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Two-Dimensional Model

CE-QUAL-W2 (W2; US Army Corps of Engineers): dynamic, laterally
averaged, two dimensional (longitudinal-vertical) model

applied successfully to 100s of waterbodies worldwide

hydrodynamic submodel predicts water surface elevations, velocities,
and temperatures

provides transport framework for a water quality model
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Model Setup

Datasets used for model development and application
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Longitudinal Grid
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Elevation (m)

Longitudinal-Vertical Grid - Cayuga Lake
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oufiow  Inflows and Outflows

Cayuga-AES
power plant intake and discharge

Salmon Creek
Taughannock Creek /

LSC intake LSC discharge
CHWWTP discharge

IAWWTP discharge
Fall Creek

Cayuga Inlet
Six Mile Creek

5 Tributary Inputs

4 Point Source Inputs
2 Withdrawals

1 Outflow

distributed inflows for
minor tributaries



Meteorological Data

e air temperature, dewpoint temperature, wind speed, wind direction, solar radiation

Meteorological Data Source Availability “

Piling Cluster (Cornell University) 10/27/2011- 10 min frequency; missing air T and

12/31/2013 dew T for 1/3/2013-5/13/2013
were filled-in with the data from
Ithaca Airport

Game Farm Road (Cornell 1987-2013  hourly frequency;
University)* missing data (0.8% days) were filled-
in with the data from Ithaca Airport

Ithaca Airport (NOAA)* 1996-2013  hourly frequency;
missing data (0.2% days)

*Wind speed data from Game Farm Road and Ithaca Airport were adjusted to the height of wind
measurement (8 m) at the piling cluster location, according to logarithmic boundary layer.
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Point Source Inflows
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Point Source Inflow Temperatures
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Tributary Data

Flow Records Temperature Records

9/21/2011-11/18/2011;

Fall Creek 1925-present
P 5/13/2013-11/1/2013

S e 19379/307201L g 3 11/13/2013
u —
L 6/1/2012-present

SE| e e /8 2006-present limited during 2013

S @\ R @ 1995-present limited during 2013

unmonitored flow: pro-rated according to Fall Creek flow/watershed area
unmonitored temperatures: adopted from USGS monitored temperature at
Allen Creek near Rochester
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Tributary Inflow

(a) Fall Creek
avgQ=6.02m?%s"
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2013

(c) Salmon Creek
avgQ=3.48m’s"
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Model Performance

2013

depth-profiles of temperature at selected sites and days [observations from
Seabird Casts]

color-contours of temperature at the LSC intake location [observations from
thermistor string]

timeseries plots of temperature at different depths at the LSC intake location
[observations from thermistor string]

timeseries plot of temperature at site 2 [observations from a single thermistor
near surface]

spectral analysis of thermistor string measurements

2012

color-contours of temperature at the LSC intake location [observations from
thermistor string]

1998-2006

timeseries plot of temperature at site near piling cluster [observations from a
single thermistor at ¥~ 1 m deep]
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Observations 2013

Observed temperatures at LSC intake location

thermistor string temperature data at the LSC intake site
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measurements were made every 30 sec at 5 m depth interval
data shown are at every 6 hours at 0.5 m depth interval
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Model Performance — Predictions 2013

Predicted temperatures at LSC intake location
temperature predictions at the LSC intake site

’MM WM»* | I

120

1 H1l
100 |

Elevation (m)
3

60

40

May Jun Jul Aug Sep Oct

2013

. | . | _—
3°C 7 11 16 20 24

predictions shown are at every 6 hours at 1 m depth interval
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Model Performance — Timeseries

thermistor string at LSC intake location

measurements are shown as 15-min averages and predictions are shown 1/hour
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Model Performance — Timeseries

single thermistor at site 2, 2 m deep
measurements are shown at every 15-min interval and predictions are shown once every
hour
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Model Performance — Spectral Analysis

e comparison of internal wave spectrum generated from thermistor string data

and model predictions
* June 1-July 13, 2013; data from 100 m elevation (17 m deep) thermistor
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Observations 2012

Observed temperatures at LSC intake location

thermistor string temperature data at the LSC intake site
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measurements were made every 30 sec at 5 m depth interval
data shown are at every 6 hours at 0.5 m depth interval 20



Model Performance — Predictions 2012

Predicted temperatures at LSC intake location

temperature predictions at the LSC intake site; model validation
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data shown are at every 6 hours at 1 m depth interval
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Model Performance — 1998-2006

* Temperature observations were made with a single thermistor at a
frequency of 1 per hour deployed near piling cluster ~ 1 m deep
* extended validation
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Wind Speed (m s'1)

Visualization of Hydrodynamic Features
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First horizontal mode linear internal wave
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Visualization of Hydrodynamic Features

