
- the unavailable component (PPm/u) 

- development, testing, and application 

E. Minerogenic Particulate 

Phosphorus Model 
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Unavailable minerogenic particulate phosphorus 

(PPm/u), other P fractions, and bioavailability 
- (Prestigiacomo et al., 2015) 

total P P fraction bioavailability (assays) 

total 

P 

total dissolved  

(TDP) 

(<0.45 µm) 

particulate 

SRP 

SUP 

PPo 

PPm 

complete 

mostly 

mostly 

limited 

soluble reactive 

soluble unreactive 

organic particulate 

minerogenic particulate 
PP 

partitioning PPm = PPm/u + PPm/a 

PPm/u 

PPm/a 

none 

complete 

minerogenic unavailable 

particulate 

minerogenic available 

particulate, small fraction 

here 
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PPm/a ÷ PPm ≈ fBAP for PP 
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Implications for Water Quality Model 
Structure 
 PP needs to be partitioned 

according to PPo and PPm 

 PAVm or a proxy is a 
potentially valuable state 
variable to represent 
minerogenic particles 

 external loads of PAVm or 
a proxy would be necessary 

 longitudinal segmentation 
needed to differentiate 
near-shore versus pelagic 
waters conditions 

1/15/14 Upstate Freshwater Institute 6 

NYSDEC/TAC meeting, Jan. 15, 2014 

based on: Effler et al. 2014. 
Inland Waters 4:179-192 

consistency with 
implemented tool 



Independent estimates of PPm/u and the ratio PPm/u:PAVm 

from an empirical model: A test for the dynamic 

mechanistic model 

 development and testing for the lake documented (Effler et al. 2014) 

 stoichiometry – based model for lake PP, PPo, and PPm/u 

 

 

 

 

 

 

 

 supports the partitioning of PP 

 PP = PPo + PPm/u 

 

PP + = (PPo:Chl)·Chl (PPm/u:PAVm)·PAVm 

PP + = PPo PPm/u 

stoichiometric 

ratios 

- from optimization analysis 

of lake observations, 1999-2006 

1.53 7.1 mg/m3  
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Chl – chlorophyll a 
temporal uniformity 

 in stoichiometric 

ratios invoked 



Implications of PPm/u concentrations in lakes and 

related challenges for its modeling 

 noteworthy contributions of PPm/u compromise TP 
concentration as a metric of trophic state because of 
the unavailability of PPm/u to support plant (e.g., 
algae) growth 

 differences in time and space within individual lakes, 
and between lakes, are to be expected, associated 
with coupled differences in responsible minerogenic 
particles (PAVm) – runoff event effects important 

 runoff events expected to promote higher PAVm and 
thereby PPm/u 

 challenges to model PPm/u in lakes, quantification of: 
1. delivery, transport, and fate of minerogenic 

particles (PAVm), and 
2. P associated with these particles (PPm) and its 

bioavailability (PPm/u vs PPm/a) 
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pelagic shelf 

TP 

PPm/u 
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Extensive technical program support for 

mechanistic PPm/u model for Cayuga Lake 

 lake monitoring – LSC program 1999-2006, 
plus 2013 
 P fractions, Chl-a, PAVm (size classes and type) 

 primary tributaries 
 P fractions, sediment (ISPM, SPM), PAVm (size 

classes) 

 bioavailability assays (NYSDEC recommended) 

 submodels 
 (1) 2-D transport, (2) PAVm (4 size classes) 

 loading estimates – PAVm and PPm/u 

 runoff event sampling focus (NYSDEC 
recommended), Inlet (extra, UFI and Cornell) 

 sediment trap (extra, UFI and Cornell) 
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A mechanistic model for unavailable minerogenic 

particulate P (PPm/u) for Cayuga Lake: Background 

10/22/2015 Upstate Freshwater Institute 11 

 P associated with minerogenic 
particles (PPm/u) delivered by the 
watershed interferes with the use of 
TP concentration as a trophic state 
metric in lacustrine systems 
because of its limited bioavailability 

 a mechanistic mass balance model 
for PPm/u has been developed and 
tested, as described here 

 supporting components 
 long-term and intensive 2013 

monitoring 

 LSC monitoring (1999-2006) 

 bioavailability assessments 

 loading estimates, PAVm and 
PPm/u 

 transport and PAVm submodels 

pelagic shelf 

TP 

PPm/u 



Conceptual model for dynamic mechanistic PPm/u model 
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model features 

 PPm/u:PAVm of delivered 
particles subject to 
variation 

 in-lake behavior of PPm/u is 
assumed to be that of PAVm 
with which it was associated 
upon entry 

 in-lake dynamics of PPm/u 
reflect external load of 
PAVm/n, the dynamics of the 
PPm/u:PAVm ratio in the 
tributaries and the 
progression of in-lake PAVm 
loss processes 

