

NOR-00968

January 31, 2011

Mr. Stephen Scharf
New York Department of Environmental Conservation
Division of Environmental Remediation
Bureau of Remedial Action A
625 Broadway, 11th Floor
Albany, New York 12233-7015

Reference:

CLEAN Contract No. N62472-03-0057

Contract Task Order 66

Subject:

BPOW 2-1 and BPOW 2-2 Outpost Monitoring Wells Repair and Sampling Summary

NWIRP Bethpage, New York

Dear Mr. Scharf:

On behalf of the Navy, please find enclosed a copy of the subject document. This document provides a summary of activities to repair and sample outpost monitoring wells BPOW 2-1 and 2-2 at Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, New York.

If you have any questions please contact Ms. Lora Fly, NAVFAC Mid-LANT, at (757) 341-2012.

Sincerely/

David D. Brayack, P.E.

Project Manager

Enclosure:

(1) BPOW 2-1 and BPOW 2-2 Outpost Monitoring Wells Repair and Sampling Summary

NWIRP Bethpage, New York

Distribution:

Mid-Lant, Lora Fly

NYSDEC (Albany), Henry Wilkie (email)

NYSDOH (Troy), Steve Karpinski (email)

NAVAIR, Richard Smith

USEPA, Carol Stein (email)

NGC, Kent Smith (email)

South Farmingdale Water District

Tetra Tech NUS, Dave Brayack

ECOR Solutions, Al Taormina

Administrative Record

Project File

BPOW 2-1 AND BPOW 2-2 OUTPOST MONTORING WELLS REPAIR AND SAMPLING SUMMARY NWIRP BETHPAGE, NEW YORK

INTRODUCTION

This document summarizes activities conducted to repair and sample Outpost Monitoring Wells BPOW 2-1 and BPOW 2-2 at Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage (Figure 1). These activities include:

- Monitoring well repair (BPOW 2-1)
- Development of monitoring wells (BPOW 2-1, and BPOW2-2)
- Analytical results from October 2010 and December 2010 sampling events (BPOW 2-1, and BPOW 2-2)

BACKGROUND

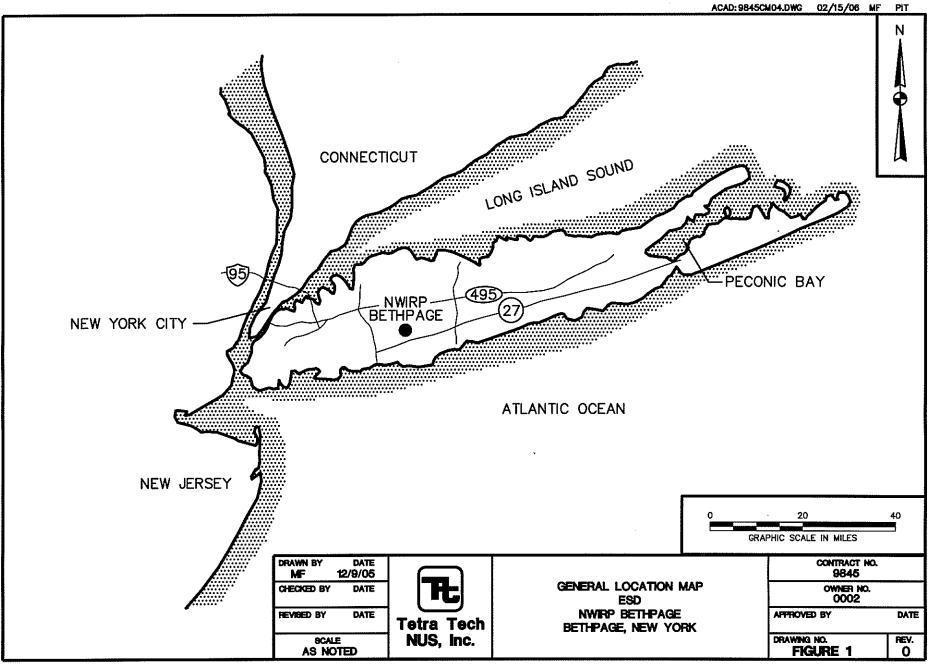
In April 2003, the Navy issued the OU 2 Record of Decision (ROD) that in part identified the installation of Outpost Monitoring Wells BPOW 2-1 and 2-2. These monitoring wells were installed to provide a 4-year time period between site-related volatile organic compounds (VOCs) being detected in the outpost monitoring wells and a potential impact at South Farmingdale Water District Plant No. 3. A potential impact would consist of the detection of any site-related VOCs being at 0.5 micrograms per liter (μ g/L) or greater. The wells were placed (horizontally and vertically) based on modeling efforts that identified flow pathways between the estimated location of site-related contamination at that time and the first detection of the contamination into the well field. The modeling used a target value of 0.5 μ g/L for individual VOCs in the public water supply, which is a factor of 10 less than the maximum contaminant level (MCL) of 5 μ g/L for most of the site-related VOCs.

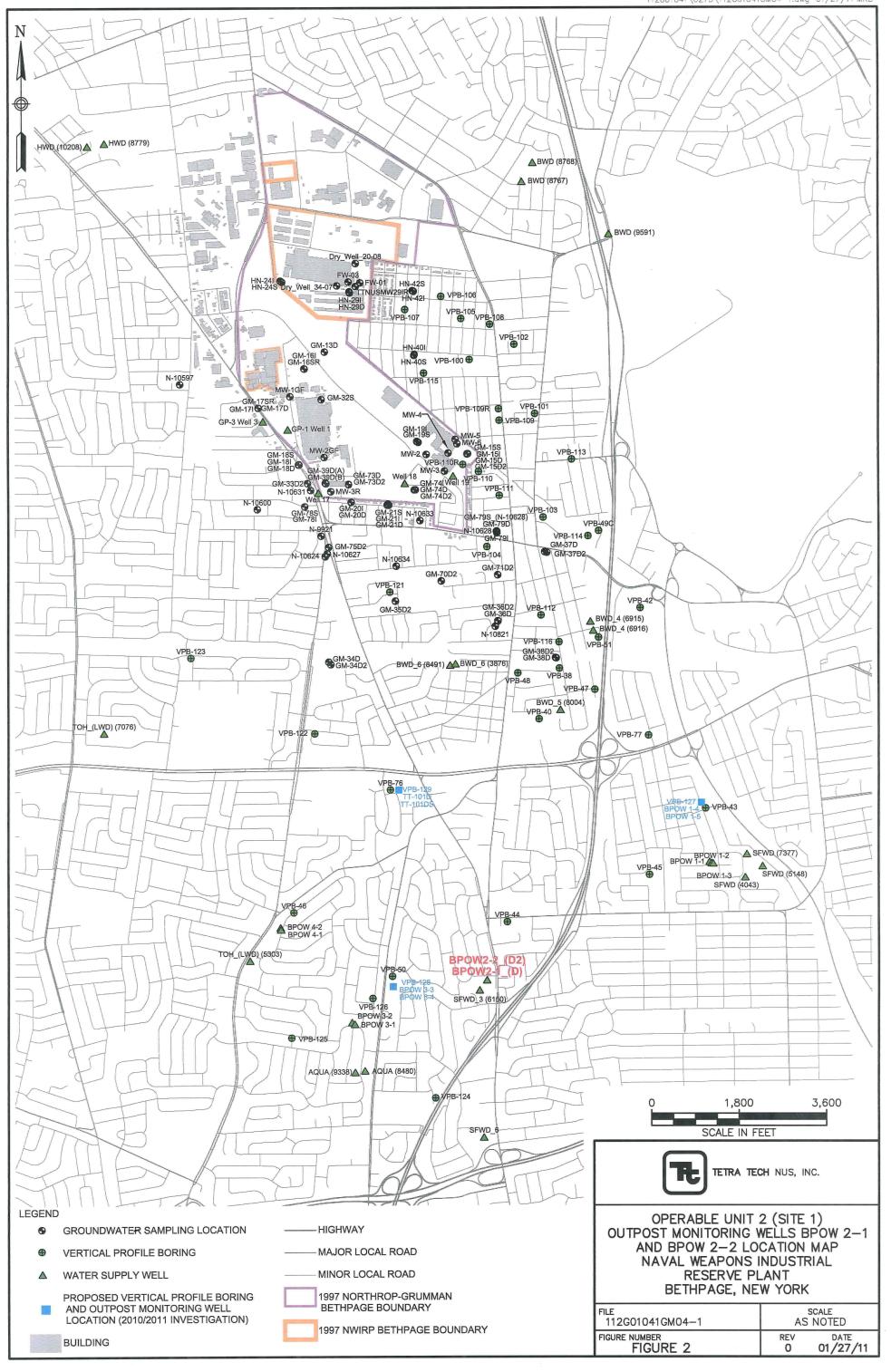
In August and September 2003, the Navy installed and developed Outpost Monitoring Wells 2-1 and 2-2. In April 2004, the Navy installed dedicated pumps and packers in the wells. In May and June 2004, Northrop Grumman Corporation (NGC) collected the first groundwater samples from this area. The initial round of sampling for BPOW 2-1 was conducted in June 2004 and detected total volatile organic compound (TVOCs) at a concentration of 3.78 μ g/L, including trichloroethene (TCE) detected at 1.1 μ g/L. Two additional samples were collected from BPOW 2-1 in August 2004, and TVOCs totaled 6.8 and 5.4 μ g/L, including TCE detected at a concentration of 1.8 μ g/L in both samples. Benzene was also detected at a maximum concentration of 42 μ g/L in these samples.

