WORK PLAN
REMEDIAL INVESTIGATION/INTERIM REMEDIAL ACTION

BROWNFIELDS CLEANUP PROGRAM
for

132 DINGENS ST. SITE
BUFFALO, NY

June 2012

Prepared for
132 Dingens St, LLC
Buffalo, NY

by

Iyer Environmental Group, PLLC
Orchard Park, NY 14127
WORK PLAN
TABLE OF CONTENTS
BROWNFIELDS SITE SI/RA
132 Dingens St. Site, Buffalo, NY

1. Introduction and Purpose ... 1
2. Site Description and History.. 1
3. Site Physical Setting ... 2
4. Summary of Environmental Conditions .. 2
5. Work Plan for Supplemental Investigation ... 3
 5.1 Objectives ... 3
 5.2 Site Clearing and Debris Removal .. 4
 5.3 Soil Sampling and Analysis ... 4
 5.4 Monitoring Well Installation and Development ... 5
 5.5 Groundwater Sampling and Analysis .. 6
 5.6 QA/QC Plan .. 6
 5.7 Health and Safety Plan ... 6
 5.8 Report ... 6
6. Regulatory Criteria ... 6
7. Work Plan for Interim Remedial Measure .. 7
 7.1 Extent of Contamination .. 7
 7.2 Description of Remedy .. 7
 7.3 Mobilization and Staging ... 7
 7.4 Soil Excavation and Off-Site Disposal ... 7
 7.5 Excavation Water Treatment and Disposal ... 8
 7.6 Backfill .. 8
 7.7 Engineering Evaluation of the Remedy ... 8
 7.8 Reporting .. 9
8. Institutional Controls .. 9
10. Schedule ... 9
11. Project Organization .. 9
12. References .. 9

FIGURES
1. Site Location Map
2. Aerial Photo with Property Boundary
3. Survey Map with RECs
5. Proposed Sampling Locations
6. Monitoring Well Details (Overburden)
7. Project Organization Chart

TABLES
1. Survey of Drums and Cans
2. 2012 Phase II ESA – Summary of Sampling & Analysis
3. Proposed Sampling & Analysis Program

APPENDICES
A. Health & Safety Plan
B. Citizen Participation Plan
C. Resumes of Key Personnel
WORK PLAN
BROWNFIELDS SITE SI/RA
132 DINGENS STREET SITE, BUFFALO, NY
June 2012

1.0 INTRODUCTION AND PURPOSE

This irregular shaped, 13-acre parcel located at 132 & 136 Dingens Street (see Figure 1) contained an 85,000-sf manufacturing and warehouse facility which burned down in a fire last year. Half of this facility was first occupied by Superior Pallet for recycling and refurbishing wood pallets, and the other half was used by Umbra for warehousing/distribution of household/office trash containers. The warehouse was used by Tops Markets since 1966, and was refrigerated at that time by an ammonia refrigeration system located in the powerhouse building in the northwest section. A small section west of this refrigeration/powerhouse building is leased to third parties for a communications tower.

Iyer Environmental Group PLLC (IEG) was retained by Pinto Construction Services (Pinto) to complete a Supplemental Phase II Environmental Site Assessment in December 2011, and to follow-up with additional investigations and site cleanup under the Brownfields Cleanup Program.

This Work Plan for a remedial Investigation and interim remedial measure provides specific details on the proposed site investigation and remedy to be undertaken at the site. The remedial investigation is to address areas of the property not targeted in previous investigations and to assess the presence of any contamination related to past practices in the area. The remedy will consist of, at a minimum, the removal of contaminated soil associated with past disposal activities and use of the property.

2.0 SITE DESCRIPTION AND HISTORY

The site is surrounded by a UPS ground terminal and Buffalo Games to the north, Dingens Street to the south, Family Service Center to the southwest, warehouses owned by Buffalo News and FPPF Chemical Company to the west, and Niagara Tying Service to the east. This area contained numerous rail lines and yards dating back to 1917. The property was previously used by a fuel oil equipment construction and service company called Mali’s Fuel Service. Niagara Frontier Service, Tops Markets’ predecessor, purchased the property around 1966. Historically there had been numerous petroleum tanks, both above ground and below ground dating back to the 1930s. The warehouse also had pad-mounted transformers inside, with unknown PCB content. According to the 2004 ESA, industrial fill material is suspected to be present on site due to the presence of fill materials on adjacent parcels to the north and west. The ammonia was removed from the entire refrigeration system including the tanks in September 2001, following a reported ammonia leak in June 2001.
The subject property was listed in the NY Spills database in 1992 due to a reported leaking line on a truck, and two leaking 4,000-gal diesel USTs reported in 1987. The leaking tanks were issued Spill No. 8707625 which was closed in 1991. A 2004 Phase II ESA by Barron & Associates included EM-61 a metal detector survey in areas of reported UST locations, and subsurface sampling through test pits and Geoprobe soil borings. This Phase II identified SVOC contamination in an area northeast of the warehouse that exceeded NYSDEC guidelines.

Site plans obtained from the City of Buffalo indicated a fuel oil UST in an area just south of the pump-house that was not included the 2004 Phase II EM-61 survey and soil sampling. The sub-basement of the refrigeration building has ammonia tanks and associated piping from the old refrigeration system. The site includes a long 5’4” diameter tunnel from the south basement wall of the refrigeration building to the warehouse building, and a short tunnel of the same diameter on the north basement wall, built for future expansion. The former Tops warehouse building completely burned down last year, leaving only the concrete floor, associated foundation and twisted steel.

3.0 SITE PHYSICAL SETTING

The site is located in the Erie-Ontario Lake plain physiographic province, and subsequently the topography surrounding the site is relatively flat and represents a partially landscaped commercial/industrial district. Surface water runoff from the site is directed to numerous storm catch basins throughout the paved parking areas. The storm water discharges into the City of Buffalo municipal sewer system. Soils on the site are mapped as Urban Land which can typically contain fill materials with little native soil conditions remaining.

The site is surrounded by commercial properties. No sensitive ecological receptors were identified in and around the site. Potable water is supplied from Lake Erie by the City of Buffalo, and there are no drinking water wells in the area.

Bedrock beneath is composed of the Onondaga Limestone of Middle Devonian age, which is a light grey limestone intermixed with dark grey chert. Depth to bedrock is estimated to occur within 25 feet. Groundwater at the site is approximately 7 to 10 feet below ground surface. The local regional groundwater flow is generally to the south toward the Buffalo River, although extensive past construction activities in the area may have significantly altered localized groundwater flow patterns.

4.0 SUMMARY OF ENVIRONMENTAL CONDITIONS

The following environmental conditions were identified during initial site visits and from previous documents (see also Figures 2 and 3):

- Assorted drums, containers and tanks in the refrigeration building and around the building foundation. Drums that still have to be removed are identified in Table 1.
- Pits around the site perimeter dug by people searching for old bottles. These revealed various kinds of fill deposited in the area over the years.

- Tire piles in the northwest leg of the parcel

- Sub-basement tunnel between the refrigeration building and the warehouse foundation filled with water (up to four feet on the deep end towards the warehouse).

During the course of this investigation, Pinto Construction Services (Pinto) cleared the site of all the debris piled up at the old warehouse building location after the 2011 fire. In addition, with the approval of the Buffalo Sewer Authority (BSA), Pinto pumped the water in the sub-tunnel for inspection. Pinto also removed old equipment and associated piping from the refrigeration building and the sub-basement, as well as the two transformers.

Previous investigations at the site included two Phase I ESAs (1997 by Acres International, and 2004 by Kay Ver Group), and two Phase II ESAs (2004 by Baron Associates, and 2012 by Iyer Environmental Group). Table 2 provides a summary of the sampling and analysis performed during the 2012 Phase II ESA, while sample locations and analytical results are shown on Figure 4. These subsurface investigations revealed the area to have soil contamination associated with historical industrial fill used to elevate the ground level to its present state. Most of the elevated contamination is in the unpaved areas of the site to the east and north.

While low levels of volatile organics were detected in soil samples, none exceeded the Part 375 SCOs for commercial use. Several soil samples exceeded the commercial use SCOs for up to ten SVOC compounds. The soil samples also exceeded the SCOs for four metals - arsenic, barium, cadmium and lead. The presence of SVOCs and heavy metals at the levels observed will continue to present environmental concerns and potential human exposure. The hot spot areas of SVOC and metal contamination may at a minimum need remediation prior to site redevelopment. No groundwater sampling was included in these investigations.

Several drums containing various liquids were staged inside the refrigeration building for disposal off-site. An updated list of the drums with current status is included as Table 1. Two waste drums were sampled for disposal parameters - one drum (WD-A) had very high levels of PCE and was flammable, requiring special handling during storage and disposal. The other drum (WD-B) contained waste oil and is suitable for disposal as a non-hazardous waste. Other drums containing materials that do not require sampling will also be hauled off-site for disposal.

5.0 WORK PLAN FOR REMEDIAL INVESTIGATION

5.1 Objectives

Several areas of the 13-acre parcel were previously investigated in two Phase II ESAs (2004 and 2012). These Phase IIs were limited to soil sampling, and did not include any groundwater sampling. Additional investigation is needed to fill in data
gaps, including areas not previously covered, and to complete the assessment, remediation and closure of this property under the Brownfields Cleanup Program.

The objectives of this investigation will therefore be as follows:

- Determine the extent of on-site contamination, supplementing the previous investigations;
- Establish the groundwater table and obtain other hydrogeological data such as hydraulic conductivity and groundwater flow/velocity;
- Qualitatively assess exposure pathways and potential risks to human health and the environment; and
- Evaluate and develop a remedy for soil and groundwater contamination.

5.2 Site Clearing and Debris Removal

During the course of this investigation, Pinto Construction Services will continue to remove old equipment from the site and process them for recycling. The drums staged in the refrigeration building will be properly documented.

Prior to any intrusive field work, public underground utilities will be cleared in the sampling area through the Dig Safely New York program.

5.3 Soil Sampling and Analysis

Soil samples will be collected from ground surface to the clay layer (or refusal, whichever comes first) from around the site through a combination of test pits and soil borings. The proposed locations of the soil samples are shown on Figure 5 (labeled TS for test pit soils, and GS for Geoprobe soils).

Test Pit Soil Sampling: Test pit sampling will be conducted in the unpaved, wooded areas. A small backhoe will be used to advance test pits to refusal or to a practical depth limited by reach of equipment and safety. The soils will be screened using a photoionization detector (PID) that analyzes volatile organics in the air space around the soil samples. The soil will also be characterized by depth as it is brought up in the bucket. The observations (soil type, odor, color, etc.) and PID readings will be recorded in a field log, and transcribed to a standard form for reporting. Samples will be collected from each test pit that is representative of contamination and nature of source material. Composited samples (SVOC and heavy metals only) will be collected from test pits with no visible evidence of contamination or a source thereof.

Soil Boring Samples: Soil boring samples will be collected from paved areas around the refrigeration building and the former warehouse building foundation. A direct push method with a truck or tractor mounted Geoprobe or similar unit will be used for this purpose. The Geoprobe uses a 4-foot long split spoon with a plastic sample liner. The split spoon is pushed into the ground and the soil sample is collected within the plastic sleeve.
After the soil boring is extracted from the ground, the sleeve is cut and the sample split in half along the axis. The soil core will be screened in the field with a PID. The soil samples will be visually inspected and characterized and recorded in a field log. These will be transcribed into a standard boring log sheet. Unused soil boring samples will be put back in the borehole.

Soil samples for laboratory analysis will be selected based on PID readings, visual observations and prior contaminated sample locations. Samples will be sent to an off-site laboratory for analysis for TCL volatiles, SVOCs, PCBs, pesticides and TCL metals (including mercury), as appropriate. Analytical methods and QA/QC, including matrix duplicates and spikes, and field blanks and duplicates will be in accordance to NYSDEC’s ASP protocols and USEPA methods, as applicable (see Table 3).

5.4 Monitoring Well Installation and Development

At least three groundwater monitoring wells are needed to establish the groundwater table and flow gradient. Given the size and shape of the parcel, and potential migration of contaminants, eight permanent overburden monitoring wells are proposed at the locations shown on Figure 5. Three wells will be located along the southeastern property boundary, one in the middle of the eastern section where USTs were previously located, and the rest distributed across the remainder of the property. No bedrock wells are proposed at this time since the primary contaminants at the site are SVOCs and heavy metals which may limit groundwater contamination to the overburden. The need for deeper bedrock wells will be determined based on the analysis of groundwater in the overburden wells.

Overburden Well Installation: The wells will be installed to a depth of 20 feet, with a 2” diameter screen straddling the water table from the bottom up, and a PVC riser. As shown on Figure 6, the screened section of each well will have a sand filter pack, followed by bentonite-pellet seal above it, and then bentonite cement grout to the ground surface.

In the paved areas, the wells will have a lockable cap flush to the ground. Wells in the wooded area outside the fence will have 3” casing sticking 3-foot above ground, with lockable caps. The wells will be surveyed and water levels measured to establish a baseline water table elevation and groundwater flow gradient. Soil samples will be collected for characterization and analysis using split spoons and the screening procedure used for the soil borings above. After installation, the new and existing wells will be surveyed so as to facilitate water level measurements and establishment of groundwater flow gradients. Drill cuttings from the well installation will be staged in 55-gallon drums for proper disposal following receipt of analytical results.

Well Development: The wells will be developed to remove fines by purging up to five well volumes, and at least until the turbidity is less than 50 NTU as per NYSDEC guidelines for monitoring well development. Disposable bailers will be used for well development and for sample collection. During well development, field measurements (amount of water removed, pH, specific conductivity, temperature and turbidity) will be measured and recorded in the field log.
5.5 **Groundwater Sampling and Analysis**

The wells will be sampled for the parameters detected in the soil samples. At this time, it is anticipated that the same parameters as the soils (i.e., VOCs, SVOCs, PCBs, pesticides and TCL metals) will also be analyzed in the groundwater samples as listed in Table 3. All samples will follow NYSDEC guidelines for sample packaging and shipment (in coolers with ice), chain of custody, and QA/QC requirements. Field measurements during sampling will include pH, specific conductivity and temperature.

5.6 **QA/QC Plan**

The soil and groundwater sampling will be conducted in accordance with accepted NYSDEC (May 2010 DER-10) and USEPA (AIR-5) guidelines, and all samples will be analyzed as per NYSDEC ASP requirements.

QA/QC samples will include a field rinse blank (per event), field duplicate (one per 20 samples), and matrix spike/matrix spike duplicate (one per 20 samples). A NYSDOH ELAP-certified laboratory (Test America) will be utilized for all analysis during the supplemental investigation, remedial construction and long-term monitoring. Category B deliverables will be provided for all samples. All analytical data will be evaluated according the Division of Environmental Remediation (DER) Data Usability Summary Report (DUSR) guidelines.

5.7 **Health and Safety Plan (HASP)**

A site-specific Health & Safety Plan (HASP) for the protection of on-site workers and other field personnel will be developed prior to implementation of this work plan – an outline of the HASP is attached to this Work Plan. The H&S program will include air quality monitoring during remedial construction as per New York State Department of Health requirements and the NYSDEC TAGM 4031 for the prevention of fugitive dust.

5.8 **Report**

The results of the supplemental investigation will be compiled in a report along with data evaluation, and a qualitative risk assessment for both on-site and off-site. The Remedial Action Plan will be revised as necessary to incorporate other areas of contamination that require remediation and to ensure that this property is remediated to the satisfaction of the regulatory agencies.

6.0 **REGULATORY CRITERIA**

The NYSDEC has established goals for acceptable contamination levels in soils based on a combination of human health risk factors and potential groundwater impacts. These goals are applicable when considering the need for a remedial measure at contaminated sites.
The Brownfield Cleanup Program provides for a multi-track approach to the remediation of soil contamination. The NYSDEC has developed tables of soil cleanup goals from four tracks ranging from unrestricted use (Tracks 1) to different degrees of restricted use (Tracks 2, 3 and 4). The intent of this remedial effort is to clean up this property to restricted commercial or industrial use under Track 2. Any excavation and off-site disposal of the contaminated soils will be compliant with the Resource Conservation and Recovery Act (RCRA) and the Toxic Substances Control Act (TSCA).

7.0 WORK PLAN FOR INTERIM REMEDIAL MEASURE

This preliminary remedy action plan is developed based on the results of previous soil completed in 2004 and 2012. This remedy will be expanded as necessary to include additional areas of contamination that may be discovered as part of the supplemental investigation described in this Work Plan. The overall objective of this interim remedial measure is to remediate this site to the Track 2, restricted commercial or industrial, requirements under the Brownfields program.

7.1 Extent of Contamination

Based on data collected to date, the highest levels of soil contamination exceeding Track 2 SCOs appears to be along the western section of the northern property boundary. The contamination appears to be at depths up to 6 feet. Relatively lower levels of contamination were found in the eastern section, and even lower in the southern area of the property.

7.2 Description of Remedy

The remedial measure is anticipated to consist of at least the excavation of contaminated soils exceeding SCOs for Track 2 (commercial or industrial use) in the top four to six feet below ground surface. Other areas will be included for excavation if necessary in incremental amounts based on additional investigations.

7.3 Mobilization and Staging

A staging area with a small office trailer will be set up in a clean area for on-site personnel. An HDPE liner will be placed in the stockpile area before any soil placement. All equipment will be decontaminated when leaving the site. Dust control measures (e.g., wetting of dry surfaces in the work areas) will be implemented to prevent off-site migration of contaminated airborne particulates.

7.4 Soil Excavation and Off-Site Disposal

All excavation will be carried out with a backhoe large enough to reach a depth of up to 16 feet. The walls of the excavation will be adequately sloped or stepped to prevent cave-ins and washouts, and to allow access for excavators into the excavation. To the extent possible and depending on access, the contaminated soils will be excavated and directly loaded on to dump trucks for off-site disposal. Otherwise the contaminated soils will be stockpiled near the excavation over a
plastic liner and then loaded on to the dump truck. The dump trucks will be lined and covered during transport to the disposal facility. The excavation walls and bottom will be sampled for confirmatory soil analysis in accordance with NYSDEC requirements for spacing.

7.5 **Excavation Water Treatment and Disposal**

Excavation of the soils to the known depths of contamination may result in groundwater exfiltration into the excavation. At the site, the water table appears to be around 8 feet below ground level. Any excavation could therefore result in water entering the excavation from the street side.

This excavation water will be pumped into a storage tank where it will be allowed to settle, and then treated in an on-site treatment system consisting of an equalization tank, bag filters and activated carbon canisters in series. Treated water will be discharged to the sanitary sewer after obtaining a permit from the Buffalo Sewer Authority.

7.6 **Backfill**

The excavation will be backfilled with clean fill from an off-site source, properly sampled and tested to ensure that it is appropriate for use at this site. Clean backfill may be stockpiled at the site in advance of the remediation work so as to take advantage of its availability and lower cost. After backfilling, the site will be regarded and prepared for its redevelopment.

