

20 April 2023

Mr. Scott Sokolowski Remedial Project Manager Naval Facilities Engineering Command, Mid Atlantic 9324 Virginia Avenue, Building Z-144 Norfolk, VA 23511-3095

Subject: US NAVY CONTRACT NO. N40085-16-D-2288

CONTRACT TASK ORDER NO. 4042

2022 ANNUAL SVECS OPERATIONS REPORT - SITE 1

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT, BETHPAGE, NY

Dear Mr. Sokolowski:

An electronic copy of the 2022 Annual Operations Report, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York, has been submitted to your attention.

Please contact me at <u>rgregory@komangs.com</u> or 610.400.0636 if you have any questions or comments regarding this submittal.

Sincerely,

KOMAN Government Solutions, LLC (KGS)

Robert G. Gregory Project Manager

Cc: Mr. Vin Varricchio (NWIRP Bethpage Facility Management) – 2 hard copies, 2 CDs

Mr. Jason Pelton (NYSDEC) – 1 Electronic Copy

Ms. Kristin Granzen (NYSDEC) – 1 Electronic Copy

Mr. Matthew Travis (NYSDEC) – 1 Electronic Copy

Mr. William Cords (NAVAIR) – 1 Electronic Copy

Mr. James Sullivan (NYSDOH) – 1 Electronic Copy

Ms. Monica Marrow (Jacobs - NIRIS) – 1 hard copy, DDS Form, 1 CD

Mr. David Brayack (Tetra Tech) – 1 Electronic Copy

2022 Annual Operations Report

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. N4008517F4042

March 2023

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Prepared by:

KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110 Exton PA, 19341 (610) 363-3000

2022 Annual Operations Report

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. N4008517F4042

March 2023

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Patril Schaue	03/22/2023
Patrick Schauble	Date
Program Manager	
Robert & Stram	03/22/2023
Robert Gregory (Date
Project Manager	

TABLE OF CONTENTS

1.0	INT	TRODUCTION	1-1
	1.1 1.2 1.3 1.4	Site Location	1-2 1-2
2.0		ECS OPERATION AND MAINTENANCE	
2.0	2.1	Routine Maintenance Activities.	
	2.1	Non-routine Maintenance / Site Activities	
3.0	SVI	ECS MONITORING	3-1
	3.1 3.2 3.3 3.4 3.5	Monthly Air Quality Monitoring	3-2 3-2
4.0	CO	NCLUSIONS AND RECOMMENDATIONS	4-1
5.0	REI	FERENCES	5-1
FIC	URES	<u> </u>	
FIG	URE 1	Site Location Map	
FIG	URE 2	Site 1 Area and Vicinity	
FIG	URE 3	Site Plan – Existing Layout – Soil Vapor Extraction Containment System	
FIG	URE 4	Soil Vapor Extraction Containment System Layout Plan	
FIG	URE 5	Fourth Quarter 2022 Vapor Analytical Map – Select VOC Concentrations – SVEWs	
FIG	URE 6	Fourth Quarter 2022 Offsite Soil Vapor Monitoring – SVPMs	
TA	BLES		
TAI	BLE 1	Vapor Monitoring Results – October 2022	
TAI	BLE 2	Vapor Monitoring Results – November 2022	
TAI	BLE 3	Vapor Monitoring Results – December 2022	
TAI	BLE 4	2022 Air Emissions and Mass Recovery Summary	
TAI	BLE 5	Fourth Quarter 2022 Vapor Monitoring Results Summary of SVE Wells	
TAI	BLE 6	September through November 2022 Vapor Monitoring Results Summary of Newly Installed SVE Wells	f

TABLE 7	Quarterly Vapor Monitoring Results of SVE Wells through Fourth Quarter 2022
TABLE 8	Fourth Quarter 2022 Off-Site Soil Vapor Monitoring of SVPMs
TABLE 9	Annual Off-Site Vapor Analytical Results Summary of SVPMs – March 2022
TABLE 10	Historical Off-Site Vapor Analytical Results Summary of SVPMs through March 2022

APPENDICES

APPENDIX A	NYSDEC Air Discharge Limit Documentation
APPENDIX B	Vapor Concentration Trend Graphs of Select VOCs – SVPMs
APPENDIX C	Vapor Concentration Trend Graphs of Select VOCs – SVEWs
APPENDIX D	Data Validation Reports and Validated Data Summary – SVPMs

Acronyms and Abbreviations

bgs below ground surface CTO Contract Task Order

DAR Division of Air Resources

DCA dichloroethane DCE dichloroethene

DoD Department of Defense

ELAP Environmental Laboratory Accreditation Program

FMS Flow Monitoring Station

GOCO Government Owned Contractor Operated

i.w. inches of water column

KGS KOMAN Government Solutions, LLC

lbs pounds

NAVFAC Naval Facilities Engineering Systems Command

Navy United States Department of the Navy

NELAC National Environmental Accreditation Conference

NG Northrop Grumman

NWIRP Naval Weapons Industrial Reserve Plant

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation and Maintenance PCB polychlorinated biphenyls

PCE tetrachloroethene

PID photoionization detector

scfm standard cubic feet per minute

SVE soil vapor extraction

SVECS soil vapor extraction containment system

SVEW soil vapor extraction well

SVOC semi-volatile organic compound SVPM soil vapor pressure monitor

TCA trichloroethane
TCE trichloroethene
TCL target compound list
TtEC Tetra Tech EC, Inc.
TtNUS Tetra Tech NUS, Inc.

μg/m³ micrograms per cubic meter

VC vinyl chloride

VGAC vapor–phase granular activated carbon

VOC volatile organic compound

1.0 INTRODUCTION

KOMAN Government Solutions, LLC (KGS) has prepared this 2022 Annual Operations Report for the Soil Vapor Extraction Containment System (SVECS) at Site 1, Former Drum Marshalling Area, at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the United States Department of the Navy (Navy), Naval Facilities Engineering Systems Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-16-D-2288, Contract Task Order (CTO) No. N4008517F4042. This 2022 Annual Operations Report summarizes operations performed in 2022 and details activities that occurred from October 2022 to December 2022. Data were collected and operational activities were performed by KGS in accordance with the following documents:

- Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech NUS, Inc. (TtNUS) in 2012.

The following quarterly reports, along with data collected during the Fourth Quarter (October through December), are used as a basis for this 2022 Annual Operations Report:

- Quarterly Operations Report, First Quarter 2022, Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in June 2022.
- Quarterly Operations Report, Second Quarter 2022, Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in October 2022.
- Quarterly Operations Report, Third Quarter 2022, Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in January 2023.

1.1 Site Location

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City. In the late 1990s, the Navy's property totaled approximately 109.5 acres and was formerly a Government Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood. The Navy currently retains approximately nine acres of the former NWIRP, including Site 1, which lies within the fenced area of NWIRP Bethpage and is located east of Plant No. 3, west of 11th Street, and north of Plant 17 South (**Figures 1 and 2**).

1.2 Background

NWIRP Bethpage was established in 1943. Since inception, the primary mission of the facility was the research, prototyping, testing, design engineering, fabrication, and primary assembly of military aircraft. Historical operations that resulted in hazardous material generation at the facility included metal finishing processes, maintenance operations, painting of aircraft and components, and other activities that involve aircraft manufacturing. Wastes generated by plant operations were disposed of directly into drainage sumps, dry wells, and/or on the ground surface, resulting in the disposal of a number of hazardous wastes, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and inorganic analytes (chromium and cadmium) at the site. Some of these contaminants have migrated from the source area to surrounding areas, including the soils at these sites and the groundwater beneath and downgradient of the NWIRP Bethpage property. NWIRP Bethpage is currently listed by the New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B).

Soils at Site 1 consist mainly of unconsolidated sediments that overlie crystalline bedrock. A clay unit is present near the groundwater table (50 feet below ground surface [bgs]) at the southeast corner of the site. This clay unit is suspected to be a source of chlorinated solvents that are migrating into the overlying soil gas and the source of off-site VOCs in soil vapor (TtEC, 2010).

Chlorinated solvents including trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) have been identified as the VOCs of interest in soil gas at the site. Concentrations greater than 1,000 micrograms per cubic meter (µg/m³) of soil vapor have been directly associated with Site 1 activities and historical environmental data, and based on preliminary screening, exceed guidelines established by the New York State Department of Health (NYSDOH) for sub-slab soil vapor concentrations at the time as provided in *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH, 2006). Updates to the evaluation matrices were established in May 2017 (NYSDOH, 2017). The 2017 updates lowered the screening value for TCE from 1,000 µg/m³ to 60 µg/m³; the screening values for PCE and 1,1,1-TCA remained at 1,000 µg/m³ (NYSDOH, 2017). Of these compounds, TCE is the primary VOC of concern. Mitigation of TCE contamination in accordance with NYSDOH guidance is expected to remediate other VOCs associated with the site. PCBs, cadmium, and chromium have also been identified in site soils at concentrations requiring remediation. The majority of these chemicals have been detected in the central portion of Site 1 and will be addressed via a separate remediation (TtEC, 2010).

Prior to implementation of the SVECS, the mean concentrations of VOCs in soil gas samples collected along the eastern fence-line were 41,128 μ g/m³ of TCE, 381 μ g/m³ of PCE, and 20,634 μ g/m³ of 1,1,1-TCA. The maximum concentrations of VOCs in the soil gas samples were 180,000 μ g/m³ of TCE, 1,200 μ g/m³ of PCE, and 90,000 μ g/m³ of 1,1,1-TCA (TtEC, 2010).

1.3 Project Overview and Objective

The remedial objective for this project is to use an on-site soil vapor extraction (SVE) system to prevent further off-site migration of VOC-contaminated soil vapor and to the extent practical, capture contaminated soil vapor with a TCE concentration greater than 250 $\mu g/m^3$. A secondary objective of this project is to address soil vapor with a TCE concentration greater than 5 $\mu g/m^3$. The SVECS is an interim

action intended to address migration of VOCs in contaminated soil vapors. It is expected to operate continuously 24 hours/day, seven days/week, with the exception of maintenance and adjustment periods, until the remedial objectives are met (TtEC, 2010).

1.4 SVECS Overview

The SVECS consists of soil vapor extraction, soil vapor monitoring, and soil vapor treatment. Twelve SVE wells (SVEWs) are located along the eastern boundary of Site 1 in six clusters, each consisting of one intermediate well and one deep well. Intermediate wells SVE-101I, SVE-102I, SVE-103I, SVE-104I, SVE-105I, and SVE-106I have a screened interval between 25 and 35 feet bgs. Deep wells SVE-101D, SVE-102D, SVE-103D, SVE-104D, SVE-105D, and SVE-106D have a screened interval between 40 and 60 feet bgs. The groundwater table fluctuates between approximately 50 and 55 feet bgs. Each SVEW is operated at a flow rate such that the combined total flow rate is approximately 300-400 standard cubic feet per minute (scfm) of soil vapor. Each intermediate depth SVEW requires an approximate vacuum of four inches of water column (i.w.) and each deep SVEW requires a vacuum of up to 20 i.w. in order to extract the targeted flow rates. The 12 SVEWs have been piped below the ground to the Flow Monitoring Station (FMS), where flow, vacuum, and vapor quality are monitored. Within the FMS, the discharge lines from the individual SVEWs have been equipped with a 2-inch flow control butterfly valve, a vacuum gauge, and a sampling port. The sampling port is utilized to measure the flow rate from an individual well using a portable velocity meter and to collect vapor samples. All the SVE lines collect into a single manifold within the FMS and from this location a single underground pipeline has been routed approximately 1,400 linear feet to the Treatment Building (Building 03-35). Five additional SVEWs (SVE-107D, SVE-108D, SVE-109D, SVE-110D, and SVE-111D) were installed in October 2011 to address potential VOCs under Plant No. 3 and the South Warehouse. These five wells were connected to the directly to pipeline leading to the Treatment Building downstream of the FMS; no sampling ports were established for these wells. During the Second Quarter 2022, six additional SVEWs (SVE-112D, SVE-113D, SVE-114D, SVE-115D, SVE-116D and SVE-117D) were brought online to address residual VOC concentrations in the central area of Site 1. A separate FMS was constructed in 2022 for these six SVEWs that includes sampling ports for these six wells. Sampling of these additional SVEWs began in September 2022. A site plan depicting all SVEW locations is included as Figure 3.

The SVECS is housed within the Treatment Building, an existing and unoccupied building also known as Building 03-35. The treatment system consists of a moisture separator, two SVE blowers, and a 5,000-pound vapor-phase granular activated carbon (VGAC) unit for removal of chlorinated VOCs from the offgas. Soil vapor that enters the Treatment Building first passes through the moisture separator tank where any condensate is separated. To date, no condensate has formed in this tank. The vapor is then passed through an air filter and SVE blower and then treated in the VGAC unit. The treated vapor is discharged from the VGAC via an exhaust stack. The SVECS has a control panel comprised of mechanical interlocks and relays for local operation. A System Layout Plan is presented in **Figure 4**.

The off-gas from the SVECS is monitored for chlorinated VOCs as identified in the NYSDEC Division of Air Resources (DAR) permit equivalent effluent limitations and updated approval documentation (**Appendix A**) and monitoring requirements (TtEC, 2010). Samples are submitted to a NYSDOH-certified, National Environmental Laboratory Accreditation Conference (NELAC)-certified, and Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)-accredited

laboratory, Eurofins Air Toxics, LLC located in Folsom, California, for analysis of VOCs by modified method TO-15. Prior to January 2014, samples were analyzed for target compound list (TCL) VOCs. As of January 2014, upon approval by NYSDEC and NYSDOH, samples are analyzed for site-specific VOCs. The site-specific VOCs are: 1,1,1-TCA, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), 1,2-DCA, cis-1,2-DCE, PCE, trans-1,2-DCE, TCE, and vinyl chloride (VC).

A total of 18 soil vapor pressure monitor (SVPM) / soil gas monitoring points have been installed in the residential neighborhood east of Site 1 at NWIRP Bethpage (**Figure 3**). These off-site monitoring points consist of eight previously existing SVPMs as well as 10 SVPMs installed in September 2012. Soil vapor pressure readings from the SVPMs are collected quarterly and used to evaluate the SVECS vacuum field. In addition, analytical results of vapor samples collected annually from these locations and the soil vapor pressure readings are used to further evaluate the SVECS operation and the potential for vapor intrusion.

2.0 SVECS OPERATION AND MAINTENANCE

While designed to run autonomously, the SVECS requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The SVECS is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the SVECS were performed during the operator's weekly visits during this reporting period. These activities include general site inspections (of the grounds, buildings, doors, and locks), collection of operational data (vapor flowrates, pressures, vacuums, temperature, and photoionization detector [PID] readings), adjustment of system valves, collection of vapor samples (on a monthly and quarterly basis), collection/disposal of condensate if needed, cleaning of filters, switching of lead/lag blower assignments, and preventive maintenance of system equipment.

2.2 Non-routine Maintenance / Site Activities

The following non-routine activities / repair activities occurred at the SVECs during the 2022 annual reporting period:

2022 First Quarter

- On 6 January, the system was offline for 6 hours for the installation of the retrofitted B-1A blower and larger [10 horsepower (hp)] motor which has an increased flowrate to accommodate the planned SVECS expansion to be performed by others.
- On 10 January, the retrofitted B-1A blower was installed and returned to service.
- On 21 January, the blower B-1B was removed for retrofitting including the addition of a larger (10 hp) motor.

2022 Second Quarter

- On 19 May, the retrofitted B-1B blower was installed.
- On 28 June, the system was offline for 8 hours to connect new piping to the six additional SVEWs which were installed by others as part of the SVECS expansion.

Third Quarter

- On 14 and 15 July, piping associated with the newly connected SVEWs was installed to replace damaged piping.
- On 19 August, SVE sampling ports associated with the newly connected SVEWs were reconfigured to match existing.
- On 29 August, the system was offline for 3 hours to flush/dewater the well piping system associated with the 6 new SVEWs.
- On 28 September, the system was offline for 7 hours to plumb the Site 4 SVE system to the Site 1 SVE system by others. The interconnecting manifold was equipped with a valve which will

remain closed until updated emission calculations are completed and NYSDEC concurrence is received.

2022 Fourth Quarter

• On 21 October, new security/fire alarm systems were installed at the treatment building and adjacent office/storage building.

3.0 SVECS MONITORING

Several process vapor samples are collected on a monthly basis to monitor the SVECS operation. These samples consist of an influent sample (as well as a duplicate sample), located immediately prior to the VGAC unit, and an effluent sample, located after the VGAC unit and before the exhaust stack. Vapor samples are also collected from the 12 original SVEWs on a quarterly basis to monitor the capture of the contaminated soil vapor by the SVEWs. In addition, quarterly pressure measurements are collected from the 12 SVEWs and the 18 SVPMs to monitor the SVECS vacuum field, and soil gas sampling from the 18 SVPMs is conducted annually (generally in the winter) to evaluate the effectiveness of the SVECS. The first annual soil gas sampling event was conducted in the winter 2012-2013. The tenth annual sampling event was conducted in March 2022.

3.1 Monthly Air Quality Monitoring

Analysis of influent and effluent vapor sample locations is performed to evaluate VOC mass removal and the effectiveness of the VGAC adsorption unit. Time-integrated vapor samples are collected using 6-liter summa canisters with 30-minute flow regulators.

Treated off-gas discharged at the exhaust stack is subject to emissions limitations. Initially, discharge goals were derived from calculations submitted by the Navy and accepted by the NYSDEC in the February 2010 DAR permit equivalent application. In September 2011, the Navy submitted an evaluation proposing revised discharge goals (TtNUS, 2011), which NYSDEC agreed to in October 2011. A copy of this documentation is included as **Appendix A**.

Summaries of the monthly treatment system influent and effluent vapor sampling results for October, November, and December (Fourth Quarter) are presented in **Tables 1, 2, and 3**, respectively. Emission rate calculations for both the influent stream (prior to VGAC treatment) and effluent stream (following VGAC treatment) and the computed monthly mass recoveries are also presented. Emission rates of the influent stream as well as mass recovery are calculated to monitor progress and determine when influent concentrations have reached levels at which vapor treatment via carbon adsorption is no longer required. The data presented in **Tables 1, 2, and 3** demonstrate that all constituents were within the effluent emission rate guidelines (**Appendix A**) during the current reporting period.

Monthly emission rate calculations for January – September 2022 are included in previously submitted quarterly operation reports as indicated in Section 1.0.

3.1.1 2022 Annual Summary

Emissions

Table 4 summarizes annual air emissions based on monthly emission levels recorded during 2022. Approximately 0.32 pounds (lbs) of total VOCs were emitted. Annual emissions of reported constituents were within the discharge guidelines as indicated in **Table 4**.

Mass Recovery

Contaminant mass recovery was calculated based on monthly influent concentrations combined with monthly influent flow totals. During 2022, approximately 20.1 lbs of VOCs were removed by the

SVECS, for an average monthly mass recovery rate of approximately 1.68 lbs per month. Monthly and annual mass recovery calculations for 2022 are summarized in **Table 4**.

All raw analytical data are provided under separate cover.

3.2 Quarterly Air Quality Monitoring of SVEWs

Time-integrated vapor samples are collected quarterly using 6-liter summa canisters with 30-minute flow regulators at six intermediate and six deep SVEWs. The samples are collected for the purpose of tracking and documenting the performance of the SVECS (TtEC, 2010).

Table 5 provides the Fourth Quarter 2022 data for the initial 12 SVEWs which were operational throughout calendar year 2022.

In order to evaluate the VOC contribution to the SVECS treatment system associated with the addition of six SVEWs (SVE-112D, SVE-113D, SVE-114D, SVE-115D, SVE-116D, and SVE-117D) installed by others to address residual VOC concentrations in the central area of Site 1, a series of baseline vapor samples were collected on 6 September 2022, 6 October 2022, 11 October 2022, and 8 November 2022. The data from these sampling events are presented in **Table 6**. The data from 6 October 2022 for these new wells are designated as the Fourth Quarter data.

Analytical results of select VOCs (1,1,1-TCA, PCE, and TCE) detected at the 18 SVEWs active during the Fourth Quarter are presented on **Figure 5**. Historical analytical results of quarterly vapor samples collected from December 2009 through the Fourth Quarter 2022 for the initial 12 SVEWs and the additional 6 SVEWs are presented in **Table 7**.

3.3 Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs

Soil vapor pressure readings are collected quarterly from the 18 active SVEWs and 18 SVPMs to monitor the SVECS vacuum field. Soil vapor pressure readings from the 18 active SVEWs and 18 SVPMs were collected on 13 December. Results of the Fourth Quarter vapor pressure monitoring event are presented in **Table 8**.

The vapor pressure readings collected from the SVEWs ranged between -3.0 to -10.0 i.w., indicating that a vacuum has been established along the fence line. The vapor pressure readings collected from the SVPMs ranged between -0.05 to -0.90 i.w., indicating that a vacuum has been established in the residential neighborhood. Pressure readings from the 18 SVPMs are presented on **Figure 6**.

3.4 Annual Vapor Quality Monitoring of Off-site SVPMs

Time-integrated vapor samples are collected annually using 6-liter summa canisters with 30-minute flow regulators at 18 SVPM locations. The Annual 2022 SVPM samples were collected in March 2022.

3.4.1 **2022 Vapor Quality Results**

Annual vapor samples were collected on 3 March 2022 from the 18 SVPM locations. Validated analytical results for samples collected in March 2022 are summarized in **Table 9**; the data validation summary is presented in **Appendix D**.

As shown on **Table 9**, 1,1,1-TCA was not detected at any of the 18 sampling locations during the 2022 sampling event. PCE was detected at 5 of the 18 sampling locations, ranging from 1.1 J μ g/m³ at SVPM-2002I to 2.5 J μ g/m³ at SVPM-2007I. TCE was detected at 15 of the 18 sampling locations, ranging from 2.6 J μ g/m³ at SVPM-2006S to 44 μ g/m³ at SVPM-2002D. All detected concentrations were below the NYSDOH sub-slab screening value of 1,000 μ g/m³ for 1,1,1-TCA, 1,000 μ g/m³ for PCE, and 60 μ g/m³ for TCE, as outlined in the NYSDOH May 2017 Updates to Soil Vapor / Indoor Air Decision Matrices.

3.4.2 Historical Vapor Quality Results

Table 10 presents historical vapor quality analytical results collected from the 18 SVPM locations, beginning in October 2008 and including the most recent results obtained in March 2022. Historical trend graphs showing the SVPM concentrations over time can be found in **Appendix B**. As indicated, concentrations observed in March 2022 have dropped substantially from initial concentrations observed in October 2008, and were similar to those observed in March 2021 with the following exceptions noted:

- PCE at SVPM-2001S decreased from 0.80 J μg/m³ to non-detect; TCE decreased from 0.88 J μg/m³ to non-detect.
- PCE at SVPM-2001I decreased from 0.64 J μg/m³ to non-detect in both the parent and duplicate samples; the TCE concentration at this location varied between the two events, with the parent sample decreasing from 0.95 J μg/m³ in March 2021 to non-detect in March 2022, but the duplicate sample increasing from 0.95 J μg/m³ in March 2021to 3.2 J μg/m³ in March 2022.
- TCE at SVPM-2001D increased from 5.9 J μg/m³ to 17 J μg/m³.
- TCE at SVPM-2002S increased from 0.98 J μg/m³ to 4.6 μg/m³.
- PCE at SVPM-2002I increased from 0.68 J μ g/m³ in the parent sample and non-detect in the duplicate sample to 1.1 J μ g/m³; TCE increased from 2.4 J μ g/m³ in the parent sample and 2.3 J μ g/m³ in the duplicate sample to 10 μ g/m³.
- PCE at SVPM-2002D decreased from 0.88 J μg/m³ to non-detect; TCE increased from 28 μg/m³ to 44 μg/m³.
- TCE at SVPM-2003S increased from 0.97 J μg/m³ to 2.8 J μg/m³.
- PCE at SVPM-2003I increased from 0.84 J μ g/m³ to 1.2 J μ g/m³; TCE increased from 1.4 J μ g/m³ to 18 μ g/m³.
- PCE at SVPM-2003D increased from 1.0 J $\mu g/m^3$ to 1.7 J $\mu g/m^3$; TCE increased from 3.0 J $\mu g/m^3$ to 4.7 $\mu g/m^3$.
- TCE at SVPM-2004S decreased from 0.65 J µg/m³ to non-detect.
- TCE at SVPM-2004I increased from 0.79 J µg/m³ to 2.9 J µg/m³.
- PCE at SVPM-2004D decreased from 3.2 J $\mu g/m^3$ to non-detect; TCE increased from non-detect to 4.0 $\mu g/m^3$.
- PCE at SVPM-2006S decreased from 0.61 J μg/m³ and 0.69 J μg/m³ in the parent and duplicate samples, respectively, to non-detect; TCE increased from non-detect in the parent and duplicate samples to 2.6 J μg/m³.

- PCE at SVPM-2006I decreased from 1.0 J $\mu g/m^3$ to non-detect in the parent and duplicate samples; TCE increased from 23 $\mu g/m^3$ to 35 $\mu g/m^3$ in both the parent and duplicate samples.
- 1,1,1-TCA at SVPM-2006D decreased from 0.90 J μ g/m³ to non-detect; PCE decreased from 2.0 J μ g/m³ to non-detect; TCE increased from 20 μ g/m³ to 29 μ g/m³.
- PCE at SVPM-2007S decreased from 1.2 J μ g/m³ to non-detect; TCE increased from 0.95 J μ g/m³ to 3.5 J μ g/m³.
- 1,1,1-TCA at SVPM-2007I decreased from 0.38 J μg/m³ to non-detect; PCE increased from 2.2 J μg/m³ to 2.5 J μg/m³; TCE decreased from 0.74 J μg/m³ to non-detect.
- 1,1,1-TCA at SVPM-2007D decreased from 0.66 J μg/m³ to non-detect; PCE decreased from 3.0 J μg/m³ to 2.4 J μg/m³; TCE increased from non-detect to 3.5 J μg/m³.

In 2008, TCE was detected at all 18 locations, with concentrations ranging from 1.0 μ g/m³ (SVPM-2004S) to 89,000 μ g/m³ (SVPM-2002I); concentrations exceeded the 2006 NYSDOH sub-slab screening value of 250 μ g/m³ at nine locations (SVPM-2001S, SVPM-2001I, SVPM-2001D, SVPM-2002S, SVPM-2002I, SVPM-2002D, SVPM-2003D, SVPM-2004I, and SVPM-2004D). In 2013, TCE concentrations ranged from non-detectable levels at 12 locations to 47 μ g/m³ (SVPM-2006I), and no locations exceeded the 2006 NYSDOH sub-slab screening value of 250 μ g/m³. Since 2013, TCE has been detected at all 18 locations during at least one event with a maximum concentration of 84 μ g/m³ at SVPM-2006D in 2016, which was below the applicable NYSDOH sub-slab screening value of 250 μ g/m³ at that time (NYSDEC, 2006). In 2022, TCE was detected at 15 of the 18 sampling locations, with concentrations ranging from 2.6 J μ g/m³ in SVPM-2006S to 44 μ g/m³ at SVPM-2002D, which is less than the 2017 NYSDOH screening value of 60 μ g/m³.

In 2008, PCE was detected at all 18 locations, with concentrations ranging from 1.8 μ g/m³ (SVPM-2004S) to 5,000 μ g/m³ (SVPM-2001I); concentrations exceeded the NYSDOH sub-slab screening value of 1,000 μ g/m³ at two locations (SVPM-2001S and SVPM-2001I). In 2013, PCE concentrations ranged from non-detectable levels at seven locations to 2.3 J μ g/m³ (SVPM-2004D), and no locations exceeded the NYSDOH sub-slab screening value of 1,000 μ g/m³. Since 2013, PCE has been detected at all 18 locations during at least one event with a maximum concentration of 10 μ g/m³ (SVPM-2001D) in 2016 which is well below the NYSDOH sub-slab screening value of 1,000 μ g/m³. In 2022, PCE was detected at 5 of the 18 sampling locations, with concentrations ranging from 1.1 J μ g/m³ in SVPM-2002I to 2.5 J μ g/m³ at SVPM-2007I.

In 2008, 1,1,1-TCA was detected at all 18 locations, with concentrations ranging from 1.4 μ g/m³ (SVPM-2004S) to 52,000 μ g/m³ (SVPM-2002I); concentrations exceeded the NYSDOH sub-slab screening value of 1,000 μ g/m³ at six locations (SVPM-2001S, SVPM-2001I, SVPM-2001D, SVPM-2002S, SVPM-2002I, SVPM-2002D). In 2013, 1,1,1-TCA was detected at only one location (SVPM-2007D) at a concentration of 1.3 J μ g/m³, well below the NYSDOH sub-slab screening value of 1,000 μ g/m³. Since 2013, 1,1,1-TCA has been sporadically detected at three locations (SVPM-2006D, SVPM-2007I, and SVPM-2007D) at estimated concentrations below 1.0 μ g/m³, well below the NYSDOH sub-slab screening value of 1,000 μ g/m³. In 2022, 1,1,1-TCA was not detected at any of the 18 sampling locations.

3.5 Soil Vapor Quality Concentration Trends

Historical vapor analytical results for 18 SVEWs (SVE-101I through SVE-106D and SVE-112D through SVE-117D) through the Fourth Quarter are presented in **Table 7**. In addition, concentration trends of select VOCs for the SVECS combined influent (1,1,1-TCA, PCE, TCE, and total VOCs) and each of the 18 SVEWs (1,1,1-TCA, PCE, and TCE) are presented in **Appendix B**. Concentration trends observed in 18 SVEWs through the Fourth Quarter 2022 are discussed below.

- Combined Influent: Overall VOC concentrations in the combined influent decreased during the Fourth Quarter 2022 relative to the Third Quarter 2022, with total VOC concentrations of 1,439 μg/m³ in October (**Table 1**), 1,416 μg/m³ in November (**Table 2**), and 1,451 μg/m³ in December (**Table 3**). TCE, PCE and 1,1,1-TCA concentrations remain approximately one to three orders of magnitude below baseline concentrations measured in December 2009 (42,000 μg/m³ TCE, 7,900 μg/m³ PCE, and 13,000 μg/m³ 1,1,1-TCA).
- SVE-101I: Concentrations measured at this location (18 μg/m³ TCE, 3.0 J μg/m³ PCE, and 0.80 J μg/m³ 1,1,1-TCA) decreased one to four orders of magnitude in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). This decrease may have resulted from a reduction in vacuum measured at this location following the addition of the six new wells. Applied vacuums to the SVEWs wells were subsequently adjusted. All concentrations typically one to two orders of magnitude below baseline concentrations measured in December 2009 (180,000 μg/m³ TCE, 1,700 μg/m³ PCE, and 51,000 μg/m³ 1,1,1-TCA).
- SVE-101D: Concentrations measured at this location (2,500 μg/m³ TCE, 46 μg/m³ PCE, and 14 μg/m³ 1,1,1-TCA) increased in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). All concentrations remain two to three orders of magnitude below baseline concentrations measured in December 2009 (100,000 μg/m³ TCE, 3,200 μg/m³ PCE, and 26,000 μg/m³ 1,1,1-TCA).
- SVE-102I: Concentrations measured at this location (3.7 μg/m³ TCE, 2.4 J μg/m³ PCE, and 0.72 J μg/m³ 1,1,1-TCA) decreased in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). All concentrations remain one to two orders of magnitude below the maximum concentrations measured in June 2010 (300 μg/m³ TCE, 17 μg/m³ PCE, and 13 μg/m³ 1,1,1-TCA).
- SVE-102D: Concentrations of two VOCs measured at this location (98 μg/m³ TCE and 27 μg/m³ PCE) increased in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022, while the concentration of 1,1,1-TCA decreased (3.2 J μg/m³) (**Table 7**). The measured concentrations are consistent with respect to the range in concentration and variability noted over the past several years. TCE and 1,1,1-TCA concentrations are below the baseline concentrations measured in December 2009 (440 μg/m³ TCE, and 130 μg/m³ 1,1,1-TCA) while PCE is below the maximum concentration measured in September 2016 (51 μg/m³).
- SVE-103I: Concentrations measured at this location (2.1 J μg/m³ TCE, 2.7 J μg/m³ PCE, and non-detect concentrations of 1,1,1-TCA) decreased one to two orders of magnitude in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). This

decrease may have resulted from a reduction in vacuum measured at this location following the addition of the six new wells. Applied vacuums to the SVEWs wells were subsequently adjusted. All concentrations remain below the baseline concentrations measured in December 2009 (900 µg/m³ TCE, 580 µg/m³ PCE, and 900 µg/m³ 1,1,1-TCA).

