

Mr. Jason Pelton Section Chief New York State Department of Environmental Conservation Remedial Bureau D 625 Broadway Albany, NY 12233-7015

Date: May 31, 2023 Our Ref: 30123958

Subject: Results of First Quarter 2023 System Operation and Monitoring,

Bethpage Park Groundwater Containment System (BPGWCS),

Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York, NYSDEC Site #1-30-003A.

Arcadis of New York, Inc. Two Huntington Quadrangle Suite 1S10 Melville New York 11747

Fax: 631 249 7610 www.arcadis.com

Phone: 631 249 7600

Dear Jason,

Enclosed is one electronic PDF copy of the First Quarter 2023 Report for the BPGWCS Operation and Monitoring Program, prepared in accordance with the 2013 NYSDEC ROD, 2014 NYSDEC Order on Consent, OM&M Manual (Arcadis 2009) and the NYSDEC-approved Sampling and Analysis Plan (SAP; Arcadis 2009). As we have transitioned to electronic submittals (via PDF) in line with NYSDEC's paper reduction program, hard copies of the report can be provided on request.

The notable increase in total and project VOC concentrations detected in the Q3 2022 RW-1 influent water samples (due to the addition of remedial wells BCPMW-4-1 and BCPMW-4-2 that were tied-in to the RW-1 influent pipe) has continued to decrease significantly in Q1 2023 (Table 10). The notable increase in concentrations of cis-1,2-Dichloroethene and Trichloroethylene detected in Q1 2022 RW-3 influent water samples has continued to decrease significantly in Q1 2023 (Table 10). The total and project VOC concentrations remain below historical maximum concentrations (Figures 6A and 6B). The notable increases in concentrations of cis-1,2-Dichloroethene, Trichloroethylene, Vinyl Chloride, Benzene, Toluene, m,p-Xylenes, and o-Xylene detected in the August 2021 RW-2 influent water sample continue to decrease (Table 10). The total and project VOC concentrations remain below historical maximum concentrations (Figures 6A and 6B). These constituents have not been detected in the BPGWCS Q1 2023 effluent water samples (Table 3). In addition, the air quality impact analysis (Table 9) shows that none of the detected compounds exceed the 6 NYCRR Part 212-2.2 Table 2 High Toxicity Air Contaminant List annual mass emission limits. We will continue monitoring this situation during subsequent quarterly monitoring rounds.

Mr. Jason Pelton NYSDEC RB

May 31, 2023

If you have any questions, please do not hesitate to contact me.

Sincerely,

Arcadis of New York, Inc.

aristopher D. Engles

Christopher Engler, PE New York PE-069748

Vice President

Email: Christopher.Engler@arcadis.com

Direct Line: 315.409.6579

CC. Edward Hannon, Northrop Grumman

Matthew Travis, NYSDEC

Jim Sullivan, NYS Dept. of Health

Angela Pettinelli, Nassau County Dept. of Health

Robin Putnam, Nassau County Dept. of Health

Richard Castle, Nassau County Dept. of Health

Carlo San Giovanni, Arcadis

Mike Wolfert, Arcadis

Nidal Azzam, USEPA

Alexis Stabulas, USEPA

Public Repository

File

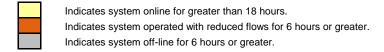

Tables

Table 1
Operational Summary
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

MONTH	DAY		Days Operational
		0 21 22 23 24 25 26 27 28 29 30 31	Орегацина
2009 Total			160
2010 Total			352
2011 Total			351
2012 Total			353
2013 Total			354
2014 Total			349
2015 Total			348
2016 Total			351
2017 Total			354
2018 Total			348
2019 Total			355
2020 Total			345
2021 Total			346
2022 Total			344
Jan 2023			27
Feb 2023			28
Mar 2023			29
1Q 2023			84
2023 Total			84
2023 TUIdi	1		04
TOTAL			4794

Legend:

Notes, Abbreviations, and Units on last page.

Table 1

Operational Summary
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Notes:

1. Days the system was operational for greater than 18 hours are counted as one day.

First Quarter 2023

Abbreviations/Units:

1Q First Quarter

Table 2
Summary of Influent Water Sample Analytical Results
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Compound ³ (All Constituent Concentrations in µg/L)	05/16/22	08/17/22	11/16/22	02/08/23
Project VOCs				
1,1,1 - Trichloroethane	< 1.0	< 1.0	< 1.0	< 1.0
1,1 - Dichloroethane	< 1.0	0.64 J	< 1.0	< 1.0
1,2 - Dichloroethane	< 1.0	< 1.0	< 1.0	< 1.0
1,1 - Dichloroethene	< 1.0	0.96 J	< 1.0	< 1.0
Tetrachloroethene	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	11.6	56.8	49.1	24.9
Vinyl Chloride	3.3	11.8	4.5	1.4
cis 1,2-Dichloroethene	44.0	125	49.1	22.3
trans 1,2-Dichloroethene	< 1.0	1.2	0.78 J	< 1.0
Benzene	< 0.50	0.97	< 0.50	< 0.50
Toluene	7.9	140	3.3	< 1.0
o-Xylene	1.7	21.4	1.5	< 1.0
m,p-Xylene	2.0	28.3	1.6	< 1.0
Subtotal Project VOCs	70.5	387.7	109.9	48.6
Non-Project VOCs	70.5	307.7	103.3	40.0
1,1,2,2-Tetrachloroethane	< 1.0	<1.0	<1.0	< 1.0
1,1,2-Trichloroethane	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Butanone		< 1.0		
1,3-Butadiene	< 5.0	< 5.0	< 5.0	< 5.0
2-Butanone	< 10	< 10	< 10	< 10
4-Methyl-2-Pentanone	< 5.0	< 5.0	< 5.0	< 5.0
Acetone	< 10	< 10	< 10	< 10
Bromodichloromethane	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	< 2.0	< 2.0	< 2.0	< 2.0
Carbon Disulfide	< 2.0	< 2.0	< 2.0	< 2.0
Carbon Tetrachloride	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0
Chlorodibromomethane	< 1.0	< 1.0	< 1.0	< 1.0
Chlorodifluoromethane (Freon 22)	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	< 1.0	< 1.0	< 1.0	< 1.0
Chloroform	1.7	1.4	1.2	0.72 J
Chloromethane	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0

Notes, Abbreviations, Qualifiers, and Units on last page.

Table 2 Summary of Influent Water Sample Analytical Results Bethpage Park Groundwater Containment System Operable Unit 3 (Former Grumman Settling Ponds) Northrop Grumman, Bethpage, New York

Compound ³ (All Constituent Concentrations in µg/L)	05/16/22	08/17/22	11/16/22	02/08/23
Non-Project VOCs				
Dichlorodifluoromethane (Freon 12)	< 2.0	< 2.0	< 2.0	< 2.0
Dichloromethane	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	0.66 J	17.4	1.7	0.76 J
Methyl N-Butyl Ketone	< 5.0	< 5.0	< 5.0	< 5.0
Methyl Tert-Butyl Ether	< 1.0	< 1.0	< 1.0	< 1.0
Styrene (Monomer)	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane (Freon 11)	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorotrifluoroethane (Freon 113)	< 5.0	< 5.0	< 5.0	< 5.0
1-Chloro-1,1-difluoroethane (Freon 142b)	< 5.0	< 5.0	< 5.0	< 5.0
Subtotal Non-Project VOCs	2.4	18.8	2.9	1.5
Total VOCs ^{1,4}	73	407	113	50
1,4-Dioxane	0.70	2.8	2.0	1.6
pH ²	5.4		5.1	6.2

Notes, Abbreviations, Qualifiers, and Units:

- 1. "Total VOCs" represents the sum of individual concentrations of the compounds detected. The values used in calculations referenced in this report have been rounded to the nearest whole number.
- 2. Influent pH samples collected and measured in the field by Arcadis personnel on the dates listed using a field calibrated pH/conductivity meter. pH units are standard units.
- 3. Results validated following protocols specified in Sampling and Analysis Plan in the Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). See previous annual reports for historical analytical results.
- 4. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.
- -- pH not recorded due to a field recording error.

VOC Volatile Organic Compound

2.4 Bold value indicates a detection.

< 1.0 Compound not detected at or above the laboratory quantification limit.

μg/L micrograms per liter

J Result is estimated.

