

2000 Annual Groundwater Monitoring Report

Groundwater Interim Remedial Measure Northrop Grumman Corporation, Bethpage, New York

PREPARED FOR

Northrop Grumman Corporation

David E Stern

Project Scientist/Hydrogeologist

Coulo San Grovanim

Carlo San Giovanni

Principal Scientist/Project Manager

Michael F. Wolfert Project Director

2000 Annual Groundwater Monitoring Report

Groundwater
Interim Remedial Measure
Northrop Grumman
Corporation,
Bethpage, New York

Prepared for:
Northrop Grumman Corporation

Prepared by: ARCADIS G&M, Inc. 88 Duryea Road Melville New York 11747 Tel 631 249 7600 Fax 631 249 7610

Our Ref.:

NY001321.0001.00004

Date:

19 October 2001

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

i

ARCADIS

1.	Intr	oduction	1
2.	Monitoring Program	1	
	2.1	Hydraulic Monitoring	2
	2.2	Groundwater Quality Monitoring	2
	2.3	Air Monitoring	3
	2.4	Modifications to Field Program	3
3.	IRM Operational Monitoring		
	3.1	IRM Well Operational Data	5
		3.1.1 Water Quality	5
		3.1.2 Pumpage	6
	3.2	Treatment Plant Operational Data	7
		3.2.1 Air Quality	7
	3.3	Precipitation	8
4.	Groundwater Flow		8
	4.1	Shallow Zone	9
	4.2	Intermediate Zone	10
	4.3	Deep Zone	11
	4.4	D2 Zone	12
	4.5	Summary of Groundwater Flow Conditions	13
5.	Groundwater Quality		14
	5.1	Volatile Organic Compounds	14
		5.1.1 VOCs in the Shallow and Intermediate Zones	15
		5.1.2 VOCs in the Deep Zone	17
		5.1.3 VOCs in the D2 Zone	19
	5.2	Vinyl Chloride Monomer	22

g:\aproject\grumman\ny000008.0210\task 4\3q00.doc

ARCADIS

	5.3	Tentatively Identified Compounds	23
	5.4	Quality Control Samples - VOCs	23
	5.5	Semi-Volatile Organic Compounds	23
	5.6	Cadmium and Chromium	23
	5.7	Quality Control Samples - Cadmium/Chromium	24
	5.8	Data Validation	24
6.	Summary and Conclusions		
	6.1	IRM System	24
	6.2	Groundwater Flow	25
	6.3	Groundwater Quality	25
7.	Reco	mmendations	27
8.	Refe	rences	28

Tables

- 1 Groundwater Monitoring Network, Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.
- Trichloroethene Concentrations in Water Samples Collected from Groundwater IRM Extraction Wells and Industrial Supply Wells, July through December 2000, Northrop Grumman Corporation, Bethpage, New York.
- 3 Trichloroethene Concentrations in Water Samples Collected from Groundwater IRM System Influent and Effluent, July through December 2000, Northrop Grumman Corporation, Bethpage, New York.
- 4 Operational Summary of the Groundwater Interim Remedial Measure and Industrial Supply Well GP-3, July through December 2000, Northrop Grumman Corporation, Bethpage, New York.
- Groundwater IRM Extraction Well Performance Data from January though October 2000, Northrop Grumman Corporation, Bethpage, New York.
- 6 Precipitation Data for the Third and Fourth Quarters 2000 and Long-Term Averages, Northrop Grumman Corporation, Bethpage, New York.

ARCADIS

- 8 Comparison of Vertical Hydraulic Gradients from the October 2000 Groundwater Monitoring Round to Model-Predicted Gradients, Northrop Grumman Corporation, Bethpage, New York.
- 9 Concentrations of Volatile Organic Compounds Detected In Shallow Wells During the Baseline (May 1997), Last Quarter of 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.
- 10 Concentrations of Volatile Organic Compounds Detected In Intermediate Wells During the Baseline (May 1997), Last Quarter of 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.
- 11 Concentrations of Volatile Organic Compounds Detected In Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.
- 12 Concentrations of Volatile Organic Compounds Detected In D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.
- Concentrations of Tentatively Identified Compounds (TICs) Detected in Groundwater Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.
- 14 Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.
- 15 Concentrations of Semi-Volatile Organic Compounds Detected in Groundwater Samples During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.
- Total Cadmium and Chromium Detected in Groundwater Samples Collected During the Last Quarter 1999 and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

ARCADIS

Figures

- Site Location and IRM and Well Locations, Northrop Grumman Corporation, Bethpage, New York.
- Trichloroethene Concentrations in Groundwater IRM Wells GP-1, ONCT-1, and ONCT-2 and Supply Well GP-3, Northrop Grumman Corporation, Bethpage, New York.
- 3 Trichloroethene Concentrations in IRM Well ONCT-3 and Supply Wells GP-10 and GP-11, Northrop Grumman Corporation, Bethpage, New York.
- 4 Comparision of Vertical Gradients in Shallow/Intermediate Well Clusters to Model-Predicted Steady State Gradients and Precipitation Data through the Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.
- Comparision of Vertical Gradients in Shallow/Intermediate Well Clusters to Model-Predicted Steady State Gradients and Precipitation Data through the Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.
- 6 Comparison of Vertical Gradients in Intermediate/Deep Well Clusters to Model-Predicted, Steady-State Gradients through the Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.
- 7 Comparision of Vertical Gradients in Deep/Deep2 Well Clusters to Model-Predicted, Steady-State Gradients through the Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.
- 8 Comparision of Vertical Gradients in Deep/Deep2 Well Clusters to Model-Predicted, Steady-State Gradients through the Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.
- Water-Table Configuration and Groundwater Flow Directions in the Shallow Zone, October 16, 2000, Northrop Grumman Corporation, Bethpage, New York.
- 10 Potentiomeric Surface and Groundwater Flow Directions in the Intermediate Zone, October 16, 2000, Northrop Grumman Corporation, Bethpage, New York.
- 11 Potentiometric Surface and Groundwater Flow Directions in the D2 Zone, October 16, 2000, Northrop Grumman Corporation, Bethpage, New York.
- 12 Total Volatile Organic Compound Concentrations in Selected Deep and D2 Monitoring Wells, Northrop Grumman Corporation, Bethpage, New York.
- 13 Total Volatile Organic Compound Concentrations in Selected Deep Monitoring Wells, Northrop Grumman Corporation, Bethpage, New York.
- 14 Total Volatile Organic Compound Concentrations in Selected Deep and D2 Monitoring Wells Northrop Grumman Corporation, Bethpage, New York.

g:\aproject\grumman\ny000008.0210\task 4\3q00.doc

ARCADIS

- Total Volatile Organic Compound Concentrations in Selected D2 Monitoring Wells, Northrop Grumman Corporation, Bethpage, New York.
- Total Volatile Organic Compound Concentrations in Selected D2 Monitoring Wells, Northrop Grumman Corporation, Bethpage, New York.

Appendices

- A Water-Level Measurement Logs
- B Field and Data Validation Methodologies
- C Groundwater Sampling Logs
- D Chains Of Custody
- E Data Validation Memoranda

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

1. Introduction

This groundwater monitoring report was prepared as part of the operation, maintenance, and monitoring (OM&M) requirements for the groundwater Interim Remedial Measure (IRM) at the Northrop Grumman Corporation (Northrop Grumman) Bethpage, New York facility. Both the hydraulic (groundwater elevation measurements) and groundwater quality monitoring described in this report are currently being conducted by Northrop Grumman on a voluntary basis. The purpose of the monitoring is to evaluate the effectiveness of the groundwater IRM at achieving the remedial goal of preventing the off-site migration of volatile organic compound (VOC)-impacted groundwater. Upon execution of a groundwater Record of Decision (ROD) for the Northrop Grumman and Naval Weapons Industrial Reserve Plant (NWIRP) sites and execution of a consent order, an OM&M plan will be prepared and submitted for New York State Department of Environmental Conservation (NYSDEC) review. Following NYSDEC approval of the plan, the specified groundwater monitoring and reporting will be implemented as a required component of the groundwater remedy.

This report discusses short-term changes in groundwater flow and groundwater quality conditions observed during the third quarter of 2000 (i.e., October 2000), longer-term trends (i.e., from the beginning of record through October 2000), and the operation of the IRM system through December 2000. As in previous groundwater monitoring reports, this report also includes findings, conclusions, and recommendations for modifications to the current groundwater monitoring program. The conclusions and recommendations made in this report will continue to be re-evaluated in future reports as additional hydraulic and groundwater quality data become available and will be incorporated, as appropriate, into the OM&M Plan.

2. Monitoring Program

The third quarter 2000 groundwater monitoring network (hydraulic and groundwater quality) is summarized in Table 1. The Northrop Grumman site, the location of the groundwater IRM, neighboring properties (i.e., the Naval Weapons Industrial Reserve Plant [NWIRP] and Occidental Chemical Corporation/RUCO Polymer Corporation sites), and monitoring well locations are shown on Figure 1.

The hydrogeologic zones monitored include the shallow zone, the intermediate zone, the deep zone, and the deep2 (D2) zone. These zones were defined and discussed in

2000 Annual Groundwater Monitoring Report

detail in the groundwater flow modeling report, provided as Appendix B of the Groundwater Feasibility Study (ARCADIS Geraghty & Miller 1999a).

Northrop Grumman Corporation, Bethpage, New York

Damage to control wiring from lightning storms resulted in a shutdown of the IRM system and a one-month delay in monitoring for the first quarter of 2000. To maintain a consistent period between rounds, the third quarter 2000 round was conducted in late September/October 2000. The next monitoring round is planned for January 2001.

2.1 Hydraulic Monitoring

Wells planned for monitoring this round included 45 on-site and off-site monitoring wells, and IRM Wells GP-1, ONCT-1, ONCT-2, and ONCT-3, for a total of 49 wells (see Table 1). Water levels were scheduled to be measured in 15 monitoring wells screened in the shallow zone, 9 monitoring wells screened in the intermediate zone, 10 monitoring wells screened in the deep zone, and 15 wells (including the four IRM wells) screened in the D2 zone. Field conditions prevented measuring two of these wells (see Section 2.4 – Modifications to the Field Program).

Water levels were measured in the wells to determine the hydraulic effects, both horizontally and vertically, of pumping the IRM wells and Well GP-3. The results of the third quarter 2000 hydraulic monitoring round are described in Section 4 (Groundwater Flow) of this report.

2.2 Groundwater Quality Monitoring

During the third quarter of 2000, the following groundwater quality monitoring was conducted:

- On-site groundwater monitoring for VOCs (including the four IRM wells and Well GP-3) to monitor changes and trends in VOC concentrations from operation of the IRM system.
- Off-site groundwater monitoring for VOCs to monitor changes and trends in VOC concentrations from operation of the IRM system and to develop groundwater quality data from outpost wells located downgradient of the Northrop Grumman and NWIRP sites and upgradient of the Bethpage Water District (BWD) Public Supply Wells N-6915 (4-1), N-6916 (4-2), N-8004 (5-1), N-3876 (6-1), and N-8941 (6-2), which are located south of the sites (Figure 1).

g:\aproject\grumman\ny000008.0210\dask 4\3q00.doc 2

2000 Annual Groundwater Monitoring Report

3

Northrop Grumman Corporation, Bethpage, New York

- On-site outpost groundwater monitoring for VOCs and semi-volatile organic compounds (SVOCs) was conducted downgradient of the Plant 1 Fuel Depot.
- On- and off-site monitoring for Cadmium (Cd) and Chromium (Cr) in selected
 monitoring wells in the southwestern portion of the Northrop Grumman site (south
 of former Plant 2 near the South Recharge Basins), and off-site (southwest of the
 Northrop Grumman site) to monitor trends in the on/off-site concentrations of
 Cd/Cr (Figure 1).
- On-site monitoring for vinyl chloride monomer (VCM) was conducted to monitor concentrations and changes in the horizontal and vertical position of the VCM subplume and provide early warning of potential VCM impacts to the groundwater IRM system.

Field conditions encountered prevented sampling two wells; (see Section 2.4 – Modifications to Field Program). Appendix A contains water-level measurement logs, Appendix B contains the sampling methodology, Appendix C contains groundwater sampling logs, Appendix D contains chain-of-custody records, and Appendix E contains data validation memoranda. Section 5 (Groundwater Quality) of this report summarizes the analytical results of groundwater samples collected during the third quarter of 2000.

2.3 Air Monitoring

Air samples were collected in October 2000 to determine VOC concentrations in the effluent air streams for the Plant 5 (GP-1) and Plant 5E (ONCT) systems. In December 2000, samples were collected from the GP-1 influent and effluent air streams of these systems. A discussion of the plan for collecting and evaluating air quality data is provided in Section 3.2.1 (Air Quality). A description of the air sampling methodology is provided in Appendix B.

2.4 Modifications to Field Program

The number of wells monitored and samples collected were modified this round, as follows:

A water-level probe access port does not exist at IRM Well GP-1; therefore water-levels cannot currently be measured in this well.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

- Water-level measurements and groundwater samples cannot currently be obtained from Monitoring Well N-10624 due to silt in the well screen.
- Well GM-10I was sampled this round to evaluate groundwater quality conditions south of the RUCO site in the intermediate zone; the data will be compared to conditions observed in 1998. If no appreciable changes in VOC concentrations are observed, then Well GM-10I will not be included in subsequent monitoring rounds.
- Nine monitoring wells were installed by the US Navy as part of the site-wide monitoring well drilling program that began in March 2000. The following wells have therefore been added to the quarterly groundwater monitoring program: GM-15S, GM-15D, GM-15D2, GM-17I, GM-17D, GM-73D2, GM-74I, GM-74D, and GM-74D2 (see Table 1).
- In addition to weekly sampling for trichloroethene (TCE), sampling for VOCs from Well GP-3 and IRM Wells GP-1, ONCT-1, ONCT-2, and ONCT-3, and from the Plant 5 (GP-1) and Plant 5E (ONCT) systems influent and effluent was added to the quarterly monitoring program.

3. IRM Operational Monitoring

To monitor performance of the groundwater IRM, Northrop Grumman collected water samples for analysis of trichloroethene (TCE) from each IRM extraction well (GP-1, ONCT-1, ONCT-2, and ONCT-3), and from the influent and effluent streams from the two groundwater treatment facilities. Northrop Grumman is conducting this sampling on a voluntary basis for their internal informational use. The water samples were analyzed by Northrop Grumman's internal laboratory and were not subject to US Environmental Protection Agency (USEPA) QC criteria; therefore, the resulting data were not validated. This report section provides a qualitative evaluation of the data collected as part of operational monitoring of the IRM through December 2000. Water samples were also collected by ARACDIS G&M from IRM Wells GP-1, ONCT-1, ONCT-2, and, ONCT-3 and Well GP-3, and from the influent and effluent IRM Plant 5 (GP-1) and Plant 5E (ONCT) systems. Effluent water samples were collected after the air stripper at both facilities and also after the effluent was further treated via the Plant 5 and Plant 5E aeration basins. The water samples after the aeration basins were collected this round to characterize the quality of water discharging to the recharge basins. Samples were submitted for analysis of the full Target Compound List (TCL)

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

for VOCs. Section 5 (Groundwater Quality) discusses the results of the sampling of the IRM system.

Northrop Grumman maintains logs of the total volume of groundwater pumped from each well on a weekly basis and continually monitors and records the amount of time the IRM wells are operating. These data were used to determine the percentage of time the IRM wells were operating and the average pumping rates for the IRM wells during their period of operation.

Industrial Supply Well GP-3 was operating continuously from July through December 2000 and although not part of the IRM, Northrop Grumman routinely operates Well GP-3: to remove VOCs from groundwater, and to provide hydraulic containment backup for IRM Well GP-1. Data collected through December 2000 indicate that the VOC concentrations in Well GP-3 are greater than the VOC concentrations in IRM Well GP-1. Northrop Grumman plans to continue to voluntarily operate Well GP-3, as it recognizes the benefit of increasing the rate of VOC removal and enhancing the hydraulic containment of the VOC plume in that area of the site.

3.1 IRM Well Operational Data

Northrop Grumman records operational water quality data for the groundwater IRM on a weekly basis. Additionally, ARCADIS G&M has collected hydraulic (pumping depth to water) measurements and instantaneous pumping rates from IRM Wells ONCT-1, ONCT-2, and ONCT-3 during each round of hydraulic measurements (GP-1 cannot currently be measured). Tables 2 and 3 summarize TCE concentrations for the IRM wells and treatment systems, respectively, from July to December 2000. Table 4 summarizes the pumpage from the IRM wells and Well GP-3 and VOC mass removed from the IRM wells and Well GP-3 during the July to December 2000 period and cumulatively since IRM startup in September 1998. Table 5 summarizes the performance data collected from the IRM wells. Figure 2 depicts TCE concentrations versus time in IRM Wells GP-1, ONCT-1, and ONCT-2 (along with Industrial Supply Well GP-3), and Figure 3 depicts TCE concentrations versus time in IRM Well ONCT-3, and Industrial Supply Wells GP-10, and GP-11 (other on-site wells used by Northrop Grumman for non-contact cooling supply).

3.1.1 Water Quality

As shown on Figure 2, IRM Well ONCT-1 continues to show an overall declining trend (best-fit line) in TCE concentrations since the beginning of record. During the

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

period of record, substantial short-term changes in TCE concentrations have occurred within IRM Well ONCT-1. IRM Well GP-1 also continues to show an overall declining TCE trend for the period of record, with much smaller short-term changes in TCE concentrations than observed in IRM Well ONCT-1. The TCE concentration trend for Well GP-3 (Figure 2) is increasing for the period of record. During the period of record, short-term changes in TCE concentrations occur in this well that are similar to those observed in Well GP-1. Since September 1999, TCE concentrations in Industrial Supply Well GP-3 are generally greater than the levels detected in IRM Well GP-1 (Figure 2), which is located downgradient of Industrial Supply Well GP-3. The TCE trends (best-fit lines) for Wells GP-1 and GP-3 are essentially identical in slope with Well GP-1 decreasing and Well GP-3 increasing.

As shown on Figure 2, the data for IRM Well ONCT-2 continue to show an increasing trend in TCE concentrations over time, while IRM Well ONCT-3 (Figure 3) exhibits fairly stable and low TCE concentrations for the period of record. The trends in TCE concentrations in Industrial Supply Wells GP-10 and GP-11 (Figure 3) are stable at concentrations generally less than 150 ug/L throughout the period of record.

3.1.2 Pumpage

The design pumping rates of IRM Wells GP-1, ONCT-1, ONCT-2, and ONCT-3 are 1,075 gallons per minute (gpm), 1,000 gpm, 600 gpm, and 700 gpm, respectively (Geraghty & Miller, Inc. 1996), for a total rate of 3,375 gpm. If the wells were pumped continuously at the design rates, this would result in a total of 894 million gallons (MG) being pumped in the third and fourth quarters.

The total pumpage and average pumping rate for each IRM well during the third and fourth quarters were calculated using methods described in previous quarterly reports. Pumpage from Industrial Supply Well GP-3 supplemented the total gallons pumped during the third and fourth quarters (July through December 2000). The number of days operational between July and December 2000 are as follows: GP-1 (179.5 days); GP-3 (179.5 days); ONCT-1 (164.1 days); ONCT-2 (156.3 days); and ONCT-3 (158.1 days). While operating, the average pumping rate for each IRM well was as follows: 783 gpm (GP-1); 996 gpm (ONCT-1); 712 gpm (ONCT-2); and 670 gpm (ONCT-3); Well GP-3 pumped continuously at an average rate of 722 gpm (Table 4). This equates to approximately 937.5 MG pumped in total from July to December, or approximately 105 percent of the total designed pumpage. Since September 1998, a total of 4.8 billion gallons have been pumped by the IRM wells and Well GP-3 and treated.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

The brief periods of IRM system downtime from July to December were the result of the performance of routine O&M activities and temporary power outages.

Based on instantaneous pumping rates and drawdowns measured on October 16, 2000, the specific capacities for the IRM wells are as follows: ONCT-1 (41.6 gpm/ft); ONCT-2 (35.8 gpm/ft); and ONCT-3 (35.7 gpm/ft) (Table 5). A water level cannot currently be measured in Well GP-1 and therefore, its specific capacity cannot be calculated. For Wells ONCT-1, ONCT-2, and ONCT-3, specific capacities exceed the minimum required for optimum pump performance (Geraghty & Miller, Inc. 1996).

3.2 Treatment Plant Operational Data

Based on the available data for the period July to December 2000 (samples designated by Northrop Grumman as wastewater recovery plant [WWRP]-5E IN; this plant receives water from wells ONCT-1, ONCT-2 and ONCT-3), influent TCE concentrations to the IRM treatment plant ranged from 524 μ g/L to 1,200 μ g/L (Table 3). Influent TCE concentrations to the IRM Well GP-1 treatment plant for the same time frame (samples designated as WWRP-5 IN; this plant receives water from IRM Well GP-1 and Industrial Supply Well GP-3), ranged from 438 μ g/L to 1,188 μ g/L. During the period from July to December 2000, effluent concentrations of TCE from the WWRP-5E and WWRP-5 treatment facilities (samples designated as WWRP-5E OUT and WWRP-5 OUT, respectively) were 4 μ g/L or less; this coupled with the water quality data obtained from the aeration basins (see Section 5.1.3 – TVOCs in the D2 Zone) equates to a VOC removal rate of greater than 99.99 percent.

From July to December 2000, a total of 5,967 pounds (lbs) of VOCs were removed from groundwater and treated by the IRM treatment facilities. Since IRM startup in September 1998, a total of 39,214 lbs of VOCs have been removed (Table 4).

3.2.1 Air Quality

Air samples were collected on October 15, 2000, to evaluate VOC concentrations in the effluent air streams for the Plant 5 (GP-1) and Plant 5E (ONCT) systems. On December 15, 2000, samples were collected from the GP-1 influent and effluent air stream to confirm the October 2000 results. Additional air samples are planned for subsequent monitoring rounds and, when sufficient data are collected to develop an accurate representation of short-term and annual air emissions versus NYSDEC standards, the complete data set will be tabulated, evaluated versus NYSDEC Air Guide I standards, and provided in a subsequent quarterly report.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

3.3 Precipitation

Precipitation data were factored into evaluating the effects of the operation of the groundwater IRM on groundwater flow (See Section 4 – Groundwater Flow) because Northrop Grumman uses the Plant 5 Recharge Basins and South Recharge Basins for the recharge of stormwater runoff. Precipitation data (rainfall, snow, ice, sleet, and hail) were reported as equivalent inches of rainfall for the 30-day period prior to the October 16, 2000 hydraulic monitoring round; these data are summarized in Table 6. This section discusses the short-term changes in monthly precipitation observed in the third and fourth quarters of 2000 in comparison to long-term trends.

To place the precipitation data in perspective, they were compared to the long-term averages (LTA) for monthly precipitation. The LTA data were compiled from 42 complete years of data collected between 1938 and 1995, and are summarized in Table 6.

Precipitation totals during the months of July (5.42 inch) and September (5.11) of 2000, were greater than their respective LTA's (i.e., wetter months than average), while precipitation totals for August (2.41), October (0.41), November (3.30) and December (3.30), of 2000 were below their respective LTA's (i.e., drier months than average). Monthly precipitation recorded during July through December 2000 on a daily basis is depicted on Figures 4 and 5 (in conjunction with vertical gradient data – for shallow/intermediate well clusters).

4. Groundwater Flow

This report section presents the results of the October 2000 groundwater level measurement round and evaluates the effectiveness of the groundwater IRM at achieving the remedial goal of preventing the off-site migration of VOC-impacted groundwater. The evaluation of the hydraulic data is performed using methods described in previous quarterly monitoring reports.

The October 2000 hydraulic measurement round was conducted while the groundwater IRM was operating; the wells measured and water-level data obtained are summarized in Table 7. Using the data collected, maps showing the water table configuration and directions of groundwater flow (i.e., the shallow zone) and the potentiometric surface configuration and groundwater flow directions in the intermediate and D2 zones were prepared. These maps illustrate the effect (i.e., hydraulic containment) of the operation of the groundwater IRM on horizontal groundwater flow patterns. To evaluate the

2000 Annual Groundwater Monitoring Report

9

Northrop Grumman Corporation, Bethpage, New York

effect of the groundwater IRM on vertical groundwater flow patterns, vertical hydraulic gradients were calculated using water-level data from shallow/intermediate, intermediate/deep, and deep/D2 monitoring well clusters (Table 8). The vertical gradient data were graphed versus time along with the model-predicted, steady state vertical gradients (Figures 4 through 8) to illustrate the direction and magnitude of the vertical gradients and trends over time.

4.1 Shallow Zone

The configuration of the water table and directions of groundwater flow in the shallow zone on October 16, 2000, are shown on Figure 9. The following text describes the effects of the groundwater IRM treatment plant discharges and stormwater runoff (as recharge to the South Recharge Basins and the Plant 5 Recharge Basins) on shallow groundwater flow during the October 2000 round. This section also describes vertical groundwater gradient measured during October 2000 and compares these gradients to the simulated steady-state vertical gradients predicted by the groundwater flow model (ARCADIS Geraghty & Miller 1999b).

As shown on Figure 9, the configuration of the water-table on October 16, 2000, shows two areas of groundwater mounding situated on the Northrop Grumman site; one mound is centered on the South Recharge Basins and the other is centered on the Plant 5 Recharge Basins.

The maximum elevation of the mounding beneath and around the Plant 5 Basins is greater than 70 ft msl. As a result of the mounding, the horizontal direction of shallow groundwater flow in the vicinity of the Plant 5 Basins is radially to the north, south, west, and east away from the basins. This radial horizontal groundwater flow creates a hydraulic barrier and prevents on-site VOC-impacted groundwater in this area from migrating off-site in this zone. In addition, observed mounding also increases the vertical hydraulic gradient in the vicinity of the basins, resulting in a downward vertical component of groundwater flow from the shallow zone to the intermediate zone. Using water-level data from the October 2000 round, vertical gradients (Table 8 and Figures 4 and 5) were calculated for the shallow-intermediate monitoring well pairs in the area of the Plant 5 Recharge Basins (GM-16SR/16I and GM-17SR/GM-17I). As expected, the vertical gradient in Well Clusters GM-16SR/16I and GM-17SR/GM-17I is oriented downward (1.21 x 10⁻³ ft/ft and 3.56 x 10⁻³ ft/ft, respectively). Away from the Plant 5 Recharge Basins in the south-central portion of the Northrop Grumman site, the horizontal direction of shallow groundwater flow is to the southeast.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

As shown on Figure 9, the maximum elevation of the mound beneath and around the South Recharge Basins is greater than 66 ft msl, and the mound extends across most of the width of the southern boundary of the site. Similar to that observed at the Plant 5 Basins, the horizontal direction of shallow groundwater flow in the vicinity of the South Recharge Basins is radially to the north, south, west, and east away from the basins, thereby creating an hydraulic barrier and preventing on-site VOC-impacted groundwater in this area from migrating off-site in the shallow zone. Similar to the Plant 5 Basins, the mounding around the South Recharge Basins also increases the vertical gradient in the vicinity of the basins, resulting in a downward vertical groundwater flow component from the shallow zone to the intermediate zone. The vertical gradients for October 2000 calculated from the shallow-intermediate monitoring well clusters near the South Recharge Basins (GM-19S/GM-19I [north of the basins], GM-15S/GM-15I [east of the Basins] and GM-21S/GM-21I [south of the basins] [Table 8 and Figures 4 and 5]) show that the vertical gradients are oriented downward (5.03 x 10⁻³ ft/ft, 1.19 x 10⁻³ ft/ft, and 28.39 x 10⁻³ ft/ft, respectively).

Monitoring well-cluster vertical gradients that are close to groundwater flow model predictions would be a key indicator that the groundwater IRM, through pumpage from the D2 zone and recharge to the shallow zone, has created an effective hydraulic barrier to off-site groundwater flow. As shown on Figures 4 and 5, vertical gradients in the monitoring well clusters located near the basins (GM-16S/GM-16I, GM-19S/GM-19I, and GM-21S/GM-21I) over the period of record, including this quarter, have been consistently oriented downward and are close to or greater than the gradients predicted by the groundwater flow model. The vertical gradient in new Well Clusters GM-15S/GM-15I and GM-17SR/GM-17I are oriented downward and are close to model predictions. These data indicate that the predominant direction of shallow groundwater flow in the vicinity of the basins is vertically downward toward the intermediate zone.

In conclusion, the downward vertical gradients coupled with the radial horizontal flow components near the recharge basins collectively create a hydraulic barrier that prevents on-site VOC-impacted groundwater from migrating off-site in this zone.

4.2 Intermediate Zone

The configuration of the potentiometric surface and groundwater flow directions in the intermediate zone on October 16, 2000 are shown on Figure 10. The following text describes the effect of groundwater IRM treatment plant discharges and stormwater runoff on groundwater flow and compares this flow to model predictions using

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

methods similar to that described in Section 4.1 (Shallow Zone). Table 8 summarizes vertical gradient calculations for intermediate/deep wells.

As shown on Figure 10, the configuration of the potentiometric surface in the intermediate zone is similar to that observed in the shallow zone, with mounding centered beneath the Plant 5 and South Recharge Basins (maximum water-level elevation at the Plant 5 Basins is greater than 68 ft msl, while the maximum waterlevel elevation at the South Recharge Basins is greater than 64 ft msl). Similar to that observed in the shallow zone, the mounding centered beneath the Plant 5 Basins is approximately 1,500 ft in width, while the mounding centered beneath the South Basins is approximately 2,500 ft in width. This indicates that IRM system discharge and stormwater runoff (as recharge to these basins) are substantially affecting groundwater flow in the intermediate zone, with the horizontal component of flow nearest the basins oriented radially away from the basins. The resultant vertical gradients in monitoring well clusters nearest the basins are oriented downward and are similar to or greater than model predictions, as follows: Well Clusters GM-15I/GM-15D (east of the South Basins) (8.28 x 10^{-3} ft/ft); GM-17I/GM-17D (at the Plant 5 Basins) (30.82 x 10⁻³ ft/ft); GM-20I/GM-20D (13.81 x 10⁻³ ft/ft) and GM-74I/GM-14D (25.82 x 10⁻³ ft/ft) (both clusters at the South Basins) (see Figure 6).

Collectively, the data indicate that the hydraulic barrier to groundwater flow extends vertically downward to the intermediate zone and is similar in extent to that observed in the shallow zone, thereby preventing the off-site migration of VOCs in this zone.

4.3 Deep Zone

As stated in previous reports, since groundwater in the deep zone is expected to be flowing in a predominantly vertical (downward) direction in the general vicinity of the groundwater IRM, the analysis of the effectiveness of the groundwater IRM at achieving the remedial goals in this zone is conducted using vertical gradient calculations for deep/D2 monitoring well clusters.

Table 8 summarizes the vertical hydraulic gradients calculated from data collected from well clusters in the deep/D2 zone during the October 16, 2000 round and compares them to model-predicted gradients. Figures 7 and 8 show the calculated vertical gradients versus time for the period of record and model-predicted steady-state gradients.

2000 Annual Groundwater Monitoring Report

Figure 7 depicts vertical hydraulic gradients in on-site Well Clusters GM-15D/GM-15D2 and GM-74D/GM-74D2. As expected, the vertical gradients (see Table 8) in Well Clusters GM-15D/GM-15D2 (12.34 x 10^{-3} ft/ft) (east of the South Basins) and GM-74D/GM-74D2 (26.42 x 10^{-3} ft/ft) (at the South Basins) are oriented downward and are close to model predictions.

Northrop Grumman Corporation, Bethpage, New York

Table 8 and Figures 7 and 8 depict vertical gradients in off-site deep/D2 well clusters that are generally located between the Northrop Grumman site boundary and the BWD supply wells. Deep/D2, vertical gradients calculated based on October 2000 data, for Well Clusters GM-34D/GM-34D2 (7.51 x 10⁻³ ft/ft); GM-36D/GM-36D2 (6.78 x 10⁻³ ft/ft); GM-37D/GM-37D2 (5.15 x 10⁻³ ft/ft), and GM-38D/GM-38D2 (13.66 x 10⁻³ ft/ft) are oriented downward and are greater than the model-predicted gradients.

In conclusion, vertical hydraulic gradients calculated for October 2000 from deep/D2 monitoring well clusters are oriented downward and are greater than or close to steady-state gradients predicted by the groundwater flow model. Furthermore, vertical gradients in well clusters near the Northrop Grumman site boundary indicate that the mounding of the water table coupled with pumping wells in the D2 zone is forcing on-site groundwater downward toward the pumpage in the D2 zone, and continues to prevent groundwater from flowing off-site in the deep zone.

4.4 D2 Zone

On October 16, 2000, water-levels were measured in on- and off-site D2 monitoring wells and IRM Wells ONCT-1, ONCT-2, and ONCT-3 (GP-1 cannot currently be measured) which are screened in the D2 zone. Figure 11 depicts the potentiometric surface configuration and groundwater flow directions in the D2 zone.

The result of pumping of IRM Wells ONCT-1, ONCT-2, and ONCT-3 is the formation of cones of depression (area of depressed water levels) in the D2 zone centered on each well. As expected, the widest and deepest depression is centered around Well ONCT-1 (pumping at 996 gpm) (water-level elevation of 37.69 ft msl) with similar, slightly narrower cones of depression having formed around Wells ONCT-2 and ONCT-3 (pumping at 712 gpm and 670 gpm, respectively) (water-level elevations of 40.08 ft msl and 40.82 ft msl, respectively). Although Wells GP-1 and GP-3 (pumping at 783 gpm and 722 gpm, respectively) cannot currently be measured, it is reasonable to assume that cones of depression similar in width and depth to that shown around Wells ONCT-2 and ONCT-3 exist around Wells GP-1 and GP-3 and, therefore, that the cumulative zone of capture shown on Figure 11 also extends to the northwest along the

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

southwestern perimeter of the Northrop Grumman site. Due to the simultaneous pumping of IRM Wells ONCT-1, ONCT-2, and ONCT-3 the individual well cones of depression have merged into a cumulative capture zone that, based on the data collected in October 2000, is approximately 4,000 ft wide and extends along the southern and southwestern boundary of the Northrop Grumman site. At its farthest downgradient extent (south of Well ONCT-1) the zone of capture extends approximately 800 ft south of the Northrop Grumman site boundary. Within the zone of capture (upgradient and up to 800 ft downgradient of the IRM), groundwater flow directions are oriented toward the centers of pumping (i.e., the IRM wells) indicating that groundwater in this area is fully contained, and captured by the IRM system. Beyond the downgradient extent of the zone of capture, groundwater continues to flow downgradient until it is influenced by the pumping of nearby public supply wells or continues to flow south-southeast in the direction of the regional groundwater flow.

Collectively, the data from the D2 zone indicate that the pumpage of the IRM wells has created a hydraulic barrier in this zone, thereby preventing the off-site migration of VOCs across the entire southern boundary of the Northrop Grumman site.

4.5 Summary of Groundwater Flow Conditions

Since the first hydraulic measurement round in November 1998, following IRM system startup in September 1998, groundwater in the shallow zone has consistently flowed in a predominantly southeasterly direction across the NWIRP and Northrop Grumman sites. However, closer to the Plant 5 recharge basins and the South Recharge Basins, groundwater mounding (from stormwater runoff and discharge of treated effluent) beneath and around the basins prevents the off-site movement of groundwater in the shallow zone and forces groundwater vertically downward. Throughout the intermediate and deep zones, groundwater near the IRM wells and basins flows in a predominantly vertical direction into the D2 zone. Within the D2 zone, the pumping of the IRM wells controls groundwater movement and eventually groundwater is captured by the IRM wells before it can move off-site. Treated groundwater from the IRM wells is then discharged to the Plant 5 and South Recharge Basins, where it is reintroduced to the groundwater system. Further off-site, groundwater flows until it is influenced by the pumping of nearby public supply wells or continues to flow southeast in the direction of the regional groundwater flow.

In conclusion, the hydraulic data presented in this report indicate that operation of the groundwater IRM has maintained an effective hydraulic barrier throughout the shallow, intermediate, deep, and D2 zones, which prevents the off-site migration of on-

g:\aproject\grumman\riy000008.0210\ask 4\Q00.doc 13

2000 Annual Groundwater Monitoring Report

14

site, contaminated groundwater (i.e., containment of on-site VOC-impacted groundwater).

Northrop Grumman Corporation, Bethpage, New York

5. Groundwater Quality

The third quarter 2000 groundwater sampling round was conducted from September 18 to October 16, 2000. This report section describes the results of the third quarter 2000 groundwater monitoring round and long-term trends in groundwater quality.

5.1 Volatile Organic Compounds

The goal of the on-site groundwater pumping and treatment system (IRM) is to capture, remove, and treat groundwater from the on-site portion of the VOC plume and thereby, prevent VOC-impacted groundwater from moving off-site. The operation of the groundwater IRM will cause the plume to bifurcate into an on-site section and an off-site section. As treated water and precipitation continue to recharge the aquifer a clean zone will develop within which VOC impacts will not occur. This clean zone will increase in size as VOC impacted groundwater downgradient (south) and beyond the capture zone of the IRM wells continues to migrate through the aquifer in the regional direction of groundwater flow to the southeast. The continued growth of this clean zone will be dependant on maintaining the hydraulic barrier created by the IRM, and the rate of growth will largely depend on the regional groundwater velocity, which is less than one foot per day.

Based on the above considerations groundwater samples collected from wells immediately south (off-site) of the extraction wells will be the first to show water quality improvement (i.e., a decreasing trend in contaminant concentrations over time although the improvement will be slow due to the natural slow groundwater velocity. Further off site, monitoring wells will take a longer time to show an improvement in groundwater quality as compared to wells immediately south of the extraction wells due to the relatively slow groundwater velocity.

VOC-impacted groundwater that migrated off-site prior to the implementation of the IRM would have to migrate past off-site monitoring wells before the wells would show groundwater quality improvement related to operation of the IRM System. Depending on the contaminant concentrations and heterogeneity of the off-site groundwater, monitored water quality in off-site wells may show several trend changes before a long term trend associated with IRM operation is revealed.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

On-site, depending on well location, water quality in wells may either increase, decrease, or stay the same over the short to mid-term, but over the long term a general decrease in contaminant concentrations will also be observed.

To evaluate this, the following subsections of this report focus on the on- and off-site detections of VOCs in groundwater samples collected.

Specifically, the following subsections describe the distribution of VOCs in the shallow, intermediate, deep, and D2 zones and compares VOC concentrations to New York State Standards, Criteria, and Guidance Values (SCGs). Each of these subsections concludes with an analysis of TVOC concentration trends observed in selected monitoring wells. The occurrence and distribution of VCM in groundwater is discussed in Section 5.2 (Vinyl Chloride Monomer) of this report.

5.1.1 VOCs in the Shallow and Intermediate Zones

VOC concentrations detected in shallow and intermediate monitoring wells during the baseline (May 1997), the last quarter of 1999 and the first three quarters of 2000 groundwater monitoring rounds are provided in Tables 9 and 10, respectively. The groundwater monitoring data in the shallow and intermediate zones are compared to baseline (1997) conditions (where baseline data exist) because sufficient data does not currently exist to evaluate long-term TVOC trends in shallow and intermediate wells. As new data for wells in these zones are collected, an evaluation of TVOC concentrations over time will be performed, if warranted.

The data from the shallow and intermediate wells sampled this quarter confirms the effectiveness of the hydraulic barrier in preventing off-site movement of VOC-impacted groundwater in the shallow and intermediate zones. Wells with the highest VOC concentrations and the most SCG exceedences are located substantial distances north of the South Recharge Basins and lie within the on-site VOC plume. Wells at and near the southern property boundary in the general area of the hydraulic barrier created by the mounding of the water table generally have low TVOC concentrations with most wells having no SCG exceedences. A detailed discussion of this data follows.

For the third quarter 2000 sampling round, Well FW-03, which is located on the NWIRP site over 4,000 feet north and upgradient of the IRM extraction wells (see Figure 1), had the highest TVOC concentration of the shallow wells sampled. Well FW-03 had a TVOC result of 19 μ g/L; with TCE (at 10 μ g/L), being detected above

g:\aprojed\grumman\ny000008 0210\ask 4\3q00.doc 15

2000 Annual Groundwater Monitoring Report

the SCG of 5 μ g/L. This result is lower than the previous round. Well GM-16SR, located in the central portion of the Northrop Grumman site just north of Plant 2 and approximately 2,500 ft upgradient of the IRM extraction wells had no detectable TVOC concentrations. This result is similar to the last two rounds when only acetone (a common laboratory contaminant) was detected one time.

Northrop Grumman Corporation, Bethpage, New York

Of the nine remaining shallow wells sampled during the third quarter 2000 (see Table 9 and Figure 1), three wells had TCE concentrations above the SCG of 5 µg/L, as follows: GM-15S (7 μ g/L); MW-3R (6 μ g/L); and GM-18S (6 μ g/L). The remaining wells had no detections above SCGs. Well GM-15S was installed in May 2000 along the Northrop Grumman eastern boundary, approximately 800 ft north of IRM Well ONCT-3, and this is the first time it has been sampled. Well MW-3R, located immediately west of the South Recharge Basins, at the southern edge of the site, was not sampled during the baseline round and current TVOC concentrations in this well are very similar to results from the last three sampling rounds for this well. Well GM-18S, which is located at the western edge of the site, immediately south of Plant 2, has a current TVOC concentration that is essentially the same as the last three quarters and during the baseline round. Over the last four sampling rounds, TVOC concentrations in this well have ranged from non-detect to 10 µg/L. Monitoring Well GM-14 is located downgradient of the Plant 1 Fuel Depot. This area is currently undergoing remediation of free-phase petroleum constituents. Well GM-14 is monitored for VOCs and SVOCs; VOCs and SVOCs were not detected above SCGs this round. Wells N-10631 and N-10634, which are located south of the site had no detections of VOCs above SCGs. In Well N-10631, TVOCs have ranged between 0 and 0.5 µg/L the last four quarters which is less than the baseline concentration of 11.7 µg/L. In Well N-10634, TVOCs have been 0 or 0.8 μg/L during three of the last four quarters. The detection of VCM in Well N-10634 this round (0.8 µg/L) does not appear to be significant, given the prior history of no VCM detections in this well and the fact that VCM was not detected in other upgradient shallow wells. This well is scheduled to be sampled again in January 2001.

In the intermediate zone, on the NWIRP site, Wells HN-24I and HN-29I each located approximately 4,000 ft north (upgradient) of the IRM extraction wells, had TVOC concentrations of 247 μ g/L and 3.5 μ g/L, respectively. SCGs were not exceeded in Well HN-29I. In Well HN-24I, SCGs were exceeded for the following compounds: 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethene (1,2-DCE), 1,1,1-trichoroethane (1,1,1-TCA), TCE, and PCE. The compound with the highest concentration was TCE at 180 μ g/L. Well MW-52S, located south of the RUCO facility, on the Northrop Grumman Plant 12 property, exhibited the highest

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

TVOC concentration (2,225 μ g/L), with VCM (1,900 μ g/L); acetone (300 μ g/L); 1,2-DCE (7 μ g/L), TCE (6 μ g/L); and PCE (12 μ g/L) exceeding SCGs. The TVOC concentration detected in MW-52S is substantially lower than the previous round. Well GM-10I (sampled this round only) located south of Well MW-52S, also on the Northrop Grumman Plant 12 property, had a TVOC result of 2.1 μ g/L with no exceedences of SCGs. Based on a comparison of this data with the 1998 result for Well MW-10I (8 μ g/L), no substantial changes are evident in TVOC concentrations, therefore, Well GM-10I will not be included in subsequent rounds.

Further south on the Northrop Grumman site, the TVOC concentration in Well GM-16I was 27.4 μ g/L with a TCE concentration of 19 μ g/L exceeding the SCG of 5 μ g/L. Well GM-23I, located at the Northrop Grumman Plant 25 property, had a TVOC concentration of 11.4 μ g/L, with TCE (7 μ g/L) exceeding the SCG value. Wells at the Northrop Grumman southeastern property boundary (GM-15I), southern property boundary (GM-20I, GM-21I, and GM-74I), and at the southwestern property boundary (GM-18I), did not have any SCG exceedences which is consistent with baseline round results for Wells GM-15I, 20I, and 21I (the other wells were not sampling during the baseline round). Wells GM-18I and GM-20I were the only other intermediate wells with any VOC detections (TCE at 0.5 and 0.8 μ g/L, respectively).

5.1.2 VOCs in the Deep Zone

The majority of the deep wells currently monitored have substantial historical groundwater data, which in some cases pre-dates the baseline round. Therefore, in addition to comparing the data to SCGs, the complete history of groundwater TVOC data for select wells is also evaluated. The TVOC data from newly installed monitoring wells (GM-15D, GM-17D, and GM-74D) are also discussed.

TVOC concentrations in the deep zone along the site boundary (and immediately south of the site) are substantially lower than detected upgradient of the IRM which is due to operation of the IRM system, which is preventing the off-site migration of VOC-impacted groundwater in the deep zone. Offsite, the data indicate an overall improving trend for water quality in the deep zone. A detailed discussion of this data follows.

VOC concentrations detected in deep monitoring wells during the baseline (May 1997), the last quarter of 1999 and the first three quarters of 2000 groundwater monitoring rounds are provided in Table 11. Figures 12 through 14 depict TVOC concentrations in selected deep monitoring wells versus time from the beginning of record through the third quarter (October) 2000 round. In the October round, TCE;

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

1,1-DCE; 1,1-DCA; 1,2-DCE; 1,1,1-TCA; PCE; and VCM were the compounds detected in the deep zone exceeding their respective SCGs. TCE was the most frequently detected compound and was detected above the SCG in Well GM-13D (410 μg/L), which is located on the Northrop Grumman site, approximately 2,600 ft north (upgradient) of the IRM extraction wells (Figure 1). TVOC concentrations in Well GM-13D have increased over the period of record (Figure 12). Other VOCs detected above SCGs in Well GM-13D include 1,1-DCE (92 μg/L); 1,1-DCA (58 μg/L); cis/trans-1,2-DCE (230 µg/L); PCE (910 µg/L); and 1,1,1-TCA (99 µg/L). Well HN-29D, which is approximately 1,300 ft north of Well GM-13D, had a TVOC concentration of 2 µg/L (all TCE) this round and has had similar low TVOC levels the previous three sampling rounds. Well MW-52I, located south of the RUCO facility on the Plant 12 property, had the highest TVOC concentration (2,113 µg/L), with VCM $(2,000 \mu g/L)$, 1,2-DCE $(39 \mu g/L)$, TCE $(40 \mu g/L)$, and PCE $(34 \mu g/L)$ exceeding SCGs. The TVOC concentration was substantially lower in Well 52I compared to the previous round (Figure 12). The TVOC concentration in Well MW-52D (59.5 μg/L) was essentially the same as the previous round, with TCE (38 μg/L) and PCE (13 μg/L) exceeding SCGs (Figure 13).

Along the southern boundary of the Northrop Grumman site, wells exhibited generally low to non-detectable concentrations of VOCs with TCE the only compound exceeding SCGs. Well GM-17D (at the Plant 5 Recharge Basins) exhibited no detectable concentrations of VOCs. Well GM-74D (north of the South Recharge Basins) exhibited a VOC concentration of 67.4 μ g/L with TCE (64 μ g/L) being the only compound exceeding SCGs (Figure 13). Well GM-20D (south of the South Recharge Basins) exhibited no detectable concentrations of VOCs. Well GM-15D (east of the South Recharge Basins) exhibited a TVOC concentration of 24.4 μ g/L, with only TCE (9 μ g/L) detected above SCGs.

South of the Northrop Grumman site, TCE concentrations were detected above the SCG in Wells GM-34D (84 μ g/L), GM-36D (24 μ g/L), and GM-38D (720 μ g/L). There were no other VOCs detected above SCGs in these wells. Well GM-37D had 16.4 μ g/L of TVOCs with 1,1-DCE (7 μ g/L) above its SCG of 5 μ g/L; TCE was not detected. TVOC concentrations in Well GM-34D have ranged between 49 μ g/L and 114 μ g/L; the TVOC concentration appears to be increasing since early 1999 (Figure 13). However, only seven data points are available since early 1999 which is insufficient to confidently establish a trend at this time. TVOC concentrations in Well GM-36D (east of GM-34D) have ranged between 24 μ g/L (detected this round) and 247 μ g/L. The TVOC concentrations in this well have exhibited significant short-term variations and the TVOC concentration trend is sharply downward through the period

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

of record with TVOCs less than 100 μ g/L since June 1998 (Figure 13). TVOC concentrations in Well GM-37D (southeast of the sites) have ranged between 14 μ g/L and 41 μ g/L. TVOC concentrations have remained relatively stable at concentrations generally less than 25 μ g/L, with the long-term trend essentially flat through the period of record (Figure 13). The area near Well GM-38D (downgradient of GM-36D) historically has been identified as the area exhibiting the highest off-site TVOC concentrations in the deep zone. Historically, TVOC concentrations in Well GM-38D have ranged between 592 μ g/L and 1,400 μ g/L. From the beginning of record through January 1996, TVOC concentrations exhibited an increasing trend (to a maximum of 1,400 μ g/L in January 1996). Groundwater data collected since then has indicated a downward trend in TVOCs, with substantial short-term variations in TVOC concentrations evident throughout the period of record (Figure 14).

5.1.3 VOCs in the D2 Zone

Similar to the deep zone, current data for the D2 zone was compared to the SCGs, while for selected wells, the long-term TVOC trend was also analyzed. Groundwater VOC data from the newly installed D2 monitoring wells (GM-15D2, GM-73D2, and GM-74D2) and water samples from the IRM extraction wells and treatment systems are also discussed. VOC concentrations in D2 wells during the baseline (May 1997) the last quarter of 1999, and the first three quarters of 2000 groundwater monitoring rounds are provided in Table 12.

Taken collectively, the data indicate can overall improving trend for off-site water quality in the D2 zone.

5.1.3.1 IRM System

Water samples were collected from the Plant 5 (GP-1) system influent and effluent and individually from Wells GP-1 and GP-3 and from the effluent water discharging to the Plant 5 Recharge Basins (after the aeration basins). Water samples were collected from the Plant 5E (ONCT) system influent and effluent and individually from Wells ONCT-1, ONCT-2, and ONCT-3 and from the effluent water discharging to the South Recharge Basins (after the aeration basins).