The initial round of sampling for BPOW 2-2 was conducted in May 2004, TCE was detected at a concentration of 0.84 ug/L. No other VOCs were detected in this sample, or in the two subsequent samples collected in May and June 2004.

Between 2004 and mid-2007, NGC continued to sample these wells on a quarterly basis. TVOCs were consistently detected in BPOW 2-1 at concentrations ranging from 3.6 ug/L to 10.24 ug/L. TVOCs were not detected in samples collected from BPOW 2-2 in the 2004 quarterly samples subsequent to the May 2004 event, but were consistently detected in groundwater samples collected from 2005 to 2007, with TVOC detections in BPOW 2-2 ranging from 0.55 to 2.4 ug/L. The maximum individual VOC detected in BPOW 2-2 was TCE at 1.4 ug/L in July 2006.

In 2007, in response to benzene detected in BP0W 2-1, NYSDEC conducted an investigation of groundwater in the area. This investigation included the removal of dedicated sampling pump and packer assemblies in outpost monitoring wells BPOW 2-1 and BPOW 2-2. This evaluation continued through 2008 and concluded that the well casing for BPOW 2-1 was cracked and that the detections of VOCs in BPOW 2-1 were the result of shallow contaminated groundwater infiltrating the casing and flowing downward into the screen interval. Because this crack resulted in a conduit for migration of shallow groundwater contamination into a zone that may be intercepted by a water district well, in 2009 the Navy repaired the well by installing a 2-inch monitoring well within the 4-inch well and using a bentonite/cement grout sealed the annular space above the screen zone. Additional detail on the repair and subsequent actions are described below.


OUTPOST MONITORING WELL BPOW 2-1


- BPOW 2-1 was repaired in May 2009. The monitoring well repair construction log is provided in Attachment 1.
- BPOW 2-1 was re-developed on October 5, 2010. The monitoring well development log is provided in Attachment 2.
- New dedicated submersible pump was installed on December 7, 2010.
- Groundwater samples were collected from BPOW 2-1 on October 6, 2010 and December 8, 2010. The sample collected in October 2010 was collected at the end of development to provide an initial evaluation of groundwater quality and are considered to be screening level quality. The sample collected in December 2010 is representative of stabilized groundwater conditions and is considered a high level quality sample.
- Samples were analyzed for Target Compound List (TCL) VOCs. Sample logs sheets documenting the collection of these samples are provided in Attachment 3. Sample Chain of Custody forms are provided in Attachment 4.

- Site-related VOCs were not detected in groundwater samples collected BPOW 2-1 during the October and December 2010 sampling events.
- Data validation reports are provided in Attachment 5.

OUTPOST MONITORING WELL BPOW 2-2

- No repairs were conducted on BPOW 2-2.
- BPOW 2-2 was re-developed on December 7, 2010. The monitoring well development log is provided in Attachment 2.
- A decontaminated submersible pump was installed on December 7, 2010 as documented in Attachment 1.
- Groundwater samples were collected from BPOW 2-2 on October 7, 2010 and December 8, 2010. The samples were analyzed for TCL VOCs. Sample logs sheets documenting the collection of these samples are provided in Attachment 3. Sample Chain of Custody forms are provided in Attachment 4.
- The sample collected from October 2010 had a single positive VOC detection, chloroethane at 12 μ g/L. Chloroethane was also detected in the trip blank sample associated with this sampling event at a concentration of 13 μ g/L. Because chloroethane was not detected in associated laboratory method blank, data validation did not reject the detection. However, it is suspected that the detection of chloroethane in the October 2010 BPOW 2-2 sample was attributed to laboratory contamination.
- Chloroethane was not detected in the December 2010 sample. However, 1,1-Dichloroethane was detected in this sample at 0.74 µg/L. This detection was qualified as an estimated value. Laboratory data validation qualified this detection as uncertainty near detection limit.
- Data validation reports are provided in Attachment 5.

ATTACHMENT 1 MONITORING WELL REPAIR/CONSTRUCTION CONSTRUCTION LOG

Attachment B New Monitoring Well

OVERBURDEN

MONITORING WELL SHEET

WELL NO.: 6W 2-4

FLUSH - MOUNT Tetra Tech NUS, Inc.

	OLOGIST ELEVATION	ONT Z	DEVELOPMENT METHOD (47 Developed
Z Z		- ELEVATION TOP OF RISER:		-
62/26/99		TYPE OF SURFACE SEAL: O	ncrete Pad	
SURF.	H MOUNT—ACE CASING	TYPE OF PROTECTIVE CASING: Strol- Plusty 1. I.D. OF PROTECTIVE CASING:	Mount 12" Diametr	····
ACAD; F		DIAMETER OF HOLE: Original	inal 8"	_
		TYPE OF RISER PIPE: 212 PYC 0: RISER PIPE I.D.: 2 0		
		TYPE OF BACKFILL/SEAL:		·
THE PERSON NAMED IN COLUMN NAM		Cement Then	honite a must	
		— ELEVATION/DEPTH TOP OF SEA	l. :	/330
		— TYPE OF SEAL: Bentoni		
		— ELEVATION/DEPTH TOP OF SAM	10: #0 Sand 340 #1 Sand 340	10-3460/ 10-3560
N.		— ELEVATION/DEPTH TOP OF SCR TYPE OF SCREEN: SCAC LU	EEN: Lo 40 PVC	
		TYPE OF SCREEN: SCACEU		
		TYPE OF SAND PACK: $\frac{#4}{4}$	iltersand	
		DIAMETER OF HOLE IN BEDROC	к: <u>W</u>	_

Pump installed on 12/8/2010.