7.7 **Engineering Evaluation of the Remedy**

Besides off-site disposal, available options for remediation of the soils include in-situ (e.g., soil vapor extraction) and ex-situ (e.g., thermal desorption) on-site treatment processes. The in-situ treatment options are generally cost effective for areas with large volumes of soil and groundwater contamination and where remediation times can extend to a year or more. At times, the in-situ processes may not reach all areas of contamination which then reoccurs at one or more monitoring points.

Excavation of contaminated soils will essentially remove the source and may eliminate the need for extensive long-term monitoring. Also, by excavating first in the hot spot areas and allowing the groundwater to drain into the excavation, the surrounding areas of low level contamination can also be targeted. Confirmatory sampling would be required in these surrounding areas to ensure that the residual contamination is within acceptable levels.

Excavation/off-site disposal of contaminated soil, and pumping/treatment of groundwater from the excavation can facilitate the redevelopment and commercialization of the property by summer 2005 more easily than the other options.
7.8 Reporting

During remedy construction, daily field reports will be developed and provided to the NYSDEC. Within 90 days after completion of remediation, a final construction report will be submitted with details of the implemented remedy, as-built drawings, and a long-term monitoring plan. The report and drawings will be certified by a professional engineer.

8.0 INSTITUTIONAL CONTROLS

The need for institutional controls will be determined following completion of additional investigations and after a final remedial measure is developed.

9.0 O&M AND LONG-TERM MONITORING

Long-term monitoring will include routine water level measurements and sampling of groundwater at the monitoring wells. The samples will be analyzed for parameters found to be of concern based on the supplemental investigation. The sampling and analysis will be performed in accordance with NYSDEC ASP.

10.0 SCHEDULE

Subject to NYSDEC approval, the following schedule is anticipated:

- Remedial Investigation Summer/Fall 2012
- Interim Remedial Action Winter 2012 - Spring 2013
- Remedial Construction Report Spring 2013
- Site Redevelopment Fall 2013 - Spring 2014

11.0 PROJECT ORGANIZATION

The proposed project organization chart is presented as Figure 7. Resumes of key personnel are included in Appendix C.

12.0 REFERENCES

132 DINGENS STREET SITE, BUFFALO, NY
SITE LOCATION MAP

FIGURE 1
FIGURE 2

132 DINGENS STREET SITE, BUFFALO, NY
AERIAL PHOTO WITH PROPERTY BOUNDARY

LEGEND
- Refrigeration Bldg
- Transformers
- Manhole
- Drums
- Mulch Magic Ctnrs
- Flammable Gas Tank
- AST
- Tire Piles
- Drums / stained soil
- Bottle Dig
- Property Boundary
FIGURE 4

132 DINGENS STREET SITE, BUFFALO, NY
PHASE II INVESTIGATION - SOIL CONTAMINANTS

GEOPROBE SOIL CONTAMINANTS (mg/Kg)

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>GS-1</th>
<th>GS-2</th>
<th>GS-3</th>
<th>GS-7</th>
<th>GS-8</th>
<th>GS-9</th>
<th>GS-10</th>
<th>GS-11</th>
<th>GS-12</th>
<th>GS-13</th>
<th>GS-14</th>
<th>GS-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVOCs</td>
<td>0.101</td>
<td>0.960</td>
<td>0</td>
<td>NA</td>
<td>56.850</td>
<td>5.880</td>
<td>NA</td>
<td>2.925</td>
<td>261.100</td>
<td>1.720</td>
<td>5.640</td>
<td>3.965</td>
</tr>
<tr>
<td>VOCs</td>
<td>NA</td>
<td>0.063</td>
<td>NA</td>
<td>0.041</td>
<td>NA</td>
<td>0.185</td>
<td>NA</td>
<td>NA</td>
<td>1.032</td>
<td>NA</td>
<td>0.095</td>
<td>0.123</td>
</tr>
<tr>
<td>Lead</td>
<td>549</td>
<td>124</td>
<td>NA</td>
<td>417</td>
<td>2470</td>
<td>641</td>
<td>1220</td>
<td>2440</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

TEST PIT SOIL CONTAMINANTS (mg/Kg)

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>TS-1</th>
<th>TS-2</th>
<th>TS-3</th>
<th>TS-4</th>
<th>TS-5</th>
<th>TS-6</th>
<th>TS-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVOCs</td>
<td>10.8</td>
<td>2.268</td>
<td>1.200</td>
<td>92.400</td>
<td>7163.000</td>
<td>NA</td>
<td>24.570</td>
</tr>
<tr>
<td>PCBs</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Lead</td>
<td>4160</td>
<td>2970</td>
<td>6.5</td>
<td>4400</td>
<td>604</td>
<td>40.5</td>
<td>1030</td>
</tr>
</tbody>
</table>
LEGEND
- Refrigeration Bldg
- Test Pit Samples – previous
- Geoprobe Samples – previous
- Monitoring Well (Proposed)
- GS - Soil Boring (Proposed)
- TS - Test Pit (Proposed)
- Property Border

132 DINGENS ST. SITE REMEDIAL INVESTIGATION
PROPOSED SAMPLING LOCATIONS

FIGURE 5
IEG
132 DINGENS STREET SITE – BCP RI/IRM
MONITORING WELL DETAILS

NOTES:
1. Drawing not to scale
2. Figure shown for wells in paved area – flush-mount at grade;
 Wells in wooded area will include a 4" dia stick-up casing 3 feet above ground.
3. Final depth will depend on refusal and will be field confirmed
REQUESTOR/DEVELOPER
132 Dingens St, LLC
James Panepinto

NYSDEC
Region 9

QA/QC & H&S OFFICER
Fred Smith, Jr., CIH, CSP

PROJECT/TECHNICAL
MANAGER
Dharmarajan Iyer, Ph.D., PE

KEY STAFF
Engineer – D. Iyer, Ph.D., PE
Geologist – J. Warner, PG
Technician – R. Allen

SUBCONTRACT
Driller – SJB Services
Lab – Test America

REMEDIAL CONTRACTOR
Pinto Construction Services

132 DINGENS STREET SITE – BCP SI/RA
PROJECT ORGANIZATION CHART

FIGURE 8
IEG
TABLE 1
132 DINGENS ST. SITE - REMEDIAL INVESTIGATION
SURVEY OF DRUMS AND CANS
June 25, 2012

<table>
<thead>
<tr>
<th>QTY</th>
<th>SIZE</th>
<th>COLOR</th>
<th>DESCRIPTION</th>
<th>CONTENTS</th>
<th>VOLUME OF LIQUID</th>
<th>NOTES</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30 gal</td>
<td>Blue</td>
<td>Plastic Drum</td>
<td>GCO-10 Bacteriostat / Algaecide</td>
<td>Near Full</td>
<td>Diversey Corp; non-hazardous</td>
<td>To be removed; no lab sample</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>Black</td>
<td>Metal Drum (Drum A)</td>
<td>Waste Oil</td>
<td>2/5 full</td>
<td>Was originally outside the building.</td>
<td>Drum A - To be removed Sampled (WD-A)</td>
</tr>
<tr>
<td>1</td>
<td>15 gal</td>
<td>Blue</td>
<td>Plastic Drum</td>
<td>Formula DL-1546</td>
<td>Full</td>
<td>Active Ingrdt: 15% Glutaraldehyde ; non-</td>
<td>To be removed; no lab sample</td>
</tr>
<tr>
<td>1</td>
<td>15 gal</td>
<td>Blue</td>
<td>Plastic Drum</td>
<td>Formula DL-1536</td>
<td>Full</td>
<td>Active Ingrdt: 10% Dideuyl demethyl ammonium chloride ; non-</td>
<td>To be removed; no lab sample</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>Black</td>
<td>Metal Drum (Drum B)</td>
<td>Waste Oil</td>
<td>1/3 full</td>
<td>Consolidated with (3) small waste oil jugs, the remnants of the grey plastic drum and the grey plastic drum and the grey plastic drum</td>
<td>Drum B - To be removed Sampled (WD-B)</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>Grey</td>
<td>Plastic Drum</td>
<td>Has waste oil sludge at bottom</td>
<td>< gallon</td>
<td>Small amount of oil poured into Drum B</td>
<td>To be removed</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>Blue</td>
<td>Plastic Drum</td>
<td>Formula 1016</td>
<td>< 5 gal</td>
<td>Buffalo Industrial Chemicals; Potassium Hydroxide</td>
<td>To be removed; not sampled</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>White</td>
<td>Metal Drum</td>
<td>Johnsons Shop 500 Cleaner</td>
<td>1/4 full</td>
<td>Sodium Hydroxide</td>
<td>To be removed; not sampled</td>
</tr>
<tr>
<td>1</td>
<td>15 gal</td>
<td>Brown</td>
<td>Non Liquid Drum</td>
<td>Formula 3210</td>
<td>1/3 full</td>
<td>White powder-like substance; non-hazardous</td>
<td>To be removed</td>
</tr>
<tr>
<td>1</td>
<td>15 gal</td>
<td>Black</td>
<td>Open Plastic Container</td>
<td>Soil/oil/trash cleanup</td>
<td>3/4 full</td>
<td>Contains the waste oil contaminated soil under the plastic jugs found near TS-5</td>
<td>To be removed</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>White</td>
<td>Metal Drum</td>
<td>Refrigeration Oil</td>
<td>Near full</td>
<td>Brought by Pinto for waste oil</td>
<td>To be removed</td>
</tr>
<tr>
<td>2</td>
<td>55 gal</td>
<td>Black</td>
<td>Metal Drum</td>
<td>Refrigeration Oil</td>
<td>Full</td>
<td>Brought by Pinto for waste oil</td>
<td>To be removed</td>
</tr>
<tr>
<td>1</td>
<td>55 gal</td>
<td>Green</td>
<td>Metal Drum</td>
<td>Transformer Oil</td>
<td>1/2 full</td>
<td>Brought by Pinto for waste oil</td>
<td>To be removed</td>
</tr>
<tr>
<td>3</td>
<td>55 gal</td>
<td>Black</td>
<td>Metal Drum</td>
<td>Transformer Oil</td>
<td>Full</td>
<td>Brought by Pinto for waste oil</td>
<td>To be removed</td>
</tr>
<tr>
<td>2</td>
<td>1 gal</td>
<td>Paint Can Fosters Sealfas Coating 30-36</td>
<td>Full</td>
<td>To be removed</td>
<td>To be removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 gal</td>
<td>Paint Can Sherwin Williams P65W1</td>
<td>1/4 full</td>
<td>Dried paint</td>
<td>To be removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 gal</td>
<td>Paint Can Rust-Oleum</td>
<td>Full</td>
<td>New Color Horizons Paint</td>
<td>To be removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 gal</td>
<td>Paint Can Amspec Mastic No. 7</td>
<td>< Full</td>
<td>To be removed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 gal</td>
<td>Rusty Paint Can</td>
<td>No Label</td>
<td>Near Full</td>
<td>To be removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 gal</td>
<td>Metal Can Collinite No 237 Insulator Cleaner</td>
<td>Full</td>
<td>Utica, NY</td>
<td>To be removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 gal</td>
<td>White Plastic Jug</td>
<td>Residual waste oil</td>
<td>Near Empty</td>
<td>Used to drain Refrigeration Oil</td>
<td>To be removed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 gal</td>
<td>Grey Metal Oil Pan</td>
<td>Sludge / Oil</td>
<td>Near Empty</td>
<td>Used to drain Refrigeration Oil</td>
<td>To be removed</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 1/2"</td>
<td>White Plastic Sample Bailers</td>
<td>Residual waste oil</td>
<td>Empty</td>
<td>Used to sample Drum A and Drum B</td>
<td>To be removed</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8’</td>
<td>Opaque Flourescent Bulbs</td>
<td>From Refrigeration Building</td>
<td>To be removed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE MATRIX</td>
<td>DATE OF SAMPLING</td>
<td>TOTAL NUMBER OF SAMPLES</td>
<td>VOCs</td>
<td>SVOCs</td>
<td>ASBESTOS</td>
<td>HERBICIDES</td>
<td>PCBs</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>GEOPROBE SAMPLES</td>
<td>12/16/11</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16 field locations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST PIT SAMPLES</td>
<td>12/19/11</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7 field locations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASTE DRUM SAMPLES</td>
<td>12/20/11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Up to 12 drums to be removed; 2 drums drums sampled)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSFORMER SAMPLES</td>
<td>12/22/11</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(2 transformer locations; 2 oil and 2 soil samples)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER FROM TUNNEL AND REFRIGERATOR BUILDING BASEMENT</td>
<td>9/13/11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 3
132 DINGENS STREET - BCP REMEDIAL INVESTIGATION
PROPOSED SAMPLING AND ANALYSIS

<table>
<thead>
<tr>
<th>ANALYTICAL PARAMETER</th>
<th>SOIL (12 TEST PITS/14 SOIL BORINGS)</th>
<th>GROUNDWATER (8 OVERBURDEN WELLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># OF SAMPLES</td>
<td>FIELD DUPLICATE</td>
</tr>
<tr>
<td>TCL Volatile Organics</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>TCL Semivolatile Organics</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Pesticides/PCBs</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>TAL Metals</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>
ATTACHMENT A

HEALTH & SAFETY PLAN
HEALTH & SAFETY PLAN

for

132 Dingens St, Buffalo, NY
BROWNFIELDS CLEANUP PROGRAM
REMEDIAL INVESTIGATION/INTERIM REMEDIAL MEASURE

JUNE 2012

PREPARED FOR

132 Dingens St, LLC,
Buffalo, NY

PREPARED BY

IYER ENVIRONMENTAL GROUP, PLLC
44 Rolling Hills Dr., Orchard Park, NY 14127
TABLE 1
EMERGENCY NOTIFICATION TABLE

<table>
<thead>
<tr>
<th>Agency</th>
<th>Contact</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Police Sheriff</td>
<td>Emergency</td>
<td>911</td>
</tr>
<tr>
<td>Fire & First Aid</td>
<td>Emergency</td>
<td>911</td>
</tr>
<tr>
<td>Ambulance</td>
<td>Emergency</td>
<td>911</td>
</tr>
<tr>
<td>Hospital/ Emergency Care Facility</td>
<td>Buffalo General Hospital</td>
<td>(716)859-5600</td>
</tr>
<tr>
<td></td>
<td>100 High Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14203</td>
<td></td>
</tr>
<tr>
<td>Poison Control Center</td>
<td>---</td>
<td>(800) 336-6997</td>
</tr>
<tr>
<td>Chemical Emergency Advise</td>
<td>CHEMTREC</td>
<td>(800) 424-9300</td>
</tr>
<tr>
<td>NYS Department of Health</td>
<td>Matt Forcucci</td>
<td>(716) 851-7220</td>
</tr>
<tr>
<td></td>
<td>NYS Dept. of Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>582 Delaware Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14203</td>
<td></td>
</tr>
<tr>
<td>NYS Department of Environmental Conservation</td>
<td>Jaspal Walia</td>
<td>(716) 851-7220 - Work Hrs.</td>
</tr>
<tr>
<td>Region 9</td>
<td>NYDEC DER</td>
<td>(800) 342-9296 - After Hrs.</td>
</tr>
<tr>
<td></td>
<td>270 Michigan Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
<td></td>
</tr>
<tr>
<td>Spill Hotline</td>
<td></td>
<td>(800) 457-7362</td>
</tr>
<tr>
<td>CONSULTANTS:</td>
<td>Dharma Iyer, PhD, PE, Project Manager</td>
<td>(716) 662-4157/445-9684</td>
</tr>
<tr>
<td>DEVELOPER</td>
<td>James Panepinto</td>
<td>(716)825-6666</td>
</tr>
<tr>
<td></td>
<td>132 Dingens St, LLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Babcock Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14206</td>
<td></td>
</tr>
</tbody>
</table>

DIRECTIONS TO HOSPITAL (EMERGENCY ROUTE)

See Figure 2

FROM THE SITE: Turn right on to Dingens (west); then left on to Bailey (south); left on to Clinton (east); immediately take ramp to I-190 North; From I-190 take exit 6 on to Elm Street (north); right on to Broadway (east); next left on to Michigan (north); after seven blocks, left on to High Street; Emergency Entrance to Buffalo General Hospital is on the right.
FIGURE 2

132 DINGENS STREET SITE – BCP RI/IRM
DIRECTIONS TO HOSPITAL

0.0 1 Depart SITE [132 Dingens St, Buffalo, NY 14201] 0.3 mi
0.3 Turn LEFT (South) onto US-62 [Bailey Ave] 0.5 mi
0.7 Turn LEFT (East) onto SR-354 [Clinton St] 0.1 mi
0.9 Take Ramp (RIGHT) onto I-190 [Gov Thomas E Dewey Th] 2.9 mi
I-190 / Downtown / Peace Bridge Canada
3.8 At exit 6, turn RIGHT onto Ramp 0.2 mi
4.0 Keep LEFT to stay on Ramp 0.2 mi
4.1 Bear LEFT (North) onto Elm St 0.4 mi
4.5 Bear RIGHT (East) onto SR-130 [Broadway St], then imm 1.0 mi
5.5 Turn LEFT (West) onto High St 0.1 mi
5.7 2 Arrive HOSPITAL [100 High St, Buffalo, NY 142]
HEALTH & SAFETY PLAN
BROWNFIELDS SITE SI/IRM
132 Dingens St, Buffalo, NY

TABLE OF CONTENTS

1.0 PROJECT DESCRIPTION ... 1
 1.1 Introduction .. 1
 1.2 Site Description and Background .. 1
 1.3 General Summary of Work .. 2

2.0 HAZARD ASSESSMENT & RISK ANALYSIS 3
 2.1 Chemical Hazards .. 3
 2.2 Physical/General Hazards ... 3
 2.3 Biological Hazards .. 5

3.0 PROJECT ORGANIZATION & RESPONSIBILITIES 9
 3.1 Personnel Responsibilities ... 9
 3.2 Surveillance & Internal Auditing Responsibilities 9

4.0 SITE PERSONNEL TRAINING REQUIREMENTS 10
 4.1 Visitors ... 10
 4.2 Safety Meetings ... 11
 4.3 Emergency Response Training .. 11

5.0 MEDICAL SURVEILLANCE ... 12
 5.1 Episodic Examinations .. 12
 5.2 Annual and/or Termination Examinations 12
 5.3 Audiometric Examinations ... 12
 5.4 Abnormal Medical Surveillance Results ... 12
 5.5 Heat and Cold Stress Monitoring .. 13

6.0 PERSONAL PROTECTIVE EQUIPMENT (PPE) 15

7.0 AIR MONITORING PROGRAM ... 20
 7.1 General ... 20
 7.2 Air Monitoring Procedure ... 20

8.0 DECONTAMINATION PROCEDURES ... 22
 8.1 Personnel Decontamination .. 22
 8.2 Equipment Decontamination ... 23

9.0 STANDARD SAFETY PRACTICES .. 24

10.0 EMERGENCY RESPONSE AND CONTINGENCY PLANNING 25
 10.1 Pre-Planning ... 25
 10.2 Emergency Chain-of-Command .. 25
 10.3 Communication Methods and Signals .. 25
 10.4 Evacuation ... 26
 10.5 Emergency Services/Emergency Vehicle Access 26
 10.6 Weather-Related Hazard Response .. 27
 10.7 Spill Control .. 27
 10.8 Personal Injuries ... 27
 10.9 Fire/Explosion .. 28
 10.10 Personnel Protective Equipment Failure 28
 10.11 Other Equipment Failure .. 28
 10.12 Emergency Equipment & On-Site First Aid 28
HEALTH & SAFETY PLAN
BROWNFIELDS SITE SI/IRM
132 Dingens ST, Buffalo, NY
TABLE OF CONTENTS (Continued)

11.0 COMMUNITY PROTECTION PLAN .. 30
11.1 Air Monitoring .. 30
11.2 Vapor Emission Response .. 30

12.0 LOGS, REPORTS, & RECORD KEEPING ... 31

TABLES

TABLE 1 Emergency Notification Table ... i
TABLE 2 Chemical Hazard/Exposure Data Summary 7
TABLE 3 Task & Risk Analysis Table ... 8
TABLE 4 Description of PPE Levels .. 17
TABLE 5 Summary of Air Monitoring Plan with Action Levels 21

FIGURES

FIGURE 1 Site Map .. 1
FIGURE 2 Map/Directions to Hospital ... i
SECTION 1.0
Project Description

1.0 INTRODUCTION
The health and safety protocols established in this plan are based on site conditions and chemical hazards known, anticipated or suspected to be present from available site data. The following site Health and Safety Plan (HASP) is intended solely for use during the supplemental investigations and interim remedial measure at 132 Dingens St. in Buffalo, NY 14218 (see Figure 1). This Plan may be modified prior to the implementation of the interim remedial measure based on any changes to the proposed remedial action.

