STANDARD AND SPECIFICATIONS FOR GRADE STABILIZATION STRUCTURE

Definition
A structure to stabilize the grade or to control head cutting in natural or artificial channels.

Scope
This standard applies to all types of grade stabilization structures. It does not apply to storm sewers or their component parts.

Purpose
Grade stabilization structures are used to reduce or prevent excessive erosion by reduction of velocities and grade in the watercourse or by providing channel linings or structures that can withstand the higher velocities.

Conditions Where Practice Applies
This practice applies to sites where the capability of earth and vegetative measures is exceeded in the safe handling of water at permissible velocities, where excessive grades or overfall conditions are encountered, or where water is to be lowered structurally from one elevation to another. These structures should generally be planned and installed along with, or as a part of, other conservation practices in an overall surface water disposal system.

Design Criteria
Compliance with Laws and Regulations
Design and construction shall be in compliance with state and local laws and regulations. Such compliance is the responsibility of the landowner or developer.

General
Designs and specifications shall be prepared for each structure on an individual job basis depending on its purpose, site conditions, and the basic criteria of the conservation practice with which the structure is planned. Typical structures are as follows:

1. Channel linings of concrete, asphalt, half round metal pipe or other suitable lining materials. These linings should generally be used where channel velocities exceed safe velocities for vegetated channels due to increased grade or a change in channel cross section or where durability of vegetative lining is adversely affected by seasonal changes. Adequate protection will be provided to prevent erosion or scour of both ends of the channel lining.

2. Overfall structures of concrete, metal, rock riprap, or other suitable material is used to lower water from one elevation to another. These structures are applicable where it is desirable to drop the watercourse elevation over a very short horizontal distance. Adequate protection will be provided to prevent erosion or scour upstream, downstream and along sides of overfall structures. Structures should be located on straight sections of channel with a minimum of 100 feet of straight channel each way.

3. Pipe drops of metal pipe with suitable inlet and outlet structures. The inlet structure may consist of a vertical section of pipe or similar material, an embankment, or a combination of both. The outlet structure will provide adequate protection against erosion or scour at the pipe outlet.

Capacity
Structures that are designed to operate in conjunction with other erosion control practices shall have, as a minimum, capacity equal to the bankfull capacity of the channel delivering water to the structures. The minimum design capacity for structures that are not designed to perform in conjunction with other practices shall be that required to handle the peak rate of flow from a 10-year, 24-hour frequency storm or bankfull, whichever is greater. Peak rates of runoff used in determining the capacity requirements shall be determined by TR-55, Urban
Hydrology for Small Watersheds, or other appropriate method.

Set the rest of the structure at an elevation that will stabilize the grade of the upstream channel. The outlet should be set at an elevation to assure stability. Outlet velocities should be kept within the allowable limits for the receiving stream. Structural drop spillways need to include a foundation drainage system to reduce hydrostatic loads.

Structures which involve the retarding of floodwater or the impoundment of water shall be designed using the criteria set forth in the guidelines for Ponds or Floodwater Retarding Structures, whichever is applicable.

Construction Specifications

Structures shall be installed according to lines and grades shown on the plan. The foundation for structures shall be cleared of all undesirable materials prior to the installation of the structure. Materials used in construction shall be in conformance with the design frequency and life expectancy of the practice. Earth fill, when used as a part of the structure, shall be placed in 4-inch lifts and hand compacted within 2 feet of the structure.

Seeding, fertilizing, and mulching shall conform to the recommendation specification in Section 3.

Construction operations shall be carried out in such a manner that erosion and air and water pollution will be minimized. State and local laws concerning pollution abatement shall be complied with at every site.

Locate emergency bypass areas so that floods in excess of structural capacity enter the channel far enough downstream so as not to cause damage to the structure.

Maintenance

Once properly installed, the maintenance for the grade stabilization structure should be minimal. Inspect the structure periodically and after major storm events. Check fill for piping or extreme settlement. Ensure a good vegetative cover. Check the channel for scour or debris and loss of rock from aprons. Repair or replace failing structures immediately.
STANDARD AND SPECIFICATIONS
FOR
PAVED FLUME

Definition
A small concrete-lined channel to convey water on a relatively steep slope.

