Update to the Stakeholders
Conesus Lake TMDL and Watershed Plan

Steve Gladding, P.E., Ph.D.
NYSDEC Division of Water

August 25, 2015
Purpose of tonight’s meeting

• Initial public meeting last December
• Committed to a late summer meeting
 ▪ Continue engagement with stakeholders
 ▪ Opportunity to interact with seasonal residents
 ▪ Provide everyone with an update on progress
Agenda

1. Survey Results
2. Overview of TMDL/Watershed Plan Process
3. Model Results
 A. Endpoint
 B. Watershed Model
 C. Lake Model
 D. Needed Reductions
4. Load Reduction Implementation
5. Next Steps
6. Questions and Discussion
Survey Results

How do you use the lake?

Evenly split between:
- Swimming
- Boating
- Fishing
- Aesthetics

Other uses noted:
- Water supply
- Duck & goose hunting
- Youth camp
Survey Results

Are you able to use the lake as desired?

- Yes: 28%
- No: 37%
- Other: 35%

Other: yes except when weeds/algae blooms
Survey Results

Are some areas worse than others?

1. North end
2. Coves/harbors
3. Long & McPherson Points
4. Shoreline (aquatic plants)
5. South
Survey Results

What prevents you from using the lake as desired?

1. Algae
2. Weeds
3. People/competing uses
4. Other
 • Odor, poor fishing, sewage overflows
5. Mucky bottom
6. Nuisance species
7. Nothing
Survey Results

What do you think is the source of the problem?

1. Runoff from roads, construction sites, lawns, crops
2. Pollution from pipes, ditches, containers or wells
3. Other
 • Invasive species, historic sediment, over use, over development, sewage overflows, farms, temperature
4. Septic systems
5. Fertilizer
6. Lake processes
7. Animals
8. Not sure
Survey Results

46 Responses

Confirmed our understanding:

- How the lake is used (all identified best uses)
- That the uses of the lake are not being supported (i.e. lake is impaired)
 - 72% of people not able to use as desired
- Major impairments are known
 - Uses impacted by other causes as well

People know what the important sources of pollution are
How did we get here?

• Conesus Lake listed on 303(d) list for oxygen demand (2002) and phosphorus (2006)
• NY TMDL program is refocussing resources on sources of drinking water and nutrients
• Funding became available through USEPA in the form of contractor support (Cadmus Group)
• Currently working with the contractor to complete the watershed and lake modeling
Understanding Total Maximum Daily Loads (TMDLs)

- Required when Water Quality Standards (WQS) not met
- Results in a plan to reduce pollutant loads and restore water quality
TMDL = Clean Water Blueprint

- Identifies the sources of pollutant(s)
- Defines ability of waterbody to absorb a pollutant and still meet WQS
- Assigns reductions to each source
- Meet EPA’s 9 Element Watershed Plan
Phosphorus, dissolved oxygen and water quality

- Phosphorus (P) flows into Algae.
- Algae releases oxygen (O_2) and sinks to Sediments.
- Phosphorus (P) and oxygen (O_2) are present in Sediments.
- Chlorine affects Drinking Water.
- Recreation activities are impacted by Algae growth.
- Aquatic Life is affected by the balance of Phosphorus and Oxygen.
Potential Endpoints

At the end of this, what do we want Conesus Lake to look like?

Phosphorus impairment

- Narrative Water Quality Standard (WQS) to protect uses:
 - Fishing/wildlife: supported at current conditions, except dissolved oxygen
 - Recreation: phosphorus guidance value of 20 µg/L
 - Water supply: chlorophyll-a value of 4 µg/L

Dissolved oxygen impairment

- WQS: not less than 4 mg/L
daily average not less than 5 mg/L
Selecting an Endpoint

Protecting the water supply use is limiting factor for phosphorus

- Goal of achieving an average chlorophyll-a concentration of 4 µg/L

- May need to be lower to address low dissolved oxygen
 - Model will help determine impact of phosphorus on dissolved oxygen
Model Framework