All activities and equipment used in association with the referenced supplemental investigation and interim measure will, at a minimum, comply with:

- 29 CFR 1910, General Industry, Occupational Safety and Health (OSHA) Safety and Health Standards;
- 29 CFR 1926, Construction Industry, OSHA Safety and Health Standards;
- “Threshold Limit Values for Chemical and Physical Agents and Biological Exposure Indices,” American Conference of Government Industrial Hygienists, Cincinnati, Ohio, Current Edition;
- “Guide to Occupational Exposure Values,” American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio, Current Edition;
- “Community Air Monitoring Plan,” 93118PR00149, NYSDEC;
- NYSDOL 28.876, Article 28, Section 876 of NYS Labor Law (Right-to-Know Law), 1980; and
- Other applicable Federal, State, and Local regulations

1.0 SITE DESCRIPTION AND BACKGROUND

1.2.1 General Location
The property is located at 132 Dingens Street, just off I-190, a major interstate highway leading into downtown Buffalo (see site location map on Figure 1). The site is surrounded by a UPS ground terminal and Buffalo Games to the north, Dingens Street to the south, Family Service Center to the southwest, warehouses owned by Buffalo News and FPPF Chemical Company to the west, and Niagara Tying Service to the east.

1.1.2 Site History
This irregular shaped, 13-acre parcel located at 132 & 136 Dingens Street (see Figure 1) contained an 85,000-sf manufacturing and warehouse facility which burned down in a fire last year. Half of this facility was first occupied by Superior Pallet for recycling and refurbishing wood pallets, and the other half was used by Umbra for warehousing/distribution of household/office trash containers. The warehouse was used by Tops Markets since 1966, and was refrigerated at that time by an ammonia refrigeration system located in the powerhouse building in the northwest section.
FIGURE 1

132 DINGENS STREET SITE, BUFFALO, NY
SITE LOCATION MAP

IEG
Subsurface investigations revealed the area to have soil contamination associated with historical industrial fill used to elevate the ground level to its present state. While low levels of volatile organics were detected in soil samples, none exceeded the Part 375 SCOs for commercial use. Several soil samples exceeded the commercial use SCOs for up to ten SVOC compounds. The soil samples also exceeded the SCOs for four metals - arsenic, barium, cadmium and lead. Given the history of industrial and commercial use of properties in the area, a remedial investigation is being undertaken to further assess soil and groundwater contamination, including volatile and semivolatile organics, pesticides, PCBs and heavy metals. An interim remedial measure was also developed to address site soil contamination, and may be expanded to include other contaminants based on the remedial investigation.

1.3 GENERAL SUMMARY OF WORK

a) Installation of groundwater monitoring wells around the property
b) Soil sampling using test pits and a direct push method (Geoprobe), and analysis
c) Groundwater sampling using disposable bailers, and analysis
d) Excavation, stockpiling and off-site disposal of contaminated soils
e) Excavation water pumping, storage, treatment and discharge to sanitary sewer
f) Backfilling of excavated area with clean fill and regrading
g) Long-term OM&M
SECTION 2.0
Hazard Assessment & Risk Analysis

An assessment and analysis of chemical, physical, and biological hazards associated with this project is presented in the subsections that follow. A task-by-task risk analysis of the potential exposure to the identified hazards is provided below and in Table 3 at the end of this section.

<table>
<thead>
<tr>
<th>TASK</th>
<th>POTENTIAL EXPOSURE RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring well installation/development</td>
<td>Moderately high</td>
</tr>
<tr>
<td>Test Pits and Geoprobe soil sampling</td>
<td>Moderately high</td>
</tr>
<tr>
<td>Groundwater sampling</td>
<td>Moderately high</td>
</tr>
<tr>
<td>Soil excavation and disposal</td>
<td>Moderately high</td>
</tr>
<tr>
<td>Excavation water treatment/discharge</td>
<td>Moderately high</td>
</tr>
<tr>
<td>Backfilling and regrading</td>
<td>Low</td>
</tr>
</tbody>
</table>

Anticipated Exposure Risk Definitions:

LOW = Non-Intrusive Work – No Chance of Exposure.

SLIGHT = Non-Intrusive Work, Possible Safety Hazards with Tools - Little to No Chance of Exposure.

MODERATE = Non-Intrusive Work, Possible Safety Hazards with Powered Tools, Heavy Equipment, and/or work near or in water. Possible Exposure to Contaminants.

MODERATELY Intrusive Work, Possible Safety Hazards with Equipment – Exposure to Contaminants.

HIGH = Intrusive Work, Possible Safety Hazards with Equipment – Exposure to Contaminants Possible.

HIGH = Intrusive Work, Possible Safety Hazards with Equipment – Exposure to Contaminants Probable.

2.1 CHEMICAL HAZARDS

The primary chemical hazard substances known or suspected to exist on-site are semivolatile organics (SVOCs) and heavy metals, and low level volatile organic compounds (VOCs) that are associated with past development of this property with industrial fill and use as a warehouse with a filling station. There is also concern about the possible of other hazardous substances that may be related to its past. The hazards associated with these chemical substances are discussed in Table 2 at the end of this section.

The levels of personal protective equipment (PPE) identified in Section 6.0 of this HASP have been assigned by task, known/anticipated chemical toxicity, and potential exposure risks. Action levels for PPE upgrade (see Section 7.0) have been set conservatively to minimize the risk of exposure to field personnel.

2.2 PHYSICAL/GENERAL HAZARDS

The following general, physical, and ergonomic hazards may be associated with this project:

1. **Potential Hazard:** Dermal and inhalation hazards resulting from potential exposure to the chemical compounds identified in Table 2.
Procedure(s) to Mitigate Hazard: Don PPE identified in Section 6.0 of this HASP. The levels of PPE identified in Section 6.0 of this HASP have been assigned by task, known/anticipated chemical toxicity, and potential exposure risks. Other means of minimizing or eliminating risk of exposure include: practicing contamination prevention including a thorough washing of hands and face when exiting the exclusion zone and prohibiting use of contact lenses during field activities.

Procedure(s) to Mitigate Hazard:
 (1) Exercise extreme caution in all work areas.
 (2) Be sure of footing during equipment access/egress and when moving through the work area.
 (3) Avoid stepping or standing on uneven or unsteady surfaces.
 (4) Clearly delineate open pits, wells, and other fall hazards with orange safety fencing.
 Securely cover as appropriate.

Procedure(s) to Mitigate Hazard:
 (1) Follow the procedures for the prevention and/or treatment of heat or cold stress (if ambient air temperatures exceed 70°F or drop below 40°F) described in Section 5.5 of this HASP.
 (2) Adhere to the emergency response procedures provided in Section 10.3 of this HASP.

4. Potential Hazard: Housekeeping

Procedure(s) to Mitigate Hazard:
 (1) Store equipment properly.
 (2) Remove rubbish/scrap material from work area.

5. Potential Hazard: Vehicle Traffic

Procedure(s) to Mitigate Hazard: Utilize warning signs and flagman (men) as appropriate to direct traffic away from work area.

Procedure(s) to Mitigate Hazard:
 (1) Segregate flammable/combustible liquid from ignition sources.
 (2) Store in approved containers.
 (3) Keep solvent waste, oily rags, and liquids in fire resistant containers.

7. Potential Hazard: Electrical

Procedure(s) to Mitigate Hazard:
 (1) Utilize approved grounding and bonding procedures.
 (2) Guard and maintain electrical lines/cords.
 (3) Tag/remove damaged equipment from service.
8. **Potential Hazard:** Tools

Procedure(s) to Mitigate Hazard:
1. Tag and remove defective tools from service.
2. Maintain and inspect per manufacturer’s recommendations.
3. Utilize proper eye protection.

9. **Potential Hazard:** Above and/or Underground Utilities within Work Area(s)

Procedure(s) to Mitigate Hazard:
1. Obtain a site utility plan or markout and ensure that electrical lines (if any) are not energized.
2. Call Di-Safe-NY to locate utilities before any intrusive work.

2.3 BIOLOGICAL HAZARDS

Biological hazards which on-site personnel may encounter are considered minimal, but include animal bites or stings, contact with plants, and exposure to microbes.

Animal bites or stings are usually nuisances (localized swelling, itching, and minor pain) that can be handled by first aid treatment. The bites of certain snakes, lizards, and spiders contain sufficient poison to warrant medical attention. There also are diseases that can be transmitted by animal bites which will require professional medical attention. Examples are rabies (mainly from dogs, skunks, raccoons, and foxes), Lyme disease (from ticks [see discussion below]), and encephalitis (from mosquitoes).

The biggest hazard and most common cause of fatalities from animal bites and stings (particularly bees, wasps, and spiders) is a sensitivity reaction. Anaphylactic shock due to stings can lead to severe reactions to the circulatory, respiratory and central nervous system, and it can also result in death. Therefore, workers with known insect allergies must notify the site health and safety officer of his/her condition prior to engaging in remedial operations.

Workers who are bitten by an animal or stung by an insect must immediately notify the site safety and health officer.

Lyme Disease is caused by an infectious agent, *Borrelia burgdorferi*. This agent is a spirochete transmitted to animals or humans via ticks. The early symptoms and signs, with one exception, are non-specific and easily attributed to other illnesses, such as the flu. They include fever, nausea, vomiting, fatigue, headache, photophobia (sensitivity to light), and, in approximately 75 percent of the cases, a rash. Over several days it enlarges, sometimes reaching a diameter of 20 centimeters. The border of the enlarging rash is red, slightly warm, but flat. Often, the center of the rash clears somewhat, so that it looks like an irregular ring. In about half of the persons with a rash, more than one circular eruption is present. The rash termed, erythema migrans, is essentially diagnostic of Lyme disease, and therefore is a very important finding.

Undiagnosed/untreated Lyme disease can lead to severe, sometimes life-threatening medical problems. The principal targets include the skin, the nervous system, the heart, and the joints. Early treatment is highly desirable since, in most cases, it prevents progression of the disease and is a less prolonged, less intense affair.

Preventative measures include protective clothing (see Section 6.0); head/hair protection; and the use of insect repellent containing DEET on all exposed areas and coveralls. Workers should check their bodies thoroughly for ticks and should bathe soon after returning home. Remove any ticks carefully, using a gentle, firm, tugging motion with fine tweezers. Do not kill the tick before it has been removed. Workers should save the ticks and monitor their bites, checking for a rash and other symptoms (up to about eight
Toxic effects from plants are generally due to ingestion. Of more concern to on-site personnel are certain plants, including poison ivy, poison oak, and poison sumac, which produce adverse effects from direct contact. The usual effect is dermatitis inflammation of the skin. The protective clothing and decontamination procedures used for chemicals also reduce the exposure risk from the plant toxins. Cleaning the skin thoroughly with soap and water after contact will reduce the risk.
<table>
<thead>
<tr>
<th>Chemical of Concern</th>
<th>Maximum Concentration (If Known)</th>
<th>Potentially Contaminated Media</th>
<th>OSHA PEL/ ACGIH TLV/ NIOSH IDLH</th>
<th>Routes of Exposure</th>
<th>Exposure Symptoms/ Primary Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Hydrocarbons Benzene, Xylenes, Toluene, Ethyl benzene</td>
<td>Refer to Phase II Reports</td>
<td>Soil Groundwater</td>
<td>PEL: 1 - 10 ppm TLV: 100 ppm IDLH: 100 ppm</td>
<td>Inhalation Absorption</td>
<td>FLAMMABLE LIQUIDS/FIRE HAZARD May damage the developing fetus. They can irritate the eyes, nose and throat. High levels can cause dizziness, passing out and death. Repeated exposure may damage bone marrow causing low blood cell count. May also damage the eyes, and cause stomach problems. May cause problems with memory and concentration.</td>
</tr>
<tr>
<td>Semivolatile organics Naphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, Benzo(g,h,i)perylene benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, pyrene</td>
<td>Refer to Phase II Reports</td>
<td>Soil Groundwater</td>
<td>PEL: 0.2 mg/m3 TLV: 0.2 mg/m3 IDLH: 80 mg/m3</td>
<td>Inhalation Ingestion</td>
<td>Seven semivolatile organics on the hazardous substance list are suspected/known carcinogens of various degrees. These chemical can cause tumors, and affect the skin, lungs, male reproductive organs, and respiratory tract.</td>
</tr>
<tr>
<td>Heavy Metals</td>
<td>Not known at this time</td>
<td>Soil Groundwater</td>
<td>PEL: 5 mg/m3 TLV: 10 mg/m3 IDLH: NE</td>
<td>Inhalation Absorption</td>
<td>Heavy metals can affect the skin, eyes, mucous membrane, nasal cavities, lungs liver, kidneys and heart</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (PCBs)</td>
<td>Not known at this time</td>
<td>Soil Groundwater</td>
<td>PEL: 1 mg/m3 TLV: 1 mg/m3 IDLH: NE</td>
<td>Absorption</td>
<td>Confirmed carcinogen. Moderately toxic by ingestion. Has skin effect and toxic action on the liver. Some isomers are poisonous by other routes. Symptoms of systemic intoxication are nausea, vomiting, weight loss, edema and abdominal pain.</td>
</tr>
</tbody>
</table>

NOTES:

OSHA PEL = Occupational Safety & Health Administration's Final Rule Limits Permissible Exposure Limit for an 8-hour, time-weighted average (TWA) from CFR 1910.1000, Tables Z-1A, Z-2, and Z-3.

ACGIH TLV = American Conference of Governmental Industrial Hygienists' Threshold Limit Value for an 8-hour, TWA.

NIOSH IDLH = National Institute of Occupational Safety and Health Level Immediately Dangerous to Life and Health.
<table>
<thead>
<tr>
<th>Task</th>
<th>Sub-Tasks</th>
<th>Activity</th>
<th>Hazard</th>
<th>Protective Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Installation and Development</td>
<td>Drilling, bailing or pumping,</td>
<td>Use of heavy equipment, power tools, and hand tools</td>
<td>Potential exposure to chemicals and particulates, falls, cuts, release of kinetic or stored energy</td>
<td>Use of proper techniques and work practices including use of PPE.</td>
</tr>
<tr>
<td>Test Pit Excavation and Soil Borings</td>
<td>Excavation, backfill, field measurements, soil sampling</td>
<td>Use of heavy equipment, power tools, and hand tools</td>
<td>Potential exposure to chemicals and particulates, falls, cuts, injury from falling objects, release of kinetic or stored energy, unstable excavation walls</td>
<td>Engineering controls such as water for particulate control, proper work practices including proper heavy equipment operation and use of PPE.</td>
</tr>
<tr>
<td>Monitoring and Sampling</td>
<td>Field measurements, Water, soil sampling</td>
<td>Use of hand tools, direct read instruments or other equipment to gather samples for analysis</td>
<td>Potential chemical exposure</td>
<td>Use of proper techniques and PPE</td>
</tr>
<tr>
<td>Decontamination of Equipment and personnel</td>
<td>Cleaning contaminants off equipment and personnel;</td>
<td>Use of power-washer or spray bottles, and hand tools to remove contaminants</td>
<td>Potential chemical exposure, thermal burns</td>
<td>Proper operation of power washer and use of proper PPE</td>
</tr>
<tr>
<td>Soil excavation and off-site disposal</td>
<td>Excavation, stockpiling, loading, transportation</td>
<td>Use of heavy equipment, power tools, and hand tools</td>
<td>Potential exposure to chemicals and particulates, falls, cuts, injury from falling objects, release of kinetic or stored energy, unstable excavation walls</td>
<td>Engineering controls such as water for particulate control, proper work practices including proper heavy equipment operation and use of PPE.</td>
</tr>
<tr>
<td>Backfill and regrading</td>
<td>Wells, cap, gas probes</td>
<td>Use of heavy equipment, power tools, and hand tools</td>
<td>Potential exposure to particulates, falls, cuts, injury from falling objects, release of kinetic or stored energy, electrical hazards</td>
<td>Engineering controls such as water for particulate control, proper work practices including proper heavy equipment operation and use of PPE.</td>
</tr>
</tbody>
</table>
SECTION 3.0
Project Organization & Personnel Responsibilities

The following IEG managerial personnel are assigned to this project and will assume the job functions listed below:

- **Project Manager (IEG)** - Dharmarajan R. Iyer, Ph.D., PE;
- **Health & Safety Officer (HSO, IEG)** – Fred Smith, Jr., CIH

3.1 PERSONNEL RESPONSIBILITIES

The Project Manager will be responsible for overall administration of the project and will assume corporate QA/QC requirements. In addition, the Project Manager will oversee submittals, negotiating/securing subcontracts; scheduling, personnel management, cost tracking and reporting, etc.

