane	71-55-6	0.20	U	0.20	1.1	U	1.1
Cyclohexane	110-82-7	0.20	U	0.20	0.69	U	0.69
Carbon Tetrachloride	56-23-5	0.20	U	0.20	1.3	U	1.3
2,2,4-Trimethylpentane	540-84-1	1.6		0.20	7.5		0.93
Benzene	71-43-2	0.65		0.20	2.1		0.64
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.91		0.20	3.7		0.82

CLIENT SAMPLE NO.

SG-10

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

Lab Sample No.: 725425 Date Analyzed: 9/27/2007 Date Received: 9/24/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
1,4-Dioxane	123-91-1	5.0	U	5.0	18	U	18
Bromodichloromethane	75-27-4	0.20	U	0.20	1.3	U	1.3
cis-1,3-Dichloropropene	10061-01-5	0.20	U	0.20	0.91	U	0.91
Methyl Isobutyl Ketone	108-10-1	0.50	U	0.50	2.0	U	2.0
Toluene	108-88-3	5.8		0.20	22		0.75
trans-1,3-Dichloropropene	10061-02-6	0.20	U	0.20	0.91	U	0.91
1,1,2-Trichloroethane	79-00-5	0.20	U	0.20	1.1	U	1.1
Tetrachloroethene	127-18-4	1.2		0.20	8.1		1.4
Methyl Butyl Ketone	591-78-6	0.76		0.50	3.1		2.0
Dibromochloromethane	124-48-1	0.20	U	0.20	1.7	U	1.7
1,2-Dibromoethane	106-93-4	0.20	U	0.20	1.5	U	1.5
Chlorobenzene	108-90-7	0.20	U	0.20	0.92	U	0.92
Ethylbenzene	100-41-4	1.1		0.20	4.8		0.87
Xylene (m,p)	1330-20-7	3.3		0.50	14		2.2
Xylene (o)	95-47-6	1.3		0.20	5.6		0.87
Xylene (total)	1330-20-7	4.7		0.20	20		0,87
Styrene	100-42-5	0.20	U	0.20	0.85	U	0.85
Bromoform	75-25-2	0.20	U	0.20	2.1	U	2.1
1,1,2,2-Tetrachloroethane	79-34-5	0.20	U	0.20	1.4	Ū	1.4
4-Ethyltoluene	622-96-8	1.3		0.20	6.4		0.98
1,3,5-Trimethylbenzene	108-67-8	0.39		0.20	1.9		0.98
2-Chlorotoluene	95-49-8	0.20	U	0.20	1.0	U	1.0
1,2,4-Trimethylbenzene	95-63-6	1.4		0.20	6.9		0.98
1,3-Dichlorobenzene	541-73-1	0.20	U	0.20	1.2	U	1.2
1,4-Dichlorobenzene	106-46-7	0.20	υ	0.20	1.2	U	1.2
1,2-Dichlorobenzene	95-50-1	0.20	U	0.20	1.2	U	1.2
1,2,4-Trichlorobenzene	120-82-1	0.50	U	0.50	3.7	U	3.7
Hexachlorobutadiene	87-68-3	0.20	U	0.20	2.1	Lu	2.1
Naphthalene	91-20-3	0.50	U	0.50	2.6	U	2.6

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-3

Lab Sample No.: 725686 Date Analyzed: 9/29/2007

Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	45	U	45	220	U	220
,2-Dichlorotetrafluoroethane	76-14-2	18	υ	18	130	U	130
Chloromethane	74-87-3	45	U	45	93	U	93
/inyl Chloride	75-01-4	18	U	18	46	U	46
I,3-Butadiene	106-99-0	45	U	45	100	U .	100
Bromomethane	74-83-9	18	U	18	70	U	70
Chloroethane	75-00 - 3	45	U	45	120	U	120
Bromoethene	593 - 60-2	18	U	18	79	U	79
Trichlorofluoromethane	75-69-4	18	U	18	100	U	100
Freon TF	76-13-1	18	U	18	140	U	140
1,1-Dichloroethene	75-35-4	18	U	18	71	U	71
Acetone	67-64-1	450	U	450	1100	U	1100
Isopropyl Alcohol	67-63-0	450	U	450	1100	υ	1100
Carbon Disulfide	75-15-0	45	U	45	140	U	140
3-Chloropropene	107-05-1	45	U	45	140	U	140
Methylene Chloride	75-09-2	45	U	45	160	U	160
tert-Butyl Alcohol	75-65-0	450	U	450	1400	U	1400
Methyl tert-Butyl Ether	1634-04-4	45	U	45	160	U	160
trans-1,2-Dichloroethene	156-60-5	18	U	18	71	U	71
n-Hexane	110-54-3	45	U	45	160	U	160
1,1-Dichloroethane	75-34-3	18	U	18	73	U	73
1,2-Dichloroethene (total)	540-59-0	20		18	79		71
Methyl Ethyl Ketone	78-93-3	45	U	45	130	U	130
cis-1,2-Dichloroethene	156-59-2	20		18	79		71
Tetrahydrofuran	109-99-9	450	U	450	1300	U	1300
Chloroform	67-66-3	18	U	18	88	U	88
1,1,1-Trichloroethane	71-55-6	18	U	18	98	U	98
Cyclohexane	110-82-7	18	U	18	62	U	62
Carbon Tetrachloride	56-23-5	18	U	18	110	U	110
2,2,4-Trimethylpentane	540-84-1	18	U	18	84	U	84
Benzene	71-43-2	18	U	18	58	U	58
1,2-Dichloroethane	107-06-2	18	U	18	73	U	73
n-Heptane	142-82-5	18	U	18	74	U	74