Table 3
Summary of Effluent Water Sample Analytical Results
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

	Discharge												
Compound ⁶	Limit ¹	04/14/22	05/16/22	06/13/22	07/25/22	08/17/22	09/15/22	10/13/22	11/16/22	12/12/22	01/10/23	02/08/23	03/07/23
(All Constituent Concentrations in μg/L)													
Project VOCs													
1,1,1-Trichloroethane	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
1,1-Dichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
Tetrachloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
Trichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
Vinyl Chloride	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
cis 1,2-Dichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
trans 1,2-Dichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0
Subtotal Project VOCs		ND											
	Discharge												
Compound ⁶	Limit ¹	04/14/22	05/16/22	06/13/22	07/25/22	08/17/22	09/15/22	10/13/22	11/16/22	12/12/22	01/10/23	02/08/23	03/07/23
(All Constituent Concentrations in μg/L)	Lillin												
Non-Project VOCs													
Acetone	50	< 10	< 10	< 10	< 10	< 10	<10	< 10	<10	<10	< 10	<10	<10
Chloroform	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.1	<1.1	<1.0	< 1.1	<1.1	<1.0
Dichloromethane	5 ²	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	<2.0	< 2.1	<2.1	<2.0	< 2.1	<2.1	<2.0
Trichlorotrifluoroethane (Freon 113)	5 ²	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.1	<5.1	<5.0	< 5.1	<5.1	<5.0
Subtotal Non-Project VOCs		ND											
Total VOCs ^{3,7}		ND											
Treatment Efficiency ⁴		> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%
	Discharge												
Compound ⁶	Limit ¹	04/14/22	05/16/22	06/13/22	07/25/22	08/17/22	09/15/22	10/13/22	11/16/22	12/12/22	01/10/23	02/08/23	03/07/23
(All Constituent Concentrations in μg/L)													
<u>Inorganics</u>													
Total Iron	600	195	323	474	208	767	286	281	214	186	178	142	519
Total Manganese	600	46.4	69.8	56.0	42.6	127.0	82.9	82.0	67.3	70.6	63.0	54.0	49.5
Nitrate and Nitrite	10,000	2,800	2,800	2,600	2,700	2,500	3,100	2,700	3,200	2,800	<100	2,600	2,300
Total Kjeldahl Nitrogen	10,000	< 200	380.0	< 200	< 200	<200	<200	<200	<200	<200	<200	430	<200
Total Nitrogen	10,000	3,000	3,200	2,600	2,700	2,500	3,100	2,700	3,500	3,000	<300	3,000	2,300
1,4-Dioxane	NE	0.91	0.82	1.1	0.84	1.8	1.4	1.4	1.2	0.90	0.92	1.0	0.61
pH ⁵	5.5-8.5	6.9	6.9	7.1	7.6		7.2	5.9	6.2	7.0	6.0	6.2	6.6

Notes, Abbreviations, Qualifers, and Units on last page.

Table 3

Summary of Effluent Water Sample Analytical Results Bethpage Park Groundwater Containment System Operable Unit 3 (Former Grumman Settling Ponds) Northrop Grumman, Bethpage, New York

Notes, Abbreviations, Qualifiers, and Units:

- 1. Discharge limits per the interim SPDES equivalency program or Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Quality Standards and Guidance Values and Groundwater Effluent Limitations, if the compound is not part of the SPDES Permit Equivalency.
- 2. As of September 2017, the 10 SPDES VOCs discharge limits are per Site Number 1-30-003A Operable Unit 3 SPDES Permit Equivalency.
- 3. "Total VOCs" represents the sum of individual concentrations of compounds detected. The values used in calculations referenced in this report have been rounded to the nearest whole number.
- 4. Treatment efficiency was calculated by dividing the difference between the influent and effluent total VOC concentrations by the influent total VOC concentration.
- 5. Effluent pH measured on site using a handheld pH meter. pH units are standard units.
- 6. Results validated following protocols specified in Sampling and Analysis Plan in the Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). See previous annual reports for historical analytical results.

7. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.

SPDES State Pollutant Discharge Elimination System

VOC Volatile Organic Compound

NE Not Established

-- pH not recorded due to a field recording error.

1.0 Bold value indicates a detection.

< 1.0 Compound not detected above the laboratory quantification limit.

μg/L micrograms per liter

ND Analyte not detected at, or above its laboratory quantification limit.

Table 4
Influent Vapor Sample Analytical Results
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Compound ^{1,3}	A-11-11		
(All Constituent Concentrations in µg/m³)	05/16/22	08/17/22	02/08/23
Project VOCs			
1,1,1 - Trichloroethane	< 4.4	< 2.2	< 2.2
1,1 - Dichloroethane	5.7 J	6.5	3.0 J
1,2 - Dichloroethane	< 6.5	< 3.2	< 3.2
1,1 - Dichloroethene	5.6	8.7	1.8
Tetrachloroethene	2.3	3.2	2.5
Trichloroethene	261	602	276
Vinyl Chloride	54.4	109	19
cis 1,2-Dichloroethene	1160	1410	288
trans 1,2-Dichloroethene	8.7	13	2.9 J
Benzene	4.5 J	8.3	3.5
Toluene	227	1,050	1.6 J
o-Xylene	50.0	140	2.1 J
m,p-Xylene	67.8	180	2.1 J
Subtotal Project VOCs	1847	3531	603
Non-Project VOCs	1047	- 5551	
1,1,2,2-Tetrachloroethane	< 5.5	< 2.7	< 2.7
1,1,2-Trichloroethane	< 4.4	< 2.2	< 2.7
1,2-Dichloropropane	< 7.4	< 3.7	< 3.7
1.3-Butadiene	< 3.5	< 1.8	< 1.8
2-Butanone	< 4.7	1.9 J	2.7
4-Methyl-2-Pentanone	< 6.6	< 3.3	< 3.3
Acetone	4.0	10	21
Bromodichloromethane	< 5.4	< 2.7	< 2.7
Bromoform	< 3.3	< 1.7	< 1.7
Bromomethane	< 6.2	< 3.1	< 3.1
Carbon Disulfide	< 5.0	< 2.5	< 2.5
Carbon Tetrachloride	< 2.0	< 1.0	< 1.0
Chlorobenzene	< 7.4	< 3.7	< 3.7
Chlorodibromomethane	< 6.8	< 3.4	< 3.4
Chlorodifluoromethane (Freon 22)	< 5.6	2.8 J	2.9
Chloroethane	< 4.2	< 2.1	< 2.1
Chloroform	38	23	12
Chloromethane	1.9 J	1.4 J	2.5
cis-1,3-Dichloropropene	< 7.3	< 3.6	< 3.6
Dichlorodifluoromethane (Freon 12)	< 5.6	2.1 J	2.1 J
Dichloromethane	< 5.6	19	3.5
Ethylbenzene	28	108	7.4
Methyl N-Butyl Ketone	< 6.5	< 3.3	< 3.3
Methyl Tert-Butyl Ether	< 5.8	< 2.9	< 2.9
Styrene (Monomer)	< 6.8	< 3.4	< 3.4
trans-1,3-Dichloropropene	< 7.3	< 3.6	< 3.6
Trichlorofluoromethane (Freon 11)	< 4.5	2.6	< 2.2
Trichlorotrifluoroethane (Freon 113)	< 6.1	< 3.1	< 3.1
1-Chloro-1,1-difluoroethane (Freon 142b)	< 6.6	< 3.3	< 3.3
Subtotal Non-Project VOCs	72	171	54
Total VOCs ^{2,4,5}	1920	3702	657

Notes, Abbreviations, Qualifiers, and Units on last page.

Table 4 Influent Vapor Sample Analytical Results Bethpage Park Groundwater Containment System Operable Unit 3 (Former Grumman Settling Ponds) Northrop Grumman,

Notes, Abbreviations, Qualifiers, and Units:

Bethpage, New York

- 1. Vapor samples collected by Arcadis on the dates shown and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per Modified USEPA Method TO-15. A VOC analyte list is provided in the DRAFT Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). Influent samples were collected at Vapor Sampling Port-1 (VSP-1); refer to Figure 3 of this OM&M Report for the location of VSP-1.
- 2. "Total VOCs" represents the sum of individual concentrations of compounds detected. The values used in calculations referenced in this report have been rounded to the nearest whole number.
- 3. Results validated following protocols specified in Sampling and Analysis Plan in the Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). See previous annual reports for historical analytical results.
- 4. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.
- 5. Influent vapor samples were not analyzed for the Q4 2022 reporting period due to a laboratory error. Influent vapor sample results from the Q1 2023 event were in line with historic concentrations.

ELAP Environmental Laboratory Approval Program

NYSDOH New York State Department of Health

OM&M Operation, Maintenance, and Monitoring

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

6.5 Bold value indicates a detection.

< 3.4 Compound not detected above the laboratory quantification limit.

J Result is estimated.

