Norlite Environmental Sampling Report
 New York State Department of Environmental Conservation

March 2021

NYSDEC

625 Broadway
Albany, NY 12233

1. Executive Summary

Norlite Corporation ("Norlite") has operated a lightweight aggregate plant in the City of Cohoes, NY since 1956. As part of its operations, Norlite receives waste, both hazardous and nonhazardous, for use as fuel in the facility's two (2) rotary kiln furnaces ("kilns"), which produce the lightweight aggregate. Norlite has received hazardous waste management permits from the New York State Department of Environmental Conservation (DEC) to conduct these operations in 1992, 2007, and 2016 as authorized by the U. S. Environmental Protection Agency.

In 2018, Norlite began to receive Per- and Polyfluoroalkyl Substances (PFAS) containing materials from the U.S. Department of Defense collection program, which included phased-out perfluorooctanesulfonic acid (PFOS) aqueous film forming foam (AFFF) for incineration in the facility's kilns. In 2019, DEC directed Norlite to cease all incineration of firefighting foam at the facility after the facility temporarily shut down its operations for planned facility upgrades. DEC provided the same direction in writing in June 2020.

In early 2020 , community residents began raising concerns that kiln emissions from the facility may have caused PFAS contamination in the surrounding area. Since these compounds were not included in previously conducted emissions testing and human health and ecological risk assessments, DEC initiated an environmental sampling program to assess any potential impacts to the surrounding area.

Please note, this study was not conducted to determine compliance with applicable laws and regulations and does not preclude DEC from requiring additional investigation or monitoring to ensure compliance with applicable laws and regulations or from taking future enforcement action regarding the subject matter of this report. In addition, this study is specific to sampling for PFAS compounds and metals, and does not address concerns about the facility's noncompliance with fugitive dust emissions from its operations, which are the subject of an ongoing enforcement action.

DEC collected soil and water samples in October and November 2020, and analyzed these samples for the presence of PFAS compounds and metals. Soil samples were taken at locations considered most likely to be impacted from kiln emissions as determined by local meteorological information. Soil samples also were taken in locations near adjacent residential properties to assess the potential for human health exposure. Lastly, soil samples were taken from locations considered to be upwind from the kilns to assess concentrations unlikely to be impacted by kiln emissions.

In total, twenty-two (22) soil samples were collected from eighteen (18) locations. Surface water samples were collected from fourteen (14) locations. Four of the water sample locations were from the Salt Kill, which runs through the Norlite property, two from an on-site quarry pond, and two from an un-named pond immediately south of Norlite. Lastly, water samples from the Patroon Creek in Albany County, and Schuyler Creek in Saratoga County, were collected to assess background concentrations from other surface water sources. The samples from the stream locations were taken at both low and high flow conditions.

With regard to the soil samples collected, low level detections of PFAS compounds were present in all soil samples, which is consistent with background levels in emerging research and well below levels observed in areas impacted by industrial activity or prior releases of AFFF. This is discussed in more detail in Section 7.2 of this report. Although there are no soil cleanup objective concentrations for PFAS in regulation, DOH guidance values have been prepared for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). The guidance concentrations are based on the intended use of the property, and range from unrestricted, which envisions residential in addition to farming (assumes exposure through extensive soil contact, homegrown produce, and meat/dairy products), residential use, (exposure through extensive soil contact and homegrown produce), restricted residential (no exposure through food production, but still extensive soil contact), and commercial and industrial. ${ }^{1}$

The soil sample results for Saratoga Sites were all below residential use guidance values, and ranged from 0.29 parts per billion (ppb or $\mu \mathrm{g} / \mathrm{kg}$) and 0.63 ppb for PFOA and from 1.1 ppb and 4.5 ppb for PFOS. All of the soil samples collected showed PFAS concentrations lower than guidance values relevant to the residential areas surrounding Norlite, with the exception of one upwind soil sample south of Norlite (as shown on Figure 2 in the report) that had a concentration of 9.8 parts per billion (ppb or $\mu \mathrm{g} / \mathrm{kg}$). While this concentration exceeds the residential value of 8.8 ppb for PFOS, the resulting level is not indicative of a human health exposure risk because this sample location was not on residential property.

Analysis was also performed for metals concentrations in soils. The results for metals were compared to the 6 NYCRR Subpart 375-6 Soil Cleanup Objectives. Like the PFOA and PFOS guidance values, these values are derived to be protective of human health, based on the use of the property. As with PFOS, only one sample result exceeded a residential use value currently in the Subpart 375-6 regulation. This sample was taken to the east-southeast of Norlite, and contained mercury at 1.6 parts per million (ppm or $\mathrm{mg} / \mathrm{kg}$), which is higher than the residential soil cleanup objective of 0.81 ppm . This sample was collected from a non-residential setting in the road right of way adjacent to a former landfill operated by the Bendix Corporation, and poses a minimal health risk because the location is not being used for residential purposes, and exposures associated with residential land use are not likely to occur there.

The results of the analysis for the water samples collected also indicated the presence of PFAS at low concentrations. However, none of these concentrations are indicative of a concentrated source area impact and there is some variability in these concentrations. In general, the concentrations found in the Salt Kill were lower than those found in the Patroon Creek and higher than those found in Schuyler Creek. Of the samples taken from flowing waters, one sample from Patroon Creek exceeded New York State's drinking water Maximum Contaminant Level (MCL) for PFOS. The Patroon Creek is not used as a drinking water source. Concentrations of PFOS were found in the on-site quarry pond at 12 parts per trillion (ppt or $\mathrm{ng} / \mathrm{l})$. This concentration level was not found in the adjacent Salt Kill. Low concentrations of
https://govt.westlaw.com/nycrr/Document/I4eadfca8cd1711dda432a117e6e0f345?viewType=FullText\&o riginationContext=documenttoc\&transitionType=CategoryPageItem\&contextData=(sc.Default)\&bhcp=1

PFAS compounds in addition to PFOA or PFOS were also found in all samples. DEC guidance requires a screen for total PFAS compounds in water at concentrations greater than 500 ppt . None of the water samples exceeded this value.

Samples obtained from the pond immediately to the south of the Norlite facility had concentrations of one PFAS, Perfluorobutanesulfonic acid (PFBS), at 100 ppt. This concentration is greater than the values found in other nearby water samples. Analysis of the PFBS concentrations and the overall PFAS pattern detected indicates that it is not likely that this concentration is related to Norlite operations. The pond is not used as a source of drinking water and does not represent a risk of exposure to area residents.

Results of the comparison of water samples taken at high flow conditions versus low flow conditions varied between locations. In areas thought to be less impacted by possible PFAS emissions from Norlite or other industrial sources, there was a slight increase in total PFAS concentrations during high flow samples as compared to the low flow samples even though all values were at low concentrations. In other locations, including the Salt Kill sample farthest downstream and Patroon Creek samples 2 through 4, the low flow samples had higher concentrations than at high flow. Overall, this indicates that there may be some impact on these concentrations from stormwater runoff, although other sources may be contributing to the values in Patroon Creek and at Salt Kill sample 4 locations.

DEC also used analysis of measured PFAS and metals concentrations in soils to evaluate the influence of wind direction relative to these sample locations. The full data set for all the individual PFAS compounds were analyzed in the upwind and downwind samples. There is no clear evidence of an upwind and downwind gradient of individual or total PFAS, which would be expected if the PFAS combusted at Norlite was not destroyed by the high temperatures of the kilns. Metals concentrations were also analyzed for distribution due to potential air deposition. Overall, except for arsenic, mercury, copper, and lead, downwind concentrations are lower than or comparable to upwind metal concentrations. Elevated concentrations of mercury, copper and lead were found in downwind sample S10. The results from this sample location, which was in close proximity to a closed industrial landfill, indicates there is the potential that the past operations at the landfill may skew the downwind concentrations higher. When the results from this sample location are removed from the analysis, DEC did not observe any notable upwind/downwind gradient of soil metal concentrations.

Based on the comprehensive review of the data undertaken by DEC experts in consultation with the New York State Department of Health (DOH), the conclusions of this report are as follows:

- Analysis of soil concentrations does not show clear evidence of an increase in downwind PFAS concentrations;
- Analysis of soil concentrations does not show evidence of a significant increase in downwind metals concentrations;
- Concentrations of PFOA and PFOS in soils do not indicate a human health risk. These concentrations are below levels developed by DOH applicable to the current land use and potential for human exposure;
- Analysis of stream water concentrations at high flow and low flow indicates possible influence from soils and precipitation in areas of low surface water PFAS concentrations, but not in locations with higher surface water concentrations, such as those found in the Patroon Creek and in the Salt Kill downstream from Norlite; and
- Analysis of surface water samples in areas of ponded water on or near Norlite property indicate that there are likely sources of PFAS compounds not associated with Norlite kiln emissions.

As a result of this study and its findings:

- DEC and DOH will continue to evaluate health-based values for all PFASs and work to establish guidance values for additional PFASs;
- DEC will monitor groundwater and surface water on Norlite property to better assess existence of PFASs over time;
- DEC will require emissions testing to include analysis of organic and inorganic fluorine compounds from the kilns at Norlite; and
- DEC will further assess potential sources of contamination observed in this report.

Norlite Environmental Sampling Report

2. Introduction - Project Area

Sampling was conducted at the Norlite Corporation facility in Cohoes and at off-site locations by New York State Department of Environmental Conservation (DEC) staff from the Divisions of Environmental Remediation (DER) and Materials Management (DMM) in coordination with the Division of Air Resources (DAR), see Figure 1. Sampling was conducted by DEC to characterize the occurrence of per- and polyfluoroalkyl substances (PFAS) and metals, if any, in soil and surface water. This document presents the sampling results from the onsite and off-site as well as background locations.

2.1 Background

The Norlite facility is an expanded shale aggregate plant and active shale quarry, which has been operating since 1956. Norlite uses waste, both hazardous and nonhazardous, as fuel in the facility's two rotary kiln furnaces. These furnaces heat the shale being mined onsite to create lightweight aggregate. Norlite holds multiple DEC permits to conduct these operations. As a part of the current air discharge and hazardous waste permitting renewal processes, DEC has required emissions testing, and a multi-pathway human health and ecological risk assessment be conducted. These assessments and testing do not include a PFAS emissions assessment based on prior community requests.

As part of its operations, Norlite receives spent solvents and other hazardous and nonhazardous material wastes for use as fuel in firing the kilns to make aggregate. In 2018, Norlite began receiving PFAS-containing aqueous film forming foam (AFFF), which was combusted in the kilns. This practice ended in late 2019 as directed by DEC.

In March 2020, Bennington College conducted limited water and soil sampling in the vicinity of the facility to assess the possible migration of PFAS contamination. Recent sampling coordinated by DEC and DOH (May 2020)at the nearest public water supplies (Cohoes, Green Island) did not find evidence of PFAS contamination stemming from Norlite's activities. However, area residents and public officials are still concerned that the combustion of PFAScontaining materials has led to PFAS contamination off-site and urged DEC to conduct more rigorous sampling to evaluate the possibility of PFAS contamination in the local area. To address the public's overall concern about the combustion of PFAS containing materials at the Norlite facility, DEC conducted a PFAS and metals sampling program. Soil and surface water samples were collected at the Norlite facility, on the grounds of the adjacent Cohoes Housing Authority (CHA) Saratoga Site Apartments, and other off-site areas.

2.2 Site/Sample Location Descriptions

Samples were obtained from within the Norlite facility, within the CHA Saratoga Sites Apartment complex, Patroon Creek, Schuyler Creek, Salt Kill and various off-site locations. See Figure 1.

Norlite:
The Norlite facility, located within the Town of Colonie and City of Cohoes, is in a mixed land use area near residential and commercial properties. Residences are located to the north, east, and south. Commercial areas are located to the east and south. Undeveloped land exists west and north of the site. The site is located on the north side of State Route 7 (locally known as Alternate Route 7), and west of Route 32.

The facility, consists of approximately two hundred-twenty (220) acres, including an active shale mine, site operations area, and undeveloped buffer parcels along some of the site boundaries. Approximately forty (40) acres of the site are developed and include office buildings, shale aggregate processing facilities, rotary kilns, fuel receiving, storage and processing areas, aggregate storage piles and other operations buildings.

CHA Saratoga Sites Apartments:

The Cohoes Housing Authority (CHA) Saratoga Sites Apartments are located in the City of Cohoes in a mixed-use area with residential, commercial, and industrial properties. The apartments are bound to the west by train tracks and then the Norlite facility, to the north by the Norlite access road, to the east by Cohoes Road (Route 32), followed by residential and commercial properties, and to the south by a wooded area. The complex is composed of thirteen buildings, an ashpalt basketball court, paved walkways, and a playground.

Patroon Creek, various locations, Albany, NY:
Patroon Creek flows east-southeast from the Six-Mile Reservoir in the Albany Pine Bush Preserve to the Hudson River. The creek flows through the city of Albany both above and below ground. There were four surface water sample locations along Patroon Creek: Six-Mile Reservoir, an Albany Water Authority right of way, Tivoli Lake Wildlife Park, and the confluence with the Hudson River.

Schyler Creek, various locations, Saratoga County, NY:
Schuyler Creek flows east-southeast from north of Route 243 to the Hudson River in the Town of Stillwater. The creek flows through forested agriculture fields, residential properties, and the Town of Stillwater. The creek was sampled at its intersection with Filke Road and the downstream side of the bridge on Hudson Street.

Salt Kill, Albany County, NY:
The Salt Kill flows east-southest through the Norlite facility and is a tributary of the Hudson River. The off-site surface water sample at Salt Kill was collected at the downstream side of the intersection with Johnson Road. Sampleswere also collected from just upstream from where the Salt Kill enters Norlite property, on Norlite property within operations areas, and just
downstream from Norlite but prior to the stream becoming influenced by the receiving waterbody.

Off-site soil samples, various locations, Albany County, NY:
Soil samples were collected on public rights-of-way throughout Albany County. The sample locations were selected as they are located in upwind and downwind locations in relation to the Norlite facility and were expected to show what impacts the emissions are having on off-site soil. Samples were collected east of the Norlite facility along I-787, Tibbits Avenue, Green Island near the intersection with I-787, at the Alexander Street Trail Head, along Kirkner Avenue, Crabapple Lane, Hilltop Drive, and Boght Road.

The general sampling areas are illustrated on Figure 1.

3. Project Objectives

The project objectives as stated in the sampling program workplan:

- Design a sampling program of environmental media in the vicinity of the Norlite Plant in Cohoes, NY to determine the possibility of surface soil and surface water contamination resulting from the receipt and incineration of PFAS containing materials including AFFF.
- Obtain site specific background PFAS concentrations in these environmental media.
- Soil samples will be analyzed for metals to evaluate these contaminants in soils surrounding the Norlite facility.
- These results will be compared with guidance values listed in Guidance for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs January 2021 (NYSDEC PFAS Guidance), Title 6 of the New York Codes, Rules and Regulations (6NYCRR) Subpart 375-6 Remedial Program Soil Cleanup Objectives and with other relevant guidance.

4. Task Description

Field activities included the collection of forty-eight (48) soil samples and twenty-seven (27) surface water samples from thirty-two locations for PFAS, metals, and Total Oxidizable Precursor (TOP) assay. A list of the sample locations and analyses is presented in Table 1. Soil samples were collected from the top six inches to represent surface soil conditions. Soil sampling occurred on the Norlite facility, CHA Saratoga Apartment Sites, along Patroon Creek in Albany, NY, and within public right of ways in Albany County. Additional soil samples were collected from the top two inches from the CHA Saratoga Sites Apartments to represent possible public health exposure. Surface water samples were collected over two days to assess both high and low flow conditions. High flow conditions show contributions from stormwater runoff and precipitation in the watershed and low flow conditions indicate concentrations without contributions from stormwater runoff. Each sample location was recorded using a calibrated GPS Trimble in degrees of latitude and longitude.

4.1 Soil Sampling

Soil samples were collected on October 21, 2020, targeting areas with the highest potential of kiln emissions impact and sensitive receptors. Five (5) samples were collected on Norlite property. Thirteen (13) background samples were collected for comparison. Thirteen samples (13) were collected for quality control and quality assurance.

In accordance with the October 2020 Norlite sampling workplan and the NYSDEC PFAS Guidance, soil samples were collected both on and off-site. DER and DMM staff collected grab samples by digging soil with a stainless-steel spoon, excluding ground cover and organic matter (e.g., roots, sticks, leaves), then using the spoon to mix soil in a stainless-steel bowl until homogenized. The soil was then packed into the laboratory provided container. Soil collection equipment was decontaminated between samples with Alconox and certified PFAS-free tap water. Staff utilized proper personal protective equipment (PPE) (i.e., level D - nitrile gloves, non-PFAS containing clothing) while sampling. The soil sample name, location (latitude/longitude), collection depth, color, description, and analysis to be performed were recorded on a sampling field \log (Appendix A). Total Oxidizable Precursor (TOP) assay samples were collected from 0-2 inches to evaluate degradation products individuals may be exposed to. The TOP assay was developed to indirectly quantify the concentration of perfluoroalkyl acid (PFAA) precursors, i.e., PFASs, that may degrade in the environment to other products such as perfluoroalkyl carboxylic (PFCAs). ${ }^{2}$ These samples were taken from residential properties. Additional grab samples were collected from 0-6 inches to assess air deposition and the downward migration of PFAS over time. The 0-6 inch samples were collected at all soil sampling locations.

4.2 Surface Water Sampling

Surface water samples were collected during both high and low flow conditions from a total of fourteen (14) locations. High flow conditions occur within 24 hours of a rainfall event that produces at least a quarter inch of rain. Low flow conditions occur after at least 72 hours of no precipitation. High flow surface water samples were collected on October 30, 2020 following a significant precipitation event, in which greater than one inch of rain fell (Appendix C). Low flow surface water samples were collected on November 6, 2020. Precipitation did not occur within 72 hours prior to the sampling event.

Sampling methods remained consistent for both high and low flow conditions. A decontaminated stainless-steel sampling bucket (see photos in Appendix B) was rinsed three times with the site water to be collected. The sample was then collected from the surface water air interface and poured directly into the sample container. When filling multiple sampling containers, more than one scoop was needed to fill all the containers. Immediately after

[^0]collection, the samples were placed in iced coolers to keep the samples at $4 \pm 2^{\circ}$ Celsius until laboratory analysis could be performed.

4.3 Field Procedures, Analytical Methods, and Quality Assurance

Hazardous Waste Operations and Emergency Response-certified field staff collected water and soil samples using the grab sampling technique as described in this document. PFAS samples were stored in laboratory-provided, clean, high-density polyethylene containers. Metal samples were stored in clean glass containers proved by the laboratory. Field staff practiced proper sample packaging methods and chain of custody procedures as well as the shipment of samples to the contract laboratory.

Quality control (QC) sampling included matrix spike (MS) and matrix spike duplicates (MSD) and trip blanks. MS and MSD samples were collected at a frequency of one per twenty samples and analyzed for the same analytes as the environmental samples per sampling event. The laboratory provided trip blanks with each shipment of sample water sampling containers. Trip blanks were analyzed for PFAS only. At the end of each sampling day, one equipment blank was collected after all sampling activates were completed and the sampling equipment was decontaminated. PFAS-free water supplied by the laboratory was poured into the clean sampler/stainless-steel bowl and then placed into a container for analysis.

All samples were submitted to Eurofins TestAmerica, a New York State Department of Health Environmental Laboratory Approval Program (ELAP) certified laboratory, for analysis. Eurofins TestAmerica performed the analysis in accordance with the latest edition of the NYSDEC Analytical Services Protocol and provided 6 NYSDEC Category B laboratory deliverables packages. EPA Method 537 (modified) was used to analyze surface water and soil samples for PFAS. Additionally, soil samples were analyzed for metals per EPA Methods 6010D (various analytes), 7471B (mercury) and 7196A (hexavalent chromium). Two soil locations and two surface water locations were analyzed using TOP assay.

5. Analytical Results

The following section provides a summary of the soil and surface water data generated during the site investigation. Data summary tables generated during the site investigation are provided in Tables 2 through 6. Compounds exceeding applicable or established NYSDEC standards and guidance values for soil and surface water are summarized on Figures 2 through 7. Analytical reports are provided in Appendix E.
5.1 Soil

A total of forty-eight (48) soil samples including four (4) field duplicates were collected from eighteen (18) soil sample locations and submitted for laboratory analysis. All metals analytical soil data were compared to the 6NYCRR Subpart 375-6 Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Residential Soil Cleanup Objectives (RSCOs). All PFAS analytical soil data were assessed using guidance values for unrestricted use and residential use provided in NYSDEC PFAS Guidance, January 2021. This guidance currently presents Unrestricted Use

Guidance Values (UUGVs) and Residential Use Guidance Values (RUGVs) among other restrictive use values. Laboratory analytical data generated during the investigation for soil is summarized in Table 2 through Table 4. Soil sample locations and exceedances of guidance values, UUSSCOs and RSCOs are shown on Figure 2 through Figure 4.

A summary of soil sampling results is provided in the following sections.

5.1.1 PFAS

All samples were analyzed for PFAS compounds using Method 537 (modified) and two soil locations were additionally analyzed using TOP Assay. Currently there are two compounds with guidance values (GV) established for PFAS in soil. Perfluorooctanesulfonic acid (PFOS) has an unrestricted use guidance value (UUGV) of 0.88 parts per billion (ppb) and residential use guidance value (RUGV) of 8.8 ppb . Perfluorooctanoic acid (PFOA) has an UUGV of 0.66 ppb and RUGV of 6.6 ppb .

- PFOA and PFOS were detected in 23 of 24 soil samples collected and was distributed throughout the soil sampling locations.
- PFOA exceedances of the UUGV were detected in seven samples and no exceedance of the RUGV was detected in the samples. Sample concentrations ranged from non-detect to 1.1 ppb .
- PFOS exceedances of the UUGV were detected in 16 samples and an exceedance of the RUGV in one sample collected at the Soil 14 location. Sample concentrations ranged from non-detect to 9.8 ppb .

5.1.2 Total Oxidizable Precursor (TOP) Assay

Two soil samples, an upwind and a downwind sample (S15 and S8B) were analyzed using the TOP Assay. The TOP Assay will identify if there is a significant PFAS mass in the samples that the conventional method of analysis does not capture and provides additional information regarding the scale of potential PFAS contamination. It will transform sulfonamido and fluorotelomer precursors which cannot be detected using traditional methods into perfluoroalkyl carboxylates, which are referred to as terminal end products, which means they persist in the environment indefinitely.

The soil samples were analyzed to evaluate how much oxidizable PFAS could be liberated into the environment. In the upwind sample (S15) the post TOP Assay results indicated there was minimal formation ofterminal end products, the difference between the pre- and post-sample was 0.1 ppb total perfluoroalkyl carboxylates indicating no real presence of precursors in this sample. The downwind sample (S8B) contained minimal precursors, the difference between the pre- and post-sample was 2.3 ppb total and the increase was primarily in the short-chain PFBA. This result indicates there were some short-chain precursors detected in this sample which oxidized to PFBA. Overall, the results of the TOP Assay on these soil samples indicated there are minimal perfluoroalkyl precursors in these two soil samples.

5.1.3 Metals

A total of twenty (20) samples and two (2) field-duplicates were analyzed for twenty-two (22) metals via method 6010D. The samples were analyzed for mercury using method 7471B

- Detections of aluminum, arsenic, barium, beryllium, calcium, Total chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, vanadium and zinc were found in all samples.
- Detection of cadmium was detected in 86% of samples, sodium was detected in 45% of samples, thallium was detected in 32% of samples and selenium 18% of samples.
- Metal exceedances of the UUSCO were detected in nine samples.
- Lead, nickel and zinc accounted for the highest percentage of metal samples exceeding the UUSCOs at $14 \%, 18 \%$ and 36%, respectively. The highest concentrations of exceedances for each of these metals were within an order of magnitude of their UUSCO value.
- Copper exceeded its UUSCO once in twenty-two (22) samples, at a concentration of 90.7 ppm .
- Mercury exceeded its UUSCO only at the Soil 10 location, with a concentration of 1.6 ppm .
- Iron was detected in all soil samples. There are no regulatory values for iron established in 6NYCRR Part 375, but the concentrations found were greater than the guidance value found in DEC's Commissioner's Policy 51.

5.2 Water

A total of twenty (27) samples were collected from fourteen (14) surface water locations and submitted for laboratory analysis for PFAS compounds. All analytical water data were assessed using NYSDEC PFAS Guidance, October 2020.

Per the guidance document, guidance values for PFOA or PFOS concentrations in groundwater or surface water are assessed against a guidance value at or above 10 parts per trillion (ppt or ng/L). In addition, any other individual PFAS (not PFOA or PFOS) is assessed against a guidance value at or above 100 ppt ; and the total concentration of PFAS (including PFOA and PFOS) in a single sample is assessed at a guidance value at or above 500 ppt . Laboratory analytical data generated during the investigation for water is summarized in Tables 5 and 6.

All water samples were analyzed for PFAS compounds using Method 537 (modified) and two water samples were additionally analyzed using TOP Assay. Laboratory analytical data generated during the investigation for surface water quality is summarized in Table 5 and Table 6. Surface water sample locations and exceedances of guidance values are shown on Figure 5 through Figure 7.

A summary of water quality results is provided in the following sections.

5.2.1 PFAS

All samples were analyzed for PFAS compounds using Method 537 (modified) and two (2) soil locations were additionally analyzed using TOP Assay. The guidance document presents guidance values for 21 PFAS compounds and total PFAS in a sample. Currently the values for PFOA or PFOS concentrations in groundwater or surface water are compared to the New York State maximum contaminant level of 10 parts per trillion (ppt), which is being used as a guidance value although the MCL does not apply to these water resources as they are not being used for drinking water. As stated above, the nearest public drinking water supplies (Cohoes, Green Island) were assessed in a previous sampling effort (May 2020) and found to not be impacted. For the current analysis, any other individual PFAS (not PFOA or PFOS) is assessed against a guidance value at or above 100 ppt ; and the total concentration of PFAS (including PFOA and PFOS) in single sample is assessed at a guidance value at or above 500 ppt . A summary of the PFAS analysis follows and all data is presented in Table 5.

- PFOA and PFOS were detected in all water samples at all locations.
- PFOS exceeded the guidance value of 10 ppt at three locations: Water 5, Water 6 and Water PC2 during low flow sampling, with a maximum concentration of 21 ppt .
- All PFOA detections were below the guidance value of 10 ppt .
- Perfluorobutanesulfonic acid (PFBS) was detected at the guidance value of 100 ppt at two surface water locations: Water 7 and Water 8.
- All other individual PFAS (not PFOA or PFOS) compounds were below the guidance value of 100 ppt .
- No samples exceeded the total PFAS guidance value of 500 ppt .
- No exceedances were detected for any PFAS guidance value during high flow sampling.

5.2.2 Analysis of Water Samples Using the Total Oxidizable Precursor (TOP) Assay

Two (2) water samples (W4 and W7) were analyzed using the TOP Assay. In the W4 sample there was a minimal formation of terminal end products the difference between the pre- and post-sample was only $10(\mathrm{ppt})$ and the increase was primarily in the short chain PFBA.

In the W7 sample there was minimal formation ofterminal end products. The difference between the pre- and post-samples was 27 ppt and the increase was primarily in the short chain PFBA. The slight increase of perfluoroalkyl precursors in this water sample versus W4 indicates some short chain perfluoroalkyl precursors were present to a
greater degree in the W7 sample. Overall, the results of the TOP Assay on these water samples indicated a minimal increase in perfluoroalkyl precursors in these two water samples which indicates a minimum amount of precursors were in the water samples.

This data is presented in Table 6.

6. Data Usability

DEC chemists conducted data reviews on all samples submitted for analysis. Data usability summary reports (DUSR) were created and are provided in Appendix E. The data review summarizes analytical protocol compliance or deviation, and quality control. Two water samples required a qualifier adjustment (low flow samples 4 and 7) due to Extracted Internal Standards (Isotope Dilution Analytes) criteria not being met; no other water samples required qualifiers. For soil samples analyzed for PFAS, criteria for blanks, MS/MSD, and lab control spike were not met for fourteen, one, and four samples, respectively which required a qualifier adjustment for each. Soil samples S13-SOIL-102120 and S9B-SOIL-102120 analyzed for metals are unusable for hexavalent chromium as the matrix spike was below control limits. Additionally, hexavalent chromium in water blank samples exceeded holding times and were therefore determined to be unusable.

7. Discussion

7.1 Soil Concentrations Compared to Applicable Standards

No regulatory value of PFOA or PFOS has yet been established by the State for concentrations of PFAS compounds in soil. However, guidance values derived to be protective of human health have been established for PFOA and PFOS as follows for different land uses. The NYS guidance values in this chart are lower (more stringent) than residential soil targets in any other state reporting such criteria (See Interstate Technology Regulatory Council 2021 PFAS Fact Sheets https://pfas-1.itrcweb.org/fact-sheets/).

Guidance Values for Anticipated Site Use	PFOA (ppb)	PFOS (ppb)
Unrestricted	0.66	0.88
Residential	6.6	8.8
Restricted Residential	33	44
Commercial	500	440
Industrial	600	440
Protection of Groundwater	1.1	3.7

UUGV values are protective for an intensive residential/farm soil use scenario where contact with soil contaminants is possible via three pathways: direct contact/ingestion, the consumption of homegrown fruit/vegetables and the consumption of homeraised meat/dairy products. RUGVs are for a residential non-farm scenario which excludes the consumption of
homeraised meat/dairy products. Restricted Residential Use Guidance Values (RRUGVs) are residential-based targets where no homegrown products of any type are consumed but there remains direct soil contact and ingestion. Relative to Saratoga Sites and other residential areas that surround Norlite the RUGV and RRUGV scenarios are most consistent with the current land use, the corresponding soil GVs being 6.6 to 33 ppb for PFOA and 8.8 to 44 ppb for PFOS. In all cases, both upwind and downwind, PFOA concentrations are below the RUGV targets for PFOA, which is also true for PFOS except for one location which is slightly above the RUGV. The one location exceeding the RUGV for PFOS was at location 14. The value of 9.8 ppb at this location is greater than the RUGV of 8.8 ppb , but below the RRUGV of 44 ppb . Location 14 is in a location expected to be predominantly upwind from Norlite and was taken from a nonresidential area. PFOS soil levels in that area (locations 13-15) varied between 1.1 and 9.8 ppb while locations further south along the Patroon Creek and Interstate 90 in Albany ranged from 1.3 to 6 ppb PFOS. These upwind results show the variable nature of PFOS soil data in the general area. Overall, the soil results indicate no exceedances of restricted residential guidance values and one slight exceedance of the RUGVs (PFOS at 9.8 ppb , upwind location, nonresidential location). Thus, the PFAS levels detected in soil in this study do not represent a public health concern.

It should be noted that soil sample locations $6,7,8$, and 9 were within CHA property at the Saratoga Sites Apartments. For apartment complexes such as this where homegrown food production opportunities are limited or do not exist, the use guidance value with which to compare results is restricted residential. Results from these locations were all less than one tenth of the restricted residential use guidance value for PFOA and PFOS when looking at the 0-2 inch sample depth. The 0-2 inch depth is preferred to determine potential exposures for residents as it represents the most likely soil depth for human contact. All of the Saratoga Sites soil PFOA and PFOS results were also below the RUGV values.

For metals, the results were compared to the 6 NYCRR Subpart 375-6 Soil Cleanup Objectives (SCOs). Like the PFOA and PFOS soil guidance values, these are also derived to be protective of human health and are based on the use of the property. With the exception of the mercury at location 10 , all of these results are below residential standards. The residential SCO for mercury is 0.81 ppm .

Soil sample location 10 is located along Tibbets Avenue and was taken on the public right of way, but as far away from the road as possible along a fenceline for the adjacent property. Photos of all sample locations are shown in Appendix B. The adjacent property is the location of the former Bendix landfill. While the mercury concentration exceeds the residential SCO, residental land use involving regular direct contact with and ingestion of soil as well as raising vegetables does not occur at this location making any possible health risk minimal from mercury at location 10. As a point of reference, the soil cleanup objective for mercury that has the most relevance to location 10 is the industrial SCO which is 5.7 ppm .

In summary, none of the samples taken in this study indicate soil concentrations of PFAS compounds or metals that exceed the established standards or guidance values for current and anticipated use of the property.

7.2 Detection Frequency and Concentration of PFAS in Soils

Table 7.2 provides the range of individual PFAS detected in the soil studies conducted in the northeast in comparison to the samples collected around Norlite. These studies were conducted to examine the soil concentrations of PFAS in areas which were not directly impacted by known sources of PFAS emissions. In general, soil that has been contaminated by industrial emissions or the application of PFAS containing bio-solids have soil concentrations of total Perfluoroalkyl Carboxylates (PFCAs) and Perfluorosulfonic Acids (PFSAs) in excess of 100 ppb. ${ }^{3}$ None of the soil samples collected in this study had total PFCA and PFSA concentrations which exceeded this value. Since soil contamination of PFAS is so widespread a recent study attempted to delineate background concentrations of PFOS and PFOA from areas of known contamination. ${ }^{4}$ The median PFOS and PFOA concentrations for background areas was 2.7 ppb . In comparison, the median values for PFOS and PFOA in the soil samples collected around Norlite were 1.2 and 0.58 ppb . These extensive studies on soil concentrations indicate there has not been any gross soil PFOA and PFOS contamination detected in the area around Norlite as result of the high temperature incineration of AFFF or other PFAS containing fuels.

[^1]Table 7.2 - Range of PFAS Detected in Soil Studies from the Northeast (ug/kg or ppb) ${ }^{5,6}$

| Analyte | Vermont
 Range 1 | Norlite Range |
| :---: | :---: | :---: | :---: | (| Catskills/Adirondack |
| :---: |
| Range 3 |$|$

N/A - not applicable due to limited quantitative detection.
ND - not detected.
1 - Analysis performed for 17 PFAS (66 soil samples collected)
2 - Analysis performed for 21 PFAS (16 soil samples collected)
3 - Analysis performed for 14 PFAS (6 soil samples collected)
4 - . Not included in laboratory analysis.
The qualitative and quantitative detection frequency of each PFAS, minimum and maximum concentration of quantitative detections at the 18 locations sampled at the $0-6$ " depth is displayed in Appendix D. Qualitative values are estimated concentrations which were detected and flagged in the laboratory analysis. Quantitative values are concentrations which are not flagged by the laboratory and are considered to be accurate. As estimated values, qualitative detections were not included in the ranges presented in Appendix D but are noted in the qualitative frequency column.
${ }^{5}$ Zhu,W, Roakes H, Zemba, SG, Badireddy AR. 2019. PFAS Background in Vermont Shallow Soils. University of Vermont. Available On-Line: Microsoft Word - PFAS FINAL REPORT 03-24-19.docx (vt.gov).
${ }^{6}$ Schroeder T, Bond D, Foley J. 2019. Report of PFAS Soil Sampling on NY-DEC Lands by the Bennington College "Understanding PFOA Project". Available Upon Request.

Several PFAS were quantitively detected at relatively high frequencies in the soil samples upwind and downwind from Norlite. PFOA, PFNA and PFDA were quantitatively found in 50% or more of the samples collected. PFBA, PFHxA, PFUnA and PFOS were found quantitatively in 20 to $<50 \%$ of the samples collected. PFPeA, PFHpA and PFDOA were found quantitatively in $<20 \%$ of samples. PFTriA, PFHxS PFHpS and PFDS were found in $<10 \%$ of the samples. There were no quantitative results found for 8:2 FTS, 6:2 FTS NetFOSSA, MeFOSSA, FOSA, PFHpS, PFBS and PFTeA. Concentration of total PFAS quantitatively detected ranged from 0.3 $-12.30(\mathrm{ppb})$. The highest quantitative total PFAS concentrations were observed at locations S8B (12.30 ppb), S14 (12.24 ppb) and S13 (11.49 ppb).

Qualitative detected soil samples were pooled with the quantitative samples to examine if the same pattern as observed with the quantitative samples occurred. Many PFAS were qualitatively detected with relatively high frequencies in the soil samples upwind and downwind from Norlite. PFBA, PFPeA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA, and PFOS were qualitatively detected in 90 to 100% of the samples. PFPeA, PFDoA and PFBS were qualitatively detected in 50 to $<90 \%$ of the samples. PFHxS, PFDS and PFTriA were qualitatively detected in 20 to $<50 \%$ of the samples. PFTeA was found qualitatively in $<20 \%$ of the samples. PFHpS, NetFOSSA, 6:2 FTS and 8:2 FTS were found in $<10 \%$ of the samples. There were no qualitative results found for FOSA and MeFOSSA. Concentrations of total PFAS qualitatively and quantitatively detected ranged from $0.32-19.0 \mathrm{ppb}$. The highest qualitative/quantitative total PFAS concentrations were observed again at locations S8B (19 $\mathrm{ppb}), \mathrm{S} 14(14.7 \mathrm{ppb})$ and S13 (11.9 ppb).

Of specific interest are the results for the perfluoralkyl sulfonates (PFSAs). The two PFSAs detected in the highest percentages in AFFF produced in 2001 are PFOS and PFHxS. ${ }^{7}$ The quantitative analysis found PFOS and PFHxS in less than 50% and 10% of the soil samples respectively. The qualitative analysis found PFOS and PFHxS in 94% and 25% of the soil samples respectively.

7.3 Distribution of Concentrations in Soils

7.3.1 Methods Used to Evaluate the Influence of Wind Direction on Measured Concentrations of PFAS and Metals in Soil.

Five years of meteorological data from the Albany Airport and one year of meteorological data from the Albany South End Community Air Quality Study were used to determine if the soil samples collected were upwind or downwind of the Norlite facility. (Appendix C). The Albany Airport data represents the 5-year average (2015 2019) of wind direction and the Albany South End data represents the one-year average

[^2]of wind direction from August 2017 - November 2018. These data sets overlap the timeperiod when Norlite was incinerating AFFF foam at high combustion temperatures.

An analysis of weather patterns from this data indicate that the wind direction is most common from the south and also the winds tend to be strongest from that direction. The second most common wind direction is from the west. Thus, soil samples 1, 11, 12, 13,14 and 15 were designated as upwind locations. Soil Samples $2,3,4,5,6,7,8,9,10$ and 16 were designated as downwind locations. When the wind is blowing from the predominant direction (South) and a secondary direction from the West Northwest, the soil concentrations will be primarily influenced by sources in this area which includes Norlite (downwind locations). A comparison can be made with the soil concentrations when the wind is blowing from the opposite direction without the influences from Norlite (upwind locations). A consistent increase in PFAS and metal soil concentrations would be expected to be observed in the downwind locations if the PFAS incinerated at Norlite were not destroyed by high temperature combustion and the air pollution control equipment was not reducing emissions of the metals. The soil sampling was designed to determine if this was occurring by collecting 10 soil samples in downwind areas versus 6 soil samples in upwind areas.

7.3.2 Prevailing Wind Influences on Measured Concentrations of PFAS in Soil.

As described in section 7.3.1 above, meteorological data indicates soil samples considered to be in an upwind location include soil sample locations $1,11,12,13,14$, and 15. Downwind locations include soil sample locations $2,3,4,5,6,7,8,9,10$ and 16. In the upwind locations, PFOA concentrations range from 0.29 to 0.88 parts per billion (ppb), PFOS ranging from 0.46 to 9.8 ppb , lead ranging from 12.4 to 46.5 parts per million (ppm), and mercury ranging from .017 to 0.1 ppm .

In locations determined to be in prevailing downwind directions, concentrations range between 0.19 and 0.95 ppb for PFOA, 0.26 to 4.5 ppb for PFOS, 15.1 to 236 ppm for lead and 0.017 to 1.6 ppm for mercury.

Based upon the prevailing wind direction from south to north along the Hudson River Valley as shown in the wind rose data found in Appendix C, any contamination occurring as a result of emissions from combustion in the kilns would be expected to be at their highest concentrations at the downwind soil sample locations.

The PFAS soil data was examined in multiple ways to discern if there was a large difference which could be observed between the upwind and downwind samples since soil is a known reservoir for PFAS which could be atmospherically deposited. ${ }^{4,5,8}$ The
${ }^{8}$ Washington JW., Rosal CG., McCord JP., Strynar MJ., Lindstrom AB., Bergman EL., Goodrow SM,. Tadesse HK., Pilant AN., Washington BJ., Davis MJ., Stuart BG., and TM Jenkins. 2020. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science 368:6495.
soil data was also analyzed to evaluate if there was a consistent pattern between the individual PFASs detected in this study.

The full data set for all the individual PFAS qualitatively and quantitatively analyzed and determined in the upwind and downwind samples, along with total PFAS concentrations, are shown in figures in Appendix D. When evaluating the geometric means for all the individual PFAS qualitatively and quantitatively detected in the upwind and downwind samples there is no evidence of a strong upwind and downwind gradient of individual or total PFAS which would be expected to be observed if the PFAS combusted at Norlite was not destroyed by the high combustion temperatures of the kilns. The upwind concentrations of PFOA and total PFAS are higher than the downwind concentrations. A very small upwind/downwind gradient for PFNA, PFUnA, PFTriA, PFOS and PFBS was observed. (Appendix D).

Overall, there is no evidence of the strong upwind/downwind gradient being observed in these samples that would be expected to be observed if the PFAS combusted at Norlite was not destroyed by the high combustion temperature of the kilns, especially when other local sources in the area that may be contributing to these findings are considered. It should also be noted that there are other potential sources of PFAS emissions in the area which could contribute to the upwind concentrations.

Individual soil samples were examined also and the pattern that emerges is that total quantitative PFAS concentrations are the highest in the locations near a potential source which uses imported textiles that most likely contain PFAS surface coatings. The highest soil concentrations for total PFAS qualitatively and quantitatively determined were collected in Sample 13, which is near an area where textile cuttings and dust are disposed of and transported from the facility; Sample 14 which is upwind of the facility but nearby, and Sample 8, which is downwind of the facility and near the laundry room at the Saratoga Sites. A recent evaluation of PFAS concentrations in indoor dust primarily from the use of PFAS-treated textiles has found total and individual PFAS concentrations that are higher than those observed in Sample 8 and all soils samples collected in this study. ${ }^{9}$
pp 1103 - 1107. Available On-Line: Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils | Science (sciencemag.org)
${ }^{9}$ Young AS, Hauser R, James-Todd TM, Coull BA, Zhu H, Kannan K, Specht AJ, Bliss MS, Allen JA. 2020. Impact of "heathier" materials intervention on dust concentrations of per and polyfluoroalkyl substances, polybrominated diphenyl ethers and organophosphate esters. Environment International. In Press. Available On-Line:
https://reader.elsevier.com/reader/sd/pii/S0160412020321061?token=20C7A98B371878FEE251C4B75F 1F32213F10CC535D1737735A4CD70DEE22C8D2352C0CB2BBD2AF5BC8AA573991F41F23

7.3.3 Prevailing Wind Influences on Measured Concentrations of Metals in

 Soil.The full data set of all the geometric means for the individual metals analyzed in the upwind and downwind samples are shown in Appendix D. The analysis of the geometric means indicates copper is the only metal distinctly elevated above the upwind samples. It should be noted that all the metal samples results are below the applicable use-based SCOs.

7.4 Concentrations of PFAS in High and Low Flow Water Samples

Sampling was conducted during a high flow event to assess the impact of stormwater runoff on the three study area streams which were sampled. A consistent pattern of an increase in total PFAS concentrations during a high flow event was not observed in all the streams sampled. The samples from Schuyler Creek exhibited a slight increase in total PFAS concentrations during the high flow sampling event. This increase was primarily driven by increased PFBA concentrations, with smaller increases of PFPeA, PFHxA, PFBS and PFOS. The increase in PFOS was observed only in Schuyler Creek 2 sample after the creek flowed through a populated area of the village. There was no increase in PFOA during the high flow event in these samples.

The Salt Kill followed a similar pattern during the high flow event for Samples 1 through 3, but not Sample 4. The increase in total PFAS concentrations were higher than observed in the more distant and rural Schuyler Creek indicating an increase in surface water loading in this more urban area after a precipitation event. The increase was primarily driven by PFBA, PFPeA, PFHxA and PFOS. The total PFAS concentration in Salt Kill Sample 4 was higher than all the samples collected, however this sample had a unique signature in comparison to the other samples collected from the Salt Kill. It was dominated by 6:2 FTS and PFPeA as measured during the low flow event. The reason for this difference has not been determined. It is possible that there are other sources contributing to the increased low flow total PFAS concentration found in this sample including groundwater or sediments. 6:2 FTS was not observed in any other water samples collected in this study. Of significant note, PFOS followed the increased high flow loading as observed in Salt Kill samples 1-3.

The Patroon Creek samples did not follow this pattern of increased loading during a high flow event. Overall, the Patroon Creek samples were higher in total PFAS concentrations during the low flow event, indicating a possible sediment effect which was observed in Salt Kill sample 4. In this case the stormwater runoff is diluting the total PFAS concentrations during the high flow event and the high sediment concentrations are masking any increases as observed in the other two streams during the high flow event. The results of this analysis reveal some PFAS loading into the Salt Kill and Schuyler Creeks during the high flow events, which indicates a combination of the PFAS contribution from precipitation events and stormwater runoff. This finding is not unexpected since it is known that perfluoroalkyl carboxylates are being detected in rainwater across the United States. This issue is discussed further in the PFAS in Precipitation section of this report.

Table 7.4. Differences in Total PFAS during a Low Flow and High Flow Creek Event.

Sample ID	Low Flow (Total PFAS) (ppt)	High Flow (Total PFAS) (ppt)	Difference
Schuyler Creek 1	4.34	9.44	+5.10
Schuyler Creek 2	9.03	12.05	+3.02
Salt Kill 1	10.03	18.25	+8.22
Salt Kill 2	8.64	18.91	+10.27
Salt Kill 3	10.59	19.98	+9.39
Salt Kill 4	100	28.08	-71.92
Patroon Creek 2	64.80	33.42	-31.38
Patroon Creek 3	41.43	34.70	-6.73
Patroon Creek 4	36.90	31.84	-5.06

7.5 Concentrations of PFAS in Ponded Waterbodies

Water samples 5,6,7 and 8 were collected in surface water bodies (quarry ponds and an un-named pond) in close proximity to Norlite. The patterns of PFAS were distinctly different between the quarry ponds, samples W5 and W6 and un-named pond samples W7 and W8. This observed difference in PFAS surface water profiles between the two areas in close proximity of each other indicates there is likely another source contributing to the PFAS water and soil concentrations. The unique surface water PFAS profiles observed in samples W7 and W8 are consistent with the use of textiles which contain PFAS used to provide resistance to water and staining.

It is well known many textiles currently manufactured and used are produced with chemical treatments using per and poly fluoroalkyl substances to provide protection against fading, water, stain, and oil penetration. The PFAS profiles of these imported textiles are changing as newer shorter chain PFAS replacements are currently being used, which includes the PFOS replacement PFBS. ${ }^{10,11,12,13}$. In comparison to all the other water samples collected, the

[^3]PFBS concentrations point to a local contributing source different than the other sample locations. The hightest total PFAS water concentrations were measured in the unnamed pond which is downwind and in close proximity to a manufacturer that uses textiles. Additional investigations will continue to further explore potential sources of the detections observed in this area.

PFBS was purportedly developed as a less toxic and persistent replacement for PFOS for use in surface coatings to instill water repellency and stain resistance. It is also a component used to replace PFOS in AFFF foams. A comparison of the PFAS profiles in surface water and run-off water sampling from AFFF firefighting sites indicates the PFAS profile being observed in noname pond is related to its use in textiles, not a spill of AFFF or emissions of unburned AFFF in this study area. AFFF-contaminated sites have a unique profile, which is not being observed in any of these water samples collected in the study area. For example, surface water runoff of PFOS and PFOA from the AFFF training area in Newburgh, New York ranged from $47-280$ ppt and $15-40 \mathrm{ppt}$, respectively. Our analysis of PFAS contamination around fire training sites reveals high levels of PFAS in all water samples dominated by PFOS, PFHxS, PFHxA and PFOA in rank order. None of these rank-ordered profiles were observed in any of the surface water samples collected in the vicinity of Norlite.

Table 7.5 displays the surface water ranges from three independent studies conducted in the Northeast. The results from Washington Park Lake in Albany, New York indicates the PFAS contamination profile from 2007 is still consistent with the results from the Norlite surface water samples for the analytes sampled. Recent work conducted by New Jersey Department of Environmental Protection (NJDEP) in 2018 also reveals a consistent PFAS profile, with the higher PFOS, PFHxS, PFHxA and PFOA values collected from surface waters with possible AFFF contamination. Of note in the NJDEP study, was a sample collected in a creek downstream from a carpet manufacturer. The PFAS profile in this sample matches the PFAS profile collected in the unnamed pond. Both samples contain the same nine detected individual PFASs, which provides more certainty about the textile source of contamination in no-name pond.

725:10 138352. Available On-Line: Polyfluoroalkyl substances in Danjiangkou Reservoir, China: Occurrence, composition, and source appointment - ScienceDirect

TABLE 7.5 Range of PFAS Detected in Surface Water Studies (ppt or ng/l) ${ }^{14,15}$

Analyte	Washington Lake Range $^{\mathbf{1}}$	Norlite Range $^{\mathbf{2}}$	New Jersey Surface Water Range
PFBA	N/A	ND -23	ND -5.2
PFPeA	N/A	$2.3-13$	$1.0-10.0$
PFHxA	N/A	$2.4-11$	ND -26.0
PFHpA	$1.15-12.7$	$0.86-11.0$	$1.1-14.6$
PFOA	$3.27-15.8$	$0.97-5.6$	$1.9-33.9$
PFNA	ND -3.51	$0.41-1.8$	ND -2.1
PFDA	$0.25-3.58$	ND	ND
PFUnA	ND -1.45	$0.28-1.8$	ND
PFDoA	ND	ND	ND
PFTriA	N/A	ND	N/A
PFTeA	N/A	ND	N/A
NMeFOSSA	N/A	ND	N/A
NetFOSSA	N/A	ND	N/A
PFBS	N/A	$0.56-100$	ND -6.6
PFHxS	ND -4.05	$1.7-3.4$	ND -95.9
PFHpS	N/A	ND	N/A
PFOS	ND -9.3	$2.1-12$	ND -102.0
PFDS	ND -3.4	ND	N/A
PFOSA	ND -0.47	ND	ND
$6: 2$ FTS	ND -1.46	ND	N/A
$8: 2$ FTS	ND -0.32	ND	N/A

N/A - not applicable due to limited quantitative detection.
1 - Analysis performed for 12 PFAS
2 - Analysis performed for 21 PFAS
3 - Analysis performed for 12 PFAS
${ }^{14}$ Kim K. and Kannan K. 2007. Perfluorinated Acids in Air, Rain, Snow, Surface Runoff and Lakes: Relative Importance of Pathways to Contamination of Urban Lakes. Environ. Sci. Technol. 2007, 41, 8328-8334
${ }^{15}$ New Jersey Department of Environmental Protection (NJDEP). 2018. Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water and Sediment. Updated April 9, 2019. Available On-Line: Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment (nj.gov)

7.6 PFAS in Precipitation

The National Atmospheric Deposition Program (NADP) has recently launched a national investigation into the PFAS concentrations in rainwater across the United States. Preliminary research has identified that the shorter chain PFAS are dominating the samples. Overall concentrations were low ($<1 \mathrm{ppt}$), with the sum of total PFAS being around 4 ppt . The dominant PFAS detected in rainwater were the perfluoroalkyl carboxylates. Preliminary research has indicated more individual PFAS are detected and higher concentrations of atmospheric PFAS are observed in the mid-Atlantic States. ${ }^{16,17}$ The most extensive evaluation of PFAS atmospheric concentrations and wet deposition across the United States has been compiled by researchers in North Carolina. ${ }^{18}$

This research is continuing and will assist DEC by determining the chemical identity and quantity of PFAS which is currently cycling in the atmosphere and contributing to the current soil and water contamination levels being observed in this community. This research in tandem with a robust emissions testing program will be invaluable in understanding how potential sources of PFAS and PFAS precursors are contributing to atmospheric concentrations which continue to contaminate our environment.

8. Conclusions and Recommendations

8.1 Analysis of soil concentrations does not show evidence of a strong upwind / downwind gradient of PFAS and metals.

As described in this report, sampling results were analyzed using a variety of basic statistical methods. These analyses did not indicate a clearly discernible upwind / downwind gradient as is commonly found when soil samples are analyzed upwind and downwind from known emission sources of PFAS and metals. Given the absence of a deposition pattern attributable to this point source, the concentrations of PFAS observed in this study are consistent with background levels documented in the literature and more likely the result of 70 years of widespread releases to the environment since PFAS were introduced into commerce.

[^4]Investigation by the USEPA as well as DEC to understand the sources and extent of PFAS contamination will be critical so that it can be effectively managed and/or mitigated in the future.

The analysis of the soil metal concentrations in the majority of residential soil samples did not reveal any concentrations above the restricted residential use soil cleanup objective criteria used by the DEC for making soil cleanup determinations with the exception of one sample for mercury. Some residential samples were above the unrestricted use soil cleanup objectives as discussed in the report. Overall, the upwind/downwind analysis of the metals in the soil samples did not reveal a strong gradient in soil metal concentrations in the predominant downwind area around Norlite. In addition, statistical evaluation of metals concentrations in soils does not show clear evidence of an upwind / downwind gradient for these contaminants.

8.2 Concentrations of PFOA and PFOS in soils do not indicate a human health risk.

While guidance concentrations have not been established for all PFAS compounds which were analyzed in this study, the concentrations of PFOA and PFOS found were largely below residential use values that have been established in DEC guidance. The one sample result showing a PFOS concentration exceeding the residential use value was found in a location that is not used for residential purposes and thus exposures associated with residntial property use are unlikely. Likewise, only one result for metals (mercury) exceeded a residential soil cleanup objective in regulation. This soil location is near a landfill and is also not in an area associated with residential use. In all cases, concentrations were less than the guidance use values for the current uses of the sampled property.

Recommendation: DEC and DOH will continue to evaluate health-based values for all PFAS compounds and will work to establish guidance values for additional compounds as scientific studies support these designations.
8.3 Analysis of stream concentrations at high flow and low flow indicates possible influence from soils and from precipitation, but not in locations with higher concentrations such as those found in the Patroon Creek and in the Salt Kill downstream from Norlite.

The reversal of the concentration trends in streams in areas with higher PFAS concentrations during low flow events indicates that there are likely sources of these contaminants other than from air deposition leading to increased storm-water runoff and precipitation concentrations/loading. This observation will be further evaluated by DEC in other areas of the state in the future.

Recommendation: Add PFAS monitoring requirements to Norlite's hazardous waste management permit to assess the possibility of contaminant loading from groundwater or other on-site sources.
8.4 Analysis of surface water samples in areas of ponded water on or near Norlite property indicate that there are likely sources of PFAS compounds not associated with Norlite kiln emissions.

The observed difference in PFAS surface water profiles between two ponded areas in close proximity of each other indicates there are likely other sources contributing to the PFAS water and soil concentrations. DEC believes sources contributing to the unique surface water PFAS profiles observed in samples W7 and W8 are related to the use of textiles, used to provide resistance to water and staining, which contain PFAS.

Recommendation: Investigate for other local sources of short-chained PFAS compounds. In addition, add additional monitoring requirements to Norlite's hazardous waste management permit to monitor PFAS concentrations in quarry pond water.

8.5 Source Characterization of Organic and Inorganic Fluorine Emissions:

The fate of fluorinated chemicals being emitted from the kilns can be more fully understood by using the recently developed US EPA Method OTM 45 and other analytical methods for measuring inorganic fluoride.

Recommendation: Require emissions testing which includes an analysis of inorganic and organic fluorine emissions from the kilns at Norlite. Consult with researchers from the US EPA Office of Research and Development to design an emissions study to verify the formation of hydrogen fluoride (HF) during the high temperature combustion of organic fluorinated compounds and verify compliance with the current New York State Standard (6 NYCRR Part 257-4) for gaseous fluoride.

Figures

Department of Environmental Conservation

Figure 3
PFOS, PFOA, and Total PFAS Soil Results
Patroon Creek Area Albany County, New York
$\begin{array}{lll}0 & 1,000 & 2,000 \quad 4,000 \\ \text { Feet }\end{array}$

Tables

Table 1
Norlite Area Investigation

Sample Locations and Description				
Site ID	LOCATION	LATITUDE	LONGITUDE	ANALYSES
Soil 1	Norlite Property	42.75804605	-73.71673	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 2	Off-site	42.76100097	-73.704122	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 3	Norlite Property	42.75720798	-73.702848	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 4	Norlite Property	42.75504483	-73.70223	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 5	Off-Site	42.75662583	-73.69885	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 6(a,b)	Cohoes Housing Authority	42.75399417	-73.701248	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 7(a,b)	Cohoes Housing Authority	42.75324278	-73.701162	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 8(a,b)	Cohoes Housing Authority	42.75274306	-73.701225	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury, TOP Assay (Soil 8b)
Soil 9(a,b)	Cohoes Housing Authority	42.75274356	-73.701226	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 10	Off-site	42.74969361	-73.697726	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 11	Norlite Property	42.75348835	-73.712804	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 12	Norlite Property	42.75173317	-73.712829	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 13	Off-site	42.74751773	-73.707682	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 14	Off-site	42.7580473	-73.70932	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil 15	Off-site	42.74167	-73.713694	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury, TOP Assay
Soil 16	Off-site	42.76260021	-73.704122	PFAS Modified 21, Hexavalent Chromium, Metals, Mercury
Soil PC1	Patroon Creek	42.6970986	-73.831029	PFAS Modified 21
Soil PC2	Patroon Creek	42.68582622	-73.78982	PFAS Modified 21
Water 1	Salt Kill Norlite Property	42.76573167	-73.73163	PFAS Modified 21
Water 2	Salt Kill Norlite Property	42.7586184	-73.708186	PFAS Modified 21
Water 3	Salt Kill Norlite Property	42.75528025	-73.705555	PFAS Modified 21
Water 4	Salt Kill Norlite Property Downgradient	42.7543632	-73.705287	PFAS Modified 21, TOP Assay
Water 5	Norlite Property	42.75399167	-73.706342	PFAS Modified 21
Water 6	Norlite Property	42.75473194	-73.706872	PFAS Modified 21
Water 7	Off-site Surface Waterbody	42.75155667	-73.703293	PFAS Modified 21, TOP Assay
Water 8	Off-site Surface Waterbody	42.74930139	-73.703398	PFAS Modified 21
Water PC1	6 Mile Reservoir	42.6972244	-73.731317	PFAS Modified 21
Water PC2	Patroon Creek	42.6856165	-73.789469	PFAS Modified 21
Water PC3	Patroon Creek	42.67144944	-73.758501	PFAS Modified 21
Water PC4	Patroon Creek	42.65956167	-73.738226	PFAS Modified 21
Water SC1	Schuyler Creek	42.93756178	-73.657972	PFAS Modified 21
Water SC2	Schuyler Creek	42.97425	-73.671394	PFAS Modified 21

Note: EPA Method 537 (modified) used to analyze for PFAS. Methods 6010D, 7471B (mercury) and 7196A (hexavalent chromium) used to analyze for metals.

Table 2
Norlite Area Investigation
Soil Per- and Polyfluoroalkyl Substances (PFAS) Results - October 2020

Location Sample ID Sample Date Depth (inches)	Unrestricted Use Criteria	Residential Use Criteria	$\begin{gathered} \text { SOIL 1 } \\ \text { S1 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 2 \\ \text { DUP1 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 2 \\ \text { S2 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL } 3 \\ \text { S3 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL 4 } \\ \text { DUP2 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL } 4 \\ \begin{array}{c} 10 / 21 / 2020 \\ 0-6 \end{array} \end{gathered}$	$\begin{gathered} \text { SOIL 5 } \\ \text { S5 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 6 \\ \text { S6A } \\ 10 / 21 \not 02020 \end{gathered}$	SOIL 6 S6B $10 / 2102030$	$\begin{gathered} \text { SOIL 7 } \\ \text { S7A } \\ 10 / 21 / 2020 \\ 0-2 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 7 \\ \text { S7B } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$
CHEMICAL NAME													
Perfluorooctanesulfonic acid (PFOS)	0.88	8.8	0.95 J +	1.5	1.4	<0.50 U	$<0.62 \mathrm{U}^{4}$	0.26 J	1.7 J +	2.8 J +	2.3 J+	$1.2 \mathrm{~J}+$	1.1 J +
Perfluorooctanoic acid (PFOA)	0.66	6.6	0.30	1.1	0.95	$<0.20 \mathrm{U}$	0.36	0.38	0.93	0.45	0.63	0.33	0.29
N -methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	<2.7 U	$<2.8 \mathrm{U}$	<2.9 U	<2.0 U	<2.5 U	<2.4 U	<2.6 U	$<2.7 \mathrm{U}$	$<2.6 \mathrm{U}$	<2.7 U	<2.5 U
N -ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NC	NC	<2.7 U	$<2.8 \mathrm{U}$	$<2.9 \mathrm{U}$	$<2.0 \mathrm{U}$	$<2.5 \mathrm{U}$	<2.4 U	<2.6 U	<2.7 U	$<2.6 \mathrm{U}$	<2.7 U	$<2.5 \mathrm{U}$
Perfluorobutanesulfonic acid (PFBS)	NC	NC	<0.27 U	0.26 J	0.25 J	<0.20 U	0.033 J	0.050 J	0.075 J	0.093 J	0.089 J	0.059 J	0.056 J
Perfluorobutanoic acid (PFBA)	NC	NC	0.19 J	0.55	0.59	0.10 J	0.38	0.50	0.71	0.22 J	0.34	0.21 J	0.16 J
Perfluorodecanesulfonic Acid (PFDS)	NC	NC	<0.27 U	<0.28 U	<0.29 U	<0.20 U	<0.25 U	<0.24 U	0.26 UJ	0.15 J	0.15 J	0.067 J	0.075 J
Perfluorodecanoic acid (PFDA)	NC	NC	0.092 J	0.24 J	0.32	<0.20 U	0.066 J	0.089 J	0.35			0.11 J	0.16 J
Perfluorododecanoic acid (PFDoA)	NC	NC	<0.27 U	0.11 J	0.14 J	$<0.20 \mathrm{U}$	<0.25 U	$<0.24 \mathrm{U}$	0.16 J	0.15 J	0.14 J	$<0.27 \mathrm{U}$	<0.25 U
Perfluoroheptanesulfonic acid (PFHpS)	NC	NC	<0.27 U	<0.28 U	<0.29 U	<0.20 U	<0.25 U	<0.24 U	<0.26 U	$<0.27 \mathrm{U}$	<0.26 U	<0.27 U	<0.25 U
Perfluoroheptanoic acid (PFHPA)	NC	NC	0.10 J	0.29	0.30	0.063 J	0.16 J	0.17 J	0.290 .40	0.13 p .34	0.17 J	0.11 J	0.085 J
Perfluorohexanesulfonic acid (PFH \times S)	NC	NC	<0.27 U	0.052 J	0.049 J	<0.20 U	<0.25 U	<0.24 U	<0.26 U	0.059 J	0.064 J	0.044 J	<0.25 U
Perfluorohexanoic acid (PFHXA)	NC	NC	0.084 J	0.27 J	0.32	0.080 J	0.15 J	0.20 J	0.23 J	$<0.27 \mathrm{U}$	0.16 J	0.13 J	0.12 J
Perfluorononanoic acid (PFNA)	NC	NC	0.19 J	0.43	0.45	<0.20 U	0.17 J	0.17 J	0.49			0.17 J	0.16 J
Perfluorooctanesulfonamide (FOSA)	NC	NC	<0.27 U	$<0.28 \mathrm{U}$	$<0.29 \mathrm{U}$	<0.20 U	<0.25 U	<0.24 U	<0.26 U	< 0.27 U	<0.26 U	<0.27 U	<0.25 U
Perfluoropentanoic acid (PFPeA)	NC	NC	<0.27 U	0.29	0.37	0.079 J	0.16 J	0.20 J	0.31	0.16 J	0.23 J	0.11 J	<0.25 U
Perfluorotetradecanoic acid (PFTeA)	NC	NC	<0.27 U	<0.28 U	0.079 J	<0.20 U	<0.25 U	<0.24 U	0.0930132	<0.27. Bl	<0.26 U	<0.27 U	<0.25 U
Perfluorotridecanoic acid (PFTriA)	NC	NC	<0.27 U	0.087 J	0.11 J	<0.20 U	<0.25 U	<0.24 U	0.10 J	$<0.27 \mathrm{U}$	<0.26 U	<0.27 U	<0.25 U
Perfluoroundecanoic acid (PFUnA)	NC	NC	0.16 J	0.25 J	0.34	$<0.20 \mathrm{U}$	0.099 J	0.078 J	0.28	0.21 J	0.17 J	0.11 J	0.12 J
$1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorodecane sulfonic acid (8:2 FTS)	NC	NC	$<2.7 \mathrm{U}$	$<2.8 \mathrm{U}$	$<2.9 \mathrm{U}$	$<2.0 \mathrm{U}$	$<2.5 \mathrm{U}$	$<2.4 \mathrm{U}$	<2.6 U	<2.7 U	<2.6 U	$<2.7 \mathrm{U}$	$<2.5 \mathrm{U}$
$1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorooctane sulfonic acid (6:2 FTS)	NC	NC	$<2.7 \mathrm{U}$	$<2.8 \mathrm{U}$	< 2.9 U	$<2.0 \mathrm{U}$	$<2.5 \mathrm{U}$	$<2.4 \mathrm{U}$	$<2.6 \mathrm{U}$	$<2.7 \mathrm{U}$	$<2.6 \mathrm{U}$	$<2.7 \mathrm{U}$	$<2.5 \mathrm{U}$
Total Per- and Polyfluoroalkyl Substances (PFAS)	NC	NC	2.066	5.429	5.668	0.322	1.578	2.097	5.978	5.142	5.093	2.65	2.326

Notes:
Units: micrograms per kilogram or parts per billion
U: Not Detected
J: Estimated Valu
$\mathrm{J}+$: Estimated Value but may be biased high
Estimated Value but may be biased low
B: Compound was found in the blank and sample
NC: No Criteria
uplicates: DUP1 duplicate of S2 and DUP2 duplicate of S4
Bold Values: Detection above NYSDEC Guidance Value for Unrestricted Use
Bold Italicized Values: Detection above NYSDEC Guidance Value for Residential Use

Table 2 Continued

Norlite Area Investigation
Soil Per- and Polyfluoroalkyl Substances (PFAS) Results - October 2020

Location Sample ID Sample Date Depth (inches)	Unrestricted Use Criteria	Residential Use Criteria	$\begin{gathered} \text { SOIL 8 } \\ \text { S8A } \\ 10 / 21 / 2020 \\ 0-2 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL 8 } \\ \text { S8B } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL 9 } \\ \text { S9A } \\ 10 / 21 / 2020 \\ 0-2 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL 9 } \\ \text { S9B } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 10 \\ \text { S10 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SOIL } 11 \\ \text { S11 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{array}$	$\begin{gathered} \text { SOIL } 12 \\ \text { S12 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 13 \\ \text { S13 } \\ 10 / 21 / 02030 \end{gathered}$	$\begin{gathered} \text { SOIL } 14 \\ \text { S14 } \\ 10 / 2102030 \end{gathered}$	$\begin{gathered} \text { SOIL } 15 \\ \text { S15 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 16 \\ \text { S16 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$
CHEMICAL NAME													
Perfluorooctanesulfonic acid (PFOS)	0.88	8.8	4.2	4.5	3.0 J +	2.9 J+	1.4 J +	0.78 J +	<0.61 U	0.65	9.8	1.2	0.65
Perfluorooctanoic acid (PFOA)	0.66	6.6	0.39	0.42	0.54	0.60	0.19 J	0.58		1.1	1.1	0.88	0.52
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	$<2.4 \mathrm{U}$	<2.4 U	<2.5 U	<2.5 U	< 3.1 U	< 2.7 U	$<2.4 \mathrm{U}$	$<2.4 \mathrm{U}$	<2.5 U	<3.0 U	<2.4 U
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NC	NC	1.4 J	1.51	$<2.5 \mathrm{U}$	<2.5 U	$<3.1 \mathrm{U}$	<2.70!29	$<2.4 \mathrm{U}$	$<2.4 \mathrm{U}$	<2.5 U	<3.00	<2.4 U
Perfluorobutanesulfonic acid (PFBS)	NC	NC	0.15 J	0.12 J	0.092 J	0.079 J	$<0.31 \mathrm{U}$	$<0.27 \mathrm{U}$	$<0.24 \mathrm{U}$	$<0.24 \mathrm{U}$	0.044 J	0.046 J	0.11 J
Perfluorobutanoic acid (PFBA)	NC	NC	0.10 J	0.20 J	<0.25 U	<0.25 U	0.15 J	0.27	0.089 J	0.90	0.45	0.28 J	0.45
Perfluorodecanesulfonic Acid (PFDS)	NC	NC	5.9	5.7	$0.19 \mathrm{~J}-$	$0.16 \mathrm{~J}-$	< 0.31 UJ	<0.27 U	$<0.24 \mathrm{U}$	$<0.24 \mathrm{U}$	$<0.25 \mathrm{U}$	$<0.30 \mathrm{U}$	$<0.24 \mathrm{U}$
Perfluorodecanoic acid (PFDA)	NC	NC	0.91	0.88	0.25	0.27	0.20 J	0.21 J	0.073 J	2.1	0.27	0.35	0.21 J
Perfluorododecanoic acid (PFDoA)	NC	NC	0.47	0.35	0.12 J	0.14 J	$<0.31 \mathrm{U}$	<0.27 U	<0.24 U	0.28	0.11 J	0.15 J	0.089 J
Perfluoroheptanesulfonic acid (PFHpS)	NC	NC	<0.24 U	$<0.24 \mathrm{U}$	<0.25 U	<0.25 U	$<0.31 \mathrm{U}$	$<0.27 \mathrm{U}$	<0.24 U	$<0.24 \mathrm{U}$	0.047 J	<0.30 U	$<0.24 \mathrm{U}$
Perfluoroheptanoic acid (PFHPA)	NC	NC	0.090 J	0.13 J	0.15 J	0.15 J	0.071 J	0.18 J	0.065 J	1.0	0.24 J	0.26 J	0.19 J
Perfluorohexanesulfonic acid (PFH \times S)	NC	NC	$<0.24 \mathrm{U}$	$<0.24 \mathrm{U}$	0.075 J	0.073 J	$<0.31 \mathrm{U}$	$<0.27 \mathrm{U}$	$<0.24 \mathrm{U}$	$<0.24 \mathrm{U}$	1.5	$<0.30 \mathrm{U}$	$<0.24 \mathrm{U}$
Perfluorohexanoic acid (PFHXA)	NC	NC	0.24	0.28	0.22 J	0.20 J	0.11 J	0.13 J	0.061 J	1.1	0.27	0.27 J	0.19 J
Perfluorononanoic acid (PFNA)	NC	NC	2.4	2.4	0.23 J	0.24 J	0.13 J	0.41	0.17 J	1.2	0.35	0.37	0.29
Perfluorooctanesulfonamide (FOSA)	NC	NC	<0.24 U	<0.24 U	<0.25 U	<0.25 U	$<0.31 \mathrm{U}$	<0.27 U	<0.24 U	$<0.24 \mathrm{U}$	$<0.25 \mathrm{U}$	$<0.30 \mathrm{U}$	$<0.24 \mathrm{U}$
Perfluoropentanoic acid (PFPeA)	NC	NC	0.20 J	0.28	0.21 J	0.20 J	$<0.31 \mathrm{U}$	0.10 J	$<0.24 \mathrm{U}$	1.6	0.24 J	0.19 J	0.17 J
Perfluorotetradecanoic acid (PFTeA)	NC	NC	0.14 J	0.13 J	<0.25 U	<0.25 U	$<0.31 \mathrm{U}$	<0.27 U	$<0.24 \mathrm{U}$	0.066 J	<0.25 U	$<0.30 \mathrm{U}$	$<0.24 \mathrm{U}$
Perfluorotridecanoic acid (PFTriA)	NC	NC	0.31	0.26	<0.25 U	<0.25 U	$<0.31 \mathrm{U}$	<0.27 U	<0.24 U	0.11 J	0.090 J	0.089 J	$<0.24 \mathrm{U}$
Perfluoroundecanoic acid (PFUnA)	NC	NC	1.8	1.8	0.22 J	0.22 J	0.22 J	0.30 J	0.13 J	0.86	0.20 J	0.27 J	0.14 J
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	NC	NC	$<2.4 \mathrm{U}$	$<2.4 \mathrm{U}$	$<2.5 \mathrm{U}$	$<2.5 \mathrm{U}$	$<3.1 \mathrm{U}$	<2.7 U	$<2.4 \mathrm{U}$	0.70 J	$<2.5 \mathrm{U}$	<3.00	$<2.4 \mathrm{U}$
$1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorooctane sulfonic acid (6:2 FTS)	NC	NC	$<2.4 \mathrm{U}$	$<2.4 \mathrm{U}$	$<2.5 \mathrm{U}$	$<2.5 \mathrm{U}$	$<3.1 \mathrm{U}$	$<2.7 \mathrm{U}$	$<2.4 \mathrm{U}$	0.23 J	$<2.5 \mathrm{U}$	<3.00	$<2.4 \mathrm{U}$
Total Per- and Polyfluoroalkyl Substances (PFAS)	NC	NC	18.7	18.95	5.297	5.232	2.471	2.96	0.878	11.896	14.711	4.769	3.009

Notes:
Units: micrograms per kilogram or parts per billion
U: Not Detected
J: Estimated Value
$\mathrm{J}+:$ Estimated Value but may be biased high
J-: Estimated Value but may be biased low
B: Compound was found in the blank and sample
NC: No Criteria
Duplicates: DUP1 duplicate of S2 and DUP2 duplicate of S4
Bold Values: Detection above NYSDEC Guidance Value for Unrestricted Use
Bold I talicized Values: Detection above NYSDEC Guidance Value for Residential Use

Table 2 Continued

Norlite Area Investigation
Norlite Area Investigation
Soil Per- and Polyfluoroalkyl Substances (PFAS) Results - October 2020

Location Sample ID Sample Date Depth (inches)	Unrestricted Use Criteria UUSCO	Residential Use Criteria RSCO	$\begin{gathered} \hline \text { SOIL PC1 } \\ \text { PC1 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SOIL PC2 } \\ \text { PC2 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$
CHEMICAL NAME				
Perfluorooctanesulfonic acid (PFOS)	0.88	8.8	6.0	1.3
Perfluorooctanoic acid (PFOA)	0.66	6.6	0.63	0.75
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	<3.3 U	<2.4 U
N -ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	NC	NC	<3.3 U	< 2.4 U
Perfluorobutanesulfonic acid (PFBS)	NC	NC	<0.51 U	$<0.24 \mathrm{U}$
Perfluorobutanoic acid (PFBA)	NC	NC	0.26 J	0.54
Perfluorodecanesulfonic Acid (PFDS)	NC	NC	$<0.33 \mathrm{U}$	0.078 J
Perfluorodecanoic acid (PFDA)	NC	NC	0.37	0.15 J
Perfluorododecanoic acid (PFDoA)	NC	NC	$<0.33 \mathrm{U}$	<0.24 U
Perfluoroheptanesulfonic acid (PFHpS)	NC	NC	$<0.33 \mathrm{U}$	$<0.24 \mathrm{U}$
Perfluoroheptanoic acid (PFHpA)	NC	NC	0.18J	0.23 J
Perfluorohexanesulfonic acid (PFH \times S)	NC	NC	0.21 J	0.053 J
Perfluorohexanoic acid (PFHXA)	NC	NC	0.27 J	0.20 J
Perfluorononanoic acid (PFNA)	NC	NC	0.27 J	0.25
Perfluorooctanesulfonamide (FOSA)	NC	NC	$<0.33 \mathrm{U}$	<0.24 U
Perfluoropentanoic acid (PFPeA)	NC	NC	0.20 J	0.22 J
Perfluorotetradecanoic acid (PFTeA)	NC	NC	$<0.33 \mathrm{U}$	<0.24 U
Perfluorotridecanoic acid (PFTriA)	NC	NC	$<0.33 \mathrm{U}$	$<0.24 \mathrm{U}$
Perfluoroundecanoic acid (PFUnA)	NC	NC	0.18 J	0.11 J
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	NC	NC	$<3.3 \mathrm{U}$	$<2.4 \mathrm{U}$
$1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorooctane sulfonic acid (6:2 FTS)	NC	NC	$<3.3 \mathrm{U}$	$<2.4 \mathrm{U}$
Total Per- and Polyfluoroalkyl Substances (PFAS)	NC	NC	8.57	3.881

Notes:
Units: micrograms per kilogram or parts per billion
U: Not Detected
J: Estimated Valu
B: Compound was found in the blank and sample
NC: No Criteria
Duplicates: DUP1 duplicate of S2 and DUP2 duplicate of S4
Bold Values: Detection above NYSDEC Guidance Value for Unrestricted Use
Bold I talicized Values: Detection above NYSDEC Guidance Value for Residential Use

Table 3
Norlite Area Investigation
Soil Per- and Polyfluoroalkyl Substances (PFAS) TOP Assay Results - October 2020

Location Sample ID Sample Date Depth (inches) FRACTION	$\begin{gathered} \hline \text { SOIL 8 } \\ \text { S8B } \\ 10 / 21 / 2020 \\ 0-6 \\ \text { TOP Post } \\ \hline \end{gathered}$	SOIL 8S8B$10 / 21 / 2020$$0-6$TOP Pre		$\begin{gathered} \text { SOI L } 15 \\ \text { S15 } \\ \\ \text { 0-6 } \\ \text { TOP Post } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { SOIL } 15 \\ \text { S15 } \\ \text { O-6 } \\ \text { TOP Pre } \\ \hline \end{gathered}$
CHEMICAL_NAME						
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	$<6.2 \mathrm{U}$	< 6.2 U	10/21,	262000	10/21/	20880
N -ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	< 6.2 U	< 6.2 U		< 8.0 U		< 8.0 U
Perfluorobutanesulfonic acid (PFBS)	0.18 J	0.14 J		<0.80 U		<0.80 U
Perfluorobutanoic acid (PFBA)	2.2 BT	0.16J		1.2 BT		0.25 J
Perfluorodecanesulfonic Acid (PFDS)	4.1	4.8		< 0.80 U		<0.80 U
Perfluorodecanoic acid (PFDA)	0.83	0.80		0.29 J		0.32 J
Perfluorododecanoic acid (PFDoA)	0.44 J	0.36 J		<0.80 U		<0.80 U
Perfluoroheptanesulfonic acid (PFHpS)	<0.62 U	<0.62 U		<0.80 U		<0.80 U
Perfluoroheptanoic acid (PFHpA)	0.36 J	0.13 J		0.24 J		0.22 J
Perfluorohexanesulfonic acid (PFHxS)	<0.62 U	$<0.62 \mathrm{U}$		< 0.80 U		<0.80 U
Perfluorohexanoic acid (PFHXA)	0.56 J	0.23 J		0.42 J		0.18J
Perfluorononanoic acid (PFNA)	1.9	1.9		0.36 J		0.36 J
Perfluorooctanesulfonamide (FOSA)	< 0.62 U	< 0.62 U		<0.80 U		<0.80 U
Perfluorooctanesulfonic acid (PFOS)	3.6	3.9		0.95 J		1.1 J
Perfluorooctanoic acid (PFOA)	1.2 T	0.40 J		0.80 T		0.83
Perfluoropentanoic acid (PFPeA)	0.50 J	0.27 J		<0.80 U		$<0.80 \mathrm{U}$
Perfluorotetradecanoic acid (PFTeA)	0.19 J	<0.62 U		<0.80 U		<0.80 U
Perfluorotridecanoic acid (PFTriA)	0.35 J	0.22 J		<0.80 U		<0.80 U
Perfluoroundecanoic acid (PFUnA)	1.0	1.2		0.22 J		0.31 J
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	$<6.2 \mathrm{U}$	$<6.2 \mathrm{U}$		<8.0 U		<8.0 U
$1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorooctane sulfonic acid (6:2 FTS)	$<6.2 \mathrm{U}$	$<6.2 \mathrm{U}$		<8.0 U		<8.0 U

Notes:
Units. micrograms per kilogram or parts per billion
U: Not Detected
J: Estimated Value

Table 4 Norlite Area Investigation Soil Sample Results - Metals															
Location Sample ID Sample Date Depth (inches)	Unrestricted Use Criteria	Residential Use Criteria	$\begin{gathered} \text { SOIL } 1 \\ \text { S1 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 2 \\ \text { DUP1 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 2 \\ \text { S2 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL } 3 \\ \text { S3 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL 4 } \\ \text { DUP2 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL 4 } \\ \text { S4 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL 5 } \\ \text { S5 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL } 6 \\ \text { S6A } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 6 \\ \text { S6B } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$0 \begin{gathered} \text { SOIL 7 } \\ \text { S7A } \\ 10 / 21,02020 \end{gathered}$	$\begin{gathered} \text { SOIL } 7 \\ \text { S7B } \\ \text { 10/21/2020 } \end{gathered}$	$\begin{gathered} \text { SOIL 8 } \\ \text { S8A } \\ 10 / 21 / 2020 \\ 0-2 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL 8 } \\ \text { S8B } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$
CHEMICAL_NAME															
Aluminum	NC	NC	11900	17400	18100	15400	19200	20400	9780	12000	12200	9130	9790	7790	7530
Antimony	NC	NC	<4.3 U	1.71	< 5.6 U	1.3 J	< 3.9 U	< 5.1 U	<4.6 U	<4.0 U	$<4.2 \mathrm{U}$	$<4.2 \mathrm{U}$	$<3.9 \mathrm{U}$	$<4.2 \mathrm{U}$	<4.0 U
Arsenic	13	16	4.9	10.1	9.6	8.4	7.7	6.9	6.5	8.5	8.6	7.2	7.4	10.5	9.9
Barium	350	350	46.9	141	146	150	114	125	80.2	105	109	81.6	83.5	88.2	86.8
Beryllium	7.2	14	0.54	0.80	0.80	0.71	0.93	0.87	0.52	0.59	0.62	0.43	0.43	0.31 J	0.31 J
Cadmium	2.5	2.5	<0.87 U	0.84 J	0.86 J	0.66 J	<0.79 U	0.66 J	0.30 J	0.091 J	0.084 J	0.31 J	0.26 J	0.23 J	0.23 J
Calcium	NC	NC	940 J	6890	8480	6760	3160	3510	4120	2450	2470	4370	5300	3320	3120
Chromium, Hexavalent	1	22	<2.7 U	$<2.9 \mathrm{U}$	< 3.0 U	<2.2 U	<2.6 U	<2.6 U	<2.9 U	<2.7 U	<2.6 U	<2.7 U	<2.5 U	<2.6 U	<2.5 U
Chromium, Total	30	36	14.8	24.8	24.9	23.1	21.0	22.4	17.5	17.0	17.4	14.0	15.8	15.8	15.3
Cobalt	NC	30	6.6 J	14.3	14.4	15.9	14.6	15.5	8.7J	10.8	10.7	8.1 J	8.7 J	6.1 J	5.8 J
Copper	50	270	12.4	37.8	37.8	44.3	23.3	24.8	32.5	27.9	26.9	25.2	24.9	32.6	32.6
Iron	NC	2000	18700	33300	34400	34200	32300	34400	20200	22000	22000	18600	20100	14200	14200
Lead	63	400	19.4	45.7	43.2	25.1	12.8	15.1	70.0	38.5	39.8	23.0	25.7	48.8	73.0
Magnesium	NC	NC	2230	6320	6740	8480	5380	5870	2970	3740	3670	3810	4330	2550	2460
Manganese	1600	2000	288	647	642	923	500	596	425	722	714	447	491	332	341
Mercury	0.18	0.81	0.048	0.078	0.074	0.017	0.022	0.022	0.17	0.051	0.053	0.027	0.034	0.076	0.080
Nickel	30	140	13.9	32.1	32.4	33.8	26.3	28.1	18.7	20.7	20.7	17.7	19.3	15.6	15.5
Potassium	NC	NC	640 J	3270	3280	1660	2460	2900	1410	1360	1240	1470	1430	960 J	858 J
Selenium	3.9	36	$<4.3 \mathrm{U}$	$<5.6 \mathrm{U}$	<5.6 U	$<4.2 \mathrm{U}$	1.1 J	$<5.1 \mathrm{U}$	<4.6 U	<4.0 U	$<4.2 \mathrm{U}$	1.3 J	<3.9 U	$<4.2 \mathrm{U}$	$<4.0 \mathrm{U}$
Silver	2	36	$<2.2 \mathrm{U}$	$<2.8 \mathrm{U}$	$<2.8 \mathrm{U}$	$<2.1 \mathrm{U}$	<2.0 U	$<2.5 \mathrm{U}$	<2.3 U	<2.00	$<2.1 \mathrm{U}$	<2.1 U	< 1.9 U	<2.1 U	<2.0 U
Sodium	NC	NC	<1080 U	139 J	144 J	<1060 U	90.6 J	125J	<1140 U	< 1010 U	< 1050 U	<1050 U	<963 U	150J	132 J
Thallium	NC	NC	$<4.3 \mathrm{U}$	< 5.6 U	< 5.6 U	$<4.2 \mathrm{U}$	0.91 J	< 5.1 U	0.80 J	$1.1{ }^{\text {J }}$	1.0 J	$<4.2 \mathrm{U}$	0.96 J	$<4.2 \mathrm{U}$	$<4.0 \mathrm{U}$
Vanadium	NC	100	23.8	35.9	36.2	25.9	30.9	33.7	26.2	26.2	27.2	22.1	22.9	23.4	23.3
Zinc	109	2200	45.4	134	132	85.3	72.1	78.5	150	95.3	101	76.5	78.9	96.9	91.6

Notes:
Units: milligrams per kilogram or parts per million
NC: No Criteria
U: Not Detected
Duplicates: DUP1 duplicate of S2 and DUP2 duplicate of S4
Bold Values: Detection above Part 375 Unrestricted Use Soil Cleanup Objective
Bold I talicized Values: Detection above either Part 375 Residential Use Soil Cleanup Objective or CP-51 Residential Use Soil Cleanup Objective

Table 4 Continued Norlite Area Investigation Soil Sample Results - Metals											
Location Sample ID Sample Date Depth (inches)	Unrestricted Use SCO	Residential Use SCO	$\begin{gathered} \text { SOIL 9 } \\ \text { S9A } \\ 10 / 21 / 2020 \\ 0-2 \\ \hline \end{gathered}$	SOIL 9 S9B $10 / 2102030$		$\begin{array}{\|c} \text { SOIL } 11 \\ \text { S11 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{array}$	$\begin{gathered} \text { SOIL } 12 \\ \text { S12 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 13 \\ \text { S13 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL } 14 \\ \text { S14 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$	$\begin{gathered} \text { SOIL } 15 \\ \text { S15 } \\ 10 / 21 / 2020 \\ 0-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { SOIL } 16 \\ \text { S16 } \\ 10 / 21 / 2020 \\ 0-6 \end{gathered}$
CHEMICAL_NAME											
Aluminum	NC	NC	9210	10300	10400	17400	11500	13100	16800	21300	15900
Antimony	NC	NC	<4.1 U	< 3.9 UT	$<6.2 \mathrm{U}$	$<5.1 \mathrm{U}$	<3.7 U	< 5.1 UT	1.7)	< 6.2 U	<4.8 U
Arsenic	13	16	7.8	7.8	7.4	6.2	6.2	5.1	8.1	7.8	6.4
Barium	350	350	101	103	95.3	110	63.9	112	126	152	106
Beryllium	7.2	14	0.43	0.45	0.14 J	0.71	0.58	0.56	0.77	0.93	0.68
Cadmium	2.5	2.5	0.18 J	0.15 J	0.34 J	0.63 J	$<0.74 \mathrm{U}$	0.57 J	0.88 J	0.90 J	0.52 J
Calcium	NC	NC	3930	4120	2840	12500	2280	2160	8900	5940	4010
Chromium, Hexavalent	1	22	<2.7 U	< 2.6 UT	$<3.2 \mathrm{U}$	$<2.8 \mathrm{U}$	<2.5 U	< 2.5 UT	$<2.5 \mathrm{U}$	$<3.2 \mathrm{U}$	<2.6 U
Chromium, Total	30	36	15.5	16.4	26.2	21.5	14.0	16.9	22.7	26.5	18.9
Cobalt	NC	30	8.2 J	8.4 J	9.8 J	14.1	8.1 J	7.9 J	13.1	16.1	12.7
Copper	50	270	28.1	29.1	90.7	22.9	15.7	22.2	41.2	34.3	24.4
Iron	NC	2000	18000	19700	23900	32400	23300	23300	32400	37800	28700
Lead	63	400	34.2	36.5	236	14.1	12.4	20.1	46.5	35.8	17.8
Magnesium	NC	NC	3460	3630	3790	9160	3100	4330	5700	6780	5120
Manganese	1600	2000	432	441	547	683	500	893	698	775	619
Mercury	0.18	0.81	0.086	0.068	1.6	0.017 J	0.031	0.039	0.10	0.032	0.018 J
Nickel	30	140	18.9	19.3	25.6	28.7	15.4	19.6	26.8	34.1	23.9
Potassium	NC	NC	1300	1520	1620	3210	1040	1170 J	2410	3490	2280
Selenium	3.9	36	0.92 J	0.80 J	$<6.2 \mathrm{U}$	<5.1 U	<3.7 U	$<5.1 \mathrm{U}$	$<4.7 \mathrm{U}$	$<6.2 \mathrm{U}$	$<4.8 \mathrm{U}$
Silver	2	36	<2.1 U	<2.0 U	<3.1 U	<2.6 U	$<1.8 \mathrm{U}$	<2.5 U	$<2.4 \mathrm{U}$	< 3.1 U	<2.4 U
Sodium	NC	NC	106 J	113 J	< 1540 U	211 J	< 925 U	512 J	<1180 U	163 J	<1190 U
Thallium	NC	NC	< 4.1 U	0.86 J	$<6.2 \mathrm{U}$	< 5.1 U	0.86 J	< 5.1 U	$<4.7 \mathrm{U}$	<6.2 U	<4.8 U
Vanadium	NC	100	24.2	26.1	25.6	30.3	22.5	22.2	29.6	38.0	28.1
Zinc	109	2200	104	112	211	76.8	47.5	112	160	141	79.2

Notes:
Units: milligrams per kilogram or parts per million
NC: No Criteria
U: Not Detected
Estimated
J: Value
Duplicates: DUP1 duplicate of S2 and DUP2 duplicate of S4
Bold Values: Detection above Part 375 Unrestricted Use Soil Cleanup Objective
Bold Italicized Values: Detection above either Part 375 Residential Use Soil Cleanup Objective or CP-51 Residential Use Soil Cleanup Objective

Table 5
Norlite Area Investigation
Surface Water Per- and Polyfluoroalkyl Substances (PFAS) Results - October and November 2020

Location Sample ID Sample Date Flow Condition		WATER 1 HFW1 10/30/2020 High Flow	WATER 1 LFW1 11/6/2020 Low Flow	WATER 2 HFW2 10/30/2020 High Flow	WATER 2 LFW2 11/6/2020 Low Flow 1	WATER 3 HFW3 0/ 30lig20 Ebow	WATER 3 LFW3 11/6/2020 Low Flow	WATER 4 HFW DUP 10/30/2020 High Flow	$\begin{gathered} \text { WATER } 4 \\ \text { HFW4 } \\ \\ \text { O/3digyontow } \end{gathered}$	WATER 4 LFW4 11/6/2020 Low Flow	WATER 5 LFW5 11/6/2020 Low Flow	$\begin{gathered} \hline \text { WATER } 6 \\ \text { LFW6 } \\ \text { 11/6/2020 } \\ \text { Low Flow } 1 \text { 1 } \end{gathered}$	WATER 7 DUP L/60RORDOW	WATER 7 LFW7 11/6/2020 Low Flow	WATER 8 LFW8 11/6/2020 Low Flow
CHEMICAL NAME	$\begin{gathered} \text { Part } \\ 375 \mathrm{GV} \\ \hline \end{gathered}$														
Perfluorooctanesulfonic acid (PFOS)	10	2.9	1.6 J	1.8 J	<1.9 U	2.2	$<2.0 \mathrm{U}$	2.2	2.2	$<1.9 \mathrm{U}$	12	12	2.6	2.1	2.1
Perfluorooctanoic acid (PFOA)	10	1.8	1.71	1.9	1.1 J	1.8 J	$1.1{ }^{\text {J }}$	2.0	2.1	3.9	0.97 J	1.0 J	5.1	5.6	5.3
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	100	< 4.6 U	$<4.7 \mathrm{U}$	< 4.7 U	$<4.7 \mathrm{U}$	$<4.9 \mathrm{U}$	$<4.9 \mathrm{U}$	$<4.8 \mathrm{U}$	< 4.6 U	< 4.7 U	< 4.6 U	< 4.6 U	$<4.6 \mathrm{U}$	< 4.7 U	$<4.9 \mathrm{U}$
N -ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	100	<4.6 U	$<4.7 \mathrm{U}$	$<4.7 \mathrm{U}$	$<4.7 \mathrm{U}$	$<4.9 \mathrm{U}$	$<4.9 \mathrm{U}$	$<4.8 \mathrm{U}$	$<4.6 \mathrm{U}$	<4.7 U	<4.6 U	<4.6 U	$<4.6 \mathrm{U}$	<4.7 U	$<4.9 \mathrm{U}$
Perfluorobutanesulfonic acid (PFBS)	100	2.6	2.2	2.7	2.0	2.2	2.4	2.9	2.5	2.4	0.71 J	0.56 J	100	100	100
Perfluorobutanoic acid (PFBA)	100	3.71	$<4.7 \mathrm{U}$	4.3 J	2.31	4.1 J	2.3 J	4.71	4.6	8.6	3.3J	2.9 J	21	23	20
Perfluorodecanesulfonic Acid (PFDS)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	<2.00	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluorodecanoic acid (PFDA)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	<2.00	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluorododecanoic acid (PFDOA)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<2.0 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluoroheptanesulfonic acid (PFHpS)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	<1.9 U	<1.9 U	<1.9 U	$<2.0 \mathrm{U}$	< 1.9 U	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	<1.9 U	< 1.9 U	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluoroheptanoic acid (PFHPA)	100	1.2 J	0.73)	1.31	0.59 J	1.4 J	0.59 J	1.9	1.9	5.6	$1.1{ }^{\text {J }}$	0.86J	10	11	11
Perfluorohexanesulfonic acid (PFHXS)	100	0.97 J	1.4 J	1.0)	0.93J	1.0 J	1.2 J	1.1 J	1.3 J	1.5 J	3.4	1.7J	2.0	2.3	1.9
Perfluorohexanoic acid (PFHXA)	100	1.8	1.2 J	2.2	0.83 J	2.7	1.4 J	3.9	4.1	15	2.6	2.4	11	11	11
Perfluorononanoic acid (PFNA)	100	0.48 J	$<1.9 \mathrm{U}$	0.31 J	$<1.9 \mathrm{U}$	0.38 J	<2.0 U	0.33 J	0.38 J	$<1.9 \mathrm{U}$	0.41 J	$<1.9 \mathrm{U}$	1.8 J	1.8 J	1.71
Perfluorooctanesulfonamide (FOSA)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	<1.9 U	<1.9 U	< 1.9 U	$<2.0 \mathrm{U}$	<1.9 U	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	<1.8 U	$<1.9 \mathrm{U}$	<1.9 U	<1.9 U	$<1.9 \mathrm{U}$
Perfluoropentanoic acid (PFPeA)	100	2.8	1.2 J	3.4	0.89 J	4.2	1.6 J	6.3	6.4	30	2.7	2.3	14	15	13
Perfluorotetradecanoic acid (PFTeA)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	<2.00	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluorotridecanoic acid (PFTriA)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<2.0 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluoroundecanoic acid (PFUnA)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	<2.00	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	100	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<2.0 \mathrm{U}$	<1.9 U	$<1.8 \mathrm{U}$	1.9 UJ	$<1.8 \mathrm{U}$	<1.9 U	<1.9 U	1.9 U	$<1.9 \mathrm{U}$
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	100	< 4.6 U	$<4.7 \mathrm{U}$	$<4.7 \mathrm{U}$	$<4.7 \mathrm{U}$	$<4.9 \mathrm{U}$	< 4.9 U	2.71	2.6 J	33J	$<4.6 \mathrm{U}$	<4.6 U	$<4.6 \mathrm{U}$	4.7 UJ	$<4.9 \mathrm{U}$
Total Per- and Polyfluoroalkyl Substances (PFAS)	500	18.25	10.03	18.91	8.64	19.98	10.59	28.03	28.08	101.9	27.19	23.72	167.5	178.4	166

Notes:
Units: nanograms per liter or parts per
trillion
U: Not Detected
J: Estimated Value
Duplicates: HFW Dup duplicate of HFW4 and DUP duplicate of LFW7
Bold Values: Detection above guidance values of 10 nanograms per liter for PFOS and PFOA or greater than 100 nanograms per liter for an individual analyte

Table 5 Continued
Table 5 Continued
Surface Water Per- and Polyfluoroalkyl Substances (PFAS) Results - October and November 2020

Location Sample ID Sample Date Flow Condition		WATER PC1 LFPCW1 11/6/2020 Low Flow,	WATER PC2 10/30/2020 aHigh Flow	WATER PC2 11/6/2020 nhow Flow	WATER PC3 HFPCW3 10/30/2020 High Flow	WATER PC3 11/6/2020 nhow Flow	WATER PC4 10/30/2020 abigh Flow	WATER PC4 LFPCW4 11/6/2020 Low Flow	WATER SCI atigh Flow	WATER SC1 LFSCW1 11/6/2020 Low Flow	WATER SC2 HFSCW2 10/30/2020 High Flow	WATER SC2 LFSCW2 11/6/2020 Low Flow
CHEMICAL NAME	Part 375 GV											
Perfluorooctanesulfonic acid (PFOS)	10	4.7	4.8	21	4.5	6.7	4.5	5.8	1.1 J	1.7J	0.95 J	< 1.9 U
Perfluorooctanoic acid (PFOA)	10	6.6	3.2	6.5	4.0	4.4	3.4	4.1	1.81	1.8 J	1.4 J	1.6 J
N -methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	100	$<4.7 \mathrm{U}$	$<4.8 \mathrm{U}$	<4.6 U	< 4.9 U	< 4.7 U	<4.6 U	< 4.6 U	$<4.8 \mathrm{U}$	<4.8 U	< 4.7 U	< 4.7 U
N -ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	100	$<4.7 \mathrm{U}$	$<4.8 \mathrm{U}$	<4.6 U	< 4.9 U	< 4.7 U	< 4.6 U	<4.6 U	< 4.8 U	$<4.8 \mathrm{U}$	< 4.7 U	< 4.7 U
Perfluorobutanesulfonic acid (PFBS)	100	2.7	2.3	2.9	2.3	2.9	2.0	2.6	1.81	1.1J	0.72 J	0.75 J
Perfluorobutanoic acid (PFBA)	100	14	7.8	10	7.1	7.7	6.5	6.8	2.9 J	$<4.8 \mathrm{U}$	2.71	$<4.7 \mathrm{U}$
Perfluorodecanesulfonic Acid (PFDS)	100	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	< 1.9 U	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluorodecanoic acid (PFDA)	100	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	0.35 J	$<1.9 \mathrm{U}$	0.35 J	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluorododecanoic acid (PFDoA)	100	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$					
Perfluoroheptanesulfonic acid (PFHpS)	100	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	< 1.9 U					
Perfluoroheptanoic acid (PFHPA)	100	3.8	2.3	3.2	2.3	2.5	2.4	2.7	0.80 J	1.1 J	0.83 J	0.55 J
Perfluorohexanesulfonic acid (PFH \times S)	100	3.7	2.3	5.1	2.8	3.8	2.5	3.7	< 1.9 U	0.58 J	<1.9 U	$<1.9 \mathrm{U}$
Perfluorohexanoic acid (PFHXA)	100	9.9	5.1	7.6	5.8	6.4	4.7	5.3	1.4 J	1.2 J	1.1 J	0.64 J
Perfluorononanoic acid (PFNA)	100	0.63 J	0.52 J	0.80 J	0.41 J	0.33 J	0.39 J	$<1.8 \mathrm{U}$	0.35 J	0.27 J	0.34 J	$<1.9 \mathrm{U}$
Perfluorooctanesulfonamide (FOSA)	100	$<1.9 \mathrm{U}$	<1.9 U	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	<1.9 U	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluoropentanoic acid (PFPeA)	100	8.6	5.1	7.5	5.2	6.7	5.1	5.9	1.9	1.3 J	1.4 J	0.80 J
Perfluorotetradecanoic acid (PFTeA)	100	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$					
Perfluorotridecanoic acid (PFTriA)	100	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	< 1.9 U	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$
Perfluoroundecanoic acid (PFUnA)	100	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$					
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS $)$	100	$<1.9 \mathrm{U}$	$<1.8 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$	$<1.9 \mathrm{U}$					
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	100	$<4.7 \mathrm{U}$	$<4.8 \mathrm{U}$	<4.6 U	$<4.9 \mathrm{U}$	$<4.7 \mathrm{U}$	< 4.6 U	<4.6 U	$<4.8 \mathrm{U}$	$<4.8 \mathrm{U}$	$<4.7 \mathrm{U}$	$<4.7 \mathrm{U}$
Total Per- and Polyfluoroalkyl Substances (PFAS)	500	54.63	33.42	64.6	34.76	41.43	31.84	36.9	12.05	9.05	9.44	4.34

Notes:
Units: nanograms per liter or parts per trillion
Not
U: Detected
J: Estimated Value
Duplicates: HFW Dup duplicate of HFW4 and DUP duplicate of LFW7
Bold Values: Detection above guidance values of 10 nanograms per liter for PFOS and PFOA or greater than 100 nanograms per liter for an individual analyte

Norlite Area Investigation
Water Per- and Polyfluoroalkyl Substances (PFAS) TOP Assay Results - November 2020

Location Sample ID Sample Date Flow Conditions FRACTION	WATER 4 LFW4 11/6/2020 Low Flow TOP Post	WATER 4 LFW4 11/6/2020 Low Flow TOP Pre	WATER 7 11/6/2020 Low Flow TOP Post	WATER 7 Low Flow TOP Pre
CHEMICAL_NAME				
N -methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	< 50 U	< 50 U	< 50 U	$\begin{aligned} & <50 \mathrm{u} \\ & \hline 20 \end{aligned}$
N -ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	< 50 U	<50 U LFW	< 50 U	< 50 U
Perfluorobutanesulfonic acid (PFBS)	< 5.0 U	< 5.0 U	93	96
Perfluorobutanoic acid (PFBA)	27 B	8.9	58 B	21
Perfluorodecanesulfonic Acid (PFDS)	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Perfluorodecanoic acid (PFDA)	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	<5.0 U	$<5.0 \mathrm{U}$
Perfluorododecanoic acid (PFDoA)	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	< 5.0 U
Perfluoroheptanesulfonic acid (PFHpS)	<5.0 U	< 5.0 U	< 5.0 U	$<5.0 \mathrm{U}$
Perfluoroheptanoic acid (PFHpA)	5.1	5.2	9.6	9.7
Perfluorohexanesulfonic acid (PFH \times S)	<5.0 U	$<5.0 \mathrm{U}$	< 5.0 U	< 5.0 U
Perfluorohexanoic acid (PFHXA)	18	15	13	11
Perfluorononanoic acid (PFNA)	<5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Perfluorooctanesulfonamide (FOSA)	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	<5.0 U
Perfluorooctanesulfonic acid (PFOS)	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	< 5.0 U	< 5.0 U
Perfluorooctanoic acid (PFOA)	$<5.0 \mathrm{U}$	5.0	6.1	5.8
Perfluoropentanoic acid (PFPeA)	31	26	16	14
Perfluorotetradecanoic acid (PFTeA)	<5.0 U	<5.0 U	<5.0 U	<5.0 U
Perfluorotridecanoic acid (PFTriA)	<5.0 U	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$
Perfluoroundecanoic acid (PFUnA)	<5.0 U	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$	$<5.0 \mathrm{U}$
$1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorodecane sulfonic acid (8:2 FTS)	$<50 \mathrm{U}$	< 50 U	< 50 U	< 50 U
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	$<50 \mathrm{U}$	< 50 U	$<50 \mathrm{U}$	$<50 \mathrm{U}$

Notes:
Units: micrograms per kilogram or parts per billion
U: Not Detected
J: Estimated Value

Appendix A - Field Sampling Logs

Division of Environmental Remediation Central Office

Field Log

Site Code \#: 401041	Date: $10 / 21 / 2020$

Site Name: Nor lite
Location: A13 any/Cobsed
DEC Project Manager: 4 you W inter berger

Objective: shew soil samples

Description of Inspection Activities and Discussions:
730 maser at SoNy East. Lis cussed objective be health ans safety

130 berry, Seudle, and Eric went to Norite to culled samples Brice, Secure, Mayhem went to Soratojes Apes bo collect smiles.
700 Done for the Sur forme kat 5 Sub cat

Health \& Safety:

Level of protection: Level D, used nitrile gloves
Site Representative: Stephen Malsan
Date: $10 / 21 / 20$
Representative's Signature:

$\wedge_{\text {te: }} 101212020$
Sample Log

Date: m/al/aO20
Sample Log

Department of Environmental Conservation

Division of Environmental Remediation Central Office

Field Log

Site Code \#: 401041	Date: 1013012020

Site Name: Nor hta Location: Verioss Cohotes, DEC Project Manager: Sarald Prat

	AM	PM
Weather	snow/frezingruin	ruercast
Temperature	32°	45°
Wind Direction	Nonth	

Obiective: nigh flow wawr grab samples

Description of Inspection Activities and Discussions:

PFAS water samplimg foum Varrous Stoenms in cohoers and Abany.

