SARANAC LAKES WILD FOREST

and

Lake Placid Boat Launch
Lake Flower Boat Launch
Upper Saranac Lake Boat Launch
Raquette River Boat Launches

Unit Management Plan

River Area Management Plans
Saranac River, Ausable River, and Raquette River

Final Environmental Impact Statement

NYS DEC, REGION 5, DIVISION OF LANDS AND FORESTS

P.O. Box 296, 1115 State Route 86, Ray Brook, NY 12997-0296
r5.ump@dec.ny.gov
MEMORANDUM

TO: The Record
FROM: Basil Seggos
SUBJECT: Saranac Lakes Wild Forest Unit Management Plan

The Saranac Lakes Wild Forest Unit Management Plan has been completed. The Adirondack Park Agency has found the Plan to be in conformance to the Adirondack Park State Land Master Plan.

The Plan is consistent with Environmental Conservation Law, and Department Rules, Regulations and Policies and is hereby approved and adopted.

Basil Seggos
Commissioner
New York State Department of Environmental Conservation

Date: 4/5/19
This page intentionally left blank
RESOLUTION ADOPTED BY THE ADIRONDACK PARK AGENCY
WITH RESPECT TO THE
SARANAC LAKES WILD FOREST, LAKE PLACID BOAT LAUNCH, LAKE FLOWER
BOAT LAUNCH, UPPER SARANAC LAKE BOAT LAUNCH, RAQUETTE RIVER
BOAT LAUNCHES PROPOSED FINAL UNIT MANAGEMENT PLAN AND RIVER
AREA MANAGEMENT PLANS FOR THE SARANAC RIVER, AUSABLE RIVER, AND
RAQUETTE RIVER

February 15, 2019

WHEREAS, Section 816 of the Adirondack Park Agency Act (APA Act) directs
the Department of Environmental Conservation (Department) to develop, in consultation
with the Adirondack Park Agency (Agency), individual management plans for units of
land classified in the Adirondack Park State Land Master (APSLMP) and requires such
management plans to conform to the guidelines and criteria of the APSLMP; and

WHEREAS, in addition to such guidelines and criteria, the APSLMP prescribes
the contents of unit management plans (UMPs) and provides that the Agency will
determine whether a proposed individual UMP complies with such guidelines and
criteria; and

WHEREAS, the Department and the Agency commenced a planning process for
the Saranac Lakes Wild Forest in 2002, with an open house seeking public participation
and a series of meetings with a citizens' discussion group; and

WHEREAS, the Department prepared a Draft UMP for Saranac Lakes Wild
Forest, Lake Placid Boat Launch, Lake Flower Boat Launch, Upper Saranac Lake Boat
Launch, and Raquette River Boat Launches and Draft River Area Management Plans
for the Saranac River, Ausable River, and Raquette River in 2017 (June 2017 Draft
UMP) and presented the Draft UMP to the Agency in June 2017; and

WHEREAS, the June 2017 Draft UMP included a Draft Environmental Impact
Statement (DEIS) and the Department published notice of: acceptance of the DEIS, two
staff availability sessions, two public meetings, and a public comment period on the
Draft UMP/DEIS from June 7, 2017 through August 11, 2017, in the Environmental
Notice Bulletin (ENB) on June 7, 2017; and

WHEREAS, the Department revised the June 2017 Draft UMP after receiving a
substantial number of oral and written comments during the public comment period and
presented a Proposed Final UMP for Saranac Lakes Wild Forest, Lake Placid Boat
Launch, Lake Flower Boat Launch, Upper Saranac Lake Boat Launch, and Raquette
River Boat Launches and Draft River Area Management Plans for the Saranac River, Ausable River, and Raquette River to the Agency in June 2018 (June 2018 Proposed Final UMP); and

WHEREAS, on June 7, 2018, the Agency authorized staff to solicit public comment on the conformance of the June 2018 Proposed Final UMP with the APSLMP guidelines and criteria; and

WHEREAS, the Agency received 83 public comments between June 7 and July 13, 2018 on the conformance of the June 2018 Proposed Final UMP on issues including water access, water body use, carrying capacity, assessments and inventories, invasive species, mountain bike trails, primitive tent sites, snowmobile trails, and access for persons with disabilities; and

WHEREAS, the public comments raised several points with respect to conformance of the June 2018 Proposed Final UMP with the APSLMP guidelines and criteria for the management and use of Wild Forest and DEC has further revised the UMP to reflect changes to conform with the APSLMP guidelines and criteria in a new Proposed Final UMP presented to the Agency on February 15, 2019 (February 2019 Proposed Final UMP); and

WHEREAS, the February 2019 Proposed Final UMP implements the Management Guidance for Snowmobile Trail Siting, Construction and Maintenance on Forest Preserve Lands in the Adirondack Park adopted in November 2009 (Snowmobile Guidance), proposing construction of 2.43 miles of new snowmobile trails and closure of 15.23 miles of snowmobile trails to comply with standards in the Snowmobile Guidance, resulting in no material increase of snowmobile trail mileage; and

WHEREAS, the February 2019 Proposed Final UMP proposes to construct no more than four new primitive tent sites, close one existing primitive tent site and relocate 73 existing primitive tent sites to comply with the APSLMP primitive tent site guidelines requiring primitive tent sites be out of sight and sound and generally one-quarter mile from any other primitive tent site or lean-to; and

WHEREAS, the February 2019 Proposed Final UMP proposes to prohibit direct trailered launching of boats at the following fishing and waterway access sites that have a history of being used for the direct launching of trailered boats, in order to comply with the APSLMP: Ampersand Bay, Axton Landing, Follensby Clear Pond (north), Lake Clear Outlet, Lake Colby, Moose Pond, and Polliwog Pond; and

WHEREAS, the February 2019 Proposed Final UMP will continue to allow motorboats on all waters currently open to them, but proposes horse power limits on several water bodies, speed limits on Weller Pond, and increased enforcement of motor boat speed limits on the Raquette River; and
WHEREAS, the February 2019 Proposed Final UMP implements the Management Guidance for Siting, Construction and Maintenance of Singletrack Bicycle Trails on Forest Preserve Lands in the Adirondack Park adopted in March 2018 (Bicycle Trail Guidance), proposing the construction of 35 miles of new bicycle trails open for mountain biking to comply with standards in the Bicycle Trail Guidance; and

WHEREAS, the February 2019 Proposed Final UMP includes a provision for 7,400-acres to be managed as a trail-less area, which will provide undeveloped recreational opportunities; and

WHEREAS, the February 2019 Proposed Final UMP provides new and enhanced opportunities for persons with disabilities, including new accessible trails and primitive tent sites, improved existing trails, and the availability of accessibility information regarding the area’s facilities; and

WHEREAS, the February 2019 Proposed Final UMP highlights ongoing cooperation between the Department and the Agency to develop a guidance framework for monitoring wildlands in the Adirondack Park which will assess the effects of management actions and public use and inform future management of the Saranac Lakes Wild Forest; and

WHEREAS, the February 2019 Proposed Final UMP proposes to establish desired conditions to determine if water body carrying capacity has been exceeded, and develop and implement a comprehensive monitoring program for water bodies; and

WHEREAS, pursuant to the State Environmental Quality Review Act, the Department has accepted the Final Environmental Impact Statement incorporated in the February 2019 Proposed Final UMP and filed notice thereof in the Environmental Notice Bulletin on December 5, 2018; and

WHEREAS, the Agency has considered the foregoing recitals, the February 2019 Proposed Final UMP, the February 6, 2019 Memorandum from Kevin Prickett to Terry Martino, Agency staff’s presentation, public comment and responses, and the deliberations of Agency Board Members and Designees at the Agency’s February 15, 2019 meeting.

NOW, THEREFORE, BE IT RESOLVED that pursuant to Section 816 of the Adirondack Park Agency Act and the APSLMP, the Agency finds the February 2019 Proposed Final UMP conforms with the APSLMP guidelines and criteria for Wild Forest lands; and

BE IT FINALLY RESOLVED that the Agency Board authorizes its Executive Director to advise the Commissioner of Environmental Conservation of the Agency’s determination in this matter.
Ayes: Karen Feldman, John Ernst, Art Lussi, Bill Thomas, Dan Wilt, Lynne Mahoney, Brad Austin, Bob Stegemann

Nays: Dr. Chad Dawson

Abstentions: None

Absent: None
Acknowledgements

Planning Team:

Kevin Burns, Forest Ranger
Josh Clague, Natural Resources Planner
Jon Fieroh, Fisheries Biologist
Steven Guglielmi, Forester
Lt. Julie Harjung, Forest Ranger
Jeffery Hovey, Environmental Conservation Officer
Paul Jensen, Wildlife Biologist
Joe LaPierre, Forest Ranger
Doug McCabe, Operations
Megan McConne, Forest Ranger
Nick McKay, Operations
Kevin Prickett, Adirondack Park Agency
Scott VanLaer, Forest Ranger
David Winchell, Public Participation Specialist

Contributors:

Kristofer A. Alberga, Regional Forester
Keith Bassage, Forest Ranger (retired)
Bob Chatt, Environmental Conservation Officer (retired)
Robert Daley, Supervising Forester
Phil Johnstone, Operations (retired)
Walter Linck, Adirondack Park Agency
Mark David Mink, SUNY ESF
Rich Preall, Fisheries Biologist (retired)
Zachary Odell, SUNY ESF
Tierney Rosenstock, Natural Resource Panner
Cindy Trummer, secretary
This page intentionally left blank
Contents

Acknowledgements ... i

Contents.. iii

Preface.. v

I. Introduction .. 1

Planning Area Overview .. 1

Unit Geographic Information ... 2

General Location .. 2

Acreage ... 3

General Access ... 3

General History ... 3

II. Inventory, Use, and Capacity to Withstand Use ... 7

A. Natural Resources .. 7

B. Facilities ... 48

C. Past Influences .. 48

D. Public Use .. 51

E. Recreational Opportunities for Persons with Disabilities .. 60

F. Relationship between Public and Private Land ... 61

G. Capacity to Withstand Use ... 66

H. Education, Interpretation and Research .. 77

III. Management and Policy .. 79

A. Past Management .. 79

B. Management Guidelines ... 86
Table of Contents

C. Administration .. 90
D. Management Issues, Needs and Desires ... 91

IV. Proposed Management Actions .. 93
 A. Bio-Physical Resources .. 93
 B. Land and Water Protection ... 98
 C. Facilities ... 111
 D. Public Use and Access ... 160
 E. Proposed Regulations .. 167
 F. Special Management Areas ... 168

V. Phases for Implementation .. 191

Appendix 1: Facilities .. 201
Appendix 2: Justifications for Fishing and Waterway Access Sites 225
Appendix 3: Saranac Lake Islands Campsite Photograph Comparison 229
Appendix 4: Acronyms .. 235
Appendix 5: Mammals and Birds ... 237
Appendix 6: Individual Pond Descriptions ... 251
Appendix 7: Lakes and Ponded Water Survey Data .. 327
Appendix 8: Citizen Discussion Group ... 341
Appendix 9: Response to Public Comments ... 345
Appendix 10: Open House Public Comments .. 399
Appendix 11: Bibliography and References ... 407
Appendix 12: Trail Register Information .. 415
Appendix 13: Maps ... 417
Preface

The Saranac Lakes Wild Forest (SLWF) Unit Management Plan (UMP) has been developed by the New York State Department of Environmental Conservation (Department) pursuant to, and is consistent with, relevant provisions of the New York State Constitution, Environmental Conservation Law (ECL) and its implementing regulations, Executive Law, Adirondack Park State Land Master Plan (APSLMP), New York State Department policies and procedures and the State Environmental Quality Review Act.

The State lands in this UMP are within the Forest Preserve and protected by Article XIV, Section 1 of the New York State Constitution. This Constitutional provision, which became effective on January 1, 1895 provides in relevant part:

“The lands of the state, now owned or hereafter acquired, constituting the Forest Preserve as now fixed by law, shall be forever kept as wild forest lands. They shall not be leased, sold or exchanged, or be taken by any corporation, public or private, or shall the timber thereon be sold, removed or destroyed.”

ECL §§3-0301(1)(d) and 9-0105(1) provide the Department with jurisdiction to manage Forest Preserve lands, including the Saranac Lakes Wild Forest.

The APSLMP was initially adopted in 1972 by the Adirondack Park Agency (APA) with advice from, and in consultation with, the Department pursuant to Executive Law §807, now recodified as Executive Law §816. The APSLMP provides the overall general framework for the development and management of State lands in the Adirondack Park (Park), including those State lands which are the subject of this UMP.

The APSLMP places State land within the Park into the following classifications: Wilderness, Primitive, Canoe, Wild Forest, Intensive Use, Historic, State Administrative, and Travel Corridors, and sets forth management guidelines for the lands falling within each major classification. The APSLMP classifies the lands which are the subject of this UMP as part of the Saranac Lakes Wild Forest.

The APSLMP sets forth guidelines for such matters as: structures and improvements; ranger stations; the use of motor vehicles, motorized equipment and aircraft; public roads and administrative roads; flora and fauna; recreation use and overuse; boundary structures and improvements and boundary markings.

Executive Law §816 requires the Department to develop, in consultation with the APA, individual UMPs for each unit of land under the Department’s jurisdiction. The UMPs must conform to the guidelines and criteria set forth in the APSLMP.

Executive Law §816(1) provides in part that “(u)ntil amended, the APSLMP for
management of state lands and the individual management plans shall guide the development and management of state lands in the Adirondack Park."

Purpose and Need

Without a UMP, the management of these public lands can easily become a series of uncoordinated reactions to immediate problems. A written plan stabilizes management despite changes in personnel and integrates related legislation, legal codes, rules and regulations, policies, and area specific information into a single reference document. In view of tight budgets and competition for monetary resources, plans that clearly identify area needs have greater potential for securing necessary funding, legislative support, and public acceptance.

This document provides a comprehensive inventory of natural resources, existing facilities and uses, while identifying the special values that justify the protection of this area in perpetuity for future generations. The process involved the gathering and analysis of existing uses and conditions, regional context and adjacent land considerations, future trends, and the identification of important issues. Ordinarily, the plan will be revised on a five-year cycle, but may be amended when necessary in response to changing resource conditions or administrative needs. Completion of the various management actions within this UMP will be dependent upon adequate manpower and funding. Where possible, the DEC will work with volunteer groups, local communities, town and county governments, and others to accomplish some of the proposed projects or maintenance.

Organization of the Plan

This UMP is intended to be a working document, used by both State personnel and the public. The content of each section is briefly summarized below:

Section I introduces the area, provides a general description with information on the size and location of the unit, access, and a brief chronology of the history of the general area.

Section II provides an inventory of the natural, scenic, cultural, fish and wildlife, and associated resources along with an analysis of the area’s ecosystems. Existing facilities for both public and administrative use are identified, along with an assessment of public use and carrying capacity. Adjacent land uses, access, and impacts are also discussed.

Section II includes descriptions of past management activities, existing management guidelines, and an outline of issues identified through the inventory process with input from the planning team and public. This section lays the foundation for the development of specific management strategies necessary to attain the goals and objectives of the APSLMP. An assessment of needs and projected use are also discussed.

Section IV will identify specific management proposals as they relate to natural resources, uses, or facilities. These proposed actions will be consistent with the
management guidelines and principles and will be based on information gathered during the inventory process, through public input and in consultation with the planning team. This section also identifies management philosophies for the protection of the area.

Section V includes a schedule for implementation and identifies the budget needs to carry out the work described in the UMP.

At the end of the text there are a list of cited references, general bibliography, and various technical appendices. Map inserts show detailed area information.

What the Plan Does Not Do

The proposed management actions identified in this plan are primarily confined to the SLWF lands and waters. Activities on adjacent State lands or private property are beyond the scope of this document but may be discussed as they relate to uses and impacts to the SLWF. In addition, this UMP cannot suggest changes to Article XIV, Section 1 of the New York State Constitution or conflict with statutory mandates or DEC policies. All proposals must conform to the guidelines and criteria set forth in the APSLMP.

State Environmental Quality Review Act (SEQRA)

The State Environmental Quality Review Act requires that all agencies determine whether the actions they undertake may have a significant impact on the environment. The intent of the legislation is to avoid or minimize adverse impact on the resource. The guidelines established in the APSLMP for developing unit management plans express these same concerns. Any development within the SLWF presented in the plan must take into consideration environmental factors to ensure that such development does not degrade that environment. The overall intent of this UMP is to identify mitigating measures to avoid or minimize significant adverse environmental impacts to the natural resources of the State within the unit. Any reconstruction or development within the confines of this unit will take environmental factors into account to ensure that such development does not degrade the resource.

SEQRA requires the consideration of environmental factors early in the planning stages of any proposed actions(s) that are undertaken, funded or approved by a local, regional or state agency. A Long Environmental Assessment Form (LEAF) is used to identify and analyze relevant areas of environmental concern based upon the management actions in the draft UMP.

As required by SEQRA, during the planning process a range of alternatives were formulated to evaluate possible management approaches for dealing with certain issues or problem locations. Department staff considered the no-action and other reasonable alternatives, whenever possible. Potential environmental impacts, resource protection, visitor safety, visitor use and enjoyment of natural resources, user conflicts, interests of local communities and groups, as well as short and long-term cost-effectiveness were
important considerations in the selection of proposed actions. Efforts were made to justify reasons for the proposals throughout the body of the UMP, so the public can clearly understand the issues and the rationale of the decision making.

No-Action Alternative or Need for a Plan

From a legal perspective, the no-action alternative of not writing a UMP is not an option. DEC is required to prepare a management plan for the SLWF pursuant to the APSLMP and Executive Law § 816. In addition, a UMP serves as a mechanism for the Department to study and identify potential areas for providing access to the SLWF for persons with disabilities in accordance with the Americans with Disabilities Act of 1990 (ADA). The UMP also serves as an administrative vehicle for the identification and removal of nonconforming structures as required by the APSLMP.
I. Introduction

Planning Area Overview

The SLWF is in the northern half of the Adirondack Park. The most prominent features of the unit are lakes, ponds, and rivers. In many ways these waterways are to this unit what mountains are to the adjacent High Peaks Wilderness Area. For well over 100 years these waterways have drawn visitors for outings and camping trips. The unit’s waterbodies range from small ponds entirely owned by the State to large lakes with a mix of State Land and affluent estates.

The SLWF is in the middle of the largest population centers in the Adirondack Park; lands of this unit are near the villages of Saranac Lake, Lake Placid, and Tupper Lake. Portions of this unit are located in the southern Franklin County towns of Santa Clara, Brighton, Tupper Lake (formerly Altamont), Harrietstown and Franklin, as well as the northwestern Essex County towns of St. Armand and North Elba.

The SLWF is in close proximity to six other Forest Preserve management units: Saint Regis Canoe Area (SRCA), Taylor Pond Wild Forest, and Debar Mountain Wild Forest are to the north, to the east are McKenzie Mountain and Sentinel Range Wilderness Areas, and to the south is High Peaks Wilderness Area. The proximity of the SLWF to these Wilderness and Canoe areas is an important consideration when developing management alternatives.

In addition to the SLWF, this UMP also includes management actions for six Intensive Use Areas. These are the boat launches at Lake Placid, Upper Saranac Lake, Lake Flower, and the Raquette River (known as the Crusher), along with the water access sites at South Creek and Ampersand Bay. An additional boat launch in the SLWF planning area has had a UMP developed independently from the SLWF UMP; this is the Second Pond Boat Launch. There are several parcels of State Land within the SLWF planning area that are not covered by this UMP, some of these areas are covered by separate UMPs: Sunmount Developmental Center, the State Office Complex in Ray Brook, Camp Colby, Adirondack Correctional Facility, the Adirondack Fish Cultural Station, several DOT facilities, the John Brown Farm Historic Area, Mt. Van Hoevenberg Ski Area, Rollins Pond Campground, Fish Creek Campground, and Meadowbrook Campground. While these areas are not covered by this UMP, some of the management of waters within or adjacent to these areas are included in this UMP.

The SLWF contains prominent watercourses classified under the Wild, Scenic, and Recreational Rivers System Act (WSRRS Act) including the Raquette River, Saranac River, and West Branch Ausable River. In accordance with the WSRRS Act, and its implementing regulations found in Part 666 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR), this UMP also serves as a River Area Management Plan for these rivers where they intersect the...
I. Introduction

SLWF (see section IV.F.6).

There are several conservation easements within the SLWF planning area. The terms of each easement are often unique to the particular property or parcel involved. For those properties where the State has purchased recreation rights, a separate Recreation Management Plan will be developed. The two easements in the SLWF planning area which include recreation rights are 8,700 acres formerly owned by International Paper and 8,000 acres of Paul Smith’s College land. The State owns easements which restrict development, but do not allow for public recreation at Bartlett Carry, Deer Island on Upper Saranac Lake, and the shore of Lake Placid near McLenathan Bay.

Unit Geographic Information

The lands of the SLWF can be found on the following 1:25,000 scale United Stated Geological Survey Maps: Ampersand Lake, Bloomingdale, Keene Valley, Lake Placid, Saranac Lake, St. Regis Mountain, Tupper Lake, and Upper Saranac Lake. The Saranac quadrangle is located in the northern Adirondacks, between 44' 15' and 44' 30' north latitude and 74' and 74' 15' west longitude. The eastern half of the quadrangle lies in Essex County and the western half lies in Franklin County. Townships which are included in the quadrangle include North Elba, St. Armand, Franklin, Brighton and Harrietstown. The first detailed reference to the Saranac quadrangle is mentioned in a report by Cushing (in 1900, as referenced by Buddington, 1953).

General Location

The SLWF is near the well-known Adirondack communities of Saranac Lake, Tupper Lake and Lake Placid. Saranac Lake was first settled in 1819 and became known for tuberculosis treatment through the work of Dr. Edward Livingston Trudeau, the founder of the Trudeau Institute which continues cutting edge biomedical research in immunology and infectious diseases. Lake Placid was the home of the 1932 and 1980 Winter Olympic Games, the Goodwill Games, and maintains the enduring tradition of Ironman USA. National and international tourism contributes significant commercial enterprise in this region for visitors whose interests tend toward natural, recreational, historical, and scenic values.

The SLWF is within one day’s drive of over 70 million people in the northeastern United States and Canada. Nearby population centers include Albany (140 miles), New York City (300 miles), and Montreal (120 miles).

Several significant mountain elevations located within the SLWF include: Scarface Mountain (3,058 feet), Boot Bay Mountain (2,516 feet), Shingle Bay Mountain (2,352 feet) and Panther Mountain (2,241 feet). There are 142 waterbodies which cover nearly 19,000 acres. The major focus of the SLWF are the three Saranac Lakes: Upper Saranac (5,250 acres), Middle Saranac (1,376 acres) and Lower Saranac (2,214 acres).
The SLWF also include these additional large waterbodies: Oseetah Lake, Lake Placid, Lake Clear and Lake Colby. The Raquette River, Saranac River and West Branch of the Ausable River are important recreational and fishing resources. The SLWF is also part of a larger regional water complex that incorporates the Saint Regis Canoe Area (SRCA).

Acreage

The SLWF is comprised of approximately 75,070 acres of Wild Forest lands and 19,000 acres of waterbodies. The Intensive Use boat launches that are included in this plan cover 33 acres.

General Access

The SLWF region is easily accessed by motor vehicle from New York State Routes 3, 30, 86, and 73. Local roads which provide access to the SLWF include: River Road and Ray Brook Road in North Elba; Moose Pond Road and Bloomingdale Road in St. Armand; Bartlett Carry Road, Coreys Road, and Forest Home Road in Harrietstown, and Floodwood Road in Santa Clara.

Methods of public entry to the SLWF include foot traffic, canoe, boat, bicycle, horse, and snowmobile. The SLWF can be entered from and provides access to the McKenzie Mountain and High Peaks Wilderness Areas. Canoe entry is also available from the Saint Regis Canoe Area, the Raquette River, and multiple other areas. Additionally, there is access from Department campgrounds.

Seasonal snowmobile usage is permitted along the Remsen to Lake Placid Travel Corridor, which connects Tupper Lake, Saranac Lake, and Lake Placid with the southern areas of the Adirondacks. Other snowmobile trails in the SLWF serve as connectors to adjacent communities.

General History

1779 - A major portion of the Adirondacks were apportioned by New York State, passing a bill which declared that the lands which had previously belonged to the English Crown were to “forever” belong to the people of the State.

1784 - New York State began efforts to sell the Adirondack region in order to raise revenue for its Revolutionary War debt burden through a major land sale to private individuals, although there were few purchasers. One significant tract of land known as the Old Military Tract contained 650,000 acres in Clinton, Essex and Franklin counties was offered to Revolutionary War veterans and to speculators at the price of nine cents per acre. (De Sormo, 1980)

1785 - The largest tract of land known as the Totten-Crossfield Purchase was acquired by Alexander Macomb for 16 cents per acre and totaled 3,816,960 acres in the North,
Northwest and Southwestern sections of the Adirondacks. This huge land purchase was divided into twenty-one townships, which included the Saranac Lakes, and 821,819 acres in Franklin County (De Sormo, 1980).

1819 - The first known settler of Saranac Lake area was Jacob Smith Moody. Moody’s sons later became distinguished guides of many famous people including Presidents Chester A. Arthur and Grover Cleveland, and abolitionist John Brown. Moody’s son, Mart Moody became known in Adirondack circles as “Uncle Mart,” and he was one of the primary guides to the “Philosopher’s Camp,” which included poets Ralph Waldo Emerson and James Russell Lowell. Another notable of the camp included William J. Stillman an auto-biographical journalist who provided a detailed and illuminating view of the Philosopher’s Camp (Donaldson, 1921).

1846 – Gerrit Smith began granting 40-acre plots to African-American families in order to allow them to become self-sufficient and gain the right to vote (an African-American male had to own $250 of real estate to be able to vote); this settlement has been called “Timbucto”. Within ten years most of the settlements had failed. Some of the plots are now likely part of the SLWF.

The most prominent settler of Timbucto would become Lyman Epps who, along with his wife Amelia and two children, moved from Troy to establish a farm in North Elba.

1849 - John Brown, famous abolitionist, settled in North Elba.

1850 - Town of North Elba was legally organized.

1872 - Legislative bill introduced into NYS Assembly to appoint “Commissioner of Parks,” for vesting of timbered regions in Essex and Franklin Counties, and these lands into a state park (Adirondack Park in the Twenty-First Century, Vol. 1, 1990).

1877-1878 - Rev. Dr. J. P. Lundy wrote a book entitled “The Saranac Exile - A Winter’s Tale of the Adirondacks,” who first described Dr. Edward Livingston Trudeau’s efforts to treat the poor (Donaldson, 1921).

1885 - Creation of the Forest Preserve.

1887 - Rail service from Plattsburgh to Loon Lake (Chateauguay Railroad), extended to Saranac Lake (Donaldson, 1921).

1893 - Saranac Lake and Lake Placid Road built (Donaldson, 1921).
I. Introduction

1895 - Article 7, later Article 14, became part of the State Constitution.

1898 – The State bought most of Township 20 (Macomb’s Purchase, Great Tract One) from the Upper Saranac Association; this area includes the many of the ponds south of Floodwood Road.

1898 – 30,000-acre teaching and demonstration forest at Axton purchased for the NYS College of Forestry at Cornell.

1925 - Clara Barton Memorial Forest was planted on 10 acres of Forest Preserve land near Lake Clear.

1932 - Winter Olympics III were held at Lake Placid.

1972 – The Adirondack Park State Land APSLMP was approved by the governor.

1980 - Winter Olympics XIII were held at Lake Placid.
II. Inventory, Use, and Capacity to Withstand Use

A. Natural Resources

1. Physical

Geology
During the Pleistocene Epoch, 1.6 million years ago, massive ice sheets advanced and retreated across the Adirondack region. The last known ice sheet, the Wisconsin glacier, retreated from New York State in approximately 12,000 B.C. It is estimated that during the Wisconsin glaciation, ice a mile thick may have covered the Adirondacks, with approximately nine million cubic miles of ice combined in the North American and European ice sheets (VanDiver, 1976).

The Adirondacks were formed from an uplift of Precambrian metamorphic rocks. The Adirondack region is divided into highlands and lowlands. The highlands include the High Peaks region, located in the eastern central part of the Adirondacks, and the lowlands are in the northwestern part of the region.

Nearly all rocks in the Adirondack region are metamorphic or sedimentary. Metamorphic rocks are formed from older rocks by a transformational process known as metamorphism. Two types of metamorphic rocks are metasedimentary marble and quartzite, formed during the metamorphic process from earlier sediments. Anorthosite and some granite gneisses are the result of solidification of molten rock of igneous origin. Generally deeper burial of the rock results in more intense metamorphic process.

