

29 September 2023

Mr. Scott Sokolowski Remedial Project Manager Naval Facilities Engineering Systems Command, Mid Atlantic 9324 Virginia Avenue, Building Z-144 Norfolk, VA 23511-3095

Subject: US NAVY CONTRACT NO. N40085-16-D-2288 CONTRACT TASK ORDER NO. 0005 SECOND QUARTER 2023 OPERATIONS REPORT GWTP GM-38 AREA REMEDIATION NAVAL WEAPONS INDUSTRIAL RESERVE PLANT, BETHPAGE, NY

Dear Mr. Sokolowski:

An electronic copy of the Second Quarter 2023 Operations Report, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York, has been submitted to your attention via email.

Please contact me at <u>rgregory@komangs.com</u> or 610.400.0636 if you have any questions or comments regarding this submittal.

Sincerely, KOMAN Government Solutions, LLC (KGS)

J Drin

Robert G. Gregory⁽⁾ Project Manager

Cc: Mr. Jason Pelton (NYSDEC) – electronic only Ms. Kristin Granzen (NYSDEC) – electronic only Mr. Matthew Travis (NYSDEC) – electronic only Mr. Steven Scharf (NYSDEC) – electronic only Mr. William Cords (NAVAIR) – electronic only Mr. James Sullivan (NYSDOH) – electronic only Ms. Monica Marrow (Jacobs - NIRIS) – 1 hard copy, 1 CD Mr. Vin Varricchio (NWIRP Bethpage) – 2 hard copies, 2 CDs Mr. Ed Hannon (Northrop Grumman) – electronic only Mr. David Stern (ARCADIS) – electronic only Mr. David Brayack (Tetra Tech) – electronic only Mr. Richard Moore (Tetra Tech) – electronic only Mr. Patrick Schauble (KGS) – electronic only Quarterly Operations Report Second Quarter 2023

Groundwater Treatment Plant GM-38 Area Groundwater Remediation Naval Weapons Industrial Reserve Plant Bethpage, New York

> Contract No. N40085-16-D-2288 Contract Task Order No. 0005

> > September 2023

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Prepared by:

KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110 Exton, Pennsylvania 19341 (610) 363-3000 Quarterly Operations Report Second Quarter 2023

Groundwater Treatment Plant GM-38 Area Groundwater Remediation Naval Weapons Industrial Reserve Plant Bethpage, New York

> Contract No. N40085-16-D-2288 Contract Task Order No. 0005

> > September 2023

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Patrick Schauble Program Manager

Robert & String

Robert Gregory Project Manager

09/12/2023

Date

09/20/2023

Date

TABLE OF CONTENTS

1.0	INT	RODUCTION 1	1-1
	1.1 1.2	Background	1-1 1-1
2.0	GW	TP OPERATIONS AND MAINTENANCE	2-1
		Routine Maintenance Activities	
3.0	GW	TP MONITORING	3-1
	3.2		3-1 3-1 3-2
4.0	CO	NCLUSIONS AND RECOMMENDATIONS	4-1
5.0	REI	FERENCES	5-1

FIGURES

FIGURE 1	Site Location Map
FIGURE 2	Process Flow Diagram
FIGURE 3	Site Map
FIGURE 4	Recovery Well Locations
FIGURE 5	2 nd Quarter 2023 Groundwater Analytical Map – Select VOC Concentrations - Recovery Wells
FIGURE 6	Groundwater Concentration Trends of Select VOCs - RW-1
FIGURE 7	Groundwater Concentration Trends of Select VOCs – RW-4 (PCE, TCE, cis-1,2-DCE)
FIGURE 8	Groundwater Concentration Trends of Select VOCs – RW-4 (PCE, cis-1,2-DCE)
TABLES	
TADLES	
TABLE 1	Discharge Monitoring Results – Second Quarter 2023
TABLE 2	Air Sampling Results – Second Quarter 2023
TABLE 3	Stack Emissions – Second Quarter 2023
TABLE 4	Groundwater Level Measurements – Second Quarter 2023

APPENDICES

APPENDIX A NYSDEC Effluent Limitations and Monitoring Requirements and April 2023 –

June 2023 DMRs

- APPENDIX B NYSDEC Air Discharge Limit Documentation
- APPENDIX C Field Logs Second Quarter 2023

Acronyms and Abbreviations

%	percent
AOP	Advanced Oxidation Process
ARAR	Applicable or Relevant and Appropriate Requirement
AS	air stripper
ASE	air stripper effluent
BFE	bag filter effluent
bgs	below ground surface
CERCLA	Comprehensive Environmental Response Compensation and Liability Act
DAR	Division of Air Resources
DCA	dichloroethane
DCE	dichloroethene
DMR	Discharge Monitoring Report
DO	dissolved oxygen
DoD	Department of Defense
DTW	depth to water
EB	equipment blank
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Accreditation Program
GOCO	Government Owned Contractor Operated
gpm	gallon per minute
GWTP	groundwater treatment plant
KGS	KOMAN Government Solutions, LLC
HMI	human-machine interface
IRP	Installation Restoration Program
J	estimated
L	liter
lb	pound
LGAC	liquid phase granular activated carbon
mg/L	milligrams per liter
MS/MSD	matrix spike/matrix spike duplicate
NAVFAC	Naval Facilities Engineering Systems Command
Navy	United States Department of the Navy
NELAC	National Environmental Laboratory Accreditation Conference

NG	Northrop Grumman
NWIRP	Naval Weapons Industrial Reserve Plant
NYSDEC	New York State Department of Environmental Conservation
O&M	Operation and Maintenance
ORP	oxidation-reduction potential
OU	operable unit
PCE	tetrachloroethene
PLC	programmable logic controller
QA/QC	quality assurance/quality control
ROD	Record of Decision
RPD	relative percent difference
SC	specific conductivity
scfm	standard cubic feet per minute
SIM	selection ion monitoring
SPDES	State Pollution Discharge Elimination System
TB	trip blank
TCE	trichloroethene
TE	treated effluent
Tetra Tech	Tetra Tech, Inc.
TSS	total suspended solids
TtEC	Tetra Tech EC, Inc.
µg/L	micrograms per liter
USEPA	United States Environmental Protection Agency
VC	vinyl chloride
VGAC	vapor phase granular activated carbon
VOC	volatile organic compound

1.0 INTRODUCTION

KOMAN Government Solutions, LLC (KGS) has prepared this Quarterly Operations Report for the GM-38 Area Groundwater Treatment Plant (GWTP) at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the United States Department of the Navy (Navy), Naval Facilities Engineering Systems Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-16-D-2288, Contract Task Order No. 0005. This Second Quarter 2023 Operations Report details activities that occurred from April 2023 to June 2023. Data were collected and operational activities were performed by KGS in accordance with the following documents:

- Final Operation, Maintenance & Monitoring Plan for Groundwater Treatment Plant GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Sampling and Analysis Plan, Operations, Maintenance, and Monitoring of the Groundwater Treatment Plant, GM-38 Area, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in 2022.

1.1 Background

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City (**Figure 1**) and is currently listed by New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B). In the late 1990s, the Navy's property totaled approximately 109.5 acres and was a Government Owned Contractor Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood.

The GM-38 Area refers to a cluster of monitoring wells installed in the 1990s by NG. The GM-38 Area is approximately 8,500 feet south, southeast, and hydraulically downgradient of NWIRP Bethpage. The GWTP is located within a utility easement with a street address of 100 Broadway, Bethpage, New York.

The "hot spot" cleanup remedy for the GM-38 Area groundwater was originally set forth in Record of Decision (ROD) documents for Operable Unit (OU) 2 Groundwater for the NG and NWIRP Sites (New York State Registry Site Numbers 1-30-003A & 1-30-003B, respectively) issued by NYSDEC Division of Environmental Remediation in March 2001 and for the NWIRP Bethpage Site by NAVFAC in April 2003 (Revision 1). The selected remedy was chosen in accordance with the New York State Environmental Conservation Law (ECL) and the Navy's Installation Restoration Program (IRP). It is also consistent with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), as amended, 42 U.S.C. §§ 9601-9675.

1.2 GWTP Overview

Currently, groundwater is extracted from recovery wells RW-1 and RW-4. Pumping at RW-3 was suspended from July 2015 to June 2018, and then again in April 2021 when the new recovery well RW-4 was brought online. All extracted groundwater is treated in the GWTP. The treatment process consists of flow equalization, air stripping and vapor-phase carbon treatment, bag filtration, and liquid-phase carbon treatment. In addition, an Advanced Oxidation Process (AOP) unit has been installed at the GWTP and is intended to remove residual concentrations of 1,4-dioxane from the GWTP effluent prior to discharge. The AOP commissioning process began in April 2021, and was conducted by others under separate contract. KGS assumed operational responsibility for the AOP unit on 1 July 2022.

The GWTP was originally equipped with a pH adjustment system utilizing sodium hydroxide; however, it was subsequently determined that pH adjustment was not necessary. The equipment has been taken offline and sodium hydroxide sent off site for beneficial reuse. A process flow diagram is presented as

Figure 2. The treated water is either re-injected into injection well IW-1 or discharged into the Nassau County Recharge Basin #495. Under CERCLA, the Navy is required to meet the effluent requirements in the NYSDEC State Pollution Discharge Elimination System (SPDES) Permit Equivalent Application as an Applicable or Relevant and Appropriate Requirement (ARAR).

The GWTP was designed to operate at an average flow rate of 1,100 gallons per minute (gpm), as measured by the average discharge flow rate. It was determined that this flow rate would be optimal with respect to effective containment of the higher concentration of contamination in the GM-38 Area groundwater. During the current reporting period, recovery wells RW-1 and RW-4 were utilized for groundwater extraction. RW-1 operated at an average flow rate of approximately 473 gpm, 478 gpm, and 479 gpm during April, May, and June 2023, respectively. RW-4 operated at an average flow rate of approximately 485 gpm, 493 gpm, and 487 gpm during April, May, and June, respectively.

Volatile Organic Compounds (VOCs) in the influent groundwater consist of trichloroethene (TCE), tetrachloroethene (PCE), vinyl chloride (VC), cis-1,2-dichloroethene (DCE), 1,2-dichloroethane (DCA), benzene, toluene, total xylenes, and 1,4-dioxane.

The air stripper (AS) is a structural aluminum tower that is packed with 3.5-inch diameter polypropylene Jaeger Tripack. Groundwater is pumped to the AS distribution port and spraved over the column of Jaeger Tripack at a design flow rate of approximately 1,100 gpm. Previously, 100 gpm of recirculated water was also rerouted through the AS, but as of October 2010, recirculation was no longer deemed necessary to the operation of the system. An induced draft countercurrent flow of air entered the AS below the base of the packing material at an initial rate of approximately 8,000 standard cubic feet per minute (scfm); the rate was reduced to a approximately 6,000 scfm in February 2023, then was further reduced to approximately 4,000 scfm on 11 May 2023, to evaluate treatment efficiencies and total energy costs associated with VOC treatment by the AS versus by the AOP unit. Blower B-2 was taken offline on 11 May 2023 concurrently with the reduction to the AS flow rate to 4,000 scfm. The large surface area of the packing material allows for a mass transfer of the VOCs from the groundwater into the air stream. The VOCs in the off-gas, except for VC, are removed via two 20,000-pound (lb) vapor phase granular activated carbon (VGAC) units (VGAC-1 and VGAC-2). VC is oxidized into potassium chloride and carbon dioxide via treatment in a 20,000-lb vessel (VGAC-3) containing zeolite impregnated with potassium permanganate. The potassium chloride remains in the pore structure of the zeolite substrate. The treated off-gas is discharged from the stack.

Water treated by the AS is subsequently processed through the AOP unit, followed by processing through three 8,000-lb liquid phase granular activated carbon (LGAC) units in parallel prior to discharge in the recovery basin (or injection well, if necessary).

The GWTP is controlled by a programmable logic controller (PLC)-based digital and analog control system, with instrumentation that monitors pH, pressure, tank level, flow and differential pressure transmitters, water level in recovery wells, and motor operational status. The information in the PLC is made available to an operator via a human-machine interface (HMI) program. By using this program, the status of the GWTP can be displayed in real time and adjusted, if necessary, by the operator. The AOP unit has a standalone PLC to control its internal functions. The GWTP and AOP control systems are interlocked such that shut down of the AOP unit will result in shut down of the GWTP, and vice versa, to ensure that effluent is fully treated prior to discharge.

A 2014 evaluation of the GM-38 Area, conducted in order to better determine the capture zone of the recovery wells, recommended that use of recovery well RW-3 be discontinued ("*Capture Zone Evaluation and Path Forward, GM-38 Area Groundwater Treatment Plant*" [Tetra Tech, Inc. [Tetra Tech], 2014]). The report was sent to NYSDEC in March 2014 and recommended ceasing operation of recovery well RW-3 and increasing the pumping rate of recovery well RW-1. These system modifications would maintain the existing GWTP pumping rate of 1,000 to 1,100 gpm while maintaining the desired capture zone of the GWTP (Tetra Tech, 2014). NYSDEC concurred with the implementation

of this path forward and associated system modifications on 20 April 2015. On 1 July 2015, in accordance with the approved path forward, recovery well RW-3 was taken off-line. The flowrate of recovery well RW-1 was increased from approximately 800 gpm to approximately 1,000 gpm. Pumping at RW-3 was once again resumed in June 2018 to address persistent VOC concentrations at this well. Pumping at RW-3 was suspended in April 2021 to facilitate startup and integration of RW-4 into the system. During the current reporting period, the pumping rates at both RW-1 and RW-4 were each set at approximately 500 gpm.

2.0 GWTP OPERATIONS AND MAINTENANCE

While designed to run autonomously, the GWTP requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The GWTP is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the GWTP were performed during the operator's visits. These activities include general site inspections, collection of operational data (water and vapor flowrates, differential pressures across the AS, carbon units, bag filter units and blower discharge pressures, tank levels, and totalizer readings), measurement of water levels in the recovery wells, adjustment of pump set points, collection of vapor and process water samples, changing bag filters, switching lead/lag pump assignments, evaluation and maintenance of AOP system components, and preventive maintenance of all system equipment.

2.2 Non-routine Maintenance / Site Activities

Various non-routine maintenance were performed in the current reporting period as noted below.

The increased sediment load that had been conveyed to the GWTP following incorporation of RW-4 was addressed during the Second Quarter 2022 when RW-4 was redeveloped by others under separate contract. All redevelopment water was collected in the GWTP and subsequently transported offsite for disposal by others under separate contract. Groundwater from RW-4 was used to flush the pipeline connecting RW-4 to the GWTP; flush water was collected in the GWTP and subsequently transported offsite for disposal by others under separate contract. Sediment from flushing was accumulated at the GWTP, containerized, and disposed of by others under separate contract during the First Quarter 2023.

The chronology of non-routine activities at the GWTP during the current reporting period is presented below:

- 27 April Hydrogen Peroxide delivery.
- 28 April Backwashed LGACs #100 and #200.
- 1 May LGAC backwash water in the building sump recycled to Equalization Tank.
- 11 May Reduced the AS flow rate from approximately 6,000 scfm to approximately 4,000 scfm; Blower B-2 taken offline.
- 9 June Backwashed LGACs #100, #200, and #300.
- 12 June LGAC backwash water in the building sump recycled to Equalization Tank.

3.0 GWTP MONITORING

The objective of the GWTP is to remove contaminant mass and reduce elevated VOC levels to levels similar to those in the surrounding aquifer. It is anticipated that GWTP operation will minimize contaminant impacts on water supply wells and currently unaffected portions of the groundwater aquifer. The GWTP is not intended to remediate groundwater contamination in the local aquifer to non-detectable levels (TtEC, 2010). Various process samples (water and vapor) are collected on a monthly basis to monitor GWTP efficiency and to ensure compliance with Federal and State effluent discharge and air emission requirements. In addition, groundwater samples are collected semi-annually to monitor water quality and determine the effectiveness of the remediation activities and monitor the hydraulic containment and capture of impacted groundwater by the recovery wells.

3.1 Process Water Quality Monitoring

Processed groundwater is analyzed to comply with calculations submitted by the Navy and documented in the NYSDEC SPDES Permit Equivalent Application for applicable effluent limitations and monitoring requirements. These results are also submitted to NYSDEC on a monthly basis in the form of a Discharge Monitoring Report (DMR). A copy of the current NYSDEC effluent limitations, monitoring constituents, and the completed reporting forms for the Second Quarter 2023 are included in **Appendix A**.

Monthly aqueous samples are collected from the active recovery wells (RW-1 and RW-4), and the treated effluent (TE) discharge line. In addition, various intermediary process system samples are collected monthly, consisting of air stripper effluent (ASE), bag filter effluent (BFE), AOP influent, and effluent samples (LC1, LC2, and LC3) of each of the three LGAC units. The analytical results of monthly process water samples collected during the Second Quarter are presented in **Table 1**.

3.2 Air Quality Monitoring

Treated off-gas discharged at the stack of the GWTP is subject to emissions limitations. Original discharge goals were derived from calculations submitted by the Navy and approved by the NYSDEC Division of Air Resources (DAR) in July 2009. In November 2011, the Navy submitted an evaluation proposing revised discharge goals, which NYSDEC approved in October 2013. A copy of this documentation is included as **Appendix B**.

Sampling of the stack emissions is required for NYSDEC compliance; however, process vapor samples are also collected using 6-liter (L) summa canisters at various locations to monitor for breakthrough of the VGAC units. The analytical results of monthly influent and effluent vapor samples as well as midfluent samples (VC12 and VC23) collected during the Second Quarter are presented in **Table 2**. Air emissions calculations using the stack vapor concentrations along with discharge flowrates are presented in **Table 3**. All constituents were within the regulatory requirements during the Second Quarter, as demonstrated by the calculated emission rates.

3.3 Groundwater Quality Monitoring

The groundwater monitoring system at the GM-38 Groundwater Remediation Area consists of 14 monitoring wells, four recovery wells (RW-1, RW-2, RW-3, and RW-4), and one injection well (IW-1). Well locations are depicted on **Figure 3**. Recovery well RW-4, brought on-line in April 2021, is located approximately one mile to the west of the GWTP (**Figure 4**). Although RW-2 was installed in 2005, a pump was never installed in this well and the well is not operated as a recovery well in response to concerns expressed by the Bethpage Water District. As mentioned in Section 1.2, pumping at RW-3 was suspended between July 2015 and June 2018. RW-3 was reactivated on 1 June 2018 to address persistent VOC concentrations at this location and was subsequently replaced with Well RW-4 in April 2021. Well

RW-1 was offline during the months of October and November 2020 as a result of a rehabilitation and redevelopment effort conducted at that time. In addition, RW-4 underwent redevelopment during April and May 2022; the well was offline during this timeframe.

Depth to water (DTW) measurements are collected from 12 of the monitoring wells on a quarterly basis. Prior to 2014, water quality samples were collected from eight of the monitoring wells on a quarterly basis; beginning in 2014, the sample collection frequency was reduced to semi-annually, with sample collection generally in the March (First Quarter) and September (Third Quarter) timeframes. The monitoring network includes well clusters located near the recovery wells RW-1 and RW-3 and injection well IW-1 as described below and as shown on **Figure 3**. Two additional wells, GM-38D and GM-38D2, located at the corner of Arthur Avenue and Broadway, are monitored by others.