The HSO will be responsible for field implementation of this HASP and for insuring the project team’s compliance to the site-specific health and safety protocol established herein. The HSO will be responsible for the following:

- Implementing, enforcing, and monitoring the HASP
- Preconstruction indoctrination and periodic training of all on-site personnel with regard to this safety plan and other safety requirements to be observed during construction including:
 - Potential hazards,
 - Personal hygiene principles,
 - Personal protective equipment (PPE),
 - Respiratory protection equipment usage and fit testing,
 - Emergency procedures dealing with fire and medical situations, and
 - Conduct daily update meetings in regard to health and safety
- Evaluating monitoring data to make field decisions regarding safety and health
- Informing project personnel of NYS Labor Law Section 876 (Right-to-Know Law)
- Maintaining separation of Exclusion Zone (dirty) from the Support Zone (clean)

The HSO will have the authority to:

- Enforce this HASP and stop operations if personnel safety and health may be jeopardized, and
- Effect evacuation of the site if necessary

3.2 SURVEILLANCE & INTERNAL AUDITING RESPONSIBILITIES

The HSO will monitor job-site safety via inspection and review of records. Any safety violations will be corrected and reported to the Project Manager. Safety violations will be immediately corrected, explained to the perpetrator, and reviewed at the next safety meeting. Excessive violations of the site safety rules will be grounds for disciplinary action which could lead to termination or expulsion.
SECTION 4.0
Site Personnel Training Requirements

All personnel assigned to the site will be in compliance with the training requirements of 29 CFR 1910 and 1926 as listed below. Site personnel will have met one of the following requirements prior to the start of activities at the site:

- A 40 hour minimum hazardous materials safety and health course, as stipulated in 29 CFR 1926.65.e(3); and
- An 8 hour minimum refresher course per year after the 40 hour minimum training has occurred (29 CFR 1926.65.e[8]).

On-site managers and supervisors must be in compliance with the additional supervisory training requirements of 29 CFR 1926.65.e(4). Emergency responders must be in compliance with the additional training requirements of 29 CFR 1926.65.e(7). Personnel involved in confined space entry will have completed training in accordance with OSHA requirements.

As stipulated in 29 CFR 1910.120, all IEG and subcontractor personnel assigned to this project also will receive site-specific training in:

- Provisions of OSHA regulations and legislation under OSHA Standards 1910 and 1926;
- Provisions of NYSDOL 28.876;
- Medical monitoring per Section 5.0 of this HASP;
- Hazards of the work place (chemical/physical/biological/ergonomic);
- Standard safety operation procedures (see Attachment B);
- Decontamination procedures;
- Work zones;
- Emergency procedures and contingency plans;
- Respirator equipment training, qualitative fit testing and respirator maintenance;
- Emergency first aid procedures, blood borne pathogen program, and CPR;
- On-site communication procedures;
- Air monitoring techniques and sample taking;
- Hazardous material recognition;
- Importance of "Buddy System";
- Toxicology and basic chemistry;
- Site entry; and
- Use of emergency escape packs.

Copies of applicable training certificates (i.e., 40 hour training records, 8 hour training records, 8 hour supervisor training records, medical monitoring documentation, respirator fit test results, first aid/CPR certificates, asbestos handlers cards, confined space entry training certificates, etc.) for site personnel will be retained by the HSO.

4.1 VISITORS

Only those persons who have (1) completed the same level of training as the workers for the portion of the site they wish to enter, in addition to having received the site orientation currently outlined in this HASP, and (2) signed the Visitor’s Entry Log will be permitted to enter established work areas. The HSO will establish, on a case-by-case basis, a safe location from which visitors can observe the site activity of interest.
4.2 SAFETY MEETINGS

Personnel who work on the site are required to attend Pre-Entry Site Briefing as and when it is held. It will include a review of the requirements of this HASP. On-site safety meetings will occur regularly and **on-site personnel will be required to attend**. Attending personnel must sign an attendance sheet. Any personnel who miss the on-site safety meetings will be required to attend a review by the HSO before he/she will be allowed to work at the discretion of the HSO. Items to be considered at the safety meetings may include, but are not limited to:

- Review of relevant site data that may relate to the potential for worker exposure;
- Delegation of responsibility (i.e., field technicians, equipment operators, emergency backup personnel, competent persons, logistical and support requirements);
- Type and frequency of environmental and personal monitoring to be performed;
- Mobilization of support and decontamination equipment;
- Initial levels of protection required and the anticipated potential for upgrading;
- Decontamination requirements;
- Emergency procedures;
- Functional and interpretive problems that may have been encountered while using monitoring instrumentation, personal protective or other support equipment;
- Personal hygiene;
- Fire prevention;
- Heavy equipment operation; and
- Discussion of on-going and planned work activities.

4.3 EMERGENCY RESPONSE TRAINING

Training in site-specific emergency procedures will be provided by the site health and safety officer before work begins on-site. This training will include, but is not limited to, the following:

- Emergency chain-of-command;
- Communication methods and signals;
- Location of phones and emergency numbers;
- Use of emergency equipment;
- Evacuation and emergency procedures;
- Off-site support;
- Site-specific hazards;
- Decontamination procedures;
- Standard operating procedures; and
- Location and use of first aid equipment.
SECTION 5.0
Medical Surveillance

Medical monitoring is required by OSHA as a means of monitoring worker exposure to certain toxic substances. IEG will implement a Medical Surveillance Program (MSP) for employees engaged in on-site activities which is consistent with the requirements of 29CFR.1926.65(b). All medical records and personnel exposure monitoring data generated from the MSP will be retained per 29 CFR 1910.1020.

A baseline medical surveillance examination will be given not more than one year prior to a 40-Hour OSHA-Trained worker reporting to the job site to work in contaminated areas. Copies of the physician's statement certifying each employee's ability to work at task-specific operations, as well as their suitability for wearing respirators will be maintained by the HSO for review by involved regulatory personnel upon request. The baseline Medical Surveillance Exam will meet the requirements of 29CFR.1926.65 (b).

5.1 EPISODIC EXAMINATIONS

Non-scheduled medical examinations may be required upon acute exposure, at the discretion of the HSO, or upon receipt of a request for a medical examination from any employee with symptoms of exposure to hazardous substances, or following injuries, etc. Episodic examinations will be provided, if required, by that person's direct employer through their Medical Surveillance Program.

5.2 ANNUAL AND/OR TERMINATION EXAMINATIONS

All personnel participating in the medical monitoring program (i.e., those personnel who are 40-Hour, OSHA-Trained) will have annual re-examinations and follow-up examinations upon completion of the work. Biological monitoring for blood lead levels will be conducted as part of these examinations in accordance with 29 CFR 1926.62. Employees will be notified of their blood lead levels within five working days of receipt of biological monitoring results.

The annual and termination exams will be complementary in scope with the baseline exams to the degree sufficient to allow comparison of individual biologic parameters. Additional testing for the purpose to further diagnose occupationally induced or significant abnormalities will be at the discretion of the examining physician.

5.3 AUDIOMETRIC TESTING

In addition to the baseline physical exam, all personnel will receive an annual audiogram. This annual audiogram will be reviewed against the baseline or most current audiogram by a certified audiologist to determine if noise-induced hearing loss has occurred. If a noise-induced hearing loss is noted during the evaluation, the employee will be notified, in writing, within 21 days of the determination. This testing is performed in compliance with 29 CFR 1210.95.

5.4 ABNORMAL MEDICAL SURVEILLANCE RESULTS

In general, whenever any medical test which is of significance yields abnormal results, the test will be repeated. Whenever abnormal results are substantiated, the worker may be restricted or excluded from areas which are potentially contaminated or thought to compromise his/her safety. Employees exhibiting elevated blood lead levels will be removed from exposures. The decision of worker disposition will rest with the examining physician.
5.5 HEAT/COLD STRESS MONITORING

The following program will be implemented when the ambient air temperatures exceed 70°F (heat stress monitoring) or drop below 40°F (cold stress monitoring).

5.5.1 Heat Stress Monitoring

Site personnel who wear protective clothing allow body heat to be accumulated with an elevation of the body temperature. Heat cramps, heat exhaustion, and heat stroke can be experienced, which, if not remedied, can threaten life or health. Therefore, an American Red Cross Standard -First Aid book (current edition) or equivalent will be maintained on site at all times so that the HSO and site personnel will be able to recognize symptoms of heat emergencies and be capable of controlling the problem.

When protective clothing is worn (especially Levels A, B, and C) the suggested guidelines for ambient temperature and maximum wearing time per excursion are:

<table>
<thead>
<tr>
<th>Ambient Temperature (°F)</th>
<th>Maximum Wearing Time Per Excursion (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 90</td>
<td>15</td>
</tr>
<tr>
<td>85 to 90</td>
<td>30</td>
</tr>
<tr>
<td>80 to 85</td>
<td>60</td>
</tr>
<tr>
<td>70 to 80</td>
<td>90</td>
</tr>
<tr>
<td>60 to 70</td>
<td>120</td>
</tr>
<tr>
<td>50 to 60</td>
<td>180</td>
</tr>
</tbody>
</table>

Monitoring the heart rate is one method of measuring the effectiveness of employees’ rest-recovery regime:

› During a 3-minute period, count the pulse rate for the last 30 seconds of the first minute, the last 30 seconds of the second minute, and the last 30 seconds of the third minute.
› Double the count.

If the recovery pulse rate during the last 30 seconds of the first minute is at 110 beats/minute or less and the deceleration between the first, second, and third minutes is at least 10 beats/minute, the work-recovery regime is acceptable. If the employee’s rate is above that specified, a longer rest period is required, accompanied by an increased intake of fluids.

In the case of heat cramps or heat exhaustion, "Gatorade" or its equivalent is suggested as part of the treatment regime. The reason for this type of liquid refreshment is that such beverages will return much-needed electrolytes to the system. Without these electrolytes, body systems cannot function properly, thereby increasing the represented health hazard. NOTE: The HSO or HSTs may weigh workers before and after entry to determine if there is excessive loss of fluid.

This liquid refreshment will be stored in a cooler at the edge of the decontamination zone in plastic squeeze bottles. The plastic bottles will be marked with individual’s names. Disposable cups with lids and straws may be used in place of the squeeze bottles. Prior to drinking within the decontamination zone, the project personnel will follow the following decontamination procedures:
A. Personnel will wash and rinse their outer gloves and remove them.
B. Personnel will remove their hard hats and respirators and place on table.
C. Personnel will remove their inner gloves and place them on table.
D. Personnel will wash and rinse their face and hands.
E. Personnel will carefully remove their personal bottle or cup from the cooler to ensure that their outer clothes do not touch any bottles, cups, etc. Personnel also must ensure that their hands do not touch their outer clothes.
F. The used bottle or cups will not be returned to the cooler, but will be placed in a receptacle or container to be cleaned or disposed of.
G. Personnel will replace their respirators, hard hats, gloves and tape gloves prior to re-entering the hazardous zone.

When personnel are working in situations where the ambient temperatures and humidity are high-and especially in situations where protection Levels A, B, and C are required the HSO must:

- Assure that all employees drink plenty of fluids ("Gatorade" or its equivalent);
- Assure that frequent breaks are scheduled so overheating does not occur; and
- Revise work schedules, when necessary, to take advantage of the cooler parts of the day (i.e., 5:00 a.m. to 1:00 p.m., and 6:00 p.m. to nightfall).

5.5.2 Cold Stress Monitoring

Whole-body protection will be provided to site personnel that have prolonged exposure to cold air. The right kind of protective clothing will be provided to site personnel to prevent cold stress. The following dry clothing will be provided by IEG as deemed necessary by the HSO:

- Appropriate underclothing (wool or other);
- Outer coats that repel wind and moisture;
- Face, head, and ear coverings;
- Extra pair of socks;
- Insulated safety boots; and
- Glove liners (wool) or wind- and water-repellant gloves.

The HSO will use the equivalent chill temperature when determining the combined cooling effect of wind and low temperatures on exposed skin or when determining clothing insulation requirements.

Site personnel working continuously in the cold are required to warm themselves on a regular basis in the on-site hygiene facility. Warm, sweet drinks will also be provided to site personnel to prevent dehydration. The HSO will follow the work practices and recommendations for cold stress threshold limit values as stated by the latest edition of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices by the American Conference of Governmental Industrial Hygienists or equivalent cold stress prevention methods.
SECTION 6.0
Personal Protective Equipment

Based on an evaluation of potential hazards (see Section 2.0), the following levels of personal protective equipment are assigned for this project.

<table>
<thead>
<tr>
<th>PLANNED WORK ACTIVITY</th>
<th>PLANNED LEVEL OF PROTECTION</th>
<th>ACTION LEVEL FOR PPE UPGRADE/DOWNGRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Installation</td>
<td>Modified level D</td>
<td>Upgrade to Level C if Sustained Readings(^a) of 2.5 x Background and 150 (\mu g/m^3) are recorded or if an IDLH Condition is Probable.</td>
</tr>
<tr>
<td>Soil and groundwater sampling</td>
<td>Modified Level D</td>
<td>Upgrade to Level C if Sustained Readings(^a) of 2.5 x Background and 150 (\mu g/m^3) are recorded or if an IDLH Condition is Probable.</td>
</tr>
<tr>
<td>Soil Excavation and offsite disposal</td>
<td>Modified Level D</td>
<td>Upgrade to Level C if Sustained Readings(^a) of 2.5 x Background and 150 (\mu g/m^3) are recorded or if an IDLH Condition is Probable.</td>
</tr>
<tr>
<td>Backfill and regrading</td>
<td>Level D</td>
<td>Upgrade to Level C if Sustained Readings(^a) of 2.5 x Background and 150 (\mu g/m^3) are recorded or if an IDLH Condition is Probable.</td>
</tr>
<tr>
<td>Decontamination of Equipment & Vehicles</td>
<td>Level D</td>
<td>Upgrade to Level C if Sustained Readings(^a) of 2.5 x Background and 150 (\mu g/m^3) are recorded or if an IDLH Condition is Probable.</td>
</tr>
</tbody>
</table>

NOTES:
A. For the purposes of this discussion, a sustained reading is defined as a consistent reading on a real-time monitoring instrument which does not vary substantially from a peak or a result which is averaged over a period of time (i.e., 5 minutes). Sustained is called out in order to avoid downgrading PPE based on a single “hit” or “miss” instead of the average concentration present. Unless a chemical has a ceiling value, the TWA and STEL values are averages for exposure over 8-hours or 15 minutes and not single peaks. The values for the above action levels are based on TWA and STEL values.

B. The action levels given are based on the potential for exposure to the chemicals listed in the contract documents. These action levels may be changed based on further chemical-specific sampling.

C. The levels of PPE identified have been assigned by task (Table 3), known/anticipated chemical toxicity (Table 2), and potential exposure risks (Table 3). Action levels for PPE upgrade have been set conservatively to minimize the risk of physical injury and/or exposure to field personnel.

D. Respiratory protection will conform to OSHA 1910.134. Personnel assigned to work in the Exclusion Zone or Contamination Reduction Zone must have passed a Respirator Fit Test in accordance with OSHA 3079. Fit tests will be administered by the HSO. Respirators will be maintained and operated per the SOP set forth in Attachment D of this HASP.

E. The HSO will be responsible for determining the need for PPE upgrade or downgrade based on actual conditions encountered in the field.

PPE levels are defined in Table 4 at the end of this section. Project-specific PPE requirements are summarized below.

- The Level D PPE ensemble will include work clothing as dictated by weather (sleeved shirts and long pants required); a hard hat; safety glasses; and steel-toe work boots. Hearing and fall protection will be utilized as directed by the HSO or HSTs.

- The Modified Level D PPE ensemble will include work clothing as dictated by weather; disposable Tyvek coveralls or equivalent; disposable nitrile (NRC) or neoprene outer gloves...
(worn over optional inner latex or surgical gloves); a hard hat; safety glasses; steel-toe work boots; and neoprene or butyl rubber overboots. Hearing and fall protection will be utilized as directed by the HSO or HSTs.

The **Level C PPE ensemble** will include full face air purifying respirator (MSHA/NIOSH approved) with combination organic vapor, acid gas and high efficiency particulate cartridge/filter; Saranax-laminated Tyvek or equivalent coverall; chemical-resistant outer and inner gloves; a hard hat; safety glasses; steel-toe work boots; neoprene or butyl rubber overboots; long cotton underwear (optional); and an escape air mask (readily available). Hearing and fall protection will be utilized as directed by the HSO or HSTs.

Level B PPE will be worn when confined space entry is required (i.e., during tank cleaning). The Level B PPE ensemble will include a positive-pressure SCBA (MSHA/NIOSH approved) or positive-pressure air line respirator with escape bottle for IDLH or potential IDLH atmosphere (MSHA/NIOSH approved); chemical-resistant clothing (Saranax-laminated Tyvek or equivalent coverall); long cotton underwear (optional); outer and inner chemical-resistant gloves; steel-toe work boots; disposable chemical-resistant overboots; and hard hat (face shield optional). Hearing or fall protection will be utilized as directed by the HSO or HSTs.

Taping will be used between suit and gloves, and suit and boots for Levels B, C, and Modified D PPE.