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-3

Lab Sample No.: 725686 Date Analyzed: 9/29/2007

Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppb∨	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	73		18	390		97
1,2-Dichloropropane	78-87-5	18	U	18	83	U	83
1,4-Dioxane	123-91-1	450	U	450	1600	U	1600
Bromodichloromethane	75-27-4	18	U	18	120	U	120
cis-1,3-Dichloropropene	10061-01-5	18	U	18	82	U	82
Methyl Isobutyl Ketone	108-10-1	45	υ	45	180	υ	180
Toluene	108-88-3	18	U	18	68	U	68
trans-1,3-Dichloropropene	10061-02-6	18	U	18	82	U	82
1,1,2-Trichloroethane	79-00-5	18	U	18	98	U	98
Tetrachloroethene	127-18-4	2300		18	16000		120
Methyl Butyl Ketone	591-78-6	45	U	45	180	U	180
Dibromochloromethane	124-48-1	18	U	18	150	Ų	150
1,2-Dibromoethane	106-93-4	18	U	18	140	U	140
Chlorobenzene	108-90-7	18	U	18	83	U	83
Ethylbenzene	100-41-4	18	U	18	78	U	78
Xylene (m,p)	1330-20-7	45	U	45	200	U	200
Xylene (o)	95-47-6	18	U	18	78	U	78
Xylene (total)	1330-20-7	18	U	18	78	υ	78
Styrene	100-42-5	18	U	18	77	U	77
Bromoform	75-25-2	18	U	18	190	U	190
1,1,2,2-Tetrachloroethane	79-34-5	18	U	18	120	U	120
4-Ethyltoluene	622-96-8	18	U	18	88	U	88
1,3,5-Trimethylbenzene	108-67-8	18	U	18	88	U	88
2-Chlorotoluene	95-49-8	18	U	18	93	U	93
1,2,4-Trimethylbenzene	95-63-6	18	U	18	88	U	88
1,3-Dichlorobenzene	541-73-1	18	U	18	110	U	110
1,4-Dichlorobenzene	106-46-7	18	U	18	110	U	110
1,2-Dichlorobenzene	95-50-1	18	U	18	110	U	110
1,2,4-Trichlorobenzene	120-82-1	45	U	45	330	U	330
Hexachlorobutadiene	87-68-3	18	L n	18	190	L n	190
Naphthalene	91-20-3	45	U	45	240	U	240

CLIENT SAMPLE NO.

SG-8

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

Lab Sample No.: 725687 Date Analyzed: 9/28/2007 Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	14	U	14	69	U	69
1,2-Dichlorotetrafluoroethane	76-14-2	5.4	U	5.4	38	U	38
Chloromethane	74-87-3	14	U	14	29	U	29
Vinyl Chloride	75-01-4	5.4	U	5.4	14	U	
1,3-Butadiene	106-99-0	14	U	14	31	U	31
Bromomethane	74-83-9	5.4	U	5.4	21	U	21
Chloroethane	75-00-3	14	U	14	37	U	37
Bromoethene	593-60-2	5.4	U	5.4	24	U	24
Trichlorofluoromethane	75-69-4	5.4	U	5.4	30	U	30
Freon TF	76-13-1	5.4	U	5.4	41	U	41
1,1-Dichloroethene	75-35-4	5.4	U	5.4	21	U	21
Acetone	67-64-1	140	U	140	330	U	330
Isopropyl Alcohol	67-63-0	140	U	140	340 .	U	340
Carbon Disulfide	75-15-0	14	U	14	44	U	44
3-Chloropropene	107-05-1	14	U	14	44	U	44
Methylene Chloride	75-09-2	14	U	14	49	U	49
tert-Butyl Alcohol	75-65-0	140	U	140	420	U	420
Methyl tert-Butyl Ether	1634-04-4	14	U	14	50	U	50
trans-1,2-Dichloroethene	156-60-5	5.4	U	5.4	21	U	21
n-Hexane	110-54-3	14	U	14	49	U	49
1,1-Dichloroethane	75-34-3	5.4	U	5.4	22	U	22
1,2-Dichloroethene (total)	540-59-0	5.4	U	5.4	21	U	21
Methyl Ethyl Ketone	78-93-3	14	U	14	41	U	41
cis-1,2-Dichloroethene	156-59-2	5.4	U	5.4	21	U	21
Tetrahydrofuran	109-99-9	140	U	140	410	U	410
Chloroform	67-66-3	5.4	U	5.4	26	U	26
1,1,1-Trichloroethane	71-55-6	5.4	U	5.4	29	U	29
Cyclohexane	110-82-7	5.4	U	5.4	19	U	19
Carbon Tetrachloride	56-23-5	5.4	U	5.4	34	U	34
2,2,4-Trimethylpentane	540-84-1	5.4	U	5.4	25	υ	25
Benzene	71-43-2	5.4	U	5.4	17	U	17
1,2-Dichloroethane	107-06-2	5.4	U	5.4	22	U	22
n-Heptane	142-82-5	5.4	υ	5.4	22	U	22

CLIENT SAMPLE NO.