From the Plant 5 (GP-1) system, Well GP-1 had a VOC concentration of 691 μ g/L with 1,1-DCE (7 μ g/L); 1,2-DCE (total) (11 μ g/L); TCE (600 μ g/L); and PCE (58 μ g/L) exceeding SCGs. Well GP-3 had a TVOC concentration of 1,861 μ g/L with VCM (9 μ g/L) (see Section 6.2 Vinyl Chloride); 1,1-DCE (12 μ g/L); 1,2-DCE (total)

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

(11 μg/L); TCE-(1,700 μg/L); and PCE (80 μg/L) exceeding SCGs. TVOC concentrations in the Plant 5 influent and effluent water (after the air stripper) were 895 μg/L and 4 μg/L, respectively; TCE was the only compound detected in the effluent water. After treatment in the Plant 5 aeration basins, VOCs were not detected in water entering the Plant 5 Recharge Basins (see Table 12).

From the Plant 5E (ONCT) system, Wells ONCT-1, ONCT-2, and ONCT-3 each had TCE concentrations (1,900 μ g/L; 200 μ g/L; and 16 μ g/L, respectively) above SCGs. Other VOCs, including 1,1-DCE; 1,1-DCA; 1,2-DCE (total); and 1,1,1-TCA, were also detected at substantially lower concentrations in Wells ONCT-2 and ONCT-3. The Plant 5E influent and effluent water TVOC concentrations were 1,116 μ g/L and 1 μ g/L, respectively; TCE was the only compound detected in the effluent water (after the air stripper). After the Plant 5E aeration basins, VOCs were not detected in water entering the South Recharge Basins.

The VOC data from the IRM systems and aeration basins confirm the high efficiency of the overall groundwater treatment system, with greater than 99.99 percent removal of VOCs from extracted groundwater prior to discharge of the water to the Plant 5 and South Recharge Basins.

5.1.3.2 Monitoring Wells

In the October round, TCE; PCE; 1,1-DCE; 1,1-DCA; and 1,2-DCE were the compounds detected exceeding their respective SCGs of 5 μ g/L. TCE was the most frequently detected compound and the most frequently detected compound exceeding its SCG of 5 μ g/L. TCE was detected above the SCG in Wells GM-15D2 (9 μ g/L), GM-33D2 (1,500 μ g/L), GM-34D2 (74 μ g/L), GM-35D2 (150 μ g/L), GM-38D2 (1,100 μ g/L and 1,300 μ g/L in the replicate), GM-70D2 (140 μ g/L) and GM-73D2 (960 μ g/L). The other VOC compounds listed above were detected sporadically in D2 monitoring wells at concentrations slightly exceeding standards (Table 12).

Figures 12 and 14 through 16 depict TVOC concentrations versus time in select D2 monitoring wells. TVOC concentrations detected in Monitoring Well GM-33D2, which is located south of IRM Well GP-1 and west of IRM Well ONCT-1, have decreased by an order of magnitude from a maximum concentration of 18,010 $\mu g/L$ in November 1994 to 1,539 $\mu g/L$ this round. The rate of decrease in TVOC concentrations has accelerated since September 1998 (Figure 12) when the IRM wells became fully operational. In particular, the pumpage of IRM Well ONCT-1 appears to be largely responsible for the accelerated decrease in TVOC concentrations in Well

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

GM-33D2, based on its proximity to Well GM-33D2 and the similar TVOC concentrations currently in both wells. At the eastern boundary, Well GM-15D2 (north of Well ONCT-3) had a TVOC concentration of 16.1 µg/L with only TCE (9 µg/L) exceeding the SCG, (Figure 15). Well GM-73D2, located approximately halfway between Wells ONCT-1 and ONCT-2 and north of the South Recharge Basins, had a TVOC concentration of 973 µg/L, with TCE (960 µg/L) and 1,2-DCE (6 µg/L) exceeding SCGs (Figure 12). Further east along the South Recharge Basins, Well GM-74D2 (near ONCT-2) had a TVOC concentration of 6 µg/L with no VOCs exceeding SCGs (Figure 15). The data obtained from the new monitoring wells confirms the previously defined TVOC plume configuration in the D2 zone. Monitoring TVOC concentrations in wells along the site boundary and in downgradient wells immediately south of the site will be a key factor in determining the effectiveness of the IRM system in capturing the TVOC plume.

Off-site, TVOC concentrations in Monitoring Well GM-34D2 (south of Well GM-33D2) have ranged between 38 μ g/L and 114 μ g/L (detected this round) (Figure 16) and while the TVOC trend in this well appears to be upward only seven data points have been collected since early 1999, which is insufficient to confidently establish a trend at this time. TVOC concentrations in Monitoring Well GM-35D2 (northeast of Well GM-34D2) have ranged between 38 µg/L and 161 µg/L. Prior to March 1998, the TVOC concentration trend had been increasing while since March 1998 the TVOC concentration trend appears to be decreasing through June 2000 (Figure 16). The TVOC concentration value for the third quarter (161 ug/L) does not fit with this most recent trend. TVOC concentrations detected in Monitoring Well GM-70D2 (east of Well GM-35D2) have ranged between 52 and 255 µg/L and have decreased sharply through the period of record (Figure 16). TVOC concentrations detected in Monitoring Well GM-71D2 (east of Well GM-70D2) have ranged between non-detect and 7 µg/L and have remained relatively flat throughout the period of record (Figure 15). TVOC concentrations in Monitoring Well GM-37D2 (east of Well GM-71D2) have ranged between 1 µg/L and 29 µg/L and have been increasing through the period of record (Figure 15). TVOC concentrations in Monitoring Well GM-36D2 (further downgradient from the above-discussed wells) historically have ranged between nondetect and 25 µg/L, and the TVOC concentration trend has remained flat throughout the period of record (Figure 15). The area near Monitoring Well GM-38D2 (further downgradient of Well GM-36D2) historically has been identified as the area exhibiting the highest off-site concentrations of TVOCs in the D2 zone. TVOC concentrations in Monitoring Well GM-38D2 have ranged between 130 and 1,300 µg/L (Figure 14). Prior to September 1997, the TVOC trend was increasing while since September 1997

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

the TVOC trend is decreasing. However, the last few data points do not fit with this most recent data.

Throughout the period of record, substantial short-term variations in TVOC concentrations in Monitoring Well GM-38D2 have been evident (Figure 14).

Although the most recent data in Wells GM-35D2 and GM-38D2 show an increase in TVOC concentrations, prior rounds of data had indicated a downward trend. Therefore, it is too early to tell if these values indicate the start of an increasing trend or are just a short term variation.

5.2 Vinyl Chloride Monomer

Groundwater monitoring of the VCM subplume emanating from the RUCO Polymer site (near the NWIRP area) is performed on a semi-annual basis (twice yearly). This section discusses the results of the October 2000 round of monitoring and compares the current data with available historical groundwater quality. VCM is a parameter that is monitored in all wells sampled for VOCs and Section 6.1 (Total Volatile Organic Compounds) of this report provides a complete discussion of other VOCs detected in the VCM monitoring well network.

VCM was not detected in the shallow zone except for an estimated value of $0.8 \,\mu g/L$ in Well 10634. Because this well is over 1,000 feet south of the Northrop Grumman site and no other upgradient well had a detection of VCM, this result is likely anomoluus. In the intermediate zone, VCM was detected in Well MW-52S (located in the Plant 12 Area) at 1,900 $\,\mu g/L$; concentrations have decreased substantially in this well since the last round. VCM was not detected in any other intermediate zone well.

In the deep zone, Well MW-52I (located in the Plant 12 Area) had a VCM concentration of 2,000 μ g/L. Similar to Well MW-52S, this value is substantially lower than the previous round. It is too early to tell if these concentration changes are the start of a long term trend or just short term fluctuations. VCM was not detected in any other deep well.

In the D2 zone, VCM was detected in Well GP-3 (9 µg/L) above the SCG. Since Well GP-3 is located substantially farther south (downgradient) than the upgradient monitoring well network and it is deeper than any monitoring well in the network, it is reasonable to conclude that the extent of the VCM subplume is greater than previously defined by RUCO. VCM was not detected in any other D2 zone well.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

5.3 Tentatively Identified Compounds

For all groundwater samples collected during this round, in addition to the TCL VOCs, the laboratory was requested to perform an analysis and library search to identify and evaluate whether volatile Tentatively Identified Compounds (TICs) exist in the groundwater samples. TICs detected in groundwater samples collected during the October 2000 round are summarized in Table 13. Freon 113 (1,1,2-trichlorotrifluoroethane) was detected in two samples: GM-16I (7 μ g/L) and GM-35D2 (26 μ g/L). Based on the occurrence of Freon 113 in groundwater, and its use at the site, this compound will be added to the TCL of VOCs in subsequent rounds. Overall, six TICs were identified at estimated concentrations ranging from 4 μ g/L to 58 μ g/L. Since the laboratory instruments cannot be calibrated to determine exact TIC concentrations (i.e., they are not included in the TCL VOC list), the concentrations should be used for qualitative purposes only.

5.4 Quality Control Samples - VOCs

Based on the analytical results (Table 14) for the October 2000 round, low levels of VOCs (generally acetone and methylene chloride) were detected. Based on the results of the data validation, these detections are not considered significant.

5.5 Semi-Volatile Organic Compounds

October 2000 round SVOCs groundwater data for the shallow monitoring Well GM-14, located downgradient of the Plant 1 Fuel Depot, are provided in Table 15. The data were compared to New York State SCGs and no SVOCs were detected above SCGs this round and only di-n-butylphthalate was detected in the well at an estimated concentration of 0.1 µg/L.

5.6 Cadmium and Chromium

Groundwater monitoring data from shallow monitoring wells for the last quarter of 1999 and the first three quarters of 2000 for total cadmium (Cd) and total chromium (Cr) are provided in Table 16. The data were compared to New York State SCGs. The cadmium concentration in Monitoring Well MW-3R (south of Plant 2) (22.9 μ g/L) exceeded the SCG of 5 μ g/L; concentrations have remained relatively unchanged in this well for the last four sampling rounds. Cadmium was not detected in Monitoring Well N-10631 (southwest of Well MW-3R) or in Well 16SR. In summary, no significant changes in cadmium concentrations are evident. The chromium

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

concentration in Monitoring Well MW-3R (76.5 μ g/L) exceeds its SCG of 50 μ g/L; concentrations have remained essentially unchanged in this well for the last four sampling rounds. Chromium was not detected in Monitoring Wells GM-16SR and N-10631 this round and represent a significant decrease in chromium concentrations from earlier results.

5.7 Quality Control Samples - Cadmium/Chromium

Cadmium/chromium were not detected in the equipment blank samples collected in the October 2000 round (Table 10).

5.8 Data Validation

ARCADIS G&M performed validation of the groundwater quality data (including TICs) collected from monitoring wells by following the contract laboratory program national functional guidelines for organic and inorganic data review (USEPA 1994). The quality of the data is considered acceptable with the appropriate qualifications indicated on Tables 9 through 16. Data validation memoranda are provided in Appendix E.

6. Summary and Conclusions

6.1 IRM System

- Overall a total of 937.5 MG were pumped and treated between July and December 2000, which is approximately 105 percent of the total design pumpage. Pumpage of Well GP-3 supplemented the total gallons pumped.
- 2. Water quality data collected from IRM wells over the period of record indicate that TCE concentrations have been decreasing in IRM Wells GP-1 and ONCT-1; TCE concentrations in Well ONCT-2 are increasing during the period of record, while TCE concentrations in Well ONCT-3 have fluctuated at low concentrations. Well GP-3, although not part of the IRM system, has been pumped to supplement the pumpage from the IRM system. TCE concentrations in Well GP-3 have been increasing for the period of record. From July through December 2000, a total of 5,967 pounds (lbs) of VOCs were removed from the aquifer and treated by the IRM treatment facilities. Since September 1998, a total of 39,214 lbs of VOCs have been removed from the aquifer. Based on samples collected from the IRM wells and IRM system, VOC removal efficiency is greater than 99.99 percent.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

6.2 Groundwater Flow

- 3. Water-level data in the shallow and intermediate zones from October 2000 indicate that operation of the IRM has maintained the groundwater mounding in the Plant 5 Recharge Basins and the South Recharge Basins areas. Overall conditions are consistent with prior rounds of data. Consequently, the hydraulic barrier in the shallow zone has been maintained, and extends to the immediate zone and prevents the off-site migration of shallow and intermediate on-site VOC-impacted groundwater.
- 4. Downward vertical hydraulic gradients near the Plant 5 Recharge Basins and South Recharge Basins areas remain close to or greater in magnitude than those predicted by the groundwater flow model and result in downward groundwater movement. This indicates that the mounding of the water table coupled with pumpage from the D2 zone is continuing to force on-site groundwater to move downward toward the pumping IRM wells in the D2 zone, which therefore prevents VOC-impacted groundwater from flowing off-site in the intermediate and deep zones.
- 5. The configuration of the potentiometric surface in the D2 zone generally indicates that the zone of capture due to pumpage of the IRM Wells extends more than 4,000 ft across the entire southern boundary and continues to fully control and contain groundwater on-site and up to approximately 800 ft south of the site.

6.3 Groundwater Quality

- 6. As expected, the analytical results from shallow and intermediate monitoring wells in areas within the VOC plume on the Northrop Grumman and NWIRP sites upgradient of the IRM system exhibited the highest concentrations of VOCs in these zones. At the southern property boundary and immediately south of it, shallow and intermediate monitoring wells exhibited stable low or non-detectable concentrations of VOCs. These results confirm the effectiveness of the IRM in preventing the off-site migration of VOC-impacted groundwater in the shallow and intermediate zones.
- 7. Well GM-13D, located within the on-site VOC plume and upgradient of the IRM system has exhibited an increasing trend in VOC concentrations, while Well HN-29D, located on the NWIRP property, has exhibited trace concentrations of VOCs. These data are consistent with the current understanding of the on-site

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

groundwater plume configuration in the deep zone. Deep wells along the Northrop Grumman southern site perimeter (near the basins) exhibit low to non-detectable VOC concentrations. The pumpage of the IRM wells is the apparent reason for the low to non-detectable VOC concentrations which attest to the effectiveness of the IRM in preventing the off-site migration of VOC-impacted groundwater in the deep zone. Further downgradient of the sites, TVOC concentrations are either stable or are decreasing.

- 8. Well GM-33D2, located west of IRM Well ONCT-1, has exhibited a decreasing trend in TVOC concentration. The rate of decrease in TVOC concentrations has accelerated since September 1998 when the IRM wells became fully operational. The pumpage of IRM Well ONCT-1 appears to be largely responsible for the accelerated decrease in TVOC concentration, based on its proximity to Well GM-33D2 and the similar TVOC concentrations currently in both wells. Downgradient (off-site), wells have exhibited a downward trend in TVOC concentration, with the exception of Well GM-37D2. TVOC concentrations in Well GM-37D2, however, remain at less then 30 μg/L. In Well GM-38D2, which historically exhibited the highest off-site TVOC concentration in the D2 zone, TVOC concentrations have been decreasing since September 1997.
- 9. VCM was not detected in the shallow zone. Only VCM was detected in the intermediate and deep zones only at the MW-52 well cluster south (downgradient) of the RUCO site. VCM concentrations in the intermediate and deep zones have substantially decreased since last quarter. However, it is too early to tell if this is the start of a long term trend or merely a short term fluctuation. Well GP-3, screened in the D2 zone, exhibited a VCM concentration above the SCG indicating that the extent of the VCM subplume (horizontal and vertical) is greater than previously defined by RUCO.
- VOCs and SVOCs were not detected above SCGs downgradient of the Plant 1 Fuel Depot.
- 11. Chromium was detected above the SCG in Well MW-3R and concentrations have remained relatively unchanged in this well the last four quarters. Chromium was not detected in Wells GM-16SR and N-10631 this round which is a significant decrease from the historical data. Cadmium concentrations in the monitoring well network near former Plant 2 have not substantially changed based on data collected through October 2000.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

7. Recommendations

The draft Groundwater Monitoring Plan that provides for installation of new monitoring wells and expansion of the existing well network has been preliminarily approved by the NYSDEC. In addition to the items discussed in the draft monitoring plan, ARCADIS G&M recommends the following:

1. Freon 113 (1,1,2-trichlorotrifluoroethane), currently monitored as a TIC, should be added to the TCL of VOCs monitored quarterly in the TVOC well network.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

8. References

- ARCADIS Geraghty & Miller, Inc. 2000. 1999 Annual Hydraulic and Groundwater Quality Monitoring Report, Northrop Grumman Corporation, Bethpage, New York. August 2, 2000.
- ARCADIS Geraghty & Miller, Inc. 1999a. Second quarter 1999 Hydraulic and Groundwater Quality Monitoring Report, Northrop Grumman Corporation, Bethpage, New York. July 6, 1999.
- ARCADIS Geraghty & Miller, Inc. 1999b. Draft-Final Groundwater Feasibility Study, Grumman Aerospace Bethpage, New York Site (#130003A) and Naval Weapons Industrial Reserve Plant, Bethpage, New York Site (#130003B). December 17, 1999.
- Geraghty & Miller, Inc. 1996. Groundwater Interim Remedial Measure Ninety Percent Design Report, Grumman Aerospace Corporation, Bethpage, New York. January 1996.
- Grumman Aerospace Corporation. 1986. Water Well Recovery System Specifications. February 1986.
- National Oceanic and Atmospheric Administration (NOAA). 2000. National Climatic Data Center. Record of River and Climatological Observations, Mineola, New York Cooperative Station. January 2000 through March 2000.
- National Oceanic and Atmospheric Administration (NOAA). 1995. National Climatic Data Center. Average Rainfall for 42 complete years between 1938 and 1995, Mineola, New York Cooperative Station, USA.
- New York State Department of Environmental Conservation (NYSDEC). 1998. Division of Water Technical and Operation Guidance Series (TOGS 1.1.1). Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Promulgated October 22, 1993. Re-issued June 1998.
- New York State Department of Environmental Conservation (NYSDEC). 1990. Operation, Maintenance, and Monitoring Manual for a Hazardous Waste Site. April 20, 1990.

2000 Annual Groundwater Monitoring Report

Northrop Grumman Corporation, Bethpage, New York

- U.S. Environmental Protection Agency (USEPA). 1998. Groundwater Sampling Procedure, Low Stress (Low-Flow) Purging and Sampling, USEPA Region II, March 1998.
- U.S. Environmental Protection Agency (USEPA). 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review. October 1999.
- U.S. Environmental Protection Agency (USEPA). 1994. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. February 1994.

Table 1. Groundwater Monitoring Network, Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York.

Well ID	Casing Diameter (inches)	Total Depth (ft bis)	Screened Interval (ft bls)	Planned Monitoring Activity	Status This Round
Shallow We	ells				
MW-3R	2	55	45 - 55	Cd/Cr, TVOC	V
GM-14	4	55	15 - 55	TVOC	V
GM-15S	4	80	70 - 80	Water Levels, TVOC	٧,
GM-16SR	4	70	60 - 70	Water Levels, Cd/Cr, TVOC	V
GM-17S	4	48	38 - 48	Water Levels	√
3M-17SR	4	70	60 - 70	Water Levels, TVOC, VCM	√
3M-18S	2	67	63 - 67	Water Levels, TVOC, VCM	√
3M-19S	4	53	48 - 53	Water Levels	√
3M-21S	2	67	63 - 67	Water Levels, TVOC	√
GM-23S	4	56	46 - 56	VCM	√
W-03	2	64	49 - 64	TVOC	1
N-9921	2	62	58 - 62	Water Levels	√
N-10597	2	67	63 - 67	Water Levels	√
N-10600	2	61	57 - 61	Water Levels	√
N-10631	2	67	63 - 67	Water Levels, Cd/Cr, TVOC	√
N-10628	2	67	63 - 67	Water Levels	√
J-10633	2	67	63 - 67	Water Levels	√
I-10634	2	67	63 - 67	Water Levels, TVOC	√
J-10821	2	67	63 - 67	Water Levels	√
ntermediate	Wells				
M-10I	4	120	110 - 120	VCM	√
M-15I	4	105	95 - 105	Water Levels, TVOC	V
M-16I	4	145		Water Levels, TVOC	√
M-17I	4	120		Water Levels, TVOC	V
M-18I	4	105	95 - 105	Water Levels, TVOC	√ ·
M-19I	4	140		Water Levels	√
M-20I	4	105	95 - 105	Water Levels, TVOC	, ,
	4	140		Water Levels, TVOC	,
M-21I		120			1
M-23I	4		110 - 120		,
1W-52S	2	140	125 - 140		1
M-74I	4	114	94 - 114	Water Levels, TVOC	1
IN-24I	4	158	148 - 158		√ √
N-29I	4	130	120 - 130	1000	Silted well screen; not measured or
-10624	2	194	190 - 194	Water Levels, TVOC	sampled
eep Wells					
M-13D	4	210	200 - 210	Water Levels, TVOC	V
M-15D	4	342	332 - 342	Water Levels, TVOC	√
M-17D	4	298	278 - 298	Water Levels, TVOC	√
M-20D	4	226	216 - 226	Water Levels, TVOC	√
M-34D	2	319	309 - 319	Water Levels, TVOC	√
M-36D	4	214	204 - 214	Water Levels, TVOC	√

See notes on last page

ARCADIS

Page 2 of 2

Groundwater Monitoring Network, Third Quarter 2000, Northrop Grumman Corporation, Bethpage, New York. Table 1.

Well ID	Casing Diameter (inches)	Total Depth (ft bls)	Screened Interval (ft bis)	Planned Monitoring Activity	Status This Round
Deep Wells	(cont'd)				
GM-37D	4	262	242 - 262	Water Levels, TVOC	√
GM-38D	4	340	320 - 340	Water Levels, TVOC	√
MW-52I	2	235	220 - 235	VCM	√
MW-52D	2	386	371 - 386	VCM	√
GM-74D	4	305	295 - 305	Water Levels, TVOC	√
HN-29D	4	220	210 - 220	TVOC	√
N-10627	4	295	290 - 295	Water Levels, TVOC	√
GP-10	12	373	312 - 373	TCE only	√
Deep2 Wells					
GM-15D2	4	556	536 - 556	Water Levels, TVOC	√
GM-33D2	4	520	500 - 520	Water Levels, TVOC	√
GM-34D2	4	520	510 - 520	Water Levels, TVOC	√
GM-35D2	4	530	510 - 530	Water Levels, TVOC	√
GM-36D2	4	540	520 - 540	Water Levels, TVOC	√
GM-37D2	4	390	370 - 390	Water Levels, TVOC	√
GM-38D2	4	495	475 - 495	Water Levels, TVOC	√
GM-70D2	4	330	310 - 330	Water Levels, TVOC	\checkmark
GM-71D2	4	464	444 - 464	Water Levels, TVOC	√
GM-73D2	4	552	532 - 552	Water Levels, TVOC	√
GM-74D2	4	562		Water Levels, TVOC	√
ONCT-1	18/12	563		IRM Operational Data	√
ONCT-2	18/12	570		IRM Operational Data	√
ONCT-3	18/12	617		IRM Operational Data	No access and forwards to also
3P-1	12	570	519 - 570	IRM Operaional Data	No access port for water levels.
GP-3	16	543	483 - 543	Water Quality Data	√
SP-11	12	490	429 - 489	TCE only	Well not operating this quarter.

TVOC Total Volatile Organic Compounds Cd/Cr Cadmium/Chromium TCE Trichloroethene

Well condition was acceptable for all monitoring activity this round.

Notes: 1. IRM operational data includes recording water levels, water quality data (TCE on a weekly basis and TVOCs on a quarterly basis), total gallons pumped, pumping rates, time online, and specific capacity.

^{2.} Water quality data includes recording TCE concentrations on a weekly basis and TVOC concentrations on a quarterly basis.

^{3.} Wells sampled as part of monitoring the VCM subplume are analyzed for the full target compound list of VOCs.

ARCADIS

Table 2. Trichloroethene Concentrations in Water Samples Collected from Groundwater IRM Extraction Wells and Industrial Supply Wells, July through December 2000, Northrop Grumman Corporation, Bethpage, New York.

		<u>IRM W</u>	ELLS		INDUST	RIAL W	E L L S
Sample Collection Date	GP-1 (ug/L)	ONCT-1 (ug/L)	ONCT-2 (ug/L)	ONCT-3 (ug/L)	GP-3 (ug/L)	GP-10 (ug/L)	GP-11 (ug/L)
			-				
7/11/00	341	1,238	93	9	341	70	NS
7/18/00	388	1,250	90	12	716	73	NS
7/27/00	398	1,150	86	12	710	69	NS
8/1/00	376	1,054	82	13	690	68	NS
8/9/00	400	1,016	91	12	670	68	NS
8/15/00	486	1,814	126	10	615	64	NS
8/22/00	616	1,776	153	14	928	118	NS
9/12/00	1,000	1,767	181	16	1,515	127	NS
9/21/00	787	1,818	151	15	1,278	114	NS
9/28/00	772	2,010	196	17	1,258	130	NS
10/4/00	743	1,854	180	15	1,191	117	NS
10/11/00	686	2,048	199	18	1,389	130	NS
10/18/00	NS	1,656	172	19	NS	NS	NS
10/25/00	578	1,954	199	17	1,102	109	NS
11/1/00	779	1,866	185	16	1,520	120	NS
11/8/00	687	1,928	196	17	1,488	138	NS
11/15/00	420	1,218	120	9	880	86	NS
11/22/00	452	1,022	103	9	850	86	NS
11/28/00	343	1,092	94	8	704	NS	NS
12/4/00	400	732	84	9	936	74	NS
12/12/00	618	1,236	123	11	968	97	NS
12/20/00	400	1,347	135	13	1,003	93	NS
Average Concentration:	556	1,493	138	13	988	98	NS

Note: Water samples were collected and analyzed by Northrop Grumman; results were not validated.

IRM Interim Remedial Measure ug/L Micrograms per liter

NS Not sampled; well not operating.

Table 3. Trichloroethene Concentrations in Water Samples Collected from the IRM System Influent and Effluent, July through December 2000, Northrop Grumman Corporation, Bethpage, New York.

	Influent	Effluent	
Sample Collection	TCE Concentration	TCE Concentration	
Date	(ug/L)	(ug/L)	
ONCT System (WWRP-5E)			
7/11/00	714	1.0	
7/18/00	723	1.2	
7/27/00	700	1.1	
8/1/00	674	1.0	
8/9/00	633	1.1	
8/15/00	912	0.6	
8/22/00	1,040	1.0	
9/12/00	944	0.6	
9/21/00	936	3.4	
9/28/00	1,111	1.0	
10/4/00	863	1.1	
10/11/00	1,910	1.5	
10/18/00	1,592	2.2	
10/25/00	970	1.3	
11/1/00	1,140	1.6	
11/8/00	912	2.1	
11/15/00	594	1.3	
11/22/00	664	0	
11/28/00	524	0.9	
12/4/00	600	0.9	
12/12/00	1,135	1.9	
12/20/00	1,200	1.6	
Average Concentration:	931	1.3	

see notes on next page

Table 3. Trichloroethene Concentrations in Water Samples Collected from the IRM System Influent and Effluent, July through December 2000, Northrop Grumman Corporation, Bethpage, New York.

Sample Collection Date	Influent TCE Concentration (ug/L)	Effluent TCE Concentration (ug/L)	
GP-1 System (WWRP-5)	<u>```</u>		
7/11/00	533	2.0	
7/18/00	589	1.2	
7/27/00	540	1.4	
8/1/00	567	1.2	
8/9/00	586	1.1	
8/15/00	553	1.0	
8/22/00	696	0.9	
9/12/00	1,188	0.8	
9/21/00	914	1.4	
9/28/00	982	1.6	
10/4/00	1,008	1.5	
10/11/00	1,092	2.6	
10/18/00	NS	NS	
10/25/00	800	2.0	
11/1/00	1,119	1.8	
11/8/00	1,106	4.0	
11/15/00	544	0.6	
11/22/00	578	0.0	
11/28/00	438	0.9	
12/4/00	680	2.6	
12/12/00	754	2.4	
12/20/00	762	1.8	
Average Concentration:	763	1.6	

Note:	Water samples were collected and analyzed by Northrop Grumman; results were not validated.
IRM	Interim Remedial Measure
TCE	Trichloroethene
ug/L	Micrograms per liter
WWRP	Wastewater Recovery Plant
WWRP-5E	WWRP 5E system influent and effluent consists of water from
	IRM Extraction Wells ONCT-1 (Well 17), ONCT-2 (Well 18), and ONCT-3 (Well 19).
WWRP5	WWRP 5 system influent and effluent consists of water from
	IRM Well GP-1, with intermittent pumpage from Industrial Supply Wells GP-3, GP-10, and GP-11.
NS	Not Sampled

ARCADIS GERAGHTY&MILLER

Operational Summary of the Groundwater Interim Remedial Measure and Industrial Supply Well GP-3, July to December 2000, Northrop Grumman Corporation, Bethpage, New York. Table 4.

		July to December 2000	mber 2000		Project To-Date	Jul	July to December 2000	00	Project To-Date
						Average	Average		Cumulative
	Average	Total	Design	Percent of	Cumulative	Influent TCE	Influent TVOC	TVOC Mass	TVOC Mass
Well/System	Pumping Rate	Pumpage (a)	Pumpage	Design	Pumpage	Concentration	Concentration Concentration (b)	Removed (b)	Removed *
Identification	(mdb)	(MG)	(MG)	Pumpage	(MG)	(ng/L)	(ng/L)	(sql)	(sql)
IRM Wells									
GP-1	783	202.4	284.8	ı	1,067.7	556	639	1,077	6,993
ONCT-1	966	235.4	265.0	i	1,051.0	1,493	1,508	2,956	23,205
ONCT-2	712	160.6	159.0	ı	778.8	138	159	212	827
ONCT-3	029	152.5	185.5	ı	7.997	13	27	34	226
Industrial Supply Well	 Well								
GP-3	722	186.6	I	I	1,096.6	888	1,086	1,687	4,963
TOTALS:	t	937.5	894.3	105%	4,760.8	t	ı	5,967	39,214
								_	

Notes:

Average pumping rate and total pumpage based on Northrop Grumman records of operation from July 1 to December 31, 2000.
 Days wells were operational from July to December are as follows: IRM Well GP-1 (179.5); IRM Well ONCT-1 (164.1);
 IRM Well ONCT-2 (156.6); IRM Well ONCT-3 (158.1); Supply Well GP-3 (179.5).
 Pumping rates accurate to +/-15% due to limitations in flow metering.

TVOC Concentration obtained from Second/Third Quarter 2000 IRM Groundwater Data.

(a) ē

TVOC concentration and TVOC mass in each well were estimated from October 2000 data which indicated that TCE concentrations were a percentage of the TVOC concentration, as follows: GP-1 (87 percent); ONCT-1 (89 percent); ONCT-2 (87 percent); ONCT-3 (48 percent); and GP-3 (91 percent).

TVOC mass removed since September 1998 to the end of 2000 was based on the TCE/TVOC ratios given above and the following formula:

((TCE concentration) X (gallons pumped) X (3.785 L/gal) X (1 x 10⁻⁸ g/ug) X (2.2 x 10⁻³ lb/g))

(TCE concentration / TVOC concentration)

Interim Remedial Measure gallons per minute

micrograms per liter Million Gallons

Not Available or Not Applicable Trichloroethene

Total Volatile Organic Compound IRM gpm MG ug/L lbs --TCE

ARCADIS

Table 5. Groundwater IRM Extraction Well Performance Data from January through October 2000, Northrop Grumman Corporation, Bethpage, New York.

IRM Well Identification	Baseline Round Static Depth to Water 5/9/97 (ft bmp)	Last Four Water-Level Measurement Dates	Pumping Depth to Water (ft bmp)	Pumping Rate (gpm)	Drawdown (ft)	Specific Capacity (gpm/ft)
ONCT-1		January 5, 2000	68.91	1004	24.79	40.5
	44.12	March 9, 2000	68.00	885	23.88	37.1
		July 21, 2000	68.44	980	24.32	40.3
		October 16, 2000	66.41	928	22.29	41.6
ONCT-2		January 5, 2000	69.05	605	18.90	32.0
	50.15	March 9, 2000	68.62	615	18.47	33.3
	50.15	July 21, 2000	67.82	586	17.67	33.2
		October 16, 2000	69.92	708	19.77	35.8
ONCT-3		January 5, 2000	68.28	721	19.15	37.7
	40.40	March 9, 2000	67.52	650	18.39	35.3
	49.13	July 21, 2000	66.53	668	17.40	38.4
	•	October 16, 2000	67.88	669	18.75	35.7
GP-1		January 5, 2000				
		March 9, 2000		800*		
	•-	July 21, 2000		800*		
		October 16, 2000		783*		

Note: Specific capacity is calculated by dividing the pumping rate (Q) by the drawdown (s).

IRM	Interim Remedial Measure
gpm	gallons per minute
ft bmp	feet below measuring point
	Data could not be collected
	December 1981

* Based on pumpage data collected by Northrop Grumman personnel

ft fee

gpm/ft gallons per minute per foot of drawdown

Table 6. Precipitation Data for the Third and Fourth Quarters 2000 and Long-Term Averages, Northrop Grumman Corporation, Bethpage, New York.

Date	Rainfall ^a	Snowfall ^{a,c}	Total Precipitation	Long-Term Average Monthly Precipitation ^{b,d}
Precipitation Recorded	(inches)	(inches)	(inches)	(inches)
July 2000				
	0.16	0.00		
July 3, 2000	0.16	0.00		
July 10, 2000	0.09	0.00		
July 15, 2000	0.74	0.00		
July 19, 2000	0.11 3.25	0.00 0.00		
July 26, 2000	0.52	0.00		
July 27, 2000 July 31, 2000	0.55	0.00	5.42	3.80
August 2000				
August 1, 2000	0.32	0.00		
August 2, 2000	0.20	0.00		
August 3, 2000	0.83	0.00		
August 4, 2000	0.08	, 0.00		
August 7, 2000	0.02	0.00		
August 10, 2000	0.01	0.00		
August 11, 2000	0.02	0.00		***
August 12, 2000	0.07	0.00		
August 13, 2000	0.03	0.00		
August 14, 2000	0.40	0.00		
August 15, 2000	0.02	0.00		
August 16, 2000	0.14	0.00		
August 18, 2000	0.08	0.00		
August 23, 2000	0.08	0.00		
August 28, 2000	0.11	0.00	2.41	4.10
September 2000				
September 1, 2000	0.27	0.00		
September 3, 2000	0.78	0.00		
September 4, 2000	0.04	0.00		
September 13, 2000	0.66	0.00		
September 15, 2000	1.29	0.00		
September 19, 2000	1.15	0.00		
September 23, 2000	0.13	0.00		
September 24, 2000	0.03	0.00		
September 25, 2000	0.05	0.00		
September 26, 2000	0.71	0.00	5.11	3.60
October 2000				
October 4, 2000	0.15	0.00		
October 5, 2000	0.03	0.00	7**	
October 16, 2000	0.02	0.00		
October 17, 2000	0.05	0.00		
October 18, 2000	0.16	0.00	0.41	3.20

See notes on last page.

Table 6. Precipitation Data for the Third and Fourth Quarters 2000 and Long-Term Averages, Northrop Grumman Corporation, Bethpage, New York.

Date Precipitation Recorded	Rainfall ^a (inches)	Snowfall ^{a,c} (inches)	Total Precipitation (inches)	Long-Term Average Monthly Precipitation ^{b,d} (inches)
November 2000				
November 9, 2000	0.17	0.00		
November 10, 2000	2.88	0.00		
November 11, 2000	0.40	0.00	***	
November 14, 2000	0.27	0.00		
November 20, 2000	0.05	0.00		
November 26, 2000	1.48	0.00	***	
November 29, 2000	0.32	0.00		
November 30, 2000	0.06	0.00	3.30	4.10
December 2000				
December 10, 2000	0.03	0.00		
December 14, 2000	1.18	0.00		
December 16, 2000	0.50	0.00		
December 17, 2000	0.49	0.00		
December 20, 2000	0.09	0.00	•	
December 22, 2000	0.04	0.00		
December 30, 2000	0.97	0.00	3.30	3.70
Precipitation Totals for 30-Day Perio Preceding Hydraulic Measurement R				
October 16, 2000			2.27	2

a) From National Oceanic and Atmospheric Administration (NOAA), 2000
 Mineola, New York Cooperative Station.

From National Oceanic and Atmospheric Administration (NOAA),1996
 Mineola, New York Cooperative Station.

c) Snowfall (includes snow, ice, sleet, and hail) in inches is converted to equivalent inches of water and then added to rainfall amount to determine total monthly precipitation.

d) Long-term monthly averages compiled from 42 complete years of precipitation data collected between 1938 and 1995 at the Mineola, New York Cooperation Station.

⁻⁻⁻ Not Applicable

Table 7. Water-Level Measurement Data, October 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

Well	Measuring Point	Depth to Water	Water-Level Elevation	
Designation	Elevation	October 16,2000	October 16,2000	
	(ft msl)	(ft bmp)	(ft msl)	
Shallow Wells				
N-9921	94.23	34.62	59.61	
N-10597	109.85	43.95	65.90	
N-10600	102.41	41.16	61.25	
N-10631	103.47	41.12	62.35	
N-10633	103.80	41.64	62.16	
N-10634	101.20	42.30	58.90	
N-10821	91.58	35.51	56.07	
GM-15S	109.35	47.25	62.10	
GM-16SR	115.77	49.90	65.87	
GM-17SR	115.79	45.86	69.93	
GM-18S	107.60	42.93	64.67	
GM-19S	109.86	45.45	64.41	
GM-21S	105.81	38.70	67.11	
GM-79S	100.88	42.21	58.67	
Intermediate Wells				
N-10624*	93.61			
GM-15I	109.13	47.06	62.07	
GM-16I	115.81	50.05	65.76	
GM-17I	115.83	46.06	69.77	
GM-18I	109.03	44.50	64.53	
GM-19I	109.86	45.90	63.96	
GM-20I	103.88	39.70	64.18	
GM-211	105.72	40.60	65.12	
GM-74I	107.42	42.25	65.17	

See notes on last page

Table 7. Water-Level Measurement Data, October 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

Well	Measuring Point	Depth to Water	Water-Level Elevation
Designation	Elevation	October 16,2000	October 16,2000
	(ft msl)	(ft bmp)	(ft msl)
Deep Wells			
N-10627	93.70	34.71	58.99
GM-13D	113.97	49.00	64.97
GM-15D	109.66	49.39	60.27
GM-17D	115.68	51.40	64.28
GM-20D	103.92	41.41	62.51
GM-34D	71.19	16.49	54.70
GM-36D	91.63	37.08	54.55
GM-37D	97.26	41.22	56.04
GM-38D	91.75	40.03	51.72
GM-74D	107.43	47.45	59.98
Deep2 Wells			
GM-15D2	109.59	51.90	57.69
GM-33D2	106.85	51.29	55.56
GM-34D2	71.19	18.00	53.19
GM-35D2	96.28	41.65	54.63
GM-36D2	91.60	39.26	52.34
GM-37D2	97.17	41.79	55.38
GM-38D2	91.56	41.96	49.60
GM-70D2	99.58	43.20	56.38
GM-71D2	98.45	43.54	54.91
GM-73D2	104.62	48.05	56.57
GM-74D2	107.36	54.04	53.32
IRM Extraction Wells	s (D2 Wells)		
GP-1 **			
ONCT-1	104.10	66.41	37.69
ONCT-2	110.00	69.92	40.08
ONCT-3	108.70	67.88	40.82

^{*} Water-level measurements collected from Well N-10624 are considered anomalous due to silt in the well screen.

ft bmp below measuring point

^{**} Water-levels could not be measured in Well GP-1.

ft msl feet relative to mean sea level

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:		10631 N1063 9/26/00		N	1063 -106 1/10/	34	10634 N-10634 3/15/00			10634 N-10634 6/26/00			
Chloromethane	5		<	10	J	<	5		<	10		<	10		
Bromomethane	5		<	10		<	5		<	10		<	10		
Vinyl Choride	2		<	0.2	J	<	2		<	1		<	0.3		
Chloroethane	5		<	10	J	<	5	J	<	10		<	10		
Methylene chloride	5		<	10		<	5		<	10		<	10		
Acetone	50		<	10	J	<	10	J	<	10	J		14	J	
Carbon disulfide	50		<	10		<	10		<	10		<	10	J	
1,1-Dichloroethene	5		<	10		<	5		<	10		<	10		
1,1-Dichloroethane	5		<	10		<	5		<	10		<	10		
1,2-Dichloroethene (total)	5		<	10		<	5		<	10		<	10		
Chloroform	7		<	10		<	7		<	10		<	10		
1,2-Dichloroethane	5		<	10		<	5		<	10		<	10		
2-Butanone	50		<	10		<	10		<	10	J		4	J	
1,1,1-Trichloroethane	5		<	10		<	5		<	10		<	10		
Carbon tetrachloride	5		<	10		<	5		<	10		<	10		
Bromodichloromethane	50		<	10		<	10		<	10		<	10		
1,2-Dichloropropane	5		<	10		<	5		<	10		<	10		
cis-1,3-Dichloropropene	5		<	10		<	5		<	10			R		
Trichloroethene	5			0.4	J	<	5		<	10			2	J	
Dibromochloromethane	5		<	10		<	5		<	10		<	10		
1,1,2-Trichloroethane	5		<	10		<	5		<	10		<	10		
Benzene	0.7		<	10		<	0.7		<	10		<	10		
trans-1,3-Dichloropropene	5		<	10		<	5		<	10		<	10		
Bromoform	50		<	10		<	10		<	10	J	<	10		
4-Methyl-2-pentanone	50		<	10		<	10	J	<	10		<	10		
2-Hexanone	50		<	10		<	10	J	<	10		<	10		
Tetrachloroethene	5		<	10		<	5		<	10			1	J	
1,1,2,2-Tetrachloroethane	5		<	10		<	5		<	10		<	10		
Toluene	5		<	10		<	5		<	10			0.5	J	
Chlorobenzene	5		<	10		<	5		<	10		<	10		
Ethylbenzene	5		<	10		<	5		<	10		<	10		
Styrene	5		<	10		<	5		<	10		<	10		
Xylene (total)	5		<	10		<	5		<	10		<	10		
Total VOCs				0.4			0			0			21.5		

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
*	Additional sampling round.
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units In ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:		10634 N10634 9/25/00	4	I	FW-03 FW-03 6/28/00	3		FW-0 FW-0 9/27/0	GM-14 GM-14 11/10/99		
Chloromethane	5		<	10	J	<	10		<	10	J	<	0.4
Bromomethane	5		<	10		<	10		<	10		<	0.1 J
Vinyl Choride	2			0.8	J	<	0.3		<	0.2	J	<	0.6
Chloroethane	5		<	10	J	<	10	J	<	10	J	<	0.8
Methylene chloride	5		<	10		<	10		<	10		<	0.1
Acetone	50		<	10	J	<	10		<	10	J	<	0.8
Carbon disulfide	50		<	10		<	10	J	<	10		<	0.2
1.1-Dichloroethene	5		<	10		<	10		<	10		<	0.4
1,1-Dichloroethane	5		<	10			2	J		1	J	<	0.1
1,2-Dichloroethene (total)	5		<	10		<	10		<	10		<	0.8
Chloroform	7		<	10		<	10		<	10		<	0.5
1,2-Dichloroethane	5		<	10		<	10		<	10		<	0.2
2-Butanone	50		<	10	J	<	10			2	J	<	0.6
1,1,1-Trichloroethane	5		<	10		Г	32			10		<	0.8
Carbon tetrachloride	5		<	10		<	10		< _	10	_	<	0.4
Bromodichloromethane	50		<	10		<	10		<	10		<	0.2
1,2-Dichloropropane	5		<	10		<	10		<	10		<	0.2
cis-1,3-Dichloropropene	5		<	10			R		<	10		<	0.2
Trichloroethene	5		<	10			2	J		3	J	<	0.2
Dibromochloromethane	5		<	10		<	10		<	10		<	0.1
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	8.0
Benzene	0.7		<	10		<	10		<	10		<	0.3
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	0.3
Bromoform	50		<	10		<	10		<	10	J	<	0.1
4-Methyl-2-pentanone	50		<	10	J	<	10		<	10	J	<	0.4
2-Hexanone	50		<	10	J	<	10		<	10	J	<	0.6
Tetrachloroethene	5		<	10			2	J		3	J	<	0.4
1,1,2,2-Tetrachloroethane	5		<	10	J	<	10		<	10		<	0.2
Toluene	5		<	10		<	10		<	10		<	0.3
Chlorobenzene	5		<	10		<	10		<	10		<	0.2
Ethylbenzene	5		<	10		<	10		<	10		<	0.2
Styrene	5		<	10		<	10		<	10		<	0.2
Xylene (total)	5		<	10		<	10		<	10		<	0.6
Total VOCs				0.8			38			19			0

ug/L Micrograms per liter.

J Estimated value.

R Unusable data

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

* Additional sampling round.

Value exceeds associated Standard, Criteria, and Guidance value.

VOCs

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM-14 GM-14 3/13/00	GM-14 GM-14 6/26/00	GM-14 GM-14 10/2/00	GM-15S GM-15S 9/28/00
Chloromothono	5		< 10	< 10	< 10	< 10 J
Chloromethane Bromomethane	5		< 10	< 10	< 10	< 10
Vinyl Choride	2		< 1	< 0.3	< 0.2	< 0.2 J
Chloroethane	5		< 10	< 10	< 10	< 10 J
Methylene chloride	5		< 10	< 10	< 10	< 10
Acetone	50		< 10 J	8 J	< 10 J	< 10 J
Carbon disulfide	50		< 10	< 10 J	< 10	< 10
	5		< 10	< 10	< 10	< 10
1,1-Dichloroethene	5		< 10	< 10	< 10	< 10
1,1-Dichloroethane 1,2-Dichloroethene (total)	5		< 10	< 10	< 10	1 J
Chloroform	7		< 10	< 10	< 10	< 10
	5		< 10	< 10	< 10	< 10
1,2-Dichloroethane	50		< 10	< 10	< 10	< 10 J
2-Butanone	5		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 10	< 10	< 10	< 10
Carbon tetrachloride	5 50		< 10	< 10	< 10	< 10
Bromodichloromethane	5		< 10	< 10	< 10	< 10
1,2-Dichloropropane	_		< 10 J	R	< 10	< 10
cis-1,3-Dichloropropene	5		< 10 J	6 J	< 10	7 J
Trichloroethene	5			< 10	< 10	< 10
Dibromochloromethane	5			< 10	< 10	< 10
1,1,2-Trichloroethane	5			< 10	< 10	< 10
Benzene	0.7		< 10 < 10 J	< 10	< 10	< 10
trans-1,3-Dichloropropene	5		< 10 J	< 10	< 10	< 10 J
Bromoform	50			< 10	< 10	< 10 J
4-Methyl-2-pentanone	50				< 10	< 10 J
2-Hexanone	50		< 10			< 10 J
Tetrachloroethene	5		< 10	4 J		
1,1,2,2-Tetrachloroethane	5		< 10	< 10	< 10	
Toluene	5		< 10	2 J < 10	< 10	< 10 < 10
Chlorobenzene	5		< 10		< 10	
Ethylbenzene	5		< 10	< 10	< 10	
Styrene	5		< 10	< 10	< 10	< 10
Xylene (total)	5		< 10	< 10	< 10	< 10
Total VOCs			0	20	0	8

VOCs
ug/L
Wicrograms per liter.

J Estimated value.

R Unusable data
NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

* Additional sampling round.

Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM-16S GM-16S 3/13/00			GM-16SR MW-16SR 6/27/00			GM-16SR GM-16SR 9/26/00			GM-17S GM-17S 5/13/97				
Chloromethane	5		<	10		<	10		<	10	J	<	10			
Bromomethane	5		<	10		<	10		<	10		<	10	J		
Vinyl Choride	2		<	1		<	0.3		<	0.2	J	<	10			
Chloroethane	5		<	10		<	10		<	10	J	<	10			
Methylene chloride	5		<	10		<	10		<	10		<	10			
Acetone	50		<	10	J		8	J	<	10	J	<	10			
Carbon disulfide	50		<	10	•	<	10	-	<	10		<	10			
1.1-Dichloroethene	5		<	10		<	10		<	10		<	10			
1,1-Dichloroethane	5		<	10		<	10		<	10		<	10			
1,2-Dichloroethene (total)	5		<	10		<	10		<	10		<	10			
Chloroform	7		<	10		<	10		<	10		<	10			
1,2-Dichloroethane	5		<	10		<	10		<	10		<	10			
2-Butanone	50		<	10		<	10		<	10		<	10			
1.1.1-Trichloroethane	5		<	10		<	10		<	10		<	10			
Carbon tetrachloride	5		<	10		<	10		<	10		<	10			
Bromodichloromethane	50		<	10		<	10		<	10		<	10			
1,2-Dichloropropane	5		<	10		<	10		<	10		<	10			
cis-1,3-Dichloropropene	5		<	10	J		R		<	10		<	10			
Trichloroethene	5		<	10		<	10		<	10		<	10			
Dibromochloromethane	5		<	10		<	10		<	10		<	10			
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	10			
Benzene	0.7		<	10		<	10		<	10		<	10			
trans-1,3-Dichloropropene	5		<	10	J	<	10		<	10		<	10			
Bromoform	50		<	10		<	10		<	10		<	10			
4-Methyl-2-pentanone	50		<	10		<	10		<	10		<	10	J		
2-Hexanone	50		<	10		<	10		<	10		<	10	J		
Tetrachloroethene	5		<	10		<	10		<	10		<	10			
1,1,2,2-Tetrachloroethane	5		<	10		<	10		<	10		<	10			
Toluene	5		<	10		<	10		<	10		<	10			
Chlorobenzene	5		<	10		<	10		<	10		<	10			
Ethylbenzene	5		<	10		<	10		<	10		<	10			
Styrene	5		<	10		<	10		<	10		<	10			
Xylene (total)	5		<	10		<	10		<	10		<	10			

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
*	Additional sampling round.
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	G	6M-17S 6M-17S 7/6/00	GI	M-179 M-179 /29/0	SR	(GM-18 GM-18 5/13/9	S	G	M-18 M-18 1/10/9	BS
Old a constitution	5		<	10	<	10	J	<	10		<	10	
Chloromethane	5 5		<	10	<	10	J	<	10		<	10	
Bromomethane			<	0.3	<	0.2	J	<	10		<	0.3	
Vinyl Choride	2 5		<	10	<	10	J	<	10		<	10	J
Chloroethane	_		<	10	<	10	J	<	10		<	10	•
Methylene chloride	5				<	10	J		10	J	<	10	J
Acetone	50		<	10			J		10	J		10	3
Carbon disulfide	50		<	10	<	10		<	10	J	<	10	
1,1-Dichloroethene	5		<	10	<	10				J	<	10	
1,1-Dichloroethane	5		<	10	<	10		<	10			10	
1,2-Dichloroethene (total)	5		<	10	<	10		<	10		<		
Chloroform	7		<	10	<	10		<	10		<	10	
1,2-Dichloroethane	5		<	10	<	10		<	10	J	<	10	
2-Butanone	50		<	10	<	10		<	10		<	10	
1,1,1-Trichloroethane	5		<	10	<	10		<	10		<	10	
Carbon tetrachloride	5		<	10	<	10		<	10		<	10	
Bromodichloromethane	50		<	10	<	10		<	10		<	10	
1,2-Dichloropropane	5		<	10	<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<	10	<	10		<	10		<	10	
Trichloroethene	5		<	10	<	10			1	J	<	10	
Dibromochloromethane	5		<	10	<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	10	<	10		<	10		<	10	
Benzene	0.7		<	10	<	10			0.7	J	<	10	
trans-1,3-Dichloropropene	5		<	10	<	10		<	10		<	10	
Bromoform	50		<	10	<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10	<	10	J	<	10	J	<	10	
2-Hexanone	50		<	10	<	10	J	<	10	J	<	10	J
Tetrachloroethene	5		<	10	<	10			0.8	J	<	10	
1,1,2,2-Tetrachloroethane	5		<	10	<	10		<	10	J	<	10	
Toluene	5		<	10	<	10			3	J	<	10	
Chlorobenzene	5		<	10	<	10		<	10		<	10	
Ethylbenzene	5		<	10	<	10			0.5	J	<	10	
Styrene	5		<	10	<	10			0.2	J	<	10	
Xylene (total)	5		<	10	<	10			1	J	<	10	
Total VOCs				0		0			8.2			0	

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
*	Additional sampling round.
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM	M-18S M-18S 15/00	(3M-18 3M-18 6/27/0	3S	(GM-18 GM-18 9/25/00	S	G	6M-2 6M-2 5/14/	18
			_	10	<	10		<	10	J	<	10	
Chloromethane	5			10	<	10			10	J	<	10	
Bromomethane	5				<	0.3		<	0.2	J	<	10	
Vinyl Choride	2		< <	1 J 10	<	10	J	<	10	J	<	10	
Chloroethane	5			10	<	10	J	<	10	J	<	10	
Methylene chloride	5			-					10	J		10	J
Acetone	50			10	<	10				J	<	10	J
Carbon disulfide	50			10	<	10	J	<	10			10	
1,1-Dichloroethene	5			10	<	10		<	10		<	-	
1,1-Dichloroethane	5			10	<	10		<	10		<	10	
1,2-Dichloroethene (total)	5			10	<	10		<	10		<	10	
Chloroform	7			10	<	10		<	10		<	10	
1,2-Dichloroethane	5			10	<	10		<	10		<	10	J
2-Butanone	50			10	<	10		<	10		<	10	
1,1,1-Trichloroethane	5			10	<	10		<	10	J	<	10	
Carbon tetrachloride	5			10	<	10		<	10		<	10	
Bromodichloromethane	50			10	<	10		<	10		<	10	
1,2-Dichloropropane	5			10	<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		۲,	10		R	_	~ _	10		<	10	
Trichloroethene	5		L	7 J	JL	10		L	6	J	<	10	
Dibromochloromethane	5		<	10	<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	10	<	10		<	10		<	10	
Benzene	0.7		<	10	<	10		<	10		<	10	
trans-1,3-Dichloropropene	5		<	10	<	10		<	10		<	10	
Bromoform	50		<	10	<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10	<	10		<	10	J	<	10	J
2-Hexanone	50		<	10	<	10		<	10	J	<	10	J
Tetrachloroethene	5		<	10	<	10			0.2	J	<	10	
1,1,2,2-Tetrachloroethane	5		<	10	<	10		<	10	J	<	10	J
Toluene	5		<	10	<	10		<	10		<	10	
Chlorobenzene	5		<	10	<	10		<	10		<	10	
Ethylbenzene	5		<	10	<	10		<	10		<	10	
Styrene	5		<	10	<	10		<	10		<	10	
Xylene (total)	5		<	10	<	10		<	10		<	10	
Total VOCs				7		10			6.2			0	

VOCs
ug/L
Micrograms per liter.

J Estimated value.
R Unusable data
NYSDEC New York State Department of Environmental Conservation.
(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

* Additional sampling round.

Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	N	SM-21 /W-21 12/1/9	S	GM-21S GM-21S 3/15/00			GM-21S GM-21S 6/26/00				GM-21 GM-21 9/25/0	s
				_						-10			10	
Chloromethane	5		<	5		<	10		<	10		<	10	J
Bromomethane	5		<	5		<	10		<	10		<	10	
Vinyl Choride	2		<	2		<	1		<	0.3		<	0.2 10	J
Chloroethane	5		<	5		<	10		<	10		<		J
Methylene chloride	5		<	5		<	10		<	10		<	10	
Acetone	50		<	10		<	10	J	<	10	J		3	J
Carbon disulfide	50		<	10		<	10		<	10	J	<	10	
1,1-Dichloroethene	5		<	5		<	10		<	10		<	10	
1,1-Dichloroethane	5		<	5		<	10		<	10		<	10	
1,2-Dichloroethene (total)	5		<	5		<	10		<	10		<	10	
Chloroform	7		<	7		<	10		<	10		<	10	
1,2-Dichloroethane	5		<	5		<	10		<	10		<	10	
2-Butanone	50			5	J	<	10	J	<	10		<	10	J
1,1,1-Trichloroethane	5		<	5		<	10		<	10		<	10	
Carbon tetrachloride	5		<	5		<	10		<	10		<	10	
Bromodichloromethane	50		<	10		<	10		<	10		<	10	
1,2-Dichloropropane	5		<	5		<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<	5		<	10			R		<	10	
Trichloroethene	5		<	5		<	10			3	J	<	10	
Dibromochloromethane	5		<	5		<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	5		<	10		<	10		<	10	
Benzene	0.7		<	0.7		<	10		<	10		<	10	
trans-1,3-Dichloropropene	5		<	5		<	10		<	10		<	10	
Bromoform	50		<	10		<	10	J	<	10		<	10	
4-Methyl-2-pentanone	50			1	J	<	10		<	10		<	10	J
2-Hexanone	50			1	J	<	10		<	10		<	10	J
Tetrachloroethene	5		<	5		<	10			2	J	<	10	
1,1,2,2-Tetrachloroethane	5		<	5		<	10		<	10		<	10	J
Toluene	5		<	5		<	10			0.6	J	<	10	
Chlorobenzene	5		<	5		<	10		<	10		<	10	
Ethylbenzene	5		<	5		<	10		<	10		<	10	
Styrene	5			0.2	J	<	10		<	10		<	10	
Xylene (total)	5			0.5	J	<	10		<	10		<	10	
Total VOCs				7.7			0			5.6			3	

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
*	Additional sampling round.
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM-23S GM-23S 3/15/00			(GM-23 GM-23 10/2/00	S	MW-03R MW-3R 12/1/99	MW-03R MW-3R _3/13/00		
Chloromethane	5		<	10 J		<	10	J	< 5	<	10	
Bromomethane	5		<	10		<	10		< 5	<	10	
Vinyl Choride	2		<	1		<	0.2	J	< 2	<	1	
Chloroethane	5		<	10		<	10	J	< 5	<	10	
Methylene chloride	5		<	10		<	10		< 5	<	10	
Acetone	50		<	10		<	10	J	< 10	<	10 J	
Carbon disulfide	50		<	10		<	10		< 10	<	10	
1,1-Dichloroethene	5		<	10		<	10		< 5	<	10	
1,1-Dichloroethane	5		<	10		<	10		< 5	<	10	
1,2-Dichloroethene (total)	5		<	10		<	10		2 J	<	10	
Chloroform	7		<	10		<	10		< 7	<	10	
1,2-Dichloroethane	5		<	10		<	10		< 5	<	10	
2-Butanone	50		<	10 J			8.0	J	< 10	<	10	
1,1,1-Trichloroethane	5		<	10		<	10		< 5	<	10	
Carbon tetrachloride	5		<	10		<	10		< 5	<	10	
Bromodichloromethane	50		<	10		<	10		< 10	<	10	
1,2-Dichloropropane	5		<	10		<	10		< 5	<	10	
cis-1,3-Dichloropropene	5		<	10		<	10		< 5	<_	10 J	
Trichloroethene	5		<	10		<	10		11	L	6 J	
Dibromochloromethane	5		<	10		<	10		< 5	<	10	
1,1,2-Trichloroethane	5		<	10		<	10		< 5	<	10	
Benzene	0.7		<	10		<	10		< 0.7	<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		< 5	<	10 J	
Bromoform	50		<	10		<	10		< 10	<	10	
4-Methyl-2-pentanone	50		<	10		<	10	J	< 10	<	10	
2-Hexanone	50		<	10		<	10		< 10	<	10	
Tetrachloroethene	5		<	10		<	10	J	1 J	<	10	
1,1,2,2-Tetrachloroethane	5		<	10		<	10		< 5	<	10	
Toluene	5		<	10		<	10		< 5	<	10	
Chlorobenzene	5		<	10		<	10		< 5	<	10	
Ethylbenzene	5		<	10		<	10		< 5	<	10	
Styrene	5		<	10		<	10		< 5	<	10	
Xylene (total)	5		<	10		<	10		< 5	<	10	
Total VOCs				0			8.0		14		6	

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
•	Additional sampling round.
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 9. Concentrations of Volatile Organic Compounds Detected in Shallow Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	MW-03R MW-3R 7/31/00		MW-03 MW-31 9/26/0	R	
Chloromethane	5		< 10	<	10	J	
Bromomethane	5		< 10	<	10	5	
Vinyl Choride	2		R	<	0.2	J	
Chloroethane	5		< 10	<	10	J	
Methylene chloride	5		R	<	10	J	
•	50		< 10	<	10	J	
Acetone Carbon disulfide	50		< 10	<	10	J	
			- 10 R	<	10		
1,1-Dichloroethene	5 5		< 10	<	10		
1,1-Dichloroethane	5 5		2 J	•	0.9	J	
1,2-Dichloroethene (total) Chloroform	5 7		2 J < 10	<	10	J	
1,2-Dichloroethane	, 5		< 10	<	10		
	50		< 10	<	10		
2-Butanone	5		< 10	<	10		
1,1,1-Trichloroethane	5		< 10	<	10		
Carbon tetrachloride			< 10	<			
Bromodichloromethane	50			<	10		
1,2-Dichloropropane	5				10		
cis-1,3-Dichloropropene	5		R	` _	10_		
Trichloroethene	5		< 10	L	6	J	
Dibromochloromethane	5			<			
1,1,2-Trichloroethane	5		< 10	<	10		
Benzene	0.7		R < 10		10		
rans-1,3-Dichloropropene	5			<	10		
Bromoform	50		< 10	<	10		
I-Methyl-2-pentanone	50		< 10	<	10		
?-Hexanone	50		< 10	<	10		
etrachloroethene	5		1 J		0.5	J	
1,1,2,2-Tetrachloroethane	5		0.8 J	<	10		
Toluene	5		0.3 J	<	10		
Chlorobenzene	5		< 10	<	10		
Ethylbenzene	5		< 10	<	10		
Styrene	5		< 10	<	10		
(ylene (total)	5		< 10	<	10		
otal VOCs			16.1		7.4		

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
•	Additional sampling round.
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT:	NYSDEC Standards WELL: Criteria and SAMPLE ID:			GM-10I GM-10I			GM-10 //W-10		GM-15I GM-15I	_	M-15I M-15I	
(Units in ug/L)	Guidance Values ⁽¹⁾	DATE:	12/18/98*			ç	9/26/00)	05/14/97	12/7/99		
(011110 111 0 9/2)												
Chloromethane	5		<	10		<	10	J	< 10	<	10	
Bromomethane	5		<	10		<	10		< 10	<	10	
Vinyl Choride	2		<	10		<	0.2	J	< 10	<	0.3	
Chloroethane	5		<	10		<	10	J	< 10	<	10	
Methylene chloride	5			1	JB	<	10		< 10	<	10	
Acetone	50			3	JB	<	10	J	< 10	<	10	
Carbon disulfide	50		<	10		<	10		< 10	<	10	
1,1-Dichloroethene	5		<	10		<	10		< 10	<	10	
1,1-Dichloroethane	5		<	10		<	10		< 10		0.5 J	
1,2-Dichloroethene (total)	5		<	10		<	10		< 10		2 J	
Chloroform	7		<	10		<	10		< 10	<	10	
1,2-Dichloroethane	5		<	10		<	10		< 10 J	<	10	
2-Butanone	50		<	10		<	10		< 10	<	10	
1,1,1-Trichloroethane	5		<	10			0.7	J	< 10	<	10	
Carbon tetrachloride	5		<	10		<	10		< 10	<	10	
Bromodichloromethane	50		<	10		<	10		< 10	<	10	
1,2-Dichloropropane	5		<	10		<	10		< 10	<	10	
cis-1,3-Dichloropropene	5		<	10		<	10		< 10	<	10	
Trichloroethene	5			4	J		8.0	J	< 10	<	10	
Dibromochloromethane	5		<	10		<	10		< 10	<	10	
1,1,2-Trichloroethane	5		<	10		<	10		< 10	<	10	
Benzene	0.7		<	10		<	10		< 10	<	10	
rans-1,3-Dichloropropene	5		<	10		<	10		< 10	<	10	
Bromoform	50		<	10		<	10		< 10	<	10	
I-Methyl-2-pentanone	50		<	10		<	10		< 10 J	<	10	
2-Hexanone	50		<	10		<	10		< 10 J	<	10	
Tetrachloroethene	5		<	10			0.6	J	< 10	<	10	
,1,2,2-Tetrachloroethane	5		<	10		<	10		< 10 J	<	10	
oluene	5		<	10		<	10		< 10	<	10	
Chlorobenzene	5		<	10		<	10		< 10	<	10	
Ethylbenzene	5		<	10		<	10		< 10	<	10	
Styrene	5		<	10		<	10		< 10	<	10	
(ylene (total)	5		<	10		<	10		< 10	<	10	
otal VOCs				8			2.1		0		2.5	

Estimated value.
Unusable data
Detected at secondary dilution.
Constituent detected in associated blank sample.
Additional sampling round.
Replicate Sample.
New York State Department of Environmental Conservation.
Standards, Criteria, and Guidance values based on documents referenced in the
Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
Value exceeds associated Standard, Criteria, and Guidance value.

ug/L

Volatile organic compounds. Micrograms per liter.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM-15I GM-15I 3/23/00				GM-15I GM-15I 7/11/00			(GM-15 GM-15 9/19/00	I	 (SM-16 SM-16 2/7/9	il
Chloromethane	5		<	10		<	10		<	:	10		<	10	
Bromomethane	5		<	10	J	<	10	J	<		10		<	10	
Vinyl Choride	2		<	1		<	0.3		<	:	0.3		<	0.3	
Chloroethane	5		<	10		<	10		<	:	10	J	<	10	
Methylene chloride	5		<	10		<	10		<		10		<	10	
Acetone	50		<	10	J	<	10		<	:	10	J	<	10	
Carbon disulfide	50		<	10		<	10		<		10		<	10	
1,1-Dichloroethene	5		<	10		<	10		<	:	10		<	10	
1,1-Dichloroethane	5		<	10		<	10		<	:	10			0.3	J
1,2-Dichloroethene (total)	5			1	J	<	10		<	:	10			0.7	J
Chloroform	7		<	10		<	10				0.2	J	<	10	
1,2-Dichloroethane	5		<	10		<	10		<	:	10		<	10	
2-Butanone	50		<	10		<	10		<		10	J	<	10	
1,1,1-Trichloroethane	5		<	10		<	10		<	:	10		<	10	
Carbon tetrachloride	5		<	10		<	10		<	:	10		<	10	
Bromodichloromethane	50		<	10		<	10		<		10		<	10	
1,2-Dichloropropane	5		<	10		<	10		<	:	10		<	10	
cis-1,3-Dichloropropene	5		<	10		<	10		<		10		<_	10	_
Trichloroethene	5		<	10		<	10		<		10		L	24	
Dibromochloromethane	5		<	10		<	10		<	:	10		<	10	
1,1,2-Trichloroethane	5		<	10		<	10		<	:	10		<	10	
Benzene	0.7		<	10		<	10		<	:	10		<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		<	:	10		<	10	
Bromoform	50		<	10		<	10		<	:	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10		<		10	J	<	10	
2-Hexanone	50		<	10		<	10		<		10	J	<	10	
Tetrachloroethene	5		<	10			3	J	<		10			2	J
1,1,2,2-Tetrachloroethane	5		<	10		<	10		<		10		<	10	
Toluene	5		<	10		<	10		<		10		<	10	
Chlorobenzene	5		<	10		<	10		<	:	10		<	10	
Ethylbenzene	5		<	10		<	10		<		10		<	10	
Styrene	5		<	10		<	10		<		10		<	10	
Xylene (total)	5		<	10		<	10		<		10		<	10	
Total VOCs				1			3				0.2			27	

ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
•	Additional sampling round.
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Volatile organic compounds.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

	NYSDEC Standards	WELL:	G	M-16I		(3M-16	SI		GM-16	il .	(GM-17	71
CONSTITUENT:	Criteria and	SAMPLE ID:	G	M-16!		(3M-16	SI .		GM-16	SI .	(GM-17	71
(Units in ug/L)	Guidance Values ⁽¹⁾	DATE:	3/15/00				7/17/0	0		9/19/0		9/29/0	0	
Chioromethane	5		<	10	J	<	10		<	10		<	10	J
Bromomethane	5		<	10		<	10	J	<	10		<	10	J
Vinyl Choride	2		<	1		<	0.3		<	0.3		<	0.2	J
Chloroethane	5		<	10		<	10		<	10	J	<	10	J
Methylene chloride	5		<	10		<	10		<	10		<	10	
Acetone	50		<	10		<	10	J	<	10	J		2	J
Carbon disulfide	50		<	10		<	10		<	10		<	10	
1,1-Dichloroethene	5		<	10		<	10			0.9	J	<	10	
1,1-Dichloroethane	5		<	10		<	10			0.4	J	<	10	
1,2-Dichloroethene (total)	5		<	10		<	10			2	J	<	10	
Chloroform	7		<	10		<	10		<	10		<	10	
1,2-Dichloroethane	5		<	10		<	10		<	10		<	10	
2-Butanone	50		<	10	J	<	10		<	10	J	<	10	
1,1,1-Trichloroethane	5		<	10		<	10			0.9	J	<	10	
Carbon tetrachloride	5		<	10		<	10	J	<	10		<	10	
Bromodichloromethane	50		<	10		<	10		<	10		<	10	
1,2-Dichloropropane	5		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<_	10		<_	10	_	<_	10	_	<	10	
Trichloroethene	5			28		L	22	J	L	19		<	10	
Dibromochloromethane	5		<	10		<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	10	
Benzene	0.7		<	10		<	10			0.2	J	<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Bromoform	50		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10		<	10	J	<	10	J
2-Hexanone	50		<	10		<	10		<	10	J	<	10	J
Tetrachioroethene	5			1	J		2	J		4	J	<	10	
1,1,2,2-Tetrachloroethane	5		<	10			R		<	10		<	10	
Toluene	5		<	10		<	10		<	10		<	10	
Chlorobenzene	5		<	10		<	10		<	10		<	10	
Ethylbenzene	5		<	10		<	10		<	10		<	10	
Styrene	5		<	10		<	10		<	10		<	10	
≺ylene (total)	5		<	10		<	10		<	10		<	10	
Fotal VOCs				29			24			2 7. 4			2	

ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
*	Additional sampling round
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM-18I GM-18I 7/17/00		GM-18I GM-18I 9/21/00			G	6M-20I 6M-20I /14/97	GM-20I GM-20I 12/6/99		
Chloromethane	5	_	<	10	<	10		<	10	<	5	
Bromomethane	5		<	10	<	10		<	10	<	5	
Vinyl Choride	2		<	0.3	<	0.3		<	10	<	2	
Chloroethane	5		<	10	<	10	J	<	10	<	5	
Methylene chloride	5		<	10	<	10		<	10	<	5	
Acetone	50		<	10	<	10	J	<	10	<	15	
Carbon disulfide	50		<	10	<	10		<	10	<	10	
1,1-Dichloroethene	5		<	10	<	10		<	10	<	5	
1,1-Dichloroethane	5		<	10	<	10		<	10	<	5	
1,2-Dichloroethene (total)	5		<	10	<	10		<	10	<	5	
Chloroform	7		<	10	<	10		<	10	<	7	
1,2-Dichloroethane	5		<	10	<	10		<	10	<	5	
2-Butanone	50		<	10	<	10		<	10	<	10	
1,1,1-Trichloroethane	5		<	10	<	10	J	<	10	<	5	
Carbon tetrachloride	5		<	10	<	10		<	10	<	5	
Bromodichloromethane	50		<	10	<	10		<	10	<	10	
1,2-Dichloropropane	5		<	10	<	10		<	10	<	5	
cis-1,3-Dichloropropene	5		<	10	<	10		<	10	<	5	
Trichloroethene	5		<	10		0.5	J		1		1 .	
Dibromochloromethane	5		<	10	<	10		<	10	<	5	
1,1,2-Trichloroethane	5		<	10	<	10		<	10	<	5	
Benzene	0.7		<	10	<	10		<	10	<	0.7	
rans-1,3-Dichloropropene	5		<	10	<	10		<	10	<	5	
Bromoform	50		<	10	<	10		<	10	<	10	
1-Methyl-2-pentanone	50		<	10	<	10	J	<	10	<	10	
2-Hexanone	50		<	10	<	10	J	<	10	<	10	
Tetrachloroethene	5		<	10	<	10		<	10	<	5	
1,1,2,2-Tetrachloroethane	5			R	<	10		<	10	<	5	
Toluene	5		<	10	<	10		<	10	<	5	
Chlorobenzene	5		<	10	<	10		<	10	<	5	
Ethylbenzene	5		<	10	<	10		<	10	<	5	
Styrene	5		<	10	<	10		<	10	<	5	
(total)	5		<	10	<	10		<	10	<	5	

9	
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
*	Additional sampling round.
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

ug/L

Volatile organic compounds.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999 and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	(GM-20 GM-20 B/23/0	10	(GM-20 GM-20 7/11/00	I		GM-20 GM-20 9/18/00	l	C	6M-2 6M-2 5/14/	11
Chloromethane	5		<	10		<	10		<	10		<	10	
Bromomethane	5		<	10	J	<	10	J	<	10		<	10	
Vinyl Choride	2		<	1		<	0.3		<	0.3		<	10	
Chloroethane	5		<	10		<	10		<	10	J	<	10	
Methylene chloride	5		<	10		<	10		<	10		<	10	
Acetone	50		<	10	J	<	10		<	10	J	<	10	J
Carbon disulfide	50		<	10		<	10		<	10		<	10	
1,1-Dichloroethene	5		<	10		<	10		<	10		<	10	
1,1-Dichloroethane	5		<	10		<	10		<	10		<	10	
1,2-Dichloroethene (total)	5		<	10		<	10		<	10		<	10	
Chloroform	7		<	10		<	10		<	10		<	10	
1,2-Dichloroethane	5		<	10		<	10		<	10		<	10	J
2-Butanone	50		<	10		<	10		<	10		<	10	
1,1,1-Trichloroethane	5		<	10		<	10		<	10	J	<	10	
Carbon tetrachloride	5		<	10		<	10		<	10		<	10	
Bromodichloromethane	50		<	10		<	10		<	10		<	10	
1,2-Dichloropropane	5		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Trichloroethene	5		<	10		<	10			8.0	J	<	10	
Dibromochloromethane	5		<	10		<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	10	
Benzene	0.7		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Bromoform	50		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10		<	10	J	<	10	J
2-Hexanone	50		<,	10		_ <	10		<	10	J	<	10	J
Tetrachloroethene	5		Į	6	J	<	10		<	10		<	10	
1,1,2,2-Tetrachloroethane	5		<	10		<	10		<	10		<	10	J
Toluene	5		<	10		<	10		<	10		<	10	
Chlorobenzene	5		<	10		<	10		<	10		<	10	
Ethylbenzene	5		<	10		<	10		<	10		<	10	
Styrene	5		<	10		<	10		<	10		<	10	
Xylene (total)	5		<	10		<	10		<	10		<	10	
Total VOCs				6			0			8.0			0	

ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
•	Additional sampling round.
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
. ,	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999 and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL Criteria and SAMPLE ID Guidance Values ⁽¹⁾ DATE	; GM-21!	GM-21I GM-21I 3/17/00	GM-21I GM-21I 7/10/00	GM-21I GM-21I 9/18/00
Chloromethane	5	< 5	< 10 J	< 10	< 10
Bromomethane	5	< 5	< 10	< 10 J	< 10
Vinyl Choride	2	< 2	< 1	< 0.3	< 0.3
Chloroethane	5	< 5	< 10	< 10	< 10 J
Methylene chloride	5	< 5	< 10	< 10	< 10
Acetone	50	< 10	< 10	< 10	< 10 J
Carbon disulfide	50	< 10	< 10	< 10	< 10
1,1-Dichloroethene	5	< 5	< 10	< 10	< 10
1,1-Dichloroethane	5	< 5	< 10	< 10	< 10
1,2-Dichloroethene (total)	5	< 5	< 10	< 10	< 10
Chloroform	7	< 7	< 10	< 10	< 10
1.2-Dichloroethane	5	< 5	< 10	< 10	< 10
2-Butanone	50	1 J	< 10 J	< 10	< 10
1,1,1-Trichloroethane	5	< 5	< 10	< 10	< 10 J
Carbon tetrachloride	5	< 5	< 10	< 10	< 10
Bromodichloromethane	50	< 10	< 10	< 10	< 10
1,2-Dichloropropane	5	< 5	< 10	< 10	< 10
cis-1,3-Dichloropropene	5	< 5	< 10	< 10	< 10
Trichloroethene	5	< 5	< 10	< 10	< 10
Dibromochloromethane	5	< 5	< 10	< 10	< 10
1,1,2-Trichloroethane	5	< 5	< 10	< 10	< 10
Benzene	0.7	< 0.7	< 10	< 10	< 10
rans-1,3-Dichloropropene	5	< 5	< 10	< 10	< 10
Bromoform	50	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone	50	< 10	< 10	< 10	< 10 J
2-Hexanone	50	< 10	< 10	< 10	< 10 J
Tetrachloroethene	5	< 5	< 10	< 10	< 10
1,1,2,2-Tetrachloroethane	5	< 5	< 10	< 10	< 10
Toluene	5	< 5	< 10	< 10	< 10
Chlorobenzene	5	< 5	< 10	< 10	< 10
Ethylbenzene	5	< 5	< 10	< 10	< 10
Styrene	5	< 5	< 10	< 10	< 10
(total)	5	< 5	< 10	< 10	< 10

Estimated value.
Unusable data
Detected at secondary dilution.
Constituent detected in associated blank sample.
Additional sampling round.
Replicate Sample.
New York State Department of Environmental Conservation.
Standards, Criteria, and Guidance values based on documents referenced in the
Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
Value exceeds associated Standard, Criteria, and Guidance value.

ug/L

Volatile organic compounds. Micrograms per liter.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	(GM-23 GM-23 3/15/0	31		GM-23 GM-23 10/2/0	31			6M-23I REP-2 10/2/00	2		GM-74 GM74 10/5/0	I
Chloromethane	5		<	10	J	<	10	J		<	10	J	<	10	J
Bromomethane	5		<	10		<	10			<	10		<	10	
Vinyl Choride	2		<	1		<	0.2	J		<	0.2	J	<	0.2	J
Chloroethane	5		<	10		<	10	J		<	10	J	<	10	J
Methylene chloride	5		<	10		<	10			<	10		<	10	
Acetone	50		<	10		<	10	J		<	10	J	<	10	J
Carbon disulfide	50		<	10		<	10			<	10		<	10	
1,1-Dichloroethene	5		<	10		<	10			<	10		<	10	
1,1-Dichloroethane	5		<	10		<	10			<	10		<	10	
1,2-Dichloroethene (total)	5		<	10			8.0	J			1	J	<	10	
Chloroform	7		<	10		<	10			<	10		<	10	
1,2-Dichloroethane	5		<	10		<	10			<	10		<	10	
2-Butanone	50		<	10	J	<	10	J		<	10		<	10	J
1,1,1-Trichloroethane	5		<	10			0.6	J			0.6	J	<	10	
Carbon tetrachloride	5		<	10		<	10			<	10		<	10	
Bromodichloromethane	50		<	10		<	10			<	10		<	10	
1,2-Dichloropropane	5		<	10		<	10			<	10		<	10	
cis-1,3-Dichloropropene	5		<_	10_		_ <	10		_	۲,	10		<	10	
Trichloroethene	5		L	7	J		7	J		L	6	J	<	10	
Dibromochloromethane	5		<	10		<	10			<	10		<	10	
1,1,2-Trichloroethane	5		<	10		<	10			<	10		<	10	
Benzene	0.7		<	10		<	10			<	10		<	10	
trans-1,3-Dichloropropene	5		<	10		<	10			<	10		<	10	
Bromoform	50		<	10		<	10			<	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10	J		<	10	J	<	10	J
2-Hexanone	50		<	10		<	10	J		<	10		<	10	J
Tetrachloroethene	5			3	J		3	J			3	J	<	10	J
1,1,2,2-Tetrachloroethane	5		<	10		<	10			<	10		<	10	
Toluene	5		<	10		<	10			<	10		<	10	
Chlorobenzene	5		<	10		<	10			<	10		<	10	
Ethylbenzene	5		<	10		<	10			<	10		<	10	
Styrene	5		<	10		<	10			<	10		<	10	
Kylene (total)	5		<	10		<	10			<	10		<	10	
Fotal VOCs				10			11.4				10.6			0	

ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
•	Additional sampling round.
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Volatile organic compounds.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

	NYSDEC Standards	WELL:	HN-24I	HN-24I	HN-24I	HN-24I
CONSTITUENT:	Criteria and	SAMPLE ID:	HN241	HN-24I	HW24I	HW-24I
(Units in ug/L)	Guidance Values ⁽¹⁾	DATE:	12/2/99	3/22/00	6/28/00	9/27/00
Chloromethane	5		< 20	< 10	< 10	< 10
Bromomethane	5		< 20	< 10	< 10	< 10
Vinyl Choride	2		< 0.7	< 1	< 0.3	< 0.2
Chloroethane	5		< 20	< 10	< 10 J	< 10
Methylene chloride	5		< 20	< 10	< 10	< 10
Acetone	50		< 20	< 10	< 10	< 10
Carbon disulfide	50		< 20	< 10	< 10 J	< 10
1,1-Dichloroethene	5		22	21	16	14
1,1-Dichloroethane	5		22	17	11	11
1,2-Dichloroethene (total)	5		50	38	24	20
Chloroform	7		0.9 J	< 10	< 10	0.5 J
1,2-Dichloroethane	5		< 20	< 10	< 10	< 10
2-Butanone	50		< 20	< 10	< 10	< 10 J
1,1,1-Trichloroethane	5		21	19 J	15	13
Carbon tetrachloride	5		< 20	< 10 J	< 10	< 10
Bromodichloromethane	50		< 20	< 10	< 10	< 10
1,2-Dichloropropane	5		< 20	< 10	< 10	< 10
cis-1,3-Dichloropropene	5		< 20	< 10	R	< 10
Trichloroethene	5		230	270 D	180	180
Dibromochloromethane	5		< 20	< 10	< 10	< 10
1,1,2-Trichloroethane	5		1 J	< 10	< 10	< 10
Benzene	0.7		< 20	< 10	< 10	< 10
trans-1,3-Dichloropropene	5		< 20	< 10	< 10	< 10
Bromoform	50		< 20	< 10	< 10	< 10
4-Methyl-2-pentanone	50		< 20	< 10	< 10	< 10
2-Hexanone	50		< 20	< 10_	< 10	< 10
Tetrachloroethene	5		16 J	14	9 J	8 J
1,1,2,2-Tetrachloroethane	5		< 20	< 10	< 10	< 10
Toluene	5		< 20	< 10	< 10	< 10
Chlorobenzene	5		< 20	< 10	< 10	< 10
Ethylbenzene	5		< 20	< 10	< 10	< 10
Styrene	5		< 20	< 10	< 10	< 10
Xylene (total)	5		< 20	< 10	< 10	< 10
Total VOCs			362.9	379	255	246.5

J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
*	Additional sampling round.
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

ug/L

Volatile organic compounds.

Table 10. Concentrations of Volatile Organic Compounds Detected in Intermediate Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT:	NYSDEC Standards WE Criteria and SAMPLE	LL: ID:	-	HN-29 H W 29			HN-29 HW-29		MW-52S MW-52S	MW-52S MW-52S
(Units in ug/L)	Guidance Values ⁽¹⁾ DA	TE:	6	6/28/00)		9/27/0	0	3/16/00	9/25/00
Chloromethane	5		<	10		<	10	J	< 10	< 100 J
Bromomethane	5		<	10		<	10		< 10	< 100 J
Vinyl Choride	2		<	0.3		<	0.2	J	3100 DJ	1900 J
Chloroethane	5		<	10	J	<	10	J	4 J	< 100 J
Methylene chloride	5		<	10		<	10		< 10	< 100
Acetone	50		<	10		<	10	J	< 10	300 J
Carbon disulfide	50		<	10	J	<	10		< 10	< 100
1,1-Dichloroethene	5		<	10		<	10		< 10	< 100
1,1-Dichloroethane	5		<	10			0.8	J	< 10	< 100
1,2-Dichloroethene (total)	5		<	10		<	10		22	7 J
Chloroform	7		<	10		<	10		< 10	< 100
1.2-Dichloroethane	5		<	10		<	10		< 10	< 100
2-Butanone	50		<	10		<	10	J	< 10	< 100
1,1,1-Trichloroethane	5		<	10			0.7	J	< 10	< 100
Carbon tetrachloride	5		<	10		<	10	•	< 10	< 100
Bromodichloromethane	50		<	10		<	10		< 10	< 100
	5		<	10		<	10		< 10	< 100
1,2-Dichloropropane cis-1,3-Dichloropropene	5		•	R		<	10		< 10	< 100
Trichloroethene	5			2	J		2	J	17	6 J
Dibromochloromethane	5		<	10	5	<	10	·	< 10	< 100
	5		`	10		<	10		< 10	< 100
1,1,2-Trichloroethane	0.7		<	10		<	10		< 10	< 100
Benzene trans-1,3-Dichloropropene			<	10		<	10		< 10	< 100
	50		<	10		<	10	J	< 10	< 100
Bromoform	50		<	10		<	10	J	< 10	< 100
4-Methyl-2-pentanone	50		<	10			10	J	< 10	< 100 J
2-Hexanone	50		<	10			10	J	20	12 J
Tetrachloroethene	5		<	10		<	10		< 10	< 100
1,1,2,2-Tetrachloroethane	5 5		<	10		<	10		1 J	< 100
Toluene	5 5		<	10		<	10		< 10	< 100
Chlorobenzene	5 5		<	10		<	10		< 10	< 100
Ethylbenzene	5 5		<	10		<	10		< 10	< 100
Styrene Yulong (total)	5 5		<	10			10		< 10	< 100
Xylene (total)	J		`	10			10			
Total VOCs				2			3.5		3,164	2,225

J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
В	Constituent detected in associated blank sample.
*	Additional sampling round.
**	Replicate Sample.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

ug/L

Volatile organic compounds.

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:		1062 N-106 12/1/9	27	Ν	10627 -10627 0/22/00		1062 N-106 7/5/0	527		1062 N1062 10/4/0	27
Chloromethane	5		<	5		<	10	<	10		<	10	J
Bromomethane	5		<	5		<	10	<	10		<	10	
Vinyl Choride	2		<	2		<	1	<	0.3	1	<	0.2	J
Chloroethane	5		<	5		<	10	<	10		<	10	J
Methylene chloride	5		<	5		<	10	<	10		<	10	
Acetone	50		<	10		<	10		5	J		9	J
Carbon disulfide	50		<	10		<	10	<	10		<	10	
1,1-Dichloroethene	5		<	5		<	10	<	10		<	10	
1,1-Dichloroethane	5		<	5		<	10	<	10		<	10	
1,2-Dichloroethene (total)	5			1	J	<	10	<	10		<	10	
Chloroform	7		<	7		<	10	<	10		<	10	
1,2-Dichloroethane	5		<	5		<	10	<	10		<	10	
2-Butanone	50		<	10		<	10	<	10		<	10	J
1,1,1-Trichloroethane	5		<	5		<	10 J	<	10		<	10	
Carbon tetrachloride	5		<	5		<	10 J	<	10		<	10	
Bromodichloromethane	50		<	10		<	10	<	10		<	10	
1,2-Dichloropropane	5		<	5		<	10	<	10		<	10	
cis-1,3-Dichloropropene	5		<	5		<	10	<	10		<	10	
Trichloroethene	5		Γ	24	7		2 J		7	J		0.6	J
Dibromochloromethane	5		<	5	_	<	10	<	10		<	10	
1,1,2-Trichloroethane	5		<	5		<	10	<	10		<	10	
Benzene	0.7		<	0.7		<	10	<	10		<	10	
trans-1,3-Dichloropropene	5		<	5		<	10	<	10		<	10	
Bromoform	50		<	10		<	10	<	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10	<	10		<	10	J
2-Hexanone	50		<	10		<	10	<	10		<	10	J
Tetrachloroethene	5			0.9	J	<	10	<	10		<	10	J
1,1,2,2-Tetrachloroethane	5		<	5	•	<	10	<	10		<	10	•
Toluene	5		<	5		<	10	<	10		<	10	
Chlorobenzene	5		<	5		<	10	<	10		<	10	
Ethylbenzene	5		<	5		<	10	<	10		<	10	
Styrene	5		<	5		<	10	<	10		<	10	
Xylene (total)	5			0.7	J	<	10	<	10		<	10	
Total VOCs				26.6			2		12			9.6	

For RCL VOC-GM

VOCs

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	GM-13D GM-13D 12/7/99	GM-13D GM-13D 3/23/00	GM-13D GM-13D 7/11/00	GM-13D GM-13D 9/27/00
Chloromethane	5		< 100	< 10	< 100	< 100 J
Bromomethane	5		< 100	< 10 J	< 100 J	< 100
Vinyl Choride	2		< 3	< 1	< 3	< 2 J
Chloroethane	5		< 100	< 10	< 100	< 100 J
Methylene chloride	5		< 100	< 10	< 100	< 100
Acetone	50		< 100	< 10 J	< 100 J	< 100 J
Carbon disulfide	50		< 100	< 10	< 100	< 100
1,1-Dichloroethene	5		94 J	120	140	92 J
1,1-Dichloroethane	5		46 J	58	57 J	58 J
1,2-Dichloroethene (total)	5		22 0	290	260	230
Chloroform	7		J	J	< 100	< 100
1,2-Dichloroethane	5		< 100	1 J	< 100	< 100
2-Butarione	50		< 100 J	< 10	< 100	< 100 J
1,1,1-Trichloroethane	5		87 J	110	130	99 J
Carbon tetrachloride	5		< 100	< 10	< 100 J	< 100
Bromodichloromethane	50		< 100	< 10	< 100	< 100
1,2-Dichloropropane	5		< 100	< 10	< 100	< 100
cis-1,3-Dichloropropene	5		< 100	< 10	< 100	< 100
Trichloroethene	5		400	520 D	460	410
Dibromochloromethane	5		< 100	< 10	< 100	< 100
1,1,2-Trichloroethane	5		< 100	< 10	< 100	< 100
Benzene	0.7		1 J	< 10	< 100	< 100
trans-1,3-Dichloropropene	5		< 100	< 10	< 100	< 100
Bromoform	50		< 100	< 10	< 100	< 100 J
4-Methyl-2-pentanone	50		< 100	< 10	< 100	< 100 J
2-Hexanone	50		< 100	< 10	< 100	< 100 J
Tetrachloroethene	5		830	1300 D	1100	910
1,1,2,2-Tetrachloroethane	5		< 100	< 10	< 100	< 100
Toluene	5		2 J	< 10	< 100	< 100
Chlorobenzene	5		< 100	< 10	< 100	< 100
Ethylbenzene	5		< 100	< 10	< 100	< 100
Styrene	5		< 100	< 10	< 100	< 100
Xylene (total)	5		< 100	< 10	< 100	< 100
Total VOCs			1,682	2,401	2,147	1,799

ug/L Micrograms per liter.

J Estimated value.

R Unusable data

D Detected at secondary dilution.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	(1)			GM-15 GM-15 9/28/0	D	(GM-17 GM-17 9/29/0	D	(GM-20 GM-20 5/14/9	GM-20D GM-20D 12/6/99		
Chloromethane	5		<	10	J	<	10	J	<	10		<	5
Bromomethane	5		<	10		<	10	J	<	10		<	5
Vinyl Choride	2		<	0.2	J	<	0.2	J	<	10		<	2
Chloroethane	5		<	10	J	<	10	J	<	10		<	5
Methylene chloride	5		<	10		<	10		<	10		<	5
Acetone	50		<	10	J	<	10	J	<	10	J	<	10
Carbon disulfide	50		<	10		<	10		<	10			0.7 J
1,1-Dichloroethene	5			2	J	<	10		<	10		<	5
1,1-Dichloroethane	5			4	J	<	10		<	10		<	5
1,2-Dichloroethene (total)	5			1	J	<	10		<	10		<	5
Chloroform	7			0.6	J	<	10		<	10		<	7
1,2-Dichloroethane	5			8.0	J	<	10		<	10	J	<	5
2-Butanone	50		<	10	J	<	10		<	10		<	10
1,1,1-Trichloroethane	5			2	J	<	10		<	10		<	5
Carbon tetrachloride	5		<	10		<	10		<	10		<	5
Bromodichloromethane	50		<	10		<	10		<	10		<	10
1,2-Dichloropropane	5		<	10		<	10		<	10		<	5
cis-1,3-Dichloropropene	5		<	10		<	10		<	10		<	5
Trichloroethene	5			9	J	<	10		<	10		<	5
Dibromochloromethane	5		<	10		<	10		<	10		<	5
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	5
Benzene	0.7		<	10		<	10		<	10		<	0.7
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	5
Bromoform	50		<	10	J	<	10		<	10		<	10
4-Methyl-2-pentanone	50		<	10	J	<	10	J	<	10	J	<	10
2-Hexanone	50		<	10	J	<	10	J	<	10	J	<	10
Tetrachloroethene	5			5	J	<	10		<	10		<	5
1,1,2,2-Tetrachloroethane	5		<	10		<	10		<	10	J	<	5
Toluene	5		<	10		<	10		<	10		<	5
Chlorobenzene	5		<	10		<	10		<	10		<	5
Ethylbenzene	5		<	10		<	10		<	10		<	5
Styrene	5		<	10		<	10		<	10		<	5
Xylene (total)	5		<	10		<	10		<	10		<	5
Total VOCs				24.4			0			0			0.7

VOCs Volatile organic compounds.
ug/L Micrograms per liter.
J Estimated value.
R Unusable data
D Detected at secondary dilution.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	C	GM-20D GM-20D G/17/00	(GM-20D GM-20D 7/11/00	G	M-201 M-201 /18/00	D	(GM-34 GM-34 I 1/30/9	D
Chloromethane	5		<	10 J	<	10	<	10		<	5	J
Bromomethane	5		<	10	<	10 J	<	10		<	5	
Vinyl Choride	2		<	1	<	0.3	<	0.3		<	2	J
Chloroethane	5		<	10	<	10	<	10	J	<	5	
Methylene chloride	5		<	10	<	10	<	10		<	5	J
Acetone	50		<	10	<	10	<	10	J	<	10	J
Carbon disulfide	50		<	10	<	10	<	10		<	10	J
1,1-Dichloroethene	5		<	10	<	10	<	10			5	7
1,1-Dichloroethane	5		<	10	<	10	<	10		_	4	
1,2-Dichloroethene (total)	5		<	10	<	10	<	10			3	J
Chloroform	7		<	10	<	10	<	10			8.0	J
1,2-Dichloroethane	5		<	10	<	10	<	10		<	5	
2-Butanone	50		<	10 J	<	10	<	10		<	10	
1,1,1-Trichloroethane	5		<	10	<	10	<	10	J		0.6	J
Carbon tetrachloride	5		<	10	<	10	<	10		<	5	
Bromodichloromethane	50		<	10	<	10	<	10		<	10	
1,2-Dichloropropane	5		<	10	<	10	<	10		<	5	
cis-1,3-Dichloropropene	5		<	10	<	10	<	10		<	5	
Trichloroethene	5		<	10	<	10	<	10		Γ	72	7
Dibromochloromethane	5		<	10	<	10	<	10		<	5	_
1,1,2-Trichloroethane	5		<	10	<	10	<	10		<	5	
Benzene	0.7		<	10	<	10	<	10		<	0.7	
trans-1,3-Dichloropropene	5		<	10	<	10	<	10		<	5	
Bromoform	50		<	10	<	10	<	10		<	10	
4-Methyl-2-pentanone	50		<	10	<	10	<	10	J	<	10	
2-Hexanone	50		<	10	<	10	<	10	J	<	10	
Tetrachloroethene	5		<	10	<	10	<	10			3	J
1,1,2,2-Tetrachloroethane	5		<	10	<	10	<	10		<	5	
Toluene	5		<	10	<	10	<	10		<	5	
Chlorobenzene	5		<	10	<	10	<	10		<	5	
Ethylbenzene	5		<	10	<	10	<	10			0.3	J
Styrene	5		<	10	<	10	<	10		<	5	
Xylene (total)	5		<	10	<	10	<	10			1	J
Total VOCs				0		0		0			89.	7

Micrograms per liter.
Estimated value.
Unusable data
Detected at secondary dilution.
New York State Department of Environmental Conservation.
Standards, Criteria, and Guidance values based on documents referenced in the
Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	(GM-36D GM-36D 3/27/00		G	M-36 M-36 7/14/0	SD		GM-3 GM-3 9/20/	6D	 G	6M-37 6M-37 5/15/	7D
Chloromethane	5		<	10		<	10		<	10		<	10	
Bromomethane	5		<	10		<	10	J	<	10		<	10	
Vinyl Choride	2		<	1		<	0.3		<	0.3		<	10	
Chloroethane	5		<	10		<	10		<	10	J	<	10	
Methylene chloride	5		<	10		<	10		<	10		<	10	
Acetone	50		<	10		<	10	J	<	10	J	<	10	
Carbon disulfide	50		<	10		<	10		<	10		<	10	
1,1-Dichloroethene	5		<	10		<	10		<	10			4	J
1,1-Dichloroethane	5		<	10		<	10		<	10		ſ	10	7
1,2-Dichloroethene (total)	5		<	10		<	10			0.5	J	<	10	-
Chloroform	7		<	10		<	10		<	10		<	10	
1,2-Dichloroethane	5		<	10		<	10		<	10		<	10	J
2-Butanone	50		<	10		<	10		<	10	J	<	10	
1,1,1-Trichloroethane	5		<	10 .	l	<	10		<	10		ſ	6	J
Carbon tetrachlonde	5		<	10	l	<	10	J	<	10		<	10	
Bromodichloromethane	50		<	10		<	10		<	10		<	10	
1,2-Dichloropropane	5		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Trichloroethene	5		Γ	54		Γ	24	J	1	24	\neg	Γ	6	J
Dibromochloromethane	5		<	10		<	10		<	10	_	<	10	
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	10	
Benzene	0.7		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Bromoform	50		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10		<	10	J	<	10	J
2-Hexanone	50		<	10		<	10		<	10	J	<	10	J
Tetrachloroethene	5			2 J	l	<	10			1	J		0.6	J
1,1,2,2-Tetrachloroethane	5		<	10			R		<	10		<	10	J
Toluene	5		<	10		<	10		<	10		<	10	
Chlorobenzene	5		<	10		<	10		<	10		<	10	
Ethylbenzene	5		<	10		<	10		<	10		<	10	
Styrene	5		<	10		<	10		<	10		<	10	
Xylene (total)	5		<	10		<	10		<	10		<	10	
Total VOCs				56			24			25.5	,		26.6	

ug/L Micrograms per liter.

J Estimated value.

R Unusable data

D Detected at secondary dilution.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	G	M-37 M-37	D	(GM-37 GM-37 3/27/0	7D	(GM-3 GM-3 7/13/0	7D	(GM-37 GM-37 9/21/0	D
Chloromethane	5		<	10		<	10		<	10		<	10	
Bromomethane	5		<	10		<	10		<	10	J	<	10	
Vinyl Choride	2		<	0.3		<	1		<	0.3		<	0.3	
Chloroethane	5		<	10		<	10		<	10		<	10	J
Methylene chloride	5		<	10		<	10		<	10		<	10	
Acetone	50		<	10	J	<	10		<	10	J	<	10	J
Carbon disulfide	50		<	10		<	10		<	10		<	10	
1,1-Dichloroethene	5			4	J		3	J		4	J		3	J
1,1-Dichloroethane	5		Γ	8	J	Γ	9	J] [9	J	Г	7	J
1,2-Dichloroethene (total)	5		۲,	10		< ً	10		, <	10		<_	10	
Chloroform	7		<	10		<	10		<	10			0.9	J
1,2-Dichloroethane	5		<	10		<	10		<	10		<	10	
2-Butanone	50		<	10		<	10		<	10		<	10	J
1,1,1-Trichloroethane	5			4	J		4	J	Γ	6	J		4	J
Carbon tetrachlonde	5		<	10		<	10	J	< ً	10	J	<	10	
Bromodichloromethane	50		<	10		<	10		<	10		<	10	
1,2-Dichloropropane	5		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Trichloroethene	5			0.5	J	<	10		<	10			0.5	J
Dibromochloromethane	5		<	10		<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	10	
Benzene	0.7		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Bromoform	50		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10		<	10		<	10		<	10	J
2-Hexanone	50		<	10		<	10		<	10		<	10	J
Tetrachloroethene	5			1	J		1	J		2	J		1	Ĵ
1,1,2,2-Tetrachloroethane	5		<	10		<	10			R		<	10	
Toluene	5		<	10		<	10		<	10		<	10	
Chlorobenzene	5		<	10		<	10		<	10		<	10	
Ethylbenzene	5		<	10		<	10		<	10		<	10	
Styrene	5		<	10		<	10		<	10		<	10	
Xylene (total)	5		<	10		<	10		<	10		<	10	
Total VOCs			1	7.5			17			21			16.4	

ug/L Micrograms per liter.

J Estimated value.

