STANDARD AND SPECIFICATIONS FOR
TEMPORARY ACCESS WATERWAY CROSSING

Definition
A temporary access waterway crossing is a structure placed across a waterway to provide access for construction purposes for a period of less than one year. Temporary access crossings shall not be utilized to maintain traffic for the general public.

Purpose
The purpose of the temporary access waterway crossing is to provide safe, environmentally sound access across a waterway for construction equipment by establishing minimum standards and specifications for the design, construction, maintenance, and removal of the structure. Temporary access waterway crossings are necessary to prevent construction equipment from damaging the waterway, blocking fish migration, and tracking sediment and other pollutants into the waterway. This standard and specification may represent a channel constriction, thus, the temporary nature of waterway access crossing must be stressed. They should be planned to be in service for the shortest practical period of time and removed as soon as their function is completed.

Conditions Where Practice Applies
The following standard and specification for temporary access waterway crossings are applicable in non-tidal waterways. These standard and specifications provide designs based on waterway geometry rather than the drainage area contributing to the point of crossing.

The principal consideration for development of the standard and specifications is concern for erosion and sediment control. Structural utility and safety must also be considered when designing temporary access waterway crossings to withstand expected loads.

The tree types of standard temporary access waterway crossings are bridges, culverts, and fords.

General Requirements

1. In-Stream Excavation: In-Stream excavation shall be limited to only that necessary to allow installation of the standard methods as presented in Subsection “Temporary Access Waterway Crossing Methods.”

2. Elimination of Fish Migration Barriers: Of the three basic methods presented in Subsection “Temporary Access Waterway Crossing Methods,” bridges pose the least potential for creating barriers to aquatic migration. The construction of any specific crossing method as presented in Subsection “Temporary Access Waterway Crossing Methods,” shall not cause a significant water level difference between the upstream and downstream water surface elevations. Fish spawning or migration within waterways is from October 1 to April 30 for water classified for trout and from March 15 to June 15 for other streams. Restrictions imposed by the NYS Department of Environmental Conservation during these time periods may apply and must be checked.

3. Crossing Alignment: The temporary waterway crossing shall be at right angles to the stream. Where approach conditions dictate, the crossing may vary 15 degrees from a line drawn perpendicular to the centerline of the stream at the intended crossing location.

4. Road Approaches: The centerline of both roadway approaches shall coincide with the crossing alignment centerline for a minimum distance of 50 feet from each bank of the waterway being crossed. If physical or right-of-way restraints preclude the 50 feet minimum, a shorter distance may be provided. All fill materials associated with the roadway approach shall be limited to a maximum height of 2 feet above the existing flood plain elevation.

5. Surface Water Diverting Structure: A water diverting structure such as a swale shall be constructed (across the roadway on both roadway approaches) 50 feet (maximum) on either side of the waterway.
existing waterway banks. When possible, locate the crossing at a point receiving minimal surface runoff.

3. **Physical site constraints:** The physical constraints of a site may preclude the selection of one or more of the standard methods.

4. **Time of year:** The time of year may preclude the selection of one or more of the standard methods due to fish spawning or migration restrictions.

5. **Vehicular loads and traffic patterns:** Vehicular loads, traffic patterns, and frequency of crossing should be considered in choosing a specific method.

6. **Maintenance of crossing:** The standard methods will require various amounts of maintenance. The bridge method should require the least maintenance, whereas the ford method will probably require more intensive maintenance.

7. **Removal of the Structure:** Ease of removal and subsequent damage to the waterway should be primary factors in considering the choice of a standard method.

Temporary Access Bridge (Figure 5A.36 on page 5A.84)

A temporary access bridge is a structure made of wood, metal, or other materials, which provides access across a stream or waterway.

Considerations

1. This is the preferred method for temporary access waterway crossings. Normally, bridge construction causes the least disturbance to the waterway bed and banks when compared to the other access waterway crossings.

2. Most bridges can be quickly removed and reused.

3. Temporary access bridges pose the least chance for interference with fish migration when compared to the other temporary access waterway crossings.

4. **Restrictions and Permits:** A permit from the New York State Department of Environmental Conservation, Division of Regulatory Affairs, Regional Permit Administrator, will be needed to install and remove temporary access culverts in streams with a classification of C(T) and higher. Installation and removal may not be permitted during the period of time from the start of trout spawning until the eggs have hatched. In some instances, restrictions may also be applied to bass spawning waters.
Construction Specifications

1. **Restriction**: Construction, use, or removal of a temporary access bridge will not normally have any time of year restrictions if construction, use, or removal does not disturb the stream or its banks.