The base levels of protection identified are to be considered preliminary and may change based on air monitoring information collected by the HSO or HSTs during project work. No Changes to the specified levels of protection will be made without the approval of the HSO.
<table>
<thead>
<tr>
<th>LEVEL OF PROTECTION</th>
<th>EQUIPMENT</th>
<th>PROTECTION PROVIDED</th>
<th>SHOULD BE USED WHEN:</th>
<th>LIMITING CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pressure-demand, full-facepiece SCBA or pressure-demand supplied-air respirator with escape SCBA.</td>
<td></td>
<td>• The chemical substance has been identified and requires the highest level of protection for skin, eyes, and the respiratory system based on either:</td>
<td>• Fully-encapsulating suit material must be compatible with the substances involved.</td>
</tr>
<tr>
<td></td>
<td>• Full-encapsulating, chemical-resistant suit.</td>
<td></td>
<td>• measured (or potential for) high concentration of atmospheric vapors, gases, or particulates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inner chemical-resistant gloves.</td>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chemical-resistant safety boots/shoes.</td>
<td></td>
<td>• site operations and work functions involving a high potential for splash, immersion, or exposure to unexpected vapors, gases, or particulates of materials that are harmful to skin or capable of being absorbed through the intact skin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Two-way radio communications.</td>
<td></td>
<td>• Substances with a high degree of hazard to the skin are known or suspected to be present, and skin contact is possible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td></td>
<td>• Operations must be conducted in confined, poorly ventilated areas until the absence of conditions requiring Level A protection is determined.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cooling Unit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coveralls.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Long cotton underwear.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hard hat.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Disposable gloves and boot covers.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL OF PROTECTION</th>
<th>EQUIPMENT</th>
<th>PROTECTION PROVIDED</th>
<th>SHOULD BE USED WHEN:</th>
<th>LIMITING CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pressure-demand, full-facepiece SCBA or pressure-demand supplied-air respirator with escape SCBA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chemical-resistant clothing (overalls and long-sleeved jacket; hooded, one- or two-piece chemical splash suit; disposable chemical resistant one-piece suit).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inner and outer chemical-resistant gloves.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chemical-resistant safety boots/shoes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hard hat.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Two-way radio communications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The same level of respiratory protection but less skin protection than Level A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is the minimum level recommended for initial site entries until the hazards have been further identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The type and atmospheric concentration of substances have been identified and require a high level of respiratory protection, but less skin protection. This involves atmospheres:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• with IDLH concentrations of specific substances that do not represent a sever skin hazard; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• that do not meet the criteria for use of air-purifying respirators.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Atmosphere contains less than 19.5 percent oxygen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Presence of incompletely identified vapors or gases is indicated by direct-reading organic vapor detection instrument, but vapors and gases are not suspected of containing high levels of chemicals harmful to skin or capable of being absorbed through the skin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use only when the vapor of gases present are not suspected of containing high concentatio ns of chemicals that are harmful to skin or capable of being absorbed through the intact skin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use only when it is highly unlikely that the work being done will generate either high concentratio ns of vapors, gases, or particulates or splashes of material that will affect exposed skin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL OF PROTECTION</td>
<td>EQUIPMENT</td>
<td>PROTECTION PROVIDED</td>
<td>SHOULD BE USED WHEN:</td>
<td>LIMITING CRITERIA</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>C</td>
<td>Recommended</td>
<td>The same level of skin protection as Level B, but a lower level of respiratory protection.</td>
<td>The atmospheric contaminants, liquid splashes, or other direct contact will not adversely affect any exposed skin.</td>
<td>Atmospheric concentration of chemicals must not exceed IDLH levels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The atmosphere must contain at least 19.5 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Recommended</td>
<td>No respiratory protection. Minimal skin protection.</td>
<td>The atmosphere contains no known hazard.</td>
<td>This level should not be worn in the Exclusion Zone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Work functions preclude splashes, immersion, or the potential for unexpected inhalation of or contact with hazardous levels of any chemical.</td>
<td>The atmosphere must contain at least 19.5 percent oxygen.</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Recommended**
 - Full-facepiece, air-purifying, canister-equipped respirator.
 - Chemical-resistant clothing (overalls and long-sleeved jacket; hooded, one- or two-piece chemical splash suit; disposable chemical-resistant one-piece suit).
 - Inner and outer chemical-resistant gloves.
 - Chemical-resistant safety boots/shoes.
 - Hard hat.
 - Two-way radio communications.

- **Optional**
 - Coveralls.
 - Disposable boot covers.
 - Face shield.
 - Escape mask.
 - Long cotton underwear.

For Level D, no respiratory protection is needed, but minimal skin protection is recommended.
SECTION 7.0
Air Monitoring Program

7.1 GENERAL

Personnel, work area, and perimeter monitoring strategies have been devised to ensure that the identification of areas for which PPE, engineering, and administrative controls are required. Monitoring and documentation will be conducted as necessary by the HSO or a designated field technician to confirm that the levels of PPE, engineering, and administrative controls are adequate to protect the workers, general public, and environment.

The Project Manager and HSO will ensure that an adequate supply of appropriate monitoring equipment is available prior to commencing work at the site. The instruments will be operated only by persons with appropriate training in the care, calibration, operation, and limitations of the equipment. All instruments will be inspected regularly and field calibrated to determine background concentrations prior to use.

Sampling will be performed and samples will be analyzed using published methodologies that have been validated by OSHA or NIOSH.

Action level contaminant concentrations are based on 50 percent of the OSHA PEL or ACGIH TLV for each contaminant (see Table 2). If air samples indicate that personal exposures are greater than the action levels, then personal protection, engineering, and administrative controls will be reviewed according to the procedures outlined below.

7.2 AIR MONITORING PROCEDURE

Air monitoring, if required, will be conducted in accordance with Table 5 and as follows:

1. Check and record calibration before and after use each day. All instruments will be calibrated and operated in accordance with manufacturer's specifications. Equipment manuals for all monitoring instruments will be present on-site during all operations.
2. Note weather conditions.
3. Collect and record a background reading on each air monitoring instrument to be used at day's start in an area free of site-generated airborne contaminants. This area will be located upwind of the work area.
4. Prior to initiation of operations, determine and record ambient levels within the contaminated work area(s).
5. Report ambient conditions periodically.
6. Check and record breathing zone levels during remediation and/or abatement activities.
7. Check and record levels at the perimeter of the work zone if elevated concentrations are detected in the worker's breathing zone.
8. Check and record levels following completion of any intrusive work. Monitor one (1) upwind and three (3) downwind locations at the edge of the work zone.
9. Check and record airborne particulate levels periodically. Monitor one (1) upwind and three (3) downwind locations at the edge of the work zone.
10. Check and record daily (pre/post-work) outside exclusion zone ambient air readings. Monitor one (1) upwind and three (3) downwind locations at the edge of the work zone.
TABLE 5
Summary of Air Monitoring Plan* with Action Levels
Brownfield Site SI/IRM for 132 Dingens St.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Sampling Location</th>
<th>Monitoring Frequency</th>
<th>Action Level[^a]</th>
<th>Response Action[^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photovac TIP (OVA)</td>
<td>At Work Zone</td>
<td>During sampling and well repair</td>
<td>50% PEL of Measured Contaminants</td>
<td>Work ceases until mitigated Evaluate Need for PPE Upgrade.</td>
</tr>
<tr>
<td>Explosimeter/Oxygen Meter</td>
<td>At Work Zone as Applicable</td>
<td>Any activity which would provide a source of ignition; Periodically during such activity.</td>
<td><10% LEL</td>
<td>Complete the activity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>10% LEL to <20% LEL</td>
<td>Complete the activity with continued monitoring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>20% LEL[^c]</td>
<td>Explosion hazard; evacuate the area; Notify HSO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 19.0% & ≥ 23%</td>
<td>Do not enter. Notify HSO. Ventilate Area</td>
</tr>
</tbody>
</table>

NOTES:

A. The toxicity action levels given above are based on established OSHA PELs for the chemical compounds known and/or anticipated to be present on-site (see Table 2 of this HASP).

B. The HSO is responsible for collecting air monitoring data and notifying site personnel of required response actions (i.e., implementation of engineering controls, upgrade/downgrade to PPE, stop work orders).
SECTION 8.0
Decontamination Procedures

Personnel and equipment decontamination procedures to be employed when exiting contaminated work areas at this project site are detailed in the following subsections.

8.1 PERSONNEL DECONTAMINATION

All personnel will be made aware of any personal habit that may allow contaminants into or onto the body. All personnel will check that regularly worn PPE (e.g., hard hats and liners, eye protection, etc.) is clean and in good condition. Any products for personal consumption or application are prohibited in any work area. Break area(s) will be limited to specific areas where eating, drinking, smoking, etc. and the storage of these materials will be allowed.

No PPE will be removed from a designated work area without proper decontamination or disposal. All personnel leaving the work area will pass through a contamination reduction zone where they will remove their PPE and thoroughly wash/rinse exposed skin with water and biodegradable soap before leaving the project site per the following seven step decontamination SOP.

Step 1: Place equipment and/or samples in area(s) designated in the Equipment Drop-Off Station.

Step 2: Scrape gross contamination from boots and outer gloves, wash using soap in water solution, and rinse with water.

Step 3: Remove tape from around boots and gloves and place in plastic bag or drum provided. Remove overboots and outer gloves and place in plastic bags.

Step 4: Remove respiratory cartridges (if used) and place in plastic bag or drum provided.

Step 5: Remove disposable coveralls and place in plastic bag or drum. Remove boots and store in appropriate location. Remove disposable inner gloves (if worn) and place in plastic bag. Remove hard hat and safety glasses: decontaminate as necessary (wash with sanitizing solution [MSA sanitizing solution or equivalent], rinse with potable water, and allow to dry at the end of each day).

Step 6: Remove respirator (if used) and deposit in plastic bag or drum provided. Avoid touching face with fingers. Respirators will be washed in a sanitizing solution (MSA sanitizer or equivalent), rinsed with potable water, and allowed to air dry at the end of each day.

Step 7: Thoroughly wash/rinse exposed skin with water and biodegradable soap (i.e., trisodium phosphate). Shower and launder personal clothing as soon as possible upon completing daily activities.

Portable decontamination stations (a.k.a., “boot wash” facilities) will be set up in the CRZ adjacent to each hazardous work zone requiring decontamination for personnel. The Boot Wash facilities will be constructed to contain spent wash water, contain a reservoir of clean wash water, a power supply to operate a pump for the wash water, a separate entrance and exit to the decontamination platform with equipment being mobile, allowing easy transport for one hazardous work zone to the next. Personnel will be required to dress down and drum their used PPE in the decontamination area in accordance with the above seven step procedure.

A fixed decontamination trailer equipped with shower facilities will be located in the CRZ near the support zone. All personnel will be required to shower before leaving the site.

All materials generated during decontamination will be drummed for disposal in accordance with applicable local, state, and federal regulations.
8.2 EQUIPMENT DECONTAMINATION

Equipment which may have been contaminated during the course of remedial operations will be decontaminated prior to removal from the site. Generally, equipment decontamination will be performed as follows:

1. Conduct gross removal of solids at point of use (i.e., manually scrape off dirt/soil from tires, bucket, etc.).

2. Move to the temporary equipment decontamination pad in the CRZ for decontamination via pressure washing. The self-contained high pressure unit will be capable of heating wash waters to 180°F and providing a nozzle pressure of 150 psi.

3. Perform complete detergent rinse (if necessary) using an environmentally-safe solvent (MSDSs will be provided for any materials brought on-site and will be maintained in the Contractor’s field trailer).

4. Perform a final steam rinse.

The HSO will be responsible for inspecting decontaminated equipment before releasing it from the project site. The HSO will certify in writing that each piece of equipment utilized in the “dirty” area has been properly decontaminated prior to removal from the site.
SECTION 9.0
Site Standard Operating Procedures

Site personnel will observe the following Standard Operating Safety Procedures when working at the site.

1. Ensure that all safety equipment and protective clothing is kept clean and well maintained.
2. Ensure that all prescription eyeglasses in use on this project are safety glasses and are compatible with respirators. No contact lenses will be allowed on site.
3. Ensure that all disposable or reusable gloves worn on the site are approved by the HSO.
4. Change respirator filters during periods of prolonged respirator usage in contaminated areas, upon breakthrough. Respirator filters will always be changed daily.
5. Cover footwear used on site by rubber overboots or booties when entering or working in the Exclusion Zone area or CRZ. Boots or booties will be washed with water and detergents to remove dirt and contaminated sediment before leaving the Exclusion Zone or CRZ.
6. Decontaminate or dispose of all PPE used on site at the end of the work day. The HSO will be responsible for ensuring decontamination of PPE before reuse.
7. Individually assign all respirators and do not interchange them between workers without cleaning and sanitizing. Contractor, Subcontractor, and service personnel unable to pass a fit test as a result of facial hair or facial configuration will not enter or work in an area that requires respiratory protection.
8. Ensure that all project personnel have vision or corrected vision to at least 20/40 in one eye.
9. On-site personnel found to disregard any provision of this HASP may be barred from the project.
10. Do not reuse disposable outerwear such as coveralls, gloves, and boots. Used disposable outerwear will be removed upon leaving the hazardous work zone and will be placed inside disposable containers provided for that purpose. These containers will be stored at the site at the designated staging area and the Contractor will be responsible for proper disposal of these materials at the completion of the project.
11. Immediately replace protective coveralls that become torn or badly soiled.
12. Prohibit eating, drinking, chewing gum or tobacco, and smoking in the Exclusion Zone and CRZ.
13. All personnel will thoroughly cleanse their hands, face, and forearms and other exposed areas prior to eating, smoking, or drinking.
14. Workers who have worked in an Exclusion Zone will shower in the on-site decontamination trailer at the completion of the work day.
15. All personnel will wash their hands, face, and forearms before using toilet facilities.
16. Do not allow alcohol, firearms, or drugs (without prescriptions) on site at any time.
17. All personnel who are on medication should report it to the HSO who will make a determination whether or not the individual will be allowed to work and in what capacity. The HSO may require a letter from the individual’s personal physician stating what limitations (if any) the medication may impose on the individual.
SECTION 10.0
Emergency Response & Contingency Plan

The following Emergency Response Plan (ERP) considers and recommends:

- Preventative Measures;
- Personnel training and regular safety meetings conducted to reduce the likelihood of accidents;
- Mitigative measures to limit the scope of any accident; and
- Contingency actions to respond to and remedy the effects of accidents.

10.1 PRE-PLANNING

All work will be coordinated with the owner, IEG, and other involved regulatory personnel. In addition, local police and fire departments, local hospital(s), and local ambulance services will be contacted by the HSO prior to initiation of site operations to inform them of scheduled remedial activities at the site. Arrangements for emergency communication will be made with these organizations prior to initiating on-site operations.

As discussed in Section 5.0 of this HASP, emergency response procedures will be covered as part of each site personnel's training. Training in site-specific emergency procedures will be provided by the site health and safety officer before work begins on-site. This training will include, but is not limited to, the following:

- Emergency chain-of-command;
- Communication methods and signals;
- Location of phones and emergency numbers;
- Use of emergency equipment;
- Evacuation and emergency procedures;
- Off-site support;
- Site-specific hazards;
- Decontamination procedures;
- Standard operating procedures; and
- Location and use of first aid equipment.

10.2 EMERGENCY CHAIN-OF-COMMAND

Personnel will immediately notify the HSO in the event of an emergency using available communications. The HSO will make a rapid assessment of the situation and take appropriate action which (depending upon emergency circumstances) can include notifying the Engineer of the situation; initiating engineering controls (i.e., dust suppression, ventilation, etc.); ordering the suspension of work; ordering evacuation of the work zone; implementing emergency altering and response procedures; requesting emergency medical treatment; and/or administering first aid.

10.3 COMMUNICATION METHODS AND SIGNALS

For emergency situations when two-way radio communication is not available or practical, oral, hand, and semaphore safety signals have been established to protect project personnel. These signals will be made available to personnel for all phases of operation before going on-site. This will ensure quick communication during adverse or emergency situations.

Examples of established signals and their meanings are provided below.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand gripping throat</td>
<td>Out of air, can't breath</td>
</tr>
<tr>
<td>Wave hands over head from side-to-side</td>
<td>Attention: stand-by for next signal</td>
</tr>
</tbody>
</table>
Swing hand from direction of person receiving signal to directly overhead and through in a circle Come here

Pointed finger on extended arm Look in that direction

Grip partner's wrist or both hands around wrist Leave the area immediately

Hands on top of head Need assistance

Thumbs up OK, I'm alright, I understand

Thumbs down No, negative

Examples of audio signals include:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short blast of airhorn</td>
<td>Caution or look here</td>
</tr>
<tr>
<td>Four (4) blasts of airhorn</td>
<td>Leave the area</td>
</tr>
</tbody>
</table>

Each field team member will be assigned a buddy. Field personnel will watch for hazards or problems his/her buddy might encounter. Buddies will pre-arrange hand signals or other means of emergency signals for communication when respiratory protection or distance makes communication difficult. Communication between buddies must be maintained at all times. Visual contact must be maintained between buddies. Further, buddies must remain in close proximity to each other in order to assist in case of emergencies.

10.4 EVACUATION

Emergency escape routes will be designated by the HSO for use in situations where rapid egress from the Exclusion Zone is required. The locations of these routes will be posted in prominent location(s) on-site (i.e., personnel change trailer, office trailer, break trailer, etc.) and will be reviewed with site personnel during daily tool-box and weekly safety meetings.

An emergency evacuation alarm (i.e., air horn) will be kept on-site at all times. A series of regularly spaced, repeated blasts (four blasts) will be used to signify that all personnel should evacuate the work area. After exiting the work area, personnel will meet at an upwind location designated by the HSO. The emergency alarm will be sounded in the event of any serious problem or emergency on-site which requires the assistance of site personnel or the evacuation of work zone personnel.

In all situations when an on-site emergency results in evacuation of the Exclusion Zone, personnel will not be permitted to reenter until:

- The conditions resulting in the emergency have been corrected;
- The hazards have been reassessed;
- This HASP has been reviewed; and
- Site personnel have been briefed on any changes in the HASP.

10.5 EMERGENCY SERVICES/EMERGENCY VEHICLE ACCESS

Emergency telephone numbers (see Table 1) will be posted at each project site telephone. Directions to the local hospital (see Figure 1) also will be posted at the site.

In the event that emergency services vehicles (police, fire, ambulance) need access to a location which is blocked by the working crew operations, those operations (equipment, materials, etc.) will be immediately
moved to allow those vehicles access.

Emergency crews will be briefed as to site conditions and hazards by the HSO. All vehicles and personnel will be decontaminated prior to leaving the site.

10.6 WEATHER-RELATED HAZARD RESPONSE

Threats to site personnel can arise from natural causes (i.e., lightening, high winds, etc.). In the event that severe weather is imminent, the HSO will notify field team members. As the storm approaches, all work will cease, loose objects will be secured, and site personnel will take shelter at pre-arranged locations. After the severe weather event has passed, the HSO will inspect the work area for safety hazards prior to resuming work.

10.7 SPILL CONTROL & CONTINGENCY PLAN

A site-specific Emergency Spill Response Plan is provided in Section 10.0. Specific procedures for responding to spills associated with planned contract operations can be found in said plan.

10.8 PERSONAL INJURIES

In the event of personal injuries the following procedures will be enacted.

1. **Initial alarm and first aid.** Upon observation of an injury, site employees will quickly get the attention of other nearby workers; immediately act to protect the injured person from a life-threatening situation; render appropriate first aid; and warn unsuspecting persons of the potential hazard.

2. **Notify the HSO and the Project Engineer.** Utilizing available personal radio communications or other rapid communication methods, the HSO and the Project Engineer will be notified of the situation, the identity of the injured person, the type of injury, and the project site location.

3. **Ambulance and hospital services.** The HSO will immediately assess the situation and, if necessary, notify the designated off-site hospital of the emergency situation.

4. **Follow-up.** The HSO will determine why the injury occurred, and will take appropriate steps to prevent a similar recurrence. Events associated with the injury will be recorded in the safety officer's logbook.

An Incident Report Form must be completed by the HSO and submitted to the Project Manager within 24 hours of the injury.

10.8.1 Personnel Injury in the Exclusion Zone

Upon notification of any injury in the Exclusion Zone, the designated emergency signal will be sounded. All site personnel will assemble at a pre-arranged location. A rescue team made up of the HSO and other personnel as needed who have received property training (see Section 4.0) will enter the Exclusion Zone (if required) to remove the injured person to the boundary of the Exclusion Zone. The HSO then will evaluate the nature of the injury. The affected person will be decontaminated as necessary to the extent possible prior to movement to the Support Zone. Appropriate first aid will be initiated (see Section 10.12), and the ambulance and designated medical facility (Table 1) will be contacted if required. No persons will reenter the Exclusion Zone until the cause of the injury or symptoms of the illness have been determined.