R Unusable data
D Detected at secondary dilution.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL Criteria and SAMPLE ID Guidance Values ⁽¹⁾ DATE			GM-38 GM-38 12/8/99)	(GM-381 GM-381 3/28/00	D	GM-38D GM-38D 7/12/00				GM-38D GM-38D 9/22/00				
Chloromethane	5		<	50		<	10		<	50			<	50	J		
Bromomethane	5		<	50		<	10		<	50	J		<	50			
Vinyl Choride	2		<	20		<	1		<	2			<	1	J		
Chloroethane	5		<	50		<	10		<	50			<	50	J		
Methylene chloride	5		<	50		<	10		<	50			<	50			
Acetone	50		<	100		<	10		<	50			<	50	J		
Carbon disulfide	50		<	100		<_	10		<	50				R			
1,1-Dichloroethene	5		<	50			6	J	<	50				4	J		
1,1-Dichloroethane	5			3	J		3	<u></u>	<	50			<	50			
1,2-Dichloroethene (total)	5		<	50			2	J	<	50				2	J		
Chloroform	7		<	70		<	10		<	50			<	50			
1,2-Dichloroethane	5		<	50		<	10		<	50			<	50			
2-Butanone	50		<	100		<	10		<	50			<	50			
1,1,1-Trichloroethane	5			4	J	Г	5	J	<	50				4	J		
Carbon tetrachloride	5		<	50		< _	10	J	<	50			<	50			
Bromodichloromethane	50		<	100		<	10		<	50			<	50			
1,2-Dichloropropane	5		<	50		<	10		<	50			<	50			
cis-1,3-Dichloropropene	5		<	50		<	10		<	50			<	50			
Trichloroethene	5			930	1		1200	D	Γ	660	J	\neg	Γ	720	7		
Dibromochloromethane	5		<	50	•	< _	10		<	50			<	50	_		
1,1,2-Trichloroethane	5		<	50		<	10		<	50			<	50			
Benzene	0.7		<	7		<	10		<	50			<	50			
trans-1,3-Dichloropropene	5		<	50		<	10		<	50			<	50			
Bromoform	50		<	100		<	10		<	50			<	50			
4-Methyl-2-pentanone	50		<	100		<	10		<	50			<	50			
2-Hexanone	50		<	100		<	10		<	50			<	50			
Tetrachloroethene	5		<	50			1	J	<	50				2	J		
1,1,2,2-Tetrachloroethane	5		<	50		<	10			R			<	50			
Toluene	5			3	J	<	10		<	50				R			
Chlorobenzene	5		<	50		<	10		<	50			<	50			
Ethylbenzene	5		<	50		<	10		<	50				R			
Styrene	5		<	50		<	10		<	50			<	50			
Xylene (total)	5		<	50		<	10		<	50			<	50			
Total VOCs				940			1,217			660				732			

J Estimated value.
R Unusable data
D Detected at secondary dilution.
NYSDEC New York State Department of Environmental Conservation.
(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

ug/L

Volatile organic compounds.

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:		GM-74[GM-74[10/6/00)	ł	IN-291 IN29[I2/2/99)	ŀ	IN-29 IN-29 B/22/0)		-IN-291 -IN-291 7/6/00)
Chloromethane	5		<	10	J	<	10		<	10		<	10	
Bromomethane	5		<	10		<	10		<	10		<	10	
Vinyl Choride	2		<	0.2	J	<	0.3		<	1		<	0.3	
Chloroethane	5		<	10	J	<	10		<	10		<	10	
Methylene chloride	5		<	10		<	10		<	10		<	10	
Acetone	50		<	10	J	<	10		<	10		<	10	
Carbon disulfide	50		<	10		<	10		<	10		<	10	
1,1-Dichloroethene	5		<	10		<	10		<	10		<	10	
1,1-Dichloroethane	5		<	10			0.3	J	<	10		<	10	
1,2-Dichloroethene (total)	5			1	J	<	10		<	10		<	10	
Chloroform	7		<	10		<	10		<	10		<	10	
1,2-Dichloroethane	5		<	10		<	10		<	10		<	10	
2-Butanone	50		<	10	J	<	10		<	10		<	10	
1,1,1-Trichloroethane	5			0.4	J	<	10		<	10	J	<	10	
Carbon tetrachloride	5		<	10		<	10		<	10	J	<	10	
Bromodichloromethane	50		<	10		<	10		<	10		<	10	
1,2-Dichloropropane	5		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene	5		<_	10	_	<	10		<	10		<	10	
Trichloroethene	5			64	╛		1	j	<	10			0.9	J
Dibromochloromethane	5		<	10		<	10		<	10		<	10	
1,1,2-Trichloroethane	5		<	10		<	10		<	10		<	10	
Benzene	0.7		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene	5		<	10		<	10		<	10		<	10	
Bromoform	50		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone	50		<	10	J	<	10		<	10		<	10	
2-Hexanone	50		<	10	J	<	10		<	10		<	10	
Tetrachloroethene	5			2	J	<	10		<	10		<	10	
1,1,2,2-Tetrachloroethane	5		<	10		<	10		<	10		<	10	
Toluene	5		<	10		<	10		<	10		<	10	
Chlorobenzene	5		<	10		<	10		<	10		<	10	
Ethylbenzene	5		<	10		<	10		<	10		<	10	
Styrene	5		<	10		<	10		<	10		<	10	
Xylene (total)	5		<	10		<	10		<	10		<	10	
Total VOCs				67.4			1.3			()		0.9	

VOCs Volatile organic compounds.

ug/L Micrograms per liter.
J Estimated value.

R Unusable data

D Detected at secondary dilution.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽¹⁾	WELL: SAMPLE ID: DATE:	HN-29D HW-29D 9/27/00	MW-52I MW-52I 3/16/00	MW-52I MW-52I 9/25/00	MW-52D MW-52D 3/16/00
Chloromethane	5		< 10	< 10	< 200 J	< 10
Bromomethane	5		< 10	< 10	< 200 J	< 10
Vinyl Choride	2		< 0.2	3000 DJ	2000 J	< 1
Chloroethane	5		< 10	< 10	< 200 J	< 10
Methylene chloride	5		< 10	< 10	< 200	< 10
Acetone	50		< 10	< 10	< 200 J	< 10
Carbon disulfide	50		< 10	< 10	< 200	< 10
1,1-Dichloroethene	5		< 10	< 10	< 200	< 10
1,1-Dichloroethane	5		< 10	< 10	< 200	2 J
1,2-Dichloroethene (total)	5		< 10	43	39 J	6 J
Chloroform	7		< 10	< 10	< 200	< 10
1,2-Dichloroethane	5		< 10	< 10	< 200	< 10
2-Butanone	50		< 10 J	< 10	< 200	< 10
1.1.1-Trichloroethane	5		< 10	< 10	< 200	< 10
Carbon tetrachloride	5		< 10	< 10	< 200	< 10
Bromodichloromethane	50		< 10	< 10	< 200	< 10
1,2-Dichloropropane	5		< 10	< 10	< 200	< 10
cis-1,3-Dichloropropene	5		< 10	< 10	< 200	< 10
Trichloroethene	5		1 J	47	40 J	31
Dibromochloromethane	5		< 10	< 10	< 200	< 10
1,1,2-Trichloroethane	5		< 10	< 10	< 200	< 10
Benzene	0.7		< 10	< 10	< 200	< 10
trans-1,3-Dichloropropene	5		< 10	< 10	< 200	< 10
Bromoform	50		< 10	< 10	< 200	< 10
4-Methyl-2-pentanone	50		< 10	< 10	< 200 J	< 10
2-Hexanone	50		< 10	< 10	< 200 J	< 10
Tetrachloroethene	5		< 10	40	34 J	9 J
1,1,2,2-Tetrachloroethane	5		< 10	< 10	< 200	< 10
Toluene	5		< 10	< 10	< 200	< 10
Chlorobenzene	5		< 10	< 10	< 200	< 10
Ethylbenzene	5		< 10	< 10	< 200	< 10
Styrene	5		< 10	< 10	< 200	< 10
Xylene (total)	5		1 J	< 10	< 200	< 10
Total VOCs			2	3,130	2,113	48

ug/L Micrograms per liter.

J Estimated value.

R Unusable data
D Detected at secondary dilution.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

Volatile organic compounds.

Table 11. Concentrations of Volatile Organic Compounds Detected in Deep Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT:	NYSDEC Standards Criteria and	WELL: SAMPLE ID:	ı	иW-52 иW-52	D
(Units In ug/L)	Guidance Values ⁽¹⁾	DATE:	_	9/26/0	0
Chloromethane	5		<	10	J
Bromomethane	5		<	10	_
Vinyl Choride	2		<	0.2	J
Chloroethane	5		<	10	J
Methylene chloride	5		<	10	
Acetone	50		<	10	J
Carbon disulfide	50		<	10	
1,1-Dichloroethene	5			0.6	J
1,1-Dichloroethane	5			2	J
1,2-Dichloroethene (total)	5			5	J
Chloroform	7		<	10	
1,2-Dichloroethane	5		<	10	
2-Butanone	50		<	10	
1,1,1-Trichloroethane	5			0.9	J
Carbon tetrachloride	5		<	10	
Bromodichloromethane	50		<	10	
1,2-Dichloropropane	5		<	10	
cis-1,3-Dichloropropene	5		<	10	
Trichloroethene	5			38	7
Dibromochloromethane	5		<	10	_
1,1,2-Trichloroethane	5		<	10	
Benzene	0.7		<	10	
trans-1,3-Dichloropropene	5		<	10	
Bromoform	50		<	10	
4-Methyl-2-pentanone	50		<	10	
2-Hexanone	50		<	10	
Tetrachloroethene	5		Γ	13	7
1,1,2,2-Tetrachloroethane	5		< ً	10	_
Toluene	5		<	10	
Chlorobenzene	5		<	10	
Ethylbenzene	5		<	10	
Styrene	5		<	10	
Xylene (total)	5		<	10	
Total VOCs				59.5	

ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

For RCL VOC-GM

VOCs

Volatile organic compounds.

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:		GM-150 GM-150 10/2/0	02		GM-33D2 GM-33D2 05/15/97	2	G	GM-33D2 GM-33D-3 12/7/99			GM-33D2 GM-33D-2 3/28/00
Chloromethane	5	<	10	J	<	1000	J	<	100		<	10
Bromomethane	5	<	10		<	1000	J	<	100		<	10
Vinyl Choride	2	<	0.2	J	<	1000	J	<	3		<	1
Chloroethane	5	<	10	J	<	1000	J	<	100		<	10
Methylene chloride	5	<	10		<	1000	J	<	100		<	10
Acetone	50	<	10	J	<	1800	J	<	100		<	10
Carbon disulfide	50	<	10		<	1000	J	<	100		<	10
1,1-Dichloroethene	5		0.9	J	<	1000	J	<	100		<	10
1,1-Dichloroethane	5	<	10		<	1000	J	<	100		<	10
1,2-Dichloroethene (total)	5		0.6	J	<	1000	J		4	J		4 J
Chloroform	7	<	10		<	1000	J	<	100		<	10
1,2-Dichloroethane	5	<	10		<	1000	J	<	100		<	10
2-Butanone	50	<	10		<	1000	J	<	100		<	10
1,1,1-Trichloroethane	5		0.6	J	<	1000	J	<	100		<	10 J
Carbon tetrachloride	5	<	10		<	1000	J	<	100		<	10 J
Bromodichloromethane	50	<	10		<	1000	J	<	100		<	10
1,2-Dichloropropane	5	<	10		<	1000	J	<	100		<	10
cis-1,3-Dichloropropene	5	<	10		_ <	1000	J	<_	100	_	<_	10
Trichloroethene	5		9	J		15,000	J] [1,900		L	1,800 D
Dibromochloromethane	5	<	10		<	1000	J	<	100		<	10
1,1,2-Trichloroethane	5	<	10		<	1000	J	<	100		<	10
Benzene	0.7	<	10		<	1000	J	<	100		<	10
trans-1,3-Dichloropropene	5	<	10		<	1000	J	<	100		<	10
Bromoform	50	<	10		<	1000	J	<	100		<	10
4-Methyl-2-pentanone	50	<	10	J	<	1000	J	<	100		<	10
2-Hexanone	50	<	10		<	1000	J	<	100		<_	10
Tetrachloroethene	5		4	J	<	1000	J	Į	16	J	L	19
1,1,2,2-Tetrachloroethane	5	<	10		<	1000	J	<	100		<	10
Toluene	5	<	10		<	1000	J		2	J	<	10
Chlorobenzene	5	<	10		<	1000	J	<	100		<	10
Ethylbenzene	5	<	10		<	1000	J	<	100		<	10
Styrene	5	<	10		<	1000	J	<	100		<	10
Xylene (total)	5	<	10		<	1000	J	<	100		<	10
Total VOCs			16.1			15,000			1,922			1,823

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-33D2 GM-33D-2 7/11/00	GM-33D2 GM33D2 10/3/00	GM-34D2 GM-34D-2 11/30/99	GM-34D2 GM-34D2 3/20/00
	-			< 5 J	< 10
Chloromethane	5	< 200	< 100 J < 100	< 5	< 10 J
Bromomethane	5	< 200 J			< 10 3
Vinyl Choride	2	< 7	< 2 J		< 10
Chloroethane	5	< 200	< 100 J		
Methylene chloride	5	< 200	< 100	< 5 J	
Acetone	50	80 J	16 J	< 10 J	< 10 J
Carbon disulfide	50	< 200	< 100	< 10 J	< 10
1,1-Dichloroethene	5	< 200	< 100	8	4 J
1,1-Dichloroethane	5	< 200	< 100	0.8 J	< 10
1,2-Dichloroethene (total)	5	< 200	5 J	2 J	1 J
Chloroform	7	< 200	< 100	0.2 J	< 10
1,2-Dichloroethane	5	< 200	< 100	< 5	< 10
2-Butanone	50	< 200	< 100	< 10	< 10
1,1,1-Trichloroethane	5	< 200	< 100	1 J	< 10
Carbon tetrachloride	5	< 200 J	< 100	< 5	< 10
Bromodichloromethane	50	< 200	< 100	< 10	< 10
1,2-Dichloropropane	5	< 200	< 100	< 5	< 10
cis-1,3-Dichloropropene	5	< 200	< 100	< 5	< 10
Trichloroethene	5	2,400	1,500	53	48
Dibromochloromethane	5	< 200	< 100	< 5	< 10
1,1,2-Trichloroethane	5	< 200	< 100	< 5	< 10
Benzene	0.7	< 200	< 100	< 0.7	< 10
trans-1,3-Dichloropropene	5	< 200	< 100	< 5	< 10
Bromoform	50	< 200	< 100	< 10	< 10
4-Methyl-2-pentanone	50	< 200	< 100 J	< 10	< 10
2-Hexanone	50	< 200	< 100	< 10	< 10
Tetrachloroethene	5	28 J	18 J	6	7 J
1,1,2,2-Tetrachloroethane	5	< 200	< 100	< 5	< 10
Toluene	5	< 200	< 100	< 5	< 10
Chlorobenzene	5	< 200	< 100	< 5	< 10
Ethylbenzene	5	< 200	< 100	0.4 J	< 10
Styrene	5	< 200	< 100	< 5	< 10
Xylene (total)	5	< 200	< 100	1 J	< 10
Total VOCs		2,508	1,539	72.4	60

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-34D2 GM-34D-2 7/5/00	GM-34D2 GM34D2 10/3/00	GM-35D2 GM-35D2 05/16/97	GM-35D2 GM-35D-2 1/6/00
Chloromethane	5	< 10	< 10 J	< 10	< 10
Bromomethane	5	< 10	< 10	< 10	< 10
Vinyl Choride	2	< 0.3	< 0.2 J	< 10	< 0.3
Chloroethane	5	< 10	< 10 J	< 10	< 10
Methylene chloride	5	< 10	< 10	< 10	< 10
Acetone	50	< 10	5 J	< 10	2 J
Carbon disulfide	50	< 10	< 10	< 10	< 10
1.1-Dichloroethene	5	8 J	7 J	4 J	5 J
1,1-Dichloroethane	5	0.9 J	0.8 J	< 10	< 10
1,2-Dichloroethene (total)	5	2 J	2 J	< 10	< 10
Chloroform	7	< 10	< 10	< 10	< 10
1,2-Dichloroethane	5	< 10	< 10	< 10 J	< 10
2-Butanone	50	< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5	2 J	1 J	2 J	< 10
Carbon tetrachloride	5	< 10	< 10	3 J	3 J
Bromodichloromethane	50	< 10	< 10	< 10	< 10
1,2-Dichloropropane	5	< 10	< 10	< 10	< 10
cis-1,3-Dichloropropene	5	< 10	< 10	< 10	< 10
Trichloroethene	5	75	74	85	76
Dibromochloromethane	5	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane	5	< 10	< 10	< 10	< 10
Benzene	0.7	< 10	< 10	< 10	< 10
trans-1,3-Dichloropropene	5	< 10	< 10	< 10	< 10
Bromoform	50	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone	50	< 10	< 10 J	< 10 J	< 10
2-Hexanone	50	< 10	< 10	< 10 J	< 10
Tetrachloroethene	5	7 J	8 J	< 10	< 10
1,1,2,2-Tetrachloroethane	5	< 10	< 10	< 10 J	< 10
Toluene	5	< 10	< 10	< 10	< 10
Chlorobenzene	5	< 10	< 10	< 10	< 10
Ethylbenzene	5	< 10	< 10	< 10	< 10
Styrene	5	< 10	< 10	< 10	< 10
Xylene (total)	5	< 10	0.4 J	< 10	< 10
Total VOCs		94.9	114.2	94	86

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-35D2 GM-35D-2 3/24/00	GM-35D2 GM-35D-2 7/14/00	GM-35D2 GM-35D-2 9/20/00	GM-36D2 GM-36D-2 12/10/99
Chloromethane	5	< 10	< 10	< 10	< 5
Bromomethane	5	< 10	< 10	< 10	< 5
Vinyl Choride	2	< 1	< 0.3	< 0.3	< 2
Chloroethane	5	< 10	< 10	< 10 J	< 5
Methylene chloride	5	< 10	< 10	< 10	< 5
Acetone	50	< 10	< 10	< 10 J	< 10
Carbon disulfide	50	< 10	< 10	< 10	< 10
1,1-Dichloroethene	5	4 J	4 J	3 J	< 5
1,1-Dichloroethane	5	< 10	< 10	0.7 J	< 5
1,2-Dichloroethene (total)	5	< 10	< 10	2 J	< 5
Chloroform	7	< 10	< 10	0.6 J	< 7
1,2-Dichloroethane	5	< 10	< 10	< 10	< 5
2-Butanone	50	< 10	< 10	< 10 J	< 10
1,1,1-Trichloroethane	5	2 J	2 J	2 J	< 5
Carbon tetrachloride	5	3 J	< 10	2 J	< 5
Bromodichloromethane	50	< 10	< 10	< 10	< 10
1,2-Dichloropropane	5	< 10	< 10	< 10	< 5
cis-1,3-Dichloropropene	5	< 10	< 10	< 10	< 5
Trichloroethene	5	88	91 J	150	3 J
Dibromochloromethane	5	< 10	< 10	< 10	< 5
1,1,2-Trichloroethane	5	< 10	< 10	< 10	< 5
Benzene	0.7	< 10	< 10	< 10	0.3 J
trans-1,3-Dichloropropene	5	< 10	< 10	< 10	< 5
Bromoform	50	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone	50	< 10	< 10	< 10 J	< 10
2-Hexanone	50	< 10	< 10	< 10 J	< 10
Tetrachloroethene	5	< 10	< 10	1 J	< 5
1,1,2,2-Tetrachloroethane	5	< 10	R	< 10	< 5
Toluene	5	< 10	< 10	< 10	< 5
Chlorobenzene	5	< 10	< 10	< 10	< 5
Ethylbenzene	5	< 10	< 10	< 10	< 5
Styrene	5	< 10	< 10	< 10	< 5
Xylene (total)	5	< 10	< 10	< 10	< 5
Total VOCs		97	97	161.3	3.3

VOCs Volatile organic compounds. ug/L Micrograms per liter. Estimated value. J R Unusable data D Detected at secondary dilution. Replicate Sample. This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present. NYSDEC New York State Department of Environmental Conservation. (1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

G:\APRQJECT\GRUMMAN\NY000008.0210\Task 4\voc3Q00.xls- 09-00d2

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-36D2 GM-36D-2 3/28/00	GM-36D2 GM-36D-2 7/14/00	GM-36D2 GM-36D-2 9/20/00	GM-37D2 GM-37D-2 1/7/00
Chloromethane	5	< 10	< 10	< 10	< 10
Bromomethane	5	< 10	< 10	< 10	< 10
Vinyl Choride	2	< 1	< 0.3	< 0.3	< 0.3
Chloroethane	5	< 10	< 10	< 10 J	< 10
Methylene chloride	5	< 10	< 10	< 10	< 10
Acetone	50	< 10	< 10	< 10 J	< 10 J
Carbon disulfide	50	< 10	< 10	< 10	< 10
1,1-Dichloroethene	5	< 10	< 10	< 10	2 J
1,1-Dichloroethane	5	< 10	< 10	< 10	9 J
1,2-Dichloroethene (total)	5	< 10	< 10	< 10	< 10
Chloroform	7	< 10	< 10	< 10	< 10
1.2-Dichloroethane	5 .	< 10	< 10	< 10	< 10
2-Butanone	50	< 10	< 10	< 10 J	< 10
1,1,1-Trichloroethane	5	< 10 J	< 10	< 10	3 J
Carbon tetrachloride	5	< 10 J	< 10	< 10	< 10
Bromodichloromethane	50	< 10	< 10	< 10	< 10
1,2-Dichloropropane	5	< 10	< 10	< 10	< 10
cis-1,3-Dichloropropene	5	< 10	< 10	< 10	< 10
Trichloroethene	5	< 10	< 10	< 10	2 J
Dibromochloromethane	5	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane	5	< 10	< 10	< 10	< 10
Benzene	0.7	< 10	< 10	< 10	< 10
trans-1,3-Dichloropropene	5	< 10	< 10	< 10	< 10
Bromoform	50	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone	50	< 10	< 10	< 10 J	< 10
2-Hexanone	50	< 10	< 10	< 10 J	< 10
Tetrachloroethene	5	< 10	< 10	< 10	< 10
1,1,2,2-Tetrachloroethane	5	< 10	R	< 10	< 10
Toluene	5	< 10	< 10	< 10	< 10
Chlorobenzene	5	< 10	< 10	< 10	< 10
Ethylbenzene	5	< 10	< 10	< 10	< 10
Styrene	5	< 10	< 10	< 10	< 10
Xylene (total)	5	< 10	< 10	< 10	< 10
Total VOCs		0	0	0	16

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT:	NYSDEC Standards WELL Criteria and SAMPLE ID		GM-37D2 GM-37D-2	GM-37D2 GM-37D-2	GM-38D2 GM-38D-2
(Units in ug/L)	Guidance Values ⁽¹⁾ DATE	3/27/00	7/13/00	9/21/00	12/8/99
Chloromethane	5	< 10	< 10	< 10	< 25
Bromomethane	5	< 10	< 10 J	< 10	< 25
Vinyl Choride	2	< 1	< 0.3	< 0.3	< 10
Chloroethane	5	< 10	< 10	< 10 J	< 25
Methylene chloride	5	< 10	< 10	< 10	< 25
Acetone	50	< 10	< 10 J	< 10 J	< 100
Carbon disulfide	50	< 10	< 10	< 10	< 50
1.1-Dichloroethene	5	2 J	4 J	3 J	< 25
1,1-Dichloroethane	5	11	17	12	< 25
1,2-Dichloroethene (total)	5	< 10	< 10	< 10	6 J
Chloroform	7	1 J	< 10	0.7 J	< 35
1,2-Dichloroethane	5	< 10	< 10	< 10	< 25
2-Butanone	50	< 10	< 10	< 10 J	< 100
1,1,1-Trichloroethane	5	3 J	6 J	4 J	< 25
Carbon tetrachloride	5	< 10 J	< 10 J	< 10	< 25
Bromodichloromethane	50	< 10	< 10	< 10	< 50
1,2-Dichloropropane	5	< 10	< 10	< 10	< 25
cis-1,3-Dichloropropene	5	< 10	< 10	< 10	< 25
Trichloroethene	5	2 J	2 J	2 J	710
Dibromochloromethane	5	< 10	< 10	< 10	< 25
1,1,2-Trichloroethane	5	< 10	< 10	< 10	< 25
Benzene	0.7	< 10	< 10	< 10	< 4
trans-1,3-Dichloropropene	5	< 10	< 10	< 10	< 25
Bromoform	50	< 10	< 10	< 10	< 50
4-Methyl-2-pentanone	50	< 10	< 10	< 10 J	< 50
2-Hexanone	50	< 10	< 10	< 10 J	< 50
Tetrachloroethene	5	< 10	< 10	0.5 J	< 25
1,1,2,2-Tetrachloroethane	5	< 10	R	< 10	< 25
Toluene	5	< 10	< 10	< 10	1 J
Chlorobenzene	5	< 10	< 10	< 10	< 25
Ethylbenzene	5	< 10	< 10	< 10	< 25
Styrene	5	< 10	< 10	< 10	< 25
Xylene (total)	5	< 10	< 10	< 10	< 25
Total VOCs		19	29	22.2	717

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-38D2 GM-38D-2 3/28/00	GM-38D2 GM-38D-2 7/12/00	GM-38D2 GM-38D-2 9/22/00	GM-38D2** REP-1 9/22/00
Chloromethane	5	< 50	< 50	< 100 J	< 100 J
Bromomethane	5	< 50	< 50 J	< 100	< 100
Vinyl Choride	2	< 6	< 2	< 2 J	< 2 J
Chloroethane	5	< 50	< 50	< 100 J	< 100 J
Methylene chloride	5	< 50	< 50	< 100	< 100
Acetone	50	14 J	< 50	< 100 J	R
Carbon disulfide	50	< 50	< 50	R	R
1,1-Dichloroethene	5	< 50	< 50	R	< 100
1,1-Dichloroethane	5	< 50	< 50	<100	< 100
1,2-Dichloroethene (total)	5	< 50	6 J	10 J	12 J
Chloroform	7	< 50	< 50	< 100	< 100
1,2-Dichloroethane	5	< 50	< 50	< 100	< 100
2-Butanone	50	< 50	< 50	6 J	< 100
1,1,1-Trichloroethane	5	< 50 J	< 50	< 100	< 100
Carbon tetrachloride	5	< 50 J	< 50	< 100	< 100
Bromodichloromethane	50	< 50	< 50	< 100	< 100
1,2-Dichloropropane	5	< 50	< 50	< 100	< 100
cis-1,3-Dichloropropene	5	< 50	< 50	< 100	< 100
Trichloroethene	5	880	790 J	1,100	1,300
Dibromochloromethane	5	< 50	< 50	< 100	< 100
1,1,2-Trichloroethane	5	< 50	< 50	< 100	< 100
Benzene	0.7	< 50	< 50	< 100	< 100
trans-1,3-Dichloropropene	5	< 50	< 50	< 100	< 100
Bromoform	50	< 50	< 50	< 100	< 100
4-Methyl-2-pentanone	50	< 50	< 50	< 100	< 100
2-Hexanone	50	< 50	< 50	< 100	< 100
Tetrachloroethene	5	< 50	< 50	< 100	< 100
1,1,2,2-Tetrachloroethane	5	< 50	R	< 100	< 100
Toluene	5	< 50	< 50	R	R
Chlorobenzene	5	< 50	< 50	< 100	< 100
Ethylbenzene	5	< 50	< 50	R	R
Styrene	5	< 50	< 50	< 100	< 100
Xylene (total)	5	< 50	< 50	< 100	< 100
Total VOCs		894	796	1,116	1,312

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

Chloroethane	CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-70D2 GM-70D2 05/15/97	GM-70D2 GM-70D-2 12/8/99	GM-70D2 GM-70D-2 3/24/00	GM-70D2 GM-70D-2 7/13/00
Bromomethane	Chloromethane	5	< 20	< 5	< 10	< 10
Vinyl Choride 2 70 •••• 2 1 < 0.3 Chloroethane 5 < 20	•		< 20	< 5	< 10	< 10 J
Chioroethane 5 < 20			70 ***	< 2	< 1	< 0.3
Acetone 50 7 J 10 < 10 < 10 < 10 Carbon disulfide 50 < 20 < 10 < 10 < 10 < 10 1,1-Dichloroethene 5 < 3 J 5 < 10 < 10 1,2-Dichloroethene (total) 5 3 J 1 J 1 J 1 Chloroform 7 10 J 7 < 10 < 10 1,2-Dichloroethane 5 < 20 J 5 < 10 < 10 1,1-Interpolatione 5 < 20 J 5 < 10 2-Butanone 50 < 20 J 5 < 10 J 10 Carbon tetrachloride 5 < 20 J 5 < 10 J 10 Carbon tetrachloride 5 < 20 S 5 < 10 J 6 Carbon tetrachloride 5 < 20 S 5 < 10 J 6 Carbon tetrachloride 5 < 20 S 5 < 10 J 6 Carbon tetrachloride 5 < 20 S 5 < 10 J 6 Carbon tetrachloride 5 < 20 S 5 < 10 J 6 Carbon tetrachloride 5 < 20 S 5 < 10 J 6 Carbon tetrachloride 5 < 20 S 5 S 10 J 6 Carbon tetrachloride 5 S S 20 S 5 S 10 J 7 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 J 7 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 J 7 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 J 7 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 J 7 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloride 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10 S 10 S 10 S 10 Carbon tetrachloroethane 5 S 20 S 5 S 10	Chloroethane	5	< 20	< 5	< 10	< 10
Acetone 50 7 J < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10		5	< 20	< 5	< 10	< 10
1,1-Dichloroethene 5 3 J 5 10 10 1,1-Dichloroethane 5 < 20	Acetone	50	7 J	< 10	< 10	< 10 J
1,1-Dichloroethene 5 3 J 5 < 10	Carbon disulfide	50	< 20	< 10	< 10	< 10
1,1-Dichloroethane 5 < 20		5	3 J	< 5	< 10	< 10
1,2-Dichloroethene (total) 5 3 J 1 J 1 J 1 J 1 D 2 D <td>•</td> <td></td> <td>< 20</td> <td>< 5</td> <td>< 10</td> <td>< 10</td>	•		< 20	< 5	< 10	< 10
Chloroform 7 10 J 7 10 10 1,2-Dichloroethane 5 < 20	.,	5	3 J	1 J	1 J	1 J
1,2-Dichloroethane 5 < 20 J		7	10 J	< 7	< 10	< 10
2-Butanone 50		5	< 20 J	< 5	< 10	< 10
1,1,1-Trichloroethane 5 < 20	· -	50	< 20	< 10	< 10	< 10
Carbon tetrachloride 5 < 20		5	< 20	< 5	< 10 J	< 10
Bromodichloromethane 50		5	< 20	< 5	< 10 J	< 10 J
1,2-Ethichoropean 5		50	< 20	< 10	< 10	< 10
Trichloroethene 5	1,2-Dichloropropane	5	< 20	< 5	< 10	< 10
Trichloroethene 5 200 48 89 54 Dibromochloromethane 5 < 20	cis-1,3-Dichloropropene	5	< 20	< 5	< 10	<10
1,1,2-Trichloroethane 5 < 20	Trichloroethene	5	200	48	89	54 J
Benzene 0.7 < 20	Dibromochloromethane	5	< 20	< 5	< 10	< 10
Benzene 0.7 < 20	1,1,2-Trichloroethane	5	< 20	< 5	< 10	< 10
Bromoform 50	Benzene	0.7	< 20	< 0.7	< 10	< 10
Bromoform 50 < 20	trans-1,3-Dichloropropene	5	< 20	< 5	< 10	< 10
2-Hexanone 50	Bromoform	50	< 20	< 10	< 10	< 10
2-Hexanone 50 < 20 J	4-Methyl-2-pentanone	50	< 20 J	< 10	< 10	< 10
1,1,2,2-Tetrachloroethane 5 < 20	2-Hexanone	50	< 20 J	< 10	< 10	< 10
Toluene 5 < 20	Tetrachloroethene	5	10 J	3 J	5 J	3 J
Chlorobenzene 5 < 20	1,1,2,2-Tetrachloroethane	5	< 20	< 5	< 10	R
Ethylbenzene 5 < 20	Toluene	5	< 20	0.3 J	< 10	< 10
Styrene 5 < 20 < 5 < 10 < 10 Xylene (total) 5 < 20 < 5 < 10 < 10	Chlorobenzene	5	< 20	< 5	< 10	< 10
Xylene (total) 5 < 20 < 5 < 10 < 10	Ethylbenzene	5	< 20	< 5	< 10	< 10
And the test of th	Styrene	5	< 20	< 5	< 10	< 10
Total VOCs 303 52.3 95 58	Xylene (total)	5	< 20	< 5	< 10	< 10
	Total VOCs		303	52.3	95	58

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GM-70D2 GM-70D2 10/11/00	GM-71D2 GM-71D-2 12/10/99	GM-71D2 GM-71D-2 3/24/00	GM-71D2 GM-71D-2 7/12/00
Chloromethane	5	< 10	< 5	< 10	< 10
Bromomethane	5	< 10	< 5	< 10	< 10 J
Vinyl Choride	2	< 0.2	< 2	< 1	< 0.3
Chloroethane	5	< 10	< 5	< 10	< 10
Methylene chloride	5	< 10	< 5	< 10	< 10
Acetone	50	< 10	< 10	< 10	< 10
Carbon disulfide	50	< 10	< 10	< 10	< 10
1,1-Dichloroethene	5	< 10	< 5	< 10	< 10
1,1-Dichloroethane	5	< 10	< 5	< 10	< 10
1,2-Dichloroethene (total)	5	2 J	< 5	< 10	< 10
Chloroform	7	< 10	0.6 J	< 10	< 10
1,2-Dichloroethane	5	< 10	< 5	< 10	< 10
2-Butanone	50	< 10 J	< 10	< 10	< 10
1,1,1-Trichloroethane	5	0.4 J	< 5	< 10 J	< 10
Carbon tetrachloride	5	< 10	1 J	1 J	2 J
Bromodichloromethane	50	< 10	< 10	< 10	< 10
1,2-Dichloropropane	5	< 10	< 5	< 10	< 10
cis-1,3-Dichloropropene	5	< 10	< 5	< 10	< 10
Trichloroethene	5	140	4 J	5 J	5 J
Dibromochloromethane	5	< 10	< 5	< 10	< 10
1,1,2-Trichloroethane	5	< 10	< 5	< 10	< 10
Benzene	0.7	< 10	< 0.7	< 10	< 10
trans-1,3-Dichloropropene	5	< 10	< 5	< 10	< 10
Bromoform	50	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone	50	< 10	< 10	< 10	< 10
2-Hexanone	50	< 10	< 10	< 10	< 10
Tetrachloroethene	5	9 J	< 5	< 10	< 10
1,1,2,2-Tetrachloroethane	5	< 10	< 5	< 10	< 10
Toluene	5	< 10	< 5	< 10	R
Chlorobenzene	5	< 10	< 5	< 10	< 10
Ethylbenzene	5	< 10	< 5	< 10	< 10
Styrene	5	< 10	< 5	< 10	< 10
Xylene (total)	5	< 10	< 5	< 10	< 10
Total VOCs		155.4	5.6	6	7

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	Criteria and SAMP	WELL: LE ID: DATE:	G	6M-71D 6M-71D 9/22/00	-2		GM	-73D2 173D2 /4/00		G	M-74D M74D 0/5/00	2		GP-1 GP-1 10/16/0	
Chloromethane	5		<	10	J	<	:	100	J	<	10	J	<	50	
Bromomethane	5		<	10		<	:	100		<	10		<	50	
Vinyl Choride	2		<	0.2	J	<	:	2	J	<	0.2	J	<	1	
Chloroethane	5		<	10	J	<	:	100	J	<	10	J	<	50	
Methylene chloride	5		<	10		<	:	100		<	10		<	50	
Acetone	50		<	10	J	<	:	100		<	10	J	<	58	
Carbon disulfide	50			R		<	:	100		<	10		<	50	
1,1-Dichloroethene	5			R		<	:	100		<	10			7	J
1,1-Dichloroethane	5		<	10				4	J	<	10			2	J
1,2-Dichloroethene (total)	5		<	10				6	J	<	10			11	J
Chloroform	7			0.8	J	<	:	100		<	10		<	50	
1,2-Dichloroethane	5		<	10		<		100		<	10		<	50	
2-Butanone	50		<	10		<		100	J	<	10	J	<	50	
1,1,1-Trichloroethane	5			0.3	J			3	J	<	10			3	J
Carbon tetrachloride	5			2	J	<	:	100		<	10		<	50	
Bromodichloromethane	50		<	10		<	:	100		<	10		<	50	
1,2-Dichloropropane	5		<	10		<		100		<	10		<	50	
cis-1,3-Dichloropropene	5		<	10		<		100_		<	10		<	50	_
Trichloroethene	5			4	J			960	J		5	J		600	╛
Dibromochloromethane	5		<	10		<	:	100		<	10		<	50	
1,1,2-Trichloroethane	5		<	10		<	:	100		<	10		<	50	
Benzene	0.7		<	10		<	:	100		<	10		<	50	
trans-1,3-Dichloropropene	5		<	10		<		100		<	10		<	50	
Bromoform	50		<	10		<	:	100		<	10		<	50	
4-Methyl-2-pentanone	50		<	10		<		100	J	<	10	J	<	50	
2-Hexanone	50		<	10		<		100	J	<	10	J	<	50	_
Tetrachloroethene	5		<	10		<	:	100	J		1	J		58	
1,1,2,2-Tetrachloroethane	5		<	10		<	:	100		<	10		<	50	
Toluene	5			R		<		100		<	10		<	50	
Chlorobenzene	5		<	10		<		100		<	10		<	50	
Ethylbenzene	5			R		<	:	100		<	10		<	50	
Styrene	5		<	10		<	:	100		<	10		<	50	
Xylene (total)	5		<	10		<		100		<	10		<	50	
Total VOCs				7.1			ç	973			6			691	

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT:	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	GP-3 GP-3 10/16/00	GP-1 SYSTEM GP-1 INFLUENT 10/16/00	GP-1 SYSTEM GP-1 EFFLUENT 10/16/00	GP-1 SYSTEM GP-1 RCB 10/16/00
(Units in ug/L)					
Chloromethane	5	< 100	< 50	< 10	< 10
Bromomethane	5	< 100	< 50	< 10	< 10
Vinyl Choride	2	9	< 1	< 0.2	< 0.2
Chloroethane	5	< 100	< 50	< 10	< 10
Methylene chloride	5	< 100	< 50	< 10	< 10
Acetone	50	< 100	< 55	< 10	< 10
Carbon disulfide	50	< 100	< 50	< 10	< 10
1,1-Dichloroethene	5	12 J	8 J	< 10	< 10
1,1-Dichloroethane	5	< 100	< 50	< 10	< 10
1,2-Dichloroethene (total)	5	1 <u>1</u> J	10 J	< 10	< 10
Chloroform	7	< 100	< 50	< 10	< 10
1,2-Dichloroethane	5	< 100	< 50	< 10	< 10
2-Butanone	50	< 100	< 50	< 10	< 10
1,1,1-Trichloroethane	5	4 J	3 J	< 10	< 10
Carbon tetrachloride	5	< 100	< 50	< 10	< 10
Bromodichloromethane	50	< 100	< 50	< 10	< 10
1,2-Dichloropropane	5	< 100	< 50	< 10	< 10
cis-1,3-Dichloropropene	5	< 100	< 50	< 10	< 10
Trichloroethene	5	1700	800	4 J	< 10
Dibromochloromethane	5	< 100	< 50	< 10	< 10
1,1,2-Trichloroethane	5	< 100	< 50	< 10	< 10
Benzene	0.7	< 100	< 50	< 10	< 10
trans-1,3-Dichloropropene	5	< 100	< 50	< 10	< 10
Bromoform	50	< 100	< 50	< 10	< 10
4-Methyl-2-pentanone	50	< 100	< 50	< 10	< 10
2-Hexanone	50	< 100	< 50	< 10	< 10
Tetrachloroethene	5	80 J	56	< 10	< 10
1,1,2,2-Tetrachloroethane	5	< 100	< 50	< 10	< 10
Toluene	5	< 100	< 50	< 10	< 10
Chlorobenzene	5	< 100	< 50	< 10	< 10
Ethylbenzene	5	< 100	< 50	< 10	< 10
Styrene	5	< 100	< 50	< 10	< 10
Xylene (total)	5	< 100	< 50	< 10	< 10
Total VOCs		1,861	895	4	0

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).
	Value exceeds associated Standard, Criteria, and Guidance value.

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

			01107.0	ONICE
	NYSDEC Standards WELL:	ONCT-1	ONCT-2	ONCT-3
CONSTITUENT:	Criteria and SAMPLE ID:	ONCT-1	ONCT-2	ONCT-3
(Units in ug/L)	Guidance Values ⁽¹⁾ DATE:	10/16/00	10/16/00	10/16/00
Chloromethane	5	< 200	< 20	< 10
Bromomethane	5	< 200	< 20	< 10
Vinyl Choride	2	< 4	< 0.4	< 0.2
Chloroethane	5	< 200	< 20	< 10
Methylene chloride	5	< 200	< 20	< 10
Acetone	50	< 200	< 20	< 10
Carbon disulfide	50	< 200	< 20	< 10
1,1-Dichloroethene	5	< 200	3 J	1 J
1,1-Dichloroethane	5	< 200	2 J	1 J
1,2-Dichloroethene (total)	5	< 200	2 J	1 J
Chloroform	7	< 200	< 20	0.8 J
1,2-Dichloroethane	5	< 200	< 20	< 10
2-Butanone	50	< 200	< 20	< 10
1,1,1-Trichloroethane	5	< 200	2 J	0.6 J
Carbon tetrachloride	5	< 200	< 20	< 10
Bromodichloromethane	50	< 200	< 20	< 10
1,2-Dichloropropane	5	< 200	< 20	< 10
cis-1,3-Dichloropropene	5	< 200	< 20	< 10
Trichloroethene	5	1,900	200	16
Dibromochloromethane	5	< 200	< 20	< 10
1,1,2-Trichloroethane	5	< 200	< 20	< 10
Benzene	0.7	< 200	< 20	< 10
trans-1,3-Dichloropropene	5	< 200	< 20	< 10
Bromoform	50	< 200	< 20	< 10
4-Methyl-2-pentanone	50	< 200	< 20	< 10
2-Hexanone	50	< 200	< 20	< 10
Tetrachloroethene	5	13 J	11 J	13
1,1,2,2-Tetrachloroethane	5	< 200	< 20	< 10
Toluene	5	< 200	< 20	< 10
Chlorobenzene	5	< 200	< 20	< 10
Ethylbenzene	5	< 200	< 20	< 10
Styrene	5	< 200	< 20	< 10
Xylene (total)	5	< 200	< 20	< 10
Total VOCs		1,924	221	34.4

VOCs Volatile organic compounds.

ug/L Micrograms per liter.

J Estimated value.

R Unusable data

D Detected at secondary dilution.

*** Replicate Sample.

**** This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.

NYSDEC New York State Department of Environmental Conservation.

(1) Standards, Criteria, and Guidance values based on documents referenced in the Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

Table 12. Concentrations of Volatile Organic Compounds Detected in D2 Wells During the Baseline (May 1997), Last Quarter 1999, and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards WELL: Criteria and SAMPLE ID: Guidance Values ⁽¹⁾ DATE:	IRM SYSTEM IRM INFLUENT 10/16/00	IRM SYSTEM IRM EFFLUENT 10/16/00	IRM SYSTEM IRM RCB 10/16/00
Chloromethane	5	< 100	< 10	< 10
Bromomethane	5	< 100	< 10	< 10
Vinyl Choride	2	< 2	< 0.2	< 0.2
Chloroethane	5	< 100	< 10	< 10
Methylene chloride	5	< 100	< 10	< 10
Acetone	50	< 100	< 10	< 10
Carbon disulfide	50	< 100	< 10	< 10
1,1-Dichloroethene	5	< 100	< 10	< 10
1,1-Dichloroethane	5	< 100	< 10	< 10
1,2-Dichloroethene (total)	5	< 100	< 10	< 10
Chloroform	7	< 100	< 10	< 10
1,2-Dichloroethane	5	< 100	< 10	< 10
2-Butanone	50	< 100	< 10	< 10
1,1,1-Trichloroethane	5	< 100	< 10	< 10
Carbon tetrachloride	5	< 100	< 10	< 10
Bromodichloromethane	50	< 100	< 10	< 10
1,2-Dichloropropane	5	< 100	< 10	< 10
cis-1,3-Dichloropropene	5	< 100	< 10	< 10
Trichloroethene	5	1100	1 J	< 10
Dibromochloromethane	5	< 100	< 10	< 10
1,1,2-Trichloroethane	5	< 100	< 10	< 10
Benzene	0.7	< 100	< 10	< 10
trans-1,3-Dichloropropene	5	< 100	< 10	< 10
Bromoform	50	< 100	< 10	< 10
4-Methyl-2-pentanone	50	< 100	< 10	< 10
2-Hexanone	50	< 100	< 10	< 10
Tetrachloroethene	5	16 J	< 10	< 10
1,1,2,2-Tetrachloroethane	5	< 100	< 10	< 10
Toluene	5	< 100	< 10	< 10
Chlorobenzene	5	< 100	< 10	< 10
Ethylbenzene	5	< 100	< 10	< 10
Styrene	5	< 100	< 10	< 10
Kylene (total)	5	< 100	< 10	< 10
Total VOCs		1,116	1	0

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
R	Unusable data
D	Detected at secondary dilution.
**	Replicate Sample.
***	This concentration is considered anomalous because a June 1997 resampling event and subsequent rounds indicated no vinyl chloride was present.
NYSDEC	New York State Department of Environmental Conservation.
(1)	Standards, Criteria, and Guidance values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 1999b).

ARCADIS GERAGHTY&MILLER

Table 13. Concentrations of Tentatively Identified Compounds (TICs) Detected in Groundwater Samples during the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	WELL:	GM-14	GM-15S	GM-15D2	GM-16I	GM-20I	GM-23S	GM-34D
CONSTITUENT:	SAMPLE ID:	GM-14	GM-15S	GM-15D2	GM-16l	GM-20I	GM-23S	GM34D
(Units in ug/L)	DATE:	10/2/00	9/28/00	10/2/00	9/19/00	9/18/00	10/2/00	10/3/00
Butylated hydroxytoluene		:	ŀ	;	:	NC 9	;	ŀ
Cyclotetrasiloxane, octameth		:	;	16 JN	ŀ	:	ł	:
Ethane, 1,2,-dichloro-1,1,2-t		:	;	ŀ	ŀ	ŀ	;	NC 7
Ethane, 1,1,2,-trichloro-1,2,2		;	;	;	N V	:	:	ŀ
Propane, 2-methoxy-2-methyl-	,	:	NC 7	;	:	1	NL 85	:
Unknown		4 J	:	;	ı	:	;	ı

Micrograms per liter. Estimated value. ng/L

Not Detected.

TICs are identified based on a review of mass spectrometry results via a comprehensive library search of all organic compounds;

however, calibrations were not run for there constituents, therefore, the results should be used for qualitative purposes only.

ARCADIS GERAGHTY&MILLER

Table 13. Concentrations of Tentatively Identified Compounds (TICs) Detected in Groundwater Samples during the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

GM-74D2 GP-1 GM74D2 GP-1	00/6/01	6 JN 28 JN	:	:	:	:
GM-74D GM-74D	10000	N ∂	;	:	:	:
GM-71D2 GM-71D2	00/21/00 NL 7	ŀ	1	:	:	:
GM-70D2 GM-70D2	100/11/01	NC 7	;	;	:	;
0 0	3/20/00	ł	;	26 JN	:	;
WELL: SAMPLE ID:	DAIE					
CONSTITUENT:	Butviated hydroxytoluene	Cyclotetrasiloxane, octameth	Ethane, 1,2,-dichloro-1,1,2-t	Ethane, 1,1,2,-trichloro-1,2,2	Propane, 2-methoxy-2-methyl-	Unknown

ug/L Micrograms per liter. J Estimated value.

Not Detected.

TICs are identified based on a review of mass spectrometry results via a comprehensive library search of all organic compounds;

however, calibrations were not run for there constituents, therefore, the results should be used for qualitative purposes only. Z

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	SITE:	TR	RIP BLA	NK	TRI	P BL	ANK	TR	P BLA	NK	TR	IP BLA	NK		P BLA	
CONSTITUENT:	SAMPLE ID:	TI	B0918	00	TE	0919	900	TE	80920	00	TE	30921	00	TB	0922	200
(Units in ug/L)	DATE:		9/18/0	0	9	/19/0	00	9	/20/0	0	9	9/21/0	0	9	/22/0	00
															10	
Chloromethane		<	10		<	10		<	10		<	10		<	10	J
Bromomethane		<	10		<	10		<	10		<	10		<	10	
Vinyl Choride		<	0.3		<	0.3		<	0.3		<	0.3		<	0.2	J
Chloroethane		<	10	J	<	10	J	<	10	J	<	10	J	<	10	J
Methylene chloride			1	J		1	J		0.9	J		1	J		1	JB
Acetone			4	JB	<	10	J	<	10	J		4	JB	<	10	J
Carbon disulfide		<	10		<	10		<	10		<	10	J		R	
1,1-Dichloroethene		<	10		<	10		<	10		<	10			R	
1,1-Dichloroethane		<	10		<	10		<	10		<	10		<	10	
1,2-Dichloroethene (total)		<	10		<	10		<	10		<	10		<	10	
Chloroform		<	10		<	10		<	10		<	10		<	10	
1,2-Dichloroethane		<	10		<	10		<	10		<	10		<	10	
2-Butanone		<	10	J	<	10	J	<	10	J	<	10	J	<	10	
1,1,1-Trichloroethane		<	10		<	10		<	10		<	10		<	10	
Carbon tetrachloride		<	10		<	10		<	10		<	10		<	10	
Bromodichloromethane		<	10		<	10		<	10		<	10		<	10	
1,2-Dichloropropane		<	10		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene		<	10		<	10		<	10		<	10		<	10	
Trichloroethene		<	10		<	10		<	10		<	10		<	10	
Dibromochloromethane		<	10		<	10		<	10		<	10		<	10	
1.1.2-Trichloroethane		<	10		<	10		<	10		<	10		<	10	
Benzene		<	10		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene		<	10		<	10		<	10		<	10		<	10	
Bromoform		<	10		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone		<	10		<	10		<	10		<	10		<	10	
2-Hexanone		<	10	j	<	10	J	<	10	J	<	10	J	<	10	
Tetrachloroethene		<	10	J	<	10	J	<	10	J	<	10	J	<	10	
1,1,2,2-Tetrachloroethane			0.4	JB	<	10		<	10		<	10		<	10	
Toluene		<	10		<	10		<	10		<	10			R	
Chlorobenzene		<	10		<	10		<	10		<	10		<	10	
Ethylbenzene		<	10		<	10		<	10		<	10		-	R	
Styrene		<	10		<	10		<	10		<	10		<	10	
Xylene (total)		<	10		<	10		<	10		<	10		<	10	
Vinyl Acetate		<	10	J	<	10	J	<	10	J	<	10	J	<	10	
2-Chloroethylvinylether		•	R	•	•	R	~		R	•		R	•		R	
* *														<	10	
Freon 113														_	10	
Total VOCs			5.4			1			0.9			5			1	

VOCs Volatile organic compounds. ug/L Micrograms per liter.