Descriptions of monitoring well locations are as follows:

Recovery Well 1 (RW-1) Monitoring Wells

The RW-1 cluster consists of three monitoring wells screened between 395 and 435 feet below ground surface (bgs). RW1-MW1 is located approximately 140 feet northwest of RW-1 and RW1-MW2 is located approximately 50 feet north of RW-1. RW1-MW3 is located approximately 400 feet northeast of RW-1, on the eastern side of Seaford Oyster Bay Expressway. All three wells are hydraulically monitored while only RW1-MW1 and RW1-MW3 are also monitored for water quality.

Recovery Well 2 (RW-2) Monitoring Wells

The RW-2 cluster consists of three monitoring wells screened between 470 and 510 feet bgs. RW2-MW1 is located approximately 60 feet northwest of RW-2, RW2-MW2 is located approximately 100 feet west of RW-2, and RW2-MW3 is located approximately 20 feet west of RW-2. All three wells are hydraulically monitored while only RW2-MW1 is monitored for water quality.

Recovery Well 3 (RW-3) Monitoring Wells

The RW-3 cluster consists of four monitoring wells. RW3-MW2 and RW3-MW4 are screened between 475 and 495 feet bgs. RW3-MW1 and RW3-MW3 are screened between 330 and 350 feet bgs and 320 and 340 feet bgs, respectively. RW3-MW1 and RW3-MW2 are located approximately 280 feet west of RW-3, at the intersection of Arthur Avenue and Leroy Avenue. RW3-MW3 and RW3-MW4 are located approximately 400 feet north of the intersection of Sophia Street and Broadway. All four wells are both hydraulically monitored and monitored for water quality.

<u>TP-01</u>

TP-01 is screened between 450 and 470 feet bgs and is located approximately 25 feet north of the GWTP building, inside the fenced area. It is hydraulically monitored to observe the change in water levels associated with the influence from the pumping rates at the neighboring public water supply well field adjacent to the hot spot area and is also monitored for water quality.

Injection Well 1 (IW-1) Monitoring Well

There is one monitoring well associated with injection well IW-1. IW1-MW1 is screened between 20 and 150 feet bgs, is located approximately 20 feet south of IW-1 and is only hydraulically monitored on a quarterly basis.

3.3.1 Groundwater Quality Results

Groundwater samples were collected monthly from recovery wells RW-1 and RW-4 throughout the Second Quarter 2023. Analytical results are summarized in **Table 1** and shown on **Figure 5**.

Quarterly groundwater level measurements of the 12 monitoring wells were recorded on 11 and 12 April 2023. Results are summarized in **Table 4**. A copy of the field log is included in **Appendix C**.

3.3.2 Groundwater Concentration Trends

Measured groundwater concentrations of select VOCs (cis-1,2-DCE, PCE, TCE, and VC) for recovery wells RW-1 and RW-4 sampled during the Second Quarter 2023 are presented on **Figure 5**.

Figure 6 presents concentration trends measured at recovery well RW-1. TCE concentrations have decreased from initial concentrations in early 2010 [747 micrograms per liter (μ g/L) measured in April 2010], remaining below 300 μ g/L since the latter half of 2012 and below 100 μ g/L since December 2017. TCE concentrations continued to decrease in the Second Quarter 2023 ranging between 46.1 μ g/L in April to the minimum value in the historical dataset of 42.8 in June.

PCE concentrations (**Figure 6**) have decreased from an initial concentration in February 2010 (180 μ g/L), have remained below 20 μ g/L since May 2019, and in the Second Quarter ranged from 13.2 μ g/L (April) to the minimum concentration in the historical dataset of 11.7 μ g/L (June).

Concentrations of cis-1,2-DCE (**Figure 6**) decreased from a maximum of 160 μ g/L in February 2010 to a minimum concentration of 2.79 J μ g/L in November 2022. Measured concentrations of cis-1,2-DCE have remained below 5.0 μ g/L since February 2019. In the Second Quarter 2023, cis-1,2-DCE ranged from 2.90 J μ g/L (April) to the minimum concentration in the historical dataset of 2.45 J μ g/L (May).

VC concentrations have remained below 5.0 μ g/L since the final quarter of 2011 and below 1.0 μ g/L since June 2013. VC was not detected during the Second Quarter 2023.

Figure 7 and **Figure 8** present concentration trends measured at recovery well RW-4. Well RW-4 was brought online in place of well RW-3 in April 2021. Sampling of the well was initiated in May 2021 following stabilization of the pumping rate via the wireless communication with the GWTP. No samples were collected from RW-4 in May 2022; the well was offline because of redevelopment of the well.

Measured concentrations of TCE (**Figure 7**) and PCE (**Figure 8**) have decreased from their maximum values in February 2022 (784 μ g/L) and 6.97 μ g/L (October 2021), respectively. Measured TCE concentrations in the Second Quarter 2023 ranged from 597 μ g/L in April to 456 μ g/L in June. Measured PCE concentrations in the Second Quarter 2023 ranged from 5.40 J μ g/L in April to 4.85 J μ g/L in June.

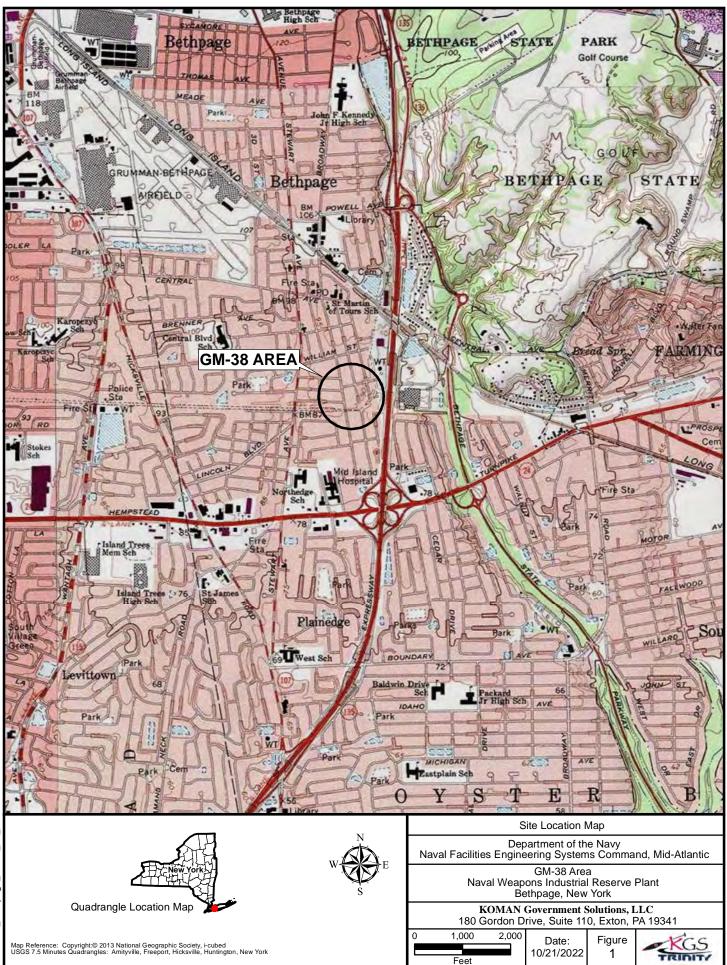
Measured concentrations of cis-1,2-DCE (**Figure 8**) have decreased from a maximum value of 1.90 μ g/L detected in September 2021. Measured cis-1,2-DCE concentrations ranged from 1.22 J μ g/L in May to non-detect in June 2023.

VC has not been detected during any sampling event at Well RW-4.

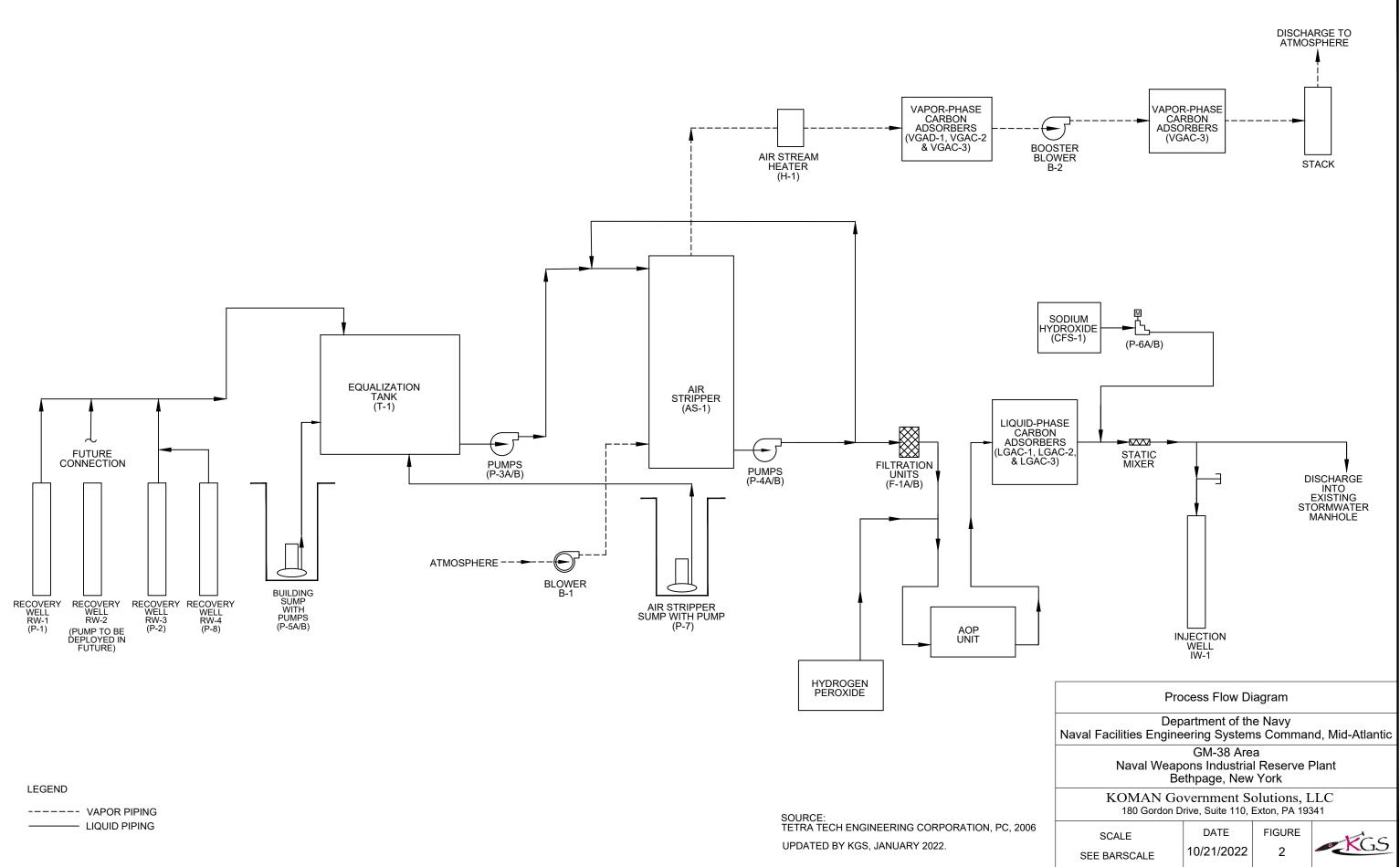
4.0 CONCLUSIONS AND RECOMMENDATIONS

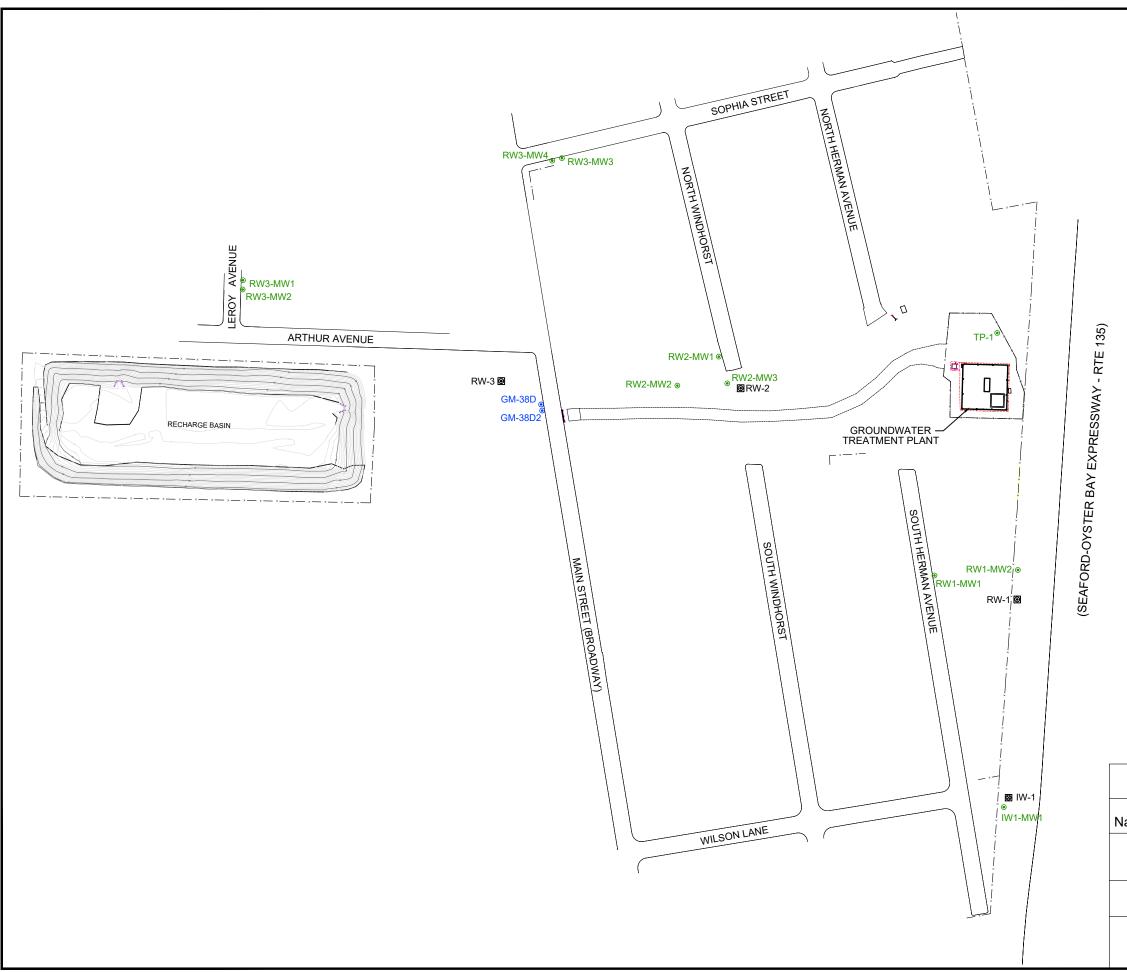
The objective of the groundwater treatment system at GM-38 is to remove contaminant mass and reduce elevated VOC concentrations to levels similar to those in the surrounding aquifer, and in doing so minimize the impacts on downgradient water supply wells and currently unaffected portions of the aquifer. Based on the removal of VOCs by the GWTP and decreasing contaminant concentration trends observed in the recovery wells, progress toward these goals is indicated. Based on the concentrations in the groundwater wells, the GWTP should continue to be operated. Groundwater sampling frequency for the eight monitoring wells is currently performed on a semi-annual basis in accordance with the O&M Manual. Water levels for the 12 monitoring wells continue to be measured on a quarterly basis.

5.0 REFERENCES

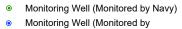

KOMAN Government Solutions, LLC (KGS), 2022. *Final Sampling and Analysis Plan, Operation, Maintenance, and Monitoring of the Groundwater Treatment Plant, GM-38 Area, Naval Weapons Industrial Reserve Plant, Bethpage, NY.* December.

Tetra Tech, Inc. (Tetra Tech), 2014. *Capture Zone Evaluation and Path Forward, GM-38 Area Groundwater Treatment Plant, Naval Weapons Industrial Reserve Plant, Bethpage, New York.* March.

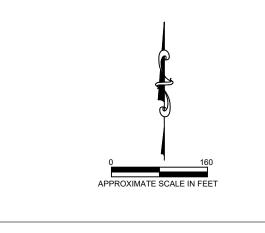

Tetra Tech EC, Inc. (TtEC), 2010. Final Operation, Maintenance & Monitoring Plan for Groundwater Treatment Plant GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York. April.

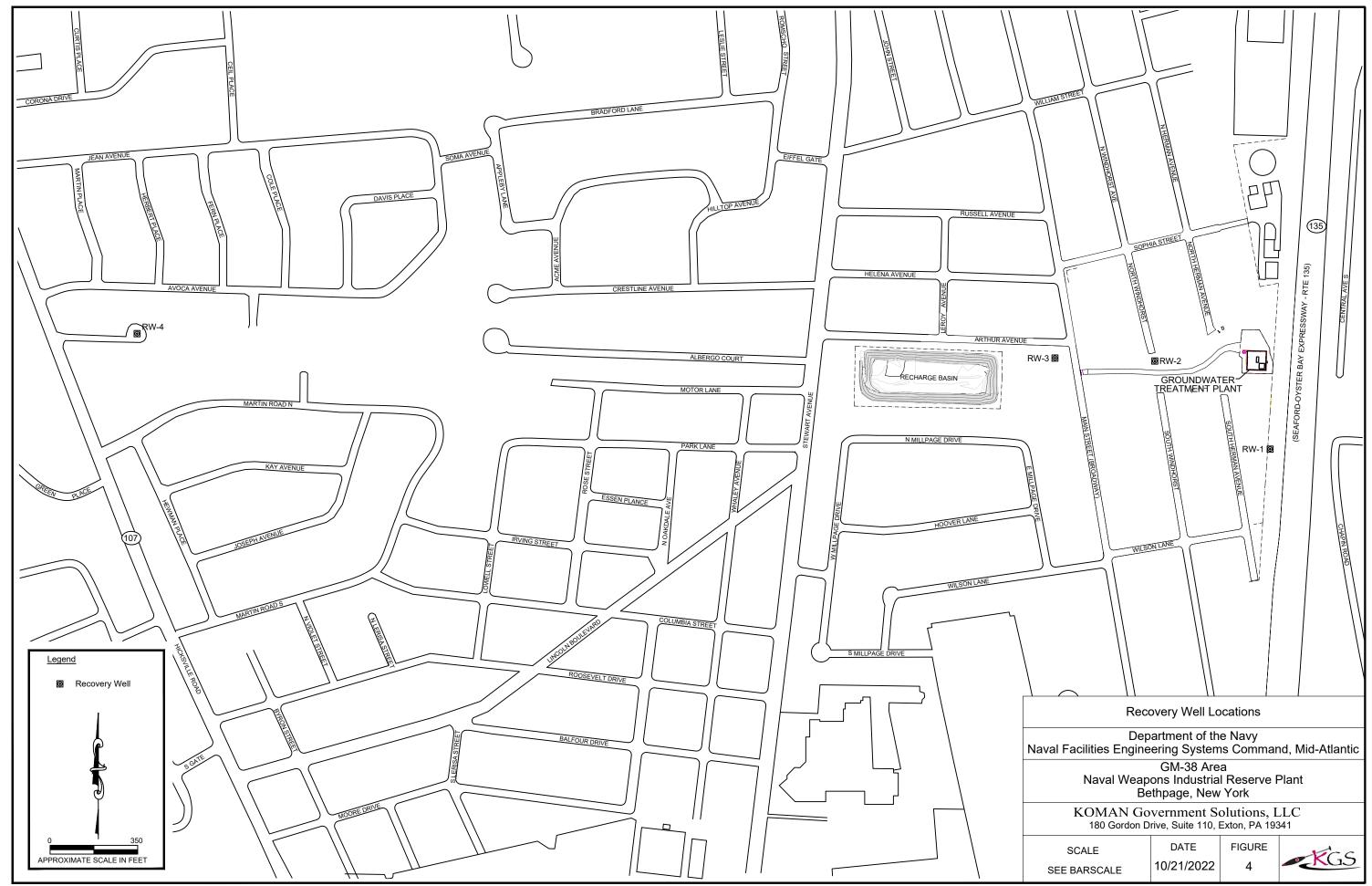


FIGURES



File: 1022_Bethpage_GM38_F1_SLM.mxd





- Northrop Grumman)
- Recovery Well
- Injection Well

Department of the Navy aval Facilities Engineering Systems Command, Mid-Atlantic										
GM-38 Area Naval Weapons Industrial Reserve Plant Bethpage, New York										
KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110, Exton, PA 19341										
SCALE DATE FIGURE SEE BARSCALE 10/21/2022 3										

