STANDARD AND SPECIFICATIONS
FOR
RIPRAP SLOPE PROTECTION

Definition
A layer of stone designed to protect and stabilize areas subject to erosion.

Purpose
To protect the soil surface from erosive forces and/or improve the stability of soil slopes that are subject to seepage or have poor soil structure.

Conditions Where Practice Applies
Riprap is used for cut and fill slopes subject to seepage, erosion, or weathering, particularly where conditions prohibit the establishment of vegetation. Riprap is also used for channel side slopes and bottoms, streambanks, grade sills, on shorelines subject to erosion, and at inlets and outlets to culverts, bridges, slope drains, grade stabilization structures, and storm drains.

Design Criteria
Gradation – Riprap should be a well-graded mixture with 50% by weight larger than the specified design size. The diameter of the largest stone size in such a mixture should be 1.5 times the d_{50} size with smaller sizes grading down to 1 inch. The designer should select the size or sizes that equal or exceed that minimum size based on riprap gradations commercially available in the area.

Quality – Stone for riprap should be hard, durable field or quarry materials. They should be angular and not subject to breaking down when exposed to water or weathering. The specific gravity should be at least 2.5.

Size – The sizes of stones used for riprap protection are determined by purpose and specific site conditions:

1. Slope Stabilization – Riprap stone for slope stabilization not subject to flowing water or wave action should be sized for the proposed grade. The gradient of the slope to be stabilized should be less than the natural angle of repose of the stone selected. Angles of repose of riprap stones may be estimated from Figure 5B.26.

Riprap used for surface stabilization of slopes does not add significant resistance to sliding or slope failure and should not be considered a retaining wall. Slopes approaching 1.5:1 may require special stability analysis. The inherent stability of the soil must be satisfactory before riprap is used for surface stabilization.

2. Outlet Protection – Design criteria for sizing stone and determining dimensions of riprap aprons are presented in Standards and Specifications for Rock Outlet Protection.

Filter Blanket – A filter blanket is a layer of material placed between the riprap and the underlying soil to prevent soil movement into or through the riprap. A suitable filter may consist of a well-graded gravel or sand-gravel layer or a synthetic filter fabric manufactured for this purpose. The design of a gravel filter blanket is based on the ratio of particle size in the overlying filter material to that of the base material in accordance with the criteria below. Multiple layers may be designed to affect a proper filter if necessary.

A gravel filter blanket should have the following relationship for a stable design:

$$\frac{d_{15 \text{ filter}}}{d_{85 \text{ base}}} \leq 5$$
and
\[
\frac{d_{50 \text{ filter}}}{d_{50 \text{ base}}} \leq 40
\]

Filter refers to the overlying material while base refers to the underlying material. These relationships must hold between the base and filter and the filter and riprap to prevent migration of material. In some cases, more than one filter may be needed. Each filter layer should be a minimum of 6 inches thick, unless an acceptable filter fabric is used.

A synthetic filter fabric may be used with or in place of gravel filters. The following particle size relationships should exist:

1. Filter fabric covering a base containing 50% or less by weight of fine particles (#200 sieve size):
 a. \(d_{85 \text{ base}} (\text{mm})\)
 EOS*filter fabric (mm) \(>1\)
 b. total open area of filter fabric should not exceed 36%

2. Filter fabric covering other soils:
 a. EOS is no larger than 0.21 mm (#70 sieve size)
 b. total open area of filter fabric should not exceed 10%

*EOS – Equivalent opening size compared to a U.S. standard sieve size.

No filter fabric should have less than 4% open area or an EOS less than U.S. Standard Sieve #100 (0.15 mm). The permeability of the fabric must be greater than that of the soil. The fabric may be made of woven or nonwoven monofilament yarns and should meet the following minimum requirements:

Thickness 20-60 mils

grab strength 90-120 lbs.

conform to ASTM D-1682 or ASTM D-177

Filter blankets should always be provided where seepage is significant or where flow velocity and duration of flow or turbulence may cause underlying soil particles to move though the riprap.

Construction Specifications

Subgrade Preparation – Prepare the subgrade for riprap and filter to the required lines and grades shown on the plans. Compact any fill required in the subgrade to a density approximating that of the undisturbed material or overfill depressions with riprap. Remove brush, trees, stumps, and other objectionable material. Cut the subgrade sufficiently deep so that the finished grade of the riprap will be at the elevation of the surrounding area. Channels should be excavated sufficiently to allow placement of the riprap in a manner such that the finished inside dimensions and grade of the riprap meet design specifications.

Sand and gravel filter blanket – Place the filter blanket immediately after the ground foundation is prepared. For gravel, spread filter stone in a uniform layer to the specified depth. Where more than one layer of filter material is used, spread the layers with minimal mixing.

Synthetic filter fabric – Place the cloth directly on the prepared foundation. Overlap the edges by at least 2 feet, and space the anchor pins every 3 feet along the overlap. Bury the upper and lower ends of the cloth a minimum of 12 inches below ground. Take precautions not to damage the cloth by dropping the riprap. If damage occurs, remove the riprap and repair the sheet by adding another layer of filter fabric with a minimum overlap of 12 inches around the damaged area. Where large stones are to be placed, a 4-inch layer of fine sand or gravel is recommended to protect the filter cloth. Filter fabric is not recommended as a filter on slopes steeper than 2 horizontal to 1 vertical.