J Estimated value. EQ Equipment

R Unusable data

B Constituent detected in associated blank sample.

-- Not analyzed.

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	SITE:							TR	IP BLA	NK	TRIP BLANK					
CONSTITUENT:	SAMPLE ID:	TB	09250	00-1	TB	09250	0-2	TBO	926	00-1	TBO	09260	0-2	TBO	9270	0-01
(Units in ug/L)	DATE:		9/25/0	00		9/25/0	0	9	/26/0					9	/27/0	0
Chloromethane		<	10	J	<	10	J	<	10	J	<	10	J	<	10	
Bromomethane		<	10		<	10		<	10		<	10		<	10	
Vinyl Choride		<	0.3	J	<	0.3	J	<	0.2	J	<	0.2	J	<	0.2	
Chloroethane		<	10	J	<	10	J	<	10	J	<	10	J	<	10	
Methylene chloride			1	JB		1	JB		2	JB		0.9	JB		2	J
Acetone		<	10	J	<	10	J	<	10	J	<	10	J	<	10	
Carbon disulfide			R			R		<	10		<	10		<	10	
1,1-Dichloroethene		<	10		<	10		<	10		<	10		<	10	
1,1-Dichloroethane		<	10		<	10		<	10		<	10		<	10	
1,2-Dichloroethene (total)		<	10		<	10		<	10		<	10		<	10	
Chloroform		<	10		<	10		<	10		<	10		<	10	
1,2-Dichloroethane		<	10		<	10		<	10		<	10		<	10	
2-Butanone		<	10	J		1	J		1	J	<	10		<	10	J
1,1,1-Trichloroethane		<	10		<	10		<	10		<	10		<	10	
Carbon tetrachloride		<	10		<	10		<	10		<	10		<	10	
Bromodichloromethane		<	10		<	10		<	10		<	10		<	10	
1,2-Dichloropropane		<	10		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene		<	10		<	10		<	10		<	10		<	10	
Trichloroethene		<	10		<	10		<	10		<	10		<	10	
Dibromochloromethane		<	10		<	10		<	10		<	10		<	10	
1,1,2-Trichloroethane		<	10		<	10		<	10		<	10		<	10	
Benzene		<	10		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene		<	10		<	10		<	10		<	10		<	10	
Bromoform		<	10		<	10		<	10		<	10		<	10	
4-Methyl-2-pentanone		<	10	J	<	10	J		1	J	<	10		<	10	
2-Hexanone		<	10	J	<	10	J	<	10		<	10		<	10	
Tetrachloroethene		<	10		<	10		<	10		<	10		<	10	
1,1,2,2-Tetrachloroethane		<	10	J	<	10	J	<	10		<	10		<	10	
Toluene		<	10		<	10		<	10		<	10		<	10	
Chlorobenzene		<	10		<	10		<	10		<	10		<	10	
Ethylbenzene		<	10		<	10		<	10		<	10		<	10	
Styrene		<	10		<	10		<	10		<	10		<	10	
Xylene (total)		<	10		<	10		<	10		<	10		<	10	
Vinyl Acetate		<	10	J	<	10	J	<	10		<	10		<	10	
2-Chloroethylvinylether			R			R			R			R			R	
Freon 113								<	10		<	10		<	10	
Total VOCs			1			2			4			0.9			2	

VOCs	Volatile organic compounds
------	----------------------------

ug/L Micrograms per liter.

J Estimated value.

EQ Equipment

R Unusable data

B Constituent detected in associated

⁻⁻ Not analyzed.

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	SITE:							IP BLA	NK	TR	P BLA	NK	TRIP BLANK				
CONSTITUENT:	SAMPLE ID:	TB092700-02 TB092800					300	TE	30929	00	TE	31002	00	TI	B100	300	
(Units in ug/L)	DATE:							9	9/29/0	0	1	0/2/0	0		10/3/	/00	
Ohlessanthaaa			10		<	10	J	<	10	J	<	10	J	<	10	J	
Chloromethane		<	10		<	10	J	<	10	J	<	10	3	<	10	3	
Bromomethane		<	0.2		<	0.2		<	0.2	J	<	0.2	J	<	0.2		
Vinyl Choride		<	10		<	10	J	<	10	J	<	10	J	<	10	J	
Chloroethane		<	2	J	<	10	JB	_	2	JB		3	JB		2	JB	
Methylene chloride				JB		9	JB		10	J		8	JB	<	10	J	
Acetone			3	JB			JB	<					JB		10	J	
Carbon disulfide		<	10		<	10			0.5	J	<	10		<	10		
1,1-Dichloroethene		<	10		<	10		<	10		<	10		<	10		
1,1-Dichloroethane		<	10		<	10		<	10		<	10		<			
1,2-Dichloroethene (total)		<	10		<	10		<	10		<	10		<	10		
Chloroform		<	10		<	10		<	10		<	10		<	10		
1,2-Dichloroethane		<	10		<	10		<	10		<	10		<	10		
2-Butanone		<	10	J		4	J		4	J	<	10	J	<	10		
1,1,1-Trichloroethane		<	10		<	10		<	10		<	10		<	10		
Carbon tetrachloride		<	10		<	10		<	10		<	10		<	10		
Bromodichloromethane		<	10		<	10		<	10		<	10		<	10		
1,2-Dichloropropane		<	10		<	10		<	10		<	10		<	10		
cis-1,3-Dichloropropene		<	10		<	10		<	10		<	10		<	10		
Trichloroethene		<	10		<	10			0.2	J	<	10		<	10		
Dibromochloromethane		<	10		<	10		<	10		<	10		<	10		
1,1,2-Trichloroethane		<	10		<	10		<	10		<	10		<	10		
Benzene		<	10		<	10		<	10		<	10		<	10		
trans-1,3-Dichloropropene		<	10		<	10		<	10		<	10		<	10		
Bromoform		<	10		<	10	J	<	10	J	<	10	J	<	10		
4-Methyl-2-pentanone		<	10		<	10	J	<	10	J	<	10	J	<	10	J	
2-Hexanone		<	10		<	10	J	<	10	J	<	10		<	10		
Tetrachloroethene		<	10		<	10			0.6	J	<	10	J	<	10	J	
1,1,2,2-Tetrachloroethane		<	10		<	10		<	10		<	10		<	10		
Toluene		<	10		<	10		<	10		<	10		<	10		
Chlorobenzene		<	10		<	10		<	10		<	10		<	10		
Ethylbenzene		<	10		<	10		<	10		<	10		<	10		
Styrene		<	10		<	10		<	10		<	10		<	10		
Xylene (total)		<	10		<	10		<	10		<	10		<	10		
Vinyl Acetate		<	10		<	10		<	10		<	10		<	10		
2-Chloroethylvinylether			R			R			R			R			R		
Freon 113		<	10		<	10		<	10		<	10		<	10		
Total VOCs			5			14			7.3			11			2		

VOCs Volatile organic compounds. ug/L Micrograms per liter.

J Estimated value.

EQ Equipment R Unusable data

B Constituent detected in associated

-- Not analyzed.

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	SITE:	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
CONSTITUENT:	SAMPLE ID:	TB100400	TB100500	TB100600	TB 10/11/00	TB101600
(Units in ug/L)	DATE:	10/4/00	10/5/00	10/6/00	10/11/00	10/16/00
<u> </u>			_			
Chloromethane		< 10 J	< 10 J	< 10 J	< 10	< 10
Bromomethane		< 10	< 10	< 10	< 10	< 10
Vinyl Choride		< 0.2 J	< 0.2 J	< 0.2 J	< 0.2	< 0.2
Chloroethane		< 10 J	< 10 J	< 10 J	< 10	< 10
Methylene chloride		1 J	1 J	1 J	2 JB	1 JB
Acetone		< 10 J	< 10 J	< 10 J	< 10	6 J
Carbon disulfide		< 10	< 10	< 10	< 10	< 10
1,1-Dichloroethene		< 10	< 10	< 10	< 10	< 10
1,1-Dichloroethane		< 10	< 10	< 10	< 10	< 10
1,2-Dichloroethene (total)		< 10	< 10	< 10	< 10	< 10
Chloroform		< 10	< 10	< 10	< 10	< 10
1,2-Dichloroethane		< 10	< 10	< 10	< 10	< 10
2-Butanone		< 10 J	< 10 J	< 10 J	< 10 J	< 10 J
1,1,1-Trichloroethane		< 10	< 10	< 10	< 10	< 10
Carbon tetrachloride		< 10	< 10	< 10	< 10	< 10
Bromodichloromethane		< 10	< 10	< 10	< 10	< 10
1,2-Dichloropropane		< 10	< 10	< 10	< 10	< 10
cis-1,3-Dichloropropene		< 10	< 10	< 10	< 10	< 10
Trichloroethene		< 10	< 10	< 10	< 10	< 10
Dibromochloromethane		< 10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane		< 10	< 10	< 10	< 10	< 10
Benzene		< 10	< 10	< 10	< 10	< 10
trans-1,3-Dichloropropene		< 10	< 10	< 10	< 10	< 10
Bromoform		< 10	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone		< 10 J	< 10 J	< 10 J	< 10	< 10
2-Hexanone		< 10 J	< 10 J	< 10 J	< 10	< 10
Tetrachloroethene		< 10 J	< 10 J	< 10 J	< 10	< 10
1,1,2,2-Tetrachloroethane		< 10	< 10	< 10	< 10	< 10
Toluene		< 10	< 10	< 10	< 10	< 10
Chlorobenzene		< 10	< 10	< 10	< 10	< 10
Ethylbenzene		< 10	< 10	< 10	< 10	< 10
Styrene		< 10	< 10	< 10	< 10	< 10
Xylene (total)		< 10	< 10	< 10	< 10	< 10
Vinyl Acetate		< 10 J	< 10 J	< 10 J	< 10	< 10
2-Chloroethylvinylether		R	R	R	R	R
Freon 113		< 10	< 10	< 10	< 10	< 10
Total VOCs		1	1	1	2	7

VOCs Volatile organic compounds.

ug/L Micrograms per liter.

J Estimated value.

EQ Equipment R Unusable data

B Constituent detected in associated

-- Not analyzed.

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	SITE:	WAT	ER EQ.	BLANK	WATE	R EQ.	BLANK	WATE	R EQ. E	BLANK	WATER EQ. BLANK				
CONSTITUENT:	SAMPLE ID:	F	B0925	00	F	B0926	00	F	309270	00	F	B0928	00		
(Units in ug/L)	DATE:		9/25/0	0		9/26/0	0	(9/27/00)	!	9/28/0	0		
		_	10	J < 10 J <					10	J	<	10	J		
Chloromethane		<	10	J	<	10	J	<	10	3	<	10	3		
Bromomethane		<	0.3	J	<	0.2	J	<	0.2	J	<	0.2	J		
Vinyl Choride		<	10	J	<	10	J	<	10	J	<	10	J		
Chloroethane		<	2	J B		2	JB		2	JB		1	JB		
Methylene chloride		<	10	J	<	10	J		2	JB	<	10	J		
Acetone		<	R	J	<	10	J	<	10	JB	<	10	3		
Carbon disulfide						10		<	10		<	10			
1,1-Dichloroethene		<	10		<				10		<	10			
1,1-Dichloroethane		<	10		<	10		<				10			
1,2-Dichloroethene (total)		<	10		<	10		<	10		<				
Chloroform		<	10		<	10		<	10		<	10			
1,2-Dichloroethane		<	10		<	10		<	10		<	10			
2-Butanone		<	10	J	<	10		<	10	J		2	J		
1,1,1-Trichloroethane		<	10		<	10		<	10		<	10			
Carbon tetrachloride		<	10		<	10		`<	10		<	10			
Bromodichloromethane		<	10		<	10		<	10		<	10			
1,2-Dichloropropane		<	10		<	10		<	10		<	10			
cis-1,3-Dichloropropene		<	10		<	10		<	10		<	10			
Trichloroethene		<	10		<	10		<	10		<	10			
Dibromochloromethane		<	10		<	10		<	10		<	10			
1,1,2-Trichloroethane		<	10		<	10		<	10		<	10			
Benzene			0.7	J	<	10		<	10		<	10			
trans-1,3-Dichloropropene		<	10		<	10		<	10		<	10			
Bromoform		<	10		<	10		<	10	J	<	10	J		
4-Methyl-2-pentanone		<	10	J	<	10		<	10	J	<	10	J		
2-Hexanone		<	10	J	<	10		<	10	J	<	10	J		
Tetrachloroethene		<	10		<	10			0.3	J	<	10			
1,1,2,2-Telrachloroethane		<	10	J	<	10		<	10		<	10			
Toluene			2	J	<	10		<	10		<	10			
Chlorobenzene		<	10		<	10		<	10		<	10			
Ethylbenzene			0.3	J	<	10		<	10		<	10			
Styrene		<	10		<	10		<	10		<	10			
Xylene (total)			2	J	<	10		<	10		<	10			
Vinyl Acetate		<	10	J	<	10		<	10		<	10			
2-Chloroethylvinylether			R			R			R			R			
Freon 113					<	10		<	10		<	10			
Total VOCs			7			2			4.3			3			

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
EQ	Equipment
R	Unusable data
В	Constituent detected in associated
	Not analyzed.

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	SITE: SAMPLE ID: DATE:	F	B0929	R EQ. BLANK WATER EQ. BLANK 1092900 FB100200 1/29/00 10/2/00					R EQ. B10030 10/3/0		FI	R EQ. B10040 10/4/0	
Chloromethane		<	10	J	<	10	J	<	10	J	<	10	J
Bromomethane		<	10	3	<	10	•	<	10	Ü	<	10	-
Vinyl Choride		<	0.2	J	<	0.2	J	<	0.2	J	<	0.2	J
Chloroethane		<	10	J	<	10	Ĵ	<	10	J	<	10	J
Methylene chloride			1	JB		2	JB		1	JB		8.0	J
Acetone		<	10	J		6	JB	<	10	J	<	10	J
Carbon disulfide		<	10		<	10		<	10		<	10	
1,1-Dichloroethene		<	10		<	10		<	10		<	10	
1,1-Dichloroethane		<	10		<	10		<	10		<	10	
1,2-Dichloroethene (total)		<	10		<	10		<	10		<	10	
Chloroform		<	10		<	10		<	10		<	10	
1,2-Dichloroethane		<	10		<	10		<	10		<	10	
2-Butanone			3	J	<	10	J	<	10		<	10	J
1,1,1-Trichloroethane		<	10		<	10		<	10		<	10	
Carbon tetrachloride		<	10		<	10		<	10		<	10	
Bromodichloromethane		<	10		<	10		<	10		<	10	
1,2-Dichloropropane		<	10		<	10		<	10		<	10	
cis-1,3-Dichloropropene		<	10		<	10		<	10		<	10	
Trichloroethene		<	10		<	10		<	10		<	10	
Dibromochloromethane		<	10		<	10		<	10		<	10	
1,1,2-Trichloroethane		<	10		<	10		<	10		<	10	
Benzene		<	10		<	10		<	10		<	10	
trans-1,3-Dichloropropene		<	10		<	10		<	10		<	10	
Bromoform		<	10	J	<	10	J	<	10		<	10	
4-Methyl-2-pentanone		<	10	J	<	10	J	<	10	J	<	10	J
2-Hexanone		<	10	J	<	10		<	10		<	10	J
Tetrachloroethene		<	10		<	10	J	<	10	J	<	10	J
1,1,2,2-Tetrachloroethane		<	10		<	10		<	10		<	10	
Toluene		<	10		<	10		<	10		<	10	
Chlorobenzene		<	10		<	10		<	10		<	10	
Ethylbenzene		<	10		<	10		<	10		<	10	
Styrene		<	10		<	10		<	10		<	10	
Xylene (total)		<	10		<	10		<	10		<	10	
Vinyl Acetate		<	10		<	10		<	10		<	10	J
2-Chloroethylvinylether			R			R			R			R	
Freon 113		<	10		<	10		<	10		<	10	
Total VOCs			4			8			1			0.8	

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
EQ	Equipment
R	Unusable data
В	Constituent detected in associated
	Not analyzed.

Table 14. Concentrations of Volatile Organic Compounds Detected in Blank Samples Collected During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

SITE: WATER EQ. BLANK WATER EQ. BLANK CONSTITUENT: SAMPLE ID: FB100500 FB 10/6/00
Chloromethane 10/5/00 10/6/00 Chloromethane 10 J Bromomethane 10 10 Vinyl Choride 0.2 J 0.2 J Chloroethane 10 J 10 J Methylene chloride 3 J 1 J 10 <t< th=""></t<>
Chloromethane < 10 J < 10 J Bromomethane < 10 C < 10 J Vinyl Choride < 0.2 J < 0.2 J Chloroethane < 10 J < 10 J Methylene chloride 3 J 1 J Acetone < 10 J < 10 J Carbon disulfide < 10 J < 10 J 1,1-Dichloroethene < 10 J < 10 J 1,1-Dichloroethane < 10 J < 10 J 1,2-Dichloroethene (total) < 10 J < 10 J 2-Butanone < 10 J < 10 J
Bromomethane < 10 < 10 Vinyl Choride <
Vinyl Choride < 0.2
Chloroethane 10 J 10 J Methylene chloride 3 J 1 J Acetone 10 J 10 J Carbon disulfide 10
Chloroethane 10 J 10 J Methylene chloride 3 J 1 J Acetone 10 J 10 J Carbon disulfide 10 10 10
Acetone
Acetone < 10 J
1,1-Dichloroethene < 10
1,1-Dichloroethane < 10
1,2-Dichloroethene (total) <
Chloroform < 10
Chloroform < 10
2-Butanone < 10 J < 10 J
2-butanone
1.1.1 Trichloroethane < 10 < 10
1,1,12 Hichioloethane
Carbon tetrachloride < 10 < 10
Bromodichloromethane < 10 < 10
1,2-Dichloropropane < 10 < 10
cis-1,3-Dichloropropene < 10 < 10
Trichloroethene < 10 < 10
Dibromochloromethane < 10 < 10
1,1,2-Trichloroethane < 10 < 10
Benzene < 10 < 10
trans-1,3-Dichloropropene < 10 < 10
Bromoform < 10 < 10
4-Methyl-2-pentanone < 10 J < 10 J
2-Hexanone < 10 J < 10 J
Tetrachloroethene < 10 J < 10 J
1,1,2,2-Tetrachloroethane < 10 < 10
Toluene < 10 < 10
Chlorobenzene < 10 < 10
Ethylbenzene < 10 < 10
Styrene < 10 < 10
Xylene (total) < 10 < 10
Vinyl Acetate < 10 J < 10 J
2-Chloroethylvinylether R R
Freon 113 < 10 < 10
Total VOCs 3 1

VOCs	Volatile organic compounds.
ug/L	Micrograms per liter.
J	Estimated value.
EQ	Equipment
R	Unusable data
В	Constituent detected in associated

Not analyzed.

Table 15. Concentrations of Semi-Volatile Organic Compounds Detected in Groundwater Samples During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

	NYSDEC	_				_
	Standards, Criteria	SITE:		GM-14	WATI	ER EQ. BLANK
CONSTITUENT:	and Guidance	SAMPLE ID:		GM-14		B100200
(Units in ug/L)	Values (1)	DATE:		10/2/00		10/2/00
Phenol	1*		<	11	<	11
Bis(2-chloroethyl)ether	1		<	11	<	11
2-Chlorophenol	1*		<	11	<	11
1,3-Dichlorobenzene	3**		<	11	<	11
1,4-Dichlorobenzene	3**		<	11	<	11
1,2-Dichlorobenzene	3**		<	11	<	11
2-Methylphenol	1*		<	11	<	11
Propane, 2,2'-oxybis[1-chloro-			<	11	<	11
4-Methylphenol	1*		<	11	<	11
N-Nitroso-di-n-propylamine			<	11	<	11
Hexachloroethane	5		<	11	<	11
Nitrobenzene	0.4		<	11		
	50		<	11	<	11 11
Isophorone	50 1*				<	11
2-Nitrophenol	50		<	11	<	11
2,4-Dimethylphenol			<	11	<	11
Bis(2-chloroethoxy)methane	5		<	11	<	11
2,4-Dichlorophenol	5		<	11	<	11
1,2,4-Trichlorobenzene	5		<	11	. <	11
Naphthalene	10		<	11	<	11
4-Chloroaniline	5		<	11	<	11
Hexachlorobutadiene	0.5		<	11	<	11
4-Chloro-3-methylphenol			<	11	<	11
2-Methylnaphthalene			<	11	<	11
Hexachlorocyclopentadiene	5		<	11	<	11
2,4,6-Trichlorophenol			<	11	<	11
2,4,5-Trichlorophenol			<	26	<	27
2-Chloronaphthalene	10		<	11	<	11
2-Nitroaniline	5		<	26	<	27
Dimethylphthalate	50		<	11	<	11
Acenaphthylene	_		<	11	<	11
2,6-Dinitrotoluene	5		<	11	<	11
3-Nitroaniline	5		<	26	<	27
Acenaphthene	20		<	11	<	11
2,4-Dinitrophenol	1*	1	<	26	<	27
4-Nitrophenol			<	26	<	27
Dibenzofuran			<	11	<	11
2.4-Dinitrotoluene	5		<	11	<	11
Diethylphthalate	50		<	11	<	11
CPPE4			<	11	<	11
Fluorene	50		<	11	<	11
-Nitroaniline	5		<	26	<	27
,6-Dinitro-2-methylphenol				26		
			<		<	27
N-Nitrosodiphenylamine (1)	50		<	11	<	11
lexachlorobenzene	0.04		<	11	<	11
Pentachlorophenol	1*			26	<	27
Phenanthrene	50			11	<	11
Anthracene	50			11	<	11
Carbazole			<	11	<	11

See next page for footnotes.

ARCADIS

Page 2 of 2

Table 15. Concentrations of Semi-Volatile Organic Compounds Detected in Groundwater Samples During the Third Quarter 2000 Groundwater Monitoring Round, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards, Criteria and Guidance Values (1)	SITE: SAMPLE ID: DATE:	GM-14 GM-14 10/2/00	FB10	EQ. BLANK 00200 2/00
Di-n-butylphthalate	50		0.1 J	< 1	1
Fluoranthene	50		< 11	< 1	1
Pyrene	50		< 11	< 1	1
Butylbenzylphthalate	50		< 11	< 1	1
3,3'-Dichlorobenzidine	5		< 11	< 1	1
Benzo(a)anthracene	0.002		< 11	< 1	1
Chrysene	0.002	•	< 11	< 1	1
Bis(2-ethylhexyl)phthalate (BEHP)	5	•	< 11	0.	.4 JB
Di-n-octylphthalate	50	•	< 11	0.	.2 JB
Benzo(b)fluoranthene	0.002	•	< 11	< 1	1
Benzo(k)fluoranthene	0.002	•	< 11	< 1	1
Benzo(a)pyrene	ND	•	< 11	< 1	1
ndeno(1,2,3-cd)pyrene	0.002	•	< 11	< 1	1
Dibenz(a,h)anthracene		•	< 11	< 1	1
Benzo(g,h,i)perylene		•	< 11	< 1	1
I-bromophenyl-phenylether		<	< 11	< 1	1

ug/L Micrograms per liter.

B Detected in an associated blank.

J Estimated value.

-- No standard or guidance value established.

(1) Standards, criteria, and guidance values based on documents referenced in the Groundwater

Feasibility Study Report (ARCADIS Geraghty & Miller, 1999b).

* Sum of phenolic compounds cannot exceed 1 ug/L.

** Sum of isomers cannot exceed 3 ug/L.

ARCADIS GERAGHTY&MILLER

Table 16. Total Cadmium and Chromium Detected in Groundwater Samples Collected During Last Quarter 1999 and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York.

CONSTITUENT: (Units in ug/L)	NYSDEC Standards, Criteria, and Guidance Values ⁽¹⁾	SITE: SAMPLE ID: DATE:	10631 MW-10631 12/1/99	10631 N-10631 3/13/00	10631 N-10631 6/27/00	10631 N10631 9/26/00	GM-16S GM-16S 3/15/00	GM-16SR MW-16SR 6/27/00	GM-16S GM-16SR 9/26/00
Cadmium Chromium	5 50		2.2 B 50.1	2.6 38	1.5 B 27.1	<0.5 ^^	0.7	<0.2 <0.83	<0.5

Standards, criteria, and guidance values based on documents referenced in the Groundwater

Feasibility Study Report (ARCADIS Geraghty & Miller, 2000).

Ξ

Micrograms per liter.

Detected between the IDL and CRDL.

Detected between the IDL and to Instrument detection limit.

ug/L B IDL CRDL

Contract required detection limit.

Estimated value.

NYSDEC New York State Department of Environmental Conservation.

Equipment.

Value exceeds associated SCG value.

Replicate sample.

ARCADIS GERAGHTY& MILLER

Total Cadmium and Chromium Detected in Groundwater Samples Collected During Last. Quarter 1999 and First Three Quarters 2000 Groundwater Monitoring Rounds, Northrop Grumman Corporation, Bethpage, New York. Table 16.

MW-03R* EQ. BLANK REP-1 FB092600		2.2BJ <0.5	38.6J <1	
MW-03R MW MW-3R RE		22.9J 2.	76.5J 38	
MW-03R MW-3R		28.9	75.8	
MW-03R MW-3R	3/13/00	28	81	
MW-03R MW-3R		26.9	6.79	
SITE: SAMPLE ID:	DATE:			
NYSDEC Standards, Criteria,	and Guidance Values ⁽¹⁾	2	20	
CONSTITUENT:	(Units in ug/L)	Cadmium	Chromium	

Feasibility Study Report (ARCADIS Geraghty & Miller, 2000).

ug/L Micrograms per liter.

B Detected between the IDL and CRDL.
Instrument detection limit.

CRDL Contract required detection limit.

J Estimated value.

NYSDEC New York State Department of Environmental Conservation.

EQ Equipment.

Replicate sample.

Standards, criteria, and guidance values based on documents referenced in the Groundwater

 $\widehat{\Xi}$

EXPLANATION

PROPERTY BOUNDARY OF FORMER GRUMMAN AEROSPACE CORPORATION

PROPERTY BOUNDARY OF THE U.S. NAVY SITE

RECHARGE BASIN

(62.07) LOCATION AND DESIGNATION OF INTERMEDIATE MONITORING WELL
AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO
MEAN SEA LEVEL

BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

9667 LOCATION AND DESIGNATION OF ADDITIONAL WELL

₽-16 LOCATION AND DESIGNATION OF GRUMMAN

WHITE INDUSTRIAL SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

LOCATION AND DESIGNATION OF ON-SITE IRM
EXTRACTION WELL (SHOWN FOR REFERENCE ONLY)

HORIZONTAL COMPONENT OF GROUNDWATER FLOW

LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (DASHED WHERE APPROXIMATE)

IRM INTERIM REMEDIAL MEASURE

NOTES:

- 1. WELL INVENTORY REVISED BETWEEN AUGUST 4 AND AUGUST 23, 1995; WELL DATA OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY, NASSAU COUNTY DEPARTMENT OF PUBLIC WORKS, NASSAU COUNTY DEPARTMENT OF HEALTH, AND THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION.
- 2. IRM WELLS ONCT-1, ONCT-2, ONCT-3, AND GP-1 ARE SCREENED IN THE D2 ZONE.
- 3. BWD WELL 3876 IS SCREENED IN THE DEEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.

PROJECT MANAGER

0 M 800 FT

ARCADIS GERAGHTY&MILLER

Tel: 516/249-7600 Fax: 516/249-7610

88 Duryea Road

Melville, New York 11747

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

POTENTIOMETRIC SURFACE CONFIGURATION
AND GROUNDWATER FLOW
DIRECTIONS IN THE INTERMEDIATE ZONE
OCTOBER 16, 2000

DRAWN

DATE 4/26/01

LEAD DESIGN PROF. CHECKED DES

PROJECT NUMBER DRAWING NUMBER

NY0008.210 10

DEPARTMENT MANAGER

G:\APROJECT\GRUMMAN\CAD\GRUM

EXPLANATION

PROPERTY BOUNDARY OF FORMER GRUMMAN AERUSPACE CORPORATION

PROPERTY BOUNDARY OF THE U.S. NAVY SITE

RECHARGE BASIN

(64.41) ECCATION AND DESIGNATION OF SHALLOW MONITORING WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

9876 LCCATION AND DESIGNATION OF
は BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL
(SHOWN FOR REFERENCE ONLY)

9667 LOCATION AND DESIGNATION OF ADDITIONAL WELL

P-16 LOCATION AND DESIGNATION OF GRUMMAN WITH MINDUSTRIAL SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

LOCATION AND DESIGNATION OF ON-SITE IRM EXTRACTION WELL (SHOWN FOR REFERENCE ONLY)

HORIZONIAL COMPONENT OF GROUNDWATER FLOW

- LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (DASHED WHERE APPROXIMATE)

IRM INTERIM REMEDIAL MEASURE

NOTES:

- 1. WELL INVENTORY REVISED BETWEEN AUGUST 4 AND AUGUST 23, 1995; WELL DATA OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY, NASSAU COUNTY DEPARTMENT OF PUBLIC WORKS, NASSAU COUNTY DEPARTMENT OF HEALTH, AND THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION.
- 2. IRM WELLS ONCT-1, ONCT-2, ONCT-3, AND GP-1 ARE SCREENED IN THE D2 ZONE.
- 3. BWD WELL 3876 IS SCREENED IN THE CHEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.

0 MCMCMMCM0800 FT

ARCADIS GERAGHTY&MILLER

Tel: 516/249-7600 Fax: 516/249-7610

88 Duryea Road

Melville, New York 11747

A compression of the property of the property of the party of the part

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

WATER-TABLE CONFIGURATION
AND GROUNDWATER FLOW
DIRECTIONS IN THE SHALLOW ZONE
OCTOBER 16, 2000

4/26/01

PROJECT MANAGER
CSG

LEAD DESIGN PROF.

CHECKED
DES

PROJECT NUMBER

DRAWING NUMBER

NY0008.210

9

:\APROJECT\GRUMMAN\CAD\GRUMN

EXPLANATION

PROPERTY BOUNDARY OF FORMER GRUMMAN AEROSPACE CORPORATION

RECHARGE BASIN

GM-36D2 (52.34) LOCATION AND DESIGNATION OF D2 (VERY DEEP) MONITORING WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL.

BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL

9667 LOCATION AND DESIGNATION OF ADDITIONAL WELL

P-16 LOCATION AND DESIGNATION OF GRUMMAN PRODUCTION WELL

ONCT-3 LOCATION
(40.82) WELL AND

LOCATION AND DESIGNATION OF ON-SITE IRM EXTRACTION WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

HORIZONTAL COMPONENT OF GROUNDWATER FLOW

IRM INTERIM REMEDIAL MEASURE

LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (FT. MSL.) (DASHED WHERE APPROXIMATE)

LINE OF EQUAL WATER LEVEL ELEVATION DENOTING A DECREASE IN POTENTIOMETRIC SURFACE ELEVATION IN FT. MSL.

YOTES:

- 1. WELL INVENTORY REVISED BETWEEN AUGUST 4 AND AUGUST 23, 1995; WELL DATA OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY, NASSAU COUNTY DEPARTMENT OF PUBLIC WORKS, NASSAU COUNTY DEPARTMENT OF HEALTH, AND THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION.
- 2. IRM WELLS ONCT-1, ONCT-2, AND ONCT-3 ARE SCREENED IN THE D2 ZONE AND WERE PUMPING AT 1,004 GPM, 605 GPM, AND 721 GPM, RESPECTIVELY AT THE TIME OF MEASUREMENT. A WATER LEVEL AND PUMPING RATE COULD NOT BE OBTAINED FROM IRM WELL GP-1, WHICH IS ALSO SCREENED IN THE D2 ZONE.
- 3. BWD WELL 3876 IS SCREENED IN THE DEEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.

PROJECT MANAGER

800 FT

ARCADIS GERAGHTY&MILLER

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

POTENTIOMETRIC SURFACE
CONFIGURATION AND GROUNDWATER
FLOW DIRECTIONS IN THE D2 ZONE
OCTOBER 16, 2000

AG

4/26/01

LEAD DESIGN PROF.

CHECKED DES

PROJECT NUMBER

NY0008.210

MW

CHECKED DES

DRAWING NUMBER

DEPARTMENT MANAGER

88 Duryea Road Melville, New York 11747 Tel: 516/249-7600 Fax: 516/249-7610

Appendix A

Water-Level Measurement Logs

Water Le	evel/Pum	ping 1	Test R	ecord						Page	of
Project	MOD	0008	021	5 DOOS		Well			Site		
Screen Setting				ring Point					Height Ground	Above d Surface	• 1
Static		/	-	red With					_ Date/Ti		10-16-60
Water Level Drawdown	 ;		– Start o	f Test					Pumpir	1 9	
Recovery			End of	Test					_Well		
Distance From Measured To Well®			_	Discharge Rate					_Orifice		
Date &		Held	Wet	Depth to		Dew. 1)	Art. 2)		Q	Mano-	Remarks 3)
Time	Or t (mins)	(ft)	(ft)	Water (ft)	s (ft)	Corr. (ft)	s' (ft)		(gpm)	meter	
	over3			67.88	100	(10)	110	_		(11)	1.00 001
(-	M-13D			49.00			 			+	669 gph
ļ -	025			6641	-	-	+	_		+	927.6Pr
6M74IC	6m745		<u> </u>	42.25			+	<u> </u>		 	EXST
6M74D 2	6M747			47.45		-	- 3			 	M
GM7402 C	6m745			54.04			1			-	WES
VIVE	DNG 2			69,97		,		_		 	7086AM
	7302			48.05			. 63			-	1000
- N	6M165			49.86			196			 	
	16Z			30.05				-		1	
	n 1659			49.90						 	
	155			47.25							1
	15T			47.06				-			
	1502	1		51.90							2.
	150			49.39						ę	
-76	107.			44.50							
st-	175R 175R 174 170			42.13							
	175R			45.86							
	17I			46.06	-896		,				
,	170		3,	51.40	1	. 10			_		
>				45.60					-	 	
	10600			41.16		- 1	,	i		 	;
1	10600				344	3.4	rai.			 	
N4	13.22			34.62		ø				 	
	10627			34.71			100			<u> </u>	-
11	35 12			41.65	200					1	
N	106 24	- 1		47 30			1			1	I

^{1)} Dewatering Correction

Water Le	vel/Pum	ping 1	Test R	ecord					Page	of
Project	NYDE	8000	NIO	00002	/	Well		Site		
Screen Setting	· · ·			ring Point				Height A	Surface	
Static Water Level			Measui -	red With				Date/Tir	ne	10-16-00
Drawdown			Start of	Test				Pumpin	9	
Recovery			End of	Test	7			Well		
Distance From Measured To Well®			_	Discharge Rate				Orifice		·
Date & Time	Well Or t (mins)	Held (ft)	Wet (ft)	Depth to Water (ft)	s (ft)	Dew. 1) Corr. (ft)	Art. 2) 5' (ft)	Q (gpm)	Mano- meter (in)	Remarks 3)
	10631			41.12	1.4		1.4			
	3305			51.29						
	201			41.91						
	201			39.70						
	215			38-70						
	ZIT.			4060						
	(0633			41.64						
GM	7/02			43.54						
	2002			43.20						
	10821			35.51						
	360			37.08						
	3612			37.26		۵				
	3702			41.96						
	320			40.03				· _		
	370			41.77						ir
	3712			41.79						
	10628			42.21						
	3402			18.00						2-1
	341			16.49						4.1
	10597			43.95						
6M	10597			75.35	=45	45	100			gla _g
60	19Z			45.90			 		†	
W14				70,70						+
	-									
 ,	· · ·					-	1		1	
							 		+	-

¹⁾ Dewatering Correction

Appendix B

Field and Data Validation Methodologies

Field Methodologies

This section generally describes the methodologies used by field personnel to collect hydraulic and groundwater quality data, as well as the Quality Control/Quality Assurance (QA/QC) sampling and data validation methods used. Detailed descriptions of field measurement and sampling methods are provided in the 1999 annual groundwater monitoring report (ARCADIS Geraghty & Miller, Inc. 2000). Deviations from established methods are described in Section 2.4 (Modifications to the Field Program).

B.1 Groundwater-Level Measurements

Water-level measurements were made using methods consistent with prior rounds of hydraulic measurements (ARCADIS Geraghty & Miller 2000). Water-level measurement logs for the third quarter 2000 are provided in Appendix A.

B.2 Groundwater Sampling

Sampling methods used to collect groundwater quality samples are summarized below. Consistent with New York State Department of Environmental Conservation (NYSDEC) approved procedures used during the Northrop Grumman Remedial Investigation (RI) and prior rounds of groundwater monitoring (ARCADIS Geraghty & Miller 2000), monitoring wells equipped with dedicated equipment were purged and sampled using existing dedicated bladder pumps. Intermediate, deep, and deep2 (D2) monitoring wells were purged using the bladder pumps in conjunction with dedicated inflatable packers. Except for shallow wells, three well volumes of water below the packer were evacuated prior to sampling all wells. Shallow monitoring wells that were equipped with dedicated bladder pumps did not have packers installed, therefore, the three standing well volumes that were evacuated prior to sampling were calculated based on the full well depth below the static water level. Field parameters (pH, specific conductance, and temperature) were measured after each well volume evacuated. Field parameter readings, well evacuation methods, and sample collection methods are provided in Appendix C.

Consistent with prior rounds of groundwater monitoring (ARCADIS Geraghty & Miller 2000), monitoring wells not equipped with dedicated equipment were purged using either a variable speed, 2-inch diameter submersible pump or a temporary bladder pump. Shallow wells were purged using a submersible pump following the three standing well volumes and field parameter stabilization technique discussed above.

Intermediate, deep, and D2 monitoring wells were purged using temporary bladder pumps following United States Environmental Protection Agency (USEPA) Micropurge/low-flow protocols (USEPA 1998). In addition to the three field parameters mentioned above, dissolved oxygen and oxidation-reduction potential were also measured using the low-flow sampling. Field parameter readings, well evacuation methods, and sample collection methods are provided in Appendix C.

Water samples from the Interim Remedial Measures (IRM) Wells (GP-1, ONCT-1, ONCT-2, and ONCT-3), Industrial Supply Well GP-3, and the IRM Plant 5 (GP-1) and Plant 5E (ONCT) treatment systems influent and effluent were collected as direct grab samples and analyzed for VOCs.

After collection, all samples were placed on ice and shipped overnight following chain of custody protocols to Severn Trent Laboratories (STL) in Shelton, Connecticut for analysis. Groundwater samples submitted for analysis of VOCs were analyzed for the Target Compound List (TCL) VOCs using NYSDEC Analytical Services Protocol (ASP) Method 95-1. Groundwater samples collected from Well GM-14, downgradient of the Plant 1 Fuel Depot were analyzed for VOCs and SVOCs using USEPA Methods 624 and 625, respectively. Groundwater samples submitted for analysis of Cd/Cr were analyzed using modified USEPA SW-846 ICAP Methods 3010/6010. Chain-of-custody records are provided in Appendix D.

B.3 Air Sampling

Air samples from the IRM Plant 5 (GP-1) and Plant 5E (ONCT) systems influent (pre-vapor-phase granular-activated carbon [VPGAC]) and effluent (post-VPGAC) were collected as in-line direct grab samples; Tedlar bags were used to obtain the air samples. Samples were shipped overnight under chain-of-custody protocols to STL in Pensacola, Florida for analysis of VOCs using USEPA Method TO-14A.

B.4 Quality Assurance/Quality Control

QA/QC measures are briefly discussed below. A complete description QA/QC measures is provided in the 1999 annual report (ARCADIS Geraghty & Miller, Inc. 2000).

B.4.1 Field

As part of field QA/QC protocols, non-dedicated sampling equipment (bladder pump and submersible pump) was decontaminated between wells using methods consistent with prior rounds. To demonstrate adequate decontamination and sample handling protocols, the appropriate QC samples (field and trip blanks) were prepared consistent with prior rounds (ARCADIS Geraghty & Miller 2000). Blind replicate samples and matrix spike/matrix spike duplicate (MS/MSD) samples were collected from Wells GM-23I and GM-38D2. The filled sample bottles were placed in ice-filled insulated coolers and shipped under chain-of-custody protocols overnight for laboratory analysis. Groundwater sampling logs and chain-of-custody records are provided in Appendices C and D, respectively.

B.4.2 Data Validation

Data validation was performed by ARCADIS G&M, Inc. by following the contract laboratory program national functional guidelines for organic data review set forth in the October 1999 guidance document (USEPA 1999). Inorganic data was validated using the February 1994 guidance document (USEPA 1994).

Appendix C

Groundwater Sampling Logs

mg/L

Miligrams per liter

NR

Not Recorded

VOC

Volatile Organic Compounds

	Project .	Northrop	Gruman	Project	No.	N/60 00 0 8	0210. 00		age 1	of	
	Site Location	Beth pag	e, N. j.					_	ate –	9/26/80	
	Site/Well No.	MW-3 R		Replica	te No.			_ `	ode No.		
,	Weather	Overcast	~50's	Samplii 	ng Time:	Begin	10:00	E	nd		
	Evacuation Data					Field Param	neters	Ţ	1	2 V	34
N	Measuring Point					Color					
٨	AP Elevation (ft)			·		Odor					
L	and Surface Elev	ration (ft)				Appearance	•				
5	ounded Well De	pth (ft bmp)	55.00	·		pH (s.u.)		3.00	3.11	3.07	3.15
D	epth to Water (f	t bmp)	37.2			Conductivity (mS/cm					
W	/ater-Level Eleva	tion (ft)				_(µmhos		107.8	1025	99.1	97.9
w	ater Column in '	Well (ft)	17.73			ルs/ Turbidity (N)	ou, (U)			25.0	13.7
Cā	sing Diameter/T	уре	2 (0.1	(+)		Temperature	(%) of	58.4	58.5	58.3	58.4
Ga	allons in Well		2.84			Dissolved Ox	ygen (mg/	1) _			_
Ga	illons Pumped/Ba		0 -1		!	Salinity (%)					
	Prior to Sar		8.5		9	Sampling Me	thod				,
Sar	mple PumpIntal Setting (ft b				ı	Remarks				,	
Pur	ge Time		begin 10:45	end		77= 11	0:4 <u>5</u>		T3	- 10:54	76-11.
Pur	nping Rate (gpm	n)	Q=1 T	= 9 1V=3		T1 = 1) : YB		74	10:57	
Eva	cuation Method	1				T2 =1	0:51		75:	11:00	
Cor	nstituents Sam 44 3 · 03	pled		ntainer Descriptio	on .		Number		Pre	servative	
	97.6										
	58.3								. —		
	8.8								-		
Sam	pling Personnel		GW/ML								
	We	H Casing Vol	umes								
Gal./	'Ft. 1-14	" = 0.06 i" = 0.09	2" = 0.16 2-1/1" = 0.26	3° = 0.37 3-½° = 0.50	4" = 0.6 6" = 1.4						
Ibmp ™C ft gpm	below measuri Degrees Celsiu feet Gallons per mir	5	msi mea	ter iemens per centimete n sea-level Applicable	r	NTU PVC s.u. umhos/cm	Polyvin Standa	yl chloride rd units	urbidity Ur		

	Project Northip D	Frumman	Project	t No.	NY000008071	D. 00002	Page .	1of	
9	site Location Bethose	N ,Y.					Date	9/26/	60
	ite/Well No. Cm-1		Replica	te No.			Ca de No .		
			Samoli	ng Time:	Begin		End		
_	Veather			ily filite.					-
Ε	vacuation Data				Field Parameters	<u> </u>	11	2V	31
N	leasuring Point				Color				
	P Elevation (ft)				Odor				
	nd Surface Elevation (ft)				Appearance				
	unded Well Depth (ft bmp)	120			pH (s.u.)	9.57	7,90	7.10	6.18
	pth to Water (ft brnp)				Conductivity (mS/cm)				
W	ater-Level Elevation (ft)				(µmhos/cm)	250	140	125	115
W:	ater Column in Well (ft)				Turbidity (NTU)				
	sing Diameter/Type	4"			Temperature (°C)	13.1	13.9	13.9	13.8
	llons in Well		-		Dissolved Oxygen		12.1		1
	lons Pumped/Bailed				Salinity (%)				
	Prior to Sampling				Sampling Method				
San	we Pump Intake	7.0					+-	†	+
_	Setting (ft bm p)				Remarks				
	ge Time	begin	end			-			
	nping Rate (gpm) cuation Method								
EASC	Uation Method								
Con	stituents Sampled		Container Description	on	Num	ber	Pr	eservativ	•
<	SEE (.O.(.								
	, c.c.						_		
		_							
							_		
									
Samp	oling Personnel	6WML						_	
	Well Casing Vo	umes							
Gal./		2" = 0.16		4" = 0.					
	1-1/2" = 0.09	2-1/2" = 0.	26 3-1/2" = 0.50	6° ± 1.	47				
І ьтр	below measuring point		mililiter			Vephelometric	-	Jnits	
۵۲	Degrees Celsius		Milisiemens per centimet	er		olyvinyl chlori			
ft	feet		mean sea-level			Standard units Micromhos pei		ar.	
gpm gpm	Gallons per minute Miligrams per liter		Not Applicable Not Recorded			/olatile Organi			

		e N.Y.	Project No.	7 100000 8 o	210.000) Page Date	1	of of	
S	ite/Well No. (-M-1)	30	Replicate No.	Begin	26	Code End	No.	4 17 W	
M M So De Wa Wa Cass Gali -Pace Sam Purg	reasuring Point P Elevation (ft) and Surface Elevation (ft) unded Well Depth (ft bmp) pth to Water (ft bmp) ater-Level Elevation (ft) ater Column in Well (ft) ater Column in Well (ft) ater Diameter/Type lons in Well ans Pumped/Bailed Prior to Sampling apple Pumpintake Setting (ft bmp) ge Time uping Rate (gpm)			Field Paramet Color Odor Appearance pH (s.u.) Conductivity (mS/cm) (umhos/cd Turbidity (NTU Temperature (' Dissolved Oxyg Salinity (%) Sampling Meth Remarks		- 3	13.45 13.9 66	3.43 234 63.3	3.5
Cons	stituents Sampled SEE C.O. C.	Container I	Description いいには、いいには、いいには、いいには、いいには、いいには、ない。	Ni	mber	-	Prese	ervative	
Gal./F bmp °C ft gpm rng/L	Well Casing Volume 1-1/2" = 0.06 1-1/2" = 0.09 below measuring point Degrees Celsius feet Gallons per minute Miligrams per liter	2" = 0.16 3" =	0.37 4" = 0.6 = 0.50 6" = 1.4 er centimeter		Polyvinyl c Standard u Micromho		neter		_

	Project	140000	७४.०८	16	Project No.	6000		Page <u>1</u> Date	of _	
	ite Location	GM 1	4		Replicate No.			Cade No.		
		<u> </u>			Sampling Time	e: Begin	1240	End	-	
-	Veather ————				Sampang Time	began				
E	vacuation Data	3				Field Parame	eters ${\cal I}$	110	20	31
М	leasuring Point					Color	_	Cole	F1 e55	
M	P Elevation (ft)	1				Odor		17 00	-	_
La	nd Surface Ele	vation (ft)				Appearance	_	Cle	er_	
So	unded Well De	epth (ft bmp)	5	5.3		> pH (s.u.)	6.98	7.47	7.55	7.6
De	pth to Water (ft bmp)	44	.64		Conductivity (mS/cm)	80	80	80	80
Wa	ter-Level Eleva	tion (ft)			<u> </u>	(µmhos/c	cm)		-	
Wa	iter Column in	Well (ft)	10	.66		Turbidity (NT	u)			
Cas	sing Diameter/	Туре	4	"(.65)		Temperature	(°PF 69.5	72.9	73.4	75.
Gal	llons in Well			, , 9		Dissolved Oxy	gen (mg/L)			
Gal	lons Pumped/E					Salinity (%)				
_	Prior to Sa	, -		21 301		Sampling Met	hod			
Sam	nple Pump Inta Setting (ft				<u></u>	Remarks	1258	105	112	119
Purg	ge Time		begin 12	58 end				!		
Pum	ping Rate (gpi	m)	9=1	900		,				
Evac	ruation Metho	d .	J= 21	The I	1=7m10					
Con	stituents San	pled		Container D	escription	N	umber	Pro	eservative	
	SEE	C.O.(.								
Samp	oling Personnel	_	ME	54						
		ell Casing Volu 4 " = 0.06	imes 2" = 0."	16 3" =	0.37 4" =	0.65				
Gal./F	_	4° = 0.09	2-1/2" =							
bmp	below measur	ing point	ml	mililiter		NTU	Nephelome	tric Turbidity U	nits	
~ C	Degrees Celsi		mS/cm	Milisiemens per	centimeter	PVC	Polyvinyl ch	loride		
ft	feet Gallons per m	inuta	msl N/A	mean sea-level Not Applicable		s.u. umhos/cm	Standard ur	nits per centimeter	,	
m g∕L	Miligrams per m		NR	Not Recorded		VÖC		per centimeter Janic Compour		
	<u>.</u>			-		24.45		,		

Project IV. Go	umann	Project No. NY 000008.	0210.0000Z	Page 1	of	
	Bethber N.Y.			Date	9/28/00	
Site/Well No. CM	155	Replicate No.		Code No.		
Weather Sun4.	1 70	Sampling Time: 8eg	in	End		
Evacuation Data		Field Par	rameters Z	(10	US	T
Measuring Point		Color			1	
MP Elevation (ft)		Odor				T
Land Surface Elevation (ft)		Appeara	nce 7.482			
Sounded Well Depth (ft bmp	79.5	pH (s.u.)		6.65	6.16	6
Depth to Water (ft bmp)	46.85	Conducti (mS/		120	115	,
Water-Level Elevation (ft)		(µml	nos/cm)			\perp
Water Column in Well (ft)	32.65	Turbidity	(NTU)			L
Casing Diameter/Type	4(.65)	Temperat	ture (°C) / 7. 7	18-3	18.7	I
Gallons in Well	57.15		Oxygen (mg/L)			
Gallons Pumped/Bailed		Time Salinity (9	6) /2 ³³	1248	1258	1
Prior to Sampling	63	Sampling	Method	<u>'</u>		k
Sample PumpIntake Setting (ft bmp)		Remarks				
Purge Time	begin 2 38 end					
Pumping Rate (gpm)		=32min				
Evacuation Method	LU = long					_
Constituents Sampled	Container I) oscription	Number	Press	ervative	_
-		oescription .	Homber	71030		
SFE (.0.(·					_
				-		_
						_
						_
			. ———			—
Sampling Personnel	6. Willias	S. Healty				_
Well Casing Vo						_
Gal./Ft. 1-1/4" = 0.06 1-1/2" = 0.09	2" = 0.16 3" = 2-½" = 0.26 3-½":	0.37 4" = 0.65 = 0.50 6" = 1.47				
		UTU	Nonhalamata	ie Turkidita I leis		_
bmp below measuring point C Degrees Celsius	ml mililiter mS/cm Milisiemens pe		Polyvinyl chlo	ic Turbidity Unit ride	•	
ft feet	msl mean sea-level	s.u.	Standard unit	ts		
gpm Gallons per minute	N/A Not Applicable	umhos/ VOC	•	er centimeter nic Compounds		
moA Miliarams per liter	NK NOT Kechided	VIN	cnii qii cinv	DIE I DENDOUNDE		

Miligrams per liter

mg/L

Water Sampling Log

ı	Project Northne	o - Grumman	Project No.	NYONOO8	OZIO T	<u>P</u>	ige <u>1</u>	of	
9	Site Location Betwas	as NY				Da	ete <i>9/</i>	1910)
	site/Well No. CAN-15I	8 1	Replicate No.			Co	ode No.		
	Weather Ancast	705	Sampling Time:	Begin	10:20	En	d /2	: m	_
E	vacuation Data			Field Parame	eters	I	, IV	2'	3
N	leasuring Point			Color					\perp
N	1P Elevation (ft)			Odor					
La	and Surface Elevation (ft)			Appearance					
So	ounded Well Depth (ft bmp)	105.00		pH (s.u.)	-	1.6	5.4	5.3	4.85
De	epth to Water (ft bmp)	94.00		Conductivity (m5/cm)					
W	ater-Level Elevation (ft)			(prepared)	r 7 - E	7.88	2.93	3.04	322
W	ater Column in Well (ft)	11.00		Turbidity (NTL	_			1	
Ca	sing Diameter/Type	4(0.	<u>~5)</u>	Temperature ((°C) <u>4</u>	68.2	68.4	67.0	68.9
Ga	llons in Well	7.15		Dissolved Oxy	gen (mg/L)			1	
Gal	ilons Pumped/Bailed Prior to Sampling	35		Salinity (%) Sampling Met	hod To	rdi co	<u> </u>	Blade	1 D.
San	Setting (it bmp) Pre			Remarks				D CRAT	- inv
Pur	ge Time	begin 10:25 end 11:	54	5 gas	pail	5:	MIL	/2	
Pun	nping Rate (gpm)								
Evac	cuation Method								
Con	See ()(Container	Description	N	umber		Pres	ervativ	•
						- -			
Samp	oling Personnel	MLIME				_			
	Well Casing Vo								
Gal./I	1-1/4" = 0.06 1-1/1" = 0.09	_	= 0.37 $4" = 0.62" = 0.50$ $6" = 1.4$						
Ibmp °C ft	below measuring point Degrees Celsius feet	ml mililiter mS/cm Milisiemens p msl mean sea-leve	el	NTU PVC s.u.	Polyvinyl Standard	chloride units		its	
gpm	Gallons per minute	N/A Not Applicabl	e	umhos/cm	Micromh	os per ce	entimeter		

Not Recorded

NR

VOC

Volatile Organic Compounds

	t Number:_	1110000	0150	Task	: 0000	2		_ Well ID	: 15[>
Date:_	9/	128/00		Sam	oled By:	GW SH M	t´			
Sampli	ng Time:			Reco	rded By:_	SH				
Weath	er: Sunay	~ 70°		Code	d Replicat	te No.:				
				WELL	IMFORM	ATION				
		จะเก								
		30C	Purge	Method	l: <i>L </i>	Flow				
						150 ml/min				
Total D	epth: <u>3</u>	42	Total	Volume	Purged:					
		49.0			•					
						<u> </u>				
Gallons	Foot:		Paran	neters Sa	ampled:	SEE	C.O.C.			
Gallons	in Well:									
			FIELD	PARA	METER MI	EASUREMEN	ITS			
	Rate	Gallons	Turbidity			Conductivity		Depth to	Diss.	1.0
Time	ml./min)	Purged				(µmhos/cm)				Comments
145						145	77.7	49.03	6.4	
150						130		49.00		
3 m				270	5.59		71.2	-	4.2	
212				220	5.58	125		49.00	3. 3	
212				215	6.04	135	70.6 74.4		2.9	
213						140	76.5	-	2.5	
220								49.00		
205									2.3	
					5.76		78.3	-	2.3	
2 30					5.73	125	77.4		2.3	
235				220	5,61	130	Bic		1.1	
235							2/3 4 4			
235				220		130	18°C		1.7	
235						130	18°C		1.7	
235						130	/8°C		1.7	
235						130	/8°C		1.7	
235						130	/8°C		1.7	
235						/30	/8°C		1.7	
235						/30	/8°C		1.7	
235						130	/8°C		1.7	

Low-F	low Groun	dwater Sa	mpling Log								
Projec	t Number:	144000	m2 0710	⁾ Task	: 000	202		Well II	D: 15	SC	
Date:	ر	10/2/00	2	Sami	oled By:	M E 51 te No.:	SH	-			
Samol	lina Time:	10	0	Reco	rded By:	51	4				
Weath	er Sw	24 70	9-	Code	d Replica	te No.:					
		t			- · · · · · · · · · · · · · · · · · · ·						
				WELL	IMFORM	ATION					
Casina	Material:_	PUC	Pum	e Method	 -	100	Elan				
Casing	Diameter:	4'	Puros	e Rate		150 M	11m	~			
Total D	enth. <	556	Total	Volume	Pumed:		/				
Depth t	www	51.59	Pump	Intake D	Depth:	72`					
Water (Column:		Pump	on:	10"	2	Off	:			
	Foot.					SEE					
	in Well:										_
Ganana			EIEI I	DADAR	AETED M	EARLIDEMEN	WTS.				
	I Rate	Gallons				EASUREMENT Conductivity		Depth to	Diss.	'	6 <
Time	ml/min)					(µmhos/cm)				Comments	Ton
1010				230	8.29	75	733	51.58	6.4		
1015					7.12	65	77.5		6.3		
10000					6.47				58		(16.5
1025			-		6.34	65	74.3		4.5		K16.10
10 30			 	270		60	73.3				
10 35		····			6.50	60	736		5.1		(16.00
1043					6.71	60	72.9		5. 2		616-07
1050					6.84		74.7				
1055					6.92	00	74.9	-	5.1		15.900
11 41 00 1					6.95	60	75.1		4.9		(16.100
11/1/2				655	89.3	60	75.4	51.58	5.0		16.00
110				225	7.00	60	76.4	-	5.2		1.7061
											Verif
											othe
I											med
 											
 											
 	+										
 											
<u></u>											
Well Secur	re:				_ F	ourge Water D	Disposal:_				
ŀ						urbidity(quali	tative):				
						Other (OVA, H					
Odor:					(אוופו (טעא, ח	140,810./.				