X:\HS_Environmental\Bethpage-GM38\2022\Oct2022\1022_BP_GM38.dwg 10/21/2022

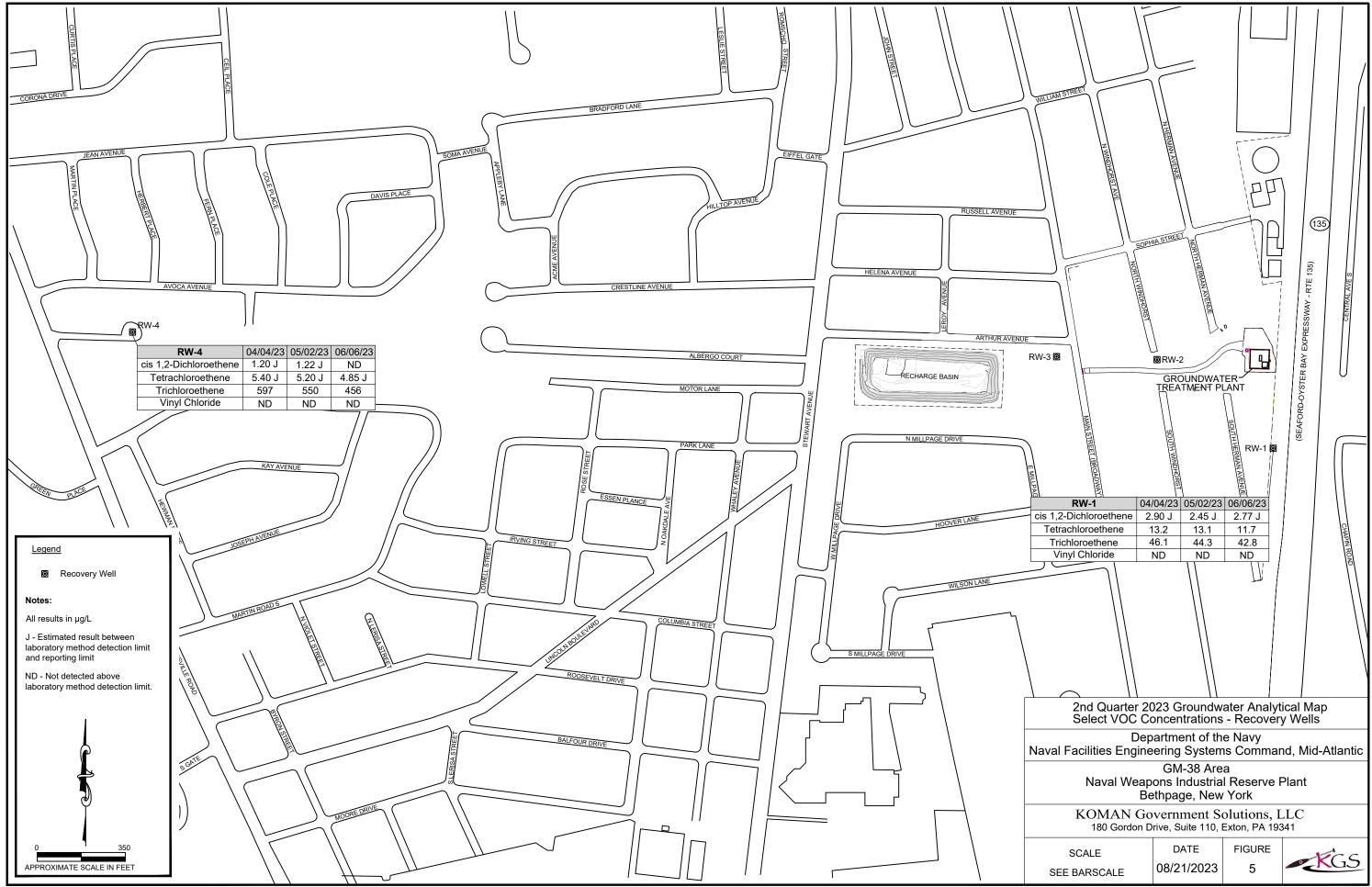


Figure 6

GM-38 Area Groundwater Remediation

Naval Weapons Industrial Reserve Plant - Bethpage, N

Groundwater Concentration Trends of Select VOCs

RW-1

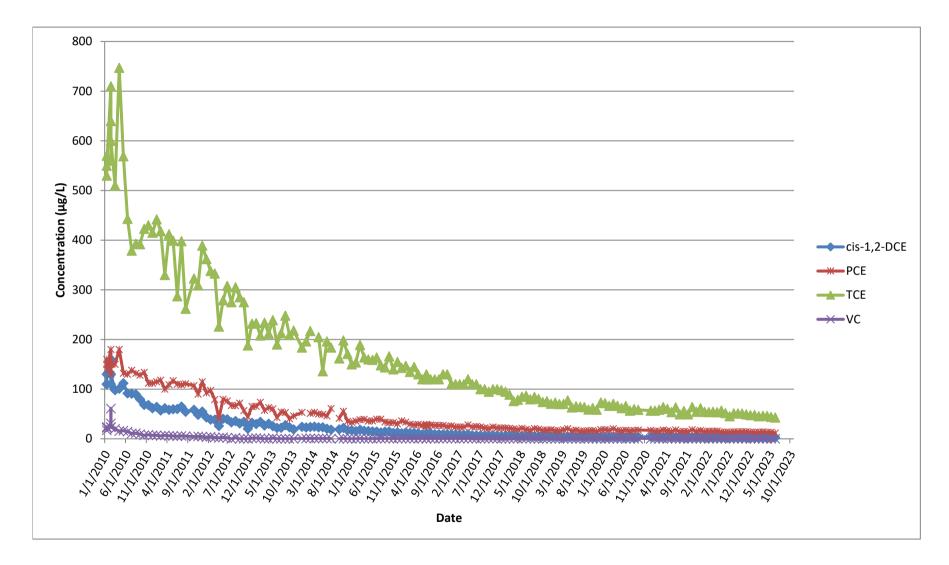
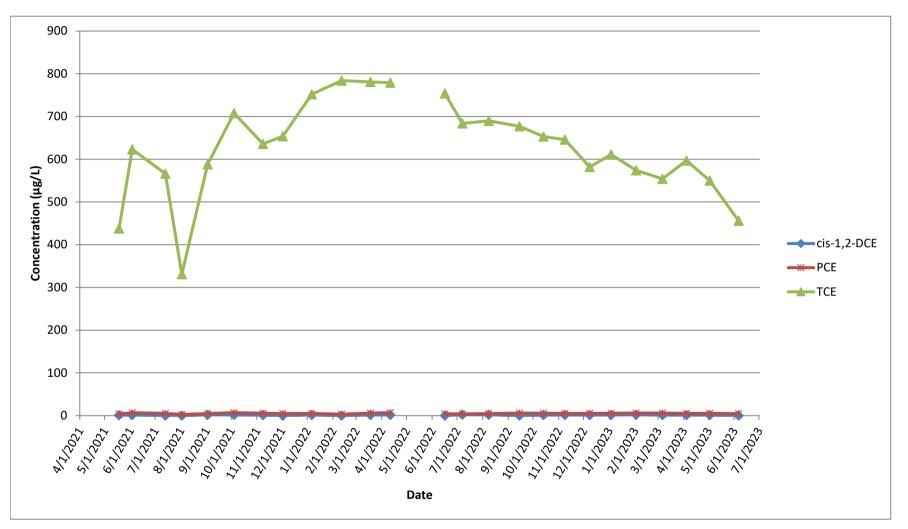
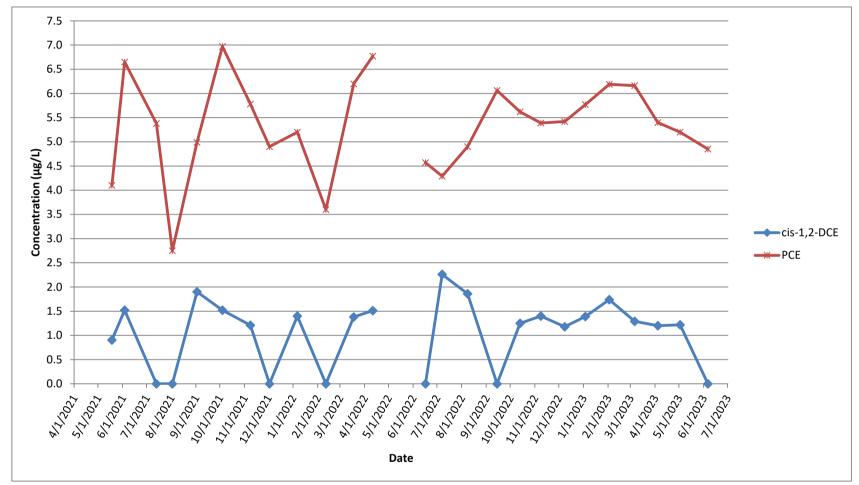



Figure 7 GM-38 Area Groundwater Remediation Naval Weapons Industrial Reserve Plant - Bethpage, N Groundwater Concentration Trends of Select VOCs RW-4


Figure 8

GM-38 Area Groundwater Remediation

Naval Weapons Industrial Reserve Plant - Bethpage, N

Groundwater Concentration Trends of Select VOCs

TABLES

Table 1 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Results Second Quarter 2023

SPDES Parameters ¹	Daily Maximum Goal	Units	April 2023											
Process Stream			RW-1	RW-3	RW-4	Combined Influent	Treated Effluent	Treated Effluent DUPLICATE	Air Stripper Effluent (ASE)	Bag Filter Effluent (BFE)	Liquid Carbon 1 Effluent (LC1)	Liquid Carbon 2 Effluent (LC2)	Liquid Carbon 3 Effluent (LC3)	AOP Influent
Well Depth		ft	445	530	675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Screened Interval		ft	335-395 410-430	392-412 442-504	570-670	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sampling Date	N/A				•	•		4/4	4/23		•	•		
Average Flowrate	1100	GPM	473	0	485	958	1,002	NR	NR	969	NR	NR	NR	NR
Total Flow	N/A	gallons	19,042,267	0	19,511,400	38,553,667	40,318,333	NR	NR	38,981,967	NR	NR	NR	NR
рН	5.5 - 8.5	SU	5.55	NS	6.31	5.93	6.63	6.62	6.89	6.90	6.63	6.65	6.64	6.65
Chloroform	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	1.01 J	NS	ND (1.0)	0.50 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.505 J	NS	1.25 J	0.88 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	2.90 J	NS	1.20 J	2.04 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	13.2	NS	5.40 J	9.3	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.392 J	NS	ND (1.0)	0.19 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	5	μg/L	46.1	NS	597	325	ND (1.0)	ND (1.0)	5.61 J	4.68 J	ND (1.0)	ND (1.0)	ND (1.0)	4.82
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	NS	6.95 J	3.5 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane - 8270D	1	μg/L	1.7	NS	13	7.4	0.12	0.12	NS	NS	NS	NS	NS	6.8
Mercury	0.00025	mg/L	ND (0.00010)	NS	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	NS
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	NS

Table 1 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Results Second Quarter 2023

SPDES Parameters ¹	Daily Maximum Goal	Units	May 2023											-
Process Stream			RW-1	RW-3	RW-4	Combined Influent	Treated Effluent	Treated Effluent DUPLICATE	Air Stripper Effluent (ASE)	Bag Filter Effluent (BFE)	Liquid Carbon 1 Effluent (LC1)	Liquid Carbon 2 Effluent (LC2)	Liquid Carbon 3 Effluent (LC3)	AOP Influent
Well Depth		ft	445	530	675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Screened Interval		ft	335-395 410-430	392-412 442-504	570-670	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sampling Date	N/A							5/2	2/23					
Average Flowrate	1100	GPM	478	0	493	971	996	NR	NR	967	NR	NR	NR	NR
Total Flow	N/A	gallons	21,339,533	0	22,009,000	43,348,533	44,459,567	NR	NR	43,165,733	NR	NR	NR	NR
pH	5.5 - 8.5	SU	5.71	NS	6.31	6.01	6.71	6.72	6.97	6.98	7.00	7.00	6.90	6.48
Chloroform	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	0.810 J	NS	ND (1.0)	0.40 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.442 J	NS	1.11 J	0.78 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	2.45 J	NS	1.22 J	1.83 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	13.1	NS	5.20 J	9.1	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.286 J	NS	ND (1.0)	0.14 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	5	μg/L	44.3	NS	550	301	ND (1.0)	ND (1.0)	4.03 J	3.99 J	ND (1.0)	ND (1.0)	ND (1.0)	3.72 J
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	NS	5.83 J	3.0 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane - 8270D	1	μg/L	1.5	NS	10	5.8	0.093	0.11	NS	NS	NS	NS	NS	6.1
Mercury	0.00025	mg/L	ND (0.00010)	NS	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	NS
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	3.1	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	NS

Table 1 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Results Second Quarter 2023

SPDES Parameters ¹	Daily Maximum Goal	Units	June 2023											
Process Stream			RW-1	RW-3	RW-4	Combined Influent	Treated Effluent	Treated Effluent DUPLICATE	Air Stripper Effluent (ASE)	Bag Filter Effluent (BFE)	Liquid Carbon 1 Effluent (LC1)	Liquid Carbon 2 Effluent (LC2)	Liquid Carbon 3 Effluent (LC3)	AOP Influent
Well Depth		ft	445	530	675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Screened Interval		ft	335-395 410-430	392-412 442-504	570-670	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sampling Date	N/A							6/6	5/23					
Average Flowrate	1100	GPM	479	0	487	966	1,009	NR	NR	962	NR	NR	NR	NR
Total Flow	N/A	gallons	20,522,100	0	20,868,200	41,390,300	43,223,100	NR	NR	41,247,700	NR	NR	NR	NR
pН	5.5 - 8.5	SU	5.88	NS	6.35	6.12	6.87	6.88	6.85	6.86	6.86	6.87	6.88	6.85
Chloroform	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	1.02 J	NS	ND (1.0)	0.51 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.450 J	NS	1.30 J	0.88 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	2.77 J	NS	ND (1.0)	1.37 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	11.7	NS	4.85 J	8.2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.300 J	NS	ND (1.0)	0.15 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	5	μg/L	42.8	NS	456	251	0.210 J	ND (1.0)	5.62 J	4.88 J	ND (1.0)	ND (1.0)	ND (1.0)	5.01
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	NS	6.10 J	3.1 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane - 8270D	1	μg/L	1.6	NS	11	6.3	0.066	0.062	NS	NS	NS	NS	NS	6.1
Mercury	0.00025	mg/L	ND (0.00010)	NS	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	NS
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	NS

Notes:

B - Method blank contamination

J - Estimated result between laboratory method detection limit and reporting limit

NA - Not Applicable

ND - Not detected above laboratory method detection limit. Limit of detection (LOD) given in parentheses.

NR - Not Recorded

NS - Not Sampled

gpm - gallons per minute

(1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.

Table 2 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results Second Quarter 2023

DAR Parameters	Discharge Goal ⁽³⁾	Units	April 2023								
Process Stream			Influent (VCI1)	Effluent	Effluent Duplicate	VC12	VC23				
Sampling Date				<u> </u>	4/4/23						
Average Flowrate	N/A	CFM	NR	6,075							
Total Flow ⁽¹⁾	N/A	ft ³	NR	244,388,310	NR	NR	NR				
Total Flow ⁽²⁾	N/A	m ³	NR	6,920,306	NR	NR	NR				
1,2-Dichloroethane	N/A	µg/m³	ND	2.7 J	2.6 J	ND	2.4 J				
cis 1,2-Dichloroethene	≤ 100,000 ⁽⁴⁾	µg/m³	28	28	29	2.0 J	32				
trans 1,2-Dichloroethene	≤ 100,000 * ′	μg/m ³	ND	ND	ND	ND	ND				
1,2-Dichloroethene (total)	≤ 100,000	μg/m³	ND	28	29	ND	32				
Toluene	N/A	μg/m ³	ND	ND	ND	ND	ND				
Total Xylene	N/A	µg/m³	ND	ND	ND	ND	ND				
1,1,2-Trichloroethane	N/A	μg/m ³	ND	ND	ND	ND	ND				
Trichloroethene	≤ 2600	μg/m ³	8300	1.3 J	1.8 J	13	1.9 J				
Vinyl Chloride	≤ 560	μg/m ³	ND	ND	ND	ND	ND				
Tetrachloroethene	≤ 5100	μg/m ³	230	ND	ND	6.1	ND				

Notes:

NA - Not applicable

ND - Not detected

NR - Not recorded

SGC - Short-term Guideline Concentration

 μ g/m³ - micrograms per cubic meter

CFM - cubic feet per minute

DAR - Division of Air Rescources

(1) Total Flow (ft^3) = avg flowrate (cfm) * operational time (min)

(2) Total Flow (m³) = total flow (ft³) * $(0.3048^{3})m^{3}/ft^{3}$

(3) Disharge goal approved by NYSDEC's letter dated 10/31/2013.

(4) Discharge goal is for total 1,2-Dichloroethene.

Table 2 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results Second Quarter 2023

DAR Parameters	Discharge Goal ⁽³⁾	Units	May 2023							
Process Stream			Influent (VCI1)	Effluent	Effluent Duplicate	VC12	VC23			
Sampling Date					5/2/23					
Average Flowrate	N/A	CFM	NR	5,191						
Total Flow ⁽¹⁾	N/A	ft ³	NR	231,708,384	NR	NR	NR			
Total Flow ⁽²⁾	N/A	m³	NR	6,561,251	NR	NR	NR			
1,2-Dichloroethane	N/A	µg/m³	ND	2.5 J	2.2 J	ND	2.5 J			
cis 1,2-Dichloroethene	≤ 100,000 ⁽⁴⁾	μg/m ³	32	16	16	14	20			
trans 1,2-Dichloroethene	≤ 100,000 * ′	μg/m ³	ND	ND	ND	ND	ND			
1,2-Dichloroethene (total)	≤ 100,000	μg/m³	32	16	16	14	20			
Toluene	N/A	μg/m ³	ND	ND	ND	ND	ND			
Total Xylene	N/A	μg/m ³	ND	ND	ND	ND	ND			
1,1,2-Trichloroethane	N/A	μg/m ³	ND	ND	ND	ND	ND			
Trichloroethene	≤ 2600	μg/m ³	7500	2.5 J	2.0 J	23	3.0 J			
Vinyl Chloride	≤ 560	μg/m ³	ND	ND	ND	ND	ND			
Tetrachloroethene	≤ 5100	μg/m ³	180	ND	ND	5.5	ND			

Notes:

NA - Not applicable

ND - Not detected

NR - Not recorded

SGC - Short-term Guideline Concentration

 μ g/m³ - micrograms per cubic meter

CFM - cubic feet per minute

DAR - Division of Air Rescources

(1) Total Flow (ft^3) = avg flowrate (cfm) * operational time (min)

(2) Total Flow (m^3) = total flow (ft^3) * (0.3048^3) m^3/ft^3

(3) Disharge goal approved by NYSDEC's letter dated 10/31/2013.