μg/m³ micrograms per cubic meter

Table 5
Summary of Effluent Vapor Sample Analytical Results
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Compound ^{1,3}	05/16/22	08/17/22	02/08/23
(All Constituent Concentrations in μg/m³)		30/11/22	
Project VOCs			
1,1,1 - Trichloroethane	< 0.44	< 0.44	< 0.44
1,1 - Dichloroethane	0.81	1.3	1.9
1,2 - Dichloroethane	< 0.65	< 0.65	< 0.65
1,1 - Dichloroethene	0.39	0.83	1.2
Tetrachloroethene	0.28	0.54	0.68
Trichloroethene	13	33	26
Vinyl Chloride	12	25	10
cis 1,2-Dichloroethene	42.4	71.8	99.5
trans 1,2-Dichloroethene	< 0.63	0.48 J	0.63
Benzene	0.80	1.5	0.38 J
Toluene	31	166	0.79
o-Xylene	5.6	14	0.61 J
m,p-Xylene	7.4	17	0.78
Subtotal Project VOCs	114	331	142
Non-Project VOCs			
1,1,2,2-Tetrachloroethane	< 0.55	< 0.55	< 0.55
1,1,2-Trichloroethane	< 0.44	< 0.44	< 0.44
1,2-Dichloropropane	< 0.74	< 0.74	< 0.74
1.3-Butadiene	< 0.35	< 0.35	< 0.35
2-Butanone	3.8	3.8	2.3
4-Methyl-2-Pentanone	< 0.66	< 0.66	< 0.66
Acetone	25.7	28.0	14
Bromodichloromethane	< 0.54	< 0.54	< 0.54
Bromoform	< 0.33	< 0.33	< 0.33
Bromomethane	< 0.62	< 0.62	< 0.62
Carbon Disulfide	< 0.50	< 0.50	< 0.50
Carbon Tetrachloride	< 0.20	< 0.20	< 0.20
Chlorobenzene	< 0.74	< 0.74	< 0.74
Chlorodibromomethane	< 0.68	< 0.68	< 0.68
Chlorodifluoromethane (Freon 22)	2.9	3.3	3.9
Chloroethane	< 0.42	< 0.42	< 0.42
Chloroform	5.4	4.1	6.8
Chloromethane	1.6	1.4	1.7
cis-1,3-Dichloropropene	< 0.73	< 0.73	< 0.73
Dichlorodifluoromethane (Freon 12)	2.9	1.9	2.2
Dichloromethane	8	21	0.97
Ethylbenzene	2.2	7.8	1.1
Methyl N-Butyl Ketone	< 0.65	1.4	< 0.65
Methyl Tert-Butyl Ether	< 0.58	< 0.58	< 0.58
Styrene (Monomer)	< 0.68	< 0.68	< 0.68
trans-1,3-Dichloropropene	< 0.73	< 0.73	< 0.73
Trichlorofluoromethane (Freon 11)	1.0	1.9	1.1
Trichlorotrifluoroethane (Freon 113)	< 0.61	< 0.61	< 0.61
1-Chloro-1,1-difluoroethane (Freon 142b)	< 0.66	< 0.66	0.45 J
Subtotal Non-Project VOCs	< 0.66 53	< 0.66 75	35
Subtotal Non-Froject VOCS	- 33	15	35

Notes, Abbreviations, Qualifiers, and Units on last page.

Table 5

Summary of Effluent Vapor Sample Analytical Results Bethpage Park Groundwater Containment System Operable Unit 3 (Former Grumman Settling Ponds) Northrop Grumman, Bethpage, New York

Notes, Abbreviations, Qualifiers, and Units:

- 1. Vapor samples collected by Arcadis on the dates shown and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per Modified USEPA Method TO-15. A VOC analyte list is provided in the DRAFT Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). Effluent samples were collected at Vapor Sampling Port-5 (VSP-5); refer to Figure 3 of this OM&M Report for the location of VSP-5.
- 2. "Total VOCs" represents the sum of individual concentrations of all compounds detected. The values used in calculations referenced in this report have been rounded to the nearest whole number.
- 3. Results validated following protocols specified in Sampling and Analysis Plan in the Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). See previous annual reports for historical analytical results.
- 4. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.
- 5. Effluent vapor samples were not analyzed for the Q4 2022 reporting period due to a laboratory recording error.

ELAP Environmental Laboratory Approval Program
NYSDOH New York State Department of Health
OM&M Operation, Maintenance, and Monitoring
USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

1.9 Bold value indicates a detection.

< 0.66 Compound not detected above the laboratory quantification limit.

J Result is estimated.

µg/m³ micrograms per cubic meter

Table 6 Summary of Effluent Vapor Tentatively Identified Compounds Bethpage Park Groundwater Containment System Operable Unit 3 (Former Grumman Settling Ponds) Northrop Grumman, Bethpage, New York

Compound ^{1,4} (All Constituent Concentrations in ppbv)	05/16/22	08/17/22	02/08/23
Tentatively Identified Compounds			
Carbon Dioxide	440 JNB	530 JNB	150 JNB
1-Hexanol, 2-ethyl	ND	ND	5.2 JN
Acetic acid, 2-ethylhexyl ester	ND	ND	1.4 JN
Ethyl Acetate	ND	ND	ND
Cyclohexane, methyl-	ND	1.9 JN	1.6 JN
Total VOC TICs ^{2,3,5,6}	ND	1.9 J	24.53 J

Notes, Abbreviations, Qualifiers, and Units:

- 1. Vapor samples collected by Arcadis on the dates shown and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per Modified USEPA Method TO-15. A VOC analyte list is provided in the DRAFT Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). Effluent samples were collected at Vapor Sampling Port-5 (VSP-5); refer to Figure 3 of this OM&M Report for the location of VSP-5.
- 2. VSP-5 sample location moved to new sample port at ECU effluent stack.
- 3. Compounds found in associated method blank are not included in Total VOC TICs.
- 4. Results validated following protocols specified in Sampling and Analysis Plan in the Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). See previous annual reports for historical analytical results.
- 5. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.
- 6. Effluent vapor samples were not analyzed for the Q4 2022 reporting period due to a laboratory recording error.

ECU Emission Control Unit

ELAP Environmental Laboratory Approval Program

NYSDOH New York State Department of Health
OM&M Operation, Maintenance, and Monitoring

TIC Tentatively Identified Compound

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

530 Bold value indicates a detection.

ND TIC were not detected.

B TIC was detected in the associated method blank.

J Result is estimated.

N Indicates presumptive evidence of a compound.

ppbv parts per billion by volume

Table 7
Summary of System Parameters
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

				er Flow Flows in					ater Pre Pressure	ssures es in ps	i)	Air Flow Rate (scfm) ²		Air Temp. (°R) ⁵				
Date 1		Remedi	al Well ²	2	Combined	E(1)		edial We	ell Efflu	ent ^{2,4}	F. C 5	Effluent		ECU In	fluents		Effluent	Effluent
	RW-1 ⁷	RW-2	RW-3	RW-4	Influent ³	Effluent ²	RW-1	RW-2	RW-3	RW-4	Effluent °	Emuent	GAC-501	GAC-502	PPZ-601	PPZ-602	Elliuent	Emuent
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(psi)	(psi)	(psi)	(psi)	(psi)	(scfm)	(iwc)	(iwc)	(iwc)	(iwc)	(iwc)	(°R)
04/14/22	30.2	74.5	74.7	30.3	210	200	57	32	48	57	12	1,309	5.0	< 1.0	1.0	< 1.0	1.0	540
05/16/22	30.6	75.5	75.4	30.4	212	198	57	26	46	57	16	1,425	5.0	< 1.0	1.0	< 1.0	1.0	542
06/13/22	30.8	74.9	76.3	30.3	212	190	57	18	47	56	15	1,419	5.0	< 1.0	1.0	< 1.0	1.0	546
07/25/22	28.8	75.1	74.9	30.3	209	203	57	17	48	56	27	1,314	4.0	< 1.0	< 1.0	< 1.0	< 1.0	550
08/17/22	17.5	75.7	74.8	30.4	198	182	92	13	43	55	11	1,308	4.0	< 1.0	< 1.0	< 1.0	0.5	548
09/15/22	18.3	66.2	74.7	30.5	190	184	90	8	43	55	10	1,282	4.0	< 1.0	< 1.0	< 1.0	0.5	549
10/13/22	15.9	65.6	74.8	29.9	186	178	22	8	43	55	10	1,125	3.5	< 1.0	< 1.0	< 1.0	0.5	538
11/16/22	14.5	66.2	73.1	29.9	184	175	23	8	47	56	11	1,109	3.5	< 1.0	< 1.0	< 1.0	6.5	528
12/12/22	14.1	66.1	75.0	30.0	185	189	22	8	41	56	20	1,173	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	536
01/10/23	30.6	65.4	75.1	30.4	201	216	71	9	41	55	9	1,202	3.0	< 1.0	< 1.0	< 1.0	4.5	523
02/08/23	28.5	65.9	74.4	30.6	199	212	71	9	44	55	24	1,220	3.0	< 1.0	< 1.0	< 1.0	0.5	528
03/07/23	30.9	65.4	75.8	30.8	203	216	59	9	39	55	13	1,157	3.0	< 1.0	< 1.0	< 1.0	0.5	522

Notes, Abbreviations, and Units on last page.