... union 1777 nno2\f\ala\GW3mp(rm.xls- Sheet1

ARCADIS GERAGHTY & MILLER

P	roject	Northea	Grumman		Project I	No.	N 1000008031	<u>ე, მქიი </u>	Pag	e <u>1</u>	_of	
Si	ite Location	Bethou	e. N.Y.						Dat	e <u>9/</u>	26/00	
Si	te/Well No.	Gm-1			Replicate	No.			Cod	le No.		
W	leather		50'5		Sampling	g Time:	Begin _		End			
Ev	acuation Data				-		Field Paramet	ters	I	IY	2 V	24
M	easuring Point						Color					
	P Elevation (ft)						Odor					
	nd Surface Elev						Appearance	·				
	unded Well De		49.5	5			oH (s.u.)		2.91	3.02	2.98	2.
	oth to Water (70				Conductivity (mS/cm)	٩				
Wa	ter-Level Eleva	tion (ft)				usla		m) j	120.7	118-8	117.6	1/8
Wa	ter Column in	Well (ft)	20.4	15		1	urbidity (NTU)	_	17.53	15.79	
	ing Diameter/			65)			emperature (٠ ـ •	58.9	59.4	59.7	1
	ons in Well	,,	13.2	9			issolved Oxyg	_				
Gall	ons Pumped/B	lailed				S	alinity (%)					
	Prior to Sa		39.8	00		5	ampling Meth	nod				
Sam	ple Pumpinta Setting (ft						emarks	-				\vdash
Pum	e Time	Jpy	begin (2:1)	end			_	12:15	-			,
_	ping Rate (gpr	m)			-4			12:19				
	uation Method							12:23				
							T3:	13:5				
Cons	stituents Sam			Container	Description	3	N	nuper		Presen	ative	
	SEE	(.0, (.										
							_					
							_					
iamp	ling Personnel	١ _	6W/ML									_
		ell Casing Vol										
al./F		%" = 0.06 %" = 0.09	2" = 0.1 2-1/2" = 0		: 0.37 ' = 0.50	4" = 0.6! $6" = 1.47$						
								AL := 7 - 1		Lista de G		-
mp C	below measur Degrees Celsic	-	ml mS/cm	mililiter Milisiemens p	er centimeter		NTU PVC		metric Tur I chloride	bidity Units		
:	feet		msl	mean sea-leve	al		S. U.	Standard	d units			
pm	Gallons per mi		N/A	Not Applicable			umhos/cm		nos per cei			
ıa/L	Miligrams per	liter	NR	Not Recorded			VQC	Volatile (Organic Ci	ompounds		

Pī	oject /Vorth	CITY MAN	riojectivo.	10 10000000	00000	, 		
Si	te Location Beth	page, NY			Dat	te <u>9</u> /	19/1	ro
Sit	eWell No. GM-	-16I	Replicate No.		Cod	ie No.		
W	eather Out	cough 70 s	Sampling Time:	Begin 1:15	End			
Eva	ecuation Data			Field Parameters	I	, ir	122	, 3
Me	easuring Point			Color				
MP	Elevation (ft)		<u> </u>	Odor				<u> </u>
Lan	d Surface Elevation (ft)			Appearance		<u> </u>		
Sou	ınded Well Depth (ft bri	mp) 145·00		pH (s.u.)	6.59	7.65	7.8	7.99
	oth to Water (ft bmp)	134.00		Conductivity (mS/cm)				
Wat	ter-Level Elevation (ft)			(µmhos/cm)	3-27	3.24	3.12	3-0
	ter Column in Well (ft)	11.00		Turbidity (NTU) (X	(00)			
Casi	ing Diameter/Type	4(0.65)	·	Temperature (°C)	68.5	67.6	66.4	66-
Gall	ons in Well	7.15	<u> </u>	Dissolved Oxygen (n	ng/L)			
Gall	ons Pumped/Bailed	20		Salinity (%)				
	Prior to Sampling	22		Sampling Method	Dedico	iks B	ladde	Ru
Sam	p le Pumpintake 74 Setting (ft bmp) 7	resine 90 ps	1	Remarks				
Purg	e Time	begin 1:25 end		5gd pa	115 11.	111/2		
Pum	ping Rate (gpm)							
Evacı	uation Method							
Cons	stituen's Sampled	Container	Description	Numbe	er	Preser	vative	
	Sec (d(
	ling Personnel	MUMG						
301115	Well Casing							
Gal./F	•		= 0.37 4" = 0.	.65				
	1-1/2" = 0.09		*= 0.50 6*=1	47				
omp	below measuring point	ml mililiter		NTU Ne	phelometric Tui	rbidity Units		
'n	Degrees Celsius	mS/cm Milisiemens p			yvinyl chloride			
ft	feet 🐣	msl mean sea-lev			indard units			
gpm mg/L	Gallons per minute Miligrams per liter	N/A Not Applicabl NR Not Recorded			cromhos per ce latile Organic C			
11975	Contraction to a section							

Water Sampling Log

Project No-thon	- Grama	<u> </u>	Project No.			Page	1	of
Site Location Gram		Spaye NY				Date		
Site/Well No. 175K			Replicate No.			Code N	vo.	
Weather Sang	600		Sampling Tim	ne: Begin		End		
Evacuation Data		· · · · · · · · · · · · · · · · · · ·		Field Parame	ters I	1/	12	3
Measuring Point				Color			_	
MP Elevation (ft)				Odor				
Land Surface Elevation (ft)				Appearance				
Sounded Well Depth (ft bmp)	70			pH (s.u.)	7.94	7.80	6-85	6.98
Depth to Water (ft bmp)	45.8.	5		Conductivity (mS/cm)	110	105	130	110
Water-Level Elevation (ft)				(µmhos/c	m)			
Water Column in Well (ft)	24.15	•		Turbidity (NTU)			
Casing Diameter/Type	4" 1	PVC		Temperature (F. 100	66.0	648	63.8
Gallons in Well	15.7			Dissolved Oxyg				
Gallons Pumped/Bailed	11-1			Salinity (%)				
Prior to Sampling	47.1			Sampling Met	hod			·
Sample Pump Intake Setting (ft bmp)				Remarks				
Purge Time	begin 10:0	end _						
Pumping Rate (gpm)	2 GP1	7					-	
Evacuation Method								
Constituents Sampled		Container	Description	N	umber		Presen	vative
SEE C.D.C.	•							
300						•		
							<u> </u>	
						-		-
						-		
Sampling Personnel								•
Well Casing Vo	umes		· · ·					
Gal./Ft. 1-1/4" = 0.06 1-1/2" = 0.09	2" = 0.1 2-1/1" =			= 0.65 = 1.47				
			_ U.JU U S					
omp below measuring point C Degrees Celsius	ml mS/cm	mililiter Milisiemens pe	er centimeter	NTU PVC	Nephelometa Polyvinyl chlo		ty Units	
t feet	msl	mean sea-level		s.u.	Standard uni			
gpm Gallons per minute	N/A	Not Applicable	<u>:</u>	umhos/cm	Micromhos p			
mg/L Miligrams per liter	NR	Not Recorded		VOC	Volatile Orga	nic Comp	ounds	

Project	Number:	NY000	008.0210	Task	c: 000	o2 FR	41/	Well I	D: 6M-	171
Date:_	1/29/	00		Sam	pled By:	FR.	<u>5H</u>			
Sampli	ng Time:_			Reco	orded By:_	SH	(zis			-
Weathe	r5,	~~~	65.	Code	ed Replica	te No.:				
		•		WELL	. IMFORM	ATION				
Casing	Material:	PVC	Purge	e Method	1: Lou	, Flow odfair 9 gallo				
Casing I	Diameter:	4"	Purge	e Rate:_	500	not for in				
otal De	oth:	120	Total	Volume	Puraed:	9 99110	~J			
enth to	Water	46.09	Pumr	Intake I	Denth:					
						SEE				
	n Well:		Falan	iletera Ó	ampieu		· · · ·			
anonsi	n vven:									
						EASUREMEN				
	Rate	Gallons			pH	Conductivity				
Time	ml/min)	Purged	(NTUS)			(µmhos/cm)		Water		Comm
,40			-		6.79	110	19.0	46.09	6.9	
, 45					6.58		19.8	-	6.1	
1 60					6.48	105		46.09		
155					6.38	105	19.8	-	6.1	
200				220	648	105	19.9	-	6.3	
Z^{\sim} L					6.47	195	20.1		6.4	
200					6.47			46.11		
213							2.05		6.4	
Z ²⁵						105	\$.05		6.4	
230					6.50	110		46.12		
735					6.48	110	20.2		6.4	
-				2	-,,,	,,,	40.4		0.7	
	- +									

Other (OVA, HNU,etc.):_____

Odor:_____

-	t Number:	NYOOOOO	.0210	Task	: 0000	2		Well I	D: 11/2	
Date:	9/29/0	0		Sam	pled By:	FR S	A			
				Reco	orded By:_	FR St	y			
Weath	ling Time:_ ler:	660				te No.:				
AA COU				0000	od i topiiod					
					TVE SELECT					
				WELL	. IMFORM	ATION				
Casino	Material:	PVC	Pura	e Method	1: 60	w Flow				
Casing	Diameter	411	Pura	e Rate:		b S				
Total D	onth-	98	Total	Volume	Dumed:	6.	- \			
	n Wotor	TA IK	Pumr	intaka	Donth:		2.			
nebiu i	o water	371/0	Fuint	, make i	pehui			<u> </u>		
			Pump	on:		SEE		'		
	/Foot:		Paran	neters S	ampieo: _	366	(.0.	<u>. </u>		
Gallons	in Well:									
			FIELD	PARA	METER M	EASUREMEN	VTS			
	Rate	Gallons	Turbidity		and the second second second	Conductivity		A STATE OF THE PARTY.	7	
Time	ml/min)	Purged	(NTUs)			(µmhos/cm)		Water		Comme
205	450				6.71	85	21.5			
715	-1-			250			21.0	5215	8.4	
<u></u>				250	6.03	R5	19.0	-	8.5	
2 T .										
2 25				240	-	80	19.1	-	8-6	
2 3°				-	-	80 80		51.15	8.3	
23°				240	6.00		18.7	51.15	8.3	
53° 23° 23°				240 235 235 240	6.00 5.95 5.95 5.96	80 25 25	18.7	7	8.3 2.8 8.4	
23° 23° 23°				240 235 235 240 240	6.00 5.95 5.95 5.96 6.00	80 85 85	18.8	51./3	8.3	
23° 23° 24° 24°				240 235 235 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99	80 85 85 85	18.8 18.7 18.8 18.8 18.9	51./3 51./3	8.3 2.8 8.4 8.5 2.7	
23° 23° 23° 24° 25° 25°				240 235 235 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85	18.8 18.7 18.8 18.8 18.9 17.9	- 51.13 57.13	8.3 8.4 8.5 2.7 8.7	
23° 23° 23° 24° 25° 25°				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	
23° 23° 23° 24° 25° 25°				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 18.8 18.9 17.9	51.13 51.13	8.3 8.4 8.5 2.7 8.7	
23° 23° 23° 24° 25° 25°				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	
23° 23° 23° 24° 25° 25°				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	
23° 23° 23° 24° 25° 25°				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	
23° 23° 23° 25° 25° 25° 25° 25° 25° 25° 25° 25° 25	V			240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	
23° 23° 23°				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	
23° 23° 23° 25° 25° 25° 25° 25° 25° 25° 25° 25° 25				240 235 235 240 240 240 240 240	6.00 5.95 5.95 5.96 6.00 5.99 6.00	80 85 85 85 85 85 85	18.8 18.7 18.8 12.9 17.9 19.0	51.13 51.13	8.3 3.8 8.4 6.5 2.7 8.7 8.6	

Water Sampling Log

Project Northern	p-Grames	Project No.	N70000-80 ZI	<u>0-0</u> 0002Pa	ige <u>1</u>	^{of} _	
Site Location Brthpa	je, NY			Da	ate <u>9/</u>	25/00	
Site/Well No. CaM-18	5	Replicate No.		c	ode No.		_
Weather inrucas	t 40s	Sampling Time	: Begin	En	d		
Evacuation Data			Field Parameters	I	IV	ev	3
Measuring Point			Color (ما معلمه			(
MP Elevation (ft)			Odor str	ut are			
Land Surface Elevation (ft)			Appearance				
Sounded Well Depth (ft bmp)	42.91		pH (s.u.)	4.91	4.74	4.64	4
Depth to Water (ft bmp)	67		Conductivity A (MS/cm)	88.7	126.2	124-7	1
Water-Level Elevation (ft)			(µmhos/cm)		-	-	+
Water Column in Well (ft)	24.09		Turbidity (NTU)	671	10 14	1/2/	+
Casing Diameter/Type	2(0.16)		Temperature (%) +	62.[62.4	621	4
Gallons in Well	3.85	···	Dissolved Oxygen (m	197U			+
Gallons Pumped/Bailed Prior to Sampling	1534 II.	<u>55</u>	Salinity (%)				_
"Sample Pump Intake			Sampling Method				_
.15	egin 3:65 end		Remarks				_
Purge Time by Pumping Rate (gpm)	egin <u>5:55</u> end	1/=7					_
Evacuation Method	10 100	<u> </u>					
Constituents Sampled	Container	Description	Numbe	,	Prese	rvative	
SEE C.O.C.				-			
_ > (· (· (· (·)							_
	_						
							_
							_
	- 11/2 /	′ // /					_
	Williams /	M. Lac	ey				_
Well Casing Volum Gal./Ft. 1-½" = 0.06		= 0.37 4" =	/ 0.65				
1-1/2" = 0.09		" = 0.50 6" =					
bmp below measuring point	ml mililiter		NTU Nep	helometric T	urbidity Units		
O Degrees Celsius	mS/cm Milisiemens p			vinyl chloride	•		
ft feet	rnsl mean sea-lev			ndard units	antimeter		

VOC

Volatile Organic Compounds

NR

Not Recorded

Miligrams per liter

rng/L

Pr	oject <u>Nort</u>	my-(zrum	Project Project	No. NYU	100016210 T	Z Pag	ge <u>1</u>	_of _	
Sit	te Location Bus	house, NY				Dat	te <u>9/2</u>	1/00	<u>) </u>
5it	te/Well No.	n-18-I	Replica	te No.		Cod	de No.	·	
W	eather Sun,	m 705	Sampli	ng Time:	Begin <u>4:40</u>	<u> </u>			
Eva	acuation Data			Fie	ld Parameters	I	· (V	20	7
Me	easuring Point			Col	for				
MP	Elevation (ft)			Ode	OF				
Lan	d Surface Elevation (f	t)		Арр	pearance				
Sou	ınded Well Pepth (ft b	omp) /0.	s '	рH	(s.u.)	5.05	5.35	5.38	6.0
	facker oth to Water (ft bmp)		"	Cor	nductivity (mS/cm)				
Wat	ter-Level Elevation (ft)				(umhps/cm)	1.05	0.97	97	0.
Wat	er Column in Well (ft)	//	/	Turt	ルン/cm (didity (NTU)	(00)			
	ng Diameter/Type			Tem	perature (°C)	68.2	66-9	65.9	65.8
	ons in Well	7./	5	Diss	olved Oxygen (mg/				
Gallo	ons Pumped/Bailed			Salin	nity (%)	 9			
-Same	Prior to Sampling	_22 9	allon		pling Method				
30/14	Setting (ft bmp)	+0	PSI	Rem	arks				
Purge	e Time	begin <u>4.46</u>	end		Sace Pui	15: AL			
Pump	oing Rate (gpm)			_	7 [
Evacu	ration Method	Dedreut	4 BladdiPu	· ·					
Cons	tituents Sampled		Container Description	n	Number		Presen	rative	_
	FF (.O.C.								
Sampli	ing Personnel								
	Well Casin	g Volumes							_
Gal./Ft	1-¼" = 0.00 1-½" = 0.09			4" = 0.65 6" = 1.47					
omp .	below measuring point	ml	mililiter	N	ITU Nephe	lometric Tur	bidity Units		_
'n	Degrees Celsius	mS/cm	Milisiemens per centimete		VC Polyvir	ył chloride			
t	feet Gallons per minute	msl N/A	mean sea-level Not Applicable			ard units nhos per cer	ntimater		
gpm ng/L	Miligrams per liter	NR	Not Recorded			nnos per cer e Organic Co			

1	Project	North	ny - Gra	<u>n</u> nen	Project No.	M 00000	g U 210 A	00003 Pa	ige .	10	f
9	Site Location	Bethpage	. NY_					Da	ate	9/18/0	90
9	site/Well No.	MW -	Gu- 20	D	Replicate No.			c	ode No.	·	
٧	Veather	Sunny	70,°	-	Sampling Time:	Begin	11:40	En	d _	1:34	_
E	vacuation Dat	:				Field Parame	eters	1	(V	20	31
N	leasuring Poin	t				Color					
M	IP Elevation (ft)				Odor					
Ła	and Surface Ele	evation (ft)				Appearance					
Sc	ounded Well D	epth (ft bmp)	226 00			pH (s.u.)		8.87	7.31	7.22	6-71
	epth to Water		215.0	JD .		Conductivity (mS/cm)					
W	ater-Level Elev	ation (ft)	_			(µmhos/c		1.12	.97	1.11	1.06
W	ater Column ir	Well (ft)	1100			Turbidity (NTL	cm(xI	00)			
	sing Diameter		4(0.65)		_	Temperature (78.9	74.5	79.9	80.7
	llons in Well	.,,,,,	7.15			Dissolved Oxy			 	1	1
	llons Pumped/	Railed			_	Salinity (%)	gen (mg	-			
Ga	Prior to Sa		22								
San	nple Pump Inti	FIA.L. K K	^			Sampling Met	hod	Degre	+64	Flee	de Hon
	Setting (ft	pmp) () re	85WR 105			Remarks					
,	ge Time		begin <u> :45</u>	end 1.30	_	-				/	
	nping Rate (gp	•				- 5 yal	pails		11	12	
Evac	cuation Metho	od .			<u> </u>						
Con	stituents San	npled	•	Container Des	cription	N	umber		Pr	eservati	ve
S	ce ((10									
						-					
			_					_			
Samp	oling Personne	· _	MUM	E							,
	W	lell Casing Volu	imes								
Gal./I		%" = 0.06 %" = 0.09	2" = 0.16 2-1/2" = 0.20	3" = 0.3 3-1/2" = 0							
Ьтр	below measu	ring point	ml m	ililiter		NTU	Nephe	lometric Tu	irbidity (Inits	
~ຕ່	Degrees Celsi			ilisiemens per ce	ntimeter	PVC	Polyvin	yl chloride	-		
ft	feet Gallons per m	inute		ean sea-level ot Applicable		s.u. umhos/cm		ird units nhos per ce	antimata	r	
mg/L	Miligrams per			ot Recorded	,	AOC		nnos per co 2 Organic (

Water Sampling Log

	Project Northrof - Grunman			Project No.	Nº 00 000 8	<u>0210</u> T31	Page .	<u>1</u> of		
	Site Location	Beth Dage				(Date	9/18	100	
	Site/Well No.	MW- GM	20 I	Replicate No.		(Code No.			
,	Weather	Sunny, NJ	20°	Sampling Time	: Begin		ind	/: 20	_	
	Evacuation Dat	ta			Field Parameters	Ţ	W	21	3V	
N	Measuring Poin	ot			Color					
N	MP Elevation (fi	t)		·	Odor					
L	and Surface Ek	evation (ft)			Appearance	_				
	ounded Well D		105.00		pH (s.u.)	1137	4.10	11.07	10.75	
D	Packet epth to Water	(ft bmp)	94.00		Conductivity (mS/cm)			1	,	
W	/ater-Level Elev	ration (ft)			- (uanhos/cm)	5.13	3.10	2.69	2.49	
w	ater Column i	n Well (ft)	11.00		Turbidity (NTU)) —				
	asing Diameter	-	4(0.65)		Temperature (°C)	64.6	45.3	(A.3	73.3	
	allons in Well		7.15		Dissolved Oxygen (ı					
Ga	allons Pumped/				Salinity (%)					
Pac	Prior to Siken Prissure mple Pumplat	ampling _	22		Sampling Method					
\$2	mple Pump Int Setting (fi					ated Bla	dde 1	Ans		
Pui	rge Time	_	egin <u>//////////</u> end _(115	DTW					
	nping Rate (gp				Pura - 4/2	5gal	06.15	_		
Eva	cuation Metho	od			5 gel pa	:13	111/13			
Cor	nstituents Sar	npled	Contain	er Description	Numb	ef	Pr	eservati	Ve	
_	EE COC									
					.					
							_			
							_			
Sam	pling Personne	:I <u>M</u> I	IME							
	W	/ell Casing Volum	ies							
Gal./		-½" = 0.06 -½" = 0.09		2 = 0.37 4" = 0 2 = 0.50 6" = 1						
I bmp	bel ow measu	-	ml militer			phelometric	-	Inits		
°C ft	Degrees Celsi feet	us	ms/cm Milisiemens ms/ mean sea-lo	s per centimeter eve l		yvinyl chlorid ndard units	е			
9pm	Gallons per m	ninute	N/A Not Applica	ble	umhos/cm Mid	cromhos per	centimete	r		

NR

Not Recorded

VOC

Volatile Organic Compounds

Miligrams per liter

rng∕L

F	Project	Northru	p-(zrumn	→ Project No.	D. NYO	000080250.	ano Z Pa	age <u>1</u>	of	
5	Site Location	Bethrey	W				D	ate <u>9/</u>	25/0	4
S	ite/Well No.	(7M-21)	5	Replicate	No		c	ode No.		
v	Veather	0240		Sampling	Time: B	legin <u>a.5</u>	<u>S</u> En			
E	vacuation Data				Field	Parameters	I	10	てひ	1
M	feasuring Point	_			Color					
М	IP Elevation (ft)	_			Odor			1		\perp
La	and Surface Elec	vation (ft)			Арреа	arance				
So	ounded Well De	epth (ft bmp)	67.20	67.25	pH (s.	u.)	4.49	4.10	3.97	3.9
De	epth to Water (ft bmp)	37.5	5		activity nS/cm)			1	
Wa	ater-Level Eleva	ition (ft)			(p	mhos/cm)	94.7	96.1	96.6	96
	ater Column in		29-	7		NS (cur ity (NTU)				
	sing Diameter/		a (o.			rature (%)	63.4	6416	64.9	649
	llons in Well		4.7	5		ام ہے۔ ed Oxygen (mg	g/L)			
Gal	llons Pumped/B	 Jailed	10	2 -	Salinity	(%)				
	Prior to Sa	mpling	19.	25	Sampli	ng Method				
	nple Pump Inta Setting (ft	ke bmp)			Remari	_				
:-8 :-3 Pur	ge Time		gin 3:03 e	end						
_	nping Rate (gpt	√	2=17=1	14 IV=5						
	cuation Method									
Con	stituents Sam	pled	Co	ntainer Description		Number		Prese	rvative	
<		0.6								
	SFF C	<i>U.</i> (-								
	SEE C	_0.(_								
	SEE C	_0.(.						_		
	> t f = C	.0.(.								
	S&F (.0.(.								
	S&F (
Samp	oling Personnel		G. Willio	~						
	oling Personnel We	ell Casing Volume	es							
Samp Gal./I	oling Personnel Wi			3* = 0.37	4" = 0.65 5" = 1.47					
Gal./I	oling Personnel Wi Ft. 1-)	ell Casing Volume %" = 0.06 %" = 0.09	es 2° = 0.16	3° = 0.37 3-½° = 0.50		Neph	nelometric Tr	urbidity Units		
	oling Personnel Wi	ell Casing Volume 4° = 0.06 4° = 0.09 ing point	2" = 0.16 2-½" = 0.26 ml milili mS/cm Milis	3" = 0.37 3-½" = 0.50 iter iemens per centimeter	6" = 1.47	Polyv	inyl chloride	urbidity Units		
Gal./I	oling Personnel Wi Ft. 1-) 1-k below measur	ell Casing Volume 4° = 0.06 4° = 0.09 ing point	2" = 0.16 2-½" = 0.26 ml milili mS/cm Milis ms/ mea	3° = 0.37 3-½° = 0.50	5° = 1.47 NTU PVC s.u.	Polyv Stand		•		

Miligrams per liter

mg/L

NR

Not Recorded

VOC

Volatile Organic Compounds

Project		. 151	Project No.	N700000 8021		age <u>1</u>	of 18100	
Site Lo		0	Replicate No.			ode No.	11.8 100	
Weathe		705	Sampling Time:	Begin 2:0			50	
Evacuat	tion Data			Field Parameters		1	zv	31
Measuri	ing Point			Color				
MP Elev	ation (ft)			Odor				
Land Su	rface Elevation (ft)			Appearance			1	
Sounded	d Well Depth (ft bmp)	40.00		pH (s.u.)	10.	11.22	10.21	10.10
Depth to	Water (ft bmp)	129.00		Conductivity (mS/cm)				
Water-Le	evel Elevation (ft)			(pmhgs/cm)	1.75	1.45	1.41	1-38
Water Co	olumn in Well (ft)	11.00		turbidity (NTU)	(oo) ———			
Casing D	nameter/Type	4(0.65)		Temperature (°C)	76.6	70.2	67.8	67.6
Gallons i	n Well	7.15		Dissolved Oxygen (m	g/L)	 		1
	rumped/Bailed rior to Sampling	22		Salinity (%)	Dus			
	etting (ft bmp) Pre	ser skur 90 Ps	<u> </u>	Sampling Method Remarks	Pedica		ladden 8	auf
Purge Tirr	ne	begin <u>2110</u> end	3:45	Sgal pail	5 1/1	1/2		
	Rate (gpm)							
Evacuatio	n Method							
Constitue	ents Sampled	Contai	ner Description	Number	•	Pres	ervative	•
Se	(00					-		
				_		-	· ·	
Sampling F	Personnel /	MEIML	4					
	Well Casing Vol	umes						
Gal./Ft.	1-1/4" = 0.06 1-1/2" = 0.09		$4^{\circ} = 0.37$ $4^{\circ} = 0.50$ $6^{\circ} = 1.50$					
°C Deg ft feet	ow measuring point rees Celsius	ml mililiter mS/cm Milisieme msl mean sea		PVC Polyv s. u. Stan	nelometric T vinyl chloride dard units	•	its	

gpm

mg/L

Miligrams per liter

NR

Not Recorded

Water Sampling Log

Project <u>N. G.</u>	ummen	Project No. 11/9 a	00000 .0010	0,00003	Page 1 o	f
Site Location 3	ethorse				Date	100
Site/Well No. 6 M	735	Replicate No.			Code No.	
		•	Begin 2	430	End	
Weather		Sampling Time:	Begin		E/10	
Evacuation Data			Field Parameter	rs 10	120	130
Measuring Point			Color		Velley	tint
MP Elevation (ft)			Odor		1/2	che
Land Surface Elevation (ft)			Appearance			
Sounded Well Depth (ft bmp)	55.80		H (s.u.)	8.16	7.73	7.99
Depth to Water (ft bmp)	57.19		Conductivity (mS/cm).	-9		
Water-Level Elevation (ft)			(µmhos/cm)	90	100	105
Water Column in Well (ft)	1.61	т	urbidity (NTU)			
Casing Diameter/Type	4(.65)		emperature (°C	25	25	25
Gallons in Well	1.64	D	issolved Oxyge	n (mg/L) =		
Gallons Pumped/Bailed Prior to Sampling	3		alinity (%)			-
Sample Pump Intake Setting (ft bmp)			ampling Metho			
Purge Time	begin 4/35 end					<u> </u>
Pumping Rate (gpm)						
Evacuation Method	Bailer					
Constituents Sampled	Container	Description	Nun	nber	Preservat	ive
SEE CO.C.						
Sampling Personnel	SH ME					
Well Casing Vol	umes			<u></u>		
Gal./Ft. 1-1/4 = 0.06 1-1/2 = 0.09		= 0.37 4" = 0.65 " = 0.50 6" = 1.47				
omp below measuring point C Degrees Celsius It feet Gom Gallons per minute	mł mililiter mS/cm Milisiemens p msł mean sea-leve N/A Not Applicabl	el	PVC s.u.	Nephelometric Polyvinyl chlor Standard units Micromhos pe	;	

Volatile Organic Compounds

VOC

P	roject <u>/// 4.00000</u>	7.0010.	Project No.	. 6000	<u>-</u>	Page <u>1</u>	of	
S	ite Location Se	thrage				Date	12/00	_
	te/Well No. 23		Replicate No.	Re1-2		Code No.	l	
	eather		Sampling Time:	$\overline{}$	45	End		_
Ev	acuation Data		· · · · · · · · · · · · · · · · · · ·	Field Parameters	I	10	5.0	[3
M	easuring Point			Color		blarle.	2.5	\perp
	P Elevation (ft)			Odor		IVane		Ι
Lai	nd Surface Elevation (ft)			Appearance		clear		\perp
Soi	unded Well Depth (ft bmp)	120.00		pH (s.u.)	9.50	7.70	P. 29	<u>/</u> _7
Dej	oth to Water (ft bmp)	109.00		Conductivity (mS/cm)	+5-			
Wa	ter-Level Elevation (ft)			(µmhos/cm)	150	45	45	ĬΥ
Wa	ter Column in Well (ft)	11.00		Turbidity (NTU)				T.
	ing Diameter/Type	4 (.65)	SAMULTURE?	Temperature (°C)	22.5	24	25.5	F24
	ons in Well	7.15	VI OFFI	Dissolved Oxygen				
	ons Pumped/Bailed			Salinity (%)	_			T
	Prior to Sampling	_ 2		Sampling Method				Ť
Sam	ple Pump Intake Setting (ft bmp)			Remarks				ţ
Purg	e Tirne	begin 4 8 end						L
Pum	ping Rate (gpm)			DIN	-53	3.64		_
Evac	uation Method	Dedirated	Blodder					_
Cons	stituents Sampled	Container	Description	Numi	ber	Preserva	ative	-
	SEE (.O.C.							
	See (.0.C.							-
								-
-								-
								-
Samo	ling Personnel	ME /SH						•
	Well Casing Vo							
Gal./F	-	2" = 0.16 3" =	= 0.37 4" = 0 = 0.50 6" = 1		Rel	2-6	. 🗶	
bmp	below/measuring point	ml milliter		NTU N	lephelometri	Turbidity Units		•
°C	Degrees Celsius	mS/cm Milisiemens p		PVC P	olyvinyt chlor	ide		
ft gpm	feet Gallons per minute	msl mean sea-leve N/A Not Applicable			tandard units Aicromhos pe			
nng/L	Miligrams per liter	NR Not Recorded				ic Compounds		

aterial:_ameter:_	13 foc ny 7 PVC 4	Purge Purge Total Pump Pump	WELL e Method e Rate: Volume o Intake I	pled By:_prded By:_ed Replica IMFORM I: Purged:_ Depth:	MES ATION ATION TVOC	N D OF	Dedi Blade	ce te é	3.
aterial:_ ameter:_ th: Vater: umn:_ oot:_ Well:_ Rate nl./min)	 PVC Y' SI. 70	Purge Purge Total Pump Pump Paran	WELL e Method e Rate: Volume o Intake [o on: neters Sa	IMFORM 1: 49 Purged: Depth: 340	ATION FIG. 50 ML/	n n	Dedu Blad	\	
aterial:_ ameter:_ th: Vater: umn:_ oot:_ Well:_ Rate nl./min)	 PVC Y' SI. 70	Purge Purge Total Pump Pump Paran	WELL e Method e Rate: Volume o Intake [o on: neters Sa	IMFORM 1: 49 Purged: Depth: 340	ATION FIG. 50 ML/	n n	Dedu Blad	\	
aterial:_ ameter:_ th: Vater: umn:_ oot:_ Well:_ Rate nl./min)	 PVC Y' SI. 70	Purge Purge Total Pump Pump Paran	WELL e Method e Rate: Volume o Intake [o on: neters Sa	IMFORM 1: 49 Purged: Depth: 340	ATION FIG. 50 ML/	n n	Dedu Blad	\	
th: Vater: umn: oot: Well: Rate	51.70	Total Pump Pump Paran	e Method e Rate: Volume o Intake [o on: neters Sa	1:	FICE STATE	m n Callen	B la A.	\	
th: Vater: umn: oot: Well: Rate	51.70	Total Pump Pump Paran	e Method e Rate: Volume o Intake [o on: neters Sa	1:	FICE STATE	m n Callen	B la A.	\	
th: Vater: umn: oot: Well: Rate	51.70	Total Pump Pump Paran	Volume Intake I on: neters Sa	Purged:_ Depth:	5	m n Callen	B la A.	\	
th: Vater: umn: oot: Well: Rate	51.70	Total Pump Pump Paran	Volume Intake I on: neters Sa	Purged:_ Depth:	5	Of	<i>s</i> T:		
th: Vater: umn: oot: Well: Rate	51.70	Total Pump Pump Paran	Volume Intake I on: neters Sa	Purged:_ Depth:	5	Of	<i>s</i> T:		
wmn: oot: Well: Rate nl./min)	51.70	Pump Pump Paran	Intake (on: neters Sa	Depth:		Of	f:		
wmn: oot: Well: Rate nl./min)		Pump Paran	on: neters Sa	340					
well: Rate		Paran	neters Sa						
Well: Rate nl./min)									
Rate nl./min)		FIELD	DADA						
nl./min)	Gallons	FIELL	I DADA-			-			
nl./min)	Gallons	Touch: dite.			EASUREME		ID-a-th to	Dice	
	Purged				Conductivity (µmhos/cm)		Depth to Water	and the second second	Comment
, J U	ruigeo	(/1100)		7.78				6.5	Common
1				7.70		17.0		5.6	
				7.72			51.7		
				7-71		17.0		6.4	
				7.83		17.0	-	6.6	
1 /-				7.81	78	17.0	-	6.6	
A									
			7						
			755	7.94					
			20)		20.	77.0		<u>, , o</u>	
							11:		
				2.57		==11			
Col	mr 1 25	5		. 1	urbidity(quali	tative):			
	Col	Color Los	YES Color Less Mere	760 260 265 260 260 255 255 Vest Less Mere	768 7.76 265 7.79 260 7.70 260 7.70 260 7.72 255 7.94 VES Color Less Mere	260 7.82 25 262 7.76 80 265 7.79 80 260 7.70 80 260 7.70 80 260 7.70 80 260 7.70 80 260 7.70 70 260 7.70 80 255 7.99 80	260 7.82 75 17.2 260 7.20 80 17.2 265 7.79 80 12.2 260 7.83 80 17.0 260 7.83 80 17.0 260 7.70 70 17.0 260 7.70 70 17.0 260 7.70 70 17.0 255 7.99 80 17.0 255 7.99 80 17.0 17.0	260 7.82 25 17.2 268 7.76 80 17.2 265 7.79 80 17.2 265 7.79 80 17.0 260 7.70 80 17.0 260 7.70 80 17.0 260 7.12 78, 17.0 51.73 255 7.99 80 17.0 255 7.99 80 17.0	260 7.82 75 17.2 - 7.5 7.6 7.7 80 17.2 - 8.1 265 7.79 80 17.2 - 8.1 260 7.70 80 17.0 - 8.1 260 7.70 80 17.0 - 8.1 260 7.70 80 17.0 - 8.1 260 7.92 78 17.0 - 7.8 255 7.99 80 17.0 255 7.99 80 17.0

	t Number:_	NYOOO	208.0	Z/C)Tas	k: <u></u>	<u>~0</u>		Well I	D: <u>6/4/</u>	340
Date:	/	3/00		San	pled By:_	<u>5#</u>	ME			
Samp	ing Time:_			Rec	orded By:	5&				
Weath	<u>ء ک</u>	my 1	,50	Code	ed Replica	ate No.:				
•										
		·		WELI	<u>. IMFORM</u>	MATION				
Casing	Material:_		Purg	e Metho	d:	LowF	اوب	1 B1.	lder	
Casing	Diameter:	٥,,	Purg	e Rate:_	_ 4	150	mlmo			
Total D	epth:	319	Tota	Volume	Purged:_		cal			
	Water:		Pum	p Intake	Depth:		<u>J</u>			
-	Column:		Pumi	p on:	10 10		Of	f:		
	Foot:					SEE				
	in Well:									
,						EAG1655	LITE			
	Rate	Gallons	FIEL			Conductivi		Depth to	Diss.	
Time	imi/min)		(NTUs)			Conductivities) (µmhos/cm		Water		Comments
1010	, in armar)	ruigeu	(11103)	-	9.40	7	-	-	1,4	Comments
10015					9.51		16.8	16.40		
10 20	9			5	9.65		18.5		1.0	
0 25			below	-40	10.14	160	170	-	.7	
			"	13	10.34	160	17.5	16.40	1.6	l 1
0 30										
033			"	"	10.12	180	17.5	-	5	3
0 33			"	12	9.78	190	180		.5~	-
0 40			"		9.73	190	18.0	1 1	.5°	
0 45			"	n 11	9.78 9.54 9.34	185	18.0	-	N P	
0 40			"	n 11 -80	9.78 9.54 7.34 9.10	190	18.0 18.2 18.5	1 1	W W W	
0 40			"	n 11 -80 -55	9.78 9.54 9.34 9.10 8.39	190 185 160 160	18.8 18.2 18.5 19.0	1 1	N P	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84	190 185 160 160 155	18.3 18.3 18.5 19.0 19.0	16 45	5 5 M 15 15 15 15 15	
033			"	40 -55 -55	9.78 9.54 9.34 9.10 8.39	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	5 5 M 15 15 15 15 15	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.0 18.2 18.5 19.0	16 45	w. w. w. w. w. w.	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	
033			"	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	
0 40 40 45 45 45 45 45 45 45 45 45 45 45 45 45	e:		""	-80 -55 -50	9.78 9.54 9.34 9.10 8.39 8.84 8.84	190 185 160 160 155 155	18.3 18.3 18.5 19.0 19.0	16 45	w. w. w. w. w. w.	