- SVE-103D: Concentrations measured at this location (1.4 J μg/m³ TCE, 6.0 μg/m³ PCE, and non-detect concentrations of 1,1,1-TCA) decreased one to two orders of magnitude in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). This decrease may have resulted from a reduction in vacuum measured at this location following the addition of the six new wells. Applied vacuums to the SVEWs wells were subsequently adjusted. All concentrations have typically remained one to two orders of magnitude below baseline concentrations measured in December 2009 (3,100 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,000 μg/m³ 1,1,1-TCA).
- SVE-104I: Concentrations measured at this location (11 μg/m³ TCE, 0.98 J μg/m³ PCE, and non-detect concentrations of 1,1,1-TCA) decreased in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). All concentrations are one to four orders of magnitude below baseline concentrations measured in December 2009 (710 μg/m³ TCE, 3,100 μg/m³ PCE, and 730 μg/m³ 1,1,1-TCA).
- SVE-104D: Concentrations measured at this location (6.4 μg/m³ TCE, 18 μg/m³ PCE, and 1.3 J μg/m³ 1,1,1-TCA) decreased one to two orders of magnitude in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). This decrease may have resulted from a reduction in vacuum measured at this location following the addition of the six new wells. Applied vacuums to the SVEWs wells were subsequently adjusted. All concentrations have typically remained one to three orders of magnitude below baseline concentrations measured in December 2009 (4,600 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,600 μg/m³ 1,1,1-TCA).
- SVE-105I: Concentrations measured at this location (6.1 μg/m³ TCE, 12 μg/m³ PCE, and non-detect concentrations of 1,1,1-TCA) decreased in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). All concentrations remain below baseline concentrations measured in December 2009 (76 μg/m³ TCE, 70 μg/m³ PCE, and 9.9 μg/m³ 1,1,1-TCA).
- SVE-105D: Concentrations measured at this location (non-detect TCE, 3.9 J μg/m³ PCE, and non-detect 1,1,1-TCA) decreased one to two orders of magnitude in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). This decrease may have resulted from a reduction in vacuum measured at this location following the addition of the six new wells. Applied vacuums to the SVEWs wells were subsequently adjusted. All concentrations have typically remained two to three orders of magnitude below baseline concentrations measured in December 2009 (1,700 μg/m³ TCE, 2,100 μg/m³ PCE, and 550 μg/m³ 1,1,1-TCA).
- SVE-106I: Concentrations measured at this location (non-detect TCE, 2.3 J μg/m³ PCE, and non-detect 1,1,1-TCA) decreased two orders of magnitude in the Fourth Quarter 2022 relative to

concentrations measured in the Third Quarter 2022 (**Table 7**). There has been some fluctuation of measured concentrations following a substantial increase in concentrations measured during and immediately following a soil remediation/excavation event in 2020, with decreasing or stable trends following the event. Baseline concentrations were established at this site in December 2009 (1,900 μ g/m³ TCE, 390 μ g/m³ PCE, and 220 μ g/m³ 1,1,1-TCA).

• SVE-106D: Concentrations measured at this location (2.7 J μg/m³ TCE, 5.1 μg/m³ PCE, and non-detect 1,1,1-TCA) decreased in the Fourth Quarter 2022 relative to concentrations measured in the Third Quarter 2022 (**Table 7**). There has been some fluctuation of measured concentrations following a substantial increase in concentrations measured during and immediately following a soil remediation/excavation event in 2020, with decreasing or stable trends following the event. All concentrations are two to three orders of magnitude below baseline concentrations measured in December 2009 (3,400 μg/m³ TCE, 720 μg/m³ PCE, and 340 μg/m³ 1,1,1-TCA).

In September 2022, six new SVEWs (SVE-112D, SVE-113D, SVE-114D, SVE-115D, SVE-116D, and SVE-117D) were integrated into the SVECS and brought online. Samples were collected from each of these wells on four separate dates (**Tables 6 and 7**) to establish a range of baseline concentrations at the time of system integration. The initial baseline VOC concentrations were established on 6 September 2022 (**Tables 6 and 7**). During the Fourth Quarter 2022, three additional samples were collected (**Tables 6 and 7**). With a few exceptions, concentrations of VOCs generally decreased from the initial concentrations on 6 September 2022 to those on 8 November 2022.

- SVE-112D: TCE concentrations ranged from 160 μg/m³ to 60 μg/m³, PCE concentrations ranged from 160 μg/m³ to 53 μg/m³, and 1,1,1-TCA concentrations ranged from 16 μg/m³ to 3.7 μg/m³ (**Tables 6 and 7**).
- SVE-113D: TCE concentrations ranged from 46 μ g/m³ to 26 μ g/m³, PCE concentrations ranged from 72 μ g/m³ to 42 μ g/m³, and 1,1,1-TCA concentrations ranged from 24 μ g/m³ to 4.6 μ g/m³ (**Tables 6 and 7**).
- SVE-114D: TCE concentrations ranged from 4,200 μg/m³ to 3,400 μg/m³, PCE concentrations ranged from 1,400 μg/m³ to 310 μg/m³, and 1,1,1-TCA concentrations ranged from 1,200 μg/m³ to 1,100 μg/m³ (**Tables 6 and 7**).
- SVE-115D: TCE concentrations ranged from 200 μ g/m³ to 77 μ g/m³, PCE concentrations ranged from 220 μ g/m³ to 110 μ g/m³, and 1,1,1-TCA concentrations ranged from 21 μ g/m³ to 8.3 μ g/m³ (**Tables 6 and 7**).
- SVE-116D: TCE concentrations ranged from 700 μg/m³ to 420 μg/m³, PCE concentrations ranged from 7,800 μg/m³ to 4,500 μg/m³, and 1,1,1-TCA concentrations ranged from 510 μg/m³ to 380 μg/m³ (**Tables 6 and 7**).
- SVE-117D: TCE concentrations ranged from 180 μ g/m³ to 97 μ g/m³, PCE concentrations ranged from 86 μ g/m³ to 42 μ g/m³, and 1,1,1-TCA concentrations ranged from 8.1 μ g/m³ to 4.2 μ g/m³ (**Tables 6 and 7**).

4.0 CONCLUSIONS AND RECOMMENDATIONS

As stated in Section 1.3, the objectives of the Site 1 SVECS are to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture soil vapor with elevated TCE concentrations. Based on the presence of a vacuum field and the reduction of VOC concentrations to less than the screening values in the off-property area, the SVECS is functioning as designed. Influent vapor analytical data with concentrations of TCE above the project action level (greater than 250 μ g/m³) indicate that the SVECS should continue to be operated on a full-time basis to achieve continued capture of contaminated soil vapor. Monthly monitoring of the combined influent and effluent as well as quarterly monitoring of individual SVEWs should continue. Quarterly and annual monitoring of the SVPMs should also continue in order to ensure that a measurable vacuum field is being established and that the area is being effectively treated.

In September 2022 six additional deep SVEWs (SVE-112D to SVE-117D), located within the central area of Site 1 were integrated into the SVECS. Assessment of these additional data will be incorporated into the subsequent quarterly operations reports. Applied vacuums will continue to be monitored to sure adequate vacuum is maintained at all locations.

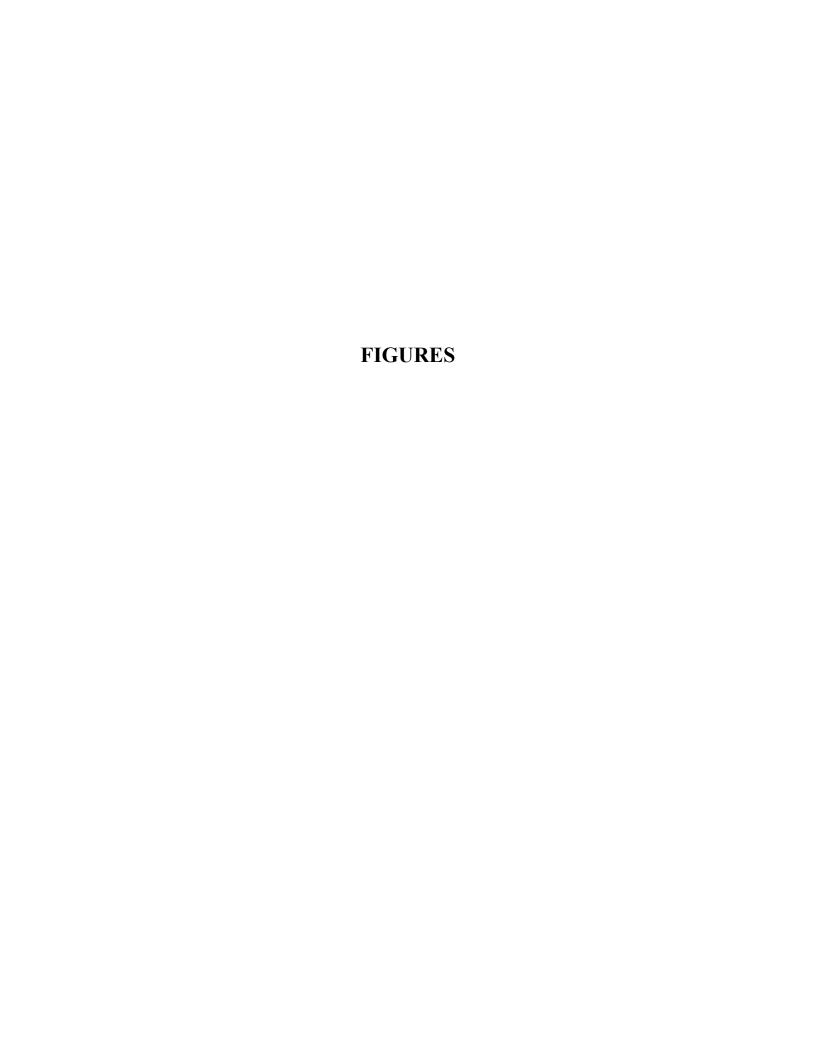
5.0 REFERENCES

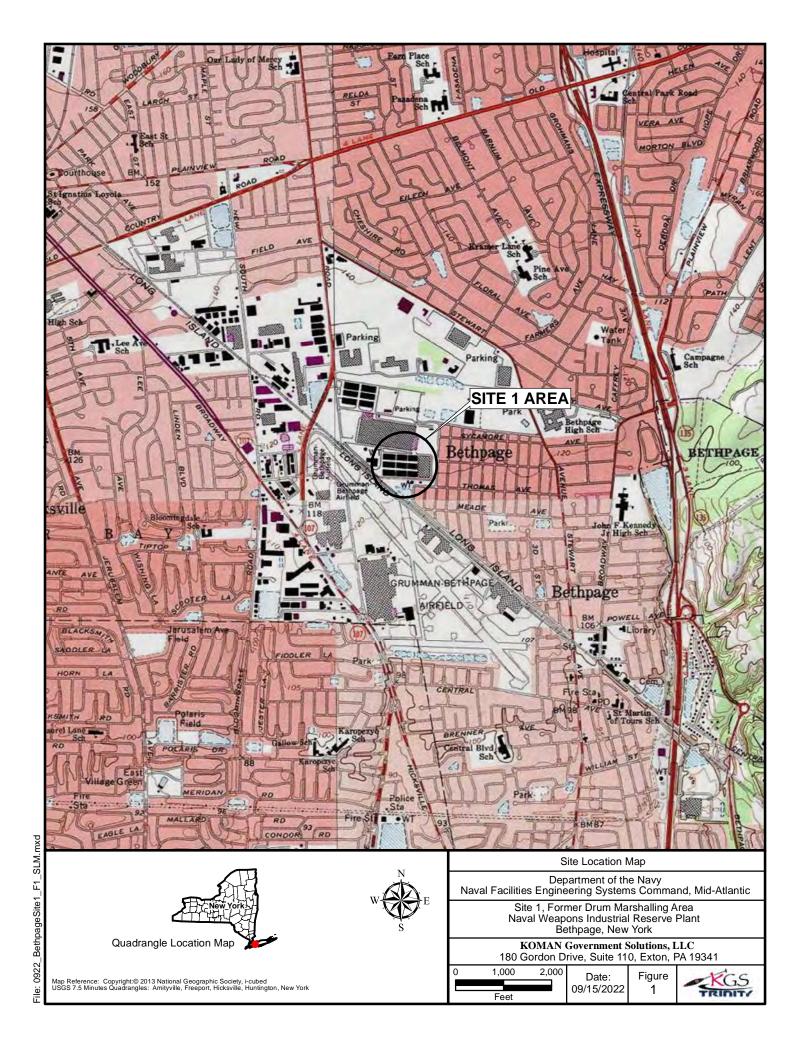
KOMAN Government Solutions, LLC. (KGS). 2022. Quarterly Operations Report, First Quarter 2022, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.

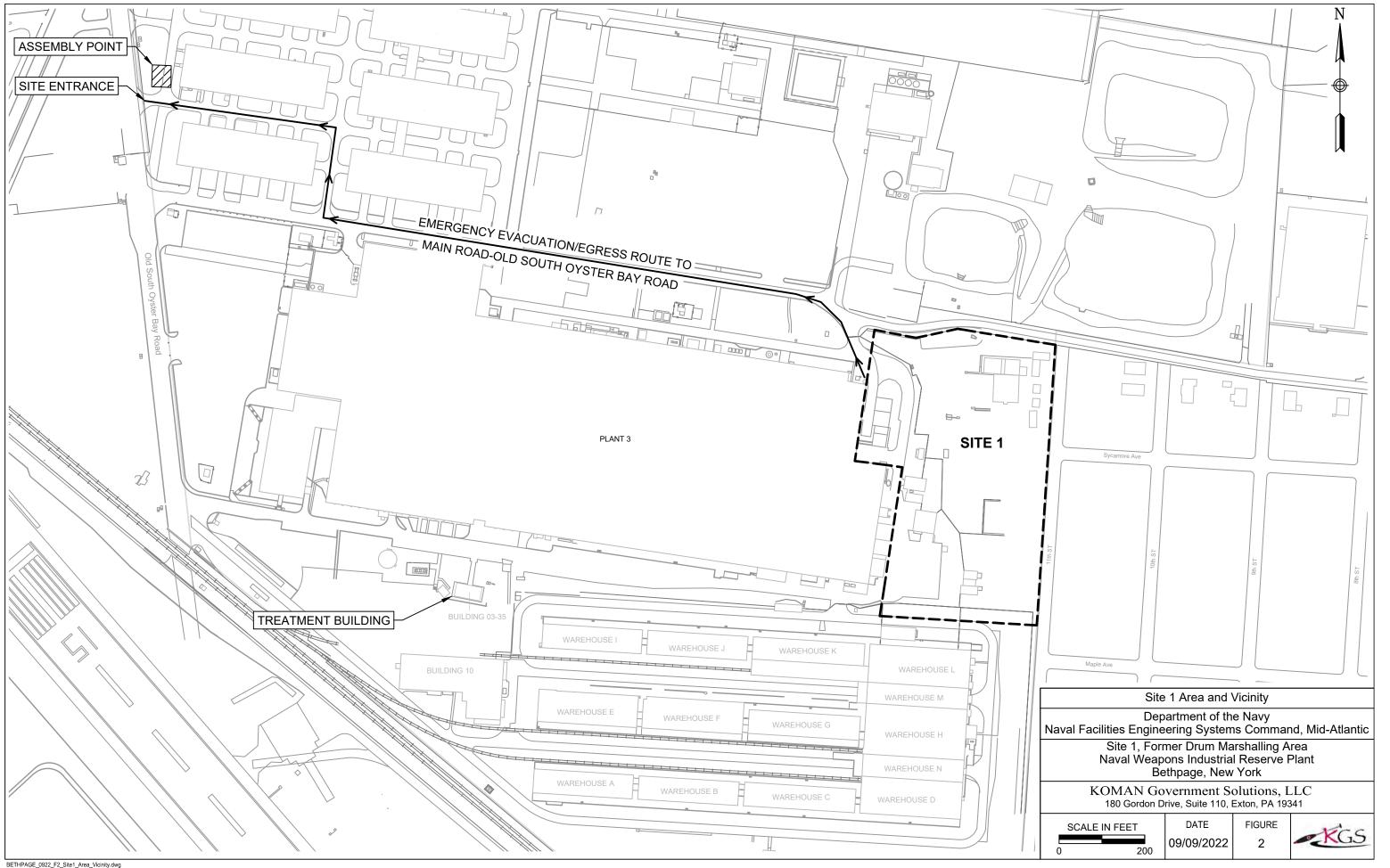
KGS. 2022. Quarterly Operations Report, Second Quarter 2022, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York. October.

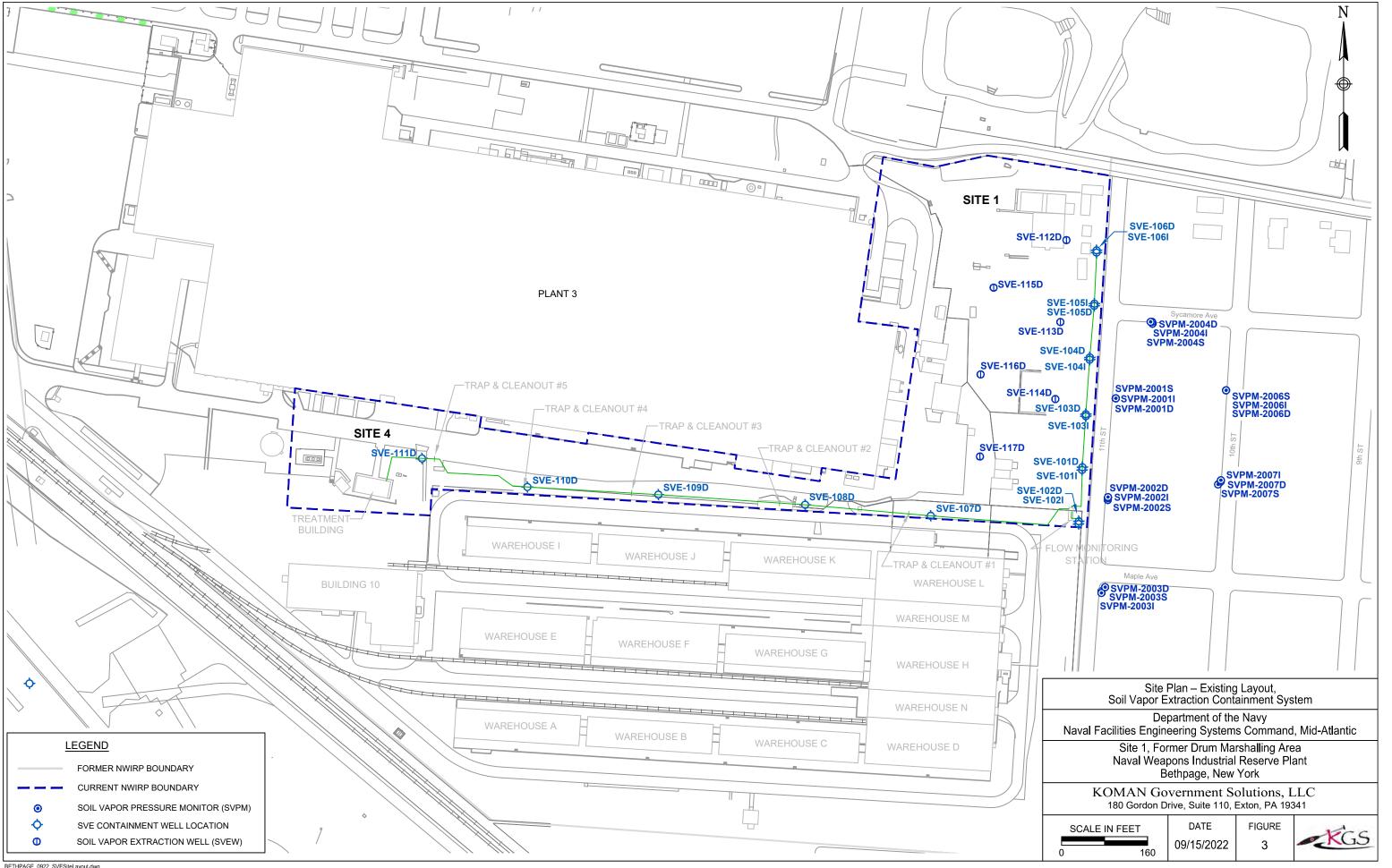
KGS. 2023. Quarterly Operations Report, Third Quarter 2022, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York. January.

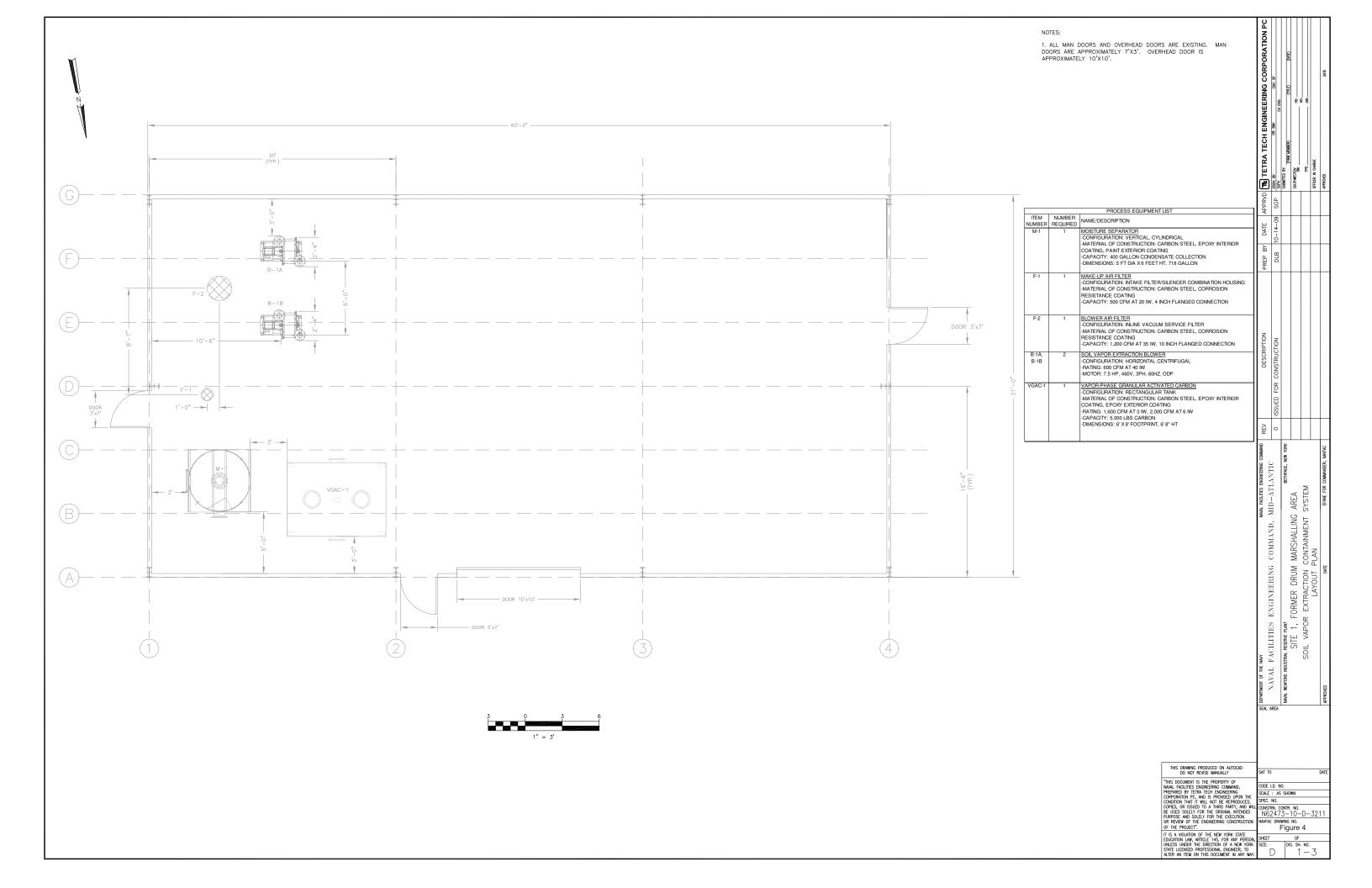
New York State Department of Health (NYSDOH). 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

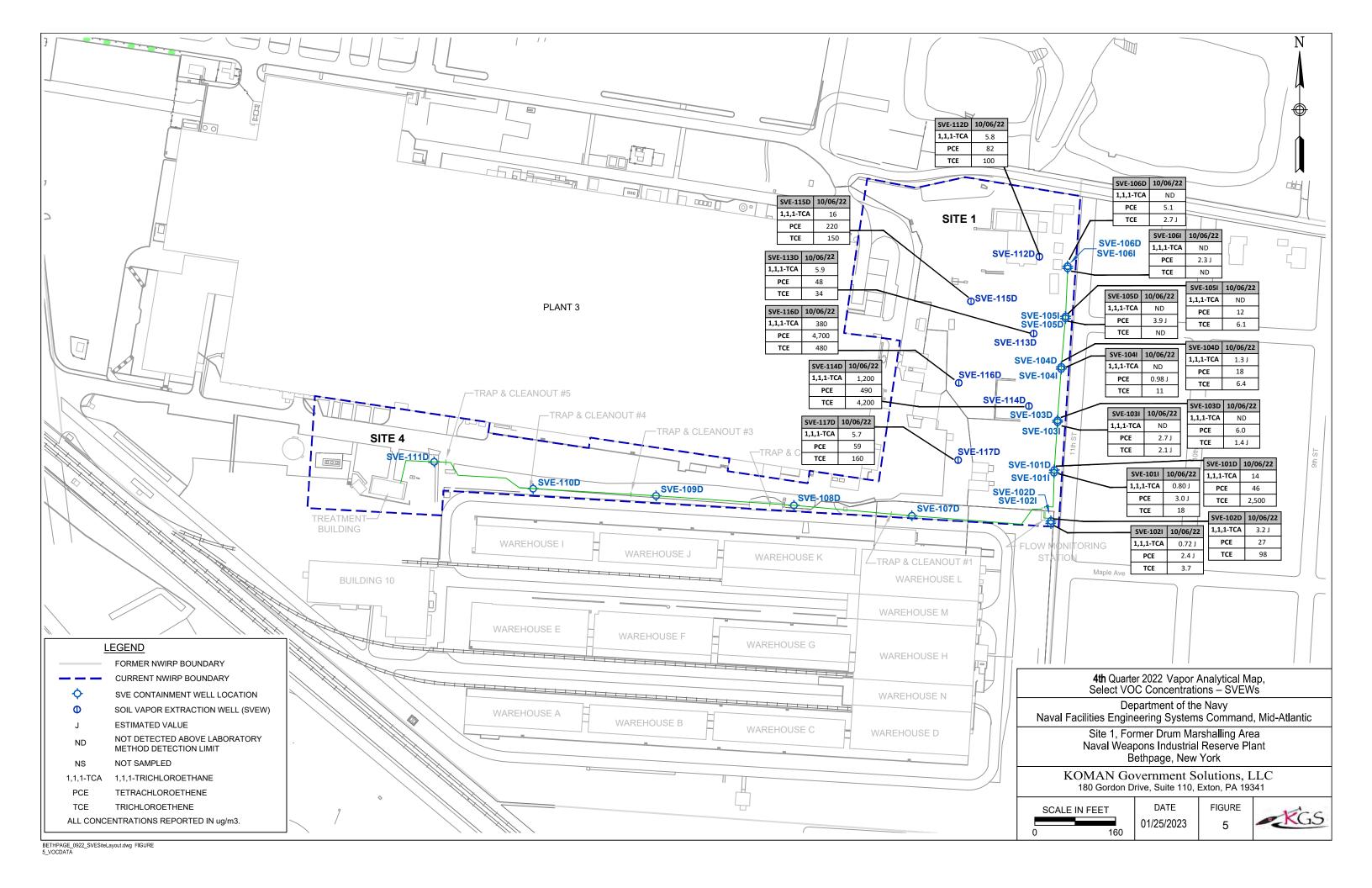

NYSDOH. 2017. May 2017: Updates to Soil Vapor / Indoor Air Decision Matrices. https://www.health.ny.gov/environmental/indoors/vapor intrusion/update.htm

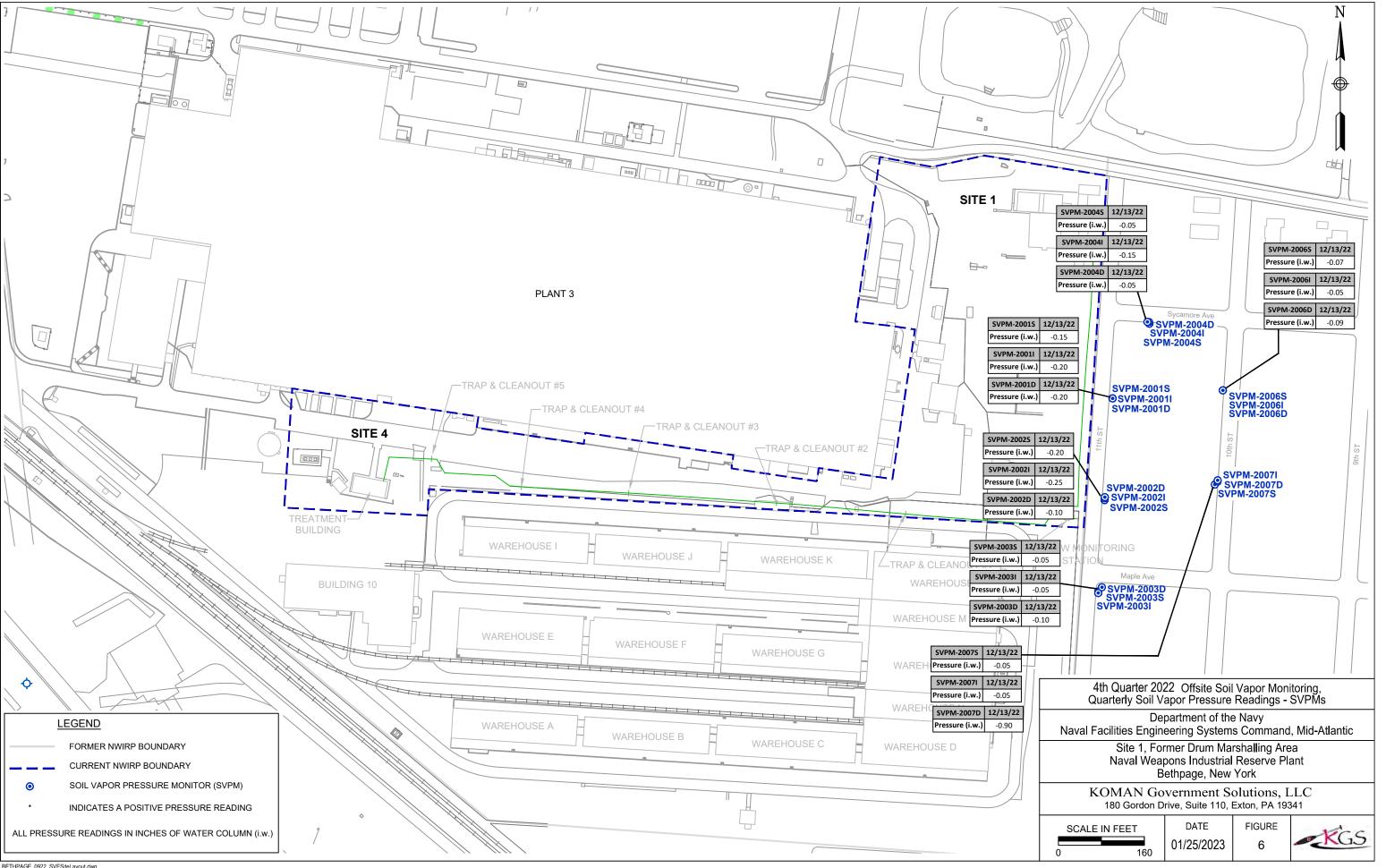

Tetra Tech EC, Inc. (TtEC). 2010. Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.


Tetra Tech NUS, Inc. (TtNUS). 2011. Modification to Existing Soil Vapor Extraction Containment System at Site 1 – Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -111D, NWIRP Bethpage, Bethpage, New York. September.


TtNUS. 2012. Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. February.







