

Infrastructure, environment, facilities

Mr. Steven M. Scharf, P.E.
Project Engineer
New York State Department of Environmental Conservation (NYSDEC)
Division of Environmental Remediation
Remedial Action, Bureau A
625 Broadway
Albany, New York 12233-7015

Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631.249.7600 Fax 631.249.7610 www.arcadis-us.com

ARCADIS

ENVIRONMENT

Subject:

March 2009 Monthly Progress Report,
Northrop Grumman Systems Corporation,
Operable Unit 3, NYSDEC Site ID # 1-30-003A, Bethpage, New York

Dear Steve:

In accordance with Section III of Administrative Order on Consent (AOC) Index # W1-0018-04-01, this letter reports the activities for Operable Unit 3 (OU3) performed by Northrop Grumman Systems Corporation (Northrop Grumman) during the month of March 2009; activities planned for April 2009 are also discussed. This report is the 36th OU3 monthly progress report since the AOC between Northrop Grumman and the New York State Department of Environmental Conservation (NYSDEC) was signed on June 24, 2005.

Date:

April 7, 2009

Contact:

David Stern

Phone:

631-391-5284

Email:

David.Stern@arcadis-us.com

Our ref:

NY001464.0909.00007

OU3 Activities Conducted During March 2009

Activities performed this period include:

On- and Off-Site RI/FS

- Analytical results of groundwater samples collected from Monitoring Wells
 MW111-4, MW116-5, and MW117-5 are included in Table 1. Well locations are provided on Figure 1.
- Preparation for dedicated sampling pump installation at Monitoring Well MW-117-5
- Mobilized for drilling of vertical profile boring (VPB) VP-118 and Monitoring Well MW109-2.
- Continued evaluation of remedial investigation (RI) data and assessment of data gaps
- Completed updates to the regional groundwater model for submittal to Northrop Grumman for internal review

Imagine the result

ARCADIS

- Continued preparation of draft Human Health Risk Assessment (HHRA)
- Continued preparation of the Site Area Focused Feasibility Study (FFS) Report

Soil Gas IRM

- Performed removal of condensate accumulated in several subsurface vacuum lines.
- Continued OM&M of the Soil Gas IRM; next scheduled monitoring event June 2009
- Submitted December 2008 monthly OM&M report to NYSDEC
- Completed preparation of 2008 Annual OM&M Report

Groundwater IRM

- Initiated development of Sampling and Analysis Plan.
- Continued remedial system construction

Other

Prepared and submitted February 2009 AOC Monthly Progress Report

OU3 Activities Expected During April 2009

On- and Off-Site RI/FS

- Complete preparation of Site Area HHRA
- Continue preparation of Site Area FFS Report
- Initiate drilling and sampling of VP-118 and Monitoring Well MW109-2
- Continue evaluation of RI data and assessment of data gaps
- Install dedicated sampling pump in Monitoring Well MW-117-5

Soil Gas IRM

- Continue OM&M of the Soil Gas IRM; next scheduled monitoring event June 2009
- Submit 2008 Annual OM&M Report to NYSDEC

Groundwater IRM

Continue development of Sampling and Analysis Plan.

ARCADIS

Mr. Steve Scharf NYSDEC April 7, 2009

Continue remedial system construction

Other

Prepare and submit April 2009 AOC Monthly Progress Report.

Feel free to call us if you have any questions.

Sincerely,

ARCADI

David E. Stern

Senior Scientist / Associate Project Manager

Enclosure

Copies:

C. San Giovanni, ARCADIS

M. Wolfert, ARCADIS

File, ARCADIS

J. Cofman, Northrop Grumman

K. Smith, Northrop Grumman

Bethpage Public Library - Public Repository

Table 1. Concentrations of VOCs in Groundwater Samples Collected from Off-Site Monitoring Wells,
Northrop Grumman Systems Corporation, Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York.