Health \& Safety:

Level of protection: Level D, used nitrile gloves
Site Representative: Steghem Malsan Date: 10/30/2020 Representative's Signature:

Date: 131312026

Sample ID	Latitude	Longitude	Analysis	Depth (in)	Color	Description	Photo
	$320 \% 1390$	$73^{\circ}+7.340 w$	vatab	surpace	clenr	high than, grab	χ
$\begin{aligned} & H F W 2 \\ & 10302020 \end{aligned}$	42.55868 N	73.896858	Water	Surtace		Shat Tharlave high they yrat ms MSD gourle peoth	X
He N3 10302020	42759829	7370535400	$\sqrt{4} 3^{3}$	$561+62$	Cubed $i 5$	$34+38+5$ 003	x_{n}
$\begin{aligned} & 18+4 \\ & 1+2620 \end{aligned}$	4278585 78436545	73.1018713 $73{ }^{7}+5$	Way-	Suलk	$\operatorname{CLs}^{3 .}$	hyhthod grop watme 4108 Q at STram Rach butulan RR/Smatom	x_{n}
				-			
						.	
				-			
\cdots	- :						
						' .	

Department of Environmental Conservation

Division of Environmental Remediation
Central Office

Field Log

Site Code \#: 401041	Date: $11-6-20$

Site Name: Nor lite
Location: Visrous Cohos, Album
DEC Project Manager: Stane Malt son

	AM	PM
Weather	Clear $^{\circ}$	
Temperature	$S Q^{\circ}$	
Wind Direction	West	

Objective:

$$
\begin{aligned}
& \text { Low Flow surface in them samplim for PFAS } \\
& \text { analysis. }
\end{aligned}
$$

Description of Inspection Activities and Discussions:

Note flow conditions, torbedty,

Health \& Safety:

Level of protection: Level D, used nitrile gloves
Site Representative: Stephen Maser Date: $/ 1 / 6 / 20$ Representative's Signature:

Date: 11-6-20 Nos l. $2=$
Sample Log

Date: N. 20 Norite
Sample Log

Appendix B - Photos

Sample W2 location - note proximity of small waterfall

Sample W2 location - note proximity of small waterfall

Sample W3 location

Sample W4 location

Sample W5 location

Sample W5 location - close up

Sample W6 location

Sample W6 location - close up

Sample W7 location

Sample W8 location

Sample PC2 Water location

Sample SC2 location

Sample SC1 location, pumpkins floating in water

Sample SC1 location - close up

Sample W1 location - low flow conditions

Sample W1 location - high flow conditions

Sample PC2 location

Sample PC3 location

Sample PC4 location

Sample PC4 location - close up

Soil 1 location

Soil 2 location

Soil 3 location

Soil 4 location

Soil 5 location

Soil 6a and 6b location

Soil 7a and 7b location

Soil 8a and 8b location

Soil 9a and 9b location

Soil 10 location

Soil 11 location

Soil 12 location

Soil 13 location

Soil 15 location

Soil 16 location

Soil PC1 location

Soil PC2 location

Appendix C - Meteorological Data

Figure 22. Wind Rose Plots for Ezra Prentice and ACHD

Bookmark this page
If you would like to bookmark or share your current view, you must first click the "Permalink" button. The URL in your browser window can then be bookmarked or shared.

Data Availability
Data for the entire country are usually available by 12:30 pm Eastern Time (9:30 am Pacific Time).

Hourly Precipitation (East and Central US) - Data Documentation
Ask questions about the Precipitation Analysis website

```
NWS Information
US Dept of Commerce
National Oceanic and Atmospheric Administration National Weather Service
1325 East West Highway
Silver Spring, MD 20910
Page Author: NWS Internet Services Team
Page Author: NWS Internet Services Team
```

Disclaimer
Information Quality
Credits
Glossary

Privacy Policy
Freedom of Information Act (FOIA)
About Us
Career Opportunities

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Daily)

```
5 6 0
CDUS41 KALY 302045
CLIALB
CLIMATE REPORT
NATIONAL WEATHER SERVICE ALBANY NY
445 PM EDT FRI OCT 30 2020
```

...THE ALBANY NY CLIMATE SUMMARY FOR OCTOBER 30 2020... VALID TODAY AS OF 0400 PM LOCAL TIME.

```
CLIMATE NORMAL PERIOD: 1981 TO 2010
```

CLIMATE RECORD PERIOD: 1874 TO 2020

| WEATHER ITEM | OBSERVED TIME | RECORD YEAR | NORMAL | DEPARTURE LAST |
| ---: | ---: | :--- | :--- | :--- | :--- |
| (LST) | VALUE | VALUE | FROM | YEAR |

| TEMPERATURE (F) | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TODAY | 37 | $12: 31$ AM | 80 | 1946 | 54 | -17 | 63 |
| MAXIMUM | 29 | $9: 09$ AM | 20 | 1969 | 36 | -7 | 57 |
| MINIMUM | 33 | | | | 45 | -12 | 60 |

PRECIPITATION (IN)					
TODAY	0.21	1.671917	0.11	0.10	0.01
MONTH TO DATE	3.13		3.56	-0.43	6.72
SINCE SEP 1	5.76			6.86	-1.10
SINCE JAN 1	29.67			33.01	-3.34

SNOWFALL (IN)						
TODAY	1.2	R	0.1	1925	0.1	1.1
MONTH TO DATE	1.2			0.3	0.9	0.0
SINCE SEP 1	1.2			0.3	0.9	0.0
SINCE JUL 1	1.2			0.3	0.9	0.0

DEGREE DAYS HEATING				
TODAY	32	20	12	5
MONTH TO DATE	456	459	-3	355
SINCE SEP 1	632	603	29	430
SINCE JUL 1	657	626	31	432
COOLING		0	0	0
TODAY	0	0	0	4
MONTH TO DATE	0	51	-26	48
SINCE SEP 1	25			

WIND (MPH)			
HIGHEST	WIND SPEED	18	HIGH
HIGHEST	GUST SPEED	26	HIGH
AVERAGE	WIND SPEED	11.0	
SKY COVER			
AVERAGE SKY COVER 1.0			
RELATIVE HUMIDITY (PERCENT)			
HIGHEST	100	12:00	AM
LOWEST	82	3:00	
AVERAGE	91		

\qquad

| THE ALBANY NY CLIMATE NORMALS | FOR | TOMORROW | |
| :---: | :---: | :---: | :---: | :---: |
| NORMAL | | RECORD | YEAR |
| MAXIMUM TEMPERATURE (F) | 54 | 75 | 2019 |
| MINIMUM TEMPERATURE (F) | 35 | 18 | 1988 |

SUNRISE AND SUNSET
OCTOBER 30 2020.......SUNRISE 7:27 AM EDT SUNSET 5:50 PM EDT
OCTOBER 31 2020........SUNRISE 7:29 AM EDT SUNSET 5:48 PM EDT

- INDICATES NEGATIVE NUMBERS.
R INDICATES RECORD WAS SET OR TIED.
MM INDICATES DATA IS MISSING.
T INDICATES TRACE AMOUNT.

The U.S. Naval Observatory (USNO) data is currently unavailable. The links provided are from other US Government sources. When USNO data is returned to service, the links will be updated.

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Daily)

```
324
CDUS41 KALY 292058
CLIALB
CLIMATE REPORT
NATIONAL WEATHER SERVICE ALBANY NY
458 PM EDT THU OCT 29 2020
```

...THE ALBANY NY CLIMATE SUMMARY FOR OCTOBER 29 2020... VALID TODAY AS OF 0400 PM LOCAL TIME.

CLIMATE NORMAL PERIOD: 1981 TO 2010

WEATHER ITEM	OBSERVED TIME	RECORD YEAR NORMAL	DEPARTURE LAST		
VALUE	(LST)	VALUE	VALUE	FROM	YEAR

DEGREE DAYS				
HEATING				
TODAY	23	20	3	6
MONTH TO DATE	423	439	-16	350
SINCE SEP 1	599	583	16	425
SINCE JUL 1	624	606	18	427
COOLING				
TODAY	0	0	0	0

```
10/29/2020 National Weather Service - Climate Data
\begin{tabular}{lrrrr} 
MONTH TO DATE & 0 & 0 & 0 & 4 \\
SINCE SEP 1 & 25 & 51 & -26 & 48 \\
SINCE JAN 1 & 815 & 594 & 221 & 771
\end{tabular}
WIND (MPH)
    HIGHEST WIND SPEED 9 HIGHEST WIND DIRECTION N (360)
    HIGHEST GUST SPEED 12 HIGHEST GUST DIRECTION N (10)
    AVERAGE WIND SPEED 2.1
SKY COVER
    AVERAGE SKY COVER 1.0
RELATIVE HUMIDITY (PERCENT)
    HIGHEST 100 12:00 AM
    LOWEST 96 10:00 AM
    AVERAGE 98
THE ALBANY NY CLIMATE NORMALS FOR TOMORROW
            NORMAL RECORD YEAR
    MAXIMUM TEMPERATURE (F) 54 80 1946
    MINIMUM TEMPERATURE (F) 36 20 1969
SUNRISE AND SUNSET
OCTOBER 29 2020.......SUNRISE 7:26 AM EDT SUNSET 5:51 PM EDT
OCTOBER 30 2020.......SUNRISE 7:27 AM EDT SUNSET 5:50 PM EDT
- INDICATES NEGATIVE NUMBERS.
R INDICATES RECORD WAS SET OR TIED.
MM INDICATES DATA IS MISSING.
T INDICATES TRACE AMOUNT.
```

The U.S. Naval Observatory (USNO) data is currently unavailable. The links provided are from other US Government sources. When USNO data is returned to service, the links will be updated.

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Daily)

```
960
CDUS41 KALY 300625
CLIALB
CLIMATE REPORT
NATIONAL WEATHER SERVICE ALBANY NY
225 AM EDT FRI OCT 30 2020
```

...THE ALBANY NY CLIMATE SUMMARY FOR OCTOBER 29 2020...

CLIMATE NORMAL PERIOD: 1981 TO 2010
CLIMATE RECORD PERIOD: 1874 TO 2020

WEATHER ITEM	OBSERVED	TIME	RECORD	YEAR	NORMAL	DEPARTURE	LAST
VALUE		(LST)	VALUE		VALUE	FROM	YEAR
		NORMAL					

DEGREE DAYS				
HEATING				
YESTERDAY	24	20	4	6
MONTH TO DATE	424	439	-15	350
SINCE SEP 1	600	583	17	425
SINCE JUL 1	625	606	19	427
COOLING		0	0	0
YESTERDAY	0	0	0	4

```
10/30/2020
National Weather Service - Climate Data
SINCE SEP 1 25
SINCE JAN 1 815
594 221 771
WIND (MPH)
    HIGHEST WIND SPEED 17 HIGHEST WIND DIRECTION N (360)
    HIGHEST GUST SPEED 24 HIGHEST GUST DIRECTION N (340)
    AVERAGE WIND SPEED 5.2
SKY COVER
    AVERAGE SKY COVER 1.0
\begin{tabular}{ccc} 
RELATIVE & HUMIDITY & (PERCENT) \\
HIGHEST & 100 & \(12: 00 \mathrm{AM}\) \\
LOWEST & 96 & \(10: 00 \mathrm{AM}\)
\end{tabular}
    AVERAGE 98
THE ALBANY NY CLIMATE NORMALS FOR TODAY
        NORMAL RECORD YEAR
    MAXIMUM TEMPERATURE (F) 54 80 1946
    MINIMUM TEMPERATURE (F) 36 20 1969
SUNRISE AND SUNSET
OCTOBER 30 2020.......SUNRISE 7:27 AM EDT SUNSET 5:50 PM EDT
OCTOBER 31 2020.......SUNRISE 7:29 AM EDT SUNSET 5:48 PM EDT
- INDICATES NEGATIVE NUMBERS.
R INDICATES RECORD WAS SET OR TIED.
MM INDICATES DATA IS MISSING.
T INDICATES TRACE AMOUNT.
```

The U.S. Naval Observatory (USNO) data is currently unavailable. The links provided are from other US Government sources. When USNO data is returned to service, the links will be updated.

Appendix D - Summary Statistics and Data

Comparison Figures

Appendix D - Summary Statistics Table and Data Comparison Figures

CONTAMINANT	SUBSET	MDL	RDL	OBS	QUAL	QUANT	DET FREQ (\%)		CONC (ppb)
		MIN MAX	MIN MAX				QUAL	QUANT	MIN MAX
PFBA	FULL NL	0.0340 .040	0.2400 .290	16	16	7	100\%	44\%	0.2700 .900
	UW NL	0.0340 .038	0.2400 .270	6	6	3	100\%	50\%	0.2700 .900
	DW NL	0.0340 .040	0.2400 .290	10	10	4	100\%	40\%	0.3400 .590
	PC	0.033	0.240	2	2	1	100\%	50\%	0.540
PFPeA	FULL NL	0.0930 .110	0.2400 .290	16	12	4	75\%	25\%	0.2801 .60
	UW NL	0.093	0.240	6	4	1	67\%	17\%	1.60
	DW NL	0.0930 .110	0.2400 .290	10	8	3	80\%	30\%	0.2800 .370
	PC	N	A	2	2	0	100\%	0\%	NA
PFHxA	FULL NL	0.0500 .061	0.2400 .290	16	16	4	100\%	25\%	0.2701 .10
	UW NL	0.0500 .052	0.2400 .250	6	6	2	100\%	33\%	0.2701 .10
	DW NL	0.0510 .061	0.2400 .290	10	10	2	100\%	20\%	0.2800 .320
	PC		A	2	2	0	100\%	0\%	NA
PFHpA	FULL NL	0.0350 .042	0.2400 .290	16	16	3	100\%	19\%	$0.290 \quad 1.00$
	UW NL	0.035	0.240	6	6	1	100\%	17\%	1.00
	DW NL	0.0380 .042	0.2600 .290	10	10	2	100\%	20\%	0.2900 .300
	PC	N	A	2	2	0	100\%	0\%	NA
PFOA	FULL NL	0.1000 .130	0.2400 .300	16	15	14	94\%	88\%	0.2901 .10
	UW NL	0.1000 .130	0.2400 .300	6	6	6	100\%	100\%	0.2901 .10
	DW NL	0.1000 .120	0.2400 .290	10	9	8	90\%	80\%	0.2900 .950
	PC	0.1000 .140	0.2400 .330	2	2	2	100\%	100\%	0.6300 .750
PFNA	FULL NL	0.0430 .055	0.2400 .300	16	15	9	94\%	56\%	$0.290 \quad 2.40$
	UW NL	0.0430 .055	0.2400 .300	6	6	4	100\%	67\%	0.3501 .20
	DW NL	0.0430 .052	0.2400 .290	10	9	5	90\%	50\%	$0.290 \quad 2.40$
	PC	0.043	0.240	2	2	1	100\%	50\%	0.250
PFDA	FULL NL	0.0260 .033	0.2400 .300	16	15	8	94\%	50\%	0.270 2.10 0.270 2.10
	UW NL	0.0260 .033	0.2400 .300	6	6	3	100\%	50\%	0.270
	DW NL	0.0270 .032	0.2400 .290	10	9	5	90\%	50\%	0.2700 .880
	PC	0.036	0.330	2	2	1	100\%	50\%	0.370
PFUnA	FULL NL	0.0430 .052	0.2400 .290	16	15	4	94\%	25\%	$0.280 \quad 1.80$
	UW NL	0.043	0.240	6	6	1	100\%	17\%	0.860
	DW NL	0.0430 .052	0.2400 .290	10	9	3	90\%	30\%	$0.280 \quad 1.80$
	PC	N	A	2	2	0	100\%	0\%	NA
PFDoA	FULL NL	0.0810 .081	0.2400 .240	16	9	2	56\%	13\%	0.2800 .350
	UW NL	0.081	0.240	6	3	1	50\%	17\%	0.280
	DW NL	0.081	0.240	10	6	1	60\%	10\%	0.350
	PC	N	A	2	0	0	0\%	0\%	NA
PFTriA/PFTrDA	FULL NL	0.061	0.24	16	6	1	38\%	6\%	0.26
	UW NL	NA		6	3	0	50\%	0\%	NA
	DW NL	0.061	0.24	10	3	1	30\%	10\%	0.26
	PC	NA		2	0	0	0\%	0\%	NA

ABBREVIATIONS: MDL = Method Detection Limit; RDL = Reporting DL; OBS = \# of Observations; QUANT = Quantitative detections; QUAL = Qualitative detections; DET FREQ = Detection Frequency; CONC (ppb) = Concentration (parts per billion); $\operatorname{MIN}=$ Minimum value; MAX = Maximum value; NL = Norlite; UW = Upwind; DW = Downwind; and PC = Patroon Creek

Table D1 - Summary Statistics

Appendix D - Summary Statistics Table and Data Comparison Figures

CONTAMINANT	SUBSET	MDL	RDL	OBS	QUAL	QUANT	DET FREQ (\%)		CONC (ppb)
		MIN MAX	MIN MAX				QUAL	QUANT	MIN MAX
PFTA	FULL NL	NA		16	4	0	25\%	0\%	NA
	UW NL	NA		6	1	0	17\%	0\%	NA
	DW NL	NA		10	3	0	30\%	0\%	NA
	PC	NA		2	0	0	0\%	0\%	NA
PFBS	FULL NL	NA		16	10	0	63\%	0\%	NA
	UW NL	NA		6	2	0	33\%	0\%	NA
	DW NL	NA		10	8	0	80\%	0\%	NA
	PC	NA		2	0	0	0\%	0\%	NA
PFHxS	FULL NL	0.038	0.250	16	4	1	25\%	6\%	1.50
	UW NL	0.038	0.250	6	1	1	17\%	17\%	1.50
	DW NL	NA		10	3	0	30\%	0\%	NA
	PC	NA		2	2	0	100\%	0\%	NA
PFHpS	FULL NL	NA		16	1	0	6\%	0\%	NA
	UW NL	NA		6	1	0	17\%	0\%	NA
	DW NL	NA		10	0	0	0\%	0\%	NA
	PC	NA		2	0	0	0\%	0\%	NA
PFOS	FULL NL	0.2400 .300	0.6000 .760	16	15	5	94\%	31\%	0.650
	UW NL	0.2400 .300	0.6000 .760	6	6	3	100\%	50\%	0.650
	DW NL	0.2400 .290	0.6000 .720	10	9	2	90\%	20\%	0.6501 .40
	PC	0.2400 .330	0.5900 .830	2	2	2	100\%	100\%	$1.30 \quad 6.00$
PFDS	FULL NL	0.047	0.240	16	4	1	25\%	6\%	5.70
	UW NL	NA		6	0	0	0\%	0\%	NA
	DW NL	0.047	0.240	10	4	1	40\%	10\%	5.70
	PC	NA		2	1	0	50\%	0\%	NA
FOSA	NON DETECTIONS FOR ALL SAMPLE RESULTS								
MeFOSAA	NON DETECTIONS FOR ALL SAMPLE RESULTS								
NetFOSAA	FULL NL	NA		16	1	0	6\%	0\%	NA
	UW NL	NA		6	1	0	17\%	0\%	NA
	DW NL	NA		10	0	0	0\%	0\%	NA
	PC	NA		2	0	0	0\%	0\%	NA
6:2 FTS	FULL NL	NA		16	1	0	6\%	0\%	NA
	UW NL	NA		6	1	0	17\%	0\%	NA
	DW NL	NA		10	0	0	0\%	0\%	NA
	PC	NA		2	0	0	0\%	0\%	NA
8:2 FTS	FULL NL	NA		16	1	0	6\%	0\%	NA
	UW NL	NA		6	1	0	17\%	0\%	NA
	DW NL	NA		10	0	0	0\%	0\%	NA
	PC	NA		2	0	0	0\%	0\%	NA

ABBREVIATIONS: MDL = Method Detection Limit; RDL = Reporting DL; OBS = \# of Observations; QUANT = Quantitative detections; QUAL = Qualitative detections; DET FREQ = Detection Frequency; CONC (ppb) = Concentration (parts per billion); MIN = Minimum value; $\mathrm{MAX}=$ Maximum value; NL = Norlite; UW = Upwind; DW = Downwind; and PC = Patroon Creek

Table D1 Continued - Summary Statistics

Upwind/Downwind Figures PFAS:

Figure D1. - Geometric means of all quantitative and qualitative PFAS samples detected including total PFAS (sum).

Figure D2 - Geometric means of all quantitative and qualitative PFAS samples detected without the total PFAS (sum).

Upwind/Downwind figures metals:

Figure D3-Geometric means of all quantitative and qualitative metal samples (group 1).

Figure D4-Geometric means of all quantitative and qualitative metal samples (group 2).

Figure D5 - Geometric means of all quantitative and qualitative metal samples (group 3).

Figure D6-Geometric means of all quantitative and qualitative metal samples (group 4).

Appendix E - Analytical Reports / Data Usability

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway
West Sacramento, CA 95605
Tel: (916)373-5600
Laboratory Job ID: 320-66212-1
Client Project/Site: Norlite - Cohoes \#401041

For:
New York State D.E.C.
625 Broadway
Division of Environmental Remediation Albany, New York 12233-7014

Attn: Lynn M Winterberger

Authorized for release by: 11/11/2020 4:24:38 PM
Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

LINKs
Review your project results through TotalAccess

Have a Question?

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Detection Summary 5
Client Sample Results 8
Isotope Dilution Summary 20
QC Sample Results 22
QC Association Summary 27
Lab Chronicle 28
Certification Summary 30
Method Summary 31
Sample Summary 32
Chain of Custody 33
Receipt Checklists 35

Qualifiers

LCMS

$\frac{\text { Qualifier }}{1}$	Qualifier Description
	Value is EMPC (estimated maximum possible concentration).
	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Narrative

Narrative
 320-66212-1

Receipt

The samples were received on 10/31/2020 9:45 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were $0.5^{\circ} \mathrm{C}$ and $0.7^{\circ} \mathrm{C}$.

Receipt Exceptions

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): HFW2-Water-10302020 (320-66212-2[MS]) and HFW2-Water-10302020 (320-66212-2[MSD]). The container labels list HFW-Water-10302020, while the COC lists HFW2-Water-10302020. The samples were labeled according to the COC.

LCMS

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgement was used to positively identify the analyte. HFW3-Water-10302020 (320-66212-3), HFSCW2-Water-10302020 (320-66212-8) and HFSCW1-Water-10302020 (320-66212-9)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples were beige prior to extraction: HFPCW2-Water-10302020 (320-66212-1), HFW2-Water-10302020 (320-66212-2), HFW2-Water-10302020 (320-66212-2[MS]), HFW2-Water-10302020 (320-66212-2[MSD]), HFW3-Water-10302020 (320-66212-3), HFW4-Water-10302020 (320-66212-4), HFW DUP 10302020 (320-66212-5), HFSCW2-Water-10302020 (320-66212-8), HFSCW1-Water-10302020 (320-66212-9), HFW1-Water-10302020 (320-66212-10), HFPCW3-Water-10302020 (320-66212-11) and HFPCW4-Water-10302020 (320-66212-12)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: HFPCW2-W ter-10302020
Lab Sample ID: 320-66212-1

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	7.8		4.8	. 3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	5.1		. 9	. 47	ng / L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	5.1		. 9	. 55	ng / L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 3		. 9	. 24	ng / L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	3.2		. 9	. 81	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 52	J	. 9	. 26	ng / L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 3		. 9	. 19	ng / L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 3		. 9	. 54	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	4.8		. 9	. 52	ng/L		537 (modified)	Total/NA

Client Sample ID: HFW2-W ter-10302020
Lab Sample ID: 320-66212-2

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.3	J	4.7	. 3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.4		9	46	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 2		. 9	. 54	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3	J	. 9	. 23	ng / L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	9		9	. 80	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 31	J	. 9	. 25	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 7		. 9	19	ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 0	J	. 9	. 54	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 8	J	. 9	. 51	ng/L		537 (modified)	Total/NA

Client Sample ID: HFW3-W ter-10302020
Lab Sample ID: 320-66212-3

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.1	J	4.9	3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	4.2		. 9	. 48	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 7		. 9	. 56	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 4	J	. 9	. 24	ng/L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 8	J	. 9	. 83	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 38	JI	. 9	. 26	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 2		. 9	. 19	ng / L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 0	J	. 9	. 55	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 2	1	. 9	. 52	ng/L		537 (modified)	Total/NA

Client Sample ID: HFW4-W ter-10302020

Lab Sample ID: 320-66212-4

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.6		4.6	. 2	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 4		. 8	. 45	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	4.1		. 8	. 54	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	9		8	23	ng / L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 1		. 8	. 79	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 38	J	. 8	25	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	5		8	18	ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 3	J	. 8	. 53	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 2		. 8	50	ng/L		537 (modified)	Total/NA
:2 FTS	6	J	4.6	. 3	ng/L		537 (modified)	Total/NA

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.7	J	4.8	. 3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 3		. 9	. 47	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	3.9		. 9	. 56	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 9		. 9	. 24	ng/L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 0		. 9	. 82	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 33	J	. 9	. 26	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 9		. 9	. 19	ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 1	J	. 9	. 55	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 2		. 9	. 52	ng/L		537 (modified)	Total/NA
:2 FTS	. 7	J	4.8	. 4	ng/L		537 (modified)	Total/NA

Client Sample ID: HFW-Equipment Blank-10302020
 Lab Sample ID: 320-66212-6

No Detections.

Client Sample ID: HFW-Field Blank-10302020

Lab Sample ID: 320-66212-7
No Detections.
Client Sample ID: HFSCW2-W ter-10302020
Lab Sample ID: 320-66212-8

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	2.7	J	4.7	. 3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	4	J	9	. 46	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 1	J	. 9	. 54	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 83	J	. 9	. 23	ng/L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	4	J	. 9	. 80	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 34	J	. 9	. 25	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 72	J	. 9	. 19	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 95	J	. 9	. 51	ng/L		537 (modified)	Total/NA

Client Sample ID: HFSCW1-W ter-10302020

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	2.9	J	4.8	. 3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 9		. 9	.47	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 4	J	. 9	. 56	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	80	J	9	. 24	ng / L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 8	J	. 9	. 82	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 35	J	. 9	. 26	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	8	JI	. 9	19	ng / L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 1	J	. 9	. 52	ng/L		537 (modified)	Total/NA

Client Sample ID: HFW1-W ter-10302020
Lab Sample ID: 320-66212-10

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	3.7	J	4.6	. 2	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 8		. 8	.45	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 8		. 8	. 53	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2	J	8	23	ng / L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 8		. 8	. 78	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 48	J	. 8	. 25	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 6		. 8	. 18	ng / L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 97	J	. 8	. 52	ng/L		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: HFW1-W ter-10302020 (Continued) Lab Sample ID: 320-66212-10

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	2.9		. 8	. 50	ng/L		537 (modified)	Total/NA

Client Sample ID: HFPCW3-W ter-10302020 Lab Sample ID: 320-66212-11

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	7.1		4.9	.3	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	5.2		. 9	. 48	ng / L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	5.8		. 9	. 56	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 3		. 9	. 24	ng / L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	4.0		. 9	. 83	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 41	J	. 9	. 26	ng/L		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	. 35	J	. 9	. 30	ng / L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 3		. 9	. 19	ng / L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 8		. 9	. 55	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	4.5		. 9	. 52	ng/L		537 (modified)	Total/NA

Client Sample ID: HFPCW4-W ter-10302020

Lab Sample ID: 320-66212-12

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	6.5		4.6	. 2	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	5.1		. 9	. 45	ng/L		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	4.7		. 9	. 54	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 4		. 9	. 23	ng/L		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	3.4		. 9	. 79	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 39	J	. 9	. 25	ng/L		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	. 35	J	. 9	. 29	ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 0		. 9	. 19	ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 5		. 9	. 53	ng/L		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	4.5		. 9	. 50	ng/L		537 (modified)	Total/NA

Client Sample ID: HFPCW2-W ter-10302020

Date Collected: 10/30/20 09:45
Lab Sample ID: 320-66212-1 Matrix: W ter
Date Received: 10/31/20 09:45
Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	7.8		4.8	. 3	ng/L		19:24	4/20 06:1	
Perfluoropentanoic acid (PFPeA)	5.1		. 9	. 47	ng / L		19:24	4/20 06:1	
Perfluorohexanoic acid (PFHxA)	5.1		. 9	. 55	ng / L		19:24	4/20 06:1	
Perfluoroheptanoic acid (PFHpA)	2.3		. 9	. 24	ng / L		19:24	4/20 06:1	
Perfluorooctanoic acid (PFOA)	3.2		. 9	. 81	ng / L		19:24	4/20 06:1	
Perfluorononanoic acid (PFNA)	0.52	J	. 9	. 26	ng / L		19:24	4/20 06:1	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 30	ng / L		19:24	4/20 06:1	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 1	ng / L		19:24	4/20 06:1	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 53	ng / L		19:24	4/20 06:1	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 2	ng / L		19:24	4/20 06:1	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 70	ng / L		19:24	4/20 06:1	
Perfluorobutanesulfonic acid (PFBS)	2.3		. 9	. 19	ng/L		19:24	4/20 06:1	
Perfluorohexanesulfonic acid (PFHxS)	2.3		. 9	. 54	ng/L		19:24	4/20 06:1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 06:1	
Perfluorooctanesulfonic acid (PFOS)	4.8		. 9	. 52	ng/L		19:24	4/20 06:1	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 31	ng / L		19:24	4/20 06:1	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 94	ng / L		19:24	4/20 06:1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	. 1	ng/L		19:24	4/20 06:1	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	. 2	ng/L		19:24	4/20 06:1	
:2 FTS	ND		4.8	. 4	ng/L		19:24	4/20 06:1	
8:2 FTS	ND		. 9	. 44	ng/L		19:24	4/20 06:1	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA			- 150				11/02/20 19:24	11/04/20 06:11	1
13 C 5 PFPeA	75		- 150				11/02/20 19:24	11/04/20 06:11	1
13 C 2 PFHxA			- 150				11/02/20 19:24	11/04/20 06:11	1
13C4 PFHpA			- 150				11/02/20 19:24	11/04/20 06:11	1
13 C 4 PFOA	104		- 150				11/02/20 19:24	11/04/20 06:11	1
$13 C 5$ PFNA	105		- 150				11/02/20 19:24	11/04/20 06:11	1
$13 C 2$ PFDA	100		- 150				11/02/20 19:24	11/04/20 06:11	1
13C2 PFUnA	103		- 150				11/02/20 19:24	11/04/20 06:11	1
13C2 PFDoA	87		- 150				11/02/20 19:24	11/04/20 06:11	1
$13 C 2$ PFTeDA			- 150				11/02/20 19:24	11/04/20 06:11	1
$13 C 3$ PFBS	87		- 150				11/02/20 19:24	11/04/20 06:11	1
1802 PFHxS	8		- 150				11/02/20 19:24	11/04/20 06:11	1
13C4 PFOS	101		- 150				11/02/20 19:24	11/04/20 06:11	1
13C8 FOSA	104		- 150				11/02/20 19:24	11/04/20 06:11	1
d3-NMeFOSAA	102		- 150				11/02/20 19:24	11/04/20 06:11	1
-NEtFOSAA	7		- 150				11/02/20 19:24	11/04/20 06:11	1
M2-6:2 FTS	114		- 150				11/02/20 19:24	11/04/20 06:11	1
M2-8:2 FTS	108		- 150				11/02/20 19:24	11/04/20 06:11	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.3	J	4.7	.3	ng/L		19:24	4/20 06:20	
Perfluoropentanoic acid (PFPeA)	3.4		. 9	. 46	ng/L		19:24	4/20 06:20	
Perfluorohexanoic acid (PFHxA)	2.2		. 9	. 54	ng/L		19:24	4/20 06:20	
Perfluoroheptanoic acid (PFHpA)	1.3	J	. 9	. 23	ng/L		19:24	4/20 06:20	
Perfluorooctanoic acid (PFOA)	1.9		. 9	. 80	ng/L		19:24	4/20 06:20	
Perfluorononanoic acid (PFNA)	0.31	J	. 9	. 25	ng/L		19:24	4/20 06:20	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 29	ng / L		19:24	4/20 06:20	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 0	ng/L		19:24	4/20 06:20	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 52	ng/L		19:24	4/20 06:20	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 2	ng / L		19:24	4/20 06:20	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 69	ng/L		19:24	4/20 06:20	
Perfluorobutanesulfonic acid (PFBS)	2.7		. 9	. 19	ng/L		19:24	4/20 06:20	
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	. 9	. 54	ng / L		19:24	4/20 06:20	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 06:20	
Perfluorooctanesulfonic acid (PFOS)	1.8	J	. 9	. 51	ng/L		19:24	4/20 06:20	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 30	ng/L		19:24	4/20 06:20	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 92	ng/L		19:24	4/20 06:20	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	. 1	ng/L		19:24	4/20 06:20	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	. 2	ng/L		19:24	4/20 06:20	
:2 FTS	ND		4.7	. 3	ng/L		19:24	4/20 06:20	
8:2 FTS	ND		. 9	.43	ng/L		19:24	4/20 06:20	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA			-150				11/02/20 19:24	11/04/20 06:20	1
$13 C 5$ PFPeA			- 150				11/02/20 19:24	11/04/20 06:20	1
$13 C 2$ PFHxA	8		-150				11/02/20 19:24	11/04/20 06:20	1
$13 C 4$ PFHPA	102		- 150				11/02/20 19:24	11/04/20 06:20	1
$13 C 4$ PFOA	112		-150				11/02/20 19:24	11/04/20 06:20	1
$13 C 5$ PFNA	112		-150				11/02/20 19:24	11/04/20 06:20	1
$13 C 2$ PFDA	106		- 150				11/02/20 19:24	11/04/20 06:20	1
$13 C 2$ PFUnA	110		- 150				11/02/20 19:24	11/04/20 06:20	1
13C2 PFDoA	84		-150				11/02/20 19:24	11/04/20 06:20	1
$13 C 2$ PFTeDA	7		- 150				11/02/20 19:24	11/04/20 06:20	1
$13 C 3$ PFBS	83		- 150				11/02/20 19:24	11/04/20 06:20	1
1802 PFHxS	7		-150				11/02/20 19:24	11/04/20 06:20	1
$13 C 4$ PFOS	104		- 150				11/02/20 19:24	11/04/20 06:20	1
13C8 FOSA	116		-150				11/02/20 19:24	11/04/20 06:20	1
d3-NMeFOSAA	101		-150				11/02/20 19:24	11/04/20 06:20	1
-NEtFOSAA			- 150				11/02/20 19:24	11/04/20 06:20	1
M2-6:2 FTS	113		-150				11/02/20 19:24	11/04/20 06:20	1
M2-8:2 FTS	115		- 150				11/02/20 19:24	11/04/20 06:20	1

Method: 537 (modified) - Fluo Analyte	nated Alky esult		S	MDL	Unit	D	Prepared		
Perfluorobutanoic acid (PFBA)	4.1	J	4.9	. 3	ng/L		19:24	4/20 06:48	
Perfluoropentanoic acid (PFPeA)	4.2		. 9	. 48	ng/L		19:24	4/20 06:48	
Perfluorohexanoic acid (PFHxA)	2.7		. 9	. 56	ng/L		19:24	4/20 06:48	
Perfluoroheptanoic acid (PFHpA)	1.4	J	. 9	. 24	ng / L		19:24	4/20 06:48	
Perfluorooctanoic acid (PFOA)	1.8	J	. 9	. 83	ng/L		19:24	4/20 06:48	
Perfluorononanoic acid (PFNA)	0.38	J	. 9	. 26	ng/L		19:24	4/20 06:48	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 30	ng / L		19:24	4/20 06:48	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 1	ng/L		19:24	4/20 06:48	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 53	ng/L		19:24	4/20 06:48	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 3	ng / L		19:24	4/20 06:48	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 71	ng/L		19:24	4/20 06:48	
Perfluorobutanesulfonic acid (PFBS)	2.2		. 9	. 19	ng/L		19:24	4/20 06:48	
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	. 9	. 55	ng/L		19:24	4/20 06:48	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 06:48	
Perfluorooctanesulfonic acid (PFOS)	2.2	I	. 9	. 52	ng/L		19:24	4/20 06:48	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 31	ng/L		19:24	4/20 06:48	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 95	ng/L		19:24	4/20 06:48	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	. 2	ng/L		19:24	4/20 06:48	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	3	ng / L		19:24	4/20 06:48	
:2 FTS	ND		4.9	. 4	ng/L		19:24	4/20 06:48	
8:2 FTS	ND		. 9	.45	ng/L		19:24	4/20 06:48	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA			-150				11/02/20 19:24	11/04/20 06:48	1
13 C 5 PFPeA			- 150				11/02/20 19:24	11/04/20 06:48	1
13 C 2 PFHXA	3		-150				11/02/20 19:24	11/04/20 06:48	1
$13 \mathrm{C4}$ PFHpA	102		-150				11/02/20 19:24	11/04/20 06:48	1
$13 C 4$ PFOA	107		-150				11/02/20 19:24	11/04/20 06:48	1
$13 C 5$ PFNA	108		-150				11/02/20 19:24	11/04/20 06:48	1
$13 C 2$ PFDA	102		- 150				11/02/20 19:24	11/04/20 06:48	1
$13 C 2$ PFUnA			- 150				11/02/20 19:24	11/04/20 06:48	1
$13 C 2$ PFDoA	79		- 150				11/02/20 19:24	11/04/20 06:48	1
$13 C 2$ PFTeDA			- 150				11/02/20 19:24	11/04/20 06:48	1
$13 C 3$ PFBS	83		- 150				11/02/20 19:24	11/04/20 06:48	1
1802 PFHxS	102		-150				11/02/20 19:24	11/04/20 06:48	1
13 C 4 PFOS	103		-150				11/02/20 19:24	11/04/20 06:48	1
13C8 FOSA	114		- 150				11/02/20 19:24	11/04/20 06:48	1
d3-NMeFOSAA	3		-150				11/02/20 19:24	11/04/20 06:48	1
-NEtFOSAA			-150				11/02/20 19:24	11/04/20 06:48	1
M2-6:2 FTS	110		-150				11/02/20 19:24	11/04/20 06:48	1
M2-8:2 FTS	109		-150				11/02/20 19:24	11/04/20 06:48	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.6		4.6	. 2	ng/L		19:24	4/20 06:58	
Perfluoropentanoic acid (PFPeA)	6.4		. 8	. 45	ng/L		19:24	4/20 06:58	
Perfluorohexanoic acid (PFHxA)	4.1		. 8	. 54	ng/L		19:24	4/20 06:58	
Perfluoroheptanoic acid (PFHpA)	1.9		. 8	. 23	ng / L		19:24	4/20 06:58	
Perfluorooctanoic acid (PFOA)	2.1		. 8	. 79	ng/L		19:24	4/20 06:58	
Perfluorononanoic acid (PFNA)	0.38	J	. 8	. 25	ng/L		19:24	4/20 06:58	
Perfluorodecanoic acid (PFDA)	ND		. 8	. 29	ng / L		19:24	4/20 06:58	
Perfluoroundecanoic acid (PFUnA)	ND		. 8	. 0	ng/L		19:24	4/20 06:58	
Perfluorododecanoic acid (PFDoA)	ND		. 8	. 51	ng/L		19:24	4/20 06:58	
Perfluorotridecanoic acid (PFTriA)	ND		. 8	. 2	ng / L		19:24	4/20 06:58	
Perfluorotetradecanoic acid (PFTeA)	ND		. 8	. 68	ng/L		19:24	4/20 06:58	
Perfluorobutanesulfonic acid (PFBS)	2.5		. 8	. 18	ng/L		19:24	4/20 06:58	
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	. 8	. 53	ng / L		19:24	4/20 06:58	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 8	. 18	ng/L		19:24	4/20 06:58	
Perfluorooctanesulfonic acid (PFOS)	2.2		. 8	. 50	ng/L		19:24	4/20 06:58	
Perfluorodecanesulfonic acid (PFDS)	ND		. 8	. 30	ng / L		19:24	4/20 06:58	
Perfluorooctanesulfonamide (FOSA)	ND		. 8	. 91	ng / L		19:24	4/20 06:58	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	. 1	ng/L		19:24	4/20 06:58	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	. 2	ng / L		19:24	4/20 06:58	
6:2 FTS	2.6	J	4.6	. 3	ng/L		19:24	4/20 06:58	
8:2 FTS	ND		. 8	. 43	ng/L		19:24	4/20 06:58	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	4		- 150				11/02/20 19:24	11/04/20 06:58	1
$13 C 5$ PFPeA	3		- 150				11/02/20 19:24	11/04/20 06:58	1
13 C 2 PFHxA	87		-150				11/02/20 19:24	11/04/20 06:58	1
13 C 4 PFHPA	1		- 150				11/02/20 19:24	11/04/20 06:58	1
13 C 4 PFOA	8		- 150				11/02/20 19:24	11/04/20 06:58	1
13 C 5 PFNA			-150				11/02/20 19:24	11/04/20 06:58	1
$13 C 2$ PFDA			- 150				11/02/20 19:24	11/04/20 06:58	1
$13 C 2$ PFUnA			- 150				11/02/20 19:24	11/04/20 06:58	1
$13 C 2$ PFDoA	89		- 150				11/02/20 19:24	11/04/20 06:58	1
$13 C 2$ PFTeDA	8		-150				11/02/20 19:24	11/04/20 06:58	1
$13 C 3$ PFBS	76		- 150				11/02/20 19:24	11/04/20 06:58	1
1802 PFHxS	0		- 150				11/02/20 19:24	11/04/20 06:58	1
13 C 4 PFOS			-150				11/02/20 19:24	11/04/20 06:58	1
13C8 FOSA	106		- 150				11/02/20 19:24	11/04/20 06:58	1
d3-NMeFOSAA			-150				11/02/20 19:24	11/04/20 06:58	1
-NEtFOSAA			- 150				11/02/20 19:24	11/04/20 06:58	1
M2-6:2 FTS			- 150				11/02/20 19:24	11/04/20 06:58	1
M2-8:2 FTS			-150				11/02/20 19:24	11/04/20 06:58	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.7	J	4.8	. 3	ng/L		19:24	4/20 07:07	
Perfluoropentanoic acid (PFPeA)	6.3		. 9	. 47	ng / L		19:24	4/20 07:07	
Perfluorohexanoic acid (PFHxA)	3.9		. 9	. 56	ng / L		19:24	4/20 07:07	
Perfluoroheptanoic acid (PFHpA)	1.9		. 9	. 24	ng / L		19:24	4/20 07:07	
Perfluorooctanoic acid (PFOA)	2.0		. 9	. 82	ng/L		19:24	4/20 07:07	
Perfluorononanoic acid (PFNA)	0.33	J	. 9	. 26	ng / L		19:24	4/20 07:07	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 30	ng / L		19:24	4/20 07:07	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 1	ng / L		19:24	4/20 07:07	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 53	ng / L		19:24	4/20 07:07	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 2	ng / L		19:24	4/20 07:07	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 70	ng / L		19:24	4/20 07:07	
Perfluorobutanesulfonic acid (PFBS)	2.9		. 9	. 19	ng/L		19:24	4/20 07:07	
Perfluorohexanesulfonic acid (PFHxS)	1.1	J	. 9	. 55	ng/L		19:24	4/20 07:07	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 07:07	
Perfluorooctanesulfonic acid (PFOS)	2.2		. 9	. 52	ng/L		19:24	4/20 07:07	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 31	ng / L		19:24	4/20 07:07	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 94	ng / L		19:24	4/20 07:07	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	. 2	ng/L		19:24	4/20 07:07	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	. 2	ng/L		19:24	4/20 07:07	
6:2 FTS	2.7	J	4.8	. 4	ng/L		19:24	4/20 07:07	
8:2 FTS	ND		. 9	. 44	ng/L		19:24	4/20 07:07	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	7		- 150				11/02/20 19:24	11/04/20 07:07	1
13 C 5 PFPeA	4		- 150				11/02/20 19:24	11/04/20 07:07	1
13 C 2 PFHxA	89		- 150				11/02/20 19:24	11/04/20 07:07	1
13 C 4 PFHpA	4		- 150				11/02/20 19:24	11/04/20 07:07	1
13 C 4 PFOA	103		- 150				11/02/20 19:24	11/04/20 07:07	1
$13 C 5$ PFNA	105		- 150				11/02/20 19:24	11/04/20 07:07	1
$13 C 2$ PFDA	101		- 150				11/02/20 19:24	11/04/20 07:07	1
$13 C 2$ PFUnA	102		- 150				11/02/20 19:24	11/04/20 07:07	1
13C2 PFDoA	86		- 150				11/02/20 19:24	11/04/20 07:07	1
13C2 PFTeDA			- 150				11/02/20 19:24	11/04/20 07:07	1
$13 C 3$ PFBS	74		- 150				11/02/20 19:24	11/04/20 07:07	1
1802 PFHxS			- 150				11/02/20 19:24	11/04/20 07:07	1
$13 C 4$ PFOS	7		- 150				11/02/20 19:24	11/04/20 07:07	1
13C8 FOSA	108		- 150				11/02/20 19:24	11/04/20 07:07	1
d3-NMeFOSAA	3		- 150				11/02/20 19:24	11/04/20 07:07	1
-NEtFOSAA	4		- 150				11/02/20 19:24	11/04/20 07:07	1
M2-6:2 FTS			- 150				11/02/20 19:24	11/04/20 07:07	1
M2-8:2 FTS	102		- 150				11/02/20 19:24	11/04/20 07:07	,

Client Sample ID: HFW-Equipment Blank-10302020
 Date Collected: 10/30/20 13:40
 Lab Sample ID: 320-66212-6 Matrix: W ter
 Date Received: 10/31/20 09:45

Method: 537 (modified) - Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.7	.3	ng/L		19:24	4/20 07:17	
Perfluoropentanoic acid (PFPeA)	ND		. 9	. 46	ng/L		19:24	4/20 07:17	
Perfluorohexanoic acid (PFHxA)	ND		. 9	. 55	ng/L		19:24	4/20 07:17	
Perfluoroheptanoic acid (PFHpA)	ND		. 9	. 24	ng / L		19:24	4/20 07:17	
Perfluorooctanoic acid (PFOA)	ND		. 9	. 80	ng/L		19:24	4/20 07:17	
Perfluorononanoic acid (PFNA)	ND		. 9	. 25	ng / L		19:24	4/20 07:17	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 29	ng / L		19:24	4/20 07:17	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 0	ng/L		19:24	4/20 07:17	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 52	ng/L		19:24	4/20 07:17	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	2	ng / L		19:24	4/20 07:17	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	.69	ng/L		19:24	4/20 07:17	
Perfluorobutanesulfonic acid (PFBS)	ND		. 9	. 19	ng/L		19:24	4/20 07:17	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 9	. 54	ng / L		19:24	4/20 07:17	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 07:17	
Perfluorooctanesulfonic acid (PFOS)	ND		. 9	. 51	ng/L		19:24	4/20 07:17	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 30	ng / L		19:24	4/20 07:17	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 92	ng / L		19:24	4/20 07:17	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	. 1	ng/L		19:24	4/20 07:17	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	. 2	ng/L		19:24	4/20 07:17	
:2 FTS	ND		4.7		ng / L		19:24	4/20 07:17	
8:2 FTS	ND		. 9	. 43	ng/L		19:24	4/20 07:17	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	8		-150				11/02/20 19:24	11/04/20 07:17	1
$13 C 5$ PFPeA	103		- 150				11/02/20 19:24	11/04/20 07:17	1
13 C 2 PFHxA	103		-150				11/02/20 19:24	11/04/20 07:17	1
13 C 4 PFHpA	108		-150				11/02/20 19:24	11/04/20 07:17	1
13C4 PFOA	109		-150				11/02/20 19:24	11/04/20 07:17	1
$13 C 5$ PFNA	107		- 150				11/02/20 19:24	11/04/20 07:17	1
$13 C 2$ PFDA	108		-150				11/02/20 19:24	11/04/20 07:17	1
$13 C 2$ PFUnA	114		- 150				11/02/20 19:24	11/04/20 07:17	1
13 C 2 PFDoA	83		-150				11/02/20 19:24	11/04/20 07:17	1
$13 C 2$ PFTeDA	102		- 150				11/02/20 19:24	11/04/20 07:17	1
$13 \mathrm{C3}$ PFBS	102		- 150				11/02/20 19:24	11/04/20 07:17	1
1802 PFHxS	108		- 150				11/02/20 19:24	11/04/20 07:17	1
$13 C 4$ PFOS	108		- 150				11/02/20 19:24	11/04/20 07:17	1
13C8 FOSA	114		-150				11/02/20 19:24	11/04/20 07:17	1
d3-NMeFOSAA			-150				11/02/20 19:24	11/04/20 07:17	1
-NEtFOSAA	7		-150				11/02/20 19:24	11/04/20 07:17	1
M2-6:2 FTS	8		- 150				11/02/20 19:24	11/04/20 07:17	1
M2-8:2 FTS	100		- 150				11/02/20 19:24	11/04/20 07:17	1

Method: 537 (modified) - Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.6	. 2	ng/L		19:24	4/20 07:45	
Perfluoropentanoic acid (PFPeA)	ND		. 8	. 45	ng/L		19:24	4/20 07:45	
Perfluorohexanoic acid (PFHxA)	ND		. 8	. 53	ng / L		19:24	4/20 07:45	
Perfluoroheptanoic acid (PFHpA)	ND		. 8	. 23	ng / L		19:24	4/20 07:45	
Perfluorooctanoic acid (PFOA)	ND		. 8	. 78	ng / L		19:24	4/20 07:45	
Perfluorononanoic acid (PFNA)	ND		. 8	. 25	ng / L		19:24	4/20 07:45	
Perfluorodecanoic acid (PFDA)	ND		. 8	. 28	ng / L		19:24	4/20 07:45	
Perfluoroundecanoic acid (PFUnA)	ND		. 8	. 0	ng/L		19:24	4/20 07:45	
Perfluorododecanoic acid (PFDoA)	ND		. 8	. 50	ng / L		19:24	4/20 07:45	
Perfluorotridecanoic acid (PFTriA)	ND		. 8	. 2	ng / L		19:24	4/20 07:45	
Perfluorotetradecanoic acid (PFTeA)	ND		. 8	. 67	ng / L		19:24	4/20 07:45	
Perfluorobutanesulfonic acid (PFBS)	ND		. 8	. 18	ng / L		19:24	4/20 07:45	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 8	. 52	ng / L		19:24	4/20 07:45	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 8	. 17	ng/L		19:24	4/20 07:45	
Perfluorooctanesulfonic acid (PFOS)	ND		. 8	. 49	ng/L		19:24	4/20 07:45	
Perfluorodecanesulfonic acid (PFDS)	ND		. 8	. 29	ng / L		19:24	4/20 07:45	
Perfluorooctanesulfonamide (FOSA)	ND		. 8	. 90	ng/L		19:24	4/20 07:45	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	. 1	ng/L		19:24	4/20 07:45	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	. 2	ng/L		19:24	4/20 07:45	
:2 FTS	ND		4.6	. 3	ng/L		19:24	4/20 07:45	
8:2 FTS	ND		. 8	. 42	ng/L		19:24	4/20 07:45	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	89		- 150				11/02/20 19:24	11/04/20 07:45	1
13 C 5 PFPeA	4		- 150				11/02/20 19:24	11/04/20 07:45	1
13 C 2 PFHxA	88		- 150				11/02/20 19:24	11/04/20 07:45	1
13 C 4 PFHpA	4		- 150				11/02/20 19:24	11/04/20 07:45	1
$13 C 4$ PFOA	101		- 150				11/02/20 19:24	11/04/20 07:45	1
$13 C 5$ PFNA	1		- 150				11/02/20 19:24	11/04/20 07:45	1
$13 C 2$ PFDA	87		- 150				11/02/20 19:24	11/04/20 07:45	1
$13 C 2$ PFUnA	1		- 150				11/02/20 19:24	11/04/20 07:45	1
13 C 2 PFDoA	77		- 150				11/02/20 19:24	11/04/20 07:45	1
13C2 PFTeDA			- 150				11/02/20 19:24	11/04/20 07:45	1
$13 C 3$ PFBS	88		- 150				11/02/20 19:24	11/04/20 07:45	1
1802 PFHxS	4		- 150				11/02/20 19:24	11/04/20 07:45	1
13 C 4 PFOS	8		- 150				11/02/20 19:24	11/04/20 07:45	1
13C8 FOSA			- 150				11/02/20 19:24	11/04/20 07:45	1
d3-NMeFOSAA	80		- 150				11/02/20 19:24	11/04/20 07:45	1
-NEtFOSAA	82		- 150				11/02/20 19:24	11/04/20 07:45	1
M2-6:2 FTS	84		- 150				11/02/20 19:24	11/04/20 07:45	1
M2-8:2 FTS	83		- 150				11/02/20 19:24	11/04/20 07:45	1

Client Sample ID: HFSCW2-W ter-10302020

Date Collected: 10/30/20 11:20
Lab Sample ID: 320-66212-8
Matrix: W ter
Date Received: 10/31/20 09:45

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.7	J	4.7	. 3	ng/L		19:24	4/20 07:54	
Perfluoropentanoic acid (PFPeA)	1.4	J	9	. 46	ng/L		19:24	4/20 07:54	
Perfluorohexanoic acid (PFHxA)	1.1	J	. 9	. 54	ng/L		19:24	4/20 07:54	
Perfluoroheptanoic acid (PFHpA)	0.83	J	. 9	. 23	ng/L		19:24	4/20 07:54	
Perfluorooctanoic acid (PFOA)	1.4	J	. 9	. 80	ng/L		19:24	4/20 07:54	
Perfluorononanoic acid (PFNA)	0.34	J	. 9	. 25	ng/L		19:24	4/20 07:54	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 29	ng/L		19:24	4/20 07:54	
Perfluoroundecanoic acid (PFUnA)	ND		9	. 0	ng/L		19:24	4/20 07:54	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 52	ng/L		19:24	4/20 07:54	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 2	ng/L		19:24	4/20 07:54	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 69	ng/L		19:24	4/20 07:54	
Perfluorobutanesulfonic acid (PFBS)	0.72	J	. 9	. 19	ng/L		19:24	4/20 07:54	
Perfluorohexanesulfonic acid (PFHxS)	ND		9	. 53	ng/L		19:24	4/20 07:54	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 07:54	
Perfluorooctanesulfonic acid (PFOS)	0.95	J	. 9	. 51	ng/L		19:24	4/20 07:54	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 30	ng/L		19:24	4/20 07:54	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 92	ng/L		19:24	4/20 07:54	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	. 1	ng/L		19:24	4/20 07:54	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	. 2	ng/L		19:24	4/20 07:54	
:2 FTS	ND		4.7	. 3	ng/L		19:24	4/20 07:54	
8:2 FTS	ND		. 9	. 43	ng/L		19:24	4/20 07:54	

Isotope Dilution	\%Recovery	Qualifier	Limits
13C4 PFBA	4		-150
$13 C 5$ PFPeA	3		-150
13 C 2 PFHxA	85		-150
13 C 4 PFHPA	0		-150
13C4 PFOA			-150
13C5 PFNA			-150
$13 C 2$ PFDA	1		-150
$13 C 2$ PFUnA	3		-150
13 C 2 PFDoA	75		-150
13 C 2 PFTeDA			-150
$13 \mathrm{C3}$ PFBS	78		- 150
1802 PFHxS	89		-150
13 C 4 PFOS	4		-150
13C8 FOSA	100		-150
d3-NMeFOSAA	87		-150
-NEtFOSAA	88		-150
M2-6:2 FTS			-150
M2-8:2 FTS	4		- 150

Client Sample ID: HFSCW1-W ter-10302020

Date Collected: 10/30/20 11:40
Lab Sample ID: 320-66212-9
Matrix: W ter
Date Received: 10/31/20 09:45
Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.9	J	4.8	.3	ng/L		19:24	4/20 08:04	
Perfluoropentanoic acid (PFPeA)	1.9		. 9	.47	ng/L		19:24	4/20 08:04	
Perfluorohexanoic acid (PFHxA)	1.4	J	. 9	. 56	ng/L		19:24	4/20 08:04	
Perfluoroheptanoic acid (PFHpA)	0.80	J	. 9	. 24	ng/L		19:24	4/20 08:04	
Perfluorooctanoic acid (PFOA)	1.8	J	. 9	. 82	ng / L		19:24	4/20 08:04	
Perfluorononanoic acid (PFNA)	0.35	J	. 9	. 26	ng/L		19:24	4/20 08:04	
Perfluorodecanoic acid (PFDA)	ND		. 9	. 30	ng / L		19:24	4/20 08:04	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 1	ng / L		19:24	4/20 08:04	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 53	ng/L		19:24	4/20 08:04	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 3	ng/L		19:24	4/20 08:04	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 70	ng/L		19:24	4/20 08:04	
Perfluorobutanesulfonic acid (PFBS)	1.8	JI	. 9	. 19	ng/L		19:24	4/20 08:04	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 9	. 55	ng / L		19:24	4/20 08:04	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:24	4/20 08:04	
Perfluorooctanesulfonic acid (PFOS)	1.1	J	. 9	. 52	ng/L		19:24	4/20 08:04	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	.31	ng/L		19:24	4/20 08:04	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 94	ng / L		19:24	4/20 08:04	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	. 2	ng/L		19:24	4/20 08:04	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	. 3	ng/L		19:24	4/20 08:04	
:2 FTS	ND		4.8	. 4	ng/L		19:24	4/20 08:04	
8:2 FTS	ND		. 9	. 44	ng/L		19:24	4/20 08:04	

Isotope Dilution	\%Recovery	Qualifier	Limits
$13 C 4$ PFBA			- 150
$13 C 5$ PFPeA			- 150
$13 C 2$ PFHxA	89		- 150
13 C 4 PFHpA	4		- 150
$13 C 4$ PFOA	105		- 150
$13 C 5$ PFNA	103		- 150
$13 C 2$ PFDA	100		- 150
$13 C 2$ PFUnA	101		-150
$13 C 2$ PFDoA	75		- 150
$13 C 2$ PFTeDA			- 150
$13 C 3$ PFBS	76		- 150
1802 PFHxS	4		- 150
$13 C 4$ PFOS	102		- 150
13C8 FOSA	106		- 150
d3-NMeFOSAA	89		- 150
-NEtFOSAA	87		- 150
M2-6:2 FTS	7		- 150
M2-8:2 FTS	100		- 150

Prepared	Analyzed	Dil Fac
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1
11/02/20 19:24	11/04/20 08:04	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	3.7	J	4.6	. 2	ng/L		19:25	4/20 08:13	
Perfluoropentanoic acid (PFPeA)	2.8		. 8	. 45	ng / L		19:25	4/20 08:13	
Perfluorohexanoic acid (PFHxA)	1.8		. 8	. 53	ng / L		19:25	4/20 08:13	
Perfluoroheptanoic acid (PFHpA)	1.2	J	. 8	. 23	ng / L		19:25	4/20 08:13	
Perfluorooctanoic acid (PFOA)	1.8		. 8	. 78	ng/L		19:25	4/20 08:13	
Perfluorononanoic acid (PFNA)	0.48	J	. 8	. 25	ng / L		19:25	4/20 08:13	
Perfluorodecanoic acid (PFDA)	ND		. 8	. 28	ng / L		19:25	4/20 08:13	
Perfluoroundecanoic acid (PFUnA)	ND		. 8	. 0	ng / L		19:25	4/20 08:13	
Perfluorododecanoic acid (PFDoA)	ND		. 8	. 51	ng / L		19:25	4/20 08:13	
Perfluorotridecanoic acid (PFTriA)	ND		. 8	. 2	ng / L		19:25	4/20 08:13	
Perfluorotetradecanoic acid (PFTeA)	ND		. 8	. 67	ng / L		19:25	4/20 08:13	
Perfluorobutanesulfonic acid (PFBS)	2.6		. 8	. 18	ng/L		19:25	4/20 08:13	
Perfluorohexanesulfonic acid (PFHxS)	0.97	J	. 8	. 52	ng/L		19:25	4/20 08:13	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 8	. 17	ng/L		19:25	4/20 08:13	
Perfluorooctanesulfonic acid (PFOS)	2.9		. 8	. 50	ng/L		19:25	4/20 08:13	
Perfluorodecanesulfonic acid (PFDS)	ND		. 8	. 29	ng/L		19:25	4/20 08:13	
Perfluorooctanesulfonamide (FOSA)	ND		. 8	. 90	ng/L		19:25	4/20 08:13	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	. 1	ng/L		19:25	4/20 08:13	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	. 2	ng/L		19:25	4/20 08:13	
:2 FTS	ND		4.6	. 3	ng/L		19:25	4/20 08:13	
8:2 FTS	ND		. 8	. 42	ng/L		19:25	4/20 08:13	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA			- 150				11/02/20 19:25	11/04/20 08:13	1
13 C 5 PFPeA	3		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 2$ PFHxA	89		- 150				11/02/20 19:25	11/04/20 08:13	1
13C4 PFHpA	3		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 4$ PFOA	103		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 5$ PFNA	100		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 2$ PFDA	8		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 2$ PFUnA	104		- 150				11/02/20 19:25	11/04/20 08:13	1
13 C 2 PFDoA	86		- 150				11/02/20 19:25	11/04/20 08:13	1
13 C 2 PFTeDA	71		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 3$ PFBS	77		- 150				11/02/20 19:25	11/04/20 08:13	1
1802 PFHxS	3		- 150				11/02/20 19:25	11/04/20 08:13	1
$13 C 4$ PFOS			- 150				11/02/20 19:25	11/04/20 08:13	1
13C8 FOSA	109		- 150				11/02/20 19:25	11/04/20 08:13	1
d3-NMeFOSAA	89		- 150				11/02/20 19:25	11/04/20 08:13	1
-NEtFOSAA	7		- 150				11/02/20 19:25	11/04/20 08:13	1
M2-6:2 FTS			- 150				11/02/20 19:25	11/04/20 08:13	1
M2-8:2 FTS			- 150				11/02/20 19:25	11/04/20 08:13	1

Method: 537 (modified) - Fluo Analyte	nated Alky esult	l Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	7.1		4.9	.3	ng/L		19:25	4/20 08:22	
Perfluoropentanoic acid (PFPeA)	5.2		. 9	. 48	ng/L		19:25	4/20 08:22	
Perfluorohexanoic acid (PFHxA)	5.8		9	. 56	ng/L		19:25	4/20 08:22	
Perfluoroheptanoic acid (PFHpA)	2.3		. 9	. 24	ng/L		19:25	4/20 08:22	
Perfluorooctanoic acid (PFOA)	4.0		9	. 83	ng/L		19:25	4/20 08:22	
Perfluorononanoic acid (PFNA)	0.41	J	. 9	. 26	ng/L		19:25	4/20 08:22	
Perfluorodecanoic acid (PFDA)	0.35	J	. 9	. 30	ng / L		19:25	4/20 08:22	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 1	ng/L		19:25	4/20 08:22	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 53	ng/L		19:25	4/20 08:22	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	. 3	ng / L		19:25	4/20 08:22	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	.71	ng/L		19:25	4/20 08:22	
Perfluorobutanesulfonic acid (PFBS)	2.3		. 9	. 19	ng/L		19:25	4/20 08:22	
Perfluorohexanesulfonic acid (PFHxS)	2.8		9	. 55	ng / L		19:25	4/20 08:22	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:25	4/20 08:22	
Perfluorooctanesulfonic acid (PFOS)	4.5		. 9	. 52	ng/L		19:25	4/20 08:22	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 31	ng/L		19:25	4/20 08:22	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 95	ng/L		19:25	4/20 08:22	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	. 2	ng/L		19:25	4/20 08:22	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	. 3	ng/L		19:25	4/20 08:22	
:2 FTS	ND		4.9	. 4	ng/L		19:25	4/20 08:22	
8:2 FTS	ND		. 9	. 45	ng/L		19:25	4/20 08:22	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	7		-150				11/02/20 19:25	11/04/20 08:22	1
$13 C 5$ PFPeA	71		- 150				11/02/20 19:25	11/04/20 08:22	1
13 C 2 PFHxA	89		-150				11/02/20 19:25	11/04/20 08:22	1
$13 C 4$ PFHPA	3		- 150				11/02/20 19:25	11/04/20 08:22	1
$13 C 4$ PFOA			- 150				11/02/20 19:25	11/04/20 08:22	1
$13 C 5$ PFNA			- 150				11/02/20 19:25	11/04/20 08:22	1
$13 C 2$ PFDA			- 150				11/02/20 19:25	11/04/20 08:22	1
$13 C 2$ PFUnA	100		- 150				11/02/20 19:25	11/04/20 08:22	1
$13 C 2$ PFDoA	4		-150				11/02/20 19:25	11/04/20 08:22	1
13 C 2 PFTeDA	70		-150				11/02/20 19:25	11/04/20 08:22	1
$13 C 3$ PFBS	83		- 150				11/02/20 19:25	11/04/20 08:22	1
1802 PFHXS			-150				11/02/20 19:25	11/04/20 08:22	1
13 C 4 PFOS	8		-150				11/02/20 19:25	11/04/20 08:22	1
13C8 FOSA	106		-150				11/02/20 19:25	11/04/20 08:22	1
d3-NMeFOSAA			- 150				11/02/20 19:25	11/04/20 08:22	1
-NEtFOSAA	1		-150				11/02/20 19:25	11/04/20 08:22	1
M2-6:2 FTS	3		- 150				11/02/20 19:25	11/04/20 08:22	1
M2-8:2 FTS	88		- 150				11/02/20 19:25	11/04/20 08:22	1

Client Sample ID: HFPCW4-W ter-10302020
Lab Sample ID: 320-66212-12
Date Collected: 10/30/20 13:30
Matrix: W ter
Date Received: 10/31/20 09:45

Method: 537 (modified) - Fluo Analyte	inated Alky esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	
Perfluorobutanoic acid (PFBA)	6.5		4.6	2	ng/L		19:25	4/20 08:32	
Perfluoropentanoic acid (PFPeA)	5.1		. 9	.45	ng / L		19:25	4/20 08:32	
Perfluorohexanoic acid (PFHxA)	4.7		. 9	. 54	ng / L		19:25	4/20 08:32	
Perfluoroheptanoic acid (PFHpA)	2.4		. 9	. 23	ng/L		19:25	4/20 08:32	
Perfluorooctanoic acid (PFOA)	3.4		. 9	. 79	ng/L		19:25	4/20 08:32	
Perfluorononanoic acid (PFNA)	0.39	J	. 9	. 25	ng/L		19:25	4/20 08:32	
Perfluorodecanoic acid (PFDA)	0.35	J	. 9	29	ng/L		19:25	4/20 08:32	
Perfluoroundecanoic acid (PFUnA)	ND		. 9	. 0	ng / L		19:25	4/20 08:32	
Perfluorododecanoic acid (PFDoA)	ND		. 9	. 51	ng/L		19:25	4/20 08:32	
Perfluorotridecanoic acid (PFTriA)	ND		. 9	2	ng/L		19:25	4/20 08:32	
Perfluorotetradecanoic acid (PFTeA)	ND		. 9	. 68	ng / L		19:25	4/20 08:32	
Perfluorobutanesulfonic acid (PFBS)	2.0		. 9	. 19	ng / L		19:25	4/20 08:32	
Perfluorohexanesulfonic acid (PFHxS)	2.5		. 9	. 53	ng/L		19:25	4/20 08:32	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 9	. 18	ng/L		19:25	4/20 08:32	
Perfluorooctanesulfonic acid (PFOS)	4.5		. 9	. 50	ng/L		19:25	4/20 08:32	
Perfluorodecanesulfonic acid (PFDS)	ND		. 9	. 30	ng/L		19:25	4/20 08:32	
Perfluorooctanesulfonamide (FOSA)	ND		. 9	. 91	ng / L		19:25	4/20 08:32	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	. 1	ng/L		19:25	4/20 08:32	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	2	ng/L		19:25	4/20 08:32	
:2 FTS	ND		4.6	3	ng / L		19:25	4/20 08:32	
8:2 FTS	ND		. 9	43	ng/L		19:25	4/20 08:32	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	1		-150				11/02/20 19:25	11/04/20 08:32	1
13 C 5 PFPeA	101		- 150				11/02/20 19:25	11/04/20 08:32	1
13 C 2 PFHXA	120		-150				11/02/20 19:25	11/04/20 08:32	1
$13 \mathrm{C4}$ PFHpA	127		-150				11/02/20 19:25	11/04/20 08:32	1
$13 C 4$ PFOA	134		-150				11/02/20 19:25	11/04/20 08:32	1
$13 C 5$ PFNA	144		-150				11/02/20 19:25	11/04/20 08:32	1
$13 C 2$ PFDA	133		- 150				11/02/20 19:25	11/04/20 08:32	1
$13 C 2$ PFUnA	133		- 150				11/02/20 19:25	11/04/20 08:32	1
13 C 2 PFDoA	110		-150				11/02/20 19:25	11/04/20 08:32	1
$13 C 2$ PFTeDA			-150				11/02/20 19:25	11/04/20 08:32	1
$13 C 3$ PFBS	108		- 150				11/02/20 19:25	11/04/20 08:32	1
1802 PFHxS	125		-150				11/02/20 19:25	11/04/20 08:32	1
13 C 4 PFOS	123		-150				11/02/20 19:25	11/04/20 08:32	1
13C8 FOSA	140		- 150				11/02/20 19:25	11/04/20 08:32	1
d3-NMeFOSAA	124		-150				11/02/20 19:25	11/04/20 08:32	1
-NEtFOSAA	122		-150				11/02/20 19:25	11/04/20 08:32	1
M2-6:2 FTS	134		-150				11/02/20 19:25	11/04/20 08:32	1
M2-8:2 FTS	134		-150				11/02/20 19:25	11/04/20 08:32	1

Method: 537 (modified) - Fluorinated Alkyl Substances
Matrix: Water
Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFPeA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFNA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFDA } \\ (25-150) \\ \hline \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
320-66212-1	HFPCW2-Water-10302020	9	75	92	96	4	5		3
320-66212-2	HFW2-Water-10302020	59	9	98					
320-66212-2 MS	HFW2-Water-10302020	58	8	89	93			8	
320-66212-2 MSD	HFW2-Water-10302020	54	3	88	92	96	3	97	7
320-66212-3	HFW3-Water-10302020	59	9	93		7	8		96
320-66212-4	HFW4-Water-10302020	54	3	87	91	98	95	95	95
320-66212-5	HFW DUP 10302020	57	4	89	94	3	5		
320-66212-6	HFW-Equipment Blank-10302020	98	3	3	8	9	7	8	4
320-66212-7	HFW-Field Blank-10302020	89	94	88	94		91	87	91
320-66212-8	HFSCW2-Water-10302020	54	3	85	90	95	95	91	93
320-66212-9	HFSCW1-Water-10302020	55		89	94	5	3		
320-66212-10	HFW1-Water-10302020	55	3	89	93	3		98	4
320-66212-1	HFPCW3-Water-10302020	7	71	89	93	96	96	99	
320-66212-12	HFPCW4-Water-10302020	91			7	34	44	33	33
LCS 320-427889/2-A	Lab Control Sample	89	95	89	92	97	89	94	92
MB 320-427889/1-A	Method Blank	88	90	89	90	94	91	87	92
		Percent Isotope Dilution Recovery (Acceptance Limits)							
	Client Sample ID	PFDoA (25-150)	$\begin{aligned} & \text { PFTDA } \\ & (25-150) \end{aligned}$	C3PFBS (25-150)	PFHxS (25-150)	$\begin{gathered} \text { PFOS } \\ (25-150) \end{gathered}$	PFOSA (25-150)	d3NMFO (25-150)	d5NEFO (25-150)
320-66212-1	HFPCW2-Water-10302020	87	5	87	98		4		97
320-66212-2	HFW2-Water-10302020	84	7	83	97	4			95
320-66212-2 MS	HFW2-Water-10302020	80	76	80	99				96
320-66212-2 MSD	HFW2-Water-10302020	89	72	79	92			98	99
320-66212-3	HFW3-Water-10302020	79	5	83		3	4	93	95
320-66212-4	HFW4-Water-10302020	89	8	76	90	96		95	95
320-66212-5	HFW DUP 10302020	86	9	74	96	97	8	93	94
320-66212-6	HFW-Equipment Blank-10302020	83			8	8	4	96	97
320-66212-7	HFW-Field Blank-10302020	77	92	88	94	98	96	80	82
320-66212-8	HFSCW2-Water-10302020	75	59	78	89	94		87	88
320-66212-9	HFSCW1-Water-10302020	75	9	76	94			89	87
320-66212-10	HFW1-Water-10302020	86	71	77	93	99	9	89	97
320-66212-1	HFPCW3-Water-10302020	94	70	83	96	98		92	91
320-66212-12	HFPCW4-Water-10302020		95	8	5	3	40	4	
LCS 320-427889/2-A	Lab Control Sample	82	85	89	94	95	94	95	90
MB 320-427889/1-A	Method Blank	87	86	85	92	95	96	91	93
		Percent Isotope Dilution Recovery (Acceptance Limits)							
		M262FTS	M282FTS						
Lab Sample ID	Client Sample ID	$(25-150)$	(25-150)						
320-66212-1	HFPCW2-Water-10302020	4	8						
320-66212-2	HFW2-Water-10302020	3	5						
320-66212-2 MS	HFW2-Water-10302020								
320-66212-2 MSD	HFW2-Water-10302020	98	96						
320-66212-3	HFW3-Water-10302020		9						
320-66212-4	HFW4-Water-10302020	99	99						
320-66212-5	HFW DUP 10302020	96							
320-66212-6	HFW-Equipment	98							
	Blank-10302020								
320-66212-7	HFW-Field Blank-10302020	84	83						

Isotope Dilution Summary

Client: New York State D.E.C.
Job ID: 320-66212-1
Project/Site: Norlite - Cohoes \#401041
Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)
Matrix: Water

Lab Sample ID	Client Sample ID	$\begin{gathered} \text { M262FTS } \\ (25-150) \end{gathered}$	Perc M282FTS $(25-150)$	Dilution Recovery (Acceptance Limits)
320-66212-8	HFSCW2-Water-10302020	95	94	
320-66212-9	HFSCW1-Water-10302020	97		
320-66212-10	HFW1-Water-10302020	92	95	
320-66212-1	HFPCW3-Water-10302020	93	88	
320-66212-12	HFPCW4-Water-10302020	34	34	
LCS 320-427889/2-A	Lab Control Sample	84	86	
MB 320-427889/1-A	Method Blank	89	92	
rrogate Legend				
$\overline{\text { PFBA }}$ = 13C4 PFBA				
PFPeA $=13 \mathrm{C} 5 \mathrm{PFPeA}$				
$\mathrm{PFHxA}=13 \mathrm{C} 2 \mathrm{PFHxA}$				
C4PFHA $=13 \mathrm{C} 4 \mathrm{PFHpA}$				
$\mathrm{PFOA}=13 \mathrm{C} 4 \mathrm{PFOA}$				
PFNA $=13 \mathrm{C} 5 \mathrm{PFNA}$				
PFDA $=13 \mathrm{C} 2 \mathrm{PFDA}$				
PFUnA = 13C2 PFUnA				
PFDoA $=13 \mathrm{C} 2 \mathrm{PFDoA}$				
PFTDA $=13 \mathrm{C} 2 \mathrm{PFTeDA}$				
C3PFBS $=13 \mathrm{C} 3$ PFBS				
$\mathrm{PFHxS}=1802 \mathrm{PFHxS}$				
PFOS = 13C4 PFOS				
PFOSA $=13 \mathrm{C} 8 \mathrm{FOSA}$				
d3NMFOS = d3-NMeFOSAA				
d5NEFOS $=$ d5-NEtFOSAA				
M262FTS $=$ M2-6:2 FTS				
M282FTS $=$ M2-8:2 FTS				

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-427889/1-A
Matrix: Water
Analysis Batch: 428440

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-427889/2-A
Matrix: Water
Analysis Batch: 428440

Analysis Batch: 428440 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \\ & \hline \end{aligned}$	LCS Qualifier	Unit	D	\%Rec	Pr \%R Lim	
Per8gorobgtanoic aciL 9P75f u	40.0	43.m		n(/F		A	m	36
Per8goro) entanoic aciL 9P7Pef u	40.0	3 m 2		n (/F		A3	m	31
Per8goroheTanoic aciL 9P7p Tf u	40.0	4d. 4		$\mathrm{n} / / \mathrm{F}$		3	m 3	33
Per8gorohe) tanoic aciL 9P7p f f u	40.0	43.0		n (/F		m	m	32
Per8gorooctanoic aciL MP7Hf u	40.0	3 U .3		n (/F		A	m	30
Per8gorononanoic acil 9P7Nf u	40.0	$4 \mathrm{m0}$		n (/F		m	nd	3d
Per8goroLecanoic aciL 9P7Df u	40.0	3 A 6		n (/F		AA	m	36
Per8gorognLecanoic aciL 9P7Onf u	40.0	3A.m		n (/F		AA	U	U
Per8goroLoLecanoic aciL 9P7Dof u	40.0	43.A		n(/F			m	31
Per8gorotriLecanoic aciL 9P7yrif u	40.0	44.6		n(/F			m	31
Per8gorotetraLecanoic aciL 9P7yef u	40.0	43.A		n (/F			m	30
Per8gorobgtanesgl\&nic aciL 9P75Su	3d. 4	3 U .0		n (/F		m	m	m
Per8goroheTanesglonic acil MP7p TSu	36.4	36.1		n (/F		AA	dA	A
Per8gorohe) tanesgl®nic f ciL 9P7p) Su	3U. 1	3AA		n (/F		d	m	36
Per8gorooctanesglonic aciL 9P7HSu	3 m 1	3 U .6		n(/F		4	m	30
Per8goroLecanesgl8nic aciL 9P7DSu	34.6	3U. 6		n(/F			m	31
Per8gorooctanesglønaMiLe 97HSf u	40.0	44.0		n (/F			m ${ }^{\text {a }}$	33
N-Meth, I) er8gorooctanesgl\&na MiLoacetic aciL 9NB e7HSf fu	40.0	3 A 3		n (/F		AU	m	36
N -eth, I) er8gorooctanesgl8naMi Loacetic aciL $9 N E t 7 \mathrm{HSf} \mathrm{fu}$	40.0	42.4		n (/F			m	36
6:27yS	3 mA	3 mA		$\mathrm{n} /$ /F			dA	
U. 7 yS	3U. 3	4.3		n (F		d	nd	3d

LCS LCS

Isotope Dilution	\%Recovery Qualifier	Limits
$13 C 4$ PFBA	:	12-
13 C 2 PFPeA	:2	12-
13 C 9 PF7 H	:	$12-$
$13 C 4$ PF7x	:9	$12-$
$13 \mathrm{C4}$ PFp	: N	$12-$
$13 C 2$ PFO	:	$12-$
$13 C 9$ PFDA	: 4	$12-$
$13 C 9$ PFUnA	:9	12 -
13C9 PFDoA		$12-$
$13 C 9$ PFTeDA		$12-$
$13 C 3$ PFBS	:	$12-$
16 p 9 PF7 HS	4	$12-$
13 C 4 PFp S	:2	12
13 C 6 Fp SA	: 4	$12-$
d350MeFp SAA	:2	12-
OEtFp SAA	:-	$12-$

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-427889/2-A
Matrix: Water
Analysis Batch: 428440
LCS LCS

Isotope Dilution		\%Recovery	Qualifier	
$M 958 / 9 ~ F T S ~$	4		Limits	
M95/9 FTS	8	$12-$		
$12-$				

Lab Sample ID: 320-66212-2 MS
Matrix: Water
Analysis Batch: 428440

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MS } \\ & \text { It } \end{aligned}$	MS Qualifier
Per8gorobgtanoic aciL 9P75f u	4.3	J	3U. 0	40.2	
Per8goro) entanoic aciL 9P7Pef u	3.4		3U. 0	3U.U	
Per8goroheTanoic aciL 9P7p Tf u	. 2		3 U .0	43.m	
Per8gorohe) tanoic aciL 9P7p) f u	. 3	J	3 U .0	43.6	
Per8gorooctanoic aciL 9P7Hf u	. A		3 U .0	41.4	
Per8gorononanoic aciL 9P7Nf u	. 31	J	3U. 0	3AU	
Per8goroLecanoic aciL 9P7Df u	ND		3 U .0	36.A	
Per8gorognLecanoic aciL 9P7Onf u	ND		3U. 0	3U. 3	
Per8goroLoLecanoic aciL 9P7Dof u	ND		3U. 0	46.d	
Per8gorotriLecanoic aciL	ND		3 U .0	41.1	

9P7yrif u

Per8gorotetraLecanoic aciL
9P7yef u

| Per8gorobgtanesgl8nic aciL
 9P75Su | .m | 33.6 |
| :--- | :--- | :--- | 40.A

Per8goroheTanesgl8nic aci
9P7p TSu
Per8gorohe) tanesgl\&nic f ciL
9P7p) Su
Per8gorooctanesgl8nic aciL .U J 3d.3
9P7HSu
Per8goroLecanesgl8nic aciL
9P7DSu
Per8gorooctanesgl\&naMiLe 97HSf u
N-Meth, I) er8gorooctanesgI8na
MiLoacetic aciL 9NB e7HSf f u
N-eth, I) er8gorooctanesgl8naMi
Loacetic aciL gNEt7HSf f u
$6: 27 y S \quad$ ND 36.0
$36.4 \quad 3 \mathrm{~A} .1$
U:2 7yS

Isotope Dilution	\%Recovery Qualifier	Limits
13C4 PFBA		12-
$13 C 2$ PFPeA	86	12-
$13 C 9$ PF7 H	:	12-
13C4 PF7x	: 3	12-
13C4 PFp	1--	12-
13 C 2 PFO	$1-$	12-
$13 C 9$ PFDA	1-	12-
13C9 PFUnA	111	12-
$13 C 9$ PFDoA	-	12-

Client Sample ID: Lab Control Sample
Prep Type: Total/NA Prep Batch: 427889

Client Sample ID: HFW2-Water-10302020
Prep Type: Total/NA Prep Batch: 427889 \%Rec.
D $\frac{\text { \%Rec }}{\text { A } 4} \frac{\text { Limits }}{\mathrm{m} 36}$

$$
-\frac{\text { Unit }}{\mathrm{n}(/ \mathrm{F}} \quad-\frac{\mathrm{D}}{\mathrm{HRec}} \underset{\mathrm{~A} 4}{\mathrm{n}(/ \mathrm{F}}
$$

Unit	D \%Rec
n(/F	A4
n(/F	A3
n(/F	A

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 320-66212-2 MS
Matrix: Water
Analysis Batch: 428440

Client Sample ID: HFW2-Water-10302020
Prep Type: Total/NA
Prep Batch: 427889

Client Sample ID: HFW2-Water-10302020
Lab Sample ID: 320-66212-2 MSD
Analysis Batch: 428440

Analyte	Sample It	Sample Qualifier	Spike Added	MSD It	MSD Qualifier	Unit	D	\%Rec	\%R		PD	PD Limit
Per8gorobgtanoic aciL 9P75f u	4.3	J	3 mU	3Am		n(/F		A4	m	36		3
Per8goro) entanoic aciL 9P7Pef u	3.4		3 mU	3U.A		$n(/ F$		A4	m	31		30
Per8goroheTanoic aciL 9P7p Tf u	. 2		3 mU	3A.U		n(/F		AA	m3	33		30
Per8gorohe) tanoic aciL 9P7p f u	. 3	J	3 mU	43.1		n(/F			m	32		30
Per8gorooctanoic aciL 9P7Hf u	. A		3 mU	3 A 0		n(/F		AU	m	30		30
Per8gorononanoic aciL 9P7Nf u	. 31	J	3 mU	3A.U		n(/F		4	md	3d		30
Per8goroLecanoic aciL 9P7Df u	ND		3 mU	$43 . \mathrm{d}$		n(/F		d	m	36		30
Per8gorognLecanoic aciL 9P7Onf u	ND		3 mU	40.4		n(/F		m	U	U	d	30
Per8goroLoLecanoic aciL 9P7Dof u	ND		3 mU	41.0		n(/F		U	m	31		30
Per8gorotriLecanoic aciL PP7yrif u	ND		3 mU	3d. 4		n(/F		A4	m	31	d	30
Per8gorotetraLecanoic aciL 9P7yef u	ND		3 mU	3d.d		n(/F		A4	m	30	U	30
Per8gorobgtanesgl8nic aciL 9P75Su	.m		33.4	42.1		n(/F		U	m	m	3	30
Per8goroheTanesgI8nic aciL 9P7p TSu	. 0	J	34.4	34.3		n(/F		Am	dA	A	3	3
Per8gorohe) tanesgl8nic f ciL 9P7p) Su	ND		36.0	36.6		n(/F			m	36	d	30
Per8gorooctanesgl8nic aciL 9P7HSu	.U	J	3d. 1	3A6		n(/F		U	m	30	d	30
Per8goroLecanesgl\&nic aciL 9P7DSu	ND		36.d	36.4		n(/F			m	31	A	30
Per8gorooctanesgl8naMiLe 97 HSf u	ND		3 mU	41.4		n(/F		A	mB	33	3	30
N-Meth, I) er8gorooctanesgl8na MiLoacetic aciL 9NB e7HSf f u	ND		3 mU	40.3		n(/F		m	m	36		30
N-eth, I) er8gorooctanesgl8naMi Loacetic aciL 9NEt7HSf fu	ND		3 mU	40.6		n(/F		m	m	36	d	30
6:27yS	ND		3d.A	36.3		n(/F			dA	md1		3
U:27yS	ND		36.2	3A. 4		n(/F		A	nd	3d		30

Project/Site: Norlite - Cohoes \#401041
Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sample ID: HFW2-Water-10302020
Prep Type: Total/NA
Prep Batch: 427889

LCMS

Prep Batch: 427889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66212-1	HFPCW2-Water-10302020	Total/NA	Water	3535	
320-66212-2	HFW2-Water-10302020	Total/NA	Water	3535	
320-66212-3	HFW3-Water-10302020	Total/NA	Water	3535	
320-66212-4	HFW4-Water-10302020	Total/NA	Water	3535	
320-66212-5	HFW DUP 10302020	Total/NA	Water	3535	
320-66212-6	HFW-Equipment Blank-10302020	Total/NA	Water	3535	
320-66212-7	HFW-Field Blank-10302020	Total/NA	Water	3535	
320-66212-8	HFSCW2-Water-10302020	Total/NA	Water	3535	
320-66212-9	HFSCW1-Water-10302020	Total/NA	Water	3535	
320-66212-10	HFW1-Water-10302020	Total/NA	Water	3535	
320-66212-1	HFPCW3-Water-10302020	Total/NA	Water	3535	
320-66212-12	HFPCW4-Water-10302020	Total/NA	Water	3535	
MB 320-427889/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-427889/2-A	Lab Control Sample	Total/NA	Water	3535	
320-66212-2 MS	HFW2-Water-10302020	Total/NA	Water	3535	
320-66212-2 MSD	HFW2-Water-10302020	Total/NA	Water	3535	

Analysis Batch: 428440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66212-1	HFPCW2-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-2	HFW2-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-3	HFW3-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-4	HFW4-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-5	HFW DUP 10302020	Total/NA	Water	537 (modified)	427889
320-66212-6	HFW-Equipment Blank-10302020	Total/NA	Water	537 (modified)	427889
320-66212-7	HFW-Field Blank-10302020	Total/NA	Water	537 (modified)	427889
320-66212-8	HFSCW2-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-9	HFSCW1-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-10	HFW1-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-1	HFPCW3-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-12	HFPCW4-Water-10302020	Total/NA	Water	537 (modified)	427889
MB 320-427889/1-A	Method Blank	Total/NA	Water	537 (modified)	427889
LCS 320-427889/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	427889
320-66212-2 MS	HFW2-Water-10302020	Total/NA	Water	537 (modified)	427889
320-66212-2 MSD	HFW2-Water-10302020	Total/NA	Water	537 (modified)	427889

Client: New k State D.E.C.
Project/Site: Norlite - Cohoes \#401041
Client Sample ID: HFPCW2-Water-10302020
Lab Sample ID: 320-66212-1
Date Collected: 10/30/20 09:45
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			261.5 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 06:11	K1S	TAL SAC

Client Sample ID: HFW2-Water-10302020
Date Collected: 10/30/20 11:30
Lab Sample ID: 320-66212-2
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			266.3 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 06:20	K1S	TAL SAC

Client Sample ID: HFW3-Water-10302020
Date Collected: 10/30/20 12:40
Lab Sample ID: 320-66212-3
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			257.2 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 06:48	K1S	TAL SAC

Client Sample ID: HFW4-Water-10302020
Date Collected: 10/30/20 13:05
Lab Sample ID: 320-66212-4
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			270.3 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 06:58	K1S	TAL SAC

Client Sample ID: HFW DUP 10302020

Lab Sample ID: 320-66212-5
Matrix: Water
Date Collected: 10/30/20 00:00
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			260.5 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 07:07	K1S	TAL SAC

Client Sample ID: HFW-Equipment Blank-10302020 Lab Sample ID: 320-66212-6
Date Collected: 10/30/20 13:40
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			265.9 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 07:17	K1S	TAL SAC

Client: New k State D.E.C.
Project/Site: Norlite - Cohoes \#401041
Client Sample ID: HFW-Field Blank-10302020
Lab Sample ID: 320-66212-7
Date Collected: 10/30/20 13:45
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			273.3 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 07:45	K1S	TAL SAC

Client Sample ID: HFSCW2-Water-10302020
Date Collected: 10/30/20 11:20
Lab Sample ID: 320-66212-8
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			266.4 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 07:54	K1S	TAL SAC

Client Sample ID: HFSCW1-Water-10302020
Date Collected: 10/30/20 11:40
Lab Sample ID: 320-66212-9
Matrix: Water
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			259.6 mL	10.00 mL	427889	11/02/20 19:24	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 08:04	K1S	TAL SAC

Client Sample ID: HFW1-Water-10302020

Date Collected: 10/30/20 12:25
Lab Sample ID: 320-66212-10 Matrix: Water

Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			272.1 mL	10.00 mL	427889	11/02/20 19:25	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 08:13	K1S	TAL SAC

Client Sample ID: HFPCW3-Water-10302020
Date Collected: 10/30/20 13:00

Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			257.3 mL	10.00 mL	427889	11/02/20 19:25	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 08:22	K1S	TAL SAC

Client Sample ID: HFPCW4-Water-10302020
Date Collected: 10/30/20 13:30
Lab Sample ID: 320-66212-12
Date Received: 10/31/20 09:45

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			269.8 mL	10.00 mL	427889	11/02/20 19:25	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			428440	11/04/20 08:32	K1S	TAL SAC
Laboratory References:										

Client: New k State D.E.C.
Job ID: 320-66212-1 Project/Site: Norlite - Cohoes \#401041

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.
$\frac{\text { Authority }}{\text { ew k }} \frac{\text { Program }}{\text { ELAP }} \frac{\text { Identification Number }}{11666} \frac{\text { Expiration Date }}{04-01-21}$

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
537 (modified)	3535	Water	6:2 FTS
537 (modified)	3535	Water	8:2 FTS
537 (modified)	3535	Water	-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)
537 (modified)	3535	Water	-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)
537 (modified)	3535	Water	Perfluorobutanesulfonic acid (PFBS)
537 (modified)	3535	Water	Perfluorobutanoic acid (PFBA)
537 (modified)	3535	Water	Perfluorodecanesulfonic acid (PFDS)
537 (modified)	3535	Water	Perfluorodecanoic acid (PFDA)
537 (modified)	3535	Water	Perfluorododecanoic acid (PFDoA)
537 (modified)	3535	Water	Perfluoroheptanesulfonic Acid (PFHpS)
537 (modified)	3535	Water	Perfluoroheptanoic acid (PFHpA)
537 (modified)	3535	Water	Perfluorohexanesulfonic acid (PFHxS)
537 (modified)	3535	Water	Perfluorohexanoic acid (PFHxA)
537 (modified)	3535	Water	Perfluorononanoic acid (PFNA)
537 (modified)	3535	Water	Perfluorooctanesulfonamide (FOSA)
537 (modified)	3535	Water	Perfluorooctanesulfonic acid (PFOS)
537 (modified)	3535	Water	Perfluorooctanoic acid (PFOA)
537 (modified)	3535	Water	Perfluoropentanoic acid (PFPeA)
537 (modified)	3535	Water	Perfluorotetradecanoic acid (PFTeA)
537 (modified)	3535	Water	Perfluorotridecanoic acid (PFT iA)
537 (modified)	3535	Water	Perfluoroundecanoic acid (PFUnA)

Method Summary

Method	Method Description	Protocol	
537 (modified)	Fluorinated Alkyl Substances	EPA	SAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	

Protocol References:

EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-66212-1	HFPCW2-Water-10302020	Water	30/20 09:45	10/31/20 09:45	
320-66212-2	HFW2-Water-10302020	Water	30/20 1 :30	31/20 09:45	
320-66212-3	HFW3-Water-10302020	Water	30/20 12:40	31/20 09:45	
320-66212-4	HFW4-Water-10302020	Water	30/20 13:05	31/20 09:45	
320-66212-5	HFW DUP 10302020	Water	30/20 00:00	31/20 09:45	
320-66212-6	HFW-Equipment Blank-10302020	Water	30/20 13:40	$31009: 45$	
320-66212-7	HFW-Field Blank-10302020	Water	30/20 13:45	31/20 9:45	
320-66212-8	HFSCW2-Water-10302020	Water	30/20 1 :20	10/31/20 09:45	
320-66212-9	HFSCW1-Water-10302020	Water	30/20 1 :40	10/31/20 09:45	
320-66212-10	HFW1-Water-10302020	Water	30/20 12:25	10/31/20 09:45	
320-66212-1	HFPCW3-Water-10302020	Water	30/20 13:00	10/31/20 09:45	
320-66212-12	HFPCW4-Water-10302020	Water	30/20 13:30	10/31/20 09:45	

Eurofins TestAmerica, Sacramento
880 Riverside Parkway West Sacramento, CA 95605 Phone: 916-373-5600 Fax: 916-372-1059 左

$$
=\text { ins/wid ID HFW-wat2-10302020 S2 } 10 / 31 / 20
$$

Eurofins TestAmerica, Sacramento/ AlOany
880 Riverside Parkway
West Sacramento, CA 95605
Chain of Custody Record
Phone: 916-373-5600 Fax: 916-372-1059 红

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 320-66212-1

Login Number: 66212
List Source: Eurofins T stAmerica, Sacramento
List Number: 1
Creator: Oropeza, Salvador

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	1478521/1478520
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	: IDs on containers do not match the COC. Logged in per COC.
Samples are received within Holding Time (Excluding tests with immediate HTs)..	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	/A	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}(1 / 4$ ") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway

West Sacramento, CA 95605
Tel: (916)373-5600
Laboratory Job ID: 320-66472-1
Client Project/Site: Norlite - Cohoes \#401041
Revision: 1
For:
New York State D.E.C.
625 Broadway
Division of Environmental Remediation
Albany, New York 12233-7014
Attn: Lynn M Winterberger

Authorized for release by: 1/18/2021 11:12:47 AM
Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Detection Summary 5
Client Sample Results 7
Isotope Dilution Summary 18
QC Sample Results 20
QC Association Summary 25
Lab Chronicle 26
Certification Summary 28
Method Summary 29
Sample Summary 30
Chain of Custody 31
Receipt Checklists 32

Qualifiers

LCMS

$\frac{\text { Qualifier }}{* 5}$	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

ID: 320-66472-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Narrative 320-66472-1

Revision (1)

The report has been revised at the request of the client on $1 / 15 / 21$ to change the date for the Trip Blank (320-66472-11) to 11/6/20 like the field samples.

Receipt

The samples were received on 11/7/2020 9:25 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was $0.6^{\circ} \mathrm{C}$.

Receipt Exceptions

Trip Blank 11062020 (320-66472-11) COC does not indicate date on COC for sample 11. Date on container was 9-3-2020. Sample was logged in and labeled according to date on sample container.

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): LF Water 211062020 (320-66472-1), LF Water 311062020 (320-66472-2), LF Water 611062020 (320-66472-3), LF Water 611062020 (320-66472-3[MS]), LF Water 611062020 (320-66472-3[MSD]), LF Water 411062020 (320-66472-4), LF Water 511062020 (320-66472-5), LF Water 711062020 (320-66472-6), LF Water 811062020 (320-66472-7), DUP 11062020 (320-66472-8) and Trip Blank 11062020 (320-66472-11).

Samples 1-3, 5 \& 7, there are two dashes on sample containers after LF and Water \#. For eamples, sample 1 ID on container LF-Water 211062020.

Sample 4 has both 250 mL and 2 of 4125 mL plastic containers there are two dashes on sample containers after LF and Water 4. The other 2125 mL have only one dash which is after water 4.

Sample 6 has both 250 mL and all 125 mL plastic containers there are two dashes on sample containers after LF and Water 7.

Sample 8 has both containers with ID as DUP-11062020.
Sample 11 has both container IDs as PFAS TRIP BLANKS but coc has ID listed as Trip Blanks.
All samples were logged in and labeled according to COC.
The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: Trip Blank 11062020 (320-66472-11). Sample 11 has sample collection date as $9-3-2020$. Method 3535_PFC has 14 days HT. HT was up on $9 / 16 / 2020$. Samples received on 11/7/2020. Based on the request to use $11 / 6 / 20$ for the T ip Blank date, this sample was analyzed in hold.