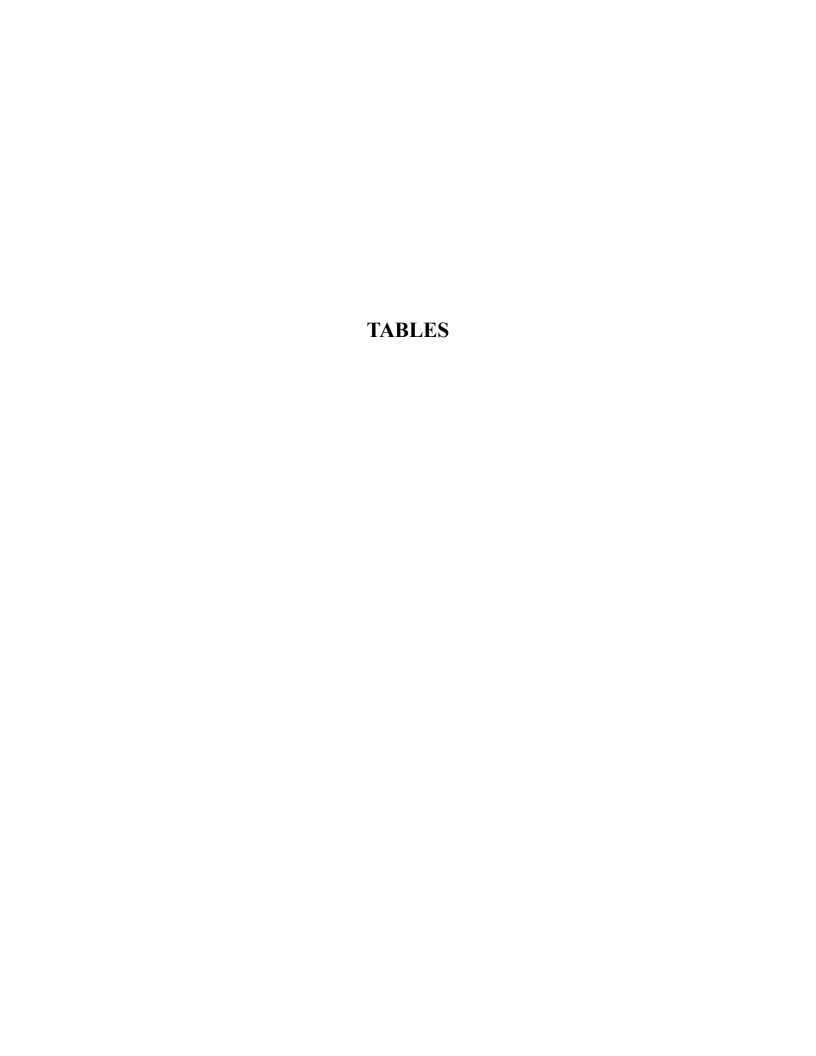


Table 1 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results

apor Monitoring Resu October 2022

		Concen	itration			Emission	Rate (1),(2)		Monthly Mass
Compound		(ug/	'm 3)		Prior to Tr	eatment	Following T	Recovery (3)	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	160	160	160	0.0	0.0003	2.9458	0.0000	0.0000	0.2502
1,1-Dichloroethane	8.2	7.9	8.05	2.8	0.0000	0.1482	0.0000	0.0516	0.0126
1,1-Dichloroethene	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
1,2-Dichloroethane	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
cis-1,2-Dichloroethene	94	94	94	28	0.0002	1.7306	0.0001	0.5155	0.1470
Tetrachloroethene	580	580	580	0.0	0.0012	10.6785	0.0000	0.0000	0.9069
trans-1,2-Dichloroethene	2.2 J	1.4 J	1.8	1.9 J	0.0000	0.0331	0.0000	0.0350	0.0028
Trichloroethene	590	600	595	0.0	0.0013	10.9546	0.0000	0.0000	0.9304
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1434	1443	1439	32.7	0.0030	26.4909	0.0001	0.6020	2.2499

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = 104

Average Monthly Flowrate (cfm) = 600

Average Monthly Flowrate (scfm) = 562

Operational Hours for the month = 744

- $(1) \ Emissions \ (lbs/hr) = \ Concentration \ (ug/m^3)*(lb/454000000ug)*(0.3048^3m^3/ft^3)* exhaust \ flow \ (scfm)*(60min/hour)$
- (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
- (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Table 2 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY

Vapor Monitoring Results November 2022

		Concer	itration			Emission	Rate (1),(2)		Monthly Mass
Compound		(ug/	'm 3)		Prior to Tr	eatment	Following T	reatment	Recovery (3)
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	200	170	185	0.0	0.0004	3.3307	0.0000	0.0000	0.2738
1,1-Dichloroethane	9.6	7.8	8.7	4.3	0.0000	0.1566	0.0000	0.0774	0.0129
1,1-Dichloroethene	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
1,2-Dichloroethane	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
cis-1,2-Dichloroethene	120	100	110	42	0.0002	1.9804	0.0001	0.7562	0.1628
Tetrachloroethene	580	500	540	0.0	0.0011	9.7219	0.0000	0.0000	0.7991
trans-1,2-Dichloroethene	2.6 J	2.0 J	2.3	2.9	0.0000	0.0414	0.0000	0.0522	0.0034
Trichloroethene	610	530	570	0.0	0.0012	10.2621	0.0000	0.0000	0.8435
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1522	1310	1416	49.2	0.0029	25.4931	0.0001	0.8858	2.0953

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = 101

Average Monthly Flowrate (cfm) = 583

Average Monthly Flowrate (scfm) = 549

Operational Hours for the month = 720

- $(1) \ Emissions \ (lbs/hr) = \ Concentration \ (ug/m^3)^* (lb/45400000ug)^* (0.3048^3 m^3/ff^3)^* exhaust \ flow \ (scfm)^* (60min/hour)$
- (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
- $(3) \ Monthly \ Mass \ Removal = AVERAGE \ FLOWRATE \ (scfm) * 0.3048^3 m^3/ft^3 * INF \ AVG \ CONC \ (ug/m^3) * (lb/454000000ug) * 60 \ min/hr * OPERATIONAL \ TIME \ (hr)$

Table 3 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY

Vapor Monitoring Results December 2022

		Concen	itration			Emission	Rate (1),(2)		Monthly Mass
Compound		(ug/	'm ³)		Prior to Tr	eatment	Following T	Recovery (3)	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	180	180	180	2.4 J	0.0004	3.2865	0.0000	0.0438	0.2780
1,1-Dichloroethane	8.9	8.6	8.75	4.6 J	0.0000	0.1598	0.0000	0.0840	0.0135
1,1-Dichloroethene	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
1,2-Dichloroethane	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
cis-1,2-Dichloroethene	110	100	105	50	0.0002	1.9171	0.0001	0.9129	0.1622
Tetrachloroethene	570	570	570	14	0.0012	10.4073	0.0000	0.2556	0.8803
trans-1,2-Dichloroethene	2.4 J	2.4 J	2.4	2.8 J	0.0000	0.0438	0.0000	0.0511	0.0037
Trichloroethene	580	590	585	13	0.0012	10.6811	0.0000	0.2374	0.9035
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1451	1451	1451	86.8	0.0030	26.4956	0.0002	1.5848	2.2412

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (${}^{\circ}F$) = 90 Average Monthly Flowrate (cfm) = 581 Average Monthly Flowrate (scfm) = 557 Operational Hours for the month = 741

- $(1) \ Emissions \ (lbs/hr) = \ Concentration \ (ug/m^3)*(lb/454000000ug)*(0.3048^3m^3/ft^3)* exhaust \ flow \ (scfm)*(60min/hour)$
- (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
- (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY

2022 Air Emission and Mass Recovery Summary

	1,1-DCA Emissio	Effluent on Rate	1,1-DCE Emissio	Effluent on Rate	cis-1,2-DC Emissic	E Effluent on Rate	_	fluent on Rate		A Effluent on Rate	_	Fmission Rate		Cs Effluent on Rate	Mass Recovery (Total VOCs)
Month	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/mo
Jan-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.4981
Feb-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.3559
Mar-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.2404
Apr-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.3137
May-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0095	0.0000	0.0000	0.0000	0.0000	0.0000	0.0109	1.1934
Jun-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	1.2118
Jul-22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0039	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0039	1.2730
Aug-22	0.0000	0.0014	0.0000	0.0000	0.0000	0.0070	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0083	1.4602
Sep-22	0.0000	0.0033	0.0000	0.0000	0.0000	0.0266	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0325	2.9709
Oct-22	0.0000	0.0044	0.0000	0.0000	0.0001	0.0438	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0511	2.2499
Nov-22	0.0000	0.0064	0.0000	0.0000	0.0001	0.0621	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0728	2.0953
Dec-22	0.0000	0.0071	0.0000	0.0000	0.0001	0.0775	0.0000	0.0217	0.0000	0.0037	0.0000	0.0202	0.0002	0.1346	2.2412

	<u>1,1-DCA</u>	<u>1,1-DCE</u>	cis-1,2-DCE	<u>PCE</u>	1,1,1-TCA	<u>TCE</u>	Total VOCs
Discharge Goal (lb/hr) (1)	NA	NA	NA	0.04	225	0.02	
Discharge Goal (lb/yr) (2)	NA	NA	NA	350	1,971,000	175	
2022 Totals (lb/yr)	0.02	0.00	0.22	0.031	0.00	0.020	0.32 20.10

Notes:

lb/hr = pounds per hour

lb/mo = pounds per month

lb/yr = pounds per year

PCE = tetrachloroethene

TCA = trichloroethane

TCE = trichloroethene

NA = Not Applicable

Emission Rate (per hr) = average flowrate (scfm) * (0.3048^3)m³/ft³ * Eff conc (ug/m3) * (lb/454000000ug) * 60 min/hr * operational time (hrs)

Monthly Mass Recovery = average flowrate (scfm) * (0.3048^3) m³/ft³ * Inf avg conc (ug/m³) * (lb/454000000ug) * 60 min/hr * operational time (hrs)

- (1) Discharge Goal (lb/hr) as presented in the Modification to Existing Soil Vapor Extraction Containment System at Site 1 Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -11D, NWIRP Bethpage, Bethpage, NY (Tetra Tech NUS, 2011) and approved via email by NYDEC on 6 October 2011.
- (2) Discharge Goal (lb/yr) = Discharge Goal (lb/hr) x 8760 hr/yr.

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Fourth Quarter 2022 Vapor Monitoring Results Summary of SVE Wells

Sample ID	SVE 101I	SVE 101D	SVE 102I	SVE 102D	SVE 103I	SVE 103D	SVE 104I	SVE 104D	SVE 105I	SVE 105D	SVE 106I	SVE 106D
Sample Date	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22	10/06/22
Analysis by TO-15 (μg/m³)												
1,1,1-Trichloroethane	0.80 J	14	0.72 J	3.2 J	ND	ND	ND	1.3 J	ND	ND	ND	ND
1,1-Dichloroethane	ND	2.1 J	ND									
1,1-Dichloroethene	ND											
1,2-Dichloroethane	ND											
cis-1,2-Dichloroethene	ND	13	ND	14	ND	ND	ND	12	ND	ND	ND	ND
Tetrachloroethene	3.0 J	46	2.4 J	27	2.7 J	6.0	0.98 J	18	12	3.9 J	2.3 J	5.1
trans-1,2-Dichloroethene	ND											
Trichloroethene	18	2500	3.7	98	2.1 J	1.4 J	11	6.4	6.1	ND	ND	2.7 J
Vinyl Chloride	ND											

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

 $\mu g/m^3$ = micrograms per cubic meter

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY

September through November 2022 Vapor Monitoring Results Summary of Newly Installed SVE Wells

Sample ID		SVE	112D			SVE	113D		SVE 114D				
Sample Date	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	
Analysis by TO-15 (μg/m³)													
1,1,1-Trichloroethane	16	5.8	6.1	3.7	24	5.9	7.2	4.6	1,100	1,200	1,200	1200	
1,1-Dichloroethane	ND	ND	ND	ND	4.8	1.6 J	1.1 J	0.85 J	18	18	16	17	
1,1-Dichloroethene	ND	4.1 J	ND	4.4 J									
1,2-Dichloroethane	ND	2.3 J											
cis-1,2-Dichloroethene	8.2	4.2	4.1	2.7	1.8 J	1.7 J	1.9 J	1.7 J	150	18	15	12	
Tetrachloroethene	160	82	87	53	72	48	54	42	1,400	490	470	310	
trans-1,2-Dichloroethene	ND												
Trichloroethene	160	100	94	60	39	34	46	26	3,900	4,200	4,000	3400	
Vinyl Chloride	ND												

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15. $\mu g/m^3 = \text{ micrograms per cubic meter} \\ ND = Not detected above method detection} \\ limit$

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY

September through November 2022 Vapor Monitoring Results Summary of Newly Installed SVE Wells

Sample ID		SVE	115D			SVE	116D		SVE 117D			
Sample Date	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22
Analysis by TO-15 (μg/m³)												
1,1,1-Trichloroethane	21	16	8.3	16	510	380	400	400	8.1	5.7	5.3	4.0
1,1-Dichloroethane	3.2	5.0	2.1 J	4.5	86	66	57	59	7.4	4.4	3.1	2.8
1,1-Dichloroethene	ND	ND	ND	ND	ND	3.6 J	ND	4.6 J	ND	ND	ND	ND
1,2-Dichloroethane	ND											
cis-1,2-Dichloroethene	3.4	2.8 J	1.1 J	2.1 J	1,800	940	990	1000	9.5	24	21	22
Tetrachloroethene	190	220	110	170	7,800	4700	4800	4500	86	59	55	42
trans-1,2-Dichloroethene	ND	ND	ND	ND	22	18	19	22	ND	ND	ND	ND
Trichloroethene	200	150	77	93	700	480	480	420	180	160	130	97
Vinyl Chloride	ND											

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15. $\mu g/m^3 = \text{ micrograms per cubic meter} \\ ND = Not detected above method detection} \\ limit$

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 101I													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	51000	3900	2600	450	850	300	1	0.7 J	0.7 J	1500	1500	3200	4400	3400	1900	2200	2900	2600	1200	1600	2500	2000	720	520	2200	2700	3000
1,1-Dichloroethane	1200	65	34	14	31	5	0.8 J	0.4 J	0.4 J	28	28	61	76	62	35	36	57	50	22	29	51	39	15	10	42	45	38
1,1-Dichloroethene	250	ND	ND	4	8	ND	0.7 J	0.4 J	0.5 J	7.6 J	10	ND	15 J	ND	12 J	8.9 J	16 J	11 J	7.9 J	6.2 J	21	11 J	ND	ND	ND	ND	6.9 J
1,2-Dichloroethane	NR	30	ND	4	8	ND	0.9	0.5 J	0.5 J	6.9 J	6.4 J	11 J	14 J	12 J	10 J	8.6 J	9.2 J	7.5 J	4.4 J	9.2 J	12 J	9.8 J	5.2 J	3.8	15	9.0 J	ND
cis-1,2-Dichloroethene	480	59	ND	9	15	3	0.7 J	ND	0.4 J	7.1 J	7.4 J	20 J	22 J	14 J	6.2 J	11 J	22 J	12 J	4.2 J	8.8 J	24	9.4 J	4.6 J	3.8	9.2 J	6.0 J	ND
Tetrachloroethene	1700	410	260	36	63	10	1	ND	2	48	46	93	120	80	49	79	100	80	34	67	83	54	31	31	74	83	82
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.7 J	0.4 J	0.4 J	ND																	
Trichloroethene	180000	18000	14000	1200	2400	560	1	0.6 J	0.6 J	4200	4300	7200	12000	8100	5200	5400	8900	7100	3300	4400	6900	5300	2500	1600	7600	8200	7100
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.5 J	0.3 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	ND	ND	1100	1400	2700	4300	3600	950	1900	2500	1500	920	1400	2000	2000	1100	2000	1900	1700	1300	2000	2300	1400	1800	2500	0.80 J
1,1-Dichloroethane	ND	ND	17	22	47	59	43	16	25	35	22	15	21	34	32	16	29	32	25	26	37	36	24	31	36	ND
1,1-Dichloroethene	ND	ND	4.5 J	6.0 J	8.0 J	ND	8.2 J	ND	ND	ND	ND	ND	ND	10 J	8.0 J	4.7 J	3.8 J	ND	4.4 J	4.5 J	8.6 J	9.9 J	5.9 J	ND	ND	ND
1,2-Dichloroethane	ND	ND	3.1 J	4.2 J	7.0 J	11 J	8.6 J	4.5 J	10.0 J	ND	6.9	7.0 J	5.6 J	7.3 J	8.0 J	4.3 J	8.0 J	7.4 J	6.1 J	3.3 J	6.8 J	7.0 J	ND	6.8 J	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	4.0 J	7.0 J	7.0 J	6.6 J	3.2 J	7.0 J	ND	ND	5.0 J	5.1 J	4.4 J	ND	ND	ND	6.5 J	3.9 J	ND	6.9 J	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	29	41	87	130	100	42	74	91	56	40	60	73	60	31	78	88	48	39	80	82	28	60	75	3.0 J
trans-1,2-Dichloroethene	ND																									
Trichloroethene	ND	ND	3400	4100	7600	13000	11000	3600	5300	7500	5100	3600	4000	6100	6600	3300	6100	7400	4700	4200	6600	6900	3800	5800	7000	18
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 101D													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	26000	130	53	ND	ND	ND	3	8	0.8 J	ND	3.1 J	9.9	11	ND	ND	5.6	16	14	12	20	19	12	ND	22	22	27	22
1,1-Dichloroethane	660	3.9	ND	ND	ND	ND	2	0.9 J	0.5 J	ND	ND	1.0 J	1.1 J	1.1 J	ND	ND	1.5 J	1.4 J	1.2 J	0.89 J	1.4 J	ND	ND	2.5 J	2.8 J	2.3 J	1.7 J
1,1-Dichloroethene	180	2	ND	ND	ND	ND	ND	0.7 J	0.4 J	ND	1.0 J	0.75 J	ND														
1,2-Dichloroethane	NR	0.5	ND	ND	ND	ND	2	0.5 J	0.5 J	ND																	
cis-1,2-Dichloroethene	220	8.5	7.5	ND	3	ND	2	2	0.5 J	ND	ND	2.1 J	3.2	ND	ND	ND	3.0 J	4.5	3.5	1.5 J	4.1	2.3 J	ND	3.3	5.9	5.8	6.4
Tetrachloroethene	3200	1200	1200	ND	4	ND	26	210	2	ND	79	150	170	130	0.92 J	73	330	340	270	240	260	200	1.0 J	230	250	310	220
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	2	0.6 J	0.4 J	ND																	
Trichloroethene	100000	1600	310	3	1	ND	3	120	1 J	ND	200	400	350	120	ND	56	540	680	330	180	410	190	1.7 J	450	1000	2200	990
Vinyl Chloride	ND	ND	ND	ND	ND	ND	1	0.4 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	ND	20	15	5.0	22	20	12	9.3	ND	9.8	5.9	2.1 J	14	22	6.8	7.8	3.0 J	3.5 J	3.2 J	2.2 J	4.0	3.4 J	7.2	3.1 J	7.4	14
1,1-Dichloroethane	ND	3.1	2.2 J	0.85 J	3.0 J	2.3 J	2.4 J	1.8 J	ND	0.88 J	0.72 J	ND	ND	4.9	0.83 J	0.72 J	ND	ND	ND	ND	0.66 J	ND	ND	1.0 J	1.6 J	2.1 J
1,1-Dichloroethene	ND	0.76 J	0.80 J	ND	ND	ND	0.60 J	ND																		
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	ND	31	21	3.9	14	12	19	4.4	ND	2.5 J	1.6 J	ND	ND	13	2.0 J	0.99 J	3.1 J	2.2 J	3.3	3.0	4.2	2.8	6.3	6.8	8	13
Tetrachloroethene	ND	300	240	66	250	190	220	190	ND	210	240	51	190	210	220	160	16	28	22	13	27	24	16	32	45	46
trans-1,2-Dichloroethene	ND																									
Trichloroethene	ND	970	760	260	1100	880	900	780	ND	700	270	50	190	240	190	210	180	290	240	180	210	200	240	250	670	2500
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 102I													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	02/05/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	ND	ND	13	3	ND	NA	2	3	2	ND	0.60 J	3.3 J	ND	ND	ND	1.6 J	ND	ND	0.95 J	10	4.0 J	0.82 J	1.6 J	12	2.8 J	0.87 J	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	NA	0.8 J	0.5 J	0.5 J	ND																	
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND																	
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	0.8	0.4 J	0.4 J	ND																	
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.5 J	0.5 J	ND																	
Tetrachloroethene	2.4	1.4	17	6	NR	NA	3	6	6	ND	1.6 J	6.4	1.5 J	2.4 J	1.4 J	3.3 J	2.6 J	ND	ND	10	4.8 J	1.5 J	2.5 J	13	6.6	2.4 J	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND																	
Trichloroethene	5.6	3.8	300	88	3	NA	34	76	52	10	26	99	10	10	15	49	21	7.6	8.0	84	39	8.0	22	120	40	12	ND
Vinyl Chloride	ND	ND	ND	ND	ND	NA	0.5 J	0.4 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	1.3 J	1.2 J	0.54 J	ND	6.4	0.95 J	ND	ND	7.4	1.8 J	ND	ND	8.8	ND	ND	ND	7.7	1.0 J	ND	ND	4.0	ND	ND	2.1 J	3.2 J	0.72 J
1,1-Dichloroethane	ND																									
1,1-Dichloroethene	ND																									
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	ND	5.4	ND																							
Tetrachloroethene	2.9 J	3.2 J	1.6 J	1.4 J	7.8	2.7 J	1.4 J	1.8 J	8.1	3.4 J	1.5 J	3.8 J	11	ND	1.5 J	ND	9.6	3.8 J	ND	ND	6.8	ND	ND	3.7 J	17	2.4 J
trans-1,2-Dichloroethene	ND																									
Trichloroethene	21	24	8.4	12	74	15	7.9	14	72	24	7.8	15	100	0.75 J	10	11	71	20	2.4 J	4.1	62	5.6	4.5	34	130	3.7
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 102D													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	130	53	14	7	2	2	6	4	5	1.4 J	1.2 J	3.9 J	ND	ND	ND	2.3 J	3.1 J	ND	1.6 J	4.5	5.1	2.6 J	ND	5.2	4.9	3.5 J	1.1 J
1,1-Dichloroethane	ND	2.7	ND	ND	ND	ND	1	0.6 J	0.7 J	ND	ND	0.51 J	0.95 J	ND	ND	ND	0.69 J	ND	0.44 J	ND	ND	ND	ND	ND	1.0 J	0.81 J	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.6 J	0.6 J	ND																	
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.9	0.5 J	0.5 J	ND	0.38 J	ND	ND	ND	ND	ND	ND										
cis-1,2-Dichloroethene	ND	1.4	ND	ND	0.9	ND	1	0.5 J	0.9	ND	ND	1.1 J	4.1	ND	ND	ND	3.4	ND	2.8 J	0.89 J	3.6	1.6 J	ND	4.2	9.3	8.9	4.4
Tetrachloroethene	10	31	31	19	3	9	25	23	39	5.9	6.5	24	25	0.96 J	1.4 J	14	28	2.6 J	9.6	16	20	11	3.8 J	22	41	42	18
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.5 J	0.5 J	ND																	
Trichloroethene	440	390	190	110	17	21	89	81	87	34	58	170	140	6.5	ND	88	160	3.9 J	39	79	92	36	20	160	180	120	38
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.6	0.4 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	6.6	3.8 J	2.7 J	1.8 J	3.6 J	1.8 J	1.8 J	ND	2.4 J	2.2 J	1.2 J	ND	3.0 J	1.1 J	1.0 J	ND	3.6 J	1.9 J	0.85 J	ND	2.0 J	1.3 J	ND	1.2 J	7.4	3.2 J
1,1-Dichloroethane	0.93 J	0.95 J	0.8 J	0.50 J	ND																					
1,1-Dichloroethene	ND																									
1,2-Dichloroethane	ND	ND	0.75 J	ND																						
cis-1,2-Dichloroethene	13	10	5.2	2.6 J	2.2 J	1.3 J	1.8 J	ND	0.86 J	ND	2.3 J	ND	ND	0.92 J	ND	ND	3.0 J	2.1 J	ND	ND	0.77 J	ND	2.4 J	1.3 J	ND	14
Tetrachloroethene	51	37	26	15	17	15	18	6.2	12	13	9.4	2.3 J	13	8.7	7	3.9 J	18	16	5.1	4.3 J	11	11	6.4	7.2	8	27
trans-1,2-Dichloroethene	ND																									
Trichloroethene	150	74	44	48	80	43	61	15	50	54	22	19	79	36	28	17	150	80	12	22	75	36	28	45	86	98
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 103I													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	900	ND	ND	ND	ND	ND	0.9 J	6	6	ND	1.6 J	9.2	ND	ND	1.4 J	4.7 J	2.8 J	0.92 J	ND	4.6	4.9	ND	1.3 J	6.6	3.6 J	1.2 J	0.76 J
1,1-Dichloroethane	26	ND	ND	ND	ND	ND	0.6 J	2	2	ND	0.75 J	1.5 J	0.77 J	ND	ND	1.5 J	1.3 J	ND	ND	0.89 J	2.0 J	ND	0.68 J	ND	1.4 J	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	ND																		
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.5 J	ND																		
cis-1,2-Dichloroethene	58	ND	ND	1	ND	1	0.5 J	16	12	18	16	19	6.0	2.4 J	5.0	11	15	6.9	3.4	4.2	6.1	ND	11	9.3	7.3	13	2.7 J
Tetrachloroethene	580	ND	ND	ND	ND	2	1 J	420	590	140	200	430	120	40	78	220	200	97	40	150	130	8.6	130	290	210	450	71
trans-1,2-Dichloroethene	580	ND	ND	ND	ND	ND	0.6 J	1	1	ND	0.85 J	ND															
Trichloroethene	900	0.9	ND	ND	ND	ND	0.9 J	100	97	29	47	130	48	16	35	95	78	46	20	47	50	4.9 J	37	92	74	70	17
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	6.0	2.2 J	0.73 J	ND	6.0	0.94 J	0.77 J	ND	5.8	2.4 J	1.0 J	ND	11	5.1	ND	4.8	6.7	5.9	2.3 J	1.5 J	12	8.6	3.8	3.4 J	8.1	ND
1,1-Dichloroethane	1.9 J	1.1 J	ND	ND	1.8 J	ND	ND	ND	1.5 J	ND	ND	1.0 J	1.8 J	2.7 J	ND	0.67 J	ND	ND	ND	ND	1.3 J	1.0 J	ND	ND	1.0 J	ND
1,1-Dichloroethene	ND																									
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	5.2	2.2 J	1.8 J	1.3 J	5.8	0.75 J	1.4 J	1.6 J	3.4	2.9	3.4	2.3 J	5.6	8.6	1.8 J	3.2	1.7 J	1.2 J	ND	1.1 J	18	8.2	31	2.3 J	2.6 J	ND
Tetrachloroethene	200	99	70	36	180	56	56	70	200	120	150	69	510	190	100	1200	190	200	140	88	1400	930	320	250	330	2.7 J
trans-1,2-Dichloroethene	1.3 J	ND	1.2 J	ND																						
Trichloroethene	67	34	20	9.9	63	21	19	17	54	36	24	18	90	89	23	29	33	38	16	10	77	66	26	26	48	2.1 J
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 103D													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	3000	1100	230	ND	13	ND	2 J	20	31	7.4 J	6.9 J	22	190	ND	150	170	200	550	400	25	38	ND	310	26	30 J	ND	38
1,1-Dichloroethane	82	69	ND	ND	2	2	1 J	4	9	1.6 J	1.5 J	1.9 J	10 J	ND	10	10 J	20 J	50	48	ND	7.8 J	ND	24	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1 J	2	6 J	ND																	
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	1 J	6 J	ND																	
cis-1,2-Dichloroethene	420	1500	370	ND	92	ND	1 J	360	160	290	230	300	750	ND	550	700	2600	2100	1800	280	490	ND	930	310	530	ND	310
Tetrachloroethene	20000	28000	16000	9	1500	ND	3	1600	6700	3800	3200	4700	4600	1.6 J	3300	4900	17000	15000	8600	6600	8900	ND	5800	8900	17000	ND	7500
trans-1,2-Dichloroethene	ND	24	ND	ND	1	ND	1 J	3	7 J	ND	ND	ND	8.8 J	ND	5.7 J	8.8 J	18 J	32	18	ND	ND	ND	17	ND	ND	ND	ND
Trichloroethene	3100	1600	640	7	92	ND	2 J	290	240	180	200	480	440	6.0	360	660	2100	1400	900	530	680	ND	580	640	1200	ND	300
Vinyl Chloride	ND	5.9	ND	ND	2	ND	0.8 J	4	5 J	ND	ND	ND	ND	ND	1.9 J	ND	14 J	ND	2.6 J	ND							

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	ND	16 J	11 J	23 J	22	8.2 J	63	47	35	33 J	18 J	19	48	48	150	170	29	15	8.8	5.9	110	83	370	6.7	10	ND
1,1-Dichloroethane	ND	6.2 J	ND	4.3 J	ND	ND	4.5 J	ND	ND	ND	ND	2.7 J	ND	12 J	14 J	15 J	5	4.1	2.7 J	2.5 J	10	9.4	25	3.2	2.8	ND
1,1-Dichloroethene	ND	1.2 J	ND	ND	ND	ND	ND																			
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	ND	340	210	250	180	130	320	210	190	340	200	160	140	330	310	400	120	9.1	10	16	420	380	1700	62	20	ND
Tetrachloroethene	ND	12000	13000	7500	6800	9200	8000	7700	6900	12000	8000	4400	8400	9000	22000	15000	680	530	530	460	2500	2500	3700	660	800	6
trans-1,2-Dichloroethene	ND	12	7.8	30	1.5 J	ND	ND																			
Trichloroethene	ND	730	620	320	440	420	380	340	340	460	260	180	380	560	420	410	57	65	38	40	200	190	540	31	52	1.4 J
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 104I													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	730	4.2	ND	4	NR	NA	1 J	4	2	ND	ND	8.3	ND	ND	ND	3.1 J	2.6 J	ND	9.6	17	15	7.0	1.5 J	8.3	4.0 J	4.6	0.48 J
1,1-Dichloroethane	24	0.54	ND	ND	ND	NA	1 J	0.6 J	0.5 J	ND	7.4	8.7	7.7	6.6	ND	ND	ND	2.9 J	ND								
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	1 J	ND																			
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	1 J	ND																			
cis-1,2-Dichloroethene	110	14	ND	2	0.8	NA	0.9 J	2	3	0.90 J	ND	5.0	ND	2.7 J	ND	3.3	5.3	ND	94	160	160	130	7.3	4.2	6.6	54	0.92 J
Tetrachloroethene	3100	210	68	96	16	NA	2 J	54	33	12	ND	86	1.6 J	4.8 J	2.3 J	30	36	ND	69	210	190	91	13	82	66	79	10
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	NA	1 J	0.5 J	0.4 J	ND	1.8 J	2.1 J	1.4 J	ND	ND	ND	ND	ND									
Trichloroethene	710	44	60	72	12	NA	2 J	44	25	9.6	ND	73	ND	3.1 J	ND	30	31	ND	39	110	120	43	17	85	54	35	7.6
Vinyl Chloride	ND	0.47	ND	ND	ND	NA	0.7 J	0.3 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	6.9	6.5	ND	1.2 J	7.8	1.7 J	1.3 J	1.4 J	9.1	3.1 J	1.7 J	1.9 J	14	1.2 J	1.3 J	1.8 J	68	25	11	5.3	11	6.6	2.2 J	3.5 J	4.7	ND
1,1-Dichloroethane	ND	3.6	ND	ND	1.3 J	ND	ND	ND	1.4 J	ND	6.4 J	ND	ND	ND	0.90 J	ND	ND	ND	ND	ND						
1,1-Dichloroethene	ND																									
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	2.1 J	110	ND	4.1	31	6.7	4.6	12	27	20	18	17	28	13	7.4	1.8 J	18	10	20	8.0	26	17	2.8	9.3	7.8	ND
Tetrachloroethene	80	530	0.68 J	21	190	90	20	34	96	76	46	34	130	20	21	11	3900	3900	1400	320	300	230	34	220	230	0.98 J
trans-1,2-Dichloroethene	ND	1.2 J	ND	1.7 J	ND	ND																				
Trichloroethene	83	110	ND	15	87	22	11	15	63	33	14	24	73	13	10	9.3	170	150	42	17	40	30	9.5	18	21	11
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 104D													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	3600	3000	860	ND	270	ND	370	620	440	520	580	620	920	820	0.89 J	500	600	340	84	930	880	1.7 J	350	480	790	760	460
1,1-Dichloroethane	290	350	140	ND	66	ND	56	110	77	87	95	100	190	160	ND	95	130	56	22	120	130	ND	72	77	120	91	54
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	3	7 J	7 J	3.0 J	5.0 J	ND	11 J	ND	ND	ND	ND	4.3 J	1.0 J	ND							
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	5 J	5 J	ND																	
cis-1,2-Dichloroethene	2400	6600	3500	ND	1200	ND	1000	3600	2100	2200	2800 J	2200	4200	3700	8.6	2000	3200	1600	460	3300	4400	21	1500	2500	3600	3200	1900
Tetrachloroethene	20000	39000	21000	ND	2400	ND	1400	5800	6300	3800	4300	4600	4500	4200	69	2600	3900	2500	780	8200	8000	120	2200	5100	10000	7700	4500
trans-1,2-Dichloroethene	130	70	30	ND	13	ND	14	25	22	26	31	27	55	40	ND	24	40	15	3.5	34	53	ND	18	39	49	38	30
Trichloroethene	4600	6000	2400	ND	470	ND	420	1600	1300	1400	1400	1700	2300	2100	14	1200	1600	1100	430	2000	2100	19	1100	1200	2200	1600	750
Vinyl Chloride	ND	12	ND	ND	ND	ND	2	5	5 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	460	710	88	260	390	290	440	520	510	100	480	410	460	360	320	270	630	510	750	460	800	800	280	550	580	1.3 J
1,1-Dichloroethane	73	110	11	31	60	44	67	57	59	15	54	50	47	73	37	18	76	41	36	34	40	39	16	30	25	ND
1,1-Dichloroethene	ND	7.6 J	1.2 J	2.9 J	3.0 J	ND	4.2 J	ND	5.8 J	ND	ND	ND	5.7 J	ND	ND	ND	ND	ND								
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	2400	3800	400	1000	2200	1600	2500	2200	2300	700	2500	1900	1800	3000	1600	830	3400	2400	2300	2200	2400	2400	700	1800	1600	12
Tetrachloroethene	9400	15000	1400	3000	5900	7600	6000	6500	6800	1500	6500	4400	4800	3200	3600	2000	8800	8700	7700	4800	7400	8900	3600	7200	6400	18
trans-1,2-Dichloroethene	38	67	6.5	16	30	22	37	39	37	9.3	43	36	30	45	27	20	36	38	50	33	51	50	13	35	38	ND
Trichloroethene	1400	2200	290	600	980	860	1100	870	870	210	790	740	780	690	600	370	1000	1100	1000	770	1200	1200	400	760	660	6.4
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 105I													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	9.9	11	29	ND	24	1	1 J	21	31	11	13	26	22	22	11	24	18	32	26	17	20	20	25	29	30	12	5.0
1,1-Dichloroethane	ND	5.7	13	ND	6	ND	0.6 J	5	7	4.2	5.6	5.6	10	12	8.8	8.0	7.4	24	6.8	7.0	8.2	8.6	22	15	28	17	1.5 J
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	0.5 J	ND																	
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.6 J	0.5 J	ND																	
cis-1,2-Dichloroethene	ND	6.6	20	ND	ND	ND	1	10	16	8.1	9.7	13	16	13	14	14	7.4	17	6.2	9.5	12	7.5	31	28	23	17	1.8 J
Tetrachloroethene	70	9.1	240	ND	55	5	2	95	100	31	43	100	77	66	38	91	57	77	48	73	85	51	43	87	66	44	27
trans-1,2-Dichloroethene	ND	ND	1.6	ND	ND	ND	0.5 J	1	1	ND	ND	1.5 J	ND	ND	ND	ND	1.0 J	1.6 J	ND	ND	2.8 J	ND	ND	ND	2.3 J	ND	ND
Trichloroethene	76	6.3	370	ND	120	7	1	170	200	110	140	260	180	160	94	220	140	180	190	140	200	130	160	290	240	84	39
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	16	11	5.6	4.8	13	5.6	4.9	3.5 J	8.7	10	4.6	3.3 J	21	4.8	2.3 J	88	40	15	3.4 J	4.1	14	11	4.2	6.0	8.9	ND
1,1-Dichloroethane	2.8	3.4	2.2 J	2.7 J	2.1 J	0.98 J	3.5	0.99 J	1.2 J	1.6 J	1.3 J	4.8	3.4	1.8 J	0.86 J	ND	9.9	2.3 J	0.79 J	0.54 J	1.4 J	1.1 J	ND	ND	0.99 J	ND
1,1-Dichloroethene	ND																									
1,2-Dichloroethane	ND	1.6 J	ND																							
cis-1,2-Dichloroethene	7.9	5.0	2.6 J	4.2	5.1	1.9 J	5.0	2.5 J	1.9 J	3.7	2.1 J	7.5	6.2	3.2	ND	ND	0.98 J	ND	ND	ND	0.55 J	ND	ND	ND	ND	ND
Tetrachloroethene	64	46	26	17	50	27	21	17	23	46	20	13	38	15	11	9.3	41	34	10	15	30	28	11	14	24	12
trans-1,2-Dichloroethene	0.83 J	ND																								
Trichloroethene	250	160	50	38	140	58	40	30	60	110	36	32	130	41	17	18	67	38	9.8	12	32	30	9.6	12	18	6.1
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 105D													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	12/02/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	550	47	320	1000	590	ND	1 J	490	930	350	320	270	380	430	160	110	120	190	ND	92	79	4.3 J	16	35	52	62	68
1,1-Dichloroethane	300	28	270	250	ND	ND	0.6 J	74	150	69	78	72	110	110	46	45	70	46	ND	36	28	ND	4.7	12	30	21	15
1,1-Dichloroethene	3.9	ND	ND	2	4	4	0.6 J	6 J	ND	1.5 J	ND																
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	4	5 J	ND																		
cis-1,2-Dichloroethene	61	36	85	300	ND	ND	0.7 J	150	380	190	220	150	210	200	73	76	85	46	ND	50	36	ND	3.6	16	22	18	26
Tetrachloroethene	2100	1.1	650	270	420	ND	2	240	330	140	220	270	350	330	100	140	260	300	ND	140	120	2.1 J	18	76	130	140	130
trans-1,2-Dichloroethene	19	1.1	3.1	3	ND	ND	0.6 J	7 J	3 J	ND	ND	ND	ND	ND	1.4 J	2.4 J	3.6	1.3 J	ND	1.3 J	1.9 J	ND	ND	ND	ND	ND	ND
Trichloroethene	1700	68	200	1100	1400	1	2	3000	7000	3600	4500	2200	3800	3800	1400	900	1200	1900	8.5	650	520	15	75	250	400	410	350
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	4 J	ND																		