The Wisconsin glacier left behind glacier till in the Adirondack lowlands with a mix of boulders and soil as well as glacier outwash that included a variety of sands, gravels and sediments that were washed downstream from melt waters. These glacier by-products influenced the composition of forests which have subsequently regenerated. As the glacier melted, deeply gouged valleys were filled with the melt water creating multiple rivers and lakes (VanDiver, 1976).

Soils
Soils are formed from different sizes of mineral particles, sand, silt and clay, and have been acidifying since deglaciation. The soils from glacial outwash are approximately 94 percent sand, 3-5 percent silt, and approximately .5-2 percent clay. Soil texture can be defined by the proportions of sand, silt and clay in any given sample. Soils can be grouped into four broad categories: glacial tills, glacial outwash, organically derived, and hardpan.
II. Inventory, Use, and Capacity to Withstand Use

Glacial tills are a mixture of clay, silt, sand and stone. The deepest and richest of these soils occur around the bases of mountains and on hilly terraces. Within this soil range hardwood dominate with mixed conifer/hardwood stands at lower elevations in partially water washed areas.

Glacial outwash soils are stratified soil mixtures which have become deposited in eskers and moraines. These soil areas are subject to periods of flash flooding, from which nutrient rich silts and clays are washed away. These soils are stony and subject to drought causing conditions. Fast growing, deep rooted pines thrive in these conditions, dominating less hardy and more demanding tree species.

Glacial outwash (containing sand, silt, clay, gravel, cobbles and boulders) is predominate in the SLWF region. There are a variety of soil structures that occur on broad, level or undulating plains.

Organically derived soils are comprised of decaying vegetative matter, and occur on high mountain sides, typically above 4,000 feet and in low wetlands. These areas often convert into peat bogs and meandering streams and are the most fragile type of soils. Organically derived soils are easily saturated during heavy rainfall and oversaturation may cause additional water to remain on the surface of these soils.

Hardpan soils are very dense and lay 1-2 feet below ground surface. These types of soils cause shallow rooting of vegetation and are insensitive to absorption of soil nutrients and water. The hardness of the soils limit tree growth, and water may stay on the surface of these soils due to poor drainage.

Soils provide primary support for plant and animal communities through nutrient and water supplies, and a large amount of human recreation. It is important to recognize the potential impacts upon soils and soil structure through human related impacts, when determining management actions.

The primary soil associations found in the SLWF, with the percentage of area covered, are: Becket 65 percent, Naumburg 14 percent, and Adams 13 percent. The remaining area is covered by rock outcrop, or one of the following soil associations: Beseman, Tunbridge, Herman, Berkshire, or Potsdam.

The following descriptions of the geographic settings of these soil associations were taken directly from the Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available URL: "http://soils.usda.gov/technical/classification/osd/index.html" [Accessed 30 January 2006]

Becket soils are on drumlins and glaciated uplands. Slope is dominantly 3 to 35 percent but ranges from 3 to 60 percent. The soils formed in stony till of Wisconsin age derived principally from granite, gneiss, and schist on drumlins and glaciated uplands. Mean annual temperature ranges from 38 to 45 degrees Fahrenheit and mean annual precipitation ranges from 30 to 50 inches. The frost-free growing season ranges from 90
II. Inventory, Use, and Capacity to Withstand Use

to 160 days.

Naumburg soils occupy low-lying areas of sand plains or terraces. Slope ranges from 0 to 8 percent. These soils formed in glaciofluvial or deltaic sands predominantly from areas of granitic rocks or acid sandstone. Some areas are associated with calcareous till, and in these places the ground water and C horizon are slightly acid. The mean annual precipitation ranges from 30 to 48 inches; mean annual air temperature ranges from 38 to 45 degrees Fahrenheit; and the mean frost-free period ranges from 90 to 160 days. The elevation ranges from 150 to 1600 feet above sea level.

Adams soils are on nearly level to very steep sand plains, kames, moraines, benches, eskers, deltas, and terraces. Slope ranges from 0 to 70 percent. These soils formed in sandy outwash deposits from predominantly crystalline rock or sandstone. Mean annual temperature ranges from 38 to 46 degrees Fahrenheit, mean annual precipitation ranges from 30 to 48 inches, and mean annual frost-free period ranges from 70 to 160 days. Elevation ranges from 300 to 2200 feet above sea level.

Terrain/Topography

The topography of the Saranac quadrangle is part of a hilly intramontane basin. The lowest point is where the Saranac River crosses the eastern border is at an altitude of 1,450 feet, and the maximum relief is 3,058 feet atop Scarface Mountain. The numerous lakes which dominate the SLWF are the product of irregular deposits of glacial and glacio-fluvialite drift into the valleys. Upper Saranac Lake, Middle Saranac Lake and Lower Saranac Lake are maintained by a bed of anorthosite, and the lake basins are the result of intense rock erosion from glacial retreat.

The lands of the SLWF are primarily gently sloping. Computer mapping information indicates that 24 percent of the SLWF has a slope of less than five percent, 29 percent of the land has a slope of between five and ten percent, 33 percent of the land has a slope of between 10 and 20 percent, and 15 percent of the land has a slope greater than 20 percent.

The Saranac Lake area is also defined by the presence of two eskers, defined by irregular winding ridges of gravel and sand. These eskers were formed from river deposits and were formed parallel to the motion of the glacier and arranged in tributary systems similar to stream drainage patterns. The Saranac Village at Will Rogers crowns one of these known eskers.

Water

Drainage of the Saranac quadrangle from the uplifted mountainous region forms the headwaters of several major rivers including: Raquette River, St. Regis River, Saranac River, and Ausable River or their tributaries. The SLWF region is known as the Saranac trough which had been previously named the lake belt by Cushing (1900) who reported on the bedrock geology of the area. The lake belt is depressed below the general level of topography to the east and west, and contains a number of lakes, ponds and rivers.
II. Inventory, Use, and Capacity to Withstand Use

Cushing speculated that the region was the path of considerable pre-glacial drainage. The lake belt is further discussed by Clarke (1904) and Buddington (1953).

The SLWF belongs to both the St. Lawrence River Basin (Upper St. Regis Lake, Deer Pond) flowing from the Raquette and St. Regis Rivers, and the Lake Champlain Basin (Upper Saranac Lake, Middle Saranac Lake, Lower Saranac Lake, Lake Placid, Oseetah and Kiwassa lakes, Lake Clear) which flows from the Ausable or Saranac Rivers.

The St. Lawrence River Basin extends 120 miles from the mouth of the Black River to the Canadian Border and contains a drainage area of 5,539 square miles. The Raquette River contains 1,256 square miles of drainage and is 152 miles long. The Lake Champlain Basin extends 115 miles from the Canadian border to Glens Falls, and its widest aspect is from the Saranac Lakes to the Lake Champlain shoreline - approximately 53 miles. The land area of the Lake Champlain Basin is 2,614 square miles. The Saranac River contains 614 square miles of drainage and is 75 miles long. The Ausable River contains 518 square miles of drainage and is 57 miles long.

Wetlands

Freshwater wetlands possess ecological, aesthetic, recreational and educational value. Wetlands protect water resources by stabilizing water flow and minimizing erosion and sedimentation. Wetlands receive, store and slowly release rainwater and meltwater, protecting water resources by stabilizing water flow, minimizing erosion, and sedimentation. Wetlands are inventoried, mapped and protected under the 1975 NYS Freshwater Wetlands Act by the Department and the APA.

Wetlands serve one of the most productive habitats for fish and wildlife, and afford opportunities for fishing, hunting, trapping, and wildlife observation and photography. The wetlands of the SLWF serves as an important habitat for a number of threatened wildlife species or species of special concern which may be present in the Unit, including the osprey, northern harrier, red-shouldered hawk, least bittern, Jefferson salamander, and the spotted salamander (species of special concern).

According to computer-based mapping information there are 17,069 acres of wetlands in the SLWF. The total acreage of wetlands is probably higher because many small wetlands have not been mapped. The wetlands in this unit are mostly coniferous, and characterized by dense stands of red spruce, black spruce and balsam fir. The SLWF contains some significant wetlands complexes, particularly at Bloomingdale Bog, Black Pond Swamp, Deer Pond Marsh, Weller Pond Outlet, the Saranac River between Middle and Lower Saranac Lakes, and South Creek into Middle Saranac Lake.

Air Resources and Atmospheric Deposition

The effects of various activities on SLWF air quality have not been sufficiently measured nor determined. Air quality and visibility in the unit appear to be good to excellent, rated Class II (moderately well controlled) by federal and state standards. However, the
II. Inventory, Use, and Capacity to Withstand Use

summits are often obscured by haze caused by air pollutants when a large number of small diameter particles exist in the air. Mountain visibility is reduced considerably on high sulphate days (O'Neill 1990). Air quality may be more affected by particulate matter blown in from outside sources rather than from activities within the unit.

The adverse effects of atmospheric deposition on the Adirondack environment have been documented by many researchers over the last two decades. While permanent monitoring sites have not been established in the SLWF, general observations of the effects of acidic deposition on the regional ecosystem are numerous and well documented.

Effects of Acidic Deposition on Forest Systems

At present, the mortality and decline of red spruce at high elevations in the Northeast and observed reductions in red spruce growth rates in the southern Appalachians are the only cases of significant forest damage in the United States for which there is strong scientific evidence that acid deposition is a primary cause (National Science and Technology Council Committee on Environment and Natural Resources, 1998). The following findings of the National Acid Precipitation Assessment Program (1998) provide a broad overview of the effects of acidic deposition on the forests of the Adirondacks. The interaction of acid deposition with natural stress factors has adverse effects on certain forest ecosystems. These effects include:

- Increased mortality of red spruce in the mountains of the Northeast. This mortality is due in part to exposure to acid cloud water, which has reduced the cold tolerance of these red spruce, resulting in frequent winter injury and loss of foliage.
- Reduced growth and/or vitality of red spruce across the high-elevation portion of its range.
- Decrease supplies of certain nutrients in soils to levels at or below those required for healthy growth.

Nitrogen deposition is now recognized with sulfur as an important contributor to effects on forests in some ecosystems, which occurs through direct impacts via increased foliar susceptibility to winter damage, foliar leaching, leaching of soil nutrients, elevation of soil aluminum levels, and/or creation of nutrient imbalances. Excessive amounts of nitrogen cause negative impacts on soil chemistry similar to those caused by sulfur deposition in certain sensitive high-elevation ecosystems. It is also a potential contributor to adverse impacts in some low-elevation forests.

Sensitive Receptors

High-elevation spruce-fir ecosystems in the eastern United States epitomize sensitive soil systems. Base cation stores are generally very low, and soils are near or past their capacity to retain more sulfur or nitrogen. Deposited sulfur and nitrogen, therefore, pass
Il. Inventory, Use, and Capacity to Withstand Use

directly into soil water, which leaches soil aluminum and minimal amounts of calcium, magnesium, and other base cations out of the root zone. The low availability of these base cation nutrients coupled with the high levels of aluminum that interfere with roots taking up these nutrients can result in plants not having sufficient nutrients to maintain good growth and health.

Sugar maple decline has been studied in the eastern United States since the 1950’s. Recently, studies suggest that the loss of crown vigor and incidence of tree death is related to the low supply of calcium and magnesium to soil and foliage. (Driscoll, 2002)

Exposure to acidic clouds and acid deposition has reduced the cold tolerance of red spruce, resulting in frequent winter injury of current-year foliage during the period 1960-1985. Repeated loss of foliage due to winter injury has caused crown deterioration and contributed to high levels of red spruce mortality in the Adirondack Mountains of New York, the Green Mountains of Vermont, and the White Mountains of New Hampshire.

Acid deposition has contributed to a regional decline in the availability of soil calcium and other base cations in high-elevation and mid-elevation spruce-fir forests of New York and New England and the southern Appalachians. The high-elevation spruce-fir forest of the Adirondacks and northern New England are identified as one of four areas nationwide with a sensitive ecosystem and subject to high deposition rates.

Effects of Acidic Deposition on Hydrologic Systems

The Adirondack Park is one of the most sensitive areas in the United States affected by acidic deposition. The Park consists of over 6 million acres of forest, lakes, streams and mountains interspersed with dozens of small communities, and a large seasonal population fluctuation. However, due to its geography and geology, it is one of the most sensitive regions in the United States to acidic deposition and has been impacted to such an extent that significant native fish populations have been lost and signature high elevation forests have been damaged.

There are two types of acidification which affect lakes and streams. One is a year-round condition when a lake is acidic all year long, referred to as chronically or critically acidic. The other is seasonal or episodic acidification associated with spring melt and/or rain storm events. A lake is considered insensitive when it is not acidified during any time of the year. Lakes with acid-neutralizing capability (ANC) values below 0 μeq/L are considered to be chronically acidic. Lakes with ANC values between 0 and 50 μeq/L are considered susceptible to episodic acidification; ANC may decrease below 0 μeq/L during high-flow conditions in these lakes. Lakes with ANC values greater than 50 μeq/L are considered relatively insensitive to inputs of acidic deposition (Driscoll 2001).

Watersheds which experience episodic acidification are very common in the Adirondack region. A 1995 EPA Report to Congress estimated that 70 percent of the target population lakes are at risk of episodic acidification at least once during the year. Additionally, EPA reported that 19 percent of these lakes were acidic in 1984, based on their surveys of waters larger than 10 acres. A 1990 report by the Adirondack Lakes Survey Corporation (ALSC) which included lakes of less than 10 acres in an extensive
II. Inventory, Use, and Capacity to Withstand Use

survey of 1,469 lakes in the Adirondacks, found that 24 percent of Adirondack lakes had summer pH values below 5.0 a level of critical concern to biota. Moreover, approximately half of the waters in the Adirondacks surveyed had ANC values below 50, making them subtle to episodes of acidification. Confirming that, EPA’s Environmental Monitoring and Assessment Program (EMAP) sampling in 1991-1994 revealed that 41 percent of the Adirondack lakes were chronically acidic or susceptible to episodic acidification, demonstrating that a high percentage of watersheds in the Adirondacks are unable to neutralize current levels of acid rain.

In addition to sensitive lakes, the Adirondack region includes thousands of miles of streams and rivers which are also sensitive to acidic deposition. While it is difficult to quantify the impact, it is certain that there are large numbers of Adirondack brooks that will not support native Adirondack brook trout. Over half of these Adirondack streams and rivers may be acidic during spring snowmelt, when high aluminum concentrations and toxic water conditions adversely impact aquatic life. This adverse effect will continue unless further limits are placed on emissions of acid rain precursors.

Detailed pond chemistry summary data can be found at Adirondack Lakes Survey Corporations’ website: http://www.adirondacklakessurvey.com. The Adirondack Long-Term Monitoring (LTM) program, which is managed by the ALSC, has been sampling chemistry in 52 lakes across the Park on a monthly basis in order to gather baseline data, monitor environmental changes, and to provide information for informed decision-making regarding pollutants and acidification.

Climate

The mean annual temperature in the greater Adirondack region ranges from 45 degrees Fahrenheit at Lake Champlain (95 feet elevation) to 30 degrees Fahrenheit atop Whiteface Mountain (4,867 feet elevation). The average cooling rate with ascent is -3 degrees Fahrenheit with each 1,000 feet of elevation. The approximate number of frost-free days ranges from 103-110 and leaf out of deciduous species begins between May 14 and May 16, with full leaf displays occurring between May 21 and May 23.

The mean annual precipitation ranges from 37 inches (Tupper Lake) to 39 inches (Lake Placid) and is greatest on Whiteface Summit at 49 inches. The mean annual precipitation which falls in the regions as snow ranges from 24 percent to 33 percent of the totals aforementioned. Mean annual snowfall ranges from 88 inches (Tupper Lake) to 127 inches at Lake Placid. Greater snowfall occurs on Whiteface which experiences an average snowfall of 220 inches.

2. Biological

Vegetation

The SLWF hosts a wide variety of plant species and communities. Most of these species are found throughout the Adirondacks. The current species composition of the vegetative cover has been shaped by many factors including local variations in: soil,
temperature, moisture, elevation, species interactions, and past disturbance events such as fire, wind, ice, and logging. Most of the SLWF is covered by forests, but there are significant areas of bogs, marsh, and swamp. These wetlands support vegetation not found in upland areas.

There are several plant species listed by New York as endangered or threatened which the natural heritage program reports as being in the SLWF. These species are swamp birch, rhodora, Sitka clubmoss, northern clustered sedge, balsam willow, and Canada ricegrass.

The majority of the forest in the SLWF is in a mature stage of growth. Extensive logging and some clearing for agriculture and settlements occurred on lands of the SLWF during the late 1800's. For much of the land in the SLWF this was the last time that trees were removed. There are some areas of the SLWF with very mature trees; these areas may never have been logged. One such area is known as the 1675 Grove, named for the estimated year the trees started growing. This grove covers about 12 acres and contains 50 large trees, one of which is claimed to be the tallest tree in New York State (Thill). Another example is that the largest living yellow birch in New York was growing on the SLWF (based on measurements taken in 2015).

Within the SLWF there are also lands that have been acquired by the State over the past twenty years and where logging and agricultural activities may have occurred prior to being purchased by the State. The vegetation in these areas consists of younger trees, shrubs, and open fields.

In general, Adirondack vegetation can be categorized into six land zones based upon elevation and topographical position. Each land zone has plant communities and associations of plant species which scientists recognize as belonging together under certain circumstances and site requirements. The six vegetation zones identified by Ketchledge (1967) are:

- **Lowland Conifer Zone (to 1,500 feet):**

 Red Spruce - balsam fir associations which are especially common to low lying areas of the eastern valleys, where high soil moisture and poor drainage dominate the soil conditions. Tree species common to this association are black and red spruce, balsam fir, red maple, white and yellow birch. Infrequent associations include white cedar, alder and tamarack. The forest in this zone is quite dense, and little sunlight reaches the forest floor. Extreme shade and acidic soils preclude plant species, resulting in an open forest floor.

- **Mixed Conifers and Hardwoods Zone (to 2,500 feet):**

 A mixed forest of conifers and hardwoods is encountered as elevation rises above the spruce swamps and drainage improves. Red spruce and balsam fir fade noticeably. Increased elevation and improved drainage favor the growth
II. Inventory, Use, and Capacity to Withstand Use

of birches, maples, eastern hemlock, and eastern white pine. The dominant plant cover is viburnum, commonly called hobble-bush. Various ferns, grasses and wild flowers are evident.

- Northern Hardwoods Zone (to 2,500 feet):

Northern hardwoods are located on better drained soils and more fertile uplands. Deep glacial soils with elevations up to 2,500 feet favor a forest association of sugar maple, American beech, and yellow birch. Black cherry and white ash are minor associations.

- Upper Spruce-Fir Zone (2,500 feet to 3,100 feet):

Above 2,500 feet red spruce and balsam fir reappear, reminiscent of northern boreal forests. Red spruce and balsam fir predominate in nearly pure stands, reflecting the cooler temperatures and increased moisture at higher elevations. Ground cover is nearly non-existent due to lack of sunlight on the forest floor.

- Sub-alpine Zone (3,100 feet to 4,000 feet):

No portion of the SLWF lies in this elevation zone. In this zone red spruce gives way to balsam fir. Approaching 4,000 feet the balsam fir is often stunted and misshapen, barely able to survive the cold, drying winds and infertile soils. Trees in this zone are almost prostate, known as “krumholz” - meaning crooked wood. Slightly above the krumholz is the timberline.

- Alpine Zone (4,000 feet and above):

There is no portion of the SLWF that lies in this elevation area. This zone resembles the arctic tundra of the far north. Ground cover is scant and open areas with bare rock are frequent. The common theme among all vegetation is to grow low to the ground in order to survive. Alpine communities include dwarf willows and birches in sheltered depressions, mosses and lichens, alpine flowers, sedges and rushes. Of the entire Park’s six million acres, only 85 acres comprise this Alpine Zone. This zone contains some of New York State’s rarest and most endangered plant species.

In addition to these natural plant associations, there are areas where tree plantations have been established within the SLWF. Most of these were planted during the 1930’s by the Civilian Conservation Corps after the native forests were cleared out by forest fires and logging. Several of these plantations have been named in honor of notable individuals. The primary species planted in the plantations are pine (eastern white, red, and Scotch) along with some Norway spruce. These plantations have much less species diversity than natural forests. Over time species diversity in the plantations will
increase as openings in the canopy are created. One plantation that deserves mention is the Scotch pine plantation along Old Military Road, in North Elba, this plantation is interesting in that it is one location were the Scotch pine exhibits good growth characteristics.

Invasive Plants

Non-native, invasive species directly threaten biological diversity and the high-quality natural areas in the Adirondack Park. Invasive plant species can alter native plant assemblages, often forming mono-specific stands of very low-quality forage for native wildlife, and drastically impacting the ecological functions and services of natural systems. Not yet predominant across the Park, invasive plants have the potential to spread - undermining the ecological, recreational, and economic value of the Park’s natural resources.

Because of the Adirondack Park’s continuous forested nature and isolation from the normal “commerce” found in other parts of the State, its systems are largely functionally intact. In fact, there is no better opportunity in the global temperate forested ecosystem to forestall and possibly prevent the alteration of natural habitats by invasive plant species.

Prevention of non-native plant invasions, Early Detection/Rapid Response (ED/RR) of existing infestations, and monitoring are primary objectives in a national strategy for invasive plant management and necessitates a well-coordinated, area-wide approach. A unique opportunity exists in the Adirondacks to work proactively and collaboratively to detect, contain, or eradicate infestations of invasive plants before they become well established, and to prevent further importation and distribution of invasive species, thus maintaining a high-quality natural landscape. The Department shares an inherent obligation to minimize or abate existing threats in order to prevent widespread and costly infestations.

The Department has entered into a partnership agreement with the Adirondack Park Invasive Plant Program (APIPP). The mission of APIPP is to document invasive plant distributions and to advance measures to protect and restore native ecosystems in the Park through partnerships with Adirondack residents and institutions. Partner organizations operating under a Memorandum of Understanding are the Adirondack Nature Conservancy, Department of Environmental Conservation, Adirondack Park Agency, Department of Transportation, and Invasive Plant Council of NYS. The APIPP summarizes known distributions of invasive plants in the Adirondack Park and provides this information to residents and professionals alike. Specific products include a geographic database for invasive plant species distribution; a central internet website for invasive plant species information and distribution maps; a list-serve discussion group to promote community organization and communication regarding invasive species issues; and a compendium of educational materials and best management practices for management.

Management of invasive species on Adirondack Park Forest Preserve lands is
II. Inventory, Use, and Capacity to Withstand Use

covered by Inter-Agency Guidelines for Implementing Best Management Practices to Control Invasive Species on DEC Administered Lands of the Adirondack Park.

Information about the location of invasive species in the SLWF is maintained on New York iMapInvasives. http://www.nyimapinvasives.org/ The webpage states:

iMapInvasives is New York State's on-line, all-taxa invasive species database and mapping tool. The comprehensive database can be used for:

- Documenting and sharing invasive species observation, survey, assessment and treatment data
- The coordination of early detection and rapid response efforts through email alerts
- Data analysis and summaries in the web interface and GIS

iMapInvasives partners with many organizations to leverage collaboration in the fight against invasive species.

Wildlife

Wildlife communities in the unit reflect those species commonly associated with northern hardwood and mixed hardwood/softwood forests that are transitional to the boreal forests of higher latitudes. Saranac Lakes Wild Forest contains significant lowland boreal forest which represents 10% of all such forests within the Forest Preserve (the largest amount in any unit). These lowland spruce-fir habitats are important for a number of wildlife species with statewide distributions mostly or entirely within the Adirondacks (e.g., Spruce Grouse and other boreal birds, American marten). In addition to lowland boreal forest, aquatic habitats are abundant and include lakes, ponds, and wetlands. Together, these habitats support a diverse wildlife community, including rare animals and significant ecological communities. Terrestrial fauna are represented by a variety of bird, mammal, and invertebrate species. Amphibians and reptiles also occur on the unit, although species diversity is relatively low as compared with other vertebrates. The distribution and abundance of wildlife species on the unit is determined by physical (e.g., elevation, topography, climate), biological (e.g., forest composition, structure, and disturbance regimes, available habitat, population dynamics, species’ habitat requirements), and social factors (e.g., land use). It is important to note that wildlife populations occurring on the unit do not exist in isolation from other forest preserve units or private lands. The physical, biological, and social factors that exist on these other lands can and do influence the abundance and distribution of wildlife species on the SLWF.

With the exception of NYNHP surveys, comprehensive field inventories of wildlife species have not focused specifically on the SLWF or Forest Preserve units in general. Statewide wildlife survey efforts conducted by the NYSDEC have included two Breeding Bird Atlas projects (1980-1985 and 2000-2005) and the New York State Amphibian and Reptile Atlas Project (1990-1999). In addition, intensive statewide spruce grouse
surveys have taken place from 2002-2006 by SUNY Potsdam, and in 2008-2013 by NYSDEC. Intensive statewide surveys of boreal songbirds have taken place from 2007-2009 by the Wildlife Conservation Society. Additionally, the Bureau of Wildlife collects harvest data on a number of game species (those that are hunted or trapped). Harvest data is not collected specific to Forest Preserve units, but rather on a town, county, and wildlife management unit (WMU) basis. Harvest data can provide some indication of wildlife distribution and abundance and is sometimes the only source of data on mammals.

The unit is largely covered by mature forests with limited areas of early successional habitat. The character of the unit’s vegetation has a significant effect in determining the occurrence and abundance of wildlife species. While some species prefer mature forests, many others occur in lower densities on Forest Preserve lands than they do on private lands characterized by a greater variety of habitat types. Natural forest disturbances including wind storms, ice storms, tree disease and insect outbreaks, fire, and beaver activity influence forest structure and wildlife habitats by creating patches of earlier successional stages within a larger matrix of mature forest. These natural disturbances create an important habitat for a variety of species that depend on early successional vegetation communities and the edges created between these communities and the surrounding forest. However, these areas are usually limited in size. Private lands adjacent to public lands may provide some habitat for species that prefer early successional habitats, depending on land use and the silvicultural practices conducted.

Amphibians and Reptiles

The New York State Amphibian and Reptile Atlas Project (1990-1999) confirmed the presence of 22 species of reptiles and amphibians in USGS Quadrangles within, or partially within SLWF. It is important to note that quadrangles (the survey sample unit) overlap and extend beyond the land boundary of the unit. Therefore, recorded species do not necessarily reflect what was found on the unit, but on the quadrangles. Some species may have been found on private lands adjacent to the state lands. However, these data should provide a good indication of the species found throughout the SLWF. These included three species of turtles, four species of snakes, nine species of frogs and toads, and six species of salamanders (Table 1). These species are classified as protected wildlife, and some may be harvested during open hunting seasons. Of the 22 confirmed species, one was classified as special concern, and none were classified as endangered or threatened. Only one occurrence of wood turtle was documented within quadrangles within, or partially within SLWF.
Table 1: Amphibian and reptile species recorded in USGS quadrangles within, or partially within, the SLWF during the New York State Amphibian and Reptile Atlas Project, 1990-1999.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotted salamander</td>
<td>Ambystoma maculatum</td>
</tr>
<tr>
<td>Eastern newt</td>
<td>Notophthalmus v. viridescens</td>
</tr>
<tr>
<td>Northern dusky salamander</td>
<td>Desmognathus fuscus</td>
</tr>
<tr>
<td>Allegheny dusky salamander</td>
<td>Desmognathus ochrophaeus</td>
</tr>
<tr>
<td>Northern redback salamander</td>
<td>Plethodon cinereus</td>
</tr>
<tr>
<td>Northern two-lined salamander</td>
<td>Eurycea bislineata</td>
</tr>
<tr>
<td>Eastern American toad</td>
<td>Anaxyrus a. americanus</td>
</tr>
<tr>
<td>Northern spring peeper</td>
<td>Pseudacris c. crucifer</td>
</tr>
<tr>
<td>Gray treefrog</td>
<td>Hyla versicolor</td>
</tr>
<tr>
<td>Bullfrog</td>
<td>Lithobates catesbeianus</td>
</tr>
<tr>
<td>Green frog</td>
<td>Lithobates clamitans melanota</td>
</tr>
<tr>
<td>Mink frog</td>
<td>Lithobates septentrionalis</td>
</tr>
<tr>
<td>Wood frog</td>
<td>Lithobates sylvaticus</td>
</tr>
<tr>
<td>Northern leopard frog</td>
<td>Lithobates pipiens</td>
</tr>
<tr>
<td>Pickerel frog</td>
<td>Lithobates palustris</td>
</tr>
<tr>
<td>Common snapping turtle</td>
<td>Chelydra s. serpentina</td>
</tr>
<tr>
<td>Wood turtle¹</td>
<td>Glyptemys insculpta</td>
</tr>
<tr>
<td>Painted turtle</td>
<td>Chrysemys picta</td>
</tr>
<tr>
<td>Northern redbelly snake</td>
<td>Storeria o. occiptomaculata</td>
</tr>
<tr>
<td>Common garter snake</td>
<td>Thamnophis sirtalis</td>
</tr>
<tr>
<td>Northern ringneck snake</td>
<td>Diadophis punctatus edwardsi</td>
</tr>
<tr>
<td>Eastern milk snake</td>
<td>Lampropeltis t. triangulum</td>
</tr>
</tbody>
</table>

¹ Species of Special Concern.
a. Habitat Associations

Spotted salamander (*Ambystoma maculatum*) - The spotted salamander prefers vernal pools for breeding, but its jelly-like globular egg masses are found in a variety of wetland habitats. Because of its fossorial habits, the spotted salamander is rarely encountered except during the breeding season. At that time, they can be found under rocks, logs, and debris near the edges of the breeding pools.