LCMS

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS of the following sample: LF Water 411062020 (320-66472-4). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for several IDA of the following sample: LF Water 711062020 (320-66472-6). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Client Sample ID: LF Water $211062020 \quad$ Lab Sample ID: 320-66472-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	3	J	. 7	. 3	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 89	J	1.9	. 46	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 83	J	1.9	. 55	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	. 59	J	1.9	. 24	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.1	J	1.9	. 80	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 0		1.9	. 19	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 93	J	1.9	. 54	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LF Water 311062020

Lab Sample ID: 320-66472-2

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	. 3	J	. 9	. 3	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	1.6	J	. 0	. 48	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	1.4	J	. 0	. 57	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	59	J	. 0	. 24	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.1	J	. 0	. 83	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 4		. 0	. 20	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.2	J	0	. 56	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LF Water 611062020

Lab Sample ID: 320-66472-3

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	. 9	J	. 6	. 2	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 3		1.9	. 45	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 4		1.9	. 54	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	86	J	1.9	. 23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.0	J	1.9	. 79	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 56	J	1.9	. 19	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	1.9	. 53	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	12		1.9	. 50	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LF Water 411062020
 Lab Sample ID: 320-66472-4

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	8.6		. 7	. 2	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	30		1.9	. 46	ng / L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	15		1.9	. 54	ng / L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.6		1.9	. 23	ng / L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	3.9		1.9	. 79	ng / L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 4		1.9	. 19	ng / L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.5	J	1.9	. 53	ng / L	1	537 (modified)	Total/NA
:2 FTS	33		. 7	. 3	ng/L	1	537 (modified)	Total/NA

Client Sample ID: LF Water 511062020

Lab Sample ID: 320-66472-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	3.3	J	. 6	. 2	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 7		1.8	. 45	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 6		1.8	. 53	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	1.1	J	1.8	. 23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 97	J	1.8	. 78	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 41	J	1.8	. 25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 71	J	1.8	. 18	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: LF Water 511062020 (Continued)

 Lab Sample ID: 320-66472-5| Analyte | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Perfluorohexanesulfonic acid (PFHxS) | 3.4 | | 1.8 | . 52 | ng/L | 1 | | 537 (modified) | Total/NA |
| Perfluorooctanesulfonic acid (PFOS) | 12 | | 1.8 | . 50 | ng/L | 1 | | 537 (modified) | Total/NA |

Client Sample ID: LF Water 711062020

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	3		. 7	. 3	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	15		1.9	. 46	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	11		1.9	. 54	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	11		1.9	. 23	ng / L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	5.6		1.9	. 80	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.8	J	1.9	. 25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	100		1.9	. 19	ng / L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 3		1.9	53	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 1		1.9	51	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LF Water 811062020

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)			. 9	. 3	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	13		1.9	. 48	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	11		1.9	. 56	ng / L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	11		1.9	. 24	ng / L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	5.3		1.9	. 83	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.7	J	1.9	. 26	ng / L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	100		1.9	. 19	ng / L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.9		1.9	. 55	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 1		1.9	. 53	ng/L	1		537 (modified)	Total/NA

Client Sample ID: DUP 11062020

Lab Sample ID: 320-66472-8

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	1		. 6	. 2	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	14		1.9	. 46	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	11		1.9	. 54	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	10		1.9	. 23	ng / L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	5.1		1.9	. 79	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.8	J	1.9	. 25	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	100		1.9	. 19	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 0		1.9	. 53	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 6		1.9	. 50	ng/L	1	537 (modified)	Total/NA

Client Sample ID: Field Blank 11062020

[^5]
Client Sample ID: Equipment Blank 11062020

[^6]
Client Sample ID: Trip Blank 11062020

Lab Sample ID: 320-66472-11

[^7]| Method: 537 (modified) - Fluo | nated Alk | Substa | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | esult | Qualifier | L | MDL | Unit | D | Prepared | Analyzed | Dil Fac |
| Perfluorobutanoic acid (PFBA) | 2.3 | J | 7 | . 3 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluoropentanoic acid (PFPeA) | 0.89 | J | 1.9 | . 46 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorohexanoic acid (PFHxA) | 0.83 | J | 1.9 | . 55 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluoroheptanoic acid (PFHpA) | 0.59 | J | 1.9 | . 24 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorooctanoic acid (PFOA) | 1.1 | J | 1.9 | . 80 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorononanoic acid (PFNA) | ND | | 1.9 | . 25 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorodecanoic acid (PFDA) | ND | | 1.9 | . 29 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluoroundecanoic acid (PFUnA) | ND | | 1.9 | 1.0 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorododecanoic acid (PFDoA) | ND | | 1.9 | . 52 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorotridecanoic acid (PFTriA) | ND | | 1.9 | 1.2 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorotetradecanoic acid (PFTeA) | ND | | 1.9 | . 69 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorobutanesulfonic acid (PFBS) | 2.0 | | 1.9 | . 19 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorohexanesulfonic acid (PFHxS) | 0.93 | J | 1.9 | . 54 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluoroheptanesulfonic Acid (PFHpS) | ND | | 1.9 | . 18 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorooctanesulfonic acid (PFOS) | ND | | 1.9 | . 51 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorodecanesulfonic acid (PFDS) | ND | | 1.9 | . 30 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Perfluorooctanesulfonamide (FOSA) | ND | | 1.9 | . 92 | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) | ND | | . 7 | | ng / L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) | ND | | . 7 | 1.2 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| :2 FTS | ND | | . 7 | . 4 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 8:2 FTS | ND | | 1.9 | .43 | ng/L | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| Isotope Dilution | \%Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac |
| 13C4 PFBA | | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13 C 5 PFPeA | 92 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13C2 PFHxA | 93 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13 C 4 PFHpA | 107 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13 C 4 PFOA | 102 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| $13 C 5$ PFNA | 96 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13C2 PFDA | 97 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| $13 C 2$ PFUnA | 90 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| $13 C 2$ PFDoA | 92 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13C2 PFTeDA | 66 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13C3 PFBS | 88 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 1802 PFHxS | 104 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13C4 PFOS | 101 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| 13C8 FOSA | 95 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| d3-NMeFOSAA | 86 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| NEtFOSAA | 92 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| M2-6:2 FTS | 130 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |
| M2-8:2 FTS | 113 | | 150 | | | | 11/11/20 19:32 | 11/12/20 16:31 | 1 |

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.3	J	. 9	. 3	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluoropentanoic acid (PFPeA)	1.6	J	. 0	. 48	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorohexanoic acid (PFHxA)	1.4	J	. 0	. 57	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluoroheptanoic acid (PFHpA)	0.59	J	. 0	. 24	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorooctanoic acid (PFOA)	1.1	J	. 0	. 83	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorononanoic acid (PFNA)	ND		. 0	. 26	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorodecanoic acid (PFDA)	ND		. 0	. 30	ng / L		11/11/20 19:32	11/12/20 16:40	1
Perfluoroundecanoic acid (PFUnA)	ND		. 0	1.1	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorododecanoic acid (PFDoA)	ND		. 0	. 54	ng / L		11/11/20 19:32	11/12/20 16:40	1
Perfluorotridecanoic acid (PFTriA)	ND		. 0	1.3	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		. 0	. 71	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorobutanesulfonic acid (PFBS)	2.4		. 0	. 20	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorohexanesulfonic acid (PFHxS)	1.2	J	. 0	. 56	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 0	. 19	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		. 0	. 53	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorodecanesulfonic acid (PFDS)	ND		. 0	. 31	ng/L		11/11/20 19:32	11/12/20 16:40	1
Perfluorooctanesulfonamide (FOSA)	ND		. 0	. 96	ng / L		11/11/20 19:32	11/12/20 16:40	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 9	1.2	ng/L		11/11/20 19:32	11/12/20 16:40	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 9	1.3	ng/L		11/11/20 19:32	11/12/20 16:40	1
:2 FTS	ND		. 9	. 4	ng/L		11/11/20 19:32	11/12/20 16:40	1
8:2 FTS	ND		. 0	. 45	ng/L		11/11/20 19:32	11/12/20 16:40	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	6		150				11/11/20 19:32	11/12/20 16:40	1
$13 C 5$ PFPeA	88		150				11/11/20 19:32	11/12/20 16:40	1
$13 C 2$ PFHxA	92		150				11/11/20 19:32	11/12/20 16:40	1
13 C 4 PFHPA	98		150				11/11/20 19:32	11/12/20 16:40	1
13 C 4 PFOA	98		150				11/11/20 19:32	11/12/20 16:40	1
$13 C 5$ PFNA	95		150				11/11/20 19:32	11/12/20 16:40	1
$13 C 2$ PFDA	98		150				11/11/20 19:32	11/12/20 16:40	1
$13 C 2$ PFUnA	92		150				11/11/20 19:32	11/12/20 16:40	1
13C2 PFDoA	85		150				11/11/20 19:32	11/12/20 16:40	1
$13 C 2$ PFTeDA			150				11/11/20 19:32	11/12/20 16:40	1
13 C 3 PFBS	80		150				11/11/20 19:32	11/12/20 16:40	1
1802 PFHxS	90		150				11/11/20 19:32	11/12/20 16:40	1
13 C 4 PFOS	92		150				11/11/20 19:32	11/12/20 16:40	1
13C8 FOSA	90		150				11/11/20 19:32	11/12/20 16:40	1
d3-NMeFOSAA	88		150				11/11/20 19:32	11/12/20 16:40	1
NETFOSAA	81		150				11/11/20 19:32	11/12/20 16:40	1
M2-6:2 FTS	114		150				11/11/20 19:32	11/12/20 16:40	1
M2-8:2 FTS	112		150				11/11/20 19:32	11/12/20 16:40	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.9	J	. 6	. 2	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluoropentanoic acid (PFPeA)	2.3		1.9	. 45	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorohexanoic acid (PFHxA)	2.4		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluoroheptanoic acid (PFHpA)	0.86	J	1.9	. 23	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorooctanoic acid (PFOA)	1.0	J	1.9	. 79	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorononanoic acid (PFNA)	ND		1.9	. 25	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 51	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 68	ng / L		11/11/20 19:32	11/12/20 16:49	1
Perfluorobutanesulfonic acid (PFBS)	0.56	J	1.9	. 19	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	1.9	. 53	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluorooctanesulfonic acid (PFOS)	12		1.9	. 50	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng/L		11/11/20 19:32	11/12/20 16:49	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 91	ng / L		11/11/20 19:32	11/12/20 16:49	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 6		ng / L		11/11/20 19:32	11/12/20 16:49	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 6	1.2	ng/L		11/11/20 19:32	11/12/20 16:49	1
:2 FTS	ND		. 6	. 3	ng/L		11/11/20 19:32	11/12/20 16:49	1
8:2 FTS	ND		1.9	. 43	ng/L		11/11/20 19:32	11/12/20 16:49	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	107		150				11/11/20 19:32	11/12/20 16:49	1
$13 C 5$ PFPeA	114		150				11/11/20 19:32	11/12/20 16:49	1
$13 C 2$ PFHxA	119		150				11/11/20 19:32	11/12/20 16:49	1
13C4 PFHpA	131		150				11/11/20 19:32	11/12/20 16:49	1
13C4 PFOA	126		150				11/11/20 19:32	11/12/20 16:49	1
$13 C 5$ PFNA	123		150				11/11/20 19:32	11/12/20 16:49	1
$13 C 2$ PFDA	113		150				11/11/20 19:32	11/12/20 16:49	1
13C2 PFUnA	98		150				11/11/20 19:32	11/12/20 16:49	1
13C2 PFDoA	97		150				11/11/20 19:32	11/12/20 16:49	1
13 C 2 PFTeDA	96		150				11/11/20 19:32	11/12/20 16:49	1
$13 C 3$ PFBS	108		150				11/11/20 19:32	11/12/20 16:49	1
1802 PFHxS	121		150				11/11/20 19:32	11/12/20 16:49	1
13C4 PFOS	112		150				11/11/20 19:32	11/12/20 16:49	1
$13 C 8$ FOSA	114		150				11/11/20 19:32	11/12/20 16:49	1
d3-NMeFOSAA	110		150				11/11/20 19:32	11/12/20 16:49	1
NEtFOSAA	103		150				11/11/20 19:32	11/12/20 16:49	1
M2-6:2 FTS	136		150				11/11/20 19:32	11/12/20 16:49	1
M2-8:2 FTS	130		150				11/11/20 19:32	11/12/20 16:49	1

Method: 537 (modified) - Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	8.6		7	. 2	ng/L		11/11/20 19:32	11/12/20 17:17	1
Perfluoropentanoic acid (PFPeA)	30		1.9	. 46	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorohexanoic acid (PFHxA)	15		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluoroheptanoic acid (PFHpA)	5.6		1.9	. 23	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorooctanoic acid (PFOA)	3.9		1.9	. 79	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorononanoic acid (PFNA)	ND		1.9	. 25	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 51	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 68	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorobutanesulfonic acid (PFBS)	2.4		1.9	. 19	ng/L		11/11/20 19:32	11/12/20 17:17	1
Perfluorohexanesulfonic acid (PFHxS)	1.5	J	1.9	. 53	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 17:17	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	. 50	ng/L		11/11/20 19:32	11/12/20 17:17	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng / L		11/11/20 19:32	11/12/20 17:17	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 91	ng / L		11/11/20 19:32	11/12/20 17:17	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7		ng / L		11/11/20 19:32	11/12/20 17:17	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	1.2	ng/L		11/11/20 19:32	11/12/20 17:17	1
6:2 FTS	33		. 7	. 3	ng/L		11/11/20 19:32	11/12/20 17:17	1
8:2 FTS	ND		1.9	.43	ng/L		11/11/20 19:32	11/12/20 17:17	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	100		150				11/11/20 19:32	11/12/20 17:17	1
13 C 5 PFPeA	114		150				11/11/20 19:32	11/12/20 17:17	1
13 C 2 PFHxA	118		150				11/11/20 19:32	11/12/20 17:17	1
$13 \mathrm{C4}$ PFHpA	131		150				11/11/20 19:32	11/12/20 17:17	1
13C4 PFOA	129		150				11/11/20 19:32	11/12/20 17:17	1
13 C 5 PFNA	130		150				11/11/20 19:32	11/12/20 17:17	1
13C2 PFDA	126		150				11/11/20 19:32	11/12/20 17:17	1
$13 C 2$ PFUnA	111		150				11/11/20 19:32	11/12/20 17:17	1
$13 C 2$ PFDoA	115		150				11/11/20 19:32	11/12/20 17:17	1
13C2 PFTeDA	101		150				11/11/20 19:32	11/12/20 17:17	1
13 C 3 PFBS	103		150				11/11/20 19:32	11/12/20 17:17	1
1802 PFHxS	120		150				11/11/20 19:32	11/12/20 17:17	1
13C4 PFOS	118		150				11/11/20 19:32	11/12/20 17:17	1
13C8 FOSA	128		150				11/11/20 19:32	11/12/20 17:17	1
d3-NMeFOSAA	109		150				11/11/20 19:32	11/12/20 17:17	1
NEtFOSAA	108		150				11/11/20 19:32	11/12/20 17:17	1
M2-6:2 FTS	163	*5	150				11/11/20 19:32	11/12/20 17:17	1
M2-8:2 FTS	155	*5	150				11/11/20 19:32	11/12/20 17:17	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	3.3	J	. 6	. 2	ng/L		11/11/20 19:32	11/12/20 17:44	1
Perfluoropentanoic acid (PFPeA)	2.7		1.8	. 45	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorohexanoic acid (PFHxA)	2.6		1.8	. 53	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	. 23	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorooctanoic acid (PFOA)	0.97	J	1.8	. 78	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorononanoic acid (PFNA)	0.41	J	1.8	. 25	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorodecanoic acid (PFDA)	ND		1.8	. 29	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		11/11/20 19:32	11/12/20 17:44	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	. 51	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	. 67	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorobutanesulfonic acid (PFBS)	0.71	J	1.8	. 18	ng / L		11/11/20 19:32	11/12/20 17:44	1
Perfluorohexanesulfonic acid (PFHxS)	3.4		1.8	. 52	ng/L		11/11/20 19:32	11/12/20 17:44	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	. 17	ng/L		11/11/20 19:32	11/12/20 17:44	1
Perfluorooctanesulfonic acid (PFOS)	12		1.8	. 50	ng/L		11/11/20 19:32	11/12/20 17:44	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	. 29	ng/L		11/11/20 19:32	11/12/20 17:44	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	. 90	ng / L		11/11/20 19:32	11/12/20 17:44	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 6		ng / L		11/11/20 19:32	11/12/20 17:44	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 6	1.2	ng/L		11/11/20 19:32	11/12/20 17:44	1
:2 FTS	ND		. 6	. 3	ng/L		11/11/20 19:32	11/12/20 17:44	1
8:2 FTS	ND		1.8	. 42	ng/L		11/11/20 19:32	11/12/20 17:44	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	85		150				11/11/20 19:32	11/12/20 17:44	1
$13 C 5$ PFPeA	89		150				11/11/20 19:32	11/12/20 17:44	1
$13 C 2$ PFHxA	93		150				11/11/20 19:32	11/12/20 17:44	1
13C4 PFHpA	100		150				11/11/20 19:32	11/12/20 17:44	1
13C4 PFOA	99		150				11/11/20 19:32	11/12/20 17:44	1
$13 C 5$ PFNA	97		150				11/11/20 19:32	11/12/20 17:44	1
$13 C 2$ PFDA	89		150				11/11/20 19:32	11/12/20 17:44	1
13C2 PFUnA	87		150				11/11/20 19:32	11/12/20 17:44	1
13C2 PFDoA	82		150				11/11/20 19:32	11/12/20 17:44	1
13 C 2 PFTeDA	1		150				11/11/20 19:32	11/12/20 17:44	1
$13 C 3$ PFBS	82		150				11/11/20 19:32	11/12/20 17:44	1
1802 PFHxS	96		150				11/11/20 19:32	11/12/20 17:44	1
13 C 4 PFOS	91		150				11/11/20 19:32	11/12/20 17:44	1
13C8 FOSA	90		150				11/11/20 19:32	11/12/20 17:44	1
d3-NMeFOSAA	84		150				11/11/20 19:32	11/12/20 17:44	1
NEtFOSAA	88		150				11/11/20 19:32	11/12/20 17:44	1
M2-6:2 FTS	106		150				11/11/20 19:32	11/12/20 17:44	1
M2-8:2 FTS	94		150				11/11/20 19:32	11/12/20 17:44	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	23		. 7	. 3	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluoropentanoic acid (PFPeA)	15		1.9	. 46	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorohexanoic acid (PFHxA)	11		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluoroheptanoic acid (PFHpA)	11		1.9	. 23	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorooctanoic acid (PFOA)	5.6		1.9	. 80	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluorononanoic acid (PFNA)	1.8	J	1.9	. 25	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 52	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 68	ng / L		11/11/20 19:32	11/12/20 17:53	1
Perfluorobutanesulfonic acid (PFBS)	100		1.9	. 19	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluorohexanesulfonic acid (PFHxS)	2.3		1.9	. 53	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluorooctanesulfonic acid (PFOS)	2.1		1.9	. 51	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng/L		11/11/20 19:32	11/12/20 17:53	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 92	ng / L		11/11/20 19:32	11/12/20 17:53	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7	1.1	ng / L		11/11/20 19:32	11/12/20 17:53	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	1.2	ng/L		11/11/20 19:32	11/12/20 17:53	1
:2 FTS	ND		. 7	. 3	ng/L		11/11/20 19:32	11/12/20 17:53	1
8:2 FTS	ND		1.9	. 43	ng/L		11/11/20 19:32	11/12/20 17:53	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	100		150				11/11/20 19:32	11/12/20 17:53	1
$13 C 5$ PFPeA	118		150				11/11/20 19:32	11/12/20 17:53	1
13 C 2 PFHxA	124		150				11/11/20 19:32	11/12/20 17:53	1
13C4 PFHpA	133		150				11/11/20 19:32	11/12/20 17:53	1
13C4 PFOA	126		150				11/11/20 19:32	11/12/20 17:53	1
$13 C 5$ PFNA	129		150				11/11/20 19:32	11/12/20 17:53	1
13C2 PFDA	137		150				11/11/20 19:32	11/12/20 17:53	1
13C2 PFUnA	109		150				11/11/20 19:32	11/12/20 17:53	1
13C2 PFDoA	102		150				11/11/20 19:32	11/12/20 17:53	1
13 C 2 PFTeDA			150				11/11/20 19:32	11/12/20 17:53	1
$13 C 3$ PFBS	107		150				11/11/20 19:32	11/12/20 17:53	1
1802 PFHxS	114		150				11/11/20 19:32	11/12/20 17:53	1
$13 \mathrm{C4} 4$ PFOS	122		150				11/11/20 19:32	11/12/20 17:53	1
13C8 FOSA	115		150				11/11/20 19:32	11/12/20 17:53	1
d3-NMeFOSAA	120		150				11/11/20 19:32	11/12/20 17:53	1
NEtFOSAA	98		150				11/11/20 19:32	11/12/20 17:53	1
M2-6:2 FTS	166	*5	150				11/11/20 19:32	11/12/20 17:53	1
M2-8:2 FTS	151	*5	150				11/11/20 19:32	11/12/20 17:53	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	20		. 9	. 3	ng/L		11/11/20 19:32	11/12/20 18:02	1
Perfluoropentanoic acid (PFPeA)	13		1.9	. 48	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorohexanoic acid (PFHxA)	11		1.9	. 56	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluoroheptanoic acid (PFHpA)	11		1.9	. 24	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorooctanoic acid (PFOA)	5.3		1.9	. 83	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorononanoic acid (PFNA)	1.7	J	1.9	. 26	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 30	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 71	ng / L		11/11/20 19:32	11/12/20 18:02	1
Perfluorobutanesulfonic acid (PFBS)	100		1.9	. 19	ng/L		11/11/20 19:32	11/12/20 18:02	1
Perfluorohexanesulfonic acid (PFHxS)	1.9		1.9	. 55	ng/L		11/11/20 19:32	11/12/20 18:02	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 18:02	1
Perfluorooctanesulfonic acid (PFOS)	2.1		1.9	. 53	ng/L		11/11/20 19:32	11/12/20 18:02	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 31	ng/L		11/11/20 19:32	11/12/20 18:02	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 95	ng / L		11/11/20 19:32	11/12/20 18:02	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 9	1.2	ng/L		11/11/20 19:32	11/12/20 18:02	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 9	1.3	ng/L		11/11/20 19:32	11/12/20 18:02	1
:2 FTS	ND		. 9	. 4	ng/L		11/11/20 19:32	11/12/20 18:02	1
8:2 FTS	ND		1.9	. 45	ng/L		11/11/20 19:32	11/12/20 18:02	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	6		150				11/11/20 19:32	11/12/20 18:02	1
$13 C 5$ PFPeA	91		150				11/11/20 19:32	11/12/20 18:02	1
$13 C 2$ PFHxA	87		150				11/11/20 19:32	11/12/20 18:02	1
13C4 PFHpA	91		150				11/11/20 19:32	11/12/20 18:02	1
13C4 PFOA	93		150				11/11/20 19:32	11/12/20 18:02	1
$13 C 5$ PFNA	92		150				11/11/20 19:32	11/12/20 18:02	1
$13 C 2$ PFDA	90		150				11/11/20 19:32	11/12/20 18:02	1
13C2 PFUnA	88		150				11/11/20 19:32	11/12/20 18:02	1
13C2 PFDoA	6		150				11/11/20 19:32	11/12/20 18:02	1
13 C 2 PFTeDA	48		150				11/11/20 19:32	11/12/20 18:02	1
$13 C 3$ PFBS			150				11/11/20 19:32	11/12/20 18:02	1
1802 PFHxS	89		150				11/11/20 19:32	11/12/20 18:02	1
13 C 4 PFOS	86		150				11/11/20 19:32	11/12/20 18:02	1
13C8 FOSA	83		150				11/11/20 19:32	11/12/20 18:02	1
d3-NMeFOSAA	92		150				11/11/20 19:32	11/12/20 18:02	1
NEtFOSAA	82		150				11/11/20 19:32	11/12/20 18:02	1
M2-6:2 FTS	122		150				11/11/20 19:32	11/12/20 18:02	1
M2-8:2 FTS	97		150				11/11/20 19:32	11/12/20 18:02	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	21		. 6	. 2	ng/L		11/11/20 19:32	11/12/20 18:11	1
Perfluoropentanoic acid (PFPeA)	14		1.9	. 46	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorohexanoic acid (PFHxA)	11		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluoroheptanoic acid (PFHpA)	10		1.9	. 23	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorooctanoic acid (PFOA)	5.1		1.9	. 79	$n g / L$		11/11/20 19:32	11/12/20 18:11	1
Perfluorononanoic acid (PFNA)	1.8	J	1.9	. 25	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 51	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 68	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorobutanesulfonic acid (PFBS)	100		1.9	. 19	$n g / L$		11/11/20 19:32	11/12/20 18:11	1
Perfluorohexanesulfonic acid (PFHxS)	2.0		1.9	. 53	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 18:11	1
Perfluorooctanesulfonic acid (PFOS)	2.6		1.9	. 50	ng/L		11/11/20 19:32	11/12/20 18:11	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng / L		11/11/20 19:32	11/12/20 18:11	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 91	$n g / L$		11/11/20 19:32	11/12/20 18:11	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 6		ng / L		11/11/20 19:32	11/12/20 18:11	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 6	1.2	ng/L		11/11/20 19:32	11/12/20 18:11	1
:2 FTS	ND		. 6	. 3	ng/L		11/11/20 19:32	11/12/20 18:11	1
8:2 FTS	ND		1.9	. 43	ng/L		11/11/20 19:32	11/12/20 18:11	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	85		150				11/11/20 19:32	11/12/20 18:11	1
13 C 5 PFPeA	103		150				11/11/20 19:32	11/12/20 18:11	1
$13 C 2$ PFHxA	105		150				11/11/20 19:32	11/12/20 18:11	1
$13 C 4$ PFHpA	120		150				11/11/20 19:32	11/12/20 18:11	1
$13 C 4$ PFOA	115		150				11/11/20 19:32	11/12/20 18:11	1
$13 C 5$ PFNA	106		150				11/11/20 19:32	11/12/20 18:11	1
$13 C 2$ PFDA	107		150				11/11/20 19:32	11/12/20 18:11	1
13C2 PFUnA	103		150				11/11/20 19:32	11/12/20 18:11	1
13C2 PFDoA	91		150				11/11/20 19:32	11/12/20 18:11	1
$13 C 2$ PFTeDA			150				11/11/20 19:32	11/12/20 18:11	1
$13 C 3$ PFBS	87		150				11/11/20 19:32	11/12/20 18:11	1
1802 PFHxS	111		150				11/11/20 19:32	11/12/20 18:11	1
13 C 4 PFOS	105		150				11/11/20 19:32	11/12/20 18:11	1
13C8 FOSA	102		150				11/11/20 19:32	11/12/20 18:11	1
d3-NMeFOSAA	103		150				11/11/20 19:32	11/12/20 18:11	1
NEtFOSAA	93		150				11/11/20 19:32	11/12/20 18:11	1
M2-6:2 FTS	147		150				11/11/20 19:32	11/12/20 18:11	1
M2-8:2 FTS	126		150				11/11/20 19:32	11/12/20 18:11	1

Lab Sample ID: 320-66472-9
Matrix: W ter

Date Received: 11/07/20 09:25

Method: 537 (modified) - Fluo Analyte	ated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		. 6	. 2	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluoropentanoic acid (PFPeA)	ND		1.8	. 45	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	. 53	ng / L		11/11/20 19:32	11/12/20 18:21	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	. 23	ng / L		11/11/20 19:32	11/12/20 18:21	1
Perfluorooctanoic acid (PFOA)	ND		1.8	. 77	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorononanoic acid (PFNA)	ND		1.8	. 25	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorodecanoic acid (PFDA)	ND		1.8	. 28	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	. 50	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	. 66	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	. 18	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	. 52	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	. 17	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	. 49	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	. 29	ng/L		11/11/20 19:32	11/12/20 18:21	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	. 89	ng/L		11/11/20 19:32	11/12/20 18:21	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 6	1.1	ng/L		11/11/20 19:32	11/12/20 18:21	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 6	1.2	ng/L		11/11/20 19:32	11/12/20 18:21	1
:2 FTS	ND		. 6	. 3	ng/L		11/11/20 19:32	11/12/20 18:21	1
8:2 FTS	ND		1.8	. 42	ng/L		11/11/20 19:32	11/12/20 18:21	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	91		150				11/11/20 19:32	11/12/20 18:21	1
$13 C 5$ PFPeA	97		150				11/11/20 19:32	11/12/20 18:21	1
13 C 2 PFHxA	89		150				11/11/20 19:32	11/12/20 18:21	1
13 C 4 PFHpA	97		150				11/11/20 19:32	11/12/20 18:21	1
$13 C 4$ PFOA	95		150				11/11/20 19:32	11/12/20 18:21	1
$13 C 5$ PFNA	93		150				11/11/20 19:32	11/12/20 18:21	1
$13 C 2$ PFDA	99		150				11/11/20 19:32	11/12/20 18:21	1
13 C 2 PFUnA	89		150				11/11/20 19:32	11/12/20 18:21	1
$13 C 2$ PFDoA	97		150				11/11/20 19:32	11/12/20 18:21	1
13 C 2 PFTeDA	90		150				11/11/20 19:32	11/12/20 18:21	1
$13 \mathrm{C3}$ PFBS	90		150				11/11/20 19:32	11/12/20 18:21	1
1802 PFHxS	92		150				11/11/20 19:32	11/12/20 18:21	1
$13 C 4$ PFOS	95		150				11/11/20 19:32	11/12/20 18:21	1
13C8 FOSA	89		150				11/11/20 19:32	11/12/20 18:21	1
d3-NMeFOSAA	100		150				11/11/20 19:32	11/12/20 18:21	1
NEtFOSAA	95		150				11/11/20 19:32	11/12/20 18:21	1
M2-6:2 FTS	103		150				11/11/20 19:32	11/12/20 18:21	1
M2-8:2 FTS	113		150				11/11/20 19:32	11/12/20 18:21	1

Client Sample ID: Equipment Blank 11062020
Date Collected: 11/06/20 13:05
Lab Sample ID: 320-66472-10
Matrix: W ter
Date Received: 11/07/20 09:25
Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		7	. 3	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluoropentanoic acid (PFPeA)	ND		1.9	. 46	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorohexanoic acid (PFHxA)	ND		1.9	. 55	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	. 24	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorooctanoic acid (PFOA)	ND		1.9	. 80	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorononanoic acid (PFNA)	ND		1.9	. 26	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/11/20 19:32	11/12/20 18:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 52	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/11/20 19:32	11/12/20 18:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 69	ng / L		11/11/20 19:32	11/12/20 18:30	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	. 19	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 18:30	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	. 51	ng/L		11/11/20 19:32	11/12/20 18:30	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng / L		11/11/20 19:32	11/12/20 18:30	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 93	ng/L		11/11/20 19:32	11/12/20 18:30	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7	1.1	ng/L		11/11/20 19:32	11/12/20 18:30	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	1.2	ng / L		11/11/20 19:32	11/12/20 18:30	1
:2 FTS	ND		. 7	. 4	ng / L		11/11/20 19:32	11/12/20 18:30	1
8:2 FTS	ND		1.9	. 43	ng / L		11/11/20 19:32	11/12/20 18:30	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	107		150				11/11/20 19:32	11/12/20 18:30	1
$13 C 5$ PFPeA	108		150				11/11/20 19:32	11/12/20 18:30	1
13 C 2 PFHxA	115		150				11/11/20 19:32	11/12/20 18:30	1
13 C 4 PFHpA	120		150				11/11/20 19:32	11/12/20 18:30	1
13 C 4 PFOA	118		150				11/11/20 19:32	11/12/20 18:30	1
13 C 5 PFNA	113		150				11/11/20 19:32	11/12/20 18:30	1
$13 C 2$ PFDA	117		150				11/11/20 19:32	11/12/20 18:30	1
$13 C 2$ PFUnA	114		150				11/11/20 19:32	11/12/20 18:30	1
13 C 2 PFDoA	113		150				11/11/20 19:32	11/12/20 18:30	1
13 C 2 PFTeDA	90		150				11/11/20 19:32	11/12/20 18:30	1
$13 C 3$ PFBS	98		150				11/11/20 19:32	11/12/20 18:30	1
1802 PFHxS	107		150				11/11/20 19:32	11/12/20 18:30	1
13 C 4 PFOS	103		150				11/11/20 19:32	11/12/20 18:30	1
13C8 FOSA	112		150				11/11/20 19:32	11/12/20 18:30	1
d3-NMeFOSAA	118		150				11/11/20 19:32	11/12/20 18:30	1
NEtFOSAA	120		150				11/11/20 19:32	11/12/20 18:30	1
M2-6:2 FTS	124		150				11/11/20 19:32	11/12/20 18:30	1
M2-8:2 FTS	126		150				11/11/20 19:32	11/12/20 18:30	1

Method: 537 (modified) - Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		. 8	. 3	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluoropentanoic acid (PFPeA)	ND		1.9	. 47	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorohexanoic acid (PFHxA)	ND		1.9	. 55	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	. 24	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorooctanoic acid (PFOA)	ND		1.9	. 81	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluorononanoic acid (PFNA)	ND		1.9	. 26	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 30	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 53	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 70	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	. 19	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	. 54	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	. 52	ng/L		11/11/20 19:32	11/12/20 18:39	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 31	ng / L		11/11/20 19:32	11/12/20 18:39	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 94	ng / L		11/11/20 19:32	11/12/20 18:39	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 8		ng / L		11/11/20 19:32	11/12/20 18:39	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 8	1.2	ng/L		11/11/20 19:32	11/12/20 18:39	1
:2 FTS	ND		. 8	. 4	ng/L		11/11/20 19:32	11/12/20 18:39	1
8:2 FTS	ND		1.9	. 44	ng/L		11/11/20 19:32	11/12/20 18:39	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	91		150				11/11/20 19:32	11/12/20 18:39	1
13 C 5 PFPeA	90		150				11/11/20 19:32	11/12/20 18:39	1
13 C 2 PFHxA	96		150				11/11/20 19:32	11/12/20 18:39	1
$13 \mathrm{C4}$ PFHpA	96		150				11/11/20 19:32	11/12/20 18:39	1
$13 C 4$ PFOA	98		150				11/11/20 19:32	11/12/20 18:39	1
13 C 5 PFNA	98		150				11/11/20 19:32	11/12/20 18:39	1
13 C 2 PFDA	102		150				11/11/20 19:32	11/12/20 18:39	1
$13 C 2$ PFUnA	91		150				11/11/20 19:32	11/12/20 18:39	1
13 C 2 PFDoA	93		150				11/11/20 19:32	11/12/20 18:39	1
$13 C 2$ PFTeDA	82		150				11/11/20 19:32	11/12/20 18:39	1
13 C 3 PFBS	88		150				11/11/20 19:32	11/12/20 18:39	1
1802 PFHxS	87		150				11/11/20 19:32	11/12/20 18:39	1
13 C 4 PFOS	97		150				11/11/20 19:32	11/12/20 18:39	1
13C8 FOSA	92		150				11/11/20 19:32	11/12/20 18:39	1
d3-NMeFOSAA	103		150				11/11/20 19:32	11/12/20 18:39	1
NEtFOSAA	85		150				11/11/20 19:32	11/12/20 18:39	1
M2-6:2 FTS	117		150				11/11/20 19:32	11/12/20 18:39	1
M2-8:2 FTS	123		150				11/11/20 19:32	11/12/20 18:39	1

Method: 537 (modified) - Fluorinated Alkyl Substances
Matrix: Water
Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFPeA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFHxA } \\ (25-150) \\ \hline \end{gathered}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFNA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
320-66472-1	LF Water 211062020	77	92	93	107	102	96	97	90
320-66472-2	LF Water 311062020	76	88	92	98	98	95	98	92
320-66472-3	LF Water 611062020	107	114	119	131	126	123	113	98
320-66472-3 MS	LF Water 611062020	86	92	93	102	97	101	100	80
320-66472-3 MSD	LF Water 611062020	93	99	99	107	106	105	98	93
320-66472-4	LF Water 411062020	100	114	118	131	129	130	126	111
320-66472-5	LF Water 511062020	85	89	93	100	99	97	89	87
320-66472-6	LF Water 711062020	100	118	124	133	126	129	137	109
320-66472-7	LF Water 811062020	76	91	87	91	93	92	90	88
320-66472-8	DUP 11062020	85	103	105	120	115	106	107	103
320-66472-9	Field Blank 11062020	91	97	89	97	95	93	99	89
320-66472-10	Equipment Blank 11062020	107	108	115	120	118	113	117	114
320-66472-11	Trip Blank 11062020	91	90	96	96	98	98	102	91
LCS 320-430854/2-A	Lab Control Sample	132	130	128	142	136	139	139	136
MB 320-430854/1-A	Method Blank	90	90	94	98	95	94	98	93
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{aligned} & \text { PFDoA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFTDA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { C3PFBS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOSA } \\ & (25-150) \end{aligned}$	d3NMFO $(25-150)$	d5NEFO (25-150)
320-66472-1	LF Water 211062020	92		88	104	101	95	86	92
320-66472-2	LF Water 311062020	85	72	80	90	92	90	88	81
320-66472-3	LF Water 611062020	97	96	108	121	112	114	110	103
320-66472-3 MS	LF Water 611062020	88	71	82	92	92	91	90	83
320-66472-3 MSD	LF Water 611062020	82	85	96	101	100	99	96	88
320-66472-4	LF Water 411062020	115	101	103	120	118	128	109	108
320-66472-5	LF Water 511062020	82	71	82	96	91	90	84	88
320-66472-6	LF Water 711062020	102	57	107	114	122	115	120	98
320-66472-7	LF Water 811062020	76	8	77	89	86	83	92	82
320-66472-8	DUP 11062020	91	52	87	111	105	102	103	93
320-66472-9	Field Blank 11062020	97	90	90	92	95	89	100	95
320-66472-10	Equipment Blank 11062020	113	90	98	107	103	112	118	120
320-66472-11	Trip Blank 11062020	93	82	88	87	97	92	103	85
LCS 320-430854/2-A	Lab Control Sample	135	129	117	129	145	134	142	126
MB 320-430854/1-A	Method Blank	92	88	87	97	96	95	96	85
	M262FTS M282FTS								
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
320-66472-1	LF Water 211062020	130	113						
320-66472-2	LF Water 311062020	11	11						
320-66472-3	LF Water 611062020	136	130						
320-66472-3 MS	LF Water 611062020	107	105						
320-66472-3 MSD	LF Water 611062020	114	100						
320-66472-4	LF Water 411062020	163 *5	155 *5						
320-66472-5	LF Water 511062020	106	94						
320-66472-6	LF Water 711062020	166 *5	151 *5						
320-66472-7	LF Water 811062020	122	97						
320-66472-8	DUP 11062020	147	126						
320-66472-9	Field Blank 11062020	103	113						
320-66472-10	Equipment Blank 11062020	124	126						
320-66472-11	Trip Blank 11062020	117	123						

Isotope Dilution Summary

Client: New York State D.E.C.
Job ID: 320-66472-1
Project/Site: Norlite - Cohoes \#401041
Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)
Matrix: Water

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-430854/1-A
Matrix: Water
Analysis Batch: 431537

Analyte	$\begin{aligned} & \text { MB } \\ & \text { It } \end{aligned}$	MB Qualifier	L	MDL	Unit
PergLorobLtanoic aci9 SP8f ud	ND		(.0	. 4	nF/A
PergLoroUentanoic aci9 tp8Peud	ND		. 0	.4)	nF / A
PergLorohepanoic aci9 ¢P8Hpud	ND		. 0	0. (T	nF/A
PergLoroheUtanoic aci9 sp8Hud	ND		0	$2($	nF/A
PergLorooctanoic aci9 5P8Oud	ND		. 0	$0 . \mathrm{T}$	nF/A
PergLorononanoic aci9 5P8Nud	ND		. 0	. 27	nF/A
PergLoro9ecanoic aci9 SP8Dud	ND		. 0	.31	nF/A
PergLoroLn9ecanoic aci9 ¢P8mnud	ND		. 0	1.1	nF/A
PergLoro9o9ecanoic aci9 \$P8Doud	ND		. 0	. $($	nF / A
PergLorotri9ecanoic aci9 SP8yriud	ND		. 0	1.3	nF/A
PergLorotetra9ecanoic aci9 5P8yeud	ND		. 0	. 73	nF/A
PergLorobLtanesLIgnic aci9 TP8f Sd	ND		. 0	. 20	nF/A
PergLorohepanesLIgonic aci9 5P8HpSd	ND		. 0	0.(7	nF/A
PergLoroheUtanesLlgonic uci9 sp8HUSd	ND		. 0	1)	nF/A
PergLorooctanesLlgonic aci9 sp8OSd	ND		. 0	($n F / A$
PergLoro9ecanesLlgonic aci9 5P8DSd	ND		. 0	32	nF/A
PergLorooctanesLIgnaMi9e 58OSud	ND		. 0	0.) T	$n F / A$
N-Meth, IUergLorooctanesLIgonaMi9oa cetic aci9 5 NB e8OSuud	ND		(. 0	1.2	nF/A
N -eth, IUergLorooctanesLIgnaMi9oac etic aci9 5NEt8OSuud	ND		(0	1.3	nF/A
6:2 8yS	ND		(. 0	(nF/A
T: 8 y S	ND		. 0	46	nF/A
	MB	MB			

D Prepared Analyzed
$-\frac{\text { Prepared }}{\text { 11/11/20 1):32 }} \frac{\text { Analyzed }}{\text { 11/12/20 1(:) } 4} \frac{\text { Dil Fac }}{1}$ 11/11/20 1):32 11/12/20 1 (: $(1$ $\begin{array}{lll}11 / 11 / 201): 32 & 11 / 12 / 201(:(& 1\end{array}$ $\begin{array}{llll}11 / 11 / 20 & 1): 32 & 11 / 12 / 20 & 1(:) \\ 11 / 11 / 20 & 1): 32 & 11 / 12 / 20 & 1(:) \\ & 1\end{array}$ 11/11/20 1):32 11/12/20 1(:) 1 11/11/201):32 11/12/20 1(:(1 11/11/20 1):32 11/12/20 1 (: (1 11/11/20 1):32 11/12/20 $1(:(\quad 1$ $\begin{array}{lll}11 / 11 / 20 & 1): 32 & 11 / 12 / 20 \\ 11 /:(& 1 \\ 11 / 11 / 20 & 1): 32 & 11 / 12 / 20 \\ 1\end{array}\left(\cdot\left(\begin{array}{l}1\end{array}\right.\right.$ 11/11/20 1):32 11/12/20 1 (:) $\quad 1$ 11/11/20 1):32 11/12/20 1(:($\quad 1$ 11/11/20 1):32 11/12/20 1(:) 1

11/11/20 1):32 11/12/20 1(:(1
11/11/20 1):32 11/12/20 1(:($\quad 1$
11/11/20 1):32 11/12/20 1 (:(1
11/11/20 1):32 11/12/20 1(:) 1
11/11/201):32 11/12/20 1(:(1
11/11/20 1):32 11/12/20 1(:) 1
11/11/20 1):32 11/12/20 1(:(1

Prepared	Analyzed	Fac
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1
11/11/20 19:32	11/12/20 15:54	1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-430854/2-A
Matrix: Water
Analysis Batch: 431537

Analysis Batch: 431537 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier	Unit	D	\%Rec		
PergLorobLtanoic aci9 SP8f ud	. 0	. 0		nF/A		110	76	136
PergLoroUentanoic aci9 tp8Peud	. 0	3T. 7		$n \mathrm{~F} / \mathrm{A}$)7	71	131
PergLorohepanoic aci9 5P8Hpud	. 0	(. 6		$n \mathrm{~F} / \mathrm{A}$		114	73	133
PergLoroheUtanoic aci9 5P8HUud	. 0	1.4		nF/A		103	72	132
PergLorooctanoic aci9 tr80ud	. 0	. 1		$n \mathrm{~F} / \mathrm{A}$		10(70	130
PergLorononanoic aci9 5P8Nud	. 0	.)		$n \mathrm{~F} / \mathrm{A}$		107	$7($	13(
PergLoro9ecanoic aci9 5P8Dud	. 0	. 6		nF/A		106	76	136
PergLoroLn9ecanoic aci9 SP8mnud	. 0	$3)$. ($n \mathrm{~F} / \mathrm{A}$))	T	12T
PergLoro9o9ecanoic aci9 SP8Doud	. 0	(. 2		nF/A		113	71	131
PergLorotri9ecanoic aci9 SP8yriud	. 0	3.0		nF/A		107	71	131
PergLorotetra9ecanoic aci9 SP8yeud	. 0	(. 0		nF/A		112	70	130
PergLorobLtanesLIgnic aci9 588 Sd	3(. 4	3). 7		nF/A		112	7	127
PergLorohepanesLlgonic aci9 SP8HpSd	36.4	37.2		nF/A		102	()	11)
PergLoroheUtanesLlgonic uci9 SP8HUSd	3T. 1	37.4		$n F / A$) T	76	136
PergLorooctanesLIgnic aci9 sp8OSd	37.1	3) 3		nF/A		106	70	130
PergLoro9ecanesLIgonic aci9 PP8DSd	$3 T .6$	3T.T		nF/A		101	71	131
PergLorooctanesLIgnaMi9e 58 OSud	. 0	(. 1		$n F / \mathrm{A}$		12(73	133
N-Meth, IUergLorooctanesLIgona Mi9oacetic aci9 5NB e8OSuud	. 0	3.0		nF/A		10T	76	136
N -eth, IUergLorooctanesLIgonaMi 9oacetic aci9 ${ }^{5 N E t 8 O S u u d}$. 0	6		nF/A		107	76	136
6:2 8yS	37.)	3T. 2		$n F / A$		101	()	17(
T: 8 y S	3T. 3			$n F / A$		1		$13($

Isotope Dilution	\%Recovery	Qualifier	Limits
13C4 PFBA	132		- 150
$13 C 5$ PFPeA	130		-150
13 C 2 PFHxA	128		-150
$13 \mathrm{C4} 4 \mathrm{PFH}$ PA	142		-150
$13 C 4$ PFOA	136		-150
$13 C 5$ PFNA	139		- 150
$13 C 2$ PFDA	139		- 150
$13 C 2$ PFUnA	136		- 150
$13 C 2$ PFDoA	135		- 150
$13 C 2$ PFTeDA	129		- 150
$13 C 3$ PFBS	117		- 150
1802 PFHxS	129		-150
$13 C 4$ PFOS	145		-150
13C8 FOSA	134		- 150
3-NMeFOSAA	142		-150
-NEtFOSAA	126		- 150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-430854/2-A
Matrix: Water
Analysis Batch: 431537
LCS LCS

Isotope Dilution		\%Recovery	Qualifier	
		Limits		
M2-6:2 FTS	150	-150		
M2 FTS	142	-150		

Lab Sample ID: 320-66472-3 MS
Matrix: Water
Analysis Batch: 431537

Analyte	Sample It	Sample Qualifier	Spike Added	It	MS Qualifier
PergLorobLtanoic aci9 5P8f ud	.)	J	37.2	. 4	
PergLoroUentanoic aci9 5P8Peud	. 3		37.2	37.1	
PergLorohepanoic aci9 5P8Hpud	. 4		37.2	. 6	
PergLoroheUtanoic aci9 5P8HUud	. T	J	37.2	3 T .7	
PergLorooctanoic aci9 5P8Oud	1.0	J	37.2	. T	
PergLorononanoic aci9 5P8Nud	ND		37.2	1.7	
PergLoro9ecanoic aci9 5P8Dud	ND		37.2	37.7	
PergLoroLn9ecanoic aci9 SP8mnud	ND		37.2	.	
PergLoro9o9ecanoic aci9 5P8Doud	ND		37.2	37.2	
PergLorotri9ecanoic aci9 SP8yriud	ND		37.2	36.1	
PergLorotetra9ecanoic aci9 SP8yeud	ND		37.2	3.1	
PergLorobLtanesLlgonic aci9 5P8f Sd	.	J	32.)	36.1	
PerdLorohepanesLIgnic aci9	1.7		33.T	36.T	

PergLorohepanesLlgonic aci9
5P8HpSd
PergLoroheUtanesLIgonic uci9 5 58HUSd
PergLorooctanesLlgonic aci9
SP8OSd

| PergLoro9ecanesLlgonic aci9 ND | 3(.T | 31.3 |
| :--- | :--- | :--- | :--- |

PergLorooctanesLIgonaMi9e

58OSud

N-Meth, IUergLorooctanesLIgona
Mi9oacetic aci9 5NB e8OSuud
N-eth, IUergLorooctanesLIgnaMi
$90 a c e t i c ~ a c i 9 ~ 5 N E t 8 O S u u d ~$
6:2 8yS ND 3(.2
3(. 6
MS MS

Isotope Dilution	\%Recovery	Qualifier	Limits
$13 C 4$ PFBA	86		-150
$13 C 5$ PFPeA			- 150
$13 C 2$ PFHxA	3		-150
13 C 4 PFHPA	102		-150
$13 C 4$ PFOA	7		- 150
$13 C 5$ PFNA	101		- 150
$13 C 2$ PFDA	100		-150
$13 C 2$ PFUnA	80		- 150
13 C 2 PFDoA	88		-150

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 430854

Client Sample ID: LF Water 611062020
Prep Type: Total/NA Prep Batch: 430854
\%Rec.
Unit
$\mathrm{nFF} / \mathrm{A}$
nF / A

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 320-66472-3 MS
Matrix: Water
Analysis Batch: 431537

Client Sample ID: LF Water 611062020
Prep Type: Total/NA
Prep Batch: 430854

Isotope Dilution	\%Recovery	Qualifier	Limits
13C2 PFTeDA	71		- 150
13C3 PFBS	82		- 150
1802 PFHxS			- 150
13C4 PFOS			- 150
13C8 FOSA	1		- 150
d3-NMeFOSAA			- 150
-NEtFOSAA	83		- 150
M2-6:2 FTS	107		- 150
M2-8:2 FTS	105		- 150

Lab Sample ID: 320-66472-3 MSD
Client Sample ID: LF Water 611062020
Prep Type: Total/NA Prep Batch: 430854
Analysis Batch: 431537

Analyte	Sample It	Sample Qualifier	Spike Added	MSD It	MSD Qualifier	Unit	D	\%Rec			PD	PD Limit
PergLorobLtanoic aci9 tr 8 f ud	.)	J	37.7	. 4		nF/A		10(76	136	(3
PergLoroUentanoic aci9 5 S8Peud	. 3		37.7	3(. 3		$n \mathrm{~F} / \mathrm{A}$		T7	71	131	$($	30
PergLorohepanoic aci9 5P8Hpud	. 4		37.7	3.4		$n \mathrm{~F} / \mathrm{A}$		10)	73	133	7	30
PergLoroheUtanoic aci9 TP8HUud	T	J	37.7	. 3		$n \mathrm{~F} / \mathrm{A}$		10(72	132		30
PergLorooctanoic aci9 ¢P8Oud	1.0	J	37.7	3) 6		$n F / A$		102	70	130	3	30
PergLorononanoic aci9 tr 8 Nud	ND		37.7	. 4		$n \mathrm{~F} / \mathrm{A}$		11 T	$7($	13(30
PergLoro9ecanoic aci9 sp8Dud	ND		37.7	1.)		nF/A		111	76	136	11	30
PergLoroLn9ecanoic aci9	ND		37.7	36.2		$n \mathrm{~F} / \mathrm{A}$)	T	12T	11	30
58 mmud												
PergLoro9o9ecanoic aci9	ND		37.7	(.)		$n F / \mathrm{A}$		122	71	131	1	30
Pr8Doud												
PergLorotri9ecanoic aci9	ND		37.7	(3		$n F / A$		120	71	131	3	30
SP8yriud												
PergLorotetra9ecanoic aci9	ND		37.7	.)		$n \mathrm{~F} / \mathrm{A}$		114	70	130		30
5 S8yeud												
PergLorobLtanesLIgonic aci9	(J	33.3	34.6		$n \mathrm{~F} / \mathrm{A}$		102	7	127		30
SP8f Sd												
PergLorohepanesLlgonic aci9	1.7	J	34.3	37.0		$n \mathrm{~F} / \mathrm{A}$		103	()	11)		3
SP8HpSd												
PergLoroheUtanesLIgrnic uci9	ND		3(.)	$3) .($		$n F / A$		110	76	136	1	30
sp8HUSd												
PergLorooctanesLIggnic aci9	12		3 . 0	4T.T		nF/A		106	70	130		30
SP80Sd												
PergLoro9ecanesLlgonic aci9	ND		36.4	31.4		nF/A		T	71	131		30
SP8DSd												
PergLorooctanesLIgnaMi9e	ND		37.7	3.7		$n F / A$		116	73	133	$($	30
58 OSud												
N-Meth, IUergLorooctanesLIgona	ND		37.7	3T.($n \mathrm{~F} / \mathrm{A}$		102	76	136		30
Mi9oacetic aci9 5 NB e8OSuud												
N-eth, IUergLorooctanesLlgonaMi	ND		37.7	3) 6		$n \mathrm{~F} / \mathrm{A}$		$10($	76	136	7	30
6:2 8yS	ND		3(.T	37.0		$n \mathrm{~F} / \mathrm{A}$		103	()	17()	30
T:28yS	ND		36.1	3T.($n \mathrm{~F} / \mathrm{A}$		107	7 (13(3	30

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sample ID: LF Water 611062020 Prep Type: Total/NA
Prep Batch: 430854

LCMS

Prep Batch: 430854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66472-1	LF Water 211062020	Total/NA	Water	3535	
320-66472-2	LF Water 311062020	Total/NA	Water	3535	
320-66472-3	LF Water 611062020	Total/NA	Water	3535	
320-66472-4	LF Water 411062020	Total/NA	Water	3535	
320-66472-5	LF Water 511062020	Total/NA	Water	3535	
320-66472-6	LF Water 711062020	Total/NA	Water	3535	
320-66472-7	LF Water 811062020	Total/NA	Water	3535	
320-66472-8	DUP 11062020	Total/NA	Water	3535	
320-66472-9	Field Blank 11062020	Total/NA	Water	3535	
320-66472-10	Equipment Blank 11062020	Total/NA	Water	3535	
320-66472-11	Trip Blank 11062020	Total/NA	Water	3535	
MB 320-430854/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-430854/2-A	Lab Control Sample	Total/NA	Water	3535	
320-66472-3 MS	LF Water 611062020	Total/NA	Water	3535	
320-66472-3 MSD	LF Water 611062020	Total/NA	Water	3535	

Analysis Batch: 431537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66472-1	LF Water 211062020	Total/NA	Water	537 (modified)	30854
320-66472-2	LF Water 311062020	Total/NA	Water	537 (modified)	30854
320-66472-3	LF Water 611062020	Total/NA	Water	537 (modified)	30854
320-66472-4	LF Water 411062020	Total/NA	Water	537 (modified)	30854
320-66472-5	LF Water 511062020	Total/NA	Water	537 (modified)	30854
320-66472-6	LF Water 711062020	Total/NA	Water	537 (modified)	30854
320-66472-7	LF Water 811062020	Total/NA	Water	537 (modified)	30854
320-66472-8	DUP 11062020	Total/NA	Water	537 (modified)	30854
320-66472-9	Field Blank 11062020	Total/NA	Water	537 (modified)	30854
320-66472-10	Equipment Blank 11062020	Total/NA	Water	537 (modified)	30854
320-66472-11	Trip Blank 11062020	Total/NA	Water	537 (modified)	30854
MB 320-430854/1-A	Method Blank	Total/NA	Water	537 (modified)	30854
LCS 320-430854/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	30854
320-66472-3 MS	LF Water 611062020	Total/NA	Water	537 (modified)	30854
320-66472-3 MSD	LF Water 611062020	Total/NA	Water	537 (modified)	30854

Client: New k State D.E.C.
Project/Site: Norlite - Cohoes \#401041
Client Sample ID: LF Water 211062020
Lab Sample ID: 320-66472-1
Date Collected: 11/06/20 09:40
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			265.8 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 16:31	K1S	TAL SAC

Client Sample ID: LF Water 311062020
Date Collected: 11/06/20 10:00
Lab Sample ID: 320-66472-2
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			255.5 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 16:40	K1S	TAL SAC

Client Sample ID: LF Water 611062020
Date Collected: 11/06/20 10:35
Lab Sample ID: 320-66472-3
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			269.5 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 16:49	K1S	TAL SAC

Client Sample ID: LF Water 411062020
Date Collected: 11/06/20 11:40
Lab Sample ID: 320-66472-4
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
T tal/NA	Prep	3535			268.5 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 17:17	K1S	TAL SAC

Client Sample ID: LF Water 511062020
Date Collected: 11/06/20 11:10
Lab Sample ID: 320-66472-5
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			271.5 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 17:44	K1S	TAL SAC

Client Sample ID: LF Water 711062020
Date Collected: 11/06/20 12:15
Lab Sample ID: 320-66472-6
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			266.6 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 17:53	K1S	TAL SAC

Client Sample ID: LF Water 811062020
Lab Sample ID: 320-66472-7
Date Collected: 11/06/20 12:50
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			256.9 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 18:02	K1S	TAL SAC

Client Sample ID: DUP 11062020
Date Collected: 11/06/20 00:00
Lab Sample ID: 320-66472-8
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
T tal/NA	Prep	3535			269 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 18:11	K1S	TAL SAC

Client Sample ID: Field Blank 11062020
Date Collected: 11/06/20 13:10
Lab Sample ID: 320-66472-9
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			274.6 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 18:21	K1S	TAL SAC

Client Sample ID: Equipment Blank 11062020

Date Collected: 11/06/20 13:05
Lab Sample ID: 320-66472-10
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			264.7 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 18:30	K1S	TAL SAC

Client Sample ID: Trip Blank 11062020
Date Collected: 11/06/20 00:00
Lab Sample ID: $\begin{array}{r}\text { 320-66472-11 } \\ \text { Matrix: Water }\end{array}$
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			261.6 mL	10.00 mL	430854	11/11/20 19:32	VP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431537	11/12/20 18:39	K1S	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: New k State D.E.C.

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	ELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert No.>	01-29-21
Illinois	ELAP	200060	03-17-21
Kansas	ELAP	E-10375	02-01-21
Louisiana	ELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
evada	State	CA000442021-2	11-23-20
ew Hampshire	ELAP	2997	04-18-21
ew Jersey	ELAP	CA005	06-30-21
ew k	ELAP	11666	04-01-21
Oregon	ELAP	4040	01-29-21
Pennsylvania	ELAP	68-01272	03-31-21
Texas	ELAP	T104704399-19-13	06-01-21
US Fish \& Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	ELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	ELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930 C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

[^8]
Method Summary

Method	Method Description	Protocol
537 (modified) Fluorinated Alkyl Substances Laboratory 3535 Solid-Phase Extraction (SPE) EPA TAL SAC SAL SAC		

Protocol References:

EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-66472-1	LF Water 211062020	Water	11/06/20 09:40	11/07/20 09:25	
320-66472-2	LF Water 311062020	Water	11/06/20 10:00	11/07/20 09:25	
320-66472-3	LF Water 611062020	Water	11/06/20 10:35	11/07/20 09:25	
320-66472-4	LF Water 411062020	Water	11/06/20 11:40	11/07/20 09:25	
320-66472-5	LF Water 511062020	Water	11/06/20 11:10	11/07/20 09:25	
320-66472-6	LF Water 711062020	Water	11/06/20 12:15	11/07/20 09:25	
320-66472-7	LF Water 811062020	Water	11/06/20 12:50	11/07/20 09:25	
320-66472-8	DUP 11062020	Water	11/06/20 00:00	11/07/20 09:25	
320-66472-9	Field Blank 11062020	Water	11/06/20 13:10	11/07/20 09:25	
320-66472-10	Equipment Blank 11062020	Water	11/06/20 13:05	11/07/20 09:25	
320-66472-11	Trip Blank 11062020	Water	11/06/20 00:00	11/07/20 09:25	

Login Sample Receipt Checklist

Client: New k State D.E.C.

Login Number: 66472
List Number: 1
Creator: Oropeza, Salvador

List Source: Eurofins T stAmerica, Sacramento

Question

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	ue	
The cooler's custody seal, if present, is intact.	ue	1428558
he cooler or samples do not appear to have been compromised or tampered with.	ue	
Samples were received on ice.	ue	
Cooler emperature is acceptable.	ue	
Cooler emperature is recorded.	ue	
COC is present.	ue	
COC is filled out in ink and legible.	ue	
COC is filled out with all pertinent information.	False	: No date or time on COC or containers
Is the Field Sampler's name present on COC?	ue	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Refer to job narrative for details
Samples are received within Holding ime (Excluding tests with immediate HTs).	False	Refer to job narrative for details
Sample containers have legible labels.	ue	
Containers are not broken or leaking.	ue	
Sample collection date/times are provided.	ue	
Appropriate sample containers are used.	ue	
Sample bottles are completely filled.	ue	
Sample Preservation Verified	ue	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	ue	
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$ in diameter.	ue	
If necessary, staff have been informed of any short hold time o quick A needs	ue	
Multiphasic samples are not present.	ue	
Samples do not require splitting or compositing.	ue	
Sampling Company provided.	ue	
Samples received within 48 hours of sampling.	ue	
Samples requiring field filtration have been filtered in the field.	ue	
Chlorine Residual checked.	ue	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway

West Sacramento, CA 95605
Tel: (916)373-5600
Laboratory Job ID: 320-66472-2
Client Project/Site: Norlite - Cohoes \#401041
For:
New York State D.E.C.
625 Broadway
Division of Environmental Remediation
Albany, New York 12233-7014
Attn: Lynn M Winterberger

Authorized for release by: 11/23/2020 4:54:15 PM

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

LINKs
Review your project results through TotalAccess

Have a Question?

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Detection Summary 5
Client Sample Results 7
Isotope Dilution Summary 13
QC Sample Results 15
QC Association Summary 22
Lab Chronicle 23
Certification Summary 24
Method Summary 26
Sample Summary 27
Chain of Custody 28
Receipt Checklists 29

Qualifiers

LCMS

$\frac{\text { Qualifier }}{*^{*} 5}$	Qualifier Description
B	Isotope dilution analyte is outside ac eptance limits.
	Compound was found in the blank and sample.

ossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

ID: 320-66472-2

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

> Narrative
> $320-66472-2$

Receipt

The samples were received on 11/7/2020 9:25 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was $0.6^{\circ} \mathrm{C}$.

LCMS

Method 537 (modified): Method(s) 537 (modified): The labeled analyte M2-4:2FTS is converted to PFBA during the oxidation step of the TOP assay. The PFBA result in the Post-Treatment Method Blank (MB) indicates how much of a field sample's Post-Treatment PFBA esult is contributed by the Reverse Surrogate, when adjusted f dilution factors. (MB 320-432348/1-A)

Method 537 (modified): Method(s) 537 (modified): Zero percent recovery of precursor analytes (4:2FTS, 6:2FTS, 8:2FTS, FOSA, NMeFOSAA, and NEtFOSAA) and enhanced recoveries of PFCAs is observed in the Post-Treatment Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) associated with these samples, consistent with the expected oxidation of precursor analytes. (LCS 320-432348/2-A) and (LCSD 320-432348/3-A)

Method 537 (modified): Method(s) 537 (modified): The labeled analyte M2-4:2FTS is employed in this analysis as a "Reverse Surr gate". It is used to monitor the oxidation efficiency of the TOP assay. This analyte is fortified into all sample fractions prior to any processing. The recovery of this analyte should be 0\% in Post-T eatment fractions, indicating complete oxidation of the sample. LF Water 411062020 (320-66472-4), LF Water 711062020 (320-66472-6), (LCS 320-432333/2-A), (LCS 320-432348/2-A), (LCSD 320-432333/3-A), (LCSD 320-432348/3-A), (MB 320-432333/1-A) and (MB 320-432348/1-A)

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-4:2 FTS in the following sample: LF Water 711062020 (320-66472-6). This IDA is not actually used to quantify any target analyte in this analysis and is just used as a comparison for the POST oxidation analysis.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method TOP Post Prep: Due to the matrix, the initial volume used for the following samples deviated from the standard procedure: LF Water 411062020 (320-66472-4) and LF Water 711062020 (320-66472-6). The reporting limits (RLs) have been adjusted proportionately.

Method TOP Pre - Prep: Due to the matrix, the initial volume used for the following samples deviated from the standard procedu e: LF Water 411062020 (320-66472-4) and LF Water 711062020 (320-66472-6). The reporting limits (RLs) have been adjusted proportionately.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: LF Water 411062020
Lab Sample ID: 320-66472-4

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	8.9		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluoropentanoic acid (PFPeA)			5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluorohexanoic acid (PFHxA)	15		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluoroheptanoic acid (PFHpA)	5.2		5.0		ng / L	1		537 (modified)	Pre-Treatme nt
Perfluorooctanoic acid (PFOA)	5.0		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluorobutanoic acid (PFBA)	7	B	5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluoropentanoic acid (PFPeA)	31		5.0		ng / L	1		537 (modified)	Post-Treatme nt
Perfluorohexanoic acid (PFHxA)	18		5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluoroheptanoic acid (PFHpA)	5.1		5.0		ng/L	1		537 (modified)	Post-Treatme nt
PFBA	18				ng / L	1		Total PFCA-Dif	Total/NA
PFHpA	. 00				ng/L	1		Total PFCA-Dif	Total/NA
PFHxA	. 9				ng / L	1		Total PFCA-Dif	Total/NA
PFNA	. 00				ng / L	1		Total PFCA-Dif	Total/NA
PFOA	. 00				ng / L	1		Total PFCA-Dif	Total/NA
PFPA	. 5				ng / L	1		Total PFCA-Dif	Total/NA
Total PFCA	1				ng / L	1		Total PFCA-Dif	Total/NA
Total PFCA					ng/L	1		Total PFCA-Sum	Pre-Treatme nt
Total PFCA	81				ng/L	1		Total PFCA-Sum	Post-Treatme nt

Client Sample ID: LF Water 711062020

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	1		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluoropentanoic acid (PFPeA)	14		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluorohexanoic acid (PFHxA)	11		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluoroheptanoic acid (PFHPA)	9.7		5.0		ng / L	1		537 (modified)	Pre-Treatme nt
Perfluorooctanoic acid (PFOA)	5.8		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluorobutanesulfonic acid (PFBS)	96		5.0		ng/L	1		537 (modified)	Pre-Treatme nt
Perfluorobutanoic acid (PFBA)	58	B	5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluoropentanoic acid (PFPeA)	16		5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluorohexanoic acid (PFHxA)	13		5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluoroheptanoic acid (PFHPA)	9.6		5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluorooctanoic acid (PFOA)	. 1		5.0		ng/L	1		537 (modified)	Post-Treatme nt
Perfluorobutanesulfonic acid (PFBS)	93		5.0		ng/L	1		537 (modified)	Post-Treatme nt

This Detection Summary does not include radiochemical test results.

Client Sample ID: LF Water 711062020 (Continued)						Lab Sample ID: 320-66472-6		
Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac D	Method	Prep Type
PFBA	37				ng/L	1	Total PFCA-Dif	Total/NA
PFHpA	. 00				ng / L	1	Total PFCA-Dif	Total/NA
PFHxA	1.7				ng/L	1	Total PFCA-Dif	Total/NA
PFNA	. 00				ng / L	1	Total PFCA-Dif	Total/NA
PFOA	. 29				ng/L	1	Total PFCA-Dif	Total/NA
PFPA	1.4				ng/L	1	Total PFCA-Dif	Total/NA
Total PFCA	1				ng / L	1	Total PFCA-Dif	Total/NA
Total PFCA					ng/L	1	Total PFCA-Sum	Pre-Treatme nt
Total PFCA	100				ng/L	1	Total PFCA-Sum	Post-Treatme nt

Method: 537 (modified) - Fluorinated Alkyl Substances - Pre-Treatment

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	8.9		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluoropentanoic acid (PFPeA)	26		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluorohexanoic acid (PFHxA)	15		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluoroheptanoic acid (PFHpA)	5.2		5.0		ng / L		11/16/20 18:43	11/18/20 11:48	1
Perfluorooctanoic acid (PFOA)	5.0		5.0		$n g / L$		11/16/20 18:43	11/18/20 11:48	1
Perfluorononanoic acid (PFNA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluorodecanoic acid (PFDA)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:48	1
Perfluoroundecanoic acid (PFUnA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluorododecanoic acid (PFDoA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluorotridecanoic acid (PFTriA)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:48	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.0		$n g / L$		11/16/20 18:43	11/18/20 11:48	1
Perfluorobutanesulfonic acid (PFBS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluorohexanesulfonic acid (PFHxS)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:48	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:48	1
Perfluorooctanesulfonic acid (PFOS)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:48	1
Perfluorodecanesulfonic acid (PFDS)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:48	1
Perfluorooctanesulfonamide (FOSA)	ND		5.0		$n g / L$		11/16/20 18:43	11/18/20 11:48	1
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		50		ng/L		11/16/20 18:43	11/18/20 11:48	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		50		ng/L		11/16/20 18:43	11/18/20 11:48	1
$: 2 \mathrm{FTS}$	ND		50		ng/L		11/16/20 18:43	11/18/20 11:48	1
8:2 FTS	ND		50		ng/L		11/16/20 18:43	11/18/20 11:48	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	102		150				11/16/20 18:43	11/18/20 11:48	1
13 C 5 PFPeA	114		150				11/16/20 18:43	11/18/20 11:48	1
13C2 PFHxA	110		150				11/16/20 18:43	11/18/20 11:48	1
13 C 4 PFHpA	119		150				11/16/20 18:43	11/18/20 11:48	1
13C4 PFOA	98		150				11/16/20 18:43	11/18/20 11:48	1
$13 C 5$ PFNA	104		150				11/16/20 18:43	11/18/20 11:48	1
13C2 PFDA	97		150				11/16/20 18:43	11/18/20 11:48	1
$13 C 2$ PFUnA	93		150				11/16/20 18:43	11/18/20 11:48	1
13 C 2 PFDoA	82		150				11/16/20 18:43	11/18/20 11:48	1
13C2 PFTeDA	101		150				11/16/20 18:43	11/18/20 11:48	1
13C3 PFBS	102		150				11/16/20 18:43	11/18/20 11:48	1
1802 PFHxS	112		150				11/16/20 18:43	11/18/20 11:48	1
13C4 PFOS	111		150				11/16/20 18:43	11/18/20 11:48	1
13C8 FOSA	111		150				11/16/20 18:43	11/18/20 11:48	1
d3-NMeFOSAA	83		150				11/16/20 18:43	11/18/20 11:48	1
NETFOSAA	85		150				11/16/20 18:43	11/18/20 11:48	1
M2-6:2 FTS	134		150				11/16/20 18:43	11/18/20 11:48	1
M2-8:2 FTS	131		150				11/16/20 18:43	11/18/20 11:48	1
M2-4:2 FTS	146		150				11/16/20 18:43	11/18/20 11:48	1

Method: 537 (modified) - Fluorinated Alkyl Substances - Post-Treatment

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	27	B	5.0		ng/L		11/16/20 18:54	11/18/20 13:12	1
Perfluoropentanoic acid (PFPeA)	31		5.0		ng/L		11/16/20 18:54	11/18/20 13:12	1
Perfluorohexanoic acid (PFHxA)	18		5.0		ng/L		11/16/20 18:54	11/18/20 13:12	1

Date Received: 11/07/20 09:25
Method: 537 (modified) - Fluorinated Alkyl Substances - Post-Treatment (Continued)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid (PFHpA)	5.1		5.0		ng/L		11/16/20 18:54	11/18/20 13:12	1
Perfluorooctanoic acid (PFOA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluorononanoic acid (PFNA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 13:12	1
Perfluorodecanoic acid (PFDA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluoroundecanoic acid (PFUnA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 13:12	1
Perfluorododecanoic acid (PFDoA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 13:12	1
Perfluorotridecanoic acid (PFTriA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 13:12	1
Perfluorobutanesulfonic acid (PFBS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluorohexanesulfonic acid (PFHxS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:12	1
Perfluorooctanesulfonic acid (PFOS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluorodecanesulfonic acid (PFDS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:12	1
Perfluorooctanesulfonamide (FOSA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 13:12	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		50		ng/L		11/16/20 18:54	11/18/20 13:12	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		50		ng / L		11/16/20 18:54	11/18/20 13:12	1
:2 FTS	ND		50		ng/L		11/16/20 18:54	11/18/20 13:12	1
8:2 FTS	ND		50		ng/L		11/16/20 18:54	11/18/20 13:12	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	11		150				11/16/20 18:54	11/18/20 13:12	-
13C5 PFPeA	118		150				11/16/20 18:54	11/18/20 13:12	1
13C2 PFHxA	109		150				11/16/20 18:54	11/18/20 13:12	1
13C4 PFHpA	123		150				11/16/20 18:54	11/18/20 13:12	1
13 C 4 PFOA	102		150				11/16/20 18:54	11/18/20 13:12	1
$13 C 5$ PFNA	102		150				11/16/20 18:54	11/18/20 13:12	1
13C2 PFDA	103		150				11/16/20 18:54	11/18/20 13:12	1
13C2 PFUnA	100		150				11/16/20 18:54	11/18/20 13:12	1
13C2 PFDoA	99		150				11/16/20 18:54	11/18/20 13:12	1
$13 C 2$ PFTeDA	86		150				11/16/20 18:54	11/18/20 13:12	1
$13 \mathrm{C3}$ PFBS	106		150				11/16/20 18:54	11/18/20 13:12	1
1802 PFHxS	111		150				11/16/20 18:54	11/18/20 13:12	1
$13 \mathrm{C4}$ PFOS	110		150				11/16/20 18:54	11/18/20 13:12	1
13 C 8 FOSA	111		150				11/16/20 18:54	11/18/20 13:12	1
d3-NMeFOSAA	88		150				11/16/20 18:54	11/18/20 13:12	1
NETFOSAA	91		150				11/16/20 18:54	11/18/20 13:12	1
M2-6:2 FTS	128		150				11/16/20 18:54	11/18/20 13:12	1
M2-8:2 FTS	137		150				11/16/20 18:54	11/18/20 13:12	1
M2-4:2 FTS			10				11/16/20 18:54	11/18/20 13:12	1

Method: Total PFCA-Dif - Total PFCA (Treatment Difference)

Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
PFBA	18				ng/L			11/22/20 06:34	1
PFHpA	0.00				ng/L			11/22/20 06:34	1
PFHxA	2.9				ng/L			11/22/20 06:34	1
PFNA	0.00				ng/L			11/22/20 06:34	1
PFOA	0.00				ng/L			11/22/20 06:34	1
PFPA	4.5				ng/L			11/22/20 06:34	1

Client Sample ID: LF Water 411062020
 Date Collected: 11/06/20 11:40
 Lab Sample ID: 320-66472-4
 Matrix: W ter

Date Received: 11/07/20 09:25
$\frac{\text { Analyte }}{\text { Total PFCA }} \frac{\text { esult }}{21} \frac{\text { Qualifier }}{\text { NONE }}$ NONE Unit $\frac{\mathrm{D}}{\mathrm{ng} / \mathrm{L}} \xrightarrow{\text { Prepared }} \frac{\text { Analyzed }}{11 / 22 / 2006: 34} \frac{\text { Dil Fac }}{1}$

Client Sample ID: LF Water 711062020

Lab Sample ID: 320-66472-6
Date Collected: 11/06/20 12:15
Matrix: W ter
Date Received: 11/07/20 09:25

Method: 537 (modified) - Fluorinated Alkyl Substances - Pre-Treatment									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	21		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluoropentanoic acid (PFPeA)	14		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorohexanoic acid (PFHxA)	11		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluoroheptanoic acid (PFHpA)	9.7		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorooctanoic acid (PFOA)	5.8		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorononanoic acid (PFNA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorodecanoic acid (PFDA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluoroundecanoic acid (PFUnA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorododecanoic acid (PFDoA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorotridecanoic acid (PFTriA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorobutanesulfonic acid (PFBS)	96		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorohexanesulfonic acid (PFHxS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorooctanesulfonic acid (PFOS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorodecanesulfonic acid (PFDS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
Perfluorooctanesulfonamide (FOSA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:58	1
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		50		ng/L		11/16/20 18:43	11/18/20 11:58	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		50		ng/L		11/16/20 18:43	11/18/20 11:58	1
:2 FTS	ND		50		ng/L		11/16/20 18:43	11/18/20 11:58	1
8:2 FTS	ND		50		ng/L		11/16/20 18:43	11/18/20 11:58	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	98		150				11/16/20 18:43	11/18/20 11:58	1
$13 C 5$ PFPeA	113		150				11/16/20 18:43	11/18/20 11:58	1
13 C 2 PFHxA	105		150				11/16/20 18:43	11/18/20 11:58	1
13 C 4 PFHpA	119		150				11/16/20 18:43	11/18/20 11:58	1
13 C 4 PFOA	101		150				11/16/20 18:43	11/18/20 11:58	1
$13 C 5$ PFNA	100		150				11/16/20 18:43	11/18/20 11:58	1
$13 C 2$ PFDA	95		150				11/16/20 18:43	11/18/20 11:58	1
$13 C 2$ PFUnA	91		150				11/16/20 18:43	11/18/20 11:58	1
13 C 2 PFDoA	85		150				11/16/20 18:43	11/18/20 11:58	1

Client Sample ID: LF Water 711062020	Lab Sample ID: 320-66472-6
Date Collected: 11/06/20 12:15	Matrix: W ter

Date Received: 11/07/20 09:25
Method: 537 (modified) - Fluorinated Alkyl Substances - Pre-Treatment (Continued)

Isotope Dilution	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFTeDA	65		150	11/16/20 18:43	11/18/20 11:58	1
$13 C 3$ PFBS	99		150	11/16/20 18:43	11/18/20 11:58	1
1802 PFHxS	108		150	11/16/20 18:43	11/18/20 11:58	1
$13 C 4$ PFOS	107		150	11/16/20 18:43	11/18/20 11:58	1
13C8 FOSA	111		150	11/16/20 18:43	11/18/20 11:58	1
d3-NMeFOSAA	77		150	11/16/20 18:43	11/18/20 11:58	1
NEtFOSAA	80		150	11/16/20 18:43	11/18/20 11:58	1
M2-6:2 FTS	136		150	11/16/20 18:43	11/18/20 11:58	1
M2-8:2 FTS	128		150	11/16/20 18:43	11/18/20 11:58	1
M2-4:2 FTS	153	*5	150	11/16/20 18:43	11/18/20 11:58	1

Method: 537 (modified) - Fluorinated Alkyl Substances - Post-Treatment

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	58	B	5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluoropentanoic acid (PFPeA)	16		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorohexanoic acid (PFHxA)	13		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluoroheptanoic acid (PFHpA)	9.6		5.0		ng / L		11/16/20 18:54	11/18/20 13:21	1
Perfluorooctanoic acid (PFOA)	6.1		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorononanoic acid (PFNA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorodecanoic acid (PFDA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:21	1
Perfluoroundecanoic acid (PFUnA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorododecanoic acid (PFDoA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorotridecanoic acid (PFTriA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorobutanesulfonic acid (PFBS)	93		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorohexanesulfonic acid (PFHxS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorooctanesulfonic acid (PFOS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
Perfluorodecanesulfonic acid (PFDS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 13:21	1
Perfluorooctanesulfonamide (FOSA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 13:21	1
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		50		ng/L		11/16/20 18:54	11/18/20 13:21	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		50		ng / L		11/16/20 18:54	11/18/20 13:21	1
:2 FTS	ND		50		ng/L		11/16/20 18:54	11/18/20 13:21	1
8:2 FTS	ND		50		ng/L		11/16/20 18:54	11/18/20 13:21	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	105		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 5$ PFPeA	112		150				11/16/20 18:54	11/18/20 13:21	1
13 C 2 PFH A	110		150				11/16/20 18:54	11/18/20 13:21	1
13 C 4 PFHpA	120		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 4$ PFOA	101		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 5$ PFNA	102		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 2$ PFDA	91		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 2$ PFUnA	98		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 2$ PFDoA	79		150				11/16/20 18:54	11/18/20 13:21	1
13 C 2 PFTeDA	82		150				11/16/20 18:54	11/18/20 13:21	1
$13 C 3$ PFBS	100		150				11/16/20 18:54	11/18/20 13:21	1

Client Sample ID: LF Water 711062020

Client Sample ID: LF Water 411062020 Lab Sample ID: 320-66472-4 Matrix: Water

Analyte	e-T eatment Method			ost-T eatment Method			Difference ${ }^{1}$	
	537 (modified)			537 (modified)			Result	Unit
	Result	Qualifier	Unit	Result	Qualifier	Unit		
Perfluorobutanoic acid (PFBA)	8.9		ng/L	27		ng/L	18	ng/L
Perfluoropentanoic acid (PFPeA)	26		ng/L	31		ng/L	4.5	ng/L
Perfluorohexanoic acid (PFHxA)	15		ng/L	18		ng/L		ng/L
Perfluoroheptanoic acid (PFHpA)	5.2		ng/L	5.1		ng/L	0.00	ng/L
Perfluorooctanoic acid (PFOA)	5.0		ng/L	ND		ng/L		ng/L
Perfluorononanoic acid (PFNA)	ND		ng/L	ND		ng/L	0.00	ng/L
Ttal PFCA	60		ng/L	81		ng/L		ng/L

Client Sample ID: LF Water 711062020
Lab Sample ID: 320-66472-6 Matrix: Water

Analyte	e-T eatment Method			ost-T eatment Method			Difference ${ }^{1}$	
	537 (modified)			537 (modified)				
	Result	Qualifier	Unit	Result	Qualifier	Unit	Result	Unit
Perfluorobutanoic acid (PFBA)	21		ng/L	58		ng/L	37	ng/L
Perfluoropentanoic acid (PFPeA)	14		ng/L	16		ng/L	1.4	ng/L
Perfluorohexanoic acid (PFHxA)	11		ng/L	13		ng/L	1.7	
Perfluoroheptanoic acid (PFHpA)	9.7		ng/L	9.6		ng/L	0.00	
Perfluorooctanoic acid (PFOA)	5.8		ng/L	6.1		ng/L	0.29	
Perfluorononanoic acid (PFNA)	ND		ng/L	ND		ng/L	0.00	
Ttal PFCA	62		ng/L	100		ng/L		ng/L

[^9]
Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water
Prep Type: Pre-Treatment

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	PFPeA (25-150)	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFNA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
320-66472-4	LF Water 411062020	102	114	110	119	98	104	97	93
320-66472-6	LF Water 711062020	98	113	105	119	101	100	95	91
LCS 320-432333/2-A	Lab Control Sample	114	124	108	121	103	106	96	95
LCSD 320-432333/3-A	Lab Control Sample Dup	111	120	105	118	101	99	101	89
MB 320-432333/1-A	Method Blank	107	116	102	11	96	9	9	93
		Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFDoA $(25-150)$	PFTDA (25-150)	C3PFBS (25-150)	$\begin{aligned} & \text { PFHxS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOS } \\ & (25-150) \end{aligned}$	PFOSA $(25-150)$	d3NMFO $(25-150)$	d5NEFO $(25-150)$
Lab Sample ID	Client Sample ID					(25-150)	(25-150)	(25-150)	(25-150)
320-66472-4	LF Water 411062020	82	101	102	112	111	111	83	85
320-66472-6	LF Water 711062020	85	5	99	108	107	111	77	80
LCS 320-432333/2-A	Lab Control Sample	87	80	109	109	112	104	90	92
LCSD 320-432333/3-A	Lab Control Sample Dup	93	95	105	110	107	105	90	88
MB 320-432333/1-A	Method Blank	80	101	101	105	104	99	86	85
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { M262FTS } \\ (25-150) \end{gathered}$	M282FTS (25-150)	$\begin{gathered} \text { M242FTS } \\ (25-150) \end{gathered}$					
320-66472-4	LF Water 411062020	134	131	146					
320-66472-6	LF Water 711062020	136	128	153 *5					
LCS 320-432333/2-A	Lab Control Sample	125	125	129					
LCSD 320-432333/3-A	Lab Control Sample Dup	119	15	119					
MB 320-432333/1-A	Method Blank	115	11	11					

rrogate Legend
PFBA = 13C4 PFBA
$\mathrm{PFPeA}=13 \mathrm{C} 5 \mathrm{PFPeA}$
PFHxA = 13C2 PFHxA
C4PFHA = 13C4 PFHpA
$\mathrm{PFOA}=13 \mathrm{C} 4 \mathrm{PFOA}$
PFNA = 13C5 PFNA
PFDA = 13C2 PFDA
PFUnA = 13C2 PFUnA
PFDoA = 13C2 PFDoA
PFTDA $=13 \mathrm{C} 2 \mathrm{PFTeDA}$
C3PFBS $=13 \mathrm{C} 3$ PFBS
PFHxS = 1802 PFHxS
PFOS = 13C4 PFOS
PFOSA = 13C8 FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS $=\mathrm{d} 5-N E t F O S A A$
M262FTS = M2-6:2 FTS
M282FTS $=$ M2-8:2 FTS
M242FTS $=$ M2-4:2 FTS
Method: 537 (modified) - Fluorinated Alkyl Substances
Matrix: Water

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFPeA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \end{aligned}$	C4PFHA $(25-150)$	$\begin{aligned} & \text { PFOA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFNA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
320-66472-4	LF Water 411062020	110	118	109	123	102	102	103	100

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)
Matrix: Water
Prep Type: Post-Treatment

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	PFPeA (25-150)	PFHxA (25-150)	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFNA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFDA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
320-66472-6	LF Water 711062020	105	112	110	120	101	102	91	98
LCS 320-432348/2-A	Lab Control Sample	106	120	106	121	102	100	94	88
LCSD 320-432348/3-A	Lab Control Sample Dup	114	124	111	126	104	105	104	93
MB 320-432348/1-A	Method Blank	110	125	108	120	105	105	100	94
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID		PFDoA $(25-150)$	PFTDA (25-150)	C3PFBS (25-150)	$\begin{aligned} & \text { PFHxS } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOS } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFOSA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { d3NMFO } \\ & (25-150) \end{aligned}$	d5NEFO $(25-150)$
320-66472-4	LF Water 411062020	99	86	106	111	110	111	88	91
320-66472-6	LF Water 711062020	79	82	100	109	106	111	88	87
LCS 320-432348/2-A	Lab Control Sample	86	92	104	113	106	104	89	91
LCSD 320-432348/3-A	Lab Control Sample Dup	101	84	108	114	115	110	94	96
MB 320-432348/1-A	Method Blank	90	83	109	114	113	106	91	93
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { M262FTS } \\ (25-150) \\ \hline \end{gathered}$	$\begin{gathered} \text { M282FTS } \\ (25-150) \\ \hline \end{gathered}$	$\begin{gathered} \text { M242FTS } \\ (0-10) \\ \hline \end{gathered}$					
320-66472-4	LF Water 411062020	128	137						
320-66472-6	LF Water 711062020	131	134						
LCS 320-432348/2-A	Lab Control Sample	118	1						
LCSD 320-432348/3-A	Lab Control Sample Dup	123	133						
MB 320-432348/1-A	Method Blank	122	121						

rrogate Legend
PFBA = 13C4 PFBA
PFPeA $=13 \mathrm{C} 5 \mathrm{PFPeA}$
PFHxA = 13C2 PFHxA
C4PFHA $=13 \mathrm{C} 4 \mathrm{PFHpA}$
PFOA $=13 \mathrm{C} 4 \mathrm{PFOA}$
PFNA $=13 C 5$ PFNA
PFDA $=13 \mathrm{C} 2 \mathrm{PFDA}$
PFUnA $=13 \mathrm{C} 2$ PFUnA
PFDoA $=13 \mathrm{C} 2 \mathrm{PFDoA}$
PFTDA $=13 \mathrm{C} 2$ PFTeDA
C3PFBS $=13 \mathrm{C} 3$ PFBS
PFHxS = 1802 PFHxS
PFOS = 13C4 PFOS
PFOSA $=13 \mathrm{C} 8$ FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS $=\mathrm{d} 5-$ NEtFOSAA
M262FTS $=$ M2-6:2 FTS
M282FTS $=$ M2-8:2 FTS
M242FTS $=$ M2-4:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-432333/1-A
Matrix: Water
Analysis Batch: 432909

Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluoropentanoic acid (PFPeA)	ND		5.0		$n g / L$		11/16/20 18:43	11/18/20 11:21	1
Perfluorohexanoic acid (PFHxA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluoroheptanoic acid (PFHpA)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:21	1
Perfluorooctanoic acid (PFOA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorononanoic acid (PFNA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorodecanoic acid (PFDA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluoroundecanoic acid (PFUnA)	ND		5.0		$n g / L$		11/16/20 18:43	11/18/20 11:21	1
Perfluorododecanoic acid (PFDoA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorotridecanoic acid (PFTriA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorobutanesulfonic acid (PFBS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorohexanesulfonic acid (PFHxS)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:21	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorooctanesulfonic acid (PFOS)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
Perfluorodecanesulfonic acid (PFDS)	ND		5.0		ng / L		11/16/20 18:43	11/18/20 11:21	1
Perfluorooctanesulfonamide (FOSA)	ND		5.0		ng/L		11/16/20 18:43	11/18/20 11:21	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		50		ng/L		11/16/20 18:43	11/18/20 11:21	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		50		ng / L		11/16/20 18:43	11/18/20 11:21	1
:2 FTS	ND		50		ng/L		11/16/20 18:43	11/18/20 11:21	1
8:2 FTS	ND		50		ng/L		11/16/20 18:43	11/18/20 11:21	1

Prepared	Analyzed	Fac
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1
11/16/20 18:43	11/18/20 11:21	1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-432333/2-A
Matrix: Water
Analysis Batch: 432909

Analysis Batch: 432909 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier	Unit	D	\%Rec		
Perfluorobutanoic acid (PFBA)	100	108		ng/L		108	76	136
Perfluoropentanoic acid (PFPeA)	100	85.6		ng/L		86	71	131
Perfluorohexanoic acid (PFHxA)	100	104		ng/L		104	73	133
Perfluoroheptanoic acid (PFHpA)	100	89.8		ng/L		90	72	132
Perfluorooctanoic acid (PFOA)	100	103		ng/L		103	70	130
Perfluorononanoic acid (PFNA)	100	100		ng/L		100	75	135
Perfluorodecanoic acid (PFDA)	100	114		ng/L		114	76	136
Perfluoroundecanoic acid (PFUnA)	100	112		ng/L		112	8	128
Perfluorododecanoic acid (PFDoA)	100	118		ng/L		118	71	131
Perfluorotridecanoic acid (PFTriA)	100	104		ng/L		104	71	131
Perfluorotetradecanoic acid (PFTeA)	100	110		ng/L		110	70	130
Perfluorobutanesulfonic acid (PFBS)	88.4	93.3		ng/L		106	7	127
Perfluorohexanesulfonic acid (PFHxS)	91.0	91.5		ng/L		101	59	119
Perfluoroheptanesulfonic Acid (PFHpS)	95.2	101		ng/L		106	76	136
Perfluorooctanesulfonic acid (PFOS)	92.8	97.6		ng/L		105	70	130
Perfluorodecanesulfonic acid (PFDS)	96.4	97.6		ng/L		101	71	131
Perfluorooctanesulfonamide (FOSA)	100	104		ng/L		104	73	133
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	100	109		ng/L		109	76	136
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	100	101		ng/L		101	76	136
:2 FTS	94.8	81.8		ng/L		86	59	175
8:2 FTS	95.8	92.4		ng/L		96	75	35

LCS LCS

Isotope Dilution	\%Recovery	Qualifier	Limits
13 C 4 PFBA	114		- 150
$13 C 5$ PFPeA	124		- 150
13 C 2 PFHXA	108		-150
13 C 4 PFHpA	121		-150
$13 C 4$ PFOA	103		- 150
$13 C 5$ PFNA	106		-150
$13 C 2$ PFDA	96		-150
$13 C 2$ PFUnA	95		-150
$13 C 2$ PFDoA	87		- 150
$13 C 2$ PFTeDA	80		- 150
$13 C 3$ PFBS	109		- 150
1802 PFHxS	109		-150
13 C 4 PFOS	11		-150
13C8 FOSA	104		-150
3-NMeFOSAA	90		-150
-NEtFOSAA	92		-150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-432333/2-A
Matrix: Water
Analysis Batch: 432909
LCS LCS

Isotope Dilution	\%Recovery	Qualifier	Limits
M2-6:2 FTS	125		- 150
M2-8:2 FTS	125		- 150
M2-4:2 FTS	129		- 150

Lab Sample ID: LCSD 320-432333/3-A
Matrix: Water
Analysis Batch: 432909

Analyte	Spike Added	$\begin{aligned} & \text { LCSD } \\ & \text { It } \end{aligned}$	LCSD Qualifier	Unit	D	\%Rec	\%R	Rec.	PD	$\begin{gathered} \text { PD } \\ \text { Limit } \end{gathered}$
Perfluorobutanoic acid (PFBA)	100	108		ng/L		108	76	136		3
Perfluoropentanoic acid (PFPeA)	100	88.3		$n g / L$		88	71	131	3	30
Perfluorohexanoic acid (PFHxA)	100	102		ng/L		102	73	133	1	30
Perfluoroheptanoic acid (PFHpA)	100	92.2		ng / L		92	72	132	3	30
Perfluorooctanoic acid (PFOA)	100	108		$n g / L$		108	70	130		30
Perfluorononanoic acid (PFNA)	100	103		ng / L		103	75	135	3	30
Perfluorodecanoic acid (PFDA)	100	104		ng / L		104	76	136	9	30
Perfluoroundecanoic acid (PFUnA)	100	124		ng/L		124	8	128	11	30
Perfluorododecanoic acid (PFDoA)	100	98.7		ng/L		99	71	131	18	30
Perfluorotridecanoic acid (PFTriA)	100	102		ng/L		102	71	131	1	30
Perfluorotetradecanoic acid (PFTeA)	100	93.2		ng/L		93	70	130	16	30
Perfluorobutanesulfonic acid (PFBS)	88.4	94.0		ng/L		106	7	127	1	30
Perfluorohexanesulfonic acid (PFHxS)	91.0	90.5		ng/L		99	59	119	1	3
Perfluoroheptanesulfonic Acid (PFHpS)	95.2	105		ng/L		111	76	136		30
Perfluorooctanesulfonic acid (PFOS)	92.8	99.0		ng/L		107	70	130	1	30
Perfluorodecanesulfonic acid (PFDS)	96.4	103		ng/L		107	71	131		30
Perfluorooctanesulfonamide (FOSA)	100	102		ng/L		102	73	133		30
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	100	111		ng/L		111	76	136	1	30
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	100	106		ng/L		106	76	136	5	30
:2 FTS	94.8	88.2		ng/L		93	59	175	7	30
8:2 FTS	95.8	97.0		ng/L		101	75	135	5	30

Isotope Dilution	\%Recovery	Qualifier	Limits
13C4 PFBA	111		-150
$13 C 5$ PFPeA	120		-150
13 C 2 PFHxA	105		-150
13 C 4 PFHpA	118		-150
13C4 PFOA	101		- 150
13 C 5 PFNA	99		-150
13C2 PFDA	101		-150
$13 C 2$ PFUnA	89		-150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-432333/3-A
Matrix: Water
Analysis Batch: 432909

Isotope Dilution	LCSD \%Recovery	LCSD Qualifier	Limits
13C2 PFDoA	93		- 150
$13 C 2$ PFTeDA	95		- 150
13C3 PFBS	105		- 150
1802 PFHxS	11		- 150
$13 C 4$ PFOS	107		- 150
13C8 FOSA	105		- 150
d3-NMeFOSAA	90		- 150
-NEtFOSAA	88		- 150
M2-6:2 FTS	119		- 150
M2-8:2 FTS	125		- 150
M2-4:2 FTS	119		- 150

Lab Sample ID: MB 320-432348/1-A
Matrix: Water
Analysis Batch: 432909

Analyte	MB It	MB Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	11.3		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluoropentanoic acid (PFPeA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluorohexanoic acid (PFHxA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluoroheptanoic acid (PFHpA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluorooctanoic acid (PFOA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluorononanoic acid (PFNA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluorodecanoic acid (PFDA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluoroundecanoic acid (PFUnA)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluorododecanoic acid (PFDoA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluorotridecanoic acid (PFTriA)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 12:44	1
Perfluorobutanesulfonic acid (PFBS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluorohexanesulfonic acid (PFHxS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluorooctanesulfonic acid (PFOS)	ND		5.0		ng/L		11/16/20 18:54	11/18/20 12:44	1
Perfluorodecanesulfonic acid (PFDS)	ND		5.0		ng / L		11/16/20 18:54	11/18/20 12:44	1
Perfluorooctanesulfonamide (FOSA)	ND		5.0		$n g / L$		11/16/20 18:54	11/18/20 12:44	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		50		ng/L		11/16/20 18:54	11/18/20 12:44	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		50		ng/L		11/16/20 18:54	11/18/20 12:44	1
:2 FTS	ND		50		ng/L		11/16/20 18:54	11/18/20 12:44	1
8:2 FTS	ND		50		ng/L		11/16/20 18:54	11/18/20 12:44	1
	MB	MB							
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Fac
13C4 PFBA	11		- 150				11/16/20 18:54	11/18/20 12:44	1
13 C 5 PFPeA	125		- 150				11/16/20 18:54	11/18/20 12:44	1
13 C 2 PFHxA	108		- 150				11/16/20 18:54	11/18/20 12:44	1
$13 \mathrm{C4}$ PFHpA	120		- 150				11/16/20 18:54	11/18/20 12:44	1
$13 C 4$ PFOA	105		- 150				11/16/20 18:54	11/18/20 12:44	1
$13 C 5$ PFNA	105		- 150				11/16/20 18:54	11/18/20 12:44	1
$13 C 2$ PFDA	100		- 150				11/16/20 18:54	11/18/20 12:44	1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-432348/1-A
Matrix: Water
Analysis Batch: 432909

Client Sample ID: Method Blank Prep Type: Post-Treatment Prep Batch: 432348

Prepared	Analyzed	Fac
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1
11/16/20 18:54	11/18/20 12:44	1

Lab Sample ID: LCS 320-432348/2-A
Matrix: Water
Analysis Batch: 432909

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution	LCS \%Recovery	LCS Qualifier	Limits
$13 C 4$ PFBA	106		-150
$13 C 5$ PFPeA	120		-150
13C2 PFHxA	106		-150
13 C 4 PFHpA	121		-150
13C4 PFOA	102		- 150
$13 C 5$ PFNA	100		- 150
13 C 2 PFDA	94		-150
$13 C 2$ PFUnA	88		-150
13 C 2 PFDoA	86		-150
$13 C 2$ PFTeDA	92		-150
$13 C 3$ PFBS	104		-150
1802 PFHxS	113		-150
13 C 4 PFOS	106		-150
13C8 FOSA	104		-150
d3-NMeFOSAA	89		-150
-NEtFOSAA	91		-150
M2-6:2 FTS	118		-150
M2-8:2 FTS	122		- 150
M2-4:2 FTS			-10

Lab Sample ID: LCSD 320-432348/3-A
Matrix: Water
Analysis Batch: 432909

Analyte	Spike Added	$\begin{aligned} & \text { LCSD } \\ & \text { It } \end{aligned}$	LCSD Qualifier	Unit	D	\%Rec			PD	$\begin{aligned} & \text { PD } \\ & \text { Limit } \end{aligned}$
Perfluorobutanoic acid (PFBA)	100	124		ng/L		124	93	153		3
Perfluoropentanoic acid (PFPeA)	100	103		ng/L		103	85	145		30
Perfluorohexanoic acid (PFHxA)	100	112		ng/L		112	81	141		30
Perfluoroheptanoic acid (PFHpA)	100	127		ng / L		127	104	171	8	30
Perfluorooctanoic acid (PFOA)	100	9		ng/L		9	158	54	18	30
Perfluorononanoic acid (PFNA)	100	120		ng/L		120		126	1	30
Perfluorodecanoic acid (PFDA)	100	106		ng/L		106	5	125	3	30
Perfluoroundecanoic acid (PFUnA)	100	111		ng/L		111	57	117	3	3
Perfluorododecanoic acid (PFDoA)	100	90.2		ng/L		90		126	8	30
Perfluorotridecanoic acid (PFTriA)	100	95.7		ng/L		96	5	136		30
Perfluorotetradecanoic acid (PFTeA)	100	95.7		ng/L		96	3	123	9	30
Perfluorobutanesulfonic acid (PFBS)	88.4	91.5		ng/L		104	75	135		30
Perfluorohexanesulfonic acid (PFHxS)	91.0	87.7		ng/L		96		124	1	30
Perfluoroheptanesulfonic Acid (PFHpS)	95.2	96.4		ng/L		101	70	131	1	30
Perfluorooctanesulfonic acid (PFOS)	92.8	92.7		ng/L		100	8	128	7	30
Perfluorodecanesulfonic acid (PFDS)	96.4	86.7		ng/L		90		126		30
Perfluorooctanesulfonamide (FOSA)	100	ND		ng/L				10	NC	30
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	100	ND		ng/L				10	NC	30

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

LCMS

Prep Batch: 432333
Lab Sample ID

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LF Water 411062020	Pre-Treatment	Water	TOP Pre - Prep	
LF Water 711062020	Pre-Treatment	Water	TOP Pre - Prep	
Method Blank	Pre-Treatment	Water	TOP Pre - Prep	
Lab Control Sample	Pre-Treatment	Water	TOP Pre - Prep	
Lab Control Sample Dup	Pre-Treatment	Water	TOP Pre - Prep	

Prep Batch: 432348

Lab Sample ID
$320-66472-4$
$320-66472-6$
MB 320-432348/1-A
LCS 320-432348/2-A
LCSD 320-432348/3-A

Client Sample ID
LF Water 411062020
LF Water 711062020
Method Blank
Lab Control Sample
Lab Control Sample Dup

Prep Type	Matrix	Method	Prep Batch
Post-Treatment	Water	TOP Post Prep	
Post-Treatment	Water	TOP Post Prep	
Post-Treatment	Water	TOP Post Prep	
Post-Treatment	Water	TOP Post Prep	
Post-Treatment	Water	TOP Post Prep	

Analysis Batch: 432909

Lab Sample ID	Client Sample ID
320-66472-4	LF Water 411062020
320-66472-4	LF Water 411062020
320-66472-6	LF Water 711062020
320-66472-6	LF Water 711062020
MB 320-432333/1-A	Method Blank
MB 320-432348/1-A	Method Blank
LCS 320-432333/2-A	Lab Control Sample
LCS 320-432348/2-A	Lab Control Sample
LCSD 320-432333/3-A	Lab Control Sample Dup
LCSD 320-432348/3-A	Lab Control Sample Dup

Analysis Batch: 434464

$\frac{\text { Lab Sample ID }}{320-66472-4}$	Client Sample ID
$320-66472-6$	LF Water 411062020
	LF Water 711062020

Prep Type	Matrix	Method	Prep Batch
Post-Treatment	Water	537 (modified)	32348
Pre-Treatment	Water	537 (modified)	32333
Post-Treatment	Water	537 (modified)	32348
Pre-Treatment	Water	537 (modified)	32333
Pre-Treatment	Water	537 (modified)	32333
Post-Treatment	Water	537 (modified)	32348
Pre-Treatment	Water	537 (modified)	32333
Post-Treatment	Water	537 (modified)	32348
Pre-Treatment	Water	537 (modified)	32333
Post-Treatment	Water	537 (modified)	32348

Analysis Batch: 434465

$\frac{\text { Lab Sample ID }}{320-66472-4}$	Client Sample ID
$320-66472-6$	LF Water 4 11062020
	LF Water 7 11062020

Analysis Batch: 434466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66472-4	LF Water 411062020	Total/NA	Water	Total PFCA-Dif	
320-66472-6	LF Water 711062020	Total/NA	Water	Total PFCA-Dif	

Lab Chronicle

Client: New k State D.E.C.

Client Sample ID: LF Water 411062020
 Lab Sample ID: 320-66472-4
 Date Collected: 11/06/20 11:40 Matrix: Water

Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Post-T eatment	Prep	TOP Post Prep			100.00 mL	10.00 mL	432348	11/16/20 18:54	JER	TAL SAC
Post-T eatment	Analysis	537 (modified)		1			432909	11/18/20 13:12	JRB	TAL SAC
Pre-T eatment	Prep	TOP Pre - Prep			100.00 mL	10.00 mL	432333	11/16/20 18:43	JER	TAL SAC
Pre-T eatment	Analysis	537 (modified)		1			432909	11/18/20 11:48	JRB	TAL SAC
Ttal/NA	Analysis	Ttal PFCA-Dif		1			434466	11/22/20 06:34	MKW	TAL SAC
Post-T eatment	Analysis	Ttal PFCA-Sum		1			434465	11/22/20 06:32	MKW	TAL SAC
Pre-T eatment	Analysis	Ttal PFCA-Sum		1			434464	11/22/20 06:30	MKW	TAL SAC

Client Sample ID: LF Water 711062020
Lab Sample ID: 320-66472-6
Date Collected: 11/06/20 12:15
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Post-T eatment	Prep	TOP Post Prep			100.00 mL	10.00 mL	432348	11/16/20 18:54	JER	TAL SAC
Post-T eatment	Analysis	537 (modified)		1			432909	11/18/20 13:21	JRB	TAL SAC
Pre-T eatment	Prep	TOP Pre - Prep			100.00 mL	10.00 mL	432333	11/16/20 18:43	JER	TAL SAC
Pre-T eatment	Analysis	537 (modified)		1			432909	11/18/20 11:58	JRB	TAL SAC
Ttal/NA	Analysis	Ttal PFCA-Dif		1			434466	11/22/20 06:34	MKW	TAL SAC
Post-T eatment	Analysis	Ttal PFCA-Sum		1			434465	11/22/20 06:32	MKW	TAL SAC
Pre-T eatment	Analysis	Ttal PFCA-Sum		1			434464	11/22/20 06:30	MKW	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each ac reditation/certification below.
$\frac{\text { Authority }}{\text { ew k }} \frac{\text { Program }}{\text { ELAP }} \frac{\text { Identification Number }}{11666} \frac{\text { Expiration Date }}{04-01-21}$

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
537 (modified)	TOP Post Prep	Water	6:2 FTS
537 (modified)	TOP Post Prep	Water	8:2 FTS
537 (modified)	TOP Post Prep	Water	-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)
537 (modified)	TOP Post Prep	Water	-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)
537 (modified)	TOP Post Prep	Water	Perfluorobutanesulfonic acid (PFBS)
537 (modified)	TOP Post Prep	Water	Perfluorobutanoic acid (PFBA)
537 (modified)	TOP Post Prep	Water	Perfluorodecanesulfonic acid (PFDS)
537 (modified)	TOP Post Prep	Water	Perfluorodecanoic acid (PFDA)
537 (modified)	TOP Post Prep	Water	Perfluorododecanoic acid (PFDoA)
537 (modified)	TOP Post Prep	Water	Perfluoroheptanesulfonic Acid (PFHpS)
537 (modified)	TOP Post Prep	Water	Perfluoroheptanoic acid (PFHpA)
537 (modified)	TOP Post Prep	Water	Perfluorohexanesulfonic acid (PFHxS)
537 (modified)	TOP Post Prep	Water	Perfluorohexanoic acid (PFHxA)
537 (modified)	TOP Post Prep	Water	Perfluorononanoic acid (PFNA)
537 (modified)	TOP Post Prep	Water	Perfluorooctanesulfonamide (FOSA)
537 (modified)	TOP Post Prep	Water	Perfluorooctanesulfonic acid (PFOS)
537 (modified)	TOP Post Prep	Water	Perfluorooctanoic acid (PFOA)
537 (modified)	TOP Post Prep	Water	Perfluoropentanoic acid (PFPeA)
537 (modified)	TOP Post Prep	Water	Perfluorotetradecanoic acid (PFTeA)
537 (modified)	TOP Post Prep	Water	Perfluorotridecanoic acid (PFT iA)
537 (modified)	TOP Post Prep	Water	Perfluoroundecanoic acid (PFUnA)
537 (modified)	TOP Pre - Prep	Water	6:2 FTS
537 (modified)	TOP Pre - Prep	Water	8:2 FTS
537 (modified)	TOP Pre - Prep	Water	-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)
537 (modified)	TOP Pre - Prep	Water	-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)
537 (modified)	TOP Pre - Prep	Water	Perfluorobutanesulfonic acid (PFBS)
537 (modified)	TOP Pre - Prep	Water	Perfluorobutanoic acid (PFBA)
537 (modified)	TOP Pre - Prep	Water	Perfluorodecanesulfonic acid (PFDS)
537 (modified)	TOP Pre - Prep	Water	Perfluorodecanoic acid (PFDA)
537 (modified)	TOP Pre - Prep	Water	Perfluorododecanoic acid (PFDoA)
537 (modified)	TOP Pre - Prep	Water	Perfluoroheptanesulfonic Acid (PFHpS)
537 (modified)	TOP Pre - Prep	Water	Perfluoroheptanoic acid (PFHpA)
537 (modified)	TOP Pre - Prep	Water	Perfluorohexanesulfonic acid (PFHxS)
537 (modified)	TOP Pre - Prep	Water	Perfluorohexanoic acid (PFHxA)
537 (modified)	TOP Pre - Prep	Water	Perfluorononanoic acid (PFNA)
537 (modified)	TOP Pre - Prep	Water	Perfluorooctanesulfonamide (FOSA)
537 (modified)	TOP Pre - Prep	Water	Perfluorooctanesulfonic acid (PFOS)
537 (modified)	TOP Pre - Prep	Water	Perfluorooctanoic acid (PFOA)
537 (modified)	TOP Pre - Prep	Water	Perfluoropentanoic acid (PFPeA)
537 (modified)	TOP Pre - Prep	Water	Perfluorotetradecanoic acid (PFTeA)
537 (modified)	TOP Pre - Prep	Water	Perfluorotridecanoic acid (PFT iA)
537 (modified)	TOP Pre - Prep	Water	Perfluoroundecanoic acid (PFUnA)

Accreditation/Certification Summary

Client: New k State D.E.C.
Job ID: 320-66472-2
Project/Site: Norlite - Cohoes \#401041

Laboratory: Eurofins TestAmerica, Sacramento (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each ac reditation/certification below.