2. **Bridge Placement**: A temporary bridge structure shall be constructed at or above bank elevation to prevent the entrapment of floating materials and debris.

3. **Abutments**: Abutments shall be placed parallel to and on stable banks.

4. **Bridge Span**: Bridges shall be constructed to span the entire channel. If a footing, pier, or bridge support is constructed within the waterway, a stream-disturbance permit may be required.

5. **Stringers**: Stringers shall either be logs, saw timber, pre-stressed concrete beams, metal beams, or other approved materials.

6. **Deck Material**: Decking shall be of sufficient strength to support the anticipated load. All decking members shall be placed perpendicular to the stringers, butted tightly, and securely fastened to the stringers. Decking materials must be butted tightly to prevent any soil material tracked onto the bridge from falling into the waterway below.

7. **Run Planks (optional)**: Run planking shall be securely fastened to the length of the span. One run plank shall be provided for each track of the equipment wheels. Although run planks are optional, they may be necessary to properly distribute loads.

8. **Curbs or Fenders**: Curbs or fenders may be installed along the outer sides of the deck. Curbs or fenders are an option, which will provide additional safety.

9. **Bridge Anchors**: Bridges shall be securely anchored at only one end using steel cable or chain. Anchoring at only one end will prevent channel obstruction in the event that floodwaters float the bridge. Acceptable anchors are large trees, large boulders, or driven steel anchors. Anchoring shall be sufficient to prevent the bridge from floating downstream and possibly causing an obstruction to the flow.

10. **Stabilization**: All areas disturbed during installation shall be stabilized within 14 calendar days of that disturbance in accordance with the Standard and Specification for Temporary Critical Area Plantings on page 3.3.

Bridge Maintenance Requirements

1. **Inspection**: Periodic inspection shall be performed by the user to ensure that the bridge, streambed, and streambanks are maintained and not damaged.

2. **Maintenance**: Maintenance shall be performed, as needed to ensure that the structure complies with the standard and specifications. This shall include removal and disposal of any trapped sediment or debris. Sediment shall be disposed of outside of the floodplain and stabilized.

Bridge Removal and Clean-Up Requirements

1. **Removal**: When the temporary bridge is no longer needed, all structures including abutments and other bridging materials shall be removed within 14 calendar days. In all cases, the bridge materials shall be removed within one year of installation.

2. **Final Clean-Up**: Final clean-up shall consist of removal of the temporary bridge from the waterway, protection of banks from erosion, and removal of all construction materials. All removed materials shall be stored outside the waterway floodplain.

3. **Method**: Removal of the bridge and clean-up of the area shall be accomplished without construction equipment working in the waterway channel.

4. **Final Stabilization**: All areas disturbed during removal shall be stabilized within 14 calendar days of that disturbance in accordance with the Standard and Specifications for Permanent Critical Area Plantings on page 5.5.

Temporary Access Culvert (Figure 5A.37 on page 5A.85)

A temporary access culvert is a structure consisting of a section(s) of circular pipe, pipe arches, or oval pipes of reinforcing concrete, corrugated metal, or structural plate, which is used to convey flowing water through the crossing.

Considerations

1. Temporary culverts are used where a) the channel is too wide for normal bridge construction, b) anticipated loading may prove unsafe for single span bridges, or c) access is not needed from bank to bank.

2. This temporary waterway crossing method is normally preferred over a ford type of crossing, since disturbance to the waterway is only during construction and removal of the culvert.

3. Temporary culverts can be salvaged and reused.
Permanent Critical Area Plantings

Culvert Maintenance Requirements

1. Inspection: Periodic inspection shall be performed to ensure that the culverts, streambed, and streambanks are not damaged, and that sediment is not entering the stream or blocking fish passage or migration.

2. Maintenance: Maintenance shall be performed, as needed in a timely manner to ensure that structures are in compliance with this standard and specification. This shall include removal and disposal of any trapped sediment or debris. Sediment shall be disposed of and stabilized outside the waterway flood plain.

Culvert Removal and Clean-Up Requirements

1. Removal: When the crossing has served its purpose, all structures, including culverts, bedding, and filter cloth materials shall be removed within 14 calendar days. In all cases, the culvert materials shall be removed within one year of installation. No structure shall be removed during the spawning season (March 15 through June 15).

2. Final Clean-Up: Final clean-up shall consist of removal of the temporary structure from the waterway, removal of all construction materials, restoration of original stream channel cross section, and protection of the streambanks from erosion. Removed material shall be stored outside of the waterway floodplain.