10.8.2 Personnel Injury in the Support Zone

Upon notification of an injury in the Support Zone, the HSO will assess the nature of the injury. If the cause of the injury or loss of the injured person does not affect the performance of site personnel, operations may continue. The appropriate first aid will be initiated (see Section 10.12) and necessary
follow-up as stated in above. If the injury increases the risk to others, the designated emergency signal will be sounded and all site personnel will move a prearranged location for further instructions. Activities on site will stop until the added risk is removed or minimized.

10.9 FIRE/EXPLOSION

The following contingency plan will be implemented in the event of a fire at the project site.

1. **Initial Alarm.** Upon observation of any on-site fire, personnel must immediately notify the HSO (or his designated on-site representative) and the Project Engineer. No attempt will be made to extinguish the fire prior to sounding the alarm.

2. **Control and/or extinguish small fires which can be suppressed promptly with available on-site equipment.** Without risking personal injury, an attempt will be made to control or extinguish small fire(s) utilizing ABC-type fire extinguishers. Water will not be used except on wood or paper fires.

3. **Notify local fire company.** The HSO and the Project Engineer (or their designated on-site representatives) will immediately assess the situation and, if deemed necessary, notify the local Fire Department of the location and type of fire or explosion. If required, the HSO and/or the Project Engineer (or their designated on-site representatives) will immediately order the site evacuated if a fire occurs which cannot be controlled with a portable fire extinguisher.

4. **Follow-up.** The HSO will determine why the fire or explosion occurred, and will take appropriate steps to prevent a similar recurrence. Events associated with the fire or explosion will be recorded in the safety officer's logbook.

An Incident Report must be completed by the HSO and submitted to Corporate Management and the Project Engineer within 24 hours of the fire/explosion.

10.10 PERSONAL PROTECTIVE EQUIPMENT FAILURE

If any site worker experiences a failure or alteration of protective equipment that affects the protection factor, that person and his/her buddy immediately will leave the Exclusion Zone and notify the HSO. Reentry will not be permitted until the equipment has been replaced or repaired, and the affected areas of the person's body have been decontaminated if applicable.

10.11 OTHER EQUIPMENT FAILURE

If any on-site equipment other than PPE (see Section 10.10 above) fails to operate properly, the HSO will be notified. The HSO then will determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents the completion of the Work Plan tasks, all personnel will leave the Exclusion Zone until the situation is evaluated and all appropriate actions taken.

10.12 EMERGENCY EQUIPMENT & ON-SITE FIRST AID

Emergency and first aid equipment to be maintained on-site includes:

- The active work area will be provided with approved, portable emergency eye wash and shower units in accordance with ANSI Standard Z358.1 and minimum rating 2A-10 B:C type dry chemical fire extinguishers.
- At least one “industrial” first aid kit and stretcher will be provided and maintained fully stocked at an easily accessible, uncontaminated location to be determined on-site by the HSO. Additional first aid kits will be provided in the event active work areas are so isolated or separated as to make use of the one first aid station impractical.
First aid/CPR kit locations will be specifically marked by the HSO and provided with adequate water and other supplies necessary to cleanse and decontaminate burns, wounds, or lesions. First aid stations will be supplied with a buffer solution for testing acid and caustic burns. NOTE: CPR should only be started if the worker is trained in CPR and the victim’s heart has stopped beating.

At least two (2) First Aid Technicians certified by the American Red Cross or other approved agency will be on-site at all times.

2A-10 B:C type dry chemical fire extinguishers will be provided at all site locations where flammable materials present a fire risk.

A minimum of two self-contained breathing apparatus (SCBAs) or lower level of protection as site conditions allow will be maintained in contaminated work areas.

Agencies and medical facilities to be contacted in the event of an on-site emergency are identified in Table 1 of this HASP. The Emergency Response Notification Table also includes the route to the nearest hospital. The table (and corresponding map) will be posted in a prominent location(s) on-site.

If a site worker becomes injured or ill, Red Cross first aid procedures and the blood borne pathogens program provided in this HASP will be followed. First aid or other appropriate initial actions will be provided by the trained first aid responders closest to the incident. NOTE: When protective clothing has been grossly contaminated during an accident/injury, contaminants may be transferred to treatment personnel or the wearer and cause injuries. Unless severe medical problems have occurred simultaneously with splashes, protective clothing should be washed off as rapidly as possible and removed. If the worker is ambulatory or can be moved, he/she will be taken to the personnel decontamination station where decontamination procedures, additional first aid, or preparation for transport to the hospital will be accomplished. In the event that the victim could not be decontaminated, the rescue service provider must be notified of that situation.

If the injury to the worker is chemical in nature, the following first aid procedures are to be instituted:

- **Eye Exposure.** If contaminated solids or liquids get into the eyes, wash eyes immediately at the emergency eyewash station using large amounts of water and lifting the lower and upper lids occasionally. Wash for at least 15 minutes. Obtain medical attention.

- **Skin Exposure.** If contaminated solids or liquids get on the skin, promptly wash the contaminated skin using soap and water. Obtain medical attention immediately when exposed to concentrated solids or liquids.

- **Respiratory Exposure.** Move victim to fresh air at once and begin CPR. Phone 911 to obtain immediate medical attention.

- **Ingestion Exposure.** For swallowed contaminants, identify the item swallowed. Follow appropriate procedures and obtain medical attention as soon as possible.

NOTE: Any person transported to the hospital for treatment related to an exposure injury will take with them the appropriate information (see Table 2) about the chemical(s) to which he/she has been exposed. MSDSs for chemicals known or suspected to exist on-site will be maintained in the Contractor’s field office by the HSO.
SECTION 11.0
Community Protection Plan

The following Community Protection Plan (CPP) has been developed to outline those steps to be implemented to protect the health and safety of surrounding human population and the environment.

11.1 AIR MONITORING

As part of its Air Monitoring Program (see Section 7.0) and if necessary, IEG will use real-time monitoring and documentation sampling to determine if off-site emissions, as a result of site work, poses a threat to the surrounding community. All readings will be recorded and be available for State (DEC & DOH) personnel to review.

11.2 VAPOR EMISSION RESPONSE

If the ambient air concentration of organic vapors exceeds 5 ppm above background in the work area activities will be halted and monitoring continued. If the organic vapor level decreases below 5 ppm above background, work activities may resume but more frequent intervals of monitoring, as directed by the HSO, will be conducted.
SECTION 12.0
Logs, Reports, & Record Keeping

The following health and safety reports will be prepared and submitted as needed and as indicated below.

Daily Safety Report
Employee Meeting Record
Exclusion Zone Log
Site Log
Confined Space Entry Permit
Air Monitoring Report
Accident/Incident Report
Health & Safety Inspection Report
Spill Report
Equipment Decontamination Verification Form
ATTACHMENT B

CITIZEN PARTICIPATION PLAN
CITIZEN PARTICIPATION PLAN
BROWNFIELDS CLEANUP PROGRAM

for

132 DINGENS ST. SITE
BUFFALO, NY

June 2012

Prepared for
132 Dingens St, LLC
Buffalo, NY

by
Iyer Environmental Group, PLLC
Orchard Park, NY 14127
TABLE OF CONTENTS

CITIZEN PARTICIPATION PLAN
BROWNFIELDS SITE RI/IRM
132 Dingens ST. Site, Buffalo, NY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.0</td>
<td>Background and History</td>
</tr>
<tr>
<td>3.0</td>
<td>Supplemental Investigation Plan</td>
</tr>
<tr>
<td>1.</td>
<td>Soil</td>
</tr>
<tr>
<td>2.</td>
<td>Groundwater</td>
</tr>
<tr>
<td>4.0</td>
<td>Interim Remedial Measure Plan</td>
</tr>
<tr>
<td>5.0</td>
<td>Health and Safety Plan</td>
</tr>
<tr>
<td>6.0</td>
<td>QA/QC Plan</td>
</tr>
<tr>
<td>7.0</td>
<td>Schedule</td>
</tr>
<tr>
<td>8.0</td>
<td>Contact Information</td>
</tr>
<tr>
<td>9.0</td>
<td>List of Planned Citizen Participation Activities</td>
</tr>
<tr>
<td>10.0</td>
<td>Mailing List</td>
</tr>
<tr>
<td>11.0</td>
<td>References</td>
</tr>
</tbody>
</table>

FIGURES
1. Site Location Map
2. Aerial Photo with Property Boundary

APPENDICES
A. Mailing List
B. Citizen’s Glossary of Environmental Acronyms/Terms
132 DINGENS STREET SITE, BUFFALO, NY
SITE LOCATION MAP

FIGURE 1

IEG
1.0 **INTRODUCTION**

Iyer Environmental Group, PLLC has prepared this Citizen Participation Plan (CPP) for a Remedial Investigation and Interim Remedial Measure at 132 Dingens Street in Buffalo, NY, under the Brownfields Cleanup Program. This CPP provides summary information about the site and the proposed investigation and remediation activities, and opportunities for community participation.

Through the BCP, the New York State Department of Environmental Conservation (NYSDEC) works with private developers to encourage the voluntary cleanup of contaminated properties known as brownfields and facilitate their redevelopment and reuse. Citizen participation activities occur at several milestones during a BCP project. Through the Citizen Participation program, the NYSDEC, NYSDOH and the property developer want to maintain open communication between the public and project staff throughout the investigation and remedial cleanup process. If a site is determined to be a significant threat, eligible community groups may apply for a Technical Assistance Grant (TAG) to increase public awareness and understanding of remedial activities taking place in the community.

2.0 **BACKGROUND AND HISTORY**

This irregular shaped, 13-acre parcel located at 132 & 136 Dingens Street (see Figures 1 and 2) contained an 85,000-sf manufacturing and warehouse facility which burned down in a fire last year. Half of this facility was first occupied by Superior Pallet for recycling and refurbishing wood pallets, and the other half was used by Umbra for warehousing/distribution of household/office trash containers. The warehouse was used by Tops Markets since 1966, and was refrigerated at that time by an ammonia refrigeration system located in the powerhouse building in the northwest section. The site includes a long 5’4” diameter tunnel from the south basement wall of the refrigeration building to the warehouse building. A small section west of this refrigeration/powerhouse building is leased to third parties for a communications tower.

Subsurface investigations revealed the area to have soil contamination associated with historical industrial fill used to elevate the ground level to its present state. While low levels of volatile organics were detected in soil samples, none exceeded the Part 375 SCOs for commercial use. Several soil samples exceeded the commercial use SCOs for up to ten SVOC compounds. The soil samples also exceeded the SCOs for four metals - arsenic, barium, cadmium and lead.

The overall objective of the site investigation is to address areas of the property not targeted in previous investigations and to assess the presence of contamination in soil and groundwater from historical practices in the area, including volatile and semivolatile organics, pesticides, PCBs and heavy metals. The interim remedial measure will most likely consist of the removal of contaminated soil and groundwater associated with past use of the property, and any other areas identified by the supplemental investigation. A Work Plan for the Supplemental
Investigation and Interim Remedial Measure (June 2012) has been developed for this site and is available to the public.

3.0 SITE INVESTIGATION PLAN

The objectives of this investigation are follows:

- Determine the extent of on-site contamination, supplementing results of the previous investigation;
- Establish the groundwater table and obtain other hydrogeological data such as hydraulic conductivity and groundwater flow/velocity;
- Qualitatively assess exposure pathways and potential risks to human health and the environment; and
- Evaluate and develop a remedy for soil and groundwater contamination.

1. Soil
Surface and subsurface soil samples will be collected from several locations around the property using two methods. In paved areas, soil samples will be collected using a Geoprobe or similar equipment which pushes a steel tube into the ground to collect soil samples. The soil samples will be screened in the field with a photoionization detector (PID), and sent to a laboratory for volatile organics (VOCs), semivolatile organics (SVOCs), PCBs, pesticides and TCL metals (including mercury).

2. Groundwater
Eight monitoring wells will be installed around the property, each to a depth of 20 feet. The new wells will be surveyed and water levels measured to establish a baseline water table elevation and groundwater flow gradient. Soil samples will also be collected during well installation for characterization and analysis using split spoons. The wells will be sampled for the parameters detected in the soil samples. The groundwater samples will be analyzed for the same parameters as the soils.

The results of the Site Investigation and associated field activities will be compiled in a Report along with a qualitative risk assessment and recommendations for remedial action. The Report will be made available to the public as part of the Citizen Participation Plan.

4.0 INTERIM REMEDIAL MEASURE PLAN

At this time, the interim remedial measure is anticipated to involve the excavation of all contaminated soils exceeding the NYSDEC’s soil cleanup goal (SCG) for Track 2, Residential or Commercial Use. The remediation will begin in the northern wooded area which was found to have the most contamination, and expanded as necessary to include additional areas of contamination that may be discovered as part of the supplemental investigation. Any excavation water encountered during remediation will be pumped into a storage tank and treatment system before discharge.

5. HEALTH AND SAFETY PLAN

A site-specific Health & Safety Plan (HASP) is prepared for the protection of site workers and the public as a separate document.
6.0 QA/QC PLAN

The soil and groundwater sampling will be conducted in accordance with accepted NYSDEC (May 2010 DER-10) and USEPA (AIR-5) guidelines, and all samples will be analyzed as per NYSDEC ASP requirements including QA/QC. A NYSDOH ELAP-certified laboratory (Test America) will be utilized for all analysis during the supplemental investigation, remedial construction and long-term monitoring.

7.0 SCHEDULE

Subject to NYSDEC approval of documents, the following schedule is anticipated:

- Remedial Investigation Summer/Fall 2012
- Interim Remedial Action Winter 2012 - Spring 2013
- Remedial Construction Report Spring 2013
- Site Redevelopment Fall 2013 - Spring 2014

8.0 CONTACT INFORMATION

For additional information about the site and its activities, the public is encouraged to contact any of the following project staff:

NYSDEC Region 9
Mr. Jaspal Walia
Division of Environmental Remediation
NYSDEC Region 9
270 Michigan Avenue
Buffalo, NY 14203-2399
(716)851-7220
Email: jswalia@gw.dec.state.ny.us

NYSDOH
Mr. Matt Forcucci
Public Health Specialist
NYS Dept. of Health
582 Delaware Avenue
Buffalo, NY 14202
(716)847-4500
Email: @health.state.ny.us

Document Repositories: Documents related to this site will be available at:

- NYSDEC Region 9 Offices
 (Mon-Fri, 8:30 AM to 4:45 PM)
 Division of Environmental Remediation
 270 Michigan Avenue
 Buffalo, NY 14203-2399
 (716)823-0630

- Erie County Central Library (and) County Library – East Clinton Branch
 (check www.buffalolib.org for hours)
 1 Lafayette Square
 Buffalo, NY 14203
 (716)858-8900
 (716)823-5626
 1929 Clinton Street
 Buffalo, NY 14206
9.0 **LIST OF PLANNED CITIZEN PARTICIPATION ACTIVITIES**

The following is a list of citizen participation activities that will be performed during the course of this site investigation and interim remedial measure. The list will be updated as necessary to reflect actual completion dates or schedule changes:

<table>
<thead>
<tr>
<th>PROJECT PHASE</th>
<th>DOCUMENT TO REPOSITORY</th>
<th>NEWS PAPER NOTICE</th>
<th>FACT SHEET</th>
<th>COMMENT PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Plans</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>30 day</td>
</tr>
<tr>
<td>Remedial Investigation Report</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>30 day</td>
</tr>
<tr>
<td>Interim Remedial Measure Report</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>Not required</td>
</tr>
<tr>
<td>Certificate of Completion</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>10 day from issuance</td>
</tr>
</tbody>
</table>

10.0 **MAILING LIST**

The NYSDEC has developed a Participant Mailing List (included herein as Appendix A) to help keep the community informed and involved in the investigation and cleanup of the 132 Dingens St. Site. Please contact the NYSDEC if you wish to be added to the mailing list.

11.0 **REFERENCES**

a. NYSDEC’s Brownfields Cleanup Program:
go online at http://www.dec.ny.gov/chemical/8450.html

b. NYSDEC’s Citizen Participation for BCP sites:
go online at http://www.dec.ny.gov/chemical/8648.html#Citizen_Participation

c. NYSDEC’s Technical Assistance Grant (TAG) for BCP cites:
go online at http://www.dec.ny.gov/regulations/2630.html

d. Supplemental Phase II Environmental Site Assessment, 132 Dingens St. Site, Iyer Environmental Group, 2012

e. Phase II Environmental Site Assessment, 132 Dingens St. Site, (Baron Associates, 2004

f. Phase I Environmental Site Assessment, 132 Dingens St. Site, Kay Ver Group, 2004

g. Phase I Environmental Site Assessment, 132 Dingens St. Site, Acres International, 1997
FIGURE 2
132 DINGENS STREET SITE, BUFFALO, NY
AERIAL PHOTO WITH PROPERTY BOUNDARY

LEGEND
- Refrigeration Bldg
- Transformers
- Manhole
- Drums
- Mulch Magic Ctnrs
- Flammable Gas Tank
- AST
- Tire Piles
- Drums / stained soil
- Bottle Dig
- Property Boundary

IEG
ATTACHMENT A - MAILING LIST
BROWNFIELDS CLEANUP PROGRAM
132 DINGENS ST. SITE, BUFFALO, NY

1. **City of Buffalo / Erie County**

<table>
<thead>
<tr>
<th>Company</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>County Hall Building</td>
<td>92 Franklin Street</td>
<td>65 Niagara Square</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
<td>Buffalo, NY 14202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honorable Mark Poloncarz</td>
<td>Erie County Executive</td>
<td>Fire Department Records</td>
</tr>
<tr>
<td></td>
<td>95 Franklin Street</td>
<td>195 Court Street</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
<td>Buffalo, NY 14202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr Paul Kranz</td>
<td>Erie County DEP</td>
<td>Honorable Richard Fontana</td>
</tr>
<tr>
<td></td>
<td>95 Franklin Street, 1st Floor</td>
<td>President, Common Council</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
<td>City of Buffalo, City Hall,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buffalo, NY 14202</td>
</tr>
</tbody>
</table>

2. **Local News Media**

<table>
<thead>
<tr>
<th>Media</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo News</td>
<td>1 News Plaza</td>
<td>WKBW News Channel 7</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14240</td>
<td>Buffalo, NY 14202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media</th>
<th>Address 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGRZ TV – CH. 2</td>
<td>259 Delaware Avenue</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo News</td>
<td>ATTN: Environment News Desk</td>
<td></td>
</tr>
<tr>
<td>WKBW News Channel 7</td>
<td>7 Broadcast Plaza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
<td></td>
</tr>
</tbody>
</table>

3. **Public Water Supply**

<table>
<thead>
<tr>
<th>Company</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Water Division</td>
<td>607 City Hall</td>
<td>Buffalo, NY 14202</td>
</tr>
<tr>
<td>Engineering</td>
<td>607 City Hall</td>
<td>281 Exchange Street</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
<td>Buffalo, NY 14204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo Sewer Authority</td>
<td>90 West Ferry Street</td>
<td></td>
</tr>
<tr>
<td>Treatment Plant Bird Island</td>
<td>90 West Ferry Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14213</td>
<td></td>
</tr>
</tbody>
</table>

4. **Persons requested to be on List (to be updated)**

Please contact the NYSDEC or NYSDOH if you wish to be on the mailing list.