Constituent (units in ug/L)		Location ID: Sample Date:		MW-116-5 4/11/2008	MW-116-5 8/4/2008		MW-116-5 12/29/2008		
	. NY	SDEC .							•
		SCGs .				i.			
1,1,1-Trichloroethane		5	< 250	< 50	< 50	< 50	< 50	< 5	
1,1,2,2-Tetrachloroethane		5	< 250	< 50	< 50	< 50	< 50	< 5	
1,1,2-Trichloroethane		1	< 250	< 50	< 50	< 50	< 50	< 5	*
1,1-Dichloroethene		5	< 250	< 50	< 50	< 50	< 50	< 5	
1,1-Dichloroethene		5	< 250	< 50	< 50	< 50	< 50	< 5	
1,2-Dichloroethane		0.6	< 250	< 50	< 50	< 50	< 50	< 5	
1,2-Dichloropropane		1	< 250	< 50	< 50	< 50	< 50	< 5	
2-Butanone		50	< 2500	< 500	< 500	< 500	< 500	< 50	
2-Hexanone		NE .	< 2500	< 500	< 500	< 500	< 500	< 50 < 50	
4-Methyl-2-pentanone		NE	< 2500	< 500	< 500	< 500	< 500 < 500	< 50 < 50	
Acetone		50	< 2500	< 500	< 500	< 500	< 500	< 50	
Benzene		1	< 35	< 7	< 7	< 7	< 7	< 0.7	
Bromodichloromethane		NE	< 250	< 50	< 50	< 50	< 50	< 5.	
Bromoform		NE	< 250	< 50	< 50	< 50	< 50	< 5 < 5	
Bromomethane		5	< 250	< 50	< 50	< 50	< 50	< 5	
Carbon Disulfide		50	< 2500	< 500	< 500	< 500	< 500	< 5	
Carbon Tetrachloride		5	< 250	< 50	< 50	< 50	< 50	< 5	
Chlorobenzene		5	< 250	< 50	< 50 < 50	< 50	< 50	< 5	
Chlorodibromomethane		5	< 250	< 50	< 50	< 50	< 50	< 5	
Chlorodifluoromethane (Freon 22)		NE NE	< 250	< 50	< 50	< 50	< 50	< 5	
Chloroethane		5	< 250	< 50 < 50	< 50 < 50	< 50	< 50 < 50	< 5	
Chloroform		5	< 350	< 70				-	
Chloromethane		NE	< 250	< 50	< 70 < 50	< 70	< 70	< 5	
cis-1,2-Dichloroethene		5	1500			< 50	< 50	< 5	
cis-1,3-Dichloropropene		L		130	130	140	150	< 5	
Dichlorodifluoromethane (Freon 12)		0.4	< 250	< 50	< 50	< 50	< 50	< 5	
. ,		5	< 250	< 50	< 50	< 50	< 50	< 5	-
Ethylbenzene Mothylana Chlorida		5	< 250	< 50	< 50	< 50	< 50	< 5	
Methylene Chloride		50	< 250	< 50	< 50	< 50	< 50	< 5	
Styrene Tetrachloroethene		5	< 250	< 50	< 50	< 50	< 50	< 5	
Tetrachioroethene Toluene		5	< 250	< 50	< 50	< 50	< 50	< 5	
		5	< 250	< 50	< 50	< 50	< 50	< 5	
trans-1,2-Dichloroethene		5	< 250	< 50	< 50	< 50	< 50	< 5	
Trans-1,3-Dichloropropene		NE -	< 250	< 50	< 50	< 50	< 50	< 5	
Trichloroethene		5	8800	1100	1100	1300	1100	< 5	
Trichlorotrifluoroethane (Freon 113)		5	< 250	< 50	< 50	< 50	< 50	< 5	
Vinyl Chloride		2	< 100	< 20	< 20	< 20	< 20	< 2	
Xylene- O		5	< 250	< 50	< 50	< 50	< 50	< 5	
		5 .	< 250	< 50	< 50	< 50	< 50	< 5	
Xylene- M &P		5	< 200	~ 50	< 50	~ 50 .	~ 30	~ 0	

Notes and Abbreviations:

1. Results validated following protocols specified in March 2006 RI/FS Work Plan (ARCADIS G&M, Inc. 2006).

2. Samples analyzed for the TCL VOCs using NYSDEC ASP 2000 Method OLM4.2.

Detections indicated in bold

Indicates an exceedance of an SCG Remedial Investigation/Feasibility Study NYSDEC New York State Department of Environmental Conservation Target compound list TCL VOC Volatile organic Compound Standard, criteria, and guidance values **SCGs** ug/L Micrograms per liter TVOC Total volatile organic compounds NΕ Not established ASP Analytical services protocol

Because we care

100% recycled paper produced by wind power energy