Authority	Program	Identification Number	Expiration Date
ew k	ELAP	11666	04-01-21
Ttal PFCA-Dif	Water	PFBA	
Ttal PFCA-Dif	Water	PFHpA	
Ttal PFCA-Dif	Water	PFHxA	
Ttal PFCA-Dif	Water	PFNA	
Ttal PFCA-Dif	Water	PFOA	
Ttal PFCA-Dif	Water	PFPA	
Ttal PFCA-Dif	Water	Ttal PFCA	
Ttal PFCA-Sum	Water	Ttal PFCA	

Method Summary

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
Total PFCA-Dif	Total PFCA (Treatment Difference)	TAL SOP	TAL SAC
Total PFCA-Sum	Total PFCA (Summary)	TAL SOP	TAL SAC
TOP Post Prep	Solid-Phase Extraction (SPE)	SW846	TAL SAC
TOP Pre - Prep	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-66472-4	LF Water 411062020	Water	11/06/20 11:40	11/07/20 09:25	
320-66472-6	LF Water 711062020	Water	11/06/20 12:15	11/07/20 09:25	

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 320-66472-2

Login Number: 66472
List Number: 1
Creator: Oropeza, Salvador

Question	Answer	Comment
adioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	1428558
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	: No date or time on COC or containers
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Refer to job narrative for details
Samples are received within Holding Time (Excluding tests with immediate HTs)..	False	Refer to job narrative for details
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}(1 / 4$ ") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway
West Sacramento, CA 95605
Tel: (916)373-5600
Laboratory Job ID: 320-66473-1
Client Project/Site: Norlite - Cohoes \#401041

For:
New York State D.E.C.
625 Broadway
Division of Environmental Remediation Albany, New York 12233-7014

Attn: Lynn M Winterberger

Authorized for release by: 11/18/2020 2:41:41 PM
Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

LINKs
Review your project results through TotalAccess

Have a Question?

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Detection Summary 5
Client Sample Results 7
Isotope Dilution Summary 14
QC Sample Results 16
QC Association Summary 19
Lab Chronicle 20
Certification Summary 22
Method Summary 23
Sample Summary 24
Chain of Custody 25
Receipt Checklists 26

Qualifiers

LCMS
$\frac{\text { Qualifier }}{\mathrm{J}} \quad \frac{\text { Qualifier Description }}{\text { Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. }}$

ossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
${ }^{\text {a }}$	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

ID: 320-66473-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Narrative

320-66473-1

Receipt

The samples were received on 11/7/2020 9:25 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was $0.6^{\circ} \mathrm{C}$.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Organic Prep
No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: LFSCW2-Water-11062020
Lab Sample ID: 320-66473-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	. 80	J	1.9	. 47	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 64	J	1.9	. 55	ng / L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 55	J	1.9	. 24	ng / L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.6	J	1.9	. 81	ng / L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 75	J	1.9	. 19	ng/L	1	537 (modified)	Total/NA

Client Sample ID: LFSCW1-Water-11062020

Lab Sample ID: 320-66473-2

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	1.3	J	1.9	. 47	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	. 56	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.9	. 24	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.8	J	1.9	. 82	ng / L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 27	J	1.9	. 26	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.9	. 19	ng / L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	. 58	J	1.9	. 55	ng / L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.7	J	1.9	. 52	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LFW1-Water-11062020

Lab Sample ID: 320-66473-3

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	1.2	J	1.9	. 46	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	. 54	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 73	J	1.9	. 23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.7	J	1.9	. 80	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 2		1.9	. 19	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.4	J	1.9	. 54	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.6	J	1.9	. 51	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LFPCW1-Water-11062020
 Lab Sample ID: 320-66473-4

Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	14		. 7	.3	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	8.6		1.9	. 46	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	9.9		1.9	. 55	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	3.8		1.9	. 24	ng / L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 6		1.9	. 81	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 63	J	1.9	. 26	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 7		1.9	. 19	ng / L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.7		1.9	. 54	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	. 7		1.9	. 51	ng/L	1	537 (modified)	Total/NA

Client Sample ID: LFPCW2-Water-11062020

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	10		6	. 2	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	7.5		1.9	. 45	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	7.6		1.9	. 54	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	3.2		1.9	. 23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 5		1.9	. 79	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 80	J	1.9	25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 9		1.9	. 19	ng / L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.1		1.9	. 53	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: LFPC	ter-1	620				Lab	San	ole ID:	66473-5
Analyte	Result	Qualifier	L	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	1		1.9	50	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LFPCW3-Water-11062020 Lab Sample ID: 320-66473-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	7.7		7	. 2	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	. 7		1.9	.46	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	. 4		1.9	. 54	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHPA)	. 5		1.9	23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	4		1.9	. 79	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	. 33	J	1.9	25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	9		1.9	. 19	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.8		1.9	. 53	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	7		1.9	50	ng/L	1		537 (modified)	Total/NA

Client Sample ID: LFPCW4-Water-11062020
Lab Sample ID: 320-66473-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	. 8		. 6	. 2	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	5.9		1.8	. 45	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	5.3		1.8	. 53	ng / L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	. 7		1.8	. 23	ng / L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	. 1		1.8	. 78	ng / L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	. 6		1.8	. 18	ng / L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.7		1.8	. 52	ng / L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	5.8		1.8	. 50	ng/L	1	537 (modified)	Total/NA

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit
Perfluorobutanoic acid (PFBA)	ND		7	. 3	ng/L
Perfluoropentanoic acid (PFPeA)	0.80	J	1.9	47	ng / L
Perfluorohexanoic acid (PFHxA)	0.64	J	1.9	. 55	ng/L
Perfluoroheptanoic acid (PFHpA)	0.55	J	1.9	. 24	ng / L
Perfluorooctanoic acid (PFOA)	1.6	J	1.9	. 81	ng/L
Perfluorononanoic acid (PFNA)	ND		1.9	. 26	ng/L
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng/L
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 52	ng/L
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 69	ng / L
Perfluorobutanesulfonic acid (PFBS)	0.75	J	1.9	. 19	$n g / L$
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	. 54	ng/L
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng / L
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	. 51	ng/L
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng / L
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 93	ng/L
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7	1.1	ng / L
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		7	1.2	ng/L
:2 FTS	ND		. 7	4	ng / L
8:2 FTS	ND		1.9	. 44	ng/L

Prepared	Analyzed	Dil Fac
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1

Isotope Dilution	\%Recovery	Qualifier	Limits
13C4 PFBA			- 150
13 C 5 PFPeA	87		- 150
13C2 PFHxA	93		- 150
13C4 PFHpA	98		- 150
13C4 PFOA	96		- 150
$13 C 5$ PFNA	94		- 150
13C2 PFDA	92		- 150
13C2 PFUnA	96		- 150
13C2 PFDoA	90		- 150
$13 C 2$ PFTeDA			- 150
13C3 PFBS	95		- 150
1802 PFHxS	100		- 150
13C4 PFOS	105		- 150
13C8 FOSA	99		- 150
d3-NMeFOSAA	83		- 150
-NEtFOSAA	1		- 150
M2-6:2 FTS	99		- 150
M2-8:2 FTS	95		- 150

Prepared	Analyzed	Dil Fac
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1
11/13/20 04:55	11/14/20 05:12	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		. 8	. 3	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluoropentanoic acid (PFPeA)	1.3	J	1.9	. 47	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorohexanoic acid (PFHXA)	1.2	J	1.9	. 56	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.9	. 24	ng / L		11/13/20 04:55	11/14/20 05:21	1
Perfluorooctanoic acid (PFOA)	1.8	J	1.9	. 82	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorononanoic acid (PFNA)	0.27	J	1.9	. 26	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 30	ng / L		11/13/20 04:55	11/14/20 05:21	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	.53	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng / L		11/13/20 04:55	11/14/20 05:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 70	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.9	. 19	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorohexanesulfonic acid (PFHxS)	0.58	J	1.9	. 55	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorooctanesulfonic acid (PFOS)	1.7	J	1.9	. 52	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 31	ng/L		11/13/20 04:55	11/14/20 05:21	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 94	ng/L		11/13/20 04:55	11/14/20 05:21	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 8	1.2	ng/L		11/13/20 04:55	11/14/20 05:21	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 8	1.3	ng / L		11/13/20 04:55	11/14/20 05:21	1
:2 FTS	ND		. 8	. 4	ng / L		11/13/20 04:55	11/14/20 05:21	1
8:2 FTS	ND		1.9	. 44	ng/L		11/13/20 04:55	11/14/20 05:21	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA			-150				11/13/20 04:55	11/14/20 05:21	1
$13 C 5$ PFPeA	86		- 150				11/13/20 04:55	11/14/20 05:21	1
13 C 2 PFHxA	89		-150				11/13/20 04:55	11/14/20 05:21	1
$13 C 4$ PFHPA	89		- 150				11/13/20 04:55	11/14/20 05:21	1
$13 C 4$ PFOA	93		-150				11/13/20 04:55	11/14/20 05:21	1
$13 C 5$ PFNA	86		-150				11/13/20 04:55	11/14/20 05:21	1
$13 C 2$ PFDA	90		- 150				11/13/20 04:55	11/14/20 05:21	1
$13 C 2$ PFUnA	96		- 150				11/13/20 04:55	11/14/20 05:21	1
13C2 PFDoA	90		-150				11/13/20 04:55	11/14/20 05:21	1
$13 C 2$ PFTeDA	80		- 150				11/13/20 04:55	11/14/20 05:21	1
$13 \mathrm{C3}$ PFBS	86		- 150				11/13/20 04:55	11/14/20 05:21	1
18 O 2 PFHxS	95		-150				11/13/20 04:55	11/14/20 05:21	1
$13 C 4$ PFOS	92		- 150				11/13/20 04:55	11/14/20 05:21	1
13C8 FOSA	94		-150				11/13/20 04:55	11/14/20 05:21	1
d3-NMeFOSAA	9		-150				11/13/20 04:55	11/14/20 05:21	1
-NEtFOSAA	82		-150				11/13/20 04:55	11/14/20 05:21	1
M2-6:2 FTS	95		-150				11/13/20 04:55	11/14/20 05:21	1
M2-8:2 FTS	82		-150				11/13/20 04:55	11/14/20 05:21	1

Lab Sample ID: 320-66473-3
Matrix: W ter

Date Received: 11/07/20 09:25
Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		7	. 3	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluoropentanoic acid (PFPeA)	1.2	J	1.9	. 46	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	. 54	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluoroheptanoic acid (PFHpA)	0.73	J	1.9	. 23	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorooctanoic acid (PFOA)	1.7	J	1.9	. 80	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluorononanoic acid (PFNA)	ND		1.9	. 25	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 52	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 69	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorobutanesulfonic acid (PFBS)	2.2		1.9	. 19	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluorohexanesulfonic acid (PFHxS)	1.4	J	1.9	. 54	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluorooctanesulfonic acid (PFOS)	1.6	J	1.9	. 51	ng/L		11/13/20 04:55	11/14/20 05:30	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng / L		11/13/20 04:55	11/14/20 05:30	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 92	ng / L		11/13/20 04:55	11/14/20 05:30	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7	1.1	ng / L		11/13/20 04:55	11/14/20 05:30	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	1.2	ng/L		11/13/20 04:55	11/14/20 05:30	1
$: 2 \mathrm{FTS}$	ND		. 7	. 3	ng/L		11/13/20 04:55	11/14/20 05:30	1
8:2 FTS	ND		1.9	. 43	ng/L		11/13/20 04:55	11/14/20 05:30	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA			- 150				11/13/20 04:55	11/14/20 05:30	1
13 C 5 PFPeA	85		- 150				11/13/20 04:55	11/14/20 05:30	1
13 C 2 PFHxA	95		- 150				11/13/20 04:55	11/14/20 05:30	1
13 C 4 PFHpA	97		- 150				11/13/20 04:55	11/14/20 05:30	1
$13 C 4$ PFOA	93		- 150				11/13/20 04:55	11/14/20 05:30	1
$13 C 5$ PFNA	85		- 150				11/13/20 04:55	11/14/20 05:30	1
$13 C 2$ PFDA	99		- 150				11/13/20 04:55	11/14/20 05:30	1
13C2 PFUnA	93		- 150				11/13/20 04:55	11/14/20 05:30	1
13 C 2 PFDoA	85		- 150				11/13/20 04:55	11/14/20 05:30	1
13C2 PFTeDA	83		- 150				11/13/20 04:55	11/14/20 05:30	1
$13 C 3$ PFBS	91		- 150				11/13/20 04:55	11/14/20 05:30	1
1802 PFHxS	94		- 150				11/13/20 04:55	11/14/20 05:30	1
13C4 PFOS	95		- 150				11/13/20 04:55	11/14/20 05:30	1
13C8 FOSA	95		- 150				11/13/20 04:55	11/14/20 05:30	1
d3-NMeFOSAA	84		- 150				11/13/20 04:55	11/14/20 05:30	1
-NEtFOSAA			- 150				11/13/20 04:55	11/14/20 05:30	1
M2-6:2 FTS	92		- 150				11/13/20 04:55	11/14/20 05:30	1
M2-8:2 FTS	103		- 150				11/13/20 04:55	11/14/20 05:30	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	14		. 7	. 3	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluoropentanoic acid (PFPeA)	8.6		1.9	. 46	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorohexanoic acid (PFHxA)	9.9		1.9	. 55	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluoroheptanoic acid (PFHpA)	3.8		1.9	. 24	ng / L		11/13/20 04:55	11/14/20 05:39	1
Perfluorooctanoic acid (PFOA)	6.6		1.9	. 81	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorononanoic acid (PFNA)	0.63	J	1.9	. 26	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/13/20 04:55	11/14/20 05:39	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 52	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/13/20 04:55	11/14/20 05:39	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 69	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorobutanesulfonic acid (PFBS)	2.7		1.9	. 19	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorohexanesulfonic acid (PFHxS)	3.7		1.9	. 54	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorooctanesulfonic acid (PFOS)	4.7		1.9	. 51	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng/L		11/13/20 04:55	11/14/20 05:39	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 93	ng/L		11/13/20 04:55	11/14/20 05:39	1
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7	1.1	ng/L		11/13/20 04:55	11/14/20 05:39	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	1.2	ng / L		11/13/20 04:55	11/14/20 05:39	1
:2 FTS	ND		. 7	. 4	ng/L		11/13/20 04:55	11/14/20 05:39	1
8:2 FTS	ND		1.9	. 44	ng/L		11/13/20 04:55	11/14/20 05:39	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13 C 4 PFBA	3		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 5$ PFPeA	84		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 2$ PFHxA	83		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 4$ PFHpA	85		-150				11/13/20 04:55	11/14/20 05:39	1
13 C 4 PFOA	92		- 150				11/13/20 04:55	11/14/20 05:39	1
13 C 5 PFNA	9		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 2$ PFDA	92		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 2$ PFUnA	89		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 2$ PFDoA	81		- 150				11/13/20 04:55	11/14/20 05:39	1
$13 C 2$ PFTeDA	9		- 150				11/13/20 04:55	11/14/20 05:39	1
13 C 3 PFBS	89		- 150				11/13/20 04:55	11/14/20 05:39	1
18 O 2 PFHxS	91		- 150				11/13/20 04:55	11/14/20 05:39	1
13 C 4 PFOS	90		-150				11/13/20 04:55	11/14/20 05:39	1
13C8 FOSA	89		- 150				11/13/20 04:55	11/14/20 05:39	1
d3-NMeFOSAA	82		- 150				11/13/20 04:55	11/14/20 05:39	1
-NEtFOSAA	84		-150				11/13/20 04:55	11/14/20 05:39	1
M2-6:2 FTS	102		- 150				11/13/20 04:55	11/14/20 05:39	1
M2-8:2 FTS	90		-150				11/13/20 04:55	11/14/20 05:39	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	10		. 6	. 2	ng/L		11/13/20 04:55	11/14/20 05:49	1
Perfluoropentanoic acid (PFPeA)	7.5		1.9	. 45	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorohexanoic acid (PFHxA)	7.6		1.9	. 54	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluoroheptanoic acid (PFHpA)	3.2		1.9	. 23	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorooctanoic acid (PFOA)	6.5		1.9	. 79	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorononanoic acid (PFNA)	0.80	J	1.9	. 25	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 51	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 68	ng / L		11/13/20 04:55	11/14/20 05:49	1
Perfluorobutanesulfonic acid (PFBS)	2.9		1.9	. 19	ng/L		11/13/20 04:55	11/14/20 05:49	1
Perfluorohexanesulfonic acid (PFHxS)	5.1		1.9	. 53	ng/L		11/13/20 04:55	11/14/20 05:49	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/13/20 04:55	11/14/20 05:49	1
Perfluorooctanesulfonic acid (PFOS)	21		1.9	. 50	ng/L		11/13/20 04:55	11/14/20 05:49	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng/L		11/13/20 04:55	11/14/20 05:49	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 91	ng / L		11/13/20 04:55	11/14/20 05:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 6	1.1	ng / L		11/13/20 04:55	11/14/20 05:49	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 6	1.2	ng/L		11/13/20 04:55	11/14/20 05:49	1
:2 FTS	ND		. 6	. 3	ng/L		11/13/20 04:55	11/14/20 05:49	1
8:2 FTS	ND		1.9	. 43	ng/L		11/13/20 04:55	11/14/20 05:49	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	8		- 150				11/13/20 04:55	11/14/20 05:49	1
13 C 5 PFPeA	89		- 150				11/13/20 04:55	11/14/20 05:49	1
13 C 2 PFHxA	85		- 150				11/13/20 04:55	11/14/20 05:49	1
13 C 4 PFHpA	89		- 150				11/13/20 04:55	11/14/20 05:49	1
13 C 4 PFOA	94		- 150				11/13/20 04:55	11/14/20 05:49	1
13 C 5 PFNA	88		- 150				11/13/20 04:55	11/14/20 05:49	1
$13 C 2$ PFDA	95		- 150				11/13/20 04:55	11/14/20 05:49	1
$13 C 2$ PFUnA	89		- 150				11/13/20 04:55	11/14/20 05:49	1
$13 C 2$ PFDoA	89		- 150				11/13/20 04:55	11/14/20 05:49	1
$13 C 2$ PFTeDA	80		- 150				11/13/20 04:55	11/14/20 05:49	1
13 C 3 PFBS	90		- 150				11/13/20 04:55	11/14/20 05:49	1
1802 PFHxS	93		- 150				11/13/20 04:55	11/14/20 05:49	1
13C4 PFOS	103		- 150				11/13/20 04:55	11/14/20 05:49	1
13C8 FOSA	96		- 150				11/13/20 04:55	11/14/20 05:49	1
d3-NMeFOSAA			- 150				11/13/20 04:55	11/14/20 05:49	1
-NEtFOSAA	86		- 150				11/13/20 04:55	11/14/20 05:49	1
M2-6:2 FTS	106		- 150				11/13/20 04:55	11/14/20 05:49	1
M2-8:2 FTS	101		- 150				11/13/20 04:55	11/14/20 05:49	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	7.7		. 7	. 2	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluoropentanoic acid (PFPeA)	6.7		1.9	. 46	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluorohexanoic acid (PFHxA)	6.4		1.9	. 54	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluoroheptanoic acid (PFHpA)	2.5		1.9	. 23	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluorooctanoic acid (PFOA)	4.4		1.9	. 79	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluorononanoic acid (PFNA)	0.33	J	1.9	. 25	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluorodecanoic acid (PFDA)	ND		1.9	. 29	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	. 51	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	. 68	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluorobutanesulfonic acid (PFBS)	2.9		1.9	. 19	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluorohexanesulfonic acid (PFHxS)	3.8		1.9	. 53	ng / L		11/13/20 04:55	11/14/20 05:58	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	. 18	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluorooctanesulfonic acid (PFOS)	6.7		1.9	. 50	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	. 30	ng/L		11/13/20 04:55	11/14/20 05:58	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	. 92	ng / L		11/13/20 04:55	11/14/20 05:58	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7		ng / L		11/13/20 04:55	11/14/20 05:58	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	1.2	ng/L		11/13/20 04:55	11/14/20 05:58	1
:2 FTS	ND		. 7	. 3	ng/L		11/13/20 04:55	11/14/20 05:58	1
8:2 FTS	ND		1.9	. 43	ng/L		11/13/20 04:55	11/14/20 05:58	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	86		- 150				11/13/20 04:55	11/14/20 05:58	1
13 C 5 PFPeA	87		- 150				11/13/20 04:55	11/14/20 05:58	1
$13 C 2$ PFHxA	90		- 150				11/13/20 04:55	11/14/20 05:58	1
13C4 PFHpA	92		- 150				11/13/20 04:55	11/14/20 05:58	1
13C4 PFOA	98		- 150				11/13/20 04:55	11/14/20 05:58	1
$13 C 5$ PFNA	92		- 150				11/13/20 04:55	11/14/20 05:58	1
$13 C 2$ PFDA	93		- 150				11/13/20 04:55	11/14/20 05:58	1
13C2 PFUnA	94		- 150				11/13/20 04:55	11/14/20 05:58	1
13C2 PFDoA	88		- 150				11/13/20 04:55	11/14/20 05:58	1
13 C 2 PFTeDA	89		- 150				11/13/20 04:55	11/14/20 05:58	1
$13 C 3$ PFBS	95		- 150				11/13/20 04:55	11/14/20 05:58	1
1802 PFHxS	95		- 150				11/13/20 04:55	11/14/20 05:58	1
13C4 PFOS	105		- 150				11/13/20 04:55	11/14/20 05:58	1
13C8 FOSA	104		- 150				11/13/20 04:55	11/14/20 05:58	1
d3-NMeFOSAA	83		- 150				11/13/20 04:55	11/14/20 05:58	1
-NEtFOSAA	96		- 150				11/13/20 04:55	11/14/20 05:58	1
M2-6:2 FTS	98		- 150				11/13/20 04:55	11/14/20 05:58	1
M2-8:2 FTS	98		- 150				11/13/20 04:55	11/14/20 05:58	1

Method: 537 (modified) - Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	6.8		. 6	. 2	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluoropentanoic acid (PFPeA)	5.9		1.8	. 45	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorohexanoic acid (PFHxA)	5.3		1.8	. 53	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluoroheptanoic acid (PFHpA)	2.7		1.8	. 23	ng / L		11/13/20 04:55	11/14/20 06:07	1
Perfluorooctanoic acid (PFOA)	4.1		1.8	. 78	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorononanoic acid (PFNA)	ND		1.8	. 25	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorodecanoic acid (PFDA)	ND		1.8	. 29	ng / L		11/13/20 04:55	11/14/20 06:07	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	. 51	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng / L		11/13/20 04:55	11/14/20 06:07	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	. 67	ng / L		11/13/20 04:55	11/14/20 06:07	1
Perfluorobutanesulfonic acid (PFBS)	2.6		1.8	. 18	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorohexanesulfonic acid (PFHxS)	3.7		1.8	. 52	ng / L		11/13/20 04:55	11/14/20 06:07	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	. 17	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorooctanesulfonic acid (PFOS)	5.8		1.8	. 50	ng/L		11/13/20 04:55	11/14/20 06:07	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	. 29	ng / L		11/13/20 04:55	11/14/20 06:07	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	. 90	ng / L		11/13/20 04:55	11/14/20 06:07	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 6	1.1	ng/L		11/13/20 04:55	11/14/20 06:07	1
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 6	1.2	ng / L		11/13/20 04:55	11/14/20 06:07	1
:2 FTS	ND		. 6	. 3	ng/L		11/13/20 04:55	11/14/20 06:07	1
8:2 FTS	ND		1.8	. 42	ng/L		11/13/20 04:55	11/14/20 06:07	1
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13 C 4 PFBA	91		-150				11/13/20 04:55	11/14/20 06:07	1
$13 C 5$ PFPeA	94		- 150				11/13/20 04:55	11/14/20 06:07	1
13 C 2 PFHxA	96		-150				11/13/20 04:55	11/14/20 06:07	1
13 C 4 PFHpA	97		-150				11/13/20 04:55	11/14/20 06:07	1
$13 C 4$ PFOA	99		-150				11/13/20 04:55	11/14/20 06:07	1
$13 C 5$ PFNA	91		- 150				11/13/20 04:55	11/14/20 06:07	1
$13 C 2$ PFDA	100		- 150				11/13/20 04:55	11/14/20 06:07	1
$13 C 2$ PFUnA	96		- 150				11/13/20 04:55	11/14/20 06:07	1
$13 C 2$ PFDoA	96		- 150				11/13/20 04:55	11/14/20 06:07	1
13 C 2 PFTeDA	86		-150				11/13/20 04:55	11/14/20 06:07	1
$13 C 3$ PFBS	100		- 150				11/13/20 04:55	11/14/20 06:07	1
1802 PFHxS	102		-150				11/13/20 04:55	11/14/20 06:07	1
$13 C 4$ PFOS	102		-150				11/13/20 04:55	11/14/20 06:07	1
13C8 FOSA	108		- 150				11/13/20 04:55	11/14/20 06:07	1
d3-NMeFOSAA	83		- 150				11/13/20 04:55	11/14/20 06:07	1
-NEtFOSAA	90		- 150				11/13/20 04:55	11/14/20 06:07	1
M2-6:2 FTS	108		- 150				11/13/20 04:55	11/14/20 06:07	1
M2-8:2 FTS	106		-150				11/13/20 04:55	11/14/20 06:07	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water
Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFPeA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFNA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
320-66473-1	LFSCW2-Water-11062020	76	87	93	98	96	94	92	96
320-66473-2	LFSCW1-Water-11062020	75	86	89	89	93	86	90	96
320-66473-3	LFW1-Water-11062020	76	85	95	97	93	85	99	93
320-66473-4	LFPCW1-Water-11062020	73	84	83	85	92	79	92	89
320-66473-5	LFPCW2-Water-11062020	78	89	85	89	94	88	95	89
320-66473-6	LFPCW3-Water-11062020	86	87	90	92	98	92	93	94
320-66473-7	LFPCW4-Water-11062020	91	94	96	97	99	91	100	96
LCS 320-431326/2-A	Lab Control Sample	97	96	95	101	98	93	99	97
MB 320-431326/1-A	Method Blank	90	93	93	91	100	92	92	89
		Percent Isotope Dilution Recovery (Acceptance Limits)							
	Client Sample ID	PFDoA (25-150)	PFTDA (25-150)	C3PFBS (25-150)	PFHxS (25-150)	PFOS	PFOSA (25-150)	d3NMFO (25-150)	d5NEFO (25-150)
320-66473-1	LFSCW2-Water-11062020	90	77	95	100	105	99	83	71
320-66473-2	LFSCW1-Water-11062020	90	80	86	95	92	94	79	82
320-66473-3	LFW1-Water-11062020	85	83	91	94	95	95	84	77
320-66473-4	LFPCW1-Water-11062020	81	79	89	91	90	89	82	84
320-66473-5	LFPCW2-Water-11062020	89	80	90	93	103	96	76	86
320-66473-6	LFPCW3-Water-11062020	88	89	95	95	105	104	83	96
320-66473-7	LFPCW4-Water-11062020	96	86	100	102	102	108	83	90
LCS 320-431326/2-A	Lab Control Sample	108	105	95	102	102	102	88	90
MB 320-431326/1-A	Method Blank	91	104	92	96	104	97	89	104
		Percent Isotope Dilution Recovery (Acceptance Limits)							
		M262FTS	M282FTS						
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
320-66473-1	LFSCW2-Water-11062020	99	95						
320-66473-2	LFSCW1-Water-11062020	95	82						
320-66473-3	LFW1-Water-11062020	92	103						
320-66473-4	LFPCW1-Water-11062020	102	90						
320-66473-5	LFPCW2-Water-11062020	106	101						
320-66473-6	LFPCW3-Water-11062020	98	98						
320-66473-7	LFPCW4-Water-11062020	108	106						
LCS 320-431326/2-A	Lab Control Sample	88	106						
MB 320-431326/1-A	Method Blank	89	92						
rrogate Legend									
PFBA $=13 \mathrm{C} 4 \mathrm{PFBA}$									
PFPeA $=13 \mathrm{C} 5 \mathrm{PFPeA}$									
$\mathrm{PFHxA}=13 \mathrm{C} 2 \mathrm{PFHxA}$									
C4PFHA $=13 \mathrm{C} 4 \mathrm{PFHpA}$									
$\mathrm{PFOA}=13 \mathrm{C} 4 \mathrm{PFOA}$									
PFNA $=13 \mathrm{C} 5$ PFNA									
PFDA $=13 \mathrm{C} 2 \mathrm{PFDA}$									
PFUnA $=13 \mathrm{C} 2 \mathrm{PFUnA}$									
PFDoA $=13 \mathrm{C} 2 \mathrm{PFDoA}$									
PFTDA $=13 \mathrm{C} 2 \mathrm{PFTeDA}$									
C3PFBS $=13 \mathrm{C} 3 \mathrm{PFBS}$									
PFHxS $=1802$ PFHxS									
PFOS $=13 \mathrm{C} 4$ PFOS									
PFOSA $=13 C 8$ FOSA									

Isotope Dilution Summary

Client: New York State D.E.C.
Project/Site: Norlite - Cohoes \#401041
d3NMFOS = d3-NMeFOSAA
d5NEFOS $=\mathrm{d} 5-\mathrm{NEtFOSAA}$
M262FTS $=$ M2-6:2 FTS
M282FTS $=$ M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-431326/1-A
Matrix: Water
Analysis Batch: 431580

Analyte	$\begin{aligned} & \text { MB } \\ & \text { It } \end{aligned}$	MB Qualifier	L	MDL	Unit
Perfluorobutanoic acid (PFBA)	ND		g. 0	. 4	nL/5
Perfluoro8entanoic acid (PFPeA)	ND		. 0	. 49	nL/5
PerfluoroheTanoic acid (PFx TA)	ND		. 0	gU	$\mathrm{nL} / 5$
Perfluorohe8tanoic acid (PFx 8A)	ND		. 0	2 g	nL/5
Perfluorooctanoic acid (PFHA)	ND		. 0	0.49	$\mathrm{nL} / 5$
Perfluorononanoic acid (PFNA)	ND		. 0	. 27	$\mathrm{nL} / 5$
Perfluorodecanoic acid (PFDA)	ND		. 0	31	nL/5
Perfluoroundecanoic acid (PFp nA)	ND		. 0	1.1	$\mathrm{nL} / 5$
Perfluorododecanoic acid (PFDoA)	ND		. 0	.gg	nL/5
Perfluorotridecanoic acid (PFOriA)	ND		. 0	1.3	nL/5
Perfluorotetradecanoic acid (PFœA)	ND		. 0	. 73	$\mathrm{nL} / 5$
Perfluorobutanesulfonic acid (PFBS)	ND		. 0	20	nL/5
PerfluoroheTanesulfonic acid (PFx TS)	ND		. 0	. 97	nL/5
Perfluorohe8tanesulfonic Acid (PFx 8S)	ND		. 0	. 19	nL/5
Perfluorooctanesulfonic acid (PFHS)	ND		. 0	. 94	$\mathrm{nL} / 5$
Perfluorodecanesulfonic acid (PFDS)	ND		. 0	. 32	nL/5
Perfluorooctanesulfonamide (FHSA)	ND		. 0	. 90	nL/5
N -methyl8erfluorooctanesulfonamidoa cetic acid (NMeFHSAA)	ND		g. 0	1.2	nL/5
N -ethyl8erfluorooctanesulfonamidoac etic acid (NEtFHSAA)	ND		g. 0	1.3	nL/5
6:2 FOS	ND		g. 0	. 9	$\mathrm{nL} / 5$
U. 2 FOS	ND		. 0	46	nL/5

D

Prepared	Analyzed	Dil Fac
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1
11/13/20 04:gg	11/14/20 03:04	1

Prepared	Analyzed	Fac
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	$11014063 / 64$	1
110130 64/55	$11014063 / 64$	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1
110130 64/55	110140 63/64	1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-431326/2-A
Matrix: Water
Analysis Batch: 431580

Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier
Perfluorobutanoic acid (PFBA)	. 0	. 2	
Perfluoro8entanoic acid (PFPeA)	. 0	39.9	
PerfluoroheTanoic acid (PFx TA)	. 0	. 9	
Perfluorohe8tanoic acid (PFx 8A)	. 0	. 3	
Perfluorooctanoic acid (PFHA)	. 0	39.0	
Perfluorononanoic acid (PFNA)	. 0	7.4	
Perfluorodecanoic acid (PFDA)	. 0	3.0	
Perfluoroundecanoic acid (PFpnA)	. 0	39.9	
Perfluorododecanoic acid (PFDoA)	. 0	39.3	
Perfluorotridecanoic acid (PFORiA)	. 0	. 0	

Perfluorobutanesulfonic acid

(PFBS)

$\begin{array}{lll}\text { Perfluorohe Tanesulfonic acid } & 36.4 & 37.9 \\ \text { (PFx TS) } & & \end{array}$

Perfluorohe8tanesulfonic Acid	3 U .1	3.2
(PFx 8S)		

Perfluorooctanesulfonic acid
37.1
1.6
(PFHS)
Perfluorodecanesulfonic acid
(PFDS)
Perfluorooctanesulfonamide
(FHSA)
N-methyl8erfluorooctanesulfona
midoacetic acid (NMeFHSAA)
N -ethyl8erfluorooctanesulfonami
doacetic acid (NEtFHSAA)

6:2 FOS	37.9	37.3
$U:$ FOS	$3 U .3$	37.3

LCS LCS

Isotope Dilution	\%Recovery Qualifier	Limits
13 C 4 PFBA	S	-156
$13 C 5$ PFP:	T	- 156
13 C 2 PFe 8		- 156
13 C 4 PFeH	161	-156
$13 C 4$ PFx	0	- 156
13 C 5 PF9	3	-156
$13 \mathrm{C2} \mathrm{PFp}$		-156
$13 C 2$ PFND	S	- 156
$13 \mathrm{C} 2 \mathrm{PFp} U$	160	- 156
$13 C 2$ PFn: p	165	-156
13C3 PFBo		- 156
10×2 PFe 80	162	-156
13 C 4 PFX 0	162	-156
13COFx 0	162	-156
d3-9 M: Fx o	∞	-156
d5-9 EtFxo		-156

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-431326/2-A
Matrix: Water
Analysis Batch: 431580
LCS LCS
Isotope Dilution M2-T/2 Fno M2-O2 Fno

-

䨋
overy Qual

\%Recovery			
	Qualifier		
$16 T$			Limits
:---			
-156			
-156			

Prep Type: Total/NA
Prep Batch: 431326

LCMS

Prep Batch: 431326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66473-1	LFSCW2-Water-11062020	Total/NA	Water	3535	
320-66473-2	LFSCW1-Water-11062020	Total/NA	Water	3535	
320-66473-3	LFW1-Water-11062020	Total/NA	Water	3535	
320-66473-4	LFPCW1-Water-11062020	Total/NA	Water	3535	
320-66473-5	LFPCW2-Water-11062020	Total/NA	Water	3535	
320-66473-6	LFPCW3-Water-11062020	Total/NA	Water	3535	
320-66473-7	LFPCW4-Water-11062020	Total/NA	Water	3535	
MB 320-431326/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-431326/2-A	Lab Control Sample	Total/NA	Water	3535	

Analysis Batch: 431580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-66473-1	LFSCW2-Water-11062020	Total/NA	Water	537 (modified)	31326
320-66473-2	LFSCW1-Water-11062020	Total/NA	Water	537 (modified)	31326
320-66473-3	LFW1-Water-11062020	Total/NA	Water	537 (modified)	31326
320-66473-4	LFPCW1-Water-11062020	Total/NA	Water	537 (modified)	31326
320-66473-5	LFPCW2-Water-11062020	Total/NA	Water	537 (modified)	31326
320-66473-6	LFPCW3-Water-11062020	Total/NA	Water	537 (modified)	31326
320-66473-7	LFPCW4-Water-11062020	Total/NA	Water	537 (modified)	31326
MB 320-431326/1-A	Method Blank	Total/NA	Water	537 (modified)	31326
LCS 320-431326/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	31326

Client: New k State D.E.C.
Project/Site: Norlite - Cohoes \#401041
Client Sample ID: LFSCW2-Water-11062020
Lab Sample ID: 320-66473-1
Date Collected: 11/06/20 09:40
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			263.4 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 05:12	RS1	TAL SAC

Client Sample ID: LFSCW1-Water-11062020
Date Collected: 11/06/20 09:55
Lab Sample ID: 320-66473-2
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			259.3 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 05:21	RS1	TAL SAC

Client Sample ID: LFW1-Water-11062020
Date Collected: 11/06/20 10:55
Lab Sample ID: 320-66473-3
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	nalyst	Lab
Ttal/NA	Prep	3535			266.3 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 05:30	RS1	TAL SAC

Client Sample ID: LFPCW1-Water-11062020
Date Collected: 11/06/20 11:30
Lab Sample ID: 320-66473-4
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			263.9 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 05:39	RS1	TAL SAC

Client Sample ID: LFPCW2-Water-11062020 Lab Sample ID: 320-66473-5
Date Collected: 11/06/20 12:10
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			270.2 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 05:49	RS1	TAL SAC

Client Sample ID: LFPCW3-Water-11062020 Lab Sample ID: 320-66473-6
Date Collected: 11/06/20 12:50
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	${ }^{\text {Dil }}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			267.7 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 05:58	RS1	TAL SAC

Lab Chronicle
Client: New k State D.E.C.
Job ID: 320-66473-1
Project/Site: Norlite - Cohoes \#401041
Client Sample ID: LFPCW4-Water-11062020 Lab Sample ID: 320-66473-7
Date Collected: 11/06/20 13:20
Matrix: Water
Date Received: 11/07/20 09:25

Prep Type	Batch Typ	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			271.5 mL	10.0 mL	431326	11/13/20 04:55	LB	TAL SAC
Ttal/NA	Analysis	537 (modified)		1			431580	11/14/20 06:07	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: New k State D.E.C.
Job ID: 320-66473-1 Project/Site: Norlite - Cohoes \#401041

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.
$\frac{\text { Authority }}{\text { ew k }} \frac{\text { Program }}{\text { ELAP }} \frac{\text { Identification Number }}{11666} \frac{\text { Expiration Date }}{04-01-21}$

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
537 (modified)	3535	Water	6:2 FTS
537 (modified)	3535	Water	8:2 FTS
537 (modified)	3535	Water	-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)
537 (modified)	3535	Water	-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)
537 (modified)	3535	Water	Perfluorobutanesulfonic acid (PFBS)
537 (modified)	3535	Water	Perfluorobutanoic acid (PFBA)
537 (modified)	3535	Water	Perfluorodecanesulfonic acid (PFDS)
537 (modified)	3535	Water	Perfluorodecanoic acid (PFDA)
537 (modified)	3535	Water	Perfluorododecanoic acid (PFDoA)
537 (modified)	3535	Water	Perfluoroheptanesulfonic Acid (PFHpS)
537 (modified)	3535	Water	Perfluoroheptanoic acid (PFHpA)
537 (modified)	3535	Water	Perfluorohexanesulfonic acid (PFHxS)
537 (modified)	3535	Water	Perfluorohexanoic acid (PFHxA)
537 (modified)	3535	Water	Perfluorononanoic acid (PFNA)
537 (modified)	3535	Water	Perfluorooctanesulfonamide (FOSA)
537 (modified)	3535	Water	Perfluorooctanesulfonic acid (PFOS)
537 (modified)	3535	Water	Perfluorooctanoic acid (PFOA)
537 (modified)	3535	Water	Perfluoropentanoic acid (PFPeA)
537 (modified)	3535	Water	Perfluorotetradecanoic acid (PFTeA)
537 (modified)	3535	Water	Perfluorotridecanoic acid (PFT iA)
537 (modified)	3535	Water	Perfluoroundecanoic acid (PFUnA)

Method Summary

Method	Method Description	Protocol	
537 (modified)	Fluorinated Alkyl Substances	EPA	SAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	

Protocol References:

EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-66473-1	LFSCW2-Water-11062020	Water	11/06/20 09:40	11/07/20 09: 5	
320-66473-2	LFSCW1-Water-11062020	Water	11/06/20 09:55	11/07/20 09: 5	
320-66473-3	LFW1-Water-11062020	Water	11/06/20 10:55	11/07/20 09:25	
320-66473-4	LFPCW1-Water-11062020	Water	11/06/20 11:30	11/07/20 09: 5	
320-66473-5	LFPCW2-Water-11062020	Water	11/06/20 12:10	11/07/20 09: 5	
320-66473-6	LFPCW3-Water-11062020	Water	11/06/20 12:50	11/07/20 09: 5	
320-66473-7	LFPCW4-Water-11062020	Water	11/06/20 13:20	11/07/20 09: 5	

Eurofins TestAmerica, Edison

New Durham Road
Edison, NJ 08817
Albany
Chain of Custody Record
\%eurofins Environmient Testing

Phone: 732-549-3900 Fax: 732-549-3679

Login Sample Receipt Checklist

Client: New k State D.E.C.

Login Number: 66473
List Number: 1
Creator: Oropeza, Salvador

Question
Radioactivity either was not measured or, if measured, is at or below background he cooler's custody seal, if present, is intact.
he cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler emperature is acceptable.
Cooler emperature is acceptable. ue
Cooler emperature is recorded. ue
COC is present.
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC? ue
There are no discrepancies between the sample IDs on the containers and ue the COC.
Samples are received within Holding ime (Excluding tests with immediate HTs)..
Sample containers have legible labels. ue
Containers are not broken or leaking. ue
Sample collection date/times are provided. ue
Appropriate sample containers are used. ue
Sample bottles are completely filled. ue
Sample Preservation Verified
There is sufficient vol. for all requested analyses, incl. any equested ue MS/MSDs
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}$ (1/4") in ue diameter.
If necessary, staff have been informed of any short hold time o quick A ue needs
Multiphasic samples are not present. ue
Samples do not require splitting or compositing. ue
Sampling Company provided. ue
Samples received within 48 hours of sampling. ue
Samples requiring field filtration have been filtered in the field. ue
Chlorine Residual checked. /A

Answer
Comment
ue
ue

IA
List Source: Eurofins T stAmerica, Sacramento
ue
ue
1478558
ue
ue
ue
e
ue

ue

ue

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison
777 New Durham Road
Edison, NJ 08817
Tel: (732)549-3900
Laboratory Job ID: 460-221262-1
Client Project/Site: Norlite - Cohoes \#401041
Revision: 1
For:
New York State D.E.C.
625 Broadway
Division of Environmental Remediation
Albany, New York 12233-7014
Attn: Lynn M Winterberger

Authorized for release by: 1/22/2021 9:46:48 AM
Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

Review your project results through TotalAccess

Have a Question?

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at:

www.eurofinsus.com/Env

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 5
Detection Summary 8
Client Sample Results 24
Isotope Dilution Summary 72
QC Sample Results 77
QC Association Summary 114
Lab Chronicle 125
Certification Summary 138
Method Summary 140
Sample Summary 141
Chain of Custody 142
Field Data Sheets 153
Receipt Checklists 154

Qualifiers

LCMS

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
${ }^{*} 5$	Isotope dilution analyte is outside acceptance limits.
B	Compound was found in the blank and sample.
F1	MS and/or MSD recovery exceeds control limits.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
H	Sample was prepped or analyzed beyond the specified holding time
I	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals
Qualifier \quad Qualifier Description

4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not F1
applicable.	
F3	MS and/or MSD recovery exceeds control limits.
F5	Duplicate RPD exceeds the control limit
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
eneral Chemistry	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
H	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.

ossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

ossary (Continued)

Abbreviation	
RL	These commonly used abbreviations may or may not be present in this report.
RPD	
Reporting Limit or Requested Limit (Radiochemistry)	
TEF	
TEQ	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

ID: 460-221262-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Narrative 460-221262-1

Revision (1)

The report is being revised to add an NCM for $\mathrm{Cr}+6$ soils. Since the first set of matrix spikes were outside limits, all samples in the batch ere rerun per the method.

Receipt

The samples were received on 10/23/2020 10:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were $3.8^{\circ} \mathrm{C}$ and $4.5^{\circ} \mathrm{C}$.

Receipt Exceptions

The following samples were received outside of holding time for Hexavalent Chromium: TB1-102120 (460-221262-2), Equipment Blank 102120 (460-221262-25) and Field Blank 102120 (460-221262-26).

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

LCMS

Method 537 (modified): The concentration of Perfluorooctanoic acid (PFOA) associated with the following samples exceeded the instrument calibration range: (460-221392-F-10-A), (460-221392-F-10-B MS) and (460-221392-F-10-C MSD). These analytes have been qualified; however, the peaks did not saturate the instrument detector. The samples were diluted within calibration range, and both sets of data were reported.

Method 537 (modified): Due to the high concentration of Perfluorooctanoic acid (PFOA), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-426004 and analytical batch 320-426308 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method 537 (modified): The method blank for preparation batch 320-426093 and analytical batch 320-427158 contained Perfluorooctanesulfonic acid (PFOS) above the reporting limit (RL). Associated sample was not re-extracted because results we e greater than 10X the value found in the method blank.

Method 537 (modified): The method blank for preparation batch 320-426093 contained Perfluorooctanesulfonic acid (PFOS) above the reporting limit (RL). The sample associated with this method blank did not contain the target compound; therefore, re-extraction of sample ere not performed.

Method 537 (modified): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit for $13 C 2$ PFTeDA: (460-221262-B-12-C MSD). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, hich is achieved f or all IDA in the sample.

Method 537 (modified): The matrix spike/ matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-426094 and analytical batch 320-427508 were outside control limits for Perfluoroundecanoic acid (PFUnA). Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analytes were outside of the established ratio limits. The qualitative identification of the analytes have some degree of uncertainty. However, analyst judgment was used to positively identify the analytes.

Method 537 (modified): The matrix spike / matrix spike duplicate (MS/MSD) recoveries for Perfluoroundecanoic acid (PFUnA)prepa ation batch 320-426801 and analytical batch 320-427738 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify the analyte. (CCVL 320-428679/2)

ID: 460-221262-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS in the following samples: PC1-SOIL-102120 (460-221262-1), PC2-SOIL-102120 (460-221262-3) and S2-SOIL-102120 (460-221262-8). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-8:2 FTS in the following samples: S15-SOIL-102120 (460-221262-4), S13-SOIL-102120 (460-221262-6), S13-SOIL-102120 (460-221262-6[MS]) and S13-SOIL-102120 (460-221262-6[MSD]). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): The "l" qualifier means the transition mass ratio for the indicated analyte(s) was outside of the established ratio limits. The qualitative identification of the analyte(s) has/have some degree of uncertainty. However, analyst judgement was used to positively identify the analyte(s).
PC1-SOIL-102120 (460-221262-1)
Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for several IDA in the following sample: S2-SOIL-102120 (460-221262-8). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): The following sample exhibited elevated noise or matrix interference for Perfluorobutanesulfonic acid (PFBS) causing elevation of the reporting limit. The reporting limit has been raised to be equal to the matrix and a "G" qualifier applied.
PC1-SOIL-102120 (460-221262-1)
Method 537 (modified): The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-426095 and analytical batch 320-427153 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 537 (modified): The Isotope Dilution Analyte (IDA) recovery associated with the following laboratory control sample is below the method recommended limit for d5-NEtFOSAA: (LCS 320-426095/2-A). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, hich is achieved f or all IDA in the sample.

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify the analyte. S9A-SOIL-102120 (460-221262-23)

Method 537 (modified): The laboratory control sample (LCS) for preparation batch 320-426095 and analytical batch 320-427153 recovered outside control limits for Perfluorodecanesulfonic acid (PFDS) and Perfluorooctanesulfonic acid (PFOS). The associated samples were re-extracted outside holding time. Both sets of data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method 7196A: The matrix spike soluble/matrix spike insoluble (MSS/MSI) recoveries for batch 736736, which was a re-prep of batch 736100, were outside control limits due to sample matrix. The associated laboratory control sample (LCSS/LCSI) recoveries met ac eptance criteria. Both sets of data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method SHAKE: The following samples are light yellow color after final volume: PC1-SOIL-102120 (460-221262-1), PC2-SOIL-102120
(460-221262-3), S14-SOIL-102120 (460-221262-5), S13-SOIL-102120 (460-221262-6), S13-SOIL-102120 (460-221262-6[MS]), S13-SOIL-102120 (460-221262-6[MSD]) and S3-SOIL-102120 (460-221262-10).

Method SHAKE: The samples, S9A-SOIL-102120 (460-221262-23), S9B-SOIL-102120 (460-221262-24), S9B-SOIL-102120
(460-221262-24[MS]), S9B-SOIL-102120 (460-221262-24[MSD]), S5-S il-102120 (460-221262-27) and S10-Soil-102120

ID: 460-221262-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

(460-221262-28), were yellow after extraction and final volume.
Method SHAKE: The following samples were yellow after extraction/final volume: S1-SOIL-102120 (460-221262-15), S6A-SOIL-102120 (460-221262-17), S6B-SOIL-102120 (460-221262-18), S7A-SOIL-102120 (460-221262-19), S7B-SOIL-102120 (460-221262-20), S8A-SOIL-102120 (460-221262-21) and S8B-SOIL-102120 (460-221262-22).

Method SHAKE: The following samples were yellow after final volume/extraction: PC1-SOIL-102120 (460-221262-1), PC2-SOIL-102120 (460-221262-3), S15-SOIL-102120 (460-221262-4), S14-SOIL-102120 (460-221262-5), S13-SOIL-102120 (460-221262-6), S13-SOIL-102120 (460-221262-6[MS]), S13-SOIL-102120 (460-221262-6[MSD]) and S3-SOIL-102120 (460-221262-10).

Method SHAKE: The following samples were yellow after final volume/extraction: S9A-SOIL-102120 (460-221262-23), S9B-SOIL-102120 (460-221262-24), S9B-SOIL-102120 (460-221262-24[MS]), S9B-SOIL-102120 (460-221262-24[MSD]), S5-Soil-102120 (460-221262-27) and S10-Soil-102120 (460-221262-28).

Method SHAKE: The following samples were pale yellow after extraction/final volume: S9A-SOIL-102120 (460-221262-23), S9B-SOIL-102120 (460-221262-24), S9B-SOIL-102120 (460-221262-24[MS]), S9B-SOIL-102120 (460-221262-24[MSD]), S5-Soil-102120 (460-221262-27) and S10-Soil-102120 (460-221262-28).

Method SHAKE: The following samples were re-prepared outside of preparation holding time due to very low \%R in the MB and LCS and the QC re-injects did not match: S9A-SOIL-102120 (460-221262-23), S9B-SOIL-102120 (460-221262-24), S9B-SOIL-102120 (460-221262-24[MS]), S9B-SOIL-102120 (460-221262-24[MSD]), S5-S il-102120 (460-221262-27) and S10-Soil-102120 (460-221262-28).

Method SHAKE: The following samples are yellow after final voluming: S9A-SOIL-102120 (460-221262-23), S9B-SOIL-102120 (460-221262-24), S9B-SOIL-102120 (460-221262-24[MS]), S9B-SOIL-102120 (460-221262-24[MSD]), S5-Soil-102120 (460-221262-27) and S10-Soil-102120 (460-221262-28).

Method SHAKE: The following samples were re-prepared outside of preparation holding time due to PFOS hit in the method blank and high LCS recoveries for several analytes: S9A-SOIL-102120 (460-221262-23), S9B-SOIL-102120 (460-221262-24), S9B-SOIL-102120 (460-221262-24[MS]), S9B-SOIL-102120 (460-221262-24[MSD]), S5-S il-102120 (460-221262-27) and S10-Soil-102120 (460-221262-28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	26	J	． 33	． 046	ug／Kg		效	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 20	J	． 33	13	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 27	J	． 33	． 069	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHPA）	． 18	J	． 33	． 048	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 63		． 33	14	ug／Kg		察	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 27	J	． 33	． 059	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 37		． 33	． 036	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 18	J	． 33	． 059	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 21	J	． 33	． 051	$\mathrm{ug} / \mathrm{Kg}$		就	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 0		． 83	． 33	ug／Kg		察	537 （modified）	Total／NA

Client Sample ID：TB1－102120

Lab Sample ID：460－221262－2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Sodium	8	J	5000	83.8	ug／L		D	Total／NA
Zinc	． 4	J	30.0	． 2	ug／L		D	Total／NA

Client Sample ID：PC2－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 54		． 24	． 033	ug／Kg		㲾	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 22	J	． 24	． 091	ug／Kg		效	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 20	J	． 24	． 050	ug／Kg		效	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 23	J	． 24	． 034	ug／Kg		效	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 75		． 24	． 10	ug／Kg		械	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 25		． 24	． 043	ug／Kg		械	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 15	J	． 24	． 026	ug／Kg		㪟	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 1	J	． 24	． 043	ug／Kg		察	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 053	J	． 24	． 037	ug／Kg		浐	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 3		． 59	． 24	$\mathrm{ug} / \mathrm{Kg}$		浐	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 078	J	． 24	． 046	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA

Client Sample ID：S15－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 28	J	． 30	． 043	ug／Kg	\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 19	J	． 30	． 12	ug／Kg	\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 27	J	． 30	． 064	ug／Kg	\％	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 26	J	． 30	． 044	ug／Kg	\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 88		． 30	． 13	ug／Kg	¢	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 37		． 30	． 055	ug／Kg	\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 35		． 30	． 033	ug／Kg	\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 27	J	． 30	． 055	ug／Kg	¢	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 15	J	． 30	． 10	ug／Kg	4	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 089	J	． 30	． 077	ug／Kg	\％	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 046	J	． 30	． 038	ug／Kg	\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 2		． 76	． 30	$\mathrm{ug} / \mathrm{Kg}$	5	537 （modified）	Total／NA
Aluminum	300		． 9	8.8	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Arsenic	7.8		4.6	． 95	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Barium	52		． 9	． 0	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Beryllium	． 93		． 62	． 099	$\mathrm{mg} / \mathrm{Kg}$		D	Total／NA
Cadmium	． 90	J	． 2	． 1	$\mathrm{mg} / \mathrm{Kg}$		D	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S15－SOIL－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	5940		550	4	mg／Kg		京	D	Total／NA
Chromium	． 5		3.1	． 2	$\mathrm{mg} / \mathrm{Kg}$		䎟	D	Total／NA
Cobalt	． 1		5.5	． 86	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Copper	34.3		7.7	． 9	$\mathrm{mg} / \mathrm{Kg}$		茹	D	Total／NA
Iron	37800		46.4	31.9	$\mathrm{mg} / \mathrm{Kg}$		率	D	Total／NA
Lead	35.8		3.1	． 50	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Magnesium	780		550	5	$\mathrm{mg} / \mathrm{Kg}$		茹	D	Total／NA
Manganese	775		4.6	． 35	$\mathrm{mg} / \mathrm{Kg}$		站	D	Total／NA
Nickel	34.1		． 4	． 81	$\mathrm{mg} / \mathrm{Kg}$		浆	D	Total／NA
Potassium	3490		550	95.0	$\mathrm{mg} / \mathrm{Kg}$		等	D	Total／NA
Sodium	3	J	550	35	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Vanadium	38.0		5.5	． 4	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Zinc	41		9.3	． 7	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Mercury	． 032		． 025	． 0058	$\mathrm{mg} / \mathrm{Kg}$		交	7471B	Total／NA

Client Sample ID：S14－SOIL－102120

Lab Sample ID：460－221262－5

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	45		． 25	． 034	ug／Kg		峧	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 24	J	． 25	． 094	$\mathrm{ug} / \mathrm{Kg}$		洨	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 27		． 25	． 052	$\mathrm{ug} / \mathrm{Kg}$		㓎	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHPA）	． 24	J	． 25	． 036	$\mathrm{ug} / \mathrm{Kg}$		为	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 1		． 25	． 1	$\mathrm{ug} / \mathrm{Kg}$		效	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 35		． 25	． 044	$\mathrm{ug} / \mathrm{Kg}$			537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 27		． 25	． 027	$\mathrm{ug} / \mathrm{Kg}$		㲾	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 20	J	． 25	． 044	ug／Kg		婦	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 1	J	． 25	． 082	$\mathrm{ug} / \mathrm{Kg}$		妾	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 090	J	． 25	． 063	$\mathrm{ug} / \mathrm{Kg}$		囦	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 044	J	． 25	． 031	ug／Kg		洮	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 5		． 25	． 038	$\mathrm{ug} / \mathrm{Kg}$		放	537 （modified）	Total／NA
Perfluoroheptanesulfonic Acid （PFHpS）	． 047	J	． 25	． 043	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	9.8		． 61	． 25	$\mathrm{ug} / \mathrm{Kg}$		等	537 （modified）	Total／NA
Aluminum	800		47.1	． 7	$\mathrm{mg} / \mathrm{Kg}$		娱	D	Total／NA
Antimony	． 7	J	4.7	． 4	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Arsenic	8.1		3.5	． 72	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Barium			47.1	4.5	$\mathrm{mg} / \mathrm{Kg}$		㲾	D	Total／NA
Beryllium	． 77		． 47	． 075	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cadmium	． 88	J	． 94	． 081	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Calcium	8900		80	87.1	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Chromium	． 7		． 4	． 7	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Cobalt	3.1		． 8	． 65	$\mathrm{mg} / \mathrm{Kg}$		娱	D	Total／NA
Copper	41.2		5.9	． 5	$\mathrm{mg} / \mathrm{Kg}$		洜	D	Total／NA
Iron	32400		35.4	4.3	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Lead	46.5		． 4	． 38	$\mathrm{mg} / \mathrm{Kg}$		等	D	Total／NA
Magnesium	5700		80	79.8	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Manganese	98		3.5	． 27	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Nickel	． 8		9.4	． 62	$\mathrm{mg} / \mathrm{Kg}$		㲾	D	Total／NA
Potassium	410		80	72.4	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Vanadium	9.6		． 8	． 1	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Zinc			7.1	． 3	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Mercury	． 10		． 021	． 0049	$\mathrm{mg} / \mathrm{Kg}$		峧	7471B	Total／NA

[^10]Client Sample ID：S13－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 90		． 24	． 034	ug／Kg		珓	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 6		． 24	． 093	ug／Kg		峧	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 1		． 24	． 050	ug／Kg		囦	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHPA）	． 0		． 24	． 035	$\mathrm{ug} / \mathrm{Kg}$		婦	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 1		． 24	． 10	$\mathrm{ug} / \mathrm{Kg}$		产	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 2		． 24	． 043	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	1		24	． 026	$\mathrm{ug} / \mathrm{Kg}$		放	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 86		． 24	． 043	ug／Kg		㓎	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 28		． 24	． 081	$\mathrm{ug} / \mathrm{Kg}$		桇	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 1	J	． 24	． 061	$\mathrm{ug} / \mathrm{Kg}$		妾	537 （modified）	Total／NA
Perfluorotetradecanoic acid（PFTeA）	． 066	J	． 24	． 065	$\mathrm{ug} / \mathrm{Kg}$		弶	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 65		． 60	． 24	ug／Kg		突	537 （modified）	Total／NA
：2 FTS	． 23	J	4	． 18	$\mathrm{ug} / \mathrm{Kg}$		齐	537 （modified）	Total／NA
8：2 FTS	． 70	J	． 4	． 30	ug／Kg		安	537 （modified）	Total／NA
Aluminum	3100		51.0	7.2	$\mathrm{mg} / \mathrm{Kg}$		擦	D	Total／NA
Arsenic	5.1		3.8	． 78	$\mathrm{mg} / \mathrm{Kg}$		＊	D	Total／NA
Barium			51.0	4.9	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Beryllium	． 56		． 51	082	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Cadmium	． 57	J	． 0	． 088	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Calcium			70	94.2	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Chromium	． 9		． 5	． 8	$\mathrm{mg} / \mathrm{Kg}$		聟	D	Total／NA
Cobalt	7.9	J	． 7	.71	$\mathrm{mg} / \mathrm{Kg}$		齐	D	Total／NA
Copper	． 2		． 4	． 6	$\mathrm{mg} / \mathrm{Kg}$		㲾	D	Total／NA
Iron	3300		38.2	． 3	$\mathrm{mg} / \mathrm{Kg}$		奖	D	Total／NA
Lead	． 1		． 5	.41	$\mathrm{mg} / \mathrm{Kg}$		䎟	D	Total／NA
Magnesium	4330		70	86.3	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Manganese	893		3.8	． 29	$\mathrm{mg} / \mathrm{Kg}$		洜	D	Total／NA
Nickel	9.6		． 2	． 67	$\mathrm{mg} / \mathrm{Kg}$		珓	D	Total／NA
Potassium	70	J	70	78.3	$\mathrm{mg} / \mathrm{Kg}$		变	D	Total／NA
Sodium	512	J	70		$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Vanadium	． 2		． 7	． 2	$\mathrm{mg} / \mathrm{Kg}$		齐	D	Total／NA
Zinc			7.6	． 4	$\mathrm{mg} / \mathrm{Kg}$		珓	D	Total／NA
Mercury	． 039		． 021	． 0050	$\mathrm{mg} / \mathrm{Kg}$		峧	7471B	Total／NA

Client Sample ID：S16－SOIL－102120

Lab Sample ID：460－221262－7

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	45		． 24	． 034	ug／Kg		\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 17	J	． 24	． 092	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 19	J	． 24	． 050	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 19	J	． 24	． 035	ug／Kg		＋	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 52		． 24	． 10	ug／Kg		\％	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 29		． 24	． 043	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 21	J	． 24	． 026	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 14	J	． 24	． 043	ug／Kg		\％	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 089	J	． 24	． 080	ug／Kg		\％	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 1	J	24	． 030	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 65		． 60	． 24	ug／Kg		\％	537 （modified）	Total／NA
Aluminum	5900		47.7	． 8	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Arsenic	4		3.6	． 73	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Barium			47.7	4.6	$\mathrm{mg} / \mathrm{Kg}$		3）	D	Total／NA

Client Sample ID：S16－SOIL－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Beryllium	． 68		． 48	． 076	mg／Kg	涼	D	Total／NA
Cadmium	． 52	J	． 95	． 082	$\mathrm{mg} / \mathrm{Kg}$	安	D	Total／NA
Calcium	4010		90	88.2	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Chromium	8.9		． 4	． 7	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Cobalt	． 7		． 9	． 66	$\mathrm{mg} / \mathrm{Kg}$	交	D	Total／NA
Copper	4.4		． 0	． 5	mg／Kg	管	D	Total／NA
Iron	8700		35.8	4.6	$\mathrm{mg} / \mathrm{Kg}$	为	D	Total／NA
Lead	7.8		． 4	.39	$\mathrm{mg} / \mathrm{Kg}$	茂	D	Total／NA
Magnesium	5120		90	80.8	$\mathrm{mg} / \mathrm{Kg}$	䢒	D	Total／NA
Manganese	9		3.6	． 27	$\mathrm{mg} / \mathrm{Kg}$	苑	D	Total／NA
Nickel	3.9		9.5	． 63	$\mathrm{mg} / \mathrm{Kg}$	安	D	Total／NA
Potassium	80		90	73.3	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Vanadium	8.1		． 9	． 1	$\mathrm{mg} / \mathrm{Kg}$	品	D	Total／NA
Zinc	79.2		7.2	3	$\mathrm{mg} / \mathrm{Kg}$	安	D	Total／NA
Mercury	． 018	J	． 020	． 0048	$\mathrm{mg} / \mathrm{Kg}$	苑	7471B	Total／NA

Client Sample ID：S2－SOIL－102120

Lab Sample ID：460－221262－8

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 59		． 29	． 040	ug／Kg		产	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 37		． 29	0.1	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 32		． 29	． 061	ug／Kg		\＄	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 30		29	． 042	$\mathrm{ug} / \mathrm{Kg}$		\＄	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 95		． 29	． 12	ug／Kg		产	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 45		． 29	． 052	ug／Kg		相	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 32		． 29	． 032	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 34		． 29	． 052	ug／Kg		－	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 14	J	． 29	． 097	ug／Kg		\％	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 1	J	． 29	． 074	ug／$/ \mathrm{Kg}$		京	537 （modified）	Total／NA
Perfluorotetradecanoic acid（PFTeA）	． 079	J	． 29	． 078	ug／Kg		安	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 25	J	． 29	． 036	ug／Kg		\＄	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 049	J	． 29	． 045	ug／Kg		\＄	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 4		． 72	． 29	ug／Kg		\％	537 （modified）	Total／NA
Aluminum	8100		56.1	7.9	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Arsenic	9.6		4.2	． 86	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Barium	46		56.1	5.4	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Beryllium	． 80		． 56	． 090	$\mathrm{mg} / \mathrm{Kg}$		熍	D	Total／NA
Cadmium	． 86	J	． 1	． 097	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Calcium	8480		400	4	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Chromium	4.9		． 8	． 0	$\mathrm{mg} / \mathrm{Kg}$		发	D	Total／NA
Cobalt	4.4		4.0	． 78	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Copper	37.8		7.0	． 8	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Iron	34400		42.1	8.9	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Lead	43.2		． 8	.45	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Magnesium	740		400	95.0	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Manganese	42		4.2	． 32	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Nickel	32.4		． 2	． 74	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Potassium	3280		400	86.2	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Sodium	44	J	400		$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Vanadium	36.2		4.0	． 3	$\mathrm{mg} / \mathrm{Kg}$		\＄	D	Total／NA
Zinc	32		8.4	． 5	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA

Client Sample ID：S2－SOIL－102120（Continued）
$\frac{\text { nalyte }}{\text { Mercury }} \frac{\text { Result }}{.074} \frac{\text { Qualifier }}{.025} \frac{\text { RL }}{.0059} \frac{\text { MDL }}{\mathrm{mg} / \mathrm{Kg}} \frac{\text { Unit }}{.025} \frac{\text { Dil Fac }}{} \frac{\text { Dethod }}{7471 B} \frac{\text { Prep Type }}{\text { Total／NA }}$

Client Sample ID：DUP1－SOIL－102120 Lab Sample ID：460－221262－9

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	55		． 28	． 039	ug／Kg	¢	\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 29		． 28	． 1	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 27	J	． 28	． 059	ug／Kg		＋	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	29		． 28	． 041	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	1		． 28	． 12	ug／Kg		＋	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 43		． 28	． 050	ug／Kg		＋	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 24	J	． 28	． 031	ug／Kg		＋	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 25	J F1	． 28	． 050	ug／Kg		\％	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 1	J	． 28	． 094	ug／Kg	\％	＋	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 087	J	． 28	． 071	ug／Kg		\％	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 26	J	． 28	． 035	ug／Kg		＋	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 052	J	． 28	． 043	ug／Kg		＋	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	5		． 70	28	ug／Kg		＋	537 （modified）	Total／NA
Aluminum	7400		55.5	7.9	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Antimony	． 7	J	5.6	． 6	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Arsenic	． 1		4.2	85	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Barium	41		55.5	5.4	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Beryllium	． 80		． 56	． 089	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cadmium	． 84	J	． 1	． 096	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Calcium	890		390	3	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Chromium	4.8		． 8	0	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cobalt	4.3		3.9	． 77	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Copper	37.8		． 9	． 7	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Iron	33300		41.6	8.6	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Lead	45.7		． 8	45	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Magnesium	320		390	93.9	$\mathrm{mg} / \mathrm{Kg}$		\＄	D	Total／NA
Manganese	47		4.2	． 31	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Nickel	32.1		． 1	． 73	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Potassium	3270		390	85.2	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Sodium	39	J	390		$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Vanadium	35.9		3.9	． 3	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Zinc	34		8.3	． 5	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Mercury	． 078		． 024	． 0056	$\mathrm{mg} / \mathrm{Kg}$		\％	7471B	Total／NA

Client Sample ID：S3－SOIL－102120
Lab Sample ID：460－221262－10

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 10	J	． 20	． 028	ug／Kg		\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 079	J	． 20	． 077	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 080	J	． 20	． 042	ug／Kg		安	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 063	J	． 20	． 029	ug $/ \mathrm{Kg}$		\＄	537 （modified）	Total／NA
Aluminum	5400		42.3	． 0	$\mathrm{mg} / \mathrm{Kg}$		熍	D	Total／NA
Antimony	． 3	J	4.2	． 2	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Arsenic	8.4		3.2	.65	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Barium	50		42.3	4.1	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Beryllium	． 71		． 42	． 068	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cadmium	． 66	J	． 85	． 073	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S3－SOIL－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	760			78.1	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Chromium	3.1		． 1	5	$\mathrm{mg} / \mathrm{Kg}$		㲾	D	Total／NA
Cobalt	5.9		． 6	． 59	$\mathrm{mg} / \mathrm{Kg}$		＊	D	Total／NA
Copper	44.3		5.3	． 3	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Iron	34200		31.7	． 8	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Lead	5.1		． 1	． 34	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Magnesium	8480			71.5	$\mathrm{mg} / \mathrm{Kg}$		熍	D	Total／NA
Manganese	923		3.2	． 24	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Nickel	33.8		8.5	． 56	$\mathrm{mg} / \mathrm{Kg}$		㲾	D	Total／NA
Potassium				4.9	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Vanadium	5.9		． 6	． 98	$\mathrm{mg} / \mathrm{Kg}$		㖲	D	Total／NA
Zinc	85.3		． 3	． 2	$\mathrm{mg} / \mathrm{Kg}$		－	D	Total／NA
Mercury	． 017		． 017	． 0041	$\mathrm{mg} / \mathrm{Kg}$		娱	7471B	Total／NA

Client Sample ID：S4－SOIL－102120

Lab Sample ID：460－221262－11

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 50		． 24	． 034	ug／Kg		垵	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 20	J	． 24	． 094	ug／Kg		桇	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 20	J	． 24	． 051	ug／Kg		浐	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 17	J	． 24	． 035	ug／Kg		峧	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 38		． 24	． 10	ug／Kg		茹	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 17	J	． 24	． 044	ug／Kg		录	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 089	J	． 24	． 027	$\mathrm{ug} / \mathrm{Kg}$		嫁	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 078	J	． 24	． 044	ug／Kg		脜	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 050	J	． 24	． 030	ug／Kg		暩	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 26	J	． 61	． 24	ug／Kg		察	537 （modified）	Total／NA
Aluminum	400		50.8	7.2	$\mathrm{mg} / \mathrm{Kg}$		發	D	Total／NA
Arsenic	． 9		3.8	． 78	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Barium	5		50.8	4.9	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Beryllium	． 87		． 51	． 081	$\mathrm{mg} / \mathrm{Kg}$		桇	D	Total／NA
Cadmium	． 66	J	． 0	． 088	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Calcium	3510		70	93.9	$\mathrm{mg} / \mathrm{Kg}$		脜	D	Total／NA
Chromium	4		． 5	． 8	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Cobalt	5.5		． 7	． 70	$\mathrm{mg} / \mathrm{Kg}$		桇	D	Total／NA
Copper	4.8		． 4	． 6	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Iron	34400		38.1	． 2	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Lead	5.1		． 5	41	$\mathrm{mg} / \mathrm{Kg}$		丽	D	Total／NA
Magnesium	5870		70	86.0	$\mathrm{mg} / \mathrm{Kg}$		䎟	D	Total／NA
Manganese	596		3.8	． 29	$\mathrm{mg} / \mathrm{Kg}$		等	D	Total／NA
Nickel	8.1		． 2	． 67	$\mathrm{mg} / \mathrm{Kg}$		等	D	Total／NA
Potassium	900		70	78.0	$\mathrm{mg} / \mathrm{Kg}$		䎟	D	Total／NA
Sodium	5	J	70		$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Vanadium	33.7		． 7	． 2	$\mathrm{mg} / \mathrm{Kg}$		妳	D	Total／NA
Zinc	78.5		7.6	4	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Mercury	． 022		． 022	． 0051	$\mathrm{mg} / \mathrm{Kg}$		管	7471B	Total／NA

Client Sample ID：S11－SOIL－102120

Lab Sample ID：460－221262－12

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 27		． 27	． 038	ug／Kg		\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 10	J	． 27	． 10	$\mathrm{ug} / \mathrm{Kg}$			537 （modified）	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S11－SOIL－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid（PFHxA）	． 13	J	． 27	． 056	ug／Kg		輬	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 18	J	． 27	． 039	ug／Kg		嫁	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 58		． 27	． 12	ug／Kg		家	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 41		． 27	． 048	ug／Kg		这	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 21	J	． 27	． 030	$\mathrm{ug} / \mathrm{Kg}$		这	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 30	F1	． 27	． 048	ug／Kg		－	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 78	B	． 67	． 27	ug／Kg		苑	537 （modified）	Total／NA
Aluminum	7400		51.1	7.2	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Arsenic	． 2		3.8	． 79	$\mathrm{mg} / \mathrm{Kg}$		如	D	Total／NA
Barium			51.1	4.9	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Beryllium	． 71		． 51	． 082	$\mathrm{mg} / \mathrm{Kg}$		这	D	Total／NA
Cadmium	． 63	J	． 0	． 088	$\mathrm{mg} / \mathrm{Kg}$		这	D	Total／NA
Calcium	500		80	94.4	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Chromium	． 5		． 6	． 8	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Cobalt	4.1		． 8	． 71	$\mathrm{mg} / \mathrm{Kg}$		这	D	Total／NA
Copper	． 9		． 4	． 6	$\mathrm{mg} / \mathrm{Kg}$		苑	D	Total／NA
Iron	32400		38.3	． 3	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Lead	4.1		． 6	． 41	$\mathrm{mg} / \mathrm{Kg}$		如	D	Total／NA
Magnesium	9160		80	86.4	$\mathrm{mg} / \mathrm{Kg}$		这	D	Total／NA
Manganese	83		3.8	． 29	$\mathrm{mg} / \mathrm{Kg}$		－	D	Total／NA
Nickel	8.7		． 2	． 67	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Potassium	3210		80	78.4	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Sodium		J	80		$\mathrm{mg} / \mathrm{Kg}$		洨	D	Total／NA
Vanadium	30.3		． 8	． 2	$\mathrm{mg} / \mathrm{Kg}$		洮	D	Total／NA
Zinc	76.8		7.7	4	$\mathrm{mg} / \mathrm{Kg}$		苑	D	Total／NA
Mercury	． 017	J	． 023	． 0054	$\mathrm{mg} / \mathrm{Kg}$		交	7471B	Total／NA

Client Sample ID：S12－SOIL－102120

Lab Sample ID：460－221262－13

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 089	J	24	． 034	ug／Kg		产	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 061	J	． 24	． 051	ug／Kg		呚	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 065	J	． 24	． 035	ug／Kg		浐	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 29		． 24	． 10	ug／Kg			537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 17	J	． 24	． 044	$\mathrm{ug} / \mathrm{Kg}$		部	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 073	J	． 24	． 027	$\mathrm{ug} / \mathrm{Kg}$		产	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 13	J	． 24	． 044	ug／Kg		峧	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 45	$J B$	． 61	． 24	ug／Kg		峧	537 （modified）	Total／NA
Aluminum	500		37.0	5.2	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Arsenic	． 2		． 8	． 57	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Barium	3.9		37.0	3.6	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Beryllium	． 58		． 37	． 059	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Calcium	80		925	8.3	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Chromium	4.0		． 8	． 3	$\mathrm{mg} / \mathrm{Kg}$		为	D	Total／NA
Cobalt	8.1	J	9.2	． 51	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Copper	5.7		4.6	． 2	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Iron	3300		7.7	9.1	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Lead	． 4		． 8	.30	$\mathrm{mg} / \mathrm{Kg}$		㓎	D	Total／NA
Magnesium	3100		925	． 6	$\mathrm{mg} / \mathrm{Kg}$		姟	D	Total／NA
Manganese	500		． 8	． 21	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Nickel	5.4		7.4	． 49	$\mathrm{mg} / \mathrm{Kg}$		㓎	D	Total／NA

Client Sample ID：S12－SOIL－102120（Continued）
Lab Sample ID：460－221262－13

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Potassium	40		925	56.8	$\mathrm{mg} / \mathrm{Kg}$		涼	D	Total／NA
Thallium	． 86	J	3.7	． 57	$\mathrm{mg} / \mathrm{Kg}$		这	D	Total／NA
Vanadium	． 5		9.2	． 86	$\mathrm{mg} / \mathrm{Kg}$		边	D	Total／NA
Zinc	47.5		5.5	． 0	$\mathrm{mg} / \mathrm{Kg}$		䢒	D	Total／NA
Mercury	． 031		． 020	． 0046	$\mathrm{mg} / \mathrm{Kg}$		这	7471B	Total／NA

Client Sample ID：DUP2－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 38		． 25	． 035	ug／Kg		峧	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 16	J	． 25	． 096	ug／Kg		洨	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 15	J	． 25	． 052	ug／Kg		囦	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 16	J	． 25	． 036	$\mathrm{ug} / \mathrm{Kg}$		效	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 36		． 25	． 1	ug／Kg		效	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 17	J	． 25	． 045	ug／Kg		囦	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 066	J	． 25	． 027	ug／Kg		效	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 099	J	． 25	． 045	ug／Kg		娭	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 033	J	． 25	． 031	ug／Kg		永	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 32	$J B$	． 62	． 25	ug／Kg		洨	537 （modified）	Total／NA
Aluminum	9200		39.3	5.6	$\mathrm{mg} / \mathrm{Kg}$		永	D	Total／NA
Arsenic	7.7		3.0	． 60	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Barium	4		39.3	3.8	$\mathrm{mg} / \mathrm{Kg}$		齐	D	Total／NA
Beryllium	． 93		． 39	． 063	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Calcium	3160		984	72.7	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Chromium	． 0		． 0	． 4	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Cobalt	4.6		9.8	． 54	$\mathrm{mg} / \mathrm{Kg}$		桇	D	Total／NA
Copper	3.3		4.9	． 2	$\mathrm{mg} / \mathrm{Kg}$		＊	D	Total／NA
Iron	32300		9.5	． 3	$\mathrm{mg} / \mathrm{Kg}$			D	Total／NA
Lead	． 8		． 0	． 32	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Magnesium	5380		984	． 6	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Manganese	500		3.0	． 22	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Nickel	． 3		7.9	． 52	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Potassium	460		984	． 4	$\mathrm{mg} / \mathrm{Kg}$		丞	D	Total／NA
Selenium	． 1	J	3.9	． 67	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Sodium	90.6	J	984	85.6	$\mathrm{mg} / \mathrm{Kg}$		桇	D	Total／NA
Thallium	． 91	J	3.9	． 61	$\mathrm{mg} / \mathrm{Kg}$		永	D	Total／NA
Vanadium	30.9		9.8	． 91	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Zinc	72.1		5.9	． 1	$\mathrm{mg} / \mathrm{Kg}$		而	D	Total／NA
Mercury	． 022		． 020	． 0046	$\mathrm{mg} / \mathrm{Kg}$		突	7471B	Total／NA

Client Sample ID：S1－SOIL－102120

Lab Sample ID：460－221262－15

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	19	J	． 27	． 037	ug／Kg		品	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 084	J	． 27	． 056	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 10	J	． 27	． 039	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 30		． 27	． 1	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 19	J	． 27	． 048	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 092	J	． 27	． 029	ug／Kg		家	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 16	J	． 27	． 048	ug／Kg		囦	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 95	B	． 66	． 27	ug／Kg		\＄	537 （modified）	Total／NA
Aluminum	900		43.4	． 1	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S1－SOIL－102120（Continued）

Lab Sample ID：460－221262－15

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	4.9		3.3	.67	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Barium	46.9		43.4	4.2	$\mathrm{mg} / \mathrm{Kg}$		名	D	Total／NA
Beryllium	． 54		43	． 069	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Calcium	940	J	80	80.1	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Chromium	4.8		． 2	． 5	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Cobalt	． 6	J	． 8	． 60	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Copper	4		5.4	． 4	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Iron	8700		32.5	． 3	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Lead	9.4		． 2	.35	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Magnesium	30		80	73.4	$\mathrm{mg} / \mathrm{Kg}$		珓	D	Total／NA
Manganese	88		3.3	． 24	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Nickel	3.9		8.7	． 57	$\mathrm{mg} / \mathrm{Kg}$		嫁	D	Total／NA
Potassium	40	J	80	． 6	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Vanadium	3.8		． 8	． 0	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Zinc	45.4		． 5	2	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Mercury	． 048		． 022	． 0053	$\mathrm{mg} / \mathrm{Kg}$		产	7471B	Total／NA

Client Sample ID：TB2－102120
Lab Sample ID：460－221262－16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Sodium	4	J	5000	83.8	ug／L		D	Total／NA
Zinc	． 4	J	30.0	． 2	ug／L		D	Total／NA

Client Sample ID：S6A－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 22	J	27	． 037	ug／Kg		\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 16	J	． 27	． 10	ug／Kg		为	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 13	J	． 27	． 039	ug／Kg		\＄	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 45		． 27	． 12	ug／Kg		峧	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 32		． 27	． 048	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 40		． 27	． 029	ug／Kg			537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 21	J	． 27	． 048	ug $/ \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 15	J	． 27	． 090	ug／Kg		多	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 093	J	． 27	． 033	ug／Kg		安	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 059	J	． 27	． 041	ug／Kg		效	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 8	B	． 67	． 27	ug／Kg		熍	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 15	J	． 27	． 052	ug／Kg		放	537 （modified）	Total／NA
Aluminum			40.3	5.7	$\mathrm{mg} / \mathrm{Kg}$		效	D	Total／NA
Arsenic	8.5		3.0	． 62	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Barium	5		40.3	3.9	$\mathrm{mg} / \mathrm{Kg}$		突	D	Total／NA
Beryllium	． 59		． 40	． 064	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Cadmium	． 091	J	． 81	． 069	$\mathrm{mg} / \mathrm{Kg}$		噱	D	Total／NA
Calcium	450			74.4	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Chromium	7.0		． 0	． 4	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Cobalt	． 8		． 1	． 56	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Copper	7.9		5.0	． 3	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Iron			30.2	． 7	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Lead	38.5		． 0	． 33	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Magnesium	3740			8.1	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Manganese	722		3.0	． 23	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Nickel	． 7		8.1	． 53	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S6A－SOIL－102120（Continued）
Lab Sample ID：460－221262－17

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Potassium	360			． 8	mg／Kg		涼	D	Total／NA
Thallium	． 1	J	4.0	． 62	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Vanadium	． 2		． 1	． 94	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Zinc	95.3		． 0	． 1	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Mercury	． 051		． 022	． 0052	$\mathrm{mg} / \mathrm{Kg}$		交	7471B	Total／NA

Client Sample ID：S6B－SOIL－102120

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 34		． 26	． 036	ug／Kg		站	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 23	J	． 26	． 098	ug／Kg		炽	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 16	J	． 26	． 054	ug／Kg		㛥	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 17	J	． 26	． 037	$\mathrm{ug} / \mathrm{Kg}$		姟	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 63		． 26	． 1	ug／Kg		效	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 31		． 26	． 046	ug／Kg		浐	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 34		． 26	． 028	$\mathrm{ug} / \mathrm{Kg}$		穼	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 17	J	． 26	． 046	ug／Kg		突	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 14	J	． 26	． 085	ug／Kg		暩	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 089	J	． 26	． 032	$\mathrm{ug} / \mathrm{Kg}$		㛥	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 064	JI	． 26	． 040	ug／Kg		炽	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 3	B	.64	． 26	$\mathrm{ug} / \mathrm{Kg}$		暩	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 15	J	． 26	． 050	$\mathrm{ug} / \mathrm{Kg}$		突	537 （modified）	Total／NA
Aluminum			41.9	5.9	$\mathrm{mg} / \mathrm{Kg}$		婃	D	Total／NA
Arsenic	8.6		3.1	． 64	$\mathrm{mg} / \mathrm{Kg}$		媛	D	Total／NA
Barium	9		41.9	4.0	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Beryllium	． 62		． 42	． 067	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Cadmium	． 084	J	． 84	． 072	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Calcium	470		50	77.4	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Chromium	7.4		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$		炽	D	Total／NA
Cobalt	． 7		． 5	． 58	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Copper	． 9		5.2	． 3	$\mathrm{mg} / \mathrm{Kg}$		囦	D	Total／NA
Iron			31.4	． 6	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Lead	39.8		． 1	． 34	$\mathrm{mg} / \mathrm{Kg}$		㛥	D	Total／NA
Magnesium	3670		50	70.9	$\mathrm{mg} / \mathrm{Kg}$		效	D	Total／NA
Manganese	714		3.1	． 24	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Nickel	． 7		8.4	． 55	$\mathrm{mg} / \mathrm{Kg}$		嫁	D	Total／NA
Potassium	40		50	4.3	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Thallium	． 0	J	4.2	． 65	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Vanadium	7.2		． 5	． 97	$\mathrm{mg} / \mathrm{Kg}$		弶	D	Total／NA
Zinc			． 3	． 1	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Mercury	． 053		． 020	． 0048	$\mathrm{mg} / \mathrm{Kg}$		峧	7471B	Total／NA

Client Sample ID：S7A－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 21	J	． 27	． 037	ug／Kg		察	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 1	J	． 27	． 10	$\mathrm{ug} / \mathrm{Kg}$		囦	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 13	J	． 27	． 056	$\mathrm{ug} / \mathrm{Kg}$		突	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 1	J	． 27	． 039	ug／Kg		效	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 33		． 27	． 12	$\mathrm{ug} / \mathrm{Kg}$		名	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 17	J	． 27	． 048	$\mathrm{ug} / \mathrm{Kg}$		效	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 1	J	． 27	． 029	$\mathrm{ug} / \mathrm{Kg}$		名	537 （modified）	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S7A－SOIL－102120（Continued） Lab Sample ID：460－221262－19

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid（PFUnA）	． 1	J	． 27	． 048	ug／Kg		产	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 059	J	． 27	． 033	ug／Kg		媛	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 044	J	． 27	． 041	$\mathrm{ug} / \mathrm{Kg}$		媛	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 2	B	． 67	． 27	ug／Kg		率	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 067	J	． 27	． 052	$\mathrm{ug} / \mathrm{Kg}$		娠	537 （modified）	Total／NA
Aluminum	9130		41.8	5.9	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Arsenic	7.2		3.1	． 64	$\mathrm{mg} / \mathrm{Kg}$		浐	D	Total／NA
Barium	81.6		41.8	4.0	$\mathrm{mg} / \mathrm{Kg}$		罙	D	Total／NA
Beryllium	． 43		． 42	． 067	$\mathrm{mg} / \mathrm{Kg}$		媛	D	Total／NA
Cadmium	． 31	J	． 84	． 072	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Calcium	4370		50	77.3	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Chromium	4.0		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$		䎟	D	Total／NA
Cobalt	8.1	J	． 5	． 58	$\mathrm{mg} / \mathrm{Kg}$		突	D	Total／NA
Copper	5.2		5.2	． 3	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Iron	8600		31.4	． 6	$\mathrm{mg} / \mathrm{Kg}$		丽	D	Total／NA
Lead	3.0		． 1	． 34	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Magnesium	3810		50	70.8	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Manganese	447		3.1	． 24	$\mathrm{mg} / \mathrm{Kg}$		媛	D	Total／NA
Nickel	7.7		8.4	． 55	$\mathrm{mg} / \mathrm{Kg}$		洨	D	Total／NA
Potassium	470		50	4.2	$\mathrm{mg} / \mathrm{Kg}$		罙	D	Total／NA
Selenium	． 3	J	4.2	.71	$\mathrm{mg} / \mathrm{Kg}$		㓎	D	Total／NA
Vanadium	． 1		． 5	． 97	$\mathrm{mg} / \mathrm{Kg}$		媛	D	Total／NA
Zinc	76.5		． 3	． 1	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Mercury	． 027		． 023	． 0054	$\mathrm{mg} / \mathrm{Kg}$		峧	7471B	Total／NA

Client Sample ID：S7B－SOIL－102120

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 16	J	． 25	． 035	ug／Kg		峧	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 12	J	． 25	． 053	ug／Kg		安	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 085	J	． 25	． 036	$\mathrm{ug} / \mathrm{Kg}$		烄	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 29		． 25	． 1	ug $/ \mathrm{Kg}$		熍	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 16	J	． 25	． 045	ug／Kg		洜	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 16	J	． 25	． 028	$\mathrm{ug} / \mathrm{Kg}$		察	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 12	J	． 25	． 045	ug／Kg		家	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 056	J	． 25	． 031	ug／Kg		㓎	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 1	B	． 63	． 25	ug／Kg		婦	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 075	J	． 25	． 049	ug $/ \mathrm{Kg}$		察	537 （modified）	Total／NA
Aluminum	9790		38.5	5.5	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Arsenic	7.4		． 9	． 59	$\mathrm{mg} / \mathrm{Kg}$		苑	D	Total／NA
Barium	83.5		38.5	3.7	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Beryllium	． 43		． 39	． 062	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Cadmium	． 26	J	． 77	． 066	$\mathrm{mg} / \mathrm{Kg}$		哭	D	Total／NA
Calcium	5300		963	71.2	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Chromium	5.8		． 9	． 4	$\mathrm{mg} / \mathrm{Kg}$		尔	D	Total／NA
Cobalt	8.7	J	9.6	． 53	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Copper	4.9		4.8	． 2	$\mathrm{mg} / \mathrm{Kg}$		攵	D	Total／NA
Iron			8.9	9.8	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Lead	5.7		． 9	． 31	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Magnesium	4330		963	5.2	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Manganese	491		． 9	． 22	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA

Client Sample ID：S7B－SOIL－102120（Continued） Lab Sample ID：460－221262－20

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nickel	9.3		7.7	． 51	$\mathrm{mg} / \mathrm{Kg}$		䀃	D	Total／NA
Potassium	430		963	59.2	$\mathrm{mg} / \mathrm{Kg}$		䢒	D	Total／NA
Thallium	． 96	J	3.9	． 60	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Vanadium	． 9		9.6	． 90	$\mathrm{mg} / \mathrm{Kg}$		䢒	D	Total／NA
Zinc	78.9		5.8	． 1	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Mercury	． 034		． 021	． 0050	$\mathrm{mg} / \mathrm{Kg}$		㛥	7471B	Total／NA

Client Sample ID：S8A－SOIL－102120

Lab Sample ID：460－221262－21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 10	J	． 24	． 034	ug／Kg		产	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 20	J	． 24	． 093	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 24		． 24	． 051	ug／Kg		浐	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 090	J	． 24	． 035	$\mathrm{ug} / \mathrm{Kg}$		覣	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 39		． 24	． 10	ug／Kg		㛥	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 4		． 24	． 043	ug／Kg		激	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 91		． 24	． 027	$\mathrm{ug} / \mathrm{Kg}$		覣	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 8		． 24	． 043	ug／Kg		姟	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 47		． 24	． 081	ug／Kg		媛	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 31		． 24	． 062	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA
Perfluorotetradecanoic acid（PFTeA）	． 14	J	． 24	． 065	ug／Kg		洮	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 15	J	． 24	． 030	ug／Kg		殓	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	4.2	B	． 60	． 24	$\mathrm{ug} / \mathrm{Kg}$		嫁	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	5.9		． 24	． 047	ug／Kg		安	537 （modified）	Total／NA
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	． 4	J	． 4	． 45	ug／Kg		楽	537 （modified）	Total／NA
Aluminum	7790		42.3	． 0	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Arsenic	． 5		3.2	． 65	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Barium	88.2		42.3	4.1	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Beryllium	． 31	J	． 42	． 068	$\mathrm{mg} / \mathrm{Kg}$		脜	D	Total／NA
Cadmium	． 23	J	． 85	． 073	$\mathrm{mg} / \mathrm{Kg}$		突	D	Total／NA
Calcium	3320			78.2	$\mathrm{mg} / \mathrm{Kg}$		媛	D	Total／NA
Chromium	5.8		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$		脜	D	Total／NA
Cobalt	． 1	J	． 6	． 59	$\mathrm{mg} / \mathrm{Kg}$		苑	D	Total／NA
Copper	32.6		5.3	． 3	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Iron	4200		31.7	． 8	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Lead	48.8		． 1	． 34	$\mathrm{mg} / \mathrm{Kg}$		齐	D	Total／NA
Magnesium	550			71.6	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Manganese	332		3.2	． 24	$\mathrm{mg} / \mathrm{Kg}$		脜	D	Total／NA
Nickel	5.6		8.5	． 56	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Potassium	960	J		5.0	$\mathrm{mg} / \mathrm{Kg}$		媛	D	Total／NA
Sodium	50	J		92.1	$\mathrm{mg} / \mathrm{Kg}$		脜	D	Total／NA
Vanadium	3.4		． 6	． 98	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Zinc	96.9		． 3	． 2	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Mercury	． 076		． 021	． 0050	$\mathrm{mg} / \mathrm{Kg}$		察	7471B	Total／NA

Client Sample ID：S8B－SOIL－102120

Lab Sample ID：460－221262－22

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	20	J	． 24	． 034	ug／Kg		\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 28		． 24	． 093	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 28		． 24	． 051	ug／Kg		\％	537 （modified）	Total／NA

This Detection Summary does not include radiochemical test results．

Client Sample ID：S8B－SOIL－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	D	Method	Prep Type
Perfluoroheptanoic acid（PFHpA）	． 13	J	． 24	． 035	ug／Kg			537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 42		． 24	． 10	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	4		． 24	． 043	ug／Kg		械	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 88		． 24	． 027	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 8		． 24	． 043	ug／Kg		囦	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 35		． 24	． 081	ug／Kg		交	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 26		． 24	． 061	$\mathrm{ug} / \mathrm{Kg}$		产	537 （modified）	Total／NA
Perfluorotetradecanoic acid（PFTeA）	． 13	J	． 24	． 065	ug／Kg		安	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 12	J	． 24	． 030	ug／Kg		姲	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	4.5	B	． 60	． 24	ug／Kg		为	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	5.7		． 24	． 047	ug／Kg		突	537 （modified）	Total／NA
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	． 5	J	． 4	． 45	ug／Kg		放	537 （modified）	Total／NA
Aluminum	7530		39.5	5.6	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Arsenic	9.9		3.0	． 61	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Barium	86.8		39.5	3.8	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Beryllium	． 31	J	． 40	． 063	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Cadmium	． 23	J	． 79	． 068	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Calcium	3120		989	73.1	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Chromium	5.3		． 0	4	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Cobalt	5.8	J	9.9	． 55	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Copper	32.6		4.9	． 2	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Iron	4200		9.7	． 4	$\mathrm{mg} / \mathrm{Kg}$		齐	D	Total／NA
Lead	73.0		． 0	． 32	$\mathrm{mg} / \mathrm{Kg}$		名	D	Total／NA
Magnesium	460		989	． 9	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Manganese	341		3.0	． 22	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Nickel	5.5		7.9	． 52	$\mathrm{mg} / \mathrm{Kg}$		洜	D	Total／NA
Potassium	858	J	989	． 7	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Sodium	32	J	989	86.0	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Vanadium	3.3		9.9	． 92	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Zinc	91.6		5.9	． 1	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Mercury	． 080		． 020	． 0047	$\mathrm{mg} / \mathrm{Kg}$		齐	7471B	Total／NA

Client Sample ID：S9A－SOIL－102120

Lab Sample ID：460－221262－23

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	24	JB	． 25	． 035	ug／Kg		\％	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 21	J	． 25	． 097	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 22	J	． 25	． 053	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHPA）	． 15	J	． 25	． 036	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 54		． 25	． 1	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 23	J	． 25	． 045	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	25		． 25	． 028	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 22	J	． 25	． 045	ug／Kg		\％	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 12	J	． 25	． 084	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 092	J	． 25	． 031	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 075	JI	． 25	． 039	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	3.0	B＊	． 63	． 25	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 19	J＊	． 25	． 049	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）－	． 7	HB	． 64	． 26	ug／Kg		㛥	537 （modified）	Total／NA

RE

Client Sample ID：S9A－SOIL－102120（Continued） Lab Sample ID：460－221262－23

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorodecanesulfonic acid（PFDS） RE	． 18	JH	． 26	． 050	ug／Kg		交	537 （modified）	Total／NA
Aluminum	9210		41.1	5.8	$\mathrm{mg} / \mathrm{Kg}$		祃	D	Total／NA
Arsenic	7.8		3.1	． 63	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Barium			41.1	4.0	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Beryllium	． 43		． 41	． 066	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cadmium	． 18	J	． 82	． 071	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Calcium	3930		30	76.0	$\mathrm{mg} / \mathrm{Kg}$		浐	D	Total／NA
Chromium	5.5		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Cobalt	8.2	J	． 3	． 57	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Copper	8.1		5.1	． 3	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Iron	8000		30.9	． 2	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Lead	34.2		． 1	． 33	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Magnesium	3460		30	9.6	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Manganese	432		3.1	． 23	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Nickel	8.9		8.2	． 54	$\mathrm{mg} / \mathrm{Kg}$		齐	D	Total／NA
Potassium	300		30	3.2	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Selenium	． 92	J	4.1	． 70	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Sodium		J	30	89.5	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Vanadium	4.2		． 3	． 96	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Zinc	4		． 2	． 1	$\mathrm{mg} / \mathrm{Kg}$		噪	D	Total／NA
Mercury	． 086		． 022	． 0052	$\mathrm{mg} / \mathrm{Kg}$		察	7471B	Total／NA

Client Sample ID：S9B－SOIL－102120

Lab Sample ID：460－221262－24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 19	JB	． 25	． 035	ug／Kg		安	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	20	J	． 25	． 096	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 20	J	． 25	． 053	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	15	J	25	． 036	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 60		． 25	． 1	ug／Kg		析	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 24	J	． 25	． 045	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	27		25	． 028	ug／Kg		\％	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 22	J F1	． 25	． 045	ug／Kg		\％	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 14	J	． 25	． 084	ug／Kg		\％	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 079	J	． 25	． 031	ug／Kg		\％	537 （modified）	Total／NA
Perfluorohexanesulfonic acid（PFHxS）	． 073	J	． 25	． 039	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 9	B＊	． 63	． 25	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS）	． 16	J＊	25	． 049	ug／Kg		\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）－	． 9	HB	． 64	． 26	ug／Kg		\％	537 （modified）	Total／NA
Perfluorodecanesulfonic acid（PFDS） RE	． 20	J H	． 26	． 050	ug／Kg		\％	537 （modified）	Total／NA
Aluminum	300		39.1	5.5	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Arsenic	7.8		． 9	． 60	$\mathrm{mg} / \mathrm{Kg}$		攵	D	Total／NA
Barium	3		39.1	3.8	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Beryllium	． 45		． 39	． 062	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cadmium	． 15	J	． 78	． 067	$\mathrm{mg} / \mathrm{Kg}$		矢	D	Total／NA
Calcium	4120		976	72.2	$\mathrm{mg} / \mathrm{Kg}$		寺	D	Total／NA
Chromium	． 4		． 0	4	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Cobalt	8.4	J	9.8	． 54	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Copper	9.1		4.9	． 2	$\mathrm{mg} / \mathrm{Kg}$		就	D	Total／NA

[^11]Client Sample ID：S9B－SOIL－102120（Continued） Lab Sample ID：460－221262－24

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	9700		9.3	． 1	mg／Kg		家	D	Total／NA
Lead	36.5		． 0	． 32	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Magnesium	3630		976	． 1	$\mathrm{mg} / \mathrm{Kg}$		\％	D	Total／NA
Manganese	441		． 9	． 22	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Nickel	9.3		7.8	． 51	$\mathrm{mg} / \mathrm{Kg}$		浆	D	Total／NA
Potassium	520		976	59.9	$\mathrm{mg} / \mathrm{Kg}$		这	D	Total／NA
Selenium	． 80	J	3.9	． 66	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Sodium	3	J	976	84.9	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Thallium	． 86	J	3.9	． 61	$\mathrm{mg} / \mathrm{Kg}$		苑	D	Total／NA
Vanadium	． 1		9.8	． 91	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Zinc			5.9	． 1	$\mathrm{mg} / \mathrm{Kg}$		苑	D	Total／NA
Mercury	． 068		． 021	． 0050	$\mathrm{mg} / \mathrm{Kg}$		这	7471B	Total／NA

Client Sample ID：Equipment Blank 102120

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Sodium	94	J	5000	83.8	ug／L		D	Total／NA
Zinc	． 2	J	30.0	． 2	ug／L		D	Total／NA

Client Sample ID：Field Blank 102120

Lab Sample ID：460－221262－26

No Detections．

Client Sample ID：S5－Soil－102120
Lab Sample ID：460－221262－27

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 71	B	． 26	． 037	ug／Kg		突	537 （modified）	Total／NA
Perfluoropentanoic acid（PFPeA）	． 31		． 26	． 10	ug／Kg		峧	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 23	J	． 26	． 055	ug／Kg		峧	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	29		26	． 038	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 93		． 26	． 1	ug／Kg		产	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 49		． 26	． 047	ug／Kg		峧	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 35		． 26	． 029	$\mathrm{ug} / \mathrm{Kg}$		放	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 28		． 26	． 047	ug／Kg		㓎	537 （modified）	Total／NA
Perfluorododecanoic acid（PFDoA）	． 16	J	． 26	． 088	ug／Kg		桇	537 （modified）	Total／NA
Perfluorotridecanoic acid（PFTriA）	． 10	J	26	． 067	$\mathrm{ug} / \mathrm{Kg}$		㓎	537 （modified）	Total／NA
Perfluorotetradecanoic acid（PFTeA）	． 093	J	． 26	． 071	ug／Kg		浐	537 （modified）	Total／NA
Perfluorobutanesulfonic acid（PFBS）	． 075	J	． 26	． 033	$\mathrm{ug} / \mathrm{Kg}$		浐	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	7	B＊	． 66	． 26	$\mathrm{ug} / \mathrm{Kg}$		\％	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）－ RE	． 4	HB	． 68	． 27	ug／Kg		峧	537 （modified）	Total／NA
Aluminum	9780		45.5	4	$\mathrm{mg} / \mathrm{Kg}$		家	D	Total／NA
Arsenic	． 5		3.4	． 70	$\mathrm{mg} / \mathrm{Kg}$		交	D	Total／NA
Barium	80.2		45.5	4.4	$\mathrm{mg} / \mathrm{Kg}$		婦	D	Total／NA
Beryllium	． 52		． 46	． 073	$\mathrm{mg} / \mathrm{Kg}$		而	D	Total／NA
Cadmium	． 30	J	． 91	． 079	$\mathrm{mg} / \mathrm{Kg}$		安	D	Total／NA
Calcium	4120		40	84.1	$\mathrm{mg} / \mathrm{Kg}$		娱	D	Total／NA
Chromium	7.5		． 3	． 6	$\mathrm{mg} / \mathrm{Kg}$		峧	D	Total／NA
Cobalt	8.7	J	． 4	． 63	$\mathrm{mg} / \mathrm{Kg}$		䎟	D	Total／NA
Copper	32.5		5.7		$\mathrm{mg} / \mathrm{Kg}$		娱	D	Total／NA
Iron			34.1	3.4	$\mathrm{mg} / \mathrm{Kg}$		娱	D	Total／NA
Lead	70.0		． 3	． 37	$\mathrm{mg} / \mathrm{Kg}$		永	D	Total／NA
Magnesium	970		40	77.1	$\mathrm{mg} / \mathrm{Kg}$		奖	D	Total／NA

[^12]
Client Sample ID：S5－Soil－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Manganese	425		3.4	． 26	$\mathrm{mg} / \mathrm{Kg}$	采	D	Total／NA
Nickel	8.7		9.1	． 60	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Potassium	410		40	9.9	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Thallium	． 80	J	4.6	.71	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Vanadium	． 2		． 4	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Zinc	50		． 8	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	D	Total／NA
Mercury	． 17		． 023	． 0055	$\mathrm{mg} / \mathrm{Kg}$	\％	7471B	Total／NA

