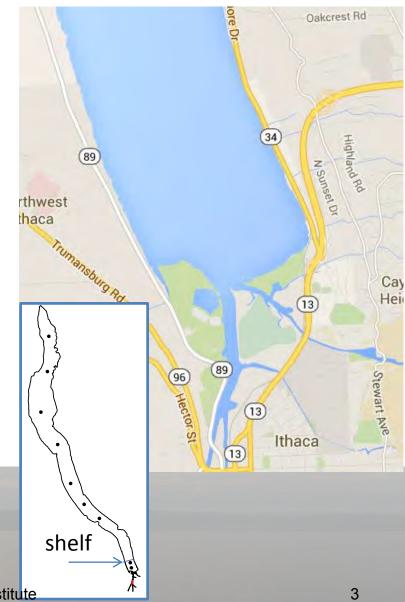
### Considerations for Phase II Water Quality Modeling

### Cayuga Lake





1


Upstate Freshwater Institute

## **Talk Outline**

- 1. Introduction/Background
- 2. Shelf-Pelagic Disconnect
- 3. Other Lake-wide Signatures
- 4. Model Needs
- 5. Submodels

### The Issue

- the potential for phosphorus (P)-driven cultural eutrophication problems in the southern end (shelf) of Cayuga Lake
- shelf context/setting
  - localized tributary (dominant) and point source inputs
    - 40% of water inflow
    - similar to many reservoirs
  - water quality listings
    - phosphorus (irregular exceedances of TP guidance value), trophic state the concern
    - sediment (metric and limit not stated)
    - bacteria



#### Required: Quantitative Management Tool for P-eutrophication Issue for Cayuga Lake

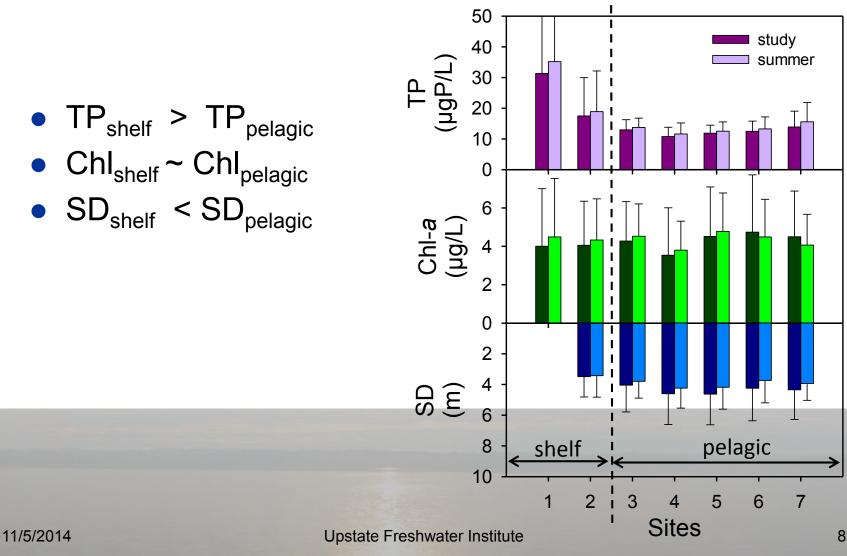
- development, testing, and application of a credible mechanistic P-eutrophication model
- to be used to guide related management deliberations
  - focus on conditions on the shelf, but lake-wide capability necessary



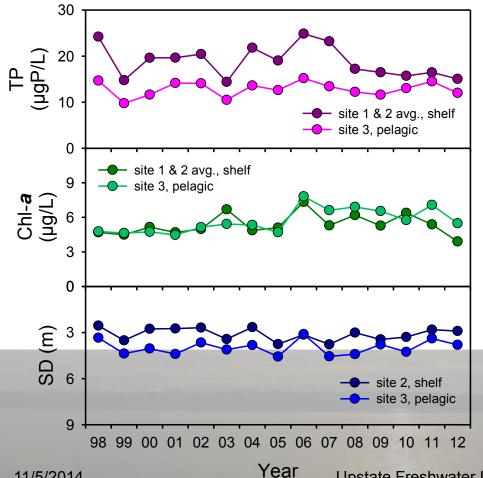
### **Modeling Objectives**

- model(s) to provide a quantitative tool with which to evaluate water resources management alternatives
- linking of watershed and lake water quality models
- resolve drivers/processes responsible for prevailing conditions