(4) Discharge goal is for total 1,2-Dichloroethene.

Table 2 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results Second Quarter 2023

DAR Parameters	Discharge Goal ⁽³⁾	Units	June 2023								
Process Stream			Influent (VCI1)	Effluent	Effluent Duplicate	VC12	VC23				
Sampling Date				<u>+</u>	6/6/23	<u>.</u>					
Average Flowrate	N/A	CFM	NR	3,973							
Total Flow ⁽¹⁾	N/A	ft ³	NR	170,262,915	NR	NR	NR				
Total Flow ⁽²⁾	N/A	m ³	NR	4,821,309	NR	NR	NR				
1,2-Dichloroethane	N/A	µg/m³	ND	2.2 J	2.2 J	1.4 J	2.2 J				
cis 1,2-Dichloroethene	≤ 100,000 ⁽⁴⁾	μg/m ³	56	18	18	67	21				
trans 1,2-Dichloroethene	≤ 100,000 * 7	μg/m ³	ND	ND	ND	1.8 J	ND				
1,2-Dichloroethene (total)	≤ 100,000	µg/m³	56	18	18	67	21				
Toluene	N/A	µg/m³	ND	ND	ND	ND	ND				
Total Xylene	N/A	μg/m ³	ND	ND	ND	ND	ND				
1,1,2-Trichloroethane	N/A	μg/m ³	ND	ND	ND	ND	ND				
Trichloroethene	≤ 2600	µg/m³	8500	7.6	5.4	180	7.7				
Vinyl Chloride	≤ 560	μg/m ³	ND	0.46 J	ND	0.56 J	0.58 J				
Tetrachloroethene	≤ 5100	μg/m ³	310	ND	ND	8.4	ND				

Notes:

NA - Not applicable

ND - Not detected

NR - Not recorded

SGC - Short-term Guideline Concentration

 μ g/m³ - micrograms per cubic meter

CFM - cubic feet per minute

DAR - Division of Air Rescources

(1) Total Flow (ft³) = avg flowrate (cfm) * operational time (min)

(2) Total Flow (m³) = total flow (ft³) * $(0.3048^{3})m^{3}/ft^{3}$

(3) Disharge goal approved by NYSDEC's letter dated 10/31/2013.

(4) Discharge goal is for total 1,2-Dichloroethene.

Table 3

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Stack Emissions Second Quarter 2023

DAR Parameters	Discharge Goal ⁽¹⁾	Units	April 2023	May 2023	June 2023
Sampling Date			4/4/23	5/2/23	6/6/23
Average Flowrate	N/A	CFM	6,075	5,191	3,973
Total Flow	N/A	ft ³	244,388,310	231,708,384	170,262,915
Total Flow	N/A	m³	6,920,306	6,561,251	4,821,309
Trichloroethene	≤ 0.09	lb/hr	0.00004	0.00005	0.00011
Vinyl Chloride	≤ 0.02	lb/hr	0.00000	0.00000	0.00001
1,2 Dichloroethene	≤ 11	lb/hr	0.00061	0.00031	0.00027
1,2-Dichloroethane	N/A	lb/hr	0.00006	0.00005	0.00003
Toluene	N/A	lb/hr	0.00000	0.00000	0.00000
Total Xylene	N/A	lb/hr	0.00000	0.00000	0.00000
1,1,2-Trichloroethane	N/A	lb/hr	0.00000	0.00000	0.00000
Tetrachloroethene	≤ 0.18	lb/hr	0.00000	0.00000	0.00000

Notes:

NA - Not applicable

lb/hr - pounds per hour

DAR - Divison of Air Resources

CFM - Cubic feet per minute

Stack Emissions (lb/hr) = average flowrate (cfm) * $(0.3048^{^3})m^3/ft^3 * conc.(ug/m^3) * 1 lb/453592370 ug * 60 min/hr$

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

Table 4 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Groundwater Level Measurements Second Quarter 2023

Monitoring Well ID	Date	Well Elevation (ft amsl)	Total Depth (ft)	Screen Interval (ft)	Depth to Water (ft)	Groundwater Elevation (ft amsl)
RW1-MW1	4/12/2023	85.86	435	395-435	35.55	50.31
RW1-MW2	NM	87.35	435	395-435	NM	NM
RW1-MW3	4/12/2023	80.34	435	395-435	29.13	51.21
RW2-MW1	4/11/2023	90.75	510	470-510	39.15	51.60
RW2-MW2	4/11/2023	90.15	510	470-510	38.54	51.61
RW2-MW3	4/11/2023	89.75	510	470-510	38.17	51.58
RW3-MW1	4/11/2023	92.22	350	330-350	38.51	53.71
RW3-MW2	4/11/2023	91.98	495	475-495	39.67	52.31
RW3-MW3	4/11/2023	92.98	340	320-340	39.45	53.53
RW3-MW4	4/11/2023	92.92	495	475-495	40.28	52.64
TP-01	4/12/2023	85.91	470	450-470	34.36	51.55
IW1-MW1	4/12/2023	89.41	150	20-150	40.30	49.11
RW-1	NA	91.37	340	320-340	NA	NA
RW-3	NA	91.57	495	475-495	NA	NA
RW-4	NA	NA	675	570-670	NA	NA

Notes:

amsl - above mean sea level ft - feet NA - Not Applicable NM - Not Measured

APPENDIX A

NYSDEC EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS AND APRIL - JUNE 2023 DMRS

p.2

Division of Water Bureau of Water Perm 625 Broadway, Albany,	New York 12233-3505 • FAX: (518) 402-9029
TO: FROM: SUBJECT: DRAINAGE BASIN:	Steven Scharf, DER Jean Occidental, DOW, Bureau of Water Permits JD Naval Weapons Industrial Reserve Plant (NWIRP); DER Site # 1-01-001 na
DATE:	June 6, 2008

In response to your request and the permittee's SPDES Permit Equivalent Application dated April 27, 2008, attached is the effluent criteria for the above noted groundwater remediation discharge.

The Division of Water does not have any regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. The Division of Environmental Remediation will be responsible for ensuring compliance with the attached effluent criteria and approval of all engineering submissions. Additional Condition (1) identifies the contact to send all effluent results, engineering submissions, and modification requests. The Regional Water Engineer should be kept appraised of the status of these discharges and, in accordance with the attached criteria, receive a copy of the effluent results for informational purposes.

If you have any questions, please call me at (518) 402-8116.

Attachment

cc: (w/att) RWE, Region 1 C. Webber BWP Permit Coordinator Naval Weapons Industrial Reserve Plant

DER site # 1-01-001 Page 1 of 2

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning: _____ April 1, 2009

and lasting until: _____ April 1, 2014

the discharges from the treatment facility to Groundwater shall be limited and monitored by the operator as specified below:

	Limita	ations	Units	Minimum Monitoring Requirements		
Outfall and Parameters	Daily Avg.	Daily Avg. Daily Max.		Measurement Frequency	Sample Type	
Treated Groundwater Remediat	tion Discharge from:	Recovery Wells 1	, 2, and 3			
Flow	Monitor	1100	GPM	Continuous	Recorder	
pH (range)	5.5 -	8.5	SU	Weekly	Grab	
1,1-Dichloroethane	NA	5	µg/l	Monthly ¹	Grab	
1,2-Dichloroethane	NA	0.6	µg/l	Monthly ¹	Grab	
1,1-Dichloroethene	NA	5	µg/I	Monthly ¹	Grab	
cis-1,2-Dichloroethene	NA	5	µg/l	Monthly ¹	Grab	
trans-1,2-Dichloroethene	NA	5	µg/l	Monthly ¹	Grab	
Tetrachloroethene	NA	5	µg/I	Monthly ¹	Grab	
1,1,1-Trichloroethane	NA	5	µg/I	Monthly ¹	Grab	
Trichloroethene	NA	5	hð\l	Monthly ¹	Grab	
Vinyl chloride	NA	2	µg/l	Monthly ¹	Grab	
Mercury	NA	0.25	hð\	Monthly ¹	Grab	

Footnotes:

(1)

The minimum measurement frequency shall be monthly following a period of 24 consecutive weekly sampling events showing no exceedances of the stated discharge limitations.

Naval Weapons Industrial Reserve Plant

DER site # 1-01-001 Page 1 of 2

Additional Conditions:

(1) Discharge is not authorized until such time as an engineering submission showing the method of treatment is approved by the Department. The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Steven Scharf Division of Environmental Remediation NYSDEC, 625 Broadway Albany, NY 12233-7015 Phone: (518) 402-9620

With a copy sent to:

Regional Water Engineer NYSDEC - Region 1 Building 40, SUNY Campus Stony Brook, New York 11790-2356 Phone: (631) 444-0354

(2) Only site generated wastewater is authorized for treatment and discharge.

(3) Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.

- (4) Any use of corrosion/scale inhibitors, biocidal-type compounds, or other water treatment chemicals used in the treatment process must be approved by the department prior to use.
- (5) This discharge and administration of this discharge must comply with the substantive requirements of 6NYCRR Part 750.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau D 625 Broadway, 12th Floor, Albany, NY 12233-7013 P: (518) 402-9676 I F: (518) 402-9773 www.dec.ny.gov

August 31, 2017

Ms. Lora Fly Remedial Project Manager Naval Facilities Engineering Command 9324 Virginia Ave. Bldg. Z-144, Code OPTE3-6 Norfolk, VA 23511

> Re: SPDES Permit Equivalent Application, Naval Weapons Industrial Reserve Plant Site (NWIRP), Bethpage. NYSDEC Site No 130003B

Lora:

The Department of the Navy (Navy) has requested to renew the State Pollutant Discharge Elimination System (SPDES) effluent for the GM-38 groundwater extraction and treatment system. The New York State Department Environmental Conservation (NYSDEC) has reviewed this request and has established discharge limits for the GM-38 system. These discharge limits, and associated reporting requirements, are detailed in the attached memorandum from the NYSDEC Division of Water.

Thanks and please do not hesitate to contact me at (518) 402-9478 or jason.pelton@dec.ny.gov with any questions.

Sincerely,

Jason M. Pelton Project Manager Remedial Section B, Remedial Bureau D Division of Environmental Remediation

ec: B. Caldwell, EnSafe/Resolution Consultants S. Edwards, NYSDEC D. Hesler, NYSDEC C. Haas, NYSDEC Region 1 W. Parish, NYSDEC Region 1 S. Karpinski, NYSDOH J. DeFranco/J. Lovejoy, NCDOH L. Thantu, USEPA Region 2

Department of Environmental Conservation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Water, Bureau of Permits 625 Broadway, Albany, New York 12233-3505 P: (518) 402-8111 | F: (518) 402-9029 www.dec.ny.gov

MEMORANDUM

TO:	Jason Pelton, DER
FROM:	Robert Wither, Chief, South Permits Section, DOW
SUBJECT:	Naval Weapons Industrial Reserve Plant, DER Site #1-30-003B
DATE:	August 18, 2017

In response to your request received July 13, 2017, attached please find effluent limitations and monitoring requirements for the above noted remediation discharge.

The DOW does not have any regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. DER will be responsible for ensuring compliance with the attached effluent limitations and monitoring requirements, and approval of all engineering submissions. Footnote 1 identifies the appropriate DER contact as the place to send all effluent results, engineering submissions, and modification requests. The Regional Water Engineer should be kept appraised of the status of this discharge and, in accordance with the attached criteria, receive a copy of the effluent results for informational purposes.

If you have any questions, please call me at 518-402-8123.

Attachment (Effluent Limitations and Monitoring Requirements)

cc: Cathy Haas, RWE, Region 1

Department of Environmental Conservation

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning **September 1, 2017** and lasting until **August 31, 2027** the discharges from the wastewater treatment facility to groundwater, Class GA shall be limited and monitored by the operator as specified below:

Outfall Number and	Discharge L	imitations		Minimum Monitoring Requirements				
Parameter	Monthly Avg.	Daily Max	Units	Measurement Frequency	Sample Type			
Outfall 001 - Treated Remediation Discharge:								
Flow	Monitor	1100	GPM	Continuous	Recorder			
pH (range)	5.5 -	8.5	SU	Monthly	Grab			
1,1-Dichloroethanrie	NA	5	µg/l	Monthly	Grab			
1,2-Dichloroethane	NA	0.6	µg/l	Monthly	Grab			
1,1-Dichloroethene	NA	5	µg/l	Monthly	Grab			
cis-1,2-Dichloroethene	NA	5	µg/l	Monthly	Grab			
trans-1,2-Dichloroethene	NA	5	µg/l	Monthly	Grab			
Tetrachloroethene	NA	5	µg/l	Monthly	Grab			
1,1,1-Trichloroethane	NA	5	µg/1	Monthly	Grab			
Trichloroethene	NA	5	µg/l	Monthly	Grab			
Vinyl Chloride	NA	2	µg/l	Monthly	Grab			
Mercury	NA	0.25	µg/l	Monthly	Grab			
Chloroform	NA	5	µg/l	Monthly	Grab			
Trichlorotrifluoroethane (Freon 113)	NA	5	µg/l	Monthly	Grab			
1,4 Dioxane	NA	Monitor	µg/l	Monthly	Grab			

Site Number 1-30-003B Page 2 of 2

Additional Conditions:

 The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Jason Pelton Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233- 7015 518-402-9870

With a copy sent to:

Regional Water Engineer, Region 1 NYSDEC SUNY @ Stony Brook 50 Circle Road Stony Brook, NY 11790-3409

- 2. Only site generated wastewater is authorized for treatment and discharge.
- 3. Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.
- 4. Both concentration (mg/l or μg/l) and mass loadings (lbs/day) must be reported to the Department for all parameters except flow and pH.
- 5. Any use of corrosion/scale inhibitors, biocidal-type compounds, or other water treatment chemicals used in the treatment process must be approved by the department prior to use.
- 6. This discharge and administration of this discharge must comply with the substantive requirements of 6NYCRR Part 750.

APRIL 2023

9 May 2023

Mr. Jason Pelton New York State Department of Environmental Conservation Division of Solid & Hazardous Materials 625 Broadway Albany, NY 12233-7252

Subject: GROUNDWATER DISCHARGE MONITORING/AIR EMISSION REPORT GM-38 AREA, NWIRP BETHPAGE, NY; DER SITE # 1-30-003B-OU 2 APRIL 2023 REPORTING PERIOD

Dear Mr. Pelton:

KOMAN Government Solutions, LLC (KGS) is submitting this monthly monitoring report of the groundwater discharge and air emission results for the Groundwater Treatment Plant (GWTP) located at the Former Naval Weapons Industrial Reserve Plant (NWIRP), Bethpage, NY, GM-38 Area. This report was prepared in accordance with GWTP operational requirements for DER Site # 1-30-003B-OU 2, and the SPDES Permit Equivalent # 13003B.

GWTP operational data from 1 April to 30 April 2023 are presented in Attachment A. The plant was down for approximately 49.5 hours during the reporting period as the result of PLC system communication issues, AOP system repairs, and LGAC backwashing efforts.

As indicated in Attachment A, all SPDES permitted aqueous constituents are in compliance with the established discharge limits, and all stack emissions are in compliance with established discharge goals during the current reporting period.

Please contact me at 610-400-0636 with any questions or concerns you may have regarding this report.

Sincerely,

KOMAN Government Solutions, LLC

Robert & Srigny

Robert G. Gregory Project Manager

Attachment A: Groundwater and Air Sampling Results for April 2023

Mr. Jason Pelton 8 May 2023 Page 2 of 2

cc: C. Haas, NYSDEC Region 1
C. Engelhardt, NYSDEC Region 1
J. Pilewski, NYSDEC – Region 1 Water Engineer
K. Granzen, NYSDEC
M. Travis, NYSDEC
J. Sullivan, NYSDOH
G. Ennis, Nassau County Department of Public Works
T. Licata, Town of Oyster Bay
M. Russo, Town of Oyster Bay
S. Sokolowski, NAVFAC Mid-Atlantic
V. Varricchio, NWIRP Bethpage Facilities Management
P. Schauble, KGS
GM-38 Copy

ATTACHMENT A

GROUNDWATER AND AIR SAMPLING RESULTS

APRIL 2023

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Report April 2023

SPDES Parameters				April 2023				
Process Stream	Daily Treated Effluent Maximum ⁽¹⁾	Units	RW-1	RW-3	RW-4	Combined Influent (RW-1 + RW-3 + RW-4)	Treated Effluent	
Well Depth	N/A	ft	445	530	675	N/A	N/A	
Screened Interval	N/A	ft bgs	335-395 410-430	392-412 442-504	570-670	N/A	N/A	
Sampling Date	N/A				4/4/23			
Effective Flowrate	1100	GPM	473	0	485	958	1,002	
Total Flow	N/A	gallons	19,042,267	0	19,511,400	38,553,667	40,318,333	
рН	5.5 - 8.5	SU	5.55	NS	6.31	5.93	6.63	
Chloroform	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	
1,1-Dichloroethane	5	μg/L	1.01 J	NS	ND (1.0)	0.50 J	ND (1.0)	
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	
1,1-Dichloroethene	5	μg/L	0.505 J	NS	1.25 J	0.88 J	ND (1.0)	
cis 1,2-Dichloroethene	5	μg/L	2.90 J	NS	1.20 J	2.04 J	ND (1.0)	
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	
Tetrachloroethene	5	μg/L	13.2	NS	5.40 J	9.3	ND (1.0)	
1,1,1-Trichloroethane	5	μg/L	0.392 J	NS	ND (1.0)	0.19 J	ND (1.0)	
Trichloroethene	5	μg/L	46.1	NS	597	325	ND (1.0)	
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	NS	6.95 J	3.5 J	ND (1.0)	
Vinyl Chloride	2	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	
1,4-Dioxane - 8270D	1	μg/L	1.7	NS	13	7.4	0.12	
Mercury	0.00025	mg/L	ND (0.00010)	NS	ND (0.00010)	ND (0.00010)	ND (0.00010)	
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)	

Notes:

B - Method blank contamination

J - Estimated result between laboratory method detection limit and reporting limit

ND - Not detected above laboratory method detection limit. Limit of Detection (LOD) given in parentheses.

N/A - Not Applicable

NS - Not Sampled

(1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results April 2023

DAR Parameters	April 2023			
Process Stream	Units	Discharge Goal ⁽¹⁾	Influent	Effluent
Sampling Date			4	/4/23
Average Flowrate	CFM	N/A	NR	6,075
Total Flow	ft ³	N/A	NR	244,388,310
Total Flow	m ³	N/A	NR	6,920,306
1,2-Dichloroethane	μg/m³	N/A	ND	2.7 J
cis 1,2-Dichloroethene	μg/m ³	≤ 100,000 ⁽²⁾	28	28
trans 1,2-Dichloroethene	μg/m ³	≤ 100,000 * ′	ND	ND
1,2-Dichloroethene (total)	μg/m³	≤ 100,000	ND	28
Toluene	μg/m ³	N/A	ND	ND
Total Xylene	μg/m ³	N/A	ND	ND
1,1,2-Trichloroethane	μg/m ³	N/A	ND	ND
Trichloroethene	μg/m³	≤ 2600	8300	1.3 J
Vinyl Chloride	μg/m³	≤ 560	ND	ND
Tetrachloroethene	μg/m³	≤ 5100	230	ND

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

J - Estimated result between laboratory method detection limit and reporting limit

N/A - Not Applicable

NR - Not recorded

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

(2) Discharge goal is for total 1,2-Dichloroethene.