SG-8

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

Lab Sample No.: 725687 Date Analyzed: 9/28/2007 Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	9.0		5.4	48		29
1,2-Dichloropropane	78-87-5	5.4	U	5.4	25	U	25
1,4-Dioxane	123-91-1	140	U	140	500	U	500
Bromodichloromethane	75-27-4	5.4	U	5.4	36	U	36
cis-1,3-Dichloropropene	10061-01-5	5.4	U	5.4	25	U	25
Methyl Isobutyl Ketone	108-10-1	14	U	14	57	U	57
Toluene	108-88-3	22		5.4	83		20
trans-1,3-Dichloropropene	10061-02-6	5.4	U	5.4	25	U	25
1,1,2-Trichloroethane	79-00-5	5,4	U	5.4	29	U	29
Tetrachloroethene	127-18-4	660	1	5.4	4500		37
Methyl Butyl Ketone	591-78-6	14	U	14	57	U	57
Dibromochloromethane	124-48-1	5.4	U	5.4	46	U	46
1,2-Dibromoethane	106-93-4	5.4	υ	5.4	41	U	41
Chlorobenzene	108-90-7	5.4	U	5.4	25	U	25
Ethylbenzene	100-41-4	5.4	U	5.4	23	U	23
Xylene (m,p)	1330-20-7	14	U	14	61	U	61
Xylene (o)	95-47-6	5.4	U	5.4	23	U	23
Xylene (total)	1330-20-7	5.4	U	5.4	23	υ	23
Styrene	100-42-5	5.4	U	5.4	23	U	23
Bromoform	75-25-2	5.4	U	5.4	56	U	56
1,1,2,2-Tetrachloroethane	79-34-5	5.4	U	5.4	37	U	37
4-Ethyltoluene	622-96-8	5.4	U	5.4	27	U	27
1,3,5-Trimethylbenzene	108-67-8	5.4	U	5.4	27	U	27
2-Chlorotoluene	95-49-8	5.4	U	5.4	28	U	28
1,2,4-Trimethylbenzene	95-63-6	5.4	U	5.4	27	U	27
1,3-Dichlorobenzene	541-73-1	5.4	U	5.4	32	U	32
1,4-Dichlorobenzene	106-46-7	5.4	U	5.4	32	U	32
1,2-Dichlorobenzene	95-50-1	5.4	U	5.4	32	U	32
1,2,4-Trichlorobenzene	120-82-1	14	U	14	100	U	100
Hexachlorobutadiene	87-68-3	5.4	υJ	5.4	58	U	58
Naphthalene	91-20-3	14	U	14	73	U	73

∟ab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-18

Lab Sample No.: 725688 Date Analyzed: 9/28/2007

Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
		1-1-1					
Dichlorodifluoromethane	75-71-8	1.5	U	1.5	7.4	U	7.4
1,2-Dichlorotetrafluoroethane	76-14-2	0.59	U	0.59	4.1	υ	4.1
Chloromethane	74-87-3	1.5	U	1.5	3.1	U	3.1
Vinyl Chloride	75-01-4	0.59	U	0.59	1.5	U	1.5
1,3-Butadiene	106-99-0	1.5	U	1.5	3.3	U	3.3
Bromomethane	74-83-9	0.59	U	0.59	2.3	U	2.3
Chloroethane	75-00-3	1.5	U	1.5	4.0	U	4,0
Bromoethene	593-60-2	0.59	U	0.59	2.6	U	2.6
Trichlorofluoromethane	75-69-4	0.59	U	0.59	3.3	U	3,3
Freon TF	76-13-1	0.59	U	0,59	4.5	U	4.5
1,1-Dichloroethene	75-35-4	0,59	U	0.59	2.3	U	2.3
Acetone	67-64-1	34		15	81		36
Isopropyl Alcohol	67-63-0	15	U	15	37	U	37
Carbon Disulfide	75-15-0	1.5	U	1.5	4.7	U	4.7
3-Chloropropene	107-05-1	1.5	U	1.5	4.7	U	4.7
Methylene Chloride	75-09-2	1.5	U	1.5	5.2	U	5.2
tert-Butyl Alcohol	75-65-0	15	U	15	45	U	45
Methyl tert-Butyl Ether	1634-04-4	1.5	U	1.5	5.4	U	5.4
trans-1,2-Dichloroethene	156-60-5	0.59	U	0.59	2.3	U	2.3
n-Hexane	110-54-3	1.5	U	1.5	5.3	U	5.3
1,1-Dichloroethane	75-34-3	0.59	U	0.59	2.4	U	2.4
1,2-Dichloroethene (total)	540-59-0	0.59	U	0.59	2.3	U	2.3
Methyl Ethyl Ketone	78-93-3	5.0		1.5	15		4.4
cis-1,2-Dichloroethene	156-59-2	0.59	U	0.59	2.3	U	2.3
Tetrahydrofuran	109-99-9	15	U	15	44	U	44
Chloroform	67-66-3	0.59	U	0.59	2.9	U	2.9
1,1,1-Trichloroethane	71-55-6	0.59	U	0,59	3.2	U	3.2
Cyclohexane	110-82-7	0.59	U	0.59	2.0	U	2.0
Carbon Tetrachloride	56-23-5	0.59	U	0.59	3.7	U	3.7
2,2,4-Trimethylpentane	540-84-1	0.82		0.59	3.8		2.8
Benzene	71-43-2	0.59	U	0.59	1.9	U	1.9
1,2-Dichloroethane	107-06-2	0.59	U	0.59	2,4	U	2.4
n-Heptane	142-82-5	1.2		0.59	4.9		2.4