### Identifying Key Model Needs from Limnological Review of Monitoring Data

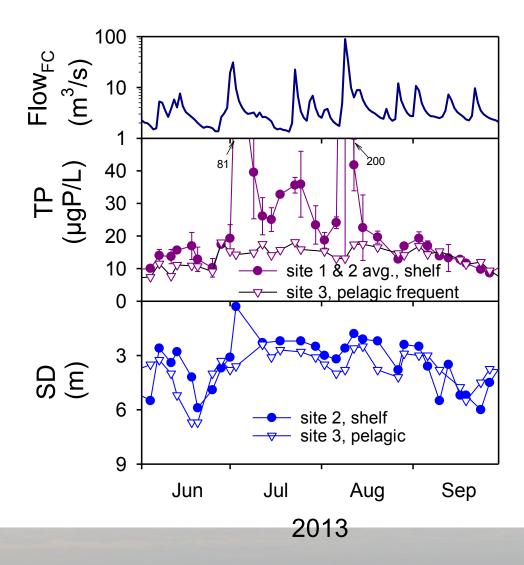
- 1. 2013 observations the most complete in time and space
  - will support calibration
- 2. earlier observations, in support of LSC monitoring (also, CSI tributaries)
  - will support validation
- 3. model needs considered
  - temporal scales to be resolved
  - spatial scales to be resolved
  - processes to be represented
  - model state variables
  - model drivers


# **Talk Outline**

- 1. Introduction/Background
- 2. Shelf-Pelagic Disconnect
- 3. Other Lake-wide Signatures
- 4. Model Needs
- 5. Submodels

### Shelf-Pelagic Disconnect in Trophic State Metrics, 2013




### Shelf-Pelagic Disconnect in **Trophic State Metrics is Recurring,** 1998-2012

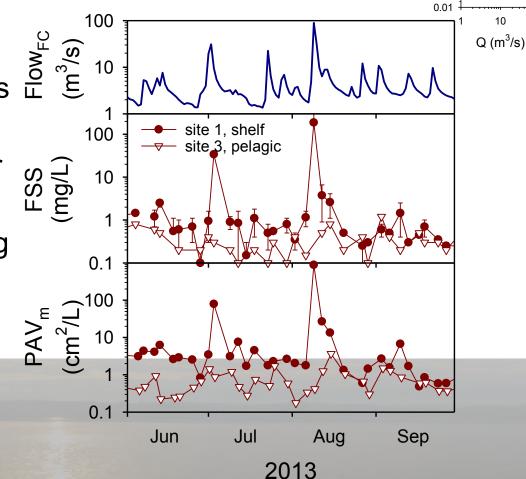


- the disconnect must be effectively represented in the model
- "the disconnect" worse trophic state on shelf indicated by TP and SD data, but not supported by Chl-a

### Runoff Events Contribute to the Shelf-Pelagic Disconnect

- shelf more strongly impacted by runoff events
- TP increasing and SD decreasing linked to runoff events
- effects of runoff events must be simulated (i.e., short time scales addressed)

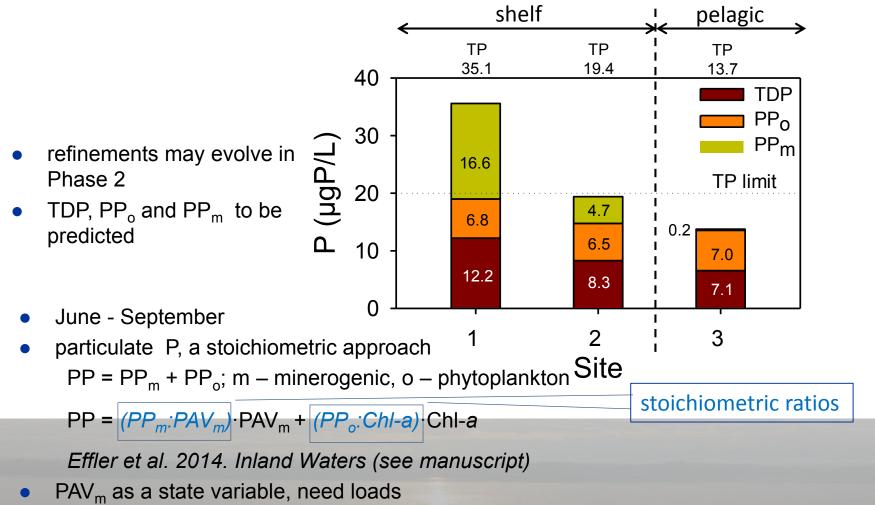



### Minerogenic Particles Delivered During Runoff Events Cause the Shelf-Pelagic

Disconnect

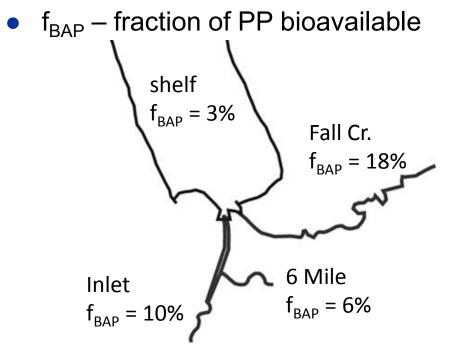
Upstate Freshwater Institute




- shelf more strongly impacted by runoff events
  PAV<sub>m</sub> projected
- PAV<sub>m</sub> projected area of minerogenic particles per volume
- FSS and PAV<sub>m</sub> increasing linked to runoff events
- the need to simulate minerogenic particle dynamics
  - short-term loads