Tŧ	Tetra Tech NUS, Inc.
----	----------------------

WELL No .:

BPOW 2-2

MONITORING WELL SHEET

PERMIT No:

						PERMIT NO:		
	PROJECT:	NWIRP	DRILLING Co.:	UN	TECH	BORING No.:	BPOW	2-2
	PROJECT No.:	N4037	DRILLER:		EVANS	DATE COMPLETE	D: 9	120/03
	SITE:	BPOW 2	DRILLING MET	THOD:	MUD ROT	NORTHING:		
	GEOLOGIST:	CONTI	DEV. METHOD):		EASTING:		
		-		— Elev	ation / Depth of Top	of Riser:		
				Elev	ation / Height of Top Surf	o of face Casing:		
				I.D.	of Surface Casing:			
	Ground Elevation	Datum:		Туре	e of Surface Casing:	STEEL		
				— Туре	e of Surface Seal:	PAD		
				I.D.	of Riser:	3 13/16 11	*	
				Туре	e of Riser:	PUC SCH 80		
•				Bore	ehole Diameter:	8"		
	ch packer from 6 feet and 4 incl			— Туре	e of Backfill:	VOLCLAY GROUT		
	Grundfos Pump			— Elev	ation / Depth of Sea	E SAUN #O		425
JUOIT	of pump at 42°	i leet	•	— Туре	of Seal:	NA		
			•	Elev	ation / Depth of Top	of Filter Pack:(c)		435
		-	_	— Elev	ation / Depth of Top	of Screen:		455
			_	— Туре	e of Screen:	PVC SCH	80_	
			-	Slot	Size x Length:	10 SL × 40'		
			-	I.D.	of Screen:	313/16		
				— Туре	e of Filter Pack:	SILICA SAND	î.	
				Elev	ation / Depth of Bott	om of Screen:	/	495
				Elev	ation / Depth of Bott	om of Filter Pack:		401
				Туре	of Backfill Below W			496
¹² (94)		Not to	Scale	Elev	ation / Total Depth o	of Borehole:		510

Pump installed on 12/8/2010.

REV 2/12/04

ATTACHMENT 2
MONITORING WELL
DEVELOPMENT LOG

MONITORING WELL DEVELOPMENT RECORD

Page ____ of ______

Well: BPOW - 2-1 Depth to Bottom (ft.): ~396 Responsible Personnel: __Conti
Site: __OU2 BEHPAGE Static Water Level Before (ft.): 21.35 Drilling Co.: __Delta
Date Installed: __514 O9 Static Water Level After (ft.): __Project Name: _Bethpage OU-2 Offsite GW
Date Developed: __IO-5-10 Screen Length (ft.): __HO' Project Number 112G00622

Dev. Method: __AIR UFT/PUMP Specific Capacity: ______
Pump Type: __GOUNDFOS 2" O Casing ID (in.): __2"

Repaired on 5 14109 PLACED 2" INSIDE 4 O

Specific Turbidity Time Estimated Cumulative Water Level Temperature Hq (NTU) Sediment Water Readings (Degrees C) Conductance Remarks (Ft. below FOC) **Thickness** Volume (Units ____) (odor, color, etc.) (Ft.) (Gal.) BGS ms/cm Min 130 NA 21.35 NO ODOR. 0.175 30 15-16 300 4.50 185 ~ 10 GPM CLOUDY 1200 10/5 11 1300 ~ 30 GPM CLEAR 1315 750 15.45 FF0.0 4.1 4.36 SIABLD 21.35 1330 1000 4.34 0.071 4.0 CLEAR AUE ~ 16-7 GPM 15.50 XXXX 10/6 0825 NA 21.29 AIR LIFT. 0945 STAPT NA START AIR LIFT NA 1000 500± 14.87 4.27 0.151 CLEAR 1.0 11 1. 3.0 4.36 4.40 0.089 11 1015 1000 ~ 33GPM GOEMPTY NA START errore de 1100 1.8 NA 1115 4.59 850.0 CLEAR 500 4.68 0.075 2. 1130 4.32 4.51 0001 NA TOTAL AIR LIFT atrod as 3000

Tt,	Tetra Tech NUS, Inc.

MONITORING WELL DEVELOPMENT RECORD

Page __l_ of __l_

Site: E Date Instal Date Deve Dev. Metho	led: loped:	7-10 7-10	Depth to Bottom (Static Water Leve Static Water Leve Screen Length (ft Specific Capacity Casing ID (in.):	el Before (ft.): <u></u>	20.56	_ Drilling Co.: Project Name: _ Project Number	Delta Bethpage 112G0062	OU-2 Offsite GW
Time	Estimated Sediment Thickness (Ft.)	Cumulative Water Volume (Gal.)	Water Level Readings (Ft. below TOC)	Temperature (Degrees C)	pН	Specific Conductance (Units) >>>S/Cm	Turbidity (NTU)	Remarks (odor, color, etc.)
1000	NA	_	20.56		_			
1020	11	1600	NA	14.80	4.44	0:178	33.5	SLCLOUDY - NOODOR
1040	- 11	3200	NA	15.31	4.61	0.107	7.1	CUEAR "
1100	11	4800	NA	16.02	4.61	0.103	0.0	11
1120		6400±	21.15	WL TAVC	4.61	0.101	1.0	И
			MEAS WL-					WELL.
		4" \$ WE	u (NO RE	10C - 210A	X 24	- BEVIELO	-MONI	
								-

ATTACHMENT 3
GROUNDWATER SAMPLE LOG

Page ____ of ____

Project Site Nam Project No.:	ie:	BETHPAG 112G0062 PRE-DES	22				ID No.: I Location: d By:		w-2-1 2-1	
[] Domestic \ [x] Monitoring [] Other Well [] QA Sample	g Well Data Type:	1				[X] Lo	No.: Sample: w Concentr gh Concentr		424	
SAMPLING DATA:	Total Control									
Date: 10/6/ Time: 1410		Color Visual	pH Standard	S.C. mS/cm	Temp. Degrees C	Turbidity NTU	DO mg/l	ORP mV	Other NA	
Method: Pump	000000000000000000000000000000000000000	CLEAR	4.62	.071	15.98	1.0	2.49	319		
PURGE DATA:		TIME							WATER LEV	7.
Date: 1016110		1330	4.68	-	-	-	-		_	~7GPN
Method: Pump	(2")	1340	4.60	.077	16.94	5.8	5.44	307	21.78	
Monitor Reading (ppm)	: 0	1350	4.65	.072	16.02	0.3	3.77	315	21.90	
Well Casing Diameter		1400	4.62	.072	16.04	1.2	2.54	318	22.05	
Туре: 2"Ф Р	VC			.071	15.98	1.0	2.49	319	22.14	
Total Well Depth (TD):	396									
Static Water Level (WL): 20.85									
One Casing Volume										
	330									
	410		-				1			
Total Purge Time (min)	4.									
Total Vol. Purged (gal)										
SAMPLE COLLECTIO	THE RESERVE AND ADDRESS OF THE PARTY OF THE	TION: Strike	thru analy	sis not re	guired					
Analy			Preser			Container R	equirements		Collected	1
VOCs			HCL/4	DEG C	2-4	0ml Glass V	ials		V	
	-	-							-	
									(A.	1
OBSERVATIONS / NO	TES:		111							
2" MW = 0.163 gal/ft										
Sample taken at discre	et intervals us	ing a hydropu	unch samp	ler unless	otherwise note	ed.	ump e	~ 60	BGS	
Not enough volume for	water quality	narameters				5	AMPLIN	G RA	75	
Check box if not enoug		parametero					- IGPM	,	alk.	
Hood all paper instead	of water avail	t. mater	_			/\	- IGPM			
Used pH paper instead Check box if used pH p		ny meter	Cal							
3777001110000			_							
Circle if Applicable:						Signature(s	s):			
	icate ID No.:					The state of the s	-			
							37 C	onti		