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	47	29	23	38	33	24	28	13	ND	27	61	75	54	66	26	15	200	52	11	8.3	10	9.0	2.2 J	5.2	8.2	ND
1,1-Dichloroethane	22	23	19	21	12	14	12	12	ND	14	16	22	20	25	13	3.7	79	20	8.4	4.9	3.8	3.0	ND	1.2 J	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	2.7 J	ND	3.1 J	ND																		
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	31	19	19	32	20	13	17	22	ND	18	24	32	36	27	26	4.1	9.3	7.2	3.8	2.5 J	1.5 J	ND	ND	ND	ND	ND
Tetrachloroethene	150	110	69	70	120	130	97	48	ND	140	140	85	78	100	94	39	31	45	20	18	25	33	20	18	20	3.9 J
trans-1,2-Dichloroethene	1.8 J	2.0 J	1.2 J	1.6 J	ND	ND	ND	ND	ND	0.88 J	0.92 J	ND	ND	1.7 J	ND											
Trichloroethene	360	210	140	200	310	170	160	57	ND	140	170	220	190	180	110	83	470	210	48	29	31	37	11	12	17	ND
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 106I													
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	220	8.6	ND	4	ND	NA	6	3	7	1.0 J	2.2 J	11	ND	ND	ND	ND	18	1.4 J	3.8 J	8.9	2.2 J	ND	8.0	29	30	2.8 J	1.5 J
1,1-Dichloroethane	120	ND	ND	1	ND	NA	1	0.5 J	1	0.62 J	0.70 J	1.6 J	2.5 J	1.9 J	ND	ND	3.8	ND	17	3.9	1.1 J	ND	18	2.6 J	3.4	1.2 J	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.6 J	2	0.6 J	ND																	
1,2-Dichloroethane	NR	ND	ND	0.8	ND	NA	0.6 J	0.5 J	0.6 J	ND	1.3 J	ND	ND	ND	ND												
cis-1,2-Dichloroethene	46	ND	ND	4	ND	NA	6	0.5 J	4	1.6 J	2.3 J	7.5	5.4	3.7	ND	ND	8.3	ND	23	11	3.1 J	ND	23	6.6	4.9	3.2	0.84 J
Tetrachloroethene	390	35	ND	15	ND	NA	15	7	19	4.3 J	7.2	27	14	7.0	0.73 J	ND	19	4.2 J	6.2	11	2.9 J	ND	14	39	49	11	5.1 J
trans-1,2-Dichloroethene	7.9	ND	3.1	0.9	ND	NA	0.8	0.5 J	0.7 J	ND																	
Trichloroethene	1900	41	ND	140	10	NA	210	92	190	69	110	260	180	110	5.5	ND	210	28	70	110	16	0.87 J	130	560	660	200	40
Vinyl Chloride	ND	ND	ND	0.5	ND	NA	0.4 J	0.3 J	0.4 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	12	7.5	5.5	2.0 J	11	4.8	0.91 J	2.0 J	8.8	4.2	0.78 J	1.9 J	14	34	880	7.0 J	27	11	2.5 J	4.0	16	2.7 J	ND	6.1	19	ND
1,1-Dichloroethane	ND	1.3 J	2.4 J	0.56 J	5.4	1.9 J	ND	1.6 J	0.69 J	ND	1.2 J	ND	ND	5.6	260	ND	3.2 J	0.96 J	ND	ND	1.0 J	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	55	ND																							
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	3.8	3.1 J	3.2	1.5 J	14	3.9	0.57 J	2.2 J	1.7 J	1.5 J	3.4	1.8 J	1.4 J	5.8	6600	41	86	23	7	11	21	2.8	ND	5.9	13	ND
Tetrachloroethene	20	6.7	4.9	3.9 J	16	8.3	2.5 J	4.5 J	12	9.9	3.1 J	3.1 J	20	20	96000	5500	1400	480	100	150	380	61	ND	110	280	2.3 J
trans-1,2-Dichloroethene	ND	33 J	ND	ND	ND	ND	ND	ND	3.4	ND	1.5 J	ND	ND													
Trichloroethene	190	71	53	59	170	83	39	45	88	79	43	44	150	100	9300	180	310	160	45	62	180	33	ND	70	180	ND
Vinyl Chloride	ND																									

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

detection limit NS = Not sampled

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID														SVE 106D)												
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15	10/29/15	01/13/16	04/21/16
Analysis by TO-15 (μg/m³)																											
1,1,1-Trichloroethane	340	32	30	20	12	9	20	23	29	ND	11	26	18	ND	ND	27	25	5.8	6.3	14	28	ND	26	ND	ND	11	7.2
1,1-Dichloroethane	250	6.3	ND	5	2	5	4	3	3	ND	3.0	4.3	5.8	ND	ND	4.9	11	3.7	3.3	5.1	8.9	ND	2.6 J	ND	ND	2.7 J	13
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.5 J	0.7 J	0.8	ND																	
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	ND	0.6 J	0.7 J	ND	2.5 J	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	ND						
cis-1,2-Dichloroethene	79	13	11	13	2	11	11	5	4	ND	4.1	7.1	8.2	ND	ND	10	15	2.8 J	3.9	8.4	15	ND	36	ND	ND	3.2	24
Tetrachloroethene	720	65	70	ND	13	19	41	8	66	ND	28	62	48	ND	1.3 J	50	58	16	17	22	60	ND	110	ND	1.4 J	33	27
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	ND	0.6 J	0.8	0.9	ND	1.1 J	ND															
Trichloroethene	3400	600	900	230	130	170	210	260	320	ND	180	380	300	ND	ND	460	440	160	84	170	370	0.56 J	71	1.6 J	ND	280	170
Vinyl Chloride	ND	1.6	ND	ND	ND	ND	ND	0.4 J	0.5 J	ND																	

Sample Date	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	08/26/21	11/17/21	03/04/22	06/13/22	08/05/22	10/06/22
Analysis by TO-15 (μg/m³)																										
1,1,1-Trichloroethane	30	14	10	7.6	18	8.3	4.6	2.2 J	14	12	10	8.0	30	250	500	46	7.5	3.0 J	0.92 J	1.2 J	5.2	4.1 J	0.94 J	2.0 J	8.2	ND
1,1-Dichloroethane	6.8	21	17	2.6 J	11	7.1	1.6 J	2.8 J	6.1	7.9	7.3	2.2 J	2.5 J	36	260	12 J	ND	0.73 J	ND							
1,1-Dichloroethene	ND	25 J	ND																							
1,2-Dichloroethane	ND																									
cis-1,2-Dichloroethene	14	22	20	5.6	24	13	5.0	4.6	16	21	22	7.5	16	15	3700	240	1.3 J	ND								
Tetrachloroethene	57	33	24	17	44	39	15	9.5	26	37	26	15	37	35	25000	4800	27	26	13	13	26	30	13	13	30	5.1
trans-1,2-Dichloroethene	0.63 J	1.3 J	2.1 J	ND	20 J	ND																				
Trichloroethene	450	210	170	190	300	220	140	89	210	220	170	170	420	290	4400	730	37	15	6.4	12	21	23	6.0	13	33	2.7 J
Vinyl Chloride	ND	0.52 J	ND																							

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2022

Sample ID		SVE	112D			SVE	113D			SVE 1	.14D			SVE 1	115D			SVE 1	16D			SVE 1	117D	
Sample Date	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22	09/06/22	10/06/22	10/11/22	11/08/22
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	16	5.8	6.1	3.7	24	5.9	7.2	4.6	1,100	1,200	1,200	1200	21	16	8.3	16	510	380	400	400	8.1	5.7	5.3	4.0
1,1-Dichloroethane	ND	ND	ND	ND	4.8	1.6 J	1.1 J	0.85 J	18	18	16	17	3.2	5.0	2.1 J	4.5	86	66	57	59	7.4	4.4	3.1	2.8
1,1-Dichloroethene	ND	4.1 J	ND	4.4 J	ND	ND	ND	ND	ND	3.6 J	ND	4.6 J	ND	ND	ND	ND								
1,2-Dichloroethane	ND	2.3 J	ND																					
cis-1,2-Dichloroethene	8.2	4.2	4.1	2.7	1.8 J	1.7 J	1.9 J	1.7 J	150	18	15	12	3.4	2.8 J	1.1 J	2.1 J	1,800	940	990	1000	9.5	24	21	22
Tetrachloroethene	160	82	87	53	72	48	54	42	1,400	490	470	310	190	220	110	170	7,800	4700	4800	4500	86	59	55	42
trans-1,2-Dichloroethene	ND	22	18	19	22	ND	ND	ND	ND															
Trichloroethene	160	100	94	60	39	34	46	26	3,900	4,200	4,000	3400	200	150	77	93	700	480	480	420	180	160	130	97
Vinyl Chloride	ND																							

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Fourth Quarter 2022 Off-site Soil Vapor Monitoring of SVPMs

SVPM/ SVEW Location	Pressure Reading (i.w.)	Valve Position (% open)
Monitoring Date:	12/13/22	12/13/22
BPS1-SVPM2001S	-0.15	
BPS1-SVPM2001I	-0.20	
BPS1-SVPM2001D	-0.20	
BPS1-SVPM2002S	-0.20	
BPS1-SVPM2002I	-0.25	
BPS1-SVPM2002D	-0.10	
BPS1-SVPM2003S	-0.05	
BPS1-SVPM2003I	-0.05	
BPS1-SVPM2003D	-0.10	
BPS1-SVPM2004S	-0.05	
BPS1-SVPM2004I	-0.15	
BPS1-SVPM2004D	-0.05	
BPS1-SVPM2006S	-0.07	
BPS1-SVPM2006I	-0.05	
BPS1-SVPM2006D	-0.09	
BPS1-SVPM2007S	-0.05	
BPS1-SVPM2007I	-0.05	
BPS1-SVPM2007D	-0.90	
SVE-101I	-4.0	40
SVE-101D	-8.0	40
SVE-102I	-3.0	50
SVE-102D	-8.0	40
SVE-103I	-5.0	40
SVE-103D	-8.0	40
SVE-104I	-4.0	40
SVE-104D	-10.0	40
SVE-105I	-4.0	40
SVE-105D	-10.0	50
SVE-106I	-7.0	40
SVE-106D	-10.0	40
SVE-112D	-8.0	40
SVE-113D	-8.0	40
SVE-114D	-9.0	40
SVE-115D	-8.0	40
SVE-116D	-8.0	40
SVE-117D	-8.0	40

Notes:

i.w. = inches of water column

SVEW = soil vapor extraction well

SVPM = soil vapor pressure monitor

Pressure readings for the SVPMs were measured using a portable Magnehelic® Differential Pressure Gauge 2000-0, with a range of 0-0.50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line pressure gauges.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY

Annual Off-site Vapor Analytical Results Summary of SVPMs March 2022

Sample ID	Screening	SVPM 2001S	SVPIV	20011	SVPM 2001D	SVPM 2002S	SVPM 2002I	SVPM 2002D	SVPM 2003S	SVPM 2003I	SVPM 2003D	SVPM 2004S	SVPM 2004I	SVPM 2004D	SVPM 2006S	SVPM	20061	SVPM 2006D	SVPM 2007S	SVPM 2007I	SVPM 2007
Sample Date	Value (1)	03/03/22	03/03/22	3/3/2022 Duplicate	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	03/03/22	3/3/2022 Duplicate	03/03/22	03/03/22	03/03/22	03/03/22
Analysis by TO-15 (μg/m³)																					
1,1,1-Trichloroethane	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	200	200	180	ND	ND	2.1 J
Tetrachloroethene	1,000	ND	ND	ND	ND	ND	1.1 J	ND	ND	1.2 J	1.7 J	ND	ND	ND	ND	ND	ND	ND	ND	2.5 J	2.4 J
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1	2.4 J	2.0 J	ND	ND	ND
Trichloroethene	250	ND	ND	3.2 J	17 J	4.6	10	44	2.8 J	18	4.7	ND	2.9 J	4.0	2.6 J	35	35	29	3.5 J	ND	3.5 J
Vinvl Chloride	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

SVPM = soil vapor pressure monitor

olded value indicates detected analyte

All samples were analyzed for site-specific VOCs by modified method TO-15. Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(1) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through March 2022

Sample ID	Screening						SVPN	/I 2001S													SVPM	20011															SVPM 2001	D						
Sample Date	Value (2)	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	1/16/2017 Duplicate	02/05/18	02/04/19	2/4/2019 Duplicate	02/26/20	2/26/2020 Duplicate	03/04/21	03/03/22	3/3/2022 Duplicate	Oct 2008	01/15/13	1/15/13 - Duplicate	01/29/14	01/13/15	1/13/15 - Duplicate	01/14/16	09/12/16	9/12/16 - Duplicate	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	3/03/22
Analysis by TO-15 (μg/m³)																																											<u> </u>	
1,1,1-Trichloroethane (1)	1,000	1,300	ND	1,700	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND																
1,1-Dichloroethane (1)		11	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND																
1,1-Dichloroethene (1)		9.2 J	ND	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND																
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND																			
cis-1,2-Dichloroethene ⁽¹⁾		20	ND	94	ND	ND	ND	ND	ND	ND	ND	ND	ND	73	ND	ND	ND	ND	ND	6.3	ND	ND	1.9 J	1.4 J	1.2 J	ND	ND	ND																
Tetrachloroethene (1)	1,000	4,000	ND	1.3 J	ND	ND	1.1 J	ND	ND	ND	ND	0.80 J	ND	5,000	ND	1.9 J	ND	1.2 J	3.6 J	0.78 J	ND	ND	1.2 J	ND	ND	ND	0.64 J	ND	ND	720	ND	ND	0.53 J	ND	ND	10	ND	2.3 J	1.9 J	4.3 J	3.3 J	ND	ND	ND
trans-1,2-Dichloroethene (1)		7.9 J	ND	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND																
Trichloroethene (1)	250	1,700	ND	ND	ND	ND	1.8 J	ND	ND	ND	11	0.88 J	ND	2,700	ND	ND	ND	ND	5.0	0.87 J	0.78 J	ND	1.6 J	ND	ND	ND	0.95 J	ND	3.2 J	1,500	ND	ND	ND	ND	ND	3.9 J	ND	4.0 J	2.2 J	4.6	4.8 J	20	5.9 J	17 J
Vinyl Chloride (1)		NS	ND	NS	ND	ND.	ND.	ND	ND	ND	ND.	ND.	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND																

.....

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analy

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through March 2022

Sample ID	Screening							SVPM 2002	s													SVPM 200	21												SVP	/ 2002D					
Sample Date	Value (2)	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	1/14/16 - Duplicate	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/15/13	01/29/14	1/29/14 - Duplicate	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	2/5/2018 Duplicate	02/04/19	02/26/20	03/04/21	3/4/2021 Duplicate	03/03/22	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22
Analysis by TO-15 (μg/m³)																																									
1,1,1-Trichloroethane (1)	1,000	21,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27,000	ND										
1,1-Dichloroethane (1)		170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	680	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	490	ND										
1,1-Dichloroethene (1)		220	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	890	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	480	ND										
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene (1)		49 J	ND	ND	NĐ	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	130	ND										
Tetrachloroethene (1)	1,000	420	ND	2.2 J	ND	ND	ND	0.94 J	ND	ND	ND	ND	ND	ND	740	ND	1.8 J	ND	ND	ND	ND	0.67 J	ND	ND	ND	ND	0.68 J	ND	1.1 J	48 J	ND	1.8 J	ND	ND	2.8 J	7.3	1.0 J	1.3 J	ND	0.88 J	ND
trans-1,2-Dichloroethene (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene (1)	250	34,000	ND	1.1 J	ND	ND	ND	2.5 J	ND	ND	ND	ND	0.98 J	4.6	89,000	12	1.8 J	1.4 J	ND	ND	ND	2.4 J	4.5	3.4 J	4.1	ND	2.4 J	2.3 J	10	26,000	ND	ND	ND	ND	28	20	42	51	32	28	44
Vinyl Chloride (1)		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND										

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 — Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through March 2022

Sample ID	Screening						SVPM	2003S											SVPM	20031											SVPM	2003D					
Sample Date	Value (2)	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22
Analysis by TO-15 (μg/m³)																																					
1,1,1-Trichloroethane (1)	1,000	66	ND	170 J	ND	720 J	ND																														
1,1-Dichloroethane (1)		ND	0.49 J	ND	8.6	ND	ND	ND	ND	ND	0.78 J	ND	ND	ND	ND	ND																					
1,1-Dichloroethene (1)		ND	2	ND	23	ND																															
1,2-Dichloroethane ⁽¹⁾		ND																																			
cis-1,2-Dichloroethene (1)		ND	1.6	ND																																	
Tetrachloroethene (1)	1,000	19	1.6 J	ND	ND	ND	2.7 J	ND	ND	ND	ND	ND	ND	14	0.97 J	1.5 J	ND	0.89 J	5.5	0.59 J	ND	1.0 J	ND	0.84 J	1.2 J	8.9	ND	2.4 J	ND	ND	5.3	ND	ND	ND	ND	1.0 J	1.7 J
trans-1,2-Dichloroethene (1)		ND	2.3 J	ND																																	
Trichloroethene (1)	250	20	4.9	ND	ND	ND	4.7	ND	ND	ND	ND	0.97 J	2.8 J	82	ND	0.73 J	ND	ND	10	ND	ND	ND	ND	1.4 J	18	710	ND	ND	ND	ND	10	ND	0.43 J	ND	ND	3.0 J	4.7
Vinyl Chloride (1)		NS	ND	NS	ND	NS	ND																														

.....

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through March 2022

Sample ID	Screening						SVPM	20045											SVPM	20041											SVPM	2004D					
Sample Date	Value (2)	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22
Analysis by TO-15 (μg/m³)																																					
1,1,1-Trichloroethane (1)	1,000	1.4	ND	460	ND	480	ND																														
1,1-Dichloroethane (1)	-	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	NĐ	ND	44	ND	ND	NĐ	ND	NĐ	ND	NĐ	ND	ND	ND	ND	74	ND										
1,1-Dichloroethene (1)	1	ND	7.1	ND																																	
1,2-Dichloroethane (1)	-	0.25 J	ND																																		
cis-1,2-Dichloroethene (1)		ND	4.6	ND																																	
Tetrachloroethene (1)	1,000	1.8	1.0 J	1.3 J	ND	ND	2.2 J	ND	ND	ND	ND	ND	ND	1,000	0.68 J	2.9 J	ND	0.83 J	2.0 J	ND	ND	ND	ND	ND	ND	580	2.3 J	1.5 J	7.1	3.6 J	3.0 J	0.75 J	1.4 J	1.5 J	ND	3.2 J	ND
trans-1,2-Dichloroethene (1)	-	ND	3.9	ND																																	
Trichloroethene (1)	250	1.0	ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	0.65 J	ND	550	ND	3.7 J	ND	ND	6.8	ND	ND	ND	ND	0.79 J	2.9 J	600	ND	0.80 J	1.5 J	ND	6.5	ND	ND	ND	ND	ND	4.0
Vinyl Chloride (1)		NS	ND	NS	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	NS	ND																				

.....

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

 $\label{eq:continuous} \mbox{(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.}$

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through March 2022

Sample ID	Screening							SVPM	1 2006S													SVPM	1 20061														SVPM 2006	5D						
Sample Date	Value (2)	Oct 2008	01/16/13	01/30/14	01/13/15	01/14/16	09/12/16	01/16/17	1/16/2017 Duplicate	02/05/18	02/04/19	02/26/20	03/04/21	3/4/2021 Duplicate	03/03/22	Oct 2008	01/16/13	01/30/14	01/13/15	01/14/16	1/14/16 - Duplicate	09/12/16	01/16/17	02/06/18	02/04/19	02/26/20	03/04/21	03/03/22	3/3/2022 Duplicate	Oct 2008	01/16/13	01/30/14	01/13/15	01/14/16	09/12/16	9/12/16 - Duplicate	01/16/17	02/05/18	2/5/2018 Duplicate	02/04/19	02/26/20	/26/2020 Duplicate	03/04/21	03/03/22
Analysis by TO-15 (μg/m³)																																												
1,1,1-Trichloroethane (1)	1,000	12	ND	ND	ND	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	0.59 J	ND	ND	ND	ND	ND	ND	0.90 J	ND						
1,1-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,1-Dichloroethene (1)		ND	ND	ND	NĐ	NĐ	ND	ND	ND	ND	ND	NĐ	ND	ND	NĐ	0.62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (1)	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
cis-1,2-Dichloroethene (1)	_	4.1	5.4	ND	ND	3.4	3.4	2.8	2.2 J	1.6 J	ND	ND	ND	ND	ND	45	340	10	ND	260	280	260	260	240	130	66	150	200	200	89	190	22	180	320	320	390	400	310 J	430 J	200	200	200	180	180
Tetrachloroethene (1)	1,000	14	1.0 J	1.4 J	ND	ND	3.8 J	0.96 J	0.77 J	ND	ND	ND	0.61 J	0.69 J	ND	29	1.9 J	1.5 J	ND	2.2 J	2.1 J	5.1	1.5 J	ND	1.2 J	ND	1.0 J	ND	ND	11	1.4 J	ND	1.7 J	1.9 J	3.9 J	5.3 J	2.0 J	1.9 J	2.3 J	1.4 J	ND	ND	2.0 J	ND
trans-1,2-Dichloroethene (1)		ND	ND	ND	ND	ND	ND	ND	1.4 J	4.6	ND	ND	3.4	3.6	4.0	3.6	2.8 J	1.7 J	ND	1.1 J	3.1	2.4 J	2.7	2.2 J	ND	2.0 J	3.3	3.5	4.4	4.7	2.4 J	5.4 J	2.2 J	ND	2.4 J	ND	2.0 J							
Trichloroethene (1)	250	32	ND	0.80 J	ND	1.6 J	8.2	ND	0.99 J	0.93 J	ND	ND	ND	ND	2.6 J	71	47	2.9 J	ND	48	61	57	44	50	28	ND	23	35	35	61	17	2.1 J	30	47	61 J	84 J	59	68	78	32	34	34	20	29
Vinyl Chloride (1)		NS	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						

.....

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analy

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through March 2022

Sample ID	Screening							SVPM 2007	5											:	SVPM 2007													SVPM	2007D						
Sample Date	Value (2)	Oct 2008	01/16/13	01/30/14	01/14/15	1/14/15 - Duplicate	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22	Oct 2008	01/16/13	01/30/14	01/14/15	01/14/16	09/13/16	01/16/17	02/05/18	02/04/19	2/4/2019 Duplicate	02/26/20	03/04/21	03/03/22	Oct 2008	01/16/13	1/16/13 - Duplicate	01/30/14	1/30/14 - Duplicate	01/14/15	01/14/16	09/13/16	01/16/17	02/05/18	02/04/19	02/26/20	03/04/21	03/03/22
Analysis by TO-15 (μg/m³)																																									
1,1,1-Trichloroethane (1)	1,000	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260	ND	ND	ND	ND	ND	ND	ND	ND	0.60 J	ND	0.38 J	ND	870	1.3 J	1.1 J	ND	ND	ND	0.87 J	ND	ND	0.95 J	0.81 J	ND	0.66 J	ND
1,1-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene (1)		0.26 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.69 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	NĐ	ND	ND	NĐ	ND	ND	ND	ND	ND	NĐ	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene (1)	-	ND	13	2.0 J	ND	ND	ND	ND	ND	ND	ND	8.6	ND	ND	ND	ND	ND	ND	4.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.8	11	2.0 J	ND	ND	3.1	ND	ND	ND	ND	16	ND	2.1 J
Tetrachloroethene (1)	1,000	13	1.1 J	1.4 J	ND	ND	0.89 J	6.8	0.81 J	ND	1.1 J	ND	1.2 J	ND	25	1.8 J	ND	2.3 J	2.3 J	ND	1.7 J	2.2 J	1.5 J	2.0 J	ND	2.2 J	2.5 J	5.3 J	2.2 J	1.8 J	1.2 J	ND	ND	2.0 J	ND	0.73 J	1.8 J	ND	ND	3.0 J	2.4 J
trans-1,2-Dichloroethene (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene (1)	250	29	5.0	2.5 J	ND	ND	ND	3.9 J	ND	ND	0.76 J	ND	0.95 J	3.5 J	87	ND	ND	ND	1.9 J	9.8	ND	ND	ND	ND	ND	0.74 J	ND	400	5.5 J	2.9 J	ND	ND	ND	2.7 J	8.2	ND	ND	1.0 J	14	ND	3.5 J
Vinyl Chloride (1)		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 — Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

APPENDIX A NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

From: Steven Scharf [mailto:sxscharf@gw.dec.state.ny.us]

Sent: Thursday, October 06, 2011 11:57 AM To: Fly, Lora B CIV NAVFAC MIDLANT, IPTNE

Cc: John Swartwout; Walter Parish; Steven Karpinski; John cofman; klumpe@steelequities.com;

David.Brayack@ttnus.com

Subject: NWIRP Plant 3 Site 1 SVE Modification Plan

Lora,

The New York State Department of Environmental Conservation (NYSDEC), in conjunction with the New York State Department of Health (NYSDOH), have reviewed the Navy Submittal entitled:

" Modification to existing Soil vapor Extraction (SVE) Containment System At Site 1-Former Drum Marshaling Area, Installation of Soil Vapor Extraction Wells SVE-107D to 111D, NWIRP Bethpage, September 2011."

Based on this Departmental review, and the follow up October 6, 2011 tele-conference, this modification work plan is acceptable and can be used for immediate implementation. The NWIRP Site 1 SVE system has redundant blowers and overcapacity, even with the additional SVE wells being added. should the Navy and the new property owner, Steel Equities Inc., for the former Plant 3 complex come to agreement to add SVE piping from the former Plant 3, this would be acceptable. Appropriate plans, consistent with the covenants and restrictions to the deed, should be submitted accordingly.

A letter will not follow this e-mail. If you have any questions, please contact me directly.

Electronic Documentation Information NWIRP Bethpage 130003B-OU1-OMM FOllable Region 1, Nassau (C), Oyster Bay (T)

Thanks,

Steven M. Scharf, P.E.
Project Engineer
New York State Department of
Environmental Conservation
Division of Environmental Remediation
Remedial Action, Bureau A
625 Broadway
Albany, NY 12233-7015
(518)402-9620
Fax: (518)402-9022

4.0 PROPOSED REVISIONS TO VAPOR DISCHARGE GOALS

To determine the continued need for off gas treatment, the quality of the influent vapor stream was initially estimated based on soil gas results and compared to discharge goals. Vapor phase treatment was initially installed for the system based on projected relatively high concentrations of several chemicals including 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene (PCE). Since the December 2009 startup, VOC concentrations in the extracted vapors have decreased by approximately 98.3 percent and it is uncertain as to whether vapor phase treatment is still required. Presented below are the December 2009 and March 2011 influent (untreated) VOC concentrations and loadings and current discharge goals.

	December 2009 I	nfluent VOCs	March 2011 Inf (µg/m	^	Current
Parameter	Concentration (µg/m³)¹	Loading (pound/ hour) ¹	Concentration (µg/m³)	Loading (pound/ hour) ⁽²⁾	Discharge Goal (pound/hour) ⁽³⁾
TCA	13,000	0.074	150	0.00023	0.13
TCE	42,000	0.26	460	0.00069	0.07
PCE	7,900	0.029	440	0.00066	0.0009

⁽¹⁾ Initial VOC Loading Rates are from baseline data taken in December 2009. The flow meter was not yet installed when this data was taken, so a value of 385 CFM (flow rate in January 2010) was used to estimate system loading.

A DAR-1 Model Analysis was then conducted using the August 2010 influent vapor concentrations of TCA, TCE, and PCE at a flow rate of 500 CFM. The calculated results were then used to back calculate proposed discharge goals based on an allowance of 100% of the annual guideline concentrations (see Appendix E). The following table provides a summary of the proposed discharge goals.

	August 2010 Ir (370 CFM		Percent AGC	Proposed Disc	harge Goals
Parameter	Concentration (µg/m³)	Loading (pounds/ hour)	Using August 2010 Data	Concentration at 500 CFM (µg/m³)	Loading (pounds/ hour)
TCA	868	0.0009	0.0004	None ¹	225
TCE	4,170	0.0039	19.4	11,000	0.02
PCE	5,780	0.0057	14.2	22,000	0.04

⁽¹⁾ Greater than 100,000 μg/m³. AGC - Annual Guideline Concentration

4-1 CTO-WE06

⁽²⁾ Calculated using a flow rate of 400 CFM.