100


/<sub>m</sub> (1/m)

### Minerogenic Particles Delivered During Runoff Events Causes the Disconnect: TP



### Low Bioavailability of Runoff Event PP Consistency with the Disconnect

runoff event of July 1, 2013



| Site          | PP<br>(µg/L) |
|---------------|--------------|
| Fall Cr.      | 444          |
| 6 Mile Cr.    | 271          |
| Cay. In.      | 202          |
| Inlet Channel | 104          |
| shelf         | 46           |

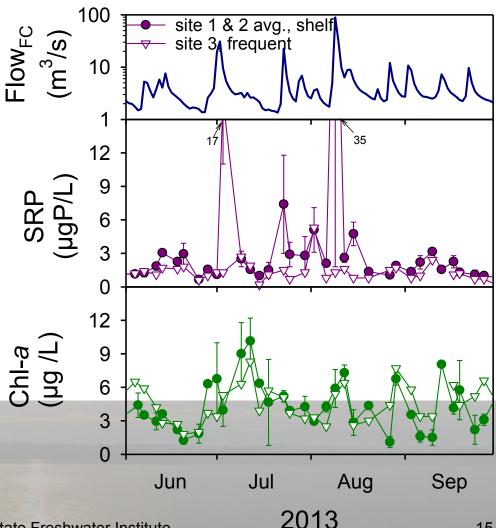
- <u>demonstrated</u>: shelf PP (post-runoff event) is essentially unavailable to support algae growth; i.e., uncoupled from trophic state
- <u>implications</u>: these features are not supportive of the inclusion of post-runoff event TP observations for assessment of trophic state status

11/5/2014

Upstate Freshwater Institute

### Minerogenic Particles Delivered During Runoff Events Cause the Disconnect: SD

clarity, measured by Secchi depth (SD)

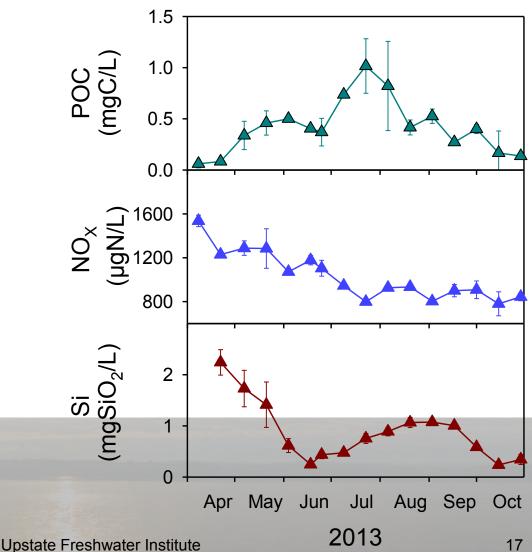

 $SD^{-1} \propto b_p$   $b_p$  = scattering coefficient for particulate material, bulk measurements  $b_p = b_m + b_o$   $b_m$  = scattering coefficient associated with minerogenic particles  $b_o$  = scattering coefficient associated with organic (e.g., phytoplankton) particles

• increase in  $b_m$  from runoff events cause decrease in SD (Effler and Peng 2014)

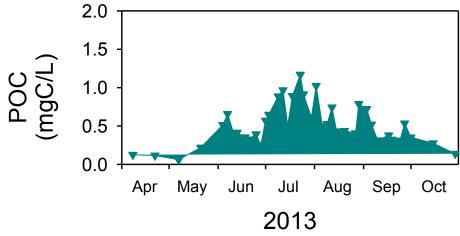
 $b_m = 2.3 \times PAV_m$ PAV<sub>m</sub> as a model state variable

### Second Part of the Shelf-Pelagic Disconnect

- elevated SRP (phytoplankton growth potential) on shelf does not result in higher Chl-a
- contributing processes
  - rapid flushing
  - dilution from tributaries
  - reduced light availability, particularly during runoff events
- Chl-a pattern reflects lakewide conditions