Watershed loading model

- Modeled 2006 to 2014
- Output daily flow, sediment and phosphorus

Lake water quality model

- 2009, 2012 modeled so far
- Output phosphorus, chlorophyll-a, dissolved oxygen, clarity
Acknowledgements

Watershed Model Development

- Professor Joseph C. Makarewicz and students
 - Digital Commons @Brockport: Genesee River Watershed Project
- SUNY College at Brockport
- The Research Foundation for The State University of New York
Watershed model development

- Developed by Dr. Makarewicz and students from SUNY Brockport
- Part of a model of the entire Genesee River basin
- Sampled Conesus Creek (Rt. 256 at Rt. 15) from August 2010 – August 2011
- Of the tributaries monitored Conesus Creek had highest annual average phosphorus concentrations (SRP & TP)
- Extended model period to 2014

Makarewicz et al., 2013 Volume 1
Conesus Lake watershed model

- 8 sub-basins
- 628 smaller units with similar characteristics
 - Land use
 - Slope
 - Soil type
Land Use in the Watershed

<table>
<thead>
<tr>
<th>Land Use</th>
<th>% of Watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>34%</td>
</tr>
<tr>
<td>Pasture/Hay</td>
<td>28%</td>
</tr>
<tr>
<td>Cropland</td>
<td>13%</td>
</tr>
<tr>
<td>Shrubland</td>
<td>8%</td>
</tr>
<tr>
<td>Open Water</td>
<td>7%</td>
</tr>
<tr>
<td>Urban</td>
<td>6%</td>
</tr>
<tr>
<td>Wetland</td>
<td>4%</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
Results are preliminary

Received initial modeling results from contractor last week

- Still reviewing model inputs and outputs
- Some modifications to the models may be needed
- Likely to model additional years and additional load reduction scenarios
Draft 2006 – 2014 Average Watershed Phosphorus Load

- Forest: 7% (Load: 708 lb/yr)
- Urban: 18% (Load: 1,667 lb/yr)
- Agriculture: 75% (Load: 7,059 lb/yr)

Total Load: 9,433 lb/yr
Estimated Septic System Contribution

Most properties along lake shore on municipal sewer

From sewer service area maps and tax parcel data:

- Approximately 1,716 residential properties with septic systems in the watershed
- About 329 (19%) are within 250 feet of a stream

Estimated contribution:

- 323 lb/yr
- ~3% of watershed load

Livingston County maintains a permit system and responds to complaints
Draft 2006 to 2014 Watershed Phosphorus Loads
Draft 2006 to 2014 Watershed Phosphorus Loads

Total Phosphorus (lb/yr)

- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014

Bar chart showing the total phosphorus loads from 2006 to 2014.
Conesus Lake Model

2009 Bathymetric survey
- 50 Longitudinal segments 500 – 900 ft wide
- 20 vertical layers 3.5 ft thick
- Laterally averaged
Draft Lake Model Predictions

2009 Water Balance

Temperature July 28, 2009
Draft Lake Model Predictions

Dissolved Oxygen

July 28, 2009

Chlorophyll-a

July 28, 2009
Draft 2009 and 2012 Average Lake Model Output

Total Phosphorus (µg/L)
- **Measured**
- **Modeled**

Chlorophyll-a (µg/L)
- **Measured**
- **Modeled**
Draft Internal Loading

Oxic – aerobic decomposition of organic matter that settles to sediment surface (e.g. oak leaves)
• 8,907 lb/yr

Anoxic – release of sediment bound phosphorus under low dissolved oxygen conditions
• 26,914 lb/yr
• Need to compare against estimates used in alum EIS

Suggests a system dominated by internal loading
• Model input and assumptions need to be scrutinized further
Draft Reference Watershed Conditions

Use model to simulate undisturbed watershed conditions by replacing urban and agricultural lands with forest

