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Light Scattering by 
Suspended Particles 

• reduces clarity, imparts cloudiness 
– often measured with a Secchi disk or 

turbidimeter 
– earlier efforts focused on nutrient (i.e., 

Phos.) control and organic particles 

• inorganic (mineral) particles 
increasingly found to be important 
– scatter light more efficiently 
– different sources and management 

strategies 

• need to resolve the contributions 
of these two particle populations 



• phytoplankton biomass ([Chl-a]) 
poor predictor of SD  

• SD-1   particle scattering 
–  widely documented  
    (Davies-Colley  et al. 2003) 
– Onondaga Lake example;  c(660) 

• theoretical representation: 
scattering coefficient (bp; m-1) 
– transmissometer, ac-s meter 
– f (composition, size distribution, 

number conc. of particles) 
– analytical support to provide 

particle optical attributes  
 

Particle Scattering and Clarity:  
Study Approach  
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 Individual Particle Analysis by 
Scanning electron microscopy 
interfaced with Automated 
image and X-ray analyses (        ) 

Detailed characterizations for 
individual mineral particles 
- morphology (size), composition 

(clay, calcite) 
- input for theoretical calculations 

 Success documented in 
multiple publications 

 

 

UFI’s Contributions in Advancing Particle 
Optics Studies with SAX 



  bp  =          bo                +                       bm  

Partitioning bp into Contributing Components 
two-component (organics and mineral) approach 

 

phytoplankton 
•empirical,  
   bio-optical model 

bo = 0.34[Chl-a]0.77 

 

mineral particles 
•mechanistic, Mie theory 
•based on results of SAX 

Calcite 
Clay 



 single-particle optics to bulk properties 

Modeling Mineral Particle Scattering: 
SAX–Mie Approach 
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• V: sampling volume 
 

• N: num. of mineral particles  
 in sampled volume 

• Qb,i : scattering efficiency factor  
  f (size, composition, l); Mie 

• PAi : projected area of a particle 
   (PAVmprojected area conc.) 

 

 Stramski et al. (2007) “… basic laboratory studies of particle 
types … with a detailed characterizations of particle 
populations with the use of … individual particle analysis, 
must be pressed further …” 



Cayuga Lake Particle Optics Study:  
Monitoring 

•1999-2006, Apr-Oct, biweekly 

Site 3 (pelagic) & Site 2 (nearshore, 
“shelf”) 

SeaBird c(660): light-attenuation 
coefficient at 660 nm (to estimate bp) 

Secchi depth (SD) 

Laboratory measurements 
- chlorophyll-a concentration, [Chl-a] 
- particle analysis by SAX 
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Site 2 Fall C
reek
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Cayuga Lake Particle Optics Study:  
Objectives 

• document optical variability 
– pelagic vs. near-shore 
– tempo-spatial patterns of bm 

• test the credibility of bm estimates 
and model closure (bp = bm + bo) 

• resolve the relative roles of bo and 
bm in affecting SD dynamics 

– supports Cayuga Lake TMDL 
modeling (submodel for SD) 

 



Performance of the Two-component Model 

• compare (bm + bo) to bulk measured bp 

 bp : (bm + bo) 

n = 199, mean = 1.03, median =  1.04  

 

 

 level of model closure generally satisfactory  
 provides support for bp components and SD analyses 
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average by site 

• Site 2: 1.09 

• Site 3: 0.97 



Detailed Temporal Dynamics (Year 2003) 
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• spatial differences not 
significant 

 

 

• higher clarity at Site 3 (paired 
observations) 

 

 

 

• bp patterns roughly inverse of 
those of SD 

• two-component model 
performed well 

• bm dynamics driving bp 
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• higher levels at Site 2 
than at Site 3  

    (mean 0.6 vs. 0.3 m-1) 

– ‘Clay’ peaks reflected 
runoff events 

• clay minerals 
dominating  

    (>65% on average) 

• summer whiting 
(CaCO3), especially at 
Site 3 

Detailed Temporal Dynamics (Year 2003) 
bm composition 



Particle Size Distribution (PSD) 
Size Dependency of Scattering 

• distinctive curvature 
• higher conc. of particles 

during runoff event(s) 
• plateau feature for whiting 

event sample 

• resolve particle size class 
contributions to PAVm 

(1-10 m) 

• bm  PAVm 
– median size of scattering, d50 
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Relative Importance of bo vs. bm in 
Regulating Bulk bp 
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y = 0.93x  0.13

n = 194

R2 = 0.65 
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n = 194

R2 = 0.09 

 bo important when 
bp and bm levels 
were low 

 not so much for 
full range of bp 

 good closure 
with overall bp 

• [Chl-a] only  • [Chl-a] & bm  



What Regulated Secchi Depth Dynamics? 
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• bo a predictor of SD only 
when bm levels low 

 bm more 
important in 
regulating SD 

 limited 
benefit in 
adding bo 
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Scenario Analyses for Secchi Dynamics 
SD-1 = 0.16bp + 0.004 
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• Site 3 long-term observations; n = 113 

• if [Chl-a] decreases by half 

• if [Chl-a] doubles 



Long-term Particle Optics Study Summary 
 the most comprehensive test of SAX-Mie and two-

component modeling approaches 
- reasonable degree of optical closure 
- detailed particle dynamics (conc., composition, size) 

 clarity (Secchi depth) regulated by particle scattering 
(bp) 
- scattering by algal particles (bo) poor predictor of SD  
- mineral particle scattering (bm) more important to SD 

dynamics 

 bp-SD relationship provides insights and 
expectations for management strategies 
- nutrient vs. erosion control 
- cost vs. effect 

 

 



Implications for TMDL Modeling 

 need to resolve contributions of phytoplankton and 
mineorgenic particles to scattering and SD  

 particle size and composition classes of PAVm may be 
appropriate state variables 
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• contribution of particles in  
  1-2 m size range to PAVm (bm) 

 40% @ low flow conditions 
 15% @ high flow conditions 
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Calcite Nuclei: Differential IPA 
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