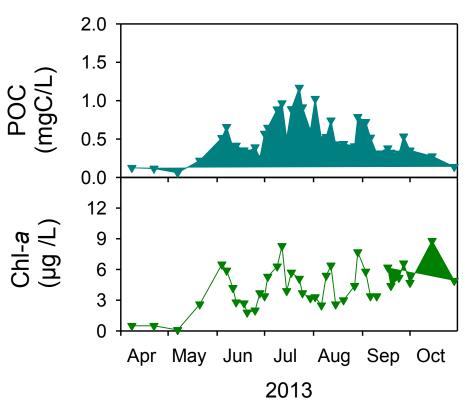



# **Talk Outline**


- 1. Introduction/Background
- 2. Shelf-Pelagic Disconnect
- 3. Other Lake-wide Signatures
- 4. Model Needs
- 5. Submodels

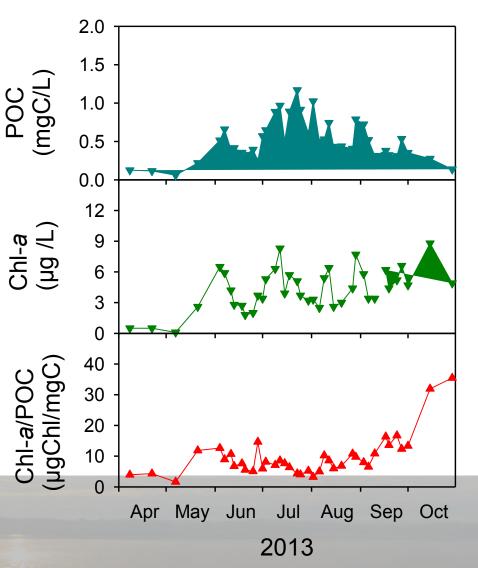
### Other Lake-Wide Signatures of Interest

- POC alternate metric of phytoplankton biomass
- NO<sub>X</sub> seasonal depletion, but nonlimiting levels
- Si interaction with diatom dynamics



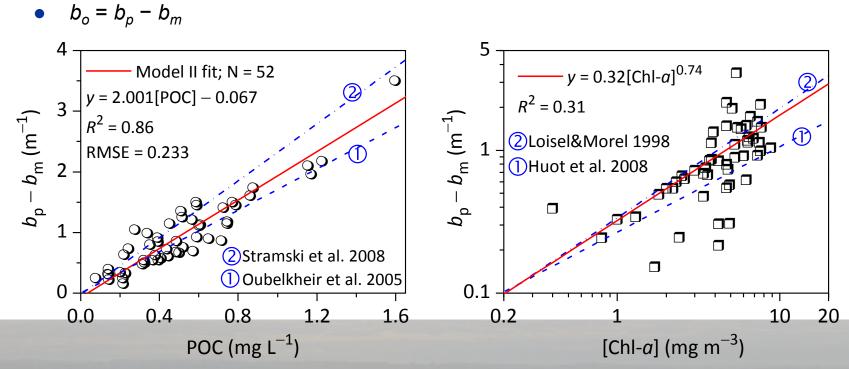

### Metrics of Phytoplankton Biomass




### Metrics of Phytoplankton Biomass

 difference in patterns of the two metrics



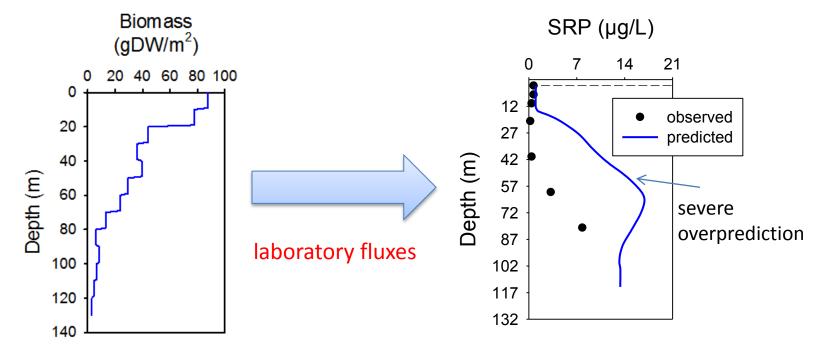

### Metrics of Phytoplankton Biomass

- site 3
- temporal variations
- dependency on ambient conditions
  - nutrients
  - light
- within literature range
- dynamic drivers not empirically obvious
- indicates limitation in a metric of phytoplankton biomass