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-18

Lab Sample No.: 725688 Date Analyzed: 9/28/2007 Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.59	U	0.59	3.2	U	3.2
1,2-Dichloropropane	78-87-5	0.59	U	0.59	2.7	U	2.7
1,4-Dioxane	123-91-1	15	U	15	54	U	54
Bromodichloromethane	75-27-4	0.59	U	0.59	4.0	U	4.0
cis-1,3-Dichloropropene	10061-01-5	0.59	U	0.59	2.7	U	2.7
Methyl Isobutyl Ketone	108-10-1	1.5	U	1.5	6.1	U	6.1
Toluene	108-88-3	5.7		0.59	21		2.2
trans-1,3-Dichloropropene	10061-02-6	0.59	U	0.59	2.7	U	2.7
1,1,2-Trichloroethane	79-00-5	0.59	U	0.59	3.2	U	3.2
Tetrachloroethene	127-18-4	0.67		0.59	4.5		4.0
Methyl Butyl Ketone	591-78-6	1.5	U	1.5	6.1	U	6,1
Dibromochloromethane	124-48-1	0,59	U	0.59	5.0	U	5.0
1,2-Dibromoethane	106-93-4	0.59	U	0.59	4.5	U	4.5
Chlorobenzene	108-90-7	0.59	U	0.59	2.7	U	2.7
Ethylbenzene	100-41-4	1.7		0.59	7.4		2.6
Xylene (m,p)	1330-20-7	5.2		1.5	23		6.5
Xylene (o)	95-47-6	2.2		0,59	9.6		2.6
Xylene (total)	1330-20-7	7.5		0.59	33		2.6
Styrene	100-42-5	0.59	U	0.59	2.5	U	2.5
Bromoform	75-25-2	0.59	U	0,59	6.1	U	6.1
1,1,2,2-Tetrachloroethane	79-34-5	0.59	U	0,59	4.1	U	4.1
4-Ethyltoluene	622-96-8	3.6		0.59	18		2.9
1,3,5-Trimethylbenzene	108-67-8	1.3		0.59	6.4		2.9
2-Chlorotoluene	95-49-8	0.59	U	0.59	3.1	U	3.1
1,2,4-Trimethylbenzene	95-63-6	4.7		0.59	23		2.9
1,3-Dichlorobenzene	541-73-1	0.59	U	0.59	3.5	U	3.5
1,4-Dichlorobenzene	106-46-7	0.59	U	0,59	3.5	U	3,5
1,2-Dichlorobenzene	95-50-1	0.59	U	0,59	3.5	U	3.5
1,2,4-Trichlorobenzene	120-82-1	1.5	U	1.5	11	U	11
Hexachlorobutadiene	87-68-3	0.59	U)	0.59	6,3	UJ	6.3
Naphthalene	91-20-3	1.5	U	1.5	7.9	U	7.9