Eastern newt (*Notophthalmus viridescens*) - One of the most fascinating life histories of any salamander is that of the red-spotted newt, with four stages in its life cycle (egg, aquatic larva, terrestrial immature red eft, and aquatic adult). Interestingly, the red eft remains on land from two (Bishop, 1941) to seven years (Healy, 1974) before they transform into their final life stage, the aquatic adult.

Northern dusky salamander (*Desmognathus fuscus*) - The northern dusky salamander inhabits rocky stream ecotones, hillside seeps and springs, and other seepage areas in forested or partially forested habitat. They are typically found under rocks and other cover objects such as logs adjacent to, or in the water (Harding, 1997).

Allegheny dusky salamander (*Desmognathus ochrophaeus*) - The allegheny dusky salamander is more terrestrial than its congener, the northern dusky salamander, found under rocks and in woodland debris in moist forests usually near a seep or stream.

Northern redback salamander (*Plethodon cinereus*) - The northern redback salamander is found in deciduous, coniferous or mixed forest where it nests in moist, rotten logs. It favors pine logs in advanced stages of decay rather than deciduous tree logs that appear to be more susceptible to molds, thus attributing to possible fungal infections in the eggs (Pfingsten and Downs 1989).

Northern two-lined salamander (*Eurycea bislineata*) - Northern two-lined salamanders inhabit springs and seeps in forested wetlands, edges of brooks and streams, and terrestrial areas many meters from water. They are usually found under rocks, logs, and debris (Pfingsten and Downs, 1989).

Eastern American toad (*Anaxyrus a. americanus*) - Although eastern American toads can be found in almost every habitat from cultivated gardens to woodlands, they are typically found in moist upland forest. Special habitat requirements include shallow water for breeding (DeGraaf and Rudis, 1983).

Northern spring peeper (*Pseudacris crucifer*) - Northern spring peepers inhabit coniferous, deciduous and mixed forested habitat where they typically breed in ponds, emergent marshes or shrub swamps. However, their spring chorus is commonly heard from just about any body of water, especially in areas where trees or shrubs stand in and near water (Hunter, et al., 1999).

Gray treefrog (*Hyla versicolor*) - Gray treefrogs are found in forested areas where they hibernate near the soil surface, tolerating temperatures as cold as -6 degrees C for as
II. Inventory, Use, and Capacity to Withstand Use

long as five consecutive days. Due to the production of glycerol which serves as an antifreeze, gray treefrogs can freeze up to 41.5% of their total body fluids. The frogs breed in both permanent or temporary ponds or wetlands (Hunter, et al., 1999).

Bullfrog (*Lithobates catesbeianus*) - Bullfrogs require permanent bodies of water with adequate emergent and edge cover. Their aquatic habitats include shallow lake coves, slow-moving rivers and streams, and ponds (Hunter, et al., 1999).

Green frog (*Lithobates clamitans*) - Green frogs are rarely found more than several meters from some form of water, including lakes and ponds, streams, quarry pools, springs, and vernal pools (DeGraaf and Rudis, 1983).

Mink frog (*Lithobates septentrionalis*) - Mink frogs prefer cool, permanent water with adequate emergent and floating-leaved vegetation where they feed on aquatic insects and other invertebrates. Here they also hibernate on the bottom in the mud (Harding, 1997).

Wood frog (*Lithobates sylvaticus*) - Wood frogs prefer cool, moist, woodlands where they select temporary pools for breeding. However, where vernal pools are absent, wood frogs will breed in a variety of habitats including everything from cattail swamps to roadside ditches (Hunter, et al., 1999).

Northern leopard frog (*Lithobates pipiens*) - Although sometimes found in wet woodlands, northern leopard frogs are the frogs of wet meadows and open fields, breeding in ponds, marshes, and slow, shallow, vegetated streams (DeGraaf and Rudis, 1983).

Pickerel frog (*Lithobates palustris*) - Whether the habitat selected is a bog, fen, pond, stream, spring, slough, or cove, pickerel frogs prefer cool, clear waters, avoiding polluted or stagnant habitats. Grassy streambanks and inlets to springs, bogs, marshes, or weedy ponds are preferred habitats (Harding, 1997).

Common snapping turtle (*Chelydra serpentina*) - Snapping turtles are found in most permanent and semipermanent bodies of fresh and brackish water. Areas that have dense aquatic vegetation with deep, soft, organic substrates and plenty of cover are favored (Mitchell, 1994).

Wood turtle (*Glyptemys insculpta*) - The wood turtle is a semiaquatic turtle that inhabits both the terrestrial and aquatic environment. It favors streams with sandy-pebbly substrates that are deep enough so that they do not freeze during hibernation, are well-oxygenated, and have good water quality. Terrestrial habitat includes a variety of wetlands, upland successional fields, and deciduous woodlands with open areas for basking (Tuttle and Carroll, 1997).

Painted turtle (*Chrysemys picta*) - Painted turtles most often inhabit ponds, lakes, and other slow-moving bodies of water with soft substrates and abundant aquatic vegetation. A critical habitat parameter is adequate basking sites such as logs, rocks,
II. Inventory, Use, and Capacity to Withstand Use

and mats of aquatic vegetation.

Northern redbelly snake (*Storeria occipitomaculata*) - Although the northern redbelly snake prefers wetland-upland ecotones, it is found in a variety of terrestrial habitats. This extremely secretive nocturnal species may be found under rocks, logs, bark, and leaves; but if conditions are dry, they are apt to go underground in unused rodent borrows (Mitchell, 1994).

Common garter snake (*Thamnophis sirtalis*) - Garter snakes are found in a wide variety of habitats including, but not limited to, woodlands, meadows, wetlands, streams, drainage ditches, and even city parks and cemeteries (Conant and Collins, 1998). But large populations of common garter snakes are usually found in moist, grassy areas near the edges of water (Harding, 1997).

Northern ringneck snake (*Diadophis punctatus edwardsi*) - The northern ringneck snake is a secretive woodland snake and is usually more common where abundant hiding structures exist, including stones, logs, and other rotting wood. Rocky, wooded hillsides are favored.

Eastern milk snake (*Lampropeltis triangulum*) - The milk snake is the snake of farm outbuildings and barns, taking cover under rocks, logs, firewood, or building materials. Natural habitat includes open woodlands, wetlands, old fields and pastures (Harding, 1997).

Birds

The avian community varies seasonally. Some species remain within the area all year, but the majority of species utilize the area during the breeding season and for migration. The first Breeding Bird Atlas Project (BBA) conducted during 1980-1985 (Andrle and Carroll, 1988) and the Breeding Bird Atlas 2000 Project (2000-2005) documented 160 and 119 species, respectively, in atlas blocks within, or partially within the SLWF (Appendix 5). It is important to note that atlas blocks overlap and extend beyond the land boundary of the SLWF. Therefore, these data do not necessarily reflect what is found on the unit, but on the atlas blocks. It is probable that some species determined to be present by BBA surveys were found only on private lands adjacent to the state lands. However, the BBA data should provide a good indication of the species found throughout the unit and adjacent region.

a. Birds Associated with Boreal Forest

The SLWF contains a limited amount of high elevation boreal forest (Scarface Mountain) and large tracts of lowland boreal forest that are significant for a variety of birds. In total, boreal forest comprises approximately 33,663 acres or 43% of the unit. This includes approximately 33,507 acres of lowland boreal forest, which occurs throughout the unit (table 2). The state endangered spruce grouse prefers lowland boreal forests, where it selects mid-successional or uneven-aged spruce-fir habitats. Spruce grouse have been documented on the unit during BBA projects, intensive
spruce grouse surveys by SUNY Potsdam and NYSDEC from 2002-2006 and 2008-2013, respectively, and during NYNHP surveys.

Additionally, there are approximately 156 acres of high elevation boreal forest (equal to or greater than 2,800 feet elevation) in the unit. High elevation spruce-fir forest is especially important as breeding habitat for Bicknell’s thrush, a special concern species in New York. Throughout the range of this species, montane forest between 2,900 feet and 4,700 feet and dominated by stunted balsam fir and red spruce is the primary breeding habitat (Atwood et al., 1996). This species utilizes regenerating fir waves and natural disturbances as well as the dense regenerated ecotones along the edges of ski slopes. The species is most common on the highest ridges of the Adirondacks, preferring young or stunted dense stands of balsam fir up to 9 feet in height. Here they lay their eggs above the ground in the dense conifer thickets. Within SLWF, the majority of this high elevation boreal forest is on Scarface Mountain (125 acres). Bicknell’s Thrush was documented during the 1980-1985 BBA project, however, the specific occurrence within SLWF is unknown (likely contained in raw survey data).

In an effort designed to protect birds associated with high elevation boreal forest and their habitats, New York State designated the Adirondack mountain summits above 2,800 feet in Essex, Franklin, and Hamilton counties as the Adirondack Subalpine Forest Bird Conservation Area (BCA) in November 2001. The New York State Bird Conservation Area Program was established in September 1997, under section §§11-2001 of the Environmental Conservation Law. The program is designed to safeguard and enhance bird populations and their habitats on selected state lands and waters.

Of 27 bird species associated with boreal forest that occur in New York (Tim Post, NYSDEC, personal communication), 25 (93%) have been documented in BBA survey blocks within, or partially within, SLWF. During the two BBA projects, 16 species of lowland boreal forest birds, four species of high elevation boreal forest birds, and five species commonly associated with boreal forest, have been documented on the unit (Table 2). Some notable differences in boreal bird species composition were recorded between the two atlas periods; American three-toed woodpecker, black-backed woodpecker, gray jay, Bicknell’s thrush, blackpoll warbler, and Blackburnian warbler were documented in the first atlas project but not the second. Many factors can influence survey results (e.g., weather, survey effort), therefore, these comparisons should be used as a tool for further study and monitoring of bird populations and not as a definitive statement on bird population changes.
Table 2: Bird species associated with boreal forest as recorded by the New York State Breeding Bird Atlas projects (1980-1985 and 2000-2005) occurring in atlas blocks within or partially within the SLWF.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowland Boreal Forest Species</td>
<td></td>
</tr>
<tr>
<td>American three-toed woodpecker</td>
<td>Picoides dorsalis</td>
</tr>
<tr>
<td>Spruce grouse</td>
<td>Falcipennis canadensis</td>
</tr>
<tr>
<td>Black-backed woodpecker</td>
<td>Picoides acticus</td>
</tr>
<tr>
<td>Olive-sided flycatcher</td>
<td>Contopus cooperi</td>
</tr>
<tr>
<td>Boreal chickadee</td>
<td>Poecile hudsonicus</td>
</tr>
<tr>
<td>Ruby-crowned kinglet</td>
<td>Regulus calendula</td>
</tr>
<tr>
<td>Cape may warbler</td>
<td>Dendroica tigrina</td>
</tr>
<tr>
<td>Bay-breasted warbler</td>
<td>Dendroica castanea</td>
</tr>
<tr>
<td>Rusty blackbird</td>
<td>Euphagus carolinus</td>
</tr>
<tr>
<td>White-throated sparrow</td>
<td>Zonotrichia albicollis</td>
</tr>
<tr>
<td>Yellow-bellied flycatcher</td>
<td>Empidonax flaviventris</td>
</tr>
<tr>
<td>Gray jay</td>
<td>Persisoreus canadensis</td>
</tr>
<tr>
<td>Lincoln’s sparrow</td>
<td>Melospiza lincolnii</td>
</tr>
<tr>
<td>White-winged crossbill</td>
<td>Loxia leucoptera</td>
</tr>
<tr>
<td>Red crossbill</td>
<td>Loxia curvirostra</td>
</tr>
<tr>
<td>Pine siskan</td>
<td>Carduelis pinus</td>
</tr>
</tbody>
</table>
II. Inventory, Use, and Capacity to Withstand Use

<table>
<thead>
<tr>
<th>High Elevation Boreal Forest Species</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicknell’s thrush</td>
<td>Catharus bicknelli</td>
</tr>
<tr>
<td>Blackpoll warbler</td>
<td>Dendroica striata</td>
</tr>
<tr>
<td>Winter wren</td>
<td>Troglodytes</td>
</tr>
<tr>
<td>Swainson’s thrush</td>
<td>Catharus ustulatus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species Commonly Associated with Boreal Forest</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evening grosbeak</td>
<td>Coccothraustes vespertinus</td>
</tr>
<tr>
<td>Blackburnian warbler</td>
<td>Dendroica fusca</td>
</tr>
<tr>
<td>Magnolia warbler</td>
<td>Dendroica magnolia</td>
</tr>
<tr>
<td>Northern parula</td>
<td>Parula americana</td>
</tr>
<tr>
<td>Tennessee warbler</td>
<td>Vermivora peregrina</td>
</tr>
</tbody>
</table>

b. Habitat Associations

In additional to boreal and mixed-boreal forests, other habitat types of importance include deciduous forests, lakes, ponds, streams, bogs, beaver meadows, and shrub swamps.

Birds associated with marshes, ponds, lakes, and streams include: common loon, pied-billed grebe, great blue heron, green-backed heron, American bittern, and a variety of waterfowl. The most common ducks include the mallard, American black duck, wood duck, hooded merganser, and common merganser. Other species of waterfowl migrate through the region following the Atlantic Flyway.

Bogs, beaver meadows, shrub swamps, and any areas of natural disturbance provide important habitat for species that require or prefer openings and early successional habitats. Species such as alder and olive-sided flycatchers, American woodcock, Lincoln’s sparrow, Nashville warbler, chestnut-sided warbler, brown thrasher, blue-winged warbler, yellow warbler, common yellowthroat, indigo bunting, eastern towhee, and field sparrow rely on these habitats and are rarely found in mature forests. These species, as a suite, are declining more rapidly throughout the Northeast than species that utilize more mature forest habitat. Habitats for these species are, and will be, very limited within SLWF.
II. Inventory, Use, and Capacity to Withstand Use

Birds that prefer forest habitat are numerous, including many neotropical migrants. Some species prefer large blocks of contiguous forest (e.g., northern goshawk), others prefer blocks of forest with adjacent openings, and many prefer forest with a relatively thick shrub layer. The forest currently is maturing and will eventually become old growth forest dominated by large trees.

Songbirds are a diverse group filling different niches in the Adirondacks. The most common species found throughout the deciduous or mixed forest include the ovenbird, red-eyed vireo, yellow-bellied sapsucker, black-capped chickadee, blue jay, downy woodpecker, brown creeper, wood thrush, black-throated blue warbler, pileated woodpecker, and black and white warbler. The golden-crowned kinglet, purple finch, pine siskin, red and white-winged crossbill and black-throated green warbler are additional species found in the coniferous forest and exhibit preference for this habitat. Birds of prey common to the area include the barred owl, great horned owl, eastern screech-owl, northern goshawk, red-tailed hawk, sharp-shinned hawk, and broad-winged hawk.

Game birds include upland species such as turkey, ruffed grouse and woodcock, as well as a variety of waterfowl. Ruffed grouse and woodcock prefer early successional habitats and their habitat within the area is limited due to the lack of timber harvesting. Turkey are present in low numbers and provide some hunting opportunities. Waterfowl are fairly common along the waterways and marshes and provide hunting opportunities.

Mammals

a. Large and Medium-sized Mammals

Large and medium-sized mammals known to occur in the central and southern Adirondacks are also believed to be common inhabitants of the SLWF and include the white-tailed deer, moose, black bear, coyote, raccoon, red fox, gray fox, bobcat, fisher, American marten, river otter, mink, striped skunk, long-tailed weasel, short-tailed weasel, beaver, muskrat, porcupine, and snowshoe hare (Saunders, 1988). Of these species, white-tailed deer, black bear, coyote, raccoon, red fox, gray fox, long-tailed weasel, short-tailed weasel, bobcat, and snowshoe hare can be hunted. Additionally, these species (with the exception of white-tailed deer, black bear, and snowshoe hare), along with fisher, American marten, mink, muskrat, beaver, and river otter can be trapped. Hunting and trapping activities are highly regulated by the Department, and the Bureau of Wildlife collects annual harvest data on many of these species.

Important big game species within the area include the white-tailed deer and black bear. Generally, white-tailed deer can be found throughout SLWF. From early spring (April) to late fall (November), deer are distributed generally on their “summer range.” When snow accumulates to depths of 20 inches or more, deer travel to their traditional wintering areas. This winter range is characteristically composed of lowland spruce-fir, cedar or hemlock forests, and to a lesser degree, a combination of mixed deciduous and coniferous cover types. Often found at lower elevations along water courses, this habitat provides deer with protective cover from adverse weather and easier mobility in
deep snows (see Critical Habitat section).

Black bears are essentially solitary animals and tend to be dispersed throughout the unit. The Adirondack region supports the largest black bear population in New York State (4,000 to 5,000 bears). Hikers and campers in this region are likely to encounter a bear, and negative interactions between black bears and humans, mainly related to bears stealing food from humans, have been a fairly common occurrence in the Adirondack High Peaks for at least twenty years. In 2005 a new regulation was enacted, requiring all overnight campers in the Eastern High Peaks Wilderness Area to use bear-resistant canisters for food, toiletries, and garbage. In other areas of the Adirondacks, the Department recommends the use of bear resistant canisters as well.

Moose entered the state on a continuous basis in 1980, after having been absent since the 1860's. Currently, the moose population in New York State is estimated to be approximately 800-1000 animals. In the northeastern United States, moose use seasonal habitats within boreal and mixed coniferous/deciduous forests. The southern distribution of moose is limited by summer temperatures that make the regulation of body temperature difficult. Moose select habitat primarily for the most abundant and highest quality forage (Peek 1997). Disturbances such as wind, fire, logging, tree diseases, and insects create openings in the forest that result in regeneration of important hardwood browse species such as white birch, aspen, red maple, and red oak. Typical patterns in moose habitat selection during the summer include the use of open upland and aquatic areas in early summer followed by the use of more closed canopy areas (such as upland stands of mature aspen and white birch) that provide higher quality forage in late summer and early autumn. After the fall rut and into winter, moose intensively use open areas again where the highest biomass of woody browse exists (i.e., dormant shrubs). In late winter when browse quantity and quality are lowest, moose will use closed canopy areas that represent the best cover available within the range (e.g., closed canopy conifers in boreal forest). From late spring through fall, moose commonly are associated with aquatic habitats such as lakes, ponds, and streams. However, use of aquatic habitats can vary geographically over their range. It is believed that moose use aquatic habitats primarily to forage on highly palatable plants, however, moose may also use these areas for relief from insects and high temperatures.

Chronic Wasting Disease (CWD) is a rare, fatal, neurological disease found in members of the deer family (cervids). It is a transmissible disease that slowly attacks the brain of infected deer and elk, causing the animals to progressively become emaciated, display abnormal behavior, and invariably results in the death of the infected animal. Chronic Wasting Disease has been known to occur in wild deer and elk in the western U.S. for decades and its discovery in wild deer in Wisconsin in 2002 generated unprecedented attention from wildlife managers, hunters, and others interested in deer. Chronic Wasting Disease poses a significant threat to the deer and elk of North America and, if unchecked, could dramatically alter the future management of wild deer and elk. However, there is no evidence that CWD is linked to disease in humans or domestic livestock other than deer and elk.
CWD surveillance began in New York in 2002, with increased efforts in 2005 after the disease was detected in 5 captive and 2 wild deer in Oneida County. From 2002 to March 31, 2007, over 18,700 samples have been collected throughout the state, including 3,900 samples from the Oneida-Madison County CWD Containment Area, with no additional positives found. The involved captive facilities were depopulated within weeks of the initial discovery. Until recently, New York was the only state in the northeast with a confirmed CWD case in wild deer. However, CWD was recently detected in wild deer in West Virginia.

The Department has established a containment area around the CWD-positive samples and will continue to monitor the wild deer herd in New York State. More information on CWD, New York’s response to this disease, the latest results from ongoing sampling efforts, and current CWD regulations are available on the Department’s website: http://www.dec.ny.gov/animals/33220.html

b. Small Mammals

The variety of habitats within the Adirondack region are home to an impressive diversity of small mammals. These mammals inhabit the lowest elevations to those as high as 4,400 feet (Southern bog lemming). Most species are found in forested habitat (coniferous, deciduous, mixed forest) with damp soils, organic muck, or soils with damp leaf mold. However, some species (e.g., hairy-tailed mole) like dry to moist sandy loam soils and others (e.g., white-footed mouse) prefer the drier soils of oak-hickory, coniferous, or mixed forests. Small mammals of the Adirondack region are found in alpine meadows (e.g., long-tailed shrew), talus slides and rocky outcrops (e.g., rock vole), grassy meadows (e.g., meadow vole, meadow jumping mouse), and riparian habitats (e.g., water shrew). It is likely that many, if not most, of the small mammal species listed below inhabit the SLWF (Table 3). An exception may be the Northern bog lemming, a species whose southernmost range extends just into the northern portion of the Adirondack Park; only one recently-verified specimen exists (Saunders, 1988). All listed species are known to occur within the Adirondack Park.
II. Inventory, Use, and Capacity to Withstand Use

Table 3: Small mammal species recorded within the Adirondack Park (data based on museum specimens; Saunders, 1988).

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Number of Towns*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star-nosed mole</td>
<td>Condylura cresta</td>
<td>6</td>
</tr>
<tr>
<td>Hairy-tailed mole</td>
<td>Parascalops breweri</td>
<td>11</td>
</tr>
<tr>
<td>Short-tailed shrew</td>
<td>Blarina brevicauda</td>
<td>31</td>
</tr>
<tr>
<td>Pygmy shrew</td>
<td>Sorex hoyi</td>
<td>1</td>
</tr>
<tr>
<td>Long-tailed shrew</td>
<td>Sorex dispar</td>
<td>7</td>
</tr>
<tr>
<td>Smoky shrew</td>
<td>Sorex fumeus</td>
<td>18</td>
</tr>
<tr>
<td>Water shrew</td>
<td>Sorex palustris</td>
<td>10</td>
</tr>
<tr>
<td>Masked shrew</td>
<td>Sorex cinereus</td>
<td>25</td>
</tr>
<tr>
<td>Deer mouse</td>
<td>Peromyscus maniculatus</td>
<td>26</td>
</tr>
<tr>
<td>White-footed mouse</td>
<td>Peromyscus leucopus</td>
<td>14</td>
</tr>
<tr>
<td>Southern red-backed vole</td>
<td>Clethrionomys gapperi</td>
<td>32</td>
</tr>
<tr>
<td>Meadow vole</td>
<td>Microtus pennsylvanicus</td>
<td>31</td>
</tr>
<tr>
<td>Yellownose vole</td>
<td>Microtus chrotorrhinus</td>
<td>6</td>
</tr>
<tr>
<td>Woodland vole</td>
<td>Microtus pinetorum</td>
<td>1</td>
</tr>
<tr>
<td>Southern bog lemming</td>
<td>Synaptomys cooperi</td>
<td>12</td>
</tr>
<tr>
<td>Northern bog lemming</td>
<td>Synaptomys borealis</td>
<td>1</td>
</tr>
<tr>
<td>Meadow jumping mouse</td>
<td>Zapus hudsonicus</td>
<td>22</td>
</tr>
<tr>
<td>Woodland jumping mouse</td>
<td>Napaeozapus insignis</td>
<td>25</td>
</tr>
</tbody>
</table>

* Number of towns represents the number of towns in which each species was recorded.
Endangered, Threatened, and Special Concern Species

New York has classified species at risk into three categories: endangered, threatened, and species of special concern (6 NYCRR §182). The following section indicates the protective status of some vertebrates that may be in the unit:

Endangered: Any species that is either native and in imminent danger of extirpation or extinction in New York; or is listed as endangered by the US Department of Interior.

Threatened: Any species that is either native and likely to become endangered within the foreseeable future in New York; or is listed as threatened by the US Department of the Interior.

Special Concern: Native species not yet recognized as endangered or threatened, but for which documented concern exists for their continued welfare in New York. Special concern species are considered protected wildlife under the Environmental Conservation Law. They could become endangered or threatened in the future and should be closely monitored.

The following section describes those species that are classified as endangered, threatened, or special concern within SLWF and briefly summarizes the habitat requirements of these species.
Table 4: Endangered, threatened, and special concern bird species documented in survey blocks within, or partially within, SLWF.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Endangered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black tern</td>
<td>Chlidonias niger</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Spruce grouse</td>
<td>Falcipennis canadensis</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Short-eared owl</td>
<td>Asio flammeus</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peregrine falcon</td>
<td>Falco peregrinus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Loggerhead shrike</td>
<td>Lanius ludovicianus</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Threatened</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern harrier</td>
<td>Circus cyaneus</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bald eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Least bittern</td>
<td>Ixobrychus exilis</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pied-billed grebe</td>
<td>Podilymbus podiceps</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sedge wren</td>
<td>Cistothorus platensis</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Special Concern</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American bittern</td>
<td>Botaurus lentiginosus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bicknell’s thrush</td>
<td>Catharus bicknelli</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Common loon</td>
<td>Gavia immer</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cooper’s hawk</td>
<td>Accipiter cooperi</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Osprey</td>
<td>Pandion haliaetus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sharp-shinned hawk</td>
<td>Accipiter striatus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Northern goshawk</td>
<td>Accipiter gentilis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common nighthawk</td>
<td>Chordeiles minor</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Red-shouldered</td>
<td>Buteo lineatus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Whip-poor-will</td>
<td>Caprimulgus vociferus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Horned lark</td>
<td>Eremophila alpestris</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Golden-winged</td>
<td>Vermivora chrysoptera</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vesper sparrow</td>
<td>Pooecetes gramineus</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Bird data were collected during the 1980-1985 and 2000-2005 Breeding Bird Atlas projects and New York Natural Heritage Program (NYNHP) surveys. Amphibian and reptile data were collected during the 1990-1999 Amphibian and Reptile Atlas Project.
Amphibians and Reptiles

Special Concern

Wood turtle *Glyptemys insculpta*

a. Habitat Associations

Endangered Species

Black tern (*Chlidonias niger*)- The black tern occurs in large, inland freshwater marsh and wet meadow communities. Black tern numbers have declined substantially, presumably due to habitat loss and human disturbance (Andrle and Carroll, 1988). Black terns forage on insects, fish, and small crustaceans (DeGraaf and Rudis, 1986). This species typically arrives in early May, nesting in loose colonies within large stands of cattail or reeds. Nests are typically built on floating mats of dead vegetation or old muskrat house (Andrle and Carroll, 1988).

Spruce grouse (*Dendragapus canadensis*)- In the Adirondacks, the rare spruce grouse is a denizen of the boreal acid bog forest where it selects immature or uneven-aged spruce-fir habitat (Andryle and Carroll, 1988). Mosses, lichens, and shrubs provide nesting and foraging ground cover in areas where the forest canopy is less dense. Because their forested wetland habitat is poorly drained, grouse may move to nearby upland spruce habitat during the summer to dust and forage (Andryle and Carroll, 1988).

Short-eared owl (*Asio flammeus*)- Short-eared owls are medium size owls with small ear tufts that appear as two ridges along the top of the head. This species prefers open habitats, including marshes and grasslands, however, is more common as a winter resident than as a breeder. During the winter short-eared owls gather in open habitats that support large numbers of voles. When food is abundant they may form large communal roosts of up to 200 birds in sheltered sites ranging from conifers to stump piles to abandoned quarries. These birds eat primarily small mammals, but they occasionally take small birds and the young sometimes eat insects. Nests are constructed on the ground where the female creates a cup and lines it with grasses and down. Four to nine eggs are typical but clutches as large as fourteen have been reported in years of peak small mammal abundance (NYSDEC, Endangered Species Program).

