Project Name: Buffalo River

Location:

Hole Designation:

Site No.:

4-753-00-L06

Date Completed: Drilling Method:

8/26/05 0920 Vibracore

-L67

-L56

Depth Stratigraphic Description & Remarks Elevation Monitor ft.)BGS (ft.)AMSL Installation				Sam	ple		
(ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M B	N V A	
	Surface Reference			Ť	E R	L U E	
0-5'	Gray, medium stiff silt and clay little sand (ML)						
	Petroleum stained layer at 2.0 - 2.6'						
5-6.7'	Dark gray, loose sand and gravel, little silt, well graded (SW) strong petroleum odor and staining in this zone	i i i					
5.7-7.0'	Brown medium stiff clay, plastic (CH)						
	Lab sample at 0-6'						
	Lab sample at 6'-7' Lab sample at 5-6.7' for TCL VOA 8260 and DOH 310.13						
	PID = 72 max at 6' Recovery = 7.0'						

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Grain Size O

Project Name: Buffalo River

Hole Designation:

Site No .:

1-700-00-C05

Date Completed:

8/27/05 1230

Location: NYSDEC Staff: Brian V. Hourigan

Drilling Method:	Vibracore	racore			
Remarks	Elevation	Monitor	Th.	San	nple
	(ft.)AMSL	Installation			

Depth	Stratigraphic Description & Remarks	Elevation	Monitor		San	ple	
(ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M	N V	1
	Surface Reference			T	B E R	A L U E	
0-4.1'	Brown, soft silt and clay, little sand, some organic matter (ML)						
	-at 1.8' there is a 2" layer of sand overlying a 2" layer of peat					1	
	another thin peat layer at 3.6'	5.					
	-thin sand lens at 4.1'					Ì.	
4.1-4.8'	Brown, soft clay and silt moderately plastic (CL-CH)						
	lab sample = composite of entire core						
	PID = 0 Recovery = 4.8'						
				100			
	70.50						

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table Grain Size

Project Name: Buffalo River

Buffalo River Hole Designation:

Site No.: Location: 1-710-00-C Date Completed: 8/27/05 1050 Drilling Method: Vibracore

NYSDEC Staff: Brian Hourigan

Depth	Stratigraphic Description & Remarks	Elevation	Monitor	Sample				
ft.)BGS		(ft.)AMSL	Installation	C O U N T	N U M B	N V A	1	
	Surface Reference			Ť	E R	A L U E		
No r	recovery							
				ļ				
1.556								
13.10			*					

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Grain Size ○ Water Found ▽ Static Level ▼

Project Name: Buffalo River

Site No.:

Location: 1-713-00-C07

NYSDEC Staff: Brian Hourigan

Hole Designation:

Date Completed: 8/27/05 1010

Drilling Method: Vibracore

ath	ENTO	ENVIR	24
a de la			RENT
ME		•	P C
ORK STATE			3
90	Men	VALLEY	A.

Depth	Stratigraphic Description & Remarks	Elevation	Monitor		San	ple	
(ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M B	N V A	1
	Surface Reference			T	E R	L U E	
0-6.7'	Brown/gray soft silt, some clay, some organic matter (ML)						
	becomes sandier and medium stiff at 3.0'						
	becomes stiff with less sand at 6.0'						
	-layer of black, tar-like soil at 5.5'-6.5', chemical odor. PID hit here.						
	Lab sample = composite of entire core						
	PID = 78 max Recovery = 6.7' Photos w/tape measure						

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Grain Size O

Project Name: Buffalo River

Site No.:

Location: 1-720-00-C07 C45

Hole Designation:

Date Completed: 8/27/05 0920

Drilling Method: Vibracore

Depth	Stratigraphic Description & Remarks	Elevation	Monitor		Sam	ple	
ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M B	N V A	
	Surface Reference			T	E R	L U E	
0-6.7'	Gray, medium stiff silt, some clay, some sand, some organic matter (ML)						
	-several thin sand lenses						
	-black tar-like material from 4.0'-6.0', strong chemical odor. PID hit here.						
	becomes sandier at bottom (SM)						
	Lab sample = composite of entire core length						
	Lab sample at 4-5' for TCL VOA 8260 and DOH 310.13						
	PID = 158 max						
	Recovery = 6.7'						l
						1	
	01115-1						