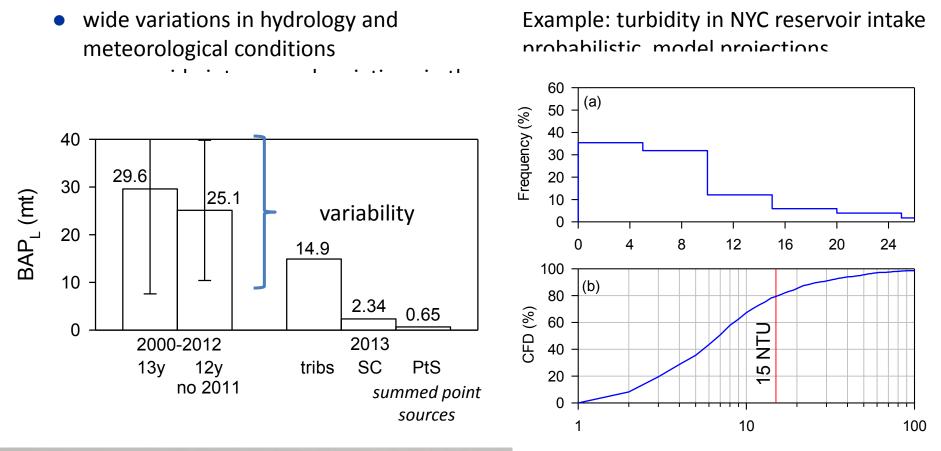
#### POC Performs Better Than Chl-a, Optically

- $b_p$  scattering coefficient for particulate material, bulk measurements
- $SD^{-1} \propto b_p$  (Davies-Colley et al. 2013)
- $b_p = b_m + b_o$ ; m minerogenic, o organic (Peng and Effler 2012)
- $b_m = 2.3 \times PAV_m$ ; in Cayuga (Effler and Peng 2014) and others




- dependencies of  $b_{a}$  on POC and Chl-a consistent with open ocean literature
- POC-based relationship much stronger

Upstate Freshwater Institute


#### Lake-wide Role of Quagga Mussel Metabolism? Example – Phosphorus Excretion

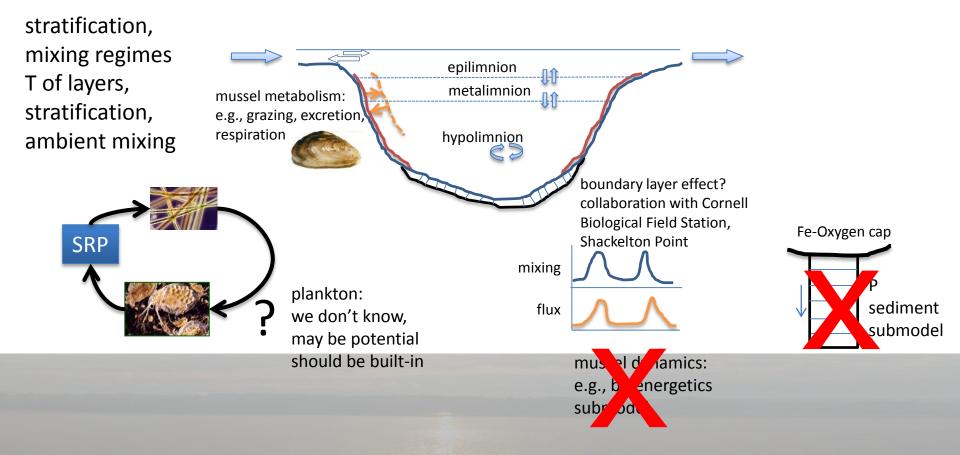
 prevailing simulations over-represent the effects of mussel excretion for case of adopting laboratory flux determinations



- a process(es) diminishes the effective fluxes on a water column basis
  - will need to be identified, integrated into model, and be tested as part of overall model testing
  - work of Boegman et al. on this issue is being considered

#### Need for Probabilistic Model Predictions that Represent the Effects of Natural Variations in Drivers




 long-term probabilistic projections with P-eutrophication model T<sub>n,w</sub> (NTU) may demonstrate small changes in loading masked by interannual variations in hydrology

# **Talk Outline**

- 1. Introduction/Background
- 2. Shelf-Pelagic Disconnect
- 3. Other Lake-wide Signatures
- 4. Model Needs
- 5. Submodels

#### **Process Representation**

 model philosophy of parsimony – only as complex as necessary to address the issue and management alternatives



### Model Needs from the Shelf-Pelagic **Disconnect Analysis**

- 1. temporal scales broad
  - short-term, days e.g., runoff events
  - seasonal lake-wide effects, regulatory concerns
  - multi-year meteorological/hydrologic variability
- 2. spatial scales broad
  - within shelf
  - shelf extended to pelagic
  - entire water column
- 3. drivers both short-term resolution and long-term capabilities
  - hydrology
  - constituent loads e.g., P forms and minerogenic particles
  - meteorological conditions
- state variables direct and derived
  - forms of P
  - metrics of minerogenic particles (e.g.,  $PAV_m$ )
  - SD and light levels \_
  - metrics of phytoplankton biomass (e.g., Chl-a)