⁽³⁾ Current discharge goals were based on calculated VOC concentrations using soil gas data from the fence line investigation, a flow rate of 600 CFM, and an assumed treatment efficiency for each VOC of 80 to 90 percent. Based on this evaluation, the existing treatment is no longer required to meet discharge goals.

New York State Department of Environmental Conservation

Division of Environmental Remediation Bureau of Remedial Action A 625 Broadway, 11th Floor

Albany, New York 12233-7015

Phone: (518) 402-9625 • Fax: (518) 402-9022

Website: www.dec.state.ny.us

February 5, 2010

Lora Fly, Project Manager Naval Facilities Engineering Command-Midlant 9742 Maryland Avenue Norfolk, VA 23511-3095

RE: Naval Weapons Industrial Research Plant(NWIRP) Site-Bethpage, NYSDEC No. 1-30-003B.

Dear Ms. Fly:

Tetra Tech FW, on behalf of the Department of the Navy (Navy), has submitted the enclosed New York State Department of Environmental Conservation (NYSDEC) Division of Air Resources (DAR) Air Permit Application as a permit equivalent. This DAR Air permit equivalent is for the soil vapor extraction system at Site 1 of Plant 3 of the former Naval Weapons Industrial Reserve Plant (NWIRP) site in Bethpage, NY. The NYSDEC Division of Environmental Remediation (DER) has reviewed the permit equivalent and, by means of this letter approves the Site 1 remedy air discharge for immediate operation.

The NWIRP Site 1 SVE system utilizes the reasonably available control technology (RACT) with activated carbon. The air discharge will be periodically monitored at start up and will be added for routine monitoring in the operation, maintenance and monitoring (OMM) plan, to be submitted shortly for Departmental review.

If you have any questions, please contact me at your earliest convenience at (518)402-9620.

Sincerely,

Steven M. Scharf, P.F.

Project Engineer

Division of Environmental Remediation

Bureau of Remedial Action A

Enclosure

ec/w/enc: J. Swartwout/S. Scharf/File

W. Parish, Region 1 NYSDEC

A. J. Shah, Region 1 NYSDEC

S. Patselos, Tetra Tech FW

J. Cofman, Northrop Grumman

E docs: Region 1, Nassau, Oyster Bay (T): NWIRP Bethpage 130003B-OUI-OMM

Zip

DEC ID	APPLICATION ID		OFFICE USE ONLY
	111-111/		
	Section I - Certification	n	
	Title V Certification		
certify under penalty of law that this document and all attach that qualified personnel properly gather and evaluate the info	rmation submitted. Based on my indition	v of the nerson of person	s directly responsible for uninerity is
that qualified personnel properly gatter and evaluate the information [required pursuant to 6 NYCRR 201-6.3(d)] I beliably be a submitting false information, including the possibility of fines a	eve the information is, true, accurate an	d complete. I am aware	that there are significant penalties f
Responsible Official		Title	
Signature		Date _	1 1
	State Facility Certification		
certify that this facility will be operated in conformance	e with all provisions of existing regu	ulations.	
Responsible Official		Title	
Signature		Date	
Section	n II - Identification Info	rmation	
Title V Facility Permit N/Λ □ New □ Significant Modification □ Ac	e de como a como a como a		Permit N/A ☐ Modification
	Iministrative Amendment eral Permit Title:	☐ New General Perm	
Application involves construction of new facility	☐ Application in	nvolves construction o	f new emission unit(s)
	Owner/Firm		
Name US Navy/NAVFAC Midla	nt		
	Bldg Z-144		
City Norfolk	State VA	Country (Zip J3511 - 3.095 Taxpayer ID
Owner Classification 🏿 Federal 🗅 Corporation/Partnershi		u wunicipai	Taxbayerib
	Facility		☐ Confident
Name Naval Weapons Industrial Re	eserve Plant (NWIRP) Site 1	
Location Address Beth page			
	New York		Zip 11714
× 1111 1111 1111 1111	Project Description		☐ Continuation Shee
Vanor phase granular activated	danka k carrie l	MC Com s	21 1025
Asbue buase desumas activated	Carbon to remove	YIJCA HEM S	8311 (43
Owr	ner/Firm Contact Mailing Ad	dress	
Name (Last, First, Middle Initial) Fly, Lora		Phor	ne No. (75) 444 - 078 1
Affiliation Department of the Navy	Title Remedial	- 3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Street Address 9742 Maryland Ave.	Bide Z-144		
City Norfolk		Country US	Zip 23511-309
and the state of t	acility Contact Mailing Addre	ess	
Name (Last, First, Middle Initial)			ne No. ()
Affiliation	Title	Fax	No. ()
Street Address			

State

Country

		DE	CID			
T.T	TT	T	1.1	1	T	Г

Affected States (Title V Only) N/A Vermont	d:d:
Vermont	d:
Vermont	d:
New Hampshire Connecticut New Jersey Ohio Tribal Lan	d:
999	
7999	
Facility Description	
Facility Description	☐ Continuation Sheet
	C.
son vapo semenante de la las longues de la las las las las las las las las las	
Compliance Statements (Title V Only) N/A	
I certify that as of the date of this application the facility is in compliance with all applicable requirements: YES	ON C
If one or more emission units at the facility are not in compliance with all applicable requirements at the time of signi	
box must be checked), the noncomplying units must be identified in the "Compliance Plan" block on page 8 of this for plan information required. For all emission units at this facility that are operating in compliance with all applicable	
following:	requirements complete the
☐ This facility will continue to be operated and maintained in such a manner as to assure compliance for the di	ration of the permit, excep
those units referenced in the compliance plan portion of Section IV of this application. For all emission units, subject to any applicable requirements that will become effective during the term of	f the permit, this facility wil
meet all such requirements on a timely basis.	
☐ Compliance certification reports will be submitted at least once a year. Each report will certify compliance	status with respect to each
requirement, and the method used to determine the status.	
Facility Applicable Federal Requirements N/A	☐ Continuation Sheet
Title Type Part Sub Part Section Sub Division Paragraph Sub Paragraph	Clause Sub Claus
Facility State Only Requirements	☐ Continuation Sheet
itle Type Part Sub Part Section Sub Division Paragraph Sub Paragraph	Clause Sub Claus
	555 5.445

		EC	IE)		
9			-			

Section III - Facility Information (continued)

			Faci	lity Compl	iance Certifica	ation IV/A	ום	Continuation Sheet(s	
				Rule	Citation				
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause Sub Claus	
	Capping			S No.					
				Monitoring	Information				
Ambient Ai	r Monitoring	□ Work F	ractice Invo	olving Speci	fic Operations	□Reco	ord Keeping/Main	tenance Procedures	
				Des	cription				
	- Hilling House								
Work Practic	Code	1	Process I	Material Description			Reference Test Method		
Туре	Code			Description					
		Par	ameter				Manufacturar N	lame/Model No.	
C	ode			Description	escription M			ame/woder No.	
	Limi	- Andrewson - Andr				Limi	it Units		
U	oper	L	ower	Code			Description		
Δ	veraging Method	1		Monitorina	Frequency		Reporting Re	equirements	
Code	Descrip		Code		Description		ode	Description	
	-								

-	Facility Emissions Summary		Continua	ation Sheet(s)
10.00 m	Karanga ang Arma	PTE		Actual
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)
NY075 - 00 - 5	PM-10			
NY075 - 00 - 0	PARTICULATES			
7446 - 09 - 5	SULFUR DIOXIDE			
NY210 - 00 - 0	OXIDES OF NITROGEN			
630 - 08 - 0	CARBON MONOXIDE			
7439 - 92 - 1	LEAD			
NY998 - 00 - 0	VOC	1.222		
NY100 - 00 - 0	НАР	1,813		
00071 -55 - 6	1,1,1-Trichlorgethane (Methyl Chloroform)	591		
	Tetrachloroethylene	8		
00079 01 6	Trichloroethylene	1,181		
00075 - 34 - 3	1.1 - Dichlosoethane	11		
	1.1-Dichlorgethylene (Vinylidine Chloride)	16		

		DE	CID		
-	T	T	T-T	T	T

Section III - Facility Information

	Facility Emissions Summary (continuation)		
oku.		PTE		Actual
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)
00540-59 - 0	cis-1,2-Dichlorcethene	5		
00107-06-2	1.a-Dichloroethane	0		
00156-60-5	trans-1,2-Dichloroethene	0		
00075-01-4	Vinyl Chloride	0		
14 14			1	
			1	
			1 1	
	-		+	
-				
			-	
and the second s			1	
			1	
-			1	
-:-	-			-
2 1				
14 12				
				•
900				
E	6.5			
4.5				
- 2 - 4				
4 4				

	D	EC I	D			
		1.		T		Г

Section IV - Emission Unit Information

		Emission Unit Description	☐ Continuation Sheet(
EMISSION UNIT	1-00EU1	Effluent from first soil vapor	extraction blower		
(BL-1)		ivated Carton Unit. The emiss			
Vapor Phas	e Granular Act	ivated Carton Unit. The emiss	ion point is		
stack 00	ST-2		7		

	Building	☐ Continuation Sheet(s		
Building	Building Name	Length (ft)	Width (ft)	Orientation
03-35	Treatment Building	60	40	0

			Emission Poin	t	□ Conti	nuation Sheet	
EMISSION PT.	OCSTA						
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross Section		
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)	
	36	6	8	70			
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	
9	1,000			03-35	100+		
EMISSION PT.			N				
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	ection	
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)	
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal	

				Emission	Source	ce/Control		Continuation Sheet(s		
Emission	Source	ce Date of Date of		Date of		Control Type	Manufa	cturer's Name/Model		
ID .	Туре	Construction	Operation	Removal	Code	Description		No.		
BL 1/2	1				048	Granular Act. Carbo	Tetra	solv Filtration		
Design		Design Ca	pacity Units		Waste Feed			Waste Type		
Capacity	Code		escription		Code	Description	Code	Description		
Emission Source		Date of Date of Date of			Control Type		Manufacturer's Name/Model			
ID	Туре	Construction	Operation	Removal	Code	Description		No.		
Design	esign Design Capacity Units			Waste Feed			Waste Type			
Capacity Code		le Description			Code	Description	Code	Description		

		DE	CID		
1-1	TT	T	1-1	П	T

Description The Soil Vapor Extraction System will consist of 12 SVE wells (Gintermediate and George), a moisture separator, and 2 soil vapor extraction blowers (BL-L and BL-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO CFM, with a maximum of 1,000 cFm. Source Classification Total Thruput Thruput Quantity Units
The Soil Vapor Extraction System will consist of 12 SVE wells (6 intermediate and 6 deep), a moisture separator, and 2 soil vapor extraction blowers (81-1 and 81-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack OOST2. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at 600 cfm, with a maximum of 1,000 cfm.
(odeep), a moisture separator, and a soil vapor extraction blowers (BL-1 and BL-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
(odeep), a moisture separator, and a soil vapor extraction blowers (BL-1 and BL-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
Bi-a) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack OOSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at 600 cfm, with a maximum of 1,000 cfm.
been designed to operate nominally at 600 cfm, with a maximum of 1,000 cfm.
The world Constitution
Course Classification Total Thruput Thruput Quantity Units
Course Classification Total Thruput Thruput Quantity Units
Code (SCC) Quantity/Hr Quantity/Yr Code Description
□ Confidential Operating Schedule Building Floor/Location
Operating at Maximum Capacity Hrs/Day Days/Yr
□ Activity with Insignificant Emissions 34 365 03-35 Main
Emission Source/Control Identifier(s)
BL-1 BL-2
EMISSION UNIT - PROCESS
Description
Trans. Title
Source Classification Total Thruput Thruput Quantity Units
Code (SCC) Quantity/Hr Quantity/Yr Code Description
☐ Confidential Operating Schedule Building Floor/Location
Operating at Maximum Capacity Hrs/Day Days/Yr
□ Activity with Insignificant Emissions
Emission Source/Control Identifier(s)

		DE	CID	_		_	-
-	_	DL	CID	-	-	-	-
1 ~ 1	1 1	3-7	1-1		100	1	

Emission	Emission		Emission Source	ission Emission Unit Applicable Federal Requirements Continuation Sheet(s)										
Unit		Process		Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause	
				1										
A =														
Ψ,														
-														

Emission	Emission Point		Emission	Emi	ssion	Unit Stat	e Only R	equirements	3	□ Co	ontinuat	ion Sheet(s)
Unit Point	Point	Process	Source	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-	U							1				
-												
-											1 - 1	
-												- (

				Emissio	n Unit Co	mpliance C	ertification	۵(Continuat	ion Sheet(s		
-					Rule	Citation						
Title		Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause		
(0	N	ICRR	212	ie e								
□Ap		e Federal R	equiremer	it 🗆	State Only F	Requirement	☐ Capping	apping				
Emission	n Unit	Emission Point	Process	Emission Source	CA	S No.		Contaminant Name				
1-00	EU1	COSTA	SVE		00079-	01 - 6	Tricht	Trichloroethylene				
					Monitorin	g Information	on_					
(A) Int	ermitte	us Emission nt Emission vir Monitorin	Testing	g	□ Work I	oring of Proces Practice Involvi d Keeping/Mair	na Specific Op	evice Parameter erations edures	s as Surro	ogate		
					Des	cription						
Mont	thly	grab sa	mples a	inalyzed	For VOC	s from t	he VGAC	unit influer	it and e	EFFluent		
Work Pra	ctice			Process				Reference T	est Metho	nd		
Туре		Code	+		Description			11010101100 1	out mound	,,,		
			Pa	rameter				Manufacturer Name/Model No				
	Code				Description			Manuacturer Na	ame/iviod	ei ivo.		
	23		Co	ncentrat	ion							
		Lim					Limit	Units				
	Upper Lower				Code	ode Description						
30	6,000				255	MICTO	grams pe	r cubic me	ter			
	Avera	ging Metho	d		Monitoring	Frequency		Reporting Requirements				
Code		Descri		Code		Description	Coc	le	Descripti	on		
01	To	stantane	CUS	0.5	Mor	othly	10	Hoon	Regut	ST		

		D	EC	ID)			
1.1	T			_			-	

Determination of Non-Applicability (Title Rule Citation		y) X/A		ation Sheet(s		
				A.		
	aragraph	Sub Paragra	oh Clause	Sub Clause		
ne		Federal Require Requirement	ment			
	State Only P	(equirement				
Description						
Rule Citation						
	ragraph	Sub Paragra	h Clause	Sub Clause		
		ederal Require	rement			
	State Only R	Requirement				
Description						
Process Emissions Summary			☑ Continua	tion Sheet(s)		
EMISSION UNIT 1 - O O E U 1			PROCESS	SVE		
CAS No. Contaminant Name %	%	%	ERP	ERP How		
CAS No. Contaminant Name Thruput	Capture	e Control	(lbs/hr)	Determined		
00071-55-6 1.1.1-Trichloroethane		80	0.34	02		
PTE Standard	PTE How		Ac	tual		
(lbs/hr) (lbs/yr) (standard units) Units	Dete	ermined	(lbs/hr)	(lbs/yr)		
0.07 591	03					
EMISSION UNIT 1 - 0 0 E // 1			PROCESS	SVE		
%	%	%	ERP	ERP How		
CAS No. Contaminant Name Thruput	Capture	Control	(lbs/hr)	Determined		
00127-18 -4 Tetrachloroethylene		80	0.00	02		
PTE Standard	PT	E How		tual		
(lbs/hr) (lbs/yr) (standard units) Units		ermined	(lbs/hr)	(lbs/yr)		
O.OC BRT 8	(92				
EMISSION UNIT 1 - 0 0 E U 1	-		PROCESS	SVE		
0/	%	%	ERP	ERP How		
CAS No. Contaminant Name Thruput	Capture		(lbs/hr)	Determined		
00079-01-6 Trichloroethylene		80	0.67	03		
PTE Standard	рт	E How		tual		
(lbs/hr) (lbs/yr) (standard units) Units		ermined	(lbs/hr)	(lbs/yr)		
0.13 1,181	1	D9	and a state of the	(10 at 11)		

		D	EC	ID)		
-				-			Г

EMISSION UNIT	Emiss	sion Unit Emissions S	Summary	反 Continuation Sheet(s)						
CAS No.		Contamir	ant Name							
00075-34-3	1,1-Dichloroet	hane								
		missions		Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)						
	BRT	11								
CAS No.		Contaminant Name								
00075-35-4	1.1-Dichloroeth	ylene (Vinylidir	ne Chloride)							
	PTE Er	nissions		Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)						
	BRT	16								
CAS No.		Contamir	nant Name							
0054059-0	cis-1,2-Dichl	oroethene								
		nissions		Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)						
	BRT	5								
CAS No.		Contamir	nant Name							
00107-06-2	1,2-Dichloroeth	ane								
	PTE Er	nissions	A CARLON	Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)						
	BRT	BRT								

					Co	omplian	ce Plar	N/A		□ Cd	ontinuati	on Sheet(s)	
For any em	ssion units	which ar	e <u>not in c</u>	complian	ce at th	ne time of	oermit ap	plication, the	applica	nt shall comp	lete the	following	
Consent Or	der		Certifi	Certified progress reports are to be submitted every 6 months beginning//									
Emission		Emission					Applicabl	e Federal Requ	irement				
Unit	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause	
+						15							
		Remedi	al Measi	ure / Inte	rmedia	te Milestor	nes			R/I	Sc	Date heduled	
	o _{fe}										00	nodulod	
50.													
											-		
				_							-		
						-							
		-			-								

DEC ID											
-	П	Т	Т	Т							

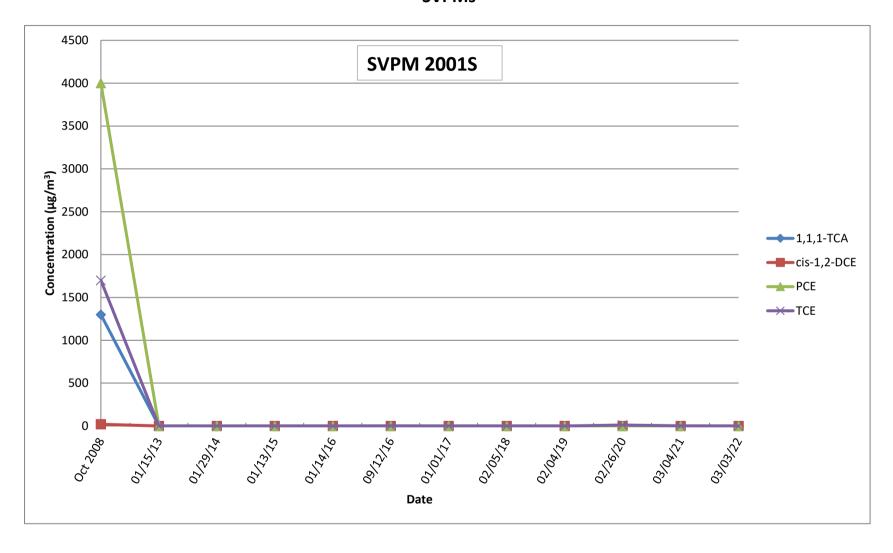
Section IV - Emission Unit Information

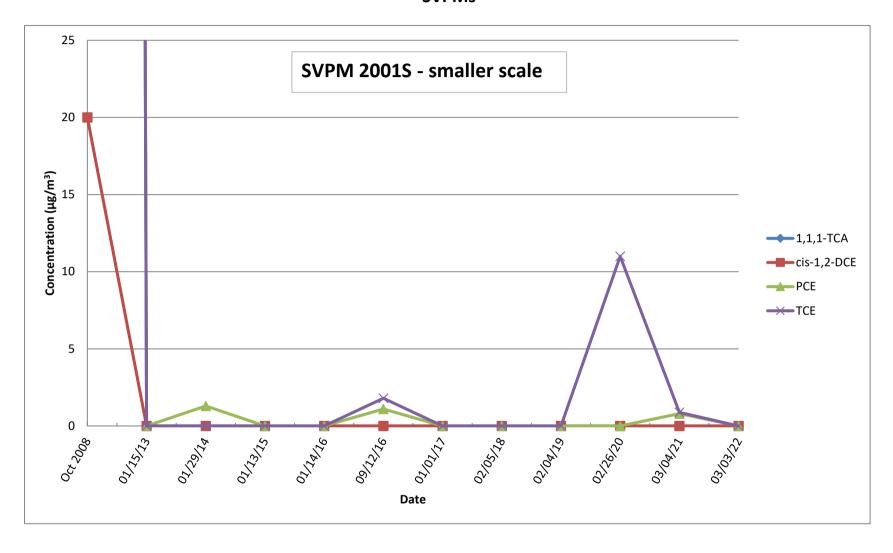
EMISSION UNIT	Emission Unit Emissions Summary (continuation)						
CAS No.	Contaminant Name						
00156-60-5	trans -1,2 - Dich						
ERP (lbs/yr)	PTE E	missions	Actual				
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			
	BRT	BRT					
CAS No.			ant Name				
00075 01 - 4	Vinyl Chloride						
ERP (lbs/yr)	PTE Emissions		Actual				
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			
	BRT	BRT					
CAS No.	Contaminant Name						
4 = ()		P.					
ERP (lbs/yr)	PTE Emissions		Actual				
List (Bosyly	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			
CAS No.		Contamin	ant Name				
ERP (lbs/yr)	PTE Emissions		Actual				
	(łbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			
CAS No.		Contamin	ant Name				
	an and the state of the state o						
ERP (lbs/yr)	PTE Emissions		Actual				
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			
CAS No.		Contamina	ant Name				
	man e	747.47.55					
ERP (lbs/yr)		PTE Emissions		ual			
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			
CAS No.		Contamina	ant Nama				
		Contamina	ant Name				
	PTE Emissions Actual						
ERP (lbs/yr)	(lbs/hr) (lbs/yr)		(lbs/hr) (lbs/yr)				
	(idanti)	(IDS/yt)	(IOS/III)	(lusryl)			
CAS No.		Contamina	ant Name				
4 -		et a post (II.					
2000	PTE En	nissions	Actual				
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)			

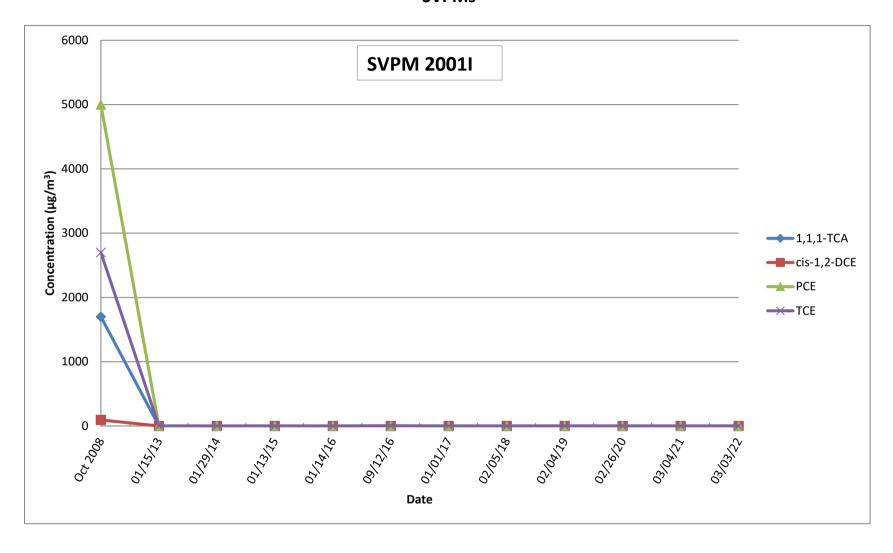
	DE	CID			
1-1		1-1	T	П	T

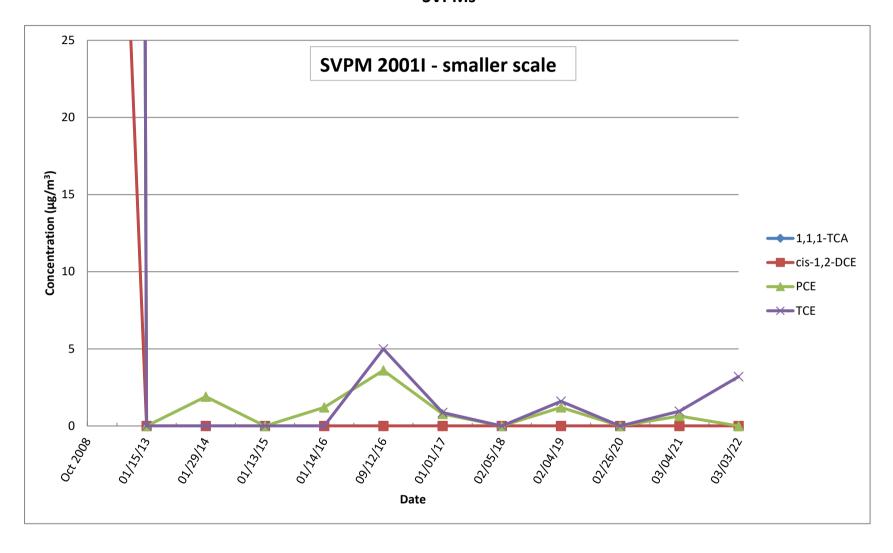
EMISSION UNIT -		st for Emission Reduction	Credits	Continuation Sheet(s		
	Em	nission Reduction Descrip	otion			
	Conta	minant Emission Reduction	on Data			
	Conta	TIMOTO ETHOSION ROGUCE		Reduction		
Baseline Period	1 1	to	Date	Method		
				(lbs/yr)		
CAS No.	C	Contaminant Name	Netting	Offset		
* *						
1 4 1 4	3 -	4				
	Fa	cility to Use Future Redu		ID		
Name		1-	APPLICATION ID			
Location Address						
☐ City / ☐ Town / ☐ Village		State	Zip	Zip		
EMISSION UNIT -	- P	roposed Project Descript	ion _			
				- 10-2		
	Conta	minant Emissions Increa	se Data			
CAS No.	Conta	nminant Emissions Increa Contaminant Name		P (lbs/yr)		
CAS No.				P (lbs/yr)		
			PE	P (lbs/yr)		
		Contaminant Name	PE			
☐ All facilities under the owner including any compliance ce	ship of this *ownership/firr	Contaminant Name Statement of Complianc	e ith all applicable requirements ar an Air Act Amendments of 1990, dit - Facility			
☐ All facilities under the owner including any compliance ce	ship of this *ownership/firr	Contaminant Name Statement of Complianc m" are operating in compliance we note the Section 114(a)(3) of the Clean	e ith all applicable requirements ar an Air Act Amendments of 1990,			
All facilities under the owner including any compliance ce schedule of a consent order.	ship of this *ownership/firr	Contaminant Name Statement of Complianc m" are operating in compliance we note the Section 114(a)(3) of the Clean	e ith all applicable requirements ar an Air Act Amendments of 1990, dit - Facility PERMIT ID			
All facilities under the owner including any compliance ce schedule of a consent order. Name Location Address	ship of this *ownership/firr	Contaminant Name Statement of Complianc m" are operating in compliance we note the Section 114(a)(3) of the Clean	e ith all applicable requirements ar an Air Act Amendments of 1990, dit - Facility PERMITIO Zip	nd state regulations or are meeting the		
All facilities under the owner including any compliance ce schedule of a consent order. Name Location Address	ship of this *ownership/firr	Statement of Complianc "are operating in compliance winder Section 114(a)(3) of the Cle Emission Reduction Cre	e ith all applicable requirements are an Air Act Amendments of 1990, dit - Facility PERMITID Zip ER			
All facilities under the owner including any compliance ce schedule of a consent order. Name Location Address City / D Town / D Village	ship of this *ownership/firr rtification requirements un Source of	Statement of Compliance "are operating in compliance with the clear section 114(a)(3) of the Clear Emission Reduction Cre	e ith all applicable requirements ar an Air Act Amendments of 1990, dit - Facility PERMITIO Zip	nd state regulations or are meeting the		
All facilities under the owner including any compliance ce schedule of a consent order. Name Location Address City / D Town / D Village	ship of this *ownership/firr rtification requirements un Source of CAS No.	Statement of Compliance "are operating in compliance with the clear section 114(a)(3) of the Clear Emission Reduction Cre	e ith all applicable requirements are an Air Act Amendments of 1990, dit - Facility PERMITID Zip ER	nd state regulations or are meeting the		

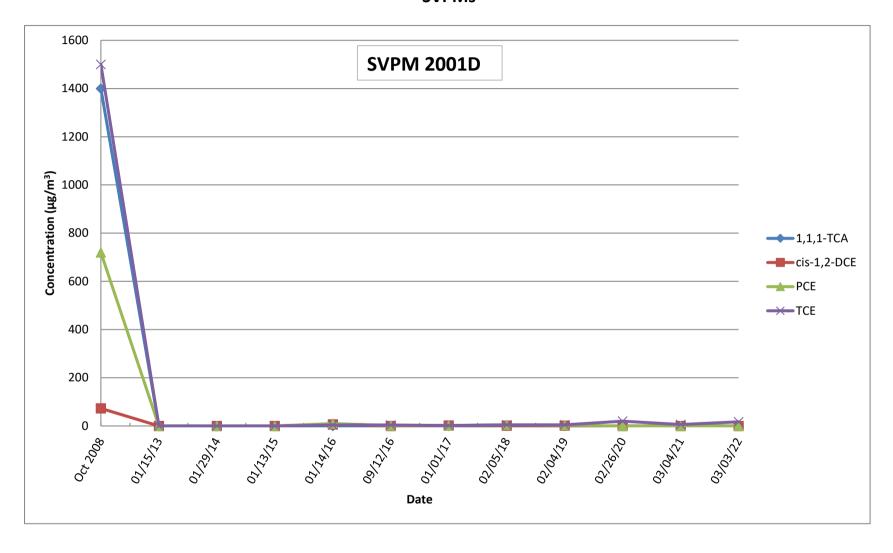
New York State Department of Environmental Conservation Air Permit Application

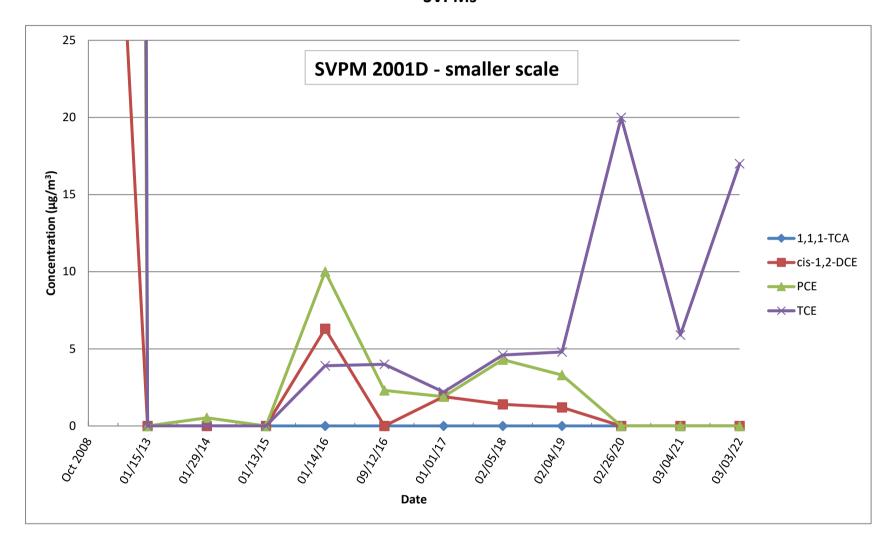


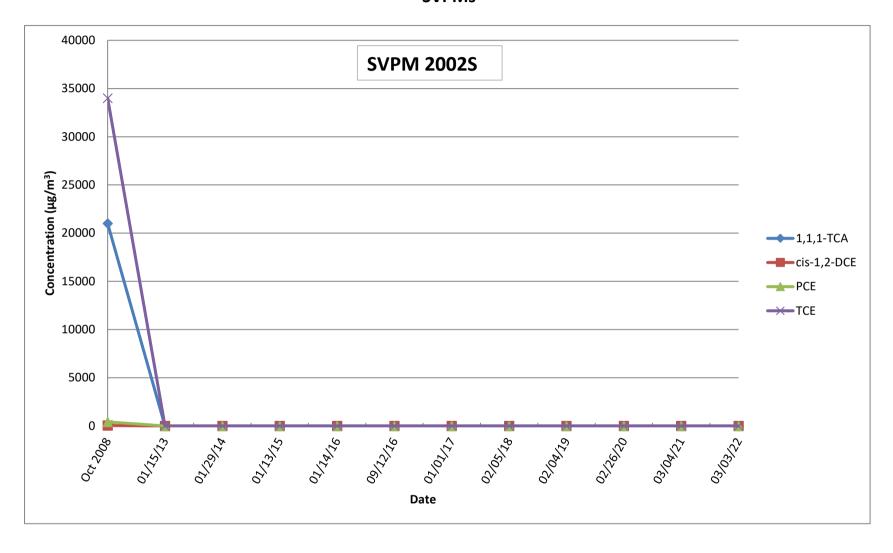

		EC) IE)		
-			н			Г

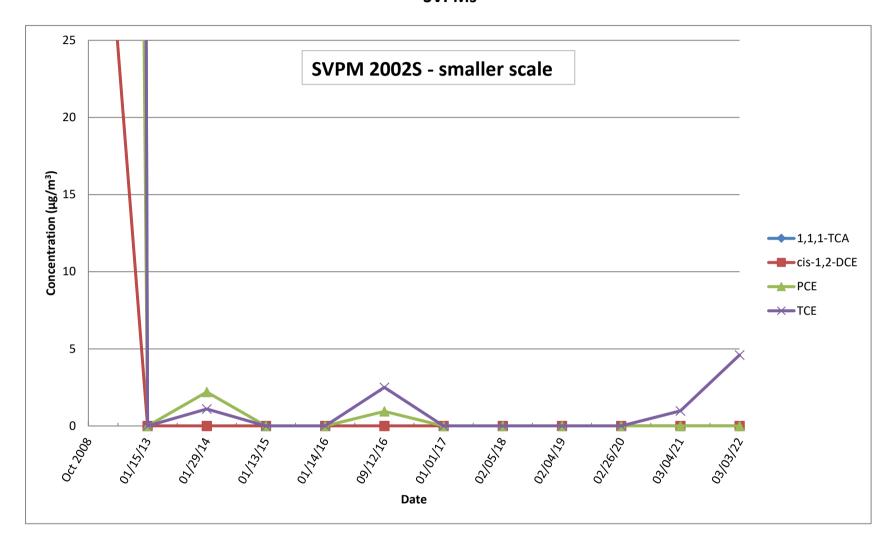

Supporting Docume	entation			
□ P.E. Certification (form attached)				
☐ List of Exempt Activities (form attached)				
□ Plot Plan				
☐ Methods Used to Determine Compliance (form attached)				
☐ Calculations☐ Air Quality Model (/ /)				
☐ Confidentiality Justification				
☐ Ambient Air Monitoring Plan (/ /)				
☐ Stack Test Protocols/Reports (/ /)	,			
□ Continuous Emissions Monitoring Plans/QA/QC (/ _				
□ MACT Demonstration (/ /)	Cid Drotocola			
☐ Operational Flexibility: Description of Alternative Operating	Scenarios and Protocois			
☐ Title IV: Application/Registration				
□ ERC Quantification (form attached)				
☐ Use of ERC(s) (form attached)				
☐ Baseline Period Demonstration				
☐ Analysis of Contemporaneous Emission Increase/Decrease				
□ LAER Demonstration (/)				
□ BACT Demonstration (/)				
☐ Other Document(s):			. /	
		1		
	\	1	1	
	Č	1	1	
	i	1	1	
		_/	1	
4	(1		
· · · · · · · · · · · · · · · · · · ·	(_
~	(1	_
				_
-	(-1	1	_
		/	1	_