Page 1 of 1

Project Site Name: Project No.:	112G0062 PRE-DES	22				ID No.: Location: d By:	BP- O\ BPOW SJC	w-2-2 2-2
[] Domestic Well Data [x] Monitoring Well Data [] Other Well Type: [] QA Sample Type:	a 				[X] Lo	No.: Sample: ow Concent gh Concent		24
SAMPLING DATA:								
Date: 1017110	Color	pH	S.C.	Temp.	Turbidity	DO	ORP	Other
Time: 1500	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	mV	NA
Method: Pump (2") PURGE DATA:	CLEAR	en entre en						WATERLE
Date: 10 7 10	1300	141	TIAL	PUM	0 0	17 GPI	u —	
Method: SUB PUMP	1310	4.55	108	17.58	1.0	4.90	299	24.70
Monitor Reading (ppm):	1320	4.50	129	16.49	2.7	3.72	285	24.75
Well Casing Diameter & Material	1330	4.61	. 120	15.56	5.0	2.95	282	24.78
Type: 4" SCH 80 PVC	1340	4.56	.111	15.29	1.9	1.98	290	24.80
Total Well Depth (TD): ~ 510	1350	4.53	-101	15.07	3.2	7.21	296	24.81
Static Water Level (WL): 20.56	24.10	61300		-				
One Casing Volume (gayL): 320	1400	4.50	.099	14.83	2.2	2.17	302	24.82
Start Purge (hrs): 1300	1420		-102	14.74	1.0	2-19	303	25.13
End Purge (hrs): 1500	1440		. 101	15.15	0.0	219	298	25.15
Total Purge Time (min): 120	1500	4.49		14.93	1.0	2.15	316	25.18
Total Vol. Purged (GaVL): 840		1			1.0			
SAMPLE COLLECTION INFORMA	TION: Strike	thru analy	sis not re	quired				
Analysis		Presen	vative			Requirements		Collected
/OCs		HCL/4	DEG C	(2-)	Oml Glass V	fials		V
				TO	COMPU	CHEM		
OBSERVATIONS / NOTES:								

Page of NWIRP Bethrage Project Site Name: Sample ID No.: BPow2-1-2010 1208
Sample Location: BPow2-1 Project No.: Sampled By: [] Domestic Well Data C.O.C. No.: Type of Sample: [] Other Well Type: Low Concentration [] QA Sample Type: High Concentration SAMPLING DATA: Date: 12-8-10 Color S.C. рΗ Temp. **Turbidity** DO Salinity Other Time: 1000 (Visual) (S.U.) (mS/cm) (°C) (NTU) (mg/l) (%) ORP Method: subnetsible pump clear 4.25 0.059 11.18 0.0 4.86 0.0 263 PURGE DATA: Gallers Date: 12-8-10 Volume S.C. pН Temp. Turbidity Salinity Time Other Method: Subnersible fump 4.87 0.121 10.67 1.0 31.8 5.39 260 0841 0.0 4.37 0.062 10.49 Monitor Reading (ppm): 0.0 50.0 3.5 4.83 0900 240 0.0 4.32 0.058 10.45 Well Casing Diameter & Material 100 4.87 0.0 0.0 251 0920 Type: 2 inch PVC 4.28 0.059 10.89 150 0.0 4.01 0.0 0940 265 Total Well Depth (TD): 400 4.25 0.059 11.18 200 4.86 0.0 0.0 263 0001 Static Water Level (WL): 28, 62 One Casing Volume(Gal/L): 61.8 Start Purge (hrs): 0340 End Purge (hrs): 1000 Total Purge Time (min): 100 Total Vol. Purged (gal/L): 210 SAMPLE COLLECTION INFORMATION: Analysis Preservative **Container Requirements** Collected VOCS HCI 3 X 40 MI Vials OBSERVATIONS / NOTES: - Pump Plow tate & 2.5 gpm initially water level - Pump set in well at a 390 BGS 0845 -> 20.85 - Sample split with ARCADIS
- No odors, stains, or elevated PID readings observed. 0900 -> 20.90 0920->20.91 0940->20.90" Signature(s): Circle if Applicable: MS/MSD **Duplicate ID No.:** yes

Page_i_ of _i_ NWIRP Bethpage Project Site Name: Sample ID No.: 8pow2-2-2010 1203
Sample Location: BPow2-2 Project No.: Sampled By: [] Domestic Well Data C.O.C. No.: Monitoring Well Data Type of Sample: [] Other Well Type: Low Concentration [] QA Sample Type: High Concentration SAMPLING DATA: Date: 12-8-10 Color S.C. рΗ Temp. Turbidity DO Salinity Other Time: 1230 (Visual) (S.U.) (mS/cm) (°C) (NTU) (mg/l) (%) ORP Method: Submersible pump clear 4.15 0.106 11.20 0.0 4.59 0.0 268 PURGE DATA: Gallons Date: 12-8-10 Volume S.C. pΗ Temp. Turbidity DO Salinity Other Time 4.31 0.146 12.05 Method: Submersible pump 2.0 8.2 1106 5.80 254 0.0 4.20 0.109 11.38 60.0 6.0 Monitor Reading (ppm): D. D 6:21 0.0 270 1120 Well Casing Diameter & Material 125 4.19 0.107 11.31 0.0 5.73 0.0 271 1140 Type: 4" PVC 4.17 0.106 11.29 190 0.0 5.13 273 0.0 1200 Total Well Depth (TD): ~ 495° 4.16 260 8.106 11.22 4.88 0.0 0.0 271 1220 Static Water Level (WL): 20.66 295 4.15 0.106 4.59 11.20 0.0 0.0 268 1230 One Casing Volume(gall): 309 Start Purge (hrs): 1105 End Purge (hrs): 1230 Total Purge Time (min): 95 Total Vol. Purged (gal/L): 300 SAMPLE COLLECTION INFORMATION: Analysis **Preservative Container Requirements** Collected VOCS 1401 3 X 40 MI Vials ves OBSERVATIONS / NOTES: - Pump set in well at 1 421 BGS 1120 -> 27.15 - Pump flow rate a 3.09 pm 1140 -> 27,13 - Sample split with ARCADES 1200 -> 27.14 - No stains, odors, or elevated PID readings observed. 1220 -> 27.13 1230 -> 27.14" Signature(s): Circle if Applicable: MS/MSD **Duplicate ID No.:**