Client Sample ID：S10－Soil－102120

Lab Sample ID：460－221262－28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 15	JB	． 31	． 043	ug／Kg		浐	537 （modified）	Total／NA
Perfluorohexanoic acid（PFHxA）	． 1	J	． 31	． 065	ug／Kg		哭	537 （modified）	Total／NA
Perfluoroheptanoic acid（PFHpA）	． 071	J	． 31	． 045	$\mathrm{ug} / \mathrm{Kg}$		新	537 （modified）	Total／NA
Perfluorooctanoic acid（PFOA）	． 19	J	． 31	． 13	ug $/ \mathrm{Kg}$		浐	537 （modified）	Total／NA
Perfluorononanoic acid（PFNA）	． 13	J	． 31	． 056	ug／Kg		發	537 （modified）	Total／NA
Perfluorodecanoic acid（PFDA）	． 20	J	． 31	． 034	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Total／NA
Perfluoroundecanoic acid（PFUnA）	． 22	J	． 31	． 056	$\mathrm{ug} / \mathrm{Kg}$		浐	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）	． 4	B＊	． 78	． 31	ug／Kg		察	537 （modified）	Total／NA
Perfluorooctanesulfonic acid（PFOS）－ RE	． 2	HB	． 75	． 30	ug／Kg		\％	537 （modified）	Total／NA
Aluminum	400		． 6	8.7	$\mathrm{mg} / \mathrm{Kg}$		洨	D	Total／NA
Arsenic	7.4		4.6	． 95	$\mathrm{mg} / \mathrm{Kg}$		妾	D	Total／NA
Barium	95.3		． 6	5.9	$\mathrm{mg} / \mathrm{Kg}$		察	D	Total／NA
Beryllium	． 14	J	． 62	． 099	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Cadmium	． 34	J	． 2	． 1	$\mathrm{mg} / \mathrm{Kg}$		尔	D	Total／NA
Calcium	840		540	4	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Chromium	． 2		3.1	． 2	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Cobalt	9.8	J	5.4	． 85	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Copper	90.7		7.7	． 9	$\mathrm{mg} / \mathrm{Kg}$		－	D	Total／NA
Iron	3900		46.2	31.7	$\mathrm{mg} / \mathrm{Kg}$		等	D	Total／NA
Lead	36		3.1	． 50	$\mathrm{mg} / \mathrm{Kg}$		哭	D	Total／NA
Magnesium	3790		540	4	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Manganese	547		4.6	． 35	$\mathrm{mg} / \mathrm{Kg}$		品	D	Total／NA
Nickel	5.6		． 3	81	$\mathrm{mg} / \mathrm{Kg}$		管	D	Total／NA
Potassium			540	94.5	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Vanadium	5.6		5.4	4	$\mathrm{mg} / \mathrm{Kg}$		号	D	Total／NA
Zinc			9.2	． 7	$\mathrm{mg} / \mathrm{Kg}$		丽	D	Total／NA
Mercury	． 6		． 072	． 017	$\mathrm{mg} / \mathrm{Kg}$	3	家	7471B	Total／NA

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.26	J	． 33	． 046	ug／Kg	寺	12：18	5／20 15：43	
Perfluoropentanoic acid（PFPeA）	0.20	J	． 33	． 13	ug／Kg	安	12：18	5／20 15：43	
Perfluorohexanoic acid（PFHxA）	0.27	J	． 33	． 069	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 15：43	
Perfluoroheptanoic acid（PFHPA）	0.18	J	． 33	． 048	$\mathrm{ug} / \mathrm{Kg}$	㲾	12：18	5／20 15：43	
Perfluorooctanoic acid（PFOA）	0.63		． 33	． 14	ug／Kg	安	12：18	5／20 15：43	
Perfluorononanoic acid（PFNA）	0.27	J	． 33	． 059	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 15：43	
Perfluorodecanoic acid（PFDA）	0.37		． 33	． 036	ug／Kg	\％	12：18	5／20 15：43	
Perfluoroundecanoic acid （PFUnA）	0.18	J	． 33	． 059	ug／Kg	\％	12：18	5／20 15：43	
Perfluorododecanoic acid（PFDoA）	ND		． 33	． 1	ug／Kg	苑	12：18	5／20 15：43	
Perfluorotridecanoic acid（PFTriA）	ND		． 33	． 084	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 15：43	
Perfluorotetradecanoic acid（PFTeA）	ND		． 33	． 089	ug／Kg	卶	12：18	5／20 15：43	
Perfluorobutanesulfonic acid（PFBS）	ND	G	． 51	． 51	ug／Kg	\％	12：18	5／20 15：43	
Perfluorohexanesulfonic acid （PFHxS）	0.21	J	． 33	． 051	$\mathrm{ug} / \mathrm{Kg}$	＊	12：18	5／20 15：43	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 33	． 058	ug／Kg	\％	12：18	5／20 15：43	
Perfluorooctanesulfonic acid （PFOS）	6.0		． 83	． 33	ug／Kg	－	12：18	5／20 15：43	
Perfluorodecanesulfonic acid（PFDS）	ND		． 33	． 064	ug／Kg	\％	12：18	5／20 15：43	
Perfluorooctanesulfonamide（FOSA）	ND		． 33	． 14	ug／Kg	\％	12：18	5／20 15：43	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		3.3	． 64	ug／Kg	家	12：18	5／20 15：43	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		3.3	． 61	$\mathrm{ug} / \mathrm{Kg}$	－	12：18	5／20 15：43	
：2 FTS	ND		3.3	． 25	ug／Kg	\％	12：18	5／20 15：43	
8：2 FTS	ND		3.3		ug／Kg	＊	12：18	5／20 15：43	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	49		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 5$ PFPeA	8		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 2$ PFHxA	80		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 4$ PFHPA	80		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 4$ PFOA	83		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 5$ PFNA	83		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 2$ PFDA	82		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 2$ PFUnA	86		150				11／02／20 12：18	11／05／20 15：43	1
13C2 PFDoA	83		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 2$ PFTeDA	74		150				11／02／20 12：18	11／05／20 15：43	1
$13 \mathrm{C3}$ PFBS	74		150				11／02／20 12：18	11／05／20 15：43	1
18 O 2 PFHxS	82		150				11／02／20 12：18	11／05／20 15：43	1
$13 C 4$ PFOS	81		150				11／02／20 12：18	11／05／20 15：43	1
13C8 FOSA	65		150				11／02／20 12：18	11／05／20 15：43	1
d3－NMeFOSAA	72		150				11／02／20 12：18	11／05／20 15：43	1
NEtFOSAA	74		150				11／02／20 12：18	11／05／20 15：43	1
M2－6：2 FTS	188	＊5	150				11／02／20 12：18	11／05／20 15：43	1
M2－8：2 FTS	09	＊5	150				11／02／20 12：18	11／05／20 15：43	1

General Chemistry Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	41.4		． 1	． 1	\％			8／20 13：1	
Percent Solids	58.6		． 1	． 1	\％			8／20 13：1	

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.6	. 2	ng/L		7/20 18:39	8/20 23:33	
Perfluoropentanoic acid (PFPeA)	ND		. 8	. 45	ng/L		7/20 18:39	8/20 23:33	
Perfluorohexanoic acid (PFHxA)	ND		. 8	. 54	ng/L		7/20 18:39	8/20 23:33	
Perfluoroheptanoic acid (PFHpA)	ND		. 8	. 23	ng / L		7/20 18:39	8/20 23:33	
Perfluorooctanoic acid (PFOA)	ND		. 8	. 78	ng/L		7/20 18:39	8/20 23:33	
Perfluorononanoic acid (PFNA)	ND		. 8	. 25	ng/L		7/20 18:39	8/20 23:33	
Perfluorodecanoic acid (PFDA)	ND		. 8	. 29	ng / L		7/20 18:39	8/20 23:33	
Perfluoroundecanoic acid (PFUnA)	ND		. 8	. 0	ng/L		7/20 18:39	8/20 23:33	
Perfluorododecanoic acid (PFDoA)	ND		. 8	. 51	ng/L		7/20 18:39	8/20 23:33	
Perfluorotridecanoic acid (PFTriA)	ND		. 8	. 2	ng / L		7/20 18:39	8/20 23:33	
Perfluorotetradecanoic acid (PFTeA)	ND		. 8	. 67	ng/L		7/20 18:39	8/20 23:33	
Perfluorobutanesulfonic acid (PFBS)	ND		. 8	. 18	ng/L		7/20 18:39	8/20 23:33	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 8	. 53	ng / L		7/20 18:39	8/20 23:33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 8	. 18	ng/L		7/20 18:39	8/20 23:33	
Perfluorooctanesulfonic acid (PFOS)	ND		. 8	. 50	ng/L		7/20 18:39	8/20 23:33	
Perfluorodecanesulfonic acid (PFDS)	ND		. 8	. 30	ng/L		7/20 18:39	8/20 23:33	
Perfluorooctanesulfonamide (FOSA)	ND		. 8	. 90	ng/L		7/20 18:39	8/20 23:33	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	. 1	ng/L		7/20 18:39	8/20 23:33	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	. 2	ng / L		7/20 18:39	8/20 23:33	
:2 FTS	ND		4.6	. 3	ng/L		7/20 18:39	8/20 23:33	
8:2 FTS	ND		. 8	. 42	ng/L		7/20 18:39	8/20 23:33	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	77		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 5$ PFPeA	82		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 2$ PFHxA	88		150				10/27/20 18:39	10/28/20 23:33	1
13 C 4 PFHpA	88		150				10/27/20 18:39	10/28/20 23:33	1
13 C 4 PFOA	6		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 5$ PFNA	4		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 2$ PFDA	0		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 2$ PFUnA	89		150				10/27/20 18:39	10/28/20 23:33	1
13C2 PFDoA			150				10/27/20 18:39	10/28/20 23:33	1
$13 C 2$ PFTeDA	1		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 3$ PFBS	83		150				10/27/20 18:39	10/28/20 23:33	1
1802 PFHxS	86		150				10/27/20 18:39	10/28/20 23:33	1
$13 C 4$ PFOS	86		150				10/27/20 18:39	10/28/20 23:33	1
13 C 8 FOSA	81		150				10/27/20 18:39	10/28/20 23:33	1
d3-NMeFOSAA	76		150				10/27/20 18:39	10/28/20 23:33	1
NEtFOSAA	4		150				10/27/20 18:39	10/28/20 23:33	1
M2-6:2 FTS	70		150				10/27/20 18:39	10/28/20 23:33	1
M2-8:2 FTS	74		150				10/27/20 18:39	10/28/20 23:33	1

Method: 6010D - Metals (ICP) Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND			76.9	ug/L		4/20 20:00	16:57	
Antimony	ND		. 0		ug/L		4/20 20:00	16:57	
Arsenic	ND		5.0	3.3	ug/L		4/20 20:00	16:57	
Barium	ND				ug/L		4/20 20:00	16:57	

Method：6010D－Metals（ICP）（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		． 0	． 17	ug／L		4／20 20：00	16：57	
Cadmium	ND		4.0	． 33	ug／L		4／20 20：00	16：57	
Calcium	ND		5000	52	ug／L		4／20 20：00	16：57	
Chromium	ND		． 0	5.0	ug／L		4／20 20：00	16：57	
Cobalt	ND		50.0	． 0	ug／L		4／20 20：00	16：57	
Copper	ND		5.0	． 9	ug／L		4／20 20：00	16：57	
Iron	ND		50	80.8	ug／L		4／20 20：00	16：57	
Lead	ND		． 0	． 4	ug／L		4／20 20：00	16：57	
Magnesium	ND		5000	42	ug／L		4／20 20：00	16：57	
Manganese	ND		5.0	． 76	ug／L		4／20 20：00	16：57	
Nickel	ND		40.0	4.1	ug／L		4／20 20：00	16：57	
Potassium	ND		5000	42	ug／L		4／20 20：00	16：57	
Selenium	ND		． 0	5.9	ug／L		4／20 20：00	16：57	
Silver	ND		． 0	5.8	ug／L		4／20 20：00	16：57	
Sodium	168	J	5000	83.8	ug／L		4／20 20：00	16：57	
Thallium	ND		． 0	4.1	ug／L		4／20 20：00	16：57	
Vanadium	ND		50.0	7.2	ug／L		4／20 20：00	16：57	
Zinc	1.4	J	30.0	． 2	ug／L		4／20 20：00	16：57	

Method：7470A－Mercury（CVAA）
$\frac{\text { Analyte }}{\text { Mercury }} \frac{\text { esult }}{\text { ND }} \frac{\text { Qualifier }}{} \frac{\mathbf{L}}{.20} \frac{\text { MDL }}{.091} \frac{\text { Unit }}{\mathrm{ug} / \mathrm{L}} \frac{\mathrm{D}}{-\frac{\text { Prepared }}{8 / 2012: 28}} \frac{\text { Analyzed }}{8 / 2014: 19} \frac{\text { Dil Fac }}{}$

General Chemistry

Client Sample ID：PC2－SOIL－102120
Lab Sample ID：460－221262－3
Date Collected：10／21／20 09：30
Matrix：Solid
Date Received：10／23／20 10：00
Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.54		． 24	． 033	ug／Kg	㐋	12：18	5／20 15：53	
Perfluoropentanoic acid（PFPeA）	0.22	J	． 24	． 091	ug／Kg		12：18	5／20 15：53	
Perfluorohexanoic acid（PFHxA）	0.20	J	． 24	． 050	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 15：53	
Perfluoroheptanoic acid（PFHpA）	0.23	J	． 24	． 034	ug／Kg	如	12：18	5／20 15：53	
Perfluorooctanoic acid（PFOA）	0.75		． 24	． 10	ug／Kg	＊	12：18	5／20 15：53	
Perfluorononanoic acid（PFNA）	0.25		． 24	． 043	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 15：53	
Perfluorodecanoic acid（PFDA）	0.15	J	． 24	． 026	ug／Kg	－	12：18	5／20 15：53	
Perfluoroundecanoic acid （PFUnA）	0.11	J	． 24	． 043	ug／Kg	察	12：18	5／20 15：53	
Perfluorododecanoic acid（PFDoA）	ND		． 24	． 079	$\mathrm{ug} / \mathrm{Kg}$	察	12：18	5／20 15：53	
Perfluorotridecanoic acid（PFTriA）	ND		． 24	． 060	ug／Kg	＊	12：18	5／20 15：53	
Perfluorotetradecanoic acid（PFTeA）	ND		． 24	． 064	$\mathrm{ug} / \mathrm{Kg}$	＊	12：18	5／20 15：53	
Perfluorobutanesulfonic acid（PFBS）	ND		． 24	． 030	$\mathrm{ug} / \mathrm{Kg}$	交	12：18	5／20 15：53	
Perfluorohexanesulfonic acid （PFHxS）	0.053	J	． 24	． 037	ug／Kg	号	12：18	5／20 15：53	
Perfluoroheptanesulfonic Acid	ND		． 24	． 041	ug／Kg	\％	12：18	5／20 15：53	

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid （PFOS）	1.3		． 59	． 24	ug／Kg	\％	12：18	5／20 15：53	
Perfluorodecanesulfonic acid （PFDS）	0.078	J	． 24	． 046	$\mathrm{ug} / \mathrm{Kg}$	察	12：18	5／20 15：53	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 097	ug／Kg	\％	12：18	5／20 15：53	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		4	． 46	$\mathrm{ug} / \mathrm{Kg}$	察	12：18	5／20 15：53	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 4	． 44	ug／Kg	\％	12：18	5／20 15：53	
：2 FTS	ND		． 4	． 18	ug／Kg	\％	12：18	5／20 15：53	
8：2 FTS	ND		． 4	． 30	ug／Kg	＊	12：18	5／20 15：53	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	8		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 5$ PFPeA	63		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 2$ PFHxA	84		150				11／02／20 12：18	11／05／20 15：53	1
13 C 4 PFHpA	84		150				11／02／20 12：18	11／05／20 15：53	1
13 C 4 PFOA	89		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 5$ PFNA	86		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 2$ PFDA	84		150				11／02／20 12：18	11／05／20 15：53	1
13C2 PFUnA	86		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 2$ PFDoA	87		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 2$ PFTeDA	1		150				11／02／20 12：18	11／05／20 15：53	1
$13 C 3$ PFBS	73		150				11／02／20 12：18	11／05／20 15：53	1
1802 PFHxS	85		150				11／02／20 12：18	11／05／20 15：53	1
13 C 4 PFOS	83		150				11／02／20 12：18	11／05／20 15：53	1
13C8 FOSA	78		150				11／02／20 12：18	11／05／20 15：53	1
d3－NMeFOSAA	70		150				11／02／20 12：18	11／05／20 15：53	1
NETFOSAA	80		150				11／02／20 12：18	11／05／20 15：53	1
M2－6：2 FTS	159	＊5	150				11／02／20 12：18	11／05／20 15：53	1
M2－8：2 FTS	186	＊5	150				11／02／20 12：18	11／05／20 15：53	1

General Chemistry

Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.3		． 1	． 1	\％			8／20 13：1	
Percent Solids	79.8		． 1	． 1	\％			8／20 13：1	

Client Sample ID：S15－SOIL－102120

Method： 537 （modified）－Fluo Analyte	d Alky esult	Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.28	J	． 30	． 043	ug／Kg	安	12：18	5／20 16：02	
Perfluoropentanoic acid（PFPeA）	0.19	J	． 30	． 12	ug／Kg	\％	12：18	5／20 16：02	
Perfluorohexanoic acid（PFHxA）	0.27	J	． 30	． 064	ug／Kg	\％	12：18	5／20 16：02	
Perfluoroheptanoic acid（PFHpA）	0.26	J	． 30	． 044	ug／Kg	\％	12：18	5／20 16：02	
Perfluorooctanoic acid（PFOA）	0.88		． 30	． 13	ug／Kg	熍	12：18	5／20 16：02	
Perfluorononanoic acid（PFNA）	0.37		． 30	． 055	ug／Kg	安	12：18	5／20 16：02	
Perfluorodecanoic acid（PFDA）	0.35		． 30	． 033	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 16：02	
Perfluoroundecanoic acid （PFUnA）	0.27	J	． 30	． 055	ug／Kg	\％	12：18	5／20 16：02	
Eurofins TestAmerica，Edison									

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorododecanoic acid （PFDoA）	0.15	J	． 30	． 10	ug／Kg	㐋	12：18	5／20 16：02	
Perfluorotridecanoic acid（PFTriA）	0.089	J	． 30	． 077	ug／Kg	\％	12：18	5／20 16：02	
Perfluorotetradecanoic acid（PFTeA）	ND		． 30	． 082	ug／Kg	\％	12：18	5／20 16：02	
Perfluorobutanesulfonic acid （PFBS）	0.046	J	． 30	． 038	ug／Kg	家	12：18	5／20 16：02	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 30	． 047	ug／Kg	\％	12：18	5／20 16：02	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 30	． 053	ug／Kg	安	12：18	5／20 16：02	
Perfluorooctanesulfonic acid （PFOS）	1.2		． 76	． 30	ug／Kg	＊	12：18	5／20 16：02	
Perfluorodecanesulfonic acid（PFDS）	ND		． 30	． 059	ug／Kg	\％	12：18	5／20 16：02	
Perfluorooctanesulfonamide（FOSA）	ND		． 30	． 12	$\mathrm{ug} / \mathrm{Kg}$	安	12：18	5／20 16：02	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		3.0	． 59	ug／Kg	察	12：18	5／20 16：02	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		3.0	． 56	ug／Kg	\％	12：18	5／20 16：02	
：2 FTS	ND		3.0	． 23	ug／Kg	\％	12：18	5／20 16：02	
8：2 FTS	ND		3.0	． 38	ug／Kg	家	12：18	5／20 16：02	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA			150				11／02／20 12：18	11／05／20 16：02	1
$13 C 5$ PFPeA	7		150				11／02／20 12：18	11／05／20 16：02	1
13 C 2 PFHxA	72		150				11／02／20 12：18	11／05／20 16：02	1
$13 C 4$ PFHPA	74		150				11／02／20 12：18	11／05／20 16：02	1
$13 C 4$ PFOA	81		150				11／02／20 12：18	11／05／20 16：02	1
$13 C 5$ PFNA	77		150				11／02／20 12：18	11／05／20 16：02	1
$13 C 2$ PFDA	78		150				11／02／20 12：18	11／05／20 16：02	1
13 C 2 PFUnA	83		150				11／02／20 12：18	11／05／20 16：02	1
13C2 PFDoA	76		150				11／02／20 12：18	11／05／20 16：02	1
$13 C 2$ PFTeDA	80		150				11／02／20 12：18	11／05／20 16：02	1
$13 \mathrm{C3}$ PFBS	65		150				11／02／20 12：18	11／05／20 16：02	1
18 O 2 PFHxS	71		150				11／02／20 12：18	11／05／20 16：02	1
13 C 4 PFOS	71		150				11／02／20 12：18	11／05／20 16：02	1
13 C 8 FOSA	75		150				11／02／20 12：18	11／05／20 16：02	1
d3－NMeFOSAA	70		150				11／02／20 12：18	11／05／20 16：02	1
NETFOSAA	77		150				11／02／20 12：18	11／05／20 16：02	1
M2－6：2 FTS	144		150				11／02／20 12：18	11／05／20 16：02	1
M2－8：2 FTS	178	＊	150				11／02／20 12：18	11／05／20 16：02	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	21300		． 9	8.8	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：58	
Antimony	ND		． 2	． 8	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 18：58	
Arsenic	7.8		4.6	． 95	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：58	
Barium	152		． 9	． 0	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 18：58	
Beryllium	0.93		． 62	． 099	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 18：58	
Cadmium	0.90	J	． 2	． 1	$\mathrm{mg} / \mathrm{Kg}$	苑	8／20 02：35	8／20 18：58	
Calcium	5940		550	4	$\mathrm{mg} / \mathrm{Kg}$	品	8／20 02：35	8／20 18：58	
Chromium	26.5		3.1	． 2	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 18：58	
Cobalt	16.1		5.5	． 86	$\mathrm{mg} / \mathrm{Kg}$	苑	8／20 02：35	8／20 18：58	
Copper	34.3		7.7	． 9	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 18：58	

[^13]| Method：6010D－Metals（ICP）（Continued） | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | esult | Qualifier | L | MDL | Unit | D | Prepared | Analyzed | Dil Fac |
| Iron | 37800 | | 46.4 | 31.9 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 02：35 | 8／20 18：58 | |
| Lea | 35.8 | | 3.1 | ． 50 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 02：35 | 8／20 18：58 | |
| Magnesium | 6780 | | 550 | 5 | $\mathrm{mg} / \mathrm{Kg}$ | ＊ | 8／20 02：35 | 8／20 18：58 | |
| Manganese | 775 | | 4.6 | ． 35 | $\mathrm{mg} / \mathrm{Kg}$ | ＊ | 8／20 02：35 | 8／20 18：58 | |
| Nickel | 34.1 | | 4 | ． 81 | $\mathrm{mg} / \mathrm{Kg}$ | ＊ | 8／20 02：35 | 8／20 18：58 | |
| Potassium | 3490 | | 550 | 95.0 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 02：35 | 8／20 18：58 | |
| Selenium | ND | | ． 2 | ． 1 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 02：35 | 8／20 18：58 | |
| Silver | ND | | 3.1 | 7 | $\mathrm{mg} / \mathrm{Kg}$ | ＊ | 8／20 02：35 | 8／20 18：58 | |
| Sodium | 163 | J | 550 | 35 | $\mathrm{mg} / \mathrm{Kg}$ | ＊ | 8／20 02：35 | 8／20 18：58 | |
| Thallium | ND | | ． 2 | ． 96 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 02：35 | 8／20 18：58 | |
| V nadium | 38.0 | | 5.5 | ． 4 | $\mathrm{mg} / \mathrm{Kg}$ | ＊ | 8／20 02：35 | 8／20 18：58 | |
| Zinc | 141 | | 9.3 | ． 7 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 02：35 | 8／20 18：58 | |
| Method：7471B－Mercury（CVAA） | | | | | | | | | |
| Analyte | esult | Qualifier | L | MDL | Unit | D | Prepared | Analyzed | Dil Fac |
| Mercury | 0.032 | | ． 025 | 0058 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 8／20 03：49 | 8／20 08：28 | |

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		3.2	． 56	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 09：04	30／20 1 ：13	
Chromium，hexavalent	ND		3.2	.55	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	13：13	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	37.3		． 0	． 0	\％			7／20 13：18	
Percent Solids	62.7		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S14－SOIL－102120
Date Collected：10／21／20 10：50
Date Received：10／23／20 10：00

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.45		． 25	． 034	ug／Kg	交	12：18	5／20 16：1	
Perfluoropentanoic acid（PFPeA）	0.24	J	． 25	． 094	ug／Kg	\％	12：18	5／20 16：1	
Perfluorohexanoic acid（PFHxA）	0.27		． 25	． 052	ug／Kg	\％	12：18	5／20 16：1	
Perfluoroheptanoic acid（PFHpA）	0.24	J	． 25	． 036	$\mathrm{ug} / \mathrm{Kg}$	号	12：18	5／20 16：1	
Perfluorooctanoic acid（PFOA）	1.1		． 25	． 1	ug／Kg	淳	12：18	5／20 16：1	
Perfluorononanoic acid（PFNA）	0.35		． 25	． 044	ug／Kg	安	12：18	5／20 16：1	
Perfluorodecanoic acid（PFDA）	0.27		． 25	． 027	ug／Kg	安	12：18	5／20 16：1	
Perfluoroundecanoic acid （PFUnA）	0.20	J	． 25	． 044	ug／Kg	多	12：18	5／20 16：1	
Perfluorododecanoic acid （PFDoA）	0.11	J	． 25	． 082	ug／Kg	号	12：18	5／20 16：1	
Perfluorotridecanoic acid（PFTriA）	0.090	J	． 25	． 063	ug／Kg	＊	12：18	5／20 16：1	
Perfluorotetradecanoic acid（PFTeA）	ND		． 25	． 066	ug／Kg	安	12：18	5／20 16：1	
Perfluorobutanesulfonic acid （PFBS）	0.044	J	． 25	． 031	ug／Kg	号	12：18	5／20 16：1	
Perfluorohexanesulfonic acid （PFHxS）	1.5		． 25	． 038	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 16：1	
Perfluoroheptanesulfonic Acid （PFHpS）	0.047	J	． 25	． 043	ug／Kg	安	12：18	5／20 16：1	
Perfluorooctanesulfonic acid （PFOS）	9.8		． 61	． 25	ug／Kg	家	12：18	5／20 16：1	
Eurofins TestAmerica，Edison									

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorodecanesulfonic acid（PFDS）	ND		． 25	． 048	ug／Kg	\％	12：18	5／20 16：1	
Perfluorooctanesulfonamide（FOSA）	ND		． 25	． 10	ug／Kg	安	12：18	5／20 16：1	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 5	． 48	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 16：1	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 5	.45	ug／Kg	号	12：18	5／20 16：1	
：2 FTS	ND		． 5	． 18	ug／Kg	哭	12：18	5／20 16：1	
8：2 FTS	ND		． 5	． 31	$\mathrm{ug} / \mathrm{Kg}$	安	12：18	5／20 16：1	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA			150				11／02／20 12：18	11／05／20 16：11	1
$13 C 5$ PFPeA	8		150				11／02／20 12：18	11／05／20 16：11	1
$13 \mathrm{C2}$ PFHXA	77		150				11／02／20 12：18	11／05／20 16：11	1
$13 \mathrm{C4} 4 \mathrm{PFH}$ PA	76		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 4$ PFOA	80		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 5$ PFNA	78		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 2$ PFDA	75		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 2$ PFUnA	69		150				11／02／20 12：18	11／05／20 16：11	1
$13 \mathrm{C2}$ PFDOA	64		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 2$ PFTeDA	60		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 3$ PFBS	61		150				11／02／20 12：18	11／05／20 16：11	1
1802 PFHxS	69		150				11／02／20 12：18	11／05／20 16：11	1
$13 C 4$ PFOS	67		150				11／02／20 12：18	11／05／20 16：11	1
13C8 FOSA	7		150				11／02／20 12：18	11／05／20 16：11	1
d3－NMeFOSAA	6		150				11／02／20 12：18	11／05／20 16：11	1
NETFOSAA			150				11／02／20 12：18	11／05／20 16：11	1
M2－6：2 FTS	129		150				11／02／20 12：18	11／05／20 16：11	1
M2－8：2 FTS	147		150				11／02／20 12：18	11／05／20 16：11	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	16800		47.1	． 7	mg／Kg	\％	8／20 02：35	8／20 19：02	
Antimony	1.7	J	4.7	4	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：02	
Arsenic	8.1		3.5	． 72	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：02	
Barium	126		47.1	4.5	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：02	
Beryllium	0.77		． 47	． 075	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：02	
Cadmium	0.88	J	． 94	． 081	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：02	
Calcium	8900		80	87.1	$\mathrm{mg} / \mathrm{Kg}$	品	8／20 02：35	8／20 19：02	
Chromium	22.7		． 4	． 7	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：02	
Cobalt	13.1		． 8	． 65	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：02	
Copper	41.2		5.9	． 5	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：02	
Iron	32400		35.4	4.3	$\mathrm{mg} / \mathrm{Kg}$	品	8／20 02：35	8／20 19：02	
Lea	46.5		． 4	． 38	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：02	
Magnesium	5700		80	79.8	$\mathrm{mg} / \mathrm{Kg}$	曻	8／20 02：35	8／20 19：02	
Manganese	698		3.5	． 27	$\mathrm{mg} / \mathrm{Kg}$	多	8／20 02：35	8／20 19：02	
Nickel	26.8		9.4	． 62	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：02	
Potassium	2410		80	72.4	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：02	
Selenium	ND		4.7	． 80	$\mathrm{mg} / \mathrm{Kg}$	多	8／20 02：35	8／20 19：02	
Silver	ND		． 4	． 3	$\mathrm{mg} / \mathrm{Kg}$	多	8／20 02：35	8／20 19：02	
Sodium	ND		80	3	$\mathrm{mg} / \mathrm{Kg}$	品	8／20 02：35	8／20 19：02	
Thallium	ND		4.7	． 73	$\mathrm{mg} / \mathrm{Kg}$	宛	8／20 02：35	8／20 19：02	

[^14]Method：6010D－Metals（ICP）（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
V nadium	29.6		． 8		mg Kg	安	8／20 02：35	8／20 19：02	
Zinc	160		7.1	3	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：02	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.10		． 021	． 0049	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 03：49	8／20 08：30	

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 5	． 44	mg／Kg	名	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 5	． 43	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	13：46	

Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.7		． 0	． 0	\％			7／20 13：18	
Percent Solids	79.3		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S13－SOIL－102120
Lab Sample ID：460－221262－6
Date Collected：10／21／20 11：05

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.90		． 24	． 034	ug／Kg	管	12：18	5／20 16：39	
Perfluoropentanoic acid（PFPeA）	1.6		24	． 093	ug／Kg	家	12：18	5／20 16：39	
Perfluorohexanoic acid（PFHxA）	1.1		． 24	． 050	ug／Kg	\％	12：18	5／20 16：39	
Perfluoroheptanoic acid（PFHpA）	1.0		． 24	． 035	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 16：39	
Perfluorooctanoic acid（PFOA）	1.1		． 24	． 10	ug／Kg	\％	12：18	5／20 16：39	
Perfluorononanoic acid（PFNA）	1.2		． 24	． 043	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 16：39	
Perfluorodecanoic acid（PFDA）	2.1		． 24	． 026	ug／Kg	\％	12：18	5／20 16：39	
Perfluoroundecanoic acid （PFUnA）	0.86		． 24	． 043	ug／Kg	资	12：18	5／20 16：39	
Perfluorododecanoic acid （PFDoA）	0.28		． 24	． 081	ug／Kg	家	12：18	5／20 16：39	
Perfluorotridecanoic acid（PFTriA）	0.11	J	． 24	． 061	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 16：39	
Perfluorotetradecanoic acid （PFTeA）	0.066	J	． 24	． 065	ug／Kg	姿	12：18	5／20 16：39	
Perfluorobutanesulfonic acid（PFBS）	ND		． 24	． 030	ug／Kg	發	12：18	5／20 16：39	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 24	． 037	$\mathrm{ug} / \mathrm{Kg}$	管	12：18	5／20 16：39	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 24	． 042	ug／Kg	姿	12：18	5／20 16：39	
Perfluorooctanesulfonic acid （PFOS）	0.65		． 60	． 24	ug／Kg	安	12：18	5／20 16：39	
Perfluorodecanesulfonic acid（PFDS）	ND		． 24	． 047	$\mathrm{ug} / \mathrm{Kg}$	安	12：18	5／20 16：39	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 099	ug／Kg	\％	12：18	5／20 16：39	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 4	． 47	ug／Kg	\％	12：18	5／20 16：39	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 4	． 44	ug／Kg	哭	12：18	5／20 16：39	
6：2 FTS	0.23	J	． 4	． 18	ug／Kg	沗	12：18	5／20 16：39	
8：2 FTS	0.70	J	． 4	． 30	ug／Kg	安	12：18	5／20 16：39	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13 C 4 PFBA			150				11／02／20 12：18	11／05／20 16：39	1
$13 C 5$ PFPeA	62		150				11／02／20 12：18	11／05／20 16：39	1

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Isotope Dilution	\％Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		150	11／02／20 12：18	11／05／20 16：39	1
13 C 4 PFHpA	84		150	11／02／20 12：18	11／05／20 16：39	1
$13 C 4$ PFOA	87		150	11／02／20 12：18	11／05／20 16：39	1
$13 C 5$ PFNA	84		150	11／02／20 12：18	11／05／20 16：39	1
13C2 PFDA	83		150	11／02／20 12：18	11／05／20 16：39	1
13C2 PFUnA	84		150	11／02／20 12：18	11／05／20 16：39	1
13C2 PFDoA	86		150	11／02／20 12：18	11／05／20 16：39	1
$13 C 2$ PFTeDA	86		150	11／02／20 12：18	11／05／20 16：39	1
$13 C 3$ PFBS	72		150	11／02／20 12：18	11／05／20 16：39	1
1802 PFHxS	80		150	11／02／20 12：18	11／05／20 16：39	1
$13 C 4$ PFOS	84		150	11／02／20 12：18	11／05／20 16：39	1
13C8 FOSA	72		150	11／02／20 12：18	11／05／20 16：39	1
d3－NMeFOSAA	69		150	11／02／20 12：18	11／05／20 16：39	1
NEtFOSAA	70		150	11／02／20 12：18	11／05／20 16：39	1
M2－6：2 FTS	145		150	11／02／20 12：18	11／05／20 16：39	1
M2－8：2 FTS	172	＊5	150	11／02／20 12：18	11／05／20 16：39	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13100		51.0	7.2	mg／Kg	安	8／20 02：35	8／20 18：14	
Antimony	ND	F1	5.1	． 5	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Arsenic	5.1		3.8	． 78	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Barium	112		51.0	4.9	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Beryllium	0.56		． 51	． 082	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Cadmium	0.57	J	． 0	． 088	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Calcium	2160		70	94.2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Chromium	16.9		． 5	． 8	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Cobalt	7.9	J	． 7	． 71	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 18：14	
Copper	22.2		． 4	． 6	$\mathrm{mg} / \mathrm{Kg}$	交	8／20 02：35	8／20 18：14	
Iron	23300		38.2	． 3	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Lea	20.1		． 5	． 41	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Magnesium	4330		70	86.3	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Manganese	893		3.8	． 29	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Nickel	19.6		． 2	． 67	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Potassium	1170	J	70	78.3	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Selenium	ND		5.1	． 87	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Silver	ND		． 5	． 4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Sodium	512	J	70		$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Thallium	ND		5.1	． 79	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
V nadium	22.2		． 7	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	
Zinc	112		7.6	． 4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 18：14	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.039		． 021	． 0050	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 03：49	8／20 08：20	

| General Chemistry |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte |

Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21.5		． 0	． 0	\％			7／20 13：18	
Percent Solids	78.5		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S16－SOIL－102120
Lab Sample ID：460－221262－7
Matrix：Solid
Percent Solids： 77.6
Date Received：10／23／20 10：00

Method： 537 （modified）－Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.45		． 24	． 034	ug／Kg	管	12：18	5／20 17：07	
Perfluoropentanoic acid（PFPeA）	0.17	J	． 24	． 092	$\mathrm{ug} / \mathrm{Kg}$	家	12：18	5／20 17：07	
Perfluorohexanoic acid（PFHxA）	0.19	J	． 24	． 050	ug／Kg	安	12：18	5／20 17：07	
Perfluoroheptanoic acid（PFHpA）	0.19	J	． 24	． 035	ug／Kg	\％	12：18	5／20 17：07	
Perfluorooctanoic acid（PFOA）	0.52		． 24	． 10	ug／Kg	\％	12：18	5／20 17：07	
Perfluorononanoic acid（PFNA）	0.29		． 24	． 043	ug／Kg	\％	12：18	5／20 17：07	
Perfluorodecanoic acid（PFDA）	0.21	J	． 24	． 026	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 17：07	
Perfluoroundecanoic acid （PFUnA）	0.14	J	． 24	． 043	ug／Kg	\％	12：18	5／20 17：07	
Perfluorododecanoic acid （PFDoA）	0.089	J	． 24	． 080	ug／Kg	管	12：18	5／20 17：07	
Perfluorotridecanoic acid（PFTriA）	ND		． 24	． 061	ug／Kg	\％	12：18	5／20 17：07	
Perfluorotetradecanoic acid（PFTeA）	ND		． 24	． 065	ug／Kg	\％	12：18	5／20 17：07	
Perfluorobutanesulfonic acid （PFBS）	0.11	J	． 24	． 030	ug／Kg	突	12：18	5／20 17：07	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 24	． 037	ug／Kg	\％	12：18	5／20 17：07	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 24	． 042	ug／Kg	\％	12：18	5／20 17：07	
Perfluorooctanesulfonic acid （PFOS）	0.65		． 60	． 24	ug／Kg	家	12：18	5／20 17：07	
Perfluorodecanesulfonic acid（PFDS）	ND		． 24	． 047	$u g / \mathrm{Kg}$	\％	12：18	5／20 17：07	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 098	ug／Kg	\％	12：18	5／20 17：07	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 4	． 47	ug／Kg	管	12：18	5／20 17：07	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 4	． 44	ug／Kg	\％	12：18	5／20 17：07	
：2 FTS	ND		． 4	． 18	ug／Kg	\％	12：18	5／20 17：07	
8：2 FTS	ND		． 4	． 30	ug／Kg	安	12：18	5／20 17：07	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	49		150				11／02／20 12：18	11／05／20 17：07	1
13 C 5 PFPeA	3		150				11／02／20 12：18	11／05／20 17：07	1
13 C 2 PFHxA	74		150				11／02／20 12：18	11／05／20 17：07	1
13 C 4 PFHpA	75		150				11／02／20 12：18	11／05／20 17：07	1
$13 C 4$ PFOA	81		150				11／02／20 12：18	11／05／20 17：07	1
$13 C 5$ PFNA	78		150				11／02／20 12：18	11／05／20 17：07	1
$13 C 2$ PFDA	75		150				11／02／20 12：18	11／05／20 17：07	1
$13 C 2$ PFUnA	69		150				11／02／20 12：18	11／05／20 17：07	1
13C2 PFDoA	61		150				11／02／20 12：18	11／05／20 17：07	1
$13 C 2$ PFTeDA	61		150				11／02／20 12：18	11／05／20 17：07	1
$13 C 3$ PFBS			150				11／02／20 12：18	11／05／20 17：07	1
1802 PFHxS	66		150				11／02／20 12：18	11／05／20 17：07	1
13 C 4 PFOS	65		150				11／02／20 12：18	11／05／20 17：07	1
13C8 FOSA	8		150				11／02／20 12：18	11／05／20 17：07	1

Method： 537	ated Alkyl	ubs	（Con			
Isotope Dilution	\％Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d3－NMeFOSAA			150	11／02／20 12：18	11／05／20 17：07	1
NEtFOSAA	60		150	11／02／20 12：18	11／05／20 17：07	1
M2－6：2 FTS	127		150	11／02／20 12：18	11／05／20 17：07	1
M2－8：2 FTS	150		150	11／02／20 12：18	11／05／20 17：07	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	15900		47.7	． 8	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：06	
Antimony	ND		4.8	4	$\mathrm{mg} / \mathrm{Kg}$	为	8／20 02：35	8／20 19：06	
Arsenic	6.4		3.6	． 73	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Barium	106		47.7	4.6	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Beryllium	0.68		． 48	． 076	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：06	
Cadmium	0.52	J	． 95	． 082	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：06	
Calcium	4010		90	88.2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：06	
Chromium	18.9		． 4	． 7	$\mathrm{mg} / \mathrm{Kg}$	家	8／20 02：35	8／20 19：06	
Cobalt	12.7		． 9	． 66	$\mathrm{mg} / \mathrm{Kg}$	㲾	8／20 02：35	8／20 19：06	
Copper	24.4		． 0	5	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Iron	28700		35.8	4.6	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：06	
Lea	17.8		． 4	． 39	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Magnesium	5120		90	80.8	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Manganese	619		3.6	． 27	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：06	
Nickel	23.9		9.5	． 63	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：06	
Potassium	2280		90	73.3	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：06	
Selenium	ND		4.8	． 81	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Silver	ND		． 4	． 3	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：06	
Sodium	ND		90	4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：06	
Thallium	ND		4.8	． 74	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：06	
V nadium	28.1		． 9	． 1	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	
Zinc	79.2		7.2	． 3	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：06	

Method：7471B－Mercury（CV Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.018	J	． 020	． 0048	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 03：49	8／20 08：32	
General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 6	． 46	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 6	． 45	$\mathrm{mg} / \mathrm{Kg}$	察	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22.4		． 0	． 0	\％			7／20 13：18	
Percent Solids	77.6		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S2－SOIL－102120
Date Collected：10／21／20 11：55
Lab Sample ID：460－221262－8
Date Received：10／23／20 10：00
Matrix：Solid Percent Solids： 67.2

Method： 537 （modified）－Fluorinated Alkyl Substances									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.59		． 29	． 040	ug／Kg	家	12：18	5／20 17：17	
Perfluoropentanoic acid（PFPeA）	0.37		． 29	． 1	ug／Kg	㖲	12：18	5／20 17：17	

Method：6010D－Metals（ICP）（Continued）									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.6		4.2	． 86	$\mathrm{mg} / \mathrm{Kg}$	氶	8／20 02：35	8／20 19：10	
Barium	146		56.1	5.4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：10	
Beryllium	0.80		． 56	． 090	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：10	
Cadmium	0.86	J	． 1	． 097	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：10	
Calcium	8480		400	4	$\mathrm{mg} / \mathrm{Kg}$	品	8／20 02：35	8／20 19：10	
Chromium	24.9		． 8	． 0	$\mathrm{mg} / \mathrm{Kg}$	永	8／20 02：35	8／20 19：10	
Cobalt	14.4		4.0	． 78	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：10	
Copper	37.8		7.0	． 8	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：10	
Iron	34400		42.1	8.9	$\mathrm{mg} / \mathrm{Kg}$	刕	8／20 02：35	8／20 19：10	
Lea	43.2		． 8	． 45	$\mathrm{mg} / \mathrm{Kg}$	凖	8／20 02：35	8／20 19：10	
Magnesium	6740		400	95.0	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：10	
Manganese	642		4.2	.32	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：10	
Nickel	32.4		． 2	． 74	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：10	
Potassium	3280		400	86.2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：10	
Selenium	ND		5.6	． 95	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：10	
Silver	ND		． 8	． 6	$\mathrm{mg} / \mathrm{Kg}$	救	8／20 02：35	8／20 19：10	
Sodium	144	J	400		$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：10	
Thallium	ND		5.6	． 87	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：10	
V nadium	36.2		4.0	． 3	$\mathrm{mg} / \mathrm{Kg}$	凖	8／20 02：35	8／20 19：10	
Zinc	132		8.4	． 5	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：10	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.074		． 025	． 0059	mg／Kg	多	8／20 03：49	8／20 08：34	

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		3.0	． 52	$\mathrm{mg} / \mathrm{Kg}$	名	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		3.0	． 52	$\mathrm{mg} / \mathrm{Kg}$	名	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	32.8		． 0	． 0	\％			7／20 13：18	
Percent Solids	67.2		． 0	． 0	\％			7／20 13：18	

Client Sample ID：DUP1－SOIL－102120
Lab Sample ID：460－221262－9
Date Collected：10／21／20 00：00
Matrix：Solid
Date Received：10／23／20 10：00
Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.55		． 28	． 039	ug／Kg	弶	30／20 04：16	15：04	
Perfluoropentanoic acid（PFPeA）	0.29		． 28	． 1	ug／Kg	垵	30／20 04：16	15：04	
Perfluorohexanoic acid（PFHxA）	0.27	J	． 28	． 059	ug／Kg	盗	30／20 04：16	15：04	
Perfluoroheptanoic acid（PFHpA）	0.29		． 28	． 041	ug／Kg	管	30／20 04：16	15：04	
Perfluorooctanoic acid（PFOA）	1.1		． 28	． 12	ug／Kg	＊	30／20 04：16	15：04	
Perfluorononanoic acid（PFNA）	0.43		． 28	． 050	ug／Kg	苑	30／20 04：16	15：04	
Perfluorodecanoic acid（PFDA）	0.24	J	． 28	． 031	$\mathrm{ug} / \mathrm{Kg}$	－	30／20 04：16	15：04	
Perfluoroundecanoic acid （PFUnA）	0.25	J F1	． 28	． 050	$\mathrm{ug} / \mathrm{Kg}$	名	30／20 04：16	15：04	
Perfluorododecanoic acid （PFDoA）	0.11	J	． 28	． 094	ug／Kg	＊	30／20 04：16	15：04	
Perfluorotridecanoic acid（PFTriA）	0.087	J	． 28	． 071	$u g / \mathrm{Kg}$	家	30／20 04：16	15：04	

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid（PFTeA）	ND		． 28	． 076	ug／Kg	\％	30／20 04：16	15：04	
Perfluorobutanesulfonic acid （PFBS）	0.26	J	． 28	． 035	ug／Kg	\％	30／20 04：16	15：04	
Perfluorohexanesulfonic acid （PFHxS）	0.052	J	． 28	． 043	$\mathrm{ug} / \mathrm{Kg}$	\％	30／20 04：16	15：04	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 28	． 049	ug／Kg	\％	30／20 04：16	15：04	
Perfluorooctanesulfonic acid （PFOS）	1.5		． 70	． 28	ug／Kg	\％	30／20 04：16	15：04	
Perfluorodecanesulfonic acid（PFDS）	ND		． 28	． 055	ug／Kg	\％	30／20 04：16	15：04	
Perfluorooctanesulfonamide（FOSA）	ND		． 28	． 1	ug／Kg	\％	30／20 04：16	15：04	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 8	． 55	ug／Kg	安	30／20 04：16	15：04	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 8	． 52	ug／Kg	\％	30／20 04：16	15：04	
：2 FTS	ND		． 8	． 21	ug／Kg	安	30／20 04：16	15：04	
8：2 FTS	ND		． 8	． 35	ug／Kg	\％	30／20 04：16	15：04	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	77		150				10／30／20 04：16	11／02／20 15：04	1
13 C 5 PFPeA	68		150				10／30／20 04：16	11／02／20 15：04	1
13 C 2 PFHxA	80		150				10／30／20 04：16	11／02／20 15：04	1
13 C 4 PFHpA	81		150				10／30／20 04：16	11／02／20 15：04	1
$13 C 4$ PFOA	80		150				10／30／20 04：16	11／02／20 15：04	1
$13 C 5$ PFNA	78		150				10／30／20 04：16	11／02／20 15：04	1
13 C 2 PFDA	80		150				10／30／20 04：16	11／02／20 15：04	1
$13 C 2$ PFUnA	0		150				10／30／20 04：16	11／02／20 15：04	1
13C2 PFDoA	80		150				10／30／20 04：16	11／02／20 15：04	1
13 C 2 PFTeDA	65		150				10／30／20 04：16	11／02／20 15：04	1
13C3 PFBS	76		150				10／30／20 04：16	11／02／20 15：04	1
1802 PFHxS	80		150				10／30／20 04：16	11／02／20 15：04	1
$13 C 4$ PFOS	74		150				10／30／20 04：16	11／02／20 15：04	1
13C8 FOSA	78		150				10／30／20 04：16	11／02／20 15：04	1
d3－NMeFOSAA	86		150				10／30／20 04：16	11／02／20 15：04	1
NEtFOSAA	0		150				10／30／20 04：16	11／02／20 15：04	1
M2－6：2 FTS	123		150				10／30／20 04：16	11／02／20 15：04	1
M2－8：2 FTS	111		150				10／30／20 04：16	11／02／20 15：04	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	17400		55.5	7.9	$\mathrm{mg} / \mathrm{Kg}$	家	8／20 02：35	8／20 19：14	
Antimony	1.7	J	5.6	． 6	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	
Arsenic	10.1		4.2	． 85	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：14	
Barium	141		55.5	5.4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：14	
Beryllium	0.80		． 56	． 089	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	
Cadmium	0.84	J	． 1	． 096	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	
Calcium	6890		390	3	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：14	
Chromium	24.8		． 8	． 0	$\mathrm{mg} / \mathrm{Kg}$	㖲	8／20 02：35	8／20 19：14	
Cobalt	14.3		3.9	． 77	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	
Copper	37.8		9	7	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：14	
Iron	33300		41.6	8.6	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	
Lea	45.7		． 8	45	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	

Method：6010D－Metals（ICP）（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	6320		390	93.9	mg／Kg	洨	8／20 02：35	8／20 19：14	
Manganese	647		4.2	． 31	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：14	
Nickel	32.1		． 1	． 73	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：14	
Potassium	3270		390	85.2	$\mathrm{mg} / \mathrm{Kg}$	家	8／20 02：35	8／20 19：14	
Selenium	ND		5.6	． 94	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：14	
Silver	ND		． 8	． 6	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：14	
Sodium	139	J	390		$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：14	
Thallium	ND		5.6	． 86	$\mathrm{mg} / \mathrm{Kg}$	家	8／20 02：35	8／20 19：14	
V nadium	35.9		3.9	． 3	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：14	
Zinc	134		8.3	． 5	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：14	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.078		． 024	． 0056	mg／Kg	安	8／20 03：49	8／20 08：40	

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 9	． 51	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 9	． 50	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	31.4		． 0	． 0	\％			7／20 13：18	
Percent Solids	68.6		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S3－SOIL－102120
Lab Sample ID：460－221262－10
Date Collected：10／21／20 17：15
Matrix：Solid
Date Received：10／23／20 10：00 Percent Solids： 91.0

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.10	J	． 20	． 028	ug／Kg	号	12：18	5／20 17：26	
Perfluoropentanoic acid（PFPeA）	0.079	J	． 20	． 077	$\mathrm{ug} / \mathrm{Kg}$	名	12：18	5／20 17：26	
Perfluorohexanoic acid（PFHxA）	0.080	J	． 20	． 042	ug／Kg	好	12：18	5／20 17：26	
Perfluoroheptanoic acid（PFHpA）	0.063	J	． 20	． 029	ug／Kg	\％	12：18	5／20 17：26	
Perfluorooctanoic acid（PFOA）	ND		． 20	． 086	ug／Kg	交	12：18	5／20 17：26	
Perfluorononanoic acid（PFNA）	ND		． 20	． 036	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 17：26	
Perfluorodecanoic acid（PFDA）	ND		． 20	． 022	ug／Kg	交	12：18	5／20 17：26	
Perfluoroundecanoic acid（PFUnA）	ND		． 20	． 036	ug／Kg	家	12：18	5／20 17：26	
Perfluorododecanoic acid（PFDoA）	ND		． 20	． 067	ug／Kg	交	12：18	5／20 17：26	
Perfluorotridecanoic acid（PFTriA）	ND		． 20	． 051	ug／Kg	安	12：18	5／20 17：26	
Perfluorotetradecanoic acid（PFTeA）	ND		． 20	． 054	ug／Kg	管	12：18	5／20 17：26	
Perfluorobutanesulfonic acid（PFBS）	ND		． 20	． 025	ug／Kg	好	12：18	5／20 17：26	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 20	． 031	ug／Kg	安	12：18	5／20 17：26	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 20	． 035	ug／Kg	\％	12：18	5／20 17：26	
Perfluorooctanesulfonic acid（PFOS）	ND		． 50	． 20	ug／Kg	矣	12：18	5／20 17：26	
Perfluorodecanesulfonic acid（PFDS）	ND		． 20	． 039	ug／Kg	\％	12：18	5／20 17：26	
Perfluorooctanesulfonamide（FOSA）	ND		． 20	． 082	ug／Kg	察	12：18	5／20 17：26	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 0	． 39	ug／Kg	安	12：18	5／20 17：26	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 0	． 37	ug／Kg	－	12：18	5／20 17：26	
						Eurofins TestAmerica，Edison			

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
：2 FTS	ND		． 0	． 15	ug／Kg	管	12：18	5／20 17：26	
8：2 FTS	ND		． 0	． 25	ug／Kg	\％	12：18	5／20 17：26	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	66		150				11／02／20 12：18	11／05／20 17：26	1
$13 C 5$ PFPeA	68		150				11／02／20 12：18	11／05／20 17：26	1
13 C 2 PFHxA	81		150				11／02／20 12：18	11／05／20 17：26	1
13 C 4 PFHpA	84		150				11／02／20 12：18	11／05／20 17：26	1
13C4 PFOA	87		150				11／02／20 12：18	11／05／20 17：26	1
$13 C 5$ PFNA	84		150				11／02／20 12：18	11／05／20 17：26	1
$13 C 2$ PFDA	88		150				11／02／20 12：18	11／05／20 17：26	1
13 C 2 PFUnA	84		150				11／02／20 12：18	11／05／20 17：26	1
13 C 2 PFDoA	87		150				11／02／20 12：18	11／05／20 17：26	1
$13 C 2$ PFTeDA			150				11／02／20 12：18	11／05／20 17：26	1
$13 C 3$ PFBS	64		150				11／02／20 12：18	11／05／20 17：26	1
1802 PFHxS	69		150				11／02／20 12：18	11／05／20 17：26	1
13 C 4 PFOS	70		150				11／02／20 12：18	11／05／20 17：26	1
13C8 FOSA	82		150				11／02／20 12：18	11／05／20 17：26	1
d3－NMeFOSAA	84		150				11／02／20 12：18	11／05／20 17：26	1
NEtFOSAA	69		150				11／02／20 12：18	11／05／20 17：26	1
M2－6：2 FTS	101		150				11／02／20 12：18	11／05／20 17：26	1
M2－8：2 FTS	128		150				11／02／20 12：18	11／05／20 17：26	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	15400		42.3	． 0	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：18	
Antimony	1.3	J	4.2	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Arsenic	8.4		3.2	． 65	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Barium	150		42.3	4.1	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Beryllium	0.71		． 42	． 068	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Cadmium	0.66	J	． 85	． 073	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：18	
Calcium	6760			78.1	$\mathrm{mg} / \mathrm{Kg}$	号	8／20 02：35	8／20 19：18	
Chromium	23.1		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：18	
Cobalt	15.9		． 6	． 59	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：18	
Copper	44.3		5.3	． 3	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Iron	34200		31.7	． 8	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：18	
Lea	25.1		． 1	． 34	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Magnesium	8480			71.5	$\mathrm{mg} / \mathrm{Kg}$	＊	8／20 02：35	8／20 19：18	
Manganese	923		3.2	． 24	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Nickel	33.8		8.5	． 56	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Potassium	1660			4.9	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：18	
Selenium	ND		4.2	.72	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：18	
Silver	ND		． 1	． 2	$\mathrm{mg} / \mathrm{Kg}$	管	8／20 02：35	8／20 19：18	
Sodium	ND			91.9	$\mathrm{mg} / \mathrm{Kg}$	号	8／20 02：35	8／20 19：18	
Thallium	ND		4.2	． 66	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：18	
V nadium	25.9		． 6	.98	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：18	
Zinc	85.3		． 3	． 2	$\mathrm{mg} / \mathrm{Kg}$	察	8／20 02：35	8／20 19：18	

Method：7471B－Mercury（CVAA）

Analyte	esult
Mercury	Qualifier
0.017	$\frac{\text { L }}{.017} \frac{\text { MDL }}{.0041} \frac{\text { Unit }}{\mathrm{mg} / \mathrm{Kg}}$

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 2	.39	$\mathrm{mg} / \mathrm{Kg}$	倞	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 2	.38	$\mathrm{mg} / \mathrm{Kg}$	苑	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	9.0		． 0	． 0	\％			7／20 13：18	
Percent Solids	91.0		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S4－SOIL－102120
Date Collected：10／21／20 17：49
Lab Sample ID：460－221262－11
Matrix：Solid
Date Received：10／23／20 10：00

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.50		． 24	． 034	ug／Kg	号	12：18	5／20 17：35	
Perfluoropentanoic acid（PFPeA）	0.20	J	． 24	． 094	ug／Kg	\％	12：18	5／20 17：35	
Perfluorohexanoic acid（PFHxA）	0.20	J	． 24	． 051	ug／Kg	\％	12：18	5／20 17：35	
Perfluoroheptanoic acid（PFHpA）	0.17	J	． 24	． 035	ug／Kg	\％	12：18	5／20 17：35	
Perfluorooctanoic acid（PFOA）	0.38		． 24	． 10	ug／Kg	\％	12：18	5／20 17：35	
Perfluorononanoic acid（PFNA）	0.17	J	． 24	． 044	$\mathrm{ug} / \mathrm{Kg}$	＊	12：18	5／20 17：35	
Perfluorodecanoic acid（PFDA）	0.089	J	． 24	． 027	ug／Kg	\％	12：18	5／20 17：35	
Perfluoroundecanoic acid （PFUnA）	0.078	J	． 24	． 044	ug／Kg	\％	12：18	5／20 17：35	
Perfluorododecanoic acid（PFDoA）	ND		． 24	． 081	ug／Kg	\％	12：18	5／20 17：35	
Perfluorotridecanoic acid（PFTriA）	ND		． 24	． 062	ug／Kg	\％	12：18	5／20 17：35	
Perfluorotetradecanoic acid（PFTeA）	ND		． 24	． 066	ug／Kg	\％	12：18	5／20 17：35	
Perfluorobutanesulfonic acid （PFBS）	0.050	J	． 24	． 030	ug／Kg	\％	12：18	5／20 17：35	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 24	． 038	$\mathrm{ug} / \mathrm{Kg}$	\％	12：18	5／20 17：35	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 24	． 043	ug／Kg	\％	12：18	5／20 17：35	
Perfluorooctanesulfonic acid （PFOS）	0.26	J	． 61	． 24	ug／Kg	\％	12：18	5／20 17：35	
Perfluorodecanesulfonic acid（PFDS）	ND		． 24	． 047	ug／Kg	\％	12：18	5／20 17：35	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 10	ug／Kg	\％	12：18	5／20 17：35	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 4	． 47	ug／Kg	然	12：18	5／20 17：35	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 4	． 45	ug／Kg	\％	12：18	5／20 17：35	
：2 FTS	ND		． 4	． 18	ug／Kg	\％	12：18	5／20 17：35	
8：2 FTS	ND		． 4	． 30	ug／Kg	\％	12：18	5／20 17：35	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA			150				11／02／20 12：18	11／05／20 17：35	1
$13 C 5$ PFPeA	60		150				11／02／20 12：18	11／05／20 17：35	1
13 C 2 PFHxA	73		150				11／02／20 12：18	11／05／20 17：35	1
13 C 4 PFHpA	76		150				11／02／20 12：18	11／05／20 17：35	1
$13 C 4$ PFOA	74		150				11／02／20 12：18	11／05／20 17：35	1
13 C 5 PFNA	76		150				11／02／20 12：18	11／05／20 17：35	1
$13 C 2$ PFDA	78		150				11／02／20 12：18	11／05／20 17：35	1
$13 C 2$ PFUnA	76		150				11／02／20 12：18	11／05／20 17：35	1
13 C 2 PFDoA	79		150				11／02／20 12：18	11／05／20 17：35	1
13 C 2 PFTeDA	82		150				11／02／20 12：18	11／05／20 17：35	1
13C3 PFBS	61		150				11／02／20 12：18	11／05／20 17：35	1

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Isotope Dilution	\％Recovery	Qualifier	Limits
1802 PFHxS	64		150
13C4 PFOS	66		150
13C8 FOSA	75		150
d3－NMeFOSAA	70		150
NEtFOSAA	71		150
M2－6：2 FTS	102		150
M2－8：2 FTS	130		150

Prepared	Analyzed	Dil Fac
11／02／20 12：18	11／05／20 17：35	1
11／02／20 12：18	11／05／20 17：35	1
11／02／20 12：18	11／05／20 17：35	1
11／02／20 12：18	11／05／20 17：35	1
11／02／20 12：18	11／05／20 17：35	1
11／02／20 12：18	11／05／20 17：35	1
11／02／20 12：18	11／05／20 17：35	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	20400		50.8	7.2	mg／Kg	妨	8／20 02：35	8／20 19：30	
Antimony	ND		5.1	． 5	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Arsenic	6.9		3.8	． 78	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Barium	125		50.8	4.9	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：30	
Beryllium	0.87		． 51	． 081	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Cadmium	0.66	J	． 0	． 088	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Calcium	3510		70	93.9	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：30	
Chromium	22.4		． 5	． 8	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：30	
Cobalt	15.5		． 7	． 70	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Copper	24.8		． 4	． 6	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Iron	34400		38.1	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Lea	15.1		． 5	． 41	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Magnesium	5870		70	86.0	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：30	
Manganese	596		3.8	． 29	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Nickel	28.1		． 2	． 67	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Potassium	2900		70	78.0	$\mathrm{mg} / \mathrm{Kg}$	交	8／20 02：35	8／20 19：30	
Selenium	ND		5.1	． 86	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Silver	ND		． 5	． 4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Sodium	125	J	70		$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：30	
Thallium	ND		5.1	.79	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
V nadium	33.7		． 7	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：30	
Zinc	78.5		7.6	． 4	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：30	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.022		． 022	． 0051	mg／Kg	为	8／20 03：49	8／20 08：44	

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 6	． 46	mg／Kg	京	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 6	． 46	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23.6		． 0	． 0	\％			7／20 13：18	
Percent Solids	76.4		． 0	． 0	\％			7／20 13：18	

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.27		． 27	． 038	ug／Kg	为	8／20 06：59	23：50	
Perfluoropentanoic acid（PFPeA）	0.10	J	． 27	． 10	ug／Kg	\％	8／20 06：59	23：50	
Perfluorohexanoic acid（PFHxA）	0.13	J	． 27	． 056	ug／Kg	＊	8／20 06：59	23：50	
Perfluoroheptanoic acid（PFHpA）	0.18	J	． 27	． 039	ug／Kg	－	8／20 06：59	23：50	
Perfluorooctanoic acid（PFOA）	0.58		． 27	． 12	ug／Kg	＊	8／20 06：59	23：50	
Perfluorononanoic acid（PFNA）	0.41		． 27	． 048	ug／Kg	\％	8／20 06：59	23：50	
Perfluorodecanoic acid（PFDA）	0.21	J	． 27	． 030	ug／Kg	\％	8／20 06：59	23：50	
Perfluoroundecanoic acid （PFUnA）	0.30	F1	． 27	． 048	ug／Kg	＊	8／20 06：59	23：50	
Perfluorododecanoic acid（PFDoA）	ND		． 27	． 090	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	23：50	
Perfluorotridecanoic acid（PFTriA）	ND		． 27	． 068	ug／Kg	\％	8／20 06：59	23：50	
Perfluorotetradecanoic acid（PFTeA）	ND		． 27	． 072	ug／Kg	＊	8／20 06：59	23：50	
Perfluorobutanesulfonic acid（PFBS）	ND		． 27	． 034	$\mathrm{ug} / \mathrm{Kg}$	＊	8／20 06：59	23：50	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 27	． 042	ug／Kg	＊	8／20 06：59	23：50	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 27	． 047	ug／Kg	安	8／20 06：59	23：50	
Perfluorooctanesulfonic acid （PFOS）	0.78	B	． 67	． 27	ug／Kg	＊	8／20 06：59	23：50	
Perfluorodecanesulfonic acid（PFDS）	ND		． 27	． 052	ug／Kg	＊	8／20 06：59	23：50	
Perfluorooctanesulfonamide（FOSA）	ND		． 27	． 1	ug／Kg	安	8／20 06：59	23：50	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 7	． 52	ug／Kg	＊	8／20 06：59	23：50	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 7	． 50	ug／Kg	＊	8／20 06：59	23：50	
：2 FTS	ND		． 7	． 20	ug／Kg	安	8／20 06：59	23：50	
8：2 FTS	ND		． 7	． 34	ug／Kg	安	8／20 06：59	23：50	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	8		150				10／28／20 06：59	11／01／20 23：50	1
13 C 5 PFPeA	0		150				10／28／20 06：59	11／01／20 23：50	1
13 C 2 PFHxA	60		150				10／28／20 06：59	11／01／20 23：50	1
$13 \mathrm{C4}$ PFHpA			150				10／28／20 06：59	11／01／20 23：50	1
$13 C 4$ PFOA			150				10／28／20 06：59	11／01／20 23：50	1
$13 C 5$ PFNA			150				10／28／20 06：59	11／01／20 23：50	1
$13 C 2$ PFDA	8		150				10／28／20 06：59	11／01／20 23：50	1
$13 C 2$ PFUnA	6		150				10／28／20 06：59	11／01／20 23：50	1
$13 C 2$ PFDoA	60		150				10／28／20 06：59	11／01／20 23：50	1
$13 C 2$ PFTeDA	46		150				10／28／20 06：59	11／01／20 23：50	1
$13 C 3$ PFBS	8		150				10／28／20 06：59	11／01／20 23：50	1
1802 PFHxS			150				10／28／20 06：59	11／01／20 23：50	1
$13 C 4$ PFOS	0		150				10／28／20 06：59	11／01／20 23：50	1
13C8 FOSA	45		150				10／28／20 06：59	11／01／20 23：50	1
d3－NMeFOSAA	68		150				10／28／20 06：59	11／01／20 23：50	1
NEtFOSAA	67		150				10／28／20 06：59	11／01／20 23：50	1
M2－6：2 FTS	67		150				10／28／20 06：59	11／01／20 23：50	1
M2－8：2 FTS	63		150				10／28／20 06：59	11／01／20 23：50	1

Method：6010D－Metals（ICP）

Method：6010D－Metals（ICP）（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	110		51.1	4.9	mg／Kg	安	8／20 02：35	8／20 19：34	
Beryllium	0.71		． 51	． 082	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：34	
Cadmium	0.63	J	． 0	． 088	$\mathrm{mg} / \mathrm{Kg}$	㚣	8／20 02：35	8／20 19：34	
Calcium	12500		80	94.4	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Chromium	21.5		． 6	． 8	$\mathrm{mg} / \mathrm{Kg}$	名	8／20 02：35	8／20 19：34	
Cobalt	14.1		． 8	.71	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Copper	22.9		． 4	． 6	$\mathrm{mg} / \mathrm{Kg}$	－	8／20 02：35	8／20 19：34	
Iron	32400		38.3	． 3	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Lea	14.1		． 6	． 41	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：34	
Magnesium	9160		80	86.4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：34	
Manganese	683		3.8	． 29	$\mathrm{mg} / \mathrm{Kg}$	桇	8／20 02：35	8／20 19：34	
Nickel	28.7		． 2	． 67	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Potassium	3210		80	78.4	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Selenium	ND		5.1	． 87	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Silver	ND		． 6	.4	$\mathrm{mg} / \mathrm{Kg}$	安	8／20 02：35	8／20 19：34	
Sodium	211	J	80		$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：34	
Thallium	ND		5.1	.79	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：34	
V nadium	30.3		． 8	． 2	$\mathrm{mg} / \mathrm{Kg}$	苑	8／20 02：35	8／20 19：34	
Zinc	76.8		7.7	． 4	$\mathrm{mg} / \mathrm{Kg}$	\％	8／20 02：35	8／20 19：34	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.017	J	． 023	． 0054	mg／Kg	家	8／20 03：49	8／20 08：46	
General Chemistry									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 8	． 48	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 7	． 48	$\mathrm{mg} / \mathrm{Kg}$	㠰	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	27.5		． 0	． 0	\％			7／20 13：18	
Percent Solids	72.5		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S12－SOIL－102120

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.089	J	． 24	． 034	ug／Kg	多	8／20 06：59	00：18	
Perfluoropentanoic acid（PFPeA）	ND		． 24	． 094	$\mathrm{ug} / \mathrm{Kg}$	安	8／20 06：59	00：18	
Perfluorohexanoic acid（PFHxA）	0.061	J I	． 24	． 051	ug／Kg	安	8／20 06：59	00：18	
Perfluoroheptanoic acid（PFHpA）	0.065	J	． 24	． 035	ug／Kg	察	8／20 06：59	00：18	
Perfluorooctanoic acid（PFOA）	0.29		． 24	． 10	ug／Kg	安	8／20 06：59	00：18	
Perfluorononanoic acid（PFNA）	0.17	J	． 24	． 044	$\mathrm{ug} / \mathrm{Kg}$	苑	8／20 06：59	00：18	
Perfluorodecanoic acid（PFDA）	0.073	J	． 24	． 027	ug／Kg	\％	8／20 06：59	00：18	
Perfluoroundecanoic acid （PFUnA）	0.13	J	． 24	． 044	ug／Kg	\％	8／20 06：59	00：18	
Perfluorododecanoic acid（PFDoA）	ND		． 24	． 082	ug／Kg	\％	8／20 06：59	00：18	
Perfluorotridecanoic acid（PFTriA）	ND		． 24	． 062	ug／Kg	\％	8／20 06：59	00：18	
Perfluorotetradecanoic acid（PFTeA）	ND		． 24	． 066	ug／Kg	安	8／20 06：59	00：18	

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid（PFBS）	ND		． 24	． 030	ug／Kg	\％	8／20 06：59	00：18	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 24	． 038	ug／Kg	\％	8／20 06：59	00：18	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 24	． 043	$\mathrm{ug} / \mathrm{Kg}$	丞	8／20 06：59	00：18	
Perfluorooctanesulfonic acid （PFOS）	0.45	J B	． 61	． 24	$\mathrm{ug} / \mathrm{Kg}$	家	8／20 06：59	00：18	
Perfluorodecanesulfonic acid（PFDS）	ND		． 24	． 047	$\mathrm{ug} / \mathrm{Kg}$	哭	8／20 06：59	00：18	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 10	$\mathrm{ug} / \mathrm{Kg}$	永	8／20 06：59	00：18	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 4	． 47	$\mathrm{ug} / \mathrm{Kg}$	京	8／20 06：59	00：18	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 4	45	ug／Kg	号	8／20 06：59	00：18	
：2 FTS	ND		． 4	． 18	ug／Kg	突	8／20 06：59	00：18	
8：2 FTS	ND		． 4	． 30	ug／Kg	哭	8／20 06：59	00：18	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	61		150				10／28／20 06：59	11／02／20 00：18	1
13 C 5 PFPeA			150				10／28／20 06：59	11／02／20 00：18	1
13 C 2 PFHXA	63		150				10／28／20 06：59	11／02／20 00：18	1
$13 \mathrm{C4}$ PFHpA	63		150				10／28／20 06：59	11／02／20 00：18	1
13 C 4 PFOA	63		150				10／28／20 06：59	11／02／20 00：18	1
$13 C 5$ PFNA	60		150				10／28／20 06：59	11／02／20 00：18	1
$13 C 2$ PFDA	62		150				10／28／20 06：59	11／02／20 00：18	1
$13 C 2$ PFUnA	8		150				10／28／20 06：59	11／02／20 00：18	1
$13 C 2$ PFDoA	4		150				10／28／20 06：59	11／02／20 00：18	1
$13 C 2$ PFTeDA	46		150				10／28／20 06：59	11／02／20 00：18	1
$13 C 3$ PFBS	61		150				10／28／20 06：59	11／02／20 00：18	1
1802 PFHxS	61		150				10／28／20 06：59	11／02／20 00：18	1
13 C 4 PFOS	6		150				10／28／20 06：59	11／02／20 00：18	1
13C8 FOSA	49		150				10／28／20 06：59	11／02／20 00：18	1
d3－NMeFOSAA	66		150				10／28／20 06：59	11／02／20 00：18	1
NEtFOSAA	61		150				10／28／20 06：59	11／02／20 00：18	1
M2－6：2 FTS	73		150				10／28／20 06：59	11／02／20 00：18	1
M2－8：2 FTS	71		150				10／28／20 06：59	11／02／20 00：18	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	11500		37.0	5.2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：34	
Antimony	ND		3.7	． 1	$\mathrm{mg} / \mathrm{Kg}$	号	9／20 15：00	30／20 12：34	
Arsenic	6.2		． 8	． 57	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：34	
Barium	63.9		37.0	3.6	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 12：34	
Beryllium	0.58		． 37	． 059	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：34	
Cadmium	ND		． 74	． 064	$\mathrm{mg} / \mathrm{Kg}$	多	9／20 15：00	30／20 12：34	
Calcium	2280		925	8.3	$\mathrm{mg} / \mathrm{Kg}$	好	9／20 15：00	30／20 12：34	
Chromium	14.0		． 8	． 3	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：34	
Cobalt	8.1	J	9.2	． 51	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：34	
Copper	15.7		4.6	． 2	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 12：34	
Iron	23300		7.7	9.1	$\mathrm{mg} / \mathrm{Kg}$	多	9／20 15：00	30／20 12：34	
Lea	12.4		． 8	． 30	$\mathrm{mg} / \mathrm{Kg}$	多	9／20 15：00	30／20 12：34	
Magnesium	3100		925	． 6	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 12：34	
Manganese	500		． 8	． 21	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：34	

Client Sample ID：DUP2－SOIL－102120

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.38		． 25	． 035	ug／Kg	\％	8／20 06：59	00：28	
Perfluoropentanoic acid（PFPeA）	0.16	J	． 25	． 096	ug／Kg	\％	8／20 06：59	00：28	
Perfluorohexanoic acid（PFHxA）	0.15	J	． 25	． 052	ug／Kg	唯	8／20 06：59	00：28	
Perfluoroheptanoic acid（PFHpA）	0.16	J	． 25	． 036	$\mathrm{ug} / \mathrm{Kg}$	品	8／20 06：59	00：28	
Perfluorooctanoic acid（PFOA）	0.36		． 25	． 1	$\mathrm{ug} / \mathrm{Kg}$	苑	8／20 06：59	00：28	
Perfluorononanoic acid（PFNA）	0.17	J	． 25	． 045	ug／Kg	苑	8／20 06：59	00：28	
Perfluorodecanoic acid（PFDA）	0.066	J	． 25	． 027	ug／Kg	品	8／20 06：59	00：28	
Perfluoroundecanoic acid （PFUnA）	0.099	J	． 25	． 045	ug／Kg	＊	8／20 06：59	00：28	
Perfluorododecanoic acid（PFDoA）	ND		． 25	． 084	ug／Kg	品	8／20 06：59	00：28	
Perfluorotridecanoic acid（PFTriA）	ND		． 25	． 064	ug／Kg		8／20 06：59	00：28	
Perfluorotetradecanoic acid（PFTeA）	ND		． 25	． 067	$\mathrm{ug} / \mathrm{Kg}$	苑	8／20 06：59	00：28	
Perfluorobutanesulfonic acid （PFBS）	0.033	J	． 25	． 031	ug／Kg	－	8／20 06：59	00：28	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 25	． 039	ug／Kg	品	8／20 06：59	00：28	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 25	． 044	ug／Kg	＊	8／20 06：59	00：28	
Perfluorooctanesulfonic acid （PFOS）	0.32	J B	． 62	． 25	ug／Kg	号	8／20 06：59	00：28	
Perfluorodecanesulfonic acid（PFDS）	ND		． 25	． 049	ug／Kg	察	8／20 06：59	00：28	
Perfluorooctanesulfonamide（FOSA）	ND		． 25	． 10	ug／Kg	＊	8／20 06：59	00：28	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 5	． 49	ug／Kg	苑	8／20 06：59	00：28	
N－ethylperfluorooctanesulfonamidoac	ND		． 5	． 46	ug／Kg	品	8／20 06：59	00：28	

etic acid（NEtFOSAA）

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
：2 FTS	ND		． 5	． 19	ug／Kg	䓵	8／20 06：59	00：28	
8：2 FTS	ND		． 5	． 31	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	00：28	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	63		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 5$ PFPeA			150				10／28／20 06：59	11／02／20 00：28	1
13C2 PFHxA	67		150				10／28／20 06：59	11／02／20 00：28	1
13 C 4 PFHpA	67		150				10／28／20 06：59	11／02／20 00：28	1
13 C 4 PFOA	64		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 5$ PFNA	65		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 2$ PFDA	65		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 2$ PFUnA	66		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 2$ PFDoA	65		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 2$ PFTeDA	49		150				10／28／20 06：59	11／02／20 00：28	1
$13 C 3$ PFBS	7		150				10／28／20 06：59	11／02／20 00：28	1
1802 PFHxS	8		150				10／28／20 06：59	11／02／20 00：28	1
13 C 4 PFOS	3		150				10／28／20 06：59	11／02／20 00：28	1
13C8 FOSA	4		150				10／28／20 06：59	11／02／20 00：28	1
d3－NMeFOSAA	74		150				10／28／20 06：59	11／02／20 00：28	1
NEtFOSAA	68		150				10／28／20 06：59	11／02／20 00：28	1
M2－6：2 FTS	70		150				10／28／20 06：59	11／02／20 00：28	1
M2－8：2 FTS	68		150				10／28／20 06：59	11／02／20 00：28	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	19200		39.3	5.6	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：38	
Antimony	ND		3.9	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Arsenic	7.7		3.0	． 60	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Barium	114		39.3	3.8	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Beryllium	0.93		． 39	． 063	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Cadmium	ND		． 79	． 068	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Calcium	3160		984	72.7	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Chromium	21.0		． 0	． 4	$\mathrm{mg} / \mathrm{Kg}$	洜	9／20 15：00	30／20 12：38	
Cobalt	14.6		9.8	． 54	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 15：00	30／20 12：38	
Copper	23.3		4.9	． 2	$\mathrm{mg} / \mathrm{Kg}$	品	9／20 15：00	30／20 12：38	
Iron	32300		9.5	． 3	$\mathrm{mg} / \mathrm{Kg}$	哭	9／20 15：00	30／20 12：38	
Lea	12.8		． 0	.32	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：38	
Magnesium	5380		984	． 6	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Manganese	500		3.0	22	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Nickel	26.3		7.9	． 52	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：38	
Potassium	2460		984	． 4	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：38	
Selenium	1.1	J	3.9	． 67	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：38	
Silver	ND		． 0	． 1	$\mathrm{mg} / \mathrm{Kg}$	家	9／20 15：00	30／20 12：38	
Sodium	90.6	J	984	85.6	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 12：38	
Thallium	0.91	J	3.9	.61	$\mathrm{mg} / \mathrm{Kg}$	䓵	9／20 15：00	30／20 12：38	
V nadium	30.9		9.8	.91	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：38	
Zinc	72.1		5.9	． 1	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 12：38	

Method：7471B－Mercury（CVAA）
Analyte $\frac{\text { esult }}{\text { Mercury }} \frac{0.022}{} \frac{\text { Qualifier }}{} \frac{\mathbf{L}}{.020} \frac{\text { MDL }}{.0046} \frac{\text { Unit }}{\mathrm{mg} / \mathrm{Kg}} \frac{\mathbf{D}}{} \frac{\text { Prepared }}{8 / 2002: 58} \frac{\text { Analyzed }}{8 / 2007: 07}$
Eurofins TestAmerica，Edison

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 6	.45	$\mathrm{mg} / \mathrm{Kg}$	苑	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 6	． 45	$\mathrm{mg} / \mathrm{Kg}$	妿	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22.4		． 0	． 0	\％			7／20 13：18	
Percent Solids	77.6		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S1－SOIL－102120
Date Collected：10／21／20 16：30
Lab Sample ID：460－221262－15
Date Received：10／23／20 10：00

Matrix：Solid Percent Solids： 73.2

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.19	J	． 27	． 037	ug／Kg	为	8／20 06：59	00：37	
Perfluoropentanoic acid（PFPeA）	ND		． 27	． 10	ug／Kg	\％	8／20 06：59	00：37	
Perfluorohexanoic acid（PFHxA）	0.084	J	． 27	． 056	ug／Kg	安	8／20 06：59	00：37	
Perfluoroheptanoic acid（PFHpA）	0.10	J	． 27	． 039	ug／Kg	安	8／20 06：59	00：37	
Perfluorooctanoic acid（PFOA）	0.30		． 27	． 1	ug／Kg	\％	8／20 06：59	00：37	
Perfluorononanoic acid（PFNA）	0.19	J	． 27	． 048	ug／Kg	安	8／20 06：59	00：37	
Perfluorodecanoic acid（PFDA）	0.092	J	． 27	． 029	ug／Kg	－	8／20 06：59	00：37	
Perfluoroundecanoic acid （PFUnA）	0.16	J I	． 27	． 048	ug／Kg	苑	8／20 06：59	00：37	
Perfluorododecanoic acid（PFDoA）	ND		． 27	． 089	ug／Kg	＊	8／20 06：59	00：37	
Perfluorotridecanoic acid（PFTriA）	ND		． 27	． 068	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	00：37	
Perfluorotetradecanoic acid（PFTeA）	ND		． 27	． 072	ug／Kg	\％	8／20 06：59	00：37	
Perfluorobutanesulfonic acid（PFBS）	ND		． 27	． 033	ug／Kg	\％	8／20 06：59	00：37	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 27	． 041	ug／Kg	＊	8／20 06：59	00：37	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 27	． 047	ug／Kg	多	8／20 06：59	00：37	
Perfluorooctanesulfonic acid （PFOS）	0.95	B	． 66	． 27	ug／Kg	＊	8／20 06：59	00：37	
Perfluorodecanesulfonic acid（PFDS）	ND		． 27	． 052	ug／Kg	＊	8／20 06：59	00：37	
Perfluorooctanesulfonamide（FOSA）	ND		． 27	． 1	ug／Kg	安	8／20 06：59	00：37	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 7	． 52	ug／Kg	号	8／20 06：59	00：37	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 7	． 49	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	00：37	
：2 FTS	ND		． 7	． 20	ug／Kg	安	8／20 06：59	00：37	
8：2 FTS	ND		． 7	． 33	ug／Kg	苑	8／20 06：59	00：37	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	7		150				10／28／20 06：59	11／02／20 00：37	1
$13 C 5$ PFPeA	0		150				10／28／20 06：59	11／02／20 00：37	1
13C2 PFHxA	63		150				10／28／20 06：59	11／02／20 00：37	1
13C4 PFHpA	63		150				10／28／20 06：59	11／02／20 00：37	1
$13 C 4$ PFOA	64		150				10／28／20 06：59	11／02／20 00：37	1
$13 C 5$ PFNA	65		150				10／28／20 06：59	11／02／20 00：37	1
$13 C 2$ PFDA	67		150				10／28／20 06：59	11／02／20 00：37	1
13C2 PFUnA	60		150				10／28／20 06：59	11／02／20 00：37	1
13C2 PFDoA	60		150				10／28／20 06：59	11／02／20 00：37	1
$13 C 2$ PFTeDA			150				10／28／20 06：59	11／02／20 00：37	1
$13 C 3$ PFBS	63		150				10／28／20 06：59	11／02／20 00：37	1
1802 PFHxS	66		150				10／28／20 06：59	11／02／20 00：37	1

[^15]| Method： 537 （modified）－Fluorinated Alkyl Substances（Continued） | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Isotope Dilution | \％Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac |
| $13 C 4$ PFOS | 65 | | 150 | | | | 10／28／20 06：59 | 11／02／20 00：37 | 1 |
| $13 C 8$ FOSA | 7 | | 150 | | | | 10／28／20 06：59 | 11／02／20 00：37 | 1 |
| d3－NMeFOSAA | 0 | | 150 | | | | 10／28／20 06：59 | 11／02／20 00：37 | 1 |
| NEtFOSAA | 44 | | 150 | | | | 10／28／20 06：59 | 11／02／20 00：37 | 1 |
| M2－6：2 FTS | 68 | | 150 | | | | 10／28／20 06：59 | 11／02／20 00：37 | 1 |
| M2－8：2 FTS | 73 | | 150 | | | | 10／28／20 06：59 | 11／02／20 00：37 | 1 |
| Method：6010D－Metals（ICP） | | | | | | | | | |
| Analyte | esult | Qualifier | L | MDL | Unit | D | Prepared | Analyzed | Dil Fac |
| Aluminum | 11900 | | 43.4 | ． 1 | mg／Kg | \％ | 9／20 15：00 | 30／20 12：42 | |
| Antimony | ND | | 4.3 | ． 2 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Arsenic | 4.9 | | 3.3 | ． 67 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Barium | 46.9 | | 43.4 | 4.2 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Beryllium | 0.54 | | ． 43 | ． 069 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Cadmium | ND | | ． 87 | ． 075 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Calcium | 940 | J | 80 | 80.1 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Chromium | 14.8 | | ． 2 | ． 5 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Cobalt | 6.6 | J | ． 8 | ． 60 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Copper | 12.4 | | 5.4 | ． 4 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Iron | 18700 | | 32.5 | ． 3 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Lea | 19.4 | | ． 2 | ． 35 | $\mathrm{mg} / \mathrm{Kg}$ | 名 | 9／20 15：00 | 30／20 12：42 | |
| Magnesium | 2230 | | 80 | 73.4 | $\mathrm{mg} / \mathrm{Kg}$ | 名 | 9／20 15：00 | 30／20 12：42 | |
| Manganese | 288 | | 3.3 | ． 24 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Nickel | 13.9 | | 8.7 | ． 57 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Potassium | 640 | J | 80 | ． 6 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Selenium | ND | | 4.3 | ． 74 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Silver | ND | | ． 2 | ． 2 | $\mathrm{mg} / \mathrm{Kg}$ | 名 | 9／20 15：00 | 30／20 12：42 | |
| Sodium | ND | | 80 | 94.3 | $\mathrm{mg} / \mathrm{Kg}$ | 茹 | 9／20 15：00 | 30／20 12：42 | |
| Thallium | ND | | 4.3 | ． 67 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| V nadium | 23.8 | | ． 8 | ． 0 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |
| Zinc | 45.4 | | ． 5 | ． 2 | $\mathrm{mg} / \mathrm{Kg}$ | \％ | 9／20 15：00 | 30／20 12：42 | |

Method: 7471B - Mercury (CVAA)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.048		． 022	． 0053	mg／Kg	安	8／20 02：58	8／20 07：09	

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 7	． 48	$\mathrm{mg} / \mathrm{Kg}$	家	9／20 09：04	30／20 12：09	
Chromium，hexavalent	ND		． 7	． 47	$\mathrm{mg} / \mathrm{Kg}$	安	12：08	13：46	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	26.8		． 0	． 0	\％			7／20 13：18	
Percent Solids	73.2		． 0	． 0	\％			7／20 13：18	

Method: 537 (modified) - Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.5	. 1	ng/L		7/20 18:39	9/20 00:00	
Perfluoropentanoic acid (PFPeA)	ND		. 8	. 44	ng / L		7/20 18:39	9/20 00:00	
Perfluorohexanoic acid (PFHxA)	ND		. 8	. 52	ng / L		7/20 18:39	9/20 00:00	
Perfluoroheptanoic acid (PFHpA)	ND		. 8	. 22	ng / L		7/20 18:39	9/20 00:00	
Perfluorooctanoic acid (PFOA)	ND		. 8	. 76	ng / L		7/20 18:39	9/20 00:00	
Perfluorononanoic acid (PFNA)	ND		. 8	. 24	ng / L		7/20 18:39	9/20 00:00	
Perfluorodecanoic acid (PFDA)	ND		. 8	. 28	ng / L		7/20 18:39	9/20 00:00	
Perfluoroundecanoic acid (PFUnA)	ND		. 8	. 98	ng / L		7/20 18:39	9/20 00:00	
Perfluorododecanoic acid (PFDoA)	ND		. 8	. 49	ng / L		7/20 18:39	9/20 00:00	
Perfluorotridecanoic acid (PFTriA)	ND		. 8	. 2	ng / L		7/20 18:39	9/20 00:00	
Perfluorotetradecanoic acid (PFTeA)	ND		. 8	. 65	ng / L		7/20 18:39	9/20 00:00	
Perfluorobutanesulfonic acid (PFBS)	ND		. 8	. 18	ng / L		7/20 18:39	9/20 00:00	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 8	. 51	ng / L		7/20 18:39	9/20 00:00	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 8	. 17	ng/L		7/20 18:39	9/20 00:00	
Perfluorooctanesulfonic acid (PFOS)	ND		. 8	. 48	ng / L		7/20 18:39	9/20 00:00	
Perfluorodecanesulfonic acid (PFDS)	ND		. 8	. 29	ng / L		7/20 18:39	9/20 00:00	
Perfluorooctanesulfonamide (FOSA)	ND		. 8	. 87	ng/L		7/20 18:39	9/20 00:00	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	. 1	ng/L		7/20 18:39	9/20 00:00	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	. 2	ng/L		7/20 18:39	9/20 00:00	
:2 FTS	ND		4.5	. 2	ng/L		7/20 18:39	9/20 00:00	
8:2 FTS	ND		. 8	. 41	ng/L		7/20 18:39	9/20 00:00	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	68		150				10/27/20 18:39	10/29/20 00:00	1
13 C 5 PFPeA	71		150				10/27/20 18:39	10/29/20 00:00	1
13 C 2 PFHxA	75		150				10/27/20 18:39	10/29/20 00:00	1
$13 \mathrm{C4}$ PFHpA	76		150				10/27/20 18:39	10/29/20 00:00	1
$13 C 4$ PFOA	83		150				10/27/20 18:39	10/29/20 00:00	1
$13 C 5$ PFNA	81		150				10/27/20 18:39	10/29/20 00:00	1
$13 C 2$ PFDA	80		150				10/27/20 18:39	10/29/20 00:00	1
$13 C 2$ PFUnA	87		150				10/27/20 18:39	10/29/20 00:00	1
13C2 PFDoA	83		150				10/27/20 18:39	10/29/20 00:00	1
13 C 2 PFTeDA	70		150				10/27/20 18:39	10/29/20 00:00	1
13 C 3 PFBS	75		150				10/27/20 18:39	10/29/20 00:00	1
1802 PFHxS	77		150				10/27/20 18:39	10/29/20 00:00	1
$13 C 4$ PFOS	78		150				10/27/20 18:39	10/29/20 00:00	1
13C8 FOSA	70		150				10/27/20 18:39	10/29/20 00:00	1
d3-NMeFOSAA	70		150				10/27/20 18:39	10/29/20 00:00	1
NEtFOSAA	81		150				10/27/20 18:39	10/29/20 00:00	1
M2-6:2 FTS	63		150				10/27/20 18:39	10/29/20 00:00	1
M2-8:2 FTS	66		150				10/27/20 18:39	10/29/20 00:00	1

Method: 6010D - Metals (ICP)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND			76.9	ug/L		4/20 20:00	17:01	
Antimony	ND		. 0	3.7	ug/L		4/20 20:00	17:01	
Arsenic	ND		5.0	3.3	ug/L		4/20 20:00	17:01	
Barium	ND			3.2	ug/L		4/20 20:00	17:01	

Method: 6010D - Metals (ICP) (Continued)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		. 0	. 17	ug/L		4/20 20:00	17:01	
Cadmium	ND		4.0	. 33	ug/L		4/20 20:00	17:01	
Calcium	ND		5000	52	ug/L		4/20 20:00	17:01	
Chromium	ND		. 0	5.0	ug/L		4/20 20:00	17:01	
Cobalt	ND		50.0	. 0	ug/L		4/20 20:00	17:01	
Copper	ND		5.0	. 9	ug/L		4/20 20:00	17:01	
Iron	ND		50	80.8	ug/L		4/20 20:00	17:01	
Lead	ND		. 0	. 4	ug/L		4/20 20:00	17:01	
Magnesium	ND		5000	42	ug/L		4/20 20:00	17:01	
Manganese	ND		5.0	. 76	ug/L		4/20 20:00	17:01	
Nickel	ND		40.0	4.1	ug/L		4/20 20:00	17:01	
Potassium	ND		5000	42	ug/L		4/20 20:00	17:01	
Selenium	ND		. 0	5.9	ug/L		4/20 20:00	17:01	
Silver	ND		. 0	5.8	ug/L		4/20 20:00	17:01	
Sodium	104	J	5000	83.8	ug/L		4/20 20:00	17:01	
Thallium	ND		. 0	4.1	ug/L		4/20 20:00	17:01	
Vanadium	ND		50.0	7.2	ug/L		4/20 20:00	17:01	
Zinc	2.4	J	30.0	. 2	ug/L		4/20 20:00	17:01	

Method: 7470A - Mercury (CVAA)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		. 20	. 091	ug/L		8/20 12:28	8/20 14:21	

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND	H H3	. 0	8.1	ug/L			3/20 16:30	

Client Sample ID: S6A-SOIL-102120
Lab Sample ID: 460-221262-17
Date Collected: 10/21/20 14:40
Date Received: 10/23/20 10:00

Method: 537 (modified) - Fluorinated Alkyl Substances									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.22	J	. 27	. 037	ug/Kg	名	8/20 06:59	00:47	
Perfluoropentanoic acid (PFPeA)	0.16	J	. 27	. 10	ug/Kg	\%	8/20 06:59	00:47	
Perfluorohexanoic acid (PFHxA)	ND		. 27	. 056	ug/Kg	\%	8/20 06:59	00:47	
Perfluoroheptanoic acid (PFHpA)	0.13	J	. 27	. 039	$u \mathrm{~g} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluorooctanoic acid (PFOA)	0.45		. 27	. 12	$u \mathrm{~g} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluorononanoic acid (PFNA)	0.32		. 27	. 048	$u \mathrm{~g} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluorodecanoic acid (PFDA)	0.40		. 27	. 029	$u \mathrm{l} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluoroundecanoic acid (PFUnA)	0.21	J	. 27	. 048	ug/Kg	*	8/20 06:59	00:47	
Perfluorododecanoic acid (PFDoA)	0.15	J	. 27	. 090	ug/Kg	\%	8/20 06:59	00:47	
Perfluorotridecanoic acid (PFTriA)	ND		. 27	. 068	ug/Kg	\%	8/20 06:59	00:47	
Perfluorotetradecanoic acid (PFTeA)	ND		. 27	. 072	ug/Kg	\%	8/20 06:59	00:47	
Perfluorobutanesulfonic acid (PFBS)	0.093	J	. 27	. 033	$u \mathrm{~g} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluorohexanesulfonic acid (PFHxS)	0.059	J I	. 27	. 041	$u \mathrm{~g} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 27	. 047	ug/Kg	\%	8/20 06:59	00:47	

(PFHpS)

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	2.8	B	. 67	. 27	ug/Kg	倞	8/20 06:59	00:47	
Perfluorodecanesulfonic acid (PFDS)	0.15	J	. 27	. 052	$\mathrm{ug} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
Perfluorooctanesulfonamide (FOSA)	ND		. 27	. 1	ug/Kg	\%	8/20 06:59	00:47	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 7	. 52	ug/Kg	\%	8/20 06:59	00:47	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 7	. 50	$\mathrm{ug} / \mathrm{Kg}$	\%	8/20 06:59	00:47	
:2 FTS	ND		. 7	. 20	ug/Kg	\%	8/20 06:59	00:47	
8:2 FTS	ND		. 7	. 33	ug/Kg	\%	8/20 06:59	00:47	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	0		150				10/28/20 06:59	11/02/20 00:47	1
13 C 5 PFPeA	41		150				10/28/20 06:59	11/02/20 00:47	1
13 C 2 PFHxA	8		150				10/28/20 06:59	11/02/20 00:47	1
$13 \mathrm{C4}$ PFHpA	8		150				10/28/20 06:59	11/02/20 00:47	1
$13 C 4$ PFOA			150				10/28/20 06:59	11/02/20 00:47	1
$13 C 5$ PFNA	3		150				10/28/20 06:59	11/02/20 00:47	1
$13 C 2$ PFDA	7		150				10/28/20 06:59	11/02/20 00:47	1
$13 C 2$ PFUnA	1		150				10/28/20 06:59	11/02/20 00:47	1
13 C 2 PFDoA	46		150				10/28/20 06:59	11/02/20 00:47	1
13 C 2 PFTeDA	32		150				10/28/20 06:59	11/02/20 00:47	1
$13 C 3$ PFBS			150				10/28/20 06:59	11/02/20 00:47	1
1802 PFHxS	61		150				10/28/20 06:59	11/02/20 00:47	1
$13 C 4$ PFOS	6		150				10/28/20 06:59	11/02/20 00:47	1
13C8 FOSA	45		150				10/28/20 06:59	11/02/20 00:47	1
d3-NMeFOSAA	4		150				10/28/20 06:59	11/02/20 00:47	1
NETFOSAA	0		150				10/28/20 06:59	11/02/20 00:47	1
M2-6:2 FTS	71		150				10/28/20 06:59	11/02/20 00:47	1
M2-8:2 FTS	67		150				10/28/20 06:59	11/02/20 00:47	1

Method: 6010D - Metals (ICP) Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	12000		40.3	5.7	mg/Kg	\%	9/20 15:00	30/20 12:46	
Antimony	ND		4.0	. 2	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Arsenic	8.5		3.0	. 62	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Barium	105		40.3	3.9	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Beryllium	0.59		. 40	. 064	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Cadmium	0.091	J	. 81	. 069	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Calcium	2450			74.4	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Chromium	17.0		. 0	. 4	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Cobalt	10.8		. 1	. 56	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Copper	27.9		5.0	. 3	$\mathrm{mg} / \mathrm{Kg}$	*	9/20 15:00	30/20 12:46	
Iron	22000		30.2	. 7	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Lea	38.5		. 0	. 33	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Magnesium	3740			8.1	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Manganese	722		3.0	. 23	$\mathrm{mg} / \mathrm{Kg}$	*	9/20 15:00	30/20 12:46	
Nickel	20.7		8.1	. 53	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Potassium	1360			. 8	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	
Selenium	ND		4.0	. 68	$\mathrm{mg} / \mathrm{Kg}$	\%	9/20 15:00	30/20 12:46	

Method：6010D－Metals（ICP）（Continued）									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		． 0	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：46	
Sodium	ND			87.6	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：46	
Thallium	1.1	J	4.0	． 62	$\mathrm{mg} / \mathrm{Kg}$	家	9／20 15：00	30／20 12：46	
V nadium	26.2		． 1	． 94	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：46	
Zinc	95.3		． 0	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：46	
Method：7471B－Mercury（CVAA）									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.051		． 022	． 0052	mg／Kg	家	8／20 02：58	8／20 07：1	
General Chemistry									
Chromium，hexavalent	ND		． 7	． 47	$\mathrm{mg} / \mathrm{Kg}$	家	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 7	． 47	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	25.9		． 0	． 0	\％			7／20 13：18	
Percent Solids	74.1		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S6B－SOIL－102120

Date Collected：10／21／20 14：50
Date Received：10／23／20 10：00

Matrix：Solid
Percent Solids： 77.0

Method： 537 （modified）－Fluo Analyte	d Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.34		． 26	． 036	ug／Kg	安	8／20 06：59	00：56	
Perfluoropentanoic acid（PFPeA）	0.23	J	． 26	． 098	ug／Kg	\％	8／20 06：59	00：56	
Perfluorohexanoic acid（PFHxA）	0.16	J	． 26	． 054	ug／Kg	\％	8／20 06：59	00：56	
Perfluoroheptanoic acid（PFHpA）	0.17	J	． 26	． 037	ug／Kg	\％	8／20 06：59	00：56	
Perfluorooctanoic acid（PFOA）	0.63		． 26	． 1	ug／Kg	\％	8／20 06：59	00：56	
Perfluorononanoic acid（PFNA）	0.31		． 26	． 046	ug／Kg	熍	8／20 06：59	00：56	
Perfluorodecanoic acid（PFDA）	0.34		． 26	． 028	ug／$/ \mathrm{Kg}$	\％	8／20 06：59	00：56	
Perfluoroundecanoic acid （PFUnA）	0.17	J	． 26	． 046	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	00：56	
Perfluorododecanoic acid （PFDoA）	0.14	J	． 26	． 085	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	00：56	
Perfluorotridecanoic acid（PFTriA）	ND		． 26	． 065	ug／Kg	\％	8／20 06：59	00：56	
Perfluorotetradecanoic acid（PFTeA）	ND		． 26	． 069	ug／Kg	\％	8／20 06：59	00：56	
Perfluorobutanesulfonic acid （PFBS）	0.089	J	． 26	． 032	$\mathrm{ug} / \mathrm{Kg}$	矣	8／20 06：59	00：56	
Perfluorohexanesulfonic acid （PFHxS）	0.064	J I	． 26	． 040	ug／Kg	＊	8／20 06：59	00：56	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 26	． 045	ug／Kg	\％	8／20 06：59	00：56	
Perfluorooctanesulfonic acid （PFOS）	2.3	B	． 64	． 26	ug／Kg	\％	8／20 06：59	00：56	
Perfluorodecanesulfonic acid （PFDS）	0.15	J	． 26	． 050	$\mathrm{ug} / \mathrm{Kg}$	＊	8／20 06：59	00：56	
Perfluorooctanesulfonamide（FOSA）	ND		． 26	． 10	ug／Kg	＊	8／20 06：59	00：56	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 6	． 50	ug／Kg	\％	8／20 06：59	00：56	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 6	． 47	ug／Kg	\％	8／20 06：59	00：56	

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
：2 FTS	ND		． 6	． 19	ug／Kg	\％	8／20 06：59	00：56	
8：2 FTS	ND		． 6	． 32	ug／Kg	安	8／20 06：59	00：56	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	71		150				10／28／20 06：59	11／02／20 00：56	1
$13 C 5$ PFPeA			150				10／28／20 06：59	11／02／20 00：56	1
13 C 2 PFHXA	79		150				10／28／20 06：59	11／02／20 00：56	1
13 C 4 PFHpA	78		150				10／28／20 06：59	11／02／20 00：56	1
13 C 4 PFOA	76		150				10／28／20 06：59	11／02／20 00：56	1
$13 C 5$ PFNA	76		150				10／28／20 06：59	11／02／20 00：56	1
$13 C 2$ PFDA	81		150				10／28／20 06：59	11／02／20 00：56	1
$13 C 2$ PFUnA	77		150				10／28／20 06：59	11／02／20 00：56	1
$13 C 2$ PFDoA	67		150				10／28／20 06：59	11／02／20 00：56	1
13 C 2 PFTeDA	1		150				10／28／20 06：59	11／02／20 00：56	1
$13 C 3$ PFBS	76		150				10／28／20 06：59	11／02／20 00：56	1
1802 PFHxS	78		150				10／28／20 06：59	11／02／20 00：56	1
13 C 4 PFOS	76		150				10／28／20 06：59	11／02／20 00：56	1
13C8 FOSA	61		150				10／28／20 06：59	11／02／20 00：56	1
d3－NMeFOSAA	85		150				10／28／20 06：59	11／02／20 00：56	1
NETFOSAA	74		150				10／28／20 06：59	11／02／20 00：56	1
M2－6：2 FTS			150				10／28／20 06：59	11／02／20 00：56	1
M2－8：2 FTS	8		150				10／28／20 06：59	11／02／20 00：56	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	12200		41.9	5.9	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：50	
Antimony	ND		4.2	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Arsenic	8.6		3.1	． 64	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Barium	109		41.9	4.0	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Beryllium	0.62		． 42	． 067	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Cadmium	0.084	J	． 84	． 072	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Calcium	2470		50	77.4	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Chromium	17.4		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$	突	9／20 15：00	30／20 12：50	
Cobalt	10.7		． 5	． 58	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 15：00	30／20 12：50	
Copper	26.9		5.2	． 3	$\mathrm{mg} / \mathrm{Kg}$	品	9／20 15：00	30／20 12：50	
Iron	22000		31.4	． 6	$\mathrm{mg} / \mathrm{Kg}$	哭	9／20 15：00	30／20 12：50	
Lea	39.8		． 1	.34	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Magnesium	3670		50	70.9	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Manganese	714		3.1	24	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Nickel	20.7		8.4	． 55	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Potassium	1240		50	4.3	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：50	
Selenium	ND		4.2	.71	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：50	
Silver	ND		． 1	2	$\mathrm{mg} / \mathrm{Kg}$	家	9／20 15：00	30／20 12：50	
Sodium	ND		50	91.1	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 12：50	
Thallium	1.0	J	4.2	． 65	$\mathrm{mg} / \mathrm{Kg}$	䓵	9／20 15：00	30／20 12：50	
V nadium	27.2		5	． 97	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：50	
Zinc	101		． 3	． 1	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 12：50	

Method：7471B－Mercury（CVAA）
$\frac{\text { Analyte }}{\text { Mercury }} \frac{\text { esult }}{0.053} \frac{\text { Qualifier }}{} \frac{\mathrm{L}}{.020} \frac{\mathrm{MDL}}{.0048} \frac{\text { Unit }}{\mathrm{mg} / \mathrm{Kg}} \frac{\mathrm{D}}{} \frac{\text { Prepared }}{8 / 2002: 58} \frac{\text { Analyzed }}{8 / 2007: 13} \quad$ Dil Fac

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 6	.45	$\mathrm{mg} / \mathrm{Kg}$	宛	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 6	． 45	$\mathrm{mg} / \mathrm{Kg}$	营	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23.0		． 0	． 0	\％			7／20 13：18	
Percent Solids	77.0		． 0	． 0	\％			7／20 13：18	

