Cayuga Lake TMDL Sediment Core Analysis
Goals:

• to document the history of TP levels in Cayuga Lake, as background to TMDL assessment of TP on the southern shelf

• To independently corroborate modeling results, based on comparison between mechanistic hindcast and paleolimnologic inference TP modeling
Project Participants

• USEPA
 • Abt Associates
 • Anchor QEA
 • St. Croix Watershed Research Station (MN)
 • Hutchinson Environmental Sciences
 • Washington University of Saint Louis
 • Life Science Labs

• NYSDEC
 • Rensselaer Polytechnic Institute

• Hobart and William Smith Colleges
Project Tasks

1) Sediment Coring – completed 5/13/2014

2) Core sample analyses – complete, Abt report complete

3) Diatom TP inference modeling – complete

4) Data correlation – in progress

5) Historical water quality interpretation – part of final report

Cayuga Lake

County: Seneca, Cayuga, Tompkins
Surface Area: 42,956 Acres

Scale: 0 — 22,000 ft
Cayuga Lake
Sediment Core

Black layer 1990-2000
Geology 26; 443-446.

![Graph showing Pb ppm (ppb) and carbonate percentage versus year for Cayuga Lake Box Core CL-1.](image)

Figure 3. Dry weight percent calcium carbonate and total organic matter (TOM) content versus depth for box core CL-1 (see Fig. 1). Date of A.D. 1963 is based on direct 137Cs and 210Pb data, whereas date of A.D. 1940 is based on linear extrapolation from A.D. 1963.
Figure 2. Profiles of dominant diatom taxa (n=15, maximum abundance >5) for the Cayuga Lake core with PCA sample scores and zonation by CONISS.
Preliminary Conclusions

- Adequate core recovery and age control to carry out project objectives

- Oligotrophic lake until 1840s, mesotrophic into 1950s, borderline eutrophic from late 1950s into late 1980s, mesotrophic to recent

- Inferred TP comparison to measured TP data and model hindcast pending……..

- Some carbonate deposition associated with increased lake productivity

- Terrigenous material and volatile solids rise until 1960s, then continue with episodic variability

- Carbonate decline starts and the most recent rise in terrigenous material occurs in late 1990s