5. **School/Day care facilities**

<table>
<thead>
<tr>
<th>Person</th>
<th>Address 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joan A. Male</td>
<td>Family Support Center</td>
</tr>
<tr>
<td></td>
<td>60 Dingens Street</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14206</td>
</tr>
</tbody>
</table>

6. **Local Agencies**

<table>
<thead>
<tr>
<th>Agency</th>
<th>Address 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Outreach File</td>
<td>N.Y.S.D.E.C., Region 9</td>
</tr>
<tr>
<td></td>
<td>270 Michigan Avenue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Address 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erie Co. Emergency Services</td>
<td>95 Franklin Street</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Address 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.E.P.A. – Public Information Office</td>
<td>186 Exchange Street</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agency</th>
<th>Address 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business First</td>
<td>465 Main Street</td>
</tr>
<tr>
<td></td>
<td>Buffalo, NY 14203 - 1793</td>
</tr>
</tbody>
</table>
APPENDIX B
CITIZENS GLOSSARY OF ENVIRONMENTAL ACRONYMS/TERMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP</td>
<td>Brownfields Cleanup Program</td>
</tr>
<tr>
<td>CoC</td>
<td>Certificate of Completion (also laboratory Chain of Custody)</td>
</tr>
<tr>
<td>CPP</td>
<td>Citizen Participation Plan</td>
</tr>
<tr>
<td>ELAP</td>
<td>NYSDOH’s Environmental Laboratory Accreditation Program</td>
</tr>
<tr>
<td>IRM</td>
<td>Interim Remedial Measure</td>
</tr>
<tr>
<td>HASP</td>
<td>Health and Safety Plan</td>
</tr>
<tr>
<td>Monitoring wells</td>
<td>Wells (usually 1’ – 2” diameter) installed to monitor groundwater levels and quality</td>
</tr>
<tr>
<td>NYSDEC</td>
<td>New York State Dept. of Environmental Conservation</td>
</tr>
<tr>
<td>NYSDOH</td>
<td>New York State Dept. of Health</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance and Quality Control (for field sampling and laboratory analysis of environmental samples)</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated biphenyls</td>
</tr>
<tr>
<td>PID</td>
<td>Photoionization detector for field screening of volatile organics</td>
</tr>
<tr>
<td>SI</td>
<td>Supplemental Investigation</td>
</tr>
<tr>
<td>SVOC</td>
<td>Semivolatile organic compounds</td>
</tr>
<tr>
<td>TAGM</td>
<td>NYSDEC’s Technical and Administrative Guidance Memorandum</td>
</tr>
<tr>
<td>TCL</td>
<td>target compound list</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compounds</td>
</tr>
<tr>
<td>WP</td>
<td>Work Plan</td>
</tr>
</tbody>
</table>
ATTACHMENT A

RESUMES OF KEY PERSONNEL
IYER ENVIRONMENTAL GROUP, PLLC
DHARMARAJAN R. IYER, Ph.D., PE, CES
President/Project Manager

Education
Ph.D., Civil/Environmental Engineering, Syracuse University, 1984
M.S., Civil/Environmental Engineering, Syracuse University, 1980
B. S., Chemical Engineering, Indian Institute of Technology, Bombay, 1976
OSHA 40-Hr Health & Safety Training/Annual Refreshers
Mediation Skills Training, Metropolitan Mediation Services, Boston, MA (2000)

Registration
Professional Engineer, New York

Professional Affiliations
American Institute of Chemical Engineers
(Past Chairman/Treasurer, Western NY and Syracuse Sections)
American Water Works Association
Water Pollution Control Federation

Employment History
Principal, Iyer Environmental Group PLLC, Orchard Park, NY (1998 - present)
Senior Project Manager, URS Greiner, Buffalo, NY (1989-1998)
Associate, Malcolm Pirnie, Buffalo, NY (1987-1989)
Sr. Project Engineer, O’Brien & Gere Engineers, Syracuse, NY (1982-1987)

Expertise
Dr. Iyer has over 25 years of hands-on project management and technical experience:
Phase I/II and remedial investigations; feasibility studies; design/implementation of
bench scale and pilot plant test programs; water/wastewater treatment facilities
evaluation/design; technical and economic feasibility evaluations; conceptual/detailed
design; construction management/inspection; operation and maintenance of
treatment/remedial systems; and development of unique and advanced solutions to
waste treatment problems. Also, experienced in human health/ecological risk
assessments, mathematical modeling of water/wastewater treatment processes and
equilibrium in aqueous systems; NYS-ASP and USEPA-CLP analytical
program; laboratory sample tracking and analytical data retrieval systems; and
development of statistical models/programs for data evaluation.

Representative Clients
NYSDEC; VAMC; Earth Tech; O’Brien & Gere; Niagara Falls Bridge Commission; USEPA;
City of Corning; Town of Amherst; NJDEP; USACOE; U.S. FWS; South Essex Sewerage
District; Serafini, Serafini & Darling; Schenectady Chemicals; Chautauqua County IDA; City
of Dunkirk; Chemical Process & Supply; Harrison Radiator Divn. of GM; Hercules/Aqualon;
American Cyanamid; Canandaigua Wine Co.; DuPont; Harshaw/Filtrol; GE; Goulds Pumps;
IBM Corporation; Johnson & Johnson; Moog Automotive; North American Philips
Corporation; Norwich Pharmaceuticals; Beveridge & Diamond; Sangamo-Weston Division
of Slumberger; US Chrome; and Warner-Lambert.

Environmental Services
Iyer Environmental Group provides a wide spectrum of consulting, engineering and
design-build services for water, wastewater, solid waste, hazardous waste and
brownfields sites, and the ability to interface effectively with regulatory agencies on
the client’s behalf, in a number of areas including but not limited to the following:

- Environmental Compliance/Audits/Assessments/Permits
- Water/Waste Analyses, Compliance Testing and Monitoring
- Water/Wastewater Treatment System Evaluation/Upgrade
- Bench/Pilot Scale Evaluation of Treatment/Remedial Systems
- Solid/Hazardous Waste Site Investigations through Remediation
- Engineering Design and Construction Management/Oversight
- Operations and Maintenance of Remedial/Treatment Systems
- Mediation/Expert Witness/Litigation Support/Cost Apportionment
- Community Relations/Public Meetings
REPRESENTATIVE PROJECTS

Hazardous and Solid Wastes
- Kingsbury Landfill/Leachate Treatment System, Hudson Falls, NY (OM&M)
- Dutchess Sanitation/FICA and Kessman Landfills, Region 3, NY (OM&M)
- Whirlpool Bridge, Niagara Falls, NY (SI, VCP, RD, RA)
- Haight Farm Superfund Site, Clarendon, NY {RA; Design-Build, OM&M}
- Salem Acres Superfund Site, Salem, MA {FS/PDI/RA/RD/CM/Monitoring}
- Santi’s Gas Station, East Aurora, NY {UST Investigation/Site Remediation}
- N. Franklin St. Site, Watkins Glen, NY {RI/FS/Leachate Management}
- Busy Bee Disposal Site, Alfred, NY {RI/FS/Leachate Management}
- Robeson Industries Site, Castle, NY {PDI/TS/RD/RA/CM/O&M}
- Phase I/Phase II Site Investigations, NY State {SI}
- Galena Superfund Subsite, Cherokee County, KS {PDI/RD/CM}
- Pennsylvania Ave/Fountain Ave Landfills, New York, NY {RD}
- PAS Site, Oswego, NY {Long-Term Monitoring/Leachate Management}
- Gratwick Park Waste Disposal Site, Buffalo, NY {RI/FS}
- Frontier Chemical Waste Site, Buffalo, NY {RI/FS}
- US Chrome Groundwater Remedial Program, Batavia, NY {Design/Build}
- Groundwater Remedial Program, Batavia, NY {Design/Build}
- Hazardous Waste Impoundment Cleanup, Maryville, MO {TS/Design/Build}
- IBM Manufacturing Plant, Endicott, NY {Groundwater Monitoring}
- Crab Orchard National Wildlife Refuge, Marion, IL {RI/FS}
- Global Landfill, Old Bridge, NJ {RI/FS}
- Millcreek Superfund Site, Erie, PA {PDI/RD}
- Cleve Reber Industrial Waste Landfill, LA {RD/RA Technical Support}

Water and Wastewater
- VA Medical Center, Bath, NY {Water Supply Design./Corrosion Control}
- City of Watertown WTP Evaluation/Upgrade, NY {Pilot Study/Design}
- MCWA WTP Taste/Odor Control, Rochester, NY {Ozone Pilot Scale Testing}
- City of Rome WTP Evaluation, Rome, NY {Pilot Scale DAF Testing}
- Kodak WTP Evaluation, Rochester, NY {Pilot Dual/Multi Media Testing}
- Town of Kirkwood Water Supply {Air Stripper Addition}
- City of Corning Water Supply {Air Stripper Addition}
- Allied Chemicals, Solvay, NY {Coagulant/Bicarbonate Use Study}
- City of Syracuse WWTP, Syracuse, NY {Evaluation/Phosphate Control}
- Kodak Park Stormwater Tunnel, Rochester, NY {Groundwater Contamination}
- GE WW Pretreatment, Johnson City, NY {O&M Support/Water Recyle}
- IBM WWTP Replacement/Recycle, Owego, NY {Pilot Testing/Design}
- Lockheed Martin WWTP Operations, Owego, NY {O&M Support}
- Schenectady Chemicals WWTP Upgrade {SBR/Biological Treatability Study}
- Norwich Pharmaceuticals WWTP, Norwich, NY {Evaluation/Pilot testing}
- Warner Lambert WWTP, San Juan, PR {Evaluation/Testing}
- North American Phillips Corp., Bath NY {Antimony Removal Study}
- Chemical Process Supply, Dunkirk, NY {New Process WW Treatment Study}
- Hercules/Aqualon WWTP Upgrade, Hopewell, NC {Evaluation/Pilot Plant Test}
- GM Automotive WWTP, Baltimore, MD {Evaluation/O&M Support}
- Harrison Radiator WWTP, Lockport, NY {Evaluation/Full Scale Testing}
- Ford Automotive Parts WWTP, Dayton, OH {Evaluation/O&M Support}
IYER ENVIRONMENTAL GROUP
Dharmarajan R. Iyer, Ph.D., P.E.

PROJECT SUMMARIES – SOLID/HAZARDOUS WASTES

WHIRLPOOL RAPIDS BRIDGE SOIL INVESTIGATION/REMEDICATION
Client: Niagara Falls Bridge Commission, Niagara Falls, NY

Dr. Iyer was responsible for all phases from investigation to remediation and long term O&M, and was instrumental in the successful remediation of this historical Bridge. The soils between the bridge footing and the Niagara River was contaminated with leand and other heavy metals associated with past blasting and paint removal operations. The investigation included soil sampling along an 800’ width, topographic and bedrock fracture (using VLF) surveys, groundwater modeling, soil leachability testing, regulatory review and a preliminary environment/human health risk assessment. After completing the environmental assessment report, Dr. Iyer negotiated the remedial action plan with the NYSDEC and followed through with the selection of the remedial contractor and oversight during site remediation. A total of 1,037 tons of soil was excavated and disposed off site at a hazardous waste landfill, and the trail was restored with a much improved landscape. The NYSDEC, NYS Power Authority and the NYS Office of Parks, Recreation & Historical Preservation were immensely satisfied with the end result of this project.

SALEM ACRES SUPERFUND SITE, SALEM, MA {FS/TS/CADS/RD/RA/CM}
Client: South Essex Sewerage District, Salem, MA; Oversight by USEPA, MADEP

Project Manager for pilot scale treatability testing, clean area delineation study, remedial design, construction management/oversight and confirmatory soil sampling during remedial action, and monitoring of groundwater and adjacent wetland sediments/at this site for the five-borough wastewater utility with USEPA Region I/MADEP oversight. The pre- and post-construction monitoring programs included groundwater, wetland sediment and surface water. During this time, Dr. Iyer also provided technical assistance to the District’s general counsel in negotiating the terms of the RD/RA consent decree and the apportionment of past investigation costs with the other two PRPs for this site. The site has been successfully remediated and returned to natural conditions. Over 90,000 tons of sludge and soil were excavated and disposed in two solid waste landfills without impacting the wetlands adjacent to the waste disposal lagoon. Wetland sediments were revegitated and returned to natural conditions.

Initially, Dr. Iyer helped bring the Remedial Investigation/Feasibility Study to a closure by developing a low-cost remedial alternative (chemical fixation with off-site disposal) for sludges and soils with high levels of petroleum and other HSL contaminants, and sliced the potential remedial cost by over 50%. Through expedited treatability studies and sludge/soil leachability tests, Dr. Iyer was instrumental in getting an unprecedented Massachusetts DEP approval for the disposal of treated sludges and soils in a lined solid waste landfill, and as a contingency measure, Maine DEP approval for the disposal of untreated sludges. During site remediation, 2000 feet of a 2” waterline along two residential streets leading to the site was replaced with a 6” line. Nearly 70 percent of this waterline was installed in bedrock which required blasting. The proactive approach with the client, agencies and local landfills enabled Dr. Iyer to bring the site remediation to completion at a construction cost of $7.5 million, well below initial estimates based on original quantities. Provided assistance to the SESD in closing out the Construction Contract, getting final certificate of completion by the regulatory agencies, performing the long-term site monitoring and getting the site delisted.

NYSDEC MULTIPLE SITES OM&M, REGION 3, NY
Client: NYSDEC, under subcontract to O’Brien & Gere, Syracuse, NY

IEG was issued a three-year standby contract work assignment for the operations, maintenance and monitoring of two remediated state superfund sites - 17-acre Dutchess Sanitation Landfill (Poughkeepsie, NY) and the 10-acre Kessman Landfill (Putnam, NY). Dutchess was remediated with a NYCR Part 360 cap, a landfill gas collection/treatment system, and leachate collection system. Kessman had accepted solid and industrial wastes of
unknown types and quantities, and was remediated in 1995 with a Part 360 cap, passive vents and a leachate collection system following the removal of sixty industrial waste drums and contaminated soils, and restoration of the affected wetlands. IEG’s services for these two sites include design, implementation and oversight of required repairs/upgrades, and operation, maintenance and monitoring of the landfills. Twenty monitoring wells, wetland sediment and surface water are sampled for field and leachate treatment parameters (for offsite disposal), VOCs, semivolatiles, pesticide/PCBs, metals and petroleum hydrocarbons. Besides pumping leachate from the landfill, IEG also completed a tracer study to assess the hydraulic connection between the landfill and the adjacent wetland.

BUSY BEE DISPOSAL SITE, ALFRED, NY {RI/FS/Leachate Management}
Client: NYSDEC, Albany, NY
Project Manager for an RI/FS at this solid/industrial waste disposal site characterized by several alternating layers of sandstone and shale units underlying the waste material. Chlorinated organics and fuel-related compounds were contaminants of concern at this site. The RI field work included a geophysical survey, an extensive soil gas survey across the site, 17 monitoring wells in multiple clusters (including triplets), 10 landfill piezometers, and on-site/residential well sampling. Cap replacement, fractured bedrock wells for contaminated groundwater collection and interceptor trenches were evaluated in the FS. Dr. Iyer also initiated an active leachate withdrawal and disposal program at the outset of the RI which was instrumental in restricting contaminant migration off-site, and supported the selection of a low-cost, limited action remedy (leachate management and groundwater monitoring) for this disposal site.

GALENA SUPERFUND SUBSITE, CHEROKEE COUNTY, KS {PDI/RD/CM}
Client: USACOE, Kansas City, MO; Oversight: USEPA, Kansas City, KS
Project Manager for pre-design investigations, design and construction oversight of the ROD-specified remedial action at the 800-acre Galena lead and zinc mining subsite, Cherokee County, Kansas. Components of this project for the U.S. Army Corps of Engineers include removal and placement of over one million cubic yards of surficial mining wastes, diversion of surface water, rechannelization of over 5,000 feet along two tributaries, recontouring and vegetation, protection of threatened and endangered species, and groundwater and surface water monitoring. Also developed and implemented a supplemental investigation program using X-ray fluorescence instrumentation for zinc, lead and cadmium in the field, which enabled the development of clearly-defined plans and specifications for competitive bidding. Received the highest praise from USACE, Kansas City District, for completing this project within a very aggressive schedule, and for the receipt of favorable bids without a single amendment during the solicitation period. Through the implementation of cost-saving alternatives for channel reconstruction and the development of a clear and precise set of design documents, the remedial construction was completed at a cost of $8.5 million or 70% below USEPA’s original estimate to remediate this site.

PAS site, OSWEGO, NY {Long-Term Monitoring/Leachate Management}
Client: NYSDEC, Albany, NY
Task Manager for post-remediation operations and maintenance of this former solvent processing site in Oswego, New York. Conducted an evaluation for the hydrology within the slurry wall/cap containment system to determine the required leachate collection rate from trenches so as to develop and maintain an inward hydraulic gradient across the site. Developed implemented an O&M Manual for the NYSDEC, hauling over 10,000 gallons month of highly contaminated leachate to an off-site hazardous waste treatment facility, and performing environmental monitoring (surface water, groundwater and wetland sediments) for eight years, until the PRPs assumed responsibility for the long-term O&M.
PROJECT SUMMARIES – WATER/WASTEWATER

WATER DISTRIBUTION SYSTEM REPLACEMENT, BATH, NY {Evaluation/Modeling/Design}
Client: VA Medical Center, Bath, NY
Project Manager and environmental engineer for the evaluation of the water supply and distribution system at the 210-acre VAMC. Dr. Iyer is responsible for modeling the entire distribution system using WaterCAD, and for developing a new, and state of the art system to replace the nearly 100-year old distribution pipes currently supplying water to fifty buildings including hospital, dormitories and administration. Prior to this project, Dr. Iyer also completed a corrosion system evaluation, and developed and installed a chemical feed system to control corrosion in the distribution pipes.

OZONATION PILOT SCALE TESTING, ROCHESTER, NY {Drinking Water Treatment}
Client: Monroe County Water Authority, Rochester, NY
Project Manager for the design, installation and operation of an oxidation/direct filtration pilot plant for taste and odor control in raw water from Lake Ontario. The pilot plant consisted of a 9" diameter, 10' high plexiglass ozonation column, an ozone generator and two parallel dual and multi media filters. Several treated water quality parameters including turbidity, trihalomethane formation potential, particle count and bacterial count were evaluated. Prepared a basis of design and cost estimates for a full-scale, 3,750-lb/day oxidation plant.