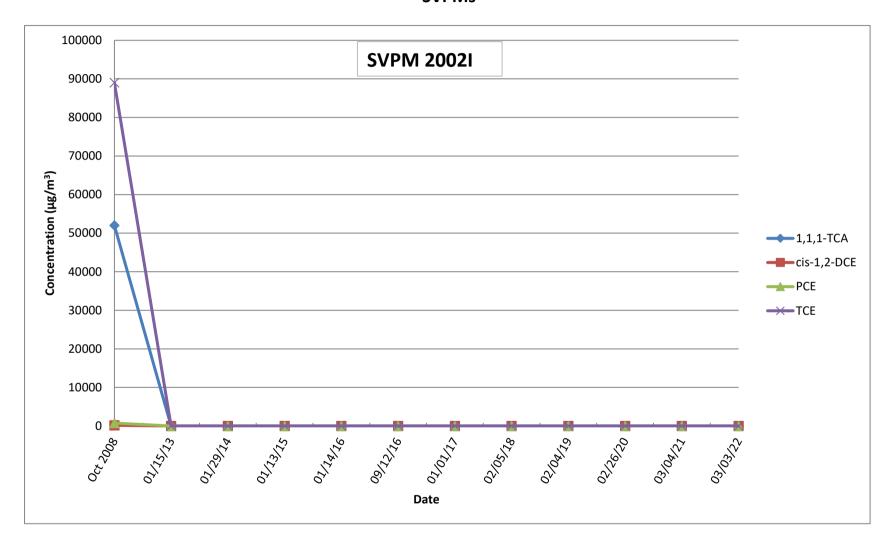

APPENDIX B

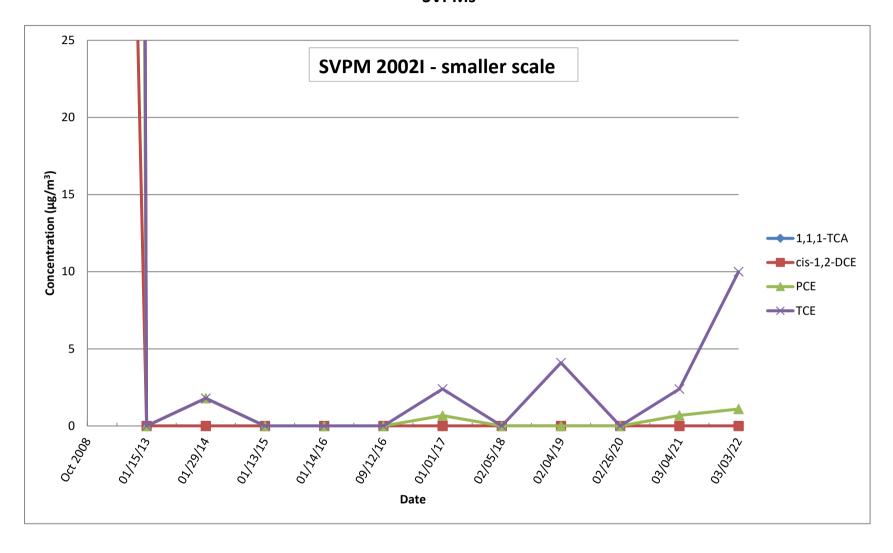

VAPOR CONCENTRATION TREND GRAPHS OF SELECT VOCs – SVPMs

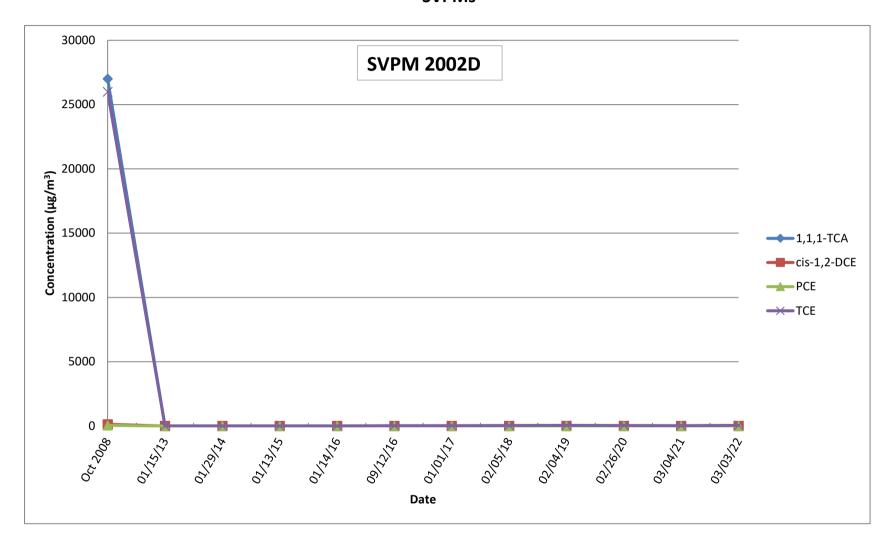


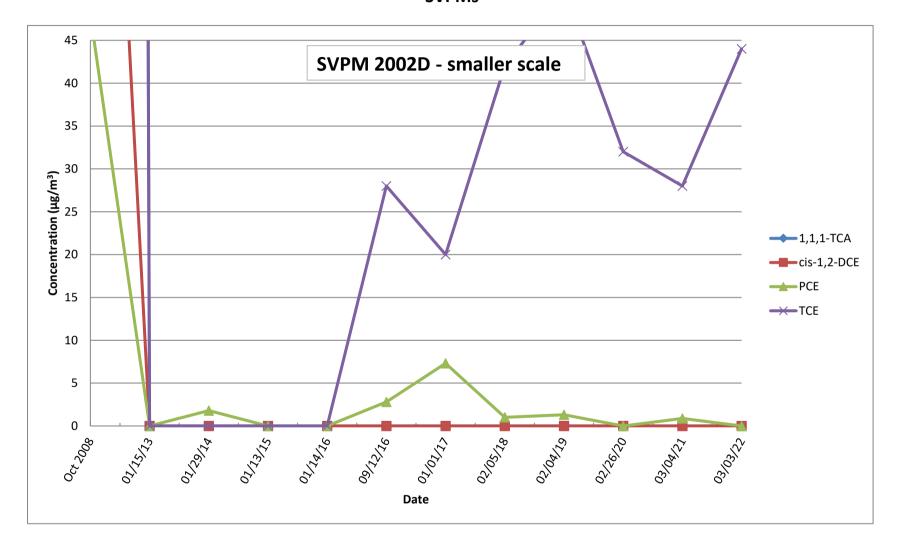


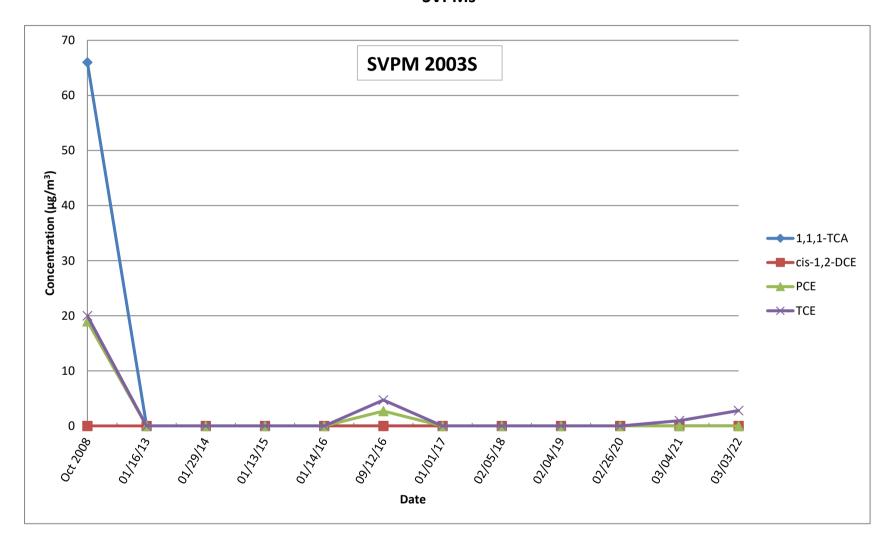


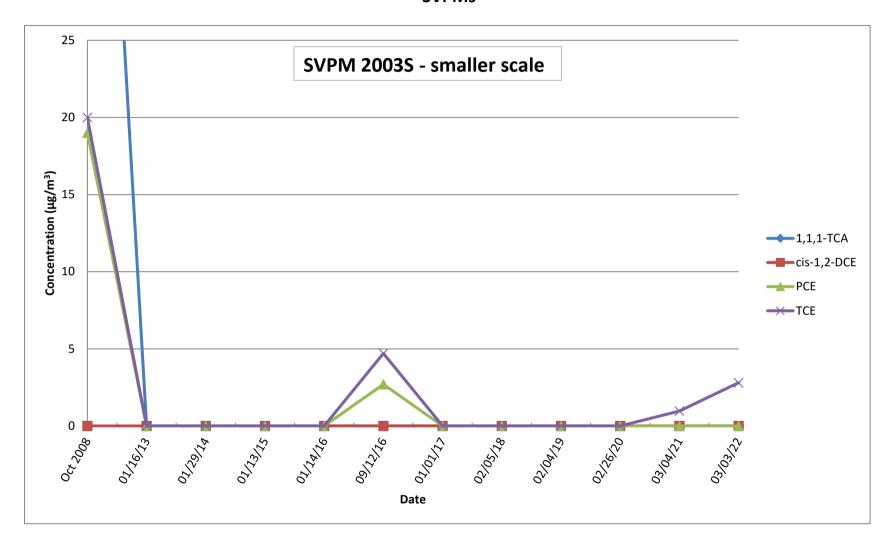


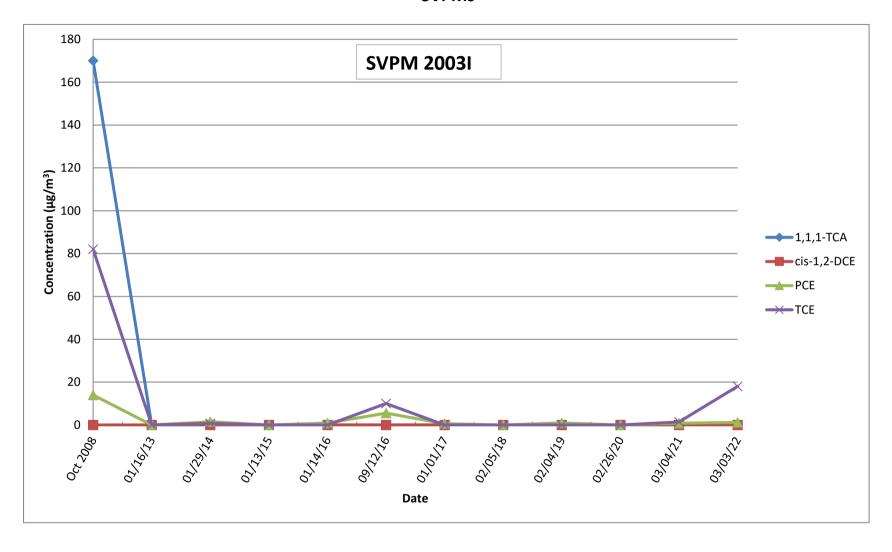


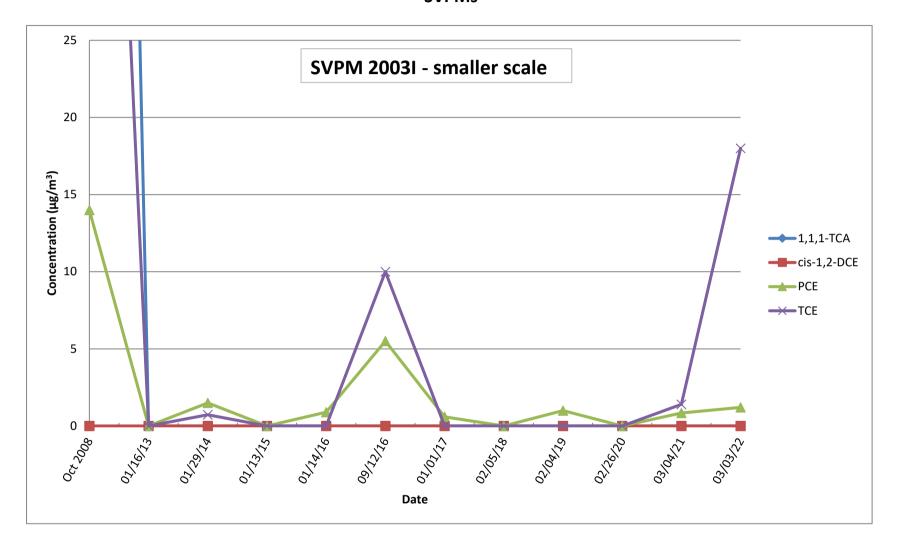


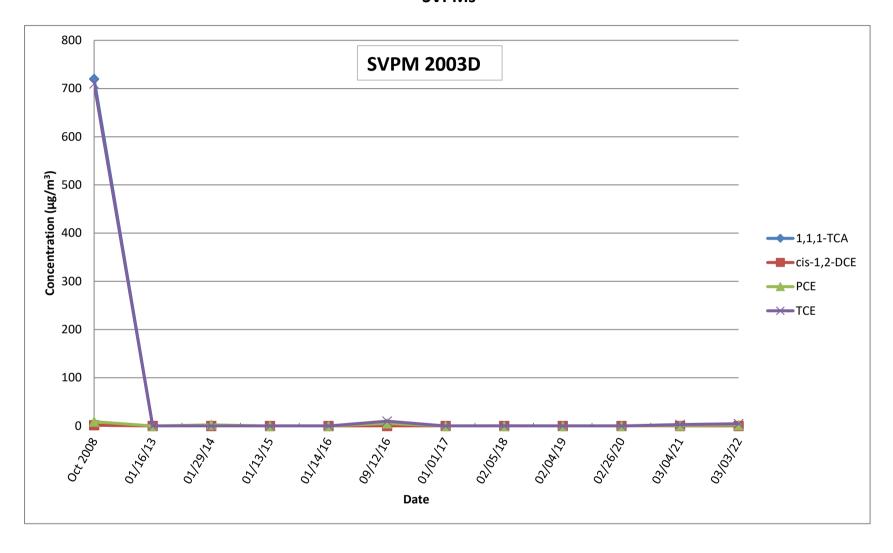


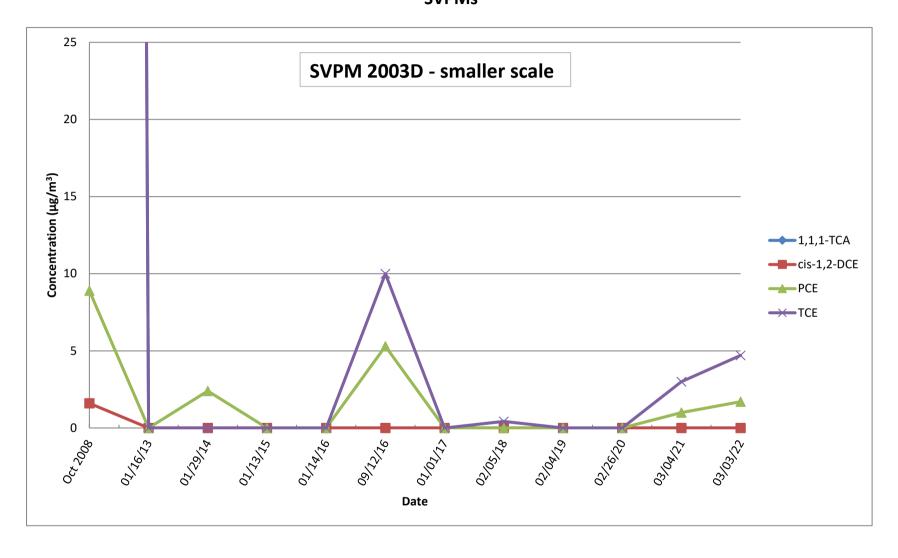


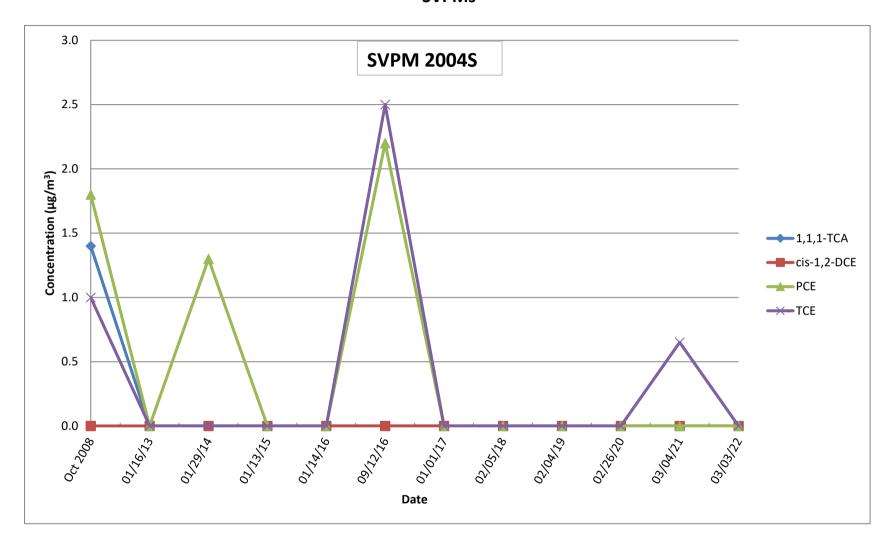


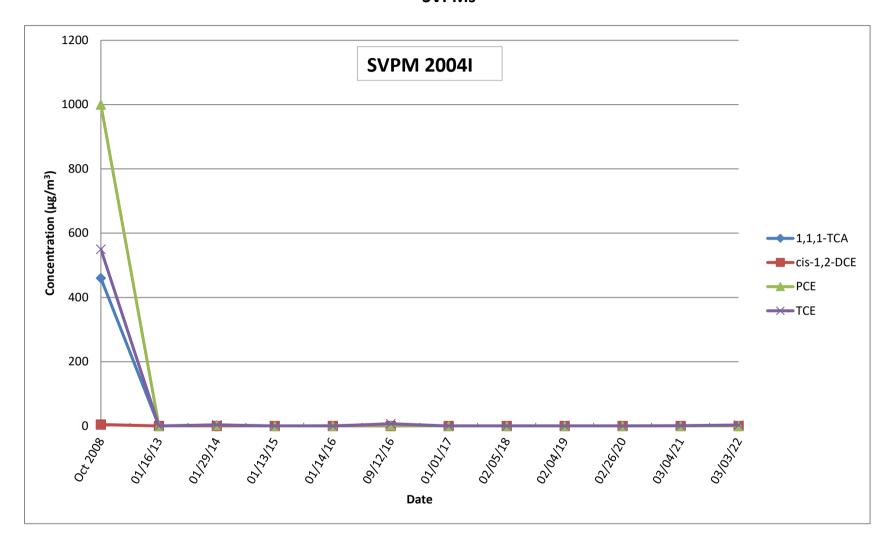


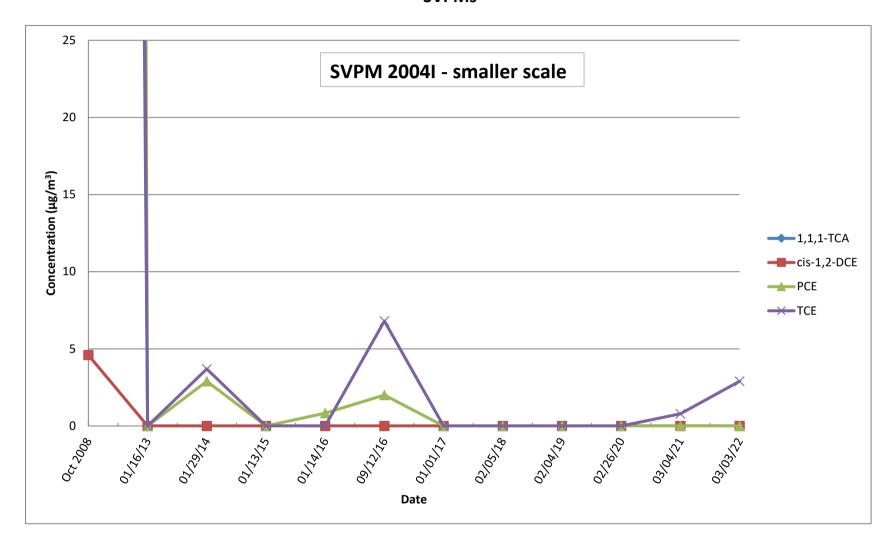


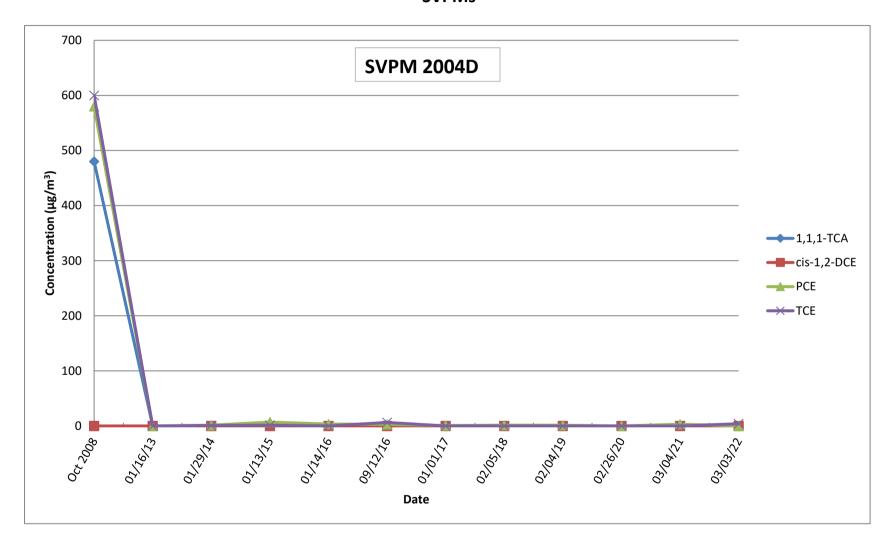


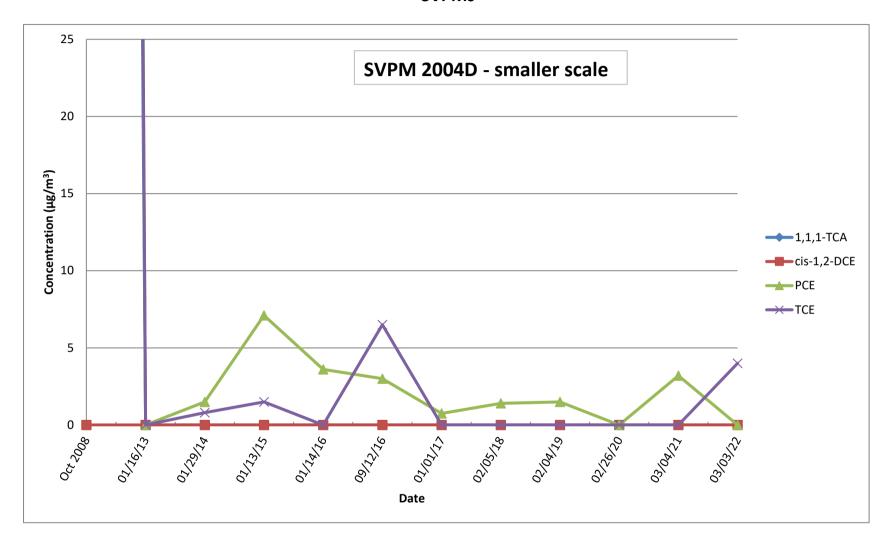


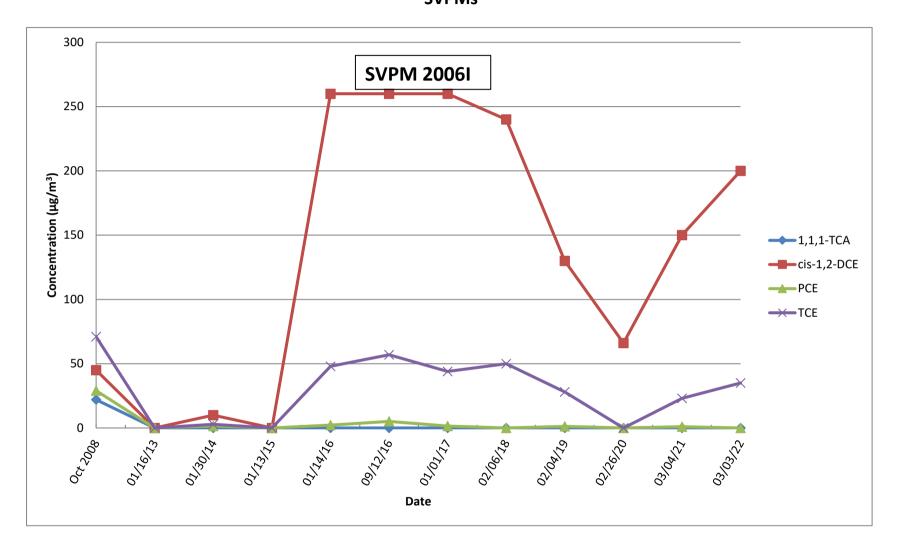


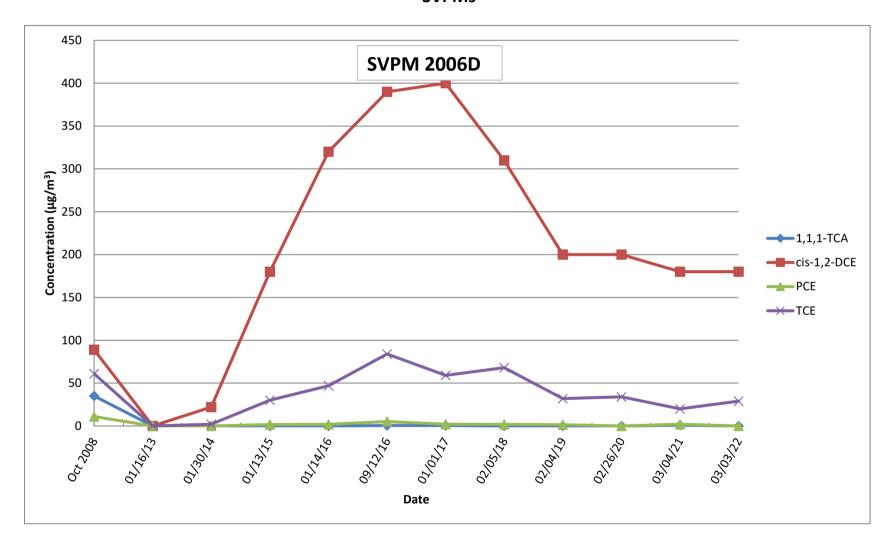


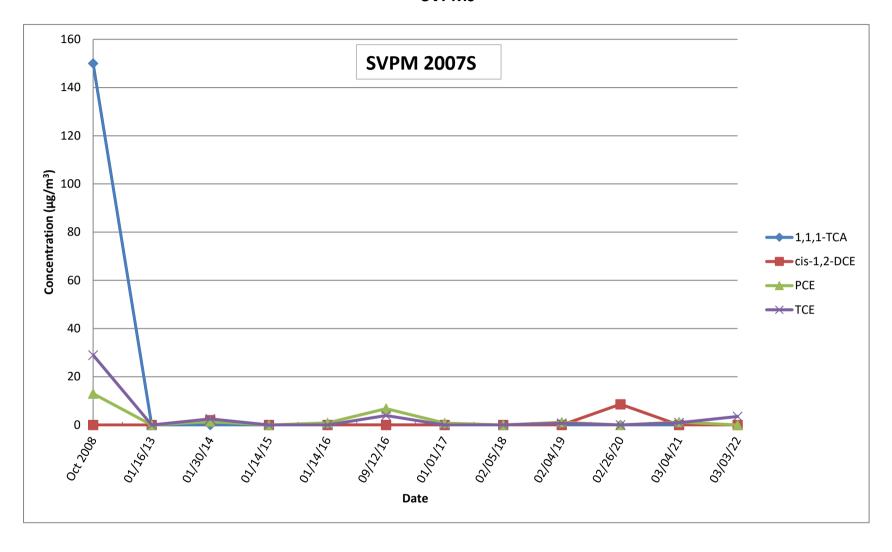


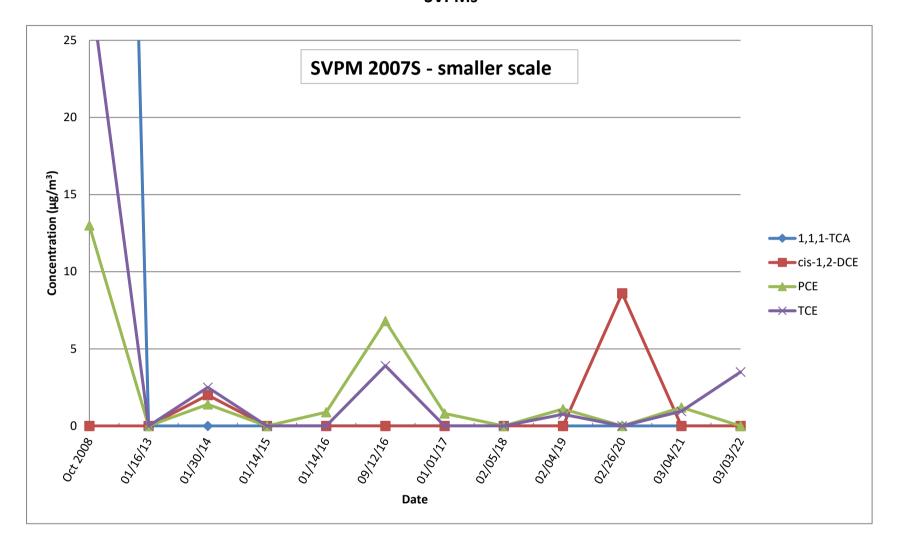


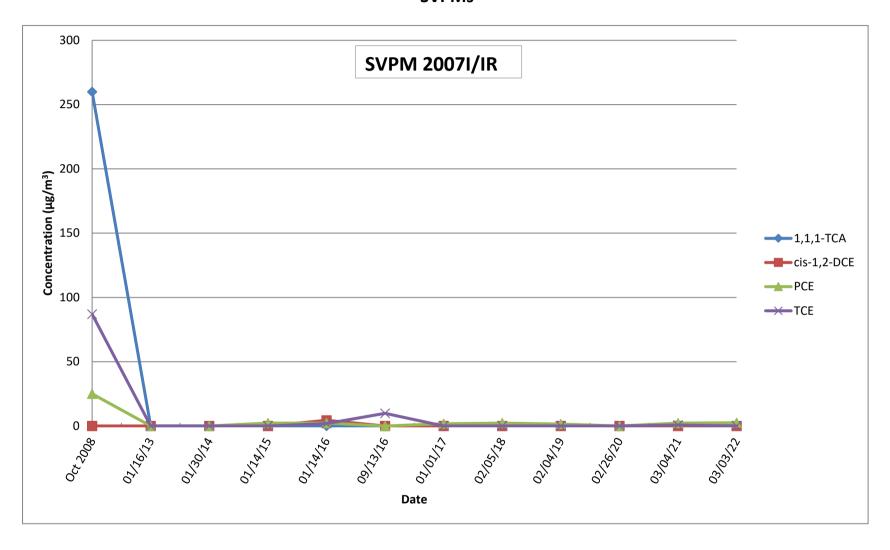


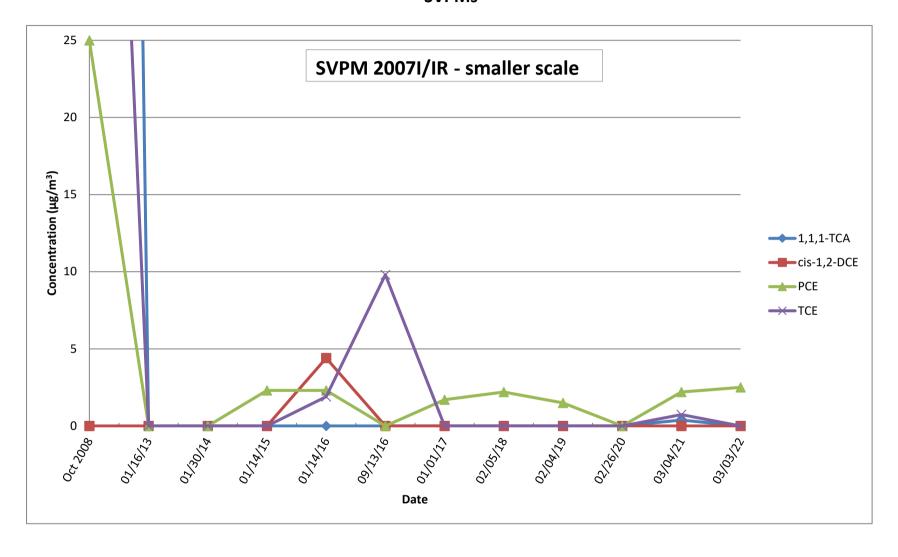


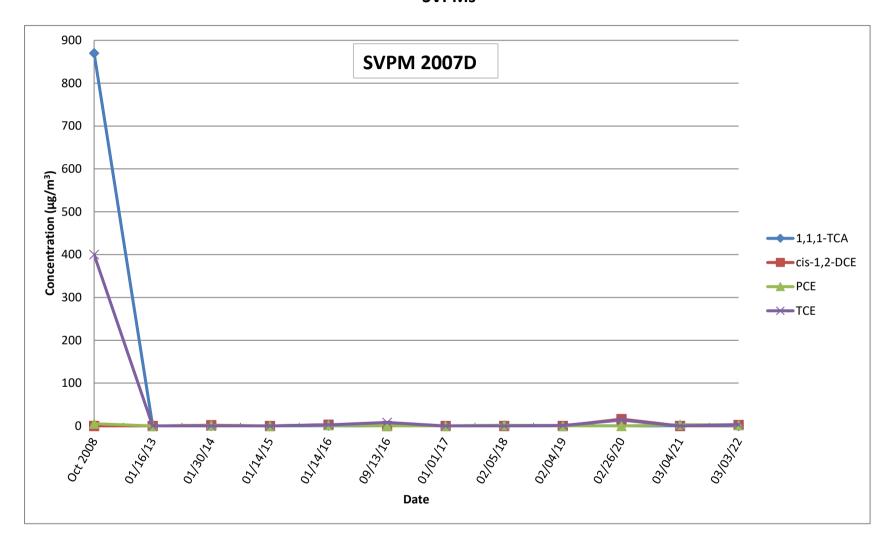


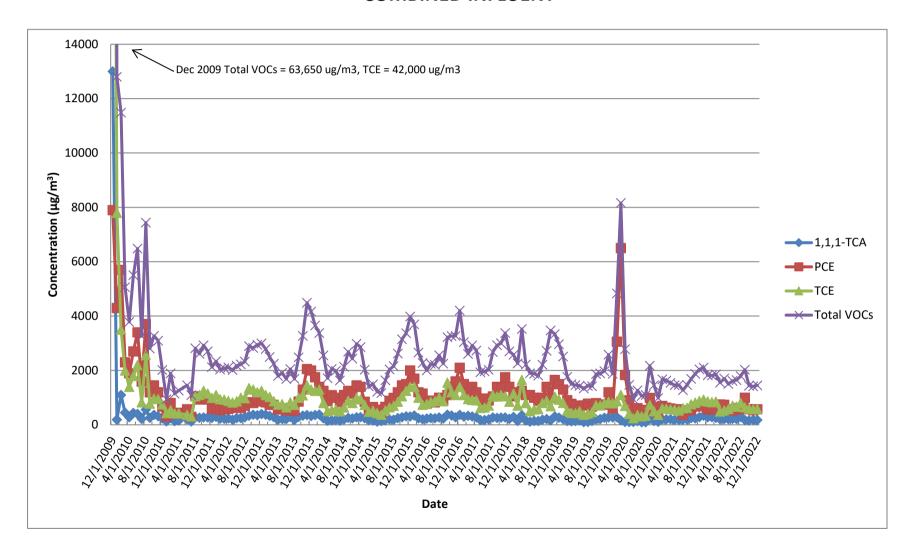


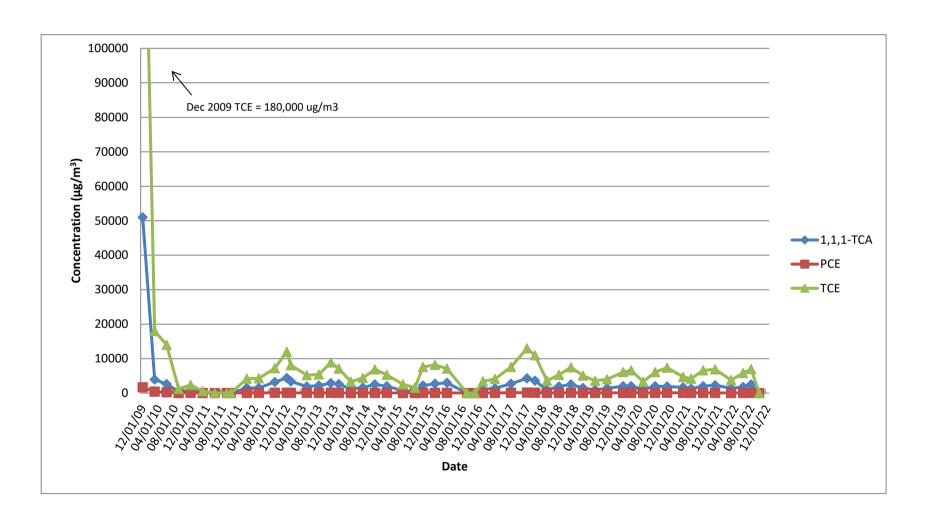




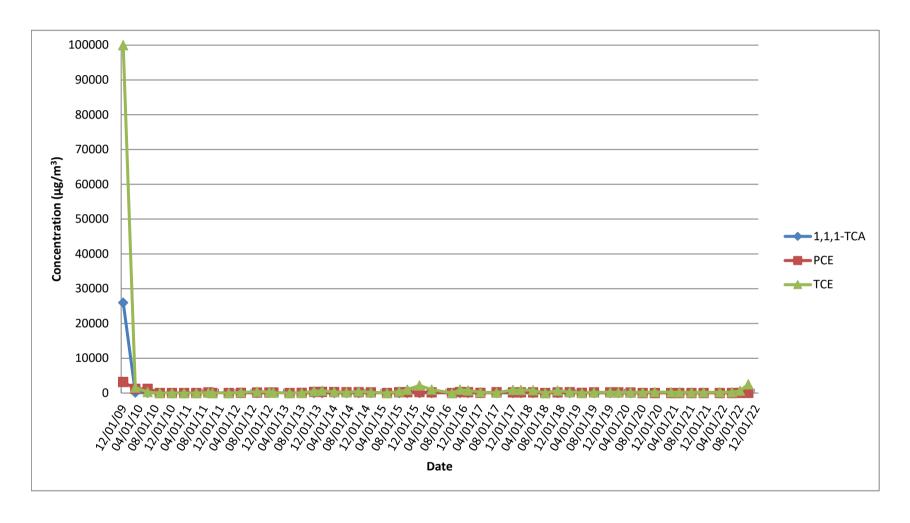


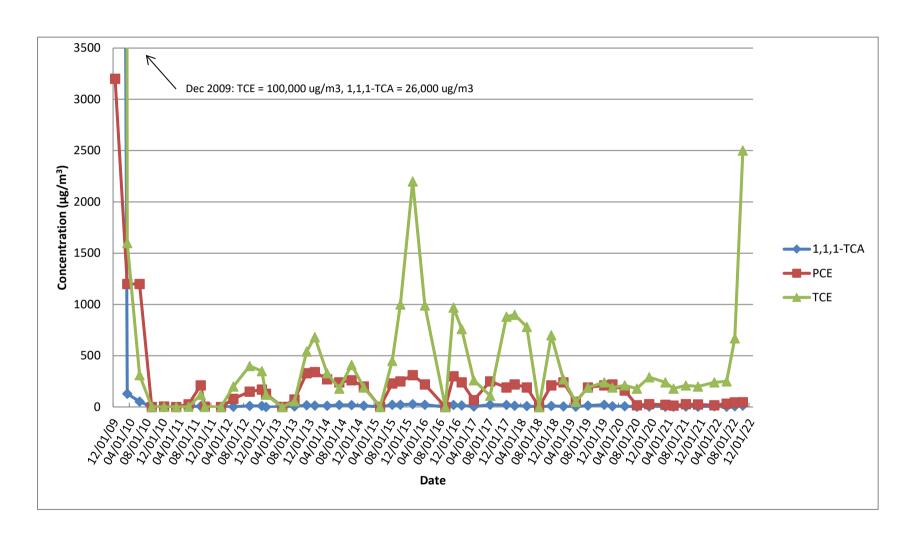