Table 7
Summary of System Parameters
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Notes, Abbreviations, and Units:

- 1. Operational data collected by Arcadis on days noted. Parameters listed were typically recorded during compliance monitoring events. Data in this table correspond to approximately the past year of system operation.
- 2. Instantaneous parameters obtained from the SCADA HMI: Water Flow Rate, Water Pressure, Air Flow Rate.
- 3. Combined influent water-flow rate is the sum of individual well flow rates via the SCADA System.
- 4. Remedial Well effluent pressure readings measured at the influent manifold within the treatment system building.
- 5. Instantaneous values recorded from field-mounted instruments during weekly site visits.
- 6. Pressure readings recorded as < 1.0 iwc due to pressure being too low for gauge sensitivity.
- 7. As of August 4, 2022 the RW-1 flow rate presented includes the combined flow rates from wells BCPMW-4-1 and BCPMW-4-2 as additional recovery wells.

ECU Emission Control Unit
GAC Granular Activated Carbon
HMI Human-Machine Interface

RW Remedial Well

SCADA Supervisory Control and Data Acquisition

Temp Temperature

gpm gallons per minute iwc inches of water column psi pounds per square inch

°R degrees Rankine

scfm standard cubic feet per minute

System Pilot Test, Shakedown and Startup Totals 15	RW-1 ⁹ 137 15,726	RW-2 270	x1,000 gal RW-3 251) ² RW-4	Total		Т	otal VOCs	5																	1									\sim
System Pilot Test, Shakedown and Startup Totals 15	137			RW-4	Total				,			Pr	roject VO0	s ⁶			Non	Project V	OCs ⁷			T	otal VOCs				Pr	roject VOC	Cs °			Non	-Project Vo	DCs ′	
2010 Totals 15		270	254		- Total	RW-1	RW-2	RW-3	RW-4	Total	RW-1	RW-2	RW-3	RW-4	Total	RW-1	RW-2	RW-3	RW-4	Total	RW-1	RW-2	RW-3	RW-4	Total	RW-1	RW-2	RW-3	RW-4	Total	RW-1	RW-2	RW-3	RW-4	Total
	15,726		251	150	808	NA	NA	NA	NA	1.1	NA	NA	NA	NA	1.0	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
'011 Totals 15		35,127	38,160	15,689	104,702	0.56	172	412	89	672	0.56	171	28	0.10	200	< 0.01	0.17	383	89	469	< 0.01	0.46	1.1	0.24	1.8	< 0.01	0.46	0.075	< 0.01	0.54	< 0.01	< 0.01	1.0	0.24	1.3
	15,218	36,570	37,682	15,196	104,666	0.36	167	271	78	516	0.36	167	35	0.090	203	< 0.01	1.1	236	78	314	< 0.01	0.45	0.73	0.21	1.4	< 0.01	0.45	0.095	< 0.01	0.55	< 0.01	< 0.01	0.64	0.21	0.85
2012 Totals 15	15,260	35,178	36,111	15,336	101,885	0.28	114	113	40	267	0.25	113	12	0.39	126	< 0.01	1.5	101	40	141	< 0.01	0.31	0.31	0.11	0.73	< 0.01	0.31	0.032	< 0.01	0.35	< 0.01	< 0.01	0.28	0.11	0.39
2013 Totals 15	15,968	37,514	36,622	16,036	106,140	0.14	111	41	18	171	0.14	110	4.3	0.36	113	< 0.01	1.6	37	18	57	< 0.01	0.30	0.11	0.050	0.47	< 0.01	0.30	0.012	< 0.01	0.31	< 0.01	< 0.01	0.10	0.049	0.16
2014 Totals 15	15,690	33,222	31,199	15,691	95,802	0.063	67	9.9	8.1	85	0.063	65	2.0	0.20	67	< 0.01	1.5	8.1	7.9	17	< 0.01	0.19	0.028	0.023	0.24	< 0.01	0.18	< 0.01	< 0.01	0.19	< 0.01	< 0.01	0.023	0.022	0.047
2015 Totals 15	15,859	38,082	34,961	14,755	103,657	0.028	47	7.1	4.5	57	0.021	45	1.5	0.20	45	<0.01	1.7	5.6	4.2	12	<0.01	0.13	0.019	0.012	0.16	<0.01	0.12	<0.01	<0.01	0.12	<0.01	<0.01	0.015	0.012	0.032
2016 Totals 15	15,826	34,539	39,349	15,826	105,540	<0.01	38	3.2	2.2	44	<0.01	37	1.4	0.20	39	<0.01	1.5	1.7	2.0	5.2	<0.01	0.10	<0.01	<0.01	0.12	<0.01	0.10	<0.01	<0.01	0.11	<0.01	<0.01	<0.01	<0.01	0.014
2017 Totals 16	16,005	31,600	37,614	15,965	101,184	< 0.01	13	2.2	1.2	17	< 0.01	13	1.1	0.16	14	< 0.01	0.56	1.1	1.1	2.7	< 0.01	0.037	< 0.01	< 0.01	0.046	< 0.01	0.035	< 0.01	< 0.01	0.038	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2018 Totals 15	15,145	37,712	32,473	14,917	100,247	< 0.01	13.71	0.90	0.56	15.2	< 0.01	13.5	0.70	< 0.01	14.2	< 0.01	0.27	0.19	0.52	0.97	< 0.01	0.038	< 0.01	< 0.01	0.042	< 0.01	0.037	< 0.01	< 0.01	0.039	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2019 Totals 15	15,456	32,470	38,416	15,343	101,685	< 0.01	11.51	1.36	0.22	13.10	< 0.01	11.51	1.07	< 0.01	12.59	< 0.01	< 0.01	0.29	0.18	0.63	< 0.01	0.032	< 0.01	< 0.01	0.036	< 0.01	0.032	< 0.01	< 0.01	0.034	< 0.01	< 0.01	< 0.01	0.001	< 0.01
2020 Totals 14	14,475	35,814	37,537	15,113	102,939	< 0.01	19.3	1.3	< 0.01	20.6	< 0.01	19.3	0.91	< 0.01	20.2	< 0.01	< 0.01	0.36	< 0.01	0.36	< 0.01	0.053	< 0.01	< 0.01	0.056	< 0.01	0.053	< 0.01	< 0.01	0.055	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2021 Totals 14	14,490	36,403	38,153	15,324	104,370	< 0.01	171.4	1.9	0.05	173.3	< 0.01	167.7	1.14	< 0.01	168.9	< 0.01	3.6	0.75	0.11	4.49	< 0.01	1.865	< 0.01	< 0.01	1.886	< 0.01	1.825	< 0.01	< 0.01	1.839	< 0.01	0.04	< 0.01	< 0.01	0.0470
2022 Totals 12	12,224	36,802	38,231	15,238	102,495	45	53	15	< 0.01	112.3	43.3	51.2	13.1	< 0.01	107.6	1.7	1.3	1.6	0.1	4.8	0.5	0.6	0.2	< 0.01	1.2	0.5	0.6	0.1	< 0.01	1.2	0.02	0.01	< 0.01	< 0.01	0.04
January through March 2023																																			
, ,	1,205	2,665	3,053	1,235	8,158	1.6	0.56	0.45	< 0.01	2.56	1.5	0.6	0.41	< 0.01	2.5	0.04	< 0.01	0.04	< 0.01	0.071	0.050	0.018	0.014	< 0.01	0.083	0.049	0.018	0.013	< 0.01	0.080	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	1,151	2,654	3,026	1,228	8,058	1.5	0.56	0.44	< 0.01	2.48	1.4	0.6	0.41	< 0.01	2.4	0.03	< 0.01	0.04	< 0.01	0.069	0.053	0.020	0.016	< 0.01	0.089	0.052	0.020	0.015	< 0.01	0.086	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	1,335	2,911	3,376	1,366	8,988	1.7	0.61	0.50	< 0.01	2.82	1.7	0.6	0.46	< 0.01	2.7	0.04	< 0.01	0.04	< 0.01	0.078	0.055	0.020	0.016	< 0.01	0.091	0.054	0.020	0.015	< 0.01	0.089	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	3,691	8,229	9,455	3,829	25,204	4.8	1.73	1.39	< 0.01	7.87	4.7	1.7	1.28	< 0.01	7.6	0.11	< 0.01	0.11	< 0.01	0.22	0.053	0.019	0.015	< 0.01	0.087	0.052	0.019	0.014	< 0.01	0.085	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o,	0,001	3,223	3, 100	0,020	20,204		0	1.00	1 3.01	1.07	*.7		20	1 3.01		0.11	1 3.01	3.11	1 3.01	U.EE	3.000	3.313	0.010	1 0.01	0.307	0.302	3.313	0.014	1 3.01	0.000	1 3.01	1 3.01	1 3.01	1 3.01	10.01
2023 Totals 3,	3,691	8,229	9,455	3,829	25,204	4.8	1.73	1.39	< 0.01	7.87	4.7	1.7	1.28	< 0.01	7.6	0.1	< 0.01	0.11	< 0.01	0.22	0.05	0.02	0.02	< 0.01	0.09	0.05	0.02	0.01	< 0.01	0.09	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Since System Start Up 207	207,762	483,369	502,660	210,982	1,404,773	51	1,275	934	256	2,514	50	1,258	122	2	1,432	2	15	812	254	1,076															

Notes, Abbreviations, and Units on last page.