see P loading paper

supported by 2-D model

### Model Testing Targets – Evolved from Monitoring and Analysis

#### <u>primary</u>

- 1. shelf vs. pelagic waters central role of runoff events
  - a) TP, TDP, SRP, PP
  - b) PAV<sub>m</sub>, FSS, Tn, clarity
- elevated on shelf, the role of minerogenic particles
- c) the phytoplankton/Chl-a disconnect
  - absence of higher shelf levels despite higher P (including SRP)
  - POC and Chl-*a* in 2013, Chl-*a* for < 2013
  - includes years of higher local loads from point sources
  - comparative light availability
- 2. pelagic and shelf
  - a) phytoplankton upper waters
    - 1) calibration seasonality for POC, summer avg. Chl-a
    - 2) validation summer avg. Chl-a
  - b) clarity contribution of phytoplankton and minerogenic particles, summer avg
  - c) representation of metabolic effects of prevailing mussel population on pelagic waters
  - d) effects of variations in drivers

11/5/2014

calibration

validation

calibration validation

### **Tentative List of State Variables**

| State Variable Names                  | Abbr.              |  |
|---------------------------------------|--------------------|--|
| Soluble reactive phosphorus           | SRP                |  |
| Labile dissolved organic carbon       | LDOC               |  |
| Refractory dissolved organic carbon   | RDOC               |  |
| Labile particulate organic carbon     | LPOC               |  |
| Refractory particulate organic carbon | RPOC               |  |
| Phytoplankton biomass                 | ALG                |  |
| Labile soluble unreactive P           | LSUP               |  |
| Refractory soluble unreactive P       | RSUP               |  |
| Labile particulate organic P          | LPOP               |  |
| Refractory particulate organic P      | RPOP               |  |
| Labile particulate inorganic P        | LPIP               |  |
| Refractory particulate inorganic P    | RPIP               |  |
| Turbidity                             | Tn <sub>i</sub>    |  |
| PAV                                   | PAV <sub>m,i</sub> |  |

| Derived State Variable Names     | Abbr.            |  |
|----------------------------------|------------------|--|
| Dissolved organic carbon         | DOC              |  |
| Particulate organic carbon       | POC              |  |
| Total organic carbon             | тос              |  |
| Dissolved organic phosphorus     | SUP              |  |
| Particulate organic phosphorus   | РОР              |  |
| Total organic phosphorus         | ТОР              |  |
| Total phosphorus                 | ТР               |  |
| Total chlorophyll <i>a</i>       | CHLA             |  |
| Total suspended solids           | TSS              |  |
| Total inorganic suspended solids | FSS              |  |
| Total turbidity                  | Tn               |  |
| Total PAV                        | PAV <sub>m</sub> |  |

optics state variables: SD,  $K_o(PAR)$ , Irradiance SUP  $\approx$  DOP

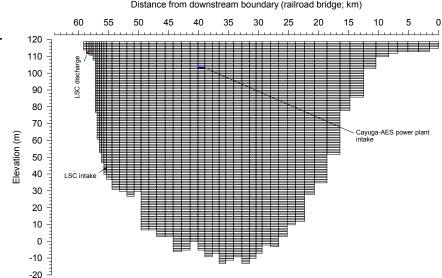
\* silica and nitrogen signatures may be tested

### **Driver Information Availability**

| Driver Type | Calibration<br>2013 | Validation<br>1998 – 2012 <sup>1</sup> |
|-------------|---------------------|----------------------------------------|
| Hydrology   | $\checkmark$        | √2                                     |
| Meteorology | $\checkmark$        | √3                                     |
| Loads       |                     |                                        |
| Nutrients   | $\checkmark$        | ✓4                                     |
| Sediment    | $\checkmark$        | ✓4                                     |

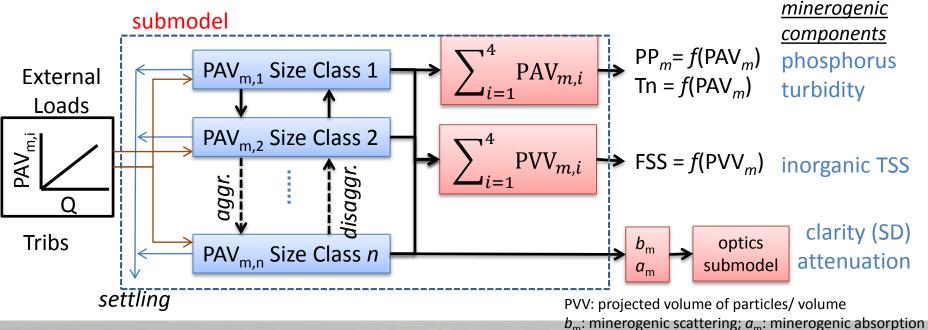
<sup>1</sup>potential years involved in validation; evolving – LSC monitoring, CSI monitoring <sup>2</sup>gaged tributaries – Fall Creek, Inlet, Sixmile <sup>3</sup>land-based before 2012 <sup>4</sup>CSI monitoring and 2013 conc.-driver relationships