WTP UPGRADE, WATERTOWN, NY {Pilot Study/Preliminary Design}
Client: City of Watertown, Watertown, NY
Designed, built and operated a 25 gpm pilot-plant upgrade of the 80-year old water treatment plant. The study and preliminary design contributed to the development of both short-term rehabilitation and long-range treatment programs for the City of Watertown, New York, water supply. The pilot scale unit simulated existing treatment processes including flocculation and sedimentation which occurred in an upgradient section of the river where a dam had been built to provide a large retention time. Also tested were dissolved air flotation, dual and multi-media filtration, and taste and odor control for addition to the plant.

POTABLE SURFACE WATER TREATMENT, ROME, NY {Pilot Scale DAR Testing}
Responsible for the oversight and sampling/analysis for the City of Rome during the operation of a 50 gpm pilot scale dissolved air flotation unit by Krofta Engineering. DAF was being evaluated as a potential treatment process for the a proposed water treatment plant.

APPLICATION/TESTING/DESIGN OF AIR-STRIPPER MODEL
Clients: Several Municipal/Industrial clients
Project Manager responsible for design/evaluation of air-strippers FOR wastewater treatment. Installed/operated a pilot air stripper (12" dia, 10’ height) for VOC removal from groundwater used as the source of drinking water by the City of Corning, New York. The pilot plant results became the basis for a 2 MGD air stripper (packed column in a square brick tower) located at the pumping well and piped into the distribution system. Responsible for preliminary design of an air stripper built at a pumping well in the Town of Kirkwood due to chlorinated organics contaminated from an adjacent waste landfill. Also evaluated water supply and treatment requirements for contaminated potable water supplies in the Ellicottville and Franklinville, NY.

INDUSTRIAL WW PRETREATMENT, JOHNSON CITY, NY {O&M Support/Water Recycle}
Client: General Electric, Johnson City, NY
Evaluated several alternatives including chemical precipitation/ reduction and ion-exchange for the removal of heavy metals and other inorganics from electroplating wastewater. Designed a 70 GPM dual ion-exchange system for water reuse that resulted in significant savings in operating costs and decreased the purchase of water. Subsequently provided operational assistance and re-piped the system for maximum resin utilization.

Kodak WTP Evaluation, Rochester, NY {Pilot Dual/Multi Media Testing}
Client: Eastman Kodak, Rochester, NY
Project Manager responsible for the pilot testing of dual and multi-media filters for the treatment of water from Lake Ontario for plant use, including feed to the de-ionization/ultra pure water system.
INDUSTRIAL WWTP REPLACEMENT/OPERATION, OWEGO, NY {Pilot Testing/Design/O&M}

Client: IBM Federal Systems (now Lockheed Martin), Owego, NY/IBM, Armonk, NY

Designed, built and operated two 5 GPM on-site parallel pilot-plant units, one with dual conventional resins for water recycle, and the other a chelating cation-exchange resin for heavy metals removal prior to surface water discharge at a major electronics manufacturing facility. Performed on-site analysis for metals using AA and other parameters during the pilot study. Developed a basis of design and associated capital and operating costs for a 500 GPM dual ion-exchange system, following a technical and economic evaluation of alternatives for the treatment of general rinse waters and other wastes. Other projects at the same facility included an evaluation of operating procedures, chemical usages and a reactor-clarifier tracer study. Provided technical support during design of the new wastewater treatment system.

Industrial WWTP Operation, Arcade, NY {Troubleshooting/Operation}

Motorola, Arcade, NY

Responded to the accidental release of hydrogen cyanide into the plant wastewater which reacted with ferrous sulfate and produced ferrous ferrocyanide across the entire WWTP. Developed chemical feed requirements and treatment strategy using on-site bench scale tests to precipitate the ferrous-ferrocyanide as prussian blue. Implemented the treatment strategy through temporary reconfiguration of the WWTP piping and manual chemical feed and, over two days, successfully removed all ferrous ferro-cyanide in the treatment system.

Organic Industry WWTP Upgrade, Schenectady, NY {Pilot SBR Testing/Design}

Client: Schenectady Chemicals, Schenectady, NY

Project Manager responsible for the pilot scale testing of the sequential batch reactor (SBR) process for the biological treatment of high-strength organic chemical industry wastewater. The pilot scale testing was followed with a preliminary design and cost estimate for the addition of a full scale SBR unit to the WWTP.

Organic Industry WWTP Upgrade, Hopewell, NC {Evaluation/Pilot Plant Testing}

Client: Hercules/Aqualon, Hopewell, NC

Provided technical assistance during nine weeks of pilot plant testing of segregated cellulose derivatives and chemical cotton waste streams, and subsequent design for the expansion of the wastewater treatment system at a large industrial facility in Virginia. Biological treatment processes and secondary clarifier performance were evaluated using pilot scale units at the plant site.

Automotive Industry WWTP Evaluation, Lockport, NY {Evaluation/Full Scale testing}

Client: Harrison Radiator, Lockport, NY

Provided technical assistance during the full scale testing of coagulation/flocculation chemicals for metals precipitation and solids settleability at this automotive parts manufacturing facility in Western NY.

Industrial WWTP Evaluation, Norwich, NY {Evaluation/Pilot Scale Testing}

Client: Norwich Pharmaceuticals, Norwich, NY

Provided process and operational assistance for a pharmaceutical company in Upstate NY to solve problems associated with a two stage biological treatment system and a bank of pressure filters.

Industrial Pre-Treatment Study, Dunkirk, NY {Pilot Testing}

Client: Chemical Process Supply/City of Dunkirk, NY

Managed a feasibility study using four 20-gallon reactors to assess the impact of waste waters from a proposed pigment manufacturing facility on the City’s WWTP. Similarly, conducted a pilot plant study and preliminary design of Sequential Batch Reactors for the upgrade of a wastewater treatment system to include biological treatment at a major phenol formaldehyde resin manufacturing facility.

New Inorganic Industry WWTP Study, Bath, NY {Antimony Removal}

Client: North American Phillips Corp., Mahwah, NJ

Conducted chemical equilibrium (MINEQL) modeling and bench scale testing to assess antimony removal as hydroxide and sulfide using inorganic precipitating agents. Developed a technical memorandum and successfully convinced USEPA that pre-treatment standards for antimony needed to be revised and be made specific to this industry.

Amend, J. and Iyer, D. R., "Treatment of High-Strength Organic Chemical Industry Wastewater in a Sequencing Batch Reactor", WPCF Fall Convention, Dallas, TX, October 6, 1988.

Education

B.S. in Geology from Skidmore College, 1979 (Dean's List 1978 and 1979)
Completed course work towards a M.S. in Hydrogeology at the University of Nevada, Reno (UNR), 1982

Professional Certifications

OSHA 29 CFR 1910.120 40 Hour and yearly 8-Hour Refresher Training

State of Arkansas, Professional Geologist No. 1477
State of Pennsylvania, Professional Geologist No. PG002746G
US EPA Asbestos Handlers Certification 1987-1993

Professional Affiliations

National Association of Groundwater Scientist and Engineers
National Ground Water Association
Hudson Mohawk Professional Geologist Association

PROJECT EXPERIENCE

IEG, Albany, N Y (2001 – present)

Environmental Property Assessments - Conducted Phase I Environmental Assessments on commercial properties in preparation for real estate transactions. Performed visual inspections of property, tested for radon and suspected asbestos containing materials, when appropriate, and researched available environmental data on property and its surrounding area for lending institutions. Findings were presented in a comprehensive report to client.

Multiple Sites O&M (NYSDEC) - Project Geologist responsible for operations and maintenance activities at the NYSDEC’s remediated landfill sites, including routine groundwater, leachate, gas and wetland monitoring, and evaluation and upgrade of landfill gas collection/treatment and leachate collection systems.

Whirlpool Bridge Soils Investigation (Niagara Falls Bridge Commission) – Project geologist responsible for a bedrock survey using VLF, monitoring well installation, and sampling and evaluation of surface water, groundwater and soils contamination resulting from past painting of the bridge bordering the US and Canada.

OTHER CONSULTANT EXPERIENCE

- Conducted Phase I and Phase II Environmental Assessments on commercial properties in preparation for real estate transactions.

- Actively working on stormwater management programs for several commercial developments that are situated in New York City’s Watershed area. Under New York City Department of Environmental Protection (NYCDEP) Phosphorus Offset Pilot Program (POPP), responsible for ensuring significant reduction of phosphorus into the Croton Falls Reservoir drainage basin.

- Developed groundwater monitoring networks, and planned and conducted geophysical surveys for private clients and local municipalities.

- Managed projects for contracts issued under New York State Department of Environmental Conservation’s (NYSDEC) Standby Superfund program. Also handled public relations issues and acted as a liaison between clients, government agencies and local citizens.
• Performed activities for Brownfields Redevelopment Programs. Specifically created a comprehensive inventory of contaminated sites and conducted Phase I and Phase II environmental assessments of priority sites within a target area.

• Under contract to worked on the US EPA’s Hudson River PCB characterization program describing, analyzing and processing sediment cores to determine the extent of PCB contamination in the river bottom sediments

• Technical project manager for community projects. Successfully performed cost-benefit analyses and critical review of data for environmental and land use planning projects. Interacted with the community on issues of concern specifically groundwater, transportation and environmental health and safety issues.

• Remedial activities include operation and maintenance of remedial/treatment systems, and long term monitoring of air quality, surface and groundwater, and other environmental media.

• Under special contract to the United Nations Environmental Program (UNEP-Nairobi, Kenya) to author papers for the environmental management guideline series. This series provided the guidance for developing nations to undertake sound environmental management of developmental activities.

• Proficient with various computer programs including Windows XP, Excel, PowerPoint, Flowlink and Surfer

PRESENTATIONS AND PAPERS

IYER ENVIRONMENTAL GROUP
RICHARD ALLEN, JR.

Education
 Center for Integrated Waste Management, University at Buffalo, Buffalo, NY
- Associate in Applied Science: Forestry / Surveying (1977)
 Ranger School, Wanakena, NY

Affiliations
- Air & Waste Management Association
- Buffalo Audubon Society
- American Canoe Association

Certifications
- Hazardous Waste Operations – 40 Hr Course
- Asbestos Handler Initial Certification – 32 Hr Course
- Asbestos Air Sampling Sample Technician – 16 Hr Course

Expertise
Mr. Allen has a variety of field experience ranging from environmental investigation and remediation projects to nature and wildlife preservation. In the last five years with IEG, Richard has gained valuable experience in the operation and maintenance of treatment systems as well as in construction oversight. Richard also conducts volunteer tours of nature preserves and has extensive knowledge of the outdoors.

PROJECT EXPERIENCE

Iyer Environment Group, PLLC, Orchard Park, NY (2004 – present)

WATER/DRAIN LINE DISTRIBUTION SYSTEM REPLACEMENT, BATH, NY {Design/Oversight}
Client: VA Medical Center, Bath, NY
Assisted in a comprehensive survey of the water distribution system and an update to the topographic survey at this 100 year old VAMC campus in the southern tier. Followed up with assisting in the development of design documents, and field oversight as necessary during replacement of 20,000 feet of water mains and associated interconnections to 47 buildings.

Mr. C’s CLEANERS SITE REMEDIATION, EAST AURORA, NY {OM&M Services}
Client: Ecology & Environment/NYSDEC, Albany, NY
Currently providing OM&M services at this hazardous waste site where the groundwater was contaminated by dry cleaner operation. Make routine measurements, preventive maintenance, and trouble shoot the treatment system as necessary during alarm conditions signaled by the PLC’s autodialer. Periodically, purge the pumping wells, clean the pumps, and pressure wash the air-stripper to maintain the 30 gpm groundwater treatment system operating at maximum efficiency.

WHIRLPOOL RAPIDS BRIDGE, NIAGARA FALLS, NY SOIL REMEDIATION/MONITORING
Client: Niagara Falls Bridge Commission, Niagara Falls, NY
Richard served as the field inspector during remedial activities at the site, overseeing and documenting contractor’s work, conducting work zone air quality monitoring, scheduling waste haulers for the landfill, and following up with the compilation of data for a report. He continues with long-term monitoring. Over 1,000 tons of contaminated soil was excavated and disposed off-site at a hazardous waste landfill, and the trail was restored with a much improved landscape.

Home repair and maintenance, residential landscaping and tree service.

Commercial and highway landscape grading and plantings

U.S. Census Bureau, Clarence, NY (2000)
Population census.
EDUCATION & TRAINING

SUNY at Buffalo, B.S. Civil Engineering
OSHA Physical (Hoz Mat)
CPR and First Aid Certified
SHECN
Fall Protection
Eighty-hour Hazardous Site Worker Certification
ASCE Excavation Safety Course
Trained in a full range of other safety disciplines
Excavation Safety
First Aid, CPR and AED certified
Grubb and Ellis Training
National Grid Electrical Safety Training

EXPERIENCE SUMMARY

President of Pinto Construction Services, Inc. for the past 23 years, Mr. Panepinto has earned over 25 years of heavy construction experience in the industrial, commercial and public sectors, with demolition and complete site infrastructure concentrations. Mr. Panepinto’s duties routinely include all aspects of project management from estimating to coordinating field operations, along with the oversight of all aspects of operating his family’s business. Staff follows over 65 years of tradition for this company, which started with his grand uncle.

PROJECT HISTORY

2008 — NRG Huntley Power Plant filter fabric project and site utilities, Buffalo, NY.
 — New Federal Courthouse excavation, site utilities and infrastructure, Buffalo, NY.
2007 — Erie Canal Harbor site work and infrastructure for recreation of original Erie Canal Historical Site, Buffalo, NY.
 — Pier Restaurant demolition and site work for NFTA, Buffalo, NY.
 — Allegany Casino canopy and overhead sign removal project, Allegany, NY.
 — Naval Park force main and Erie Canal site work, Buffalo, NY.
 — Demolish Hamlin House, former nursing school at Buffalo General Hospital, Buffalo, NY.
2006 — Building renovation, Bennett High School, Buffalo, NY.
 — Building renovation site development, Buffalo Public School #95, Buffalo, NY.
 — Buffalo & Fort Erie Peace Bridge Gateway improvements (International Bridge Crossing), Buffalo, NY.
 — Erie Canal harbor force main installation and naval museum demolition, Buffalo, NY.
 — Demolition of Duty Free store and site development for a new Duty Free store, Peace Bridge Authority, Buffalo, NY.
2005 — Supervised lead soil cleanup at NYS Parks Nature Trail, Niagara Falls, Bridge Commission, Niagara Falls, NY.
 — Supervised the construction of parking ramp foundations and site work for new Federal Center, Buffalo, NY.
 — Supervised final phase site development for new Roswell Bioinformatics Research Center, Buffalo, NY.
 — Supervised installation of new primary electrical duct bank for Roswell Hospital, Buffalo, NY.
PROJECT HISTORY CONT.

2004 — Huber NFTA Airport Building FNDTNS, Cheektowaga, NY.
— Lehigh Buffalo Seminary Courtyard, Buffalo, NY.
— Turner Life Sciences Project, Buffalo, NY.
— PanAm Archaeological Dig - Marine Dr., Buffalo, NY.
— Acquest - Niagara Center, Buffalo, NY.
— NMPC - Casino Duct Bank, Niagara Falls, NY.
— Roswell Duct Bank, Buffalo, NY.

2002 — Installation of Homeland Security border crossing radiation detection equipment infrastructure, Buffalo and Fort Erie Public Bridge Authority.
— Installation of infrastructure for new salt storage warehouse for Praxair, Tonawanda, NY.
— Complete gut out of former "Trico Wiper" manufacturing plant for conversion to residential living, seven stories, 600,000 square feet.

2001 — Installation of drive-through cash machines and infrastructure for M&T banks at various locations.
— Complete reconstruction of U.S. Customs inspections stations at the Buffalo and Fort Erie Public Bridge Authority.

2000 — Project manager for various U.S. Custom Inspections Booth Rehabilitation projects at the Buffalo Peace Bridge.
— Demolition of five story structure and eight grain silos at the General Mills Buffalo Facility.
— Select demolition and utility relocation for Praxair USACE FUSRAP site.
— Construction of emergency electric generator building, Buffalo General Hospital, NY.
— Erie County Water Authority chemical unloading facility project.
— Site excavation and utilities for Niagara Falls Air Base Lodging Facility.
— Site work and asphalt paving at the Gowanda Correctional Facility.
— Water main and Force main for U.S. Coast Guard facility in Oswego.

1999 — Completely dismantled practice bubble facility at the Ralph Wilson Stadium complex, the Buffalo Bills practice field.
— Site demolition, site utilities for Ralph Wilson Stadium.
— Dismantled large concrete containment area for storage tanks at Children’s Hospital.
— Site demolition, site utilities General Motors World Engine Line.
— Site cleanup for former Wickwire plant, Tonawanda, NY.
— Site work and sewer work for Town of Tonawanda Food Pantry.
— Site cleanup at nursing home for new Rite Aid pharmacy.
— Pool drainage improvements for Fort Niagara Parks Department.
— Repair of well point system at Mobil Oil Corp., Buffalo Terminal.
— Sewer repair at Mobil Oil Corp. Buffalo Terminal.
— Project manager for force main sewer and gravity storm sewer at the Mobil Oil Corp.
— Bioremediation and soil segregation for Mobil Oil Corp.
— Stabilize sludge in oil/water separator pits for Mobil Oil Corp.
PROJECT HISTORY CONT.

— Emergency fire water line and pump for Mobil Oil Corp.
— Underground oil tank extraction and associated soil remediation at the Crossroads (HSBC) Arena project.
— Complete site excavation for Crossroads (HSBC) Arena, including pile cap excavation.
— Sewer relocation for Crossroads (HSBC) Arena project.
— Sludge pit cleaning and stabilization for American Brass Corp.
— Sewer main cleaning for American Brass Corp.
— Emergency road patching for Niagara Mohawk Power Corp.
— Complete site utility installation for four 8-story low income housing buildings.
— Repair truck scale for Buffalo and Fort Erie Peace Bridge Authority.
— Reconstruct two parking lots for Niagara Mohawk Power Corp.
— Reconstruct chemical loading dock for Ashland Chemical Corp.
— Parking lot drainage work for Buffalo Marriott.
— Reconstruct truck ramp for the Peace Bridge Authority.
— Water meter pit installation for the Erie County Water Authority.
— Installed storm sewer for the Bethlehem Steel Galvanizing Division in compliance with the NYSDEC.
— Installation of steam lines for the Buffalo Municipal Housing Authority.
— Secured and placed 20,000 cubic yards of clay fill for 20-acre driving range.
— Dismantled former Pratt and Letchworth Manufacturing facility (200,000 square feet).
— Installed impervious tank liners for spill containment for five million gallon fuel tanks.