Infrastructure, environment, facilities Mr. Steven M. Scharf, P.E. Project Engineer New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation Remedial Action, Bureau A 625 Broadway Albany, New York 12233-7015 Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631.249.7600 Fax 631.249.7610 www.arcadis-us.com **ARCADIS** ENVIRONMENT #### Subject: March 2009 Monthly Progress Report, Northrop Grumman Systems Corporation, Operable Unit 3, NYSDEC Site ID # 1-30-003A, Bethpage, New York Dear Steve: In accordance with Section III of Administrative Order on Consent (AOC) Index # W1-0018-04-01, this letter reports the activities for Operable Unit 3 (OU3) performed by Northrop Grumman Systems Corporation (Northrop Grumman) during the month of March 2009; activities planned for April 2009 are also discussed. This report is the 36th OU3 monthly progress report since the AOC between Northrop Grumman and the New York State Department of Environmental Conservation (NYSDEC) was signed on June 24, 2005. Date: April 7, 2009 Contact: David Stern Phone: 631-391-5284 Email: David.Stern@arcadis-us.com Our ref: NY001464.0909.00007 ## **OU3 Activities Conducted During March 2009** Activities performed this period include: #### On- and Off-Site RI/FS - Analytical results of groundwater samples collected from Monitoring Wells MW111-4, MW116-5, and MW117-5 are included in Table 1. Well locations are provided on Figure 1. - Preparation for dedicated sampling pump installation at Monitoring Well MW-117-5 - Mobilized for drilling of vertical profile boring (VPB) VP-118 and Monitoring Well MW109-2. - Continued evaluation of remedial investigation (RI) data and assessment of data gaps - Completed updates to the regional groundwater model for submittal to Northrop Grumman for internal review Imagine the result ## **ARCADIS** - Continued preparation of draft Human Health Risk Assessment (HHRA) - Continued preparation of the Site Area Focused Feasibility Study (FFS) Report #### Soil Gas IRM - Performed removal of condensate accumulated in several subsurface vacuum lines. - Continued OM&M of the Soil Gas IRM; next scheduled monitoring event June 2009 - Submitted December 2008 monthly OM&M report to NYSDEC - Completed preparation of 2008 Annual OM&M Report #### **Groundwater IRM** - Initiated development of Sampling and Analysis Plan. - Continued remedial system construction #### Other Prepared and submitted February 2009 AOC Monthly Progress Report ## **OU3 Activities Expected During April 2009** #### On- and Off-Site RI/FS - Complete preparation of Site Area HHRA - Continue preparation of Site Area FFS Report - Initiate drilling and sampling of VP-118 and Monitoring Well MW109-2 - Continue evaluation of RI data and assessment of data gaps - Install dedicated sampling pump in Monitoring Well MW-117-5 #### Soil Gas IRM - Continue OM&M of the Soil Gas IRM; next scheduled monitoring event June 2009 - Submit 2008 Annual OM&M Report to NYSDEC ## **Groundwater IRM** Continue development of Sampling and Analysis Plan. # **ARCADIS** Mr. Steve Scharf NYSDEC April 7, 2009 Continue remedial system construction #### Other Prepare and submit April 2009 AOC Monthly Progress Report. Feel free to call us if you have any questions. Sincerely, ARCADI David E. Stern Senior Scientist / Associate Project Manager ## Enclosure #### Copies: C. San Giovanni, ARCADIS M. Wolfert, ARCADIS File, ARCADIS J. Cofman, Northrop Grumman K. Smith, Northrop Grumman Bethpage Public Library - Public Repository Table 1. Concentrations of VOCs in Groundwater Samples Collected from Off-Site Monitoring Wells, Northrop Grumman Systems Corporation, Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York. | Constituent (units in ug/L) | | Location ID:
Sample Date: | | MW-116-5
4/11/2008 | MW-116-5
8/4/2008 | | MW-116-5