PPm/u:PAVm 

PAVm/n loads PPm/u loads 

= f(Q,PP and PAVm observations);  

    i.e., varies 

transport submodel 

Gelda et al. 2015a 

PAVm submodel 

Gelda et al. 2015b 

PPm/u 

PAVm/n 
particles 

lake 

sink processes for PAVm 

PAVm submodel 

transport 

submodel 

PPm/u apportioned to the PAVm size classes  PAVm/n 

according to their contributions to total PAVm 

tributary 

inputs 



Specifications for modeling PPm/u 

 well-mixed upper waters targeted (epilimnion) 

 linear dependency of PPm on PAVm 

 described by Effler et al. (2014), conceptual consistency 

 partitioning of PPm according to size class contributions 

 PPm from tributary inputs of PP according to: 
 PPm = PP·(ISPM:SPM); ISPM:SPM generally > 0.9 

 PPm subject to temporal variability in tributary inputs 
according to variations in the PPm:PAVm ratio 
 tributary loads of PPm from PAVm load estimates 

 PPm load = PAVm load·(PPm:PAVm) 

 PPm/u loads incorporate tributary-specific bioavailability 
results 
 PPm/u load = (1-fBAP)·PPm load 

 supported by rapidity of the transformation 

 in-lake behavior of PPm/u equivalent to that of the PAVm 
with which it is associated 

Biossay Progression (d)

0 5 10 15 20

f B
A

P
,t
:f

B
A

P

0

25

50

75

100
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• fBAP = fraction bioavailable 

for completed bioassay 

• fBAP,t = fraction bioavailable 

through progression of 

bioassay 

f B
A

P
,t
 ÷

 f
B

A
P

 



Considerations for modeling PPm/u: Tributary 

conditions and loads of minerogenic particles 

 positive dependencies of particle 

concentration (ISPM), and the 

minerogenic component on stream 

flow (Q) 

 implications of runoff events 

 dominance of minerogenic 

particles – glacial lacustrine stream 

deposits (Nagle et al. 2007) 

 origins of variance in dependencies 

 e.g., character of stream banks 
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Fall Creek examples 



Consideration for modeling PPm/u: Tributary 

conditions, dependence of PP on PAVm 
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 strong positive dependence of 
PP in streams on PAVm 

 most of PP is as PPm/u 

 the P content of clay mineral 
particles delivered 

 

 

 

 

 

 during a runoff event large 
quantities of PAVm and 
associated P (PPm) are delivered 

associated with PAVm 
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Specifications for modeling PPm/u: 

Tributary conditions and loads 
 temporal patterns 

 runoff events dominate 
sediment loading to the lake 

 

 Fall Cr. Q time series 2013, 
prominent runoff events 

 cumulative format for PAVm and 
PPm/u loads 

 early July and August runoff events 
dominate 
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Specifications for modeling PPm/u: 

Tributary conditions and loads 

 positive dependencies on stream flow 

(Q)-PP, PP:TP 

 Fall Cr. examples 

 PPm:PAVm ratio supports estiamtes of 

PPm (and PPm/u) loads from PAVm loads 

 negative, but variable dependency on 

Q 
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Specifications for modeling PPm/u: 

Tributary conditions and loads 
 temporal patterns 

 example for Fall Cr, PPm/u:PAVm 
and Q 

 cumulative formats for PPm/u load 
and the ratio 

 PPm/u:PAVm highly variable, 
negative dependency on Q 

 dominance of runoff events for 
PPm/u loads 

 PPm loads just slightly higher, 
consistent with low fBAP 

 cumulative change for ratio will 
drive changes in-lake relationship 
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Mechanistic dynamic PPm/u model performance: 

Targeted attributes for testing 
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tests of consistency 

 extent of closure with 
prediction of independently 
tested empirical PP model 
 in-lake PPm/u:PAVm ratio 

 in-lake PPm/u 

 PPm/u with historic TP and PP 
shelf observations, following 
runoff events 

 predicted PPm/u deposition 
on shelf from runoff event 
inputs with sediment trap 
observations 

 



Mechanistic dynamic PPm/u model performance: 

Lake PPm/u:PAVm ratio vs. empirical model value 

 predictions of in-lake PPm/u:PAVm ratio 

 only minor shelf vs. pelagic differences 

 averages (shelf – 8.0 mg/m2; pelagic – 7.4 mg/m2) closed well with 

single empirical model value (7.1 mg/m2; Effler et al. 2014) 

 

 

 

 

 

 

 in-lake variations (cv=0.22) driven by tributary variations (cv=0.46) 

 tributary dynamics linked to variations in Q 

2013
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Mechanistic dynamic PPm/u model performance: 