Client Sample ID：S7A－SOIL－102120

Method： 537 （modified）－Fluo Analyte	nated Alky esult	Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.21	J	． 27	． 037	ug／Kg	名	8／20 06：59	01：24	
Perfluoropentanoic acid（PFPeA）	0.11	J	． 27	． 10	ug／Kg	\％	8／20 06：59	01：24	
Perfluorohexanoic acid（PFHxA）	0.13	J	． 27	． 056	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	01：24	
Perfluoroheptanoic acid（PFHpA）	0.11	J	． 27	． 039	ug／Kg	察	8／20 06：59	01：24	
Perfluorooctanoic acid（PFOA）	0.33		． 27	． 12	ug／Kg	\％	8／20 06：59	01：24	
Perfluorononanoic acid（PFNA）	0.17	J	． 27	． 048	$\mathrm{ug} / \mathrm{Kg}$	家	8／20 06：59	01：24	
Perfluorodecanoic acid（PFDA）	0.11	J	． 27	． 029	ug／Kg	名	8／20 06：59	01：24	
Perfluoroundecanoic acid （PFUnA）	0.11	J	． 27	． 048	$\mathrm{ug} / \mathrm{Kg}$	察	8／20 06：59	01：24	
Perfluorododecanoic acid（PFDoA）	ND		． 27	． 090	ug／Kg	\％	8／20 06：59	01：24	
Perfluorotridecanoic acid（PFTriA）	ND		． 27	． 068	ug／Kg	\％	8／20 06：59	01：24	
Perfluorotetradecanoic acid（PFTeA）	ND		． 27	． 072	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	01：24	
Perfluorobutanesulfonic acid （PFBS）	0.059	J	． 27	． 033	ug／Kg	\％	8／20 06：59	01：24	
Perfluorohexanesulfonic acid （PFHxS）	0.044	J	． 27	． 041	ug／Kg	家	8／20 06：59	01：24	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 27	． 047	ug／Kg	察	8／20 06：59	01：24	
Perfluorooctanesulfonic acid （PFOS）	1.2	B	． 67	． 27	ug／Kg	家	8／20 06：59	01：24	
Perfluorodecanesulfonic acid （PFDS）	0.067	J	． 27	． 052	ug／Kg	\％	8／20 06：59	01：24	
Perfluorooctanesulfonamide（FOSA）	ND		． 27	． 1	ug／Kg	＊	8／20 06：59	01：24	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 7	52	$\mathrm{ug} / \mathrm{Kg}$	＊	8／20 06：59	01：24	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 7	． 50	ug／Kg	\％	8／20 06：59	01：24	
：2 FTS	ND		． 7	． 20	$\mathrm{ug} / \mathrm{Kg}$	家	8／20 06：59	01：24	
8：2 FTS	ND		． 7	． 33	ug／Kg	＊	8／20 06：59	01：24	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	65		150				10／28／20 06：59	11／02／20 01：24	1
$13 C 5$ PFPeA	6		150				10／28／20 06：59	11／02／20 01：24	1
13 C 2 PFHxA	69		150				10／28／20 06：59	11／02／20 01：24	1
13 C 4 PFHpA	68		150				10／28／20 06：59	11／02／20 01：24	1
$13 C 4$ PFOA	68		150				10／28／20 06：59	11／02／20 01：24	1
$13 C 5$ PFNA	65		150				10／28／20 06：59	11／02／20 01：24	1
$13 C 2$ PFDA	70		150				10／28／20 06：59	11／02／20 01：24	1
$13 C 2$ PFUnA			150				10／28／20 06：59	11／02／20 01：24	1
$13 C 2$ PFDoA	6		150				10／28／20 06：59	11／02／20 01：24	1

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）						
Isotope Dilution	\％Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
$13 C 2$ PFTeDA	35		150	10／28／20 06：59	11／02／20 01：24	1
$13 C 3$ PFBS	66		150	10／28／20 06：59	11／02／20 01：24	1
1802 PFHxS	67		150	10／28／20 06：59	11／02／20 01：24	1
1364 PFOS	62		150	10／28／20 06：59	11／02／20 01：24	1
13C8 FOSA	7		150	10／28／20 06：59	11／02／20 01：24	1
d3－NMeFOSAA	67		150	10／28／20 06：59	11／02／20 01：24	1
NETFOSAA	69		150	10／28／20 06：59	11／02／20 01：24	1
M2－6：2 FTS	85		150	10／28／20 06：59	11／02／20 01：24	1
M2－8：2 FTS	86		150	10／28／20 06：59	11／02／20 01：24	1

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9130		41.8	5.9	$\mathrm{mg} / \mathrm{Kg}$	突	9／20 15：00	30／20 12：54	
Antimony	ND		4.2	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Arsenic	7.2		3.1	． 64	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Barium	81.6		41.8	4.0	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Beryllium	0.43		． 42	． 067	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Cadmium	0.31	J	． 84	． 072	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Calcium	4370		50	77.3	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Chromium	14.0		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Cobalt	8.1	J	． 5	． 58	$\mathrm{mg} / \mathrm{Kg}$	苑	9／20 15：00	30／20 12：54	
Copper	25.2		5.2	． 3	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Iron	18600		31.4	． 6	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Lea	23.0		． 1	． 34	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Magnesium	3810		50	70.8	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Manganese	447		3.1	． 24	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Nickel	17.7		8.4	． 55	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Potassium	1470		50	4.2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
Selenium	1.3	J	4.2	． 71	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：54	
Silver	ND		． 1	． 2	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：54	
Sodium	ND		50	91.0	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：54	
Thallium	ND		4.2	． 65	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：54	
V nadium	22.1		． 5	． 97	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 12：54	
Zinc	76.5		3	． 1	$\mathrm{mg} / \mathrm{Kg}$	呇	9／20 15：00	30／20 12：54	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.027		． 023	． 0054	$\mathrm{mg} / \mathrm{Kg}$	品	8／20 03：25	8／20 07：37	

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 7	． 47	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 7	.47	$\mathrm{mg} / \mathrm{Kg}$	＊	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	26.5		． 0	． 0	\％			7／20 13：18	
Percent Solids	73.5		． 0	． 0	\％			7／20 13：18	

Method： 537 （modified）－Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.16	J	． 25	． 035	ug／Kg	安	8／20 06：59	01：34	
Perfluoropentanoic acid（PFPeA）	ND		． 25	． 096	ug／Kg	\％	8／20 06：59	01：34	
Perfluorohexanoic acid（PFHxA）	0.12	J	． 25	． 053	ug／Kg	安	8／20 06：59	01：34	
Perfluoroheptanoic acid（PFHpA）	0.085	J	． 25	． 036	ug／Kg	尔	8／20 06：59	01：34	
Perfluorooctanoic acid（PFOA）	0.29		． 25	． 1	ug／Kg	为	8／20 06：59	01：34	
Perfluorononanoic acid（PFNA）	0.16	J	． 25	． 045	ug／Kg	安	8／20 06：59	01：34	
Perfluorodecanoic acid（PFDA）	0.16	J	． 25	． 028	ug／Kg	－	8／20 06：59	01：34	
Perfluoroundecanoic acid （PFUnA）	0.12	J	． 25	． 045	ug／Kg	\％	8／20 06：59	01：34	
Perfluorododecanoic acid（PFDoA）	ND		． 25	． 084	ug／Kg	\％	8／20 06：59	01：34	
Perfluorotridecanoic acid（PFTriA）	ND		． 25	． 064	ug／Kg	\％	8／20 06：59	01：34	
Perfluorotetradecanoic acid（PFTeA）	ND		． 25	． 068	ug／Kg	\％	8／20 06：59	01：34	
Perfluorobutanesulfonic acid （PFBS）	0.056	J	． 25	． 031	ug／Kg	\％	8／20 06：59	01：34	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 25	． 039	ug／Kg	＊	8／20 06：59	01：34	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 25	． 044	ug／Kg	\％	8／20 06：59	01：34	
Perfluorooctanesulfonic acid （PFOS）	1.1	B	． 63	． 25	ug／Kg	\％	8／20 06：59	01：34	
Perfluorodecanesulfonic acid （PFDS）	0.075	J	． 25	． 049	ug／Kg	＊	8／20 06：59	01：34	
Perfluorooctanesulfonamide（FOSA）	ND		． 25	． 10	ug／Kg	＊	8／20 06：59	01：34	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 5	． 49	ug／Kg	\％	8／20 06：59	01：34	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 5	． 46	$\mathrm{ug} / \mathrm{Kg}$	＊	8／20 06：59	01：34	
：2 FTS	ND		． 5	． 19	ug／Kg	＊	8／20 06：59	01：34	
8：2 FTS	ND		． 5	． 31	ug／Kg	\％	8／20 06：59	01：34	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	1		150				10／28／20 06：59	11／02／20 01：34	1
13 C 5 PFPeA	43		150				10／28／20 06：59	11／02／20 01：34	1
13 C 2 PFHxA			150				10／28／20 06：59	11／02／20 01：34	1
$13 \mathrm{C4}$ PFHpA	8		150				10／28／20 06：59	11／02／20 01：34	1
$13 C 4$ PFOA			150				10／28／20 06：59	11／02／20 01：34	1
13 C 5 PFNA	60		150				10／28／20 06：59	11／02／20 01：34	1
$13 C 2$ PFDA	8		150				10／28／20 06：59	11／02／20 01：34	1
13C2 PFUnA	60		150				10／28／20 06：59	11／02／20 01：34	1
13C2 PFDoA	48		150				10／28／20 06：59	11／02／20 01：34	1
$13 C 2$ PFTeDA			150				10／28／20 06：59	11／02／20 01：34	1
$13 C 3$ PFBS	6		150				10／28／20 06：59	11／02／20 01：34	1
1802 PFHxS	61		150				10／28／20 06：59	11／02／20 01：34	1
13 C 4 PFOS	60		150				10／28／20 06：59	11／02／20 01：34	1
13 C 8 FOSA	43		150				10／28／20 06：59	11／02／20 01：34	1
d3－NMeFOSAA	61		150				10／28／20 06：59	11／02／20 01：34	1
NEtFOSAA	7		150				10／28／20 06：59	11／02／20 01：34	1
M2－6：2 FTS	79		150				10／28／20 06：59	11／02／20 01：34	1
M2－8：2 FTS	85		150				10／28／20 06：59	11／02／20 01：34	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9790		38.5	5.5	mg／Kg	永	9／20 15：00	30／20 12：58	

Method：6010D－Metals（ICP）（Continued）									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		3.9	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Arsenic	7.4		． 9	． 59	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Barium	83.5		38.5	3.7	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Beryllium	0.43		． 39	． 062	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 15：00	30／20 12：58	
Cadmium	0.26	J	． 77	． 066	$\mathrm{mg} / \mathrm{Kg}$	姿	9／20 15：00	30／20 12：58	
Calcium	5300		963	71.2	$\mathrm{mg} / \mathrm{Kg}$	品	9／20 15：00	30／20 12：58	
Chromium	15.8		． 9	． 4	$\mathrm{mg} / \mathrm{Kg}$	盗	9／20 15：00	30／20 12：58	
Cobalt	8.7	J	9.6	． 53	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 15：00	30／20 12：58	
Copper	24.9		4.8	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Iron	20100		8.9	9.8	$\mathrm{mg} / \mathrm{Kg}$	發	9／20 15：00	30／20 12：58	
Lea	25.7		． 9	.31	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Magnesium	4330		963	5.2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Manganese	491		． 9	． 22	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：58	
Nickel	19.3		7.7	． 51	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：58	
Potassium	1430		963	59.2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Selenium	ND		3.9	． 65	$\mathrm{mg} / \mathrm{Kg}$	盗	9／20 15：00	30／20 12：58	
Silver	ND		． 9	． 1	$\mathrm{mg} / \mathrm{Kg}$	资	9／20 15：00	30／20 12：58	
Sodium	ND		963	83.8	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：58	
Thallium	0.96	J	3.9	． 60	$\mathrm{mg} / \mathrm{Kg}$	發	9／20 15：00	30／20 12：58	
V nadium	22.9		9.6	． 90	$\mathrm{mg} / \mathrm{Kg}$	發	9／20 15：00	30／20 12：58	
Zinc	78.9		5.8	． 1	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：58	
Method：7471B－Mercury（CV Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.034		． 021	． 0050	mg／Kg	\％	8／20 03：25	8／20 07：39	
General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 5	44	mg／Kg	\％	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 5	． 44	$\mathrm{mg} / \mathrm{Kg}$	资	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.8		． 0	． 0	\％			7／20 13：18	
Percent Solids	79.2		． 0	． 0	\％			7／20 13：18	

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.10	J	． 24	． 034	ug／Kg	家	8／20 06：59	01：43	
Perfluoropentanoic acid（PFPeA）	0.20	J	． 24	． 093	ug／Kg	\％	8／20 06：59	01：43	
Perfluorohexanoic acid（PFHxA）	0.24		． 24	． 051	ug／Kg	\％	8／20 06：59	01：43	
Perfluoroheptanoic acid（PFHpA）	0.090	J	． 24	． 035	ug／Kg	＊	8／20 06：59	01：43	
Perfluorooctanoic acid（PFOA）	0.39		． 24	． 10	ug／Kg	\％	8／20 06：59	01：43	
Perfluorononanoic acid（PFNA）	2.4		． 24	． 043	ug／Kg	＊	8／20 06：59	01：43	
Perfluorodecanoic acid（PFDA）	0.91		． 24	． 027	ug／Kg	\％	8／20 06：59	01：43	
Perfluoroundecanoic acid （PFUnA）	1.8		． 24	． 043	ug／Kg	安	8／20 06：59	01：43	
Perfluorododecanoic acid	0.47		． 24	． 081	$u g / \mathrm{Kg}$	安	8／20 06：59	01：43	

[^16]Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotridecanoic acid（PFTriA）	0.31		． 24	． 062	ug／Kg	洨	8／20 06：59	01：43	
Perfluorotetradecanoic acid （PFTeA）	0.14	J	． 24	． 065	$\mathrm{ug} / \mathrm{Kg}$	名	8／20 06：59	01：43	
Perfluorobutanesulfonic acid （PFBS）	0.15	J	． 24	． 030	ug／Kg	名	8／20 06：59	01：43	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 24	． 037	ug／Kg	哭	8／20 06：59	01：43	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 24	． 042	$\mathrm{ug} / \mathrm{Kg}$	京	8／20 06：59	01：43	
Perfluorooctanesulfonic acid （PFOS）	4.2	B	． 60	． 24	ug／Kg	察	8／20 06：59	01：43	
Perfluorodecanesulfonic acid （PFDS）	5.9		． 24	． 047	ug／Kg	－	8／20 06：59	01：43	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 099	$\mathrm{ug} / \mathrm{Kg}$	呇	8／20 06：59	01：43	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 4	． 47	$\mathrm{ug} / \mathrm{Kg}$	桇	8／20 06：59	01：43	
N－ethylperfluorooctanesulfonami oacetic acid（NEtFOSAA）	1.4	J	． 4	． 45	ug／Kg	\％	8／20 06：59	01：43	
：2 FTS	ND		． 4	． 18	ug／Kg	多	8／20 06：59	01：43	
8：2 FTS	ND		． 4	． 30	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 06：59	01：43	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	1		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 5$ PFPeA	42		150				10／28／20 06：59	11／02／20 01：43	1
$13 \mathrm{C2}$ PFHXA	61		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 4$ PFHpA	63		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 4$ PFOA	63		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 5$ PFNA	61		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 2$ PFDA	71		150				10／28／20 06：59	11／02／20 01：43	1
13 C 2 PFUnA	61		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 2$ PFDoA	4		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 2$ PFTeDA	40		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 3$ PFBS	61		150				10／28／20 06：59	11／02／20 01：43	1
1802 PFHxS	70		150				10／28／20 06：59	11／02／20 01：43	1
$13 C 4$ PFOS	65		150				10／28／20 06：59	11／02／20 01：43	1
13C8 FOSA	0		150				10／28／20 06：59	11／02／20 01：43	1
d3－NMeFOSAA			150				10／28／20 06：59	11／02／20 01：43	1
NETFOSAA	6		150				10／28／20 06：59	11／02／20 01：43	1
M2－6：2 FTS	89		150				10／28／20 06：59	11／02／20 01：43	1
M2－8：2 FTS	87		150				10／28／20 06：59	11／02／20 01：43	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7790		42.3	． 0	$\mathrm{mg} / \mathrm{Kg}$	品	9／20 15：00	30／20 13：02	
Antimony	ND		4.2	． 2	$\mathrm{mg} / \mathrm{Kg}$	突	9／20 15：00	30／20 13：02	
Arsenic	10.5		3.2	.65	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：02	
Barium	88.2		42.3	4.1	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 13：02	
Beryllium	0.31	J	． 42	． 068	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：02	
Cadmium	0.23	J	． 85	． 073	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：02	
Calcium	3320			78.2	$\mathrm{mg} / \mathrm{Kg}$	品	9／20 15：00	30／20 13：02	
Chromium	15.8		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：02	
Cobalt	6.1	J	． 6	． 59	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 13：02	
Copper	32.6		5.3	3	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：02	

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 6	.46	mg／Kg	㐋	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 6	． 45	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23.8		． 0	． 0	\％			7／20 13：19	
Percent Solids	76.2		． 0	． 0	\％			7／20 13：19	

Client Sample ID：S8B－SOIL－102120

Lab Sample ID：460－221262－22
Date Collected：10／21／20 14：10
Matrix：Solid
Date Received：10／23／20 10：00
Percent Solids： 79.6
Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.20	J	． 24	． 034	ug／Kg	洨	8／20 06：59	01：52	
Perfluoropentanoic acid（PFPeA）	0.28		． 24	． 093	ug／Kg		8／20 06：59	01：52	
Perfluorohexanoic acid（PFHxA）	0.28		． 24	． 051	$\mathrm{ug} / \mathrm{Kg}$	＊	8／20 06：59	01：52	
Perfluoroheptanoic acid（PFHpA）	0.13	J	． 24	． 035	ug／Kg	－	8／20 06：59	01：52	
Perfluorooctanoic acid（PFOA）	0.42		． 24	． 10	ug／Kg	－	8／20 06：59	01：52	
Perfluorononanoic acid（PFNA）	2.4		． 24	． 043	ug／Kg	\％	8／20 06：59	01：52	
Perfluorodecanoic acid（PFDA）	0.88		． 24	． 027	ug／Kg	－	8／20 06：59	01：52	
Perfluoroundecanoic acid （PFUnA）	1.8		． 24	． 043	$\mathrm{ug} / \mathrm{Kg}$	㐋	8／20 06：59	01：52	
Perfluorododecanoic acid （PFDoA）	0.35		． 24	． 081	ug／Kg	－	8／20 06：59	01：52	
Perfluorotridecanoic acid（PFTriA）	0.26		． 24	． 061	ug／Kg	－	8／20 06：59	01：52	
Perfluorotetradecanoic acid （PFTeA）	0.13	J	． 24	． 065	$\mathrm{ug} / \mathrm{Kg}$	－	8／20 06：59	01：52	
Perfluorobutanesulfonic acid （PFBS）	0.12	J	． 24	． 030	ug／Kg	－	8／20 06：59	01：52	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 24	． 037	ug／Kg	＊	8／20 06：59	01：52	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 24	． 042	ug／Kg	－	8／20 06：59	01：52	
Perfluorooctanesulfonic acid （PFOS）	4.5	B	． 60	． 24	ug／Kg	\％	8／20 06：59	01：52	

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorodecanesulfonic acid （PFDS）	5.7		． 24	． 047	ug／Kg	品	8／20 06：59	01：52	
Perfluorooctanesulfonamide（FOSA）	ND		． 24	． 099	ug／Kg	\％	8／20 06：59	01：52	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 4	． 47	$\mathrm{ug} / \mathrm{Kg}$	安	8／20 06：59	01：52	
N －ethylperfluorooctanesulfonami oacetic acid（NEtFOSAA）	1.5	J	． 4	.45	ug／Kg	－	8／20 06：59	01：52	
：2 FTS	ND		． 4	． 18	ug／Kg	安	8／20 06：59	01：52	
8：2 FTS	ND		． 4	． 30	$\mathrm{ug} / \mathrm{Kg}$	珓	8／20 06：59	01：52	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	3		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 5$ PFPeA	44		150				10／28／20 06：59	11／02／20 01：52	1
$13 \mathrm{C2}$ PFHXA			150				10／28／20 06：59	11／02／20 01：52	1
$13 C 4$ PFHPA	61		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 4$ PFOA			150				10／28／20 06：59	11／02／20 01：52	1
$13 C 5$ PFNA	7		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 2$ PFDA	60		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 2$ PFUnA	6		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 2$ PFDoA	4		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 2$ PFTeDA	38		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 3$ PFBS	7		150				10／28／20 06：59	11／02／20 01：52	1
1802 PFHxS	62		150				10／28／20 06：59	11／02／20 01：52	1
$13 C 4$ PFOS	7		150				10／28／20 06：59	11／02／20 01：52	1
13C8 FOSA	48		150				10／28／20 06：59	11／02／20 01：52	1
d3－NMeFOSAA	8		150				10／28／20 06：59	11／02／20 01：52	1
NETFOSAA	49		150				10／28／20 06：59	11／02／20 01：52	1
M2－6：2 FTS	81		150				10／28／20 06：59	11／02／20 01：52	1
M2－8：2 FTS	81		150				10／28／20 06：59	11／02／20 01：52	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	7530		39.5	5.6	mg／Kg	名	9／20 15：00	30／20 13：06	
Antimony	ND		4.0	． 1	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：06	
Arsenic	9.9		3.0	． 61	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 13：06	
Barium	86.8		39.5	3.8	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 13：06	
Beryllium	0.31	J	． 40	． 063	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 13：06	
Cadmium	0.23	J	． 79	． 068	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：06	
Calcium	3120		989	73.1	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：06	
Chromium	15.3		． 0	． 4	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：06	
Cobalt	5.8	J	9.9	． 55	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：06	
Copper	32.6		4.9	2	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：06	
Iron	14200		9.7	4	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 13：06	
Lea	73.0		． 0	． 32	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：06	
Magnesium	2460		989	． 9	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 13：06	
Manganese	341		3.0	． 22	$\mathrm{mg} / \mathrm{Kg}$	娱	9／20 15：00	30／20 13：06	
Nickel	15.5		7.9	． 52	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：06	
Potassium	858	J	989	． 7	$\mathrm{mg} / \mathrm{Kg}$	品	9／20 15：00	30／20 13：06	
Selenium	ND		4.0	． 67	$\mathrm{mg} / \mathrm{Kg}$	宛	9／20 15：00	30／20 13：06	
Silver	ND		． 0	． 1	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：06	
Sodium	132	J	989	86.0	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：06	

Method：6010D－Metals（ICP）（Continued）

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 5	． 44	mg／Kg	京	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 5	． 43	$\mathrm{mg} / \mathrm{Kg}$	\％	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.4		． 0	． 0	\％			7／20 13：19	
Percent Solids	79.6		． 0	． 0	\％			7／20 13：19	

Client Sample ID：S9A－SOIL－102120

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.24	J B	． 25	． 035	ug／Kg	安	8／20 07：03	30／20 21：56	
Perfluoropentanoic acid（PFPeA）	0.21	J	． 25	． 097	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorohexanoic acid（PFHxA）	0.22	J	． 25	． 053	ug／Kg	安	8／20 07：03	30／20 21：56	
Perfluoroheptanoic acid（PFHpA）	0.15	J	． 25	． 036	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorooctanoic acid（PFOA）	0.54		． 25	． 1	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorononanoic acid（PFNA）	0.23	J	． 25	． 045	ug／Kg	＊	8／20 07：03	30／20 21：56	
Perfluorodecanoic acid（PFDA）	0.25		． 25	． 028	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluoroundecanoic acid （PFUnA）	0.22	J	． 25	． 045	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorododecanoic acid （PFDoA）	0.12	J	． 25	． 084	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorotridecanoic acid（PFTriA）	ND		． 25	． 064	ug／Kg	＊	8／20 07：03	30／20 21：56	
Perfluorotetradecanoic acid（PFTeA）	ND		． 25	． 068	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorobutanesulfonic acid （PFBS）	0.092	J	． 25	． 031	$u \mathrm{~g} / \mathrm{Kg}$	\％	8／20 07：03	30／20 21：56	
Perfluorohexanesulfonic acid （PFHxS）	0.075	J I	． 25	． 039	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 25	． 044	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorooctanesulfonic acid （PFOS）	3.0	B＊	． 63	． 25	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorodecanesulfonic acid （PFDS）	0.19	J＊	． 25	． 049	ug／Kg	\％	8／20 07：03	30／20 21：56	
Perfluorooctanesulfonamide（FOSA）	ND		． 25	． 10	$u g / \mathrm{Kg}$	＊	8／20 07：03	30／20 21：56	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 5	． 49	ug／Kg	\％	8／20 07：03	30／20 21：56	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 5	． 46	$\mathrm{ug} / \mathrm{Kg}$	＊	8／20 07：03	30／20 21：56	
：2 FTS	ND		． 5	． 19	ug／Kg	\％	8／20 07：03	30／20 21：56	
8：2 FTS	ND		． 5	.31	ug／Kg	\％	8／20 07：03	30／20 21：56	

Date Collected：10／21／20 15：30
Date Received：10／23／20 10：00

Matrix：Solid Percent Solids： 74.8

Isotope Dilution	\％Recovery	Qualifier	Limits
$13 C 4$ PFBA	80		150
$13 C 5$ PFPeA	71		150
13 C 2 PFH A	89		150
$13 C 4$ PFHpA	0		150
$13 C 4$ PFOA	3		150
$13 C 5$ PFNA	84		150
$13 C 2$ PFDA	87		150
$13 C 2$ PFUnA	80		150
$13 C 2$ PFDoA	79		150
13 C 2 PFTeDA	74		150
$13 C 3$ PFBS	88		150
1802 PFHxS	87		150
1364 PFOS	85		150
13C8 FOSA	79		150
d3－NMeFOSAA	3		150
NEtFOSAA	4		150
M2－6：2 FTS	127		150
M2－8：2 FTS	133		150

Prepared	Analyzed	Dil Fac
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	
10／28／20 07：03	10／30／20 21：56	

Method： 537 （modified）－Fluorinated Alkyl Substances－RE

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid （PFOS）	2.7	H B	． 64	． 26	ug／Kg	\％	9／20 15：20	1 ：06	
Perfluorodecanesulfonic acid （PFDS）	0.18	J H	． 26	． 050	ug／Kg	察	9／20 15：20	1 ：06	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	83		150				11／09／20 15：20	11／11／20 11：06	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9210		41.1	5.8	$\mathrm{mg} / \mathrm{Kg}$	高	9／20 15：00	30／20 13：18	
Antimony	ND		4.1	2	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：18	
Arsenic	7.8		3.1	． 63	$\mathrm{mg} / \mathrm{Kg}$	㲾	9／20 15：00	30／20 13：18	
Barium	101		41.1	4.0	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：18	
Beryllium	0.43		． 41	． 066	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：18	
Cadmium	0.18	J	． 82	． 071	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：18	
Calcium	3930		30	76.0	$\mathrm{mg} / \mathrm{Kg}$	祃	9／20 15：00	30／20 13：18	
Chromium	15.5		． 1	． 5	$\mathrm{mg} / \mathrm{Kg}$	突	9／20 15：00	30／20 13：18	
Cobalt	8.2	J	． 3	． 57	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：18	
Copper	28.1		5.1	． 3	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：18	
Iron	18000		30.9	． 2	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 13：18	
Lea	34.2		． 1	． 33	$\mathrm{mg} / \mathrm{Kg}$	交	9／20 15：00	30／20 13：18	
Magnesium	3460		30	9.6	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：18	
Manganese	432		3.1	． 23	$\mathrm{mg} / \mathrm{Kg}$	如	9／20 15：00	30／20 13：18	
Nickel	18.9		8.2	． 54	$\mathrm{mg} / \mathrm{Kg}$	好	9／20 15：00	30／20 13：18	
Potassium	1300		30	3.2	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 15：00	30／20 13：18	
Selenium	0.92	J	4.1	． 70	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：18	
Silver	ND		． 1	． 2	$\mathrm{mg} / \mathrm{Kg}$	妾	9／20 15：00	30／20 13：18	
Sodium	106	J	30	89.5	$\mathrm{mg} / \mathrm{Kg}$	祃	9／20 15：00	30／20 13：18	
Thallium	ND		4.1	． 64	$\mathrm{mg} / \mathrm{Kg}$		9／20 15：00	30／20 13：18	
V nadium	24.2		． 3	． 96	$\mathrm{mg} / \mathrm{Kg}$	等	9／20 15：00	30／20 13：18	

Method：6010D－Metals（ICP）	ued								
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	104		． 2	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：18	

Method: 7471B - Mercury (CVAA)

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 7	.47	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 09：04	30／20 13：10	
Chromium，hexavalent	ND		． 7	． 47	$\mathrm{mg} / \mathrm{Kg}$	安	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	25.2		． 0	． 0	\％			7／20 13：49	
Percent Solids	74.8		． 0	． 0	\％			7／20 13：49	

Client Sample ID：S9B－SOIL－102120

Method： 537 （modified）－Fluo Analyte	nated Alky esult	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.19	JB	． 25	． 035	ug／Kg	\％	8／20 07：03	30／20 22：06	
Perfluoropentanoic acid（PFPeA）	0.20	J	． 25	． 096	ug／Kg	\％	8／20 07：03	30／20 22：06	
Perfluorohexanoic acid（PFHxA）	0.20	J	25	． 053	ug／Kg	交	8／20 07：03	30／20 22：06	
Perfluoroheptanoic acid（PFHpA）	0.15	J	． 25	． 036	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 07：03	30／20 22：06	
Perfluorooctanoic acid（PFOA）	0.60		． 25	． 1	ug／Kg	安	8／20 07：03	30／20 22：06	
Perfluorononanoic acid（PFNA）	0.24	J	． 25	． 045	ug／Kg	管	8／20 07：03	30／20 22：06	
Perfluorodecanoic acid（PFDA）	0.27		． 25	． 028	ug／Kg	\％	8／20 07：03	30／20 22：06	
Perfluoroundecanoic acid （PFUnA）	0.22	J F1	． 25	． 045	ug／Kg	安	8／20 07：03	30／20 22：06	
Perfluorododecanoic acid （PFDoA）	0.14	J	． 25	． 084	ug／Kg	－	8／20 07：03	30／20 22：06	
Perfluorotridecanoic acid（PFTriA）	ND		． 25	． 064	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 07：03	30／20 22：06	
Perfluorotetradecanoic acid（PFTeA）	ND		． 25	． 068	ug／Kg	\％	8／20 07：03	30／20 22：06	
Perfluorobutanesulfonic acid （PFBS）	0.079	J	． 25	． 031	ug／Kg	－	8／20 07：03	30／20 22：06	
Perfluorohexanesulfonic acid （PFHxS）	0.073	J	． 25	． 039	ug／Kg	＊	8／20 07：03	30／20 22：06	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 25	． 044	ug／Kg	宲	8／20 07：03	30／20 22：06	
Perfluorooctanesulfonic acid （PFOS）	2.9	B＊	． 63	． 25	ug／Kg	安	8／20 07：03	30／20 22：06	
Perfluorodecanesulfonic acid （PFDS）	0.16	J＊	． 25	． 049	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 07：03	30／20 22：06	
Perfluorooctanesulfonamide（FOSA）	ND		． 25	． 10	ug／Kg	＊	8／20 07：03	30／20 22：06	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 5	． 49	ug／Kg	娱	8／20 07：03	30／20 22：06	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 5	． 46	ug／Kg	＊	8／20 07：03	30／20 22：06	
：2 FTS	ND		． 5	． 19	ug／Kg	桇	8／20 07：03	30／20 22：06	
8：2 FTS	ND		． 5	.31	ug／Kg	安	8／20 07：03	30／20 22：06	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	78		150				10／28／20 07：03	10／30／20 22：06	1

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）						
Isotope Dilution	\％Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C5 PFPeA	65		150	10／28／20 07：03	10／30／20 22：06	1
13C2 PFHxA	88		150	10／28／20 07：03	10／30／20 22：06	1
13 C 4 PFHpA	88		150	10／28／20 07：03	10／30／20 22：06	1
$13 C 4$ PFOA	86		150	10／28／20 07：03	10／30／20 22：06	1
$13 C 5$ PFNA	89		150	10／28／20 07：03	10／30／20 22：06	1
13C2 PFDA	82		150	10／28／20 07：03	10／30／20 22：06	1
$13 C 2$ PFUnA	74		150	10／28／20 07：03	10／30／20 22：06	1
13 C 2 PFDoA	66		150	10／28／20 07：03	10／30／20 22：06	1
13 C 2 PFTEDA	64		150	10／28／20 07：03	10／30／20 22：06	1
13 C 3 PFBS	78		150	10／28／20 07：03	10／30／20 22：06	1
1802 PFHxS	84		150	10／28／20 07：03	10／30／20 22：06	1
$13 C 4$ PFOS	84		150	10／28／20 07：03	10／30／20 22：06	1
13C8 FOSA	74		150	10／28／20 07：03	10／30／20 22：06	1
d3－NMeFOSAA	88		150	10／28／20 07：03	10／30／20 22：06	1
NEtFOSAA	0		150	10／28／20 07：03	10／30／20 22：06	1
M2－6：2 FTS	116		150	10／28／20 07：03	10／30／20 22：06	1
M2－8：2 FTS	124		150	10／28／20 07：03	10／30／20 22：06	1

Method： 537 （modified）－Fluorinated Alkyl Substances－RE

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid （PFOS）	2.9	HB	． 64	． 26	ug／Kg	荧	9／20 15：20	$1: 15$	
Perfluorodecanesulfonic acid （PFDS）	0.20	J H	． 26	． 050	$u g / \mathrm{Kg}$	\％	9／20 15：20	1 ：15	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFOS	83		150				11／09／20 15：20	11／11／20 11：15	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	10300		39.1	5.5	mg／Kg	安	9／20 15：00	30／20 12：03	
Antimony	ND	F1	3.9	． 1	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：03	
Arsenic	7.8		． 9	． 60	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：03	
Barium	103		39.1	3.8	$\mathrm{mg} / \mathrm{Kg}$	号	9／20 15：00	30／20 12：03	
Beryllium	0.45		． 39	． 062	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：03	
Cadmium	0.15	J	． 78	． 067	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：03	
Calcium	4120		976	72.2	$\mathrm{mg} / \mathrm{Kg}$	苑	9／20 15：00	30／20 12：03	
Chromium	16.4		． 0	． 4	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：03	
Cobalt	8.4	J	9.8	． 54	$\mathrm{mg} / \mathrm{Kg}$	多	9／20 15：00	30／20 12：03	
Copper	29.1		4.9	． 2	$\mathrm{mg} / \mathrm{Kg}$	苑	9／20 15：00	30／20 12：03	
Iron	19700		9.3	． 1	$\mathrm{mg} / \mathrm{Kg}$	为	9／20 15：00	30／20 12：03	
Lea	36.5		． 0	． 32	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 12：03	
Magnesium	3630		976	． 1	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：03	
Manganese	441		． 9	． 22	$\mathrm{mg} / \mathrm{Kg}$	苑	9／20 15：00	30／20 12：03	
Nickel	19.3		7.8	． 51	$\mathrm{mg} / \mathrm{Kg}$	㐋	9／20 15：00	30／20 12：03	
Potassium	1520		976	59.9	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：03	
Selenium	0.80	J	3.9	． 66	$\mathrm{mg} / \mathrm{Kg}$	多	9／20 15：00	30／20 12：03	
Silver	ND		． 0	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：03	
Sodium	113	J	976	84.9	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 12：03	
Thallium	0.86	J	3.9	． 61	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 12：03	
V nadium	26.1		9.8	． 91	$\mathrm{mg} / \mathrm{Kg}$	苑	9／20 15：00	30／20 12：03	

Method：6010D－Metals（ICP）（Continued）									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	112		5.9	． 1	mg／Kg	安	9／20 15：00	30／20 12：03	

Method: 7471B - Mercury (CVAA)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.068		． 021	． 0050	$\mathrm{mg} / \mathrm{Kg}$	等	8／20 02：58	8／20 06：21	
General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND	F1	． 6	． 45	$\mathrm{mg} / \mathrm{Kg}$	管	9／20 09：04	30／20 13：35	
Chromium，hexavalent	ND	F1	． 6	． 45	$\mathrm{mg} / \mathrm{Kg}$	资	12：08	14：22	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23.0		． 0	． 0	\％			7／20 13：49	
Percent Solids	77.0		． 0	． 0	\％			7／20 13：49	

Client Sample ID：Equipment Blank 102120
Lab Sample ID：460－221262－25
Date Collected：10／21／20 14：30
Matrix：W ter
Date Received：10／23／20 10：00

Method： 537 （modified）－Fluor	ated Alky	I Substa							
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	ND		4.6	2	ng／L		7／20 18：39	9／20 00：09	
Perfluoropentanoic acid（PFPeA）	ND		． 8	． 45	ng / L		7／20 18：39	9／20 00：09	
Perfluorohexanoic acid（PFHxA）	ND		． 8	． 53	ng／L		7／20 18：39	9／20 00：09	
Perfluoroheptanoic acid（PFHpA）	ND		． 8	． 23	ng / L		7／20 18：39	9／20 00：09	
Perfluorooctanoic acid（PFOA）	ND		． 8	． 78	ng／L		7／20 18：39	9／20 00：09	
Perfluorononanoic acid（PFNA）	ND		． 8	． 25	ng／L		7／20 18：39	9／20 00：09	
Perfluorodecanoic acid（PFDA）	ND		． 8	． 28	ng／L		$7 / 2018: 39$	9／20 00：09	
Perfluoroundecanoic acid（PFUnA）	ND		． 8	． 0	ng／L		7／20 18：39	9／20 00：09	
Perfluorododecanoic acid（PFDoA）	ND		． 8	． 50	ng／L		7／20 18：39	9／20 00：09	
Perfluorotridecanoic acid（PFTriA）	ND		． 8	2	ng / L		$7 / 20$ 18：39	9／20 00：09	
Perfluorotetradecanoic acid（PFTeA）	ND		． 8	． 67	ng / L		7／20 18：39	9／20 00：09	
Perfluorobutanesulfonic acid（PFBS）	ND		． 8	． 18	ng／L		7／20 18：39	9／20 00：09	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 8	． 52	ng / L		7／20 18：39	9／20 00：09	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 8	． 17	ng／L		7／20 18：39	9／20 00：09	
Perfluorooctanesulfonic acid（PFOS）	ND		． 8	． 49	ng／L		7／20 18：39	9／20 00：09	
Perfluorodecanesulfonic acid（PFDS）	ND		． 8	． 29	ng / L		7／20 18：39	9／20 00：09	
Perfluorooctanesulfonamide（FOSA）	ND		． 8	． 90	ng／L		7／20 18：39	9／20 00：09	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		4.6	． 1	ng／L		7／20 18：39	9／20 00：09	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		4.6	． 2	ng／L		7／20 18：39	9／20 00：09	
：2 FTS	ND		4.6	． 3	ng／L		7／20 18：39	9／20 00：09	
8：2 FTS	ND		． 8	． 42	ng / L		7／20 18：39	9／20 00：09	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	78		150				10／27／20 18：39	10／29／20 00：09	1
$13 C 5$ PFPeA	83		150				10／27／20 18：39	10／29／20 00：09	1
13 C 2 PFH xA	0		150				10／27／20 18：39	10／29／20 00：09	1
13 C 4 PFHpA	89		150				10／27／20 18：39	10／29／20 00：09	1
$13 C 4$ PFOA			150				10／27／20 18：39	10／29／20 00：09	1
$13 C 5$ PFNA	102		150				10／27／20 18：39	10／29／20 00：09	1
							Eurofins	TestAmerica，	Edison

Client Sample ID: Equipment Blank 102120

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution	\%Recovery Qualifier	Limits
13C2 PFDA	101	150
13C2 PFUnA	74	150
13C2 PFDoA	63	150
$13 C 2$ PFTeDA	73	150
$13 C 3$ PFBS	86	150
1802 PFHxS	87	150
$13 C 4$ PFOS		150
$13 C 8$ FOSA	86	150
d3-NMeFOSAA	46	150
NEtFOSAA	64	150
M2-6:2 FTS	76	150
M2-8:2 FTS	0	150

Prepared	Analyzed	Dil Fac
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1
10/27/20 18:39	10/29/20 00:09	1

Method: 6010D - Metals (ICP)

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND			76.9	ug/L		4/20 20:00	17:05	
Antimony	ND		. 0	3.7	ug/L		4/20 20:00	17:05	
Arsenic	ND		5.0	3.3	ug/L		4/20 20:00	17:05	
Barium	ND			3.2	ug/L		4/20 20:00	17:05	
Beryllium	ND		. 0	. 17	ug/L		4/20 20:00	17:05	
Cadmium	ND		4.0	. 33	ug/L		4/20 20:00	17:05	
Calcium	ND		5000	52	ug/L		4/20 20:00	17:05	
Chromium	ND		. 0	5.0	ug/L		4/20 20:00	17:05	
Cobalt	ND		50.0	. 0	ug/L		4/20 20:00	17:05	
Copper	ND		5.0	. 9	ug/L		4/20 20:00	17:05	
Iron	ND		50	80.8	ug/L		4/20 20:00	17:05	
Lead	ND		. 0	. 4	ug/L		4/20 20:00	17:05	
Magnesium	ND		5000	42	ug/L		4/20 20:00	17:05	
Manganese	ND		5.0	. 76	ug/L		4/20 20:00	17:05	
Nickel	ND		40.0	4.1	ug/L		4/20 20:00	17:05	
Potassium	ND		5000	42	ug/L		4/20 20:00	17:05	
Selenium	ND		. 0	5.9	ug/L		4/20 20:00	17:05	
Silver	ND		. 0	5.8	ug/L		4/20 20:00	17:05	
Sodium	194	J	5000	83.8	ug/L		4/20 20:00	17:05	
Thallium	ND		. 0	4.1	ug/L		4/20 20:00	17:05	
Vanadium	ND		50.0	7.2	ug/L		4/20 20:00	17:05	
Zinc	2.2	J	30.0	2	ug/L		4/20 20:00	17:05	
Method: 7470A - Mercury (CVAA) Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		. 20	. 091	ug/L		8/20 12:28	8/20 14:22	
General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND	H H3	. 0	8.1	ug/L			3/20 16:30	

Method: 537 (modified) - Fluo	ated Alky	Substa							
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.3	. 0	ng/L		7/20 18:39	9/20 00:19	
Perfluoropentanoic acid (PFPeA)	ND		. 7	. 42	ng / L		7/20 18:39	9/20 00:19	
Perfluorohexanoic acid (PFHxA)	ND		. 7	. 49	ng / L		7/20 18:39	9/20 00:19	
Perfluoroheptanoic acid (PFHpA)	ND		. 7	. 21	ng / L		7/20 18:39	9/20 00:19	
Perfluorooctanoic acid (PFOA)	ND		. 7	. 72	ng / L		7/20 18:39	9/20 00:19	
Perfluorononanoic acid (PFNA)	ND		. 7	. 23	ng / L		7/20 18:39	9/20 00:19	
Perfluorodecanoic acid (PFDA)	ND		. 7	. 26	ng / L		7/20 18:39	9/20 00:19	
Perfluoroundecanoic acid (PFUnA)	ND		. 7	. 94	ng / L		7/20 18:39	9/20 00:19	
Perfluorododecanoic acid (PFDoA)	ND		. 7	. 47	ng / L		7/20 18:39	9/20 00:19	
Perfluorotridecanoic acid (PFTriA)	ND		. 7	. 1	ng / L		7/20 18:39	9/20 00:19	
Perfluorotetradecanoic acid (PFTeA)	ND		. 7	. 62	ng / L		7/20 18:39	9/20 00:19	
Perfluorobutanesulfonic acid (PFBS)	ND		. 7	. 17	ng / L		7/20 18:39	9/20 00:19	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 7	. 48	ng / L		7/20 18:39	9/20 00:19	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 7	. 16	ng/L		7/20 18:39	9/20 00:19	
Perfluorooctanesulfonic acid (PFOS)	ND		. 7	. 46	ng / L		7/20 18:39	9/20 00:19	
Perfluorodecanesulfonic acid (PFDS)	ND		. 7	. 27	ng / L		7/20 18:39	9/20 00:19	
Perfluorooctanesulfonamide (FOSA)	ND		. 7	. 83	ng/L		7/20 18:39	9/20 00:19	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	. 0	ng/L		7/20 18:39	9/20 00:19	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	. 1	ng / L		7/20 18:39	9/20 00:19	
:2 FTS	ND		4.3	. 1	ng/L		7/20 18:39	9/20 00:19	
8:2 FTS	ND		. 7	. 39	ng/L		7/20 18:39	9/20 00:19	
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	75		150				10/27/20 18:39	10/29/20 00:19	1
13 C 5 PFPeA	78		150				10/27/20 18:39	10/29/20 00:19	1
13 C 2 PFHxA	83		150				10/27/20 18:39	10/29/20 00:19	1
$13 \mathrm{C4}$ PFHpA	88		150				10/27/20 18:39	10/29/20 00:19	1
$13 C 4$ PFOA	0		150				10/27/20 18:39	10/29/20 00:19	1
$13 C 5$ PFNA			150				10/27/20 18:39	10/29/20 00:19	1
$13 C 2$ PFDA			150				10/27/20 18:39	10/29/20 00:19	1
$13 C 2$ PFUnA	89		150				10/27/20 18:39	10/29/20 00:19	1
13C2 PFDoA	100		150				10/27/20 18:39	10/29/20 00:19	1
13 C 2 PFTeDA	85		150				10/27/20 18:39	10/29/20 00:19	1
13 C 3 PFBS	79		150				10/27/20 18:39	10/29/20 00:19	1
1802 PFHxS	80		150				10/27/20 18:39	10/29/20 00:19	1
$13 C 4$ PFOS	82		150				10/27/20 18:39	10/29/20 00:19	1
13C8 FOSA	77		150				10/27/20 18:39	10/29/20 00:19	1
d3-NMeFOSAA	75		150				10/27/20 18:39	10/29/20 00:19	1
NEtFOSAA	0		150				10/27/20 18:39	10/29/20 00:19	1
M2-6:2 FTS	66		150				10/27/20 18:39	10/29/20 00:19	1
M2-8:2 FTS	70		150				10/27/20 18:39	10/29/20 00:19	1

Date Collected：10／21／20 16：48
Date Received：10／23／20 10：00

Matrix：Solid
Percent Solids： 69.7

Method： 537 （modified）－Fluorinated Alkyl Substances

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.71	B	． 26	． 037	ug／Kg	为	8／20 07：03	30／20 22：34	
Perfluoropentanoic acid（PFPeA）	0.31		． 26	． 10	ug／Kg	年	8／20 07：03	30／20 22：34	
Perfluorohexanoic acid（PFHxA）	0.23	J	． 26	． 055	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluoroheptanoic acid（PFHpA）	0.29		． 26	． 038	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluorooctanoic acid（PFOA）	0.93		． 26	． 1	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluorononanoic acid（PFNA）	0.49		． 26	． 047	ug／Kg	号	8／20 07：03	30／20 22：34	
Perfluorodecanoic acid（PFDA）	0.35		． 26	． 029	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluoroundecanoic acid （PFUnA）	0.28		． 26	． 047	ug／Kg	安	8／20 07：03	30／20 22：34	
Perfluorododecanoic acid （PFDoA）	0.16	J	． 26	． 088	ug／Kg	－	8／20 07：03	30／20 22：34	
Perfluorotridecanoic acid（PFTriA）	0.10	J	． 26	． 067	ug／Kg	＊	8／20 07：03	30／20 22：34	
Perfluorotetradecanoic acid （PFTeA）	0.093	J	． 26	． 071	ug／Kg	＊	8／20 07：03	30／20 22：34	
Perfluorobutanesulfonic acid （PFBS）	0.075	J	． 26	． 033	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 26	． 041	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 26	． 046	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluorooctanesulfonic acid （PFOS）	1.7	B＊	． 66	． 26	ug／Kg	\％	8／20 07：03	30／20 22：34	
Perfluorodecanesulfonic acid（PFDS）	ND	＊	． 26	． 051	ug／Kg	＊	8／20 07：03	30／20 22：34	
Perfluorooctanesulfonamide（FOSA）	ND		． 26	． 1	ug／Kg	曻	8／20 07：03	30／20 22：34	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 6	． 51	ug／Kg	楽	8／20 07：03	30／20 22：34	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 6	． 49	ug／Kg	＊	8／20 07：03	30／20 22：34	
：2 FTS	ND		． 6	． 20	ug／Kg	＊	8／20 07：03	30／20 22：34	
8：2 FTS	ND		． 6	． 33	ug／Kg	安	8／20 07：03	30／20 22：34	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	78		150				10／28／20 07：03	10／30／20 22：34	1
$13 C 5$ PFPeA	66		150				10／28／20 07：03	10／30／20 22：34	1
13 C 2 PFHxA	87		150				10／28／20 07：03	10／30／20 22：34	1
13C4 PFHpA	0		150				10／28／20 07：03	10／30／20 22：34	1
13 C 4 PFOA	88		150				10／28／20 07：03	10／30／20 22：34	1
$13 C 5$ PFNA	78		150				10／28／20 07：03	10／30／20 22：34	1
$13 C 2$ PFDA			150				10／28／20 07：03	10／30／20 22：34	1
13C2 PFUnA	87		150				10／28／20 07：03	10／30／20 22：34	1
13C2 PFDoA	71		150				10／28／20 07：03	10／30／20 22：34	1
13 C 2 PFTeDA	64		150				10／28／20 07：03	10／30／20 22：34	1
$13 C 3$ PFBS	81		150				10／28／20 07：03	10／30／20 22：34	1
1802 PFHxS	89		150				10／28／20 07：03	10／30／20 22：34	1
$13 C 4$ PFOS	85		150				10／28／20 07：03	10／30／20 22：34	1
13C8 FOSA	77		150				10／28／20 07：03	10／30／20 22：34	1
d3－NMeFOSAA	87		150				10／28／20 07：03	10／30／20 22：34	1
NEtFOSAA	86		150				10／28／20 07：03	10／30／20 22：34	1
M2－6：2 FTS	133		150				10／28／20 07：03	10／30／20 22：34	1
M2－8：2 FTS	127		150				10／28／20 07：03	10／30／20 22：34	1

Method： 537 （modified）－Fluorinated Alkyl Substances－RE

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid （PFOS）	1.4	HB	． 68	． 27	ug／Kg	\％	9／20 15：20	$1: 43$	
Perfluorodecanesulfonic acid（PFDS）	ND	H	． 27	． 053	ug／Kg	\％	9／20 15：20	1 ：43	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	86		150				11／09／20 15：20	11／11／20 11：43	1

Method：6010D－Metals（ICP）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9780		45.5	4	mg／Kg	名	9／20 15：00	30／20 13：22	
Antimony	ND		4.6	． 3	$\mathrm{mg} / \mathrm{Kg}$	名	9／20 15：00	30／20 13：22	
Arsenic	6.5		3.4	． 70	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：22	
Barium	80.2		45.5	4.4	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：22	
Beryllium	0.52		． 46	． 073	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：22	
Cadmium	0.30	J	． 91	． 079	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：22	
Calcium	4120		40	84.1	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 13：22	
Chromium	17.5		． 3	． 6	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：22	
Cobalt	8.7	J	． 4	． 63	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 13：22	
Copper	32.5		5.7	4	$\mathrm{mg} / \mathrm{Kg}$	－	9／20 15：00	30／20 13：22	
Iron	20200		34.1	3.4	$\mathrm{mg} / \mathrm{Kg}$	安	9／20 15：00	30／20 13：22	
Lea	70.0		． 3	． 37	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：22	
Magnesium	2970		40	77.1	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：22	
Manganese	425		3.4	． 26	$\mathrm{mg} / \mathrm{Kg}$	交	9／20 15：00	30／20 13：22	
Nickel	18.7		9.1	． 60	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：22	
Potassium	1410		40	9.9	$\mathrm{mg} / \mathrm{Kg}$	察	9／20 15：00	30／20 13：22	
Selenium	ND		4.6	． 77	$\mathrm{mg} / \mathrm{Kg}$	＊	9／20 15：00	30／20 13：22	
Silver	ND		． 3	3	$\mathrm{mg} / \mathrm{Kg}$	翌	9／20 15：00	30／20 13：22	
Sodium	ND		40	99.0	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：22	
Thallium	0.80	J	4.6	． 71	$\mathrm{mg} / \mathrm{Kg}$	号	9／20 15：00	30／20 13：22	
V nadium	26.2		． 4	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：22	
Zinc	150		． 8	． 2	$\mathrm{mg} / \mathrm{Kg}$	\％	9／20 15：00	30／20 13：22	

Method：7471B－Mercury（CVAA）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.17		． 023	0055	$\mathrm{mg} / \mathrm{Kg}$	家	8／20 03：25	8／20 07：47	

General Chemistry

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		． 9	.50	mg／Kg	安	9／20 13：45	31／20 1 ：52	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	30.3		． 0	． 0	\％			7／20 13：49	
Percent Solids	69.7		． 0	． 0	\％			7／20 13：49	

Method： 537 （modified）－Flu Analyte	d Alky	I Substa Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.15	JB	． 31	． 043	ug／Kg	为	8／20 07：03	30／20 22：43	
Perfluoropentanoic acid（PFPeA）	ND		． 31	． 12	$\mathrm{ug} / \mathrm{Kg}$	㐋	8／20 07：03	30／20 22：43	

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid（PFHxA）	0.11	J	． 31	． 065	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluoroheptanoic acid（PFHpA）	0.071	J	． 31	． 045	ug／Kg	＊	8／20 07：03	30／20 22：43	
Perfluorooctanoic acid（PFOA）	0.19	J	． 31	． 13	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorononanoic acid（PFNA）	0.13	J	． 31	． 056	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorodecanoic acid（PFDA）	0.20	J	． 31	． 034	$u \mathrm{u} / \mathrm{Kg}$	\％	8／20 07：03	30／20 22：43	
Perfluoroundecanoic acid （PFUnA）	0.22	J	． 31	． 056	ug／Kg	察	8／20 07：03	30／20 22：43	
Perfluorododecanoic acid（PFDoA）	ND		． 31	． 10	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorotridecanoic acid（PFTriA）	ND		． 31	． 079	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorotetradecanoic acid（PFTeA）	ND		． 31	． 084	ug／Kg	＊	8／20 07：03	30／20 22：43	
Perfluorobutanesulfonic acid（PFBS）	ND		． 31	． 039	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 31	． 048	$u \mathrm{u} / \mathrm{Kg}$	为	8／20 07：03	30／20 22：43	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 31	． 054	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorooctanesulfonic acid （PFOS）	1.4	B＊	． 78	． 31	ug／Kg	\％	8／20 07：03	30／20 22：43	
Perfluorodecanesulfonic acid（PFDS）	ND	＊	． 31	． 061	$\mathrm{ug} / \mathrm{Kg}$	\％	8／20 07：03	30／20 22：43	
Perfluorooctanesulfonamide（FOSA）	ND		． 31	． 13	ug／Kg	\％	8／20 07：03	30／20 22：43	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		3.1	． 61	ug／Kg	\％	8／20 07：03	30／20 22：43	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		3.1	． 57	ug／Kg	\％	8／20 07：03	30／20 22：43	
：2 FTS	ND		3.1	． 23	ug／Kg	＊	8／20 07：03	30／20 22：43	
8：2 FTS	ND		3.1	． 39	ug／Kg	\％	8／20 07：03	30／20 22：43	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 C 4$ PFBA	84		150				10／28／20 07：03	10／30／20 22：43	1
13 C 5 PFPeA	69		150				10／28／20 07：03	10／30／20 22：43	1
13C2 PFHxA	1		150				10／28／20 07：03	10／30／20 22：43	1
13C4 PFHpA	1		150				10／28／20 07：03	10／30／20 22：43	1
13C4 PFOA	87		150				10／28／20 07：03	10／30／20 22：43	1
$13 C 5$ PFNA	89		150				10／28／20 07：03	10／30／20 22：43	1
13C2 PFDA			150				10／28／20 07：03	10／30／20 22：43	1
13C2 PFUnA			150				10／28／20 07：03	10／30／20 22：43	1
13C2 PFDoA	76		150				10／28／20 07：03	10／30／20 22：43	1
13 C 2 PFTeDA	63		150				10／28／20 07：03	10／30／20 22：43	1
$13 C 3$ PFBS	82		150				10／28／20 07：03	10／30／20 22：43	1
1802 PFHxS	88		150				10／28／20 07：03	10／30／20 22：43	1
13C4 PFOS	86		150				10／28／20 07：03	10／30／20 22：43	1
13C8 FOSA	76		150				10／28／20 07：03	10／30／20 22：43	1
d3－NMeFOSAA			150				10／28／20 07：03	10／30／20 22：43	1
NEtFOSAA	7		150				10／28／20 07：03	10／30／20 22：43	1
M2－6：2 FTS	6		150				10／28／20 07：03	10／30／20 22：43	1
M2－8：2 FTS	102		150				10／28／20 07：03	10／30／20 22：43	1

Method： 537 （modified）－Fluo	ated Alky	I Substa	s－RE						
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid （PFOS）	1.2	HB	． 75	． 30	ug／Kg	安	9／20 15：20	1 ：53	
Perfluorodecanesulfonic acid（PFDS）	ND	H	． 30	． 058	ug／Kg	\％	9／20 15：20	1 ：53	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	89		150				11／09／20 15：20	11／11／20 11：53	1
Eurofins TestAmerica，Edison									

Method：6010D－Metals（ICP） Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	10400		． 6	8.7	$\mathrm{mg} / \mathrm{Kg}$	\％	31／20 16：58	3／20 19：51	
Antimony	ND		． 2	． 8	$\mathrm{mg} / \mathrm{Kg}$	安	31／20 16：58	3／20 19：51	
Arsenic	7.4		4.6	． 95	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Barium	95.3		． 6	5.9	$\mathrm{mg} / \mathrm{Kg}$	\％	31／20 16：58	3／20 19：51	
Beryllium	0.14	J	． 62	． 099	$\mathrm{mg} / \mathrm{Kg}$	安	31／20 16：58	3／20 19：51	
Cadmium	0.34	J	． 2	． 1	$\mathrm{mg} / \mathrm{Kg}$	\％	31／20 16：58	3／20 19：51	
Calcium	2840		540	4	$\mathrm{mg} / \mathrm{Kg}$	察	31／20 16：58	3／20 19：51	
Chromium	26.2		3.1	． 2	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Cobalt	9.8	J	5.4	． 85	$\mathrm{mg} / \mathrm{Kg}$	察	31／20 16：58	3／20 19：51	
Copper	90.7		7.7	9	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Iron	23900		46.2	31.7	$\mathrm{mg} / \mathrm{Kg}$	\％	31／20 16：58	3／20 19：51	
Lea	236		3.1	． 50	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Magnesium	3790		540	4	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Manganese	547		4.6	． 35	$\mathrm{mg} / \mathrm{Kg}$	安	31／20 16：58	3／20 19：51	
Nickel	25.6		． 3	． 81	$\mathrm{mg} / \mathrm{Kg}$	察	31／20 16：58	3／20 19：51	
Potassium	1620		540	94.5	$\mathrm{mg} / \mathrm{Kg}$	品	31／20 16：58	3／20 19：51	
Selenium	ND		． 2	． 0	$\mathrm{mg} / \mathrm{Kg}$	\％	31／20 16：58	3／20 19：51	
Silver	ND		3.1	． 7	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Sodium	ND		540	34	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Thallium	ND		． 2	． 95	$\mathrm{mg} / \mathrm{Kg}$	\％	31／20 16：58	3／20 19：51	
V nadium	25.6		5.4	． 4	$\mathrm{mg} / \mathrm{Kg}$	＊	31／20 16：58	3／20 19：51	
Zinc	211		9.2	． 7	$\mathrm{mg} / \mathrm{Kg}$	察	31／20 16：58	3／20 19：51	
Method：7471B－Mercury（CVA									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.6		． 072	． 017	$\mathrm{mg} / \mathrm{Kg}$		02：55	09：34	3

General Chemistry Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium，hexavalent	ND		3.2	.56	mg／Kg	名	3／20 07：40	3／20 15：16	
Analyte	esult	Qualifier	L	L	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	37.6		． 1	． 1	\％			8／20 13：1	
Percent Solids	62.4		1	． 1	\％			8／20 13：1	

Method: 537 (modified) - Fluorinated Alkyl Substances
Matrix: Solid
Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		$\begin{aligned} & \text { PFBA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFPeA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFNA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFDA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
460-221262-1	PC1-SOIL-102120	49	58	80	80	83	83	82	86
460-221262-3	PC2-SOIL-102120	58	3	84	84	89	86	84	86
460-221262-4	S15-SOIL-102120	52	57	72	74	81	77	78	83
460-221262-5	S14-SOIL-102120	52	58	77	76	80	78	75	9
460-221262-6	S13-SOIL-102120	55		86	84	87	84	83	84
460-221262-6 MS	S13-SOIL-102120	58	5	88	88	91	88	80	85
460-221262-6 MSD	S13-SOIL-102120	56	4	85	85	91	87	85	94
460-221262-7	S16-SOIL-102120	49	53	74	75	81	78	75	9
460-221262-8	S2-SOIL-102120	54		80	82	85	84	84	87
460-221262-9	DUP1-SOIL-102120	77	8	80	81	80	78	80	90
460-221262-9 MS	DUP1-SOIL-102120	74		82	81	87	77	90	80
460-221262-9 MSD	DUP1-SOIL-102120	73		79	79	88	83	82	76
460-221262-10	S3-SOIL-102120		8	81	84	87	84	88	84
460-221262-1	S4-SOIL-102120	55		73	76	74	76	78	76
460-221262-12	S1-SOIL-102120	58	50		59	55	59	58	56
460-221262-12 MS	S1 SOIL-102120		52	3		59			59
460-221262-12 MSD	S1 SOIL-102120	47	42	51	49	50	48	51	43
460-221262-13	S12-SOIL-102120		52	3	3	3			58
460-221262-14	DUP2-SOIL-102120	3	55	7	7	4	5	5	
460-221262-15	S1-SOIL-102120	57	50	3	3	4	5	7	
460-221262-17	S6A-SOIL-102120	50	41	58	58	55	53	57	51
460-221262-18	S6B-SOIL-102120	71	59	79	78	76	76	81	77
460-221262-19	S7A-SOIL-102120	5	56	9	8	8	5	70	59
460-221262-20	S7B-SOIL-102120	51	43	59	58	59		58	
460-221262-21	S8A-SOIL-102120	51	42		3	63		71	
460-221262-22	S8B-SOIL-102120	53	44	59		59	57		56
460-221262-23	S9A-SOIL-102120	80	71	89	90	93	84	87	80
460-221262-23-RE	S9A-SOIL-102120								
460-221262-24	S9B-SOIL-102120	78	5	88	88	86	89	82	74
460-221262-24-RE	S9B-SOIL-102120								
460-221262-24 MS	S9B-SOIL-102120	78	5	85	85	82	83	86	85
460-221262-24 MS - RE	S9B-SOIL-102120								
460-221262-24MSD	S9B-SOIL-102120	83	70	89	92	89	95	95	80
460-221262-24MSD - RE	S9B-SOIL-102120								
460-221262-27	S5-Soil-102120	78		87	90	88	78	95	87
460-221262-27-RE	S5-Soil-102120								
460-221262-28	S10-Soil-102120	84	9	91	91	87	89	92	95
460-221262-28-RE	S10-Soil-102120								
LCS 320-426094/2-A	Lab Control Sample	93	88	91	98	88	82	85	85
LCS 320-426095/2-A	Lab Control Sample	90	90	92	94	90	85	71	
LCS 320-426801/2-A	Lab Control Sample	83	83	87	87	91	90	85	78
LCS 320-427709/2-A	Lab Control Sample	78	84	90	92	94	90	94	89
LCS 320-429933/2-A	Lab Control Sample	74	79	89	95	92	87	88	90
MB 320-426094/1-A	Method Blank	82	77	80	88	80	79	73	77
MB 320-426095/1-A	Method Blank	93	94	91	96	93	86	75	4
MB 320-426801/1-A	Method Blank	83	82	84	86	95	87	89	91
MB 320-427709/1-A	Method Blank	74	78	84	86	94	90	88	87
MB 320-429933/1-A	Method Blank	76	82	88	99	93	89	89	88

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		$\begin{aligned} & \text { PFDoA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFTDA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { C3PFBS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOSA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { d3NMFO } \\ & (25-150) \end{aligned}$	d5NEFO (25-150)
460-221262-1	PC1-SOIL-102120	83	74	74	82	81	5	72	74
460-221262-3	PC2-SOIL-102120	87	91	73	85	83	78	70	80
460-221262-4	S15-SOIL-102120	76	80	5	71	71	75	70	77
460-221262-5	S14-SOIL-102120	4			9	7	57	56	59
460-221262-6	S13-SOIL-102120	86	86	72	80	84	72	9	70
460-221262-6 MS	S13-SOIL-102120	90	96	76	87	87	75	70	72
460-221262-6 MSD	S13-SOIL-102120	92	94	75	85	86	75	9	74
460-221262-7	S16-SOIL-102120			59		5	58	59	
460-221262-8	S2-SOIL-102120	78		70	79	78	77	74	81
460-221262-9	DUP1-SOIL-102120	80	5	76	80	74	78	86	90
460-221262-9 MS	DUP1-SOIL-102120	5	52	71	82	76	78	83	80
460-221262-9 MSD	DUP1-SOIL-102120	5	44	70	80	74	77	83	84
460-221262-10	S3-SOIL-102120	87	95	4	9	70	82	84	9
460-221262-1	S4-SOIL-102120	79	82		4		75	70	71
460-221262-12	S1-SOIL-102120		46	58	52	50	45	68	67
460-221262-12 MS	S1 SOIL-102120	56	43	58	57	54	50	9	
460-221262-12 MSD	S1 SOIL-102120	44	4 *5	45	49	43	44	52	48
460-221262-13	S12-SOIL-102120	54	46			56	49		
460-221262-14	DUP2-SOIL-102120	5	49	57	58	53	54	74	8
460-221262-15	S1-SOIL-102120		59	3		5	57	50	44
460-221262-17	S6A-SOIL-102120	46	32	55		56	45	54	50
460-221262-18	S6B-SOIL-102120	7	51	76	78	76		85	74
460-221262-19	S7A-SOIL-102120	56	35		7		57	7	9
460-221262-20	S7B-SOIL-102120	48	9	56			43		57
460-221262-21	S8A-SOIL-102120	54	40		70	5	50	59	56
460-221262-22	S8B-SOIL-102120	54	38	57		57	48	58	49
460-221262-23	S9A-SOIL-102120	79	74	88	87	85	79	93	94
460-221262-23-RE	S9A-SOIL-102120					83			
460-221262-24	S9B-SOIL-102120		4	78	84	84	74	88	90
460-221262-24-RE	S9B-SOIL-102120					83			
460-221262-24 MS	S9B-SOIL-102120	79		74	82	78	77	80	80
460-221262-24 MS - RE	S9B-SOIL-102120					81			
460-221262-24MSD	S9B-SOIL-102120	78	5	82	95	84	76	90	85
460-221262-24MSD - RE	S9B-SOIL-102120					79			
460-221262-27	S5-Soil-102120	71	4	81	89	85	77	87	86
460-221262-27-RE	S5-Soil-102120					86			
460-221262-28	S10-Soil-102120	76	3	82	88	86	76	59	57
460-221262-28-RE	S10-Soil-102120					89			
LCS 320-426094/2-A	Lab Control Sample	87	91	98	99	92	77	84	86
LCS 320-426095/2-A	Lab Control Sample	46	46	97	97	81		8	$3 * 5$
LCS 320-426801/2-A	Lab Control Sample	86	92	93	96	91	87	83	86
LCS 320-427709/2-A	Lab Control Sample	90	93	88	94	90	85	78	73
LCS 320-429933/2-A	Lab Control Sample	86	83	82	87	83	83	73	75
MB 320-426094/1-A	Method Blank	79	76	88	89	79	7	77	78
MB 320-426095/1-A	Method Blank	43	3 *5	92	93	81	53	31	8
MB 320-426801/1-A	Method Blank	87	87	91	93	92	92	86	90
MB 320-427709/1-A	Method Blank	86	93	84	90	88	80	76	70
MB 320-429933/1-A	Method Blank	91	88	86	90	88	85	8	75

Client: New York State D.E.C.
Project/Site: Norlite - Cohoes \#401041
PFBA $=13 C 4$ PFBA
PFPeA $=13 C 5$ PFPeA
PFHxA = 13 C 2 PFHxA
$\mathrm{C} 4 \mathrm{PFHA}=13 \mathrm{C} 4 \mathrm{PFHpA}$
$\mathrm{PFOA}=13 \mathrm{C} 4 \mathrm{PFOA}$
PFNA $=13 C 5$ PFNA
PFDA $=13 \mathrm{C} 2 \mathrm{PFDA}$
PFUnA $=13 \mathrm{C} 2$ PFUnA
PFDoA $=13 C 2$ PFDoA
PFTDA $=13 \mathrm{C} 2$ PFTeDA
C3PFBS $=13 \mathrm{C} 3$ PFBS
PFHxS = 1802 PFHxS
PFOS $=13 C 4$ PFOS
PFOSA $=13 \mathrm{C} 8$ FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS $=\mathrm{d} 5-\mathrm{NEtFOSAA}$
M262FTS = M2-6:2 FTS
M282FTS = M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water
Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFPeA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFNA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \\ & \hline \end{aligned}$
460-221262-2	TB1-102120	77	82	88	88	96	94	90	89
460-221262-16	TB2-102120	8	71	75	76	83	81	80	87
460-221262-25	Equipment Blank 102120	78	83	90	89	95			74
460-221262-26	Field Blank 102120	75	78	83	88	90	92	92	89
LCS 320-426004/2-A	Lab Control Sample	77	80	86	87	88	97	95	89
MB 320-426004/1-A	Method Blank	7	70	73	72	78	81	76	81
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	PFDoA (25-150)	PFTDA (25-150)	C3PFBS (25-150)	PFHxS (25-150)	$\begin{aligned} & \text { PFOS } \\ & (25-150) \end{aligned}$	PFOSA $(25-150)$	d3NMFO (25-150)	d5NEFO (25-150)
$\frac{\text { Lab Sample id }}{460-221262-2}$	TB1-102120	$\frac{95}{}$	(25-91	$\frac{83}{}$	$\frac{86}{}$	$\frac{86}{}$	81	$\frac{76}{76}$	94
460-221262-16	TB2-102120	83	70	75	77	78	70	70	81
460-221262-25	Equipment Blank 102120	3	73	86	87	92	86	46	4
460-221262-26	Field Blank 102120		85	79	80	82	77	75	90
LCS 320-426004/2-A	Lab Control Sample	97	79	82	87	88	81	78	90
MB 320-426004/1-A	Method Blank	85	73	74	75	78	73	71	80
		Percent Isotope Dilution Recovery (Acceptance Limits)							
		M262FTS	M282FTS						
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
460-221262-2	TB1-102120	70	74						
460-221262-16	TB2-102120	3							
460-221262-25	Equipment Blank 102120	76	90						
460-221262-26	Field Blank 102120		70						
LCS 320-426004/2-A	Lab Control Sample	72	75						
MB 320-426004/1-A	Method Blank	5							
rrogate Legend									
PFBA $=13 \mathrm{C} 4 \mathrm{PFBA}$									
$\mathrm{PFPeA}=13 \mathrm{C} 5 \mathrm{PFPeA}$									
PFHxA $=13 \mathrm{C} 2 \mathrm{PFHxA}$									
C4PFHA $=13 \mathrm{C} 4 \mathrm{PFHpA}$									
$\mathrm{PFOA}=13 \mathrm{C} 4 \mathrm{PFOA}$									

Isotope Dilution Summary

Client: New York State D.E.C.
Project/Site: Norlite - Cohoes \#401041
PFNA = 13C5 PFNA
PFDA $=13 C 2$ PFDA
PFUnA $=13 C 2$ PFUnA
PFDoA $=13 \mathrm{C} 2 \mathrm{PFDoA}$
PFTDA $=13 \mathrm{C} 2 \mathrm{PFTeDA}$
C3PFBS $=13 \mathrm{C} 3$ PFBS
PFHxS = 1802 PFHxS
PFOS $=13 \mathrm{C} 4 \mathrm{PFOS}$
PFOSA $=13 \mathrm{C} 8$ FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS $=$ d5-NEtFOSAA
M262FTS $=$ M2-6:2 FTS
M282FTS $=$ M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-426004/1-A
Matrix: Water
Analysis Batch: 426308

Analyte	MB	MB							
	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0	. 4	ng/L		7/20 18:22	8/20 19:46	
Perfluoropentanoic acid (PFPeA)	ND		. 0	. 49	ng / L		7/20 18:22	8/20 19:46	
Perfluorohexanoic acid (PFHxA)	ND		. 0	. 58	ng / L		7/20 18:22	8/20 19:46	
Perfluoroheptanoic acid (PFHpA)	ND		. 0	. 25	ng / L		7/20 18:22	8/20 19:46	
Perfluorooctanoic acid (PFOA)	ND		. 0	. 85	ng/L		7/20 18:22	8/20 19:46	
Perfluorononanoic acid (PFNA)	ND		. 0	. 27	ng / L		7/20 18:22	8/20 19:46	
Perfluorodecanoic acid (PFDA)	ND		. 0	. 31	ng / L		7/20 18:22	8/20 19:46	
Perfluoroundecanoic acid (PFUnA)	ND		. 0	. 1	ng/L		7/20 18:22	8/20 19:46	
Perfluorododecanoic acid (PFDoA)	ND		. 0	. 55	ng/L		7/20 18:22	8/20 19:46	
Perfluorotridecanoic acid (PFTriA)	ND		. 0	. 3	ng / L		7/20 18:22	8/20 19:46	
Perfluorotetradecanoic acid (PFTeA)	ND		. 0	. 73	ng/L		7/20 18:22	8/20 19:46	
Perfluorobutanesulfonic acid (PFBS)	ND		. 0	. 20	ng/L		7/20 18:22	8/20 19:46	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 0	. 57	ng / L		7/20 18:22	8/20 19:46	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 0	. 19	ng/L		7/20 18:22	8/20 19:46	
Perfluorooctanesulfonic acid (PFOS)	ND		. 0	. 54	ng/L		7/20 18:22	8/20 19:46	
Perfluorodecanesulfonic acid (PFDS)	ND		. 0	. 32	ng / L		7/20 18:22	8/20 19:46	
Perfluorooctanesulfonamide (FOSA)	ND		. 0	. 98	ng / L		7/20 18:22	8/20 19:46	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	. 2	ng/L		7/20 18:22	8/20 19:46	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	. 3	ng/L		7/20 18:22	8/20 19:46	
:2 FTS	ND		5.0	. 5	ng/L		7/20 18:22	8/20 19:46	
8:2 FTS	ND		. 0	. 46	ng/L		7/20 18:22	8/20 19:46	

Prepared	Analyzed	Fac
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1
10/27/20 18:22	10/28/20 19:46	1

Eurofins TestAmerica, Edison

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426004/2-A
Matrix: Water
Analysis Batch: 426308

Analysis Batch: 426308 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { lt } \end{aligned}$	LCS Qualifier	Unit	D	\%Rec	Prep \%Rec. Limits	
Perfluorobutanoic acid (PFBA)	40.0	41.0		ng/L		3	76	36
Perfluoropentanoic acid (PFPeA)	40.0	38.4		ng/L		96	71	31
Perfluorohexanoic acid (PFHxA)	40.0	39.5		ng/L		99	73	33
Perfluoroheptanoic acid (PFHPA)	40.0	38.0		ng / L		95	72	32
Perfluorooctanoic acid (PFOA)	40.0	40.4		ng/L			70	30
Perfluorononanoic acid (PFNA)	40.0	37.3		ng/L		93	75	35
Perfluorodecanoic acid (PFDA)	40.0	39.5		ng/L		99	76	36
Perfluoroundecanoic acid (PFUnA)	40.0	45.1		ng/L		3	8	8
Perfluorododecanoic acid (PFDoA)	40.0	34.9		ng/L		87	71	31
Perfluorotridecanoic acid (PFTriA)	40.0	38.2		ng/L		96	71	31
Perfluorotetradecanoic acid (PFTeA)	40.0	40.3		ng/L			70	30
Perfluorobutanesulfonic acid (PFBS)	35.4	36.3		ng/L		3	7	7
Perfluorohexanesulfonic acid (PFHxS)	36.4	34.4		ng/L		94	59	9
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	39.4		ng/L		4	76	36
Perfluorooctanesulfonic acid (PFOS)	37.1	35.2		ng/L		95	70	30
Perfluorodecanesulfonic acid (PFDS)	38.6	35.8		ng / L		93	71	31
Perfluorooctanesulfonamide (FOSA)	40.0	42.0		ng/L		5	73	33
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	42.8		ng/L		7	76	36
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	40.9		ng/L			76	36
:2 FTS	37.9	37.4		ng/L		99	59	75
8:2 FTS	38.3	40.6		ng/L			75	35

LCS LCS

Isotope Dilution	\%Recovery Qualifier	Limits
$13 C 4$ PFBA		-150
$13 C 5$ PFPeA	80	- 150
13 C 2 PFHxA	86	-150
13 C 4 PFHpA	87	-150
$13 C 4$ PFOA	88	- 150
$13 C 5$ PFNA	97	-150
$13 C 2$ PFDA	95	-150
$13 C 2$ PFUnA	89	-150
$13 C 2$ PFDoA	97	- 150
$13 C 2$ PFTeDA	9	-150
$13 C 3$ PFBS	82	- 150
1802 PFHxS	87	-150
13 C 4 PFOS	88	-150
13C8 FOSA	81	-150
3-NMeFOSAA	8	-150
-NEtFOSAA	90	-150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426004/2-A
Matrix: Water
Analysis Batch: 426308

Client Sample ID: Lab Control Sample
Prep Type: Total/NA Prep Batch: 426004

Isotope Dilution			
M2-6:2 FTS	\%Recovery	Qualifier	Limits
M2-8:2 FTS		-150	
-150			

Lab Sample ID: MB 320-426094/1-A
Matrix: Solid
Analysis Batch: 427508

Analyte	$\begin{aligned} & \text { MB } \\ & \text { It } \end{aligned}$	MB Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		. 20	. 028	ug/Kg		8/20 06:59	23:31	
Perfluoropentanoic acid (PFPeA)	ND		. 20	. 077	ug/Kg		8/20 06:59	23:31	
Perfluorohexanoic acid (PFHxA)	ND		. 20	. 042	ug/Kg		8/20 06:59	23:31	
Perfluoroheptanoic acid (PFHpA)	ND		. 20	. 029	ug/Kg		8/20 06:59	23:31	
Perfluorooctanoic acid (PFOA)	ND		. 20	. 086	ug/Kg		8/20 06:59	23:31	
Perfluorononanoic acid (PFNA)	ND		. 20	. 036	ug/Kg		8/20 06:59	23:31	
Perfluorodecanoic acid (PFDA)	ND		. 20	. 022	ug/Kg		8/20 06:59	23:31	
Perfluoroundecanoic acid (PFUnA)	ND		. 20	. 036	ug/Kg		8/20 06:59	23:31	
Perfluorododecanoic acid (PFDoA)	ND		. 20	. 067	ug/Kg		8/20 06:59	23:31	
Perfluorotridecanoic acid (PFTriA)	ND		. 20	. 051	ug/Kg		8/20 06:59	23:31	
Perfluorotetradecanoic acid (PFTeA)	ND		. 20	. 054	ug/Kg		8/20 06:59	23:31	
Perfluorobutanesulfonic acid (PFBS)	ND		. 20	. 025	ug/Kg		8/20 06:59	23:31	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 20	. 031	ug/Kg		8/20 06:59	23:31	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 20	. 035	ug/Kg		8/20 06:59	23:31	
Perfluorooctanesulfonic acid (PFOS)	. 327	J	. 50	. 20	ug/Kg		8/20 06:59	23:31	
Perfluorodecanesulfonic acid (PFDS)	ND		. 20	. 039	ug/Kg		8/20 06:59	23:31	
Perfluorooctanesulfonamide (FOSA)	ND		. 20	. 082	ug/Kg		8/20 06:59	23:31	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 0	. 39	ug/Kg		8/20 06:59	23:31	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 0	. 37	$\mathrm{ug} / \mathrm{Kg}$		8/20 06:59	23:31	
:2 FTS	ND		. 0	. 15	ug/Kg		8/20 06:59	23:31	
8:2 FTS	ND		. 0	. 25	ug/Kg		8/20 06:59	23:31	
	MB	MB							
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Fac
13C4 PFBA	82		-150				10/28/20 06:59	11/01/20 23:31	1
13 C 5 PFPeA			- 150				10/28/20 06:59	11/01/20 23:31	1
13 C 2 PFHxA	80		- 150				10/28/20 06:59	11/01/20 23:31	1
13 C 4 PFHpA	88		- 150				10/28/20 06:59	11/01/20 23:31	1
13 C 4 PFOA	80		- 150				10/28/20 06:59	11/01/20 23:31	1
$13 C 5$ PFNA	9		- 150				10/28/20 06:59	11/01/20 23:31	1
$13 C 2$ PFDA	3		- 150				10/28/20 06:59	11/01/20 23:31	1
$13 C 2$ PFUnA			- 150				10/28/20 06:59	11/01/20 23:31	1
13 C 2 PFDoA	9		- 150				10/28/20 06:59	11/01/20 23:31	1
13 C 2 PFTeDA			- 150				10/28/20 06:59	11/01/20 23:31	1
$13 C 3$ PFBS	88		- 150				10/28/20 06:59	11/01/20 23:31	1
1802 PFHxS	89		-150				10/28/20 06:59	11/01/20 23:31	1
13 C 4 PFOS	9		- 150				10/28/20 06:59	11/01/20 23:31	1
13C8 FOSA			- 150				10/28/20 06:59	11/01/20 23:31	1
d3-NMeFOSAA			- 150				10/28/20 06:59	11/01/20 23:31	1
-NEtFOSAA	8		- 150				10/28/20 06:59	11/01/20 23:31	1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-426094/1-A
Matrix: Solid
Analysis Batch: 427508

	MB MB		
Isotope Dilution	\%Recovery	Qualifier	Limits
M2-6:2 FTS	82		- 150
M2-8:2 FTS	87		- 150

Lab Sample ID: LCS 320-426094/2-A
Matrix: Solid
Analysis Batch: 427508

Analyte	Spike Added	LCS It	LCS Qualifier
Perfluorobutanoic acid (PFBA)	. 00	. 97	
Perfluoropentanoic acid (PFPeA)	. 00	. 93	
Perfluorohexanoic acid (PFHxA)	. 00	. 13	
Perfluoroheptanoic acid (PFHpA)	. 00	. 16	
Perfluorooctanoic acid (PFOA)	. 00	. 08	
Perfluorononanoic acid (PFNA)	. 00	. 43	
Perfluorodecanoic acid (PFDA)	. 00	. 02	
Perfluoroundecanoic acid (PFUnA)	. 00	. 27	
Perfluorododecanoic acid (PFDoA)	. 00	. 1	
Perfluorotridecanoic acid (PFTriA)	. 00	. 08	
Perfluorotetradecanoic acid	. 00	. 12	

Perfluorotetradecanoic acid
(PFTeA)
Perfluorobutanesulfonic acid
(PFBS)
Perfluorohexanesulfonic aci
(PFHxS)
Perfluoroheptanesulfonic Acid
(PFHpS)
Perfluorooctanesulfonic acid
(PFOS)
Perfluorodecanesulfonic acid
(PFDS)
Perfluorooctanesulfonamide
(FOSA)
N-methylperfluorooctanesulfona
midoacetic acid (NMeFOSAA)
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)
:2 FTS
8:2 FTS . 92
LCS LCS

Isotope Dilution	\%Recovery Qualifier	Limits
13C4 PFBA	93	-150
$13 C 5$ PFPeA	88	- 150
13 C 2 PFHxA	91	- 150
13 C 4 PFHPA	98	-150
$13 C 4$ PFOA	88	- 150
13 C 5 PFNA	82	- 150
13 C 2 PFDA	85	- 150
$13 C 2$ PFUnA	85	- 150
13C2 PFDoA	87	-150

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 426094

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 426094 \%Rec.
$\frac{\text { Unit }}{u g / \mathrm{Kg}}$ D
$u g / K g$
ug/Kg

ug $/ \mathrm{Kg}$	8	71	31

$\mathrm{ug} / \mathrm{Kg}$	4	72	32

$\mathrm{ug} / \mathrm{Kg}$	73	33
$\mathrm{ug} / \mathrm{Kg}$	72	32

ug/Kg 4

$\mathrm{ug} / \mathrm{Kg}$	5	71	31
$\mathrm{ug} / \mathrm{Kg}$	4	71	31

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426094/2-A
Matrix: Solid
Analysis Batch: 427508

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 426094

Lab Sample ID: 460-221262-12 MS
Client Sample ID: S11-SOIL-102120
Prep Type: Total/NA Prep Batch: 426094
Analysis Batch: 427508

Isotope Dilution	\%Recovery Qualifier	Limits
13C4 PFBA	0	- 150
$13 C 5$ PFPeA		- 150

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：460－221262－12 MS
Matrix：Solid
Analysis Batch： 427508

Client Sample ID：S11－SOIL－102120
Prep Type：Total／NA
Prep Batch： 426094

Isotope Dilution	\％Recovery Qualifier	Limits
13C2 PFHxA	3	－ 150
13C4 PFHpA	0	－ 150
13C4 PFOA	9	－ 150
$13 C 5$ PFNA	1	－ 150
$13 C 2$ PFDA	0	－ 150
13C2 PFUnA	9	－ 150
13C2 PFDoA		－ 150
13 C 2 PFTeDA	43	－ 150
$13 C 3$ PFBS	8	－ 150
1802 PFHxS		－ 150
13 C 4 PFOS	4	－ 150
13 C 8 FOSA	0	－ 150
d3－NMeFOSAA	9	－ 150
－NEtFOSAA	1	－ 150
M2－6：2 FTS	0	－ 150
M2－8：2 FTS		－ 150

Lab Sample ID：460－221262－12 MSD
Matrix：Solid
Analysis Batch： 427508

Analyte	Sample It	Sample Qualifier	Spike Added	MSD It	MSD Qualifier	Unit	D	\％Rec	\％R		PD	$\begin{gathered} \text { PD } \\ \text { Limit } \end{gathered}$
Perfluorobutanoic acid（PFBA）	． 27		． 59	． 64		ug／Kg	曻	91	76	36		3
Perfluoropentanoic acid（PFPeA）	． 10	J	． 59	． 63		ug／Kg	\％	98	9	9	4	30
Perfluorohexanoic acid（PFHxA）	． 13	J	． 59	． 77		ug／Kg	\％		71	31		30
Perfluoroheptanoic acid（PFHpA）	． 18	J	． 59	3.03		ug／Kg	－		71	31	5	30
Perfluorooctanoic acid（PFOA）	． 58		． 59	3.04		ug／Kg	安	95	72	32	9	30
Perfluorononanoic acid（PFNA）	． 41		． 59	3.40		ug／Kg	为		73	33		30
Perfluorodecanoic acid（PFDA）	． 21	J	． 59	． 75		ug／Kg	\％	98	72	32		30
Perfluoroundecanoic acid （PFUnA）	． 30	F1	． 59	4.04	F1	ug／Kg	＋	45			3	30
Perfluorododecanoic acid （PFDoA）	ND		． 59	． 69		ug／Kg	\％	4	71	31	4	30
Perfluorotridecanoic acid （PFTriA）	ND		． 59	． 24		$u \mathrm{~g} / \mathrm{Kg}$	\＄	87	71	31	3	30
Perfluorotetradecanoic acid （PFTeA）	ND		． 59	． 66		ug／Kg	\％	3	7	7	8	30
Perfluorobutanesulfonic acid （PFBS）	ND		． 29	． 34		ug／Kg	安		9	9		30
Perfluorohexanesulfonic acid （PFHxS）	ND		． 35	． 33		$u \mathrm{~g} / \mathrm{Kg}$	\％	99			4	30
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 46	． 66		ug／Kg	\％	8	76	36	5	30
Perfluorooctanesulfonic acid （PFOS）	． 78	B	． 40	3.29		ug／Kg	\％	4	8	41		30
Perfluorodecanesulfonic acid （PFDS）	ND		． 49	． 64		$u \mathrm{~g} / \mathrm{Kg}$	\％		71	31	7	30
Perfluorooctanesulfonamide （FOSA）	ND		． 59	． 89		ug／Kg	\％		77	37		30
N－methylperfluorooctanesulfona	ND		． 59	． 78		ug／Kg	\％	7	72	32	5	30

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-221262-12 MSD
Matrix: Solid
Analysis Batch: 427508

Isotope Dilution	\%Recovery Qualifier	Limits
$13 C 4$ PFBA	47	-150
$13 C 5$ PFPeA	42	- 150
$13 C 2$ PFHxA	1	-150
13 C 4 PFHpA	49	-150
$13 C 4$ PFOA	0	- 150
$13 C 5$ PFNA	48	-150
$13 C 2$ PFDA	1	-150
$13 C 2$ PFUnA	43	-150
$13 C 2$ PFDoA	44	- 150
$13 C 2$ PFTeDA	4 *5	-150
$13 C 3$ PFBS	45	-150
18 O 2 PFH S	49	-150
$13 C 4$ PFOS	43	-150
13C8 FOSA	44	-150
d3-NMeFOSAA		-150
-NEtFOSAA	48	- 150
M2-6:2 FTS	4	- 150
M2-8:2 FTS		-150

Lab Sample ID: MB 320-426095/1-A
Matrix: Solid
Analysis Batch: 427153

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 426095

Analyte	$\begin{aligned} & \text { MB } \\ & \hline \text { It } \end{aligned}$	MB Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	. 0389	J	. 20	. 028	ug/Kg		8/20 07:0 3	30/20 21:37	
Perfluoropentanoic acid (PFPeA)	ND		. 20	. 077	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorohexanoic acid (PFHxA)	ND		. 20	. 042	ug/Kg		8/20 07:03	30/20 21:37	
Perfluoroheptanoic acid (PFHpA)	ND		. 20	. 029	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorooctanoic acid (PFOA)	ND		. 20	. 086	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorononanoic acid (PFNA)	ND		. 20	. 036	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorodecanoic acid (PFDA)	ND		. 20	. 022	ug/Kg		8/20 07:03	30/20 21:37	
Perfluoroundecanoic acid (PFUnA)	ND		. 20	. 036	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorododecanoic acid (PFDoA)	ND		. 20	. 067	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorotridecanoic acid (PFTriA)	ND		. 20	. 051	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorotetradecanoic acid (PFTeA)	ND		. 20	. 054	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorobutanesulfonic acid (PFBS)	ND		. 20	. 025	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 20	. 031	ug/Kg		8/20 07:03	30/20 21:37	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 20	. 035	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorooctanesulfonic acid (PFOS)	. 479	J	. 50	. 20	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorodecanesulfonic acid (PFDS)	ND		. 20	. 039	ug/Kg		8/20 07:03	30/20 21:37	
Perfluorooctanesulfonamide (FOSA)	ND		. 20	. 082	ug/Kg		8/20 07:03	30/20 21:37	
N-methylperfluorooctanesulfonamidoa	ND		. 0	. 39	ug/Kg		8/20 07:03	30/20 21:37	

 ND
 cetic acid (NMeFOSAA)

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-426095/1-A
Matrix: Solid
Analysis Batch: 427153

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 426095

Analyte	$\begin{aligned} & \text { MB } \\ & \text { It } \end{aligned}$	MB Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 0	. 37	ug/Kg		8/20 07:03	30/20 21:37	
:2 FTS	ND		. 0	. 15	$\mathrm{ug} / \mathrm{Kg}$		8/20 07:03	30/20 21:37	
8:2 FTS	ND		. 0	. 25	$\mathrm{ug} / \mathrm{Kg}$		8/20 07:03	30/20 21:37	
	MB	MB							
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Fac
13C4 PFBA	93		- 150				10/28/20 07:03	10/30/20 21:37	1
$13 C 5$ PFPeA	94		- 150				10/28/20 07:03	10/30/20 21:37	1
13 C 2 PFHxA	91		- 150				10/28/20 07:03	10/30/20 21:37	1
$13 \mathrm{C4}$ PFHpA	96		- 150				10/28/20 07:03	10/30/20 21:37	1
$13 C 4$ PFOA	93		- 150				10/28/20 07:03	10/30/20 21:37	1
$13 C 5$ PFNA	86		- 150				10/28/20 07:03	10/30/20 21:37	1
13C2 PFDA			- 150				10/28/20 07:03	10/30/20 21:37	1
$13 C 2$ PFUnA	4		- 150				10/28/20 07:03	10/30/20 21:37	1
13C2 PFDoA	43		- 150				10/28/20 07:03	10/30/20 21:37	1
13 C 2 PFTeDA	3	*5	- 150				10/28/20 07:03	10/30/20 21:37	1
$13 C 3$ PFBS	92		- 150				10/28/20 07:03	10/30/20 21:37	1
1802 PFHxS	93		- 150				10/28/20 07:03	10/30/20 21:37	1
$13 C 4$ PFOS	81		- 150				10/28/20 07:03	10/30/20 21:37	1
13C8 FOSA	3		- 150				10/28/20 07:03	10/30/20 21:37	1
d3-NMeFOSAA	31		- 150				10/28/20 07:03	10/30/20 21:37	1
-NEtFOSAA	8		- 150				10/28/20 07:03	10/30/20 21:37	1
M2-6:2 FTS	8		- 150				10/28/20 07:03	10/30/20 21:37	1
M2-8:2 FTS	40		- 150				10/28/20 07:03	10/30/20 21:37	1

Lab Sample ID: LCS 320-426095/2-A
Matrix: Solid
Analysis Batch: 427153

Eurofins TestAmerica, Edison

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426095/2-A
Matrix: Solid
Analysis Batch: 427153

Analyte	Spike Added	LCS It	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits	
Perfluorooctanesulfonic acid (PFOS)	. 86	3.09	*	ug/Kg			8	41
Perfluorodecanesulfonic acid (PFDS)	. 93	. 19	*	$\mathrm{ug} / \mathrm{Kg}$			71	31
Perfluorooctanesulfonamide (FOSA)	. 00	. 23		ug/Kg			77	37
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	. 00	. 01		ug/Kg			72	32
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	. 00	. 03		ug/Kg			72	32
:2 FTS	. 90	. 88	J	ug/Kg		99	73	39
8:2 FTS	. 92	. 12		ug/Kg			75	35

LCS LCS

Isotope Dilution	\%Recovery	Qualifier	Limits
13C4 PFBA	90		- 150
$13 C 5$ PFPeA	90		- 150
13 C 2 PFHxA	92		- 150
13 C 4 PFHpA	94		- 150
13 C 4 PFOA	90		- 150
$13 C 5$ PFNA	85		- 150
$13 C 2$ PFDA	1		- 150
$13 C 2$ PFUnA			- 150
13 C 2 PFDoA	46		- 150
13 C 2 PFTeDA	46		- 150
13 C 3 PFBS	97		- 150
1802 PFHxS	97		- 150
13 C 4 PFOS	81		- 150
13C8 FOSA	1		- 150
d3-NMeFOSAA	8		- 150
-NEtFOSAA	3	*5	- 150
M2-6:2 FTS			- 150
M2-8:2 FTS	41		- 150

Lab Sample ID: 460-221262-24 MS
Matrix: Solid
Analysis Batch: 427153

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：460－221262－24 MS
Matrix：Solid
Analysis Batch： 427153

Isotope Dilution	\％Recovery	Qualifier	Limits
13C4 PFBA	8		－ 150
13 C 5 PFPeA			－ 150
$13 C 2$ PFHxA	85		－ 150
13C4 PFHpA	85		－ 150
$13 C 4$ PFOA	82		－ 150
$13 C 5$ PFNA	83		－ 150
$13 C 2$ PFDA	86		－ 150
$13 C 2$ PFUnA	85		－ 150
$13 C 2$ PFDoA	9		－ 150
$13 C 2$ PFTeDA	0		－ 150
13C3 PFBS	4		－ 150
1802 PFHxS	82		－ 150
$13 C 4$ PFOS	8		－ 150
13C8 FOSA			－ 150
d3－NMeFOSAA	80		－ 150
－NEtFOSAA	80		－ 150
M2－6：2 FTS	108		－ 150
M2－8：2 FTS	11		－ 150

Lab Sample ID：460－221262－24MSD
Matrix：Solid
Analysis Batch： 427153

Analyte	Sample It	Sample Qualifier	Spike Added	MSD It	MSD Qualifier	Unit	D	\％Rec	\％R		PD	PD Limit
Perfluorobutanoic acid（PFBA）	． 19	J B	． 41	． 52		ug／Kg	为	97	76	36		3
Perfluoropentanoic acid（PFPeA）	． 20	J	． 41	． 58		ug／Kg	为	99	9	9		30
Perfluorohexanoic acid（PFHxA）	． 20	J	． 41	． 87		ug／Kg	\％		71	31	4	30
Perfluoroheptanoic acid（PFHpA）	． 15	J	． 41	． 68		ug／Kg	为	5	71	31	7	30
Perfluorooctanoic acid（PFOA）	． 60		． 41	3.07		ug／Kg	为	3	72	32	5	30

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：460－221262－24MSD
Matrix：Solid
Analysis Batch： 427153

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MSD } \\ & \text { It } \end{aligned}$	MSD Qualifier	Unit	D	\％Rec	\％R		PD	$\begin{gathered} \text { PD } \\ \text { Limit } \end{gathered}$
Perfluorononanoic acid（PFNA）	． 24	J	． 41	． 72		ug／Kg	安	3	73	33		30
Perfluorodecanoic acid（PFDA）	． 27		． 41	． 63		ug／Kg	－	98	72	32		30
Perfluoroundecanoic acid （PFUnA）	． 22	J F1	． 41	3.70	F1	ug／Kg	䢒	45			4	30
Perfluorododecanoic acid （PFDoA）	． 14	J	． 41	． 88		ug／Kg	3	4	71	31		30
Perfluorotridecanoic acid （PFTriA）	ND		． 41	． 40		ug／Kg	苑	99	71	31	4	30
Perfluorotetradecanoic acid （PFTeA）	ND		． 41	． 71		ug／Kg	＊		7	7		30
Perfluorobutanesulfonic acid （PFBS）	． 079	J	． 13	． 38		ug／Kg	\％	8	9	9	4	30
Perfluorohexanesulfonic acid （PFHxS）	． 073	J	． 19	． 15		ug／Kg	3	95				30
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 29	． 56		ug／Kg	安		76	36	8	30
Perfluorooctanesulfonic acid （PFOS）	． 9	B＊	． 24	5.32		ug／Kg	家	7	8	41		30
Perfluorodecanesulfonic acid （PFDS）	． 16	J＊	． 32	． 72		ug／Kg	安		71	31		30
Perfluorooctanesulfonamide (FOSA)	ND		． 41	． 85		ug／Kg	安	8	77	37		30
N－methylperfluorooctanesulfona midoacetic acid（NMeFOSAA）	ND		． 41	． 63		ug／Kg	安	9	72	32		30
N －ethylperfluorooctanesulfonami doacetic acid（NEtFOSAA）	ND		． 41	． 86		ug／Kg	苑	9	72	32		30
：2 FTS	ND		． 28	． 54		ug／Kg	安		73	39	3	30
8：2 FTS	ND		． 31	． 46		ug／Kg	苑	7	75	35	9	30

Isotope Dilution	\％Recovery	Qualifier	Limits
13C4 PFBA	83		－ 150
$13 C 5$ PFPeA	0		－ 150
$13 C 2$ PFHxA	89		－ 150
13 C 4 PFHpA	92		－ 150
13C4 PFOA	89		－ 150
$13 C 5$ PFNA	95		－ 150
$13 C 2$ PFDA	95		－ 150
13C2 PFUnA	80		－ 150
13C2 PFDoA	8		－ 150
$13 C 2$ PFTeDA			－ 150
$13 C 3$ PFBS	82		－ 150
1802 PFHxS	95		－ 150
$13 \mathrm{C4} 4$ PFOS	84		－ 150
13C8 FOSA			－ 150
d3－NMeFOSAA	90		－ 150
－NEtFOSAA	85		－ 150
M2－6：2 FTS	120		－ 150
M2－8：2 FTS	11		－ 150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-426801/1-A
Matrix: Solid
Analysis Batch: 427738

Analyte	MB	MB							
	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		. 20	. 028	ug/Kg		30/20 04:16	14:26	
Perfluoropentanoic acid (PFPeA)	ND		. 20	. 077	$\mathrm{ug} / \mathrm{Kg}$		30/20 04:16	14:26	
Perfluorohexanoic acid (PFHxA)	ND		. 20	. 042	ug/Kg		30/20 04:16	14:26	
Perfluoroheptanoic acid (PFHpA)	ND		. 20	. 029	ug/Kg		30/20 04:16	14:26	
Perfluorooctanoic acid (PFOA)	ND		. 20	. 086	ug/Kg		30/20 04:16	14:26	
Perfluorononanoic acid (PFNA)	ND		. 20	. 036	ug/Kg		30/20 04:16	14:26	
Perfluorodecanoic acid (PFDA)	ND		. 20	. 022	ug/Kg		30/20 04:16	14:26	
Perfluoroundecanoic acid (PFUnA)	ND		. 20	. 036	ug/Kg		30/20 04:16	14:26	
Perfluorododecanoic acid (PFDoA)	ND		. 20	. 067	ug/Kg		30/20 04:16	14:26	
Perfluorotridecanoic acid (PFTriA)	ND		. 20	. 051	ug/Kg		30/20 04:16	14:26	
Perfluorotetradecanoic acid (PFTeA)	ND		. 20	. 054	ug/Kg		30/20 04:16	14:26	
Perfluorobutanesulfonic acid (PFBS)	ND		. 20	. 025	ug/Kg		30/20 04:16	14:26	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 20	. 031	$\mathrm{ug} / \mathrm{Kg}$		30/20 04:16	14:26	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 20	. 035	ug/Kg		30/20 04:16	14:26	
Perfluorooctanesulfonic acid (PFOS)	ND		. 50	. 20	$\mathrm{ug} / \mathrm{Kg}$		30/20 04:16	14:26	
Perfluorodecanesulfonic acid (PFDS)	ND		. 20	. 039	$u g / \mathrm{Kg}$		30/20 04:16	14:26	
Perfluorooctanesulfonamide (FOSA)	ND		. 20	. 082	ug/Kg		30/20 04:16	14:26	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 0	. 39	ug/Kg		30/20 04:16	14:26	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 0	. 37	ug/Kg		30/20 04:16	14:26	
:2 FTS	ND		. 0	. 15	ug/Kg		30/20 04:16	14:26	
8:2 FTS	ND		. 0	. 25	ug/Kg		30/20 04:16	14:26	

Prepared	Analyzed	Fac
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1
10/30/20 04:16	11/02/20 14:26	1

Eurofins TestAmerica, Edison

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426801/2-A
Matrix: Solid
Analysis Batch: 427738

Analysis Batch: 427738 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \\ & \hline \end{aligned}$	LCS Qualifier	Unit	D	\%Rec	Prep \%R Lim	
Perfluorobutanoic acid (PFBA)	. 00	. 13		ug/Kg		7	76	36
Perfluoropentanoic acid (PFPeA)	. 00	. 03		ug/Kg			9	9
Perfluorohexanoic acid (PFHxA)	. 00	. 07		ug/Kg		4	71	31
Perfluoroheptanoic acid (PFHpA)	. 00	. 23		ug/Kg			71	31
Perfluorooctanoic acid (PFOA)	. 00	. 92		ug/Kg		96	72	32
Perfluorononanoic acid (PFNA)	. 00	. 01		ug/Kg			73	33
Perfluorodecanoic acid (PFDA)	. 00	12		ug/Kg			72	32
Perfluoroundecanoic acid (PFUnA)	. 00	. 29		ug/Kg		5		
Perfluorododecanoic acid (PFDoA)	. 00	. 37		ug/Kg		9	71	31
Perfluorotridecanoic acid (PFTriA)	. 00	. 06		ug/Kg		3	71	31
Perfluorotetradecanoic acid (PFTeA)	. 00	. 05		ug/Kg		3	7	7
Perfluorobutanesulfonic acid (PFBS)	. 77	. 87		ug/Kg			9	9
Perfluorohexanesulfonic acid (PFHxS)	. 82	. 76		ug/Kg		97		
Perfluoroheptanesulfonic Acid (PFHpS)	. 90	. 07		ug/Kg		9	76	36
Perfluorooctanesulfonic acid (PFOS)	. 86	. 13		ug/Kg		5	8	41
Perfluorodecanesulfonic acid (PFDS)	. 93	09		ug/Kg		8	71	31
Perfluorooctanesulfonamide (FOSA)	. 00	. 21		ug/Kg			77	37
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	. 00	. 06		ug/Kg		3	72	32
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	. 00	. 1		ug/Kg		5	72	32
:2 FTS	. 90	90	J	ug/Kg			73	39
8:2 FTS	. 92	. 1		ug/Kg			75	