Table 8
Summary of Groundwater Recovered, VOC Mass Recovered, and VOC Mass Recovery Rates
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Notes, Abbreviations, Qualifiers, and Units:

- 1. Represents operating period between consecutive monitoring events.
- 2. Volume of groundwater recovered is based on individual local well totalized flow readings. Listed value is the difference between totalized flow values recorded between consecutive monitoring events. The total groundwater recovered during a given operating period is the sum of the individual well flow totals. Values shown are rounded to the nearest gallon, but should only be considered accurate to two significant figures to account for error associated with field measurements.
- 3. Mass recovered per well was calculated by multiplying the Total VOC concentration from the most recent sampling event by the number of gallons extracted during the reporting period. The total amount recovered during a given operating period is the sum of masses recovered from each of the individual wells. Values less than ten pounds are presented using two significant figures and values greater than ten pounds have been rounded to the nearest whole number; however, these values should only be considered accurate to two significant figures to account for error associated with field measurements and analytical data
- 4. Mass recovery rates were calculated by dividing the total mass recovered for each well and for the system by the number of days in the respective operating period. Values are presented using two significant figures.
- 5. "Total VOCs" represents the sum of individual concentrations of the VOCs detected.
- 6. "Project VOCs" represents the sum of individual compound concentrations of 1,1,1-trichloroethane; 1,1-dichloroethane; 1,1-dichloroethane; tetrachloroethene; trichloroethene; trichloroethene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and xylenes-o,m, p.
- 7. "Non-Project VOCs" represents the difference between Total VOCs and Project VOCs.
- 8. Values based on operational data recorded prior to system startup on July 21, 2009.
- 9. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.

NA Not Applicable

VOC Volatile Organic Compound.

Less than

gal Gallons

os Pounds

lbs/day Pounds per day

Table 9
2023 Rule 212 Evaluation
Bethpage Park Soil Gas Containment System and Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

Project VOCs	CAS#	HTAC? ¹	2023 BPGWCS Maximum Effluent Conc. (ug/m3) ^{2,8}	2023 BPSGCS Maximum Effluent Conc. (ug/m3) ^{2,8}	2023 BPGWCS Emissions (lb/yr) ⁴	2023 BPSGCS Emissions - combined with ISTR (lb/yr) ⁴	Facility Wide Emissions (lb/yr) ⁵	Rule 212 Emission Limit (lb/yr) ⁶	Further evaluation Required? ⁷
1,1,1-Trichloroethane	71-55-6	No		1.9	0.000	0.017	0.106	100	N
1,1 - Dichloroethane	75-34-3	No	1.9	4.9	0.076	0.090	0.397	100	N
1,1 - Dichloroethene	75-35-4	No	1.2	0.75	0.048	0.027	0.110	100	N
Benzene	71-43-2	Yes	0.38	0.54	0.015	0.010	0.050	100	N
cis- 1,2-Dichloroethene	156-59-2	No	99.5	117	3.975	4.155	13.640	100	N
Tetrachloroethene	127-18-4	Yes	0.68	3.9	0.027	0.011	0.222	1000	N
Toluene	108-88-3	No	0.79	1.0	0.032	0.016	0.094	100	N
trans- 1,2-Dichloroethene	156-60-5	No	0.63	2.1	0.025	0.141	0.265	100	N
Trichloroethene	79-01-6	Yes	26	260	1.039	0.009	13.293	500	N
Vinyl Chloride	75-01-4	Yes	10	1.1	0.399	0.186	0.637	100	N
Xylenes ³	1330-20-7	No	1.39	0.6	0.056	0.043	0.127	100	N
Non-Project VOCs									
1-Chloro-1,1-difluoroethane (Freon 142B)	75-68-3	No	0.45	47.7	0.018	0.000	2.265	100	N
2-Butanone	78-93-3	No	2.3	3.2	0.092	0.051	0.294	100	N
2-Hexanone	591-78-6	No		0.78	0.000	0.000	0.037	100	N
Acetone	67-64-1	No	14	0.5	0.559	0.323	0.906	100	N
Chlorodifluoromethane (Freon 22)	75-45-6	No	3.9	0.88	0.156	0.000	0.197	100	N
Chloromethane	74-87-3	No	1.7	0.56	0.068	0.013	0.108	100	N
Chloroform	67-66-3	Yes	6.8	21	0.272	0.307	1.568	100	N
Dichlorodifluoromethane (Freon 12)	75-71-8	No	2.2	2.2	0.088	0.019	0.211	100	N
Ethylbenzene	100-41-4	No	1.1		0.044	0.012	0.056	100	N
Methylene Chloride	75-09-2	No	0.97	5.6	0.039	0.024	0.326	100	N

Footnotes on last page

Table 9 2023 Rule 212 Evaluation Bethpage Park Soil Gas Containment System and Groundwater Containment System Operable Unit 3 (Former Grumman Settling Ponds) Northrop Grumman, Bethpage, New York

Project VOCs	CAS#	HTAC? ¹	2023 BPGWCS Maximum Effluent Conc. (ug/m3) ^{2.8}	2023 BPSGCS Maximum Effluent Conc. (ug/m3) ^{2,8}	2023 BPGWCS Emissions (lb/yr) ⁴	2023 BPSGCS Emissions - combined with ISTR (lb/yr) ⁴	Facility Wide Emissions (lb/yr) ⁵	Rule 212 Emission Limit (lb/yr) ⁶	Further evaluation Required? ⁷
Non-Project VOCs (cont'd)									
Trichlorofluoromethane (Freon 11)	75-69-4	No	1.1	1.5	0.044	0.016	0.130	100	N

Flowrates

Description	Flow (cfm)
BPGWCS	1220
BPSGCS - combined with ISTR	782

Notes:

- 1. High toxicity air contaminant (HTAC) based on 6 CRR-NY Rule 212-2.2, Table 2 high toxicity air contaminant list.
- 2. Maximum effluent concentrations for soil gas effluent from VSP-601 and GW vapor from VSP-05 based on sampling performed in 2023. Compounds not detected above the laboratory reporting limit are excluded from the air quality impact analysis summary.
- 3. Total for xylenes m, o, and P.
- 4. Emission rate calculated based on maximum effluent concentration and maximum air flow rates measured during the sampling events. Emission rate standardized at 70 °F and 1 atm.
 - e.g., TCE (lb/yr) = TCE [μ g/m³] x Air Flow Rate [ft³/min] x (1 m³/35.3147 ft³) x (60 min/hr) x (0.000001 g/1 μ g) x (0.0022 lb/g) x 8,760 hrs/yr
- 5. Combined 2022 emissions from groundwater, ISTR, and soil gas containment systems.
- 6. 100 lb/yr for non-HTACs, and mass emission limits based on Rule 212-2.2, Table 2 for HTACs.
- 7. For HTACs, no further demonstration (i.e., comparison to SGCs, AGCs, or air modeling) is required if the actual facility-wide emissions are less than mass emission limit. For non-HTACs, no further demonstration is required if the actual facility-wide emissions are less than 100 lbs/yr.
- 8. Blank cell indicates that the compound was not detected above its laboratory quantification limit.

Table 10
Summary of Remedial Well Groundwater Sample Analytical Results - VOCs
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman,
Bethpage, New York