Comparison of PPm/u predictions, mechanistic vs 

empirical models 

 comparisons for both the shelf 

and pelagic waters 

 predictions for 2013, with Fall 

Cr. Q for runoff event context 

 empirical model predictions 

limited to sampling occurrences 

 reasonably strong relationships 

 shelf vs pelagic different scaling 

 magnitudes consistent overall 
Q
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Mechanistic PPm/u model performance: Consistency with 

historic TP and PP observations following runoff events 
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 identifying runoff events 

from LSC monitoring 

 record 

 same runoff events 

considered for PAVm 

(sub)model 

 Table 2 (Gelda et al. 2015b) 

 signatures of increased 

PPm expected on shelf 

following runoff events 



The complications of turbidity plumes on the shelf 

following major runoff events 
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issue for PPm/u model 

evaluation as with the 

PAVm model 



The complications of turbidity plumes on the shelf 

following major runoff events 
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issue for PPm/u model 

evaluation as with the 

PAVm model 



Mechanistic PPm/u model performance: Consistency with 

historic TP and PP observations following runoff events 

 variations is predicted PPm/u 

for long-term (1999-2006) 

simulations performed 

reasonably well in 

explaining observed 

differences for historic 

events 

 performance improves 

somewhat with 

representation of the effects 

of PPo (phytoplankton 

biomass) variation also 
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 numbers correspond to 

the various historic 

runoff events listed in 

previous table (Table 2, 

Gelda et al. 2015b) 

 recall this is an imperfect 

match of P fractions 

PP = (PPo:Chl)·Chl 

1.53 

Effler et al. (2014) 
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Consistent mechanistic PPm/u model performance 

for local deposition from runoff events 

 comparison of simulations 
of deposition of PPm/u (i.e., 
associated with PAVm) with 
sediment traps observations 
of PP downward flux 

 simulations and 
observations both elevated 
for major runoff events 

 semi-quantitative support, 
given the variable operation 
and trajectories of turbid 
plumes 
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DFPP – downward flux of PP 



Consistency of the mechanistic and empirical models in 

representing contributions of PPm/u and PPo to PP for 

shelf vs pelagic waters 
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 recall, Chl-a (e.g., 
phytoplankton biomass) not 
significantly different on 
shelf vs pelagic waters 

 recall PP = PPo + PPm 

 both models 
 higher PPm/u values on shelf 

vs pelagic 
 greater variability on shelf 

 median values – shelf vs 
pelagic waters, 
contributions of PPm/u 

 20 vs 11%, mechanistic 
 16 vs 8%, empirical 

 reasonably good closure 
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Analyses with the tested PPm/u model: Dependence of 

shelf response on runoff event magnitude, PPm/u vs. Q 

peaks 

 Fall Cr. peak Q for the earlier 

(1999-2006) runoff events 

 corresponding predicted peak 

PPm/u at Site 2 on shelf 

 strong positive dependency of 

PPm/u on event magnitude 

 sources of variance in the 

relationship-variations in 

ambient mixing, limitations 

in peak Q defining external 

PPm/u loads 
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Analyses with the tested PPm/u model: Interannual 

variations in predicted PPm/u explains much of the 

interannual and spatial variations in TP 
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 total P (TP) concentration is a 
trophic state metric, guidance 
value of 20 µg/L as summer 
average, in NY 

 PPm/u variations important in 
regulating interannual and 
shelf vs pelagic differences in 
TP 

 PPm/u lower at pelagic site 
each year 

 interannual differences in 
PPm/u between sites explained 
much of the year-to-year 
differences in TP (45%) 

 these interannual differences 
in PPm/u explain 47% of the 
year-to-year differences in TP 
at both sites 

PPm/u – based on mechanistic 

model predictions 
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Analyses with the tested PPm/u model: Interannual 

variations in day counts of elevated concentrations on 

the shelf 

 multiple PPm/u concentration thresholds 

chosen for Jun-Sept. interval, 1999-2013 

 high flow events represented by number of 

days Fall Cr. Q was in the upper 10% 

 high PPm/u concentrations coupled to runoff 

event occurrences 

 major interannual variations predicted; 

consistency with observations 

 timing of monitoring could be important to 

reported summer average and guidance 

value status 

 extreme cases of high PPm/u predicted for 

2006 and 2011 
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 based on model simulations for the 

1999-2013 period 
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Applicable findings from the PPm/u modeling initiative 

 there has been a qualitative recognition of the interference of 
minerogenic particles for metrics of trophic state for decades 

 the importance of these particles depicted here, relative to the 
application of TP, is likely broadly occurring 

 advancements from, or value of, this PPm/u modeling 

 improved usage of TP as a trophic state metric 

 applicable to the numerous systems of similar setting and issues 

 advancement of water quality models to represent this issue and 
effects of minerogenic particles 

 these advancements will be necessary to address the implications 
of predicted features of climate change (NOAA 2013) – more 
runoff events and severity of the events 
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Summary 
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 P associated with minerogenic particles (e.g., PPm) delivered from the watershed 

interferes with the use of TP as a trophic state metric because of its limited bioavailability 

 a mass balance-type model for unavailable PPm (PPm/u) has been successfully developed 

and tested 

 higher PPm/u on the shelf following runoff events is predicted , that causes irregular 

exceedances from TP guidance value, that is uncoupled from trophic state 

 positive features of model performance included: 

 reasonable closure of predicted shelf and pelagic levels of PPm/u and PPm/u:PAVm with those 

from an independent empirical model (Effler et al. 2014) 

 consistency of predicted PPm/u shelf deposition with sediment trap observations 

 a consistent partitioning of the PP pool between PPm/u and PPo (phytoplankton) for historic 

observations 

 consistency of post-runoff event TP and PP observations with PPm/u predictions  

 this advancement in modeling is invaluable and appropriate for large initiatives 

addressing the trophic state issue through TP 