- Reduced watershed load to 1975 lb/yr (79% reduction)
- Reduced sediment oxygen demand to zero

<table>
<thead>
<tr>
<th></th>
<th>Total Phosphorus (µg/L)</th>
<th>Chlorophyll-a (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>11.53</td>
<td>3.95</td>
</tr>
<tr>
<td>2012</td>
<td>8.05</td>
<td>1.65</td>
</tr>
</tbody>
</table>
Dissolved Oxygen in Conesus Lake
Draft Results

Current water quality standards
- Minimum daily average not less than 5.0 mg/L
- At no time less than 4.0 mg/L

Surface waters
- Water Quality Standards met in all scenarios

Bottom waters
- Water Quality Standards not met under current or reference conditions

Some degree of low dissolved oxygen is natural
- Need to investigate impact of phosphorus further
Draft Loading Capacity Analysis

Reduce watershed loads until water quality target is met
- Maximum watershed load = 2,249 lb/yr
- Substantial reduction of internal load

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a</td>
<td>4.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Target is 4 mg/L chlorophyll-a on average
- Need to consider other years
- This loading capacity may be too conservative
Draft Load Reduction Needed

<table>
<thead>
<tr>
<th>TP Load (lb/yr)</th>
<th>Current</th>
<th>Proposed Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Load</td>
<td>9,433</td>
<td>2,024</td>
</tr>
<tr>
<td>Internal – Oxic</td>
<td>8,907</td>
<td></td>
</tr>
<tr>
<td>Internal – Anoxic</td>
<td>26,914</td>
<td></td>
</tr>
<tr>
<td>Margin of Safety (10%)</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>Total</td>
<td>45,254</td>
<td>2,249</td>
</tr>
</tbody>
</table>

- Estimated 79% watershed load reduction
- Endpoint refinement may change these numbers
Load Reduction Implementation

• Develop a strategy to achieve the phosphorus reductions needed

• Conference call with partners key to implementation:
 • Livingston County Planning Department
 • Livingston County Water & Sewer Authority
 • Livingston County Soil & Water Conservation District

• Review what has already been done
• Generate ideas for projects likely to be implemented
Potential Projects

- Residue cover management
- Field borders/buffers
- Cover crops
- Terracing
- Diversions
- Water retention basins

- Sewer extension
 - Lacks local support
 - Isolated areas with difficult access
- Overflows being studied

- Urban stormwater management
- Rain gardens
- Other green infrastructure
- Landowner education

- Stream bank restoration (ongoing)
- Road ditch hydroseeding
Where are we in the process?

1. Information gathering
 - Gather and review existing data and reports

2. Model development
 - Calibrate and validate
 - Compare results to existing data

3. Model execution
 - Historic conditions
 - Current conditions
 - Restoration scenarios

4. Draft Report
 - 9 element watershed plan
 - Problem description
 - Current loading
 - Load allocations
 - Implementation plan

5. Public Review and Comment
 - Public meeting
 - Comment period

6. Revisions and Submit to USEPA
Next Steps

• Continue analyzing model results
• Conduct additional model runs as needed
• Draft an implementation plan

• Rough schedule
 ▪ Draft document due from contractor in late 2015
 ▪ 30 day public comment period
 ▪ Final documents 2016
 ▪ EPA approval
Discussion and Questions
Thank You

• Steve Gladding
 • NYSDEC
 Division of Water
 Bureau of Water Resource Management
 • 625 Broadway
 Albany, NY 12233-3508
 • steven.gladding@dec.ny.gov
 • (518) 402-8207

• Don Tuxill
 • NYSDEC
 Division of Water
 Bureau of Water Resource Management
 • 625 Broadway
 Albany, NY 12233-3508
 • don.tuxill@dec.ny.gov
 • (518) 402-8168

Connect with us:
Facebook: www.facebook.com/NYSDEC
Twitter: twitter.com/NYSDEC
Flickr: www.flickr.com/photos/nysdec