1/2

	Sample Location:	RW-1	RW-1	RW-1	RW-1	RW-2	RW-2	RW-2	RW-2	RW-3	RW-3	RW-3	RW-3	RW-4	RW-4	RW-4	RW-4
Compound ¹	Sample Date:	5/16/2022	8/17/2022	11/16/2022	2/8/2023	5/16/2022	8/17/2022	11/16/2022	2/8/2023	5/16/2022	8/17/2022	11/16/2022	2/8/2023	5/16/2022	8/17/2022	11/16/2022	2/8/2023
(All Constituent Concentrations in µg/L)	NYSDEC SCGs	3/13/2322	0,11,2022		2,0,2020	0/10/2022	0/11/2022	11/10/2022	2/3/2020	0/10/2022	0,11,2022	11/10/2022	2,0,2020	0/10/2022	0/11/2022		2,0,2020
Project VOCs																	
1,1,1-Trichloroethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	5	< 1.0	2.3	2.1	< 1.0	0.68 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	0.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	5	< 1.0	3.2	1.5	< 1.0	0.96 J	0.69 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	5	< 1.0	< 1.0	0.60 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethylene	5	< 1.0	192	192	82.5	27.6	24.4	12.9	9.2	13.2	17.0	10.0	4.7	< 1.0	< 1.0	0.56 J	< 1.0
Vinyl Chloride	2	< 1.0	45.3	27.1	4.3	12.1	6.9	1.7	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-dichloroethene	5	< 1.0	414	188	63.1	154	96.7	26.3	14.8	18.8	27.5	24.5	11.5	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-dichloroethene	5	< 1.0	4.6	3.8	1.1	1.8	0.92 J	< 1.0	< 1.0	0.76 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	1	< 0.50	3.8	1.6	< 0.50	0.90	0.54	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Toluene	5	< 1.0	690	21.2	< 1.0	33.5	3.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylene-o	5	< 1.0	85.3	11.4	< 1.0	7.1	0.93 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes-m,p	5	< 1.0	110	11.8	< 1.0	8.6	1.9	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Subtotal Project VOCs		ND	1,550.5	461.1	151.0	247.2	136.5	40.9	25.2	32.8	44.5	35	16	ND	ND	0.56	ND
Non-Project VOCs														I			
1,1,2,2-Tetrachloroethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Butadiene	0.5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Butanone	NE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
4-methyl-2-pentanone	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acetone	NE	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Bromodichloromethane	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Carbon Disulfide	60	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Carbon tetrachloride	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorodibromomethane	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorodifluoromethane (Freon 22)	NE -	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	2.5 J	< 5.0	0.78 J	0.70 J
Chloroethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorososthana	7	< 1.0	< 1.0	0.53 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.9	3.1	2.3	1.4	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-dichloropropene	0.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane (Freon 12)	-	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dichloromethane	5	< 2.0	< 2.0 65.2	< 2.0 12.7	< 2.0 3.5	< 2.0 2.9	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	_	< 1.0					1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl N-Butyl Ketone	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Methyl tert-Butyl Ether	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-dichloropropene	0.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane (Freon 11)	5	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorotrifluoroethane (Freon 113)	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1-Chloro-1,1-difluoroethane (Freon 142b)	NE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Subtotal Non-Project VOCs		ND	65.2	13.2	3.5	2.9	1.1	ND	ND	4.9	3.1	2.3	1.4	2.5	ND	0.78	0.70
Total VOCs ^{2,3}		ND	1616	474	155	250.1	137.6	40.9	25.2	37.7	47.6	36.8	17.6	2.5	ND	1.3	0.70
1,4-Dioxane		0.25	11	11.0	4.7	1.4	1.6	0.64	0.40	0.73	0.58	1.1	0.78	< 0.24	0.15 J	0.12	0.13 J

Notes, Abbreviations, Qualifiers, and Units on last page.

Notes, Abbreviations, Qualifiers, and Units:

- 1. Water samples collected by Arcadis on the dates shown and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per NYSDEC ASP 2005, Method OLM 4.3 (prior to September 1, 2014) and per USEPA Method 8260C (after September 1, 2014). Results validated following protocols specified in Sampling and Analysis Plan in the DRAFT Bethpage Park Groundwater Containment System OM&M Manual (Arcadis 2016). See previous quarterly reports for historical analytical results.
- 2. "Total VOCs" represents the sum of individual concentrations of the VOCs detected.
- 3. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.

ASP Analytical Services Protocol

ELAP Environmental Laboratory Approval Program

NE Not Established

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OLM Ozone Limited Method

OM&M Operation, Maintenance, and Monitoring
SCGs Standards, Criteria, and Guidance values
USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

Bold cell outline indicates an exceedance of an SCG

1.2 Bold data indicates a detection

< 1.0 Compound not detected above its laboratory quantification limit

J Compound detected below its reporting limit; value is estimated

U Indicates the compound was analyzed for but not detected above the specified level

ND Analyte not detected at, or above its laboratory quantification limit.

μg/L micrograms per liter

Figures

PLOTSTYLETABLE: PAGESETUP: 19.1S (LMS TECH) LYR:(Opt)ON=*;OFF=*REF* < SAVED: 11/11/2015 4:51 PM PIC:(Opt) PM:(Reqd) dwg LAYOUT: BETH <u></u> 8 5 DB:A.SANCHEZ 4I\OMMI4\NY1496_

BY: STOWELL, GARY

PLOTTED: 11/11/2015 4:54 PM

4000'

2000'

SCALE IN FEET

ARCADIS

FIGURE

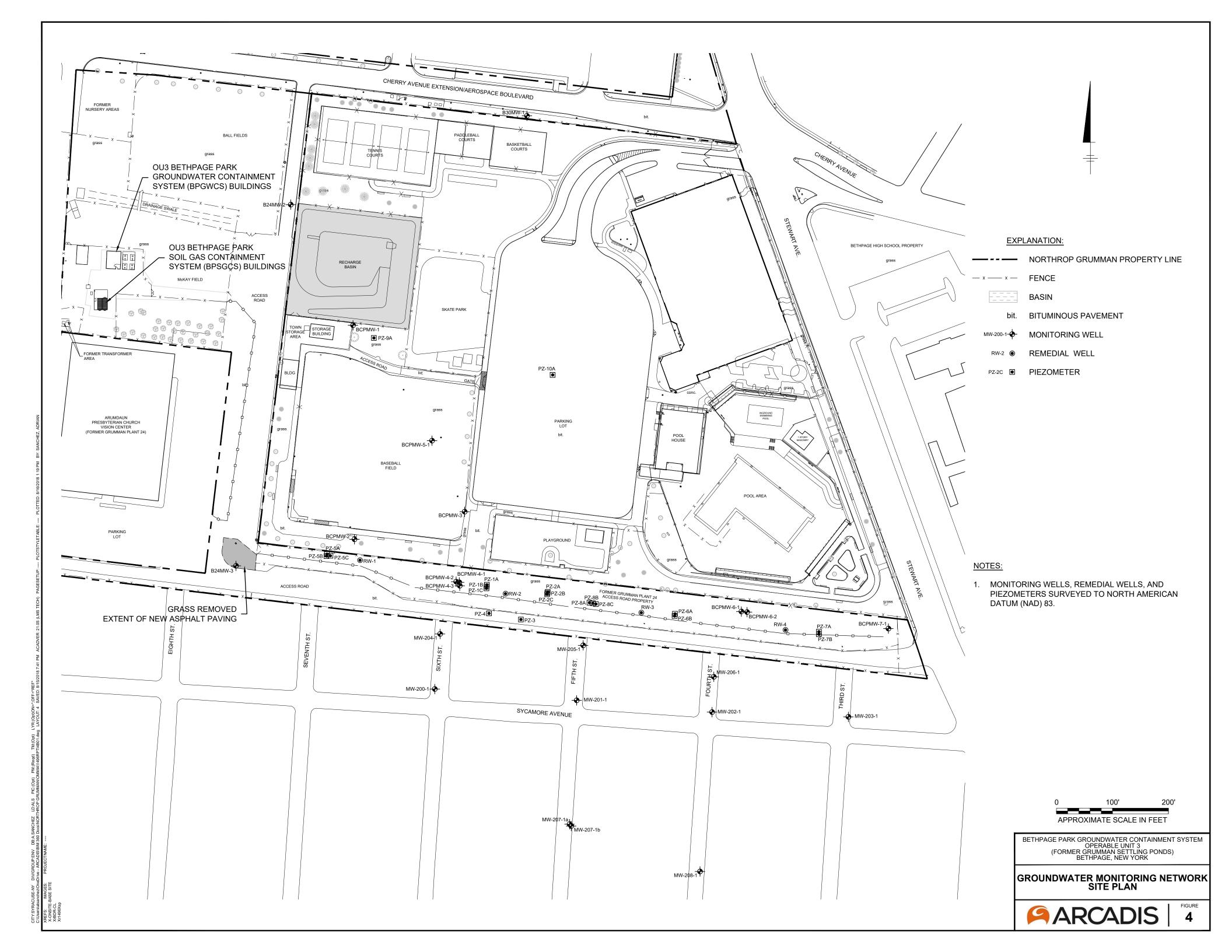
1

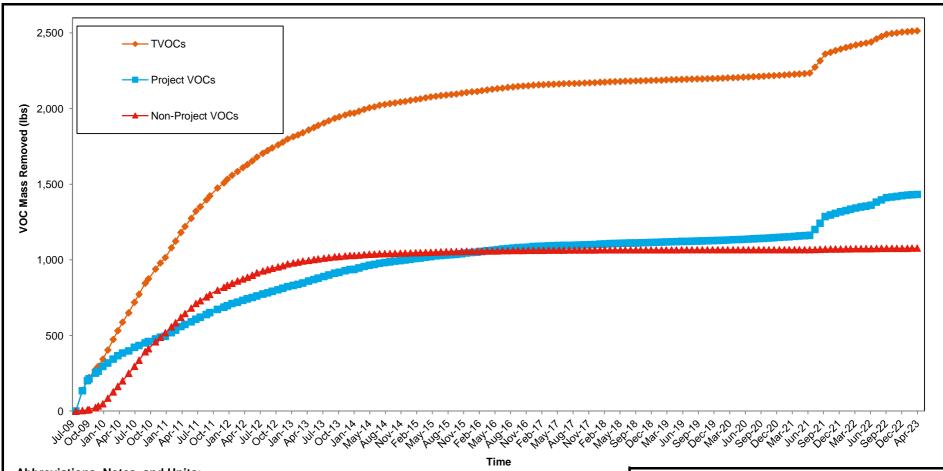
EXISTING NORTHROP GRUMMAN STORMWATER PIPELINE— -DISCHARGE LINE TIES INTO EXISTING NORTHROP GRUMMAN STORMWATER SYSTEM THAT DRAINS TO FORMER NWIRP RECHARGE BASINS NORTHROP GRUMMAN PROPERTY LINE TREATMENT SYSTEM AREA BITUMINOUS PAVEMENT INFLUENT PIPELINE AND ELECTRICAL CONDUITS EFFLUENT PIPELINE EXISTING NORTHROP GRUMMAN STORMWATER PIPELINE NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NOW OWNED BY NASSAU COUNTY) GRASS REMOVED.