# **Talk Outline**


- 1. Introduction/Background
- 2. Shelf-Pelagic Disconnect
- 3. Other Lake-wide Signatures
- 4. Model Needs
- 5. Submodels

#### Model Submodels for Cayuga Lake Initiative

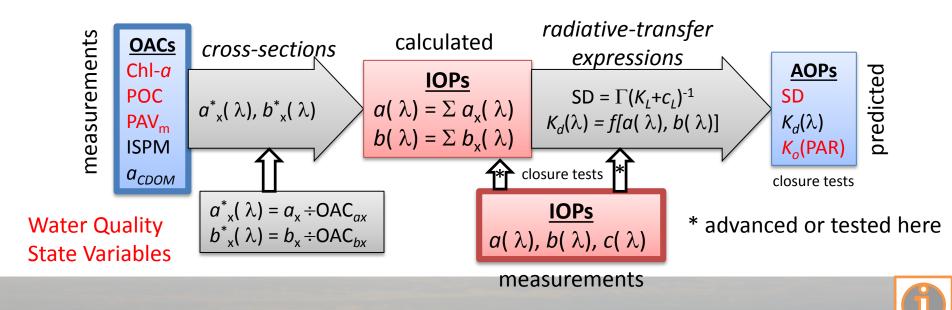
- transport submodel 2D, calibrated and validated, applications ongoing
- 2. minerogenic particle submodel supporting data sets
- 3. optics submodel early stages supported by NASA grant
- 4. tributary loads specification
  - a) empirical e.g., concentration-driver relationships
  - b) mechanistic watershed/land use
- 5. nutrient (P) cycling submodel
- 6. phytoplankton growth and biomass submodel


#### **Transport Submodel**

- part of CE-QUAL-W2
- 2-D, longitudinal-vertical hydrothermal/transport model
- setup, calibrated (2013), and validated (1998-2012; continuous simulation)
- high performance
  - seasonal thermal stratification
  - seiche activity oscillations, upwelling events
  - long-term simulations applicability for probabilistic projections
- applications related to water quality issues shelf residence time, plunging tributaries, vertical transport
- time and space features consistent with water quality issues
- see manuscript



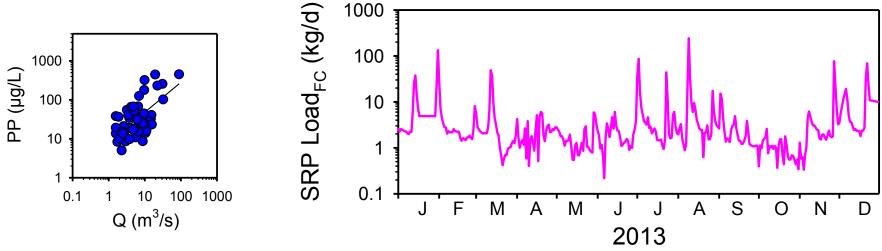
#### **Minerogenic Particle Submodel**


- partitions the minerogenic particle populations according to the contributions of multiple (e.g., n = 4) size classes
- state variable PAV<sub>m</sub> projected area of minerogenic particles per unit volume
- predicts minerogenic components of PP, Tn, TSS, SD, and  $K_o$  (PAR)



Processes: settling (Stokes Law); aggregation/disaggregation (calibration); resuspension (?) \* similar approach for turbidity in NYC reservoirs (Gelda et al. papers)