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-9

Lab Sample No.: 725689 Date Analyzed: 10/1/2007

Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	500	U	500	2500	U	2500
1,2-Dichlorotetrafluoroethane	76-14-2	200	U	200	1400	U	1400
Chloromethane	74-87-3	500	U	500	1000	U	1000
Vinyl Chloride	75-01-4	200	U	200	510	U	510
1,3-Butadiene	106-99-0	500	U	500	1100	U	1100
Bromomethane	74-83-9	200	U	200	780	U	780
Chloroethane	75-00-3	500	U	500	1300	U	1300
Bromoethene	593-60-2	200	U	200	870	U	870
Trichlorofluoromethane	75-69-4	200	υ	200	1100	U	1100
Freon TF	76-13-1	200	U	200	1500	U	1500
1,1-Dichloroethene	75-35-4	200	U	200	790	U	790
Acetone	67-64-1	5000	U	5000	12000	U	12000
Isopropyl Alcohol	67-63-0	5000	U	5000	12000	U	12000
Carbon Disulfide	75-15-0	500	U	500	1600	U	1600
3-Chloropropene	107-05-1	500	U	500	1600	U	1600
Methylene Chloride	75-09-2	500	U	500	1700	U	1700
tert-Butyl Alcohol	75-65-0	5000	U	5000	15000	U	15000
Methyl tert-Butyl Ether	1634-04-4	500	U	500	1800	U	1800
trans-1,2-Dichloroethene	156-60-5	740		200	2900		790
n-Hexane	110-54-3	500	U	500	1800	U	1800
1,1-Dichloroethane	75-34-3	200	U	200	810	U	810
1,2-Dichloroethene (total)	540-59-0	35000		200	140000		790
Methyl Ethyl Ketone	78-93-3	500	U	500	1500	U	1500
cis-1,2-Dichloroethene	156-59-2	35000		200	140000		790
Tetrahydrofuran	109-99-9	5000	U	5000	15000	U	15000
Chloroform	67-66-3	200	U	200	980	U	980
1,1,1-Trichloroethane	71-55-6	200	U	200	1100	U	1100
Cyclohexane	110-82-7	200	U	200	690	U	690
Carbon Tetrachloride	56-23-5	200	U	200	1300	U	1300
2,2,4-Trimethylpentane	540-84-1	200	U	200	930	U	930
Benzene	71-43-2	200	U	200	640	U	640
1,2-Dichloroethane	107-06-2	200	U	200	810	U	810
n-Heptane	142-82-5	200	U	200	820	U	820

5

TO-14/15 **Result Summary**

TAL Burlington Lab Name:

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

SG-9

Lab Sample No.: 725689 Date Analyzed: 10/1/2007

Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv .	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	6700		200	36000		1100
1,2-Dichloropropane	78-87-5	200	U	200	920	U	920
1,4-Dioxane	123-91-1	5000	U	5000	18000	U	18000
Bromodichloromethane	75-27-4	200	U	200	1300	U	1300
cis-1,3-Dichloropropene	10061-01-5	200	U	200	910	U	910
Methyl Isobutyl Ketone	108-10-1	500	U	500	2000	U	2000
Toluene	108-88-3	200	U	200	750	U	750
trans-1,3-Dichloropropene	10061-02-6	200	U	200	910	U	910
1,1,2-Trichloroethane	79-00-5	200	U	200	1100	U	1100
Tetrachloroethene	127-18-4	22000	1	200	150000		1400
Methyl Butyl Ketone	591-78-6	500	υ	500	2000	U	2000
Dibromochloromethane	124-48-1	200	U	200	1700	U	1700
1,2-Dibromoethane	106-93-4	200	U	200	1500	U.	1500
Chlorobenzene	108-90-7	200	U	200	920	U	920
Ethylbenzene	100-41-4	200	U	200	870	U	870
Xylene (m,p)	1330-20-7	500	U	500	2200	U	2200
Xylene (o)	95-47-6	200	U	200	870	U	870
Xylene (total)	1330-20-7	200	U	200	870	U	870
Styrene	100-42-5	200	U	200	850	U	850
Bromoform	75-25-2	200	U	200	2100	U	2100
1,1,2,2-Tetrachloroethane	79-34-5	200	U	200	1400	U	1400
4-Ethyltoluene	622-96-8	200	U	200	980	U	980
1,3,5-Trimethylbenzene	108-67-8	200	U	200	980	U	980
2-Chlorotoluene	95-49-8	200	U	200	1000	U	1000
1,2,4-Trimethylbenzene	95-63-6	200	U	200	980	U	980
1,3-Dichlorobenzene	541-73-1	200	U	200	1200	U	1200
1,4-Dichlorobenzene	106-46-7	200	U	200	1200	U	1200
1,2-Dichlorobenzene	95-50-1	200	U	200	1200	U	1200
1,2,4-Trichlorobenzene	120-82-1	500	U	500	3700	U	3700
Hexachlorobutadiene	87-68-3	200	υJ	200	2100	υJ	2100
Naphthalene	91-20-3	500	U	500	2600	U	2600