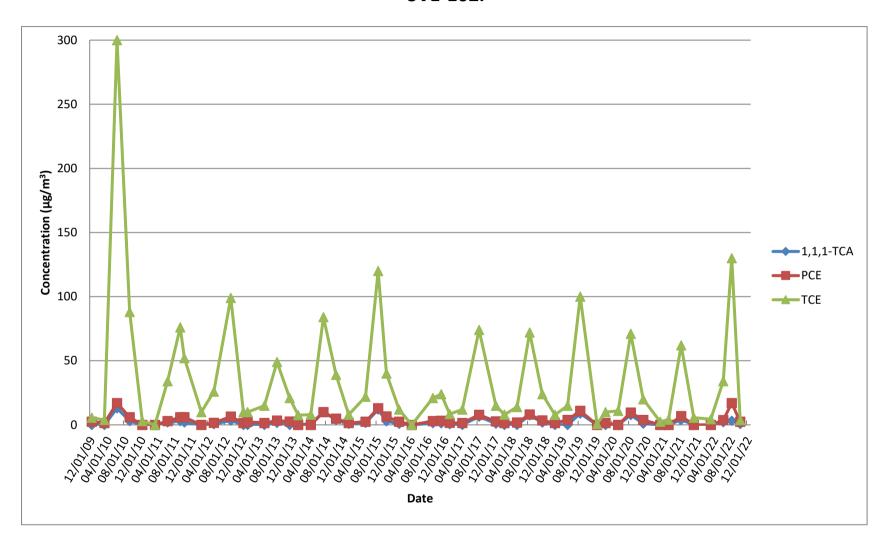


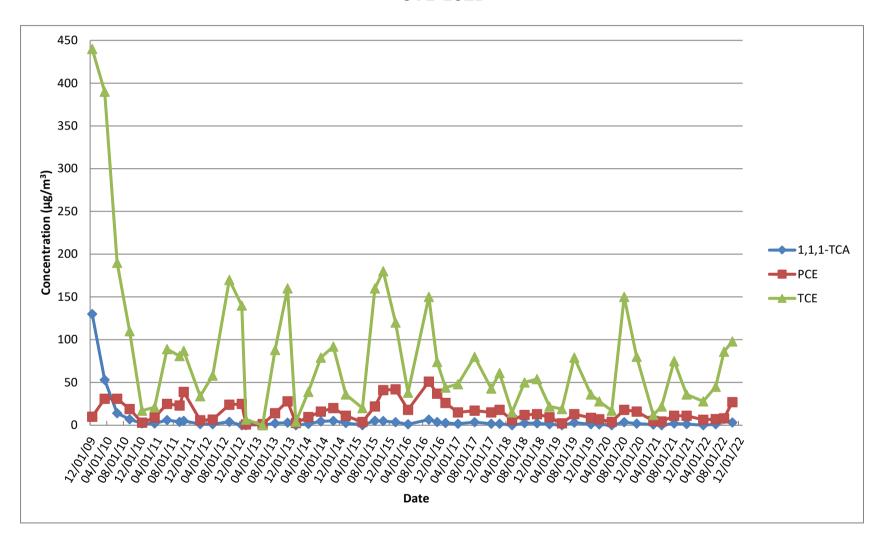

APPENDIX C

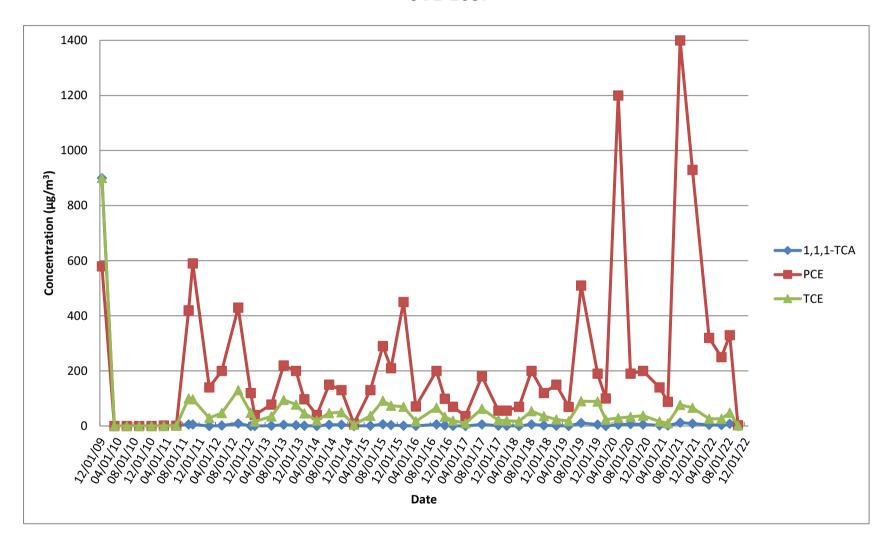
VAPOR CONCENTRATION TREND GRAPHS OF SELECT VOCs – SVEWs

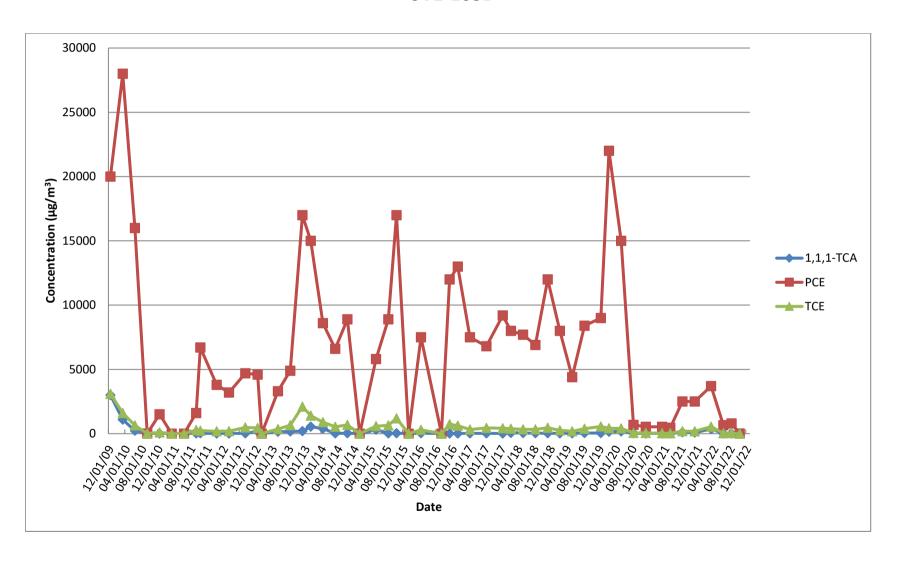

COMBINED INFLUENT

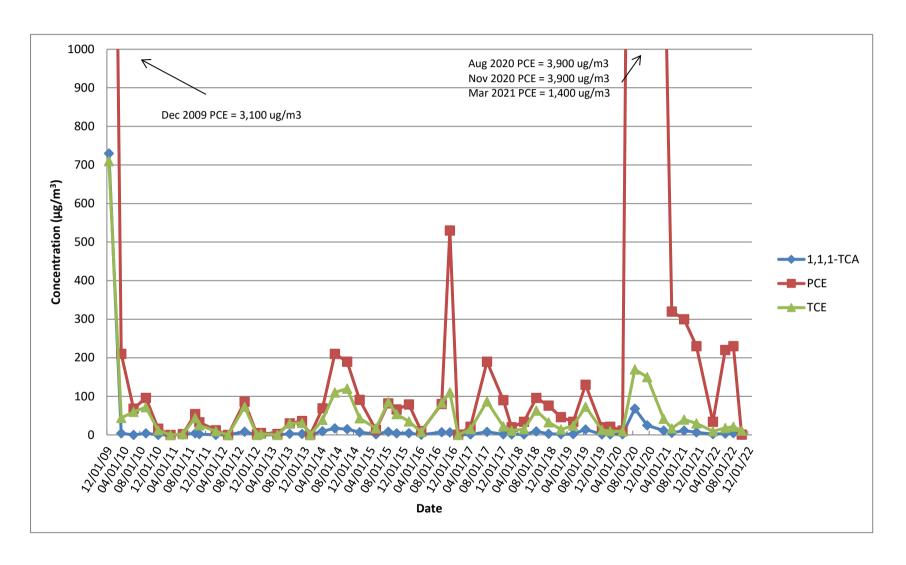

SVE-101I

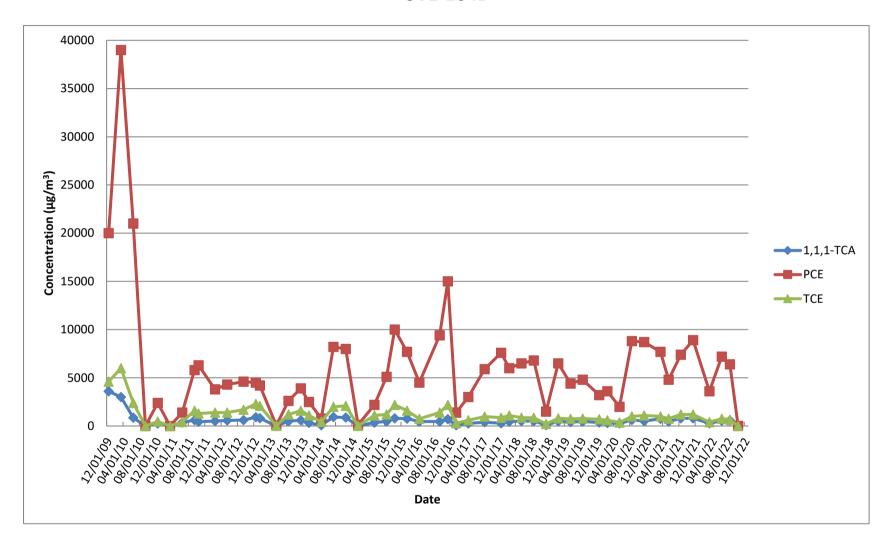

SVE-101D

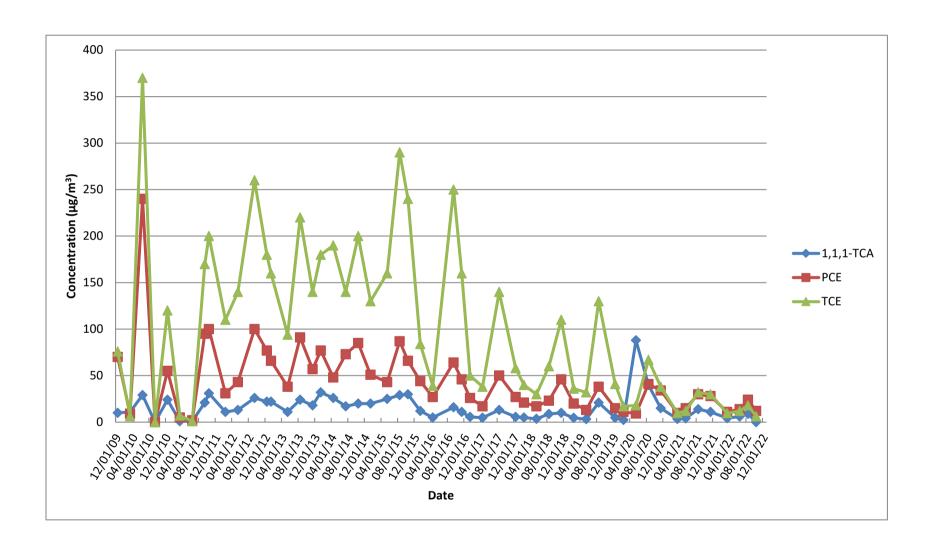

SVE-101D (smaller scale)


SVE-102I

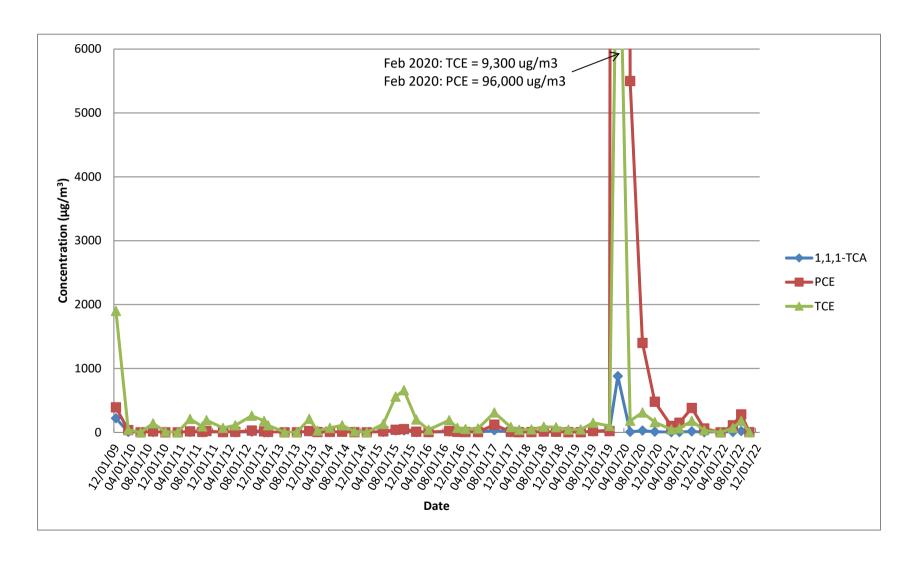

SVE-102D

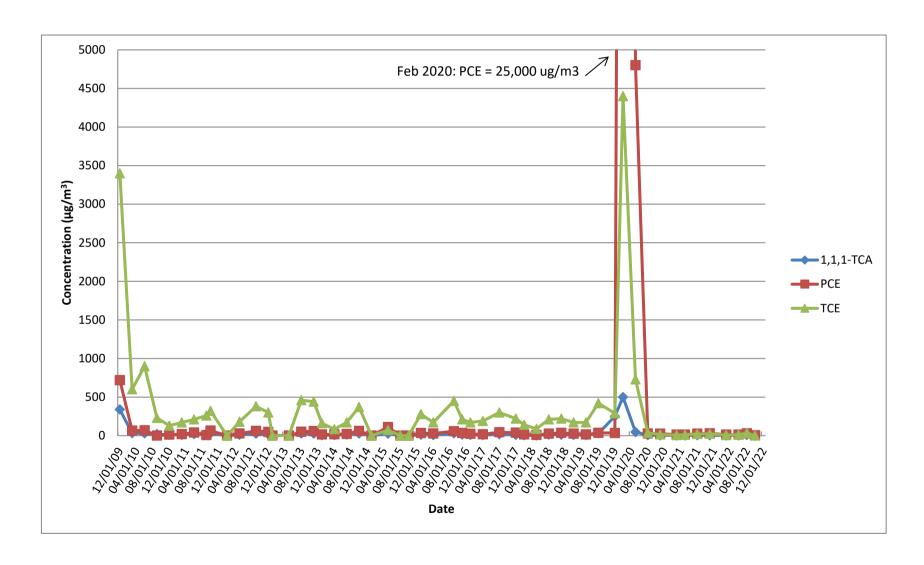

SVE-103I

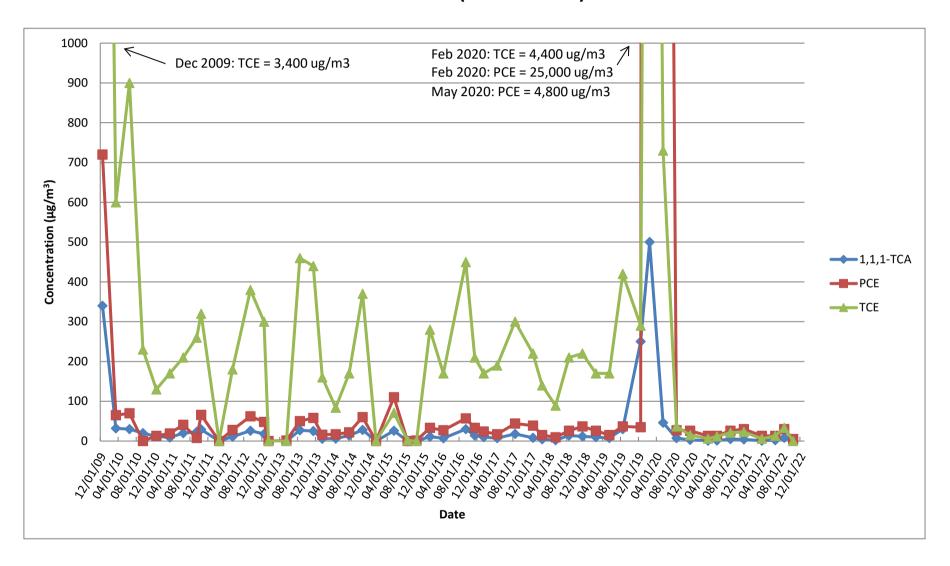

SVE-103D

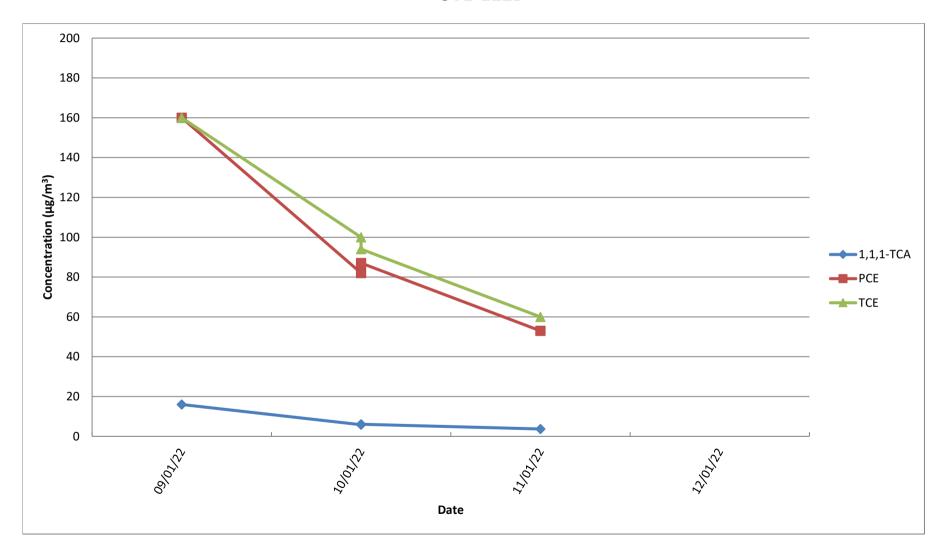

SVE-104I

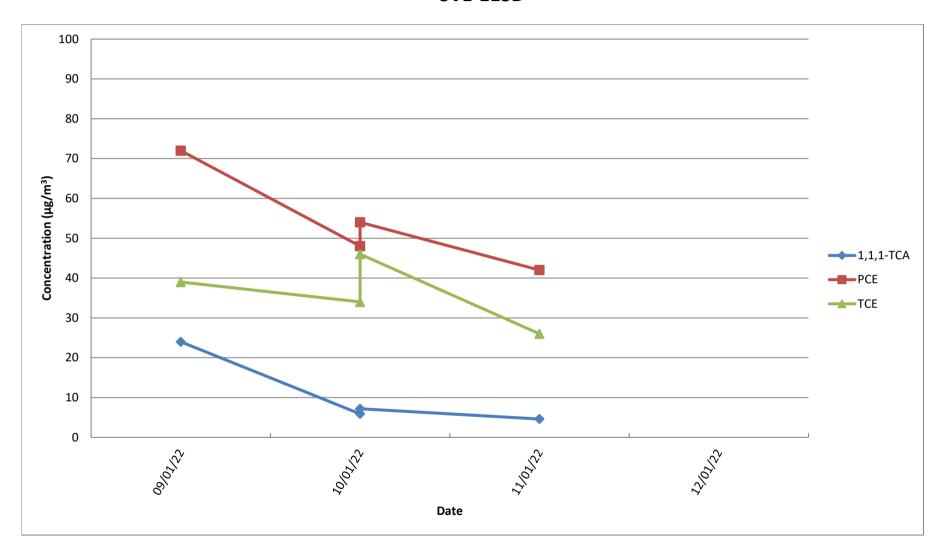
SVE-104D

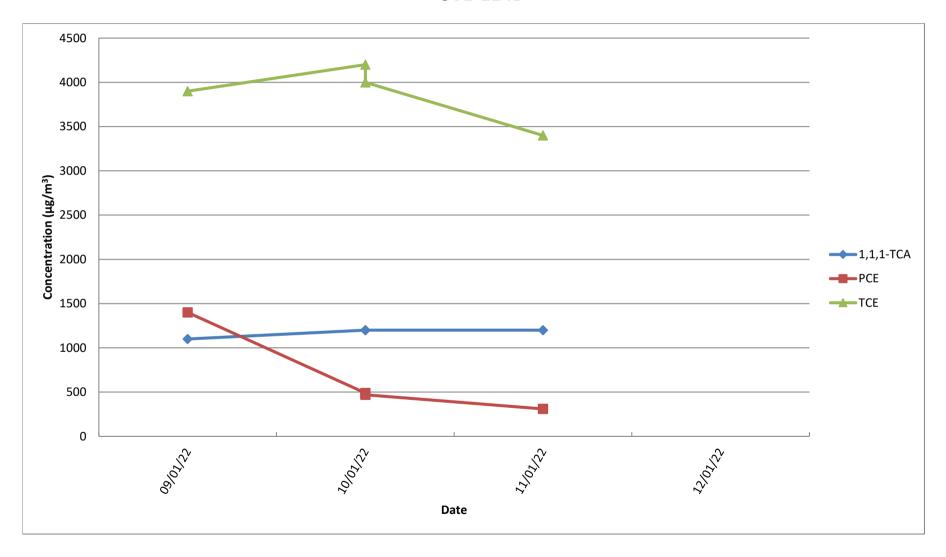

SVE-105I

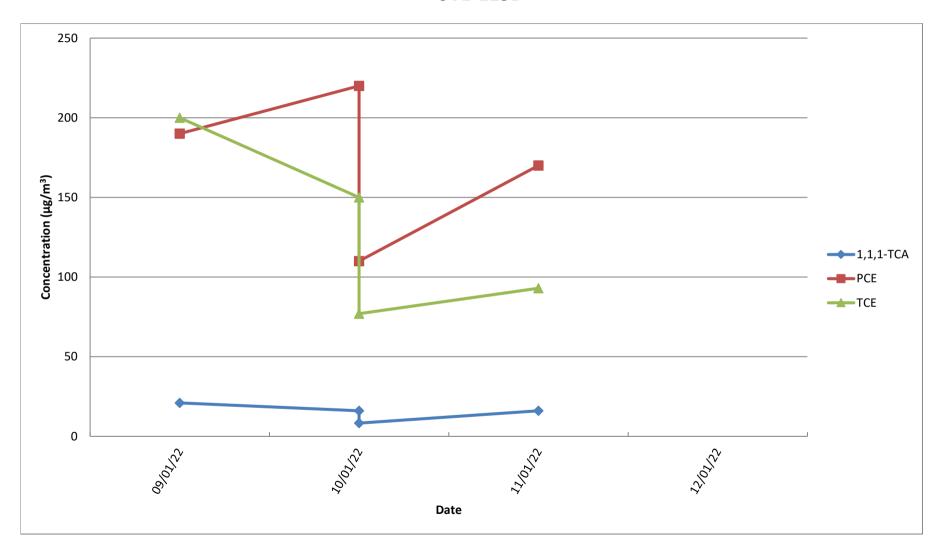

SVE-105D

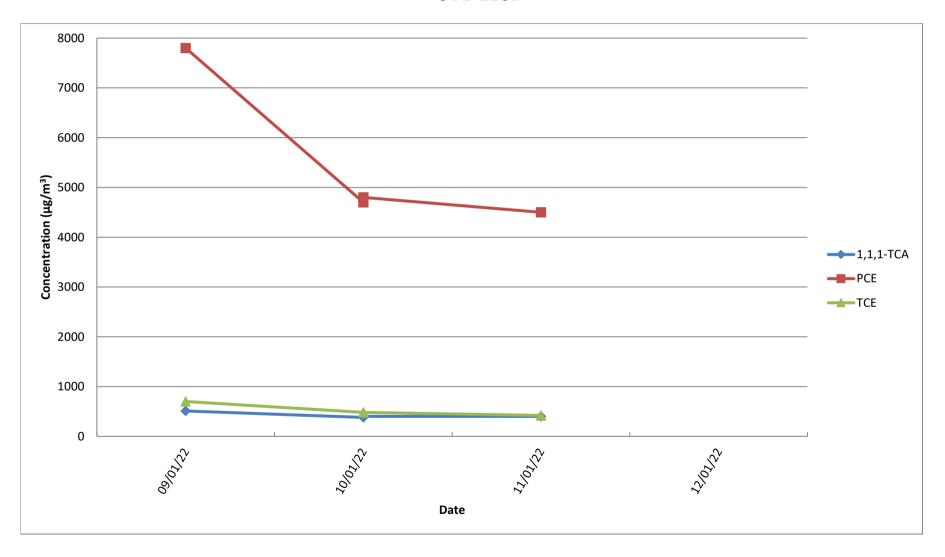

SVE-106I

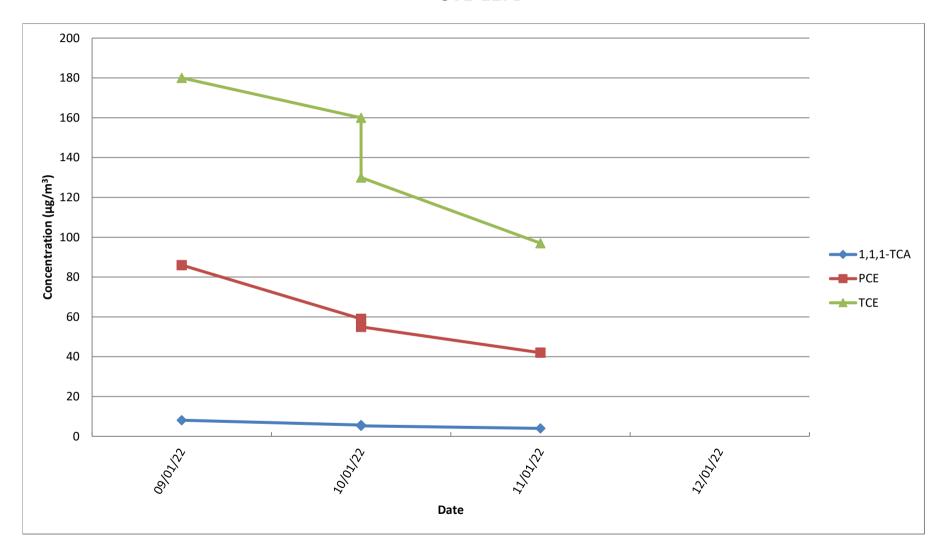

SVE-106D


SVE-106D (smaller scale)


SVE-112D


SVE-113D


SVE-114D


SVE-115D

SVE-116D

SVE-117D

APPENDIX D

DATA VALIDATION REPORTS AND VALIDATED DATA SUMMARY - SVPMs

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

NYSDEC, Analytical Services Protocol (ASP) Format.