Goals based on an assumed air flow rate of 8,000 CFM

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Controlled Stack Emissions April 2023

DAR Parameters	Units	Discharge Goal ⁽¹⁾	April 2023
Sampling Date			4/4/23
Average Flowrate	CFM	N/A	6,075
Total Flow	ft ³	N/A	244,388,310
Total Flow	m ³	N/A	6,920,306
Trichloroethene	lb/hr	≤ 0.09	0.00004
Vinyl Chloride	lb/hr	≤ 0.02	0.00000
1,2 Dichloroethene	lb/hr	≤ 11	0.00061
1,2-Dichloroethane	lb/hr	N/A	0.00006
Toluene	lb/hr	N/A	0.00000
Total Xylene	lb/hr	N/A	0.00000
1,1,2-Trichloroethane	lb/hr	N/A	0.00000
Tetrachloroethene	lb/hr	≤ 0.18	0.00000

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

N/A - Not Applicable

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013. Goals based on an assumed air flow rate of 8,000 CFM MAY 2023

8 June 2023

Mr. Jason Pelton New York State Department of Environmental Conservation Division of Solid & Hazardous Materials 625 Broadway Albany, NY 12233-7252

Subject: GROUNDWATER DISCHARGE MONITORING/AIR EMISSION REPORT GM-38 AREA, NWIRP BETHPAGE, NY; DER SITE # 1-30-003B-OU 2 MAY 2023 REPORTING PERIOD

Dear Mr. Pelton:

KOMAN Government Solutions, LLC (KGS) is submitting this monthly monitoring report of the groundwater discharge and air emission results for the Groundwater Treatment Plant (GWTP) located at the Former Naval Weapons Industrial Reserve Plant (NWIRP), Bethpage, NY, GM-38 Area. This report was prepared in accordance with GWTP operational requirements for DER Site # 1-30-003B-OU 2, and the SPDES Permit Equivalent # 13003B.

GWTP operational data from 1 May to 31 May 2023 are presented in Attachment A. There was no downtime recorded during this reporting period.

As indicated in Attachment A, all SPDES permitted aqueous constituents are in compliance with the established discharge limits, and all stack emissions are in compliance with established discharge goals during the current reporting period.

Please contact me at 610-400-0636 with any questions or concerns you may have regarding this report.

Sincerely,

KOMAN Government Solutions, LLC

Robert & Strang

Robert G. Gregory Project Manager

Attachment A: Groundwater and Air Sampling Results for May 2023

Mr. Jason Pelton 8 June 2023 Page 2 of 2

cc: C. Haas, NYSDEC Region 1
C. Engelhardt, NYSDEC Region 1
J. Pilewski, NYSDEC – Region 1 Water Engineer
K. Granzen, NYSDEC
M. Travis, NYSDEC
J. Sullivan, NYSDOH
G. Ennis, Nassau County Department of Public Works
T. Licata, Town of Oyster Bay
M. Russo, Town of Oyster Bay
S. Sokolowski, NAVFAC Mid-Atlantic
V. Varricchio, NWIRP Bethpage Facilities Management
P. Schauble, KGS
GM-38 Copy

ATTACHMENT A

GROUNDWATER AND AIR SAMPLING RESULTS

MAY 2023

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Report May 2023

SPDES Parameters							
Process Stream	Daily Treated Effluent Maximum ⁽¹⁾	Units	RW-1	RW-3	RW-4	Combined Influent (RW-1 + RW-3 + RW-4)	Treated Effluent
Well Depth	N/A	ft	445	530	675	N/A	N/A
Screened Interval	N/A	ft bgs	335-395 410-430	392-412 442-504	570-670	N/A	N/A
Sampling Date	N/A				5/2/23		
Effective Flowrate	1100	GPM	478	0	493	971	996
Total Flow	N/A	gallons	21,339,533	0	22,009,000	43,348,533	44,459,567
рН	5.5 - 8.5	SU	5.71	NS	6.31	6.01	6.71
Chloroform	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	0.810 J	NS	ND (1.0)	0.40 J	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.442 J	NS	1.11 J	0.78 J	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	2.45 J	NS	1.22 J	1.83 J	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	13.1	NS	5.20 J	9.1	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.286 J	NS	ND (1.0)	0.14 J	ND (1.0)
Trichloroethene	5	μg/L	44.3	NS	550	301	ND (1.0)
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	NS	5.83 J	3.0 J	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane - 8270D	1	μg/L	1.5	NS	10	5.8	0.093
Mercury	0.00025	mg/L	ND (0.00010)	NS	ND (0.00010)	ND (0.00010)	ND (0.00010)
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)

Notes:

B - Method blank contamination

J - Estimated result between laboratory method detection limit and reporting limit

ND - Not detected above laboratory method detection limit. Limit of Detection (LOD) given in parentheses.

N/A - Not Applicable

NS - Not Sampled

(1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results May 2023

DAR Parameters	May 2023			
Process Stream	Units	Discharge Goal ⁽¹⁾	Influent	Effluent
Sampling Date			5	/2/23
Average Flowrate	CFM	N/A	NR	5,191
Total Flow	ft ³	N/A	NR	231,708,384
Total Flow	m ³	N/A	NR	6,561,251
1,2-Dichloroethane	μg/m³	N/A	ND	2.5 J
cis 1,2-Dichloroethene	μg/m ³	≤ 100,000 ⁽²⁾	32	16
trans 1,2-Dichloroethene	μg/m³	≤ 100,000 * ′	ND	ND
1,2-Dichloroethene (total)	μg/m ³	≤ 100,000	32	16
Toluene	μg/m ³	N/A	ND	ND
Total Xylene	μg/m ³	N/A	ND	ND
1,1,2-Trichloroethane	μg/m ³	N/A	ND	ND
Trichloroethene	μg/m³	≤ 2600	7500	2.5 J
Vinyl Chloride	μg/m³	≤ 560	ND	ND
Tetrachloroethene	μg/m ³	≤ 5100	180	ND

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

J - Estimated result between laboratory method detection limit and reporting limit

N/A - Not Applicable

NR - Not recorded

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

(2) Discharge goal is for total 1,2-Dichloroethene.

Goals based on an assumed air flow rate of 8,000 CFM

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Controlled Stack Emissions May 2023

DAR Parameters	Units	Discharge Goal ⁽¹⁾	May 2023
Sampling Date			5/2/23
Average Flowrate	CFM	N/A	5,191
Total Flow	ft ³	N/A	231,708,384
Total Flow	m ³	N/A	6,561,251
Trichloroethene	lb/hr	≤ 0.09	0.00005
Vinyl Chloride	lb/hr	≤ 0.02	0.00000
1,2 Dichloroethene	lb/hr	≤ 11	0.00031
1,2-Dichloroethane	lb/hr	N/A	0.00005
Toluene	lb/hr	N/A	0.00000
Total Xylene	lb/hr	N/A	0.00000
1,1,2-Trichloroethane	lb/hr	N/A	0.00000
Tetrachloroethene	lb/hr	≤ 0.18	0.00000

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

N/A - Not Applicable

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013. Goals based on an assumed air flow rate of 8,000 CFM **JUNE 2023**

6 July 2023

Mr. Jason Pelton New York State Department of Environmental Conservation Division of Solid & Hazardous Materials 625 Broadway Albany, NY 12233-7252

Subject: GROUNDWATER DISCHARGE MONITORING/AIR EMISSION REPORT GM-38 AREA, NWIRP BETHPAGE, NY; DER SITE # 1-30-003B-OU 2 JUNE 2023 REPORTING PERIOD

Dear Mr. Pelton:

KOMAN Government Solutions, LLC (KGS) is submitting this monthly monitoring report of the groundwater discharge and air emission results for the Groundwater Treatment Plant (GWTP) located at the Former Naval Weapons Industrial Reserve Plant (NWIRP), Bethpage, NY, GM-38 Area. This report was prepared in accordance with GWTP operational requirements for DER Site # 1-30-003B-OU 2, and the SPDES Permit Equivalent # 13003B.

GWTP operational data from 1 June to 30 June 2023 are presented in Attachment A. The plant was down for approximately 5.8 hours during the reporting period as the result of ultraviolet (UV) lamp alarms from the Advanced Oxidation Process (AOP) unit and liquid-phase granular activated carbon (LGAC) backwash efforts.

As indicated in Attachment A, all SPDES permitted aqueous constituents are in compliance with the established discharge limits, and all stack emissions are in compliance with established discharge goals during the current reporting period.

Please contact me at 610-400-0636 with any questions or concerns you may have regarding this report.

Sincerely,

KOMAN Government Solutions, LLC

Poliet & Gryng

Robert G. Gregory Project Manager

Attachment A: Groundwater and Air Sampling Results for June 2023

Mr. Jason Pelton 6 July 2023 Page 2 of 2

cc: C. Haas, NYSDEC Region 1
C. Engelhardt, NYSDEC Region 1
J. Pilewski, NYSDEC – Region 1 Water Engineer
K. Granzen, NYSDEC
M. Travis, NYSDEC
J. Sullivan, NYSDOH
G. Ennis, Nassau County Department of Public Works
T. Licata, Town of Oyster Bay
M. Russo, Town of Oyster Bay
S. Sokolowski, NAVFAC Mid-Atlantic
V. Varricchio, NWIRP Bethpage Facilities Management
P. Schauble, KGS
GM-38 Copy

ATTACHMENT A

GROUNDWATER AND AIR SAMPLING RESULTS

JUNE 2023

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Report June 2023

SPDES Parameters					June 2023		
Process Stream	Daily Treated Effluent Maximum ⁽¹⁾	Units	RW-1	RW-3	RW-4	Combined Influent (RW-1 + RW-3 + RW-4)	Treated Effluent
Well Depth	N/A	ft	445	530	675	N/A	N/A
Screened Interval	N/A	ft bgs	335-395 410-430	392-412 442-504	570-670	N/A	N/A
Sampling Date	N/A				6/6/23		
Effective Flowrate	1100	GPM	479	0	487	966	1,009
Total Flow	N/A	gallons	20,522,100	0	20,868,200	41,390,300	43,223,100
рН	5.5 - 8.5	SU	5.88	NS	6.35	6.12	6.87
Chloroform	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	1.02 J	NS	ND (1.0)	0.51 J	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.450 J	NS	1.30 J	0.88 J	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	2.77 J	NS	ND (1.0)	1.37 J	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	11.7	NS	4.85 J	8.2	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.300 J	NS	ND (1.0)	0.15 J	ND (1.0)
Trichloroethene	5	μg/L	42.8	NS	456	251	0.210 J
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	NS	6.10 J	3.1 J	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane - 8270D	1	μg/L	1.6	NS	11	6.3	0.066
Mercury	0.00025	mg/L	ND (0.00010)	NS	ND (0.00010)	ND (0.00010)	ND (0.00010)
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	NS	ND (1.0)	ND (1.0)	ND (1.0)

Notes:

B - Method blank contamination

J - Estimated result between laboratory method detection limit and reporting limit

ND - Not detected above laboratory method detection limit. Limit of Detection (LOD) given in parentheses.

N/A - Not Applicable

NS - Not Sampled

(1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results June 2023

DAR Parameters	June 2023			
Process Stream	Units	Discharge Goal ⁽¹⁾	Influent	Effluent
Sampling Date			6	/6/23
Average Flowrate	CFM	N/A	NR	3,973
Total Flow	ft ³	N/A	NR	170,262,915
Total Flow	m ³	N/A	NR	4,821,309
1,2-Dichloroethane	μg/m³	N/A	ND	2.2 J
cis 1,2-Dichloroethene	μg/m³	≤ 100,000 ⁽²⁾	56	18
trans 1,2-Dichloroethene	μg/m³	≤ 100,000 * ′	ND	ND
1,2-Dichloroethene (total)	μg/m ³	≤ 100,000	56	18
Toluene	μg/m ³	N/A	ND	ND
Total Xylene	μg/m ³	N/A	ND	ND
1,1,2-Trichloroethane	μg/m ³	N/A	ND	ND
Trichloroethene	μg/m ³	≤ 2600	8500	7.6
Vinyl Chloride	μg/m ³	≤ 560	ND	0.46 J
Tetrachloroethene	μg/m³	≤ 5100	310	ND

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

J - Estimated result between laboratory method detection limit and reporting limit

N/A - Not Applicable

NR - Not recorded

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

(2) Discharge goal is for total 1,2-Dichloroethene.

Goals based on an assumed air flow rate of 8,000 CFM

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Controlled Stack Emissions June 2023

DAR Parameters	Units	Discharge Goal ⁽¹⁾	June 2023
Sampling Date			6/6/23
Average Flowrate	CFM	N/A	3,973
Total Flow	ft ³	N/A	170,262,915
Total Flow	m ³	N/A	4,821,309
Trichloroethene	lb/hr	≤ 0.09	0.00011
Vinyl Chloride	lb/hr	≤ 0.02	0.00001
1,2 Dichloroethene	lb/hr	≤ 11	0.00027
1,2-Dichloroethane	lb/hr	N/A	0.00003
Toluene	lb/hr	N/A	0.00000
Total Xylene	lb/hr	N/A	0.00000
1,1,2-Trichloroethane	lb/hr	N/A	0.00000
Tetrachloroethene	lb/hr	≤ 0.18	0.00000

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

N/A - Not Applicable

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013. Goals based on an assumed air flow rate of 8,000 CFM

APPENDIX B

NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

New York State Department of Environmental Conservation

Division of Environmental Remediation Remedial Action Bureau A, 12th Floor 625 Broadway, Albany, New York 12233-7015 Phone: (518) 402-9620 FAX: (518) 402-9022

Joseph Martens Commissioner

October 31, 2013

Lora Fly Remedial Program Manager NAVFAC Mid-Atlantic Northeast IPT 9742 Maryland Avenue Norfolk, VA, 23511-3095

> RE: Northrop Grumman, Naval Weapons Industrial Reserve Plant (NWIRP) and Grumman Steel Los Sites, NYSDEC Site No.'s 1-30-003 A & B.

Dear Ms. Fly:

Tetra Tech NUS Inc., on behalf of the Department of the Navy NAVFAC Midlantic, has submitted an application to remove the GM 38 Area Groundwater Extraction and Treatment system impregnated Xeolitetm resin from the air discharge treatment system. Currently, the air treatment system uses a combined activated carbon with permanganate impregnated resin treatment train. The New York State Department of Environmental Conservation (NYSDEC) has reviewed the Department of the Navy application and concurs with the findings presented.

The routine monitoring, as detailed in Table 1, clearly indicates that vinyl chloride, one of the main contaminants of concern, has diminished to almost non-detect, and discharge concentrations have dropped to below the limit to require air treatment for the other contaminants as well. However, NAVFAC Midlantic is still proposing activated carbon to reduce the other discharge contaminant levels. Therefore, the NYSDEC hereby approves the proposed changes to the GM 38 Area air treatment. The Xeolitetm resin beds will remain in place should reactivation, based on routine monitoring, be required.

If you have any questions in the interim, please contact me at (518)402-9620.

Sincerely,

Steven M. Scharf, P.E. Project Engineer Remedial Action Bureau A Division of Environmental Remediation

EC: J. Swartwout S. Scharf W. Parish, Region 1 S. Karpinski, NYSDOH E. Hannon, NGC D. Stern, Arcadis D. Brayack, TTNUS

NOR-01264

November 21, 2011

Mr. Stephen Scharf New York Department of Environmental Conservation Division of Environmental Remediation Bureau of Remedial Action A 625 Broadway, 11th Floor Albany, New York 12233-7015

Reference: CLEAN Contract No. N62470-08-D-1001 Contract Task Order WE06

Subject: Proposed Modification to Discharge Limits for Off Gas Volatile Organic Compounds (VOCs) for Air Stripping Tower GM-38 Offsite Groundwater Treatment Plant, NWIRP Bethpage, New York

Dear Mr. Scharf:

On behalf of the Navy, please find enclosed a copy of the subject document. This document presents an evaluation of current concentrations of off gas VOCs from the GM-38 groundwater treatment plant airstripping tower (prior to treatment with granular activated carbon). Maximum emission rates were reevaluated due to decreasing maximum concentrations of target VOCs in un-treated air stripper AS-1 off gas. In addition, breakthrough of target contaminants (e.g., cis-1,2-dichloroethene) is beginning to occur in the granular activated carbon bed. Maximum emission rates were re-evaluated to provide a determination if breakthrough of contaminants would trigger the need for a replacement of the granular activated carbon bed.

Existing Discharge Goals were established in the "Final Operation, Maintenance and Monitoring Plan for Groundwater Treatment Plant GM-38 Area Groundwater Remediation" prepared by Tetra Tech EC (April 2010). Existing goals were based on emission estimates for a 95% reduction (see Attachment A), instead of being based on the original DAR-1 analysis of air stripper off gas. Emission estimates were calculated using the air stripper design flow rate of 8,000 cubic feet per minute (cfm), and previous contaminant discharge rates in pounds per hour (lb/hr). Original emission estimates are provided in Attachment B.

Proposed Revised Discharge Goals were calculated using an average flow rate of 9,200 cfm, January to March 2011 VOC loading rates (taken from the Quarterly Operations Report First Quarter 2011 from ECOR Federal Services), and the Actual Annual % of Annual Guideline Concentrations (AGCs), taken from the revised DAR-1 Model Output. The revised DAR-1 Model Output is provided in Attachment C. Existing Discharge Goals and Proposed Revised Discharge Goals are compared in tabular format in the first page of the attachment. Proposed Revised Discharge Goals for trichloroethene (TCE) are the same as previous. The proposed limit for tetrachloroethene (PCE) is approximately 10 times the previous limit, and vinyl chloride is approximately 2 times the previous limit. Revised Discharge Goals for 1,2-dichloroethene (goals are the same for cis-1,2-dichloroethene) are 100 times greater than previously established limits. It is recommended that these revised limits replace previous discharge goals, and treatment of air stripper off gas by granular activated carbon is recommended to continue for TCE and PCE, with no treatment required for vinyl chloride and 1,2-dichloroethene.

NOR-01264

Proposed Modification to Discharge Limits for Off Gas Volatile Organic Compounds (VOCs) NWIRP Bethpage 11-21-11 - Page 2

If you have any questions please contact Ms. Lora Fly, NAVFAC Mid-LANT, at (757) 341-2012.