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

DUP092407

Lab Sample No.: 725690 Date Analyzed: 9/29/2007 Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	45	U	45	220	U	220
1,2-Dichlorotetrafluoroethane	76-14-2	18	U	18	130	U	130
Chloromethane	74-87-3	45	U	45	93	U	93
Vinyl Chloride	75-01-4	18	U	18	46	U	46
1,3-Butadiene	106-99-0	45	U	45	100	U	100
Bromomethane	74-83-9	18	U	18	70	U	70
Chloroethane	75-00-3	45	U	45	120	U	120
Bromoethene	593-60-2	18	U	18	79	U	79
Trichlorofluoromethane	75-69-4	18	U	18	100	U	100
Freon TF	76-13-1	18	U	18	140	U	140
1,1-Dichloroethene	75-35-4	18	U	18	71	U	71
Acetone	67-64-1	450	U	450	1100	U	1100
Isopropyl Alcohol	67-63-0	450	U	450	1100	U	1100
Carbon Disulfide	75-15-0	45	U	45	140	U	140
3-Chloropropene	107-05-1	45	U	45	140	U	140
Methylene Chloride	75-09-2	45	U	45	160	U	160
tert-Butyl Alcohol	75-65-0	450	U	450	1400	U	1400
Methyl tert-Butyl Ether	1634-04-4	45	U	45	160	U	160
trans-1,2-Dichloroethene	156-60-5	18	U	18	71	U	71
n-Hexane	110-54-3	45	U	45	160	U	160
1,1-Dichloroethane	75-34-3	18	U	18	73	U	73
1,2-Dichloroethene (total)	540-59-0	22		18	87		71
Methyl Ethyl Ketone	78-93-3	45	U	45	130	U	130
cis-1,2-Dichloroethene	156-59-2	22	• • • • • • • • • • • • • • • • • • •	18	87		71
Tetrahydrofuran	109-99-9	450	U	450	1300	U	1300
Chloroform	67-66-3	18	U	18	88	U	88
1,1,1-Trichloroethane	71-55-6	18	U	18	98	U	98
Cyclohexane	110-82-7	18	U	18	62	U	62
Carbon Tetrachloride	56 - 23-5	18	U	18	110	U	110
2,2,4-Trimethylpentane	540-84-1	18	U	18	84	U	84
Benzene	71-43-2	18	U	18	58	U	58
1,2-Dichloroethane	107-06-2	18	U	18	73	U	73
n-Heptane	142-82-5	18	U		74	U	

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY122098

Case Number:

Sample Matrix: AIR

CLIENT SAMPLE NO.

DUP092407

Lab Sample No.: 725690 Date Analyzed: 9/29/2007

Date Received: 9/26/2007

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	71		18	380	-	97
1,2-Dichloropropane	78-87-5	18	U	18	83	U	83
1,4-Dioxane	123-91-1	450	U	450	1600	U	1600
Bromodichloromethane	75-27-4	18	U	18	120	U	120
cis-1,3-Dichloropropene	10061-01-5	18	U	18	82	U	82
Methyl Isobutyl Ketone	108-10-1	45	U	45	180	U	180
Toluene	108-88-3	18	U	18	68	U	68
trans-1,3-Dichloropropene	10061-02-6	18	U	18	82	U	82
1,1,2-Trichloroethane	79-00-5	18	U	18	98	U	98
Tetrachloroethene	127-18-4	2200	1		15000	·····	
Methyl Butyl Ketone	591-78-6	45	U	45	180	U	180
Dibromochloromethane	124-48-1	18	U	18	150	U	150
1,2-Dibromoethane	106-93-4	18	U	18	140	U	140
Chlorobenzene	108-90-7	18	U	18	83	U	83
Ethylbenzene	100-41-4	18	U	18	78	U	78
Xylene (m,p)	1330-20-7	45	U	45	200	U	200
Xylene (o)	95-47-6	18	U	18	78	U	
Xylene (total)	1330-20-7	18	U	18	78	U	
Styrene	100-42-5	18	U	18	77	U	77
Bromoform	75-25-2	18	U	18	190	U	190
1,1,2,2-Tetrachloroethane	79-34-5	18	U	18	120	U	120
4-Ethyltoluene	622-96-8	18	U	18	88	U	88
1,3,5-Trimethylbenzene	108-67-8	18	U	18	88	U	
2-Chlorotoluene	95-49-8	18	U	18	93	U	93
1,2,4-Trimethylbenzene	95-63-6	18	U	18	88	U	88
1,3-Dichlorobenzene	541-73-1	18	U	18	110	U	
1,4-Dichlorobenzene	106-46-7	18	U	18	110	U	110
1,2-Dichlorobenzene	95-50-1	18	U	18	110	U	110
1,2,4-Trichlorobenzene	120-82-1	45	U	45	330	U	330
Hexachlorobutadiene	87-68-3	18	υJ	18	190	υJ	190
Naphthalene	91-20-3	45	U	45	240	U	240

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-14
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725418
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R081
Level: (low/med) LOW	Date Received: 09/24/07
% Moisture: not dec	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.4
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO. IS DATA SHEET
Lab Name: STL BURLINGTON	Contract: 27000
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725419
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R091
Level: (low/med) LOW	Date Received: 09/24/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.2 U

	VOLATTLE	FORM 1 ORGANICS ANALYSI	IS DATA SHEET	ARCADI	SAMPLE	NO.
Lab Na	me: STL BURLIN		Contract: 27000	ł	092007	
Lab Cc	de: STLV	Case No.: 27000	SAS No.:	SDG No.:	NY12209	98
Matrix	: (soil/water)	AIR	Lab Sa	ample ID: 7254	20	
Sample	wt/vol:	(g/mL) ML	Lab F	ile ID: 28SE	071024-	-R101
Level:	(low/med)	LOW	Date I	Received: 09/2	4/07	
% Mois	sture: not dec.	·	Date A	Analyzed: 09/2	8/07	
GC Col	umn: CTR-1	ID: 6.35 (mm)	Dilut	ion Factor: 1.	4	
Soil E	Extract Volume:	(uL)	Soil A	Aliquot Volume	:	(uL)
	CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug)	ON UNITS: /Kg) %.V/V	Q	
	7440-59-7	Helium		2.4	U	

FORM 1					
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET	

ARCADI SAMPLE NO.