EXTENT OF NEW ASPHALT PAVING BETHPAGE PARK GROUNDWATER CONTAINMENT SYSTEM OPERABLE UNIT 3 (FORMER GRUMMAN SETTLING PONDS) BETHPAGE, NEW YORK 200' 400'

SITE AND GROUNDWATER CONTAINMENT SYSTEM

SCALE IN FEET


2


BETHPAGE PARK GROUNDWATER CONTAINMENT SYSTEM OPERABLE UNIT 3 (FORMER GRUMMAN SETTLING PONDS) BETHPAGE, NEW YORK

GROUNDWATER TREATMENT SYSTEM PROCESS SCHEMATIC, PROCESS FLOW DIAGRAM, AND MONITORING LOCATIONS

3

Abbreviations, Notes, and Units:

VOC = Volatile Organic Compound TVOCs = Total VOCs removed

Project VOCs = sum of 1,1,1-trichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1-dichloroethene; tetrachloroethene; trichloroethene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and total xylenes.

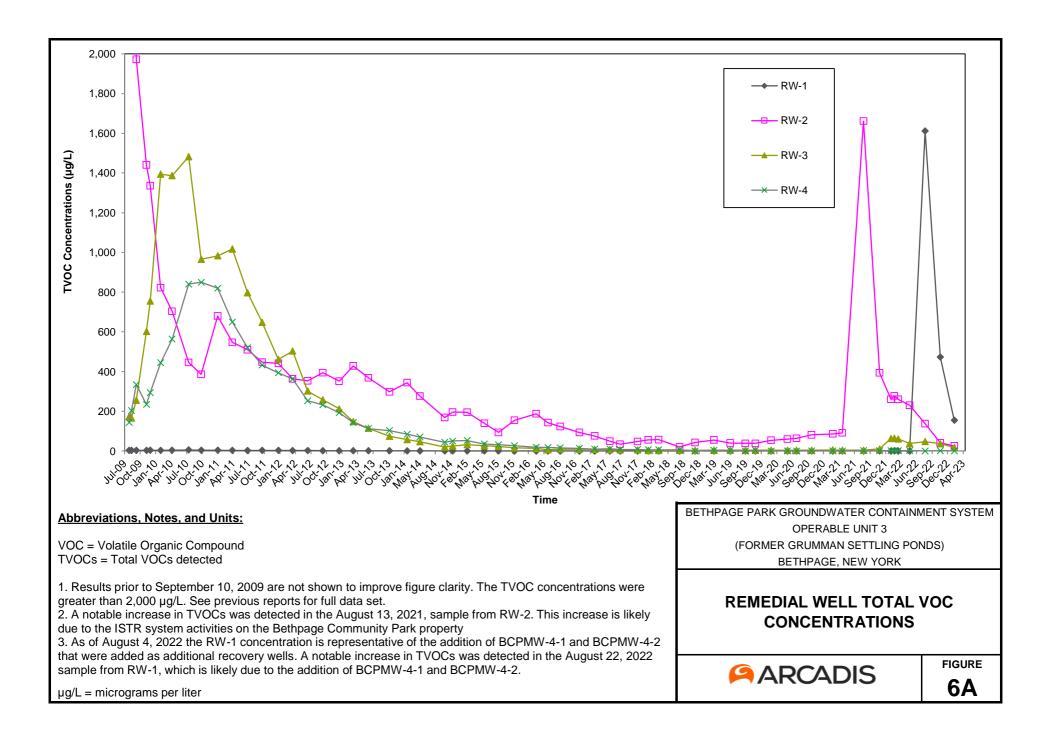
Non-Project VOCs = sum of VOCs that are not Project VOCs.

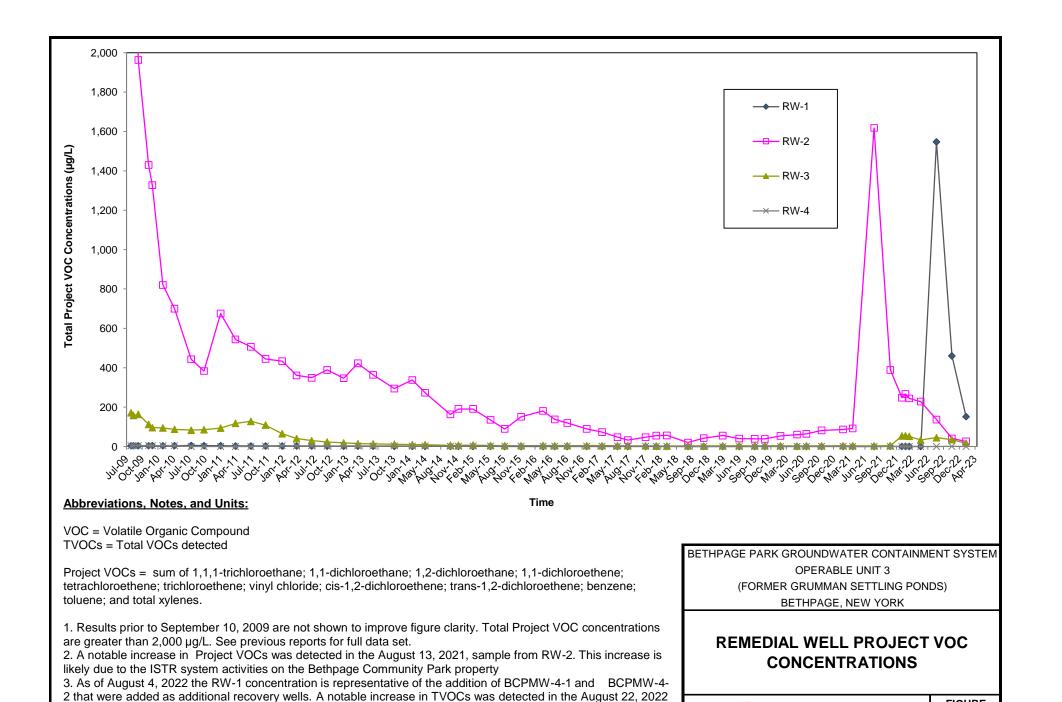
- 1. A notable increase in VOC mass removal was observed between Q3 2021 and Q1 2022 due to the increase in TVOCs detected (Figures 6A)
- 2. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells.

lbs = pounds

BETHPAGE PARK GROUNDWATER CONTAINMENT SYSTEM

OPERABLE UNIT 3


(FORMER GRUMMAN SETTLING PONDS)