ATTACHMENT 4
SAMPLE CHAIN OF CUSTODY FORMS

<i>L7</i>						1				 	 								
PAGE OF	SAND CONTACT: FALA / DOVIER.	.	C .			COMMENTS	1010052-01	70-	1 -03						DATE TIME				4/02R FORM NO. TINUS-001
928424	LABORATORY NAME AND CONTACT:		GITY, STATE CARY, NO	9	Mary 1								0 0,7°C	SNOOLS		Z			PINK (FILE COPY)
NUMBER NO 928	PHONE NUMBER 757 461 3824		5966		PRESERVATIVE USED	SOLANIA SOLA SOLA SOLA SOLA SOLA SOLA SOLA SOL	78						reco		1. RECEIVED BY FELD EX.	2. RECEIVED BY	3. RECEIVED BY		(OPY)
	ER	IS LEADER	L NUMBER # 8735			ETC.) COLLECTION METHOD COMP (C) No. OF CONTAINERS	U	ত	00						TIME 1530	TIME	TIME		YELLOW (FIELD COPY)
CHAIN OF CUSTODY	PROJECT MANAGER BRAY ACK	LD OPERATION	CARRIERWAYBILL NUMBER FED EX# 87-3		ed, qc,	BOTTOM DEPTH (FT)	1	1 NO							DATE 10 7 (10	里	DATE		YELI
CHAIN	00-2 F	# O	S II		14 day	LOCATION ID	TB _	Brow -	(Fan						AD 10	<u>~</u>	Ψ _Q		(PLE)
TETRA TECH NUS, INC.	FACILITY: BETHPASE		د] hr. 🔲 72 hr. 🗀 7 day 📋	SAMPLE ID	BP-OWTB-100610	B-0W-2-1							oby SCV Conti) _M	D BY		WHITE (ACCOMPANIES SAMPLE)
F	PROJECT NO: 【12G COCAユ	SAMPLERS (SIGN)	rug fo		STANDARD TAT CRUSH TAT CRU	DATE SOLC	ධාර	1410	(200						1. RELINQUISHED BY	2. RELINQUISHED BY	3. RELINQUISHED BY	COMMENTS	DISTRIBUTION:

PAGE OF 27287 NUMBER CHAIN OF CUSTODY TETRA TECH NUS, INC.

FORM NO. TINUS-001 07092 COMMENTS Do MS/MSD TIME TIME TIME Tre Blank 284 Sheffield Street CITY, STATE Mentainside, NJ 0 LABORATORY NAME AND CONTACT: DATE DATE PINK (FILE COPY) ADDRES In llungs a CONTAINER TYPE PLASTIC (P) or GLASS (G) PHONE NUMBER 757 461-3824 PHONE NUMBER 8896-16h (019) 8706 9629 3699 SOLAMBORL PRESERVATIVE USED 3. RECEIVED BY 1. RECEIVED BY 2. RECEWED BY M W 3 W T 3 M Q No. OF CONTAINERS COLLECTION METHOD GRAB (G) COMP (C) PROJECT MANAGER

13 VC AS V. S.K.
FIELD OPERATION'S LEADER CARRIER/WAYBILL NUMBER FED EX # 870 Vince Stickers TIME / Y P P S 30 3 35 S S (.DT3 8 MATRIX (GW, SO, SW, SD, QC, DATE - 9-10 DATE (тч) нтчэд моттов (тч) нтчэа чот MUIRP BEHLDONE ☐ 14 day WHITE (ACCOMPANIES SAMPLE) LOCATION ID 1800 18965- 00/001-201208 128 1425 BRWI-3-20101208 1230 BPOW 2-2-2010 1208 0700 BP-TBO1-2010 1208 1000 Bpowz-1-20101208 3. RELINQUISHED BY POLCK ☐ 72 hy line Shiltsia PROJECT NO: SAMPLERS (SIGNATURE STANDARD TAT CONTROLL TAT CONTROLL TAT CONTROLL CONTROL CON 1. RELINQUISHED BY 2. RELINQUISHED BY DISTRIBUTION: TIME COMMENTS 3348 0102 DATE RABY X 0

YELLOW (FIELD COPY)

ATTACHMENT 5
DATA VALIDATION
PACKAGES

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

D. BRAYACK

DATE:

NOVEMBER 30, 2010

FROM:

L. GANSER

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

NWIRP BETHPAGE CTO 066

SAMPLE DELIVERY GROUP (SDG) 1010052

SAMPLES:

3/Aqueous/VOC

BP-OW-2-1

BP-OW-2-2

BP-OWTB-100610

Overview

The sample set for NWIRP Bethpage, CTO 066, SDG 1010052 consists of two (2) environmental aqueous samples and one (1) trip blank. The samples were analyzed for volatile organic compounds (VOCs). No field duplicates were included within this SDG.

The samples were collected on October 6 and 7, 2010 and analyzed by CompuChem, a division of Liberty Analytical Corporation. VOC analyses were conducted in accordance with EPA Method SW-846 8260B. The data contained in this SDG were validated with regard to the following parameters:

- Data completeness
- Holding times
- * GC/MS Tune
 - Initial/continuing calibrations
 - Laboratory Method Blank Results
 - Surrogate Recoveries
 - Laboratory Control Sample/Laboratory Control Sample Duplicate Recoveries
- Internal Standard Recoveries
- Compound Quantitation
- Compound Identification
 - Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, Region II data validation forms are presented in Appendix C, and documentation supporting these findings is presented in Appendix D.

Volatile Organic Compounds

Initial and continuing calibration relative response factor (RRF) was <0.05 for acetone. Positive results for acetone were qualified as estimated, "J".

Continuing calibration percent difference was greater than >20% quality control limit (but <90%) for bromomethane and 4-methyl-2-pentanone on 10/12/10 at 16:16 on instrument 5972hp59. Nondetected results for the aforementioned compounds were qualified as estimated, "UJ".

NOVEMBER 30, 2010 PAGE 2

Contaminants were detected in laboratory method blank VBLKIN at the following maximum concentrations.

<u>Contaminant</u>	Maximum Concentration (ug/L)	Action Level (ug/L)
1,2,4-Trichlorobenzene	1.3	6.5
Naphthalene	3.8	19
Toluene	0.62	3.1

An action level of 5X the maximum contaminant concentration was established to evaluate the samples for laboratory method blank contamination. Sample aliquot and dilution factors were taken into consideration during application of the blank action level. Positive results less than the action level were qualified as nondetected, "U", due to blank contamination. The trip blank was not qualified for laboratory blank contamination.

Percent recovery for one surrogate (1,2-dichloroethane-d4) was greater than quality control limits for sample BP-OW-2-1. Positive results in sample BP-OW-2-1 were qualified as estimated, "J".

Additional Comments

Nondetected results are reported at the limit of detection (LOD).

Positive results below the limit of quantitation (LOQ) and above the detection limit were qualified as estimated, "J", due to uncertainty near the detection limit.

Laboratory control sample duplicate percent recovery was greater than quality control limit for chloromethane. No action was taken as all results for chloromethane were nondetects.

No matrix spike/matrix spike duplicate samples were requested.

EXECUTIVE SUMMARY

Laboratory Performance Issues: 1,2,4-Trichlorobenzene, naphthalene, and toluene were detected in a laboratory method blank. Initial and continuing calibration RRF was <0.05 for acetone. The continuing calibration percent difference was greater than the quality control limit for several analytes. Surrogate recovery was greater than quality control limits affecting one sample.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the EPA National Functional Guidelines for Organic Data Validation (10/99), USEPA Region II Standard Operating Procedures for Validating Volatile Organic Compounds by SW-846 Method 8260B HW-24 Revision 2 (August 2008) and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006).

NOVEMBER 30, 2010 PAGE 3

The text of this report has been formulated to address only those problem areas affecting data quality.