Lab Name: STL BURLIN	IGTON	Contract: 27000	SG-13
Lab Code: STLV	Case No.: 27000	SAS No.: SDG	No.: NY122098
Matrix: (soil/water)	AIR	Lab Sample ID	: 725421
Sample wt/vol:	(g/mL) ML	Lab File ID:	28SE071024-R111
Level: (low/med)	LOW	Date Received	: 09/24/07
% Moisture: not dec.		Date Analyzed	: 09/28/07
GC Column: CTR-1	ID: 6.35 (mm)	Dilution Facto	or: 1.3
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V,	
7440-59-7	Helium		2.3 U

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-12 Contract: 27000
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725422
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R121
Level: (low/med) LOW	Date Received: 09/24/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

FORM 1 VOLATILE ORGANICS ANAL	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-11 Contract: 27000
Lab Code: STLV Case No.: 2700	0 SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725423
Sample wt/vol: (g/mL)	ML Lab File ID: 28SE071024-R131
Level: (low/med) LOW	Date Received: 09/24/07
% Moisture: not dec	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.2 U

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-5
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725424
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R141
Level: (low/med) LOW	Date Received: 09/24/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.4
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

VOLATILE ORGANICS ANALYSIS DATA SHEET Lab Name: STL BURLINGTON Contract: 27000	
Eas Name: STI BORDINGTON CONCLASE: 27000	
Lab Code: STLV Case No.: 27000 SAS No.: SDG No.: NY1220	98
Matrix: (soil/water) AIR Lab Sample ID: 725425	
Sample wt/vol: (g/mL) ML Lab File ID: 28SE071024	-R151
Level: (low/med) LOW Date Received: 09/24/07	
% Moisture: not dec Date Analyzed: 09/28/07	
GC Column: CTR-1 ID: 6.35 (mm) Dilution Factor: 1.4	
Soil Extract Volume:(uL) Soil Aliquot Volume:	(uL)
CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) %.V/V Q	
7440-59-7Helium 2.4 U	

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-3
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725686
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R161
Level: (low/med) LOW	Date Received: 09/26/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.3
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

,

FORM 1	ARCADI SAMPLE NO.
VOLATILE ORGANICS ANALYS	IS DATA SHEET
Lab Name: STL BURLINGTON	
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725687
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R171
Level: (low/med) LOW	Date Received: 09/26/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.4
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.3 U

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: STL BURLINGTON	SG-18
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725688
Sample wt/vol: (g/mL) MI	Lab File ID: 28SE071024-R181
Level: (low/med) LOW	Date Received: 09/26/07
% Moisture: not dec.	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.4
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.4 U

FORM 1 VOLATILE ORGANICS ANALYSI	S DATA SHEET
Lab Name: STL BURLINGTON	SG-9
Lab Code: STLV Case No.: 27000	SAS No.: SDG No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID: 725689
Sample wt/vol: (g/mL) ML	Lab File ID: 28SE071024-R191
Level: (low/med) LOW	Date Received: 09/26/07
% Moisture: not dec	Date Analyzed: 09/28/07
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.2
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.1 U

-

FORM 1							
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET			

ARCADI SAMPLE NO.

Lab Name: STL BURLI	NGTON	Contract: 27000	DUP092407
Lab Code: STLV	Case No.: 27000	SAS No.: SDG	No.: NY122098
Matrix: (soil/water) AIR	Lab Sample ID	: 725690
Sample wt/vol:	(g/mL) ML	Lab File ID:	28SE071024-R201
Level: (low/med)	LOW	Date Received	: 09/26/07
% Moisture: not dec	•	Date Analyzed	: 09/28/07
GC Column: CTR-1	ID: 6.35 (mm)	Dilution Facto	or: 1.3
Soil Extract Volume	:(uL)	Soil Aliquot	Volume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) %.V	
7440-59-7	Helium		2.2 U