LCS LCS

Isotope Dilution	\%Recovery	Qualifier	Limits
$13 C 4$ PFBA	83		- 150
$13 C 5$ PFPeA	83		- 150
13C2 PFHxA	87		- 150
13 C 4 PFHpA	87		- 150
13 C 4 PFOA	91		- 150
13 C 5 PFNA	90		-150
13 C 2 PFDA	85		- 150
$13 C 2$ PFUnA	8		- 150
13 C 2 PFDoA	86		- 150
$13 C 2$ PFTeDA	92		- 150
$13 C 3$ PFBS	93		- 150
1802 PFHxS	96		-150
13 C 4 PFOS	91		- 150
13C8 FOSA	87		- 150
3-NMeFOSAA	83		- 150
-NEtFOSAA	86		-150

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：LCS 320－426801／2－A
Matrix：Solid
Analysis Batch： 427738

Client Sample ID：Lab Control Sample
Prep Type：Total／NA
Prep Batch： 426801

Isotope Dilution		\％Recovery	Qualifier	Limits
$-6: 2 ~ F T S ~$	98	-150		
M2－8：2 FTS	83	-150		

Lab Sample ID：460－221262－9 MS
Matrix：Solid
Analysis Batch： 427738

Analyte	Sample It	Sample Qualifier	Spike Added	It	MS Qualifier
Perfluorobutanoic acid（PFBA）	． 55		． 68	3.1	
Perfluoropentanoic acid（PFPeA）	． 29		． 68	． 89	
Perfluorohexanoic acid（PFHxA）	． 27	J	． 68	3.06	
Perfluoroheptanoic acid（PFHpA）	． 29		． 68	3.30	
Perfluorooctanoic acid（PFOA）	． 1		． 68	3.47	
Perfluorononanoic acid（PFNA）	． 43		． 68	3.57	
Perfluorodecanoic acid（PFDA）	． 24	J	． 68	． 98	
Perfluoroundecanoic acid （PFUnA）	． 25	J F1	． 68	4.22	F1
Perfluorododecanoic acid （PFDoA）	． 1	J	． 68	3.59	

| Perfluorotridecanoic acid
 （PFTriA） | .087 J | .68 | .83 |
| :--- | :---: | :--- | :--- | :--- |
| Perfluorotetradecanoic acid
 （PFTeA） | ND | .68 | .97 |
| Perfluorobutanesulfonic acid
 （PFBS） | .26 J | .37 | .91 |
| Perfluron | | | |

Perfluorohexanesulfonic acid $($ PFHxS $)$.052 J	.44
Perfluoroheptanesulfonic Acid	ND	.55

Perfluoroheptanesulfonic Acid ND $($ PFHpS $)$.55	
Perfluorooctanesulfonic acid	.5	.49

Perfluorooctanesulfonic acid （PFOS）	.5	.49	4.05
Perfluorodecanesulfonic acid	ND	.59	.71

（PFDS）

Perfluorooctanesulfonamide
（FOSA）
N－methylperfluorooctanesulfona
midoacetic acid（NMeFOSAA）
N －ethylperfluorooctanesulfonami
doacetic acid（NEtFOSAA）
：2 FTS
.54
8：2 FTS
ND ． 57
.76
Client Sample ID：DUP1－SOIL－102120
Prep Type：Total／NA Prep Batch： 426801 \％Rec．

Unit	D	\％Rec	\％Rec． Limits	
ug／Kg	洨	95	76	36
ug／Kg	安	97	9	9
ug／Kg	如	4	71	31
ug／Kg	－		71	31
$\mathrm{ug} / \mathrm{Kg}$	＊	89	72	32
ug／Kg	\％	7	73	33
ug／Kg	号		72	32
ug／Kg	安	48		
$u g / \mathrm{Kg}$	－	9	71	31

Isotope Dilution	\％Recovery Qualifier	Limits
$13 C 4$ PFBA	4	－150
$13 C 5$ PFPeA		－ 150
13 C 2 PFHXA	82	－ 150
13 C 4 PFHpA	81	－150
13 C 4 PFOA	87	－ 150
$13 C 5$ PFNA		－150
$13 C 2$ PFDA	90	－150
$13 C 2$ PFUnA	80	－ 150
$13 C 2$ PFDoA		－150

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：460－221262－9 MS
Matrix：Solid
Analysis Batch： 427738

Client Sample ID：DUP1－SOIL－102120
Prep Type：Total／NA Prep Batch： 426801

Lab Sample ID：460－221262－9 MSD
Matrix：Solid
Analysis Batch： 427738

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MSD } \\ & \text { It } \end{aligned}$	MSD Qualifier	Unit	D	\％Rec			PD	$\begin{aligned} & \text { PD } \\ & \text { Limit } \end{aligned}$
Perfluorobutanoic acid（PFBA）	． 55		． 67	． 98		ug／Kg	涼	91	76	36	4	3
Perfluoropentanoic acid（PFPeA）	． 29		． 67	． 87		ug／Kg	名	97	9	9		30
Perfluorohexanoic acid（PFHxA）	． 27	J	． 67	3.18		ug／Kg	¢	9	71	31	4	30
Perfluoroheptanoic acid（PFHpA）	． 29		． 67	3.22		ug／Kg	\％		71	31	3	30
Perfluorooctanoic acid（PFOA）	． 1		． 67	3.44		ug／Kg	洨	88	72	32		30
Perfluorononanoic acid（PFNA）	43		． 67	3.41		ug／Kg	多		73	33	5	30
Perfluorodecanoic acid（PFDA）	． 24	J	． 67	3.09		ug／Kg	洨	7	72	32	4	30
Perfluoroundecanoic acid （PFUnA）	． 25	J F1	． 67	4.27	F1	ug／Kg	安	51				30
Perfluorododecanoic acid （PFDoA）	． 1	J	． 67	3.33		ug／Kg	多		71	31	7	30
Perfluorotridecanoic acid （PFTriA）	． 087	J	． 67	． 67		ug／Kg	＊	97	71	31		30
Perfluorotetradecanoic acid （PFTeA）	ND		． 67	3.1		ug／Kg	＊	7	7	7	5	30
Perfluorobutanesulfonic acid （PFBS）	． 26	J	． 36	3.02		ug／Kg	安	7	9	9	4	30
Perfluorohexanesulfonic acid （PFHxS）	． 052	J	． 43	． 57		ug／Kg	\％	4			3	30
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 54	． 99		ug／Kg	\％	8	76	36	4	30
Perfluorooctanesulfonic acid （PFOS）	． 5		． 48	4.16		ug／Kg	安	8	8	41	3	30
Perfluorodecanesulfonic acid （PFDS）	ND		． 57	3.02		ug／Kg	\％	7	71	31		30
Perfluorooctanesulfonamide （FOSA）	ND		． 67	． 79		ug／Kg	＊	5	77	37	8	30
N －methylperfluorooctanesulfona midoacetic acid（NMeFOSAA）	ND		． 67	3.05		ug／Kg	\％	4	72	32	5	30
N －ethylperfluorooctanesulfonami doacetic acid（NEtFOSAA）	ND		． 67	3.09		ug／Kg	\％		72	32		30
：2 FTS	ND		． 53	． 85		ug／Kg	家	3	73	139	5	30
8：2 FTS	ND		． 56	． 81		ug／Kg	安		75	35		30

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-221262-9 MSD
Matrix: Solid
Analysis Batch: 427738
MSD MSD

Isotope Dilution	\%Recovery	Qualifier	Limits
13C2 PFHxA	9		- 150
13C4 PFHpA	9		- 150
$13 C 4$ PFOA	88		- 150
$13 C 5$ PFNA	83		- 150
$13 C 2$ PFDA	82		- 150
13C2 PFUnA			- 150
13C2 PFDoA			- 150
$13 C 2$ PFTeDA	44		- 150
$13 C 3$ PFBS	0		- 150
1802 PFHxS	80		- 150
$13 C 4$ PFOS	4		- 150
13C8 FOSA			- 150
3-NMeFOSAA	83		- 150
-NEtFOSAA	84		- 150
M2-6:2 FTS	123		- 150
M2-8:2 FTS	11		- 150

Lab Sample ID: MB 320-427709/1-A
Matrix: Solid
Analysis Batch: 428856

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-427709/1-A
Matrix: Solid
Analysis Batch: 428856

Isotope Dilution	MB MB		
	\%Recovery	Qualifier	Limits
13C2 PFHxA	84		- 150
$13 \mathrm{C4}$ PFHpA	86		- 150
$13 C 4$ PFOA	94		- 150
13 C 5 PFNA	90		- 150
$13 C 2$ PFDA	88		- 150
$13 C 2$ PFUnA	87		- 150
13 C 2 PFDoA	86		- 150
13C2 PFTeDA	93		- 150
$13 C 3$ PFBS	84		- 150
1802 PFHxS	90		- 150
13C4 PFOS	88		- 150
13C8 FOSA	80		- 150
d3-NMeFOSAA			- 150
-NEtFOSAA	0		- 150
M2-6:2 FTS	86		- 150
M2-8:2 FTS			- 150

Lab Sample ID: LCS 320-427709/2-A
Matrix: Solid
Analysis Batch: 428856

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：LCS 320－427709／2－A
Matrix：Solid
Analysis Batch： 428856

Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier	Unit	D	\％Rec	\％Rec． Limits	
N －ethylperfluorooctanesulfonami doacetic acid（NEtFOSAA）	． 00	． 96	J	ug／Kg		98	72	32
：2 FTS	． 90	． 47	J	ug／Kg		78	73	39
8：2 FTS	． 92	． 74	J	ug／Kg		91	75	35

LCS LCS

Isotope Dilution	\％Recovery	Qualifier	Limits
$13 C 4$ PFBA	8		－150
$13 C 5$ PFPeA	84		－ 150
13 C 2 PFHxA	90		－ 150
13 C 4 PFHpA	92		－150
13 C 4 PFOA	94		－ 150
13C5 PFNA	90		－ 150
13C2 PFDA	94		－150
13C2 PFUnA	89		－150
13C2 PFDoA	90		－150
13 C 2 PFTeDA	93		－150
$13 \mathrm{C3}$ PFBS	88		－ 150
1802 PFHxS	94		－150
13 C 4 PFOS	90		－150
13C8 FOSA	85		－150
3－NMeFOSAA	8		－150
－NEtFOSAA	3		－150
M2－6：2 FTS	90		－ 150
M2－8：2 FTS	85		－ 150

Lab Sample ID：460－221262－6 MS
Matrix：Solid
Analysis Batch： 428856

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MS } \\ & \text { It } \end{aligned}$	MS Qualifier	Unit	D	\％Rec	\％R	
Perfluorobutanoic acid（PFBA）	． 90		． 45	3.52		ug／Kg	䢒	7	76	36
Perfluoropentanoic acid（PFPeA）	． 6		． 45	3.83		ug／Kg	\％	93	9	9
Perfluorohexanoic acid（PFHxA）	． 1		． 45	3.75		ug／Kg	3		71	31
Perfluoroheptanoic acid（PFHpA）	． 0		． 45	3.61		ug／Kg	3	5	71	31
Perfluorooctanoic acid（PFOA）	． 1		． 45	3.34		ug／Kg	交	90	72	32
Perfluorononanoic acid（PFNA）	． 2		． 45	3.75		ug／Kg	\％	5	73	33
Perfluorodecanoic acid（PFDA）	． 1		． 45	4.95		ug／Kg	家	5	72	32
Perfluoroundecanoic acid （PFUnA）	． 86		． 45	3.62		ug／Kg	苑	3		
Perfluorododecanoic acid （PFDoA）	． 28		． 45	． 70		ug／Kg	苑	99	71	31
Perfluorotridecanoic acid （PFTriA）	． 1	J	． 45	． 59		$u \mathrm{~g} / \mathrm{Kg}$	\％		71	31
Perfluorotetradecanoic acid （PFTeA）	． 066	J	． 45	． 66		ug／Kg	\％		7	7
Perfluorobutanesulfonic acid （PFBS）	ND		． 17	． 38		ug／Kg	\％		9	9
Perfluorohexanesulfonic acid （PFHxS）	ND		． 23	． 13		ug／Kg	\％	96		
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 33	． 37		ug／Kg	\％		76	36

Method： 537 （modified）－Fluorinated Alkyl Substances（Continued）

Lab Sample ID：460－221262－6 MS
Matrix：Solid
Analysis Batch： 428856

Lab Sample ID：460－221262－6 MSD
Matrix：Solid
Analysis Batch： 428856

Analysis Batch： 428856	SampleIt	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MSD } \\ & \text { It } \end{aligned}$	MSD Qualifier	Unit	D	\％Rec	Prep Batch： 427709			
									\％Rec．		PD	$\begin{aligned} & \text { PD } \\ & \text { Limit } \end{aligned}$
Analyte									Lim			
Perfluorobutanoic acid（PFBA）	． 90		． 45	3.50		ug／Kg	就		76	36		3
Perfluoropentanoic acid（PFPeA）	． 6		． 45	3.84		$u g / \mathrm{Kg}$	妾	93	9	9		30
Perfluorohexanoic acid（PFHxA）	． 1		． 45	3.88		$\mathrm{ug} / \mathrm{Kg}$	㲾	5	71	31	3	30
Perfluoroheptanoic acid（PFHpA）	． 0		． 45	3.85		ug／Kg	号	5	71	31		30
Perfluorooctanoic acid（PFOA）	． 1		． 45	3.30		ug／Kg	＊	89	72	32		30
Perfluorononanoic acid（PFNA）	． 2		． 45	3.76		ug／Kg	弶		73	33		30
Perfluorodecanoic acid（PFDA）	． 1		． 45	4.80		ug／Kg	察	9	72	32	3	30
Perfluoroundecanoic acid （PFUnA）	． 86		． 45	3.43		ug／Kg	察	5			5	30
Perfluorododecanoic acid （PFDoA）	． 28		． 45	． 68		ug／Kg	\％	98	71	31		30
Perfluorotridecanoic acid	． 1	J	45	． 43		ug／Kg	察	95	71	31	7	30

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-221262-6 MSD
Matrix: Solid
Analysis Batch: 428856

Isotope Dilution	\%Recovery Qualifier	Limits
13C4 PFBA		- 150
$13 C 5$ PFPeA	4	- 150
13C2 PFHxA	85	- 150
13 C 4 PFHpA	85	- 150
$13 C 4$ PFOA	91	- 150
$13 C 5$ PFNA	87	- 150
$13 C 2$ PFDA	85	- 150
$13 C 2$ PFUnA	94	- 150
$13 C 2$ PFDoA	92	- 150
$13 C 2$ PFTeDA	94	- 150
13C3 PFBS		- 150
1802 PFHxS	85	- 150
$13 C 4$ PFOS	86	- 150
13C8 FOSA		- 150
3-NMeFOSAA	9	- 150
-NEtFOSAA	4	- 150
M2-6:2 FTS	147	- 150
M2-8:2 FTS	164 *5	- 150

Lab Sample ID: MB 320-429933/1-A
Matrix: Solid
Analysis Batch: 430542

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 429933

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		. 20	. 028	ug/Kg		9/20 15:20	10:29	
Perfluoropentanoic acid (PFPeA)	ND		. 20	. 077	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluorohexanoic acid (PFHxA)	ND		. 20	. 042	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluoroheptanoic acid (PFHpA)	ND		. 20	. 029	$u \mathrm{u} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluorooctanoic acid (PFOA)	ND		. 20	. 086	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-429933/1-A
Matrix: Solid
Analysis Batch: 430542

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 429933

Analyte	$\begin{aligned} & \text { MB } \\ & \text { It } \end{aligned}$	MB Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorononanoic acid (PFNA)	ND		. 20	. 036	ug/Kg		9/20 15:20	10:29	
Perfluorodecanoic acid (PFDA)	ND		. 20	. 022	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluoroundecanoic acid (PFUnA)	ND		. 20	. 036	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluorododecanoic acid (PFDoA)	ND		. 20	. 067	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluorotridecanoic acid (PFTriA)	ND		. 20	. 051	$u \mathrm{l} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluorotetradecanoic acid (PFTeA)	ND		. 20	. 054	ug/Kg		9/20 15:20	10:29	
Perfluorobutanesulfonic acid (PFBS)	ND		. 20	. 025	ug/Kg		9/20 15:20	10:29	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 20	. 031	$\mathrm{ug} / \mathrm{Kg}$		9/20 15:20	10:29	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 20	. 035	ug/Kg		9/20 15:20	10:29	
Perfluorooctanesulfonic acid (PFOS)	. 347	J	. 50	. 20	ug/Kg		9/20 15:20	10:29	
Perfluorodecanesulfonic acid (PFDS)	ND		. 20	. 039	ug/Kg		9/20 15:20	10:29	
Perfluorooctanesulfonamide (FOSA)	ND		. 20	. 082	ug/Kg		9/20 15:20	10:29	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		. 0	. 39	ug/Kg		9/20 15:20	10:29	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		. 0	. 37	ug/Kg		9/20 15:20	10:29	
:2 FTS	ND		. 0	. 15	ug/Kg		9/20 15:20	10:29	
8:2 FTS	ND		. 0	. 25	ug/Kg		9/20 15:20	10:29	
	MB	MB							
Isotope Dilution	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Fac
13C4 PFBA			- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 5$ PFPeA	82		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 2$ PFHxA	88		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 4$ PFHpA	99		- 150				11/09/20 15:20	11/11/20 10:29	1
13 C 4 PFOA	93		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 5$ PFNA	89		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 2$ PFDA	89		- 150				11/09/20 15:20	11/11/20 10:29	1
13 C 2 PFUnA	88		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 2$ PFDoA	91		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 2$ PFTeDA	88		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 3$ PFBS	86		- 150				11/09/20 15:20	11/11/20 10:29	1
1802 PFHxS	90		- 150				11/09/20 15:20	11/11/20 10:29	1
$13 C 4$ PFOS	88		- 150				11/09/20 15:20	11/11/20 10:29	1
13C8 FOSA	85		- 150				11/09/20 15:20	11/11/20 10:29	1
d3-NMeFOSAA	8		- 150				11/09/20 15:20	11/11/20 10:29	1
-NEtFOSAA			- 150				11/09/20 15:20	11/11/20 10:29	1
M2-6:2 FTS	84		- 150				11/09/20 15:20	11/11/20 10:29	1
M2-8:2 FTS	81		- 150				11/09/20 15:20	11/11/20 10:29	1

Lab Sample ID: LCS 320-429933/2-A

Matrix: Solid

Analysis Batch: 430542

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-429933/2-A
Matrix: Solid
Analysis Batch: 430542

Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier	Unit	D	\%Rec	\%R	
Perfluorononanoic acid (PFNA)	. 00	. 30		ug/Kg		5	73	33
Perfluorodecanoic acid (PFDA)	. 00	. 27		ug/Kg		4	72	32
Perfluoroundecanoic acid (PFUnA)	. 00	. 28		ug/Kg		4		
Perfluorododecanoic acid (PFDoA)	. 00	. 22		ug/Kg			71	31
Perfluorotridecanoic acid (PFTriA)	. 00	. 25		ug/Kg			71	31
Perfluorotetradecanoic acid (PFTeA)	. 00	. 32		ug/Kg			7	7
Perfluorobutanesulfonic acid (PFBS)	. 77	. 04		ug/Kg		5	9	9
Perfluorohexanesulfonic acid (PFHxS)	. 82	. 88		$\mathrm{ug} / \mathrm{Kg}$		3		
Perfluoroheptanesulfonic Acid (PFHpS)	. 90	. 17		ug/Kg		4	76	36
Perfluorooctanesulfonic acid (PFOS)	. 86	. 47		ug/Kg		33	8	41
Perfluorodecanesulfonic acid (PFDS)	. 93	. 20		$\mathrm{ug} / \mathrm{Kg}$		4	71	31
Perfluorooctanesulfonamide (FOSA)	. 00	. 30		ug/Kg		5	77	37
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	. 00	. 17		ug/Kg		8	72	32
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	. 00	. 28		$\mathrm{ug} / \mathrm{Kg}$		4	72	32
:2 FTS	. 90	. 87	J	ug/Kg		99	73	39
8:2 FTS	. 92	. 29		ug/Kg		9	75	35

Isotope Dilution	\%Recovery Qualifier	Limits
$13 C 4$ PFBA	4	-150
$13 C 5$ PFPeA	9	- 150
13 C 2 PFHxA	89	- 150
13 C 4 PFHpA	95	- 150
$13 C 4$ PFOA	92	- 150
$13 C 5$ PFNA	87	-150
$13 C 2$ PFDA	88	-150
13 C 2 PFUnA	90	- 150
$13 C 2$ PFDoA	86	-150
$13 C 2$ PFTeDA	83	-150
$13 C 3$ PFBS	82	- 150
1802 PFHxS	87	-150
$13 C 4$ PFOS	83	-150
13C8 FOSA	83	- 150
d3-NMeFOSAA	3	- 150
-NEtFOSAA		-150
M2-6:2 FTS	86	-150
M2-8:2 FTS		-150

Method: 537 (modified) - Fluorinated Alkyl Substances - RE

Lab Sample ID: 460-221262-24 MS
Matrix: Solid
Analysis Batch: 430542

Analysis Batch: 430542									Prep Batch: 429933
	Sample	Sample	Spike	MS	MS				\%Rec.
Analyte	It	Qualifier	Added	It	Qualifier	Unit	D	\%Rec	Limits
Perfluorooctanesulfonic acid (PFOS) - RE	. 9	H B	. 26	5.61	H B	ug/Kg	号		8141
Perfluorodecanesulfonic acid (PFDS) - RE	. 20	J H	. 35	. 98	H	ug/Kg	\%	8	7131

$\frac{\text { Isotope Dilution }}{13 C 4 \text { PFOS }-R E} \frac{\text { \%Recovery }}{81} \frac{\text { Qualifier }}{} \frac{\text { Limits }}{-150}$

Lab Sample ID: 460-221262-24MSD
Matrix: Solid
Analysis Batch: 430542

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MSD } \\ & \text { It } \end{aligned}$	MSD Qualifier	Unit	D	\%Rec			PD	PD Limit
Perfluorooctanesulfonic acid (PFOS) - RE	. 9	HB	. 28	5.70	HB	ug/Kg	袻	23	68	141		3
Perfluorodecanesulfonic acid (PFDS) - RE	. 20	J H	. 37	. 92	H	ug/Kg	\%	15		131		30
Isotope Dilution	MSD \%Recovery	MSD Qualifier	Limits									
13C4 PFOS - RE	9		- 150									

Method: 6010D - Metals (ICP)
Lab Sample ID: MB 460-734596/1-A
Matrix: Water
Analysis Batch: 734898

Analysis Batch: 734898								Prep Batch: 734596	
Analyte	MB	MB							
	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND			76.9	ug/L		4/20 20:00	16:09	
Antimony	ND		. 0	3.7	ug/L		4/20 20:00	16:09	
Arsenic	ND		5.0	3.3	ug/L		4/20 20:00	16:09	
Barium	ND			3.2	ug/L		4/20 20:00	16:09	
Beryllium	ND		. 0	. 17	ug/L		4/20 20:00	16:09	
Cadmium	ND		4.0	. 33	ug/L		4/20 20:00	16:09	
Calcium	ND		5000	52	ug/L		4/20 20:00	16:09	
Chromium	ND		. 0	5.0	ug/L		4/20 20:00	16:09	
Cobalt	ND		50.0	. 0	ug/L		4/20 20:00	16:09	
Copper	ND		5.0	. 9	ug/L		4/20 20:00	16:09	
Iron	ND		50	80.8	ug/L		4/20 20:00	16:09	
Lead	ND		. 0	. 4	ug/L		4/20 20:00	16:09	
Magnesium	ND		5000	42	ug/L		4/20 20:00	16:09	
Manganese	ND		5.0	. 76	ug/L		4/20 20:00	16:09	
Nickel	ND		40.0	4.1	ug/L		4/20 20:00	16:09	
Potassium	ND		5000	42	ug/L		4/20 20:00	16:09	
Selenium	ND		. 0	5.9	ug/L		4/20 20:00	16:09	
Silver	ND		. 0	5.8	ug/L		4/20 20:00	16:09	
Sodium	ND		5000	83.8	ug/L		4/20 20:00	16:09	
Thallium	ND		. 0	4.1	ug/L		4/20 20:00	16:09	
Vanadium	ND		50.0	7.2	ug/L		4/20 20:00	16:09	
Zinc	ND		30.0	. 2	ug/L		4/20 20:00	16:09	

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 460-734596/2-A
Matrix: Water
Analysis Batch: 734898

Analysis Batch: 734898 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier	Unit	D	\%Rec	Prep \%Rec. Limits
Aluminum				ug/L			80
Antimony	500	473.7		ug/L		95	80
Arsenic		85		ug/L		4	80
Barium		33		ug/L			80
Beryllium	50.0	49.74		ug/L		99	80
Cadmium	50.0	52.05		ug/L		4	80
Calcium		80		ug/L			80
Chromium		8.3		ug/L		4	80
Cobalt	500	522.5		ug/L		5	80
Copper	50	54.6		ug/L			80
Iron		47		ug/L		5	80
Lead	500	519.4		ug/L		4	80
Magnesium		510		ug/L		3	80
Manganese	500	516.4		ug/L		3	80
Nickel	500	520.1		ug/L		4	80
Potassium		9230		ug/L		96	80
Selenium				ug/L			80
Silver	50.0	51.99		ug/L		4	80
Sodium		9290		ug/L		96	80
Thallium		9		ug/L		3	80
Vanadium	500	521.1		ug/L		4	80
Zinc	500	518.6		ug/L		4	80

Analysis Batch: 735504
Lab Sample ID: MB 460-735373/1-A ^2
Matrix: Solid

Prep Type: Total/NA
 Prep Batch: 735373
 Client Sample ID: Method Blank

Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		40.0	5.7	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Antimony	ND		4.0	. 2	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Arsenic	ND		3.0	. 62	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Barium	ND		40.0	3.9	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Beryllium	ND		. 40	. 064	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Cadmium	ND		. 80	. 069	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Calcium	ND			73.9	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Chromium	ND		. 0	. 4	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Cobalt	ND		. 0	. 55	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Copper	ND		5.0	. 3	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Iron	ND		30.0	. 6	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Lead	ND		. 0	. 32	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Magnesium	ND			7.7	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Manganese	ND		3.0	. 23	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Nickel	ND		8.0	. 53	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Potassium	ND			4	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Selenium	ND		4.0	. 68	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Silver	ND		. 0	. 1	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Sodium	ND			87.0	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Thallium	ND		4.0	. 62	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	
Vanadium	ND		. 0	. 93	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:35	8/20 17:54	

Eurofins TestAmerica, Edison

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 460-735373/1-A ^2
Matrix: Solid
Analysis Batch: 735504

Analysis Batch: 735504								Prep Batch: 735373	
	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Zinc	ND		. 0	1	mg/Kg		8/20 02:35	8/20 17:54	

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 735373

Lab Sample ID: LCSSRM 460-735373/2-A ^2
Matrix: Solid
Analysis Batch: 735504
$\begin{array}{lrrr} & \text { Spike } & \text { LCSSRM LCSSRM } \\ \text { Analyte } & \text { Added } & \text { It } & \text { Qualifier }\end{array}$
Aluminum
Antimony
Arsenic
Barium 300
Beryllium
Cadmium
95.5
300
3
35

Calcium 4720
Chromium
Cobalt
Copper
Iron

Lead
Magnesium
Manganese
Nickel
Potassium
Selenium
Silver
Sodium
Thallium
Vanadium
Zinc
43.2

4400
92.3
300
77
59.8
30
42.0
40.3

39
83.1
96.9

369
78.50
93.84
95.0
. 2
32.8

4520
42.7
43.48
48.4

4030
92.38

70
59.4
59.86

946
41.04
37.72
32.8 J
85.54
94.72
357.6

Client Sample ID: Lab Control Sample
Prep Type: Total/NA Prep Batch: 735373 \%Rec. $\underline{\text { D }} \frac{\text { \%Rec }}{87.5} \frac{\text { Limits }}{50.4 \quad 50 .}$ $\frac{\text { Unit }}{\mathrm{mg} / \mathrm{Kg}}$ $\mathrm{mg} / \mathrm{Kg}$
mg/Kg
$\mathrm{mg} / \mathrm{Kg}$
$5.4 \quad 4.895$.
$\begin{array}{lll}98.3 & 82.8 & 7 .\end{array}$
$\begin{array}{lll}98.3 & 82.3 & 7 .\end{array}$
$97.3 \quad 82.8$
$\begin{array}{llll}98.4 & 83.0 & 7 .\end{array}$
$95.8 \quad 81.6 \quad 8$.
$\begin{array}{lll}97.1 & 82.3 & 7 .\end{array}$
. 683.8
$99.0 \quad 84.0$
$97.4 \quad 3 \quad 38$.
$\begin{array}{ll}.1 & 83.1\end{array}$
$94.3 \quad 75.7 \quad 4$.
$97.4 \quad 82.0 \quad 8$.
$\begin{array}{ll}.1 & 82.6 \quad 7 .\end{array}$
$95.9 \quad 70.0 \quad 30$.
$97.7 \quad 79.5$
$93.6 \quad 80.6 \quad 9$.
$95.5 \quad 71.9 \quad 7$.
$\begin{array}{ll}. & 3 \\ 9 & 9\end{array}$
$97.8 \quad 79.2$.
$\begin{array}{lll}96.9 & 80.8 \quad 9 .\end{array}$

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-221262-6 DU
Matrix: Solid
Analysis Batch: 735504

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-221262-6 DU
Matrix: Solid
Analysis Batch: 735504

Client Sample ID: S13-SOIL-102120
Prep Type: Total/NA
Prep Batch: 735373
D

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 735879
Analysis Batch: 736162

Lab Sample ID: LCSSRM 460-735879/2-A ^2
Matrix: Solid
Analysis Batch: 736162

Method：6010D－Metals（ICP）（Continued）

Lab Sample ID：LCSSRM 460－735879／2－A＾2
Matrix：Solid
Analysis Batch： 736162

Lab Sample ID：460－221262－24 MS
Matrix：Solid
Analysis Batch： 736162

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MS } \\ & \text { It } \end{aligned}$	MS Qualifier	Unit	D	\％Rec	\％R	
Aluminum	300		91	70	4	mg／Kg	浐	389	75	5
Antimony	ND	F1	47.7	5.48	F1	$\mathrm{mg} / \mathrm{Kg}$	边	32	75	5
Arsenic	7.8		91	86.5		$\mathrm{mg} / \mathrm{Kg}$	号	94	75	5
Barium	3		91	75.0		$\mathrm{mg} / \mathrm{Kg}$	\％	90	75	5
Beryllium	． 45		4.77	4.89		$\mathrm{mg} / \mathrm{Kg}$	边	93	75	5
Cadmium	． 15	J	4.77	4.67		mg／Kg	安	95	75	5
Calcium	4120		910	5729		$\mathrm{mg} / \mathrm{Kg}$	家	84	75	5
Chromium	． 4		9.1	36.55		$\mathrm{mg} / \mathrm{Kg}$	安	5	75	5
Cobalt	8.4	J	47.7	53.18		$\mathrm{mg} / \mathrm{Kg}$	苑	94	75	5
Copper	9.1		3.9	51.26		$\mathrm{mg} / \mathrm{Kg}$	安	93	75	5
Iron	9700		95.5	9340	4	$\mathrm{mg} / \mathrm{Kg}$	安	334	75	5
Lead	36.5		47.7	88.70		$\mathrm{mg} / \mathrm{Kg}$	这	9	75	5
Magnesium	3630		910	5446		$\mathrm{mg} / \mathrm{Kg}$	\％	95	75	5
Manganese	441		47.7	474.4	4	$\mathrm{mg} / \mathrm{Kg}$	安	9	75	5
Nickel	9.3		47.7	4.95		$\mathrm{mg} / \mathrm{Kg}$	这	96	75	5
Potassium	520		910	3199		$\mathrm{mg} / \mathrm{Kg}$	安	88	75	5
Selenium	． 80	J	91	75.9		$\mathrm{mg} / \mathrm{Kg}$	安	92	75	5
Silver	ND		4.77	4.29		$\mathrm{mg} / \mathrm{Kg}$	多	90	75	5

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-221262-24 MS
Matrix: Solid
Analysis Batch: 736162

Lab Sample ID: 460-221262-24 DU
Matrix: Solid
Analysis Batch: 736162

Lab Sample ID: MB 460-736461/1-A ^2

Matrix: Solid

Analysis Batch: 737066

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 736461

Analyte	MB	MB				D	Prepared	Analyzed	Dil Fac
	It	Qualifier	L	MDL	Unit				
Aluminum	ND		40.0	5.7	mg/Kg		31/20 16:58	3/20 17:58	
Antimony	ND		4.0	. 2	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Arsenic	ND		3.0	. 62	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Barium	ND		40.0	3.9	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Beryllium	ND		. 40	. 064	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Cadmium	ND		. 80	. 069	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Calcium	ND			73.9	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Chromium	ND		. 0	. 4	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Cobalt	ND		. 0	. 55	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Copper	ND		5.0	. 3	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Iron	ND		30.0	. 6	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 460-736461/1-A ^2
Matrix: Solid
Analysis Batch: 737066

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 736461

Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		. 0	. 32	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Magnesium	ND			7.7	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Manganese	ND		3.0	. 23	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Nickel	ND		8.0	. 53	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Potassium	ND			. 4	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Selenium	ND		4.0	. 68	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Silver	ND		. 0	. 1	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Sodium	ND			87.0	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Thallium	ND		4.0	. 62	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Vanadium	ND		. 0	. 93	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	
Zinc	ND		. 0	. 1	$\mathrm{mg} / \mathrm{Kg}$		31/20 16:58	3/20 17:58	

Lab Sample ID: LCSSRM 460-736461/2-A ^2
Matrix: Solid
Analysis Batch: 737066

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 460-736461/2-A ^2
Matrix: Solid
Analysis Batch: 737066

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 460-735508/1-A
Matrix: Water
Analysis Batch: 735551

Lab Sample ID: LCS 460-735508/2-A
Matrix: Water
Analysis Batch: 735551

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 460-735378/10-A
Matrix: Solid
Client Sample ID: Method Blank
Analysis Batch: 735489
Prep Type: Total/NA
Prep Batch: 735378

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		. 017	0040	$\mathrm{mg} / \mathrm{Kg}$		8/20 02:58	8/20 06:18	

Lab Sample ID: LCSSRM 460-735378/11-A ^40 Client Sample ID: Lab Control Sample
Matrix: Solid
Analysis Batch: 735489

Lab Sample ID: 460-221262-24 MS
Matrix: Solid
Analysis Batch: 735489

Analyte	Sample It	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Mercury	068		. 105	. 181		mg/Kg		8	

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 460-221262-24 DU
lient Sample ID: S9B-SOIL-102120
Matrix: Solid
Prep Type: Total/NA
Prep Batch: 735378
Analysis Batch: 735489

Sample	Sample	DU	DU				PD
It	Qualifier	It	Qualifier	Unit	D	PD	Limit
. 068		0744		$\mathrm{mg} / \mathrm{Kg}$			

Lab Sample ID: MB 460-735383/1-A
Matrix: Solid
Analysis Batch: 735489
Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 735383

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		. 017	. 0040	$\mathrm{mg} / \mathrm{Kg}$		8/20 03:25	8/20 07:15	

Lab Sample ID: LCSSRM 460-735383/2-A ^40 Client Sample ID: Lab Control Sample
Matrix: Solid
Analysis Batch: 735489

Lab Sample ID: MB 460-735386/1-A
Matrix: Solid
Client Sample ID: Method Blank
Analysis Batch: 735489
Prep Type: Total/NA
Prep Batch: 735386

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		. 017	. 0040	mg/Kg		8/20 03:49	8/20 08:17	

Lab Sample ID: LCSSRM 460-735386/2-A ^40 Client Sample ID: Lab Control Sample
Matrix: Solid
Analysis Batch: 735489

Analysis Batch. 735489							\%Rec.
	Spike	LCSSRM	LCSSRM				
Analyte	Added	It	Qualifier	Unit	D	\%Rec	Limits
Mercury	8.4	9.21		$\mathrm{mg} / \mathrm{Kg}$		4.4	. 98.

Lab Sample ID: 460-221262-6 MS
Matrix: Solid
Analysis Batch: 735489

Analyte	Sample It	Sample Qualifier	Spike Added	$\begin{aligned} & \text { MS } \\ & \text { It } \end{aligned}$	MS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Mercury	. 039		. 104	. 153		mg/Kg	安		80

Lab Sample ID: 460-221262-6 DU
Matrix: Solid
Analysis Batch: 735489
Client Sample ID: S13-SOIL-102120
Prep Type: Total/NA Prep Batch: 735386

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: MB 460-736624/10-A
Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 736624
Analysis Batch: 736715

Lab Sample ID: LCSSRM 460-736624/11-A ^40
Matrix: Solid
Analysis Batch: 736715

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 460-734239/9
Client Sample ID: Method Blank
Matrix: Water
Prep Type: Total/NA
Analysis Batch: 734239

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		. 0	8.1	ug/L			3/20 12:50	

Lab Sample ID: LCSSRM 460-734239/10
Matrix: Water
Analysis Batch: 734239

Matrix: Solid
Analysis Batch: 736100

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		. 0	. 35	$\mathrm{mg} / \mathrm{Kg}$		9/20 09:04	30/20 1 :13	

Lab Sample ID: LCSI 460-735779/3-A
Matrix: Solid
Analysis Batch: 736100

Lab Sample ID: LCSSRM 460-735779/2-A
Matrix: Solid
Analysis Batch: 736100

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 460-221262-6 MSI
Matrix: Solid
Analysis Batch: 736100

Lab Sample ID: 460-221262-6 MSS
Matrix: Solid
Analysis Batch: 736100

Lab Sample ID: 460-221262-24 MSI
Matrix: Solid
Analysis Batch: 736100

Lab Sample ID: 460-221262-24 MSS
Matrix: Solid
Analysis Batch: 736100

Lab Sample ID: 460-221262-6 DU Client Sample ID: S13-SOIL-102120
Matrix: Solid
Analysis Batch: 736100

	Sample	Sample	DU	DU				PD
Analyte	It	Qualifier	It	Qualifier	Unit	D	PD	Limit
Chromium, hexavalent	ND	F1	ND		mg/Kg	倞	NC	

Lab Sample ID: 460-221262-24 DU Client Sample ID: S9B-SOIL-102120
Matrix: Solid
Analysis Batch: 736100

Lab Sample ID: MB 460-735855/1-A
Matrix: Solid
Analysis Batch: 736102
Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 735855

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		. 0	.35	mg/Kg		9/20 13:45	31/20 1 :24	

Lab Sample ID: LCSI 460-735855/3-A
Matrix: Solid
Analysis Batch: 736102

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: LCSSRM 460-735855/2-A
Matrix: Solid
Analysis Batch: 736102

Analysis Batch. 736102			LCSSRM		D	\%Rec	\%Rec.	
	Spike	LCSSRM						
Analyte	Added	It	Qualifier	Unit			Limi	
Chromium, hexavalent	5.6	5.67		$\mathrm{mg} / \mathrm{Kg}$. 7	84.2	4.

Lab Sample ID: MB 460-736559/1-A
Matrix: Solid
Analysis Batch: 736763
$\frac{\text { Analyte }}{\text { Chromium, hexavalent }} \frac{\text { It }}{\text { ND }} \frac{\text { Qualifier }}{} \frac{\mathrm{L}}{.0} \frac{\mathrm{MDL}}{.35} \frac{\text { Unit }}{\mathrm{mg} / \mathrm{Kg}} \frac{\mathrm{D}}{} \frac{\text { Prepared }}{12: 08} \frac{\text { Analyzed }}{13: 13} \quad$ Dil Fac

Lab Sample ID: LCSI 460-736559/3-A Client Sample ID: Lab Control Sample
Matrix: Solid Prep Type: Total/NA
Analysis Batch: 736763

Lab Sample ID: LCSSRM 460-736559/2-A
Matrix: Solid
Analysis Batch: 736763

Lab Sample ID: 460-221262-6 MSI
Matrix: Solid
Analysis Batch: 736763

Lab Sample ID: 460-221262-6 MSS
Matrix: Solid
Analysis Batch: 736763
Analyte

Lab Sample ID: 460-221262-24 MSI
Client Sample ID: S9B-SOIL-102120
Matrix: Solid
Analysis Batch: 736763

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 460-221262-24 MSS
Client Sample ID: S9B-SOIL-102120
Matrix: Solid
Analysis Batch: 736763

Lab Sample ID: 460-221262-6 DU
Client Sample ID: S13-SOIL-102120
Prep Type: Total/NA Prep Batch: 736559
Analysis Batch: 736763

	Sample	Sample	DU	DU				PD
Analyte	It	Qualifier	It	Qualifier	Unit	D	PD	Limit
Chromium, hexavalent	ND	F1	ND		mg/Kg	\%	NC	

PD

Lab Sample ID: 460-221262-24 DU
Matrix: Solid
Analysis Batch: 736763
Client Sample ID: S9B-SOIL-102120

	Sample	Sample	DU	DU				PD
Analyte	It	Qualifier	It	Qualifier	Unit	D	PD	Limit
Chromium, hexavalent	ND	F1	ND		mg/Kg	变	NC	

Lab Sample ID: MB 460-736963/1-A
Matrix: Solid
Analysis Batch: 736986

	MB	MB							
Analyte	It	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		. 0	. 35	$\mathrm{mg} / \mathrm{Kg}$		3/20 07:39	3/20 14:40	

Lab Sample ID: LCSI 460-736963/3-A
Matrix: Solid
Analysis Batch: 736986

Lab Sample ID: LCSSRM 460-736963/2-A
Matrix: Solid
Analysis Batch: 736986

Method: Moisture - Percent Moisture

Lab Sample ID: 460-221262-4 DU
Matrix: Solid
Analysis Batch: 735208
Analysis Batch: 735208

Analyte	Sample It	Sample Qualifier	DU	DU Qualifier	Unit	D	PD	PD Limit
Percent Moisture	37.3		31.2		\%		8	
Percent Moisture	37.3		31.2		\%		8	
Percent Solids	. 7		8.8		\%		9	
Percent Solids	. 7		8.8		\%		9	

Method: Moisture - Percent Moisture (Continued)

Lab Sample ID: 460-221262-6 DU	Client Sample ID: S13-SOIL-102120
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 735208	

Analysis Batch: 735208

	Sample	Sample		DU				
Analyte	It	Qualifier	It	Qualifier	Unit	D	PD	Limit
Percent Moisture	. 5		. 5		\%			
Percent Solids	78.5		78.5		\%			

Lab Sample ID: 460-221262-23 DU Client Sample ID: S9A-SOIL-102120
Matrix: Solid
Analysis Batch: 735216
Prep Type: Total/NA
Analyte

Lab Sample ID: 460-221262-24 DU
Client Sample ID: S9B-SOIL-102120
Matrix: Solid
Prep Type: Total/NA
Analysis Batch: 735216

Andy	Sample	Sample	DU	DU				PD
Analyte	It	Qualifier	It	Qualifier	Unit	D	PD	Limit
Percent Moisture	3.0		3.0		\%			
Percent Solids	77.0		77.0		\%			

LCMS

Prep Batch: 426004

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-2	TB1-102120	Total/NA	Water	3535	
460-221262-16	TB2-102120	Total/NA	Water	3535	
460-221262-25	Equipment Blank 102120	Total/NA	Water	3535	
460-221262-26	Field Blank 102120	Total/NA	Water	3535	
MB 320-426004/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-426004/2-A	Lab Control Sample	Total/NA	Water	3535	

Prep Batch: 426094

Lab Sample ID
$460-221262-12$
$460-221262-13$
$460-221262-14$
$460-221262-15$
$460-221262-17$
$460-221262-18$
$460-221262-19$
$460-221262-20$
$460-221262-21$
$460-221262-22$
MB 320-426094/1-A
LCS 320-426094/2-A
$460-221262-12$ MS
$460-221262-12 ~ M S D$

Prep Batch: 426095

Lab Sample ID
$460-221262-23$
$460-221262-24$
$460-221262-27$
$460-221262-28$
MB 320-426095/1-A
LCS 320-426095/2-A
$460-221262-24$ MS
$460-221262-24 M S D$

Client Sample ID
S1 SOIL-102120
S12-SOIL-102120
DUP2-SOIL-102120
S1-SOIL-102120
S6A-SOIL-102120
S6B-SOIL-102120
S7A-SOIL-102120
S7B-SOIL-102120
S8A-SOIL-102120
S8B-SOIL-102120
Method Blank
Lab Control Sample
S1 SOIL-102120
S1 SOIL-102120

Prep Type	Matrix	Method	Prep Batch
Total/NA	Solid	SHAKE	

Analysis Batch: 426308

Lab Sample ID	Client Sample ID
$460-221262-2$	TB1-102120
$460-221262-16$	TB2-102120
$460-221262-25$	Equipment Blank 102120
$460-221262-26$	Field Blank 102120
MB 320-426004/1-A	Method Blank
LCS 320-426004/2-A	Lab Control Sample
Prep Batch: 426801	

Prep Type	Matrix	Method	Prep Batch
Total/NA	Water	537 (modified)	426004
Total/NA	Water	537 (modified)	426004
Total/NA	Water	537 (modified)	426004
Total/NA	Water	537 (modified)	426004
Total/NA	Water	537 (modified)	426004
Total/NA	Water	537 (modified)	426004

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	SHAKE	
MB 320-426801/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-426801/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
460-221262-9 MS	DUP1-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-9 MSD	DUP1-SOIL-102120	Total/NA	Solid	SHAKE	

LCMS

Analysis Batch: 427153

$\frac{\text { Lab Sample ID }}{460-221262-23}$	
	460-221262-24
	460-221262-27
	460-221262-28
	MB 320-426095/1-A
	LCS 320-426095/2-A
	460-221262-24 MS
	460-221262-24MSD
Analysis Batch: 427508	

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
S9A-SOIL-102120	Total/NA	Solid	537 (modified)	426095
S9B-SOIL-102120	Total/NA	Solid	537 (modified)	426095
S5-Soil-102120	Total/NA	Solid	537 (modified)	426095
S10-Soil-102120	Total/NA	Solid	537 (modified)	426095
Method Blank	Total/NA	Solid	537 (modified)	426095
Lab Control Sample	Total/NA	Solid	537 (modified)	426095
S9B-SOIL-102120	Total/NA	Solid	537 (modified)	426095
S9B-SOIL-102120	Total/NA	Solid	537 (modified)	426095

Lab Sample ID	Client Sample ID
460-221262-12	S1 SOIL-102120
460-221262-13	S12-SOIL-102120
460-221262-14	DUP2-SOIL-102120
460-221262-15	S1-SOIL-102120
460-221262-17	S6A-SOIL-102120
460-221262-18	S6B-SOIL-102120
460-221262-19	S7A-SOIL-102120
460-221262-20	S7B-SOIL-102120
460-221262-21	S8A-SOIL-102120
460-221262-22	S8B-SOIL-102120
MB 320-426094/1-A	Method Blank
LCS 320-426094/2-A	Lab Control Sample
460-221262-12 MS	S1 SOIL-102120
460-221262-12 MSD	S1 SOIL-102120
Prep Batch: 427709	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-1	PC1-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-3	PC2-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-4	S15-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-5	S14-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-6	S13-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-7	S16-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-8	S2-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-10	S3-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-1	S4-SOIL-102120	Total/NA	Solid	SHAKE	
MB 320-427709/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-427709/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	SHAKE	
460-221262-6 MSD	S13-SOIL-102120	Total/NA	Solid	SHAKE	

Analysis Batch: 427738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	537 (modified)	426801
MB 320-426801/1-A	Method Blank	Total/NA	Solid	537 (modified)	426801
LCS 320-426801/2-A	Lab Control Sample	Total/NA	Solid	537 (modified)	426801
460-221262-9 MS	DUP1-SOIL-102120	Total/NA	Solid	537 (modified)	426801
460-221262-9 MSD	DUP1-SOIL-102120	Total/NA	Solid	537 (modified)	426801

Analysis Batch: 428856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-1	PC1-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-3	PC2-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-4	S15-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-5	S14-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-6	S13-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-7	S16-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-8	S2-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-10	S3-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-1	S4-SOIL-102120	Total/NA	Solid	537 (modified)	427709
MB 320-427709/1-A	Method Blank	Total/NA	Solid	537 (modified)	427709
LCS 320-427709/2-A	Lab Control Sample	Total/NA	Solid	537 (modified)	427709
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	537 (modified)	427709
460-221262-6 MSD	S13-SOIL-102120	Total/NA	Solid	537 (modified)	427709

Prep Batch: 429933

Lab Sample ID
$460-221262-23-$ RE
$460-221262-24-R E$
$460-221262-27-R E$
$460-221262-28-R E$
MB 320-429933/1-A
LCS 320-429933/2-A
$460-221262-24$ MS - RE
$460-221262-24 M S D-R E$

Analysis Batch: 430542

Lab Sample ID
$460-221262-23-$ RE
$460-221262-24-$ RE
$460-221262-27-$ RE
$460-221262-28-$ RE
MB 320-429933/1-A
LCS 320-429933/2-A
$460-221262-24$ MS - RE
$460-221262-24 M S D-R E$

Client Sample ID
S9A-SOIL-102120
S9B-SOIL-102120
S5-Soil-102120
S10-Soil-102120
Method Blank
Lab Control Sample
S9B-SOIL-102120
S9B-SOIL-102120

Metals

Prep Batch: 734596

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-2	TB1-102120	Total/NA	Water	3010A	
460-221262-16	TB2-102120	Total/NA	Water	3010A	
460-221262-25	Equipment Blank 102120	Total/NA	Water	3010A	
MB 460-734596/1-A	Method Blank	Total/NA	Water	3010A	
LCS 460-734596/2-A	Lab Control Sample	Total/NA	Water	3010A	

Analysis Batch: 734898

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-2	TB1-102120	Total/NA	Water	D	734596
460-221262-16	TB2-102120	Total/NA	Water	D	734596
460-221262-25	Equipment Blank 102120	Total/NA	Water	D	734596

Metals (Continued)

Analysis Batch: 734898 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 460-734596/1-A	Method Blank	Total/NA	Water	D	734596
LCS 460-734596/2-A	Lab Control Sample	Total/NA	Water	D	734596

Prep Batch: 735373

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	3050B	
460-221262-5	S14-SOIL-102120	Total/NA	Solid	3050B	
460-221262-6	S13-SOIL-102120	Total/NA	Solid	3050B	
460-221262-7	S16-SOIL-102120	Total/NA	Solid	3050B	
460-221262-8	S2-SOIL-102120	Total/NA	Solid	3050B	
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	3050B	
460-221262-10	S3-SOIL-102120	Total/NA	Solid	3050B	
460-221262-1	S4-SOIL-102120	Total/NA	Solid	3050B	
460-221262-12	S1 SOIL-102120	Total/NA	Solid	3050B	
MB 460-735373/1-A ^2	Method Blank	Total/NA	Solid	3050B	
LCSSRM 460-735373/2-A ^	Lab Control Sample	Total/NA	Solid	3050B	
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	3050B	
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	3050B	

Prep Batch: 735378

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-13	S12-SOIL-102120	Total/NA	Solid	7471B	
460-221262-14	DUP2-SOIL-102120	Total/NA	Solid	7471B	
460-221262-15	S1-SOIL-102120	Total/NA	Solid	7471B	
460-221262-17	S6A-SOIL-102120	Total/NA	Solid	7471B	
460-221262-18	S6B-SOIL-102120	Total/NA	Solid	7471B	
460-221262-24	S9B-SOIL-102120	Total/NA	Solid	7471B	
MB 460-735378/10-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 460-735378/11-A ^	Lab Control Sample	Total/NA	Solid	7471B	
460-221262-24 MS	S9B-SOIL-102120	Total/NA	Solid	7471B	
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	7471B	

Prep Batch: 735383

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-19	S7A-SOIL-102120	Total/NA	Solid	7471B	
460-221262-20	S7B-SOIL-102120	Total/NA	Solid	7471B	
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	7471B	
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	7471B	
460-221262-23	S9A-SOIL-102120	Total/NA	Solid	7471B	
460-221262-27	S5-Soil-102120	Total/NA	Solid	7471B	
MB 460-735383/1-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 460-735383/2-A^4	Lab Control Sample	Total/NA	Solid	7471B	

Prep Batch: 735386

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	7471B	
460-221262-5	S14-SOIL-102120	Total/NA	Solid	7471B	
460-221262-6	S13-SOIL-102120	Total/NA	Solid	7471B	
460-221262-7	S16-SOIL-102120	Total/NA	Solid	7471B	
460-221262-8	S2-SOIL-102120	Total/NA	Solid	7471B	
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	7471B	

Metals (Continued)

Prep Batch: 735386 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-10	S3-SOIL-102120	Total/NA	Solid	7471B	
460-221262-1	S4-SOIL-102120	Total/NA	Solid	7471B	
460-221262-12	S1 SOIL-102120	Total/NA	Solid	7471B	
MB 460-735386/1-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 460-735386/2-A ^4	Lab Control Sample	Total/NA	Solid	7471B	
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	7471B	
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	7471B	

Analysis Batch: 735489

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-5	S14-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-6	S13-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-7	S16-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-8	S2-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-10	S3-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-1	S4-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-12	S1 SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-13	S12-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-14	DUP2-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-15	S1-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-17	S6A-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-18	S6B-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-19	S7A-SOIL-102120	Total/NA	Solid	7471B	735383
460-221262-20	S7B-SOIL-102120	Total/NA	Solid	7471B	735383
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	7471B	735383
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	7471B	735383
460-221262-23	S9A-SOIL-102120	Total/NA	Solid	7471B	735383
460-221262-24	S9B-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-27	S5-Soil-102120	Total/NA	Solid	7471B	735383
MB 460-735378/10-A	Method Blank	Total/NA	Solid	7471B	735378
MB 460-735383/1-A	Method Blank	Total/NA	Solid	7471B	735383
MB 460-735386/1-A	Method Blank	Total/NA	Solid	7471B	735386
LCSSRM 460-735378/11-A ^	Lab Control Sample	Total/NA	Solid	7471B	735378
LCSSRM 460-735383/2-A ^4	Lab Control Sample	Total/NA	Solid	7471B	735383
LCSSRM 460-735386/2-A ^4	Lab Control Sample	Total/NA	Solid	7471B	735386
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-24 MS	S9B-SOIL-102120	Total/NA	Solid	7471B	735378
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	7471B	735386
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	7471B	735378

Analysis Batch: 735504

Lab Sample ID
$460-221262-4$
$460-221262-5$
$460-221262-6$
$460-221262-7$
$460-221262-8$
$460-221262-9$
$460-221262-10$

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
S15-SOIL-102120	Total/NA	Solid	D	735373
S14-SOIL-102120	Total/NA	Solid	D	735373
S13-SOIL-102120	Total/NA	Solid	D	735373
S16-SOIL-102120	Total/NA	Solid	D	735373
S2-SOIL-102120	Total/NA	Solid	D	735373
DUP1-SOIL-102120	Total/NA	Solid	D	735373
S3-SOIL-102120	Total/NA	Solid	D	735373

Metals (Continued)

Analysis Batch: 735504 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-1	S4-SOIL-102120	Total/NA	Solid	D	735373
460-221262-12	S1 SOIL-102120	Total/NA	Solid	D	735373
MB 460-735373/1-A ^2	Method Blank	Total/NA	Solid	D	735373
LCSSRM 460-735373/2-A ^	Lab Control Sample	Total/NA	Solid	D	735373
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	D	735373
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	D	735373

Prep Batch: 735508

Lab Sample ID
$460-221262-2$
$460-221262-16$
$460-221262-25$
MB 460-735508/1-A
LCS 460-735508/2-A

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
TB1-102120	Total/NA	Water	7470A	
TB2-102120	Total/NA	Water	7470A	
Equipment Blank 102120	Total/NA	Water	7470A	
Method Blank	Total/NA	Water	7470A	
Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 735551

Lab Sample ID	C
$460-221262-2$	TB
$460-221262-16$	TB2
$460-221262-25$	E
MB 460-735508/1-A	M
LCS 460-735508/2-A	La

Client Sample ID
TB1-102120
TB2-102120
Equipment Blank 102120
Method Blank
Lab Control Sample

Prep Batch: 735879

Lab Sample ID	Client Sample ID
460-221262-13	S12-SOIL-102120
460-221262-14	DUP2-SOIL-102120
460-221262-15	S1-SOIL-102120
460-221262-17	S6A-SOIL-102120
460-221262-18	S6B-SOIL-102120
460-221262-19	S7A-SOIL-102120
460-221262-20	S7B-SOIL-102120
460-221262-21	S8A-SOIL-102120
460-221262-22	S8B-SOIL-102120
460-221262-23	S9A-SOIL-102120
460-221262-24	S9B-SOIL-102120
460-221262-27	S5-Soil-102120
MB 460-735879/1-A ^2	Method Blank
LCSSRM 460-735879/2-A ^	Lab Control Sample
460-221262-24 MS	S9B-SOIL-102120
460-221262-24 DU	S9B-SOIL-102120
Analysis Batch: 736162	

Lab Sample ID	Client Sample ID
$460-221262-13$	S12-SOIL-102120
$460-221262-14$	DUP2-SOIL-102120
$460-221262-15$	S1-SOIL-102120
$460-221262-17$	S6A-SOIL-102120
$460-221262-18$	S6B-SOIL-102120
$460-221262-19$	S7A-SOIL-102120
$460-221262-20$	S7B-SOIL-102120

Prep Type	Matrix	Method		Prep Batch
	Total/NA	Solid	D	735879
Total/NA	Solid	D	735879	
Total/NA	Solid	D	735879	
Total/NA	Solid	D	735879	
Total/NA	Solid	D	735879	
Total/NA	Solid	D	735879	
Total/NA	Solid	D	735879	

Metals (Continued)

Analysis Batch: 736162 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	D	735879
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	D	735879
460-221262-23	S9A-SOIL-102120	Total/NA	Solid	D	735879
460-221262-24	S9B-SOIL-102120	Total/NA	Solid	D	735879
460-221262-27	S5-Soil-102120	Total/NA	Solid	D	735879
MB 460-735879/1-A ^2	Method Blank	Total/NA	Solid	D	735879
LCSSRM 460-735879/2-A ^	Lab Control Sample	Total/NA	Solid	D	735879
460-221262-24 MS	S9B-SOIL-102120	Total/NA	Solid	D	735879
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	D	735879

Prep Batch: 736461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-28	S10-Soil-102120	Total/NA	Solid	3050B	
MB 460-736461/1-A ^2	Method Blank	Total/NA	Solid	3050B	
LCSSRM 460-736461/2-A ${ }^{\wedge}$	Lab Control Sample	Total/NA	Solid	3050B	

Prep Batch: 736624

Lab Sample ID	Client Sample ID
460-221262-28 S10-Soil-102120 MB 460-736624/10-A Method Blank LCSSRM 460-736624/11-A^ Lab Control Sample lan	

Analysis Batch: 736715

| Lab Sample ID | Client Sample ID |
| :--- | :--- | :--- |
| $460-221262-28$ | S10-Soil-102120 |
| MB 460-736624/10-A | Method Blank |
| LCSSRM 460-736624/11-A^ | Lab Control Sample |

Analysis Batch: 737066

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-28	S10-Soil-102120	Total/NA	Solid	D	736461
MB 460-736461/1-A ^2	Method Blank	Total/NA	Solid	D	736461
LCSSRM 460-736461/2-A ^	Lab Control Sample	Total/NA	Solid	D	736461

General Chemistry

Analysis Batch: 426264
$\left[\begin{array}{lllll}\text { Lab Sample ID } & \text { Client Sample ID } & \text { Prep Type } & \text { Matrix } & \text { Method }\end{array}\right.$

Analysis Batch: 734239

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-2	TB1-102120	Total/NA	Water	7196A	
460-221262-16	TB2-102120	Total/NA	Water	7196A	
460-221262-25	Equipment Blank 102120	Total/NA	Water	7196A	
MB 460-734239/9	Method Blank	Total/NA	Water	7196A	
LCSSRM 460-734239/10	Lab Control Sample	Total/NA	Water	7196A	

General Chemistry

Analysis Batch: 735208

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-5	S14-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-6	S13-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-7	S16-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-8	S2-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-10	S3-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-1	S4-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-12	S1 SOIL-102120	Total/NA	Solid	Moisture	
460-221262-13	S12-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-14	DUP2-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-15	S1-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-17	S6A-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-18	S6B-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-19	S7A-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-20	S7B-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-6 MS	S13-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-6 MSD	S13-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-6 MSS	S13-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-4 DU	S15-SOIL-102120	Total/NA	Solid	Moisture	
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	Moisture	

Analysis Batch: 735216

Lab Sample ID	
$460-221262-23$	Client Sample ID
$460-221262-24$	S9A-SOIL-102120
$460-221262-27$	S9B-SOIL-102120
$460-221262-24$ MS	S9B-SOIL-102120
$460-221262-24$ MSS	S9B-SOIL-102120
$460-221262-24 M S D$	S9B-SOIL-102120
$460-221262-23$ DU	S9A-SOIL-102120
$460-221262-24$ DU	S9B-SOIL-102120
Prep Batch: 735779	

Prep Type	Matrix		
Total/NA	Mothod	Prep Batch	
Total/NA	Solid	Moisture	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	3060A	
460-221262-5	S14-SOIL-102120	Total/NA	Solid	3060A	
460-221262-6	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-7	S16-SOIL-102120	Total/NA	Solid	3060A	
460-221262-8	S2-SOIL-102120	Total/NA	Solid	3060A	
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	3060A	
460-221262-10	S3-SOIL-102120	Total/NA	Solid	3060A	
460-221262-1	S4-SOIL-102120	Total/NA	Solid	3060A	
460-221262-12	S1 SOIL-102120	Total/NA	Solid	3060A	
460-221262-13	S12-SOIL-102120	Total/NA	Solid	3060A	
460-221262-14	DUP2-SOIL-102120	Total/NA	Solid	3060A	
460-221262-15	S1-SOIL-102120	Total/NA	Solid	3060A	
460-221262-17	S6A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-18	S6B-SOIL-102120	Total/NA	Solid	3060A	

General Chemistry (Continued)

Prep Batch: 735779 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-19	S7A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-20	S7B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-23	S9A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24	S9B-SOIL-102120	Total/NA	Solid	3060A	
MB 460-735779/1-A	Method Blank	Total/NA	Solid	3060A	
LCSI 460-735779/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSSRM 460-735779/2-A	Lab Control Sample	Total/NA	Solid	3060A	
460-221262-6 MSI	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-6 MSS	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24 MSI	S9B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24 MSS	S9B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	3060A	

Prep Batch: 735855

Lab Sample ID
$460-221262-27$
MB 460-735855/1-A
LCSI 460-735855/3-A
LCSSRM 460-735855/2-A

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
S5-Soil-102120	Total/NA	Solid	3060A	
Method Blank	Total/NA	Solid	3060A	
Lab Control Sample	Total/NA	Solid	3060A	
Lab Control Sample	Total/NA	Solid	3060A	

Analysis Batch: 736100

Lab Sample ID
$460-221262-4$
$460-221262-5$
$460-221262-6$
$460-221262-7$
$460-221262-8$
$460-221262-9$
$460-221262-10$
$460-221262-1$
$460-221262-12$
$460-221262-13$
$460-221262-14$
$460-221262-15$
$460-221262-17$
$460-221262-18$
$460-221262-19$
$460-221262-20$
$460-221262-21$
$460-221262-22$
$460-221262-23$
$460-221262-24$
MB 460-735779/1-A
LCSI 460-735779/3-A
LCSSRM 460-735779/2-A
$460-221262-6$ MSI
$460-221262-6$ MSS
$460-221262-24$ MSI

Client Sample ID
S15-SOIL-102120
S14-SOIL-102120
S13-SOIL-102120
S16-SOIL-102120
S2-SOIL-102120
DUP1-SOIL-102120
S3-SOIL-102120
S4-SOIL-102120
S1 SOIL-102120
S12-SOIL-102120
DUP2-SOIL-102120
S1-SOIL-102120
S6A-SOIL-102120
S6B-SOIL-102120
S7A-SOIL-102120
S7B-SOIL-102120
S8A-SOIL-102120
S8B-SOIL-102120
S9A-SOIL-102120
S9B-SOIL-102120
Method Blank
Lab Control Sample
Lab Control Sample
S13-SOIL-102120
S13-SOIL-102120
S9B-SOIL-102120

Prep Type	Matrix	Method	Prep Batch
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779
Total/NA	Solid	7196A	735779

General Chemistry (Continued)

Analysis Batch: 736100 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-24 MSS	S9B-SOIL-102120	Total/NA	Solid	7196A	735779
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	7196A	735779
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	7196A	735779

Analysis Batch: 736102
$\left[\begin{array}{l}\text { Lab Sample ID } \\ \hline 460-221262-27 \\ \text { MB 460-735855/1-A } \\ \text { LCSI 460-735855/3-A } \\ \text { LCSSRM 460-735855/2-A }\end{array}\right.$
Client Sample ID
S5-Soil-102120
Method Blank
Lab Control Sample
Lab Control Sample

Prep Type	Matrix	Method	Prep Batch
Total/NA	Solid	7196A	735855
Total/NA	Solid	7196A	735855
Total/NA	Solid	7196A	735855
Total/NA	Solid	7196A	735855

Prep Batch: 736559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	3060A	
460-221262-5	S14-SOIL-102120	Total/NA	Solid	3060A	
460-221262-6	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-7	S16-SOIL-102120	Total/NA	Solid	3060A	
460-221262-8	S2-SOIL-102120	Total/NA	Solid	3060A	
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	3060A	
460-221262-10	S3-SOIL-102120	Total/NA	Solid	3060A	
460-221262-1	S4-SOIL-102120	Total/NA	Solid	3060A	
460-221262-12	S1 SOIL-102120	Total/NA	Solid	3060A	
460-221262-13	S12-SOIL-102120	Total/NA	Solid	3060A	
460-221262-14	DUP2-SOIL-102120	Total/NA	Solid	3060A	
460-221262-15	S1-SOIL-102120	Total/NA	Solid	3060A	
460-221262-17	S6A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-18	S6B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-19	S7A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-20	S7B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-23	S9A-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24	S9B-SOIL-102120	Total/NA	Solid	3060A	
MB 460-736559/1-A	Method Blank	Total/NA	Solid	3060A	
LCSI 460-736559/3-A	Lab Control Sample	Total/NA	Solid	3060A	
LCSSRM 460-736559/2-A	Lab Control Sample	Total/NA	Solid	3060A	
460-221262-6 MSI	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-6 MSS	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24 MSI	S9B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24 MSS	S9B-SOIL-102120	Total/NA	Solid	3060A	
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	3060A	
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	3060A	

Analysis Batch: 736763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-5	S14-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-6	S13-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-7	S16-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-8	S2-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-9	DUP1-SOIL-102120	Total/NA	Solid	7196A	736559

General Chemistry (Continued)

Analysis Batch: 736763 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-10	S3-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-1	S4-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-12	S1 SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-13	S12-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-14	DUP2-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-15	S1-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-17	S6A-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-18	S6B-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-19	S7A-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-20	S7B-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-21	S8A-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-23	S9A-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-24	S9B-SOIL-102120	Total/NA	Solid	7196A	736559
MB 460-736559/1-A	Method Blank	Total/NA	Solid	7196A	736559
LCSI 460-736559/3-A	Lab Control Sample	Total/NA	Solid	7196A	736559
LCSSRM 460-736559/2-A	Lab Control Sample	Total/NA	Solid	7196A	736559
460-221262-6 MSI	S13-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-6 MSS	S13-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-24 MSI	S9B-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-24 MSS	S9B-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-6 DU	S13-SOIL-102120	Total/NA	Solid	7196A	736559
460-221262-24 DU	S9B-SOIL-102120	Total/NA	Solid	7196A	736559

Prep Batch: 736963

Lab Sample ID
M60-221262-28
MB 460-736963/1-A
LCSI 460-736963/3-A
LCSSRM 460-736963/2-A

Client Sample ID
S10-Soil-102120
Method Blank
Lab Control Sample
Lab Control Sample

Analysis Batch: 736986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-28	S10-Soil-102120	Total/NA	Solid	7196A	736963
MB 460-736963/1-A	Method Blank	Total/NA	Solid	7196A	736963
LCSI 460-736963/3-A	Lab Control Sample	Total/NA	Solid	7196A	736963
LCSSRM 460-736963/2-A	Lab Control Sample	Total/NA	Solid	7196A	736963

Client: New k State D.E.C.
Client Sample ID: PC1-SOIL-102120
Lab Sample ID: 460-221262-1
Date Collected: 10/21/20 08:45
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	D 2216		1	426264	10/28/20 13:11	TCS	TAL SAC

Client Sample ID: PC1-SOIL-102120 Lab Sample ID: 460-221262-1
Date Collected: 10/21/20 08:45
Matrix: Solid
Date Received: 10/23/20 10:00 Percent Solids: 58.6

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 15:43	K1S	TAL SAC

Client Sample ID: TB1-102120
Lab Sample ID: 460-221262-2
Date Collected: 10/21/20 00:00
Matrix: Water
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			426004	10/27/20 18:39	AP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	426308	10/28/20 23:33	K1S	TAL SAC
T tal/NA	Prep	3010A			734596	10/24/20 20:00	GRB	TAL EDI
Ttal/NA	Analysis	6010D		1	734898	10/26/20 16:57	ZH	TAL EDI
T tal/NA	Prep	7470A			735508	10/28/20 12:28	RBS	TAL EDI
Ttal/NA	Analysis	7470A		1	735551	10/28/20 14:19	RBS	TAL EDI
Ttal/NA	Analysis	7196A		1	734239	10/23/20 16:30	VBG	TAL EDI

Client Sample ID: PC2-SOIL-102120 Lab Sample ID: 460-221262-3
Date Collected: 10/21/20 09:30

Matrix: Solid

Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	D 2216		1	426264	10/28/20 13:11	TCS	TAL SAC

Client Sample ID: PC2-SOIL-102120 Lab Sample ID: 460-221262-3
Date Collected: 10/21/20 09:30
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 15:53	K1S	TAL SAC

Client Sample ID: S15-SOIL-102120
Lab Sample ID: 460-221262-4
Date Collected: 10/21/20 10:35
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 16:02	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 18:58	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:28	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 11:13	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:13	RPR	TAL EDI

Client Sample ID: S14-SOIL-102120 Lab Sample ID: 460-221262-5
Date Collected: 10/21/20 10:50
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: S14-SOIL-102120 Lab Sample ID: 460-221262-5
Date Collected: 10/21/20 10:50
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 16:11	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:02	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:30	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S13-SOIL-102120 Lab Sample ID: 460-221262-6
Date Collected: 10/21/20 11:05
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 16:39	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 18:14	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:20	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 11:13	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:13	RPR	TAL EDI

Client Sample ID: S16-SOIL-102120 Lab Sample ID: 460-221262-7
Date Collected: 10/21/20 11:35
Date Received: 10/23/20 10:00

	Batch	Batch Method		Dilution Factor	Batch Number	Prepared		
Prep Type	Typ		Run				Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: S16-SOIL-102120 Lab Sample ID: 460-221262-7
Date Collected: 10/21/20 11:35
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 17:07	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:06	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:32	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S2-SOIL-102120
Lab Sample ID: 460-221262-8
Date Collected: 10/21/20 11:55
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 17:17	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:10	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:34	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: DUP1-SOIL-102120

Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: DUP1-SOIL-102120 Lab Sample ID: 460-221262-9
Date Collected: 10/21/20 00:00
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426801	10/30/20 04:16	SS	TAL SAC
T tal/NA	Analysis	537 (modified)		1	427738	11/02/20 15:04	S1M	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:14	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:40	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S3-SOIL-102120
Lab Sample ID: 460-221262-10
Date Collected: 10/21/20 17:15
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 17:26	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:18	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:42	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S4-SOIL-102120
Lab Sample ID: 460-221262-11
Date Collected: 10/21/20 17:49
Date Received: 10/23/20 10:00

Client Sample ID: S4-SOIL-102120 Lab Sample ID: 460-221262-11
Date Collected: 10/21/20 17:49
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			427709	11/02/20 12:18	EH	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	428856	11/05/20 17:35	K1S	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:30	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:44	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S11-SOIL-102120
Lab Sample ID: 460-221262-12
Date Collected: 10/21/20 17:37
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/01/20 23:50	MNV	TAL SAC
Ttal/NA	Prep	3050B			735373	10/28/20 02:35	GMC	TAL EDI
Ttal/NA	Analysis	6010D		2	735504	10/28/20 19:34	CDC	TAL EDI
Ttal/NA	Prep	7471B			735386	10/28/20 03:49	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 08:46	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S12-SOIL-102120
Lab Sample ID: 460-221262-13
Date Collected: 10/21/20 14:55
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: S12-SOIL-102120 Lab Sample ID: 460-221262-13
Date Collected: 10/21/20 14:55

Matrix: Solid
Percent Solids: 81.3

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
T tal/NA	Analysis	537 (modified)		1	427508	11/02/20 00:18	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:34	CDC	TAL EDI
Ttal/NA	Prep	7471B			735378	10/28/20 02:58	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:05	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: DUP2-SOIL-102120
Lab Sample ID: 460-221262-14
Date Collected: 10/21/20 00:00
Date Received: 10/23/20 10:00

Date Collected: 10/21/20 00:00
Date Received: 10/23/20 10:00

Matrix: Solid
Percent Solids: 77.6

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 00:28	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:38	CDC	TAL EDI
Ttal/NA	Prep	7471B			735378	10/28/20 02:58	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:07	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: S1-SOIL-102120
Lab Sample ID: 460-221262-15
Date Collected: 10/21/20 16:30
Date Received: 10/23/20 10:00

Client Sample ID: S1-SOIL-102120 Lab Sample ID: 460-221262-15
Date Collected: 10/21/20 16:30

Matrix: Solid Percent Solids: 73.2

Prep Type	$\begin{aligned} & \text { Batch } \\ & \text { Typ } \end{aligned}$	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 00:37	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:42	CDC	TAL EDI
Ttal/NA	Prep	7471B			735378	10/28/20 02:58	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:09	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 12:09	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 13:46	RPR	TAL EDI

Client Sample ID: TB2-102120
Lab Sample ID: 460-221262-16
Date Collected: 10/21/20 00:00
Matrix: Water
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			426004	10/27/20 18:39	AP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	426308	10/29/20 00:00	K1S	TAL SAC
Ttal/NA	Prep	3010A			734596	10/24/20 20:00	GRB	TAL EDI
Ttal/NA	Analysis	6010D		1	734898	10/26/20 17:01	ZH	TAL EDI
Ttal/NA	Prep	7470A			735508	10/28/20 12:28	RBS	TAL EDI
Ttal/NA	Analysis	7470A		1	735551	10/28/20 14:21	RBS	TAL EDI

Client Sample ID: TB2-102120
Lab Sample ID: 460-221262-16
Date Collected: 10/21/20 00:00
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	7196A		1	734239	10/23/20 16:30	VBG	TAL EDI

Client Sample ID: S6A-SOIL-102120 Lab Sample ID: 460-221262-17
Date Collected: 10/21/20 14:40
Matrix: Solid
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: S6A-SOIL-102120 Lab Sample ID: 460-221262-17
Date Collected: 10/21/20 14:40
Matrix: Solid
Date Received: 10/23/20 10:00
Percent Solids: 74.1

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 00:47	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:46	CDC	TAL EDI
Ttal/NA	Prep	7471B			735378	10/28/20 02:58	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:11	TJS	TAL EDI
T tal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S6B-SOIL-102120 Lab Sample ID: 460-221262-18
Date Collected: 10/21/20 14:50
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: S6B-SOIL-102120
Lab Sample ID: 460-221262-18
Date Collected: 10/21/20 14:50
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
T tal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 00:56	MNV	TAL SAC
T tal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:50	CDC	TAL EDI
Ttal/NA	Prep	7471B			735378	10/28/20 02:58	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:13	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S7A-SOIL-102120
Lab Sample ID: 460-221262-19
Date Collected: 10/21/20 15:05
Matrix: Solid
Date Received: 10/23/20 10:00

Client Sample ID: S7A-SOIL-102120
Lab Sample ID: 460-221262-19
Matrix: Solid
Date Collected: 10/21/20 15:05
Percent Solids: 73.5

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 01:24	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:54	CDC	TAL EDI
T tal/NA	Prep	7471B			735383	10/28/20 03:25	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:37	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S7B-SOIL-102120
Lab Sample ID: 460-221262-20
Date Collected: 10/21/20 15:15
Matrix: Solid
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Method	$\underline{\text { Run }}$	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:18	MMC	TAL EDI

Client Sample ID: S7B-SOIL-102120 Lab Sample ID: 460-221262-20
Date Collected: 10/21/20 15:15
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 01:34	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:58	CDC	TAL EDI
Ttal/NA	Prep	7471B			735383	10/28/20 03:25	TJS	TAL EDI
T tal/NA	Analysis	7471B		1	735489	10/28/20 07:39	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S8A-SOIL-102120
Lab Sample ID: 460-221262-21
Date Collected: 10/21/20 14:00
Matrix: Solid
Date Received: 10/23/20 10:00

Client Sample ID: S8A-SOIL-102120

Lab Sample ID: 460-221262-21
Matrix: Solid
Date Collected: 10/21/20 14:00
Percent Solids: 76.2

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 01:43	MNV	TAL SAC
T tal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 13:02	CDC	TAL EDI
T tal/NA	Prep	7471B			735383	10/28/20 03:25	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:41	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S8B-SOIL-102120
Lab Sample ID: 460-221262-22
Date Collected: 10/21/20 14:10
Matrix: Solid
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Metho	$\underline{\text { Run }}$	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735208	10/27/20 13:19	MMC	TAL EDI

Client Sample ID: S8B-SOIL-102120
Lab Sample ID: 460-221262-22
Date Collected: 10/21/20 14:10
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426094	10/28/20 06:59	SS	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427508	11/02/20 01:52	MNV	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 13:06	CDC	TAL EDI
T tal/NA	Prep	7471B			735383	10/28/20 03:25	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:43	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S9A-SOIL-102120
Lab Sample ID: 460-221262-23
Date Collected: 10/21/20 15:30
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735216	10/27/20 13:49	MMC	TAL EDI

Client Sample ID: S9A-SOIL-102120

Lab Sample ID: 460-221262-23
Date Collected: 10/21/20 15:30
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426095	10/28/20 07:03	HJA	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427153	10/30/20 21:56	S1M	TAL SAC
Ttal/NA	Prep	SHAKE	RE		429933	11/09/20 15:20	GWO	TAL SAC
Ttal/NA	Analysis	537 (modified)	RE	1	430542	11/11/20 11:06	IK	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 13:18	CDC	TAL EDI
Ttal/NA	Prep	7471B			735383	10/28/20 03:25	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:45	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
Ttal/NA	Analysis	7196A		1	736100	10/30/20 13:10	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: S9B-SOIL-102120
Lab Sample ID: 460-221262-24
Date Collected: 10/21/20 15:45
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Moisture		1	735216	10/27/20 13:49	MMC	TAL EDI

Client Sample ID: S9B-SOIL-102120
Date Collected: 10/21/20 15:45
Lab Sample ID: 460-221262-24
Matrix: Solid
Date Received: 10/23/20 10:00
Date Received: 10123/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426095	10/28/20 07:03	HJA	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427153	10/30/20 22:06	S1M	TAL SAC
Ttal/NA	Prep	SHAKE	RE		429933	11/09/20 15:20	GWO	TAL SAC
T tal/NA	Analysis	537 (modified)	RE	1	430542	11/11/20 11:15	IK	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 12:03	CDC	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	7471B			735378	10/28/20 02:58	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 06:21	TJS	TAL EDI
Ttal/NA	Prep	3060A			735779	10/29/20 09:04	RPR	TAL EDI
T tal/NA	Analysis	7196A		1	736100	10/30/20 13:35	RPR	TAL EDI
Ttal/NA	Prep	3060A			736559	11/01/20 12:08	MBE	TAL EDI
Ttal/NA	Analysis	7196A		1	736763	11/02/20 14:22	RPR	TAL EDI

Client Sample ID: Equipment Blank 102120
Lab Sample ID: 460-221262-25
Date Collected: 10/21/20 14:30
Matrix: Water
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			426004	10/27/20 18:39	AP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	426308	10/29/20 00:09	K1S	TAL SAC
Ttal/NA	Prep	3010A			734596	10/24/20 20:00	GRB	TAL EDI
Ttal/NA	Analysis	6010D		1	734898	10/26/20 17:05	ZH	TAL EDI
Ttal/NA	Prep	7470A			735508	10/28/20 12:28	RBS	TAL EDI
Ttal/NA	Analysis	7470A		1	735551	10/28/20 14:22	RBS	TAL EDI
Ttal/NA	Analysis	7196A		1	734239	10/23/20 16:30	VBG	TAL EDI

Client Sample ID: Field Blank 102120
Lab Sample ID: 460-221262-26
Date Collected: 10/21/20 16:30
Matrix: Water
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	3535			426004	10/27/20 18:39	AP	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	426308	10/29/20 00:19	K1S	TAL SAC

Client Sample ID: S5-Soil-102120
Lab Sample ID: 460-221262-27
Date Collected: 10/21/20 16:48
Matrix: Solid
Date Received: 10/23/20 10:00

Client Sample ID: S5-Soil-102120
Date Collected: 10/21/20 16:48
Date Received: 10/23/20 10:00

Lab Sample ID: 460-221262-27
Matrix: Solid
Percent Solids: 69.7

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426095	10/28/20 07:03	HJA	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427153	10/30/20 22:34	S1M	TAL SAC
Ttal/NA	Prep	SHAKE	RE		429933	11/09/20 15:20	GWO	TAL SAC
Ttal/NA	Analysis	537 (modified)	RE	1	430542	11/11/20 11:43	IK	TAL SAC
Ttal/NA	Prep	3050B			735879	10/29/20 15:00	GAE	TAL EDI
Ttal/NA	Analysis	6010D		2	736162	10/30/20 13:22	CDC	TAL EDI

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	7471B			735383	10/28/20 03:25	TJS	TAL EDI
Ttal/NA	Analysis	7471B		1	735489	10/28/20 07:47	TJS	TAL EDI
Ttal/NA	Prep	3060A			735855	10/29/20 13:45	PLS	TAL EDI
Ttal/NA	Analysis	7196A		1	736102	10/31/20 11:52	RPR	TAL EDI

Client Sample ID: S10-Soil-102120 Lab Sample ID: 460-221262-28
Date Collected: 10/21/20 17:15
Date Received: 10/23/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Typ	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Ttal/NA	Analysis	D 2216		1	426264	10/28/20 13:11	TCS	TAL SAC

Client Sample ID: S10-Soil-102120 Lab Sample ID: 460-221262-28
Date Collected: 10/21/20 17:15
Matrix: Solid
Date Received: 10/23/20 10:00
Percent Solids: 62.4

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Prep	SHAKE			426095	10/28/20 07:03	HJA	TAL SAC
Ttal/NA	Analysis	537 (modified)		1	427153	10/30/20 22:43	S1M	TAL SAC
T tal/NA	Prep	SHAKE	RE		429933	11/09/20 15:20	GWO	TAL SAC
Ttal/NA	Analysis	537 (modified)	RE	1	430542	11/11/20 11:53	IK	TAL SAC
T tal/NA	Prep	3050B			736461	10/31/20 16:58	GRB	TAL EDI
Ttal/NA	Analysis	6010D		2	737066	11/03/20 19:51	CDC	TAL EDI
Ttal/NA	Prep	7471B			736624	11/02/20 02:55	TJS	TAL EDI
Ttal/NA	Analysis	7471B		3	736715	11/02/20 09:34	TJS	TAL EDI
Ttal/NA	Prep	3060A			736963	11/03/20 07:40	VBG	TAL EDI
Ttal/NA	Analysis	7196A		1	736986	11/03/20 15:16	RPR	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900
TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.
$\frac{\text { Authority }}{\text { ew } \mathrm{k}} \frac{\text { Program }}{\text { ELAP }} \frac{\text { Identification Number }}{11452} \frac{\text { Expiration Date }}{04-01-21}$

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
7470 A	Water	Mercury	
Moisture	Solid	Percent Moisture	
Moisture	Solid	Percent Solids	

Laboratory: Eurofins TestAmerica, Sacramento
Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.

Laboratory: Eurofins TestAmerica, Sacramento (Continued)

Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
ew k		ELAP	11666	04-01-21
537 (modified)	SHAKE	Solid	Perfluoroheptanesulfonic A	(PFHpS)
537 (modified)	SHAKE	Solid	Perfluoroheptanoic acid (PF	
537 (modified)	SHAKE	Solid	Perfluorohexanesulfonic acid	(PFHxS)
537 (modified)	SHAKE	Solid	Perfluorohexanoic acid (PF	
537 (modified)	SHAKE	Solid	Perfluorononanoic acid (PF	
537 (modified)	SHAKE	Solid	Perfluorooctanesulfonamide	FOSA)
537 (modified)	SHAKE	Solid	Perfluorooctanesulfonic acid	PFOS)
537 (modified)	SHAKE	Solid	Perfluorooctanoic acid (PFOA)	
537 (modified)	SHAKE	Solid	Perfluoropentanoic acid (PF	eA)
537 (modified)	SHAKE	Solid	Perfluorotetradecanoic acid	PFTeA)
537 (modified)	SHAKE	Solid	Perfluorotridecanoic acid (P	T iA)
537 (modified)	SHAKE	Solid	Perfluoroundecanoic acid (P)	UnA)
D 2216		Solid	Percent Moisture	
D 2216		Solid	Percent Solids	

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
D	Metals (ICP)	SW846	TAL EDI
7470A	Mercury (CVAA)	SW846	TAL EDI
7471B	Mercury (CVAA)	SW846	TAL EDI
7196A	Chromium, Hexavalent	SW846	TAL EDI
D 2216	Percent Moisture	ASTM	TAL SAC
Moisture	Percent Moisture	EPA	TAL EDI
3010A	Preparation, Total Metals	SW846	TAL EDI
3050B	Preparation, Metals	SW846	TAL EDI
3060A	Allkaline Digestion (Chromium, Hexavalent)	SW846	TAL EDI
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC
7470A	Preparation, Mercury	SW846	TAL EDI
7471B	Preparation, Mercury	SW846	TAL EDI
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

ASTM = ASTM International
EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900
TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-221262-1	PC1-SOIL-102120	Solid	08:45	3/20 10:00	
460-221262-2	TB1-102120	Water	00:00	3/20 10:00	
460-221262-3	PC2-SOIL-102120	Solid	09:30	3/20 10:00	
460-221262-4	S15-SOIL-102120	Solid	10:35	3/20 10:00	
460-221262-5	S14-SOIL-102120	Solid	10:50	3/20 10:00	
460-221262-6	S13-SOIL-102120	Solid	1 :05	3/20 10:00	
460-221262-7	S16-SOIL-102120	Solid	1 :35	3/20 10:00	
460-221262-8	S2-SOIL-102120	Solid	1 :55	3/20 10:00	
460-221262-9	DUP1-SOIL-102120	Solid	00:00	3/20 10:00	
460-221262-10	S3-SOIL-102120	Solid	17:15	3/20 10:00	
460-221262-1	S4-SOIL-102120	Solid	17:49	3/20 10:00	
460-221262-12	S1 SOIL-102120	Solid	17:37	3/20 10:00	
460-221262-13	S12-SOIL-102120	Solid	14:55	3/20 10:00	
460-221262-14	DUP2-SOIL-102120	Solid	00:00	3/20 10:00	
460-221262-15	S1-SOIL-102120	Solid	16:30	3/20 10:00	
460-221262-16	TB2-102120	Water	00:00	3/20 10:00	
460-221262-17	S6A-SOIL-102120	Solid	14:40	3/20 10:00	
460-221262-18	S6B-SOIL-102120	Solid	14:50	3/20 10:00	
460-221262-19	S7A-SOIL-102120	Solid	15:05	3/20 10:00	
460-221262-20	S7B-SOIL-102120	Solid	15:15	3/20 10:00	
460-221262-21	S8A-SOIL-102120	Solid	14:00	3/20 10:00	
460-221262-22	S8B-SOIL-102120	Solid	14:10	3/20 10:00	
460-221262-23	S9A-SOIL-102120	Solid	15:30	3/20 10:00	
460-221262-24	S9B-SOIL-102120	Solid	15:45	3/20 10:00	
460-221262-25	Equipment Blank 102120	Water	14:30	3/20 :00	
460-221262-26	Field Blank 102120	Water	16:30	3/20 10:0	
460-221262-27	S5-Soil-102120	Solid	16:48	3/20 10:00	
460-221262-28	S10-Soil-102120	Solid	17:15	3/20 10:00	

Eurofins TestAmerica, Edison
777 New Durham Road
Edison, NJ 08817
Phone: 732-549-3900 Fax. 732-549-3679

Eurofins TestAmerica, Edison
777 New Durham Road
Edison, NJ 08817
Phone: 732-549-3900 Fax: 732-549-3679

Albany
Chain of Custody Record
eurofins \#224

Environment Testing America

Eeurofins
 Receipt Temperature and pH Log
Job Number： $\frac{2 \pi+62}{2}$ IR Gun \＃ 11

Cooler Temperatures

Sample Nos）．adjusted： \qquad
Preservative Name／Conc．： \qquad Volume of Preservative used（ml）： \qquad
Lot \＃of Preservatives）： \qquad Expiration Date： \qquad
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted． Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis．

Initials： \qquad Date：

 naintain accieditation in the State of Origin listed above for analysis/lests/matixix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or olher instructions will be provided. Ary changes to accreditation status should be brought to Eurofins TestAmenca attention immediately. If all requested accreditations are current to date, return the signed Chain of Cuslody altesting to said complicance to Eurofins TestAmenca
Sampler

 maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation statuis should be brought to Eurofins TestAmenca attention immediately. If all requested accreditations are current to date, retum the signed Chain of Custody attesting to said complicance to Eurofins TestAmenca

Phone: 732-549-3900 Fax: 732-549-3679

 TestAmerica attention immediately. It all requested accreditations are current to date, returm the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica
Possible Hazard Identification

Unconfirmed

Deliverable Requested: I, II. III. IV. Other (specify)

Eurofins TestAmerica, Edison

777 New Durham Road
Chain of Custody Record
eurofins
Emurormaniol lesinge
Phone: 732-549-3900 Fax: 732-549-3679

 niaintain accreditation in the State of Origin listed above for analysis/esis/matrix being analyzed. the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins restAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica

Phone: 732-549-3900 Fax: 732-549-3679

SO PPD / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other
Tracking\#: 8142 9456 6408
\qquad
Use this form to record Sample Custody Seal, Cooler Custody Seel, Temperature \& corrected Temperature \& other observations. File in the job folder with the COC.

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 460-221262-1

Login Number: 221262
List Source: Eurofins T stAmerica, Edison
List Number: 1
Creator: Rivera, Kenneth

Question	Answer	Comment
adioactivity either was not measured or, if measured, is at or below background	IA	
The cooler's custody seal, if present, is intact.	True	custody seal p esent
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)..	False	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}$ (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	/A	

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 460-221262-1

Login Number: 221262
List Source: Eurofins T stAmerica, Sacramento
List Creation: 10/27/20 01:55 PM
List Number: 2
Creator: Saephan, Kae C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	1134166
Sample custody seals, if present, are intact.	/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	b: 1.3c corr: 1.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	/A	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	IA	

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 460-221262-1

Login Number: 221262
List Source: Eurofins T stAmerica, Sacramento
List Creation: 10/27/20 02:35 PM
List Number: 3
Creator: Saephan, Kae C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	1134166
Sample custody seals, if present, are intact.	/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	b: 1.3c corr: 1.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	/A	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	IA	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison

777 New Durham Road
Edison, NJ 08817
Tel: (732)549-3900
Laboratory Job ID: 460-221262-2
Client Project/Site: Norlite - Cohoes \#401041
For:
New York State D.E.C.
625 Broadway
Division of Environmental Remediation
Albany, New York 12233-7014
Attn: Lynn M Winterberger

Authorized for release by: 11/5/2020 2:22:50 PM
Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

Review your project results through

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Detection Summary 5
Client Sample Results 7
Isotope Dilution Summary 13
QC Sample Results 15
QC Association Summary 22
Lab Chronicle 23
Certification Summary 24
Method Summary 26
Sample Summary 27
Chain of Custody 28
Field Data Sheets 39
Receipt Checklists 40

Qualifiers

LCMS

Qualifier	Qualifier Description
	LCS or LCSD is outside acceptance limits.
${ }^{*} 5$	Isotope dilution analyte is outside acceptance limits.
B	Compound was found in the blank and sample.
I	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

ossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

ID: 460-221262-2

Laboratory: Eurofins TestAmerica, Edison

Narrative

Narrative 460-221262-2

Comments

This report provides the data for the TOPS assay including the Total Oxidation Precursor summary in the Client Results section.

Receipt

The samples were received on 10/23/2020 10:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were $3.8^{\circ} \mathrm{C}$ and $4.5^{\circ} \mathrm{C}$.

LCMS

Method 537 (modified): The labeled analyte M2-4:2FTS is converted to PFBA during the oxidation step of the TOP assay. The PFBA result in the Post-Treatment Method Blank (MB) indicates how much of a field sample's Post-Treatment PFBA result is contributed by the Reverse Surrogate, when adjusted for dilution factors. (MB 320-426024/1-A)

Method 537 (modified): Zero percent recovery of precursor analytes (4:2FTS, 6:2FTS, 8:2FTS, FOSA, NMeFOSAA, and NEtFOSAA) and enhanced recoveries of PFCAs is observed in the Post-Treatment Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) associated with these samples, consistent with the expected oxidation of precursor analytes. (LCS 320-426024/2-A) and (LCSD 320-426024/3-A)

Method 537 (modified): The labeled analyte M2-4:2FTS is employed in this analysis as a "Reverse Surrogate". It is used to monitor the oxidation efficiency of the TOP assay. This analyte is fortified into all sample fractions prior to any processing. The recove y of this analyte should be 0\% in Post-Treatment fractions, indicating complete oxidation of the sample. S15-SOIL-102120 (460-221262-4), S8B-SOIL-102120 (460-221262-22), (LCS 320-426022/2-A), (LCS 320-426024/2-A), (LCSD 320-426022/3-A), (LCSD 320-426024/3-A), (MB 320-426022/1-A) and (MB 320-426024/1-A)

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS in the following sample: S15-SOIL-102120 (460-221262-4). Quantitation by isotope dilution generally precludes any adverse effect n data quality due to elevated IDA recoveries.

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS in the following sample: S8B-SOIL-102120 (460-221262-22). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): The "।" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify the analyte. S15-SOIL-102120 (460-221262-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method TOP Post-Prep: Due to the matrix, the initial volumes used for the following samples deviated from the standard procedu e: S15-SOIL-102120 (460-221262-4) and S8B-SOIL-102120 (460-221262-22). The reporting limits (RLs) have been adjusted proportionately.

Method TOP Post-Prep: There was a layer of water on sample surface: S8B-SOIL-102120 (460-221262-22).
Method TOP Pre-Prep: Due to the matrix, the initial volumes used for the following samples deviated from the standard procedure: S15-SOIL-102120 (460-221262-4) and S8B-SOIL-102120 (460-221262-22). The reporting limits (RLs) have been adjusted proportionately.