Stone placement – Placement of the riprap should follow immediately after placement of the filter. Place riprap so that it forms dense, well-graded mass of stone with a minimum of voids. The desired distribution of stones throughout the mass may be obtained by selective loading at the quarry and controlled dumping during final placement. Place riprap to its full thickness in one operation. Do not place riprap by dumping through chutes or other methods that cause segregation of stone sizes. Be careful not to dislodge the underlying base or filter when placing the stones.

The toe of the riprap should be keyed into a stable foundation at its base as shown in Figure 5B.27—Typical Riprap Slope Protection Detail. The toe should be excavated to a depth of 2.0 feet. The design thickness of the riprap should extend a minimum of 3 feet horizontally from the slope. The finished slope should be free of pockets of small stone or clusters of large stones. Hand placing may be necessary to achieve proper distribution of stone sizes to produce a relatively smooth, uniform surface. The finished grade of the riprap should blend with the surrounding area.

Maintenance

Riprap should be inspected periodically for scour or dislodged stones. Control weed and brush growth as needed.
Figure 5B.26
Angles of Repose of Riprap Stones (FHWA)

Figure 5B.27
Typical Riprap Slope Protection Detail

6” Gravel filter (or geotextile)

T

3’ min

2’ min
Definition
A structural wall constructed and located to prevent soil movement.

Purpose
To retain soil in place and prevent slope failures and movement of material down steep slopes.

Conditions Where Practice Applies
A retaining wall may be used where site constraints will not allow slope shaping and seeding to stabilize an area. Slope areas that demonstrate seepage problems or experience erosive conditions at the toe can utilize retaining walls to help stabilize these areas. Retaining walls can be built from mortared block or stone, cast-in-place concrete, railroad ties, gabions, and more recently, precast concrete modular units and segmented walls that form a gravity retaining wall (see Figure 5B.28 and 5B.29). These precast units allow for ease and quickness of installation while their granular backfill provides drainage. Selection of materials and type of wall should be based on hazard potential, load conditions, soil parameters, groundwater conditions, site constraints, and aesthetics.

Design Criteria
The design of any retaining wall structure must address the aspects of foundation bearing capacity, sliding, overturning, drainage and loading systems. These are complex systems and all but the smallest retaining walls should be designed by a licensed engineer.

Bearing Capacity – A minimum factor of safety of 1.5 should be maintained as the ratio of the ultimate bearing capacity to the designed unit loading. Spread footers and other methods may be used to meet factor requirements.

Sliding – A minimum factor of 2.0 should be maintained against sliding. This factor can be reduced to 1.5 when passive pressures on the front of the wall are ignored.

Overturning – A minimum factor of safety of 1.5 should be used as the ratio of the resisting moment (that which tends to keep the wall in place) to the overturning moment.

Drainage – Unless adequate provisions are made to control both surface and groundwater behind the retaining wall, a substantial increase in active pressures tending to slide or overturn the wall will result. When backfill is sloped down to a retaining wall, surface drainage should be provided. Drainage systems with adequate outlets should be provided behind retaining walls that are placed in cohesive soils. Drains should be graded or protected by filters so soil material will not move through the drainfill.

Load systems – Several different loads or combination of loads need to be considered when designing a retaining wall. The minimum load is the level backfill that the wall is being constructed to retain. Its unit weight will vary depending on its composition.

Additional loads such as line loads, surcharge loads, or slope fills, will add to make the composite design load system for the wall.

Construction Specifications
Concrete Walls
1. Foundation will be prepared by excavating to the lines and grades shown on the drawings and removing all objectionable material.
2. Subgrade will be compacted and kept moist at least 2 hours prior to placement of concrete.
3. Steel reinforcing will be in accordance with the schedule on the drawings and kept free of rust, scale, or dirt.
4. Exposed edges will be chamfered ¾ inches.
5. Drainfill will meet the gradations shown on the drawings.
6. Weep holes will be provided as drain outlets as shown on the drawings.

7. Concrete will be poured and cured in accordance with American Concrete Institute (ACI) specifications.

Precast Units

1. Foundation will be prepared by excavating to the lines and grades shown on the drawings.

2. Subgrade will be compacted and trimmed to receive the leveling beam.

3. Precast units will be placed in accordance with the manufacturers recommendation.

4. Granular fill placed in the precast bins shall be placed in 3-foot lifts, leveled off and compacted with a plate vibrator.

Segmented Walls

1. Foundation will be prepared by excavating to the lines and grades shown on the drawings.

2. Sub-grade will be compacted and screeded to form the base for the first course of wall units.

3. Units will be placed in accordance with the manufacturers recommendations, with each succeeding lift anchored and pinned as specified.

4. Granular fill will be placed behind the segmented wall to provide drainage. It shall be compacted with a plate vibrator. A drainage outlet will be provided as specified on the construction drawings.

Gabions

1. Foundation will be prepared by excavating to the lines and grades shown on the drawings.

2. Subgrade will be compacted and leveled to receive first layer of gabions. The first row will be keyed into the existing grade at the toe, a minimum of 1.5 feet.

3. Gabions will be placed according to the manufacturers recommendations.

4. Gabions will be filled with stone or crushed rock from 4 to 8 inches in diameter.

5. In corrosive environments, gabion wire should be coated with Poly Vinyl Chloride (PVC).

Maintenance

Once in place, a retaining wall should require little maintenance. They should be inspected annually for signs of tipping, clogged drains, or soil subsidence. If such conditions exist, they should be corrected immediately.
Figure 5B.28
Retaining Wall Examples
Figure 5B.29
Segmented Retaining Wall

Adapted from details provided by: USDA - NRCS, New York State Department of Transportation, New York State Department of Environmental Conservation, New York State Soil & Water Conservation Committee
References