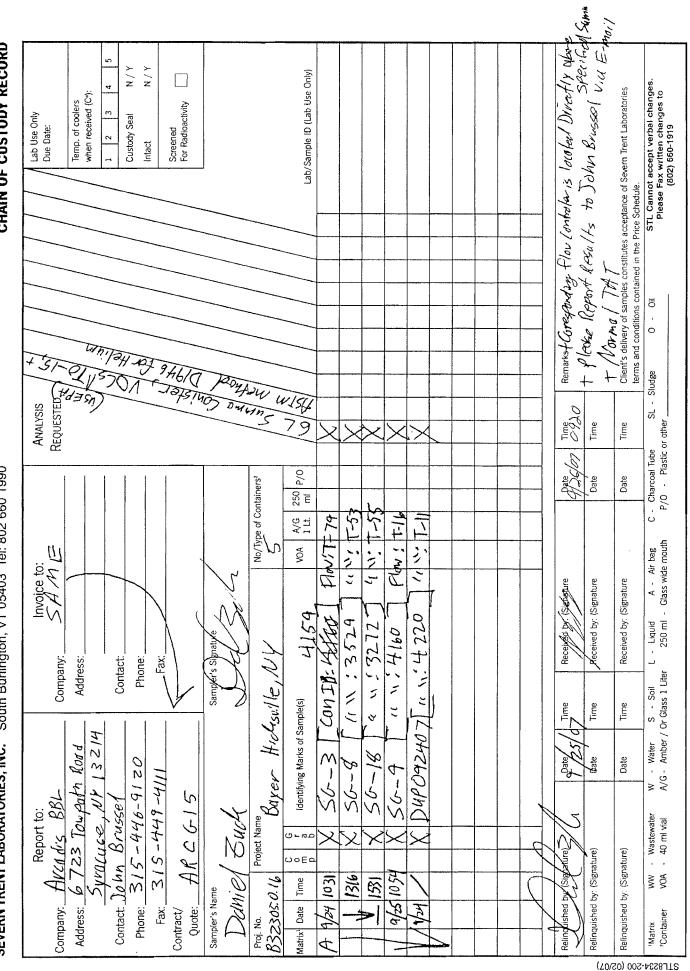
SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

Samula					Compliancy ¹				Noncompliance	
Sample Delivery Group	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCB/PEST /HERB	МЕТ	MISC	
NY122098	9/20/2007	TO-15	SG-14	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/20/2007	TO-15	SG-1	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/20/2007	TO-15	UW092007	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/20/2007	TO-15	SG-13	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/20/2007	TO-15	SG-12	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/21/2007	TO-15	SG-11	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/21/2007	TO-15	SG-5	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/21/2007	TO-15	SG-10	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/24/2007	TO-15	SG-3	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/24/2007	TO-15	SG-8	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/24/2007	TO-15	SG-18	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/25/2007	TO-15	SG-9	Air	No				Yes	VOC – ICAL %RSD
NY122098	9/24/2007	TO-15	DUP092407	Air	No				Yes	VOC – ICAL %RSD

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

CHAIN OF CUSTODY


		ech Suma	
CHAIN OF CUSTODY RECORD	Lab Use Only Due Date: Temp. of coolers when received (C'): 1 2 3 4 5 Custody Seal N / Y Intact N / Y Intact N / Y Intact N / Y Screened For Radioactivity Intact	Remarks Flow Lontrol Prived W/Symma (& Directly Oboye each - Olones Report Res. 14 to Talin Brussed 100	Client's delivery of samples constitutes acceptance of Severn Trent Laboratories. terms and conditions contained in the Price Schedule. $-STD$ TAT dge 0 - 0i STL Cannot accept verbal changes. Please Fax written changes to (802) 660-1919
	ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSISA	Time Remarks Flow Con- 1905 Time DIon - Re-	SL - Slu
e 11 3 Tel: 802 660 1990	Invoice to: SHME as Proceed to the Lease Receiver and the Lease Receiver and the Lease No. Vo. A. A. Containers ⁴ Receiver and the Lease No. Vo. A. A. Containers ⁴ Receiver and the Lease Receiver and the Receiver and the Re	$\frac{D_{\text{plate}}}{Q/A'O}$	Air bag C - Charcoal Tube ide mouth P/O - Plastic or
STL Burlington 30 Community Drive, Suite 1 South Burlington, VT 05403	ompany: Address: Contact Phone: Fax: Fax: <i>Fax:</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contact</i> <i>Contac</i>	Time Received by Stanture Time Received by (Stanture	Received by: (S L - Liquid 250 ml -
SEVERN STL S TRENT SORTORIES, INC. S	port to: 3 Towpath Ran 4 Sec. UY 13214 Brussed - 671-9441 - 449-4111 - 460-15 - 10) - 260-12) - 200-12) - 2	Date Date 07.	Date bate astewater W - Water
SEVÈRN TRENT SEVERNTRENT L	Company: Arcurds Address: 6723 Address: 6723 Contact: 70in Bri Phone: 315-6 Fax: 315-6 Contract/ Quote: ARCG Quote: ARCG Matrix Date Time 0 B32305.0,14 B32305.0,14 B32305.0,14 Project Nat Contract/ A 1/29 Date Time 0 B32305.0,14 Date Time 0 B32305.0,14 Date Time 0 B32305.0,14 Date Time 0 B32305.0,14 Date Time 0 B32305.0,14 Date Time 0 B32305.0,14 Date Time 0 Date 1705 Date 0 Date 1705 Date 0 Date 1705 Date 0 Date 0 Dat	Relinquighed by: Agnatupe Relinquished by: Signature	(Signatu WW - VOA -

STL8234-200 (02/07)

30 Community Drive, Suite 11 South Burlington, VT 05403 Tel: 802 660 1990 STL Burlington

CHAIN OF CUSTODY RECORD