,~

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log Project Number: 11400008,020 Task: 60003 Well ID: CM 3462 10/3/00 Sampled By: SIF ME Sampling Time: Recorded By: 5H_____ Coded Replicate No.: Weather:_ WELL IMFORMATION Casing Material: Stee! Purge Method: Law Flow / Blodder Casing Diameter: 4" Purge Rate: 450 M/MM Total Depth: 520 Total Volume Purged: 991 Depth to Water: 18 19 Pump Intake Depth: Water Column: Pump on: / Z /S Off: _____ VOCS Parameters Sampled: _____ Gallons/Foot:_____ Gallons in Well:__ FIELD PARAMETER MEASUREMENTS Turbidity REDOX pH Temp Depth to Diss. Rate Gallons Conductivity (nim/.lmid Purged (NTUs) (mV) (SI Units) (µmhos/cm) (°C) Water Comments Oxygen Time 70 12 75 - 35 5.90 17.0 18.19 1.5 65 -40 5.88 16.5 18.9 7 35 -50 6.20 706 12 40 20 -55 5.95 18.0 45 -55 5.87 20 17.0 1250 -55 5.76 17.0 125 1255 17.0 90 -40 5.63 -25 5.53 17.5 100 105 18.81 5.36 55.81 10 18.0 5.36 110 75 5-22 105 12.0 20 20 2.0 5.25 100 17.5 25 35 5.20 2.6 95 18.8 18.20 30 45 5. 22 90 18.0 3.1 18.0 3.3 5.50 70 40 180 5.18 *⋧* か. 45 50 35

Well Secure:	Purge Water Disposal: 55 (4) Drug -> N.C. Sew Cr
·	urbidity(qualitative): UCLCC
Odor: None	Other (OVA, HNU,etc.):

Water Sampling Log

	d Nictor	rup- (100	mon	Project No.	NY 0000 &	210-000	Page	1of	
Site L	ocation Beth	page NY	· ·				Date	9/19/0	0
Site/V	vell No. GM-	35D2		Replicate No.			Code N	o	
Weatl	her Sany	705		Sampling Time:	Begin	9:36	End	12:15	_
Evacu	ation Data				Field Param	eters	r. W	2 ~	3レ
Measu	uring Point				Color	_		1	
MP Ele	evation (ft)				Odor				
Land S	iurface Elevation (ft)				Appearance				
Sounde	ed Well Depth (ft bmp	630	00 · C		pH (s.u.).	8 <u>5</u>	6.25	5.33	5.08
	to Water (ft bmp)		7.00		Conductivity (mS/cm				
Water-	Level Elevation (ft)				-(praho	(an) [.01	81.1	1-21	1-22
Water (Column in Well (ft)	23	3.00		Turbidity (N	TU) (KIUO)			
Casing	Diameter/Type	4"	(0.65)		Temperature	(°C) (0)	15.2	79.2	80.
Gallons	in Well		4.95	<u> </u>	Dissolved Ox	ygen (mg/L)			
Gallons	Pumped/Bailed				Salinity (%)				
	Prior to Sampling		45.0	<u> </u>	Sampling Me	thod De	lunte	1 Blad	L. Pr
Sample	Setting (ft bmp)	SUL	2258	Sı	Remarks	لتكوا			
Purge Ti	\ .	begin 9:4 (500	0 -20-15	MI	1111	
_	g Rate (gpm)				2023	7	114	***	
	ion Method								
onstitu			Container	Description		Number		reservati	
	uents Sampled							i esci vuu	/ e
~~	uents Sampled							reservou	/e
<u>Se</u>									/e
Še					·		. <u>-</u>	16361700	/e
<u>~</u>					·		. <u>-</u>		/e
<u> </u>					·		· -		/e
<u> </u>					 		 		/e
ampling		MLIMI			·			Teservau	
ampling	(0)								
	Personnel		6 3.=	0.37 4° = 0.50 6° =					
al./Ft.	Personnel Well Casing V 1-¼ * = 0.06 1-½ * = 0.09	olumes 2" = 0.1	6 3.=			Nephelome	-		
nl./Ft.	Personnel Well Casing V 1-¼ " = 0.06 1-½ " = 0.09 elow measuring point egrees Celsius	olumes 2" = 0.1 2-½" = 0 ml ms/cm	6 3° = 0.26 3-½° milliter Milisiemens po	= 0.50 6" =	1.47	Polyvinyl ch	tric Turbidity		
al./Ft. np be De	Personnel Well Casing V 1-¼ " = 0.06 1-½ " = 0.09 elow measuring point egrees Celsius	olumes 2" = 0.1 2-½" = 0	6 3° = 0.26 3-½° mililiter	= 0.50 6" = er centimeter	NTU	Polyvinyi ch Standard u	tric Turbidity	Units	

Project	DO)	bothnip	-Czrainwran	Project No.	M0000050	1210.000	3 Pa	ge <u>1</u>	of	
Site Location	Betyping	e, MY					Da	te g	1/24	00
Site/Well No.	CAM :	36 17		Replicate No.			Co	de No.		
Weather	Suny	805		Sampling Time:	Begin	2:45-	End	9	1:15	-
Evacuation Dat	а				Field Parame	ters	Z	i 14	, 21	1 3
Measuring Poin	t				Color	_				
MP Elevation (ft)		,		Odor					
Land Surface Ele	evation (ft)				Appearance	_				
Sounded Well D	epth (ft bmp)	214.	00		pH (s.u.)	4	.87	5.36	5.48	5.4
Depth to Water	(ft bmp)	2.02	<i>w</i>		Conductivity (mS/cm)	_				
Water-Level flev	ation (ft)		7 		(pmhox/c	musky	1.03	1.04	1.05	1.64
Water Column in	Well (ft)	12.	OU		Turbidity (NTU	n (xic	(00			
Casing Diameter/	Туре	4/1	1.65)		Temperature ((°C)	70.9	68.1	68.3	68,3
Gallons in Well			80		Dissolved Oxyg	gen (mg/L)			<u>'</u>	
Gallons Pumped/I Prior to Sa			24		Salinity (%)	_	1	. 521	11. 8	,
Sample Pump Into	tomp) Payor	essur	10 PSi		Sampling Meti Remarks		evan	d Bla	Sale I	up
Purge Tirne	•	begin 2:5	$\frac{6}{2}$ end $\frac{4}{2}$	<u> </u>	-6a	al por	15:	M		
Pumping Rate (gp	m)									
Evacuation Metho	od .									
Constituents San	npled COC		Container De	escription		umber	_	Prese	ervative	
Sampling Personne		NEI	M							
	/ell Casing Vol u % " = 0.06	umes 2" = 0.1	6 3* = 0	.37 4" = 0.						
	%1° = 0.06 %2° = 0.09	2-1/2" = 0.1								
bmp below measu °C Degrees Celsi ft feet gpm Gallons per m	inute	ml mS/cm msl N/A	mililiter Milisiemens per mean sea-level Not Applicable	centimeter	NTU PVC s.u. umhos/cm	Polyvinyl Standard Micrombo	chloride units os per ce			
maA Miliarams per	liter	NR	Not Recorded		voc	Volatile O	roanic C	ompounds		

Miligrams per liter

mg/L

NR

Not Recorded

VOC

Volatile Organic Compounds

Water	Sam	pling	Log
-------	-----	-------	-----

Pr	roject	Norther	10- Crumma	Project No.	N70000080	210 T3	Page	<u>1</u> of	
Sit	te Location	Ketu pa	ie M				Date	4-20	-00
Sit	te/Well No.		6 D-Z	Replicate No.			Code N	o	
	eather .	Sunny	80 5	Sampling Time	: Begin /	3750	End		_
Eva	acuation Data	,			Field Paramete	ers I	_ 10	74	31
Me	easuring Point				Color	_	<u> </u>		
MP	P Elevation (ft)				Odor				
Lan	nd Surface Elev	ration (ft)			Appearance				
Sou	unded Well De	pth (ft bmp)	540.0	30	pH (s.u.).	8.76	11.5	10.25	9.69
	oth to Water (518.0		Conductivity (mS/cm)				
Wat	ter-Level Eleva	tion (ft)			(pmhos/cm	- [·12	6.31	1.47	619
Wat	ter Column in	Well (ft)	72.0	ารอ	Turbidity (NTU)	k (1000)			
	ing Diameter/		4/0-		Temperature (°C		62.5	68.9	68.6
	ons in Well	,,	14.3	-	Dissolved Oxyge	-			_
Gallo	ons Pumped/B Prior to Sa		43 -	<u></u>	Salinity (%)			D(11	0
	ple Pump intal Setti <u>ng (f</u> e	omp) P	ressur 236	<u> </u>	Sampling Methor	a pail	N	Bladde H 11	Land
_	e Time		begin <u>('a)</u> end						
	ping Rate (gpr	_							
FASCI	uation Method								
Cons	stituents Sam See	pled (CC	Contain	ner Description	Nu	mber	-	Preservativ	
							-		
Sampl	ling Personnel		NE/ML			<u> </u>	_		
		ll Casing Volu							
Gal./Ft	_	4" = 0.06 5" = 0.09		1° = 0.37 4° = 0 1-½° = 0.50 6° =					
bmp °C ft	below measur Degrees Celsiu feet Gallons per mi	ing point is	ml mililiter mS/cm Milisiemei msl mean sea N/A Not Applii		NTU PVC s.u. umhos/cm	Nephelometri Polyvinyl chlor Standard unit Micromhos pe	ride s		_

Water	Sam	pling	Log
-------	-----	-------	-----

•	Tacci so	b9 _0	7								
Pn	oject	Northrup	(Jon	mon	Project No. N	19000680	1210T3	Pag	e <u>1</u>	of	
Sit	e Location	Beturaa	M					Date	e <u>1/</u>	21/0	0
Sit	e/Well No.	C7M-3	70		Replicate No.			Cod	e No.	<u> </u>	
We	eather	Ovucast	70	<u> </u>	Sampling Time:	Begin	9:30	End	12	: 20	
Eva	cuation Data	3				Field Paran	neters	# 1	10	zv	36
Me	asuring Point					Color					
MP	Elevation (ft)					Odor					
Lan	d Surface Ele	vation (ft)				Appearance	e _				
Sou	nded Well De	epth (ft bmp)	262.	00		pH (s. u.)	5	5.67	4.7	4.65	4.8
Dep	th to Water ((ft bmp)	240.	<u>૦</u> ٠૦		Conductivit (mS/cm					
Wat	er-Level Eleva	ation (ft)				(pmho		-07	2.02	200	200
Wat	er Column in	Well (ft)	22-0		<u></u> .	Turbidity (N	TU) KIO	<i>υ</i>)			1
Casi	ng Diameter/	Туре	4"(0.65)		Temperature	e (°C)	66.4	65.9	65.6	16
Gallo	ons in Well		14.	30		Dissolved Ox	xygen (mg/L)				
Gallo	ons Pumped/B		, ,			Salinity (%)	_				
_	Prior to Sa	_	45	5.00		Sampling M	ethod _				
Samp	ole Pymolnta Setting (ft	bmp) Pross(1/2	u 11	D PS1 .		Remarks .		`			
Purge	e Time	• •	in <u>9:36</u>	end /2;	15	5 gal	L pails:	**	-11	1	
Pump	oing Rate (gpi	m)				0		η,		,	
Evacu	ation Method	d Je	beated	Bladden Vun	V					-	
Cons	tituents Sam	pled		Container De	escription		Number		Pres	ervative	
	Se	e Coc						_			
			_								
			_								
			_					_			
Sampl	ing Personne	I M	E/ML								
		ell Casing Volume				<u> </u>					
Gal./Ft		%" = 0.06 %" = 0.09	2" = 0.16 2-1/2" = 0								
	below measur		ml	mililiter		NTU	Nanhalar	netric Turb	nidity Hei	te	_
omp 'C	Degrees Celsion		mS/cm	Milisiemens per	centimeter	PVC	Polyvinyl		nany Oili		
t	feet		msl	mean sea-level		S. U.	Standard				
pm -	Gallons per m		N/A	Not Applicable		umhos/cm		os per cen			
ng/L	Miligrams per	liter	NR	Not Recorded		VOC	voiatile C	Organic Co	rnpound:	•	

rng/L

F	Project North	1 - Common	Project No.	NHUUDDOR	0210	<i>ღეი</i> სპPage	1	of	
5	ite Location	<i>!</i>	mar, UY			Date	9/2	410	U
S	ite/Well No	- 37 D -2	Replicate No.			Code	No.		
V	Veather		Sampling Time:	Begin (2:20	End	3:4	0	
E	vacuation Data			Field Paramet	ers	<u> </u>	IV	zu	38
M	leasuring Point			Color					
	P Elevation (ft)			Odor					
	nd Surface Elevation (ft)			Appearance					
	unded Well Depth (ft bmp)	398.00		pH (s.u.)	(1.83 5	72 1	1.90	4.8
	pth to Water (ft bmp)	367.00		Conductivity					
	151			(mS/cm)		244 2	31 2	.34 /	27/
	iter-Level Elevation (ft)			Jumhas/p	MIX	2.04 2	. 3 8	. 77	2-35
Wa	iter Column in Welf (ft)	23.00	·	Turbidity (NTU)) (/				11
Ca	sing Diameter/Type	4/0.65)		Temperature (°	C)	66 6	6.7 10	46	66.C
Gal	lons in Well	14.95		Dissolved Oxyg	en (mg/L)				
Gal	lons Pumped/Bailed Prior to Sampling	45.00		Salinity (%)					
San	nnie Pump Intake	180 PS 1		Sampling Meth	iou				
	\$		• • •	Remarks	1 0:	16.31	THE		
	ge Time	begin end		_ 5 ap	l qui	12: IN	-111		
	pping: Rate (gpm)	7.1							
Evac	uation Method	Ledicans Bladd	er Kunp						
Con	stituents Sampled	Container D	Description	Nu	mber		Preserv	ative	
	Sec COC								
						_			
						_			
Samp	oling Personnel	MEIML							
_	Well Casing Vol								
Gal./i	1-14" = 0.06	2" = 0.16 3" =							
	1-1/2" = 0.09	2-1/2" = 0.26 3-1/2" :	= 0.50 6" = 1.	41					
bmp	below measuring point	ml mililiter		NTU		metric Turbio	dity Units		
°C ft	Degrees Celsius feet	mS/cm Milisiemens per msl mean sea-level		PVC s.u.	Polyviny Standari	l chloride d units		`	
gpm	Gallons per minute	N/A Not Applicable		umhos/cm		u umo hos per centir	meter		
mg/L	Miligrams per liter	NR Not Recorded		voc		Organic Com			

Project Site Location Site/Well No. Weather Summy	recessor Bothpage.	NO. MS[MSD]	Page 1 of Date #122/75 Code No.
Evacuation Data Measuring Point MP Elevation (ft) Land Surface Elevation (ft) Sounded Well Depth (ft bmp) Depth to Water (ft bmp) Water-Level Elevation (ft) Water Column in Well (ft) Casing Diameter/Type Gallons in Well Gallons Pumped/Bailed Prior to Sampling Sample Pumpintake Setting (ft bmp) Purge Time Pumping Rate (gpm) Evacuation Method	340.00 317.00 23.00 4(0.65) 14.95 45.00 Sur 145 DS.1 begin 11:05 end	Conductivity (mS/cm) (pmhos/cm) Turbidity (NTU)	1 1 2 2 1 3 0 3 1 3 1 0 .9 0 .9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sampling Personnel Well Casing Volu Gal./Ft. 1-¼* = 0.06 1-½* = 0.09	Container Description ML/ME mes 2° = 0.16 3° = 0.37 2-½° = 0.26 3-½° = 0.50	4" = 0.65 6" = 1.47	Preservative
Ibmp below measuring point C Degrees Celsius ft feet gpm Gallons per minute mg/L Miligrams per liter	ml mililiter mS/cm Milisiemens per centimeter msl mean sea-level N/A Not Applicable NR Not Recorded	NTU Nephelom PVC Polyvinyl c s.u. Standard c umhos/cm Micromho	

P	Project North	D-Grumman	Project No. 🖟	17000080210.	0000 2	Page _1	of	
	ite Location Fre-Man	1/4				Date	9/22	1/00
	ite/Well No. 17M	380-7	Replicate No.	ROD-1		Code No.		7
	-1.6	708	Sampling Time:		.05	End _		_
E	vacuation Data			Field Parameters		liu	rv	30
М	easuring Point			Color				
	P Elevation (ft)			Odor				
La	nd Surface Elevation (ft)			Appearance				
So	unded Well Depth (ft bmp)	. 495.00		pH (s.u.)	4.75	- 4.98	4.91	4.90
	pth to Wister (It bmp)	472.4		Conductivity (mS/cm)				
Wa	ater-Level Elevation (ft)			(huybas/cur)	0.85	0.81	0.87	0.82
Wa	iter Column in Well (ft)	23.60	· · · · · · · · · · · · · · · · · · ·	Turbidity (NTU)	(x100)			
	sing Diameter/Type	4/0.65)	Temperature (°C)	58.2	60.5	60.1	59.9
	lons in Well	14.85		Dissolved Oxygen		7-4		
	lons Pumped/Bailed			Salinity (%)	_			
	Prior to Sampling	45.0		Sampling Method	1			
Sagr	nple Pump Intake Packu Setting (It brnp) Pro	Suc 27/)	PST	Remarks				
Duge	ge Time	begin 916 end	10:5-5	Collecte	155	Bi. ne	Red	1 als
	pping Rate (gpm)		W-J	Lance		7121100	τοσγι	.0.103
	tuation Method	Ledrarad Blads	La Paro	Sgal P	auls ?	HLI	[1]	
Con	stituents Sampled	Contain	er Description	Num	ber	Pro	servativ	79
	See Coc							
			42					
Samp	oling Personnel	ME/ML						
	Well Casing Vol							
Gal./I	7-1/4" = 0.06 1-1/2" = 0.09		2×0.37 4×0.37 4×0.50 6×0.50		_	_		
omp	below measuring point	ml mililiter		NTU I	Vephelometri	c Turbidity U	Inits	
· (Degrees Celsius		s per centimeter		Polyvinyl chlor			
ft gpm	feet Gallons per minute	msl mean sea-h N/A Not Applica			Standard units Micromhos pe		r	
mg/L	Miligrams per liter	NR Not Record			/olatile Organ			

Low-F Projec	low Groun t Number:_	dwater Sar	mpling Log	5210 Tasl	c	6 W	<u>_</u>	Well IC	:_# <i>N</i>	کے کے	7 >
Date:_		9/25/0	0	Sam	pled By:_	6W	SH				
Sampli	ing Time:_	<u> </u>		Reco	orded By:	<i>SH</i> ate No.:					
Weath	er:SA	y Wist	Ly 70	Code	ed Replica	ste No.:					
		/ ′		,							
		•		WELL	. IMFORM	ATION					
Casing	Material:_		Purg	e Metho	d: <u>B</u>	ladde	F	- dmp	160	v flo	2 🗸
Casing	Diameter:	<u>z'</u>	Purg	e Rate:_							
Total De	epth:	140'	Total	Volume	Purged:_	6.5	agl				
Depth to	Water:	50.Z S	Pump	Intake	Depth:		<u> </u>				_
Water C	olumn:										_
			Paran	neters S	ampled: _	SEE (5.0.0				
Gallons i	in Well:										
			EIEI (PAPAI	METED M	EASUREME	NTS				
	Rate	Gallons	Turbidity			Conductivity		Depth to	Diss.	T	7)
Time	ml./min)		(NTUs)			(µmhos/cm)		Water		Comments	ş i
108				69	7.12	85	16.9	57. 25	2.1		1
110				7	6.84	115	17.1	58.20			4
120				-17	6.77	110	16.4	-	.5		-
, Z0				-18	6.75	110	15.9	58.0	.6		1
30		<u> </u>		-23	6.65	1/5	15.9	58.0	. <u>6</u>		1
35				-52		115		58.0	. 5		
40				-57	6.62	110	15.6	-	. 5		
45				-65	6.61	110	15.7		.5		
50			<u> </u>	-64	6.61	110		58.0	.5		
53			· ·		6.60	115	15.9		. 5		
05				- 525		115	15.8	C* 0	.5-		
10				-515	6.48	115	15.7	30.0	<u>š</u>		
15	- +		(-680)	140	6.53	115	15.9	58.2	-5-		New Met
20			1		20	113					
25											
			, j								
				lin line							
								$-\!\!+\!\!$			
					,	Purge Water D	Disposal:				
ell Secur	e:										
ell Secur					_	Furbidity(quali					

 $\hat{h}_{r,j},$

at Machiner 1777 0002 Maia Gwam ofm xis- Sheet

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log Project Number: <u>NV 000008. 0216</u> Task: Poo Well ID: 52 T 64 1/25/60 ____ Sampled By:____ Sampling Time: Recorded By:___ Weather: 6104 87, 65 Coded Replicate No.: **WELL IMFORMATION** Casing Material: Purge Method: Blank Purg / Leu Fleu Casing Diameter: Purge Rate: Total Volume Purged: Total Depth: Depth to Water: 57. 7 Pump Intake Depth: ___ Off: _____ Water Column: Pump on: Pump on: SEE Gallons/Foot: Parameters Sampled: COC Gallons in Well:____ FIELD PARAMETER MEASUREMENTS Turbidity REDOX pH Conductivity Temp Depth to Diss. Rate Gallons Time | ml/min) (NTUs) (mV) (SI Units) (µmhos/cm) Water Oxygen Comments Purged (°C) 350 340 6.59 115 15.6 57.7 3 55 15.4 57.65 310 6.29 110 5.75 100 15.7 675 275 5.34 95 15.2 57.7 305 5.08 15.2 95 415 5.07 95 15.2 57.7 310 420 15.2 5.05 95 315 25 15.1 315 5.01 95 4 30 57.65 15.1 507 95 35 5.04 95 15.1 -5 15.1 57.67 315 5.08 95 4 45 5.04 75 15.1 6 320 4 50 320 15.1 5.01 75 :6 Well Secure: Purge Water Disposal:_____ Turbidity(qualitative): Color:______ Odor: Other (OVA, HNU,etc.):_____

Low-F	low Ground	water Sam	pling Log							
Project	t Number:	NY coc co	B. DZLC	Task	c_ @C	2003		Well II	o: 5 a	20
Date:	9	126/00		Sam	pled By:	ME	SH			
Samoli	ng Time:			Reco	orded By:	<i>ME</i> 5# te No.:	-			
Weath	er: Col	J. Ray	~~	Code	ed Reolica	te No.:				
***************************************		-			ou i topilou					
			/	MEL I	WEODIA	ATION				
					<u>IMFORM</u>					
Casing	Material:		Purge	e Method	1: Blad	der P.	mp	/ Cari	Fle	ديه
Casing	Diameter:	Δ,	Purge	Rate:						
		86	Total	Volume	Purged:					
		59.75	Pump							
Water C	olumn:		Pump	on:	104	0	Of	f:		
			Paran	neters S	ampled:	200				
	in Well:									
Canons	_		-				. ITTO			
	ES+ Rate	Gallons	Turbidity			Conductivity		Dooth to	Diss.	
Time	ml./min)	Purged	(NTUs)			(µmhos/cm		Depth to Water		Comments
1040	500	1 digoo	(1100)		6.58			59.75		Commonto
1045				135	-	175	14.9	59.65		
1050				99	6.61	170	14.8	-	1.0	
10 55				145	6.49	160	19.8	57.60		
11 00				175	6.94	160	14.8		.8	
11/0				355	6.07	170	14.8	69.60	3.3	
11 25				185	5.35	180	14.7		3.9	
11 20	-				5.29	180	14.7	-	4.0	
// 🕶				200	5.29	170	14.7	-	4.0	
1130				205	5.29	180	14.7	57.60	4.0	
1198	V			210	6.30	175	14.7	-	4.0	
H40				215	5.32		14.7		42 4.	2
11085				270	5,31	175	14.7	57.6	4.1	
		_		1/2						
				7						
									;	
		/								
Vell Secur						Purge Water	Disposal:_			
Color:	Color	less			_	Turbidity(qual	litative):			
odor:	Nan	e				Other (OVA. I	HNU etc.):			
	<u> </u>				·	3/ 1	Λ	1	<u> </u>	5
						Necd	<u>ea</u>	40	w/	tubno
						Necd	Fix	00	me +	ر سع

The State of the S

ARCADIS GERAGHTY & MILLER

P	Project (20	-unman	Project N	o./! Y <i>QUXXX</i>	182000 (Meget 1	<u>1</u> of _	
S	ite Location	eth Dage	MY			Date _	10/10	100
Si	ite/Well No. 6M -	70012	Replicate	No		Code No.	1	
W	leather Sunn	1,550	Sampling	Time: Begin	1030	End _/	1230	
Ev	vacuation Data		,	Field Para	meters <u>T</u>	10	50	3
M	easuring Point			Color	_		Cole	_
M	P Elevation (ft)			Odor			1/20	<u>he</u>
Laı	nd Surface Elevation (ft)			Appearan	ce	ļ	\mathcal{C}	res
So	unded Well Depth (ft bmp)	330	.00	pH (s.u.)	6.99_	5.50	8.20	4.8
De	facted pth to Water (ft bmp)	308	00	Conductiv		-		10
Wa	ter-Level Elevation (ft)			(mS/ci (µmhc	···	75	70	68
Wa	ter Column in Well (ft)	22.0	0	Turbidity (ντυ) <u> </u>			
Cas	ing Diameter/Type	46.65	\leq	. Temperatu	re (°C) 16. <u>0</u>	17.0	16.5	17-0
Gall	lons in Well	19.3	50	Dissolved C)xygen (mg/L)	ļ		1
Gail	ons Pumped/Bailed	43.8	\D	Salinity (%)				1
_ (Prior to Sampling Pack First Pump Intake			Sampling N	Method Ar	dieas	-cd 1	3/00
Sam	Setting (ft bmp)	150		Remarks			<u>, </u>	V
Purg	e Time	begin 646 end	1213	<u> </u>	TW	42.90	9	
Pum	ping Rate (gpm)							
Evac	uation Method							
Cons	stituents Sampled	Contai	ner Description		Number	Pre	servative	
	EE (.O.C							
						_		
Samp	ling Personnel	G. Willio	<u> </u>	S.Hcc1-	1_			
- 1 15	Well Casing Vol		77 037	A. D.C.				
Gal./F	1-¼" = 0.06 1-½" = 0.09			4" = 0.65 6" = 1.47				
Ьтр	below measuring point	ml mililiter		NTU	Nephelome	tric Turbidity U	nits	
~ (Degrees Celsius	mS/cm Milisieme	ns per centimeter	PVC	Polyvinyl chl	oride		
f t	feet	msl mean sea		5.U.	Standard un			
gpm •gpm	Gallons per minute Miligrams per liter	N/A Not Appli NR Not Reco		umhos/cr VOC		per centimeter anic Compoun		

•	ARCADIS GERAGHTY & MRLL							
P	Water Sampling Project Location Betwa	mp-(zvum	Project No. (Notto 80 21	0.00002	Page <u>1</u>	of	
		7107	Replicate No.			Code No.		
	Veather Summy	- 803	Sampling Time	: Begin /	215	End		
_							1	
Ev	vacuation Data			Field Paramet	ers I	1.1	20	30
M	leasuring Point	VOC_		Color	_		-	
M	P Elevation (ft)			Odor				
La	nd Surface Elevation (ft)			Appearance	,—	 		
Sa	unded Well Depth (ft bmp)	<u>464-01</u>		pH (s.u.)	(r.03	1.00	5.99	5.99
De	pth to Water (ft bmp)	442.0	<u>U</u>	Conductivity (mS/cm)				
Wa	ater-Level Elevation (ft)			< rumnos/e	n) 0.92	0-91	0-93	0.8
Wa	ster Column in Well (ft)	22-0		Turbidity (NTU)	cm (x100)			
Cas	sing Diameter/Type	4(0.65		Temperature (c) 68.0	120	74.3	70.9
Gal	lons in Well	14.30		Dissolved Oxyg	en (mg/L)			
Gall	lons Pumped/Bailed Prior to Sampling	43.4	J	Salinity (%)				
Sam	nple Pump Intake Setting (ftr bimp)	m354 230	PSI.	Sampling Meth Remarks	od			
Purg	ge Time	begin 9:20 end						
Pum	ping Rate (gpm)			5gel	pads i	NO III		
Evac	ruation Method	basnord Ble	der Purp		Ţ.	1.0		
Cons	stituents Sampled	Conta	iner Description	Nu	ımber	Pres	ervative	
Samp	oling Personnel	ADS/NL						
Gal./F	Well Casing Vol 1-1/4" = 0.06 1-1/2" = 0.09	2" = 0.16	3° = 0.37 4° = 3-½° = 0.50 5° =					
Ibmp ™C	below measuring point Degrees Celsius	ml mililiter mS/cm Milisiem	ens per centimeter	NTU PVC	Nephelometr Polyvinyl chlo	ic Turbidity Uni oride	ts	

ft

emg∕L

feet

Gallons per minute

Miligrams per liter

msl

N/A

NR

mean sea-level

Not Applicable

Not Recorded

Standard units

Micromhos per centimeter

Volatile Organic Compounds

s.u.

VOC

umhos/cm

ARCA Low-F	IDIS GERA	AGHTY & M	HLLER npling Log						GM:	-7302 M
Projec	t Number:	NYOOOO	32.0210	2_Task	00	00 3		Well IC	: GM	7002
Date:_		0/4/00	<u> </u>	Sam	oled By:	ME	5H			
Sampli	ing Time:_	7 1		Reco	rded By:_	5 <i>H</i>				
		rest				te No.:				
				WELL	IMFORM	ATION				
Casina	Material:	PUC	Pume				,			
Casing	Diameter:	PVC 4"	Purae	Rate:	453	y 10 				
Total De	epth:	552	Total	Volume	Purged:		7 5	alleas		
Depth to	Water:	47.6	Pump	Intake C	Depth:	751				
Nater C	Column:		Pump	on:			Off	•		
						SEE C				
Sallons	in Well:_				, –	-				
	_		EICI C	DADAL	IETED MI	EASUREMEN	TC STI			
	Rate	Gallons				Conductivity		Depth to	Diss.	
Time	iml/min)				And the second second	(µmhos/cm)	the state of the s	Water		Comments
7. 25	450				5.45		18	47.68		
S 30					5.36		17.7	-	3.8	
2 35					4.29		70.0	-	3.4	
2 40					4.10	100		47.70		
2 45					3.98	100	17.5	4770	3.1	
755		-			3.93	120	180		3.8	
BO			1	240		/30		47.55	2.8	
10.5				2.35	4.00	130	18.7		2.8	
110				230		130	5.51		2.6	
115				230	_	130		49.60		
25			-	22.5		130			2.7	
23				522	3.94	130	17.0	47.58	2.8	
-+				-			-			
-										
II Secur	e:	Yes			P	urge Water D)isposal:_	N.C.	Swe	5
or:	C	oler) r	. 5 5		Ŧ	urbidity(qualit				
or:		Vane				other (OVA, H				- 1
				011	A4 - E	al i	_	•		, ,
			/ _	PH.	Metc	- Nod Snaw	Re	<u> </u>	CCT	cethy
					poes	SNOW	34	e 6:11	Je The	<i>چې /</i>

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log Project Number: <u>N 9 00000 P. 0210</u> Task: 0000 3 Well ID: 6M 797 Sampled By:_____SH Sampling Time:____ Recorded By:___ Weather Cloudy 65° Coded Replicate No.:___ **WELL IMFORMATION** Purge Method: Low Flow Casing Material: Purge Rate: 450 ml/m M Casing Diameter: 114 Total Volume Purged: Total Depth: 91.56 Pump Intake Depth: Depth to Water:__ Pump on:_____// 33 Off: _ Water Column:______ Parameters Sampled: ___ SEE C.D. C. Gallons/Foot Gallons in Well: FIELD PARAMETER MEASUREMENTS Turbidity REDOX pH Rate Conductivity Temp Depth to Diss. Gallons (mV) (SI Units) (µmhos/cm) Comments ml/mln) Purged (NTUs) (°C) Water Oxygen Time 1145 450 25 28.5 5.82 18.5 41.56 9.2 1150 41.65 215 5:37 18.5 20 1155 200 4.84 05 18.0 200 4.54 <u>80</u> 12.0 18.0 41.66 85.4 00.5 80 200 4.16 30 200 4.11 200 427 200 4.10 20 18.8 18.5 41.60 200 4.08 80 1230 200 3.97 18.5 1235 80 3.96 200 18.5 40 200 3.96 17.5 80 NUMB 200 395 18.5 30 Well Secure: / e S Color: / alactess Purge Water Disposal: 1. Szucz Turbidity(qualitative): 61 cor Odor: Na L Other (OVA, HNU,etc.):________

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log Project Number: N 600000 8.0710 Task: 0000 3 Well ID: 6M 79 D Sampled By:____ Recorded By: Sampling Time: COLLECT MS/MSD Weather Overcas 4 650 Coded Replicate No.:_____ **WELL IMFORMATION** Purge Method: Low Flow / New Dedicated Bladder Casing Material: PVC Casing Diameter: 4" Purge Rate: 450 ml/m.d Total Depth: 305 Total Volume Purged:_ Depth to Water:__46 ' /ϼ' Pump Intake Depth: Pump on: 907 Off: _____ Water Column:_____ Gallons/Foot: Parameters Sampled: SEE C.D.C Gallons in Well: **FIELD PARAMETER MEASUREMENTS** Rate Gallons Turbidity REDOX pH Conductivity Temp Depth to Diss. (NTUs) (mV) (SI Units) (µmhos/cm) Comments ml./min) Purged Water Time Oxygen 915 240 5.60 450 95 20 46.0 920 4.51 19.5 3.8 255 65 9 25 265 4.33 53 46.0 2.5 19.5 20 270 4.29 50 7 9 35 250 4.25 19.5 65 9 40 70 4.10 215 945 70 46.0 9.6 3.98 210 19.7 4-1 950 215 3.96 20 17.2 955 3.93 3-7 70 190 220 00 70 3.90 19.0 3.6 270 1003 225 3.91 70 19.0 40 1000 230 3.88 19.0 70 105 19.0 230 3.89 70 Well Secure: PCS Purge Water Disposal: N.C. Sewer Color:______ Turbidity(qualitative): Odor: Nort Other (OVA, HNU,etc.):______

.... 11 -4 Model Creat Necklayon (227 non2)Data/GWampirm.xis- Sheet1

Project No	mber.	NYacce	20.80	O Task	:	5000 3 5H / 5H te No.:_	/ 11	Well II	D: 6M	740
Date:	10	15/00		Samp	oled By:_	54	ME			
Sampling	Time:_	250		Reco	rded By:_		<u> </u>			
Weather:_	Cb	ndy	600	Code	d Replica	te No.:				
		/								
					IMFORM					
Casing Ma	terial:	PVC	Purae	e Method	: _	50 M	2/	Non.	Ded	Blaz
Casing Dia	meter:	4"	Purae	Rate:	4	150 M	1/mu	7	<u> </u>	
Total Dept	n: 3	562	Total	Volume I	Purged:		7			
-						7 7				
						SEE				
Gallons in V					• –					
			EIEI O	DADAN	ETED M	EASUREMEN	JT9			
	Rate	Gallons	Turbidity			Conductivity		Depth to	Diss.	
Time im	l./min)	The Prince of th				(µmhos/cm)		Water	and the second second	Commen
340 4	50			210	7.42	60	1P.7	48.0		
345	\vdash				3.99		19.1	-	93	
350	┾┯┼				3.69			47.95		
400	╀─┤			245	3.48	45	19.5		5.0	
MOS.			· ·	25%		40.	18.0		4.3	
40					3.60	40	185	47.90		
418				255		35	18.3	-	4.0	
4 25						40	18.3	-	4.2	
420	-+				3.58	60	170	97.9	4.1	
485	\neg				3.63		18.0		4.3	
y Mo					3.65		18.3		4.8	
1 48				175	3.72	55	18.0	-	4.2	
	_						13			
	-					-	-	-		
	\dashv									
										-
						ALC: N				
ell Secure:_		K TU				urge Water [
	Γ.		1			urbidity(quali other (OVA, H		11 1	U	

-t MartinlGreat Neck\NY001227,0002\Data\GWsmpfrm.xls- Sheet1

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log Project Number: N 100000 no 210 Task: 0000 2 _____ Well ID: <u>HN 24I</u> Date: 9/27/00 Sampled By: GMSH/ML Sampling Time: Recorded By: Coded Replicate No.:____ Weather: _____ **WELL IMFORMATION** Purge Method: LOW FLOW SAMPLING Casing Material:_ Purge Rate: 350 ml/min Casing Diameter.__ Total Volume Purged:_____ Total Depth:___ Depth to Water._____ Pump Intake Depth _____ Pump on:____ Off: _____ Water Column:____ Parameters Sampled: ____SEE C.O.C. Gallons/Foot:___ Gallons in Well: FIELD PARAMETER MEASUREMENTS Rate Gallons Turbidity REDOX pH Conductivity Temp Depth to Diss. ml./min) (NTUs) (mV) (SI Units (µmhos/cm) Water Comments Time **Purged** (°C) Oxygen 7 30 17.2 150 8.05 225 58.95 4.6 3 35 7.74 160 230 18.6 2 40 165 7.52 235 19.4 58.98 3.6 345 165 58.97 20.1 7.25 20.7 58.98 3 =0 170 243 355 58.97 7.24 20.5 170 400 7.24 170 20.6 58.96 405 170 7.22 20.8 58.85 3.5 4 10 170 7.20 21.1 58.94 410 170 7.18 21.0 58.95 4 80 170 7.23 21.0 248 \$8.96 425 170 7.13 248 21.7 58.97 3.5 432 175 21.6 7.09 250 58.97 430 230 180 6.90 19.6 58.17 3.7 4 40 220 6.70 17.9 58.87 4.0 475 175 6.58 220 18.1 58.95 3.8 450 215 58.97

Purge Water Disposal:____

Turbidity(qualitative):_____

5G:\APROJECT\Lackhend	Martin/Great Neck/NYD012	227.0002\Data\G\Wsmofrm.xb	⊱ Sheet

Well Secure:_____

Color:__

Project NACHOL	of-GRUMMAN	Project No. 144	0000080710	00002 Pag	ge <u>1</u> of	
Site Location BENDER	16E M	· · · · · · · · · · · · · · · · · · ·		Dat	re 9-27-	68
	03	Replicate No.		Cod	de No.	
Weather CLE	AL 75°	Sampling Time:	Begin	End		-
Evacuation Data			Field Parameters	工	10 25	3
Measuring Point			Color			L
MP Elevation (ft)			Odor			
Land Surface Elevation (ft)			Appearance			
Sounded Well Depth (ft bmp)	64.00		pH (s.u.)	3.29	3.29 4.21	37
Depth to Water (ft bmp)	58.58		Conductivity (mS/cm)			
Water-Level Elevation (ft)			(minos/gm)	216 6	202 200	163
Water Column in Well (ft)	5.42	,	Turbidity (NTU)			
Casing Diameter/Type	2(0.14)		emperature (°C)	62.1	61.6 61-3	60.6
Gallons in Well	. 867		Dissolved Oxygen	(mg/L)		
Gallons Pumped/Bailed		s	alinity (%)			
Prior to Sampling Sample Pump Intake	2.60	s	ampling Method			
Setting (ft bmp)		R	emarks			
Purge Tirne	begin end					
Pumping Rate (gpm)						
Evacuation Method						
Constituents Sampled	Container De	escription	Numb	er .	Preservative	
SFE (.O.C.						
Sampling Personnel						
Well Casing Volu	arm of					
Gal./Ft. 1-1/4" = 0.06 1-1/4" = 0.09	2" = 0.16 3" = 0 2-½" = 0.26 3-½" =					
bmp below measuring point	ml mililiter		NTU N	ephelometric Turi	bidíty Units	
C Degrees Celsius	mS/cm Milisiemens per	centimeter		plyvinyt chtoride		
ft feet	msi mean sea-level			andard units	•	
gpm Gallons per minute mg/L Miligrams per liter	N/A Not Applicable NR Not Recorded			licromhos per cer platile Organic Co		
-				-		

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log

Project Number: NY 000 00 90 210	Task: 0002	Well ID: HN 2 1-I
Date: 9 27 00	Sampled By: GW SH ML	
Sampling Time:	Recorded By:	
Weather:	Coded Replicate No.:	

WELL IMFORMATION

Casing Material:	Purge Method: LOW FLOW SAMPLING
Casing Diameter: 4"	Purge Rate: 450 ml/min
Total Depth:	Total Volume Purged:
Depth to Water	Pump Intake Depth
Water Column:	Pump on: Off:
Gallons/Foot:	Parameters Sampled: SEE C.O.C.
Gallons in Well:	

FIELD PARAMETER MEASUREMENTS

	Rate	Gallons	Turbidity	REDOX		Conductivity		Depth to	Diss.	300
Time	ml./min)	Purged	(NTUs)	(mV)	(SI Units	(µmhos/cm)	(°C)	Water	Oxygen	Comment
1249				15	11.40	250	17.2	49.67	7.7	
12.43				- 5	11.48	235	18.4	51.90	7.3	
12 30				-/0	ዘ.	215	18.2	51.95	7./	
12=5				-/0	11.54	280	18.3	52.00	7.0	
7 20				-10	11. 54°	295	18.4	52.02	7.0	
1 50				-10	11.55	295	18.5	52.03	7.1	
צו				-10	11.54	290	18.5	52.00	7.0	
				-10	11.55	290	18.6	52.02	6.7	
1 25				-10	11.56	285	18.8	51.90	6.7	
				-10	11.51	295	19.2	51.85	6.6	
1 35	—			-5	11.49	298	19.1	5/.4	6.4	
					11.49	296	18.9	51.75	6.4	
1 1/2				-5	11.48	290	19.0	51.73	6.4	
				-5	11.43	282	18.9	51.73	6.3	
125					11.44	280	19.0		(0.0)	
		\longrightarrow		-ک	11.45	280.	19.3	51.69	6.3	
				-0	11.41	275			6.2	
25				-0	11.37	273	19.3	51.45	6.4	
2"				-0	11.35	270	19.7		6.0	
25					11.34	270	20./		6.0	
230					1.31	270	20.8	51.03	6.0	
225				01	1.29	270	21.1	51.00	5.8	
2 20				5	11.25	270	21.1	50.98	5.8	
Nell Secur	re:				71.25	ourge Water	Disposal:	50.98		
2 35 Color:				5	11.25	urbidity(qual	itative)	20.10	5.8	
2 40					11.23		20.7	51.3	5.8	
245				-	1.00	(b)		- 11.7		
										
	Idveed Marlin\Grea	NeckWY001227	0021Dete\GWsrpfr	muds-Sheet						
255										
7 90										

ARCADIS GERAGHTY & MILLER Low-Flow Groundwater Sampling Log

Project Number: NY00000 80215	Task: 00007	Well ID:
Date: 9/23/00	Sampled By: 6W/5H/MC	
Sampling Time:	Recorded By:	
Weather:	Coded Replicate No.:	
	WELL IMFORMATION	
Casing Material:	Purge Method: LOW FLOW	
Casing Diameter:	Purge Rate: 450 ml min	
Total Depth: 220	Total Volume Purged:	
Depth to Water	Pump Intake Depth	
Water Column:	Pump on:	Off:
Gallons/Foot:	Parameters Sampled: 5 F G C.O.	C
Gallons in Well:		

FIELD PARAMETER MEASUREMENTS

Time	Rate ml./min)	Gallons Purged	Turbidity (NTUs)			Conductivity (µmhos/cm)		Depth to Water	Diss. Oxygen	Comment
10 35				165	7.38	115	17.7	50.5	8.2	
10.40				130	7.60	105	17.1	50.5	7.3	
103				103	9.25	105	16.8	-	7.1	
1050				130	8.51	100	17.7	50.5	7.6	
1035					8.11	100	17.5		7.8	
1129					8.08	100	17.6		7.9	
1105				150	7.95	100	17.6	50.5	7.7	
110				155	7.77	100	17.7	_	7.2	
15				_	7.68	100	17.3	_	7.8	
129					7.63			50.5	7.7	
1 35				160	7.42		18.0		7.7	
130				165	7.23	100	18.7	-	7.3	
135				165	7.07	100	18.1	50.5	7.4	
140				165	7.07	100	18.2		7.3	
	===									
					_					
						3.00	7.51	-		

Well Secure:	Purge Water Disposal:
Color:	Turbidity(qualitative):

Proiec	ct Number:	N 4 000	රුති. 0 Z10) Task	: <i>00</i> 2	20_3		Well II	o: N -	10627
Date:	10/4	1/00		Sam	pled By:	MEI	SH			
Samp	ling Time:			Reco	rded By:	ME/	-			
Weath	ier: Swy	7 70				te No.:				
	•				·					
		,		WELL	IMFORM	ATION				
Casing	Material:_	steel	Purg	e Method	l:	450 MI	ow/ k	Sla ad	er Pu	Qer.
Casing	Diameter:	4"	Purge	e Rate:_		150 MI	MIN			
Total D	epth:2	95	Total	Volume	Purged:_		6 < 9	1		
Depth t	o Water:		Pump	Intake E	Depth:					
Gallons	/Foot:		Paran	neters Sa	ampled: _	SEE	<u>c.o.</u> c	<u>. </u>		
Gallons	in Well:									
			FIELD	PARAM	NETER M	EASUREME	NTS			
	Rate	Gallons	Turbidity			Conductivity		1 '	l	
Time >10	ml./min)	Purged	(NTUs)			(µmhos/cm)		Water		Comments
315	450		 		4.04		19.0	34.7	Z-9	
> 20	1-1-1		_		3.91			36.0		
325				Or	3.84	30		36-2	- 3	
330					3.78		18.5		.3	
335	- - 				3.70			36.0	.3	
345				00	3.73		18.8	35.98		
350					3.68		12.5		, 7.	
355					3.62			3598	.3	
400				0~	3.58	15	18.5		· B	
405				Or.	354	15		35.98		
 7 				05	3.56	15	17.5		_خ .	
 										
		1								
Well Secu	re:	1 c.5			£	ourge Water [Disposal:	NC	Sewa	ا س
Color	(e Do	V V	1/00/ 3	ourge Water C ourbidity(quali	tative).	(1-		
Odor:	Nac	<i>u</i>	- 1001	V- V-						
udor:	(ren	7			(Other (OVA, H	NU,etc.):			

V PIt Meter Not Reading Correct

F	Project	Northru	-Czrumnan	Project No.	N40000020210	20000	Page	<u>1</u> of	;
	ite Location	Brillow	A 13 4				Date	9/26	1∞
	site/Well No.	Alibe 3	1	Replicate No.	REP-1 (m	tals)	Code No	-	
	Veather		509	Sampling Time:		, 	End		_
E	vacuation Dat	ta			Field Parameters	ī	71	24	7V
N	leasuring Poin	t			Color				
M	IP Elevation (fi)		· · ·	Odor		 		
La	ind Surface Ek	evation (ft)		·	Appearance	_			
Sc	ounded Well D	epth (ft bmp)			pH (s.u.).	4.45	530	4.75	4.40
De	epth to Water	(ft bmp)	67.0	06	Conductivity (mS/cm)				1
W	ater-Level Elev	ration (ft)	46.0	2	(Marchy)	40.1	74.0	98.3	102.3
W	ater Column i	n Well (ft)			Turbidity (NTU)		36.8	37.1	29.3
	sing Diameter		4/0.6	= 2(0.16)	Temperature (%)	59.0	(91.0	60.8	
	llons in Welf		3.2		Dissolved Oxygen (r	7.		1	
Ga	llons Pumped/ Prior to S		/()		Salinity (%)				
San	nple Pumpint				Sampling Method				
5	Setting (f			· ·	Remarks				
Pur	ge Time	!	begin 1:12 end				_		-
-	nping Rate (gr		7=1 T=10	V= 3mm					
Eva	cuation Metho	od							
Con	stituents Sai	mpled	Conta	niner Description	Numb	er	, P	reservati	Ve
· S	EF (.0	. C ·	·		<u>.</u>		_		
							_		
							_		
Sam	pling Personn	el	UNIAL						
		Vell Casing Volu							
Gal./		-¼ " = 0.06 -½ " = 0.09	2" = 0.16 2-1/2" = 0.26	3" = 0.37 4" = 0 3-½" = 0.50 6" = 1					
bmp	below meas	uring point	ml mililiter		NTU Ne	phelometri	c Turbidity	Units	
~ (Degrees Cels			nens per centimeter		yvinyl chlo			
ft gpm	feet Gallons per r	ninute	msl mean se N/A Not App			indard unit cromhos p	s er centimet	er	
mg/L	Miligrams pe		NR Not Rec			•	nic Compo		

	Project PROJECT Site Location SED	8-6RUMN PALL	<u>21</u>	Project P	10.MP	<u> </u>	(b) 6000°C	Page Date	4	_of -25-C	30
		18634	<u>a</u>	Replicate	•		2100	Code	No.		
<u> </u>	Veather	LAN 6	<u> </u>	Sampling	1 Ime:	Begin	200	End			1 -
E	vacuation Data				I	Field Parame	eters I	- 12	J	31	134
М	leasuring Point				(Color	_				Couse
М	P Elevation (ft)				(Odor	_				Now
La	and Surface Elevation (ft)				,	Appearance	_				CUN
So	ounded Well Depth (ft bmp	» <u>6</u>	1.80		ſ	H(s.u.)	4. <u>s</u>	3 4.	51	14.44	4.42
De	epth to Water (ft bmp)	42	.03			Conductivity (#IS/cm)	120	29 //	5.4	1165	13:5
Wa	ater-Level Elevation (ft)					(µmhos/c	au)			1.	
Wa	ater Column in Well (ft)	2	5,7	1	·	urbidity (NT	ارد _			1	
Cas	sing Diameter/Type	(A)" (0,16		т	emperature (OF D	6.86	1,5	608	644
Gal	llons in Well	A.	12		D	issolved Oxy	gen (mg/L)	-			Γ.
Gal	lons Pumped/Bailed Prior to Sampling		2,36			alinity (%)	_				
₹an	nple Pump Intake Setting (ft bmp)					ampling Met emarks	hod				
Purg	ge Time	begin 21	≤ end								
•	nping Rate (gpm)	02	1=1	7 11=4							
Evac	cuation Method									-	
Con	stituents Sampled		Cont	ainer Description)	N	lumber		Presei	rvative	
S	FE (.O.(.							-		_	
								-			
Samp	oling Personnel										
	Well Casing V			31 433	41. 0.65						
Gal./F	Ft. 1-1/4" = 0.06 1-1/2" = 0.09	2" = 0.1 2-1/2" =		3" = 0.37 3-½" = 0.50	4" = 0.65 6" = 1.47						
omp	below measuring point	mt	mililiter			טדע	Nephelome	tric Turbidi	ity Units		
יכ	Degrees Celsius	mS/cm	Milisien	nens per centimeter		PVC	Polyvinyl ch	loride	,		
t	feet Gallons per minute	msl N/A	mean s Not Ap			s.u. umhos/cm	Standard u Micromhos		neter		
3pm	Miliarams per litter	NR	Not Ror	'		VOC	Volatile Ore	•			

ARCADIS

Appendix D

Chains Of Custody

ODY RECORD Page of	,	\		Remarks Total			. 45
CHAIN-OF-CUSTODY RECORD ANALYSIS / METHOD / SIZE	(MACI 3137 MC 1130 7 3151	\					
			-7	_	pled Lab ID		>
ARCADIS GERAGHTY & MILLER Labo Project Number/Name		Project Manager	Sampler(s)/Affiliation	Date/Time			->

ARCADIS GERAGHTY & MILLER Labo	Laboratory Task Order No./P.O. No	CHAIN-OF-CUSTODY RECORD	ECORD Page _	of
Project Number/Name N 300708 0 2.10, 00.00.3 S Project Location 2007 Security N.14 Laboraton C. T. N. Security N. M.	20000 S (14180) July 4	ANALYSIS / METHOD / SIZE		
realle sun Grover	Dist.			
Sample ID/Location Matrix Sampled	/ Ol Gap		Remarks	Total
1/1/2 7				7
19/-				7
·	1 4			2
	*			
ample Matrix: L = Liquid; S = Solid;	A = Air		Total No. of Bottles/ Containers	ttles/
Received by 194 (may bace)	Organization: Justing 1 Compaty	MalyDate 91/100	Time 5: 36 Y	Seal Intact?
11:				
Received by:	Urganization:Organization:	Date/ Tir Date/ Tir	Time	Seal Intact ?
special Instructions/Remarks:				
t to the	forts Lave DEVID	(21 - 3/1 - 5/26/		
Delivery Method: 🗆 In Person	☐ Common Carrier	☐ Lab Courier	Other	
	SPECIFY		5	SPECIFY AG 05-0597

ORD Page of		Remarks Total		Total No. of Bottles/	Yes No N/A	Yes No N/A	Other SPECIFY AG 05-0597
CHAIN-OF-CUSTODY RECORD	ANALYSIS / METHOD / SIZE				Date / / Time Date / / Time	Date	☐ Lab Courier ☐ ☐ ☐
Laboratory Task Order No./P.O. No	A Stran	Cab ID			Organization: ***	Organization:	Common Carrier State
ARCADIS GERAGHTY & MILLER LAN	Project Number/Name Ny (Null) 5/13/0. 1920 S Project Location Project Name No. 12/2012 Control of No. 12/2012 Cont	Sample ID/Location Matrix Sampled		Sample Matrix: L= Liquidy S = Solid;	Received by: Recived by:	Special Instructions/Remarks:	Delivery Method:

				_
ARCADIS GERAGHTY & MILLER	Laboratory Task Order No./P.O. No	CHAIN-OF-CUSTODY RECORD	RECORD Page of	
Project Number/Name //. Project Location	ANA	ANALYSIS / METHOD / SIZE		
Laboratory				
Project Manager				
Sampler(s)/Affiliation				
Date DAcation Matrix Sam	Date/Time Sampled Lab ID		Remarks Total	ital
				i.
			28.4	
LAM TIME I				. ' (
	es es			
Sample Matrix: L = Liquid 8 = Solid;	# 4		Total No. of Bottles/	
Relinquished by:	Organization: Pk 11/5 (1/6)	Date (% / 32 / 8.)	Time Seal Intact?	ct;
Necelved by:		-		2
Relinquished by:	Organization:	Date / / Date / /	Time Seal Intact?	Ct. N/A
Special Instructions/Remarks:				
Delivery Method: The Person	Common Carrier	1 ab Courier	Other	
Delivery interious.	SPECIFY SPECIFY	[במס (כמוני	SPECIFY	AG 05-0597

AG 05-0597 Yes No N/A Yes No N/A Seal Intact? Seal Intact? B ?^) C) Total No. of Bottles/ | Containers | SPECIFY CHAIN-OF-CUSTODY RECORD Page Remarks Sec. Aug. K 29-87 CAR BIRES □Other (-1 × 1,2) Time Time Time Time ANALYSIS / METHOD / SIZE ☐ Lab Courier 1 Straight of the Date ? Date_ Date_ Date. しつして ì Laboratory Task Order No./P.O. No. ☐Common Carrier__ 431 1mg/2 Organization: مزيد ا Carrer Arres) 4 Organization:_ Organization:_ Organization: Lab ID = Air bate/Time ⋖ Sampled xtc-11 S = Solid;🗆 In Person Relinquished by: SHHWN HEALY Matrix **ARCADIS** GERAGHTY & MILLER Sample Matrix: (L,≠ Liquid; Project Number/Name Δ/Δ Sampler(s)/Affiliation - Oe - Ol Special Instructions/Remarks: 10-00-01 Sample 1D/Location Delivery Method: 12M-165K Project Location Project Manager _ Relinquished by: MW-3R MNW-INT 1 MW - 52 78-7-26 Received by: Received by:

CHAIN-OF-CUSTODY RECORD Page of ANALYSIS / METHOD / SIZE ANALYSIS / M	CHAIN-OF-CUSTODY RECORD Page Order No.P.O. No. CHAIN-OF-CUSTODY RECORD Page Order No.P.O. No. ANALYSIS / METHOD / SIZE THE NUT SHELTED S. S. M. A. S. S. M. C. S. S. M. S. S. M. S. M. S. M. S. S. S. M. S.	Laboratory Task Order No.Po. No. CHAIN-OF-CUSTODY RECORD Page of ANALYSIS / METHOD / SIZE ANALYSIS / METHOD / METHOD / SIZE ANA	CHAIN-OF-CUSTODY RECORD Page Order No.P.O. No. CHAIN-OF-CUSTODY RECORD PAGE ORDER NO.P.O. CHAIN-OF-CUSTODY RECORD PAGE ORDER	CHAIN-OF-CUSTODY RECORD Page Order No.Po. No. CHAIN-OF-CUSTODY RECORD Page Order No.Po. CHAIN-OF-CUSTODY REC	CHAIN-OF-CUSTODY RECORD Page Order No.P.D. No. CHAIN-OF-CUSTODY RECORD Page Order No.P.D. No. CHAIN-OF-CUSTODY RECORD Page Order No.P.D. No. CHAIN-OF-CUSTODY RECORD Page Order No.P.D. ANALYSIS / METHOD / SIZE OF PAGE OF PA	CHAIN-OF-CUSTODY RECORD Page Of the Composition of	CHAIN-OF-CUSTODY RECORD Page Order No.P.O. No. CHAIN-OF-CUSTODY RECORD Page Order World CON The Control of Con	Chain-OF-CUSTODY RECORD Page Organization: Organizatio	MILER Laboratory Task Order No.P.O. No. CHAIN-OF-CUSTODY RECORD Page Of ANALYSIS / METHOD / SIZE THE CONTROL OF SIZE THE CANALYSIS / METHOD / SIZE THE CANAL SIZE THE CANALYSIS / METHOD / SIZE THE CANALYSIS / METHOD / SIZE THE CANALYSIS / METHOD / SIZE THE CANAL SIZE THE CANALYSIS / METHOD / SIZE THE CANALYSIS / METHOD / SIZE THE CANAL SIZE THE CANAL SIZE THE CANAL SIZE / METHOD / SIZE THE CANAL SIZE THE CANAL SIZE / METHOD / SIZE / METHOD	Light Laboratory Task Order No.P.O. No. CHAIN-OF-CUSTODY RECORD Page Office Color Call	MILER Laboratory Task Order No.P.O. No. CHAIN-OF-CUSTODY RECORD Page					
Matrix Sampled Lab ID C 9-77 CD	1 EPUL SHETTEL STATE OF STATE	ACK AT SEPTEM SALENCE OF SECONDARY SAMPLES SAMPLED TO 2 C G-77 OD 2	## SAN 6236-74-2	W. S. W. S.	Matrix Sampled Lab ID Color Station Matrix Sampled Lab ID Color	SAID GENT CHEPPUL STATEMENT STATEMEN	With Sampled Lab ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	### Matrix Sampled Lab ID W. 3 ###################################	## Sampled Lab ID	120	Astrix Sampled Lab ID Control of Salution Control	MILLER LA	sk Order No./P.O. No.	CHAIN-OF-CUSTODY RE		
Matrix Sampled Lab ID Approximately	Matrix Sampled Lab ID C 1-7 00 C 2 C 1-7 00 C 2 C 2 C 2 C 2 C 3 C 4 C 4 C 5 C 5 C 5 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7	Matrix Sampled Lab ID A 7-17 CD C 7-17 CD C 2 C 7-17 CD C 7-1	Matrix Sampled Lab ID Laboration Sampled Lab ID L	Matrix Sampled Lab ID L G-77 CD	Matrix Sampled Lab ID C G-17 CD	W. S. W. R. St. Fr. L. S. M. M. Matrix Sampled Lab ID W. Z. L. S. L.	W. S. W. M. C. M. M. Sampled Lab ID W. S. Sampled Lab ID W. S. C.	### Remarks To Containers To C	## Sampled Lab iD	### Sampled Lab ID	Matrix Sampled Lab D 2 2 2 2 2 2 2 2 2	THOUT S	0.250			
Date/Time Lab ID Remarks A-17 CD 2 A-17 CD 2 C 2 C 2 C 2 C 2 C 2 C 3 C 4 C 5 C 5 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7	Date/Time LW W Remarks f - 77 c0 2 2 2 f - 77 c0 2 2 2 2 f - 7 column 2 2 2 3 3 f - 7 column 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4	Date/Time W. W. Chrix Sampled Lab ID Remarks Chrix Sampled Lab ID	Date/Time	Date/Time Date/Time Lab ID 1-17 cD 2 1-17 cD 2 2 2 2 2 2 2 2 2 2 2 2 2	Date/Time Date/Time Lab ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Date/Time Date/Time Lab ID Will Sampled Lab ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Date/Time Will Sampled Lab ID 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Titx Sampled Lab ID	Matrix Sampled Lab ID	Matrix Sampled Lab ID	Date Time	10 SIN 62 54) SH IV				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							\$\sigma \frac{\(\frac{7}{4} \) \frac{7}{4} \\ \fra	C 9-77 c0 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 5 5 5 = Solid; A = Air Containers C	### Containers C	t. 1-17 cv 2 2 2 2 2 2 2 2 2 2 2 2 2	, trix	Lab ID		Remarks	Total
								2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\vdash				
								\$ = Solid; A = Air \$ 5 = Solid; A = Air \$ 6 = Solid; A = Air \$ 6 = Solid; A = Air \$ 7 = Solid; A = Air \$ 7 = Solid; A = Air \$ 8 = Solid; A = Air \$ 1 = Solid; A = Air \$ 2 = Solid; A = Air \$ 3 = Solid; A = Air \$ 4 = Solid; A = Air \$ 5 = Solid; A = Air \$	$\frac{2}{2}$ $\frac{2}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ty S = Solid; A = Air Companization: Air ADS CATA Date 5 121 OD Time 5 20 Seal Inta Organization: Date 1 1 Time 5 Seal Inta		2 "			000
								5 = Solid: A = Air Total No. of Bottles/ Longanization: "YICADS CATA" Date \$ 127.00 Time \$ 2.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.0 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.00 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.00 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.00 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.00 Yes No Organization: Date \$ 1.7.00 Time \$ 3.2.00 Yes No Organization: Date \$ 3.2.00 Yes No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	c; s = Solid; A = Air Containers Contain	-) [10
								S = Solid; A = Air Total No. of Bottles/ Low of Bottles/ Low Organization: Total No. of Bottles/ Low Containers W Organization: April 100 Time Seal Intainers Organization: Date Image: 100 Time Yes No. Organization: Date Image: 100 Time Yes No. Organization: Date Image: 100 Time Yes No.	2. 2 2	2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 ~ ~			1~1
S = Solid; A = Air	S = Solid; A = Air Total No. of Bottles/ Containers	S = Solid; A = Air		nization: Date / / Time Seal Inta res NO Yes No	Organization: Date / / Time Seal Inta	Organization: Organi	Organization: Organi	#W	nization: 14/10	00/12/5	5.20	Intact				
S = Solid; A = Air Total No. of Bottles/ Containers Total No. of Bottles/ Containers Containers Cont	S = Solid; A = Air S = Solid; A = Air Containers Co	S = Solid; A = Air S = Solid; A = Air Containers	S = Solid; A = Air S = Solid; A = Air Containers	S = Solid; A = Air Containers S = Solid; A = Air Containers	S = Solid; A = Air Containers We contained to the first of the first	S = Solid; A = Air Containers Containers Containers Containers Seal Intainers Containers Seal Intainers Containers Conta	nization: パピタDS Cナが Date 年 7277 QU Time ろうひ Seal Inta	nization: Date/ / Time Seal Inta Seal Inta Seal Inta Seal Inta Seal Inta	Organization: Date / / Time Seal Inta	Organization: Organi	Organization: Organization: Organization: Organization: Organization: Organization: Organization: Nes No Nes No Organization: Organization: Organization: Organization: Nes No Organization: Organization					
\$ = \$olid; A = Air \$ = \$olid; A = Air \$ = \$olid; A = Air \$ Organization: \$\frac{1}{3}i(\frac{1}{3}\frac{1}{3}\frac{1}{3}(\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}(\frac{1}{3}1	S = Solid; A = Air S = Solid; A = Air Containers Containers Date 7 77 00 Time 5.2.0. Seal Inta Organization: Are No	S = Solid; A = Air S = Solid; A = Air Organization: 131(20) Seal Inta Seal Inta Organization: 2014 Seal Inta Organization: 311(20) Seal Inta	S = Solid; A = Air S = Solid; A = Air Organization: 171 (20) Time 5:20 Organization: 5 Seal Inta	S = Solid; A = Air S = Solid; A = Air Organization: 131(20) C37N Date 4 127 (20) Time 5:20 Organization: Date 7 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S = Solid; A = Air Containers Containers	S = Solid; A = Air Containers Containers	nization: パイクント Cナガハ Date 年 7277 GU Time ろこと Seal Intanization: Date 1 / Time Yes No			a has on come speed	10 Person Gorrier (1.7) ~ (1.7		Organization:Organization:			Intact <i>:</i> No N/

(*)		
ARCADIS GERAGHTY & MILLER Laboratory Task Order No./P.O. No.	CHAIN-OF-CUSTODY RECORD	ORD Page of
Project Number/Name ** / Control Control Project Location ** / Control Management ** / Control Managem	ANALYSIS / METHOD / SIZE	
Matrix Sampled Lab ID		Remarks Total
7 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10		~ -
- 41)		
Sh. 355		
Sample Matrix: (L = Liquid; S = SoJid; A = Air		Total No. of Bottles/
by: The Charle	7 / 5/3/ 63	Seal Intact?
Received by:	Date/ IIme .	Yes No N/A
Received by:Organization:	Date/ / Time	Seal Intact?
Special Instructions/Remarks:		
1017		
Delivery Method: 🗆 In Person 🗡 Common Carrier 📉 🖰 🗡	☐ Lab Courier ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Otherseciev
		אל חל

RECORD Page \to of \to!		Remarks fotal	Total No. of Bottles/	Time Seal Intact?	Time Seal Intact? Time Yes No N/A		Otherspecieryac.05-05597
CHAIN-OF-CUSTODY RECORD	ANALYSIS / METHOD / SIZE		. At it is	Date / = / 3/ / 32/	Date / _ / T	21 1 1 2 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1	Z 🗀 Lab Courier
Laboratory Task Order No./P.O. No	Time.	rap ID	A = Air	Organization: Arcochos (* **) Organization:	Organization:Organization:	A CANA S. CANA S.	母Common Carrier で、A こ
ARCADIS GERAGHTY & MILLER LAI	S S S S S S S S S S S S S S S S S S S	N - 10627	Sample Matrix: $L = Liquid$; $S = Solid$;	Received by: 5%-we first /	Relinquished by:	Special Instructions/Remarks:	Delivery Method: 🗆 In Person

ARCADIS GERAGHTY & MILLER	y Task Order No./P.O. No	CHAIN-OF-CUSTODY RECORD	RECORD Page / of-	
Project Number/Name Nycoco 2006 (2006) Project Location Total One Conference (1906)		ANALYSIS / METHOD / SIZE		
00 S//				
Date/ Sample ID/Location Matrix Samp	Date/Time Sampled Lab ID		Remarks	Total
7				
11 / Cap 1				
1 Miles			•	;
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				,
			1	
Sample Matrix: { = Liquid; S = Solid;	A = Air		Total No. of Bottles/	
ار مز:	Organization: $f(f(\partial x)) = f(x)$	00/10/20	Seal Inte	act?
		Date/	res Ivo	4 >
Relinquished by:	Organization:Organization:	Date//TI	Time Seal Intact?	N/A
Special Instructions/Remarks:				
Delivery Method:	Acommon Carrier SEDEX	☐ Lab Courier	Other	
	, - 		SPECIFY	AG 05,0597

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

6607

EXTERNAL CHAIN OF CUSTODY

Tel: (516) 694-3040 Fax: (516) 420-8436	420-8436	CLIENT:					HZM SDG NO:	NO:
PROJECT NAME/NUMBER		(_	NOTES:		Project Contact:
NOTHAR GUMMAN	المالية							
CETHER WAR	LATO!	e Conta						Phone Number:
SAMPLERS: (signature)/Client								
the mount of	THE CHW	-						
DELIVERABLES:		1/2						
		sıən	ANALYSIS REQUESTED	ESTED				
TURNAROUND TIME:		otal Z Contai			INORG.			
DATE TIME MATRIX	FIELD I.D.	AOV	PCB		CN Wetal	LAB I.D. NO	ON .	REMARKS:
700	6m-700-2	7						
				_				
					+			
				+				
				_				
				_	+			
				+-				
Relinquished by: (Signature)	Date Time Received by (Signature)		e G	Time		LABORA	LABORATORY USE ONLY	ILY.
0.00	Two wall to	Swelling Co.		- ئ آ	Discrepand	Discrepancies Between	Samples were:	ı
Reliĥquished by: (Signature)	Date Received by: (Signature)	nature)	Date	Time	Sample Labels and COC Record? You	and Y or N	Snipped or Hand Delivered Ambient or chilled Received in good condition: Y or N	or Hand DeliveredAirbili#
Relinquished by: (Signature)	Date Time Received by: (Signature)	nature)	Date	Time	Explain:		Property preserved: Y or N Samples returned to lab Hrs fracCOC Tape was:	ed: Y or N d to lab Hrs from collection
Reinfuished by: (Signature)	Date Time Received by: (Signature)	nature)	Date	Time			2. Unbroken on oute 3. COC record pres Y or N	Unbroken on outer package: Y or N COC record present & complete upon sample receipt: Y or N
				1				

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

WHITE COPY - ORIGINAL

ARCADIS

Appendix E

Data Validation Memoranda

MEMO

To:

David Stern

Copies:

ARCADIS Geraghty & Miller, Inc. 88 Duryea Road Melville New York 11747

Tel 631 249-7600 Fax 631 249-7610

ENVIRONMENTAL

From

Donna M. Brown and Francis K. Rossi

Date: 15 January 2001

Subject.

Data Validation of Volatile Organic Compound Groundwater Samples Collected for the Third Quarter 2000 Monitoring Program, Northrop Grumman, Bethpage, New York (Project No. NY00008.0210.00004).

DATA VALIDATION

Fifty eight (58) samples, two (2) field replicates, ten (10) field blanks, and twenty (20) trip blanks were collected from September 18, through October 16, 2000 in the vicinity of the Northrop Grumman site, Bethpage, New York. The samples were sent to Severn Trent Laboratories (STL) in Shelton, Connecticut for the analysis of volatile organic compounds (VOCs) following purge and trap GC/MS using New York State Department of Environmental Conservation (NYSDEC) 10/95 Method NYDEC 95-1.

Validation of the data was performed following the quality assurance/quality control (QA/QC) criteria set forth in the method, and the document "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" dated October 1999. Sample identification, collection dates, and laboratory-received dates are listed in Table 1. The quality of the data was acceptable with the appropriate qualifications described in this memorandum. Metals and semi-VOCs data were discussed in a separate memo.

The laboratory provided four data packages. The analytical data was provided by the laboratory in the sample delivery groups (SDG 7000-2088A, 7000-2088B, 7000-2114A, 7000-2176A, 7000-2209A and 7000-2209B). The data validation results for these SDGs are discussed separately below.

Our ref..
F:\CHEMICAL\DATA-VAL\GRUMMAN\BETHPAGE\Grum0900-1.doc

Page:

1/27

SDG 7000-2088A

HOLDING TIMES

The samples were analyzed within New York holding time requirements.

GC/MS INSTRUMENT PERFORMANCE CHECK

All GC/MS instrument tunes were within criteria.

INITIAL CALIBRATION

Two initial calibrations were performed. The compounds relative response factors (RRFs) were found to be greater than 0.05, and percent relative standard deviations (%RSDs), except for the following:

Calibration Date: 9/14/00

Compound	% RSD	\underline{RRF}
2-Chloroethylvinylether		0.041

Associated samples: GM-20I, GM-20D, GM-21I, GM-15I, GM-16I, GM-35D-2, GM-36D-2, GM-36D, GM-18I, TB091800, TB091900, TB092000, TB092100, GM-37D, and GM-37D-2.

Calibration Date: 9/25/00

Compound	% RSD	RRF
2-Chloroethylvinylether	48.2	0.014
Chloromethane	36.8	
Vinyl chloride	31.9	
Chloroethane	30.5	
Acetone	36.2	

Associated samples: MW-52S, MW-52I, TB092500-1, TB092500-2, and FB092500.

Chloromethane, vinyl chloride, chloroethane, and acetone results were qualified as estimated (J) if detected, and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated samples.

CONTINUING CALIBRATION

Three continuing calibrations were performed. The compounds had RRFs greater than 0.05 and percent differences (%D) less than 25%, except for the following:

Calibration Date: 09/29/00		
Compound	<u>% D</u>	<u>RRF</u>
Chloromethane	-36.9	
Vinyl chloride	-33.1	
Acetone	-55.0	
2-Butanone	-26.7	
4-Methyl-2-pentanone	-32.4	
2-Hexanone	-34.1	
1,1,2,2-Tetrachloroethane	-25.8	
2-Chloroethylvinylether	-78.6	0.003
Vinyl acetate	-28.2	

Associated samples: FB092500, TB092500-1, and TB092500-2.

Calibration Date: 10/02/00		
Compound	<u>% D</u>	<u>RRF</u>
Chloromethane	-25.8	-
Bromomethane	-25.7	
Acetone	-57.8	
4-Methyl-2-pentanone	-31.9	-
2-Hexanone	-26.8	
2-Chloroethylvinylether	-78.6	0.003

Associated samples: MW-52S and MW-52I.

Calibration Date: 09/22/00		
Compound	<u>% D</u>	RRF
Chloroethane	29.1	
Acetone	-36.4	
2-Butanone	-32.6	
4-Methyl-2-pentanone	-29.2	
2-Hexanone	-29.4	-
2-Chloroethylvinylether	-58.5	0.017
Vinyl acetate	-42.7	

Associated samples: GM-20I, GM-20D, GM-21I, GM-15I, GM-16I, GM-35D-2, GM-36D-2, GM-36D, GM-18I, TB091800, TB091900, TB092000, TB092100, GM-37D, and GM-37D-2.

Chloromethane, vinyl chloride, acetone, 2-butanone, 4-methyl-2-pentanone, 2-hexanone, 1,1,2,2-tetrachloroethane, bromomethane, chloroethane, and vinyl acetate results were qualified as estimated (J) if detected and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether

results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated samples.

BLANKS

Three method blanks (VBLKMB, VBLKKU, VBLKKV) were analyzed with this SDG. Methylene chloride was detected in VBLKKU and VBLKKV and acetone and 1,1,2.2-tetrachloroethane in VBLKMB.

Six trip blanks and one field blank were collected along with this sample set. Methylene chloride was detected in all the trip blanks and the field blank, acetone in TB091800 and TB092100, 1,1,2.2-tetrachloroethane in TB091800, 2-butanone in TB092500-2, and benzene, toluene, ethylbenzene, and xylenes in FB092500.

Based on blank results, results were qualified as non-detect (U), for the samples listed below.

Compound Sample ID's

Methylene Chloride GM-20I, GM-20D, GM-21I, GM-15I, GM-16I, GM-35D-

2, GM-36D-2, GM-36D, GM-37D, GM-37D-2, GM-18I,

MW-52S, and MW-52I.

Acetone GM-21I, GM-35D-2, GM-36D-2, and GM-36D.

2-Butanone MW-52S.

SYSTEM MONITORING COMPOUNDS (SURROGATE SPIKES)

All surrogate spike recoveries were within control limits for all samples and blanks.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

One matrix spike/matrix spike duplicate/matrix spike blank (MS/MSD/MSB) was analyzed with this sample set. Sample MW-52S was used for the MS/MSD/MSB. Spike percent recoveries (%R) and relative percent differences (RPD's) were within control limits. Qualification of data based on the MS/MSD/MSB results was not necessary.

LABORATORY CONTROL SAMPLES

Laboratory control sample percent recovery criteria were not meet for the following compounds: carbon disulfide was below limits and acetone was above limits, associated with TB092500-1, TB092500-2, and FB092500 and acetone, methylene chloride, chloroform, and trichloroethene were above limits, associated with MW-52S and MW-52I. Based on laboratory control sample results, acetone, methylene chloride, chloroform, and trichloroethene were qualified as estimated (J) if detected. Carbon disulfide results were qualified as unusable (R) if not detected, and estimated (J) if detected

INTERNAL STANDARDS

All internal standard area counts and retention times were within control limits for all samples and blanks.

TARGET COMPOUND IDENTIFICATION

Target compounds detected in the samples were reported correctly.

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLs)

All compound detection limits were met.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds were reported correctly.

SYSTEM PERFORMANCE

The performance of the instruments during analysis is considered acceptable.

OVERALL ASSESSMENT OF DATA

The quality of the data presented in this SDG package is acceptable with the appropriate qualifications described in the above section.

SDG 7000-2088B

HOLDING TIMES

The samples were analyzed within New York holding time requirements.

GC/MS INSTRUMENT PERFORMANCE CHECK

The GC/MS instrument tunes were within criteria.

INITIAL CALIBRATION

Two initial calibrations were performed. The compounds RRFs were found to be >0.05 and %RSD was found to be < 30%, except for the following:

Calibration Date: 9/14/00

Compound	<u>% RSD</u>	<u>RRF</u>
2-Chloroethylvinylether		0.041

Associated samples: HW-29D, HW-24I, TB092700-1, and TB092700-2.

Calibration Date: 9/25/00

Compound	% RSD	RRF
2-Chloroethylvinylether	48.2	0.014
Chloromethane	36.8	
Vinyl chloride	31.9	
Chloroethane	30.5	
Acetone	36.2	

Associated samples: N10634, GM-21S, GM-18S, FW-03, HW-29I, GM-13D, GM-15D, GM-15S, TB092800, FB092800, and FB092700.

Chloromethane, vinyl chloride, chloroethane, and acetone results were qualified as estimated (J) if detected, and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated samples.

CONTINUING CALIBRATION

Three continuing calibrations were performed. The compounds had RRFs greater than 0.05 and %Ds less than 25%, except for the following:

Calibration Date: 09/29/00		
Compound	<u>% D</u>	RRF
Chloromethane	-36.9	
Vinyl chloride	-33.1	
Acetone	-55.0	
2-Butanone	-26.7	
4-Methyl-2-pentanone	-32.4	
2-Hexanone	-34.1	
1,1,2,2-Tetrachloroethane	-25.8	
2-Chloroethylvinylether	-78.6	0.003
Vinyl acetate	-28.2	

Associated samples: N10634, GM-21S, and GM-18S.

Calibration Date: 10/3/00		
Compound	<u>% D</u>	<u>RRF</u>
Acetone	-57.4	
2-Butanone	-56.3	
Bromoform	-28.5	
4-methyl-2-pentanone	-35.2	
2-Hexanone	-35.0	
2-chloroethylvinylether	-42.8	0.008

Associated samples: FW-03, HW-29I, GM-13D, GM-15D, GM-15S, FB092700, FB092800, and TB092800.

Calibration Date: 9/30/00		
Compound	<u>% D</u>	<u>RRF</u>
2-Butanone	-28.0	
2-chloroethylvinylether	-61.0	0.012

Associated samples: HW-29D, HW-24I, TB092700-1, and TB092700-2.

Chloromethane, vinyl chloride, acetone, 2-butanone, 4-methyl-2-pentanone, bromoform, 2-hexanone, 1,1,2,2-tetrachloroethane, vinyl acetate, and 2-butanone results were qualified as estimated (J) if detected and estimated (UJ) if not detected in the associated sample. 2-Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated sample.

BLANKS

Three method blanks (VBLKKU, VBLKKW, VBLKMJ) were analyzed with this SDG. Methylene chloride was detected in VBLKKU and VBLKKW and acetone in VBLKKW and VBLKMJ.

Three trip blanks and two field blanks were associated with the samples analyzed in this SDG. Methylene chloride was detected in all the trip blanks and field blanks, acetone in TB092700, FB092700, and TB092800, 2-butanone in TB092800 and FB092800, and tetrachloroethene in FB092700. One field and trip blank results (TB092500 and FB092500) were reported in SDG 7000-2088A.

Based on the blank results the following compounds were qualified as non-detect (U).

Compound Sample ID's

Methylene chloride N10634, GM-21S, GM-18S, FW-03, HW-29I, HW-

29D, HW-24I, GM-13D, GM-15D, and GM-15S.

Acetone HW-29I, HW-29D, and HW-24I.

Tetrachloroethene HW-29I.

2-Butanone GM-15D.

SYSTEM MONITORING COMPOUNDS (SURROGATE SPIKES)

All surrogate spike recoveries were within control limits for all samples and blanks.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

A MS/MSD was analyzed with this sample set. Sample MW-52S was used for the MS/MSD. The quantitation reports appear in SDG 7000-2088A. Spike %Rs and RPDs were within control limits. Qualification of data based on the MS/MSD results was not necessary.

LABORATORY CONTROL SAMPLES

Laboratory control sample percent recovery criteria were not met for the following compounds: Cis-1,3-dichloropropene, 2-butanone, chloroform and trichloroethene in K1792D and acetone in K1761D were above limits. Carbon disulfide in K1761D was below limits. Based on laboratory control sample results, cis-1,3-dichloropropene, 2-butanone, chloroform, and trichloroethene, were qualified as estimated (J) if detected in N10634, GM-21S, and GM-18S. Acetone and carbon disulfide were qualified as estimated (J) if detected and carbon disulfide as not usable (R) if not detected in FW-03, HW-29I, GM-13D, FB092700, FB092800, GM-15D, GM-15S, and TB092800.

INTERNAL STANDARDS

All internal standard area counts and retention times were within control limits for all samples and blanks.

TARGET COMPOUND IDENTIFICATION

Target compounds detected in the samples were reported correctly.

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLs)

All compound detection limits were met.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds were reported correctly.

SYSTEM PERFORMANCE

The performance of the instruments during analysis is considered acceptable.

OVERALL ASSESSMENT OF DATA

The quality of the data presented in this SDG package is acceptable with the appropriate qualifications described in the above section.

SDG 7000-2114A

HOLDING TIMES

The samples were analyzed within New York holding time requirements.

GC/MS INSTRUMENT PERFORMANCE CHECK

All GC/MS instrument tunes were within criteria.

INITIAL CALIBRATION

One initial calibration was performed for this sample set. All relative response factors (RRF's) were found to be greater than 0.05, and percent relative standard deviations (%RSD) were found to be less than 30% for all compounds except for the following:

Calibration Date: 9/25/00	•	
Compound	% RSD	RRF
2-Chloroethylvinylether	48.2	0.014
Chloromethane	36.8	
Vinyl chloride	31.9	
Chloroethane	30.5	
Acetone	36.2	

Associated samples: All samples.

Chloromethane, vinyl chloride, chloroethane, and acetone results were qualified as estimated (J) if detected, and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if undetected in the associated samples.

CONTINUING CALIBRATION

One continuing calibration was performed with this SDG. All compounds had relative response factors (RRFs) greater than 0.05 and percent differences (%D) less than 25%, except for the following:

Calibration Date: 09/27/00		
Compound	<u>% D</u>	<u>RRF</u>
Acetone	-35.0	
2-Chloroethylvinylether		0.012

Associated sample: All samples.

Acetone results were qualified as estimated (J) if detected and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether results were qualified as estimated (J) if detected, and unusable (R) if not detected.

BLANKS

One method blank (VBLKKS) and one trip blank (TB092200) were analyzed with this SDG. Methylene chloride was detected in both blanks.

Based on the blank results the following compounds were qualified as non-detect (U).

Compound	Sample ID's
Methylene chloride	GM-38D, GM-38D-2, GM-71D-2, Rep-1

SYSTEM MONITORING COMPOUNDS (SURROGATE SPIKES)

All surrogate spike recoveries were within control limits for all samples and blanks.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

Sample GM-38D was used for the MS/MSD/MSB. Spike %Rs and RPDs were within control limits for the MS/MSD, with the exception of trichloroethene. No results were qualified based on the MS/MSD/MSB.

LABORATORY CONTROL SAMPLES

Laboratory control sample percent recovery criteria were not meet for the following compounds: carbon disulfide, 1,1-dichloroethene, toluene, and ethylbenzene were below QC limits. Results were qualified as unusable (R) if not detected, and estimated (J) if detected

INTERNAL STANDARDS

All internal standard area counts and retention times were within control limits for all samples and blanks.

TARGET COMPOUND IDENTIFICATION

Target compounds detected in the samples were reported correctly.

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLs)

All compound detection limits were met.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds were reported correctly.

SYSTEM PERFORMANCE

The performance of the instruments during analysis is considered acceptable.

OVERALL ASSESSMENT OF DATA

One field replicate was collected with this sample set. Sample GM-38D-2 was replicated and labeled REP-1. The replicate data was considered acceptable and qualification of the data was not necessary.

The quality of the data presented in this SDG package is acceptable with the appropriate qualifications described in the above section.

SDG 7000-2176A

HOLDING TIMES

The samples were analyzed within New York holding time requirements.

GC/MS INSTRUMENT PERFORMANCE CHECK

The GC/MS instrument tunes were within criteria.

INITIAL CALIBRATION

Two initial calibrations were performed for this sample set. The RRF's were found to be greater than 0.05, and %RSD were found to be less than 30% for the following compounds:

% RSD	<u>RRF</u>
48.2	0.014
36.8	
31.9	
30.5	
36.2	
	48.2 36.8 31.9 30.5

Associated samples: MW-3R, GM-16SR, N10631, MW-52D, MW-10I, TB100200, GM-23I, FB100200, Rep-2, GM-23S, GM-15D2, TB092600-1, TB092600-2, and FB092600.

Calibration Date: 9/19/00	
Compound	% R

Compound% RSDRRF2-chloroethylvinylether53.00.004

Associated samples: GM-14

Chloromethane, vinyl chloride, chloroethane, and acetone results were qualified as estimated (J) if detected, and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether

results were qualified as estimated (J) if detected and unusable (R) if undetected in the associated samples.

CONTINUING CALIBRATION

Four continuing calibrations were performed. The compounds had RRFs greater than 0.05 and %Ds less than 25%, except for the following:

Calibration Date: 09/28/00

Compound RRF 2-chloroethylvinylether 0.011

Associated samples: MW-3R, GM-16SR, N10631, MW-52D, MW-10I, TB092600-1, TB092600-2, and FB092600.

Calibration Date: 10/4/00

Compound	<u>% D</u>	<u>RRF</u>
Acetone	-41.0	
2-Butanone	-53.2	
4-Methyl-2-pentanone	-28.2	
Tetrachloroethene	25.9	
Bromoform	-29.4	
2-chloroethylvinylether	-42.8	0.008

Associated samples: TB100200, GM-23I, and FB100200.

Calibration Date: 10/5/00

Compound	<u>% D</u>	<u>RRF</u>
Chloromethane	-25.5	
Acetone	-55.8	
4-Methyl-2-pentanone	-32.4	
Tetrachloroethene	28.8	
2-Chloroethylvinylether	-50.0	0.007

Associated samples: Rep-2, GM-23S, and GM-15D2.

Calibration Date: 10/9/00

Compound % D Acetone 34.1

Associated samples: GM-14

Acetone, 2-butanone, 4-methyl-2pentanone, tetrachloroethene, and bromoform, results were qualified as estimated (J) if detected and estimated (UJ) if not detected in the associated samples. 2-

Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated samples.

BLANKS

Four method blanks (VBLKKT, VBLKXX, VBLKKY, VBLKND) were analyzed with this SDG. Methylene chloride was detected in VBLKKT and VBLKKY and acetone in VBLKXX.

Three trip blanks and two field blanks were analyzed with this SDG. Methylene chloride was detected in all the trip and field blanks, acetone in TB100200 and FB100200, and 2-butanone and 4-methyl-2-pentanone in TB092600.

Based on the blank results the following compounds were qualified as non-detect (U).

<u>Compound</u> <u>Sample ID's</u>

Methylene chloride MW-3R, GM-16SR, MW-52D, Rep-2, GM-23I,

GM-23S, and GM-15D2.

SYSTEM MONITORING COMPOUNDS (SURROGATE SPIKES)

All surrogate spike recoveries were within control limits for all samples and blanks.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

A batch specific sample was used for the MS/MSD/MSB. Spike percent recoveries (%R) and relative percent differences (RPD's) were within control limits for the MS/MSD, except for one percent recovery. Qualification of the data was not necessary based on MS/MSD results.

LABORATORY CONTROL SAMPLES

Laboratory control sample percent recovery criteria were not met for acetone, which was above quality control limits. Based on laboratory control sample results, acetone was qualified as estimated (J) if detected in TB100200, FB100200, GM-23I, GM-23S, GM-15D2, and REP-2.

INTERNAL STANDARDS

All internal standard area counts and retention times were within control limits for all samples and blanks.

TARGET COMPOUND IDENTIFICATION

Target compounds detected in the samples were reported correctly.

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLs)

All compound detection limits were met.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds were reported correctly.

SYSTEM PERFORMANCE

The performance of the instruments during analysis is considered acceptable.

OVERALL ASSESSMENT OF DATA

One field replicate was collected with this sample set. Sample GM-23I was replicated and labeled REP-

2. The replicate data was considered acceptable and qualification of the data was not necessary.

The quality of the data presented in this SDG package is acceptable with the appropriate qualifications described in the above section.

SDG 7000-2209A

HOLDING TIMES

The samples were analyzed within New York holding time requirements. Sample GM73D2 was mislabeled as GM73D2. The form I was corrected to show the proper id.

GC/MS INSTRUMENT PERFORMANCE CHECK

The GC/MS instrument tunes were within criteria.

INITIAL CALIBRATION

One initial calibration was performed for this sample set. The RRF's were found to be greater than 0.05, and %RSD were found to be less than 30% except for the following compounds:

% RSD	<u>RRF</u>
48.2	0.014
36.8	
31.9	
36.2	
30.5	
	48.2 36.8 31.9 36.2

Associated samples: All samples

Chloromethane, chloroethane, vinyl chloride, and acetone results were qualified as estimated (J) if detected, and estimated (UJ) if not detected in the associated samples. 2-chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if undetected in the associated samples.

CONTINUING CALIBRATION

Five continuing calibrations were performed with this SDG. All compounds had RRFs greater than 0.05 and percent differences (%D) less than 25%, except for the following:

Calibration Date: 10/2/00		
Compound	<u>% D</u>	<u>RRF</u>
2-Chloroethylvinylether	-78.6	0.003
Chloromethane	-25.8	
Bromomethane	-25.7	
Acetone	-57.8	
4-Methyl-2-Pentanone	-31.9	
2-Hexanone	-26.8	

Associated samples: GM-17D, GM-17I, and GM-17SR.

Calibration Date: 10/3/00		
Compound	<u>% D</u>	<u>RRF</u>
Acetone	-57.4	
2-Butanone	-56.3	
Bromoform	-28.5	
4-Methyl-2-pentanone	-35.2	
2-Hexanone	-35.0	
2-Chloroethylvinylether	-42.8	0.008

Associated samples: TB092900 and FB092900.

<u>% D</u>	<u>RRF</u>
-25.5	
-55.8	
-32.4	
28.8	
-50.0	0.007
	-25.5 -55.8 -32.4 28.8

Associated samples: FB100300, TB100300, GM33D2, GM34D, and GM34D2.

Calibration Date: 10/9/00		
Compound	<u>% D</u>	RRF
Chloromethane	-34.3	
Vinyl chloride	-29.9	
Acetone	-60.2	
2-Butanone	-32.1	
4-Methyl-2-Pentanone	-39.0	
2-Hexanone	-32.5	
2-chloroethylvinylether	-85.7	0.002
Vinyl acetate	-27.9	
Tetrachloroethene	29.2	

Associated samples: N10627, TB100400, FB100400, GM74I, TB100500, and FB100500.

Calibration Date: 10/10/00		
Compound	<u>% D</u>	<u>RRF</u>
Chloromethane	-32.2	
Vinyl chloride	-27.3	
Acetone	-47.4	
2-Butanone	-59.5	
4-Methyl-2-Pentanone	-32.4	
2-Hexanone	-31.7	
Tetrachloroethene	31.2	
2-Chloroethylvinylether	-85.7	0.002
Vinyl acetate	-27.9	

Associated samples: GM74D2 and GM73D2.

Chloromethane, vinyl chloride, acetone, 2-butanone, 4-methyl-2-pentanone, 2-hexanone, tetrachloroethene, vinyl acetate, bromomethane, and bromoform, results were qualified as estimated (J) if detected and estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated samples.

BLANKS

Five method blanks (VBLKKV, VBLKKW, VBLKKY, VBLKKZ, VBLKK1) were analyzed with this SDG. Methylene chloride was detected in VBLKKV, VBLKKW, VBLKKY, and VBLKK1, acetone in VBLKKW, and 2-butanone in VBLKKZ and VBLKK1.

Four trip blanks and four field blanks were analyzed with this SDG. Methylene chloride was detected in all the trip and field blanks, 2-butanone in TB092900 and FB092900, and carbon disulfide, trichloroethene, and tetrachloroethane, in TB092900.

Based on the method, trip and field blank results the following compounds were qualified as non-detect (U).

Compound

Sample ID's

Methylene chloride

GM17D, GM17I, GM17SR, GM33D2, GM34D, GM34D2, N10627, GM73D2, GM74D2, and GM74I.

SYSTEM MONITORING COMPOUNDS (SURROGATE SPIKES)

All surrogate spike recoveries were within control limits for all samples and blanks.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

A batch specific sample was used for the MS/MSD/MSB. Spike %R and RPD's were within control limits for the MS/MSD. Qualification of the data was not necessary based on MS/MSD results.

LABORATORY CONTROL SAMPLES

Five laboratory control samples were run with this SDG. Based on laboratory control sample results, acetone was qualified as estimated (J) if detected, in all samples. Chloroform and trichloroethene were qualified as estimated (J) if detected in samples GM17D, GM17I, GM17SR, GM73D2, GM-74D2, TB100400, TB100500, FB100400, FB100500, N10627, and GM74I. 1,2-Dichloroethane, 2-butanone, cis-1,3-dichloropropene, and chlorobenzene were qualified as estimated (J) if detected in samples GM73D2 and GM74D2. Methylene chloride was qualified as estimated (J) if detected in samples GM17D, GM17I, and GM17SR.

INTERNAL STANDARDS

All internal standard area counts and retention times were within control limits for all samples and blanks.

TARGET COMPOUND IDENTIFICATION

Target compounds detected in the samples were reported correctly.

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLs)

All compound detection limits were met.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds were reported correctly.

SYSTEM PERFORMANCE

The performance of the instruments during analysis is considered acceptable.

OVERALL ASSESSMENT OF DATA

The quality of the data presented in this SDG package is acceptable with the appropriate qualifications described in the above section.

SDG 7000-2209B

HOLDING TIMES

The samples were analyzed within New York holding time requirements.

GC/MS INSTRUMENT PERFORMANCE CHECK

The GC/MS instrument tunes were within criteria.

INITIAL CALIBRATION

Two initial calibrations were performed for this sample set. All relative response factors (RRF's) were found to be greater than 0.05, and percent relative standard deviations (%RSD) were found to be less than 30% for all compounds except for the following:

Our ref

% RSD	RRF
48.2	0.014
36.8	
31.9	
36.2	
30.5	
	48.2 36.8 31.9 36.2

Associated samples: All samples

Chloromethane, chloroethane, vinyl chloride, and acetone results were qualified as estimated (J) if detected, and estimated (UJ) if not detected in the associated samples. 2-chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if undetected in the associated samples.

CONTINUING CALIBRATION

Four continuing calibrations were performed with this SDG. All compounds had RRFs greater than 0.05 and percent differences (%D) less than 25%, except for the following:

Calibration Date: 10/9/00		
Compound	<u>% D</u>	<u>RRF</u>
Chloromethane	-34.3	
Vinyl chloride	-29.9	
Acetone	-60.2	
2-Butanone	-32.1	
4-Methyl-2-Pentanone	-39.0	
2-Hexanone	-32.5	
Tetrachloroethene	29.2	
2-chloroethylvinylether	-85.7	0.002
Vinyl acetate	- 27.9	

Associated samples: TB10/6/00, FB10/6/00, and GM-74D.

Calibration Date: 10/17/00

Compound	<u>% D</u>	<u>RRF</u>
2-Butanone	40.9	
2-chloroethylvinylether		0.000

Associated samples: GM-70D2, TB10/11/00, and TB101600.

Calibration Date: 10/18/00

<u>Compound</u> RRF

2-chloroethylvinylether

Not reported (0.000)

Associated samples: GP-1, GP-3, ONCT-1, IRM Effluent, GP-1 Effluent, and GP-1 RCB.

Calibration Date: 10/19/00

Compound %D RRF 2-chloroethylvinylether - 0.000

Associated samples: ONCT-2, ONCT-3, IRM Influent, GP-1 Influent, and IRM RCB.

Chloromethane, vinyl chloride, acetone, 2-butanone, 2-hexanaone, 4-methyl-2-pentanone, tetrachloroethene, dichlorofluoromethane, and vinyl acetate results were qualified as estimated (UJ) if not detected in the associated samples. 2-Chloroethylvinylether results were qualified as estimated (J) if detected and unusable (R) if not detected in the associated samples.

BLANKS

Five method blanks (VBLKKZ, VBLKKC, VBLKKE, and VBLKKF) were analyzed with this SDG. Methylene chloride was detected in VBLKKC, VBLKKE, and VBLKKF, and 2-butanone in VBLKKZ. A butylated hydroxytoluene was detected in VBLKKE and was qualified as not usable (R) in IRM Effluent.

Three trip blanks and one field blank were analyzed with this SDG. Methylene chloride was detected in all the trip and field blanks and acetone in TB101600.

Based on the blank results the following compounds were qualified as non-detect (U):

Compound Sample ID's

Methylene Chloride GM-74D, GM-70D2, GP-1, GP-3, ONCT-1

ONCT-2, ONCT-3, IRM Influent, GP-1 Influent

GP-1 Effluent, IRM RCB, and GP-1 RCB.

Acetone GP-1, ONCT-2, IRM Influent, and GP-1 Influent.

SYSTEM MONITORING COMPOUNDS (SURROGATE SPIKES)

All surrogate spike recoveries were within control limits for all samples and blanks.

MATRIX SPIKES/MATRIX SPIKE DUPLICATES

Sample GM-74D was used for the MS/MSD/MSB. Spike %R and RPD's were within control limits for the MS/MSD, except for one RPD. All %R were within quality control limits for the MSB. Qualification of the data was not necessary based on MS/MSD results.

LABORATORY CONTROL SAMPLES

A laboratory control sample was run with this SDG. Based on laboratory control sample results, acetone, chloroform and trichloroethene were qualified as estimated (J) if detected, in all samples.

INTERNAL STANDARDS

All internal standard area counts and retention times were within control limits for all samples and blanks.

TARGET COMPOUND IDENTIFICATION

Target compounds detected in the samples were reported correctly.

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLs)

All compound detection limits were met.

TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds were reported correctly.

SYSTEM PERFORMANCE

The performance of the instruments during analysis is considered acceptable.

OVERALL ASSESSMENT OF DATA

The quality of the data presented in this SDG package is acceptable with the appropriate qualifications described in the above section.

Table 1. Sample Identification, Collection Dates, and Laboratory Received Dates for Samples Analyzed Under STL Sample Delivery Group Numbers 7000-2088A, 7000-2088B, 7000-2114A, 7000-2176A, 7000-2209A and 7000-2209B.

ARCADIS Geraghty and Miller, Inc. ID	Laboratory ID	Date Collected	Date Received
SDG 7000-2088A			
GM-20I	002088A-01	9/18/00	9/19/00
GM-20D	002088A-02	9/18/00	9/19/00
GM-21I	002088A-03	9/18/00	9/19/00
TB091800	002088A-04	9/18/00	9/19/00
GM-15I	002088A-05	9/19/00	9/20/00
GM-16I	002088A-06	9/19/00	9/20/00
TB091900	002088A-07	9/19/00	9/20/00
GM-35D-2	002088A-08	9/20/00	9/21/00
GM-36D-2	002088A-09	9/20/00	9/21/00
GM-36D	002088A-10	9/20/00	9/21/00
TB092000	002088A-11	9/20/00	9/21/00
GM-37D	002088A-12	9/21/00	9/22/00
GM-37D-2	002088A-13	9/21/00	9/22/00
TB092100	002088A-14	9/21/00	9/22/00
GM-18I	002088A-15	9/21/00	9/22/00
MW-52S	002088A-16	9/25/00	9/26/00
MW-52I	002088A-17	9/25/00	9/26/00
FB092500	002088A-18	9/25/00	9/26/00
TB092500-1	002088A-19	9/25/00	9/26/00
TB092500-2	002088A-20	9/25/00	9/26/00

Sample Identification, Collection Dates, and Laboratory Received Dates for Samples Analyzed Table 1. Under STL Sample Delivery Group Numbers 7000-2088A, 7000-2088B, 7000-2114A, 7000-2176A, 7000-2209A and 7000-2209B.

ARCADIS Geraghty and Miller, Inc. ID	Laboratory ID	Date Collected	Date Received
SDG 7000-2088B			
N10634	002088B-01	9/25/00	9/26/00
GM-21S	002088B-02	9/25/00	9/26/00
GM-18S	002088B-03	9/25/00	9/26/00
FW-03	002088B-04	9/27/00	9/28/00
HW-29I	002088B-05	9/27/00	9/28/00
HW-29D	002088B-06	9/27/00	9/28/00
HW-24I	002088B-07	9/27/00	9/28/00
GM-13D	002088B-08	9/27/00	9/28/00
FB092700	002088B-09	9/27/00	9/28/00
TB092700-01	002088B-10	9/27/00	9/28/00
TB092700-02	002088B-11	9/27/00	9/28/00
TB092800	002088B-12	9/28/00	9/29/00
FB09280	002088B-13	9/28/00	9/29/00
GM-15D	002088B-14	9/28/00	9/29/00
GM-15S	002088B-15	9/28/00	9/29/00
SDG 7000-2114A			
GM-38D	002114A-01	9/22/00	9/23/00
GM-38D-2	02114A-02	9/22/00	9/23/00
TB092200	02114A-03	9/22/00	9/23/00
GM-71D-2	02114A-04	9/22/00	9/23/00
REP-1	02114A-05	9/22/00	9/23/00

Table 1. Sample Identification, Collection Dates, and Laboratory Received Dates for Samples Analyzed Under STL Sample Delivery Group Numbers 7000-2088A, 7000-2088B, 7000-2114A, 7000-2176A, 7000-2209A and 7000-2209B.

ARCADIS Geraghty and Miller, Inc. ID	Laboratory ID	Date Collected	Date Received
SDG 7000-2176A			
MW-3R	002176A-01	9/26/00	9/27/00
GM-16SR	002176A-02	9/26/00	9/27/00
N10631	002176A-03	9/26/00	9/27/00
FB092600	002176A-05	9/26/00	9/27/00
TB092600-1	002176A-06	9/26/00	9/27/00
TB092600-2	002176A-07	9/26/00	9/27/00
MW-52D	002176A-08	9/26/00	9/27/00
MW-10I	002176A-09	9/26/00	09/27/00
TB100200	0021 76A-1 0	10/02/00	10/03/00
REP-2	002176A-11	10/02/00	10/03/00
GM-23I	002176A-12	10/02/00	10/03/00
GM-23S	002176A-13	10/02/00	10/03/00
GM-14	002176A-14	10/02/00	10/03/00
FB100200	002176A-15	10/02/00	10/03/00
GM-15D2	002176A-16	10/02/00	10/03/00
SDG 7000-2209A			
GM-17D	002209A-01	9/29/00	9/30/00
GM-17I	002209A-02	9/29/00	9/30/00
TB092900	002209A-03	9/29/00	9/30/00

Table 1. Sample Identification, Collection Dates, and Laboratory Received Dates for Samples Analyzed Under STL Sample Delivery Group Numbers 7000-2088A, 7000-2088B, 7000-2114A, 7000-2176A, 7000-2209A and 7000-2209B.

ARCADIS Geraghty and Miller, Inc. ID	Laboratory ID	Date Collected	Date Received
SDG 7000-2209A -			
continued			
GM-17SR	002209A-04	9/29/00	9/30/00
FB092900	002209A-05	9/29/00	9/30/00
FB100300	002209A-06	10/03/00	10/04/00
TB100300	002209A-07	10/03/00	10/04/00
GM33D2	002209A-08	10/03/00	10/04/00
GM34D	002209A-09	10/03/00	10/04/00
GM34D2	002209A-10	10/03/00	10/04/00
N10627	002209A-11	10/04/00	10/05/00
GM73D2	002209 A- 12	10/04/00	10/05/00
TB100400	002209A-13	10/04/00	10/05/00
FB100400	002209A-14	10/04/00	10/05/00
GM74D2	002209A-15	10/05/00	10/06/00
GM74I	002209 A- 16	10/05/00	10/06/00
TB100500	002209 A -17	10/05/00	10/06/00
FB100500	002209A-18	10/05/00	10/06/00
SDG 7000-2209B			
TB 10/6/00	002209B-01	10/06/00	10/07/00
FB 10/6/00	002209B-02	10/06/00	10/07/00
GM-74D	002209B-03	10/06/00	10/07/00
GM-70D	002209B-04	10/11/00	10/12/00
TB 10/11/00	002209B-05	10/11/00	10/12/00

Table 1. Sample Identification, Collection Dates, and Laboratory Received Dates for Samples Analyzed Under STL Sample Delivery Group Numbers 7000-2088A, 7000-2088B, 7000-2114A, 7000-2176A, 7000-2209A and 7000-2209B.

ARCADIS Geraghty and Miller, Inc. ID	Laboratory ID	Date Collected	Date Received
SDG 7000-2209B -			
continued			
TB101600	002209B-06	10/16/00	10/17/00
GP-1	002209B-07	10/16/00	10/17/00
GP-3	002209B-08	10/16/00	10/17/00
ONCT-1	002209B-09	10/16/00	10/17/00
ONCT-2	002209B-10	10/16/00	10/17/00
ONCT-3	002209B-11	10/16/00	10/17/00
IRM INFLUENT	002209B-12	10/16/00	10/17/00
IRM EFFLUENT	002209B-13	10/16/00	10/17/00
GP-1 INFLUENT	002209B-14	10/16/00	10/17/00
GP-1 EFFLUENT	002209B-15	10/16/00	10/17/00
IRM RCB	002209B-16	10/16/00	10/17/00
GP-1 RCB	002209B-17	10/16/00	10/17/00