* a 58-seconds movie (10 hours of simulation per second of animation);
captures internal wave field
e simulation of hydrodynamics in Cayuga Lake - September, 2013
* depiction of mixing mechanisms*
e standing linear internal waves
e progressive internal waves
* internal wave breaking near shelf; localized intense turbulent
mixing
* internal surges and hydraulic jumps (interaction of waves with
topographic features)
e formation and propagation of nonlinear internal wave packets

e watch from the point of view of mixing, transport and redistribution of
plankton and nutrients; transport and resuspension of sediments

* details can be found in Fischer et al. (1979); Imberger (1985); Imboden and Wiiest (1995);

Boegman (2009)
24



0 49

Branch 1: 8/31/2013 6:15:42 AM, (JD: 9739.2609)

temperature

southern end

123+

3Z2mps 89

Elew

)

21+

_13—| 1 [ I 1 L I L [ I [ 1 [ L 1 [ L 1 [ I I [ I 1 L I L 1 L L 1 LI I U L I L 1
012345678 3101M12131415161718192021 222324252627 2829303132 3334353637 38394041 42 43 4445 4647 45 495051 52535455 56575654

Distance (km)

Cayuga Lake: 8/31/2013-9/26/2013




120

100

80

60

Y Data

40

20

o

-20

At steady-state:

Model Application

e using the transport framework as an analytical tool
e goal: evaluate implications o2by@abmnhetic mussel excretion for internal SRP

cycling and the consistency of measured SRP profiles
* adoptan over simplified, epilimnion-only SRP model

\\ Uptake € SR

Mussels Excretion

> Outflow/

conservative behavior
for SRP in hypolimnion
assumed

dM
—2862 — TpepAsp030Pr ond W er WEeTs SOVt akeo® Qut flow

dt
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0 = Transnd
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X Data

rt from lower waters — Uptake — Outflow
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External Loading
from Tributaries

i

Atmosphere
# 4

|

—photosynthesis.
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diffusicn
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absorption
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—raspiration

respiration

Sediment

anaerobic
release

Cladocera

copepods

> 1  Copepodites |- "

1 Adults

excretion/
respiration

SS+Fe

Example of a
Complex
Water Quality
Model

Zhang, Culver, Boegman
(2008); Lake Erie
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Estimation of Excretion Rate

in-situ measurement difficult
measure biomass density and apply a literature value of mass-specific excretion rate

Biomass
(gDW/m?)
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. gbDW umol P 1g
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range: 0.084 - 0.66 umolP/gDW/hr (n=10)

(Nalepa and Schloesser 2014)
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SRP Simulation Runs

Excretion Rate (mg/m2/d) | Uptake
Specification Rate (1/m)

Run 11 estimated depth-specific 0.0

Run 0 estimated depth-specific 0.1
Run 1 50% of estimated depth- 0.1
specific

Run 14 estimated depth-specific 0.5

effects of environmental variables on excretion not considered
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SRP Simulation Results

site 3
selected depth-profiles of SRP; May-September 2013
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site 3

selected depth-profiles of SRP; May-September 2013

SRP Simulation Results
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SRP Simulation Results

* site3
* selected depth-profiles of SRP; May-September 2013
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site 3

SRP Simulation Results

selected depth-profiles of SRP; May-September 2013
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SRP Simulation Results

phytoplankton uptake of SRP in the epilimnion is
Important

SRP concentration gradient across the
thermocline allows diffusion and causes the
characteristic shape of the SRP depth-profile as
observed in the lake

in the deep hypolimnion, SRP appears to be in
guasi-steady state

low levels of SRP in the metalimnion (z > 1% light
level) suggest action of a sink process



Mussels: Some Thoughts, Issues

uncertainty in biomass specific excretion rate (0.33 umolP/gDW/hr)

effects of environmental variables (temperature, turbidity, phytoplankton, pH,
salinity, Ca), substrate, and currents on excretion rate — largely unknown

longitudinal variations in excretion rate

full P cycle will be necessary to explain SRP in the lake

processes to consider: adsorption/desorption; zooplankton excretion;
phytoplankton respiration; losses from settling of detritus; bio-deposits

(pseudo feces)

other features of
metabolism will
need to be
considered

algal P

non algal P —>

SRP/SUP

—

A tissue

—> excretion of SRP

v

bio-deposits



Summary

A 2-D hydrodynamic/transport model, CE-QUAL-W?2,
has been setup and successfully tested for Cayuga Lake

The model has been calibrated to data collected in
2013 and validated for 2012, 1998-2006; additional
testing in future

This model will be ready to serve as the transport
submodel for a forthcoming (Phase 2) water quality
model for the lake

A preliminary application of the model demonstrates
the effects, and importance of mussels excretion of
soluble reactive phosphorus



Further Model Applications

e additional tracer analysis
— mussel fluxes
— fate of interflows
— travel times for events

— south tributary transport
* base flow
* runoff events

* material budgets
e kinetic insights