Purpose
To convey concentrated runoff safely down the face of a cut or fill slope without causing erosion.

Condition Where Practice Applies
Where concentrated storm runoff must be conveyed down a cut or fill slope as part of a permanent erosion control system. Paved flumes serve as stable outlets for diversions, drainage channels, or natural drainageways, that are located above relatively steep slopes. Paved flumes should be used on slopes of 1:5 to 1 or flatter.

Design Criteria
Capacity – Minimum capacity should be the 10-year frequency storm. Freeboard or enough bypass capacity should be provided to safeguard the structure from peak flows expected for the life of the structure.

Slope – The slope should not be steeper than 1.5:1 (67%).

Cutoff Walls – Install cutoff walls at the beginning and end of paved flumes. The cutoff should extend a minimum of 18 inches into the soil and across the full width of the flume and be 6 inches thick. Cutoff walls should be reinforced with #3 reinforcing bars (3/8”) placed on a 6-inch grid in the center of the wall.

Anchor Lugs – Space anchor lugs a minimum of 10 feet on centers for the length of the flume. They will extend the width of the flume, extend 1 foot into subsoil, be a minimum of 6 inches thick, and be reinforced with #3 reinforcing bars placed on a 6-inch grid.

Concrete – Minimum strength of design mix shall be 3000 psi. Concrete thickness shall be a minimum of 6 inches reinforced with #3 reinforcing bars. Mix shall be dense, durable, stiff enough to stay in place on steep slopes, and sufficiently plastic for consolidation. Concrete mix should include an air-entraining admixture to resist freeze-thaw cycles.

Cross Section – Flumes shall have minimum depth of 1 foot with 1.5:1 side slopes. Bottom widths shall be based on maximum flow capacity. Chutes will be maintained in a straight alignment because of supercritical flow velocities.

Drainage filters – Use a drainage filter with all paved flumes to prevent piping and reduce uplift pressures. Size of the filter material will be dependent on the soil material the flume is located in.

Inlet Section – Design the inlet to the following minimum dimensions: side walls 2 feet high, length 6 feet, width equal to the flume channel bottom, and side slopes the same as the flume channel side slopes.

Outlet Section – Outlets must be protected from erosion. Usually an energy dissipater is used to reduce the high chute velocities to lower non-erosive velocities. Rock riprap should be placed at the end of the dissipater to spread flow evenly to the receiving channel.

See Figure 5B.17 on page 5B.35 for examples of outlet structures.

Invert – Precast concrete sections may be used in lieu of cast in place concrete. The sections should be designed at the joint to be overlapped to prevent displacement between sections. Joint sealing compound should be used to prevent migration of soil through a joint. Cutoff walls and anchor lugs should be cast in the appropriate sections to accommodate the design criteria.

Small Flumes – Where the drainage area is 10 acres or less, the design dimensions for concrete flumes may be selected from those shown in the table on the following page:
Drainage Area (Acres)	5	10
Min Bottom Width | 4 | 8
Min Inlet Depth (ft) | 2 | 2
Min Channel Depth (ft) | 1.3 | 1.3
Max Channel Slope | 1.5:1 | 1.5:1
Max Side Slope | 1.5:1 | 1.5:1

See Figure 5B.18 on page 5B.36 for details.

Construction Specifications

1. The subgrade shall be constructed to the lines and grades shown on the plans. Remove all unsuitable material and replace them if necessary with compacted stable fill materials. Shape subgrade to uniform surface. Where concrete is poured directly on subsoil, maintain it in a moist condition.

2. On fill slopes, the soil adjacent to the chute, for a minimum of 5 feet, must be well compacted.

3. Where drainage filters are placed under the structure, the concrete will not be poured on the filter. A plastic liner, a minimum of 4 mils thick, will be placed to prevent contamination of filter layer.

4. Place concrete for the flume to the thickness shown on the plans and finish according to details. Protect freshly poured concrete from extreme temperatures (hot or cold) and ensure proper curing.