Tetra Tech NUS Leanne Ganser Data Validator

TetraTech NUS

Joseph A. Samchuck

Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Region II Data Validation Forms
- 4. Appendix D Support Documentation

Appendix A

Qualified Analytical Results

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS-GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

1100 .01-001	NSAMPLE	BP-OW-2-1		BP-OW-2-2		BP-OWTB-100610	
SDG: 1010052	LAB_ID	1010052-02		1010052-03		1010052-01	
FRACTION: 0V	SAMP_DATE	10/6/2010		10/7/2010		10/6/2010	
MEDIA: WATER	QC_TYPE	NM		NM		TB	
	UNITS	UG/L		UG/L		UG/L	
	PCT_SOLIDS	0.0		0.0		0.0	-
PARAMETER	DUP_OF	RESILIT VOI	GOIO	. TIISER	5	F II I I I I	0
1,1,1-TRICHLOROETHANE		0.5		0.5	מרכנ	7	arcn arcn
1,1,2,2-TETRACHLOROETHANE	IANE	2 D				2 0	
1,1,2-TRICHLOROETHANE		2 U		2 U			
1,1,2-TRICHLOROTRIFLUOROETHANE	ROETHANE	2 U		2 0			•
1,1-DICHLOROETHANE		0.5 U		0.5 U			
1,1-DICHLOROETHENE	411	2 U		2 U		2 U	
1,1-DICHLOROPROPENE		0.5 U		0.5 U		0.5 U	
1,2,4-TRICHLOROBENZENE	111	0.5 U		0.5 U		J.4.1	۵
1,2-DIBROMO-3-CHLOROPROPANE	ROPANE	2 U		2 U		2 U	
1,2-DIBROMOETHANE		0.5 U		0.5 U		0.5 U	
1,2-DICHLOROBENZENE		0.5 U		0.5 U		0.5 U	
1,2-DICHLOROETHANE		0.5 U		0.5 U		0.5 U	
1,2-DICHLOROPROPANE		2 U		2 U		2 U	
1,3-DICHLOROBENZENE		0.5 U		0.5 U		0.5 U	
1,4-DICHLOROBENZENE		0.5 U		0.5 U		0.5 U	
2-BUTANONE		5 U		5 U		6.8 J	<u>а</u>
2-HEXANONE		1.3 U		1.3 U		1.3 U	
4-METHYL-2-PENTANONE		1.3 UJ	O	1.3 UJ	O	1.3 UJ	ပ
ACETONE		7.1 J	CPR	9.3 J	CP	46 J	O
BENZENE		0.5 U		0.5 U		0.5 U	
BROMODICHLOROMETHANE	밀	0.5 U		0.5 U		0.5 U	
BROMOFORM		2 U		2 U		2 U .	
BROMOMETHANE		2 UJ	C	2 UJ	O	2 UJ	O
CARBON DISULFIDE		0.5 U		0.5 U		0.5 U	
CARBON TETRACHLORIDE		0.5 U		0.5 U		0.5 U	
CHLOROBENZENE		0.5 U		0.5 U		0.5 U	
CHLORODIBROMOMETHANE	Ę.	0.5 U		0.5 U		0.5 U	
CHLOROETHANE		2 U		12		13	
CHLOROFORM		0.5 U		0.5 U		0.5 U	
CHLOROMETHANE		0.5 U		0.5 U		0.5 U	
CIS-1,2-DICHLOROETHENE		2 U		2 0		2 0	
CIS-1,3-DICHLOROPROPENE	Щ	2 U		2 U		2 U	
CYCLOHEXANE		0.5 U		0.5 U		0.5 U	
DICHLORODIFLUOROMETHANE	IANE			0.5 U		0.5 U	
ETHYLBENZENE				0.5 U		0.5 U	
ISOPROPY! RENZENE		r		0.5		- 4	

PROJ_NO: 00622	NSAMPLE	BP-0W-2-1	BP-OW-2-2	BP-OWTB-100610
SDG: 1010052	LAB_ID	1010052-02	1010052-03	1010052-01
FRACTION: OV	SAMP_DATE	10/6/2010	10/7/2010	10/6/2010
MEDIA: WATER	QC_TYPE	NM	MZ	TB
	UNITS	UG/L	UG/L	UG/L
	PCT_SOLIDS	0.0	0.0	0.0
	DUP_OF			
PARAMETER		RESULT VOL QLCD	RESULT VAL ALCD	RESULT VQL QLCD
M+P-XYLENES		1 U	2	U L
METHYL ACETATE		2 U	2 0	2 0
METHYL CYCLOHEXANE		0.5 U	0.5 U	0.5 U
METHYL TERT-BUTYL ETHER	fER	0.5 U	0.5 U	0.5 U
METHYLENE CHLORIDE		0.5 U	0.5 U	0.5 U
NAPHTHALENE		2 U	2 U	4.6 J P
O-XYLENE		0.5 U	0.5 U	0.5 U
STYRENE		0.5 U	0.5 U	0.5 U
TETRACHLOROETHENE		0.5 U	0.5 U	0.5 U
TOLUENE		0.79 U A	0.73 U A	1.2 J P
TOTAL 1,2-DICHLOROETHENE	ENE	0.5 U	0.5 U	0.5 U
TOTAL XYLENES		0.5 U	0.5 U	0.5 U
TRANS-1,2-DICHLOROETHENE	ENE	0.5 U	0.5 U	0.5 U
TRANS-1,3-DICHLOROPROPENE	DPENE	0.5 U	0.5 U	0.5 U
TRICHLOROETHENE		0.5 U	0.5 U	0.5 U
TRICHLOROFLUOROMETHANE	JANE	0.5 U	0.5 U	0.5 U
VINYL CHLORIDE		0.5 U	0.5 U	0.5 U

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

D. BRAYACK

DATE:

JANUARY 14, 2011

FROM:

MICHELLE L. ALLEN

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC, SVOC, PEST, and PCB

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP), BETHPAGE

CTO 066

SAMPLE DELIVERY GROUP (SDG) B4488

SAMPLES:

5/Aqueous/VOC

BP-TB01-20101208

BPOW-DUP01-20101208

BPOW1-3-20101208

BPOW2-1-20101208

BPOW2-2-20101208

1/IDW/VOC/SVOC/PEST/PCB

BP-FRACIDW-20101209

Overview

The sample sets for NWIRP Bethpage, SDG B4488 consisted of four (4) aqueous environmental samples, one (1) aqueous waste sample, and one (1) aqueous trip blank. All six (6) aqueous samples were analyzed for volatile organic compounds (VOC). The one (1) aqueous waste sample was analyzed for semi-volatile organic compounds (SVOC), pesticides (PEST), and polychlorinated biphenyls (PCB). One field duplicate sample pair was associated with this sample data group (SDG); BPOW-DUP01-20101208/BPOW1-3-20101208.

The samples were collected by Tetra Tech on December 8 and 9, 2010 and analyzed by Chemtech. All analyses were conducted in accordance with EPA Methods SW-846 8260B, 8270C, 8081, 8082 and EPA Method 624 analytical and reporting protocols. The data contained in this SDG was validated with regard to the following parameters:

- Data completeness
 - Hold times
- GC/MS System Tuning and Performance
 - Initial/continuing calibrations
 - Laboratory Method Blank Results
 - Surrogate Spike Recoveries
 - Internal Standard Recoveries
 - Laboratory Control Sample/Laboratory Control Sample Duplicate Recoveries
 - Matrix Spike/Matrix Spike Duplicate Results
- Field Duplicate Precision Results
- Compound Identification
- Compound Quantitation
- Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, Region II data validation forms are presented in Appendix C, and documentation supporting these findings is presented in Appendix D.

TO: D. BRAYACK

SDG: B4488

PAGE: 2

Volatile (VOC)

The Percent Differences (%Ds) for 2-hexanone and bromoform exceeded the 20% quality control limit for the continuing calibration performed on instrument MSVOAD on 12/15/10 @ 11:33. Sample BPOW-DUP01-20101208 was affected. Only non-detected results were reported for these compounds in the affected sample and these non-detects were qualified as estimated, (UJ).