Peregrine falcon (*Falco peregrinus*)- Three basic habitat requirements are necessary for nesting peregrine falcons, including open country in which to hunt, sufficient food resources (i.e., other avian species), and steep, rocky cliff faces for nesting (Ratcliffe, 1993). The falcons typically nest 50 to 200 feet off the ground and often near a river, stream, or other waterbody. Nesting sites for peregrines usually include a partially-vegetated ledge (with both herbaceous and woody species) that is large enough for at least several young to move about during the pre-fledging period. The nest is a well-
rounded scrape that is sometimes lined with grass. Ideally, the eyrie ledge is also sheltered by an overhang that protects the chicks from inclement weather. Occasionally, peregrines may nest in old common raven nests. Suitable nest sites (e.g., snags, live trees, ledges) are located on a cliff face near the eyrie, on more distant sections of a cliff, and on a cliff rim.

Loggerhead shrike (*Lanius ludovicianus*) - The loggerhead shrike was never considered to be a common breeding bird in the northeast, however, research on habitat requirements in New York and Virginia suggest that this shrike prefers areas with extensive, active pastureland. Its breeding habitat consists of agricultural areas that contain hedgerows, hayfields, pastures, and scattered trees and shrubs, especially hawthorn. The loggerhead shrike is known for its unique behavior of impaling its prey on thorns, barbed wire fences, and similar projections, hence its preference for nesting near areas containing such objects. It occasionally feeds on small birds, however, the loggerhead shrike feeds mainly on beetles, grasshoppers, and small rodents. This bird begins nesting in late April or early May and constructs a nest comprised of thick twigs woven together and lined with fibers and padded with feathers or hair. The shrike lays four to six eggs and may raise two broods in the southern portion of its range (NYSDEC, Endangered Species Program).

Threatened Species

Northern harrier (*Circus cyaneus*) - The northern harrier is a bird of open country and is associated with wet to mesic habitats (Johnsgard, 1990). Results of a 1979 survey showed that bogs and other wetland habitats provided nesting sites for northern harriers in the Adirondacks (Kogut, 1979 *In: Andrle and Carroll 1988*). Unlike most New York raptors, harriers nest on the ground, either on hummocks or directly on the ground in nests that are woven from grass and sticks (Andrle and Carroll, 1988).

Bald eagle (*Haliaeetus leucocephalus*) - Bald eagles breed in forested and open areas that are usually near large bodies of water with an abundance of fish. Bald eagles construct their nests in large living trees, approximately 50 to 60 feet off the ground and occasionally on cliffs. Tree species used for nesting is not as important as its structural characteristics (e.g., size, shape) and distance to other nesting eagles. Nesting sites with an unobstructed view are preferred and access points to and from the nest (pilot trees) and perch trees are important components of bald eagle habitat. Bald eagles are sensitive to human disturbance.

Least bittern (*Ixobrychus exilis*) - Emergent wetlands such as cattail marshes are the preferred habitat for least bitterns in upstate New York. Nests woven of cattails and various other herbaceous species are usually built by the male (Andrle and Carroll, 1988) and placed from one to four feet above water level (Bull, 1974).

Pied-billed grebe (*Podilymbus podiceps*) - Habitat requirements for the pied-billed grebe include open water with emergent aquatic vegetation with marshes, ponds, shallow lakes, and slow-moving streams. The nest is built on the water around emergent dead or growing vegetation within cattail stands, sedges, rushes, and bushes
II. Inventory, Use, and Capacity to Withstand Use

(Saranac Lakes Wild Forest – Unit Management Plan – April 2019)

(Andrle and Carroll, 1988).

Sedge wren (*Cistothorus platensis*) - The sedge wren prefers sedge meadows and shallow sedge marshes as well as coastal tidal marshes. The nest is usually built close to the ground and is well-concealed within the marsh vegetation. Nests are usually found singly or in loose colonies in good habitat. Insects and spiders comprise the major foods of this species (DeGraaf and Rudis, 1986).

Special Concern Species

American bittern (*Botaurus lentiginosus*) - In the Adirondacks, the American bittern is a bird of freshwater emergent wetlands where it typically nests on a grass tussock or among the cattails. Here it lays its eggs from 4 to 18 inches above the water (Bull, 1974) in scanty nests made from sticks, grass, and sedges. Separate paths are made in the tall vegetation for entering and exiting the nest (Erlich et al., 1988).

Bicknell’s thrush (*Catharus bicknelli*) - Throughout the range of Bicknell’s thrush, montane forest dominated by stunted balsam fir and red spruce is the primary habitat. Bicknell’s thrush utilizes fir waves and natural disturbances as well as the dense regenerated ecotones along the edges of ski slopes. The breeding habitat of Bicknell’s thrush is located in the Adirondacks at elevations greater than 2,800 feet. The species is most common on the highest ridges of the Adirondacks, preferring young or stunted dense stands of balsam fir up to 9 feet in height. Here they lay their eggs above the ground in the dense conifer thickets.

Common loon (*Gavia immer*) - Common loons use small and large freshwater lakes in open and densely forested areas for breeding and nest on lakes as small as two acres. Special habitat requirements include bodies of water with stable water levels with little or no human disturbance. Loons use islets for nesting and shallow coves for rearing their young. Nests are constructed on the ground at the water’s edge on sand, rock, or other firm substrates. Loons prefer small islands for nesting (to avoid predators) but will also nest along protected bays and small peninsulas of the shoreline. In an extensive project undertaken to determine the status of the common loon in New York, NYSDEC staff surveyed 557 lakes in the northern part of the state during 1984 and 1985.

Cooper’s hawk (*Accipiter cooperii*) - Cooper’s hawks use a variety of habitat types, from extensive deciduous or mixed forests to scattered woodlots interspersed with open fields. Floodplain forests and wooded wetlands are also used by Cooper’s hawks. Cooper’s hawks construct nests typically at a height of 35 to 45 feet in both conifer (often white pine) and deciduous trees (often American beech). Nests are commonly constructed on a horizontal branch or in a crotch near the trunk. Cooper’s hawks have been known to use old crow nests as well. Foraging areas are usually located away from the nest in forested areas or open areas adjacent to forest.

Osprey (*Pandion haliates*) - Osprey breed near large bodies of water, including rivers and lakes, that support abundant fish populations. Osprey typically construct their nest in tall dead trees, but also use rocky ledges, sand dunes, artificial platforms, and utility
pole cross arms. Nests are placed in locations that are taller than adjacent areas, which provide vantage points.

Sharp-shinned hawk (*Accipiter striatus*) - Sharp-shinned hawks prefer breeding habitats that consist of open or young woodlands that support a large diversity of avian species, the hawk’s primary prey (Johnsgard, 1990). Although sharp-shinned hawks use mixed conifer-deciduous forest for nesting, most nests recorded in New York State have been located in conifers, with 80% of the nests found in hemlocks (Bull, 1974).

Northern goshawk (*Accipiter gentilis*) - Important habitat characteristics for northern goshawk include a combination of tall trees with a partial canopy closure for nesting and woodlands with small, open areas for foraging (Johnsgard, 1990). In New York State, goshawks prefer dense, mature, continuous coniferous or mixed woods where they typically place their nest 30-40 feet off the ground in the crotch of a tree (Andrle and Carroll, 1988).

Common nighthawk (*Chordeiles minor*) - Two distinct habitats are used by nesting common nighthawks: bare flat rocks or bare ground in open fields and pastures, and, more recently (since the mid-late 1800’s), on flat, gravel rooftops (Bent, 1940). In upstate New York nighthawks also nest in mountainous areas, provided woods are interspersed with clearings or openings (Bull, 1974).

Red-shouldered hawk (*Buteo lineatus*) - Red-shouldered hawks breed in moist hardwood, forested wetlands, bottomlands and the wooded margins of wetlands, often close to cultivated fields, red-shouldered hawks are reported as rare in mountainous areas. Special habitat requirements include cool, moist, lowland forests with tall trees for nesting. Red-shouldered hawks forage in their nesting habitat as well as drier woodland clearings and fields.

Whip-poor-will (*Caprimulgus vociferus*) - Whip-poor-will select open woodlands in lowland deciduous forest, montane forest, or pine-oak woods (Erlich, et. al., 1988) that is interspersed with open fields, with a preference for dry oak-hickory woods in some areas of upstate New York (Bull, 1974). Whip-poor-will nest on the ground in dry, sparse areas. Eggs are typically laid in the open or under a small shrub on the leaf litter where they are well concealed (Bent, 1940).

Horned lark (*Eremophila alpestris*) - The horned lark, first recorded breeding in the Adirondacks in 1900 (Andrle and Carroll 1988), inhabits short, grassy, open areas or open areas devoid of vegetation including fields and pastures, sandy beaches and dunes, barren wasteland, airports, and golf courses (Bull, 1974). Here, the female digs a shallow depression with her beak and feet near or under a tuft of grass, rocks, or a clump of dirt (Bent, 1942) where she lines the nest with roots, grass, plant down, or hair (Ehrlich, 1988).

Golden-winged warbler (*Vermivora chrysoptera*) - Golden-winged warblers prefer dense brush and scattered small trees, habitat that commonly succeeds as a result of abandoned farmland. In fact, large areas of land in early, secondary stages of
succession coincide with the expansion of the golden-winged warbler in New York and New England (Andrele and Carroll 1988). On the ground at the base of a grass tuft, the golden-winged warbler hides its cup-shaped nest of long grass strips or grapevine bark; grapevine fibers smoothly line the nest (Erlich, 1988).

Vesper sparrow (*Poecetes gramineus*) - The vesper sparrow is a grassland bird that prefers short-grass meadows, pastures, hayfields, and cultivated grain fields. Special habitat requirements include open areas with short herbaceous vegetation containing conspicuous singing perches. This species nests on the ground at the base of grasses or in a depression. The vesper sparrow forages on insects and other small invertebrates as well as seeds.

Extirpated and Formerly Extirpated Species

The moose, elk, wolf, eastern cougar, Canada lynx, bald eagle, golden eagle, and peregrine falcon all inhabited the Adirondacks prior to European settlement. All of these species were extirpated from the Adirondacks, mostly as a result of habitat destruction during the nineteenth century. Unregulated harvest also leads to the decline of some species, such as moose, wolf, elk, beaver, American marten, and fisher. More recently some birds fell victim to the widespread use of DDT.

Projects to re-establish the peregrine falcon, bald eagle, and Canada lynx have been implemented. A total of 83 Canada lynx were released into the Adirondack Park from 1989 to 1991 by the SUNY College of Environmental Science and Forestry as part of their Adirondack Wildlife Program. Lynx dispersed widely from the release area and mortality was high, especially mortality caused by vehicle-animal collisions. It is generally accepted that the lynx restoration effort was not successful and that there are no lynx from the initial releases or through natural reproduction of released animals remaining in the Adirondacks. Lynx are legally protected as a game species with no open season as well as being listed as threatened on both the Federal and State level.

Efforts to reintroduce the peregrine falcon and the bald eagle through "hacking" programs began in 1981 and 1983, respectively. These projects have been remarkably successful within New York. Bald eagles are becoming much more common, and peregrines are recovering. Both species are now found in portions of the Adirondacks and are believed to be common residents within SLWF. Golden eagles are generally considered to have always been rare breeders within the state.

The wolf and eastern cougar are still generally considered to be extirpated from NYS. Periodic sightings of cougars are reported from the Adirondacks, but the source of these individuals is believed to be from released captive individuals. Reports of timber wolves are generally considered to be misidentified coyotes, although there is some evidence to suggest that the Eastern coyote found in the Adirondacks may be a hybrid between the red wolf and coyote. Beaver, American marten, and fisher have successfully reoccupied their historical range in the Adirondacks and current populations of these furbearers are secure.
Invasive/Exotic Wildlife

As with plant species, these organisms do not occur naturally in New York State. While some species go relatively unnoticed (e.g., spiny water flea), other introductions such as the zebra mussel have caused great concern. There are no confirmed reports of zebra mussels in unit waters. Domestic canines and felines can also have an impact on native deer, rodents, and birds.

Other Fauna

Other, less known, members of the animal kingdom occur within the unit. Insects are the most notable and abundant form of animal life. Some species can cause human health concerns (e.g., Giardia, swimmer’s itch) or are generally considered a nuisance (e.g., black flies, mosquitoes) to individuals that recreate in the area.

Fisheries

Aquatic communities in the Adirondacks are a result of geological and human influences. Prior to human influences relatively, simple fish communities were common. Human-caused changes in habitat and introduction of fishes have altered those natural communities.

Geological History

The Fishes of the Adirondack Park, a Department publication (August 1980) by Dr. Carl George of Union College, provides a summary of geological events which influenced the colonization of the Adirondack ecological zone by fishes. A limited number of cold tolerant, vagile (agile), lacustrine (lake-dwelling) species closely followed the retreat of the glacier. Such species presumably had access to most Adirondack waters. About 13,000 B. P. (before present) glacial Lake Albany, with a surface elevation of 350’ average sea level, provided a colonizing route for Atlantean and eastern boreal species to Lake George and Lake Champlain. Barriers above that elevation would have excluded those species from interior portions of the Adirondacks.

By about 12,300 B. P., the Ontario lobe of the glacier had retreated sufficiently to allow species associated with the Mississippi drainage access to fringes of the Adirondacks via the Mohawk Valley and the St. Lawrence drainage including Lake Champlain. Lake Albany had apparently drained prior to that, as barriers had formed on the Lake George outlet.

The sequence of colonization routes to surrounding areas, combined with Adirondack topography, resulted in highly variable fish communities within the Adirondacks. In general, waters low in the watersheds would have the most diverse communities. The number of species present would have decreased progressing towards headwater, higher elevation sections. Chance and variability in habitat would have complicated the trends. Consequently, a diversity of fish communities, from no fish to monocultures to numerous species, occurred in various Adirondack waters.
II. Inventory, Use, and Capacity to Withstand Use

Topography

Watershed morphometry probably severely limited the diversity of fishes in the Adirondack upland. The SLWF includes some first and second order streams, and fish diversity is normally low in such headwater portions of watersheds (Hynes 1972). However, fish diversity was likely much greater in the unit’s larger streams and rivers such as the Raquette River, West Branch Ausable River and Saranac River.

Brook trout have the extreme agility necessary to have naturally colonized the SLWF waters and, therefore, were particularly abundant in the unit. Lake trout were also common in the large lakes like Upper Saranac Lake, Upper St. Regis Lake, Lake Clear and Lake Placid. Round whitefish had a distribution similar to lake trout.

Impacts of Fish Introduction

“... the one outstanding reason why so many of the lakes, ponds and streams of this and other Adirondack areas are now unfit for the native species is that small-mouthed bass, perch, northern pike and other species of non-native warmwater fishes have been introduced” (1932 Biological Survey of the Upper Hudson Watershed).

The decline in brook trout associated with the introduction of other fishes is a result of both predation and competition for food. Brook trout feed primarily on invertebrates. Many other fishes, including white sucker, longnose sucker, redbreast sunfish, pumpkinseed, brown bullhead, yellow perch, and the cyprinids (minnows, shiners, and dace) also feed primarily on invertebrates (Scott and Crossman 1973). In low fertility waters such as Adirondack ponds, competition for such forage can be intense.

In addition to competing with brook trout for food, many fishes prey directly on brook trout. Northern pike, largemouth bass, smallmouth bass, and rock bass are highly piscivorus. Species which may feed on eggs and/or fry include yellow perch, brown bullhead, pumpkinseed, creek chub, common shiner, white sucker and longnose sucker (Scott and Crossman 1973). The relative importance of competition versus predation in the decline of brook trout is not known for individual waters, but the result is the same regardless of the mechanism.

Competition and predation by introduced species has greatly reduced the abundance of brook trout sustained by natural reproduction. Only about 40 (10 percent) of the traditional brook trout ponds in public ownership in the Park now support viable, self-sustaining brook trout populations, and they are subject to reproductive failure as other fishes become established.

Fish Community Changes

A variety of non-native species were distributed into the Adirondack uplands via stocking efforts described by George (1980) as "nearly maniacal." He notes that many species were "... almost endlessly dumped upon the Adirondack upland." Non-native
species were introduced and the ranges of native species, which previously had limited distributions, were extended. The result has been a homogenization of fish communities. Certain native species, notably brook trout and round whitefish, have declined due to the introduction of other fishes. Other natives, brown bullhead and creek chubs, for example, are presently much more abundant than ever historically, having been spread to many waters where previously absent. Consequently, fish populations in the majority of waters in today's Adirondack wilderness areas have been substantially altered by the activities of mankind. Indeed, of the 1,123 Adirondack ecological zone waters surveyed by the ALSC, 65 percent contained non-native species.

Habitat Changes

Natural reproduction by brook trout is also very sensitive to impacts from sedimentation caused, for example, by extensive logging, fires and other human activities. Due to their reproductive behavior, brook trout are among the most susceptible of all Adirondack fish fauna to the impacts of sedimentation. Brook trout spawn in the fall, burying their eggs in gravel. Flow must be maintained through the gravel, around the eggs, until hatching the following spring. Sand or fine sediments restrict flow around eggs resulting in an inadequate supply of oxygen.

The long incubation period, the lack of care subsequent to egg deposition and burying of the eggs contribute to the brook trout's susceptibility to sedimentation. Most other Adirondack fishes are spring spawners, yielding short incubation periods, and do not bury their eggs. Various strategies further minimize vulnerability to sediments, such as eggs suspended from vegetation (e.g., yellow perch, northern pike, and certain minnow species) and fanning the nest during incubation (e.g., bullhead, pumpkinseed, smallmouth bass and largemouth bass). In general, the species less susceptible to sedimentation have thrived during the recent history of the Adirondacks.

Acid Precipitation

The phenomenon of acid ion deposition, popularly known as "acid rain," has had minor impacts on the general fisheries resources of the area but has had more serious impact on the relatively small brook trout resource left in the unit. The unit has slightly over 19,000 surface acres of water, with about 17,300 acres (91 percent) in large lakes classified as two story or warmwater fisheries. These lakes are generally well buffered with pH's in the range of 6.5 to 7.5. In contrast, brook trout ponds comprise about 3 percent of the unit's water area and about 40 percent of those waters (by count) are threatened by acid deposition.

The SLWF is located east of the highly acidified zone of waters on the western edge of the Adirondacks. However, many ponds above 3,000 feet in the neighboring High Peaks Wilderness are acidified. In the 108 SLWF ponds with chemistry data (out of 144), the pH ranges from 4.04 to 7.89. Although 36 waters have never had water chemistry surveys, the majority of these are small unnamed ponds. There are 19 unit waters with pH levels below 5.0. Most of which are naturally acidic, fishless bog ponds.
II. Inventory, Use, and Capacity to Withstand Use

Brook Trout

Currently, there are 23 waters in the unit (16 percent of 144) that support brook trout fisheries. By surface area, as mentioned above, these comprise only 3 percent of the total water area. The SLWF provides dramatic demonstration of the impact of non-native species introductions because historically every large water in the unit was a well-known brook trout fishery. It is likely that brook trout were found in 95 percent of the surface water area of the SLWF prior to European settlement. The 1929 Biological Survey of the Champlain Watershed, pages 58-62, lists brook trout as a native species in Upper Saranac Lake and Lake Clear - and compares the two waters for non-native impacts. In 1929, Lake Clear still had a native community dominated by brook trout, lake trout, round whitefish and native minnows. Upper Saranac Lake, just downstream, was remarkably different due to introductions of non-native yellow perch, smallmouth bass and northern pike. Sadly, the pristine condition of Lake Clear did not persist much past the writing of that book. The native community of Upper St. Regis Lake persisted until the 1950's when yellow perch appeared. The story is similar for the other large waters of the unit in the Saranac Chain and St. Regis Chain and along the Raquette River and West Branch Ausable River corridors.

Non-native species introductions occurred in most of the smaller lakes of the SLWF as well - at a rate greater than most state land units. That is probably due to the early settlement of the area and its popularity with sportmen. Such introductions virtually eliminated brook trout fishing within the unit by the 1940's. Beginning in the 1950's, pond reclamation efforts using the piscicide rotenone began to restore some trout fisheries. Today, out of 23 ponds managed for brook trout - 15 (63 percent) have been reclaimed one or more times. It is accurate to say, that without active pond reclamation and liming programs, the tradition of Adirondack brook trout fishing would no longer exist in the unit. Reclaimed brook trout ponds in the unit are: Bear Pond, Big Cherrypatch Pond, Black Pond, Echo Pond, Frog Pond, Horseshoe Pond, Little Polliwog Pond, Meadow Pond, Panther Pond, Saint Germain Pond, Sunday Pond, Track Pond, Twelfth Tee Pond, and West Pine Pond.

Wild brook trout populations are now rare within the unit. Ponded waters with fair numbers of wild brook trout are Alford Pond, Cameras Pond, Lilypad Pond, West Pine Pond, and Horseshoe Pond. The first three ponds, however, are bordered mostly by private lands and it is likely that private stocking efforts may account for their populations. West Pine Pond is a reclaimed water. West Pine Pond has been stocked with several strains of brook trout over the years. Continued survival of wild trout in this pond is threatened by the relatively recent establishment of lake trout and rainbow smelt. Whey Pond was a brood stock water for the Windfall strain of brook trout. Recently NBWI brown bullhead have become so abundant that the brook trout population was no longer viable. Whey pond is now stocked with other salmonid species until such time as a reclamation can be performed and the brook trout fishery restored. Whey Pond remains open to angling. A reclamation of Whey Pond is scheduled within the five-year scope of this plan. An unknown proportion of the brook trout population in Horseshoe Pond (another reclaimed pond) is known to be wild. The
brook trout in Horseshoe Pond are a mix of strains.

In summary, it is known that 50 percent by number and 95 percent by surface area of unit waters historically supported brook trout populations. That number is now reduced to 17 percent of unit waters by number and three percent by surface area. Without past reclamation and liming efforts, brook trout would now occur in 1 percent of their former range within the unit. Only five unit waters may have wild trout populations.

Lake Trout

Besides brook trout, lake trout are the only other native salmonid in the Adirondacks. The overall status of this long-lived coldwater species appears to be stable or improving within the unit. Currently, lake trout are well established in Deer Pond, Hoel Pond, Lake Placid, Mirror Lake, Moose Pond, Upper Saranac Lake, Upper Spectacle Pond and West Pine Pond. Occasionally, lake trout are caught in Square Pond, Middle Saranac Lake and Lower Saranac Lake and all such fish are likely migrants from Upper Saranac Lake. Lake trout were historically present in Floodwood Pond, Lake Clear, Polliwog Pond, and Upper St. Regis Lake. Recent attempts to reestablish the species in Floodwood Pond, and Upper St. Regis Lake have failed - primarily due to low levels of dissolved oxygen in the hypolimnion of these waters during the critical summer thermal period. The same restriction would apply to Lake Colby. Experimental stocking policies to reintroduce lake trout into Polliwog Pond and Lake Clear have reestablished populations, but natural reproduction has yet to be documented.

The lake trout populations of Lake Placid, Moose Pond and West Pine Pond are self-sustaining. Lake trout were accidentally or illegally introduced to West Pine Pond since its reclamation in 1975 - the species was likely not native to the water. Stocking sustains the populations in the other unit waters. Upper Saranac Lake - which once had a significant wild lake trout population - is now entirely sustained by stocking. The lack of natural reproduction in Upper Saranac Lake is perplexing and does not appear to be caused by lack of spawning habitat or from past DDT applications in the watershed (a known problem in other Adirondack lakes). Upper Saranac Lake can experience poor oxygen conditions in the hypolimnion, but it is not known why stocked fish can survive these conditions, yet wild lake trout cannot.

Other Salmonids

Brown trout are a popular, but non-native trout species historically associated with Adirondack waters. Brown trout are present in Connery Pond, Deer Pond, Lake Clear, Lake Colby, Polliwog Pond, Whey Pond, and Rat Pond. A minor population of wild brown trout is present in Lake Placid. All of these waters have large numbers of non-native competitive minnow species. Brown trout are stocked in these situations in an attempt to reduce the number of minnows and retain the trout fishing heritage for the water. Brown trout are also a mainstay of the trout fisheries in the West Branch Ausable and Saranac Rivers.

Rainbow trout are another popular, non-native, historically associated trout species in
II. Inventory, Use, and Capacity to Withstand Use

the Adirondacks. Black Pond, Horseshoe Pond, Lake Colby, Lake Placid, Mirror Lake, and Moose Pond have rainbow trout fisheries. There are no known wild populations of rainbows in the unit. Rainbow trout survive best in clear water lakes with pH levels above 6.5. They tolerate competition from non-native species better than brook trout and prefer warmer water temperatures. Rainbow trout are sometimes stocked jointly with brook trout - as in Black, Horseshoe, and Moose ponds - to provide more diversified fisheries. The West Branch Ausable River and Saranac River are also stocked with rainbow trout.

Kokanee salmon, actually the landlocked form of the sockeye salmon from the Pacific coast, have been stocked historically in Polliwog Pond, West Pine Pond, Lake Colby and Little Green Pond. Kokanee are a planktivorous species that rarely reach 12 inches in size in Adirondack waters. They are prized for their fighting and eating qualities but serve a dual function as an excellent forage species for lake trout and larger brook trout. The kokanee salmon rearing program in New York State officially ended in 2003 due to difficulties in obtaining eggs. Kokanee naturally reproduce in West Pine Pond. It is likely that this population will gradually diminish.

Splake are a hybrid cross between lake trout and brook trout that have proven to be more successful in some lakes than either parent species. Conney Pond and Green Pond are the only unit waters with this hybrid. Historically, splake have also been stocked in Little Green Pond, Lake Clear and Upper St. Regis Lake with good success. Declining hatchery inventories for splake and successful stocking of other species prompted the cancellation of these latter policies.

Landlocked Atlantic salmon are native to Lake Champlain but were not found in the interior Adirondack waters. They are historically associated with Adirondack waters. This species is very popular with sportsmen and has been called the “King of Gamefish.” Little Clear Pond near the Adirondack Fish Culture Station at Saranac Inn serves as the only brood stock water for this species in New York State. The hatchery raises nearly one half million salmon annually. Area waters with salmon are: Follensby Clear Pond, Hoel Pond, Lake Clear, Lake Colby, McKenzie Pond, Moose Pond, Rollins Pond, Square Pond and Upper St. Regis Lake. Some wild salmon may be present in McKenzie Pond. Salmon fare best in waters where rainbow smelt (non-native) are present as forage.

Warmwater Species

Smallmouth and largemouth bass are common in the unit’s two story and warmwater management waters. Historically, smallmouth bass were likely introduced to the Saranac Chain of Lakes sometime before 1900. Their appearance coincided with the demise of many native species - mostly as a direct result of the predatory habits of this species. Largemouth bass were relatively uncommon in unit waters until the last two decades. Largemouth bass continue to spread to unit waters - usually by illegal introduction - but sometimes by Departmental choice.

The Saranac Chain of Lakes are well known bass fisheries that host several bass club
tournaments every summer. The chain received national exposure during the ESPN Outdoor Games held for three years, 2000-2002, in Lake Placid. The bass fishing event for the games based at Lake Flower and competitors fished from Lake Flower to Middle Saranac Lake.

The number of unit waters providing smallmouth and largemouth bass fishing are numerous. Interested readers should consult Table 25 in Appendix 7 for names of bass waters.

Department Fisheries have occasionally introduced largemouth bass to waters that are too warm to support trout or are already dominated by non-native species. Such waters are chosen carefully to avoid impacting any downstream trout waters. In the past, adult bass were electrofished from a donor water and transferred to the receiving water. Between 50 and 300 adult bass were transferred depending upon the size of the receiving pond. Lake Colby was normally the donor water for SLWF waters in this program. This UMP recommends that largemouth bass be introduced to Lead Pond, Morette Pond, Rock Pond and unnamed ponds P144, P176 and P172. Dump Pond and Little Cherrypatch Pond have received largemouth bass in the past with uncertain success and an additional stocking is recommended. The unnamed ponds are all located along the Lake Placid-Remsen railroad tracks near Floodwood Pond and Rollins Pond. They are either former small embayments of the larger ponds cutoff by the railroad bed or they are “borrow” ponds dug to make the railroad bed. All are small, warm and populated mostly by yellow perch and brown bullhead. Access to them is easy off the tracks (which are rarely used). Bass are already present in neighboring waters. Rock Pond and Lead Pond are shallow, weedy ponds now dominated by small northern pike. Morette Pond is a swampy pond with no gamefish present. Adding largemouth bass in all these situations will diversify the fishery. Due to rising concerns with spreading fish diseases between waters, transferring adult bass is unlikely to occur in the future. Stocking bass in the waters listed above will depend upon acquiring certified disease-free fish from state or commercial fish hatcheries.