3. Method: Removal of the structure and clean-up of the area shall be accomplished without construction equipment working in the waterway channel.

4. Final Stabilization: All areas disturbed during culvert removal shall be stabilized within 14 calendar days of the disturbance in accordance with the Standard for Permanent Critical Area Plantings.

Temporary Access Ford (Figure 5A.38 on page 5A.86)

A temporary access ford is a shallow structure placed in the bottom of a waterway over which the water flows while still allowing traffic to cross the waterway.

Considerations

Temporary fords may be used when the streambanks are less than four (4) feet above the invert of the stream, and the streambed is armored with naturally occurring bedrock, or can be protected with an aggregate layer in conformance with these specifications.
Construction Specifications

1. **Restrictions and Permits**: A permit from New York State Department of Environmental Conservation, Division of Regulatory Affairs, Regional Permit Administrator, will be needed to install, use, and remove temporary fords in streams with a classification of C(T) or higher. Installation and removal may not be permitted during the period of time from the start of trout spawning until the eggs have hatched. In some instances, restrictions may also be applied to bass spawning waters.

2. The approaches to the structure shall consist of stone pads constructed to comply with the aggregate requirements of the General Requirements subsection.

The entire ford approach (where banks were cut) shall be covered with filter cloth and protected with aggregate to a depth of four (4) inches.

3. Fords shall be prohibited when the streambanks are four (4) feet or more in height above the invert of the stream.

4. The approach roads at the cut banks shall be no steeper than 5:1. Spoil material from the banks shall be stored out of the floodplain and stabilized.

5. One layer of filter cloth shall be placed on the streambed, streambanks, and road approaches prior to placing the bedding material on the stream channel or approaches. The filter cloth will be a minimum of six (6) inches and a maximum one foot beyond bedding material.

6. The bedding material shall be course aggregate or gabion mattresses filled with coarse aggregate.

7. Aggregate used in ford construction shall meet the minimum requirements of the General Requirements subsection.

8. All fords shall be constructed to minimize the blockage of stream flow and shall allow free flow over the ford. The placing of any material in the waterway bed will cause some upstream ponding. The depth of this ponding will be equivalent to the depth of the material placed within the stream and therefore should be kept to a minimum height. However, in no case will the bedding material be placed deeper than 12 inches or one-half (1/2) the height of the existing banks whichever is smaller.

9. **Stabilization**: All areas disturbed during ford installation shall be stabilized within 14 calendar days of that disturbance in accordance with the Standard and Specifications for Temporary Critical Area Planting on page 3.3.

10. **Ford removal and Clean-Up Requirements**

 A. **Removal**: When the temporary structure has served its purpose, excess material used for this structure need not be removed. Care should be taken so that any aggregate left does not create an impoundment or restrict fish passage.

 B. **Final Clean-Up**: Final clean-up shall consist of removal of excess temporary ford materials from the waterway. All materials shall be stored outside the waterway floodplain.

 C. **Method**: Clean up shall be accomplished without construction equipment working in the stream channel.

 D. **Approach Disposition**: The approach slopes of the cut banks shall not be backfilled.

 E. **Final Stabilization**: All areas disturbed during ford removal shall be stabilized within 14 calendar days of that disturbance in accordance with the Standard and Specifications for Permanent Critical Area Planting on page 3.3.

NOTE: Any temporary access crossing shall conform to the technical requirements of this Standard and Specifications as well as any specific requirement imposed by the New York State Department of Environmental Conservation. Permits may be required for streambank disturbance.
Figure 5A.36
Temporary Access Bridge

Adapted from details provided by USDA - NRCS, New York State Department of Transportation, New York State Department of Environmental Conservation, New York State Soil & Water Conservation Committee.
Figure 5A.37
Temporary Access Culvert

ADAPTED FROM DETAILS PROVIDED BY USDA - NRCS, NEW YORK STATE DEPARTMENT OF TRANSPORTATION, NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, NEW YORK STATE SOIL & WATER CONSERVATION COMMITTEE
Figure 5A.38
Temporary Access Ford

Adapted from details provided by USDA - NRCS, New York State Department of Transportation, New York State Department of Environmental Conservation, New York State Soil & Water Conservation Committee.
Vegetative Cover – For disturbed areas not subject to traffic, vegetation provides the most practical method of dust control (see Section 3).

Mulch (including gravel mulch) – Mulch offers a fast effective means of controlling dust. This can also include rolled erosion control blankets.