The continuing calibration %Ds for acetone and methyl acetate were greater than 20% quality control criteria on instrument MSVOAG on 12/13/10 @ 10:41 affecting samples TB01-20101208, BPOW1-3-20101208, BPOW2-1-20101208, and BPOW2-2-20101208. The non-detected results reported for these compounds were qualified as estimated, (UJ).

The Relative Percent Difference (RPD) for acetone, methyl acetate, 2-butanone, 1,1,2,2-tetrachloroethene, and 1,2-dibromo-3-chloropropane exceeded the 20% quality control limit in the Matrix Spike/Matrix Spike Duplicate (MS/MSD) analyses of sample BPOW2-1-20101208. No action was taken for the non-detected results reported for these compounds in the environmental sample since the Percent Recoveries (%Rs) were acceptable in the MS and MSD samples.

The Laboratory Control Sample (LCS), BSG1213W1, had %Rs for acetone and methyl acetate above the upper quality control limits. No action was taken in the affected samples since no positive results were reported for these compounds.

The LCS/Laboratory Control Sample Duplicate (LCSD) analyses, samples BSG1209W3/BSG1209W4, had RPDs for dichlorofluoromethane, chloromethane, vinyl chloride, bromomethane, chloroethane, trichlorofluoromethane, 1,1-dichloroethene, acetone, carbon disulfide, methyl acetate, and 2-butanone that exceeded 20%. In addition, the %R for acetone was greater that the upper quality control limit. No action was taken in the affected waste water sample since only non-detects were reported for the noncompliant compounds.

The positive result for 1,1-dichloroethane in sample BPOW2-2-20101208 reported below the Limit of Quantitation (LOQ) but above the Method Detection Limit (MDL) was qualified as estimated, (J). Non-detected results are reported to the Limit of Detection (LOD).

Semi-Volatile Organic Compounds (SVOC)

The internal standard, perylene-d12, was below the lower quality control limit in sample BP-FRACIDW-20101209. The sample was reanalyzed yielding similar results. The initial analysis of this sample was used in the data validation. The non-detected results reported the compounds associated with this internal standard were qualified as estimated, (UJ).

Pesticides (PEST)

No problems were noted.

Polychlorinated Biphenyls (PCB)

The surrogate spike compound, decachlorobiphenyl, had %Rs below the lower quality control limit in sample BP-FRACIDW-20101209 and its reanalysis. The initial analysis was used in the validation of the data. The non-detected results reported for the PCBs in this fraction were qualified as estimated, (UJ).

TO: D. BRAYACK

SDG: B4488

PAGE: 3

Additional Comments

The VOC analysis of the waste sample, BP-FRACIDW-20101209, was analyzed via EPA Method 624 and evaluated accordingly.

EXECUTIVE SUMMARY

Laboratory Performance Issues: Some compounds were estimated due to continuing calibration %Ds greater than their respective quality control limit. The VOC LCS/LSD had %Rs and RPDs outside the quality control limits. Noncompliant surrogate %Rs resulted in the qualification the waste sample in the PCB fraction. One internal standard was below the lower quality control limit in the SVOC analysis of the waste sample. Affected compounds were estimated.

Other Factors Affecting Data Quality: The MS/MSD sample had noncompliant %Rs and RPDs. Non-detected results were not qualified. A positive result reported below the LOQ but above the MDL was qualified as estimated, (J). Non-detected results are reported to the LOD.

The data for these analyses were reviewed with reference to the following: SOP #HW-24 Revision #2, August 2008, USEPA Region II Hazardous Waste Support Branch Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SOP #HW-22 Revision #4, August 2008, USEPA Region II Hazardous Waste Support Branch Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SOP #HW-44 Revision #1, October 2006, USEPA Region II Hazardous Waste Support Branch Validating Pesticides by Gas Chromatography, SOP #HW-45 Revision #1, October 2006, USEPA Region II Hazardous Waste Support Branch Validating Polychlorinated Biphenyls by Gas Chromatography by SW-846 Methods 8260B, 8270C, 8081, and 8082, EPA Method 624, and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006).

√etraTech NUS

Michelle L. Allen

Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck

Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Region II Data Validation Forms
- 4. Appendix D Support Documentation

Appendix A

Qualified Analytical Results

Data Validation Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; e.g. chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

		DFUVV5-70 10 208	2071010					\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	œ	200	2010100	ď
SDG: B4488	LAB_ID	B4488-06			B4488-02			B4488-05	2	B4488-07	20102	
FRACTION: OV	SAMP_DATE	12/8/2010			12/8/2010			12/8/2010		12/8/2010		
MEDIA: WATER	QC_TYPE	NA N			ΣZ			NN		MN		
	UNITS	NG/L			UG/L			UG/L		UG/L		
	PCT_SOLIDS	0.0			0.0			0.0		0.0		
	DUP_OF									BP0W1-3-20101208	1208	}
PARAMETER		RESULT	ΛQ	QLCD	RESULT	ΛαΓ	arcd	RESULT VQL	- arcd	RESULT \	Val	alcd
1,1,1-TRICHLOROETHANE		0	0.5 U		0.5	n		0.5 U		0.5 1	٦	
1,1,2,2-TETRACHLOROETHANE	IANE	0	0.5 U		0.5	n		0.5 U		0.5 U	_	
1,1,2-TRICHLOROETHANE		٥	0.5 U		0.5	n		0.5 U		0.5 U	_	
1,1,2-TRICHLOROTRIFLUOROETHANE	ROETHANE	0	0.5 U		0.5 U	n		0.5 U		0.5 U	_	
1,1-DICHLOROETHANE		0	0.5 U		0.5	n		0.74 J	۵	0.5 L	ח	
1,1-DICHLOROETHENE		0	0.5 U		0.5 U	כ		0.5 U		0.5 U	_	
1,2,4-TRICHLOROBENZENE		0	0.5 U		0.5 U	n		0.5 U		0.5 U	_	
1,2-DIBROMO-3-CHLOROPROPANE	ROPANE	0	0.5 U		0.5	n		0.5 U		0.5 U	5	
1,2-DIBROMOETHANE		0	0.5 U		0.5 U	ם		0.5 U		0.5 U	_	
1,2-DICHLOROBENZENE		0	0.5 U		0.5 U	D.		0.5 U		0.5 U		
1,2-DICHLOROETHANE		0	0.5 U		0.5 U	n		0.5 U		0.5 U	_	
1,2-DICHLOROPROPANE		0	0.5 U		0.5 U	n		0.5 U		0.5 U	_	
1,3-DICHLOROBENZENE		0	0.5 U		0.5 U	n		0.5 U		0.5 U	_	
1,4-DICHLOROBENZENE		0	0.5 U		0.5 U	n		U 5.0		0.5 U	,	
2-BUTANONE		2	2.5 U		2.5 U	n		2.5 U		2.5 U	,	
2-HEXANONE		2	2.5 U		2.5 U	Ω		2.5 U		2.5 UJ	2	
4-METHYL-2-PENTANONE		2	2.5 U		2.5 U	n		2.5 U		2.5 U	_	
ACETONE		2	2.5 UJ	၁	2.5	2.5 UJ	၁	2.5 UJ	O	2.5 U	_	
BENZENE		0	0.5 U		0.5 U	n		0.5 U		0.5 U		
BROMODICHLOROMETHANE	빌	0	0.5 U		0.5 U	n		0.5 U		0.5 U	_	
BROMOFORM		0	0.5 U		0.5 U	n		0.5 U		0.5 UJ	2	
BROMOMETHANE		0	0.5 U		0.5 U	D		0.5 U		0.5 U		
CARBON DISULFIDE		0	0.5 U		0.5 U	D.		0.5 U		0.5 U		
CARBON TETRACHLORIDE		0	0.5 U		0.5 U	n		0.5 U		0.5 U		
CHLOROBENZENE		0	0.5 U		0.5 U	n		0.5 U		0.5 U		
CHLORODIBROMOMETHANE	밎	0	0.5 U		0.5 U	o.		0.5 U		0.5 U		
CHLOROETHANE		0	0.5 U		0.5 U	n		0.5 U		0.5 U		
CHLOROFORM		0	0.5 U		0.5 U	n		0.5 U		0.5 U		
CHLOROMETHANE		0	0.5 U		0.5 U	ם ח		0.5 U		0.5 U		
CIS-1,2-DICHLOROETHENE		0	0.5 U		U 5.0	ם		0.5 U		0.5 U		
CIS-1,3-DICHLOROPROPENE	¥	0	0.5 U		0.5 U	_		0.5 U		0.5 U		
CYCLOHEXANE		0	0.5 U		0.5 U	_		0.5 U		0.5 U		
DICHLORODIFLUOROMETHANE	4ANE	0	0.5 U		0.5 U	⊃		0.5 U		0.5 U		
ETHYLBENZENE		0	0.5 U		0.5 U	D.		0.5 U		0.5 U		
ISOPROPYLBENZENE		0	0.5 U		0.5 U	b		0.5 U		0.5 U		
M+P-XYLENES		<u>-</u> -	1		_	1 0		1		10		