Another popular non-native gamefish species, northern pike, is a common catch in the Saranac Chain of Lakes, St. Regis Chain, Raquette River corridor waters and numerous smaller unit waters. As with the bass species, introduction of northern pike had devastating impacts on populations of trout and native minnows. Fortunately, pike are still not present in Lake Placid, Mirror Lake, Lake Colby, Moose Pond, Hoel Pond or the trout ponds of the unit. There are no plans to introduce northern pike to any unit waters to avoid further impacts on the trout and native minnow fauna.

Walleye have limited distribution within SLWF waters. Walleye are non-native to the Adirondacks but are a popular gamefish. Establishment of this species where bass and pike are already present (and habitat is suitable for walleye) would have little impact on native species and would help diversify the fishery. It has long been a goal to establish walleye in the Saranac Chain of lakes. However, Department efforts to establish walleye in Lower Saranac Lake have had little success. Over a twenty-year period, everything from walleye fry to adult walleyes have been stocked into Lower Saranac, and there is
little evidence the species has taken hold. Walleye are present in fair numbers in the Raquette River, especially during their spring spawning run. Some walleye are also present in the Saranac River near the Village of Saranac Lake. Kiwassa Lake will be stocked with 50-day old walleye fry beginning in 2014 for five years.

Warmwater panfish species in most unit two story waters are yellow perch, brown bullhead, pumpkinseeds and rock bass. All are found in the Saranac Chain Lakes. Rock bass and yellow perch are both non-native species to the Adirondacks and there are no plans to introduce these species to other waters. Yellow perch, in particular, have proven to be fatal introductions to most brook trout waters. Rock bass are a relatively recent introduction to Lake Placid and Lower Saranac Lake. Their appearance in Lake Placid has led to declines in the rainbow trout population.

Other Native Species

Longnose suckers were once common in many Adirondack waters, but are becoming increasingly scarce. As yet, however, the species is not classified as endangered, threatened or of special concern in New York State. Ray Brook Pond had a fair population of longnose sucker when last surveyed in 1985. A single longnose sucker was caught in Second Pond in 1994. It is likely that longnose suckers are a rare species in the Saranac Chain. Longnose suckers were once common in the St. Regis Chain of Lakes, but the population status there is now uncertain. Recent survey work (2003) in Upper St. Regis Lake targeted salmonid species and methods used were not effective for catching suckers.

Cisco are a native coldwater species with a scattered distribution throughout the Adirondacks. The species was more common historically but causes for its decline are not well known. In some non-unit waters such as Tupper Lake, the species has made a resurgence in recent years. Hoel Pond and Kiwassa Lake may be the only unit waters where cisco are still present. Kiwassa Lake formerly had a well-known fishery for this coldwater species, but the population appears to have crashed about 20 years ago. A 2006 survey of Kiwassa Lake captured no cisco but did establish that water chemistry conditions are suitable for reintroducing the species. Reintroduction efforts for cisco in Kiwassa Lake will depend upon acquiring disease free adult stock or eggs.

Endangered, Threatened, and Special Concern Species

The only endangered, threatened or special concern fish species recorded historically or currently existing in SLWF waters is the round whitefish.

Round whitefish are a native Adirondack species now classified as endangered within New York State. Historically, this species was present in the Saranac Chain of Lakes, the St. Regis Chain, Lake Placid, Little Green Pond, Little Clear Pond, Hoel Pond and likely other unit waters. Non-native species introductions, over harvest and water quality changes eliminated them from all unit lakes except Hoel Pond. The population in Hoel Pond is very small. Only single specimens have been caught in recent years despite intensive sampling for the species.
A round whitefish restoration program is now underway by the Department’s Bureau of Fisheries. In 2003, Little Green Pond was reclaimed with rotenone. Approximately 3,000 round whitefish fingerlings, progeny of an egg-taking effort on Lower Cascade Lake near Lake Placid in November 2002, were stocked in the spring of 2004. A similar stocking effort was done in 2005. Little Green Pond is an extremely productive pond which is spring fed and has good water quality. Round whitefish are growing well there, particularly without competition from other species. It is hoped that an abundant population of round whitefish will establish - thus permitting future egg-take operations and trap/transfer of adults to other experimental stocking waters. Cornell University researchers recently completed studies to determine the causes for the decline of this species and identify the best potential waters/strategy for restoring the species.

Other potential waters within the unit may eventually be stocked with round whitefish utilizing the model recommendations made by Cornell University.

Streams

Stocked portions of the West Branch Ausable River, Saranac River, Two Bridge Brook and Ray Brook lie within the unit. The West Branch and Two Bridge Brook have received CROTS (Catch Rate Oriented Trout Stocking) surveys in the last decade. The West Branch Ausable River is a nationally recognized trout fishery. Portions of the river, designated as Catch and Release, receive tremendous angling pressure. The Department and the Essex County Fish Hatchery stock the river heavily with brown trout and rainbow trout. Some wild brook trout and brown trout are also present. Locally, several fly tackle shops and fishing guides have great economic interest in maintaining the high quality of this fishery. The Saranac River, within the Village of Saranac Lake, and in another section to the east of the village of Bloomingdale is a lesser known trout stream.

A few of the smaller brooks in the unit support wild brook trout populations. Most of these brooks are very difficult to fish since they are canopied by alders and other brush. The habitat and thermal conditions for trout in these brooks continues to improve as surrounding forest lands mature and provide increased shade and cover.

3. Visual/Scenic Resources

The natural landscape of the SLWF is an important visual element, with multiple scenic views of the lakes, ponds, open spaces and forests. These views are dramatic and diverse. One does not have to hike great distances to enjoy the beauty of the region. The SLWF is best described as an expansive region with a networked terrain of state roads providing public access, a mixture of private and public lands, and a multitude of different types of waterbodies and waterways.

Scenic vistas and regional vistas frequently occur in stretches of roadway that offer exceptional views across waterbodies, wetlands, open lands or other features such as mountains and fall foliage. Key qualities of the SLWF should be managed toward inventoring and monitoring these resources in order to preserve, protect or enhance
these visual resources.

Primary Travel Corridors

New York State Routes 3, 30, 86, 186, and 73 - Portions of these public highways within the unit and the State lands adjacent to and visible from these roads are designated as travel corridors. The State lands that are most visible by the traveling public, provide Park visitors a variety of scenic vistas and aesthetic settings.

Scenic Byways

New York State and the Federal Highway Administration have designated specific travel corridors Scenic Byways. These are roads that are representative of a region's scenic, recreational, cultural, natural, historic or archaeological significance. There are three scenic byways which pass through the SLWF planning area: Adirondack Trail, Olympic Byway, and High Peaks Byway. The Adirondack Trail has a total length of 188 miles, between Fonda and Malone, and follows State Route 30 through the SLWF planning area. Running along State Routes 86 and 3 in the SLWF, the Olympic Byway connects Keeseville and Sackets Harbor, a distance of 170 miles. The High Peaks Byway connects Interstate 87 and Lake Placid via State Route 73.

4. Critical Habitat

Deer Wintering Areas

The maintenance and protection of deer wintering areas (or deer yards) are important in maintaining northern deer populations. These areas provide deer with relief from the energetic demands of deep snow and cold temperatures at a time when limited fat reserves are being used to offset reduced energy intake (i.e., nutritionally, winter browse is poor). Previous researchers have demonstrated that deer consistently choose wintering areas which provide relief from environmental extremes over areas that may provide more abundant forage (Severinghaus, 1953; Verme, 1965). These observations are consistent with the fact that the nutritional value of winter browse is poor due to low digestibility and that deer can expend more energy obtaining browse than the energy gained by its consumption (Mautz, 1978).

Severinghaus (1953) outlined several habitat components of deer yards, including topography and forest cover type (i.e., presence of conifers). The most important characteristic of an Adirondack deer yard is the habitat configuration making up a “core” and travel corridors to and from the core. The core is typically an area, or areas, of dense conifer cover used by deer during severe winter weather conditions. Travel corridors are dense but narrow components which allow access to food resources (hardwood browse) in milder conditions. Use of wintering areas by deer can vary over time depending on winter severity and deer population density. Although Severinghaus (1953) reported that some Adirondack deer yards have been used since the early 1800's, recent research suggests that the location of some current deer yards may overlap very little (or not at all) with their historical counterparts mapped in the late
II. Inventory, Use, and Capacity to Withstand Use

1960's and early 1970's by the Department (Hurst, 2004). Therefore, planning for the protection of deer wintering areas relative to recreational activities in the unit should consider the dynamic nature of these areas (not the static representation of historical boundaries) and seek to update our understanding of wintering areas currently used by deer.

Guidelines for Protection of Deer Wintering Areas

Research on wildlife responses to winter recreation (e.g., cross-country skiing, foot travel, and snowmobiling) is limited. Studies conducted on mule deer (Freddy et al., 1986) and elk (Cassirer et al., 1992) suggest that these species can be disturbed by these activities. However, when planning the location of recreational trails, general guidelines for protecting deer wintering areas can be followed which should reduce the potential for disturbance.

Activities which substantially diminish the quality or characteristics of the site should be avoided, but this does not mean human use is always detrimental. Pass through trails, and other recreational uses can be compatible with deer wintering areas if they are carefully considered. Recreational planning which affords protection of core sections and avoids fragmenting travel corridors are acceptable in many situations. Certain types of recreation such as cross-country skiing are not presently considered to significantly impact deer yards in an overall negative way, particularly if the traffic along trails is not prone to stopping or off-trail excursions. These types of trails in or adjacent to deer wintering areas can provide a firm, packed surface readily used by deer for travel during periods of deep snow. They can also create access for free-roaming dogs if the location is close to human habitation; thus, trails should avoid deer yards in these situations. High levels of cross-country ski use can increase the energy demands of deer within the yard due to increased movement.

In summary, general guidelines for protecting deer wintering areas include:

- Within travel corridors between core wintering areas, avoid placement of trails within a 100-foot buffer on either side of streams.

- Avoid placement of trails through core segments of deer yards to reduce disturbance associated with users stopping to observe deer.

- Trails should not traverse core segments of deer yards in areas adjacent to densely populated areas such as hamlets, villages, or along roadsides developed with human habitation because they provide access to free-roaming dogs.

- In areas with nearby human habitation, avoid land uses which result in remnant trails, roadways or other access lanes which facilitate accessibility to free-roaming dogs.
B. Facilities

Facilities in the SLWF are of a primitive nature. The various facilities, such as: trails, campsites, boat launches, lean-tos, fishing access sites, pit privies, bridges, and parking areas, are designed for the safety of the public and to protect the resources of the area. These facilities are concentrated around the ponds in the SLWF and reflect water-based recreation. The condition of the facilities varies considerably, which is to be expected given the mix in ages and levels of use of the facilities. There is a more detailed list of facilities included in Appendix 1. A summary of the facilities in the SLWF:

- Tent sites: 162
- Lean-tos: 8

Saranac Lake Islands Campground: 87 primitive campsites, five of which have lean-tos. Thirty-six sites have pump out privies and the remainder have pit privies.

Foot trails: Class 1- 5.2 miles (there are more that have not been mapped)

- Class 2- 13.2 miles
- Class 3- 14.2 miles
- Class 4- 32.2 miles
- Class 5- 13.9 miles
- Interpretive- 2.1 miles
- Ski (not maintained for hiking)- 3.0 miles

Total: 83.8 miles

Administrative Roads, Forest Preserve Roads, and private rights-of-way: 38.7 miles

- Gates: 24
- Trail registers: 15
- Water or fishing access sites: 14

C. Past Influences

1. Cultural

Jacob Moody was the first known settler in the Saranac Lakes region in 1819. Moody
was never considered a resident of the village of Saranac Lake since his property was located across the county line in North Elba, where it became locally known as Moody's. The nucleus of the Village of Saranac Lake was begun by Captain Pliny Miller who was a veteran of the war of 1812. Captain Miller and his friend, Alric Mann Bushnell acquired title to 300 acres of local land which became much of the central portion of Saranac Lake. Captain Miller subsequently bought out Alric Bushnell's interests, and afterwards Miller built both a home and sawmill in the village.

In 1854, Virgil Bartlett acquired 267 acres of land on Upper Saranac Lake, and built a small hotel. Bartlett chose a location of narrow ground between the deep bay of Upper Saranac and Middle Saranac Lake, which made a short and easy canoe portage, and was dubbed Bartlett’s Carry. The hotel which developed was known as Bartlett’s, and despite its remote location, became a connecting point for travelers between the lake sections.

By 1856, Saranac Lake consisted of fifteen scattered families, and the village’s early development was due to lumbering, forestry, guiding services and tourism. In 1876, Dr. Edward Livingston Trudeau arrived, and the following year, Dr. J. P. Lundy became one of the area’s earliest health seekers. Dr. Trudeau established the first laboratory devoted to the treatment of tuberculosis in 1894, which began attracting worldwide attention. The Saranac Lake area became known for approximately 70 years beginning in 1884 as the foremost center for the treatment of pulmonary tuberculosis, through a specialized building known as the cure cottage. The cure cottage allowed people rest and fresh mountain air on large outdoor porches, which allowed many patients to regain their health. There are 185 cure cottages which have been recognized on the New York State Register of Historic Places, and many have been nominated for national recognition.

The Saranac Lakes region was initially surveyed by Verplanck Colvin between the 1870's -1890's. The first known published map was by W. W. Ely, M.D. in 1868, known as the “Map of the New York Wilderness.” Dr. Ely described in a subsequent map in 1869 that one of the interesting features of the area were the number of ponds and lakes with occasional canoe carries, making the region easily accessible. The maps produced by Dr. Ely were distributed in a variety of period guidebooks, which brought more exploration and settlement of the region.

Writers, philosophers and painters have been inspired by the Adirondacks, who have expounded on the importance of the natural environment to our basic needs. The Philosophers’ Camp included notables such as Ralph Waldo Emerson, James Russell Lowell and William James Stillman, who gathered in 1858 on the shores of Follensby Pond. The land along much of the route that the group took to reach Follensby Pond is now part of the SLWF. Robert Louis Stevenson arrived in Saranac Lake in the 1880's, and he wrote many essays which were published in Scribner’s Magazine.
II. Inventory, Use, and Capacity to Withstand Use

2. Historical

The term “historical” encompasses a number of categories of human-created resources including structures, archaeological sites and related resources. The Department is required by the New York State Historic Preservation Act (SHPA - PRHPL Article 14) and SEQR (ECL Article 8) to include such resources in the range of environmental values that are managed on public lands. The Adirondack Forest Preserve was listed as a National Historic Landmark by the National Park Service in 1963. This designation also results in automatic listing in the State and National Registers of Historic Places.

Archaeological sites consist of any location where historical materials (artifacts, ecofacts) or modifications to the landscape reveal evidence of past human activity. This includes a wide range of resources ranging from pre-contact Native American camps and villages to Euro-American homesteads and industrial sites. Such sites can be entirely subsurface or can contain above-ground remains such as foundation walls or earthwork features. No Native American sites are known within the unit but several have been identified in the immediate area, primarily along major watercourses. Euro-American sites within the unit reflect land use prior to state acquisition. These include a number of farmstead sites (John Brown’s Farm), historic lodging sites, and the remains of mining and logging operations.

The SLWF includes the site of the former demonstration forest of the New York State College of Forestry at Cornell University. It was here that the first attempt to develop a system of sustained yield timber production on state forest land in the United States took place.

Timberland was typically cut and then abandoned without any plan for the future throughout most of the Adirondacks throughout most of the 19th century. A national forestry movement gained momentum after the Civil War. New York State took the lead by creating the nation’s first state forestry agency and the first state forests (Forest Preserve) in 1885. It also established the nation’s first college of forestry in 1898 at Cornell University. That year, 30,000 acres of cutover forest land was purchased near Axton to be used as a demonstration forest. The Axton facilities included student housing, classrooms and the largest tree nursery in the United States at that time. Bernhard E. Fernow, who had been the Chief Forester of the United States in the Department of Agriculture, was hired to lead the new forestry college.

The pioneering work done on the college forest was the first application of silviculture on state forest land in the United States. Fernow’s objective was to convert low value hardwood stands to spruce and pine which were the most valuable species at that time in the Adirondacks. Controversy over the management of this property resulted in closure of the forestry college in 1903. The college forest was subsequently incorporated into the Forest Preserve. In 1911 the New York State College of Forestry was re-established at Syracuse University. However, the results of Fernow’s work in developing sustained yield forest management can be seen from the Fernow Nature Trail off State Route 30 south of Saranac Inn.
The John Brown’s Farm Historic Area is a separate unit adjacent to the SLWF. This historic area includes John Brown’s farmhouse, his grave, barn, pond and an area previously farmed by Mr. Brown. John Brown is known as a famous abolitionist who with a group of 21 men launched an attack on the Federal Arsenal at Harper’s Ferry in October 1859, with the intent to liberate slaves in the South. Brown and his group were surrounded at Harper’s Ferry by Virginia militia, and the majority of the group was subsequently captured by US Marines under the command of Colonel Robert E. Lee (later Confederate General). John Brown was later tried by the Commonwealth of Virginia, sentenced to death by hanging, and his body was returned several days later to the family’s burial grounds. The historic area consists of approximately 100 acres.

John Brown moved to North Elba in 1849 because of an endeavor where land was given to African-Americans by Gerrit Smith, a wealthy abolitionist. This was an effort to show the self-sufficiency of the African-Americans and give them the ability to vote, since a law required that an African-American male own $250 worth of property to be able to vote. A number of the forty-acre plots granted by Smith were located in the Town of North Elba, and several are now part of the SLWF. Most of those who came to establish homes on the plots left after a few years. Lyman Epps and his family, who moved from Troy to North Elba in 1846, were the most prominent of the settlers, having owned the plot until 1897.

D. Public Use

1. Land Resources

The SLWF is used for a diverse array of recreational activities. Some of these activities are concentrated in certain areas. Probably the most heavily used section of the SLWF is the area between Floodwood Road and the Fish Creek Campground. This area contains a large portion of the campsites, trails, and ponds that are within the SLWF. Other distinct areas of the SLWF that receive high use include Lake Clear Beach, the Saranac Lake Islands Campground, campsites at Hoel and Little Green ponds, and the Raquette River. Public use is most concentrated at public campgrounds, boat launch sites and trail access points. Trail usage becomes more dispersed away from trail heads, and water related activities are more distributed away from boat launch areas.

Information on the number of users of the SLWF is not complete. The primary way that this information is gathered is through the use of trailhead registers. Trail sheets are voluntarily completed by visitors. A problem with registers is that not all people sign-in. Certain groups of users who are believed to register less frequently than others include: frequent users of the same site, hunters, and anglers. This means that registers can have a margin of error, as some use is underestimated. A study of register usage found an average usage rate of 95 percent, however, there was large variability in rates at the 37 individual trailheads in the study. These values ranged from 61 percent to 118 percent (Dawson 2012). Other problems with the register sheets include that they are susceptible to vandalism, the sheets must be checked and removed periodically, the
II. Inventory, Use, and Capacity to Withstand Use

information on the sheets is subject to interpretation, and registers are not at every location where people can access a particular facility. Another factor is that on some routes, particularly canoe routes, people pass multiple registers. Some groups sign-in at every register they pass, which could help locate the group in case of an emergency, but others only sign-in and out at the registers at the start and end of their trip. A summary of the yearly trail register information is located in Appendix 11.

In spite of their limitations, trail register sheets can provide useful information on total usage, group sizes, length of stays, and where people are going. A study of year 2012 register sheets from across the Adirondack Park found that 88 percent of groups were on day trips and 66 percent of groups were made up of between 2 and 4 people (Beier 2014). The information does indicate some trailheads, such as Follensby Clear Pond and Floodwood Pond, have higher levels of overnight use than others.

Register tallies can be particularly useful in tracking trends in visitor numbers, as shown on the following two graphs. The first graph shows the number of people registering at the Scarface Mountain Trail. The second graph is the combined tally of both registers at Follensby Clear Pond. On the Scarface graph the 71 percent increase in use that occurred in 2013 is particularly noteworthy because that is the year the Village of Saranac Lake initiated the Saranac Sixer Challenge (the mountains in this challenge are Ampersand, Baker, Hurricane, McKenzie, Saint Regis, and Scarface). The graph of the register numbers from the Follensby Clear Pond access sites shows more than 25 years of data.
* significant data missing.

Public Day-use
People taking part in activities during the day is a significant portion of the total use within the SLWF. Some of the options for recreation activities in the SLWF include: hiking, canoeing, picnicking, boating, swimming, snowmobiling, hunting, cross-country skiing, fishing, and bird watching. Those participating in these activities in the SLWF may live in the region, may be staying at one of the Department’s campgrounds, or may be staying in one of the nearby villages.

Public Overnight Use
Camping is a very popular activity in the SLWF. Those camping in the SLWF may set up for an extended time at one spot or travel through the unit (generally using the areas waterways). Those coming to camp in the SLWF generally do not just stay at their campsite but tend to take part in one or more of the day-use activities listed above. It is not known how many people camp in the SLWF every year, but many of the campsites are in use throughout the summer months.

Camping is allowed anywhere farther than 150 feet from water, trails, or roads and at sites designated for camping. The majority of camping occurs at designated sites. The designated sites offer easy access, cleared areas, and established facilities such as fire
II. Inventory, Use, and Capacity to Withstand Use

rings. These campsites are not evenly distributed but tend to be clustered around several of the area’s ponds and lakes. The ponds south of Floodwood Road, especially Follensby Clear Pond and Floodwood Pond, are heavily used camping areas. Popular roadside camping areas are along Floodwood Road and at Hoel and Little Green ponds. Camping at any of the sites on Little Green Pond requires a special camping permit which is available at the fish hatchery.

In addition to camping at primitive campsites, there is also a large amount of overnight camping in the planning area’s three public campgrounds: Fish Creek Pond Campground, Meadowbrook Campground, and Rollins Pond Campground. These campgrounds are Intensive Use Areas with separate management plans. Between the years 2004 and 2011 the average yearly attendance at Fish Creek Pond Campground was 110,576 people; at Meadowbrook Campground it was 9,045; and at Rollins Pond Campground it was 62,527.

Camping permits are issued by Forest Rangers to those who are camping at one location for more than three nights or those camping as a group of more than nine people. These camping permits do not guarantee a specific site, but simply allow the specified activity to occur. Data from the camping permits can provide useful information on use of the SLWF. Table 6 shows a summary of the camping permits that were issued between the years 2002 and 2007. This does not include all the permits that were issued for areas in the SLWF, because Forest Rangers from surrounding areas may issue a permit that includes camping stops in their unit and the SLWF. The vast majority of group camping permits were for water accessible campsites. The information contained in these permits demonstrates the importance of canoe routes to camping in the SLWF. These canoe routes include traveling to units adjacent to the SLWF. From this information it is clear that making changes to the camping situation in the SLWF would impact several units.

The permits that were issued for extended stays at the same campsite were mostly for roadside camping. There was a small, but significant, number that were issued for water access sites. During the big game hunting season these permits may be issued for the entire hunting season. Popular areas in the SLWF for extended stay permits are Floodwood Road, Hoel Pond, the Raquette River, and Follensby Clear Pond.
Table 6: Camping permits issued.

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Permits.</td>
<td>297</td>
<td>332</td>
<td>363</td>
<td>339</td>
<td>231*</td>
<td>254</td>
</tr>
<tr>
<td>Percent of permits issued for group camping.</td>
<td>59 %</td>
<td>53 %</td>
<td>56 %</td>
<td>53 %</td>
<td>61 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Percent of group camping permits that included length of stay.</td>
<td>9 %</td>
<td>14 %</td>
<td>9 %</td>
<td>9 %</td>
<td>12 %</td>
<td>18 %</td>
</tr>
<tr>
<td>Percent of permits that included multiple sites.</td>
<td>32 %</td>
<td>31 %</td>
<td>31 %</td>
<td>34 %</td>
<td>45 %</td>
<td>36 %</td>
</tr>
<tr>
<td>Percent of permits that included camping in other units.</td>
<td>14 %</td>
<td>16 %</td>
<td>18 %</td>
<td>25 %</td>
<td>32 %</td>
<td>26 %</td>
</tr>
<tr>
<td>Total number of people under group permits.</td>
<td>1,980</td>
<td>1,969</td>
<td>2,320</td>
<td>1,958</td>
<td>1,612</td>
<td>1,730</td>
</tr>
</tbody>
</table>

*- a significant number of permits were damaged and were not readable

2. Wildlife

A variety of wildlife recreation uses occur on the unit, including: hunting, trapping, bird watching, and wildlife photography. However, data regarding the amount of public use of the wildlife resource within SLWF is not available. With the exception of the more readily accessible areas, the majority of the unit probably is not heavily used by sportsmen during the hunting and trapping seasons.

A number of mammals and birds may be hunted or trapped during seasons set annually by the Department. These species are identified in the Environmental Conservation Law (ECL), Section 11-0903 and 11-0908. The Department has the authority to set hunting and trapping season dates and bag limits by regulation for all game species. White-tailed deer and bear may be taken during archery, muzzleloading, and regular seasons. Antlerless deer harvest is prohibited during the regular firearm season but may be permitted during the archery season. In addition, there is an early season for black bear.

Small game hunters may take certain waterfowl, woodcock, snipe, rail, crow, ruffed grouse, wild turkey, coyote, bobcat, raccoon, red fox, gray fox, weasel, skunk, varying hare, cottontail rabbit and gray squirrel. Muskrat, beaver, weasel, river otter, mink, fisher, American marten, skunk, raccoon, coyote, red fox, gray fox, and bobcat may also be trapped.

Harvest statistics are generated and compiled by the Department using an automated licensing and reporting system (DECALS) for deer, bear, coyote, and turkey and a pelt sealing system for beaver, river otter, fisher, American marten, and bobcat. Harvest information is reported by township, county, and Wildlife Management Unit (WMU).
II. Inventory, Use, and Capacity to Withstand Use

Since harvest information is not collected on a Forest Preserve unit basis and harvest distribution is not evenly distributed across the landscape, harvest data by town are generally not representative of the actual harvest within units. Types and levels of non-consumptive uses of wildlife within SLWF have not been determined.

Potential Impacts

The impact of public use on most wildlife species within the unit is unknown. Wildlife species that can be vulnerable to disturbance associated with public recreational activity include:

Nongame Species

Common Loon: Common loons nest along shorelines of lakes and ponds. Their nests are often very near the water line and are susceptible to disturbance from the land or from the water. Nests along shore are more susceptible to human disturbance where trails follow the shore of a lake. Nests along the shore or on islands are more susceptible to human disturbance if boats or canoes can be carried readily into lakes occupied by loons. Waterbodies with greater boating access will have higher levels of disturbance. If adults are forced to leave the nest, nest abandonment could occur. Additionally, fledgling mortality can occur if chicks are chased by boats.

3. Fisheries

According to the Northern New York Travel and Tourism Research Center at SUNY Potsdam, there were over 2,600 fishing licenses sold in Franklin County to non-residents in 2002 and an additional 3,830 sold to residents. Total revenue realized by the sale of fishing licenses to non-residents was greater than $67,000. Marine recreation in Essex County for 2001 indicates a total of 6,084 boats were registered in the county, of which 4,527 were registered to county residents and approximately 25 percent registered to non-county residents.

According to the Northern New York Travel and Tourism Research Center at SUNY Potsdam, Essex County had the fourth highest number of non-resident licenses sold within the ten-county region of northern New York. The number of non-resident licenses sold in 2002 was nearly 5,000 and the resident licenses totaled 3,923. Total revenue realized by the sale of fishing licenses to non-residents was greater than $128,000. Marine recreation in Franklin County for 2001 indicates a total of 5,538 boats were registered in the county, of which 4,309 were registered to county residents and approximately 22-23 percent registered to non-county residents.

The 1996 New York Statewide Angler Survey (Connelly, Brown & Knuth 1997) provides the most current angler use, expenditure and satisfaction data for some unit waters. The West Branch Ausable River ranked 25th among the top 75 waters in the state with an estimated 105,580 angler days. The Saranac River ranked 43rd with 73,230 days and the Saranac Chain of Lakes was 44th with 49,460 days. Much of the fishing pressure on the Saranac River included in this survey occurs outside of the unit in the river section.
near Lake Champlain.

The 1996 survey provided some further data regarding the West Branch Ausable. Angler expenditures averaged $34.69/day, yielding an average daily location expenditure (all anglers) of $3,663 and $1,112 average daily in route expenditures (Table 43, Connelly et. al 1997). The mean distance traveled to reach this fishery was 173 miles. Most tellingly, the West Branch Ausable River ranked first in New York State for angler satisfaction with the fishery with a score of 5.3 on a scale of 1 to 7 (7 = very satisfied).