5. Form, reinforce, and pour together cutoff walls, anchor lugs and channel linings. Provide traverse joints to control cracking at 20-foot intervals. Joints can be formed by using a 1/8 inch thick removable template or by sawing to a minimum depth of 1 inch. Flumes longer than 50 feet shall have preformed expansion joints installed.

6. Immediately after construction, all disturbed areas will be final graded and seeded.

Maintenance

Inspect flumes after each rainfall until all areas adjoining the flume are permanently stabilized. Repair all damage immediately. Inspect outlet and rock riprap to assure presence and stability. Any missing components should be immediately replaced.
Figure 5B.17
Examples of Outlet Structures

<table>
<thead>
<tr>
<th>VIRGINIA DEPARTMENT OF HIGHWAYS AND TRANSPORTATION</th>
<th>CONTRA COSTA COUNTY, CALIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBR TYPE IV BASIN</td>
<td>ST. ANTHONY FALLS STILLING BASIN</td>
</tr>
<tr>
<td>COLORADO STATE UNIVERSITY RIGID BOUNDARY BASIN</td>
<td>STRAIGHT DROP SPILLWAY STILLING BASIN</td>
</tr>
</tbody>
</table>

ADAPTED FROM DETAILS PROVIDED BY: USDA - NRCS,
NEW YORK STATE DEPARTMENT OF TRANSPORTATION,
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION,
NEW YORK STATE SOIL & WATER CONSERVATION COMMITTEE

OUTLET STRUCTURE EXAMPLES
CONSTRUCTION SPECIFICATIONS

1. SUBGRADE SHALL BE CONSTRUCTED TO THE LINES AND GRADES SHOWN ON THE PLANS, REMOVE ALL UNSUITABLE MATERIAL AND REPLACE THEM IF NECESSARY WITH COMPACTED STABLE FILL MATERIALS. SHAPE SUBGRADE TO UNIFORM SURFACE, WHERE CONCRETE IS POUR D Directly ON SUBSOIL MAINTAIN IT IN A MOIST CONDITION.

2. ON FILL SLOPES THE SOIL ADJACENT TO THE CHUTE FOR A MINIMUM OF 5 FEET SHALL BE WELL COMPACTED.

3. WHERE DRAINAGE FILTERS ARE PLACED UNDER THE STRUCTURE THE CONCRETE WILL NOT BE POURED ON THE FILTER. A PLASTIC LINER, MINIMUM 4 MILS THICK, WILL BE PLACED TO PREVENT CONTAMINATION OF THE FILTER LAYER.

4. PLACE CONCRETE FOR THE FLUME TO THE THICKNESS SHOWN ON THE PLANS AND FINISH ACCORDING TO DETAILS. PROTECT FRESHLY POURED CONCRETE FROM EXTREME TEMPERATURES (HOT OR COLD) AND ENSURE PROPER CURING.

5. FORM, REINFORCE, AND POUR TOGETHER CUTOFF WALLS, ANCHOR LUGS AND CHANNEL LININGS. PROVIDE TRAVERSE JOINTS TO CONTROL CRACKING AT 20 FOOT INTERVALS. JOINTS CAN BE FORMED BY USING A 1/8 INCH THICK REMOVABLE TEMPLATE OR BY SAWING TO A MINIMUM DEPTH OF 1 INCH. FLUMES LONGER THAN 50 FEET SHALL HAVE PERFORMED EXPANSION JOINTS INSTALLED.

6. IMMEDIATELY AFTER CONSTRUCTION, ALL DISTURBED AREAS WILL BE FINAL GRADED AND SEEDED.

7. MAINTENANCE - INSPECT FLUMES AFTER EACH RAINFALL UNTIL ALL AREAS ADJOINING THE FLUME ARE PERMANENTLY STABILIZED. REPAIR ALL DAMAGE IMMEDIATELY. INSPECT OUTLET AND ROCK RIPRAP TO ASSURE PRESENCE AND STABILITY. ANY MISSING COMPONENTS SHOULD BE IMMEDIATELY REPLACED.

ADAPTED FROM DETAILS PROVIDED BY: USDA - NRCS,
NEW YORK STATE DEPARTMENT OF TRANSPORTATION,
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION,
NEW YORK STATE SOIL & WATER CONSERVATION COMMITTEE