PROJ_NO: 00622	NSAMPLE	BP-TB01-20101208	31208	
SDG: B4488	LAB_ID	B4488-01		
FRACTION: OV	SAMP_DATE	12/8/2010		
MEDIA: WATER	QC_TYPE	ΣN		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VaL	arcd
1,1,1-TRICHLOROETHANE	ш	0.5	D	
1,1,2,2-TETRACHLOROETHANE	THANE	0.5	D	
1,1,2-TRICHLOROETHANE	Ш	0.5	n	
1,1,2-TRICHLOROTRIFLUOROETHANE	OROETHANE	0.5	n	
1,1-DICHLOROETHANE		0.5	n	
1,1-DICHLOROETHENE		0.5	n	
1,2,4-TRICHLOROBENZENE	밀	0.5 U	n	
1,2-DIBROMO-3-CHLOROPROPANE	PROPANE	0.5	ם	
1,2-DIBROMOETHANE		0.5	_	
1,2-DICHLOROBENZENE		0.5	_D	
1,2-DICHLOROETHANE		0.5	n	
1,2-DICHLOROPROPANE		0.5	n	
1,3-DICHLOROBENZENE		0.5	n	
1,4-DICHLOROBENZENE		0.5	n	
2-BUTANONE		2.5	n	
2-HEXANONE		2.5	n	
4-METHYL-2-PENTANONE	111	2.5	n	
ACETONE		2.5	3	ပ
BENZENE		0.5	ם	
BROMODICHLOROMETHANE	ANE	0.5	n	
BROMOFORM		0.5	n	
BROMOMETHANE		0.5	n	
CARBON DISULFIDE		0.5	n	
CARBON TETRACHLORIDE	Œ	0.5	n	
CHLOROBENZENE		0.5 U	n	
CHLORODIBROMOMETHANE	ANE	0.5	n	
CHLOROETHANE		0.5	n	
CHLOROFORM		0.5 U	n	
CHLOROMETHANE		0.5	n	
CIS-1,2-DICHLOROETHENE	빚	0.5	ם	
CIS-1,3-DICHLOROPROPENE	ENE	0.5	D	
CYCLOHEXANE		0.5	n	
DICHLORODIFLUOROMETHANE	THANE	0.5	U	
ETHYLBENZENE		0.5	n	
ISOPROPYLBENZENE		0.5	n	
M+P-XYLENES			n	
2 of 4				

PROJ_NO: 00622	NSAMPLE	BP0W1-3-20101208	01208		BP0W2-1-20101208	1208		BP0W2-2-20101208	0101208		BP0W-DUP01-20101208	-201012	80	
SDG: B4488	LAB_ID	B4488-06			B4488-02			B4488-05			B4488-07			T-
FRACTION: 0V	SAMP_DATE	12/8/2010			12/8/2010			12/8/2010			12/8/2010			
MEDIA: WATER	QC_TYPE	NM			NN			ΣN			NN			
	UNITS	NG/L			UG/L			UG/L			NG/L			
	PCT_SOLIDS	0.0			0.0			0.0			0.0			
	DUP_OF								-		BP0W1-3-20101208	01208		
PARAMETER		RESULT	VQL	arcd	RESULT	NOL	arcd	RESULT	Val	QLCD	RESULT	VaL	QLCD	
METHYL ACETATE		0.5	0.5 UJ	၁	0.5 UJ	3	ပ	O	0.5 UJ	O	0.5 U	ם		
METHYL CYCLOHEXANE		0.5 U	⊃		0.5 L			O	0.5 U		U 5.0	D		
METHYL TERT-BUTYL ETHER	IER	0.5	D		0.5 L	_		O	0.5 U		0.5 U	ם		
METHYLENE CHLORIDE		0.5 U	D		0.5	_		0	0.5 U		0.5	ם		
O-XYLENE		0.5 U	n		0.5	_		O	0.5 U		0.5	n		Π
STYRENE		0.5 U	n		0.5 L			Ö	0.5 U		0.5	ם		Π
TETRACHLOROETHENE		0.5 U	Ŋ		0.5 L			Ö	0.5 U		0.5	ס		
TOLUENE		0.5 U	n		0.5 L			Ö	0.5 U		0.5	ח		Π
TRANS-1,2-DICHLOROETHENE	IENE	0.5 U	n		0.5 ר			Ö	0.5 U		0.5	ן כ		
TRANS-1,3-DICHLOROPROPENE	OPENE	0.5 U	Ω		0.5 ר	_		Ö	0.5 U		0.5) D		
TRICHLOROETHENE		0.5 U	n		0.5 ר	_		Ö	0.5 U		0.5	ח		
TRICHLOROFLUOROMETHANE	JANE	0.5 U	n		0.5 L	_		Ö	0.5 U		0.5	ס		
VINYL CHLORIDE		0.5 U	n		0.5 U			0	0.5 U		0.5	<u>ס</u>		

PROJ_NO: 00622	NSAMPLE	BP-TB01-20101208	1208	
SDG: B4488	LAB_ID	B4488-01		
FRACTION: 0V	SAMP_DATE	12/8/2010		
MEDIA: WATER	QC_TYPE	NN		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	ΛαΓ	arcd
METHYL ACETATE		0.5 UJ	3	O
METHYL CYCLOHEXANE		0.5 U	כ	
METHYL TERT-BUTYL ETHER	HER	0.5	ח	
METHYLENE CHLORIDE		0.5	D.	
O-XYLENE		0.5 U	5	
STYRENE		0.5 U	כ	
TETRACHLOROETHENE		0.5	D	
TOLUENE		0.5	D	
TRANS-1,2-DICHLOROETHENE	HENE	0.5 U	ם	
TRANS-1,3-DICHLOROPROPENE	OPENE	0.5 U	_	
TRICHLOROETHENE		0.5 U	n	
TRICHLOROFLUOROMETHANE	HANE	0.5 U	D	
VINYL CHLORIDE		0.5 U	_	