Sincerely

David D. Brayack, P.E. Project Manager

Enclosure:

 (1) Proposed Modification to Discharge Limits for Off Gas Volatile Organic Compounds (VOCs) for Air Stripping Tower
 GM-38 Offsite Groundwater Treatment Plant

Distribution:

Mid-Lant, Lora Fly NYSDEC (Albany), Henry Wilkie NYSDOH (Troy), Steve Karpinski NAVAIR, Richard Smith USEPA, Carol Stein NGC, Kent Smith Tetra Tech NUS, Dave Brayack ECOR Solutions, Al Taormina Administrative Record Public Repository Project File

TABLE 1 COMPARISON OF EXISTING DISCHARGE GOALS WITH ACTUAL EMISSIONS AND PROPOSED DISCHARGE GOALS AIR STRIPPING TOWER GM-38 OFFSITE GROUNDWATER TREATMENT PLANT NWIRP BETHPAGE, NEW YORK

_	Existing Dis	charge Goal		March 2011 Values s Treatment)	Proposed Revised Discharge Goals based on DAR-1 Analysis		
Chemical	Existing Discharge Loading Rate (pounds (Ibs)/hour) ⁽¹⁾	Equivalent Existing Discharge Goals (µg/m ³) ⁽²⁾	Actual Jan-Mar 2011 Concentration (µg/m ³) ⁽³⁾	Actual VOC Loading Pre-Off Gas Treatment (Ibs/hour) ⁽⁴⁾	Proposed Discharge Loading Rate (lbs/hour) ⁽⁵⁾	Equivalent Proposed Discharge Goal (µg/m ³) ⁽⁵⁾	
TCE	0.09	2,600	10,000	0.345	0.09	2,600	
PCE	0.02	580	6,800	0.234	0.18	5,100	
Vinyl Chloride	0.01	290	76	0.003	0.02	560	
1,2-Dichloroethene (total)	0.03	870	750	0.026	11	greater than 100,000	

Notes:

⁽¹⁾Existing Discharge Goals are based on the design flow rate of 8,000 cfm. Existing Discharge Goals were taken from the Final Operations and Maintenance Plan for GM-38 Area Groundwater Remediation from Tetra Tech EC. Existing goals were based on emission estimates for a 95% reduction, and not the previous DAR-1 Analysis. Attachment B (provided at the end of this package) provides the original emission estimates.

⁽²⁾Existing Discharge Goals were calculated using the actual flow rate of 9,200 cfm and the existing discharge loading rate in pounds per hour (lb/hr).

⁽³⁾Values were taken from the Quarterly Operations Report First Quarter 2011 from ECOR Federal Services. Values were the maximum effluent concentration in off gas from air stripper stack AS-1 prior to treatment with vapor phase granular activated carbon (GAC), for the months of January, February and March 2011.

⁽⁴⁾Actual VOC Loading was calculated using an average flow rate of 9,200 cfm and the January-March 2011 concentrations. Existing off gas treatment consists of two stage vapor phase GAC followed by potassium permanganate zeolite media to provide additional treatment for vinyl chloride.

⁽⁵⁾Values were calculated using an average flow rate of 9,200 cfm, and the Actual Annual % of the AGCs from the 2011 DAR-1 Model Output to achieve air quality requirements.

ATTACHMENT A

2008 AIR PERMIT SUBMITTAL

New York State Department of Environmental Conservation Air Permit Application

DEC ID	APPLICATION ID	OFFICE USE ONLY

Section	I - Certification				
Title	/ Certification				
I certify under penalty of law that this document and all attachments were prep that qualified personnel properly gather and evaluate the information submitt information [required pursuant to 6 NYCRR 201-6.3(d)] I believe the informa submitting false information, including the possibility of fines and imprisonmer	ed. Based on my inquiry of the pa tion is, true, accurate and comple	erson or persons directly	responsible for gathering the		
Responsible Official		Title			
Signature		Date	1 1		
	cility Certification				
I certify that this facility will be operated in conformance with all prov	visions of existing regulations.				
Responsible Official	Title				
Signature	Date	1 1			
Section II - Ider	ntification Information	on			
Title V Facility Permit N/A New Dignificant Modification Administrative A Renewal Minor Modification General Permit Title Application involves construction of new facility	e:	State Facility Permit N/A New Dodification General Permit Title: construction of new emission unit(s)			
0	wner/Firm				
Name US Navy/NAVFAC Midlant					
Street Address 9742 Maryland Ave, Bldg Z-144					
City Norfolk	State VA	Country US	Zip 23511-3095		
Owner Classification 🕅 Federal	□ State □ Muni □ Individual	cipal	Taxpayer ID		
	Facility		🗅 Confidential		
Name Naval Weapons Industrial Reserve Plant (N	WIRP) GM-38 Area				
Location Address Bethpage					
□ City / ⊠ Town / □ Village Oyster Bay, New York			Zip 11714		
	ct Description		Continuation Sheet(s)		
Air stripping of groundwater to remove VOCs					


Owner/Firm Co	ontact Mailing A	Owner/Firm Contact Mailing Address								
Name (Last, First, Middle Initial) Fly, Lora		Phone No. (75	7)444-0781							
Affiliation Department of the Navy	Title Remedia	IPM	Fax No. ()							
Street Address 9742 Maryland Ave. Bldg Z-144										
^{City} Norfolk	State VA	Country US	\$	Zip 23511-3095						
Facility Cont	tact Mailing Add	lress								
Name (Last, First, Middle Initial) Same			Phone No. ()						
Affiliation	Title		Fax No. ()							
Street Address										
City	State	Country		Zip						

PAGE 1

New York State Department of Environmental Conservation Air Permit Application

Continuation Sheet(s)

Section III - Facility Information

Classification									
🗅 Hospital	🗅 Residential	C Educational/Institutional	Commercial	🖄 Industrial	🗅 Utility				

		Affected States (Title V Only) N/A	
□ Vermont	Massachusetts Connecticut	□ Rhode Island	🗅 Pennsylvania	Tribal Land:
□ New Hampshire		□ New Jersey	🗅 Ohio	Tribal Land:

			SIC Codes	S			
9999							

Facility Description Contin Groundwater Remediation by Air Stripping followed by Vapor-Phase GAC for emission control

Compliance Statements (Title V Only) N/A

i certify that as of the date of this application the facility is in compliance with all applicable requirements: If one or more emission units at the facility are not in compliance with all applicable requirements at the time of signing this application (the 'NO' box must be checked), the noncomplying units must be identified in the "Compliance Plan" block on page 8 of this form along with the compliance plan information required. For all emission units at this facility that are operating in compliance with all applicable requirements complete the following:

This facility will continue to be operated and maintained in such a manner as to assure compliance for the duration of the permit, except those units referenced in the compliance plan portion of Section IV of this application.

For all emission units, subject to any applicable requirements that will become effective during the term of the permit, this facility will meet all such requirements on a timely basis.

Compliance certification reports will be submitted at least once a year. Each report will certify compliance status with respect to each requirement, and the method used to determine the status.

			Fac	ility Appli	cable Federa	Requiremen	nts N/A	🗆 Contii	nuation Sheet(s)
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
	CERCLA	all su	bstantive	requirer	hents				
				_					

	Facility State Only Requirements								nuation Sheet(s)
⊺itle	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
	, , , , , , , , , , , , , , , , , , , ,								
						_			

New York State Department of Environmental Conservation Air Permit Application

DEC ID								
-			-					

Section III - Facility Information (continued)

			Fac	ility Complia	ance Certific	ation N/A		ontinuati	ion Sheet(s)		
				Rule (Citation						
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause		
Applicable	Federal Requirement	Capping	CA	AS No.	No. Contaminant Name						
C State Only	Requirement										
				Monitoring	Information						
🗅 Ambient	Air Monitoring	🖸 Work P	ractice Inv	olving Specifi	c Operations	- D Reco	ord Keeping/Maint	enance F	rocedures		
				Desc	ription						
	_		_								
			_					_			
Work Prac			Process		Reference Test Method			bd			
Туре	Code			Description							
					_						
		Para	amete <u>r</u>			Manufacturer Name/Model No.					
	Code	<u> </u>		Description							
	Limit					Limi	t Units				
	Upper Lower			Code	Description						
	Averaging Method	,		Monitoring I			Reporting Requirements				
Code	Descript	tion	Code	[Description	Co	de	Descript	ion		
	·										

	Facility Emissions Summary		🗆 Continu	ation Sheet(s)
		PTE		Actual
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)
NY075 - 00 - 5	PM-10			
NY075 - 00 - 0	PARTICULATES			
7446 - 09 - 5	SULFUR DIOXIDE			
NY210 - 00 - 0	OXIDES OF NITROGEN			
630 - 08 - 0	CARBON MONOXIDE			
7439 - 92 - 1	LEAD			
NY998 - 00 - 0	VOC	117		
NY100 - 00 - 0	НАР	110		
0079 - 01 - 6	Trichloroethylene	99		
00075 - 01 - 4	Vinyl Chloride	3.7		
00540 - 59 - 0	1,2-Dichloroethylene	7.3		

PAGE 3

DEC ID											
-					-						

Section IV - Emission Unit Information

Emission Unit Description	Continuation Sheet(s)
Air Stripper AS-1 for groundwater remediation, provided with activated carbon for	or emission control.
The emission point is stack 00ST-1. The 2-stage VGAC is followed by a	3rd vessel containing
a potassium permanganate zeolite media for increased VC capacity.	
a potassium permanganate zeolite media for increased vC capacity.	

	Building		🗅 Conti	nuation Sheet(s)
Building	Building Name	Length (ft)	Width (ft)	Orientation
BLDG-1	Treatment Plant	75	75	0

			Emission Poir	nt		tinuation Sheet(s)
EMISSION PT.	00ST1					
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross	Section
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
90	40	15	36	80		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
19	8020			BLDG-1	50	
EMISSION PT.						
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross	Section
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)			NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal

				Emission	Sourc	e/Control		Continuation Sheet(s)	
Emission	Source	Date of	Date of	Date of		Control Type	Manufacturer's Name/Model		
ID	Туре	Construction	Operation	Removal	Code	Description	No.		
AS-1	I			048 Granular		048 Granular Act. Carbo		ripping Column	
Design		Design Ca	pacity Units			Waste Feed	Waste Type		
Capacity	Code	(Description		Code Description		Code	Description	
Emission	Source	Date of	Date of	Date of		Control Type	Manu	facturer's Name/Model	
ID	Туре	Construction	Operation	Removal	Code	Description		No.	
Design		Design Ca	pacity Units			Waste Feed	Waste Type		
Capacity	Code		Description		Code	Description	Code	Description	

DEC ID											
-			-								

Section IV - Emission Unit Information (continued)

		Process Ir	nformation		Continuation Sheet(s)							
EMISSION UNIT 0 - 00	E U 1				PROCESS PR 1							
		Desc	ription									
The remedial system	is air strippir	ng, using a pa	acked column	n at a ground	water flow rate of							
1,100 gpm (plus 100	gpm recycle	, for a total o	f 1,200 gpm)	Vapor phase	e treatment includes							
the use of 3 vessels,	a 2-stage GA	AC unit, follov	ved by a 3rd	vessel contair	ning a potassium							
					ntering the vapor-phase							
GAC adsorption system	n, the humidity	of the air strip	oper exhaust is	s reduced to ap	proximately							
50 percent or less to o												
Air Stripper AS-1:	Existing. Typ	e: Vertical, Cy	lindrical Cons	struction: Alum	inum							
Packing: 25-foot J	aeger Tripack.	Dimensions:	10.0 ft. Dia x 4	47 ft. H								
Source Classification	Total T	hruput		Thruput Qu	antity Units							
Code (SCC) Quantity/Hr Quantity/Yr Code Description Image: Confidential Maximum Capacity Operating Schedule Building Floor/Location												
	anacity	· · ·		Building	Floor/Location							
A Operating at Maximum Ca Activity with Insignificant		Hrs/Day 24	Jays/Yr 365	BLDG-1	Main							
			Control Identifier									
AS-1				<u></u>								
EMISSION UNIT -					PROCESS							
	<u> </u>	Descr	ription		i ii							
Source Classification	Total T	hruput		Thruput Qu	antity Units							
Code (SCC)	Quantity/Hr	Quantity/Yr	Code		Description							
🗆 Confidential		Operating		Building	Floor/Location							
Operating at Maximum Ca Activity with Insignificant		Hrs/Day	Days/Yr	Danang								
		minoion Course-W	Control Idontifi'	(c)								
	Er	mission Source/C	Control Identifier	(5)								

DEC ID											

Section IV - Emission Unit Information (continued)

	_												- máin 4	on Chart(a)
Emission	n Emis	ssion oint	Process	Emission Source					T	ederal Req I	1	1		ion Sheet(s)
Unit	P0	oint		Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-	_													
-														
Emission	Emis	ssion	Process	Emission		Emi	ssior	Unit Stat	e Only R	equirement	s		ontinuat	ion Sheet(s)
Unit	Po	int	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-														
-														
-														
-														
									-	-			-	
Emission Unit Compliance Certification														
					_		R	ule Cita	-					
Title		ype			Sub Par	ub Part Section Sub Division Para				Paragraph) Sub	Paragraph	Clause	Sub Clause
6		CRR		.12										
			ral Requi		mission		te Or	ly Requir	ement	Cappii	ng			
Emission	Unit	Emissi Poin	t Pro		Source			CAS No.				ontaminant Na	me	
0-00EL	J1	00S	T1 PF	R1 /	AS-1		0079		- 6		loroeth	ylene		
						Mo	nitc	ring Inf	ormatio	on				
🛛 🖾 Inte		tEmi≤	ssion Mo ssion Tes toring				D W	ork Practi	ce Involvi	s or Control ng Specific ntenance Pi	Operatio	Parameters ns s	as Surro	ogate
)escript	ion					
Manthlu	wab com			forVOCa	from t	ho	-	<u> </u>		m influent	offluort	and two into	rmadiat	alacations
Monthly	grad san	iples o	analyzeu	IOF VOCS	nom t		or pri	ase treatm		en innuent,	enuent	and two inte	media	e locations.
			_											
Work Prac	ctice			_	Proce	ss Mat	erial							
Туре		Coc	de				scrip	tion			R	eference Te	st Metho	od
				Para	meter									
	Code					Des	scrip	tion			Manu	Ifacturer Na	me/Mod	el No.
23				Conce	entrat	ion								
	Limit									Lir	nit Units			
	Upper			Lov	wer		Co	de			Desci	ription		
	3,125			255 micrograms per cubic						cubic n	neter			
	Averag	ing M	ethod			M	onito	ring Frequ	iency		Re	porting Red	uiremer	nts
Code		De	scriptior	1	Co			Desc	ription	(Code)escripti	on
01	Inst	tanta	neous		05	5		Monthly			10	Upon	Reques	st

DEC ID												
-												

Section IV - Emission Unit Information (continued)

				Deterr	ninati	on of Nor	-Applica	bility	(Title	V Only)	N/A	Continua Continua	ition Sheet(s)
							e Citatio	_					
Title	Ту	pe	Part	Sub	Part	Section	Sub Divi	sion	Par	agraph S	Sub Paragrap	h Clause	Sub Clause
Emission	a Linit	Em	ission Point	Proc	2000	Emiss	ion Source				leral Require		
		E.11		FIOL	,635					ate Only Re		ment	
						De	scription						
								-					
							e Citatio						
Title	Ту	pe	Part	Sub	Part	Section	Sub Divi	sion	Par	agraph S	Sub Paragrap	h Clause	Sub Clause
Emission	n Unit	Em	ission Point	Proc	ess	Emiss	ion Source		_ □ Ar	onlicable Fer	leral Require	ment	
										ate Only Re			
						De	scription						
									_			_	
									_				
				_									
					P١	rocess Err	nissions S	Sumn	nary			🗆 Continua	tion Sheet(s)
EMISSI	ON UNIT		0 0 - 0	ΕU	1							PROCESS	P R 1
CA	S No.			Contan	ninant I	Name		%		%	%	ERP	ERP How
								Thr	uput	Capture	Control	(lbs/hr)	Determined
0079	<u>- 01 -</u>	6	Trichloroe	thyler	1 <u>e</u>						95	1.87	02
			PTE					andar	ď		How		tual
(lb	s/hr)		(lbs/yr)		(sta	ndard units	;)	Units			mined	(lbs/hr)	(lbs/yr)
	.09		99	_						02			
EMISSI	ON UNIT	(0 0 0	ΕU	1							PROCESS	
CA	S No.			Contan	ninant I	Name		% Thn	6 uput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
00075	5-01-	4 \	Vinyl Chlor	ide							95	0.17	03
			PTE				St	andar	ď	PTE	How		tual
(Ib	s/hr)		(lbs/yr)		(sta	ndard units	_	Units			mined	(lbs/hr)	(lbs/yr)
0.0			3.7					_		Ö	2		
	ON UNIT		0 - 0 0	ΕU	1							PROCESS	P R 1
	S No.		I	Contan		Name		% Thr	6 uput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
000540	- 59 -	0 1	,2-Dichlor	oeth	ethylene				,		95	0.6	02
0000-40		<u> </u>	PTE	<u>ocur</u>	<u>yicin</u>	<u> </u>	St	andar	d	PTF	How	Actual	
(Ib	s/hr)		(lbs/yr)		(sta	ndard units		Units			mined	(lbs/hr)	(ibs/yr)
	.03		7.3					_		0	2		
										-			

DEC ID											

Section IV - Emission Unit Information (continued)

EMISSION UNIT	Emission Unit Emissions Summary											
0 - 0 0 E U 1												
CAS No.		Contaminant Name										
00107-06-2	1,2-Dichloroethane											
	PTE Em	issions	Act	ual								
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)								
13.4	Below Reporting Th	reshold BRT										
CAS No.		Contamir	ant Name									
00108 - 88 - 3	Toluene	oluene										
	PTE Em	issions	Act	ual								
ERP (lbs/yr)	(Ibs/hr)	(lbs/yr)	(Ibs/hr)	(lbs/yr)								
72.7	BRT	BRT										
CAS No.		Contamin	ant Name									
01330-20-7	Xylene											
	PTE Em	issions	Actual									
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)								
77.1	BRT	BRT										
CAS No.		Contamin	ant Name									
	1,1,2-Trichloroethan	e										
ERP (lbs/yr)	PTEEm	issions	Actual									
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)								
	BRT	BRT										

	Compliance Plan Continuation Sheet(s)											on Sheet(s)
For any emis	For any emission units which are not in compliance at the time of permit application, the applicant shall complete the following											
Consent Ord	Consent Order Certified progress reports are to be submitted every 6 months beginning / /											
Emission		Emission					Applicabl	e Federal Requ	irement			
Unit	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-												
		Remedi	al Measu	are / Inter	mediat	te Milestor	nes			R /1	Sc	Date heduled
						_						
		_	_		_							
	_	_	_									

PAGE 8

Section IV - Emission Unit Information (continued)

	Requ	uest for Emission Reduction Cred	lits DC	ontinuation Sheet(s)
EMISSION UNIT -				
		Emission Reduction Description		
	Con	ntaminant Emission Reduction Da		
Receive Deried	,	to//	Reduc	Method
	/		/ /	mounou
CAS No.	I	Contaminant Name	ERC (lb	
			Netting	Offset
			· ·	
		English to Line Enture Reduction		
Name		Facility to Use Future Reduction	APPLICATION ID	
				1
Location Address				
🗅 City / 🗅 Town / 🗅 Village		State	Zip	
	U:	se of Emission Reduction Credits		ontinuation Sheet(s)
				· /
EMISSION UNIT -		<u>_</u>		
EMISSION UNIT -		Proposed Project Description		
EMISSION UNIT		Proposed Project Description		
EMISSION UNIT		Proposed Project Description		
EMISSION UNIT		Proposed Project Description		
EMISSION UNIT				
		Proposed Project Description		
EMISSION UNIT			ta	
		ntaminant Emissions Increase Da Contaminant Name		
CAS No.		ntaminant Emissions Increase Da Contaminant Name Statement of Compliance	PEP (I	bs/yr)
CAS No.	of this "ownership/	ntaminant Emissions Increase Da Contaminant Name	PEP (I	bs/yr)
CAS No.	of this "ownership/ ation requirements	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance	PEP (I poplicable requirements and s ct Amendments of 1990, or a acility	bs/yr)
CAS No.	of this "ownership/ ation requirements	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance (firm" are operating <u>in compliance</u> with all a s under Section 114(a)(3) of the Clean Air A of Emission Reduction Credit - F	PEP (I	bs/yr)
CAS No.	of this "ownership/ ation requirements	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance /firm" are operating <u>in compliance</u> with all a s under Section 114(a)(3) of the Clean Air A	PEP (I poplicable requirements and s ct Amendments of 1990, or a acility	bs/yr)
CAS No.	of this "ownership/ ation requirements	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance /firm" are operating in compliance with all a s under Section 114(a)(3) of the Clean Air A of Emission Reduction Credit - F	PEP (I	bs/yr)
CAS No.	of this "ownership/ ation requirements Source	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance /firm" are operating in compliance with all a s under Section 114(a)(3) of the Clean Air A of Emission Reduction Credit - F	PEP (I	bs/yr) tate regulations are meeting the
CAS No.	of this "ownership/ ation requirements	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance /firm" are operating in compliance with all a s under Section 114(a)(3) of the Clean Air A of Emission Reduction Credit - F	PEP (I	bs/yr) tate regulations are meeting the
CAS No.	of this "ownership/ ation requirements Source	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance /firm" are operating in compliance with all a s under Section 114(a)(3) of the Clean Air A of Emission Reduction Credit - F	PEP (I	bs/yr)
CAS No.	of this "ownership/ ation requirements Source	ntaminant Emissions Increase Da Contaminant Name Statement of Compliance /firm" are operating in compliance with all a s under Section 114(a)(3) of the Clean Air A of Emission Reduction Credit - F	PEP (I	bs/yr)