Specific expenditure values are not available for the Saranac Chain of Lakes, but the average daily expenditure statewide for lakes was $19.26 on site with an additional $5.86 in route. Thus, assuming about $25 per day in expenditures, multiplied by the 49,460 days of use, which would equal $1,236,500 to the State’s economy.

All told, fishing related expenditures within Region 5 totaled almost $210 million in 1996. Waters in the SLWF area generate a significant percentage of that economic activity.

Another indication of fishing/boating related activity can be gleaned from the 1990 statewide survey of boating use at public waterway access sites (Major et. al. 1992). Table 7 lists access sites in the SLWF, the estimated number of boat trips in 1990 and the percentage of trips devoted to fishing. Even though this survey is more than 20 years old it still provides useful information on use of the SLWF.

Table 7: Use of boat launches.

<table>
<thead>
<tr>
<th>Access Site</th>
<th>1990 Boating Trips</th>
<th>Percentage of Trips for Fishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish Creek Pond</td>
<td>779</td>
<td>8</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>964</td>
<td>86</td>
</tr>
<tr>
<td>Lake Flower</td>
<td>3,430</td>
<td>30</td>
</tr>
<tr>
<td>Lake Placid</td>
<td>2,019</td>
<td>50</td>
</tr>
<tr>
<td>Lower Saranac Lake (Second Pond)</td>
<td>9,448</td>
<td>24</td>
</tr>
<tr>
<td>Middle Saranac Lake</td>
<td>3,547</td>
<td>21</td>
</tr>
<tr>
<td>Raquette River</td>
<td>1,284</td>
<td>18</td>
</tr>
<tr>
<td>Rollins Pond</td>
<td>983</td>
<td>9</td>
</tr>
</tbody>
</table>
It is clear from combining data from the 1990 and 1996 statewide surveys that fishing is economically important to the local economy, and that other recreational use of access sites maintained by fisheries' funding can be intense. It is likely that use of area access sites has only increased since 1990. The waters of the SLWF are critically important to the economic lifeblood of the Tri-Lakes area.

Angler use of area trout ponds peaks in late April to June, whereas river angling for trout in the West Branch Ausable remains at high levels from May to September. Angling pressure on the Saranac Chain of Lakes and the other large two story lakes in the unit peaks in July-August when camping and summer home occupancy rates are highest. Many area waters are open to ice fishing, but that is a relatively minor component of the total annual fishing pressure in the unit. Bass fishing tournaments are becoming increasingly popular on the Saranac Chain of Lakes after recent national exposure in the ESPN Outdoor Games. Tournament activity generally takes place on summer weekends, which can contribute to serious overuse problems at the Lake Flower and Second Pond access sites.

4. Water Resources

The SLWF's water resources are one of the most prominent features of the region. The ponds, lakes, and rivers in the SLWF offer recreational activities such as: fishing, canoeing, boating, water skiing, wildlife viewing, and swimming. The waterbodies also provide access to many of the campsites in the SLWF.

The waterways in the SLWF are connected with those in adjacent units, which allow people to take long-distance trips. One example that passes through the SLWF is the Northern Forest Canoe Trail, which goes from Old Forge to Maine. There are also extended canoe routes which cross between the waters in the SRCA and the SLWF. Upper Saranac Lake is the intersection of several important canoe routes.

As would be expected, the boat launches and waterway access sites are a heavily used segment of the SLWF. These facilities are extremely important in allowing the public to take part in the recreational activities in the SLWF. Table 8 data comes from the Adirondack Watershed Institute’s annual stewardship program reports. The numbers of boats are those that were inspected, which could be launching or retrieving. There is variability in steward coverage schedules, so changes in numbers do not necessarily reflect changes in public use.
Table 8: Use at selected boat launches. The top number is the number of people and the number in parentheses is the number of boats inspected.

<table>
<thead>
<tr>
<th>Site/Year</th>
<th>Fish Creek</th>
<th>Lake Placid</th>
<th>Upper St. Regis</th>
<th>Upper Saranac</th>
<th>Second Pond</th>
<th>Lake Flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>n/a</td>
<td>n/a</td>
<td>1,005 (489)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2001</td>
<td>n/a</td>
<td>n/a</td>
<td>1,417 (706)</td>
<td>3,036 (1,204)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2002</td>
<td>3,302 (1,410)</td>
<td>1,701 (907)</td>
<td>3,210 (1,291)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2003</td>
<td>3,050 (1,247)</td>
<td>1,446 (724)</td>
<td>3,263 (1,379)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2004</td>
<td>n/a</td>
<td>2,694 (1,160)</td>
<td>1,374 (751)</td>
<td>1,083 (505)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2005</td>
<td>n/a</td>
<td>5,594 (2,280)</td>
<td>1,895 (1,103)</td>
<td>n/a</td>
<td>3,691 (1,676)</td>
<td>n/a</td>
</tr>
<tr>
<td>2006</td>
<td>n/a</td>
<td>1,434 (1,296)</td>
<td>2,981 (835)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2007</td>
<td>n/a</td>
<td>3,064 (1,410)</td>
<td>1,239 (801)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2008</td>
<td>n/a</td>
<td>3,042 (1,480)</td>
<td>1,324 (810)</td>
<td>n/a</td>
<td>3,223 (1,765)</td>
<td>n/a</td>
</tr>
<tr>
<td>2009</td>
<td>n/a</td>
<td>3,205 (1,587)</td>
<td>1,497 (1,005)</td>
<td>n/a</td>
<td>3,405 (1,771)</td>
<td>n/a</td>
</tr>
<tr>
<td>2010</td>
<td>n/a</td>
<td>4,501 (2,036)</td>
<td>1,586 (956)</td>
<td>n/a</td>
<td>3,253 (1,703)</td>
<td>n/a</td>
</tr>
<tr>
<td>2011</td>
<td>n/a</td>
<td>3,932 (1,873)</td>
<td>1,400 (845)</td>
<td>n/a</td>
<td>6,248 (3,414)</td>
<td>3,782 (1,603)</td>
</tr>
<tr>
<td>2012</td>
<td>n/a</td>
<td>3,765 (2,016)</td>
<td>1,525 (983)</td>
<td>n/a</td>
<td>5,393 (3,003)</td>
<td>2,995 (1,498)</td>
</tr>
<tr>
<td>2013</td>
<td>n/a</td>
<td>3,593 (1,994)</td>
<td>1,239 (804)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2014</td>
<td>341 (164)</td>
<td>4,899 (2,533)</td>
<td>1,303 (790)</td>
<td>2,403 (955)</td>
<td>4,701 (2,604)</td>
<td>2,284 (1,198)</td>
</tr>
<tr>
<td>2015</td>
<td>1,163 (555)</td>
<td>5,217 (2,665)</td>
<td>1,727 (968)</td>
<td>2,924 (1,215)</td>
<td>8,180 (4,193)</td>
<td>3,907 (1,576)</td>
</tr>
<tr>
<td>2016</td>
<td>1,782 (934)</td>
<td>6,942 (3,197)</td>
<td>1,779 (1,136)</td>
<td>3,828 (1,605)</td>
<td>6,815 (3,744)</td>
<td>3,179 (1,501)</td>
</tr>
<tr>
<td>2017</td>
<td>3,566 (1,947)</td>
<td>9,326 (5,059)</td>
<td>1,456 (936)</td>
<td>3,659 (1,713)</td>
<td>9,419 (5,282)</td>
<td>4,829 (2,338)</td>
</tr>
</tbody>
</table>
Wild, Scenic, and Recreational Rivers

In 1972, the State Legislature passed the Wild, Scenic and Recreational Rivers System Act (Rivers Act) in order to protect and maintain certain designated rivers in their free-flowing condition and natural setting. Pursuant to section 666.6[f] of title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR), upon the designation of a river in this system and until final boundaries are established, the provisions of 6 NYCRR Part 666 are applicable within one-half mile of each bank of the river. None of the river segments in the SLWF are known to have a current use which is in conflict with either the Rivers Act or its implementing regulations. Section 666.7 provides that “management plans will be developed by Department of Environmental Conservation for designated river areas to recommend specific actions to protect and enhance all river corridor resources.” This UMP will also serve as the River Management Plan for those segments of designated rivers located within the SLWF planning area.

A recreational river is “a river or section of river that is readily accessible by road or railroad, that may have development in the river area and that may have undergone some diversion or impoundment in the past.” (APSLMP, page 44) The following rivers within the SLWF have been designated as recreational rivers: Saranac River, starting at the inlet on Middle Saranac Lake and proceeding throughout the planning area; Ausable River, through its entire course in the unit; and the Raquette River, starting approximately one mile downstream from Trombley Landing and then proceeding downstream through the unit.

A scenic river is “a river or section of river that is free of diversions or impoundments except for log dams, with limited road access and with a river area largely primitive and undeveloped, or that is partially or predominantly used for agriculture, forest management and other dispersed human activities that do not substantially interfere with public use and enjoyment of the river and its shore.” (APSLMP, page 44). A portion of one river in the SLWF is designated as a scenic river. This is the Raquette River from where it enters the unit to the point where it is then designated as a recreational river.

There are no rivers within the SLWF that are designated as Wild Rivers.

E. Recreational Opportunities for Persons with Disabilities

The Federal Americans with Disabilities Act of 1990 (“ADA”) along with the Architectural Barriers Act of 1968 (ABA) and the Rehabilitation Act of 1973, have important implications for the management of all public lands, including the SLWF. An explanation of the ADA and its influence on management actions is provided under Section III, B; Management Guidelines.

In 1997, The Department adopted policy CP-3, Motor Vehicle Access to State Lands
under Jurisdiction of the Department of Environmental Conservation for People with Disabilities, which establishes guidelines for issuing temporary revocable permits allowing qualified people with disabilities to use motor vehicles to gain access to designated routes on certain state lands. There are no existing CP-3 routes in the SLWF planning area.

ADA compliant sites have been constructed at several locations in the SLWF. Among these are: East Pine Pond, Follensby Clear Pond, Indian Carry, Lake Colby, Lake Flower, Lake Placid, Upper Saranac Lake Boat Launch, and Whey Pond.

F. Relationship between Public and Private Land

The SLWF cannot be considered without recognizing the uses of adjacent lands. The character of the surrounding lands and what occurs on those lands impacts the SLWF, just as the SLWF has an impact on the lands that surround it. Private lands can affect the environmental condition of the SLWF, the management actions which the State needs to take, public use, and public interest in the area. The major impacts that the SLWF has on the adjacent landowners are from the visitors that come to the area and several economic impacts.

The majority of the land shown on the SLWF UMP area maps is privately owned (56 percent). These surrounding private lands are not governed by this UMP, but they are regulated by the APA. The APA’s Adirondack Park Land Use and Development and State Land Map (GIS data 2011) shows that 64 percent of the private lands within the SLWF area are classified by the APA as resource management, the most restrictive private land classification. Under APA regulations, development on this land is limited to 15 buildings per square mile. This equates to an average lot size of 42.7 acres. Of the remaining private lands, 11 percent are rural use, 10 percent are low intensity, 6 percent are moderate intensity, 7 percent are hamlet, and less than 1 percent is industrial use.

There are developed private lands directly adjacent to many parcels of the SLWF. The more developed this adjacent private land is, the greater impact on the SLWF. Human impacts extend beyond any development. A few examples include: pets impacting wildlife, ornamental plants becoming invasive, clearing of vegetation changing plant communities, and food sources attracting certain wildlife species. The adjacent developed private land also impacts recreational activities. Those areas of the SLWF in close proximity to developed private property become unusable or undesirable for activities such as hunting and camping. Adjacent developed private property also impacts administrative burdens; one example is increasing the importance of boundary line maintenance to discourage encroachments. Future developments on private property near the lands of the SLWF can increase the impacts to the unit.
II. Inventory, Use, and Capacity to Withstand Use

Table 9: APA land use classification acreage.

<table>
<thead>
<tr>
<th>Land Use Classification</th>
<th>Essex County (acres)</th>
<th>Franklin County (acres)</th>
<th>SLWF Area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamlet</td>
<td>19,087</td>
<td>7,0836</td>
<td>9,193</td>
</tr>
<tr>
<td>Moderate Intensity</td>
<td>20,226</td>
<td>9,329</td>
<td>8,238</td>
</tr>
<tr>
<td>Low Intensity</td>
<td>77,497</td>
<td>21,063</td>
<td>13,415</td>
</tr>
<tr>
<td>Rural Use</td>
<td>184,734</td>
<td>132,897</td>
<td>14,530</td>
</tr>
<tr>
<td>Resource Management</td>
<td>300,277</td>
<td>271,471</td>
<td>84,327</td>
</tr>
<tr>
<td>Industrial Use</td>
<td>6,319</td>
<td>628</td>
<td>920</td>
</tr>
<tr>
<td>Wilderness</td>
<td>356,929</td>
<td>57,047</td>
<td>0</td>
</tr>
<tr>
<td>Canoe Area</td>
<td>0</td>
<td>17,646</td>
<td>0</td>
</tr>
<tr>
<td>Primitive</td>
<td>7,740</td>
<td>7,996</td>
<td>0</td>
</tr>
<tr>
<td>Wild Forest</td>
<td>167,674</td>
<td>168,015</td>
<td>75,231</td>
</tr>
<tr>
<td>Intensive Use</td>
<td>6,652</td>
<td>1,763</td>
<td>2,765</td>
</tr>
<tr>
<td>Historic</td>
<td>530</td>
<td>1</td>
<td>104</td>
</tr>
<tr>
<td>State Administrative</td>
<td>356</td>
<td>427</td>
<td>519</td>
</tr>
<tr>
<td>Pending Classification</td>
<td>90</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>Water</td>
<td>76,710</td>
<td>41,363</td>
<td>25,665</td>
</tr>
<tr>
<td>Totals</td>
<td>1,224,821</td>
<td>800,530</td>
<td>234,917</td>
</tr>
</tbody>
</table>

Besides its many intrinsic values relative to watersheds protection, preservation of scenic values, and outdoor recreation, the State lands in this region are an important economic asset to local and regional economies. These lands are a powerful attraction to tourists, and maintenance of their natural setting has a positive influence on private land values. Several studies have shown that real estate values may increase significantly based on proximity to State Forest Preserve land (Kay 22; Roth and Carr 20-21). The People of the State of New York also make substantial tax payments to local towns for Forest Preserve lands pursuant to Real Property Tax Law §532(a). Table 10 shows an estimate of the real property taxes that were paid by New York State.
based on the 2014 Assessment Roll in the towns which make up the SLWF. The taxes paid includes: school, county, town, and special district taxes. Note that this table includes taxes paid on all forest preserve lands in these towns and not just the SLWF lands.

Table 10: Projected taxes paid in 2014 by the State for Forest Preserve Lands

<table>
<thead>
<tr>
<th>Town</th>
<th>Forest Preserve Acreage</th>
<th>Projected taxes paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brighton</td>
<td>23,614</td>
<td>$510,600</td>
</tr>
<tr>
<td>Franklin</td>
<td>40,924</td>
<td>$795,584</td>
</tr>
<tr>
<td>Harrietstown</td>
<td>95,521</td>
<td>$2,430,527</td>
</tr>
<tr>
<td>North Elba</td>
<td>72,560</td>
<td>$1,654,288</td>
</tr>
<tr>
<td>Saint Armand</td>
<td>28,028</td>
<td>$569,177</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>56,061</td>
<td>$2,038,438</td>
</tr>
<tr>
<td>Tupper Lake</td>
<td>6,790</td>
<td>$464,014</td>
</tr>
<tr>
<td>Total</td>
<td>323,498</td>
<td>$8,462,628</td>
</tr>
</tbody>
</table>

Tourism has been a historic mainstay of the local economies. Much of tourism depends on the natural setting and scenic beauty afforded by Forest Preserve lands that attract visitors to local communities. Outdoor recreational opportunities in the Forest Preserve have generated commercial services and development compatible with adjacent State protected lands. Local government, business owners, and local citizens are highly important stakeholders in protecting the natural resource base of their local economies.

There are numerous guiding services, motels, restaurants, bed and breakfast inns, grocery stores, gas stations, and equipment sales and rental businesses that depend on this link between Forest Preserve lands and local economic activities to draw customers to the region. Hikers, campers, skiers, bike riders, rock climbers, boaters, hunters, fishermen, fall foliage seekers, snowmobilers, and general tourists spend a significant amount of time and money on food, lodging, goods, and services in this region.

Social impacts on surrounding private lands can be considered positive or negative depending on the point of view of those affected. The visitors who come to the SLWF can cause a change in the character of the surrounding area, congestion on the roads and in the local communities, and other conflicts with those who live in the area. Restrictions on recreation and use in the SLWF can have a greater impact on those who live nearby the unit than those just visiting. This is due to the fact that a nearby resident is likely to encounter the restriction multiple times.
II. Inventory, Use, and Capacity to Withstand Use

State Land

The SLWF is in an area of other important State lands. These other areas help to draw large numbers of people to the region. The SLWF and these areas impact each other in many different ways. Within the SLWF planning area are three intensive use campgrounds, an intensive use ski area (Whiteface Mountain Ski Center), and a historic area. The SLWF is adjacent to three Wilderness areas, one Canoe area, and one Wild Forest area. Each of these land classifications allow or prohibit certain activities, some of which may or may not be allowed in the SLWF.

The intensive use areas draw many visitors for camping of a more developed nature than the SLWF. Between 2011 and 2013 the average camping attendance (measured in visitor nights) has been 101,685 at Fish Creek; 9,094 people at Meadow Brook, and 62,787 at Rollins Pond. Those who camp in these areas may seek recreational activities in the adjacent SLWF. Hiking, biking, canoeing, and boating are a few of the activities that the SLWF offers directly from the campgrounds. Given the fact that Rollins Pond and Fish Creek Campgrounds accommodate thousands of people every year, this can result in a large number of people using the SLWF. These users may not be seeking the same type of experience as others using the SLWF. For example, these groups may have a different sense of what is considered solitude.

Whiteface Mountain Ski Center may not impact the SLWF directly, but indirectly it may increase the number of users of the SLWF. Whiteface Mountain Ski Center creates a tourist destination which in turn creates the tourist infrastructure needed to accommodate and draw more tourists to the region. This can serve to increase the number of visitors to the SLWF since it is located near the tourist accommodations.

The Mount Van Hoevenberg Ski Area provides groomed cross-country ski trails. The intensively managed nature of this area provides a different experience than is available in the SLWF.

The John Brown Farm Historic Area is an interesting site for people to visit. This site is managed by the Office of Parks Recreation and Historic Preservation (OPRHP). There are trails which leave the Historic Area and continue on to the SLWF. These trails are popular, especially for people walking dogs.

Wilderness and Canoe area classifications place more restrictions on the recreational and administrative activities allowed than in wild forest areas. The prohibiting of some activities over such a large area adjacent to the SLWF can increase the demand in the SLWF for these activities. Another affect from the nearby Wilderness areas is that some users of the SLWF may be expecting a wilderness experience even though they are in a Wild Forest. They may become upset if they hear a motor boat or a snowmobile, because they think that these are inappropriate for a wilderness.

The SLWF serves as the entry point for several of the adjacent Wilderness or Canoe areas.

Table 11: Access to adjacent areas through SLWF

<table>
<thead>
<tr>
<th>Area accessed through SLWF</th>
<th>Access locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saint Regis Canoe Area (SRCA)</td>
<td>Floodwood Road/Pond, Hoel Pond, Fish Pond truck trail (administrative road), Bear Pond, Meadow Pond truck trail (administrative road)</td>
</tr>
<tr>
<td>McKenzie Mountain Wilderness Area (MMWA)</td>
<td>Moose Pond FAS, bridge over the Saranac River (trail to Moose Pond), Connery Pond trail, Whiteface Landing</td>
</tr>
<tr>
<td>High Peaks Wilderness Area (HPWA)</td>
<td>Ampersand Mountain trail parking, Raquette River, Pine Pond</td>
</tr>
</tbody>
</table>

Of the adjacent areas, the SLWF and the SRCA are the most interconnected. Most of the major access points to the SRCA originate in the SLWF. Many of the ponds in the SLWF are similar to the ponds in the SRCA. Under APSLMP guidelines, there are a greater variety of uses permitted in the SLWF than in the SRCA. This allows the SLWF and SRCA to complement each other by giving visitors a choice of recreation experiences. Some people use the SLWF ponds for an experience similar to that in the SRCA, but with the added mobility of using a motor. Others use the canoe routes that cross between the two units to make the SLWF an extension of their visit to the SRCA. These recreation patterns are important to consider when deciding on management actions, since what occurs in one unit can impact the adjacent unit.

Also adjacent to the SLWF is the Debar Mountain Wild Forest. Two snowmobile trails, a ski trail, and a canoe route connect these units. The lands of the Debar Mountain Wild Forest can provide similar recreational activities as the SLWF and so can disperse some of the use of the SLWF to other areas.

The DOT Travel Corridors passing through the SLWF are an important feature of the area. Obviously, the main function of these is to provide for rapid and reliable transportation. They are important to the management of the SLWF by providing access to recreation facilities. The lands of the SLWF help to provide a scenic experience for those passing through. The travel corridors also have some negative impacts on the SLWF, including noise, pollution (air and water), vehicle and wildlife collisions, and litter. Other than highways, the DOT managed Remsen to Lake Placid Travel Corridor also passes through the SLWF. This corridor has its own UMP.
II. Inventory, Use, and Capacity to Withstand Use

G. Capacity to Withstand Use

Best Management Practices

This Unit Management Plan proposes the development of wildland recreational facilities in the Saranac Lakes Wild Forest. Each section below builds on the planning process as well as the recreational experience of the user. In addition to official documents, which inform the UMP process, the planning team applied principles and strategies that are currently considered norms in the field of wildland recreation management.

The following six best management practices (BMPs) are essential in wildland management:

1. Planning - includes the UMP process (with public participation), work planning, development of guidelines and other supportive materials and process and building partnerships with stakeholders.
2. Education and outreach - includes providing effective education and outreach for visitors, local government and communities and partners. Utilizing all mediums available and covering topics from preparedness to stewardship.
3. Front country infrastructure - includes roadside access points, human waste facilities, visitor information and other support facilities.
4. Backcountry infrastructure - includes trails, campsites and support facilities appropriate to educate and protect the natural resource.
5. Limits on use when all else fails - when education and outreach along with appropriate infrastructure improvements cannot support the carrying capacity, different methods of permits, limits on use or fees should be utilized.
6. Resources both personnel and funding - includes staff to facilitate management, maintenance and safety concerns and appropriate funds to maintain and educate and expand opportunities for partnerships.

The Department will adhere to these six BMPs and apply them in the SLWF to successfully build and manage recreation facilities that do not significantly negatively impact the natural resources or users’ experience.

Phased Approach to Planning

Many management actions proposed in this UMP are conditional and will follow a phased approach. Decisions to implement successive phases will be informed by monitoring and comparisons between defined desired conditions and existing conditions. If thresholds for natural resources conditions or visitor experience conditions are exceeded, implementation of subsequent actions may not occur. Utilizing a phased approach for developing recreational infrastructure tied to monitoring visitor use-related
impacts will help ensure that the wild character of the area and user experience is kept intact.

The intent of this approach is to provide a variety of access to the SLWF, to create new purpose-built recreational facilities, and ensure newly constructed resources are able to withstand existing use before constructing additional facilities. Sustainable purpose-built facilities are a key factor in this process, not only to have a strong foundation for recreational use, but also so we can evaluate the known indicators. Once the condition of facilities is measured and evaluated, the next steps can be determined in accordance with the phases set forth below.

The schedule of implementation at the end of this UMP was developed in order to further illustrate the succession of the phased approach. Once constructed, each facility will be photo documented to show its original condition, then periodically photo documented to illustrate changes over time. These photos coupled with use data collected from register sheets will be evaluated to illustrate the recreational carrying capacity of specific facilities. From there, the data collected on these individual facilities will be looked at on a larger scale that takes into account the entire network of facilities and access points regardless of land classification.

The phased approach and schedule of implementation integrates and takes into account the complex nature of the area, which will allow for a more balanced and systematic approach to address the carrying capacity of the area as a whole. The evaluation of facilities will guide the phases of this plan, and only after the condition of these facilities is evaluated, can a determination be made to proceed with, maintain current, or retract the phases of the schedule. There are various environmental criteria that can activate the phases of the plan. These may be site specific or at larger scales and can include things such as campsite sprawl, vegetation damage, and trail erosion. Social criteria will also be considered in the progression of the phases. Regardless of the criteria, the main objective is to appropriately provide sustainable and desirable facilities without exceeding the carrying capacity of the land on which they are located.

Carrying Capacity

Recreational use of water provides many benefits to visitors of the SLWF. However, the understanding of impacts to water bodies from use is limited. From the introduction of invasive species to use numbers at water access sites, this UMP identifies and inventories some information on the effects of use on water bodies. However, cumulative impacts have not been gathered for water bodies to manage environmental and recreational impacts. An assessment of waterbodies that integrates recreation and ecology is proposed in this UMP.

The SLWF, like any other natural area in our Forest Preserve, cannot withstand ever-increasing and unlimited visitor use without suffering the eventual loss of its essential natural and wild character. However, the underlying question of how much use and of what type the whole area - or any particular site or area within it - can withstand
before the impacts of such use cause degradation of the very resource or experience, remains. Such understanding and determinations are a wildland manager’s most important and challenging responsibility. Our primary goal throughout this UMP is to strike and maintain a proper balance of making sure a natural area’s "carrying capacity" is not exceeded while concurrently providing for visitor use and enjoyment.

Defining the amount and type of use that an area can withstand before negative impacts to the resource or user experience occur is a significant challenge. Relative differences in ecosystem sensitivities to disturbances need to be considered in recreational planning. Avoiding sensitive sites or taking precautions in the layout and design of any facility can drastically reduce negative impacts associated with use. Individual locations that can withstand more usage should be considered to help balance the overall carrying capacity of the unit.

The term "carrying capacity" in public lands management, where public recreation is the leading use, means the amount of use that any single facility or the entire complex can handle without degrading the resource or the perceived experience of the user. Given the many variables associated with measuring carrying capacity, it can be a challenging concept to both understand and measure. While it can be helpful to establish upper-level thresholds for use, there is not an exact science on how to consistently set these thresholds across all variables. Taking steps to address the micro-level of carrying capacity, such as addressing erosion and compaction of trails and campsites, may not always address the greater concept of carrying capacity that occurs at the whole-unit level.

Essentially, this is because the relationship between the amount of use and the resultant amount of impact is not linear (Krumpe and Stokes, 1993). For many types of activities, for instance, most of the impact occurs with only low levels of use. In the case of trail erosion, once soil starts to wash away, additional foot travel does not cause the impact upon the trail to increase proportionately. It has been discovered that visitor behavior, site resistance/resiliency, type of use, etc. may actually be more important in determining the amount of impact than the amount of use, although the total amount of use is certainly (and obviously) still a factor (Hammit and Cole, 1987).

This makes the manager’s job much more involved than simply counting, redirecting, and (perhaps) restricting the number of visitors in an area. Influencing visitor behavior can require a well-planned, multi-faceted educational program. Determining site resistance/resiliency always requires research (often including much time, legwork and experimentation). Shaping the types of use impacting an area can call not only for education and research and development of facilities, but also the formulation and enforcement of a set of regulations which some users are likely to regard as objectionable.

Nevertheless, the shortcomings of a simple carrying capacity approach have become so apparent that the basic question has changed from the old one, “How many is too many?” to the new, more realistic one; “How much change is acceptable?” The Department embraces this change in approach while recognizing the tasks it calls for in
II. Inventory, Use, and Capacity to Withstand Use

developing the best foundation for management actions. Professionally-informed judgments must be made such that carrying capacity is given definition in terms of resource and social conditions that are deemed acceptable; these conditions must be compared with the real, on-the-ground conditions; certain projections must be made; management policies and actions must be drafted and enacted with an aim toward maintaining or restoring the conditions desired.

More recent carrying capacity studies have relied on the social aspect of recreation, in that users often have a pre-conceived idea of what type and level of use they want to experience on a given trip. This could be in the form of number of paddlers on a water body, hikers passed on the way to a destination, or how much solitude they want to experience at a primitive tent site, etc.

This shift in managers’ central focus - away from trying to determine how many visitors an area can accommodate, to trying to determine what changes are occurring in the area and whether or not they are acceptable, is as critical in a Wild Forest area like the SLWF as it is in a Wilderness. All such areas are State Forest Preserve units which must be protected, as per the State Constitution, as “forever wild.” Furthermore, the APSLMP dictates in the very definition of Wild Forest areas that their “essentially wild character” be retained.