Spray adhesives – These are products generally composed of polymers in a liquid or solid form that are mixed with water to form an emulsion that is sprayed on the soil surface with typical hydroseeding equipment. The mixing ratios and application rates will be in accordance with the manufacturer’s recommendations for the specific soils on the site. In no case should the application of these adhesives be made on wet soils or if there is a probability of precipitation within 48 hours of its proposed use. Material Safety Data Sheets will be provided to all applicators and others working with the material.

B. Driving Areas – These areas utilize water, polymer emulsions, and barriers to prevent dust movement from the traffic surface into the air.

Sprinkling – The site may be sprayed with water until the surface is wet. This is especially effective on haul roads and access routes.

Polymer Additives – These polymers are mixed with water and applied to the driving surface by a water truck with a gravity feed drip bar, spray bar or automated distributor truck. The mixing ratios and application rates will be in accordance with the manufacturer’s recommendations. Incorporation of the emulsion into the soil will be done to the appropriate depth based on expected traffic. Compaction after incorporation will be by vibratory roller to a minimum of 95%. The prepared surface shall be moist and no application of the polymer will be made if there is a probability of precipitation within 48 hours of its proposed use. Material Safety Data Sheets will be provided to all applicators working with the material.

Barriers – Woven geotextiles can be placed on the driving surface to effectively reduce dust throw and particle migration on haul roads. Stone can also be used for construction roads for effective dust control.

Windbreak – A silt fence or similar barrier can control air currents at intervals equal to ten times the barrier height. Preserve existing wind barrier vegetation as much as practical.
All Stormwater Pollution Prevention Plans must contain the NYS DEC issued “Conditions for Use” and “Application Instructions” for any polymers used on the site. This information can be obtained from the NYS DEC website.

Maintenance

Maintain dust control measures through dry weather periods until all disturbed areas are stabilized.
STANDARD AND SPECIFICATIONS
FOR
SUMP PIT

Definition

A temporary pit which is constructed to trap and filter water for pumping to a suitable discharge area.

Purpose

To remove excessive water from excavations.

Conditions Where Practice Applies

Sump pits are constructed when water collects during the excavation phase of construction. This practice is particularly useful in urban areas during excavation for building foundations.

Design Criteria

The number of sump pits and their locations shall be determined by the contractor/engineer. A design is not required, but construction should conform to the general criteria outlined on Figure 7A.39 on page 7A.90.

A perforated vertical standpipe is placed in the center of the pit to collect filtered water. Water is then pumped from the center of the pipe to a suitable discharge area.

Discharge of water pumped from the standpipe should be to a sediment trap, sediment basin, or stabilized area, such as a filter strip. If water from the sump pit will be pumped directly to a storm drain system, filter cloth (Mirafi 100X, Poly Filter GB, or a filter cloth with an equivalent sieve size between 40-80) should be wrapped around the standpipe to ensure clean water discharge. It is recommended that ¼ to ½ inch hardware cloth be wrapped around and secured to the standpipe prior to attaching the filter cloth. This will increase the rate of water seepage into the standpipe.
CONSTRUCTION SPECIFICATIONS

1. PIT DIMENSIONS ARE OPTIONAL.

2. THE STANDPIPE SHOULD BE CONSTRUCTED BY PERFORATING A 12'-24' DIAMETER CORRUGATED OR PVC PIPE.

3. A BASE OF 2" AGGREGATE SHOULD BE PLACED IN THE PIT TO A DEPTH OF 12". AFTER INSTALLING THE STANDPIPE, THE PIT SURROUNDING THE STANDPIPE SHOULD BE BACKFILLED WITH 2" AGGREGATE.

4. THE STANDPIPE SHOULD EXTEND 12'-18' ABOVE THE LIP OF THE PIT.

5. IF DISCHARGE WILL BE PUMPED DIRECTLY TO A STORM DRAINAGE SYSTEM, THE STANDPIPE SHOULD BE WRAPPED WITH FILTERCLOTH BEFORE INSTALLATION. IF DESIRED, 1/4"-1/2" HARDWARE CLOTH MAY BE PLACED AROUND THE STANDPIPE, PRIOR TO ATTACHING THE FILTERCLOTH.

ADAPTED FROM DETAILS PROVIDED BY: USDA - NRCS, NEW YORK STATE DEPARTMENT OF TRANSPORTATION, NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, NEW YORK STATE SOIL & WATER CONSERVATION COMMITTEE

SUMP PIT