Method TOP Pre-Prep: There was a layer of water on sample surface: S8B-SOIL-102120 (460-221262-22).
No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID：S15－SOIL－102120

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid（PFBA）	． 25	J	． 80	． 1	ug／Kg		品	537 （modified）	Pre－Treatme nt
Perfluorohexanoic acid（PFHxA）	． 18	J	． 80	． 18	ug／Kg		察	537 （modified）	Pre－Treatme nt
Perfluoroheptanoic acid（PFHpA）	． 22	J	． 80	． 12	ug／Kg		家	537 （modified）	Pre－Treatme nt
Perfluorooctanoic acid（PFOA）	． 83		． 80	． 35	ug／Kg		家	537 （modified）	Pre－Treatme nt
Perfluorononanoic acid（PFNA）	． 36	J	． 80	． 14	ug／Kg		这	537 （modified）	Pre－Treatme nt
Perfluorodecanoic acid（PFDA）	． 32	J	． 80	． 088	ug／Kg		家	537 （modified）	Pre－Treatme nt
Perfluoroundecanoic acid（PFUnA）	． 31	J	． 80	． 14	ug／Kg		\％	537 （modified）	Pre－Treatme nt
Perfluorooctanesulfonic acid（PFOS）	． 1	J	． 0	． 80	ug／Kg		\％	537 （modified）	Pre－Treatme nt
Perfluorobutanoic acid（PFBA）	． 2	＊ B	． 80	． 1	ug／Kg		察	537 （modified）	Post－Treatme nt
Perfluorohexanoic acid（PFHxA）	． 42	JI	． 80	． 18	ug／Kg		察	537 （modified）	Post－Treatme nt
Perfluoroheptanoic acid（PFHpA）	． 24	J	． 80	． 12	ug／Kg		家	537 （modified）	Post－Treatme nt
Perfluorooctanoic acid（PFOA）	． 80	＊	． 80	． 35	ug／Kg		察	537 （modified）	Post－Treatme nt
Perfluorononanoic acid（PFNA）	． 36	J	． 80	． 14	ug／Kg		誛	537 （modified）	Post－Treatme nt
Perfluorodecanoic acid（PFDA）	． 29	J	． 80	． 088	ug／Kg		家	537 （modified）	Post－Treatme nt
Perfluoroundecanoic acid（PFUnA）	． 22	J	． 80	． 14	ug／Kg		\％	537 （modified）	Post－Treatme nt
Perfluorooctanesulfonic acid（PFOS）	． 95	J	． 0	． 80	ug／Kg		家	537 （modified）	Post－Treatme nt
PFBA	． 98				ug／Kg			Total PFCA－Dif	Total／NA
PFPA	． 00				ug／Kg			Total PFCA－Dif	Total／NA
PFHxA	． 24				ug／Kg			Total PFCA－Dif	Total／NA
PFHpA	． 026				ug／Kg			Total PFCA－Dif	Total／NA
PFOA	． 00				ug／Kg			Total PFCA－Dif	Total／NA
PFNA	． 00				ug／Kg			Total PFCA－Dif	Total／NA
Total PFCA	． 2				ug／Kg			Total PFCA－Dif	Total／NA
Total PFCA	． 8				ug／Kg			Total PFCA－Sum	Pre－Treatme nt
Total PFCA	3.0				ug／Kg			Total PFCA－Sum	Post－Treatme nt

Client Sample ID：S8B－SOIL－102120（Continued）

nalyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorononanoic acid（PFNA）	． 9		.62	． 1	ug／Kg		浐	537 （modified）	Pre－Treatme nt
Perfluorodecanoic acid（PFDA）	． 80		． 62	． 068	ug／Kg		家	537 （modified）	Pre－Treatme nt
Perfluoroundecanoic acid（PFUnA）	． 2		． 62	． 1	$\mathrm{ug} / \mathrm{Kg}$		率	537 （modified）	Pre－Treatme nt
Perfluorododecanoic acid（PFDoA）	． 36	J	． 62	． 21	ug／Kg		㲾	537 （modified）	Pre－Treatme nt
Perfluorotridecanoic acid（PFTriA）	． 22	J	． 62	． 16	$\mathrm{ug} / \mathrm{Kg}$		浐	537 （modified）	Pre－Treatme nt
Perfluorobutanesulfonic acid（PFBS）	． 14	J	． 62	． 078	$\mathrm{ug} / \mathrm{Kg}$		突	537 （modified）	Pre－Treatme nt
Perfluorooctanesulfonic acid（PFOS）	3.9		． 6	． 62	$\mathrm{ug} / \mathrm{Kg}$		嗗	537 （modified）	Pre－Treatme nt
Perfluorodecanesulfonic acid（PFDS）	4.8		． 62	． 12	$\mathrm{ug} / \mathrm{Kg}$		－	537 （modified）	Pre－Treatme nt
Perfluorobutanoic acid（PFBA）	． 2	＊B	． 62	． 087	ug／Kg		洨	537 （modified）	Post－Treatme nt
Perfluoropentanoic acid（PFPeA）	． 50	J	． 62	． 24	$\mathrm{ug} / \mathrm{Kg}$		浐	537 （modified）	Post－Treatme nt
Perfluorohexanoic acid（PFHxA）	． 56	J	． 62	． 14	$\mathrm{ug} / \mathrm{Kg}$		榢	537 （modified）	Post－Treatme nt
Perfluoroheptanoic acid（PFHpA）	． 36	J	． 62	． 090	ug／Kg		\％	537 （modified）	Post－Treatme nt
Perfluorooctanoic acid（PFOA）	． 2	＊	． 62	． 27	$\mathrm{ug} / \mathrm{Kg}$		突	537 （modified）	Post－Treatme nt
Perfluorononanoic acid（PFNA）	． 9		． 62	． 1	$\mathrm{ug} / \mathrm{Kg}$		家	537 （modified）	Post－Treatme nt
Perfluorodecanoic acid（PFDA）	． 83		． 62	． 068	ug／Kg		安	537 （modified）	Post－Treatme nt
Perfluoroundecanoic acid（PFUnA）	． 0		． 62	． 1	ug／Kg		率	537 （modified）	Post－Treatme nt
Perfluorododecanoic acid（PFDoA）	． 44	J	． 62	． 21	$\mathrm{ug} / \mathrm{Kg}$		察	537 （modified）	Post－Treatme nt
Perfluorotridecanoic acid（PFTriA）	． 35	J	． 62	． 16	ug／Kg		察	537 （modified）	Post－Treatme nt
Perfluorotetradecanoic acid（PFTeA）	． 19	J	． 62	． 17	ug／Kg		峧	537 （modified）	Post－Treatme nt
Perfluorobutanesulfonic acid（PFBS）	． 18	J	． 62	． 078	$\mathrm{ug} / \mathrm{Kg}$		洨	537 （modified）	Post－Treatme nt
Perfluorooctanesulfonic acid（PFOS）	3.6		． 5	． 62	$\mathrm{ug} / \mathrm{Kg}$		洨	537 （modified）	Post－Treatme nt
Perfluorodecanesulfonic acid（PFDS）	4.1		． 62	． 12	$\mathrm{ug} / \mathrm{Kg}$		峧	537 （modified）	Post－Treatme nt
PFBA	． 1				$\mathrm{ug} / \mathrm{Kg}$			Total PFCA－Dif	Total／NA
PFPA	． 23				ug／Kg			Total PFCA－Dif	Total／NA
PFHxA	． 33				ug／Kg			Total PFCA－Dif	Total／NA
PFHpA	． 24				ug／Kg			Total PFCA－Dif	Total／NA
PFOA	． 79				ug／Kg			Total PFCA－Dif	Total／NA
PFNA	． 030				ug／Kg			Total PFCA－Dif	Total／NA
Total PFCA	3.6				$\mathrm{ug} / \mathrm{Kg}$			Total PFCA－Dif	Total／NA
Total PFCA	3.1				ug／Kg			Total PFCA－Sum	Pre－Treatme nt
Total PFCA	． 7				ug／Kg			Total PFCA－Sum	Post－Treatme nt

Analyte	e-T eatment Method			ost-T eatment Method			Difference ${ }^{1}$	
	537 (modified)			537 (modified)				
	Result	Qualifier	Unit	Result	Qualifier	Unit	Result	Unit
Perfluorobutanoic acid (PFBA)	0.25		ug/Kg	1.2		ug/Kg	0.98	ug/Kg
Perfluoropentanoic acid (PFPeA)	ND		ug/Kg	ND		ug/Kg	0.00	ug/Kg
Perfluorohexanoic acid (PFHxA)	0.18		ug/Kg	0.42		ug/Kg	0.24	ug/Kg
Perfluoroheptanoic acid (PFHpA)	0.22		ug/Kg	0.24		ug/Kg	0.026	ug/Kg
Perfluorooctanoic acid (PFOA)	0.83		ug/Kg	0.80		ug/Kg	0.00	ug/Kg
Perfluorononanoic acid (PFNA)	0.36		ug/Kg	0.36		ug/Kg	0.00	ug/Kg
T tal PFCA	1.8		ug/Kg	3.0		ug/Kg	1.2	ug/Kg

Client Sample ID: S8B-SOIL-102120
Lab Sample ID: 460-221262-22 Matrix: Solid

Analyte	e-T eatment Method			ost-T eatment Method			Difference ${ }^{1}$	
	537 (modified)			537 (modified)				
	Result	Qualifier	Unit	Result	Qualifier	Unit	Result	Unit
Perfluorobutanoic acid (PFBA)	0.16		ug/Kg	2.2		ug/Kg	2.1	ug/Kg
Perfluoropentanoic acid (PFPeA)	0.27		ug/Kg	0.50		ug/Kg	0.23	ug/Kg
Perfluorohexanoic acid (PFHxA)	0.23		ug/Kg	0.56		ug/Kg	0.33	ug/Kg
Perfluoroheptanoic acid (PFHpA)	0.13		ug/Kg	0.36		ug/Kg	0.24	ug/Kg
Perfluorooctanoic acid (PFOA)	0.40		ug/Kg	1.2		ug/Kg	0.79	ug/Kg
Perfluorononanoic acid (PFNA)	1.9		ug/Kg	1.9		ug/Kg	0.030	ug/Kg
T tal PFCA	3.1		ug/Kg	6.7		ug/Kg	3.6	ug/Kg

[^17]| Method： 537 （modified）－Fluo | nated Alk | Substa | －Pre－T | ent | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | esult | Qualifier | L | MDL | Unit | D | Prepared | Analyzed | Dil Fac |
| Perfluorobutanoic acid（PFBA） | 0.25 | J | ． 80 | ． 1 | ug／Kg | 为 | 7／20 20：12 | 23：03 | |
| Perfluoropentanoic acid（PFPeA） | ND | | ． 80 | ． 30 | ug／Kg | 㓎 | 7／20 20：12 | 23：03 | |
| Perfluorohexanoic acid（PFHxA） | 0.18 | J | ． 80 | ． 18 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Perfluoroheptanoic acid（PFHpA） | 0.22 | J | ． 80 | ． 12 | ug／Kg | 交 | 7／20 20：12 | 23：03 | |
| Perfluorooctanoic acid（PFOA） | 0.83 | | ． 80 | ． 35 | ug／Kg | 曻 | 7／20 20：12 | 23：03 | |
| Perfluorononanoic acid（PFNA） | 0.36 | J | ． 80 | ． 14 | $\mathrm{ug} / \mathrm{Kg}$ | 苑 | 7／20 20：12 | 23：03 | |
| Perfluorodecanoic acid（PFDA） | 0.32 | J | ． 80 | ． 088 | ug／Kg | － | 7／20 20：12 | 23：03 | |
| Perfluoroundecanoic acid （PFUnA） | 0.31 | J | ． 80 | ． 14 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Perfluorododecanoic acid（PFDoA） | ND | | ． 80 | ． 27 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Perfluorotridecanoic acid（PFTriA） | ND | | ． 80 | ． 21 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Perfluorotetradecanoic acid（PFTeA） | ND | | ． 80 | ． 22 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Perfluorobutanesulfonic acid（PFBS） | ND | | ． 80 | ． 10 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Perfluorohexanesulfonic acid（PFHxS） | ND | | ． 80 | ． 12 | ug／Kg | 安 | 7／20 20：12 | 23：03 | |
| Perfluoroheptanesulfonic Acid （PFHpS） | ND | | ． 80 | ． 14 | ug／Kg | 安 | 7／20 20：12 | 23：03 | |
| Perfluorooctanesulfonic acid （PFOS） | 1.1 | J | ． 0 | ． 80 | ug／Kg | ＊ | 7／20 20：12 | 23：03 | |
| Perfluorodecanesulfonic acid（PFDS） | ND | | ． 80 | ． 16 | ug／Kg | ＊ | 7／20 20：12 | 23：03 | |
| Perfluorooctanesulfonamide（FOSA） | ND | | ． 80 | ． 33 | ug／Kg | 安 | 7／20 20：12 | 23：03 | |
| N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA） | ND | | 8.0 | ． 6 | ug／Kg | 尔 | 7／20 20：12 | 23：03 | |
| N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA） | ND | | 8.0 | ． 5 | $\mathrm{ug} / \mathrm{Kg}$ | \％ | 7／20 20：12 | 23：03 | |
| ：2 FTS | ND | | 8.0 | ． 61 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| 8：2 FTS | ND | | 8.0 | ． 0 | ug／Kg | \％ | 7／20 20：12 | 23：03 | |
| Isotope Dilution | \％Recovery | Qualifier | Limits | | | | Prepared | Analyzed | Dil Fac |
| 13C4 PFBA | 100 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13 C 5 PFPeA | 94 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13 C 2 PFHxA | 97 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| $13 \mathrm{C4}$ PFHpA | 104 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| $13 C 4$ PFOA | 99 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13 C 5 PFNA | 104 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13 C 2 PFDA | 99 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| $13 C 2$ PFUnA | 100 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13 C 2 PFDoA | 78 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13 C 2 PFTeDA | 90 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| $13 C 3$ PFBS | 110 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 1802 PFHxS | 106 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13C4 PFOS | 103 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| 13C8 FOSA | 104 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| d3－NMeFOSAA | 107 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| NETFOSAA | 110 | | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| M2－6：2 FTS | 159 | ＊5 | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| M2－8：2 FTS | 153 | ＊5 | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |
| M2－4：2 FTS | 30 | ＊5 | 150 | | | | 10／27／20 20：12 | 11／02／20 23：03 | 1 |

Method： 537 （modified）－Fluorinated Alkyl Substances－Post－Treatment

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	1.2	＊B	． 80	． 1	ug／Kg	\％	7／20 20：17	3／20 00：19	
Perfluoropentanoic acid（PFPeA）	ND		． 80	． 30	ug／Kg	\％	7／20 20：17	3／20 00：19	

Method： 537 （modified）－Fluorinated Alkyl Substances－Post－Treatment（Continued）

Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid（PFHxA）	0.42	JI	． 80	． 18	ug／Kg	苑	7／20 20：17	3／20 00：19	
Perfluoroheptanoic acid（PFHpA）	0.24	J	． 80	． 12	$\mathrm{ug} / \mathrm{Kg}$	\％	7／20 20：17	3／20 00：19	
Perfluorooctanoic acid（PFOA）	0.80	＊	． 80	． 35	ug／Kg	\％	7／20 20：17	3／20 00：19	
Perfluorononanoic acid（PFNA）	0.36	J	． 80	． 14	ug／Kg	\％	7／20 20：17	3／20 00：19	
Perfluorodecanoic acid（PFDA）	0.29	J	． 80	． 088	$\mathrm{ug} / \mathrm{Kg}$	为	7／20 20：17	3／20 00：19	
Perfluoroundecanoic acid （PFUnA）	0.22	J	． 80	． 14	ug／Kg	安	7／20 20：17	3／20 00：19	
Perfluorododecanoic acid（PFDoA）	ND		． 80	． 27	ug／Kg	曻	7／20 20：17	3／20 00：19	
Perfluorotridecanoic acid（PFTriA）	ND		． 80	． 21	ug／Kg	安	7／20 20：17	3／20 00：19	
Perfluorotetradecanoic acid（PFTeA）	ND		． 80	． 22	ug／Kg	家	7／20 20：17	3／20 00：19	
Perfluorobutanesulfonic acid（PFBS）	ND		． 80	． 10	ug／Kg	\％	7／20 20：17	3／20 00：19	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 80	． 12	ug／Kg	＊	7／20 20：17	3／20 00：19	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 80	． 14	ug／Kg	\％	7／20 20：17	3／20 00：19	
Perfluorooctanesulfonic acid （PFOS）	0.95	J	． 0	． 80	ug／Kg	＊	7／20 20：17	3／20 00：19	
Perfluorodecanesulfonic acid（PFDS）	ND		． 80	． 16	ug／Kg	＊	7／20 20：17	3／20 00：19	
Perfluorooctanesulfonamide（FOSA）	ND		． 80	． 33	ug／Kg	\％	7／20 20：17	3／20 00：19	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		8.0	． 6	ug／Kg	安	7／20 20：17	3／20 00：19	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		8.0	． 5	ug／Kg	\％	7／20 20：17	3／20 00：19	
：2 FTS	ND		8.0	． 61	ug／Kg	\％	7／20 20：17	3／20 00：19	
8：2 FTS	ND		8.0	． 0	ug／Kg	＊	7／20 20：17	3／20 00：19	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	96		150				10／27／20 20：17	11／03／20 00：19	1
13 C 5 PFPeA	96		150				10／27／20 20：17	11／03／20 00：19	1
13 C 2 PFHxA	96		150				10／27／20 20：17	11／03／20 00：19	1
13 C 4 PFHpA	104		150				10／27／20 20：17	11／03／20 00：19	1
13 C 4 PFOA	98		150				10／27／20 20：17	11／03／20 00：19	1
13 C 5 PFNA	99		150				10／27／20 20：17	11／03／20 00：19	1
13C2 PFDA	90		150				10／27／20 20：17	11／03／20 00：19	1
$13 C 2$ PFUnA	92		150				10／27／20 20：17	11／03／20 00：19	1
13 C 2 PFDoA	88		150				10／27／20 20：17	11／03／20 00：19	1
13C2 PFTeDA	89		150				10／27／20 20：17	11／03／20 00：19	1
$13 C 3$ PFBS	102		150				10／27／20 20：17	11／03／20 00：19	1
1802 PFHxS	106		150				10／27／20 20：17	11／03／20 00：19	1
13C4 PFOS	99		150				10／27／20 20：17	11／03／20 00：19	1
13C8 FOSA	102		150				10／27／20 20：17	11／03／20 00：19	1
d3－NMeFOSAA	88		150				10／27／20 20：17	11／03／20 00：19	1
NEtFOSAA	98		150				10／27／20 20：17	11／03／20 00：19	1
M2－6：2 FTS	113		150				10／27／20 20：17	11／03／20 00：19	1
M2－8：2 FTS	111		150				10／27／20 20：17	11／03／20 00：19	1
M2－4：2 FTS			10				10／27／20 20：17	11／03／20 00：19	1

Method：Total PFCA－Dif－Total PFCA（Treatment Difference）

Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
PFBA	0.98				ug／Kg			4／20 10：37	
PFPA	0.00				ug／Kg			4／20 10：37	
PFHxA	0.24				ug／Kg			4／20 10：37	
PFHpA	0.026				$\mathrm{ug} / \mathrm{Kg}$			4／20 10：37	

Method：Total PFCA－Dif－Total PFCA（Treatment Difference）（Continued）									
Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
PFOA	0.00				ug／Kg			4／20 10：37	
PFNA	0.00				ug／Kg			4／20 10：37	
Total PFCA	1.2				ug／Kg			4／20 10：37	

$\left[\begin{array}{l}\text { Method：Total PFCA－Sum－Total PFCA（Summary）} \\ \begin{array}{l}\text { Analyte }\end{array} \\ \hline \text { Total PFCA } \\ \text { esult } \\ 1.8 \\ \text { Qualifier } \\ \\ \end{array}\right.$

Method：Total PFCA－Sum－Total PFCA（Summary）－Post－Treatment									
Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Total PFCA	3.0				ug／Kg			4／20 10：36	

Client Sample ID：S8B－SOIL－102120

Lab Sample ID：460－221262－22
Date Collected：10／21／20 14：10
Matrix：Solid
Date Received：10／23／20 10：00

Method： 537 （modified）－Fluorinated Alkyl Substances－Pre－Treatment									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	0.16	J	． 62	． 087	ug／Kg	安	7／20 20：12	23：13	
Perfluoropentanoic acid（PFPeA）	0.27	J	． 62	． 24	ug／Kg	为	7／20 20：12	23：13	
Perfluorohexanoic acid（PFHxA）	0.23	J	． 62	． 14	ug／Kg	\％	7／20 20：12	23：13	
Perfluoroheptanoic acid（PFHpA）	0.13	J	． 62	． 091	ug／Kg	安	7／20 20：12	23：13	
Perfluorooctanoic acid（PFOA）	0.40	J	． 62	． 27	ug／Kg	安	7／20 20：12	23：13	
Perfluorononanoic acid（PFNA）	1.9		． 62	． 1	ug／Kg	＊	7／20 20：12	23：13	
Perfluorodecanoic acid（PFDA）	0.80		． 62	． 068	ug／Kg	苑	7／20 20：12	23：13	
Perfluoroundecanoic acid （PFUnA）	1.2		． 62	． 1	ug／Kg	安	7／20 20：12	23：13	
Perfluorododecanoic acid （PFDoA）	0.36	J	． 62	． 21	ug／Kg	\％	7／20 20：12	23：13	
Perfluorotridecanoic acid（PFTriA）	0.22	J	． 62	． 16	ug／Kg	＊	7／20 20：12	23：13	
Perfluorotetradecanoic acid（PFTeA）	ND		． 62	． 17	ug／Kg	\％	7／20 20：12	23：13	
Perfluorobutanesulfonic acid （PFBS）	0.14	J	． 62	． 078	ug／Kg	家	7／20 20：12	23：13	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 62	． 097	ug／Kg	＊	7／20 20：12	23：13	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 62	． 1	ug／Kg	\％	7／20 20：12	23：13	
Perfluorooctanesulfonic acid （PFOS）	3.9		． 6	． 62	ug／Kg	＊	7／20 20：12	23：13	
Perfluorodecanesulfonic acid （PFDS）	4.8		． 62	． 12	ug／Kg	＊	7／20 20：12	23：13	
Perfluorooctanesulfonamide（FOSA）	ND		． 62	． 26	ug／Kg	\％	7／20 20：12	23：13	
N －methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 2	． 2	ug／Kg	\％	7／20 20：12	23：13	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 2	． 2	$\mathrm{ug} / \mathrm{Kg}$	\％	7／20 20：12	23：13	
$: 2 \mathrm{FTS}$	ND		． 2	． 47	ug／Kg	\％	7／20 20：12	23：13	
8：2 FTS	ND		． 2	． 78	ug／Kg	\％	7／20 20：12	23：13	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	98		150				10／27／20 20：12	11／02／20 23：13	1
13 C 5 PFPeA	90		150				10／27／20 20：12	11／02／20 23：13	1
13 C 2 PFHxA	102		150				10／27／20 20：12	11／02／20 23：13	1
13 C 4 PFHpA	103		150				10／27／20 20：12	11／02／20 23：13	1

Method： 537 （modified）－Fluorinated Alkyl Substances－Pre－Treatment（Continued）

Isotope Dilution	\％Recovery	Qualifier	Limits
13C4 PFOA	94		150
$13 C 5$ PFNA	103		150
$13 C 2$ PFDA	97		150
$13 C 2$ PFUnA	106		150
13C2 PFDoA	87		150
$13 C 2$ PFTeDA	92		150
$13 C 3$ PFBS	103		150
1802 PFHxS	106		150
$13 C 4$ PFOS	101		150
13C8 FOSA	100		150
d3－NMeFOSAA	115		150
NEtFOSAA	106		150
M2－6：2 FTS	151	＊5	150
M2－8：2 FTS	132		150
M2－4：2 FTS	197	＊5	150

Method： 537 （modified）－Fluorinated Alkyl Substances－Post－Treatment									
Analyte	esult	Qualifier	L	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid（PFBA）	2.2	＊B	． 62	． 087	ug／Kg	号	7／20 20：17	3／20 00：28	
Perfluoropentanoic acid（PFPeA）	0.50	J	． 62	． 24	ug／Kg	㲾	7／20 20：17	3／20 00：28	
Perfluorohexanoic acid（PFHxA）	0.56	J	． 62	． 14	$\mathrm{ug} / \mathrm{Kg}$	\％	7／20 20：17	3／20 00：28	
Perfluoroheptanoic acid（PFHpA）	0.36	J	． 62	． 090	ug／Kg	\％	7／20 20：17	3／20 00：28	
Perfluorooctanoic acid（PFOA）	1.2	＊	． 62	． 27	ug／Kg	家	7／20 20：17	3／20 00：28	
Perfluorononanoic acid（PFNA）	1.9		． 62	． 1	$\mathrm{ug} / \mathrm{Kg}$	\＄	7／20 20：17	3／20 00：28	
Perfluorodecanoic acid（PFDA）	0.83		． 62	． 068	ug／Kg	\％	7／20 20：17	3／20 00：28	
Perfluoroundecanoic acid （PFUnA）	1.0		． 62	． 1	ug／Kg	安	7／20 20：17	3／20 00：28	
Perfluorododecanoic acid （PFDoA）	0.44	J	． 62	． 21	ug／Kg	\％	7／20 20：17	3／20 00：28	
Perfluorotridecanoic acid（PFTriA）	0.35	J	62	． 16	ug／Kg	\％	7／20 20：17	3／20 00：28	
Perfluorotetradecanoic acid （PFTeA）	0.19	J	． 62	． 17	$\mathrm{ug} / \mathrm{Kg}$	＋	7／20 20：17	3／20 00：28	
Perfluorobutanesulfonic acid （PFBS）	0.18	J	． 62	． 078	ug／Kg	姿	7／20 20：17	3／20 00：28	
Perfluorohexanesulfonic acid（PFHxS）	ND		． 62	． 096	ug／Kg	\％	7／20 20：17	3／20 00：28	
Perfluoroheptanesulfonic Acid （PFHpS）	ND		． 62	． 1	ug／Kg	\％	7／20 20：17	3／20 00：28	
Perfluorooctanesulfonic acid （PFOS）	3.6		． 5	． 62	ug／Kg	突	7／20 20：17	3／20 00：28	
Perfluorodecanesulfonic acid （PFDS）	4.1		.62	． 12	$u g / \mathrm{Kg}$	\％	7／20 20：17	3／20 00：28	
Perfluorooctanesulfonamide（FOSA）	ND		． 62	． 26	ug／Kg	＊	7／20 20：17	3／20 00：28	
N－methylperfluorooctanesulfonamidoa cetic acid（NMeFOSAA）	ND		． 2	． 2	ug／Kg	\％	7／20 20：17	3／20 00：28	
N －ethylperfluorooctanesulfonamidoac etic acid（NEtFOSAA）	ND		． 2	． 2	ug／Kg	\％	7／20 20：17	3／20 00：28	
：2 FTS	ND		． 2	． 47	ug／Kg	\％	7／20 20：17	3／20 00：28	
8：2 FTS	ND		． 2	． 78	ug／Kg	多	7／20 20：17	3／20 00：28	
Isotope Dilution	\％Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
$13 \mathrm{C4} 4$ PFBA	100		150				10／27／20 20：17	11／03／20 00：28	1
$13 C 5$ PFPeA	103		150				10／27／20 20：17	11／03／20 00：28	1
13 C 2 PFHxA	99		150				10／27／20 20：17	11／03／20 00：28	1

Method: Total PFCA-Dif - Total PFCA (Treatment Difference)									
Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
PFBA	2.1				ug/Kg			4/20 10:37	
PFPA	0.23				ug/Kg			4/20 10:37	
PFHxA	0.33				ug/Kg			4/20 10:37	
PFHpA	0.24				ug/Kg			4/20 10:37	
PFOA	0.79				ug/Kg			4/20 10:37	
PFNA	0.030				ug/Kg			4/20 10:37	
Total PFCA	3.6				ug/ $/ \mathrm{Kg}$			4/20 10:37	

Method: Total PFCA-Sum - Total PFCA (Summary) - Pre-Treatment									
Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Total PFCA	3.1				ug/Kg			4/20 10:34	
Method: Total PFCA-Sum - Total PFCA (Summary) - Post-Treatment									
Analyte	esult	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Total PFCA	6.7				ug/Kg			4/20 10:36	

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Solid
Prep Type: Pre-Treatment

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	PFPeA (25-150)	$\begin{aligned} & \text { PFHxA } \\ & (25-150) \end{aligned}$	C4PFHA (25-150)	$\begin{gathered} \text { PFOA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFNA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
460-221262-4	S15-SOIL-102120		94	97	4	99	4	99	
460-221262-22	S8B-SOIL-102120	98	90		3	94	3	97	
LCS 320-426022/2-A	Lab Control Sample	4	3	98		3	4	98	92
LCSD 320-426022/3-A	Lab Control Sample Dup		98	95			96	85	96
MB 320-426022/1-A	Method Blank		97	97	8			95	98
			Perc	t Isotope	Dilution R	very (A	ptance	mits)	
Lab Sample ID	ent Sample ID	PFDoA (25-150)	PFTDA (25-150)	C3PFBS (25-150)	$\begin{aligned} & \text { PFHxS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOSA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { d3NMFO } \\ & (25-150) \end{aligned}$	d5NEFO $(25-150)$
460-221262-4	S15-SOIL-102120	78	90			3	4	7	
460-221262-22	S8B-SOIL-102120	87	92	3				5	
LCS 320-426022/2-A	Lab Control Sample	82	83		3		95	98	95
LCSD 320-426022/3-A	Lab Control Sample Dup	94	87	7	7			95	92
MB 320-426022/1-A	Method Blank	94	97	7	7	8	5	3	
			Perc	t Isotope	ilution Re	very (A	ptance	mits)	
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { M262FTS } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { M282FTS } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { M242FTS } \\ (25-150) \end{gathered}$					
460-221262-4	S15-SOIL-102120	59 *5	53 *5	30 *5					
460-221262-22	S8B-SOIL-102120	51 *5	32	97 *5					
LCS 320-426022/2-A	Lab Control Sample	30		5					
LCSD 320-426022/3-A	Lab Control Sample Dup	4	3						
MB 320-426022/1-A	Method Blank	34							

```
rrogate Legend
PFBA = 13C4 PFBA
\(\mathrm{PFPeA}=13 \mathrm{C} 5 \mathrm{PFPeA}\)
PFHxA = 13C2 PFHxA
C4PFHA = 13C4 PFHpA
\(\mathrm{PFOA}=13 \mathrm{C} 4 \mathrm{PFOA}\)
PFNA = 13C5 PFNA
PFDA = 13C2 PFDA
PFUnA = 13C2 PFUnA
PFDoA = 13C2 PFDoA
PFTDA \(=13 \mathrm{C} 2 \mathrm{PFTeDA}\)
C3PFBS \(=13 \mathrm{C} 3 \mathrm{PFBS}\)
PFHxS = 1802 PFHxS
PFOS = 13C4 PFOS
PFOSA = 13C8 FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS = d5-NEtFOSAA
M262FTS = M2-6:2 FTS
M282FTS \(=\) M2-8:2 FTS
M242FTS = M2-4:2 FTS
```

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Solid

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { PFBA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFPeA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFHxA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOA } \\ & (25-150) \end{aligned}$	$\begin{gathered} \text { PFNA } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { PFDA } \\ (25-150) \end{gathered}$	$\begin{aligned} & \text { PFUnA } \\ & (25-150) \end{aligned}$
460-221262-4	S15-SOIL-102120	96	96	96	4	98	99	90	92

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)
Matrix: Solid
Prep Type: Post-Treatment

		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { PFBA } \\ (25-150) \\ \hline \end{gathered}$	PFPeA (25-150)	$\begin{gathered} \text { PFHxA } \\ (25-150) \\ \hline \end{gathered}$	$\begin{aligned} & \text { C4PFHA } \\ & (25-150) \\ & \hline \end{aligned}$	$\begin{gathered} \text { PFOA } \\ (25-150) \\ \hline \end{gathered}$	$\begin{gathered} \text { PFNA } \\ (25-150) \\ \hline \end{gathered}$	$\begin{gathered} \text { PFDA } \\ (25-150) \\ \hline \end{gathered}$	PFUnA (25-150)
460-221262-22	S8B-SOIL-102120		3	99	5		5	93	4
LCS 320-426024/2-A	Lab Control Sample		4		3		4		97
LCSD 320-426024/3-A	Lab Control Sample Dup	97	7			99	9	99	
MB 320-426024/1-A	Method Blank	98	98	3	99	96	4	90	92
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	PFDoA (25-150)	PFTDA $(25-150)$	$\begin{aligned} & \text { C3PFBS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFHxS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOS } \\ & (25-150) \end{aligned}$	$\begin{aligned} & \text { PFOSA } \\ & (25-150) \end{aligned}$	d3NMFO (25-150)	d5NEFO $(25-150)$
460-221262-4	S15-SOIL-102120	88	89			99		88	98
460-221262-22	S8B-SOIL-102120	83	85					93	94
LCS 320-426024/2-A	Lab Control Sample	94	96				99	97	9
LCSD 320-426024/3-A	Lab Control Sample Dup	91	89						94
MB 320-426024/1-A	Method Blank	90	80		5	5	98	92	91
		Percent Isotope Dilution Recovery (Acceptance Limits)							
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { M262FTS } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { M282FTS } \\ (25-150) \end{gathered}$	$\begin{gathered} \text { M242FTS } \\ (0-10) \end{gathered}$					
460-221262-4	S15-SOIL-102120	3							
460-221262-22	S8B-SOIL-102120	5							
LCS 320-426024/2-A	Lab Control Sample		8						
LCSD 320-426024/3-A	Lab Control Sample Dup	9	98						
MB 320-426024/1-A	Method Blank	9	9						

rrogate Legend
PFBA = 13C4 PFBA
PFPeA $=13 C 5$ PFPeA
PFHxA = 13C2 PFHxA
C4PFHA $=13 C 4$ PFHpA
PFOA $=13 \mathrm{C} 4 \mathrm{PFOA}$
PFNA $=13 C 5$ PFNA
PFDA $=13 \mathrm{C} 2 \mathrm{PFDA}$
PFUnA $=13 \mathrm{C} 2$ PFUnA
PFDoA $=13 \mathrm{C} 2 \mathrm{PFDoA}$
PFTDA $=13 \mathrm{C} 2$ PFTeDA
C3PFBS $=13 \mathrm{C} 3$ PFBS
PFHxS = 1802 PFHxS
PFOS = 13C4 PFOS
PFOSA $=13 \mathrm{C} 8$ FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS $=\mathrm{d} 5-$ NEtFOSAA
M262FTS $=$ M2-6:2 FTS
M282FTS $=$ M2-8:2 FTS
M242FTS $=$ M2-4:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-426022/1-A
Matrix: Solid
Analysis Batch: 427825

Analyte	MB	MB				D	Prepared	Analyzed	Dil Fac
	It	Qualifier	L	MDL	Unit				
Perfluorobutanoic acid (PFBA)	ND		. 50	. 070	ug/Kg		7/20 20:12	22:35	
Perfluoropentanoic acid (PFPeA)	ND		. 50	. 19	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorohexanoic acid (PFHxA)	ND		. 50	1	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluoroheptanoic acid (PFHpA)	ND		. 50	. 073	ug/Kg		7/20 20:12	22:35	
Perfluorooctanoic acid (PFOA)	ND		. 50	. 22	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorononanoic acid (PFNA)	ND		. 50	. 090	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorodecanoic acid (PFDA)	ND		. 50	. 055	ug/Kg		$7 / 20$ 20:12	22:35	
Perfluoroundecanoic acid (PFUnA)	ND		. 50	. 090	ug/Kg		7/20 20:12	22:35	
Perfluorododecanoic acid (PFDoA)	ND		. 50	. 17	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorotridecanoic acid (PFTriA)	ND		. 50	. 13	ug/Kg		7/20 20:12	22:35	
Perfluorotetradecanoic acid (PFTeA)	ND		. 50	. 14	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorobutanesulfonic acid (PFBS)	ND		. 50	. 063	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorohexanesulfonic acid (PFHxS)	ND		. 50	. 078	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		. 50	. 088	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
Perfluorooctanesulfonic acid (PFOS)	ND		. 3	. 50	ug/Kg		7/20 20:12	22:35	
Perfluorodecanesulfonic acid (PFDS)	ND		. 50	. 098	ug/Kg		$7 / 20$ 20:12	22:35	
Perfluorooctanesulfonamide (FOSA)	ND		. 50	. 21	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
N -methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	. 98	ug/Kg		7/20 20:12	22:35	
N -ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	. 93	$\mathrm{ug} / \mathrm{Kg}$		7/20 20:12	22:35	
:2 FTS	ND		5.0	. 38	ug/Kg		7/20 20:12	22:35	
8:2 FTS	ND		5.0	. 63	ug/Kg		7/20 20:12	22:35	

Prepared	Analyzed	Fac
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1
10/27/20 20:12	11/02/20 22:35	1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426022/2-A
Matrix: Solid
Analysis Batch: 427825

Analysis Batch: 427825 Analyte	Spike Added	$\begin{aligned} & \text { LCS } \\ & \text { It } \end{aligned}$	LCS Qualifier	Unit	D	\%Rec	Pr \%R Lim	
Perfluorobutanoic acid (PFBA)	5.00	4.93		ug/Kg		99	76	36
Perfluoropentanoic acid (PFPeA)	5.00	4.37		ug/Kg		87	9	9
Perfluorohexanoic acid (PFHxA)	5.00	5.06		ug/Kg			71	31
Perfluoroheptanoic acid (PFHPA)	5.00	4.79		ug/Kg		96	71	31
Perfluorooctanoic acid (PFOA)	5.00	4.66		ug/Kg		93	72	32
Perfluorononanoic acid (PFNA)	5.00	4.74		ug/Kg		95	73	33
Perfluorodecanoic acid (PFDA)	5.00	4.88		ug/Kg		98	72	32
Perfluoroundecanoic acid (PFUnA)	5.00	4.56		ug/Kg		91		
Perfluorododecanoic acid (PFDoA)	5.00	5.70		ug/Kg		4	71	31
Perfluorotridecanoic acid (PFTriA)	5.00	5.87		ug/Kg		7	71	31
Perfluorotetradecanoic acid (PFTeA)	5.00	5.06		ug/Kg			7	7
Perfluorobutanesulfonic acid (PFBS)	4.42	4.16		ug/Kg		94	9	9
Perfluorohexanesulfonic acid (PFHxS)	4.55	4.26		ug/Kg		94		
Perfluoroheptanesulfonic Acid (PFHpS)	4.76	4.94		ug/Kg		4	76	36
Perfluorooctanesulfonic acid (PFOS)	4.64	4.35		ug/Kg		94	8	41
Perfluorodecanesulfonic acid (PFDS)	4.82	4.36		$\mathrm{ug} / \mathrm{Kg}$		90	71	31
Perfluorooctanesulfonamide (FOSA)	5.00	4.99		ug/Kg			77	37
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	5.00	4.69	J	ug/Kg		94	72	32
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	5.00	4.80	J	$\mathrm{ug} / \mathrm{Kg}$		96	72	32
:2 FTS	4.74	4.18	J	ug/Kg		88	73	39
8:2 FTS	4.79	4.71	J	ug/Kg		98	75	35

Isotope Dilution	\%Recovery	Qualifier	Limits
$13 C 4$ PFBA	104		150
$13 C 5$ PFPeA	103		150
$13 C 2$ PFHxA	98		150
13 C 4 PFHpA	111		150
13 C 4 PFOA	103		150
13 C 5 PFNA	104		150
13 C 2 PFDA	98		150
13C2 PFUnA	92		150
$13 C 2$ PFDoA	82		150
$13 C 2$ PFTeDA	83		150
$13 \mathrm{C3}$ PFBS	116		150
1802 PFHxS	113		150
13 C 4 PFOS	11		150
13C8 FOSA	95		150
d3-NMeFOSAA	98		150
d5-NEtFOSAA	95		150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-426022/2-A
Matrix: Solid
Analysis Batch: 427825

Client Sample ID: Lab Control Sample
Prep Type: Pre-Treatment Prep Batch: 426022

Isotope Dilution	\%Recovery	Qualifier	Limits
-6:2 FTS	130		150
-8:2 FTS	101		150
4:2 FTS	105		150

Lab Sample ID: LCSD 320-426022/3-A
Matrix: Solid
Analysis Batch: 427825

Analyte	Spike Added	$\begin{aligned} & \text { LCSD } \\ & \text { It } \end{aligned}$	LCSD Qualifier	Unit	D	\%Rec	\%R		PD	$\begin{gathered} \text { PD } \\ \text { Limit } \end{gathered}$
Perfluorobutanoic acid (PFBA)	5.00	4.97		ug/Kg		99	76	36		3
Perfluoropentanoic acid (PFPeA)	5.00	4.48		ug/Kg		90	9	9		30
Perfluorohexanoic acid (PFHxA)	5.00	5.01		ug/Kg			71	31		30
Perfluoroheptanoic acid (PFHpA)	5.00	4.93		ug/Kg		99	71	31	3	30
Perfluorooctanoic acid (PFOA)	5.00	4.64		ug/Kg		93	72	32		30
Perfluorononanoic acid (PFNA)	5.00	5.01		ug/Kg			73	33		30
Perfluorodecanoic acid (PFDA)	5.00	5.53		ug/Kg			72	32	3	30
Perfluoroundecanoic acid (PFUnA)	5.00	4.98		ug/Kg					9	30
Perfluorododecanoic acid (PFDoA)	5.00	4.99		ug/Kg			71	31	3	30
Perfluorotridecanoic acid (PFTriA)	5.00	5.60		ug/Kg			71	31	5	30
Perfluorotetradecanoic acid (PFTeA)	5.00	5.02		ug/Kg			7	7		30
Perfluorobutanesulfonic acid (PFBS)	4.42	4.34		ug/Kg		98	9	9	4	30
Perfluorohexanesulfonic acid (PFHxS)	4.55	4.12		$\mathrm{ug} / \mathrm{Kg}$		91			3	30
Perfluoroheptanesulfonic Acid (PFHpS)	4.76	5.07		ug/Kg		7	76	36	3	30
Perfluorooctanesulfonic acid (PFOS)	4.64	4.48		ug/Kg		97	8	41	3	30
Perfluorodecanesulfonic acid (PFDS)	4.82	4.93		ug/Kg			71	31		30
Perfluorooctanesulfonamide (FOSA)	5.00	4.82		ug/Kg		96	77	37	4	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	5.00	4.74	J	ug/Kg		95	72	32		30
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	5.00	4.90	J	$\mathrm{ug} / \mathrm{Kg}$		98	72	32		30
:2 FTS	4.74	4.44	J	ug/Kg		94	73	39		30
8:2 FTS	4.79	4.42	J	ug/Kg		92	75	35		30

LCSD LCSD

Isotope Dilution	\%Recovery	Qualifier	Limits
13C4 PFBA	100		150
13 C 5 PFPeA	98		150
$13 C 2$ PFHxA	95		150
13C4 PFHpA	102		150
13C4 PFOA	102		150
$13 C 5$ PFNA	96		150
$13 C 2$ PFDA	85		150
13C2 PFUnA	96		150

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-426022/3-A
Matrix: Solid
Analysis Batch: 427825

Client Sample ID: Lab Control Sample Dup Prep Type: Pre-Treatment Prep Batch: 426022

Lab Sample ID: MB 320-426024/1-A
Matrix: Solid
Analysis Batch: 427825

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-426024/1-A
Matrix: Solid
Analysis Batch: 427825

Isotope Dilution	$\begin{aligned} \text { MB } & \text { MB } \\ \text { \%Recovery } & \text { Qualifier } \end{aligned}$	Limits
13C2 PFUnA	92	150
13C2 PFDoA	90	150
13 C 2 PFTeDA	80	150
13C3 PFBS	106	150
1802 PFHxS	105	150
$13 C 4$ PFOS	105	150
13C8 FOSA	98	150
d3-NMeFOSAA	92	150
d5-NEtFOSAA	91	150
-6:2 FTS	109	150
-8:2 FTS	109	150
4:2 FTS		10

Client Sample ID: Method Blank Prep Type: Post-Treatment

Prep Batch: 426024

Prepared	Analyzed	Fac
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1
10/27/20 20:17	11/02/20 23:50	1

Lab Sample ID: LCS 320-426024/2-A
Matrix: Solid
Analysis Batch: 427825

Analysis Batch: 427825	Spike	LCS	LCS	Unit	D	\%Rec	Prep Batch: 426024		
							\%Rec. Limits		
Analyte	Added	It	Qualifier						
Perfluorobutanoic acid (PFBA)	5.00	. 93	*	ug/Kg		39	70	30	
Perfluoropentanoic acid (PFPeA)	5.00	5.01		ug/Kg			70	30	
Perfluorohexanoic acid (PFHxA)	5.00	5.85		ug/Kg		7	70	30	
Perfluoroheptanoic acid (PFHpA)	5.00	. 1		ug/Kg			70	30	
Perfluorooctanoic acid (PFOA)	5.00	. 9	*	ug/Kg		59	70	30	
Perfluorononanoic acid (PFNA)	5.00	5.34		ug/Kg		7	70	30	
Perfluorodecanoic acid (PFDA)	5.00	5.53		ug/Kg			70	30	
Perfluoroundecanoic acid (PFUnA)	5.00	4.34		ug/Kg		87	70	30	
Perfluorododecanoic acid (PFDoA)	5.00	4.84		ug/Kg		97	70	30	
Perfluorotridecanoic acid (PFTriA)	5.00	4.79		ug/Kg		96		30	
Perfluorotetradecanoic acid (PFTeA)	5.00	3.95		ug/Kg		79		30	
Perfluorobutanesulfonic acid (PFBS)	4.42	4.16		ug/Kg		94		30	
Perfluorohexanesulfonic acid (PFHxS)	4.55	4.07		ug/Kg		90		30	
Perfluoroheptanesulfonic Acid (PFHpS)	4.76	4.25		ug/Kg		89		30	
Perfluorooctanesulfonic acid (PFOS)	4.64	4.61		ug/Kg		99		30	
Perfluorodecanesulfonic acid (PFDS)	4.82	4.12		ug/Kg		85		30	
Perfluorooctanesulfonamide (FOSA)	5.00	ND		ug/Kg					
N -methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	5.00	ND		ug/Kg					
N -ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	5.00	ND		ug/Kg					
:2 FTS	4.74	ND		ug/Kg					
8:2 FTS	4.79	ND		ug/Kg					

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-426024/3-A
Matrix: Solid
Analysis Batch: 427825

Analyte	Spike Added	$\begin{aligned} & \text { LCSD } \\ & \text { It } \end{aligned}$	LCSD Qualifier	Unit	D	\%Rec	\%R		PD	$\begin{aligned} & \text { PD } \\ & \text { Limit } \end{aligned}$
Perfluorobutanoic acid (PFBA)	5.00	7.25	*	ug/Kg		45	70	30	5	3
Perfluoropentanoic acid (PFPeA)	5.00	4.89		ug/Kg		98	70	30	3	30
Perfluorohexanoic acid (PFHxA)	5.00	5.96		ug/Kg		9	70	30		30
Perfluoroheptanoic acid (PFHpA)	5.00	. 07		ug/Kg			70	30		30
Perfluorooctanoic acid (PFOA)	5.00	4.3	*	ug/Kg		87	70	30		30
Perfluorononanoic acid (PFNA)	5.00	5.39		ug/Kg		8	70	30		30
Perfluorodecanoic acid (PFDA)	5.00	5.25		ug/Kg		5	70	30	5	30
Perfluoroundecanoic acid (PFUnA)	5.00	4.34		ug/Kg		87	70	30		30
Perfluorododecanoic acid (PFDoA)	5.00	4.77		ug/Kg		95	70	30		30
Perfluorotridecanoic acid (PFTriA)	5.00	4.48		ug/Kg		90	70	30	7	30
Perfluorotetradecanoic acid (PFTeA)	5.00	4.18		ug/Kg		84	70	30		30
Perfluorobutanesulfonic acid (PFBS)	4.42	4.37		ug/Kg		99	70	30	5	30
Perfluorohexanesulfonic acid (PFHxS)	4.55	3.98		ug/Kg		88	70	30		30
Perfluoroheptanesulfonic Acid (PFHpS)	4.76	4.48		ug/Kg		94	70	30	5	30
Perfluorooctanesulfonic acid (PFOS)	4.64	4.79		ug/Kg		3	70	30	4	30
Perfluorodecanesulfonic acid (PFDS)	4.82	4.08		$u \mathrm{~g} / \mathrm{Kg}$		85	70	30		30
Perfluorooctanesulfonamide (FOSA)	5.00	ND		ug/Kg					NC	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	5.00	ND		ug/Kg					NC	30

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

LCMS

Prep Batch: 426022
$\left[\begin{array}{l}\text { Lab Sample ID } \\ \hline 460-221262-4 \\ 460-221262-22 \\ \text { MB 320-426022/1-A } \\ \text { LCS 320-426022/2-A } \\ \text { LCSD 320-426022/3-A }\end{array}\right.$

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
S15-SOIL-102120	Pre-Treatment	Solid	TOP Pre-Prep	
S8B-SOIL-102120	Pre-Treatment	Solid	TOP Pre-Prep	
Method Blank	Pre-Treatment	Solid	TOP Pre-Prep	
Lab Control Sample	Pre-Treatment	Solid	TOP Pre-Prep	
Lab Control Sample Dup	Pre-Treatment	Solid	TOP Pre-Prep	

Prep Batch: 426024

Lab Sample ID	
$460-221262-4$	
$460-221262-22$	
MB 320-426024/1-A	
LCS 320-426024/2-A	
LCSD $320-426024 / 3-A$	S

Client Sample ID
S15-SOIL-102120
S8B-SOIL-102120
Method Blank
Lab Control Sample
Lab Control Sample Dup

Prep Type	Matrix		Method	
	Post-Treatment	Solid	TOP Post-Prep	
Post-Treatment	Solid		TOP Post-Prep	
Post-Treatment	Solid	TOP Post-Prep		

Analysis Batch: 427825

Lab Sample ID	Client Sample ID
460-221262-4	S15-SOIL-102120
460-221262-4	S15-SOIL-102120
460-221262-22	S8B-SOIL-102120
460-221262-22	S8B-SOIL-102120
MB 320-426022/1-A	Method Blank
MB 320-426024/1-A	Method Blank
LCS 320-426022/2-A	Lab Control Sample
LCS 320-426024/2-A	Lab Control Sample
LCSD 320-426022/3-A	Lab Control Sample Dup
LCSD 320-426024/3-A	Lab Control Sample Dup

Analysis Batch: 428349

$\left[\begin{array}{lllll}\text { Lab Sample ID } & \text { Client Sample ID } & \text { Prep Type } & \text { Matrix } & \\\right.$\cline { 1 - 1 } $460-221262-4 & \text { S15-SOIL-102120 } & & \text { Sre-Treatment } & \text { Solid } \\ 460-221262-22 & \text { S8B-SOIL-102120 } & \text { Pre-Treatment } & \text { Solid } & \text { Total PFCA-Sum } \\ \hline\end{array}$

Analysis Batch: 428350

$\left[\begin{array}{ll}\text { Lab Sample ID } & \text { Client Sample ID } \\ \hline 460-221262-4 & \text { S15-SOIL-102120 } \\ 460-221262-22 & \text { S8B-SOIL-102120 }\end{array}\right.$

Prep Type	Matrix	Method		Prep Batch	
Post-Treatment	Solid	537 (modified)		426024	
Pre-Treatment	Solid		537 (modified)		426022
Post-Treatment	Solid	537 (modified)	426024		
Pre-Treatment	Solid	537 (modified)	426022		
Pre-Treatment	Solid	537 (modified)	426022		
Post-Treatment	Solid	537 (modified)	426024		
Pre-Treatment	Solid	537 (modified)	426022		
Post-Treatment	Solid	537 (modified)	426024		
Pre-Treatment	Solid	537 (modified)	426022		
Post-Treatment	Solid	537 (modified)	426024		

Analysis Batch: 428352

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-221262-4	S15-SOIL-102120	Total/NA	Solid	Total PFCA-Dif	
460-221262-22	S8B-SOIL-102120	Total/NA	Solid	Total PFCA-Dif	

Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Ttal PFCA-Dif		1	428352	11/04/20 10:37	SHK	TAL SAC
Post-T eatment	Analysis	Ttal PFCA-Sum		1	428350	11/04/20 10:36	SHK	TAL SAC
Pre-T eatment	Analysis	Ttal PFCA-Sum		1	428349	11/04/20 10:34	SHK	TAL SAC

Client Sample ID: S15-SOIL-102120
Lab Sample ID: 460-221262-4
Date Collected: 10/21/20 10:35
Matrix: Solid
Date Received: 10/23/20 10:00
Percent Solids: 62.7

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Post-T eatment	Prep	TOP Post-Prep			426024	10/27/20 20:17	JER	TAL SAC
Post-T eatment	Analysis	537 (modified)		1	427825	11/03/20 00:19	JRB	TAL SAC
Pre-T eatment	Prep	TOP Pre-Prep			426022	10/27/20 20:12	JER	TAL SAC
Pre-T eatment	Analysis	537 (modified)		1	427825	11/02/20 23:03	JRB	TAL SAC

Client Sample ID: S8B-SOIL-102120
Lab Sample ID: 460-221262-22
Date Collected: 10/21/20 14:10
Matrix: Solid
Date Received: 10/23/20 10:00

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Ttal/NA	Analysis	Ttal PFCA-Dif		1	428352	11/04/20 10:37	SHK	TAL SAC
Post-T eatment	Analysis	T tal PFCA-Sum		1	428350	11/04/20 10:36	SHK	TAL SAC
Pre-T eatment	Analysis	Ttal PFCA-Sum		1	428349	11/04/20 10:34	SHK	TAL SAC

Client Sample ID: S8B-SOIL-102120 Lab Sample ID: 460-221262-22
Date Collected: 10/21/20 14:10
Matrix: Solid
Date Received: 10/23/20 10:00
Percent Solids: 79.6

Prep Type	Batch Typ	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Post-T eatment	Prep	TOP Post-Prep			426024	10/27/20 20:17	JER	TAL SAC
Post-T eatment	Analysis	537 (modified)		1	427825	11/03/20 00:28	JRB	TAL SAC
Pre-T eatment	Prep	TOP Pre-Prep			426022	10/27/20 20:12	JER	TAL SAC
Pre-T eatment	Analysis	537 (modified)		1	427825	11/02/20 23:13	JRB	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Laboratory: Eurofins TestAmerica, Sacramento
Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.
$\frac{\text { Authority }}{\text { ew } \mathrm{k}} \frac{\text { Program }}{\text { ELAP }} \frac{\text { Identification Number }}{11666} \frac{\text { Expiration Date }}{04-01-21}$

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
	537 (modified)	TOP Post-Prep	Solid
537 (modified)	TOP Post-Prep	Solid	6:2 FTS
537 (modified)	TOP Post-Prep	Solid	8:2 FTS
537 (modified)			-ethylperfluorooctanesulfonamidoacetic
		TOP Post-Prep	Solid

Accreditation/Certification Summary

Client: New k State D.E.C.

Laboratory: Eurofins TestAmerica, Sacramento (Continued)

Unless otherwise noted, all analytes for this laboratory were c vered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
ew k	ELAP	11666	04-01-21
T tal PFCA-Dif	Solid	PFBA	
Ttal PFCA-Dif	Solid	PFHpA	
Ttal PFCA-Dif	Solid	PFHxA	
Ttal PFCA-Dif	Solid	PFNA	
Ttal PFCA-Dif	Solid	PFOA	
Ttal PFCA-Dif	Solid	PFPA	
Ttal PFCA-Dif	Solid	Ttal PFCA	
Ttal PFCA-Sum	Solid	Ttal PFCA	

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
Total PFCA-Dif	Total PFCA (Treatment Difference)	TAL SOP	TAL SAC
Total PFCA-Sum	Total PFCA (Summary)	TAL SOP	TAL SAC
TOP Post-Prep	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC
TOP Pre-Prep	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.
TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-221262-4	S15-SOIL-102120	Solid	10:35	3/20 10:00	
460-221262-22	S8B-SOIL-102120	Solid	14:10	3/20 10:00	

13

Eurofins TestAmerica, Edison
777 New Durham Road
Edison, NJ 08817
Phone: 732-549-3900 Fax. 732-549-3679

Eurofins TestAmerica, Edison
777 New Durham Road
Edison, NJ 08817
Phone: 732-549-3900 Fax: 732-549-3679

Albany
Chain of Custody Record
eurofins \#224

Environment Testing America

Phone: 732-549-3900 Fax 732-549-3679
Chain of Custody Record
Albany \#224
\approx eurofins Ametica
 Receipt Temperature and pH Log
Job Number: \square
IR Gun \#
II

Sample No(s). adjusted: \qquad
Preservative Name/Conc.: \qquad Volume of Preservative used (ml): \qquad
Lot \# of Preservatives): \qquad Expiration Date: \qquad
The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. 'Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Initials: \qquad Date

 naintain accieditition in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or olher instructions will be provided. Any changes to accreditation status should be brought to Eurofins
Possible Hazard Identification

Possible Hazard Identification Unconfirmed				
Deliverable Requested: I, 11, II, IV, Other (specify)		Primary Deliverable Rank: 2		
Empty Kit Relinquished by:		Date:		Time:
Relinquished b) Relinquishedoy \qquad		$10 / 28 / 20-1630$	CTASAC	
Relinquished by:		DateTime:	Company	
Custody Seals Intact: \triangle Yes \triangle No	Custody Seal No.:			

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) $\square_{\text {Return To Client } \quad \square_{\text {Disposal By Lab }} \quad \square \text { Archive For }}$ Months Special Instructions/QC Requirements:

$$
\pi
$$

Eurofins TestAmerica, Edison
777 New Durham Roa
Chain of Custody Record |||||||| $||\mid$

Phone: 732-549-3900 Fax: 732-549-3679

Phone: 732-549-3900 Fax: 732-549-3679

 maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins restAmenca attention immediately. II all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica:
Possible Hazard Identification

Unconfirmed

Deliverable Requested: I. II. III. IV. Other (specify)
 Sample Disposal (A fee may be assessed If samples are retained longer than 1 month)

Relinquished by		Date/ting	$\stackrel{\text { Comgany }}{-1}$
Relinquished by		Date-Time	Company
Relinquished by		DaterTime	Company
Custody Seals Intact: Δ Yes \triangle No	Custody Seal No.:		

 TestAmerica attention inmediately. If all requested accreditations are current lo date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica
Thaine

Phone: 732-549-3900 Fax: 732-549-3679

 maintain accreditation in the State of Ongin listed above for analysis/esis/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmenca laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately, Hall requested accreditations are current to date, returm the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica

SO PPD / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other
Tracking\#: 8142 9456 6408
\qquad
Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature \& corrected Temperature \& other observations. File in the job folder with the COC.

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 460-221262-2

Login Number: 221262
List Source: Eurofins T stAmerica, Edison
List Number: 1
Creator: Rivera, Kenneth

Question	Answer	Comment
adioactivity either was not measured or, if measured, is at or below background	IA	
The cooler's custody seal, if present, is intact.	True	custody seal p esent
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs).	False	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is $<6 \mathrm{~mm}$ (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	/A	

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 460-221262-2

Login Number: 221262
List Source: Eurofins T stAmerica, Sacramento
List Creation: 10/27/20 01:55 PM
List Number: 2
Creator: Saephan, Kae C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	1134166
Sample custody seals, if present, are intact.	/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	b: 1.3c corr: 1.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	/A	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	/A	

Login Sample Receipt Checklist

Client: New k State D.E.C.
Job Number: 460-221262-2

Login Number: 221262
List Source: Eurofins T stAmerica, Sacramento
List Creation: 10/27/20 02:35 PM
List Number: 3
Creator: Saephan, Kae C

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	1134166
Sample custody seals, if present, are intact.	/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	b: 1.3c corr: 1.8c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	/A	
There is sufficient vol. for all requested analyses, incl. any equested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	/A	

Data Usability Summary Report - Norlite Cohoes Site

Review by Dana M. Barbarossa
NYSDEC
Division of Environmental Remediation
Bureau of Technical Support

A review of the analytical data has been completed for twenty-eight soil samples and nineteen surface water samples collected on October 21, 2020, October 30, 2020, and November 6, 2020, as part of an investigation related to the Norlite facility in Cohoes, NY. Soil and surface water samples were analyzed at Eurofins Test America in Sacramento, California for a specific list of twenty-one per- and polyfluoroalkyl substances (PFAS) using a modified 537 methodology (Modified 537). Two soil samples and two surface water samples were analyzed for Total Oxidizable Precursors (TOP Assay) using Test America's SOP and modified 537.

Data was evaluated using guidelines set forth in NYSDEC's Sampling, Analysis, and Assessment of Per-and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs (October 2020) and USEPA National Functional Guidelines for Organic Data Review.

Some data required qualification that may or may not affect data quality and usability. Data that was qualified during the quality assurance review is detailed below. Full data review summaries can be found attached to this report.

Holding time and preservation
Several soil samples were re-prepared outside of holding time due to the lab control spike for the data recovering outside of the control limits. The results from both sets of samples were compared and the relative percent difference (RPD) calculated. The RPD of the set of results were within 20% relative percent difference. The samples analyzed within the holding time were reported.

Signal to Noise Ratio

The signal to noise ratio for several analytes did not meet the criteria of $3: 1$. PFPeA ion ratios were below the criteria of 3:1 in samples HFPCW2, HFW2, HFW3, HFW4, HFW DUP, HFW1, PC1. The signal to noise ratios for PFBS in HFPCW2, PFBA in PC1, and PFHxA in HFW1 were below 3:1 as well.

The peaks for the individual analytes were evaluated to determine if they were discernable from what would be considered baseline noise. In each instance, the peaks did not appear to be baseline noise and results were reported with no qualification as a result. These findings were consistent with the laboratory's analyst findings.

Secondary Ions

The ratio of quantifier to qualifier ion was outside of the lab derived criteria for several analytes in multiple different samples. PFuNA in S1, PFHxS in S6A, S6B, S7A, and S9A, PFNA in HFW3, PFOS in HFW3 and HFSCW2, and PFBS in HFSCW1.

The affected analytes were qualified by the lab with the addition of an "l" flag indicating that ratios were outside of the range and that the identity of these analytes have some degree of uncertainty. All the samples were already qualified with a " J " flag due to analyte concentrations below the reporting limit, therefore, further qualification of those samples is not necessary.

Blanks

Equipment blanks, trip blanks, and field blanks were collected as part of the sampling effort. The lab also analyzed method blanks as prescribed in the SOP. Field-generated blanks had no detections indicating samples were not contaminated by field activities or equipment. The laboratory method blanks for the soil samples had detections of PFOS and PFBA below the reporting limit. The corresponding analytes in the samples were qualified or changed in one of the three ways: (1) qualified with a J+ qualifier indicating a high bias (2) the result changed to non-detect at the reporting limit if the amount in the blank and sample were both below the reporting limit and (3) the B flag applied by the lab was removed because the amount in the samples was ten times that of the blank indicating the result was not due to lab contamination. The detailed qualifications for each sample can be found in the attached data review summaries.

Both post treatment method blanks for the TOP Assay analysis had detections of PFBA due to oxidation of the reverse surrogate. The soil method blank had a PFBA detection of $1.12 \mathrm{ug} / \mathrm{kg}$ and the water method blank $11.3 \mathrm{ng} / \mathrm{L}$. Although blank subtraction is not typically practiced, the PFBA in this case should be subtracted from the post treatment samples to allow for a more accurate indication of precursor transformation in the sample.

Lab Control Spike

One lab control spike (320-426095/2-A) was outside of the lab derived control limits for PFOS and PFDS with recoveries of 166% and 62%, respectively. PFOS in S9A, S9B, S5, and S10 is biased high and qualified accordingly with a "J+". Results for PFDS in S9A, S9B, S5, and S10 are biased low, therefore, all positive detections are qualified with a "J-" qualifier and nondetects with a "UJ" qualifier.

The lab control spike and lab control spike duplicate for the post treatment TOP Assay soil samples recovered high for PFOS. Therefore, the PFOS detections in the post treatment samples are biased high and qualified with a " $J+$ ".

Matrix Spike/Matrix Spike Duplicate

Two matrix spikes and matrix spike duplicates, 460-221262-12 and 460-221262-9, were outside of the control limits for PFUnA. Since the lab control spikes were within the quality control criteria, matrix interferences are suspected. Detections of PFUnA in parent samples, S-11 and Dup1, are qualified as estimated with a "J" flag.

Isotope Dilution Analytes

The isotope dilution analyte recoveries for 6:2FTS and 8:2FTS were outside of the control limits for several soil and water samples:

PC1-SOIL (M26SFTS 188\%; M282FTS 209\%), PC2-SOIL (M26SFTS 159\%; M282FTS 186\%), S2-SOIL (M26SFTS 153\%), S15-SOIL (M282FTS 178\%), S13-SOIL(M282FTS 172\%), S2-SOIL (M282FTS 191\%), LFWater4 (M262FTS 163\%; M282FTS 155\%), LFWater7 (M262FTS 166\%; M282FTS 151\%)

Since the recoveries were outside of the quality control limits, positive detections of the affected native analytes are qualified with a "J" and non-detects qualified with a "UJ".

Reporting Limits

Reporting limits met the project objectives as outlined in NYSDEC's Sampling, Analysis, and Assessment of Per-and Polyfluoroalkyl Substances (PFAS) PFAS Sampling guidance with a few exceptions. NMeFOSAA, NEtFOSAA, 6:2 FTS, and 8:2 FTS in soil samples and PFBA, NMeFOSAA, NEtFOSAA, and 6:2 FTS in water samples were approximately ten times higher than the reporting limits for the remaining analytes. These analytes can be problematic; therefore, the lab has raised the reporting limits to allow for more accurate and reproducible reporting. The elevated reporting limits for these compounds were approved prior to the start of the project.

SITE	SDG No.
Norlite - Cohoes 401041	320-66212-1
LABORATORY	NO. OF SAMPLES
Eurofins Test America Sacramento	COMPLETION DATE
SAMPLE ID	$12 / 28 / 2020$
HFPCW2-Water-10302020	
HFPCW2-Water-10302020	
HFW3-Water-10302020	
HFW4-Water-10302020	
HFW DUP 10302020	
HFW-Equipment Blank-10302020	
HFW-Field Blank-10302020	
HFSCW2-Water-10302020	
HFSCW1-Water-10302020	
HFW1-Water-10302020	
HFPCW3-Water-10302020	
HFPCW4-Water-10302020	
DATES SAMPLED	ANALYTICAL METHOD
10/30/2020	Modified 537

PFAS Non-Potable Water

Review Criteria	Acceptance Criteria	Criteria Met (Y/N)	Comments/Action
Preservation and Holding Times	< 14 days to extract, 28 days to analyze extract <10C when received at the lab (not to exceed 10C within the first 48 hours)	Sampled 10/30/2020 Prepared 11/2/2020 Analyzed 11/4/2020 Criteria were met -5 Standards	No action necessary
Calibration	Criteria were met	No action necessary	
Blanks	No detections above the reporting limit	Criteria were met	No action necessary
Initial Calibration Verification	LL ICV 50-150\% HL ICV 70-130\%	Criteria were met	No action necessary

Continuing Calibration Checks (CCC)	Frequency - beginning and end of run, and after every $10^{\text {th }}$ sample $70-130 \%$ Recovery	Criteria were met	No action necessary
Duplicates	RPD $\leq 30 \%$ for analyte concentrations greater than 2x the reporting limit	A field duplicate was collected at location HFW4-Water 10302020 RPDs were <30	No action necessary
MS/MSD	In house limits 70- 130% RPD <30\%	Criteria were met	No action necessary
Extracted Internal Standards (Isotope Dilution Analytes)	$25-150 \%$	Criteria were met	No action necessary
Lab Control Spike	$70-130 \%$ or in house control limits 1 per 20 samples	Criteria were met	No action necessary
Sample Result Info Accuracy	Sample information on result pages must match COC	Discrepancies were noted in the Case Narrative and samples logged in according to the Chain of Custody	No action necessary
Peak Integration	Peaks must be integrated properly	Peaks were integrated properly	No action necessary
Secondary ion (qualifier ion) monitoring	Secondary ion transition should be monitored, and the ratio of quantifier ion to qualifier ion must be within lab defined criteria	Criteria were not met for the following samples and analytes: HFW3 PFNA PFOS HFSCW2 PFOS HFSCW1 PFBS Analytes were qualified by the lab with an "l" qualifier	No additional qualification necessary

		indicating the ion ratios are outside of the criteria and the identification of those analytes have some degree of uncertainty.	
Signal to noise ratio	Signal to noise ratio should be calculated for each compound. $\mathrm{s} / \mathrm{n}>3$ for quant ion	HFPCW2 PFPeA 2.6 PFBS 2.8 HFW2 PFPeA 0.9 HFW3 PFPeA 1.4 HFW4 PFPeA 2.4 HFW DUP PFPeA 2.3 HFW1 PFPeA 0.8 PFHxA 2.9 Signal to noise less than 3. However, peaks do not appear to be baseline noise based on peak intensity and shape.	No action necessary
Branched and linear isomers	Both branched and linear isomers should be used for calibration curves and sample quantification	Branched and linear isomers were used	No action necessary
Ion Transitions	PFOA $413>369$ PFOS $499>80$ PFHxS $399>80$ PFBS $299>80$ 6:2 FTS $427>407$ 8:2 FTS $527>507$ NEtFOSAA 584 > 419 NMeFOSAA 570 > 419	The correct ion transitions were used	No action necessary
Reporting Limits	Must meet project objectives $2 \mathrm{ng} / \mathrm{L}$ for PFOA and PFOS	Reporting limits met the project objectives with the following exceptions. The reporting limits for	No action necessary

		NMeFOSAA, NEtFOSAA, 6:2FTS, and PFBA are ~10x higher than other analytes. These elevated reporting limits have been pre- approved by DEC.

Data Reviewed By: DMB

SITE	SDG No.	
Norlite - Cohoes 401041	460-221262-1	
LABORATORY	NO. OF SAMPLES	
Eurofins Test America Sacramento	28	
SAMPLE ID		COMPLETION DATE
PC1-SOIL-102120	S6B-SOIL-102120	$1 / 15 / 2021$
PC2-SOIL-102120	S7A-SOIL-102120	
S15-SOIL-102120	S7B-SOIL-102120	
S14-SOIL-102120	S8A-SOIL-102120	
S13-SOIL-102120	S8B-SOIL-102120	
S16-SOIL-102120	S9A-SOIL-102120	
S2-SOIL-102120	S9B-SOIL-102120	
DUP1-SOIL-102120	S5-Soil-102120	
S3-SOIL-102120	S10-Soil-102120	
S4-SOIL-102120	TB1-102120	
S11-SOIL-102120	TB2-102120	
S12-SOIL-102120		
Equipment Blank 102120		
DUP2-SOIL-102120		
Field Blank 102120		ANALYTICAL METHOD
S1-SOIL-102120		
S6A-SOIL-102120		
DATES SAMPLED		
10/21/2020		

PFAS Soil

Review Criteria	Acceptance Criteria	Criteria Met (Y/N)	Comments/Action
Preservation and Holding Times	< 14 days to extract, 28 days to analyze extract <10C when received at the lab (not to exceed 10C within the first 48 hours)	Sampled 10/21/2020 Extracted 10/27/2020,10/28/2020 10/30/2020, 11/2/2020 Analyzed 10/28/2020, 10/29/2020, 10/30/2020, 11/1/2020, 11/2/2020, 11/5/2020 *S9A-SOIL, S9B-SOIL, S9B-SOIL MS, S9BSOIL MSD, S5-SOIL, S10-SOIL were reprepared out of holding time due to the LCS recovery being outside of the limits. Both sets of data were reported.	Preservation and holding time requirements were met Both sets of results compared within 20\%. Recommend reporting results extracted within holding time.

Calibration	$\begin{aligned} & \hline 5 \text { Standards } \\ & \text { \%RSD <20 } \end{aligned}$	Criteria were met	No action necessary
Blanks	No detections above the reporting limit	MB 320-426095/1-A PFOS 0.479J PFBA 0.03895J MB 320-426094/1-A PFOS 0.3275J Equipment blank, trip blanks, and field blanks had no detections.	S11-SOIL PFOS J+ S12-SOIL PFOS change to ND at RL DUP2-SOIL PFOS change to ND at RL S1-SOIL PFOS J+ S6A-SOIL PFOS J+ S6B-SOIL PFOS J+ S7A-SOIL PFOS J+ S7B-SOIL PFOS J+ S8A-SOIL PFOS remove B flag S8B-SOIL PFOS remove B flag S9A-SOIL PFOS J+ PFBA change to ND at RL S9B-SOIL PFOS J+ PFBA change to ND at RL S5-SOIL PFOS J+ PFBA remove B flag S10-SOIL PFOS J+ PFBA remove B flag Ro a
Initial Calibration Verification	LL ICV 50-150\% HL ICV 70-130\%	Criteria were met	No action necessary
Continuing Calibration Checks (CCC)	Frequency beginning and end of run, and after every $10^{\text {th }}$ sample 70-130\% Recovery	Criteria were met	No action necessary

Duplicates	RPD $\leq 30 \%$ for analyte concentrations greater than $2 x$ the reporting limit	Duplicates were collected at S2-SOIL and S4-SOIL RPDs were within limits	No action necessary
MS/MSD	$\begin{aligned} & \text { In house limits 70- } \\ & 130 \% \\ & \text { RPD <30\% } \end{aligned}$	460-221262-12 MS/MSD PFUnA (133\%/145\%) 460-221262-9 MS/MSD PFUnA (148\%/151\%)	$\begin{aligned} & \frac{\text { S11-soil }}{\text { PFUnA J flag }} \\ & \frac{\text { Dup1 }}{\text { PFUnA J flag }} \end{aligned}$
Extracted Internal Standards (Isotope Dilution Analytes)	25-150\%	$\begin{aligned} & \text { M262FTS: PC1-SOIL } \\ & \text { (188\%), PC2-SOIL } \\ & (159 \%), \text { S2-SOIL } \\ & (153 \%) \\ & \text { M282FTS: PC1-SOIL } \\ & (209 \%), \text { PC2-SOIL } \\ & (186 \%), \text { S15-SOIL } \\ & (178 \%), \text { S13- } \\ & \text { SOIL(172\%), S2-SOIL } \\ & (191 \%) \\ & \hline \end{aligned}$	Corresponding positive detections of the native compounds were qualified by the lab no additional qualification needed. Qualify non-detects with a UJ.
Lab Control Spike	Lab derived control limits of $\sim 70-130 \%$ were used 1 LCS per 20 samples	$\begin{aligned} & \text { LCS 320-426095/2-A } \\ & \text { PFOS (166\%) } \\ & \text { PFDS (62\%) } \end{aligned}$	S9A-SOIL-102120 PFOS J+ PFDS J- S9B-SOIL-102120 PFOS J+ PFDS J- S5-Soil-102120 PFOS J+ PFDS UJ S10-Soil-102120 PFOS J+ PFDS UJ
Sample Result Info Accuracy	Sample information on result pages must match COC	Sample information on result pages matched the COC	No action necessary
Peak Integration	Peaks must be integrated properly	Peaks were integrated properly	No action necessary
Secondary ion (qualifier ion) monitoring	Secondary ion transition should be monitored, and the ratio of quantifier ion to qualifier ion must	Ion ratios did not meet criteria for $\frac{\text { S1-SOIL }}{\text { PFUnA }}$	No additional qualification necessary

	be within lab defined criteria	$\begin{aligned} & \text { S6A-SOIL, S6B-SOIL, } \\ & \hline \text { S7A-SOIL, S9A-SOIL } \\ & \text { PFHxS } \\ & \text { Analytes were qualified } \\ & \text { by the lab with an "I" } \\ & \text { qualifier indicating the } \\ & \text { ion ratios are outside of } \\ & \text { the criteria and the } \\ & \text { identification of those } \\ & \text { analytes have some } \\ & \text { degree of uncertainty. } \\ & \hline \end{aligned}$	
Signal to noise ratio	Signal to noise ratio should be calculated for each compound. $\mathrm{s} / \mathrm{n}>3$ for quant ion	$\begin{aligned} & \frac{\text { PC1-SOIL }}{\text { PFBA } 2.1} \\ & \text { PFPeA } 2.0 \\ & \frac{\text { S8B-SOIL }}{\text { PFPeA } 2.6} \end{aligned}$ Signal to noise ratio was less than 3. However, peaks do not appear to be baseline noise based on peak intensity and shape.	No action necessary
Branched and linear isomers	Both branched and linear isomers should be used for calibration curves and sample quantification	Branched and linear isomers were used	No action necessary
Ion Transitions	PFOA $413>369$ PFOS $499>80$ PFHxS $399>80$ PFBS $299>80$ 6:2 FTS $427>407$ 8:2 FTS $527>507$ NEtFOSAA 584 > 419 NMeFOSAA 570 > 419	The correct ion transitions were used	No action necessary
Reporting Limits	Must meet project objectives $0.5 \mathrm{ug} / \mathrm{kg}$ for all analytes	Reporting limits met the project objectives with the following exceptions. The reporting limits for NMeFOSAA, NEtFOSAA, 6:2FTS, and 8:2 FTS are $\sim 10 x$	No action necessary

		higher than other analytes. These elevated reporting limits have been pre- approved by DEC. PFOS reporting limits were between 0.5ug/kg and 0.83 ug/kg.	

Data Reviewed By: DMB

SITE	SDG No.
Norlite - Cohoes 401041	320-66472-1
LABORATORY	NO. OF SAMPLES
Eurofins Test America Sacramento	11
SAMPLE ID	COMPLETION DATE
LF Water 2 11062020	$12 / 28 / 2020$
LF Water 311062020	
LF Water 6 11062020	
LF Water 4 11062020	
LF Water 5 11062020	
LF Water 7 11062020	
LF Water 8 11062020	
DUP 11062020	
Field Blank 11062020	
Equipment Blank 11062020	
Trip Blank 11062020	ANALYTICAL METHOD
DATES SAMPLED	Modified 537
11/6/2020	

PFAS Non-Potable Water

Review Criteria	Acceptance Criteria	Criteria Met (Y/N)	Comments/Action
Preservation and Holding Times	< 14 days to extract, 28 days to analyze extract <10C when received at the lab (not to exceed 10C within the first 48 hours)	Sample 11/6/2020 Prepared 11/11/2020 Analyzed 11/12/2020 Criteria were met	No action necessary
Calibration	-5 Standards $-\%$ RSD <20 $-R^{2}>0.99$ (linear fit)	Criteria were met	No action necessary
Blanks	No detections above the reporting limit	Criteria were met	No action necessary
Initial Calibration Verification	LL ICV 50-150\% HL ICV 70-130\%	Criteria were met	No action necessary

Continuing Calibration Checks (CCC)	Frequency beginning and end of run, and after every $10^{\text {th }}$ sample 70-130\% Recovery	Criteria were met	No action necessary
Duplicates	RPD $\leq 30 \%$ for analyte concentrations greater than $2 x$ the reporting limit	A field duplicate was collected at location LFWater 7 Criteria were met	No action necessary
MS/MSD	$\begin{aligned} & \text { In house limits } 70- \\ & 130 \% \\ & \text { RPD }<30 \% \end{aligned}$	Criteria were met	No action necessary
Extracted Internal Standards (Isotope Dilution Analytes)	25-150\%	LFWater4, LFWater7 M262FTS (163\%, 166\%), M282FTS (155\%,151\%)	LFWater 4 6:2FTS J 8:2FTS UJ LFWater 7 6:2FTS UJ 8:2FTS UJ
Lab Control Spike	$70-130 \%$ or in house control limits 1 per 20 samples	Criteria were met	No action necessary
Sample Result Info Accuracy	Sample information on result pages must match COC	Sample information on result pages matched the COC	No action necessary
Peak Integration	Peaks must be integrated properly	Criteria were met	No action necessary
Secondary ion (qualifier ion) monitoring	Secondary ion transition should be monitored, and the ratio of quantifier ion to qualifier ion must be within lab defined criteria	Criteria were met	No action necessary

Signal to noise ratio	Signal to noise ratio should be calculated for each compound. $\mathrm{s} / \mathrm{n}>3$ for quant ion	LF Water 6 PFPeA 2.8 Signal to noise less than 3. However, peaks do not appear to be baseline noise based on peak intensity and shape.	No action necessary
Branched and linear isomers	Both branched and linear isomers should be used for calibration curves and sample quantification	Branched and linear isomers were used	No action necessary
Ion Transitions	PFOA $413>369$ PFOS $499>80$ PFHxS $399>80$ PFBS $299>80$ 6:2 FTS $427>407$ 8:2 FTS $527>507$ NEtFOSAA 584 > 419 NMeFOSAA 570 > 419	The correct ion transitions were used	No action necessary
Reporting Limits	Must meet project objectives $2 \mathrm{ng} / \mathrm{L}$ for PFOA and PFOS	Reporting limits met the project objectives with the following exceptions. The reporting limits for NMeFOSAA, NEtFOSAA, 6:2FTS, and PFBA are $\sim 10 x$ higher than other analytes. These elevated reporting limits have been preapproved by DEC.	No action necessary

[^18]| SITE | SDG No. |
| :--- | :--- |
| Norlite - Cohoes \#401041 | 320-66473-1 |
| LABORATORY | NO. OF SAMPLES |
| Eurofins Test America - Sacramento | 07 |
| SAMPLE ID | COMPLETION DATE |
| LFSCW2-Water-11062020 | $12 / 17 / 2020$ |
| LFSCW1-Water-11062020 | |
| LFW1-Water-11062020 | |
| LFPCW1-Water-11062020 | |
| LFPCW2-Water-11062020 | |
| LFPCW3-Water-11062020 | ANALYTICAL METHOD |
| LFPCW4-Water-11062020 | Modified 537 |
| DATES SAMPLED | |
| 11/6/2020 | |

PFAS Non-Potable Water

Review Criteria	Acceptance Criteria	Criteria Met (Y/N)	Comments/Action
Preservation and Holding Times	< 14 days to extract, 28 days to analyze extract <10C when received at the lab (not to exceed 10C within the first 48 hours)	Samples 11/6/2020	Prepared 11/13/2020
Analyzed 11/14/2020	Criteria were met		
Calibration necessary			
Blanks	\% Standards RRS <20 $R^{2}>0.99$ (linear fit)	Criteria were met	No action necessary
Initial Calibration Verification	No detections above the reporting limit HL ICV 50-150\%	Criteria were met	No action necessary
	Criteria were met	No action necessary	
Continuing Calibration Checks (CCC)	Frequency - beginning and end of run, and after every $10^{\text {th }}$ sample $70-130 \%$ Recovery	Criteria were met	No action necessary

Duplicates	RPD $\leq 30 \%$ for analyte concentrations greater than 2x the reporting limit	A field duplicate was not collected	Could not be evaluated
MS/MSD	In house limits 70- 130% RPD <30\%	A matrix spike and matrix spike duplicate were not collected	Matrix effects could not be evaluated
Extracted Internal Standards (Isotope Dilution Analytes)	$25-150 \%$	Criteria were met	No action necessary
Lab Control Spike	$70-130 \%$ or in house control limits 1 per 20 samples	Criteria were met	No action necessary
Sample Result Info Accuracy	Sample information on result pages must match COC	Sample information on result pages matches the COC	No action necessary
Peak Integration	Peaks must be integrated properly	Criteria were met	No action necessary
Secondary ion (qualifier ion) monitoring	Secondary ion transition should be monitored, and the ratio of quantifier ion to qualifier ion must be within lab defined criteria	Criteria were met	No action necessary
Branched and linear isomers	Signal to noise ratio should be calculated for each compound. B/n > 3 for quant ion Both branched and linear isomers should	Branched and linear isomers were used calibration curves and sample quantification	No action necessary

Ion Transitions	PFOA $413>369$ PFOS $499>80$ PFHxS $399>80$ PFBS $299>80$ 6:2 FTS $427>407$ 8:2 FTS $527>507$ NEtFOSAA 584 > 419 NMeFOSAA 570 > 419	The correct ion transitions were used	No action necessary
Reporting Limits	Must meet project objectives $2 \mathrm{ng} / \mathrm{L}$ for PFOA and PFOS	Reporting limits met the project objectives with the following exceptions. The reporting limits for NMeFOSAA, NEtFOSAA, 6:2FTS, and $8: 2$ FTS are $\sim 10 x$ higher than other analytes. These elevated reporting limits have been preapproved by DEC.	

SITE	SDG No.
Norlite - Cohoes \#401041	460-221262-2
LABORATORY	NO. OF SAMPLES
Eurofins Test America Sacramento	02
SAMPLE ID	COMPLETION DATE
S15-SOIL-102120	$1 / 29 / 2020$
S8B-SOIL-102120	
DATES SAMPLED	ANALYTICAL METHOD
$10 / 21 / 2020$	TOP Assay via TAL SOP \& Modified 537

Total Oxidizable Precursor Assay - PFAS

S15-SOIL-102120
Pre Top PFCA 1.8 ug/kg
Post TOP PFCA 3.0 ug/kg - 1.1 ug/kg (from blank) $=1.9 \mathrm{ug} / \mathrm{kg}$
Difference 0.1 ng/L
S8B-SOIL-102120
Pre Top PFCA 3.1 ug/kg
Post TOP PFCA $6.7 \mathrm{ug} / \mathrm{kg}$ - $1.1 \mathrm{ug} / \mathrm{kg}$ (from blank) $=5.4 \mathrm{ug} / \mathrm{kg}$
Difference $2.3 \mathrm{ug} / \mathrm{kg}$
$\left.\begin{array}{|l|l|l|l|}\hline \text { Review Criteria } & \text { Acceptance Criteria } & \text { Criteria Met (Y/N) } & \text { Comments/Action } \\ \hline \begin{array}{l}\text { Preservation and } \\ \text { Holding Times }\end{array} & \begin{array}{l}\text { < 14 days to extract, } \\ \text { 28 days to analyze } \\ \text { extract } \\ \text { <10C when received } \\ \text { at the lab } \\ \text { (not to exceed 10C } \\ \text { within the first 48 } \\ \text { hours) }\end{array} & \begin{array}{l}\text { Sample 10/21/2020 } \\ \text { Prepared 10/27/2020 } \\ \text { Analyzed 11/02/2020 } \\ \text { Criteria were met }\end{array} & \text { No action necessary } \\ \hline \text { Calibration } & \begin{array}{l}-5 \text { Standards } \\ \text {-\%RSD <20 }\end{array} & \text { Criteria were met } & \text { No action necessary } \\ \hline \text { Blanks } & \begin{array}{l}\text { No detections above } \\ \text { the reporting limit }\end{array} & \begin{array}{l}\text { MB 320-426024/1-A } \\ \text { (Post treatment } \\ \text { blank) PFBA 1.12 } \\ \text { ug/kg }\end{array} & \begin{array}{l}\text { Typically, blank } \\ \text { subtraction is not } \\ \text { practiced. However, } \\ \text { in this instance, if the } \\ \text { PFBA in the blank is }\end{array} \\ \text { not subtracted from }\end{array}\right\}$

		the PFBA in the blank has contributed to the PFBA in the post treatment sample.	will allow for a more accurate indication of precursor transformation in the sample.
Initial Calibration Verification	LL ICV 50-150\% HL ICV 70-130\%	Criteria were met	No action necessary
Continuing Calibration Checks (CCC)	Frequency beginning and end of run, and after every $10^{\text {th }}$ sample 70-130\% Recovery	Criteria were met	No action necessary
Extracted Internal Standards (Isotope Dilution Analytes)	50-150\%	S15 SOIL M262FTS (159\%) M282FTS (153\%) S8BSOIL MS62FTS (151\%)	No action necessary
Lab Control Spike	70-130\% or in house control limits 1 per 20 samples Precursor recovery 010\%	$\begin{aligned} & \text { Post Treatment } \\ & \text { PFOA }(\mathbf{2 5 9 \%} / \mathbf{2 8 7 \%}) \\ & \text { PFBA }(\mathbf{1 3 9} \% / \mathbf{1 4 5 \%} \end{aligned}$	PFOA results in the post treatment sample are biased high Add J+ qualifier
Sample Result Info Accuracy	Sample information on result pages must match COC	Sample information on result pages matched the COC	No action necessary
Peak Integration	Peaks must be integrated properly	Peaks were integrated properly	No action necessary
Secondary ion (qualifier ion) monitoring	Secondary ion transition should be monitored, and the ratio of quantifier ion to qualifier ion must be within lab defined criteria	Criteria were met	No action necessary
Reverse Surrogate	0-10\% Recovery of reserve surrogate M2-4:2FTS	Criteria were met, 0\% recovery	No action necessary

Signal to noise ratio	Signal to noise ratio should be calculated for each compound. $\mathrm{s} / \mathrm{n}>3$ for quant ion	Criteria were met	No action necessary
Branched and linear isomers	Both branched and linear isomers should be used for calibration curves and sample quantification	Branched and linear isomers were used	No action necessary
Ion Transitions	PFOA $413>369$ PFOS $499>80$ PFHxS $399>80$ PFBS $299>80$ 6:2 FTS $427>407$ 8:2 FTS $527>507$ NEtFOSAA 584 > 419 NMeFOSAA 570 > 419	The correct ion transitions were used	No action necessary
Reporting Limits	No criteria for TOP Assay	Reporting limits were elevated due to matrix interference. Reporting limits were approximately twice the typical reporting limits	No action necessary

SITE	SDG No.
Norlite - Cohoes \#401041	$320-66472-2$
LABORATORY	NO. OF SAMPLES
Eurofins Test America Sacramento	02
SAMPLE ID	COMPLETION DATE
LF Water 4 11062020	$1 / 27 / 2020$
LF Water 7 11062020	
DATES SAMPLED	ANALYTICAL METHOD
11/6/2020	TOP Assay via TAL SOP \& Modified 537

Total Oxidizable Precursor Assay - PFAS

LF Water 4

Pre Top PFCA 60ng/L
Post TOP PFCA 81 - 11 (from blank) $=70 \mathrm{ng} / \mathrm{L}$
Difference 10 ng/L
LF Water 7
Pre Top PFCA 62ng/L
Post TOP PFCA 100 - 11(from blank) = $89 \mathrm{ng} / \mathrm{L}$
Difference $27 \mathrm{ng} / \mathrm{L}$

Review Criteria	Acceptance Criteria	Criteria Met (Y/N)	Comments/Action
Preservation and Holding Times	< 14 days to extract, 28 days to analyze extract <10C when received at the lab (not to exceed 10C within the first 48 hours)	Sample 11/6/2020 Prepared 11/16/2020 Analyzed 11/18/2020 Criteria were met	No action necessary
Calibration	-5 Standards -\%RSD <20	Criteria were met	No action necessary
Blanks	No detections above the reporting limit	MB 320-432348/1-A (Post treatment blank) PFBA 11.3 ng / L The reverse surrogate M2-4:2FTS is oxidized in the post treatment sample and converted to PFBA. This amount indicates how much	Typically, blank subtraction is not practiced. However, in this instance, if the PFBA in the blank is not subtracted from the post top sample, the increase in post top PFCAs will be biased high. Subtracting a blank value in this instance

		the PFBA in the blank has contributed to the PFBA in the post treatment sample.	will allow for a more accurate indication of precursor transformation in the sample.
Initial Calibration Verification	LL ICV 50-150\% HL ICV 70-130\%	Criteria were met	No action necessary
Continuing Calibration Checks (CCC)	Frequency - beginning and end of run, and after every $10^{\text {th }}$ sample $70-130 \%$ Recovery	Criteria were met	No action necessary
Extracted Internal Standards (Isotope Dilution Analytes)	$50-150 \%$	Criteria were met	No action necessary
Lab Control Spike	$70-130 \%$ or in house control limits 1 per 20 samples	Criteria were met	No action necessary
Signal to noise ratio	Signal to noise ratio should be calculated Rrecursor recovery 0- 10%	Criteria were met	No action necessary
Reverse Surrogate	0-10\% Recovery of reserve surrogate S2-4:2FTS	Criteria were met, 0\% recovery	No action necessary
Sample Result Info Accuracy	Sample information on result pages must match COC	Sample information on result pages matched the COC	No action necessary
Secondary ion (qualifier ion) monitoring	Secondary ion transition should be monitored, and the ratio of quantifier ion to qualifier ion must be within lab defined criteria	Criteria were met	No action necessary
integrated properly			
integrated properly			

	for each compound. $\mathrm{s} / \mathrm{n}>3$ for quant ion		
Branched and linear isomers	Both branched and linear isomers should be used for calibration curves and sample quantification	Branched and linear isomers were used	No action necessary
Ion Transitions	PFOA $413>369$ PFOS $499>80$ PFHxS $399>80$ PFBS $299>80$ 6:2 FTS $427>407$ 8:2 FTS $527>507$ NEtFOSAA 584 > 419 NMeFOSAA 570 > 419	The correct ion transitions were used	No action necessary
Reporting Limits	No criteria for TOP Assay	Reporting limits were elevated due to matrix interference. Reporting limits were $5 \mathrm{ng} / \mathrm{L}$ for all compounds except NMeFOSAA, NEtFOSAA, 6:2FTS, and 8:2FTS at 50ng/L	No action necessary

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Materials Management, Bureau of Pest Management 625 Broadway, 9th Floor, Albany, New York 12233-7254 7257 P; (518) 402-(518) 402-8768 J2-9024
www.decny.gov

Memorandum

To: Mr. Dan Evans, Director, Bureau of Hazardous Waste and Radiation Management
From: John A. Miller, Bureau of Pesticides Management, Product Registration Section
Subject: Environmental Sampling Conducted by DEC Associated with Norlite, Matrix - Soils, Targets - Metals, Eurofins Job Number 460-221262-1

Date: January 21, 2021
The environmental soil samples collected by NYSDEC at the Norlite property were reviewed for quality and usability. Some QC findings, such as the analytical holding time for the hexachrome water blank samples, resulted in that data being unusable. Also, the hexachrome matrix spike recoveries for samples S13-SOIL-102120 and S9B-SOIL-102120 were below its control limits and are also determined to be unusable. All other data were found to be sufficiently accurate, precise, complete and usable for their intended purpose and flagged appropriately by the lab. All "J" flags were due to the result falling above the detection limits but below the reporting limits. Details regarding the QC sample findings are discussed in the sections below.

The following table lists the soil samples that will be covered with this data review for metals by methods 6010D (TAL Metals), 7196A (CrVI) and 7471A (Mercury). These samples are listed in the order that they appear on page 10 of the lab's pdf report file. Water samples, such as trip blanks, are not listed but their corresponding QC results/findings will be covered in the corresponding section(s) below:

Client Sample ID	Lab Sample ID	Matrix	Collected	Received
PC1-SOIL-102120	460-221262-1	Soil	10/2120 08:45	10/23/20 10:00
PC2-SOIL-102120	460-221262-3	Soil	10/2120 09:30	10/23/20 10:00
S15-SOIL-102120	460-221262-4	Soil	10/2120 10:35	10/23/20 10:00
S14-SOIL-102120	460-221262-5	Soil	10/2120 10:50	10/23/20 10:00
S13-SOIL-102120	460-221262-6	Soil	10/2120 11:05	10/23/20 10:00
S16-SOIL-102120	460-221262-7	Soil	10/2120 11:35	10/23/20 10:00
S2-SOIL-102120	460-221262-8	Soil	10/2120 11:55	10/23/20 10:00
DUP1-SOIL-102120	460-221262-9	Soil	10/2120 00:00	10/23/20 10:00
S3-SOIL-102120	460-221262-10	Soil	10/2120 17:15	10/23/20 10:00
S4-SOIL-102120	460-221262-11	Soil	10/2120 17:49	10/23/20 10:00
S11-SOIL-102120	460-221262-12	Soil	10/2120 17:37	10/23/20 10:00
S12-SOIL-102120	460-221262-13	Soil	10/2120 14:55	10/23/20 10:00
DUP2-SOIL-102120	460-221262-14	Soil	10/2120 00:00	10/23/20 10:00
S1-SOIL-102120	460-221262-15	Soil	10/2120 16:30	10/23/20 10:00
S6A-SOIL-102120	460-221262-17	Soil	10/2120 14:40	10/23/20 10:00

Client Sample ID	Lab Sample ID	Matrix	Collected	Received
S6B-SOIL-102120	$460-221262-18$	Soil	$10 / 212014: 50$	$10 / 23 / 2010: 00$
S7A-SOIL-102120	$460-221262-19$	Soil	$10 / 212015: 05$	$10 / 23 / 2010: 00$
S7B-SOIL-102120	$460-221262-20$	Soil	$10 / 212015: 15$	$10 / 23 / 2010: 00$
S8A-SOIL-102120	$460-221262-21$	Soil	$10 / 212014: 00$	$10 / 23 / 2010: 00$
S8B-SOIL-102120	$460-221262-22$	Soil	$10 / 212014: 10$	$10 / 23 / 2010: 00$
S9A-SOIL-102120	$460-221262-23$	Soil	$10 / 212015: 30$	$10 / 23 / 2010: 00$
S9B-SOIL-102120	$460-221262-24$	Soil	$10 / 212015: 45$	$10 / 23 / 2010: 00$
S5-SOIL-102120	$460-221262-27$	Soil	$10 / 212016: 48$	$10 / 23 / 2010: 00$
S10-SOIL-102120	$460-221262-28$	Soil	$10 / 212017: 15$	$10 / 23 / 2010: 00$

Sample Preservation and Analytical Holding Times

On pages 4267 thru 4269 of the lab report are the Login Sample Receipt Checklist pages and they indicate that, with the exception of the water samples, specifically the trip blank, the equipment blank, and the field blank, all soil samples were properly preserved and received and analyzed by the lab within analytical holding times.

The hexachrome method (method 7196A), however, requires a $24-\mathrm{hr}$ holding time for hexachrome analyses of soils after sample extraction and since the blanks are water samples, the clock starts ticking immediately upon filling the sample container. The finding that the blank samples exceeded the hexachrome method holding time indicates that those data are unusable but is inconsequential for the soil samples.

Initial and Continuing Calibration Verification

All initial and continuing calibration recoveries fell within their respective control limits ${ }^{1}$ indicating that the sample data can be regarded as sufficiently accurate and precise providing that all other QC criteria are met. There were 22 TAL metals internal standards run and 21 mercury. The following table lists the calibration recovery ranges:

Metal	Min $\% \mathrm{R}$	Max $\% \mathrm{R}$
Aluminum	96	100
Antimony	97	100
Arsenic	96	102
Barium	97	100
Beryllium	96	105
Cadmium	97	101
Calcium	97	102
Chromium	97	101
Cobalt	99	102
Copper	97	101
Iron	98	102
Lead	96	101
Magnesium	96	104
Manganese	98	101
Nickel	98	101
Potassium	98	109

[^19]| Metal | Min
 $\% \mathrm{R}$ | Max
 $\% \mathrm{R}$ |
| :--- | :---: | :---: |
| Selenium | 98 | 103 |
| Silver | 97 | 101 |
| Sodium | 97 | 109 |
| Thallium | 99 | 102 |
| Vanadium | 98 | 108 |
| Zinc | 98 | 101 |
| Mercury | 97 | 109 |
| Cr-VI | 99 | 104 |

Blank Sample Results

With the exception of potassium and sodium, all reported blank sample results were nondetected. All of the potassium and sodium detections were significantly below their respective reporting limit indicating that these blank results can be disregarded. The reporting limits for both of these metals was $5,000 \mu \mathrm{~g} / \mathrm{L}(\mathrm{ppb})$ and the range of potassium values was from 143.2 to $251.0 \mu \mathrm{~g} / \mathrm{L}$ while the range of sodium values was from 102.2 to $107.9 \mu \mathrm{~g} / \mathrm{L}$. All blank results for mercury and Cr -VI were non-detect.

Interference Check Sample Recoveries

Four interference check samples were analyzed and all recoveries fell within the $100 \pm 20 \%$ control limits indicating that the instrument was capable of overcoming any interfering materials that may have been present within the sample matrix. The following table lists these recoveries and there are no ICS recoveries for mercury and hexachrome:

Metal	$1^{\text {st }}$ $\% \mathrm{R}$	$2^{\text {nd }}$ $\% \mathrm{R}$	$3^{\text {rd }}$ $\% \mathrm{R}$	$4^{\text {th }}$ $\% \mathrm{R}$
Aluminum	92	91	89	89
Antimony	106	95	99	90
Arsenic	93	97	100	100
Barium	98	94	98	96
Beryllium	99	96	93	99
Cadmium	98	93	95	95
Calcium	101	100	101	96
Chromium	100	99	101	98
Cobalt	98	95	97	95
Copper	98	96	108	106
Iron	99	98	98	94
Lead	101	91	84	94
Magnesium	102	99	102	99
Manganese	103	98	90	100
Nickel	94	93	95	90
Potassium	103	101	103	100
Selenium	93	98	99	93
Silver	100	98	102	105
Sodium	105	101	105	104
Thallium	89	95	91	96
Vanadium	99	95	99	96

Metal	$1^{\text {st }}$ $\% R$	$2^{\text {nd }}$ $\% R$	$3^{\text {rd }}$ $\% R$	$4^{\text {th }}$ $\% R$
Zinc	95	94	96	93

Matrix Spike and Matrix Spike Duplicate Recoveries and RPDs

Samples S13-SOIL-102120 and S9B-SOIL-102120 (MS 2) were run as matrix spikes for the TAL metals and it does not appear that a matrix spike duplicate was run although it does appear on the chain-of-custody that a MS/MSD pair was requested for sample S13-SOIL-102120. As a result, no relative percent difference value on the pages of the report are available for review.

It can be seen in the following table that both matrix spike recoveries for antimony fell below the control limits which indicates that there may be a low bias in the corresponding environmental sample data (hence the "F1" qualifier).

The qualifier " 4 " for the aluminum, iron and manganese recoveries indicates that the amount found in the original samples was greater than or equal to four times the amount spiked (four times rule), which indicates that the difference between what was in the samples before and after spiking falls within the method margin of error so no meaningful finding can be made for those metals based on the spike recoveries.

For all of the TAL metals with spike recoveries falling within their control limits, it's indicated that the sample data can be regarded as sufficiently accurate and unbiased with respect to any interfering materials that may have been present within the sample matrix. The matrix spike samples used for the hexachrome analyses were samples S13-SOIL-102120 and S9B-SOIL102120 and the recoveries fell below the control limits and those corresponding sample results for those samples only are flagged with the F1 qualifier and should be regarded as unusable. Those hexachrome recoveries ranged from 26% to 45%.

Metal	S13-SOIL- 102120 $\% \mathrm{R}$	Data Qualifier	S9B-SOIL- 102120 $\% \mathrm{R}$	Data Qualifier	Control Limits $\% \mathrm{R}$
Aluminum	1136	4	389	4	$75-125$
Antimony	45	F 1	32	F 1	$75-125$
Arsenic	95		94		$75-125$
Barium	105		90		$75-125$
Beryllium	98		93		$75-125$
Cadmium	96		95		$75-125$
Calcium	95		84		$75-125$
Chromium	101		105		$75-125$
Cobalt	98		94		$75-125$
Copper	93		93		$75-125$
Iron	972	4	-334	4	$75-125$
Lead	100		109		$75-125$
Magnesium	96		95		$75-125$
Manganese	579	4	69	4	$75-125$
Nickel	100		96		$75-125$
Potassium	99		88		$75-125$
Selenium	92		92		$75-125$

Metal	S13-SOIL- 102120 \%R	Data Qualifier	S9B-SOIL- 102120 $\% R$	Data Qualifier	Control Limits $\% R$
Silver	93		90		$75-125$
Sodium	100		94		$75-125$
Thallium	98		97		$75-125$
Vanadium	101		93		$75-125$
Zinc	102		89		$75-125$
Mercury	110		108		$80-120$
Hexachrome	$51.0-51.9$	F1	$26-32$	F1	$75-125$

Laboratory Control Sample Recoveries - Liquid

The following table lists the method 6010D metal recoveries from the analysis of the laboratory control sample in a liquid matrix and it can be seen that all recoveries fell within the $100 \pm 20 \%$ control limits indicating that the lab was capable of performing these analyses as per method specifications at the levels listed in the "True" column using a clean matrix. There were four sets of LCS results for hexachrome:

Metal	True $(\mu \mathrm{g} / \mathrm{L})$	Found $(\mu \mathrm{g} / \mathrm{L})$	\%R	Control Limits
Aluminum	2,000	2,002	100	$80-120$
Antimony	500	473.7	95	$80-120$
Arsenic	2,000	2,085	104	$80-120$
Barium	2,000	2,033	102	$80-120$
Beryllium	50.0	49.74	99	$80-120$
Cadmium	50.0	52.05	104	$80-120$
Calcium	20,000	20,280	101	$80-120$
Chromium	200	208.3	104	$80-120$
Cobalt	500	522.5	105	$80-120$
Copper	250	254.6	102	$80-120$
Iron	1,000	1,047	105	$80-120$
Lead	500	519.4	104	$80-120$
Magnesium	20,000	20,510	103	$80-120$
Manganese	500	516.4	103	$80-120$
Nickel	500	520.1	104	$80-120$
Potassium	20,000	19,230	96	$80-120$
Selenium	2,000	2,022	101	$80-120$
Silver	50.0	51.99	104	$80-120$
Sodium	20,000	19,290	96	$80-120$
Thallium	2,000	2,069	103	$80-120$
Vanadium	500	521.1	104	$80-120$
Zinc	500	518.6	104	$80-120$

Laboratory Control Sample Recoveries - Solid

Several laboratory control samples were analyzed and the following tables list the method 6010D metal recoveries from the analysis of the laboratory control sample in a certified solid matrix and it can be seen that all recoveries fell within their respective control limits indicating that the lab was capable of performing these analyses as per method specifications at the levels listed in the "True" column using a clean matrix:

Metal	True $(\mathrm{mg} / \mathrm{Kg})$	Found 1 $(\mathrm{mg} / \mathrm{Kg})$	\%R 1	Found 2 $(\mathrm{mg} / \mathrm{Kg})$	\%R2	Found 3 $(\mathrm{mg} / \mathrm{Kg})$	\%R 3	Control Limits
Aluminum	8,460	7,406	87.5	7,294	86.2	8,051	95.2	$50.4-150.1$
Antimony	120	78.5	65.4	77.36	64.5	74.34	61.9	$4.8-195.0$
Arsenic	95.5	93.84	98.3	91.58	95.9	96.34	100.9	$82.8-117.3$
Barium	300	295.0	98.3	281.2	93.7	304.0	101.3	$82.3-117.7$
Beryllium	103	100.2	97.3	96.96	94.1	111.0	107.8	$82.8-116.5$
Cadmium	135	132.8	98.4	135	131.1	137.6	101.9	$83.0-117.8$
Calcium	4,720	4,520	95.8	4,578	97.0	5,065	107.3	$81.6-118.6$
Chromium	147	142.7	97.1	138.5	94.2	149.3	101.6	$82.3-117.7$
Cobalt	43.2	43.48	100.6	42.16	97.6	45.23	104.7	$83.8-116.2$
Copper	150	148.4	99.0	145.6	97.1	155.7	103.8	$84.0-116.0$
Iron	14,400	14,030	97.4	14,200	98.6	15,330	106.5	$61.3-138.9$
Lead	92.3	92.38	100.1	89.12	96.6	95.05	103.0	$83.1-117.0$
Magnesium	2,300	2,170	94.3	2,134	92.8	2,370	103.1	$75.7-124.3$
Manganese	677	659.4	97.4	671.2	99.1	688.7	101.7	$82.0-118.2$
Nickel	59.8	59.86	100.1	59.70	99.8	62.14	103.9	$82.6-117.6$
Potassium	2,030	1,946	95.9	1,868	92.0	2,085	102.7	$70.0-130.0$
Selenium	42.0	41.04	97.7	41.16	98.0	42.69	101.7	$79.5-120.5$
Silver	40.3	37.72	93.6	36.60	90.8	41.39	102.7	$80.6-119.4$
Sodium	139	132.8	95.5	119.9	86.2	130.6	93.9	$71.9-127.3$
Thallium	83.1	85.54	102.9	85.18	102.5	89.86	108.1	$81.0-119.0$
Vanadium	96.9	94.72	97.8	91.90	94.8	105.9	109.3	$79.2-120.7$
Zinc	369	357.6	96.9	358.8	97.2	374.5	101.5	$80.8-119.2$
Hexachrome ${ }^{2}$	15.6	$14.24-$	$91.5-$					$84.2-114.5$

ICP Serial Dilution Percent Differences

All serial dilution percent differences fell below the 10% control limit maximum indicating the absence of any significant biases in the sample data due to the sample matrix. These percent differences ranged from 0.62 percent for aluminum to 3.0 percent for manganese.

All questions regarding this data review can be sent via phone call or email to:

John Miller

ecc JMiller's Files: Env Sampling Conducted by DEC Associated with Norlite.Data
Review.Metals.JAM.docx

[^20]
Appendix E2 - Category B Analytical Data Packages

Available on Request

[^0]: ${ }^{2}$ Houtz EF; Sedlak DL Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. Environ. Sci. Technol 2012, 46, 9342-9349.

[^1]: ${ }^{3}$ Rankin K, Mabury SA, Jenkins TM, Washington JW (2016). A North American and Global Survey of Perfluoroalkyl Substances in Surface Soils: Distribution Pattern and Mode of Occurrence. Chemosphere 161: 333-341
 ${ }^{4}$ Brusseau ML, Anderson RH, Guo B. 2020. PFAS concentrations in soils: Background levels versus contaminated sites. Science of the Total Environment. 740. 140017. Available On-Line: PFAS concentrations in soils: Background levels versus contaminated sites - ScienceDirect

[^2]: ${ }^{7}$ Annunziato, KM, Doherty J, Lee J, Clark JM, Liang W, Clark,CW, Nguyen M, Roy MA, Timme-Laragy. 2020. Chemical Characterization of a Legacy Aqueous Film-Forming Foam Sample and Developmental Toxicity in Zebrafish (Danio rerio). Environmental Health Perspectives 128 (9) pp. 097006-1 - 097006-13. Available On-Line: https://doi.org/10.1289/EHP6470

[^3]: ${ }^{10}$ Heydebreck F, Tang J, Xie Z, Ebinghaus R. 2016. Emissions of Per- and Polyfluoroalkyl Substances in a Textile Manufacturing Plant in China and Their Relevance for Workers Exposure. Environmental Science and Technology 50 (19) Available On-Line: DOI: 10.1021/acs.est.6b03213
 ${ }^{11}$ California Environmental Protection Agency. 2019. Product-Chemical Profile for Treatments Containing Perfluoroalkyl or Polyfluoroalkyl Substances for Use on Converted Textiles and Leathers. November 2019 - Discussion Draft. Available On-Line: Product-Chemical Profile for Treatments Containing Perfluoroalkyl or Polyfluoroalkyl Substances for Use on Converted Textiles or Leathers
 ${ }^{12}$ Norwegian Environment Agency. 2017. Investigations of Sources to PFBS in the Environment. Report of 15 May 2017. Available On-Line: Investigation of sources to PFBS in the environment (miljodirektoratet.no)
 ${ }^{13}$ Li J, Xu JH, Song R, Zhu Y, Sun W, Ni J. (2020) Polyfluoroalkyl Substances in Danjiangkou Reservoir, China: Occurrence, composition, and source appointment. Science of the Total Environment

[^4]: ${ }^{16}$ Schafer M., Olson M., Danielson C., Widmayer K. 2020. PFAS Deposition in Precipitation: Efficacy of the NADP - NTN \& Initial Findings. Presented at WisPAC Meeting, January 2020. Available On-Line: January 16, 2020, WIsPAC Presentation - PFAS Deposition in Precipitation: Efficacy of the NADP-NTN \& Initial Findings
 ${ }^{17}$ Schafer M., Olson M., Schauer J. 2020. The National Atmospheric Deposition Program: National Trends Network, A Premier Model of Multi-Sector Partnerships, Working to Provide New Information on PFAS Deposition in Precipitation. Presented at 2020 National Environmental Monitoring Conference August 14, 2020. Available On-Line: PowerPoint Presentation (nelac-institute.org)
 ${ }^{18}$ North Carolina PFAS Testing (PFAST) Network. 2019. Atmospheric Concentrations and Deposition of PFAS. Available On-Line: Air and Atmospheric Deposition of PFAS in North Carolina (nccoast.org)

[^5]: No Detections.

[^6]: No Detections.

[^7]: No Detections.

[^8]: * Accreditation/Certification renewal pending - accreditation/certification considered valid.

[^9]: ${ }^{1}$ Difference $=$ Post-Treatment - Pre-Treament

[^10]: This Detection Summary does not include radiochemical test results．

[^11]: This Detection Summary does not include radiochemical test results．

[^12]: This Detection Summary does not include radiochemical test results．

[^13]: Eurofins TestAmerica，Edison

[^14]: Eurofins TestAmerica，Edison

[^15]: Eurofins TestAmerica，Edison

[^16]: （PFDoA）

[^17]: ${ }^{1}$ Difference $=$ Post-Treatment - Pre-Treament

[^18]: Data Reviewed By: DMB

[^19]: ${ }^{1}$ Mercury limits: $100 \pm 15 \%$; All other metals: $100 \pm 10 \%$.

[^20]: ${ }^{2}$ There were four sets of LCS results for hexachrome and what appears in the table are the ranges.