The magnitude of the challenge here is made evident by other statements and acknowledgments found in the APSLMP concerning Wild Forest areas. The 1972 APSLMP claim that “[m]any of these areas are under-utilized” remains seemingly true, and from this determination and the determination that these areas “are generally less fragile, ecologically” comes a directive that “these areas should accommodate much of the future use of the Adirondack Forest Preserve.”

Management and Planning Concepts

Management of the SLWF uses a combination of three generally accepted planning and monitoring methods: (1) the goal-achievement process; (2) the Limits of Acceptable Change (LAC) model employed by the U.S. Forest Service; and (3) the Visitor Experience and Resource Protection (VERP) model employed by the National Park Service. Given the distinctly different, yet important purposes of these methods (particularly between the first method and the second two), there are clear benefits offered by employing a blend of these approaches here.

Goal-Achievement Process

The goal-achievement process provides a framework for proposed management by means of the careful, stepwise development of key objectives and actions that serve to prescribe the Wild Forest conditions (goals) outlined by APSLMP guidelines. The Department is mandated by law to devise and employ practices that will attain these goals.
II. Inventory, Use, and Capacity to Withstand Use

Limits of Acceptable Change (LAC) and Visitor Experience and Resources Protection (VERP) Models

These methods both employ carrying capacity concepts, not as prescriptions of the total number of people who can visit an area, but as prescriptions of the desired resource and social conditions that should be maintained to minimum standards regardless of use.

Establishing and maintaining acceptable conditions depends on well-crafted management objectives which are explicit and draw on managerial experience, research, inventory data, assessments and projections, public input, and common sense. When devised in this manner, objectives founded in the LAC and VERP models essentially dictate how much change will be allowed (or encouraged) to occur and where, as well as how to respond to changes. Indicators (measurable variables that reflect conditions) are chosen, and standards (representing the bounds of acceptable conditions) are set, all so that management efforts can be effective in addressing unacceptable changes. A particular standard may be chosen so as to act as a simple trigger for management action (as in VERP), or it may be chosen to act as a kind of boundary which - given certain assessments - allows for management action before conditions deteriorate to the point of no longer meeting the standard (as in LAC).

Even well-conceived and executed efforts can prove ineffective, but when this is the case, management responses must be adjusted. Monitoring of resource and social conditions is absolutely critical. Both the LAC and VERP models rely on monitoring to provide systematic and periodic feedback to managers concerning specific conditions.

The Department and the APA are working together to develop a guidance framework for monitoring wildlands in the Adirondack Park which will assess the effects of management actions and public use with respect to physical, biological and social conditions. The guidance for wildlands monitoring will be developed as a way to implement LAC and/or VERP and to integrate these into the decision-making process. Given the numerous variables impacting the management of a large wildland complex, the Department acknowledges this process will evolve over time and utilize appropriate resources that are emerging across public land management agencies.

This UMP identifies desired conditions for the SLWF and proposes methods and indicators for monitoring and measuring how visitor use is impacting those conditions. In certain instances, implementation of the UMP will be conditional and/or phased according to the results of visitor use monitoring. Additional visitor use management strategies and actions to achieve desired conditions outlined in the final guidance for wildlands monitoring will inform future management of SLWF. Any final guidance would become an appendix to the APA/DEC memorandum of Understanding and applied to future UMPs.

In outline, The Department's approach applies four factors in identifying potential management actions for an area:
II. Inventory, Use, and Capacity to Withstand Use

- The identification of acceptable conditions as defined by measurable indicators;
- An analysis of the relationship between existing conditions and those desired;
- Determinations of the necessary management actions needed to achieve desired conditions;
- A monitoring program to see if objectives are being met.

A proposed list of management and planning concepts, for which measurable indicators and monitoring tools can be developed, may be used by the Department for measuring and evaluating acceptable change on the SLWF as follows:

- Condition of vegetation in camping areas and riparian areas near lakes and streams;
- Extent of soil erosion on trails and at campsites;
- Noncompliant visitor behavior;
- Noise on trails and in adjacent campsites;
- Conflicts between different user groups;
- Diversity and distribution of plant and animal species;
- Water quality.

Management of the SLWF will use a phased approach for the development of facilities following guidance for wildlands monitoring. The guidance for wildlands monitoring will be developed as a way to implement LAC and/or VERP and to integrate these into the decision-making process. Given the numerous variables impacting the management of a large wildland complex, the Department acknowledges this process will evolve over time and utilize appropriate resources that are emerging across public land management agencies. The U.S. Forest Service White Mountain National Forest Wilderness Appendix is an impressive model that helped form the Department’s planning process. As the guidance for wildlands monitoring is developed the Department will utilize aspects of the recently developed Visitor Use Management Framework (developed by the Interagency Visitor Use Management Council, which is made up of the federal public land agencies).

Recreation Research Findings and Management Implications

Any recreational use in the SLWF will have some adverse environmental impact. Impacts from hiking and camping typically follow a natural progression. Initial and very light use may only damage particularly fragile soils and vegetation. However,
II. Inventory, Use, and Capacity to Withstand Use

even at low levels of use, the groundcover and surface organic litter are damaged. With moderate use, all but the most resistant plant species are lost and mineral soils may be exposed. High use exposes mineral soils to compaction and erosion, which in turn expose the roots of trees.

Recreation impacts are related to visitor use levels in a curvilinear fashion. For example, a study of wilderness campsites in Minnesota found that only 12 nights of campsite use per year caused substantial impact. However, further increases in use caused little additional change for most forms of impact (Marion, 2016). Considering the popularity of camping in the SLWF since at least 1860, most, if not all, campsites show evidence of substantial impact. However, it is also likely that continued use will have little additional adverse impact on existing campsites.

One important implication of the curvilinear use/impact relationship is that nearly all use must be eliminated to achieve significant reductions in recreational impact. In other words, the only way to completely eliminate adverse impacts of hiking and camping in the SLWF would be to close the area to all public use. However, a more realistic approach is to minimize impact by managing other factors to help mitigate adverse environmental impacts.

The adoption of indicators and standards for measuring impacts helps create a consistent and reliable methodology in monitoring impacts. Indicators are tools used to assess the resource or social conditions of a given area and are not always a direct measure of the actual conditions of a facility. Standards are thresholds to determine if and what management action will be taken. It is accepted and assumed that sustainable and purpose-built facilities will experience minimal further impacts. These assumptions need to be re-assessed over time. If the facilities are maintaining their intended condition then they can either be maintained as is, or the land manager can proceed to the next phase of the plan. If the condition of the facility is failing and our assumptions are not being met then corrective adjustments need to be made, which could involve anything from hardening and re-routes, to taking a step back to a previous phase of the plan.

Regular and consistent monitoring is critical for this framework to be successful. Without the regular measurements of the indicators and comparison to the established standards it is not possible to understand the degree to which we are able to achieve wild character integrity.

The Department chose four categories of indicators as significant identifiers of resource concerns. Those indicators fall into the categories of biophysical, social, aesthetic, and ecosystem process. Each is described below.

Use-Related Factors. Many impacts are the result of uninformed or careless behavior. Managers can educate and regulate visitors to reduce high impact behavior (e.g., building fires, chopping on trees, cutting switchbacks) and encourage low impact behavior such as the “leave no trace” program. Large groups have a greater potential to damage resources than the same number of individuals in smaller groups. Limits on
II. Inventory, Use, and Capacity to Withstand Use

group sizes can be encouraged or required to minimize resource impacts. A defined camping season which only allows camping for a few months, rather than throughout the year, may also have some benefit.

Environmental Factors. Managers can encourage recreational use in impact resistant locations. For example, trails can be relocated to avoid wet areas or steep slopes. Campsites can be located on flat, well drained areas. Knowledge of the relative resiliency (ability to recover) of different vegetation and soil types can be used to select areas which will quickly recover following recreational trampling. Sites with high resiliency are also desirable because they usually support dense vegetation which helps confine use to campsites and trails.

Managerial Factors. Managers of some protected areas have sought to minimize impacts by encouraging visitor dispersal. However, due to the use/impact relationship and a number of behavioral factors, this impact-minimization strategy has only been successful in areas which receive low use. Therefore, this strategy would not likely to be effective in the SLWF because of the high levels of use.

Other Considerations. Most visitors prefer hiking on established trails and camping on existing campsites. Many visitors enjoy camping close to trails and other groups for social reasons, while others fear getting lost when away from trails. Areas with rugged terrain and/or dense vegetation may limit the ability of visitors to hike off-trail or the number of suitable camping locations necessary to support a dispersed camping policy. Pre-existing trails and campsites are also more convenient, comfortable, and require less work to use and maintain. Finally, water and other scenic attractions in the backcountry will always attract larger numbers of visitors than less interesting areas. In general, management efforts to alter these natural tendencies will be unsuccessful without substantial and expensive educational and law enforcement programs (Marion, 2016). Therefore, a strategy of closing and relocating campsites in the SLWF in order to reduce impact is generally not a realistic way to limit adverse impact. Relocated campsites would have to be constructed in areas that have not been impacted, and it would be difficult to keep the public from continuing to use the old sites.

Recreation research shows that visitor containment, or concentration, in the SLWF offers a promising strategy for minimizing recreation impacts. Trails, which concentrate use on their treads, represent one form of containment. Similarly, mandating use of designated campsites also contains visitors to sites that have already been impacted. A campsite rotation program has also been considered in the past. However, recovery rates on campsites and trails are considerably lower than initial impact rates, which mean that a rest-rotation strategy will generally be ineffective (Marion, 2016).

These management concepts form the basis of the proposed management actions presented in Section IV. This approach will require flexibility, determination and patience. It may not be possible to complete all inventories and assessments called for by this strategy - and by the APSLMP - in this plan’s five-year time frame. It will be important to show progress in achieving APSLMP goals and in gaining initial managerial experience and knowledge in applying this strategy to some carrying capacity questions.
and issues. Knowledge gained as a result of the implementation of this first SLWF UMP will be useful to: 1) revising and refining management actions if evaluation shows that desired conditions are not being attained or sustained; and 2) creating a foundation upon which this strategy can eventually be built into a fully-developed, science-based approach to protecting and managing the unique resources of the SLWF.

1. Land Resources

The condition of the land resource can be used as an indicator of the level of use that an area is receiving. The most heavily-used areas will usually show the most effects from use. However, there are several factors which can mitigate heavy use or amplify the effects of lighter use. One factor is the conditions at the time that the use occurs. For example, a few people walking a trail when the trail is wet and soft will cause more damage than a large number of people using the same trail when it is dry. Another factor to consider is the skill level and behavior of the users. A large group may not leave any evidence that they used an area, while a small group or even an individual can, through willful neglect or ignorance, leave an area permanently altered. A third factor to consider is the design and location of the improvement that is being used. A properly designed and located facility will allow for heavy use without having a negative impact on the resource. Poor facility design or location can lead to quick deterioration of the resource.

The heavily used areas of the SLWF are clearly being negatively affected by the levels of use they receive. This is primarily occurring at the campsites on the shores of several of the ponds and along several of the trails. The main problems resulting from use of the SLWF are erosion, mud, soil compaction, decreased vegetation, litter, improper human waste disposal, and removal of dead wood. It is fairly obvious why most of these impacts are considered to be problems; however, some people may not understand why removal of dead wood is considered to be a problem. It is seen as a problem by land managers because dead wood provides important habitat for a variety of wildlife, slows erosion, and allows nutrients to be recycled back into the soil. In heavily-used areas, dead wood is collected and burned at a faster rate than it is created, this results in an ever-widening area of damage from people gathering wood. Secondary effects of wood gathering include damage to living vegetation and removal of standing dead trees, which is illegal.

Many land resource problems tend to expand with time, if they are not addressed. An example is that muddy sections of trails result in an expansion of the muddy area and loss of vegetation as people, trying to stay dry, walk around the wet areas. Another example is that people who visit a campsite which already has a litter problem are more likely to leave their own trash behind. For this reason, it is important to take action when a problem becomes known. Section IV will address courses of action to reduce the problems from visitor use.

Illegal motor vehicle use has caused impacts to the SLWF. Two areas that are particularly vulnerable to illegal motor vehicles are snowmobile trails and old roads. The
main problem has been from ATVs, which are able to drive around barriers. The Lake Colby Bypass Trail, Bloomingdale Bog Trail, and Old Wawbeek Road are specific locations that have experienced problems. Enforcement action and improvement to barriers are usually effective at curtailing the problems for a time, but ATVs are difficult to stop because they are capable of going almost anywhere. Impacts in the SLWF caused by ATV’s include mud holes, ruts, torn-up trail surfaces, trail widening, and increased erosion.

The most noticeable recreation impacts (such as trail erosion, trash, and tree injuries) receive most of the management focus. Recreation can also result in impacts to biological communities that are not as noticeable (Larson, et al, 2016) A study specifically focused on the SLWF showed that campsite density and boat traffic were related to biological community differences (Macy 2015). These impacts from recreation use should still be considered in management decisions. These impacts are not limited to the physical spot where the use occurs but extend for a distance. While major portions of the SLWF receive significant recreation use, there are other areas that are see little to no use. Areas that receive significant use are generally near lakes, pond and trails. Little used areas may have herd paths that pass through them, but generally lack developed facilities. The greater the distance from heavy recreation use, roads, and developed private property, the more wilderness character the area will have and impacts to wildlife will be lesser. In the SLWF over 14,000 acres lack recreation facilities and are a significant distance (.25 mile) from developed private property and roads. Of this about 3,500 acres are more than one mile from roads, private property, and lakes with heavily motorboat usage. The largest concentration of this is between Forest Home Road and Lower Saranac Lake

2. Water Resources

The APSLMP recognizes the importance of waterbodies to the Adirondack Park and that these waters have a carry capacity just as land resources do. An action recommended in the APSLMP is for the Department to conduct a comprehensive study “to determine each water body’s capacity to withstand various uses, particularly motorized uses, to maintain and enhance its biological, natural, and aesthetic qualities.” An effort to conduct this was the study “Adirondack Park Forest Preserve Carrying Capacity of Water Bodies Study: Phase 1 – Selecting Indicators for Monitoring Recreational Impacts”, released in 2011. The focus of this study was “on identifying the indicators of resource and social change to measure and how to take those measurements.”

Waterbodies in the SLWF are impacted by recreational use. These impacts come from the use that occurs on the water itself and the adjacent land. Campsites, trails, and parking areas are examples of facilities on land that could impact an adjacent waterbody. Different impacts are associate with different recreational uses. Motorboats have the potential to cause a greater variety and more significant impacts than non-motorized watercraft. The UMP should consider a proposed action’s potential impacts to a waterbody. For example, building new water access campsites on an undeveloped
II. Inventory, Use, and Capacity to Withstand Use

pond would result in impacts from additional visitors to the pond in addition to the impacts associated with the camping near the shoreline.

Determining carrying capacity becomes much more complicated when portions of a waterbody are privately owned. Extensive private development can drastically alter the calculations for arriving at a waterbody's carrying capacity. Actions to address carrying capacity issues will need to balance private and public usage. Access to public resources should not be sacrificed to solely benefit private interests and private rights must be respected.

3. Wildlife and Fisheries

Department angling regulations are designed to conserve fish populations in individual waters by preventing over-exploitation. Angling regulations effectively control impacts of angler use. The Department monitors the effectiveness of angling regulations, stocking policies, and other management activities by conducting periodic biological and chemical surveys. Based on analysis of biological survey results, angling regulations may be changed as necessary to protect the fish populations of the SLWF. Statewide angling and special angling regulations provide the protection necessary to sustain or enhance natural reproduction where it occurs.

Special angling regulations are currently in effect for a number of unit waters including the West Branch Ausable River, Connery Pond, Lake Placid and Moose Pond in Essex County. In Franklin County, Lake Clear, Lake Colby, Lake Kiwassa, Deer Pond, Little Green Pond, Little Clear Pond, Follensby Clear Pond, Polliwog Pond, Floodwood Pond, Square Pond, Rollins Pond, Saranac River, and Upper Saranac Lake have special angling regulations. Perhaps the most notable fishing regulation in the unit is the catch-and-release section of the West Branch Ausable River. This section extends from Holcomb Pond outlet to Monument Falls. As detailed in Section II. D. 3, the river fishery is one of the most popular in New York State and use has certainly increased with inception of catch-and-release rules. This regulation helps maintain high-quality, season long fishing on the West Branch despite the heavy fishing pressure. Compliance with the catch-and-release regulations is high.

In addition to angling regulations, factors at work in the unit which serve to limit use include remoteness of some ponds and streams from roads; the seasonal nature of angling in coldwater ponds; and seasonal road closures. Because angler use of back country streams in the unit is believed to be light, the brook trout populations which they support can sustain anticipated harvest levels without damaging their capacity to maintain themselves naturally. When necessary, populations of coldwater gamefish are maintained or augmented by the Department's annual stocking program. The warmwater game fish species found in the unit also have proven their ability to maintain themselves under existing regulations without the need for annual stocking.
H. Education, Interpretation and Research

There are several programs underway within or adjacent to the SLWF to provide for the education of those using the Forest Preserve. The primary purpose of these programs is to foster a deeper appreciation of the natural community and to inform the public of the proper techniques to ensure that their visit to the SLWF is enjoyable, respectful of other users, and not harmful to the environment. One way the Department gets this educational message out is through the Forest Ranger and the Assistant Forest Ranger program. These individuals have a great deal of contact with the public and are thus able to interact with the public as individuals or in small groups. Public education and interpretation are just two of their many job responsibilities, but it is an extremely important facet of their work.

The Nature Recreation Program is offered at several DEC campgrounds including Fish Creek Pond. Campgrounds provide an outstanding opportunity to reach the public. Campgrounds accommodate over several hundred thousand individuals annually, many of whom are with family members and young children. In 2007, 8,353 campers participated in the Nature Recreation Program at Fish Creek, and 1,220 patches were awarded to children who successfully completed the Junior Naturalist Journal. Both programs include educational as well as recreational components - mainly targeted at younger family members. The overall goal is to provide campground users (overnight campers or day-users) educational and recreational opportunities. These opportunities are to:

- be compatible with Forest Preserve management;
- heighten awareness, appreciation, and understanding of the environment;
- foster proper recreation use of the Forest Preserve and its facilities; and
- promote understanding of the Department of Environmental Conservation and its programs.

Several DEC units work together to design activities, train the staff who conduct the programs, and recruit interesting speakers. The partnership between the Bureau of Recreation and the Bureau of Environmental Education has resulted in new offerings such as the Junior Naturalist Program and the Adventure Discovery Program. Most campgrounds now offer one or more of these programs.

A partial list of other important education, interpretation, or research projects include: Paul Smith’s College Watershed Stewards, the Adirondack Park Invasive Plant Program, Adirondack Aquatic Institute, Adirondack Cooperative Loon Program, and the Paul Smith’s College Visitor Interpretive Center. These programs provide important benefits for the management of the SLWF. They reach a large number of people with important educational messages and conduct valuable research. Some of the data collected by these programs was very useful in the completion of this UMP.

The use of social media, webpages, and publications are some ways that the Department is able to provide information to the public. Examples of the information
provided include places to go, safety tips, and proper practices to recreate responsibly.

Local guides and sporting good shops are another way for the public to access information on the SLWF. Many of these guides and the employees of these shops are usually very familiar with the SLWF and they can provide the public, and Department staff, with valuable information. The information the public gets may not only come from the owners and employees of the shops, but also from the maps and booklets that are sold in the shops. Either way, the public usually accepts this information as official. For this reason, it is important that the Department work with private enterprises to ensure that quality information is provided to the public.
III. Management and Policy

A. Past Management

The administration of Forest Preserve land is the responsibility of the Division of Lands and Forests within the Department. The responsibility for the enforcement of Department rules and regulations lies with the Office of Public Protection. The Division of Operations conducts interior construction, maintenance and rehabilitation projects. The Bureau of Recreation within the Division of Operations operates and manages the Saranac Lakes Islands Campground and the public campgrounds adjacent to the unit. The Division of Fish, Wildlife and Marine Resources manages the state’s fish and wildlife resources.

1. Land Management

Forest Preserve management began with the Forestry Act of May 15, 1885 which authorized the appointment of a Forest Commission. This law established the first comprehensive forest administration in the United States. The Forest Commission, with a staff of twenty salaried employees in 1885, had responsibility for care and custody of the Forest Preserve - including lands which are now part of the SLWF. At that time, the Forest Preserve was approximately 800,000 acres in size.

Since January 1, 1895, management of Forest Preserve land has been guided by a constitutional provision, now found at Article XIV, section 1, which mandates that the Forest Preserve be forever kept as wild forest land, prohibits the sale, removal, or destruction of timber situated thereon, and prohibits the land from being leased, sold, or exchanged.

The state’s initial management activities were focused on protecting the Forest Preserve from wildfire and trespass. In most areas, state boundary lines were nonexistent or poorly marked. Illegal occupancy of the Forest Preserve, as well as timber theft, were both chronic problems. Forest fires, in some cases intentionally set, were also a constant threat to the Forest Preserve. Consequently, the Forest Commission focused most of its attention and meager resources on these two issues for the first three decades of its existence.

Recreational use of the Forest Preserve was relatively limited at first. The few public roads that could provide access to State land were unpaved. Initially, recreational use was mostly for hunting and/or fishing, often involving employment of a local guide. The Forest Commission initially proposed the possibility of leasing small plots of land for private campsites, but this idea was problematic and never fully implemented.

With the development of better and more numerous roads and the mass production of affordable automobiles in the early 20th century, recreational use of the Forest Preserve
III. Management and Policy

increased dramatically. Consequently, the Division of Lands and Forests (a direct descendant of the Forest Commission), initiated a more comprehensive recreation program that started around 1915. This included the erection of trail signs, trail maintenance work, permits to allow construction of lean-tos on state land, and a camping permit system for those at one location for more than three nights. In 1918, only 274 camping permits were issued to 2,760 campers on the entire Forest Preserve. In 1919, the first campsites, which included stone fireplaces, were developed on Lake George.

There is a long history of recreational use of state land on Lower and Middle Saranac Lake. The lakes have been popular for camping, boating, hunting and fishing since at least 1850. Recreational use increased significantly after the Civil War with publicity, transportation improvements and the construction of hotels. Recreational use of state land was also encouraged by the Forest Commission soon after the establishment of the Forest Preserve:

“Though its (Lower Saranac Lake) scenery is considered inferior to that of the Upper Saranac, it has strong points of beauty, the many islands scattered through it adding greatly to its attractions and furnishing charming campsites. Next to Lake George it has the most islands of any lake in the state, there being over fifty, including some bare rocks which here and there rise above its surface. But there are many large, well wooded islands whose shady thickets make good tenting grounds, and which are open to the public.” (NYS Forest Commission, 1891 Annual Report)

The first formal camping program on Lower and Middle Saranac lakes started in 1916 when the Conservation Commission began issuing camping permits. These allowed for the construction of tent platforms with wooden frames and sides up to three feet tall. Tent platforms were very popular on Middle and Lower Saranac Lakes, where they were used for more than fifty years.

The popularity of the 300 tent platforms led to a significant increase in the public’s use of the area and an equal increase in negative impacts to the natural resources of the area. It became imperative that the Department take action to address these impacts from overuse. In 1977 the Saranac Lake Administrative Camping Area was opened with sixty-two camping sites on Lower Saranac Lake. Regulations were adopted to bring the area under a more concerted administrative oversight, dramatically reducing the impacts of overuse by limiting camping to areas best able to accommodate use and providing an administrative presence. In 1992, 25 existing campsites located on Middle Saranac and Weller Pond were added. However, the Department’s rules and regulations were never revised to cover the Middle Saranac and Weller Pond area. This revision is necessary in order to legally limit camping to the 25 designated campsites.
Other actions taken in the SLWF have been intended to facilitate public recreation. Over the years these have included the construction of parking areas, trails, roadside campsites, boat launches, and lean-tos. These facilities were often constructed in order to meet a demand from the public or to address problems caused by the lack of developed recreational opportunities.

Actions have been taken to rehabilitate some heavily impacted areas. This has included the planting of trees and closing areas for public use.

There are several tree plantations in the SLWF over the years. These were established in areas that were burned over or former logging areas. Plantations in the SLWF have been named in honor of Clifford Pettis and Clara Barton.

2. Wildlife Management

The legal mandate for wildlife management in New York State is embodied in Article 11 of the Environmental Conservation Law, which authorizes the Department to insure the perpetuation of wildlife species and their habitats as well as the regulation of hunting and trapping. The Department is responsible for the issuance of state hunting and trapping licenses as well as the establishment of hunting and trapping seasons and manner of wildlife take and bagging limits. On Forest Preserve lands, natural processes alone may determine the characteristics of wildlife habitat, therefore, the sole wildlife management activities to be conducted are: (a) regulation of hunting and trapping; (b) control of nuisance wildlife; c) surveys and inventories; and (d) species reintroduction.

Wildlife management on Forest Preserve lands is generally passive in nature, with the exception of hunting and trapping. Article XIV, Section 1 of the New York State Constitution precludes wildlife habitat management or manipulation of vegetation, specifically the cutting of trees. Forest Preserve management of the lands in the Adirondacks are limited to monitoring various species and populations.

3. Fisheries Management

Fisheries management actions within the SLWF have been extensive due to large scale fish community changes brought about by non-native fish species introductions, acid precipitation, and watershed development. Proximity of most unit waters to the Ray Brook DEC headquarters has supported management actions that would be less likely to be done in more distant waters. In addition, the SLWF has an active angler constituency that has high expectations of natural resource staff and keeps staff well informed of management successes and failures.

Fish management in the SLWF has focused on brook trout, but rainbow trout, brown trout, lake trout, largemouth bass, landlocked salmon, and walleye are either stocked or managed via special regulation in some unit waters. Fish stocking by town, number and species, as well as size are available for Essex County and Franklin County from the New York State DEC website for Freshwater fishing (http://www.dec.state.ny.us/website/dfwmar/fish/). Special Regulations pertaining to
III. Management and Policy

fishing in these counties are located at the following website:

(http://www.dec.state.ny.us/website/dfwmr/fish/fishregs/fishregscounty.html)

Beyond stocking, fisheries management uses two major tools for enhancing or restoring fish populations: pond reclamation and liming.

Liming

Liming of acidified waters is an important tool for maintaining aquatic ecosystems in the face of ongoing acid deposition events. SLWF waters have played an important role in Department research on liming. All told, 22 of 144 waters (15 percent) have been limed historically. Some waters have been limed repeatedly. Thus, there are records of 47 liming projects on those 22 ponds. In the late 1950's and throughout the 1960's, 21 unit waters were included in a comprehensive liming study that subsequently lead to liming criteria now specified in the Departmental FEIS on Liming. Dingell-Johnson funds (federal) were utilized and the project was identified as DJ F-22-R. Unit waters in this program were: Amphitheater Pond, Black Pond, Bread Pond, East Copperas Pond, Echo Pond, Federation Pond, Humdinger Pond, Little Black Pond, Little East Copperas Pond, Little Echo Pond, Little Egg Pond, Little North Whey Pond, Mikes Pond, North Whey Pond, NW Amphitheater Pond, Sour Pond, Sunday Pond, Sunrise Pond, SW Amphitheater Pond, West Polliwog Pond and Wood Pond. This complex study involved liming with various materials, such as hydrated lime and agricultural lime, at various rates and frequencies. Individual ponds were limed from one to five times during the study. Most ponds were stocked with brook trout or rainbow trout; the ponds were monitored chemically and were netted to judge fish survival. Many of the ponds mentioned above were naturally acidic bog ponds. An important outcome of this study was the realization that such waters reacidified quickly and often had other chemical conditions, such as low dissolved oxygen levels that hampered fish survival. This study also found that flushing rate was a key component to judging long term effectiveness of a liming action. Both study results are now factors included in FEIS Liming criteria. Many of the waters listed above have not been limed since the study ended, but several mentioned below are still in the liming program.

There are nine unit waters which have either been limed successfully in the past to mitigate acid precipitation or may need to be limed in the future and appear to meet criteria of the FEIS on liming: Bear Pond, Black Pond, Duell Pond, Echo Pond, Federation Pond, Saint Germain Pond, Sunday Pond, Sunrise Pond and Twelfth Tee Pond.

Black Pond, Echo Pond, Federation Pond and Sunrise Pond receive annual chemical monitoring by the Department. All four ponds were once part of the DJ F-22-R study and have demonstrated histories of good trout survival and long retention times for lime. When pH levels drop below 6.0 in these waters, liming is conducted, often with the physical assistance of sportsmen. Sunrise Pond was scheduled for liming in February or March 2005. Black Pond was last treated in 2001, Federation Pond in 2008 and Echo Pond in 1984. Liming of all four of these waters has been deemed a non-jurisdictional
III. Management and Policy

action by the APA - meaning wetlands permits are unnecessary. As routine policy, however, APA staff are notified of any proposed liming prior to any action.