Project Name: Naval Weapons Industrial Reserve Plant, Bethpage Site 1

Location: 999 Oyster Bay Rd, Bethpage, NY

SDG #: 2203211

Client: KOMAN Government Solutions, LLC

Date: 4/13/2022

Laboratory: Eurofins Air Toxics, LLC

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twenty (20) air samples and one (1) field blank were analyzed for Volatiles by TO-15 in accordance with NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 3/03/2022. The samples were submitted to Eurofins Air Toxics, Folsom, CA on 3/07/2022 for analysis.
- 3. The USEPA Region II SOP HW-31, Revision No.: 6, September 2016, Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15 was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (See discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Matrix	Sample Status
FB-01-030322	2203211-01A	3/03/2022	Air	Field Blank
SVPM-2003S-030322	2203211-02A	3/03/2022	Air	
SVPM-2003I-030322	2203211-03A	3/03/2022	Air	
SVPM-2003D-030322	2203211-04A	3/03/2022	Air	
SVPM-2002S-030322	2203211-05A	3/03/2022	Air	
SVPM-2002I-030322	2203211-06A	3/03/2022	Air	
SVPM-2002D-030322	2203211-07A	3/03/2022	Air	
SVPM-2001S-030322	2203211-08A	3/03/2022	Air	
SVPM-2001I-030322	2203211-09A	3/03/2022	Air	
DUP-01-030322	2203211-10A	3/03/2022	Air	Field Duplicate of sample SVPM-2001I-0030322
SVPM-2001D-030322	2203211-11A	3/03/2022	Air	
SVPM-2004S-030322	2203211-12A	3/03/2022	Air	
SVPM-2004I-030322	2203211-13A	3/03/2022	Air	
SVPM-2004D-030322	2203211-14A	3/03/2022	Air	
SVPM-2006S-030322	2203211-15A	3/03/2022	Air	
SVPM-20061-030322	2203211-16A	3/03/2022	Air	
SVPM-2006D-030322	2203211-17A	3/03/2022	Air	
DUP-02-030322	2203211-18A	3/03/2022	Air	Field Duplicate of sample SVPM-20061-030322
SVPM-2007S-030322	2203211-19A	3/03/2022	Air	
SVPM-2007I-030322	2203211-20A	3/03/2022	Air	
SVPM-2007D-030322	2203211-21A	3/03/2022	Air	

Sample Conditions/Problems:

- 1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.
- 2. The laboratory noted the following in the narrative: "Sample SVPM-2001D-030322 was received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits."

Holding Times:

1. All air samples were analyzed within the method holding time for summa canisters (30 days). No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 03/16/2022 @ 09:44AM (msdp.i) exhibited acceptable %Rs for all compounds. No qualifications were required.
- 2. CCV analyzed on 03/17/2022 @ 10:36AM (msdp.i) exhibited acceptable %Rs for all compounds. No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Surrogates:

1. All surrogates %REC values for all air samples and associated QC were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB) and Equipment Blank (EB):

- 1. Method Blank (2203211-22A) analyzed on 3/16/2022 was free of contamination. No qualifications were required.
- 2. Method Blank (2203211-22B) analyzed on 3/16/2022 was free of contamination. No qualifications were required.
- 3. Field Blank (FB-01-030322) (2203211-01A) analyzed on 3/16/2022 contained trichloroethene (1.9 ug/m3). Results for trichloroethene were qualified as non-detect (U and reported to the LOD) in samples SVPM-2001S-030322, SVPM-2001I-030322, SVPM-2004S-030322, and SVPM-2007I-030322.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

1. Laboratory Control Sample (2203211-24A) was analyzed on 03/16/2022. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample DUP-01-030322 (2203211-10A) was collected as field duplicate for sample SVPM-2001I-030322 (2203211-09A). Trichloroethene was detected in the field duplicate sample but was non-detect in the field sample. RPDs were within the control limits (<30%).

	SVPM-2001I-030322	DUP-01-030322	
	2203211-09A	2203211-10A	
Analyte	Result (ug/M3)	Result (ug/M3)	RPD (%)
Trichloroethene	ND	3.2	NC

ND – Not detected.

NC – Not calculated.

Results for trichloroethene were qualified as estimated (UJ/J) in the field duplicate pair (SVPM-2001I-030322 and DUP-01-030322).

2. Sample DUP-02-030322 (2203211-18A) was collected as field duplicate for sample SVPM-2006I-030322 (2203211-16A). RPDs were within the control limits (<30%). No qualifications were required.

	SVPM-2006I-030322	DUP-02-030322	
	2203211-16A	2203211-18A	
Analyte	Result (ug/M3)	Result (ug/M3)	RPD (%)
Cis-1,2-dichloroethene	200	200	0
Trans-1,2-dichloroethene	3.1	2.4	25.5
Trichloroethene	35	35	0

Sample Duplicate (SD):

1. Sample duplicate was performed on sample SVPM-2007D-030322 (2203211-21). RPDs were ≤ 30% except for trichloroethene 32%. Result for trichloroethene was qualified as estimated (J) in sample SVPM-2007D-030322.

Compound Quantitation and Reported Contract Required Quantitation Limits (CRQLs):

1. All sample results were reported within the linear calibration range. No qualifications were required.

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: 2203211.

3.	Summary of the qualified data are listed in the Qualification Summary Table for SDG:
	2203211.

4. Summary of all the data are listed in the Data Summary Table for SDG: 2203211.

NWIRP BETHPAGE, BETHPAGE, NY SITE 1 QUALIFICATION SUMMARY TABLE AIR

SDGs: 2203211

Sample Name	Lab ID	Analytical Method	Analyte	Unit	Reported Result	Lab Qualifier	Validated Value	DV Qualifier	Reason Code
SVPM-2001S-030322	2203211-08A	TO-15	Trichloroethene	UG_M3	2.1	J	2.7	U	FB
SVPM-2001I-030322	2203211-09A	TO-15	Trichloroethene	UG_M3	2.1	J	2.7	UJ	FB, FD
DUP-01-030322	2203211-10A	TO-15	Trichloroethene	UG_M3	3.2	J	3.2	J	FD
SVPM-2004S-030322	2203211-12A	TO-15	Trichloroethene	UG_M3	1.9	J	2.6	U	FB
SVPM-2007I-030322	2203211-20A	TO-15	Trichloroethene	UG_M3	2.0	J	2.6	U	FB
SVPM-2007D-030322	2203211-21A	TO-15	Trichloroethene	UG_M3	3.5		3.5	J	D

NOTE: Only results that had qualifications added after validation are listed in this table.

Reason Codes

FB Qualification due to field blank contamination.

FD Qualification due to field duplicate criteria exceedance.

D Qualification due to laboratory duplicate RPD outside QC criteria.

			Analytical	Occupie Date					
Sample Name	Lab ID	Analytical Name	Method	Sample Date	Result	Unit	Qualifier	LOD	LOQ
FB-01-030322	2203211-01A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG_M3	U	2.0	3.6
FB-01-030322	2203211-01A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
FB-01-030322	2203211-01A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	2.0	2.6
FB-01-030322	2203211-01A	1,2-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
FB-01-030322	2203211-01A	cis-1,2-dichloroethene	TO-15	20220303	2.6	UG_M3	U	2.0	2.6
FB-01-030322	2203211-01A	Tetrachloroethene	TO-15	20220303	4.5	UG_M3	U	3.4	4.5
FB-01-030322	2203211-01A	trans-1,2-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	2.0	2.6
FB-01-030322	2203211-01A	Trichloroethene	TO-15	20220303	1.9	UG_M3	J	2.7	3.6
FB-01-030322	2203211-01A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.3	1.7
SVPM-2003S-030322	2203211-02A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG_M3	U	2.0	3.6
SVPM-2003S-030322	2203211-02A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
SVPM-2003S-030322	2203211-02A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	2.0	2.6
SVPM-2003S-030322	2203211-02A	1,2-Dichloroethane	TO-15	20220303	2.7	UG M3	U	2.0	2.7
SVPM-2003S-030322	2203211-02A	cis-1,2-dichloroethene	TO-15	20220303	2.6	UG M3	U	2.0	2.6
SVPM-2003S-030322	2203211-02A	Tetrachloroethene	TO-15	20220303	4.5	UG_M3	U	3.3	4.5
SVPM-2003S-030322	2203211-02A	trans-1,2-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	2.0	2.6
SVPM-2003S-030322	2203211-02A	Trichloroethene	TO-15	20220303	2.8	UG_M3	J	2.6	3.6
SVPM-2003S-030322	2203211-02A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.2	1.7
SVPM-2003I-030322	2203211-03A	1,1,1-Trichloroethane	TO-15	20220303	3.4	UG M3	U	1.9	3.4
SVPM-2003I-030322	2203211-03A	1,1-Dichloroethane	TO-15	20220303	2.5	UG M3	U	1.4	2.5
SVPM-2003I-030322	2203211-03A	1,1-Dichloroethene	TO-15	20220303	2.4	UG M3	U	1.8	2.4
SVPM-2003I-030322	2203211-03A	1,2-Dichloroethane	TO-15	20220303	2.5	UG M3	U	1.8	2.5
SVPM-2003I-030322	2203211-03A	cis-1,2-dichloroethene	TO-15	20220303	2.4	UG M3	U	1.8	2.4
SVPM-2003I-030322	2203211-03A	Tetrachloroethene	TO-15	20220303	1.2	UG M3	J	3.1	4.2
SVPM-2003I-030322	2203211-03A	trans-1,2-Dichloroethene	TO-15	20220303	2.4	UG M3	U	1.8	2.4
SVPM-2003I-030322	2203211-03A	Trichloroethene	TO-15	20220303	18	UG M3		2.4	3.3
SVPM-2003I-030322	2203211-03A	Vinyl Chloride	TO-15	20220303	1.6	UG M3	U	1.2	1.6
SVPM-2003D-030322	2203211-04A	1,1,1-Trichloroethane	TO-15	20220303	3.7	UG M3	Ū	2.1	3.7
SVPM-2003D-030322	2203211-04A	1,1-Dichloroethane	TO-15	20220303	2.8	UG M3	Ū	1.5	2.8
SVPM-2003D-030322	2203211-04A	1,1-Dichloroethene	TO-15	20220303	2.7	UG M3	Ü	2.0	2.7
SVPM-2003D-030322	2203211-04A	1,2-Dichloroethane	TO-15	20220303	2.8	UG M3	Ü	2.0	2.8
SVPM-2003D-030322	2203211-04A	cis-1,2-dichloroethene	TO-15	20220303	2.7	UG M3	Ü	2.0	2.7

			Analytical						
Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	LOD	LOQ
SVPM-2003D-030322	2203211-04A	Tetrachloroethene	TO-15	20220303	1.7	UG M3	J	3.4	4.6
SVPM-2003D-030322	2203211-04A	trans-1,2-Dichloroethene	TO-15	20220303	2.7	UG M3	U	2.0	2.7
SVPM-2003D-030322	2203211-04A 2203211-04A	Trichloroethene	TO-15	20220303	4.7	UG_M3		2.7	3.6
SVPM-2003D-030322 SVPM-2003D-030322	2203211-04A 2203211-04A	Vinyl Chloride	TO-15	20220303	1.7	UG M3	U	1.3	1.7
SVPM-2003D-030322 SVPM-2002S-030322	2203211-04A 2203211-05A	1,1,1-Trichloroethane	TO-15	20220303	3.5	UG M3	U	2.0	3.5
SVPM-2002S-030322 SVPM-2002S-030322	2203211-05A 2203211-05A	1.1-Dichloroethane	TO-15	20220303	2.6	UG_M3	U	1.4	2.6
SVPM-2002S-030322	2203211-05A 2203211-05A	1,1-Dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.4	2.5
SVPM-2002S-030322 SVPM-2002S-030322	2203211-05A 2203211-05A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2002S-030322 SVPM-2002S-030322	2203211-05A 2203211-05A	cis-1.2-dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.9	2.5
		,	TO-15				U	_	
SVPM-2002S-030322	2203211-05A	Tetrachloroethene		20220303	4.3	UG_M3	_	3.2	4.3
SVPM-2002S-030322	2203211-05A	trans-1,2-Dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.9	2.5
SVPM-2002S-030322	2203211-05A	Trichloroethene	TO-15	20220303	4.6	UG_M3		2.5	3.4
SVPM-2002S-030322	2203211-05A	Vinyl Chloride	TO-15	20220303	1.6	UG_M3	U	1.2	1.6
SVPM-2002I-030322	2203211-06A	1,1,1-Trichloroethane	TO-15	20220303	3.4	UG_M3	U	1.9	3.4
SVPM-2002I-030322	2203211-06A	1,1-Dichloroethane	TO-15	20220303	2.5	UG_M3	U	1.4	2.5
SVPM-2002I-030322	2203211-06A	1,1-Dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.8	2.5
SVPM-2002I-030322	2203211-06A	1,2-Dichloroethane	TO-15	20220303	2.5	UG_M3	U	1.9	2.5
SVPM-2002I-030322	2203211-06A	cis-1,2-dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.8	2.5
SVPM-2002I-030322	2203211-06A	Tetrachloroethene	TO-15	20220303	1.1	UG_M3	J	3.1	4.2
SVPM-2002I-030322	2203211-06A	trans-1,2-Dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.8	2.5
SVPM-2002I-030322	2203211-06A	Trichloroethene	TO-15	20220303	10	UG_M3		2.5	3.4
SVPM-2002I-030322	2203211-06A	Vinyl Chloride	TO-15	20220303	1.6	UG_M3	U	1.2	1.6
SVPM-2002D-030322	2203211-07A	1,1,1-Trichloroethane	TO-15	20220303	3.5	UG_M3	U	2.0	3.5
SVPM-2002D-030322	2203211-07A	1,1-Dichloroethane	TO-15	20220303	2.6	UG_M3	U	1.4	2.6
SVPM-2002D-030322	2203211-07A	1,1-Dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.9	2.5
SVPM-2002D-030322	2203211-07A	1,2-Dichloroethane	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2002D-030322	2203211-07A	cis-1,2-dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.9	2.5
SVPM-2002D-030322	2203211-07A	Tetrachloroethene	TO-15	20220303	4.3	UG_M3	U	3.2	4.3
SVPM-2002D-030322	2203211-07A	trans-1,2-Dichloroethene	TO-15	20220303	2.5	UG_M3	U	1.9	2.5
SVPM-2002D-030322	2203211-07A	Trichloroethene	TO-15	20220303	44	UG_M3		2.5	3.4
SVPM-2002D-030322	2203211-07A	Vinyl Chloride	TO-15	20220303	1.6	UG_M3	U	1.2	1.6
SVPM-2001S-030322	2203211-08A	1,1,1-Trichloroethane	TO-15	20220303	3.7	UG_M3	U	2.1	3.7
SVPM-2001S-030322	2203211-08A	1,1-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	1.5	2.8

			Analytical						
Sample Name	Lab ID	Analytical Name	Method	Sample Date	Result	Unit	Qualifier	LOD	LOQ
SVPM-2001S-030322	2203211-08A	1,1-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2001S-030322	2203211-08A	1,2-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	2.0	2.8
SVPM-2001S-030322	2203211-08A	cis-1,2-dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2001S-030322	2203211-08A	Tetrachloroethene	TO-15	20220303	4.6	UG_M3	U	3.4	4.6
SVPM-2001S-030322	2203211-08A	trans-1,2-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2001S-030322	2203211-08A	Trichloroethene	TO-15	20220303	2.7	UG_M3	U	2.7	3.6
SVPM-2001S-030322	2203211-08A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.3	1.7
SVPM-2001I-030322	2203211-09A	1,1,1-Trichloroethane	TO-15	20220303	3.8	UG_M3	U	2.1	3.8
SVPM-2001I-030322	2203211-09A	1,1-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	1.6	2.8
SVPM-2001I-030322	2203211-09A	1,1-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2001I-030322	2203211-09A	1,2-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	2.1	2.8
SVPM-2001I-030322	2203211-09A	cis-1,2-dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2001I-030322	2203211-09A	Tetrachloroethene	TO-15	20220303	4.7	UG_M3	U	3.5	4.7
SVPM-2001I-030322	2203211-09A	trans-1,2-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2001I-030322	2203211-09A	Trichloroethene	TO-15	20220303	2.7	UG_M3	UJ	2.7	3.7
SVPM-2001I-030322	2203211-09A	Vinyl Chloride	TO-15	20220303	1.8	UG_M3	U	1.3	1.8
DUP-01-030322	2203211-10A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG_M3	U	2.0	3.6
DUP-01-030322	2203211-10A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
DUP-01-030322	2203211-10A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
DUP-01-030322	2203211-10A	1,2-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
DUP-01-030322	2203211-10A	cis-1,2-dichloroethene	TO-15	20220303	2.6	UG M3	U	1.9	2.6
DUP-01-030322	2203211-10A	Tetrachloroethene	TO-15	20220303	4.5	UG M3	U	3.3	4.5
DUP-01-030322	2203211-10A	trans-1,2-Dichloroethene	TO-15	20220303	2.6	UG M3	U	1.9	2.6
DUP-01-030322	2203211-10A	Trichloroethene	TO-15	20220303	3.2	UG M3	J	2.6	3.5
DUP-01-030322	2203211-10A	Vinyl Chloride	TO-15	20220303	1.7	UG M3	U	1.2	1.7
SVPM-2001D-030322	2203211-11A	1,1,1-Trichloroethane	TO-15	20220303	25	UG_M3	U	14	25
SVPM-2001D-030322	2203211-11A	1,1-Dichloroethane	TO-15	20220303	18	UG M3	U	10	18
SVPM-2001D-030322	2203211-11A	1,1-Dichloroethene	TO-15	20220303	18	UG M3	U	13	18
SVPM-2001D-030322	2203211-11A	1,2-Dichloroethane	TO-15	20220303	18	UG_M3	U	14	18
SVPM-2001D-030322	2203211-11A	cis-1,2-dichloroethene	TO-15	20220303	18	UG M3	U	13	18
SVPM-2001D-030322	2203211-11A	Tetrachloroethene	TO-15	20220303	31	UG M3	U	23	31
SVPM-2001D-030322	2203211-11A	trans-1,2-Dichloroethene	TO-15	20220303	18	UG M3	U	13	18
SVPM-2001D-030322	2203211-11A	Trichloroethene	TO-15	20220303	17	UG M3	J	18	25

			Analytical						
Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	LOD	LOQ
SVPM-2001D-030322	2203211-11A	Vinyl Chloride	TO-15	20220303	12	UG M3	U	8.7	12
SVPM-2004S-030322	2203211-11A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG M3	U	2.0	3.6
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	1.1-Dichloroethane	TO-15	20220303	2.7	UG M3	U	1.5	2.7
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	1,1-Dichloroethene	TO-15	20220303	2.6	UG M3	U	1.9	2.6
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	1,2-Dichloroethane	TO-15	20220303	2.7	UG M3	U	2.0	2.7
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	cis-1,2-dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	Tetrachloroethene	TO-15	20220303	4.5	UG M3	U	3.3	4.5
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	trans-1.2-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2004S-030322	2203211-12A 2203211-12A	Trichloroethene	TO-15	20220303	2.6	UG_M3	U	2.6	3.5
SVPM-2004S-030322 SVPM-2004S-030322	2203211-12A 2203211-12A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.2	1.7
SVPM-2004I-030322	2203211-12A 2203211-13A	1,1,1-Trichloroethane	TO-15	20220303	3.7	UG_M3	U	2.1	3.7
SVPM-2004I-030322 SVPM-2004I-030322	2203211-13A 2203211-13A	, ,	TO-15	20220303	2.8	UG_M3	U	1.5	2.8
SVPM-2004I-030322 SVPM-2004I-030322	2203211-13A 2203211-13A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.0
	2203211-13A 2203211-13A	1,1-Dichloroethene				_	U	2.0	2.7
SVPM-2004I-030322		1,2-Dichloroethane	TO-15	20220303	2.8	UG_M3	•		2.8
SVPM-2004I-030322	2203211-13A	cis-1,2-dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	
SVPM-2004I-030322	2203211-13A	Tetrachloroethene	TO-15	20220303	4.6	UG_M3	U	3.4	4.6
SVPM-2004I-030322	2203211-13A	trans-1,2-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2004I-030322	2203211-13A	Trichloroethene	TO-15	20220303	2.9	UG_M3	J	2.7	3.6
SVPM-2004I-030322	2203211-13A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.3	1.7
SVPM-2004D-030322	2203211-14A	1,1,1-Trichloroethane	TO-15	20220303	3.7	UG_M3	U	2.1	3.7
SVPM-2004D-030322	2203211-14A	1,1-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	1.5	2.8
SVPM-2004D-030322	2203211-14A	1,1-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2004D-030322	2203211-14A	1,2-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	2.0	2.8
SVPM-2004D-030322	2203211-14A	cis-1,2-dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2004D-030322	2203211-14A	Tetrachloroethene	TO-15	20220303	4.6	UG_M3	U	3.4	4.6
SVPM-2004D-030322	2203211-14A	trans-1,2-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2004D-030322	2203211-14A	Trichloroethene	TO-15	20220303	4.0	UG_M3		2.7	3.6
SVPM-2004D-030322	2203211-14A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.3	1.7
SVPM-2006S-030322	2203211-15A	1,1,1-Trichloroethane	TO-15	20220303	3.7	UG_M3	U	2.1	3.7
SVPM-2006S-030322	2203211-15A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
SVPM-2006S-030322	2203211-15A	1,1-Dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2006S-030322	2203211-15A	1,2-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2006S-030322	2203211-15A	cis-1,2-dichloroethene	TO-15	20220303	2.7	UG_M3	U	2.0	2.7

			Analytical						
Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	LOD	LOQ
SVPM-2006S-030322	2203211-15A	Tetrachloroethene	TO-15	20220303	4.6	UG M3	U	3.4	4.6
SVPM-2006S-030322	2203211-15A 2203211-15A	trans-1,2-Dichloroethene	TO-15	20220303	2.7	UG M3	U	2.0	2.7
SVPM-2006S-030322	2203211-15A 2203211-15A	Trichloroethene	TO-15	20220303	2.6	UG_M3	J	2.7	3.6
SVPM-2006S-030322	2203211-15A 2203211-15A	Vinyl Chloride	TO-15	20220303	1.7	UG M3	U	1.3	1.7
SVPM-2006I-030322	2203211-15A 2203211-16A	1,1,1-Trichloroethane	TO-15	20220303	3.8	UG_M3	U	2.1	3.8
SVPM-2006I-030322	2203211-10A 2203211-16A	1.1-Dichloroethane	TO-15	20220303	2.8	UG_M3	U	1.6	2.8
SVPM-2006I-030322	2203211-16A 2203211-16A		TO-15	20220303	2.7	UG_M3	U	2.0	2.6
		1,1-Dichloroethene	TO-15			UG_M3	U	2.0	2.7
SVPM-2006I-030322	2203211-16A	1,2-Dichloroethane		20220303	2.8	_	U		_
SVPM-2006I-030322	2203211-16A	cis-1,2-dichloroethene	TO-15	20220303	200	UG_M3		2.0	2.7
SVPM-2006I-030322	2203211-16A	Tetrachloroethene	TO-15	20220303	4.7	UG_M3	U	3.5	4.7
SVPM-2006I-030322	2203211-16A	trans-1,2-Dichloroethene	TO-15	20220303	3.1	UG_M3		2.0	2.7
SVPM-2006I-030322	2203211-16A	Trichloroethene	TO-15	20220303	35	UG_M3		2.7	3.7
SVPM-2006I-030322	2203211-16A	Vinyl Chloride	TO-15	20220303	1.8	UG_M3	U	1.3	1.8
SVPM-2006D-030322	2203211-17A	1,1,1-Trichloroethane	TO-15	20220303	3.5	UG_M3	U	2.0	3.5
SVPM-2006D-030322	2203211-17A	1,1-Dichloroethane	TO-15	20220303	2.6	UG_M3	U	1.5	2.6
SVPM-2006D-030322	2203211-17A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2006D-030322	2203211-17A	1,2-Dichloroethane	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2006D-030322	2203211-17A	cis-1,2-dichloroethene	TO-15	20220303	180	UG_M3		1.9	2.6
SVPM-2006D-030322	2203211-17A	Tetrachloroethene	TO-15	20220303	4.4	UG_M3	U	3.3	4.4
SVPM-2006D-030322	2203211-17A	trans-1,2-Dichloroethene	TO-15	20220303	2.0	UG_M3	J	1.9	2.6
SVPM-2006D-030322	2203211-17A	Trichloroethene	TO-15	20220303	29	UG_M3		2.6	3.5
SVPM-2006D-030322	2203211-17A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.2	1.7
DUP-02-030322	2203211-18A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG_M3	U	2.0	3.6
DUP-02-030322	2203211-18A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
DUP-02-030322	2203211-18A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
DUP-02-030322	2203211-18A	1,2-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
DUP-02-030322	2203211-18A	cis-1,2-dichloroethene	TO-15	20220303	200	UG M3		1.9	2.6
DUP-02-030322	2203211-18A	Tetrachloroethene	TO-15	20220303	4.5	UG M3	U	3.3	4.5
DUP-02-030322	2203211-18A	trans-1,2-Dichloroethene	TO-15	20220303	2.4	UG M3	J	1.9	2.6
DUP-02-030322	2203211-18A	Trichloroethene	TO-15	20220303	35	UG M3		2.6	3.5
DUP-02-030322	2203211-18A	Vinyl Chloride	TO-15	20220303	1.7	UG M3	U	1.2	1.7
SVPM-2007S-030322	2203211-19A	1,1,1-Trichloroethane	TO-15	20220303	3.9	UG M3	U	2.2	3.9
SVPM-2007S-030322	2203211-19A	1,1-Dichloroethane	TO-15	20220303	2.9	UG M3	Ü	1.6	2.9

			Analytical						
Sample Name	Lab ID	Analytical Name	Method	Sample Date	Result	Unit	Qualifier	LOD	LOQ
SVPM-2007S-030322	2203211-19A	1,1-Dichloroethene	TO-15	20220303	2.8	UG_M3	U	2.1	2.8
SVPM-2007S-030322	2203211-19A	1,2-Dichloroethane	TO-15	20220303	2.9	UG_M3	U	2.1	2.9
SVPM-2007S-030322	2203211-19A	cis-1,2-dichloroethene	TO-15	20220303	2.8	UG_M3	U	2.1	2.8
SVPM-2007S-030322	2203211-19A	Tetrachloroethene	TO-15	20220303	4.8	UG_M3	U	3.6	4.8
SVPM-2007S-030322	2203211-19A	trans-1,2-Dichloroethene	TO-15	20220303	2.8	UG_M3	U	2.1	2.8
SVPM-2007S-030322	2203211-19A	Trichloroethene	TO-15	20220303	3.5	UG_M3	J	2.8	3.8
SVPM-2007S-030322	2203211-19A	Vinyl Chloride	TO-15	20220303	1.8	UG_M3	U	1.4	1.8
SVPM-2007I-030322	2203211-20A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG_M3	U	2.0	3.6
SVPM-2007I-030322	2203211-20A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
SVPM-2007I-030322	2203211-20A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2007I-030322	2203211-20A	1,2-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2007I-030322	2203211-20A	cis-1,2-dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2007I-030322	2203211-20A	Tetrachloroethene	TO-15	20220303	2.5	UG_M3	J	3.3	4.5
SVPM-2007I-030322	2203211-20A	trans-1,2-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2007I-030322	2203211-20A	Trichloroethene	TO-15	20220303	2.6	UG_M3	U	2.6	3.5
SVPM-2007I-030322	2203211-20A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.2	1.7
SVPM-2007D-030322	2203211-21A	1,1,1-Trichloroethane	TO-15	20220303	3.6	UG_M3	U	2.0	3.6
SVPM-2007D-030322	2203211-21A	1,1-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	1.5	2.7
SVPM-2007D-030322	2203211-21A	1,1-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2007D-030322	2203211-21A	1,2-Dichloroethane	TO-15	20220303	2.7	UG_M3	U	2.0	2.7
SVPM-2007D-030322	2203211-21A	cis-1,2-dichloroethene	TO-15	20220303	2.1	UG_M3	J	1.9	2.6
SVPM-2007D-030322	2203211-21A	Tetrachloroethene	TO-15	20220303	2.4	UG_M3	J	3.3	4.5
SVPM-2007D-030322	2203211-21A	trans-1,2-Dichloroethene	TO-15	20220303	2.6	UG_M3	U	1.9	2.6
SVPM-2007D-030322	2203211-21A	Trichloroethene	TO-15	20220303	3.5	UG_M3	J	2.6	3.5
SVPM-2007D-030322	2203211-21A	Vinyl Chloride	TO-15	20220303	1.7	UG_M3	U	1.2	1.7