12/29/2008 | | | |--------------------------------------|------|------------------------------|--------|-----------------------|----------------------|---------------|------------------------|--------------|---| | | . NY | SDEC . | | | | | | | • | | | | SCGs . | | | | i. | | | | | 1,1,1-Trichloroethane | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | 1,1,2,2-Tetrachloroethane | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | 1,1,2-Trichloroethane | | 1 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | * | | 1,1-Dichloroethene | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | 1,1-Dichloroethene | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | 1,2-Dichloroethane | | 0.6 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | 1,2-Dichloropropane | | 1 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | 2-Butanone | | 50 | < 2500 | < 500 | < 500 | < 500 | < 500 | < 50 | | | 2-Hexanone | | NE . | < 2500 | < 500 | < 500 | < 500 | < 500 | < 50
< 50 | | | 4-Methyl-2-pentanone | | NE | < 2500 | < 500 | < 500 | < 500 | < 500
< 500 | < 50
< 50 | | | Acetone | | 50 | < 2500 | < 500 | < 500 | < 500 | < 500 | < 50 | | | Benzene | | 1 | < 35 | < 7 | < 7 | < 7 | < 7 | < 0.7 | | | Bromodichloromethane | | NE | < 250 | < 50 | < 50 | < 50 | < 50 | < 5. | | | Bromoform | | NE | < 250 | < 50 | < 50 | < 50 | < 50 | < 5
< 5 | | | Bromomethane | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Carbon Disulfide | | 50 | < 2500 | < 500 | < 500 | < 500 | < 500 | < 5 | | | Carbon Tetrachloride | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Chlorobenzene | | 5 | < 250 | < 50 | < 50
< 50 | < 50 | < 50 | < 5 | | | Chlorodibromomethane | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Chlorodifluoromethane (Freon 22) | | NE
NE | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Chloroethane | | 5 | < 250 | < 50
< 50 | < 50
< 50 | < 50 | < 50
< 50 | < 5 | | | Chloroform | | 5 | < 350 | < 70 | | | | - | | | Chloromethane | | NE | < 250 | < 50 | < 70
< 50 | < 70 | < 70 | < 5 | | | cis-1,2-Dichloroethene | | 5 | 1500 | | | < 50 | < 50 | < 5 | | | cis-1,3-Dichloropropene | | L | | 130 | 130 | 140 | 150 | < 5 | | | Dichlorodifluoromethane (Freon 12) | | 0.4 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | . , | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | - | | Ethylbenzene
Mothylana Chlorida | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Methylene Chloride | | 50 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Styrene
Tetrachloroethene | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Tetrachioroethene
Toluene | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | trans-1,2-Dichloroethene | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Trans-1,3-Dichloropropene | | NE
- | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Trichloroethene | | 5 | 8800 | 1100 | 1100 | 1300 | 1100 | < 5 | | | Trichlorotrifluoroethane (Freon 113) | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Vinyl Chloride | | 2 | < 100 | < 20 | < 20 | < 20 | < 20 | < 2 | | | Xylene- O | | 5 | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | | | 5 . | < 250 | < 50 | < 50 | < 50 | < 50 | < 5 | | | Xylene- M &P | | 5 | < 200 | ~ 50 | < 50 | ~ 50 . | ~ 30 | ~ 0 | | #### Notes and Abbreviations: 1. Results validated following protocols specified in March 2006 RI/FS Work Plan (ARCADIS G&M, Inc. 2006). 2. Samples analyzed for the TCL VOCs using NYSDEC ASP 2000 Method OLM4.2. ## Detections indicated in bold Indicates an exceedance of an SCG Remedial Investigation/Feasibility Study NYSDEC New York State Department of Environmental Conservation Target compound list TCL VOC Volatile organic Compound Standard, criteria, and guidance values **SCGs** ug/L Micrograms per liter TVOC Total volatile organic compounds NΕ Not established ASP Analytical services protocol Because we care 100% recycled paper produced by wind power energy