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table Grain Size O

Project Name: Buffalo River

Site No.: Location: 1-730-00-C07 C57 Hole Designation:

Date Completed: 8/27/05 0900 Drilling Method: Vibracore

NYSDEC Staff: Brian Hourigan

Depth	Stratigraphic Description & Remarks	Elevation	Monitor		San	iple	_
(ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M B	N V A	1
	Surface Reference			T	E R	L U E	
0-7'	Gray, medium stiff silt and clay, some organic matter						
	Layer of black oily soil with strong chemical odor at 5.2-6.8'. PID hit here.						
	Lab sample = composite of entire length						
	Lab sample at 5.2-6.8' for TCL VOA 8260 and DOH 310.13						
	PID = 134 max Recovery = 7.1' Photos						
		in the same					

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Grain Size \bigcirc

Project Name: Buffalo River

Hole Designation:

Site No.: Location:

2-710-00-L06 L56

Date Completed: Drilling Method:

8/27/05 1130 Vibracore

Depth	Stratigraphic Description & Remarks	Elevation	Monitor	04	San	ple	
ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M B	N V A	
	Surface Reference			T	E R	L U E	
0-6.4'	Gray/brown medium stiff silt, some clay, little sand, little organic matter (ML)						
	lab sample at 0-6" lab sample at 5.4' - 6.4'			l			
	Photos						
	PID = 0		*				١
	Recovery = 6.4'						l
							١
							l
							١
							١
							l
							l

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table Grain Size O Static Level

Project Name: Buffalo River

Hole Designation:

Site No.: Location:

2--710-00-R06 R23

Date Completed:

8/27/05 1210

Drilling Method:

Vibracore

Depth	Stratigraphic Description & Remarks	Elevation	Monitor		Sam	ple	
(ft.)BGS		(ft.)AMSL	Installation	C O U	N U M	N V	
	Surface Reference			N T	B E R	A L U E	
0-2.6'	Gray/brown, soft silt, some clay, some sand, trace organic matter (ML)						
	2"sand lens near bottom						
	dark organic layer at 2.0'						
		r ben					
	lab sample at 0-6" lab sample at 1.6'-2.6'						
		183					
	PID=0	-1					
	Recovery = 2.6						
		- 1					
7730							

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Grain Size ○ Water Found ▼ Static Level ▼

Project Name: Buffalo River

Site No.:

Location: 3-712-00-L06 L34

Hole Designation:

Date Completed: 8/27/05 1115 Drilling Method: Vibracore

NYSDEC Staff: Brian Hourigan

Stratigraphic Description & Remarks	Elevation	Monitor		San	ple	_
	(II.)AMSL	Installation	C O U	N U M R	N V	P
Surface Reference			Ť	E R	L U E	
Gray/brown medium stiff to soft silt, some clay, some organic matter (ML)		-				
-1" peat layer at 2.2'						
lab sample at 0-6"						
lab sample at 2.6'-3.6'						
PID = 0 $Recovery = 3.6'$						
						,
<u> </u>						
	Surface Reference Gray/brown medium stiff to soft silt, some clay, some organic matter (ML) -1" peat layer at 2.2' lab sample at 0-6" lab sample at 2.6'-3.6'	Surface Reference Gray/brown medium stiff to soft silt, some clay, some organic matter (ML) -1" peat layer at 2.2' lab sample at 0-6" lab sample at 2.6'-3.6'	Surface Reference Gray/brown medium stiff to soft silt, some clay, some organic matter (ML) -1" peat layer at 2.2' lab sample at 0-6" lab sample at 2.6'-3.6'	Surface Reference Gray/brown medium stiff to soft silt, some clay, some organic matter (ML) -1" peat layer at 2.2' lab sample at 0-6" lab sample at 2.6'-3.6'	Surface Reference Gray/brown medium stiff to soft silt, some clay, some organic matter (ML) -1" peat layer at 2.2' lab sample at 0-6" lab sample at 2.6'-3.6'	Surface Reference Gray/brown medium stiff to soft silt, some clay, some organic matter (ML) -1" peat layer at 2.2' Lab sample at 0-6" Lab sample at 2.6'-3.6'

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Static Level V

Grain Size

Project Name: Buffalo River

Hole Designation:

Site No.: Location:

6-708-00-L35

NYSDEC Staff: Brian V. Hourigan

Date Completed:

8/27/05 1150

Drilling Method: Vibracore

Depth	Stratigraphic Description & Remarks	Elevation	Monitor		San	ple	
(ft.)BGS		(ft.)AMSL	Installation	C O U N	N U M B	N V A	P I D
	Surface Reference			Т	E R	L U E	
0-7.3'	Gray/brown medium stiff silt, and clay, trace sand, little organic matter (ML) -becomes sandy at very bottom -lab sample at 3'-5' triple volume for MS/MSD						
	-deeper lab sample not taken because material is uniform						
	PID = 0 Recovery = 7.3'						
			·				

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table Grain Size O Static Level V

Project Name: Buffalo River

Site No.:

Location: 7-711-50-L35

Hole Designation:

Date Completed: 8/27/05 1030 Drilling Method: Vibracore

NYSDEC Staff: Brian Hourigan

Depth (ft.)BGS	Stratigraphic Description & Remarks	Elevation (ft.)AMSL	Monitor	Sample				
	Surface Reference		Installation	C O U N	N U M B	N V A		
				Ť	E R	L U E		
0-3.6'	Gray/brown soft silt, some clay, some sand, some organic matter (ML)							
	-thin peat layer at 2.2'							
	becomes medium stiff at bottom							
	Lab sample at 3.0-3.6'							
	48.40							
	PID = 0			10			l	
	Recovery = 3.6'						l	
	2 Photos			-			l	
							l	
							١	
	Transfer of the second							
			¥					
	48,000							
	11 (4.00)							
	The state of the s							
		I KE I						

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table
Grain Size ○ Water Found ▼ Static Level ▼

Project Name: Buffalo River

Hole Designation:

Site No.: Location: 7-714-00-L

Date Completed: 8/27/05 0945 Drilling Method: Vibracore

NYSDEC Staff: Brian Hourigan

Depth	Stratigraphic Description & Remarks	Elevation	Monitor	638	San	nple	_
(ft.)BGS		(ft.)AMSL	Installation	C O U N T	N U M	N V	1
	Surface Reference				B E R	A L U E	
	No recovery		-				
	Actual sample location taken at center line						
					,		
		V					
			ű				

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table Grain Size (

Water Found <u>▼</u>

Project Name: Buffalo River

Hole Designation:

Site No .:

Date Completed: Location: 2-695-00-R01 Drilling Method:

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table

Static Level **V**

Grain Size O

NYSDEC Staff: Brian Hourigan

8/29/03	131.
Vibraco	re

Depth (ft.)BGS	Surface Reference	Elevation	Monitor	Sample				
		(ft.)AMSL	Installation	C 0 U	N U M B	N V	P I D	
				T T	E R	A L U E		
0-1.3'	Gray, loose, muck, zebra mussels, silt, clay					7		
	slag and gravel at bottom							
	Lab sample at 0-1.3'		•					
	PID = 0 $Recovery = 1.3'$							
		8						
							13	
	14.6							

Project Name: Buffalo River

Site No.:

Location: 2-700-00-L06 L67 L910 NYSDEC Staff: Brian Hourigan Hole Designation:

Date Completed: 8/29/05 1555 Drilling Method: Vibracore

Depth (ft.)BGS	Stratigraphic Description & Remarks Surface Reference	Elevation	Monitor	Sample				
		(ft.)AMSL	Installation	COU	N U M B E	N V A L U E	1	
				N T				
0-6.5'	Brown/gray/black, soft silt and clay (ML-CL) -varved		1000					
	-much petroleum staining			-			l	
5.5-6.8'	Black, petroleum covered slag max. PID hit here.						l	
6.8-9.9	Brown/gray/black medium stiff silt. Some sand, some clay, little organic matter (ML-SM)							
						1.	l	
							١	
	Lab sample at 0-6"							
	Lab sample at 8.9-9.9'						l	
	Lab sample at 6.5-6.8' for TCL VOA 8260 and DOH 310.13							
	108.0						l	
	PID = 200 max							
	Recovery = 9.9'							
							l	
	5-16-6						l	
							I	
							I	
					E		l	
				I.				
				+				
				1,0	2		1	

Notes: Measuring Point Elevations May Change: Refer to Current Elevation Table
Grain Size ○ Water Found ▼ Static Level ▼