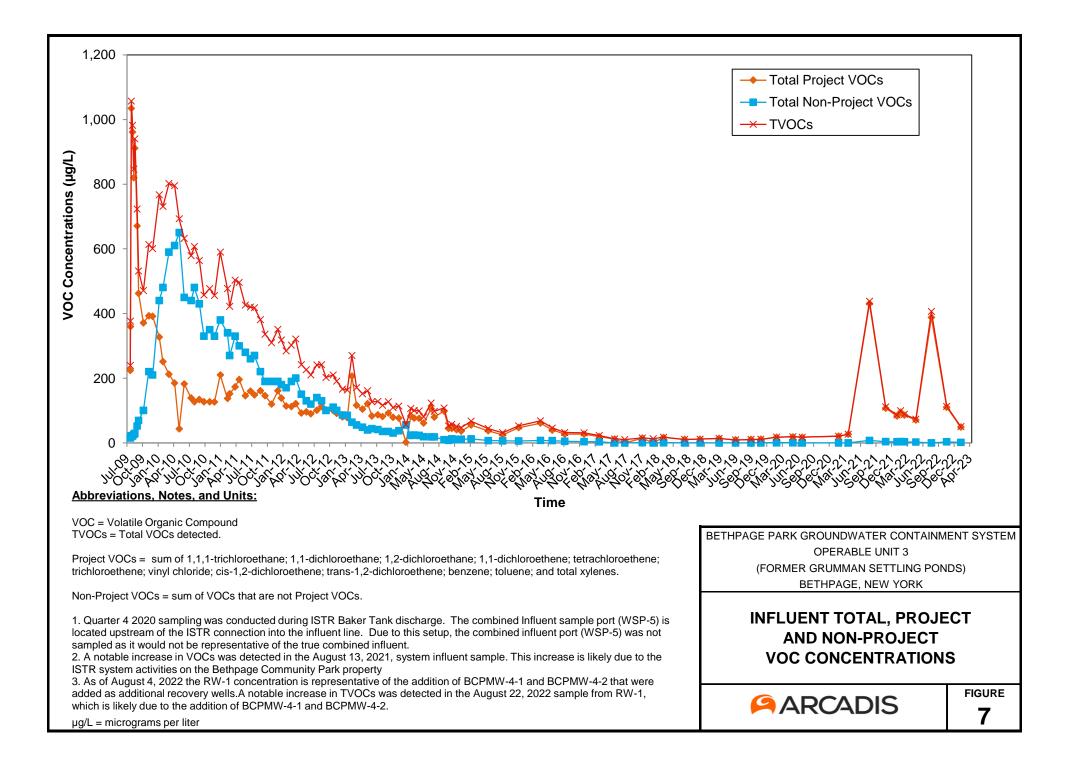

BETHPAGE, NEW YORK

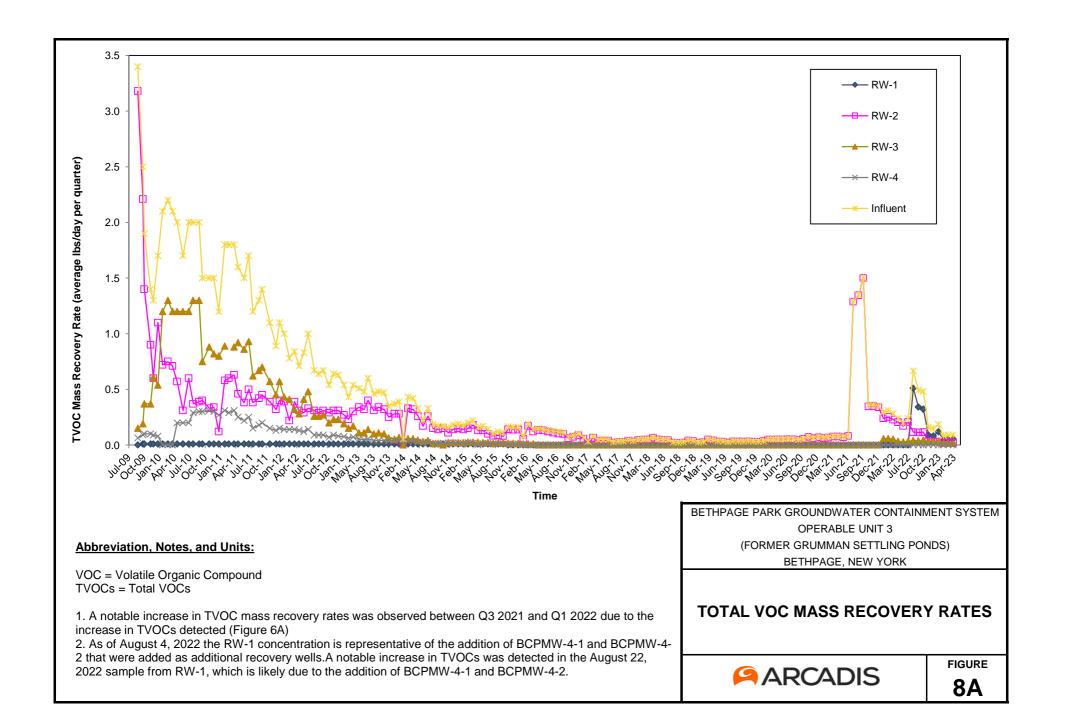
CUMULATIVE TOTAL, PROJECT, AND NON-PROJECT VOC MASS REMOVED

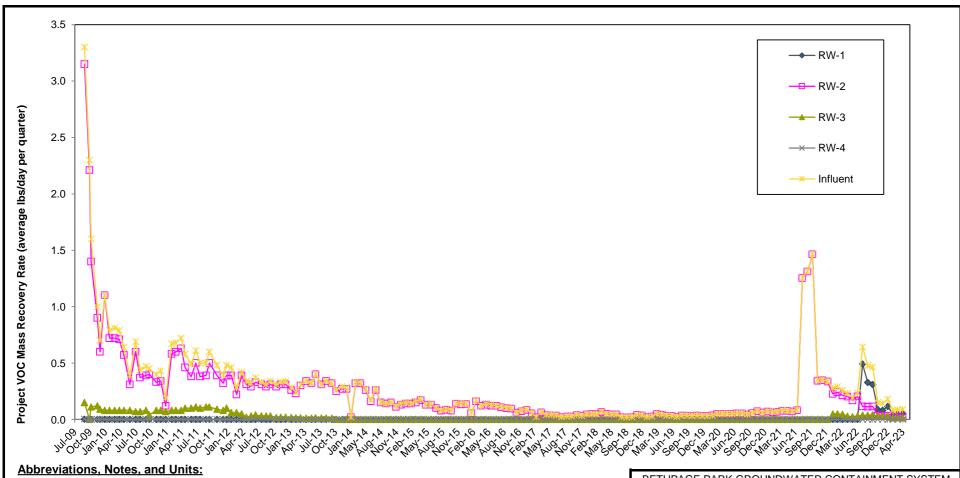
FIGURE 5

https://arcadiso365.sharepoint.com/teams/portfolio-813733/Shared Documents/OU3.2 Groundwater Containment System/11 Draft Reports-Presentations/Reports/2023 Q1/Tables/Q1_Table 2-8Figure 6B RW Project VOC

sample from RW-1, which is likely due to the addition of BCPMW-4-1 and BCPMW-4-2.


µg/L = micrograms per liter


FIGURE


6B

ARCADIS

Time

VOC = Volatile Organic Compound

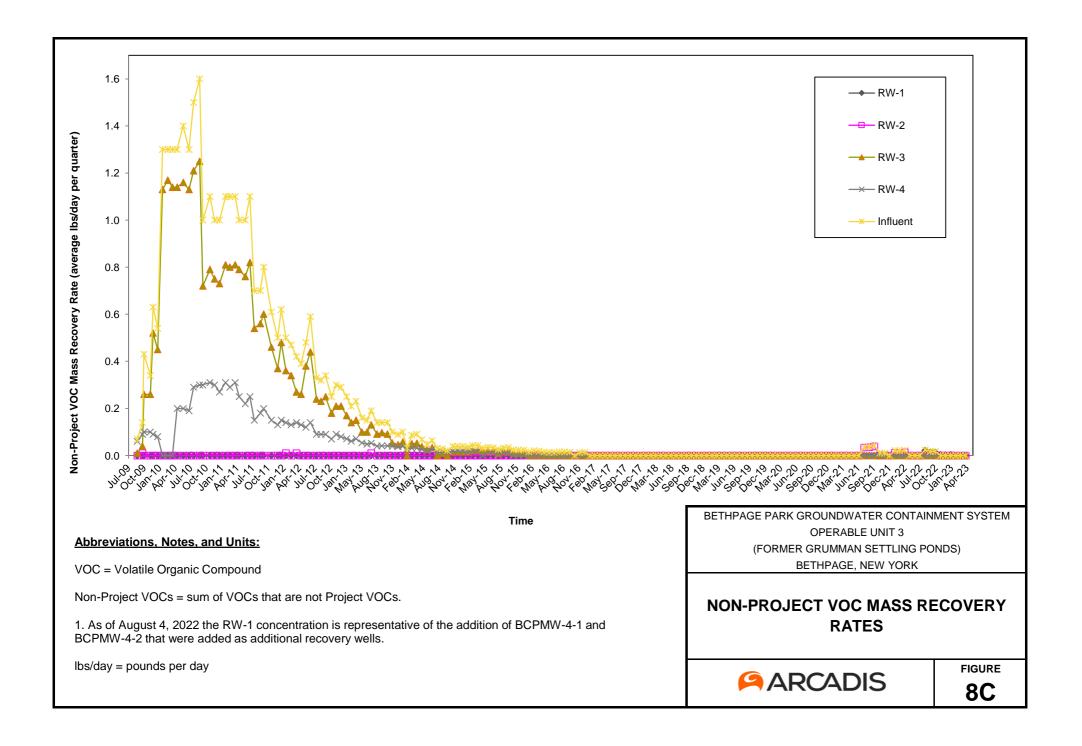
Project VOCs = Sum of 1,1,1-trichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1-dichloroethene; tetrachloroethene; trichloroethene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and total xylenes

- 1. A notable increase in TVOC mass recovery rates was observed between Q3 2021 and Q1 2022 due to the increase in TVOCs detected (Figure 6B)
- 2. As of August 4, 2022 the RW-1 concentration is representative of the addition of BCPMW-4-1 and BCPMW-4-2 that were added as additional recovery wells. A notable increase in TVOCs was detected in the August 22, 2022 sample from RW-1, which is likely due to the addition of BCPMW-4-1 and BCPMW-4-2.

lbs/day = pounds per day

BETHPAGE PARK GROUNDWATER CONTAINMENT SYSTEM

OPERABLE UNIT 3


(FORMER GRUMMAN SETTLING PONDS)
BETHPAGE, NEW YORK

PROJECT VOC MASS RECOVERY RATES

FIGURE

8B