### **Optics Submodel for Cayuga Lake**

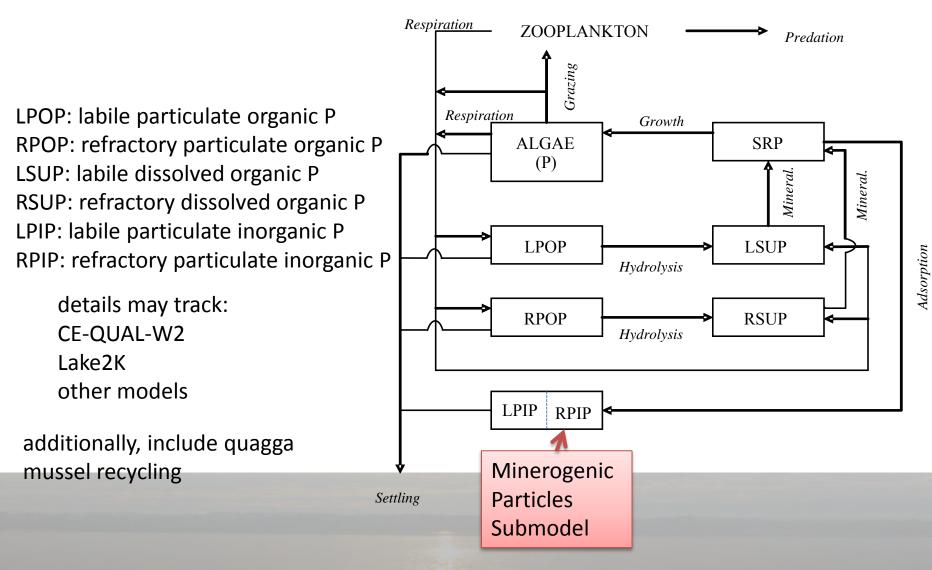

- mechanistic quantifies relationship between optically active constituents (OACs; e.g, Chl-a), inherent optical properties (IOPs), and in turn, apparent optical properties (e.g., Secchi depth, SD)
- simple empirical relationships [e.g., SD = *f*(Chl-*a*)] perform poorly
- the supporting advanced measurements funded under a parallel NASA grant



### 4. Tributary Loads Specification

#### a). Empirical

example concentrations driver relationships




- driven by records of ambient drivers multiple time scales possible
  - stream Q
  - air T

b). Landuse Model output becomes input to lake water quality model

11/5/2014

#### **Phosphorus Submodel**

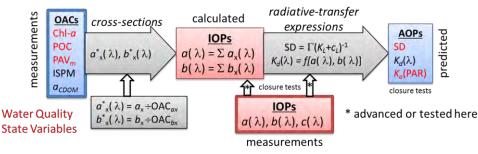


#### **Phytoplankton Growth/Biomass**

Respiration issues – sources/sinks representation, metrics Grazing Phytoplankton > Mussels? Growth metric of phytoplankton **Biomass** Zooplankton? biomass carbon (POC; organic ambient drivers of Settling matter) model growth most models 1. irradiance Chl-a, secondary details may track: 2. temperature CE-QUAL-W2 3. nutrients Lake2K phosphorus other models nitrogen X silica ?

### **Tentative Timeline**

| No  | No. Component Description                 | 2015 |    |    | 2016 |    |    |    |    |
|-----|-------------------------------------------|------|----|----|------|----|----|----|----|
| NO. |                                           | Q1   | Q2 | Q3 | Q4   | Q1 | Q2 | Q3 | Q4 |
| 1   | Individual Constituents Modeling Analyses |      |    |    |      |    |    |    |    |
|     | NO <sub>x</sub> , DOC, TP, SUP, POC       |      |    |    |      |    |    |    |    |
| 2   | Inlet Channel – adjustment to loads       |      |    |    |      |    |    |    |    |
| 3   | Minerogenic Particle Submodel             |      |    |    |      |    |    |    |    |
| 4   | Optics Submodel                           |      |    |    |      |    |    |    |    |
| 5   | Nutrient-Phytoplankton Submodel           |      |    |    | )    |    |    |    |    |
| 6   | Linking of Submodels                      |      |    |    |      |    |    |    |    |


### The End

**Questions**?

# **Next Steps**

- 1. TAC and MEG comments and responses (ASAP)
- 2. complete Phase I report December 15, 2014
- 3. prepare modeling amendment for QAPP
  - items 1-3 in parallel
- 4. commence modeling program beginning of 2015

### **Optics Submodel for Cayuga Lake**



#### **Specification of symbols**

OACs - optically active constituents

Chl-a – conc. chlorophyll a

POC – particulate organic carbon

 $PAV_m$  – projected area conc. of minerogenic particles  $OAC_{bx}$  – OAC for  $b_x$ 

ISPM – conc. inorganic suspended particulate material

 $b(\lambda)$  – spectral scattering coefficient

 $a_{\text{CDOM}}$  - absorption coefficient for CDOM

 $a_x^*(\lambda)$  – spectral absorption cross-section for component x

 $b_x^*(\lambda)$  – spectral scattering cross-section for component x

 $a_{\rm x}$  – absorption coefficient for component x

 $b_{\rm x}$  – scattering coefficient for component x

 $OAC_{ax} - OAC$  for  $a_x$ 

 $OAC_{bx} - OAC$  for  $b_x$ 

 $a(\lambda)$  – spectral absorption coefficient

 $b(\lambda)$  – spectral scattering coefficient

 $c(\lambda)$  – spectral beam attenuation coefficient

SD – Secchi depth

 $\Gamma$  - coefficient for SD radiative transfer function

 $K_d(\lambda)$  – spectral downwelling attenuation coeff.

 $K_L$  – downwelling attenuation illuminance coeff.

 $K_{o}(PAR)$  – scalar attenuation coeff. for PAR

 $c_{\rm L}$  – beam attenuation illuminance coeff.