PAGE 9

DEC ID										
-					-					

Supporting Documentation			
P.E. Certification (form attached)			
List of Exempt Activities (form attached)			·
☑ Plot Plan			
Methods Used to Determine Compliance (form attached)			
□ Air Quality Model (/ /)			
□ Confidentiality Justification			
Ambient Air Monitoring Plan (/)			
Stack Test Protocols/Reports (/ /)			
Continuous Emissions Monitoring Plans/QA/QC (/)			
MACT Demonstration (//)			
Operational Flexibility: Description of Alternative Operating Scenarios and Protoco	s		1
□ Title IV: Application/Registration			
□ ERC Quantification (form attached)			
Use of ERC(s) (form attached)			
Analysis of Contemporaneous Emission Increase/Decrease			
LAER Demonstration (/) BACT Demonstration (/)			
Other Document(s):	(1	/
	<u>. </u>	/	// /)
	(/	/)
	(/	/)
	(/	/)
	(/	/)
	(/	/)
	(_/ _/	/
	($\frac{1}{1}$
	(/	/)
	(/	/)
	(/	/)

ATTACHMENT B

2008 EMISSION ESTIMATES BASED ON 95% REMOVAL

ATTACHMENT 1 **Emission Estimate**

POTENTIAL EMISSION ESTIMATES, USED TO DEVELOP 95%, REPUCTION OF EMISSION VALUES AS BASED ON

 Feed Water Flow 1,100 gpm: max or normal 250 m³/hr Water Flow Including Recycle 1,200 gpm: max or normal 273 m³/hr Air Flow 8,000 cfm 13.592 m³/hr

> A/W vol ratio 50

EXAMPLE EMISSION CALC: Vinyl Chloride

(95%, REDUCTION OF EMISSION 4.8 ug/L x 1000 L/m³ x 250 m³ water/13,623 m³ air = 88 ug/m³ VALUES ARE PROVIDED

INFLUENT GROUNDWATER CONCENTRATIONS

ON PAGE 7 OF THE 2008 AIR PERMIT APPLICATION PROCESS EMISSIONS SUMMARY)

,					GW Co	onc. ¹	Effluent	Conc ¹			Unc	ontrolle	d Stripper Ex	khaust		
	CAS	Toxicity:			Max	Avg	Max	Avg	Max	Avg	Max	Avg	Max	Avg	Max	Avg
Name	Number	H/M/L ²	<u>V</u> OC ³	HAP ⁴	ug/L	ug/L	ug/L	ug/L	lb/day	lb/day	lb/hr	lb/hr	gm/sec	gm/sec	ug/m ³	ug/m ³
1,1,1-Trichloroethane (Methyl Chloroform)	00071-55-6		No	Yes	3	3.0			0.04	0.04	0.00	0.00	2.08E-04	2.08E-04	55	55
1,1,2-Trichloroethane	00079-00-5	М	Yes	Yes	3.5	0.3			0.05	0.00	0.00	0.00	2.43E-04	2.08E-05	64	6
1,1-Dichloroethane	00075-34-3	L	Yes	Yes	4	0.7			0.05	0.01	0.00	0.00	2.77E-04	4.85E-05	74	13
1,2-Dichloroethane	00107-06-2	М	Yes	Yes	3	1.0	0.3	0.1	0.04	0.01	0.00	0.00	1.87E-04	6.24E-05	55	18
1,1-Dichloroethylene (Vinylidene Chloride)	00075-35-4	М	Yes	Yes	9	1.6			0.12	0.02	0.00	0.00	6.24E-04	1.11E-04	165	29
1,2-Dichloroethylene	00540-59-0	M	Yes	No	1,100	31,5	1.3	0.0	14.51	0.42	0.60	0.02	7.62E-02	``2.18E-03	20,219	579
Benzene	00071-43-2	Н	Yes	Yes	4	0.1			0.05	0.00	0.00	0.00	2.77E-04	6.94E-06	74	2
Carbon Tetrachloride	00056-23-5	н	Yes	Yes	4	0.1	·		0.05	0.00	0,00	0.00	2.77E-04	6.94E-06	74	2
Chlorobenzene (Monochlorobenzene)	00108 - 90-7	М	Yes	Yes	1	0.1			0.01	0.00	0.00	0.00	6.94E-05	6.94E-06	18	2
Chloroform	00067-66-3	M	Yes	Yes	2	0.8			0.03	0.01	0.00	0.00	1.39E-04	5.55E-05	37	15
Methyl Tert Butyl Ether	01634-04-4	М	Yes	Yes	2	0.1			0.03	0.00	0.00	0.00	1.39E-04	6.94E-06	37	2
Tetrachloroethylene	00127-18-4	M	Yes	Yes	900	.33.8	0.9	0.0	11.88	0.45	0.49	0.02	6.24E-02	2.34E-03	16,543	621
Toluene	00108-88-3	L	Yes	Yes ·	15	0.7			0.20	0.01	0.01	0.00	1.04E-03	4.85E-05	276	13
Trichloroethylene	00079-01-6	M	Yes	Yes	3,400	411.5	4.5	0.5	44.86	5.43	1.87	0.23	2.35E-01	2.85E-02	62,494	7,564
Vinyl chloride	00075-01-4	н	Yes	Yes	300	4.8	0.0	0.0	3.96	0.06	0.17	0.00	2.08E-02	3.33E-04	5,514	88
Xylenes	01330-20-7	M	Yes	Yes	16	0.2			0.21	0.00	0.01	0.00	1.11E-03	1.39E-05	294	4
Total VOCs					5,764	487.3	7.0	0.6	76.05	6.43	3.17	0.27				
Total HAPs					4,667	458.8	5.7	0.6	61.57	6.05	2.57	0.25				

2,347 lb/yr Total Uncontrolled VOC Total Uncontrolled HAP 2,209 lb/yr

1. Source: "GM-38 Groundwater Remedy Analysis Report", February 2003

2. Source: DAR-1 AGC/SGC Tables, NYSDEC Division of Air Resources, Air Toxics Section, September 10, 2007.

3. Source: 6 NYCRR Part 200 1(cg)

4. Source: 6 NYCRR Part 200.1(ag)

ATTACHMENT 1 Emission Estimate

Feed Water Flow 1,100 gpm: max or normal 250 m³/hr Water Flow Including Recycle 1,200 gpm: max or normal 273 m³/hr Air Flow 8,000 cfm 13.592 m³/hr A/W vol ratio 50

								Co	ntrolled Stri	oper Exhau
		CAS	Toxicity:			Control by	Max	Avg	Max	Avg
	Name	Number	H/M/L ²	VOC ³	HAP^4	GAC	lb/day	ib/day	gm/sec	gm/sec
	1,1,1-Trichloroethane (Methyl Chloroform)	00071-55-6	L	No	Yes	95%	0.00	0.00	1.04E-05	1.04E-05
	1,1,2-Trichloroethane	00079-00-5	М	Yes	Yes	95%	0.00	0.00	1.21E-05	1.04E-06
	1,1-Dichloroethane	00075-34-3	L	Yes	Yes	95%	0.00	0.00	1.39E-05	2.43E-06
	1,2-Dichloroethane	00107-06-2	М	Yes	Yes	95%	0.00	0.00	9.36E-06	3.12E-06
	1,1-Dichloroethylene (Vinylidene Chloride)	00075-35-4	М	Yes	Yes	95%	0.01	0.00	3.12E-05	5.55E-06
	1,2-Dichloroethylene	00540-59-0	М	Yes	No	95%	0.73	0.02	3.81E-03	1.09E-04
	Benzene	00071-43-2	н	Yes	Yes	95%	0.00	0.00	1.39E-05	3.47E-07
	Carbon Tetrachloride	00056-23-5	н	Yes	Yes	95%	0.00	0.00	1.39E-05	3.47E-07
	Chlorobenzene (Monochlorobenzene)	00108-90-7	M	Yes	Yes	95%	0.00	0.00	3.47E-06	3.47E-07
	Chloroform	00067-66-3	M	Yes	Yes	95%	0.00	0.00	6.94E-06	2.77E-06
7	Methyl Tert Butyl Ether	01634-04-4	М	Yes	Yes	95%	0.00	0.00	6.94E-06	3.47E-07
1	Tetrachloroethylene	00127-18-4	M	Yes	Yes	95%	0.59	0.02	3.12E-03	1.17E-04
	Toluene	00108-88-3	L	Yes	Yes	95%	0.01	0.00	5.20E-05	2.43E-06
	Trichloroethylene	00079-01-6	М	Yes	Yes	95%	2.24	0.27	1.18E-02	1.43E-03
	Vinyl chloride	00075-01-4	н	Yes	Yes	95%	0.20	0.00	1.04E-03	1.66E-05
	Xylenes	01330-20-7	M	Yes	Yes	95%	0.01	0.00	5.55E-05	6.94E-07
	Total VOCs						3.80	0.32		
	Total HAPs						3.08	0.30		
						Total Contro	lled VOC	117	b/yr	
						Total Contro	blied HAP	110		

Source: "GM-38 Groundwater Remedy Analysis Report", February 2003
 Source: DAR-1 AGC/SGC Tables, NYSDEC Division of Air Resources, Air Tox

3. Source: 6 NYCRR Part 200.1(cg)

4. Source: 6 NYCRR Part 200.1(ag)

17

ATTACHMENT C

2011 DISCHARGE GOALS AND 2011 DAR-1 ANALYSIS

Tetra Tech NUS

STANDARD CALCULATION SHEET

CLIENT:	FILE No:	BY:	PAGE:
US CLEAN		SK	1 of 1
SUBJECT: Calculation of Curre	ent Discharge Goals GM-38	CHECKED BY:	DATE:
Area NWIRP Bethpage, New Y	′ork		9/7/2011

1. Purpose:

To calculate current discharge goals for Trichloroethene (TCE), Tetrachloroethene (PCE), Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total), for treatment of off-gas from the air stripper stack AS-1.

2. Approach:

From the Contaminant Assessment Summary of the DAR-1 Model output for TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total) (see DAR-1 output for analysis inputs), use the Actual Annual % of the Annual Guideline Concentration (AGC), a current average flow rate of 9,200 cubic feet per minute (cfm), and influent chemical emission rates in pounds per hour (lb/hour) and pounds per year (lb/year) to back calculate current discharge goals.

3. Calculation of Current Discharge Goals:

Chemical	Current Actual Annual % of AGC ⁽¹⁾	Current Maximum Concentration (µg/m ³) ⁽²⁾	Current Chemical Emission Rate Prior to Treatment (lb/hour) ⁽³⁾	Current Chemical Emission Rate Prior to Treatment (lb/year) ⁽³⁾	Calculated Discharge Goal (lb/hr) ⁽⁴⁾	Calculated Discharge Goal (lb/year) ⁽⁴⁾	Maximum Allowable Concentration (µg/m ³) ⁽⁴⁾
TCE	390.6	10,000	0.3446	3,019	0.0882	770	2,600
PCE	132.8	6,800	0.2344	2,053	0.1764	1,500	5,100
Vinyl Chloride	13.49	76	0.0026	22.94	0.0194	170	560
cis 1,2- Dichloroethene	0.2322	750	0.0258	226.4	11.13	98,000	320,000
1,2- Dichloroethene (total)	0.2322	750	0.0258	226.4	11.13	98,000	320,000

Notes:

⁽¹⁾Actual Annual % of the AGCs is from the attached DAR-1 Model Output.

⁽²⁾Values were taken from the Quarterly Operations Report First Quarter 2011 (June 2011) from ECOR Federal Services. Values were the maximum effluent concentration in off gas from air stripper stack AS-1 for the months of January, February, and March 2011.

⁽³⁾Chemical Emission Rates were calculated from maximum concentrations and an average flow rate of 9,200 cfm.

⁽⁴⁾Discharge Goals are based on a flow of 9,200 cfm, and calculated from the Actual Annual % of the AGCs from the DAR-1 Model Output to achieve air quality requirements. The summary of additional inputs for this model run is provided in the DAR-1 Model Output. Stack height is 40 feet, and the property line was evaluated at a distance of 50 feet.

BETHPAGE SITE GM-38 OFF-SITE GROUNDWATER AIR STRIPPER STACK EMISSIONS DAR-1 MODEL OUTPUT, POINT SOURCE (STACK EMISSIONS) TYPE INCLUDES ISCLT MODELING SUMMARY

I. Summary of Inputs for Model Run to Nearest Property Line (50 feet), worst case scenario (highest contaminant concentrations seen in first quarter 2011 in untreated effluent from Air Stripper AS-1 prior to treatment with granular activated carbon (GAC))

Chemical	CAS No. 00079-01- 6 (TCE)	CAS No. 00127-18- 4 (PCE)	CAS No. 00075-01-4 (Vinyl Chloride)	CAS No. 00156-59-2 (cis 1,2- Dichloroethene)	CAS No. 00540-59-0 (1,2- Dichloroethene, total)
Emission Rate Prior to Treatment ⁽¹⁾ (lb/hour)	0.3444	0.2342	0.0026	0.0258	0.0258
Emission Rate Prior to Treatment ⁽¹⁾ (lb/year)	3,017	2,052	22.93	226.0	226.0
Maximum Concentration of Untreated Off Gas (µg/m ³) ⁽¹⁾	10,000	6,800	76	750	750
Annual Guideline Concentration (AGC) (µg/m ³)	0.5	1.0	0.11	63	63
Short-term Guideline Concentration (SGC) $(\mu g/m^3)$	14,000	1,000	180,000		

НА	Height Above stack/ maximum height of plume (HA, feet)	15
SH	Stack Height/Treatment Building Air Stack (SH, feet)	40
D	Stack Diameter (D, inches)	36
т	Stack Exit Temperature (T, degrees Fahrenheit)	80
V	Stack Exit Velocity (V, ft/sec)	21.69
Q ⁽²⁾	Stack Exit Flow Rate [Q, Actual Cubic Feet per Minute (ACFM)]	9,200
Dpl	Shortest Distance from Source Building (Treatment Building) to Property Line (Dpl, feet) for point sources	50
BW	Building Width (BW, feet) of Source Building (Treatment Building) for point sources	75
BL	Building Length (BL, feet) of Source Building (Treatment Building)	75
Q	Actual Hourly Emission Rate (lbs/hour) for source contaminant	Chemical specific, see above
Qa	Actual Annual Emission Rate (lbs/year) for source contaminant	Chemical specific, see above

⁽¹⁾ Emission rates and maximum concentration values were taken from the Quarterly Operations Report First Quarter (June 2011) as provided by ECOR Services, using January, February, and March 2011 maximum rates of untreated off gas from Air Stripper AS-1 in the GM-38 Treatment Building. Emission rates are based on continuous operation 24 hours per day, 7 days a week, 52 weeks a year, or approximately 8,760 hours of operation. ⁽²⁾ "Q" is an average value of January and February 2011 monthly flow rates. Effective water and vapor flow rates were reduced during the reporting period of March due to a shutdown of the Treatment Plant on March 23, 2011.

II. Contaminant Assessment Summary of TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):

	CONTRACTOR		MMARY OF DAR-	ANALYSIS	9/ 8/11 Page 1
		SHORT-TERM	CAULTY	POINT or A	REA SOURCE
CAS NUMBER	AGC Mgr/m3	Cay, Pt. Atea) % OF SGC	ACTUAL ANNUAL × OF AGC	POTENTIAL ANNUAL × OF AGC	NNUAL NNUAL × OF AGC
00075-01-4 00079-01-6 00127-18-4 00156-59-2	0.11000000 0.50000000 1.00000000 63.00000000	0.0005 0.7757 7.3852 0.0000	0 . 0000 0 . 0000 0 . 0000 0 . 0000 0 . 0000	13.3889 390.1734 132.6635 0.2320	13.4948 398.6366 131.8415 0.2322
00540-59-0 Summary 1	63.00000000 Otals	0.0000 8.1614	0.0000 0.0000	0.2320 536.6897	0.2322 537.4274

III. Contaminant Impact Summary of TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):

	CONTRACT	RIMI IMPACT SUM SHORT-TERM	MARY OF DAR-1 CAULTY		9/ 8/11 Page 1 IREA SOURCE
CAS NUMBER	0.00 109.203	HOXINUH (Gau, Pr., Area) ug/m3	ACTUAL ANHUAL ug∕m3	POTENTIAL NNNOAL ug/m3	octUoL nHNUAL ug∕m3
00075-01-4 00079-01-6 00127-18-4 00156-59-2 00540-59-0	0.11000000 0.50000000 1.00000000 63.00000000 63.00000000 63.00000000	0.81988204 108.60282900 73.85244750 8.13575172 8.13575172	0.00000000 0.00000000 0.00000000 0.000000	0.01472780 1.95086694 1.32663476 0.14614509 0.14614509	0.01484433 1.95313276 1.32041504 0.14630693 0.14630693

IV. Contaminant Impact Summary Step by Step Menu for TCE:

NWIRP BETHI	PAGE GM-38 AREA BETHPAGE OYSTER BAY, NE
	INT = TOTAL CAS NUMBER = 00079-01-6 SIC = 0
	0.500000000 ug/m3 SGC = 14000.000000 ug/m3
STACK: HE BUILDING: DI	A= 15., SH= 40., D= 36., T= 80., V= 21.69, q= 9200.0 pl= 50., BW= 75., BL= 75., %CONTROL= 0.0000
** Reported	l Hourly Emission Rate (Q) is equal to 0.344400000 lbs/hour
** Reported	l Annual Emission Rate (Qa) is equal to 3017.000000 lbs/year.
I.B. REFI	INED CAVITY IMPACT METHOD (DAR-1, APPENDIX B).
II.B.1.	Shortest Distance from building to Property Line (50. feet) is less than or equal to the cavity length, or 3 building heights (75. feet). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property.
1.8.2.	The largest building dimension < 75. feet > is greater than or equal to the building height < 25. feet >. Therefore, the computer will NOT redefine the cavity length.
11.8.3.	Stack height (40. feet) is greater than cavity height (38. feet). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
II.C. CAU	ITY Annual Impact (0.000 ug/m3) is less than AGC 0.500 ug/m3).
III.A. STA	NDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
III.A.1.b.	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1.b.	Effective stack height, he, is equal to 51.001 feet.
III.A.2.	STANDARD POINT SOURCE Actual Annual Impact is equal to 2.604 ug/m3 for 8760. hours/year of operation.
III.A.3.	STANDARD POINT SOURCE Potential Annual Impact is equal to 2.601 ug/m3 assuming 8,760 hours/year of operation.
III.A.4.a.	Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.

- STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. III.A.5. STRNDARD POINT SOURCE Actual Annual Impact (greater than AQC (0.500 ug/m3). ---- Befor to DAR-1 Section 111.0.1. A refined site ----- specific addring analyis may be required. STANDARD POINT SOURCE Potential Annual Impact (1.951 ug/m3) is greater than AGC (0.500 ug/m3). III.D. **** Potential Annual Impact is based upon 8760 hours/year **** operation instead of reported 8760. hours/year. XXXX **** DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian,' 1/11/94. 2.0 2.2 CAVITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet). CAUITY Short-Term Impact (than SGC (14000.000 ug/m3). II.C. 0.000 ug/m3) is less
- 2.3 Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
 2.3 Effective stack height, he, is equal to 51.001 feet.
 2.4 Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 38.826 ug/m3, for hs/hb = 1.60
 2.5 Maximum downwash Short-Term Impact (CSTD) is equal to 129.908 ug/m3, for: hs/hb = 1.60 and ESH = 51. feet.
 2.6 Adjusted maximum downwash Short-Term (CSTD) is equal to 108.603 ug/m3, for: RF = 0.84
 111.D. Maximum non-cavity Short-Term Impact (CST: 108.603 ug/m3) is less than the SGC (14000.000 ug/m3) for the point source.
 2.7 Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 108.603 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (14000.000 ug/m3).

V. Contaminant Impact Summary Step by Step Menu for PCE:

**********	**********************	*********************	**********************
MWIRP BETHI	PAGE GM-38 AREA I	BETHPAGE	OYSTER BAY. NEW
MISSION POI	NT = TOTAL	CAS NUMBER = 0012	7-18-4 SIC = Ø
AGC =	1.000000000	ıg∕m3 SGC =	1000.000000 ug/m3
STACK: HA BUILDING: Dy	= 15., SH= 40., ∋1= 50., BW= 75.	D= 36., T= 80., , BL= 75., ×CONTROL	U= 21.69, q= 9200.00 = 0.0000
** Reported	Hourly Emission Rate	e (Q) is equal to	0.234200000 lbs/hour.
** Reported	Annual Emission Rate	e (Qa) is equal to	2052.000000 1bs/year.
I.B. REFI	NED CAUITY IMPACT MET	THOD CDAR-1, APPENDIX	B).
(I.B.1.	is less than or equa heights (75. feet	al to the cavity lengt t). Therefore, this	ty Line (50. feet) h, or 3 building building will have rs off plant property.
II.B.2.	equal to the buildir	g dimension 〈 75. fe ng height 〈 25. feet edefine the cavity len	et) is greater than or). Therefore, the gth.
II.B.3.	(38. feet). The the buildings cavity	. feet) is greater th erefore, this source d y impact. The Comput t equals 0.00 ug/m3.	oes not contribute to

II.C. CAVITY Annual Impact (0.000 ug/m3) is less than AGC (1.000 ug/m3).

III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).

III.A.1.b. Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).

III.A.1.b. Effective stack height, he, is equal to 51.001 feet.

- III.A.2. STANDARD POINT SOURCE Actual Annual Impact is equal to 1.771 ug/m3 for 8762. hours/year of operation.
- III.A.3. STANDARD POINT SOURCE Potential Annual Impact is equal to 1.769 ug/m3 assuming 8,760 hours/year of operation.

III.A.4.a. Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.

- 111.A.5. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
 111.D. STANDARD POINT SOURCE Result formulation of the state operation from RES 1 1.600 up/md 1.
 111.D. STANDARD POINT SOURCE Potential Annual Impact (1.327 ug/m3) is greater than AGC (1.000 ug/m3).
 ***** Potential Annual Impact is based upon 8760 hours/year *****
 2.8 DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See 'Technical Reference for the Screening Procedures of the DAR-1 Software Program. Wade/Sedefian, ' 1/11/94.
 2.2 CAVITY Short-Term Impact is equal to 8.00 ug/m3 as the plume escaped the cavity region: hs(40, feet) > hc(26, feet).
- II.C. CAUITY Short-Term Impact (0.000 ug/m3) is less than SGC (1000.000 ug/m3).

2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 26.403 ug/m3. For hs/hb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 88.340 ug/m3, for: hs/hb = 1.60 and ESH = 51. feet.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 73.852 ug/m3, for: RF = 0.84
III.D.	Maximum non-cavity Short-Term Impact (CST: 73.852 ug/m3) is less than the SGC (1000.000 ug/m3) for the point source.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORI-TERM MAXIMUM, (Cav.Pt,Area>) equals 73.852 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (1000.000 ug/m3 >.

VI. Contaminant Impact Summary Step by Step Menu for Vinyl Chloride:

LUIT DD. DCCH			**********	allance	
	PAGE GM-38 AREA				BAY, NEL
	INT = TOTA				
AGC =	0.110000000	ug∕m3	SGC = 1	80000.00000	ug∕m3
STACK: H BUILDING: D	A= 15., SH= 40. pl= 50., BW= 7	D= 36. T= 5., BL= 75.,	80.U= ×CONTROL=	21.69, q= 0.0000	9200.00
🗰 Reporte	d Hourly Emission Ra	te (Q) is equa	l to	0.002600000	lbs/hour.
Reporte	d Annual Emission Ra	te (Qa) is equ	al to	22.930000 11	s/year.
I.B. REF	INED CAUITY IMPACT M	ETHOD (DAR-1,	APPENDIX B>.		
II.B.1.	Shortest Distance is less than or eq heights (75. fe cavity impacts (if	ual to the cav et). Therefo	ity length, re, this bui	or 3 buildin lding will b	g ave
II.B.2.	The largest buildi equal to the build computer will NOT	ng dimension < ing height < redefine the c	75. feet 25. feet >. avity length) is greater Therefore,	than or the
I.B.3.	Stack height (4 (38. feet). T the buildings cavi CAVITY Annual Impa	0. feet) is g herefore, this ty impact. T ct equals 0.00	reater than source does he Computer ug/m3.	cavity heig) not contril will assume	nt oute to the
I.C. CAU	ITY Annual Impact (0.110 ug/m3).	0.000 ug/	'm3 > is less	than AGC	
II.A. STA	NDARD POINT SOURCE M	ETHOD CDAR-1,	APPENDIX B).		
II.A.1.b.	Momentum flux	, Fm, is equal	to 1000.3	31 ft(4)/sec	(2).
II.A.1.b.	Effective sta	ck height, he,	is equal to	51.001	feet.
II.A.2.	STANDARD POINT SOU to 0.020 ug/m	RCE Actual Ann 3 for 8819. h	ual Impact i ours/year of	s equal operation.	
II.A.3.	STANDARD POINT SOU to 0.020 ug/m	RCE Potential 3 assuming 8,7	Annual Impac 60 hours/yea	t is equal r of operat:	ion.
II.A.4.a.	Stack height 1.5, but less appual & pote	to building he than 2.5. G ntial annual i	ight ratio i omputer will mpacts by 0.	s greater th multiply ad 75 factor.	nan tual

111.4.5	STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
III.D.	STANDARD POINT SOURCE Actual Annual Impact (0.015 ug/m3) is less than AGC (0.110 ug/m3).
III.D.	STANDARD POINT SOURCE Potential Annual Impact (0.015 ug/m3) is less than AGC (0.110 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8819. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program. Vade/Sedefian,' 1/11/94.
2.2	CAUITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
11.C.	CAVITY Short-Term Impact (0.000 ug/m3) is less than SGC (180000.000 ug/m3).
2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 0.293 ug/m3. For hs/hb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 0.981 ug/m3, for: hs/hb = 1.60 and ESH = 51, feet.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 0.820 ug/m3, for: RF = 0.84
111.D.	Maximum non-cavity Short-Term Impact (CST: 0.820 ug/m3) is less than the SGC (180000.000 ug/m3) for the point source.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav,Pt,Area)) equals 0.820 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (180000.000 ug/m3).

VII. Contaminant Impact Summary Step by Step Menu for cis 1,2-Dichloroethene:

NWIRP BET	IPAGE GM-38 AI	REA BET	HPAGE		0	YSTER B	AY, NEW
EMISSION P	OINT =	TOTAL	CAS NU	1BER = 0015	6-59-2	SIC =	Ø
AGC =	63.00	0000000 ug/	'm3	SGC =	0.0	00000 u	g∕m3
STACK: BUILDING:	HA= 15., SH Dpl= 50.,	H= 40, D= BW= 75.,	36 - 75	CONTROL	V= 21.69 = 0.0000	• q=	9200.00
Report	ed Hourly Emis	sion Rate (Q) is equ	ual to	0.02580	0000 lb	s/hour.
Report	ed Annual Emis	sion Rate (Qa) is eq	ual to	226.0000	00 1bs/	year.
I.B. RE	FINED CAUITY	MPACT METHO	D CDAR-1.	APPENDIX	B).		
(1.8.1.	is less the heights (istance from an or equal 75. feet) acts (if the	to the ca . Therei	wity lengt fore, this	h, or 3 bu building w	ilding ill hav	e
I.B.2.	equal to the	t building d he building ill NOT rede	height <	25. feet). There	eater t fore, t	han or he

11.8.3.	Stack height (40. feet) is greater than cavity height (38. feet). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
II.C.	CAUITY Annual Impact (0.000 ug/m3) is less than AGC (63.000 ug/m3).
III.A.	STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
III.A.1	b. Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1	b. Effective stack height, he, is equal to 51.001 feet.
III.A.2	STANDARD POINT SOURCE Actual Annual Impact is equal to 0.195 ug/m3 for 8760. hours/year of operation.
III.A.3	STANDARD POINT SOURCE Potential Annual Impact is equal to 0.195 ug/m3 assuming 8,760 hours/year of operation.
III.A.4	a. Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.

111.4.5	. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
111.D.	STANDARD POINT SOURCE Actual Annual Impact (0.146 ug/m3) is less than AGC (63.000 ug/m3).
III.D.	STANDARD POINT SOURCE Potential Annual Impact (0.146 ug/m3) is less than AGC (63.000 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8760. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program. Wade/Sedefian.' 1/11/94.
2.2	CAVITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
11.C.	CAVITY Short-Term Impact is equal to 0.000 ug/m3. There is no SGC for this contaminant.
2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 2.909 ug/m3. for hs/hb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 9.732 ug/m3. for: hs/hb = 1.60 and ESH = 51. feet.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 8.136 ug/m3. for: RF = 0.84
III.D.	Maximum non-cavity Short-Term Impact (CST) equals 8.136 ug/m3 for the point source. There is no SGC for this contaminant.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 8.136 ug/m3 and is reported in the ANALYSIS MENU.

VIII. Contaminant Impact Summary Step by Step Menu for 1,2-Dichloroethene (total):

NUTRP BETH	PAGE GH-38 AREA BETHPAGE OYSTER BAY, NEW
EMISSION PO	INT = TOTAL CAS NUMBER = 00540-59-0 SIC = 0
AGC =	63.000000000 ug/m3 SGC = 0.000000 ug/m3
STACK: H Building: D	A= 15., SH= 40., D= 36., T= 80., U= 21.69, q= 9200.00 pl= 50., BW= 75., BL= 75., %CONTROL= 0.0000
HH Reporte	d Hourly Emission Rate (Q) is equal to 0.025800000 lbs/hour.
Reporte	d Annual Emission Rate (Qa) is equal to 226.000000 lbs/year.
II.B. REF	INED CAVITY IMPACT METHOD (DAR-1, APPENDIX B).
II.B.1.	Shortest Distance from building to Property Line (50. feet) is less than or equal to the cavity length, or 3 building heights (75. feet). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property.
II.B.2.	The largest building dimension (75. feet) is greater than or equal to the building height (25. feet). Therefore, the computer will NOT redefine the cavity length.
11.8.3.	Stack height (40. feet) is greater than cavity height (38. feet). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
11.C. CAU	ITY Annual Impact (0.000 ug/m3) is less than AGC 63.000 ug/m3).
III.A. STA	NDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
III.A.1.b.	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1.b.	Effective stack height, he, is equal to 51.001 feet.
111.8.2.	STANDARD POINT SOURCE Actual Annual Impact is equal to 0.195 ug/m3 for 8760. hours/year of operation.
111.A.3.	STANDARD POINT SOURCE Potential Annual Impact is equal to 0.195 ug/m3 assuming 8,760 hours/year of operation.
III.A.4.a.	Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.

III.A.S	STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
111.D.	STANDARD POINT SOURCE Actual Annual Impact (0.146 ug/m3) is less than AGC (63.000 ug/m3).
III.D.	STANDARD POINT SOURCE Potential Annual Impact (0.146 ug/m3) is less than AGC (63.000 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8760. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian.' 1/11/94.
2.2	CAUIIY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
11.C.	CAUITY Short-Term Impact is equal to 0.000 ug/m3. There is no SGC for this contaminant.
2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 2.909 ug/m3. For hs/hb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 9.732 ug/m3, for: hs/hb = 1.60 and ESH = 51. feet.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 8.136 ug/m3. For: RF = 0.84
III.D.	Maximum non-cavity Short-Term Impact (CST) equals 8.136 ug/m3 for the point source. There is no SGC for this contaminant.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt,Area)) equals 8.136 ug/m3 and is reported in the ANALYSIS MENU.

IX. AGCs and SGCs for TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):

	AGCs & SGCs			9/ 8/11 Page 1			
CAS NUMBER	CONTANUMENT MANE	500 ug∕m3	H O V	R©C ug∕m3	100	TRX	COPES
00075-01-4 10075-01-6	UINYL CHLORIDE TRICHLORCETHYLENE TETRICHLORCETHYLENE	180000.00000 14000.00000 1000.00000	Z	0.110000000 0.50000000 1.50000000	E		U HA
00156-59-2 00540-59-0	DICHLOROETHYLENE, cis DICHLOROETHYLENE, 12	0.0000 0.00000		63.00000000 63.00000000	D D	M	

1,2-Dichloroethene (total):'			
CONTAMIN	IANT EM	ISSIONS SUMMARY	9/ 8/11 Page 1
terre and the second state of the second state	IN. OF 'S PER INTAM	ENTISSIONS (1bs/hour)	EMISSIONS (lbs/year)
00075-01-4 VINYL CHLORIDE BERTY-BL-6 TRICHLORDETHYLEDE	1	0.0026000 0.3444000	22.93000 3017.00000
00156-59-2 DICHLOROETHYLENE,cis 00540-59-0 DICHLOROETHYLENE, 12	1	0.2342000 0.0258000 0.0258000	2252 . 00000 226 . 00000 226 . 00000
SUMMARY TOTALS	5	0.6328000	5543.93000

X. Contaminant Emissions Summary for TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):'

XI. Meter Grid Modeling Results for Maximum Annual Concentrations of TCE, within 25 meters:

	CONCENT	TRATIONS × 10 (AGC = 0.5			-2) (u) 0.50	(ug/m3) for 00079-01-6 00000000 ug/m3					09/08/11 13:17:58			
UTNE +	967000. 960	36: 8086.	7000. 370	97: 8686.	1000. 37:	37	1886. 37	37! 1886.	.000. 37)	97: 6086.	7666. 371	371 1005.	/666.	
UTEN 7 4511000.	0.04	0.06	0.08	0.14	0.23	0.32	0.41	0.30	0.14	0.10	0.08	0.06	0.05	
451.0000.	0.03	0.05	0.08	0.13	0.25	0.43	0.60	0.40	0.17	0.12	0.09	0.07	0.06	
4589888.	0.02	0.03	0.06	0.11	0.24	0.58	1.01	0.52	0.22	0.14	0.11	0.08	0.06	
4508088.	0.02	0.03	0.04	0.06	0.18	0.62	2.16	0.64	0.31	0.19	0.13	0.11	0.09	
4587888.	0.02	0.03	0.04	0.06	0.11	0.26	7.27	1.43	0.60	0.34	0.22	0.15	0.12	
4506000.	0.03	0.03	0.05	0.07	0.13	0.33	2.58	2.99	1.12	0.51	0.30	0.20	0.14	
4585888.	0.03	0.04	0.05	0.08	0.20	0.45	0.94	0.81	0.60	0.45	0.33	0.23	0.16	
4584888.	0.03	0.04	0.07	0.12	0.20	0.22	0.47	0.43	0.33	0.27	0.24	0.20	0.16	

	TRIBUTORS TO MANIMUM CONCENTRA UTME: 373000. UTMN:		-01-6	09/08/11 13:17:58
Enission Point	Facility Name (shortened) DI	R to Max.(m)	CONC. Ug/03	Percent of Max.
TOTAL	NWIRP BETHPAGE GM-38 AREA SS		0.727E-01	
TOTAL OF ALL 1	CONTRIBUTORS		0.727E-01	100.000

XII. ISCLT Model Run Information, within 25 meters:

	MODEL RUN INFORMATION 09/08/11 13:17:58
1 2:	Current GRID SPACING equals Maximum Concentration (flashing) equals C UTME: 373486. 0.0727115273 ug/m3 UTMN: 4587886.
з.	RUN FILE: TEMP7.RUN
4.	METEOROLOGICAL FILE: ALB.MET
5.	RUN MODE: UNRAW HALF-LIVES: out used to account for pollutant removal from air. BLD. WAKE EFFECTS: HE-1 METHOD, All data KNOWN (the,bu,bl,orientation)
8.	EMISSIONS: ACTUAL ANNUAL EMISSIONS
9.	SOURCES: All sources within 25. noters of UTNES 373275. UTNN: 4506537.
10. 11. 12.	CONTAMINANT CAS NUMBER(s): 00079-01-6 EMISSION POINT - CONTAMINANT(s) found by computer: 1 No data is being copied to DUMP file.

APPENDIX C

FIELD LOGS SECOND QUARTER 2023

Date: 4-11-2023

Groundwater Level Measurement Sheet

Project Site: <u>NWIPR Bethpage – GM-38</u>	Water Level Meter: Solinst
Location: Bethpage, NY	Weather: _ 50/111/ 60-70.3-
Field Crew: Eiseller & E. Governamann	Time of Low Tide: <u>N/A</u>
	Time of High Tide: N/A

ade	Well ID	Time	Depth to Water (Ft.)	Total Depth of Comments Well/ Screened	
				Interval (Ft.)	
1/12	RW1-MW1	0925	35,55	435 / 395 – 435	
\leq	RW1-MW2	not measured	not measured	435 / 395 – 435	
111 111	RW1-MW3	1120	29,13	435 / 395 – 435	
4/11	RW2-MW1	1410	39,15	510 / 470 – 510	
1/11	RW2-MW2	1757	38.54	510 / 470 – 510	
1/11	RW2-MW3	1755	38.17	510 / 470 – 510	
/11	RW3-MW1	12.38	38.51	350 / 330 – 350	
/11	RW3-MW2	1143	39.67	495 / 475 – 495	
11	RW3-MW3	0932	39.45	340 / 320 – 340	
1/11	RW3-MW4	0822	40.28	495 / 475 – 495	
112	TP1	0748	34,36	470 / 450 – 470	
1/12	IW1-MW1	45 1445	40.3	470 / 450 – 470	
	RW-1			Open vault and check integrity of piping, etc.	
	RW-3			Open vault and check integrity of piping, etc.	
-					

> 1/ ----Signature:

Date: 4/20/2023