Duell Pond is an historic brook trout pond that was limed in 1976 after acid rain studies found a pH of 4.7 (but continued trout survival). Since that action, fortunately, the pH level has remained high (6.9 in 2000). Duell Pond has too much bog vegetation along its shoreline to qualify for liming under current FEIS criteria. Brook trout stocking will be continued in Duell Pond as long as favorable chemistry conditions continue. The pond is located just west of the Adirondack Fish Hatchery.

Bear Pond is an historic brook trout pond, with a past history of reclamation, but it has never been limed. Its clear water had a pH of 6.0 in 1955 when first measured, but the pH had declined to 5.0 by 1985 with a negative ANC of -9.5 μeq/l. There were complaints from 2002-2004 of a decline in the fishery. Surveys in 2005, 2014, and 2017 found that pumpkinseed are now abundant in the pond, but that brook trout were still numerous and growing well. In addition, the pH in 2014 had improved to 6.5 and the ANC was 26 μeq/l. This survey established that Bear Pond would qualify as a liming or reclamation candidate.

Saint Germain Pond is another historic trout pond. It has a history of varying pH levels and has been monitored annually since 1993. Over the years, pH’s have ranged from 5.01 to 6.40 with negative ANC’s in some years. Its pH in 2016 was 5.9 with an ANC of 9 μeq/l. There has been a slight upward trend in pH in the last few years and angler reports remain good. Saint Germain Pond has a flushing rate of 2.2 times per year according to the ALSC. That rate may be high, since the pond has no inlets or outlet. Saint Germain Pond will continue to be monitored annually in case the recent improvement trend reverses. It seems unlikely that the pond will need to be limed within the five-year scope of this plan. In the event that pH levels drop, and the fishery is negatively impacted, a pre-liming survey and new bathymetry map will be prepared to recalculate the flushing rate and gather other data needed for a wetlands permit from the APA to lime the pond.

Twelfth Tee Pond has a long brook trout stocking history. It also had a pH of only 5 with an ANC of -6 μeq/l in 1984. Prior water chemistry sampling found pH’s ranging from 4.7 to 6.0, but data points are sparse. Twelfth Tee Pond seems to be a borderline water which is highly sensitive to acidic inputs. Monitoring data are needed to see if any pH trends are apparent. Recent fishing reports indicate a modest trout fishery. Twelfth Tee Pond is bounded by Floodwood Road and has several private residences on its shoreline. It has a flushing rate of 2.0 times per year and a mostly wooded shoreline. It would appear to qualify for liming under FEIS criteria. Within the five-year scope of this plan, annual chemical monitoring is proposed. If lake conditions deteriorate and brook trout survival is imperiled, a pre-liming survey will be conducted to gather data necessary for a wetlands permit from the APA to lime the pond. Permission to lime the pond would be sought from riparian owners.

Sunday Pond has a long brook trout stocking record and has been limed repeatedly in the past, with good longevity. It was part of the DJ F-22-R study and was last limed in
III. Management and Policy

1976. Sunday Pond became a long-term monitoring pond for the ALSC in the 1990’s and is sampled monthly. Data from 2003 shows the average pH has declined to 5.17 with little or no buffering capacity left in the pond (negative ANC’s). Sunday Pond would qualify for reliming under FEIS criteria, but ALSC staff have requested that action not be done to avoid biasing the long-term study results. Fisheries will adhere to these wishes but reserves the right to reline Sunday Pond if the long-term study ends or Sunday Pond is otherwise dropped from that study.

Two unit waters are now fishless due to acidity increases. Sochia Pond is a small bog with clear, unstained water located near the Adirondack Fish Hatchery. It supported a trout fishery from the 1940’s through the 1970’s but was found fishless by the ALSC in 1984. Sochia Pond is surrounded by bog mat and thus ineligible for liming under FEIS criteria. The pond is proposed for periodic chemical monitoring to see if pH levels improve over time to a level which would permit renewed trout stocking. Little Black Pond was a DJ F-22-R study pond that had good trout survival after liming. It was last treated in 1980, but trout survived into the 1990’s. Chemical monitoring found the pH had decreased to 4.7 by 1995 and it is presumed that fish no longer survive. Little Black Pond has too much bog vegetation to be eligible for liming under current FEIS criteria.

In summary, of the 23 SLWF waters in the Adirondack brook trout management category, five (21 percent) are maintained by past or ongoing liming efforts. Four (17 percent) additional historical brook trout waters are threatened by continued acidic inputs but may be eligible for liming in the future. There are two former brook trout ponds (not included in the 24) that are now acidified/fishless and cannot be restored via liming.

Reclamation

As discussed in Section II. A. 2, the pond reclamation program has been critical to maintaining brook trout populations in 15 of 23 ponds now managed for that species. The same can be said for maintaining coldwater species communities. Out of nine SLWF waters assigned to the coldwater management category, seven have been reclaimed in the past. These seven are: Conner Pond, Green Pond, Little Clear Pond, Little Green Pond, Polliwog Pond, Rat Pond and Upper Spectacle Pond. The two unreclaimed coldwater fisheries are Heavens Pond and McKenzie Pond. Coldwater fisheries can be managed for a variety of species including lake trout, splake, brown trout, and landlocked Atlantic salmon and round whitefish. Little Green Pond is the most recent pond in this subset to be reclaimed. That occurred in 2003. Little Green now serves as a broodstock water for the endangered round whitefish. More about that project appears in the Round Whitefish subsection of Section II. A .2.

Altogether, 29 unit waters have been reclaimed historically - although records are unclear for two of the waters. Some ponds have been reclaimed multiple times, so there are a total of 44 known reclamation projects in the unit. All but two of the reclaimed waters are still managed as Adirondack brook trout or coldwater ponds. The two exceptions are East Pine Pond and East Copperas Pond. East Copperas Pond was a DJ F-22-R study water that was reclaimed twice and limed eight times. A fish barrier
was built to keep fish from reinvading the pond from the Fish Creek Pond system. Despite this management effort, however, the pond reacidified and is now fishless. East Pine Pond was also reclaimed twice, but quickly repopulated with yellow perch after each treatment. Subsequent inspection of the pond’s outlet established that a true natural barrier was not present and that a manmade barrier could not be built. It is now managed as a warmwater fishery.

The SLWF unit is exceptional for the number of reclamation candidates in the unit. See the pond narratives in Appendix 6 for details concerning: Bear Pond, Big Cherrypatch Pond, Black Pond (P130), Camerons Pond, Connery Pond, Deer Pond (P181), Echo Pond, Federation Pond, Green Pond, Horseshoe Pond/Little Polliwog Pond, Lake Colby/Little Colby, Little Green Pond, Meadow Pond, Panther Pond, Saint Germain Pond, Sunday Pond, Sunrise Pond, Track Pond, Twelfth Tee Pond and Whey Pond. Most of these waters have been reclaimed in the past and could be reclaimed in the future. However, current knowledge of their fish communities and designated management classes indicates reclamation should not be necessary within the five-year scope of this plan.

Fish barriers

Fish barriers are manmade structures designed to prevent undesirable fish from reentering waters after a pond reclamation project. Most are constructed from a mix of natural and artificial materials and are generally designed to blend in with natural surroundings. The APSLMP permits fish barriers in all state land classifications. Within the SLWF, fish barriers have been built historically on the outlets of Big Cherrypatch Pond, Connery Pond, Lake Colby, West Pine Pond, Whey Pond, and East Copperas Pond. A natural fish barrier exists on the outlet of Panther Pond. Other reclaimed ponds in the unit have no outlet.

Most of the existing fish barriers in the unit will be maintained, with the exception of the Connery Pond and East Copperas Pond barriers. The Connery Pond barrier is largely ineffective, and repair would flood private lands. Bass have recently been caught in the pond, so it is essentially too late to repair the barrier. East Copperas Pond is now acidic, and the existing barrier will be allowed to deteriorate.

Surveys

Historical biological data are available for most named waters in the unit excluding 33, small unnamed waters. Tables 24 and 25 (Appendix 7) present pond-specific survey and management data for SLWF waters. About half the unnamed, unsurveyed waters are likely small, fishless bog ponds. The other half are mostly old oxbows or wetland openings adjoining the Raquette River in its extensive flood plain around the Axton Landing area.

Despite the wealth of historical data, a large number of surveys should be conducted on unit waters within the five-year scope of this plan. Survey purposes are varied. The pond narratives in Appendix 6 should be referred to for rationales in surveying: Bad
III. Management and Policy

News Pond, Big Cherrypatch Pond, Connery Pond, Federation Pond, Lilypad Pond, Little Black Pond, McKenzie Pond, Morette Pond, Porkchop Pond, Sochia Pond, Square Pond, Twelfth Tee Pond, and unnamed pond P166. Annual chemical monitoring surveys will also be done on liming candidate waters in the unit. It is likely that reports of non-native species introductions or other management problems will result in additional surveys of waters not listed here.

B. Management Guidelines

1. Guiding Documents

This UMP has been developed within the guidelines set forth by Article 9 of the Environmental Conservation Law, 6 NYCRR Parts 190-199, APSLMP, and established Department policy.

The APSLMP provides guidance for the use and management of lands which it classifies as “wild forest” by establishing basic guidelines. The primary wild forest management guideline will be to protect the natural wild forest setting and to provide those types of outdoor recreation that will afford public enjoyment without impairing the wild forest atmosphere.

Department policy has been developed for the public use and administration of Forest Preserve lands. Select policies relevant to the management of this unit include:

- Administrative Use of Motor Vehicles and Aircraft in the Forest Preserve (CP-17);
- Motor Vehicle Access to State Lands Under the Jurisdiction of the Department for People with Disabilities (CP-3);
- Standards and Procedures for Boundary Line Maintenance (NR-91-2; NR-95-1);
- Tree Cutting on Forest Preserve Land (O&D #84-06);
- Cutting and Removal of Trees in the Forest Preserve (LF-91-2);
- Snowmobile Trail guidance: Snowmobile Trail Siting, Construction, and Maintenance on Forest Preserve Land in the Adirondack Park;
- The Administration of Conservation Easements (NR-90-1);
- Acquisition of Conservation Easements (NR-86-3);
- Division Regulatory Policy (LF-90-2);
- Adopt-A-Natural Resource (ONR-1);
- Policies and Procedures Manual Title 8400 - Public Land Management;
• Inter-Agency Guidelines for Implementing Best Management Practices for the Control of Terrestrial and Aquatic Invasive Species on Forest Preserve Lands in the Adirondack Park.

The Department also maintains policy to provide guidelines for the design, location, sitting, size, classification, construction, maintenance, reconstruction and/or rehabilitation of dams, fireplaces, fire rings, foot bridges, foot trails, primitive camping sites, road barriers, sanitary facilities and trailheads. Other guidelines used in the administration of Forest Preserve lands are provided through Department policy memos, and regional operating procedures.

The recommendations presented in this UMP are subject to the requirements of the State Environmental Quality and Review Act (SEQRA). All proposed management activities will be reviewed and significant environmental impacts and alternatives will be assessed.

2. Application of Guidelines and Standards

Construction Projects
All projects will be developed in accordance with the above-mentioned laws, rules, regulations and policies and will incorporate the use of Best Management Practices, including but not limited to such considerations as:

• locating improvements to minimize necessary cut and fill;
• locating improvements away from streams, wetlands and unstable slopes;
• use of proper drainage devices such as water bars and broad-based dips;
• using stream crossings with low, stable banks, firm stream bottom and gentle approach slopes;
• constructing stream crossings at right angles to the stream;
• limiting stream crossing construction to periods of low or normal flow;
• avoiding areas where habitats of Threatened and Endangered species are known to exist;
• using natural materials to blend the structure into the natural surroundings.

Application of the Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA), along with the Architectural Barriers Act of 1968 (ABA) and the Rehabilitation Act of 1973; Title V, Section 504, have had a profound effect on the manner by which people with disabilities are afforded equality in
III. Management and Policy

their recreational pursuits. The ADA is a comprehensive law prohibiting discrimination against people with disabilities in employment practices, use of public transportation, use of telecommunication facilities and use of public accommodations. Title II of the ADA requires, in part, that reasonable modifications must be made to the services and programs of public entities, so that when those services and programs are viewed in their entirety, they are readily accessible to and usable by people with disabilities. This must be done unless such modification would result in a fundamental alteration in the nature of the service, program or activity or an undue financial or administrative burden.

Title II also requires that new facilities, and parts of facilities that are newly constructed for public use, are to be accessible to people with disabilities. In rare circumstances where accessibility is determined to be structurally impracticable due to terrain, the facility, or part of facility is to be accessible to the greatest extent possible and to people with various types of disabilities.

Consistent with ADA requirements, the Department incorporates accessibility for people with disabilities into the planning, construction and alteration of recreational facilities and assets supporting them. This UMP incorporates an inventory of all the recreational facilities or assets supporting the programs and services available on the unit, and an assessment of the programs, services and facilities on the unit to determine the level of accessibility provided. In conducting this assessment, DEC employs guidelines which ensure that programs are accessible, including buildings, facilities, and vehicles, in terms of architecture and design, transportation and communication to individuals with disabilities.

Any new facilities, assets and accessibility improvements to existing facilities or assets proposed in this UMP are identified in the section containing proposed management actions.

The Department is not required to make each of its existing facilities and assets accessible as long as the Department’s programs, taken as a whole, are accessible.

For copies of any of the above-mentioned laws or guidelines relating to accessibility, contact the DEC Universal Access Program Coordinator at 518-402-9428 or UniversalAccessProgram@dec.ny.gov.

3. Deed Restrictions

There are multiple deeded right-of-ways through the SLWF. These include corridors to reach private property and for utility lines. The following table lists right-of-ways through the SLWF which are used to reach private property. Some of these are also used by the public or Department staff to reach State land. Further research needs to be conducted to determine the legality of some of these right-of-ways. The Department is not endorsing the legality of the right-of-ways listed.
Table 12: Road right-of-ways through the SLWF.

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Length (miles)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roaring Brook</td>
<td>0.2</td>
<td>Access has been blocked.</td>
</tr>
<tr>
<td>2</td>
<td>Alder Brook</td>
<td>1.15</td>
<td>Access is through private property.</td>
</tr>
<tr>
<td>3</td>
<td>Alder Brook 2</td>
<td>0.1</td>
<td>Access is through private property.</td>
</tr>
<tr>
<td>4</td>
<td>Roger Brook</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kiwassa Lake</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bartlett Carry</td>
<td>1.2</td>
<td>Portion is used as carry between Upper and Middle Saranac lakes.</td>
</tr>
<tr>
<td>7</td>
<td>Paradise Lane</td>
<td>0.9</td>
<td>Largely within the DOT ROW and crosses private land.</td>
</tr>
<tr>
<td>8</td>
<td>Floodwood Mtn.</td>
<td>2.8</td>
<td>Confirmed in deed, provides public access to Floodwood Mtn.</td>
</tr>
<tr>
<td>9</td>
<td>Dunlap Road</td>
<td>2.6</td>
<td>Confirmed in deed.</td>
</tr>
<tr>
<td>10</td>
<td>Lake Clear Camp</td>
<td>0.9</td>
<td>Confirmed in deed, used by public, and as an administrative road.</td>
</tr>
<tr>
<td>11</td>
<td>Bear Pond</td>
<td>1.3</td>
<td>Confirmed in deed, use may be violating deed restrictions, also used as an administrative road.</td>
</tr>
<tr>
<td>12</td>
<td>Mount Whitney</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Connery Pond</td>
<td>0.6</td>
<td>Used by the public to access Connery Pond via a Fish and Wildlife Management Agreement. Neither the public nor the Department has the right to use the road to reach the McKenzie Mountain Wilderness Area. Landowners have allowed the public to use a trail across private property for this access.</td>
</tr>
<tr>
<td>14</td>
<td>Oseetah Lake</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Raquette River</td>
<td>0.3</td>
<td>ROW includes a cable car crossing of river.</td>
</tr>
<tr>
<td>16</td>
<td>Upper Saranac Lake Dam</td>
<td>0.3</td>
<td>Confirmed in deed, crosses private property.</td>
</tr>
</tbody>
</table>
There can also be deeded restrictions on State owned property. An example of this in the SLWF is the Bartlett Carry parcel. Restrictions in this deed regulate the construction of parking areas and campsites on that parcel.

C. Administration

Administration of the SLWF is shared by several programs in the Department. Within the context of the SLWF, Department programs fill the following functions:

The **Division of Lands and Forests** acquires and maintains land for public use, manages the Forest Preserve lands, promotes responsible use of public lands and provides educational information regarding the use of the Forest Preserve.

The **Division of Fish, Wildlife and Marine Resources** protects and manages fish and wildlife species, provides for public use and enjoyment of natural resources, stocks freshwater fish, licenses fishing, hunting and trapping, protects and restores habitat, and provides public fishing, hunting and trapping access.

The **Natural Heritage Program** enables and enhances conservation of New York’s rare animals, rare plants, and significant ecosystems. Field inventories, scientific analyses, expert interpretation, result in the most comprehensive database on New York's distinctive biodiversity which provides quality information for natural resources planning, protection, and management.

The **Division of Water** protects water quality in lakes and rivers by monitoring waterbodies and controlling surface runoff.

The **Division of Air Resources** regulates, permits, and monitors sources of air pollution, forecasts ozone and stagnation events, educates the public about reducing air pollution and researches atmospheric dynamics, pollution and emission sources.

The **Division of Operations** designs, builds and maintains Department facilities and infrastructure, operates Department Campgrounds and day-use facilities and maintains trails and lean-tos.

The **Division of Public Affairs and Education** is the public communication wing of the Department. The Division communicates with the public, promotes citizen participation in the UMP process, produces, edits and designs Department publications.

The **Division of Law Enforcement** is responsible for enforcing of New York’s Environmental Conservation Law throughout the State. A focus has been laws relating to hunting, fishing, trapping, license requirements, endangered species, possession, transportation and sale of fish and wildlife, trespass, and damage to property by hunters and fishermen.

The **Forest Ranger Division** is responsible for the preservation, protection, and enhancement of the State’s forest resources, and the safety and well-being of the public
using those resources. Forest Rangers are the stewards of the Forest Preserve and are the primary public contact for the SLWF and responsible for fire control and search and rescue functions. Forest Rangers are police officers and are the primary law enforcement service for State Lands.

D. Management Issues, Needs and Desires

Many issues have been raised by the public during the development of this plan. Given the complexities of this particular unit, the development of the UMP has been a drawn-out process. During the process, the Department has received many public comments. Information has been obtained from the public by way of an open house, held on March 20, 2002 at the Saranac Lake High School, by mail, and email. A summary of comments received is contained in Appendix 9.

Additional information was gathered from the Saranac Lakes Wild Forest Citizen’s Discussion Group that met between February and August of 2003 and developed a list of key recommendations. Appendix 8 contains a description of the Citizen Discussion Group along with some recommendations made by the group.
This page intentionally left blank
IV. Proposed Management Actions

This section identifies specific management proposals as they relate to natural resources, uses, or facilities. These proposed actions are consistent with management guidelines and principles and are based on information gathered during the inventory process, through public input and in consultation with the planning team. This section also identifies management philosophies for the protection of the area while providing for use consistent with its carrying capacity.

A. Bio-Physical Resources

1. Water

Present Conditions:
Water quality studies have been conducted by the Adirondack Lakes Survey Corporation, researching the effects of acid deposition, and the Bureau of Fisheries routinely conducts biological surveys of area waters. No studies have been conducted to determine the effects on water quality from recreational use. As focal points for visitation, streams, springs, lakes, ponds, and wetlands are on the receiving end of more human disturbance than upland forest areas. With many users of the SLWF being near water, their actions can have an impact on water quality. If proper camping practices are not used, then runoff can bring food scraps, trash, and human waste into the waterbodies. Erosion from primitive tent sites and canoe launches is also a concern.

Waters in the SLWF are not tested for the presence of pathogens, therefore the waters should not be considered potable until treated.

Objective:
- Stabilize and improve water quality.

Management Actions:
- Prohibit the following in any of the unit’s waters: use of soap or detergent, or disposal of food scraps.
- The land manager may close, relocate, or rehabilitate lake shore and stream side areas that are severely impacted by recreational use.
- Information and education programs will inform users of proper sanitation methods.
IV. Proposed Management Actions

2. Soil

Present Conditions:
The two primary recreation impacts related to soil are erosion and compaction.

Soil erosion is a natural and continuous occurrence, but it is a concern where human activity has significantly increased erosion. There are areas in the SLWF where human disturbances on trails, primitive tent sites, and water access sites are causing increased erosion. Maintenance actions at these sites could reduce the amount of human influenced erosion.

Soil compaction results in changes to soil properties that are detrimental to natural processes. This compaction is frequently the result of human activity. Sites where visitors congregate will become compacted. The more intensive the use, the greater the compaction. Areas where motor vehicles travel will also see greater compaction.

Objectives:
- Keep soil erosion caused by recreation use to within acceptable limits.
- Limit the areas where soil compaction precludes natural plant establishment.

Management Actions:
- Watch for impacts to soil conditions caused by recreation use. Inventory and map areas where there is a concern.
- The land manager may close, relocate, or restrict use of facilities to reduce serious negative impacts to soil resources caused by recreational use.
- Correct undesirable conditions by rehabilitating the area and/or relocating use to more durable sites.
- Target trail maintenance to heavily eroded trails; develop a priority list based on resource need rather than user convenience.
- Request voluntary compliance in seasonal closures of certain trails during periods of wet weather.

3. Wetlands

Present Conditions:
Wetlands make up more than 17,000 acres of the SLWF. These wetlands are important to the environmental health of the SLWF by providing wildlife habitat, water protection, flood control, and recreational values. Some of the major wetlands within the SLWF include Bloomingdale Bog, Black Pond Swamp, and Deer Pond Marsh.
IV. Proposed Management Actions

Through natural processes there are changes in the location and composition of wetlands over time, thus resulting in changes to mapping information.

Objective:
- Protect the wetlands in the SLWF from human impacts.

Management Actions:
- Wetland inventory and mapping information will be correlated with recreation, fish, and wildlife project plans to prevent unintended and undesirable impacts to the wetlands.
- Consult with the APA regarding construction activity in wetlands. Any needed permits will be secured prior to construction.

4. Vegetation

Present Conditions:
The SLWF hosts a variety of plant species and cover types. These vegetative communities have been influenced by several natural and human disturbances. Some of the disturbances include wind, fire, ice, insects, disease, logging, and recreational use. These disturbances create opportunities for different species to grow and help to increase the diversity of the vegetation.

The SLWF is home to six plant species which are listed as threatened or endangered by the New York Natural Heritage Program. These species are Canada ricegrass, rhodora, Sitka clubmoss, northern clustered sedge, swamp birch, and balsam willow. Also listed are four plant communities. These are balsam flats, spruce-fir swamp, inland non-calcareous lake shore, and dwarf shrub bog. Additional listed species and communities are located on private lands near the SLWF.

Objectives:
- Encourage programs to identify and map sensitive, threatened, and endangered species.
- Protect known locations of sensitive, threatened, and endangered species.

Management Actions:
- Vegetation protection and restoration programs will emphasize information and education as the primary means to reduce impacts and slow unnatural change.
- Ecological inventories and maps will be correlated with project plans to prevent unintended and undesirable impacts to sensitive, threatened, and endangered species.
IV. Proposed Management Actions

- Minimum impact techniques will be used to restore sites where natural vegetation has been destroyed by human causes. Native seedlings, trees, shrubs, or grasses will be planted to accelerate return of natural conditions where necessary.

- Visitors will be encouraged to use portable cook stoves and refrain from building campfires. Portable stoves are much more efficient for cooking than campfires. The gathering and burning of wood in the backcountry create ecological and aesthetic impacts and could be avoided. Such messages will be prescribed in LEAVE-NO-TRACE education and information programs and opportunities.

5. Wildlife

Present Conditions:
Several changes have occurred over the past several decades that have impacted a variety of wildlife species within the SLWF. Habitat changes have resulted from pre-Forest Preserve logging, wildfires, recreation use, natural plant succession, protection of the forest and wildlife species through legislation, attempted reintroduction of extirpated species of wildlife and immigration of extirpated species to the area. Most wildlife management activities have been directed to improving knowledge of the wildlife found in the unit.

One of the original factors attracting visitors to the Adirondacks was the vast array of hunting, fishing and trapping opportunities. The APSLMP indicates that these uses are legitimate and compatible with wilderness concepts. Department policy encourages these activities as part of a larger wilderness experience, not just a quest for game (Doig, 1976).

Habitat areas heavily used by wildlife are often also choice locations for human trails and campsites (Hendee and Dawson, 2002). Bears often scrounge for food and garbage where people habitually camp. While negative human/bear encounters are minimal, the concentration of camping in distinct locations poses the potential for this to be a problem in the future. To reduce human/bear encounters in the nearby High Peaks Wilderness Area, the Department has recently imposed a regulation that requires people who are camping to store their food in a bear-proof container. All campers in the SLWF should practice camping techniques which reduce the potential for conflicts with bears and other wildlife.

Another source of conflict between visitors and wildlife are domestic pets, which may harass and stress wildlife.

The portion of Scarface Mountain above 2,800 feet is part of the Adirondack Subalpine Forest Bird Conservation Area. This is about 120 acres.
IV. Proposed Management Actions

Objectives:

- Monitor and afford extra protection, where warranted, to species which are endangered, threatened, or of special concern that use the SLWF.

- Maintain and perpetuate annual hunting and trapping seasons as legitimate uses of the wildlife resources compatible with wilderness recreation.

- Keep the number of human wildlife conflicts to a minimum.

Management Actions:

- Monitor loons for nesting activity. Produce informational materials to educate visitors that loon nesting is occurring and what loon behaviors indicate that the bird is being stressed by the visitor.

- Monitor moose that enter the area through visual observation, reports from the public and by studies to estimate population changes and distribution.

- Advise visitors to the area that the potential for conflict with wildlife exists and suggest means of avoiding conflicts through a combination of on-site signage, publications, and direct contact with Department staff.

- Provide information, advice and assistance to individuals, groups, organizations and agencies interested in wildlife whose activities and actions may affect, or are affected by, the wildlife resources or the users of wildlife.

- Develop and implement protocols, procedures and philosophies designed to minimize, alleviate and respond to nuisance wildlife complaints.

- Follow the management guidance for the Adirondack Sub-alpine Forest Bird Conservation Area. This would include avoiding maintenance of trails above 2,800 feet during this bird’s nesting season.

6. Fisheries

Present Conditions:

Fishery management in the SLWF has emphasized brook trout. Rainbow trout, brown trout, lake trout, largemouth bass, smallmouth bass, landlocked salmon, walleye, northern pike, round whitefish and various panfish species are either stocked or of management interest in various unit waters. Reclamation and liming have been critical for maintaining trout populations in the unit. See section III. A. 3 for further discussion. Angling related tourism and expenditures are economically important to local businesses and municipalities.

Objectives:

- Perpetuate and enhance a diverse, high quality fishing experience in accordance
IV. Proposed Management Actions

with sound biological management practices

- Restore and protect native fish communities with emphasis on native species that have declined due to man’s influences.

- Encourage and promote angler use of the waters in the unit through routine fish management practices including hotlines, correspondence and contact with the public by Department staff.

Management Actions:

- Continue annual chemical monitoring of limed waters.

- Conduct limings of monitored ponds as necessary. These waters are Black Pond, Echo Pond, Federation Pond and Sunrise Pond.

- Conduct periodic chemical monitoring of Bear Pond, Saint Germain Pond, Sochia Pond and Twelfth Tee Pond. Initiate efforts to obtain wetland permits for liming Bear, Saint Germain or Twelfth Tee if pH levels drop and brook trout survival is threatened. Restore brook trout in Sochia Pond if pH levels improve.

- Maintain stocking of native and historically associated species.

- Maintain and enforce regulations that prohibit the use of fish as bait in area brook trout ponds.

- Maintain existing fish barrier dams on the outlets of Big Cherrypatch Pond, Lake Colby, Little Green Pond, West Pine Pond and Whey Pond. If undesirable fish species become established in other unit waters where construction of a fish barrier dam or enhancement of natural barriers could prevent further spread of the fish species an amendment to this unit management plan will be sought after consultation with appropriate regulatory staff of other agencies.

- Conduct chemical and biological surveys to monitor and maintain high quality fisheries. Fifteen surveys are proposed within the five-year scope of this plan.

B. Land and Water Protection

1. Administration

Present Conditions:

Since 1970, the management of the Forest Preserve by the Department has been divided along the lines separating program divisions. The individual responsibilities of the Divisions of Lands and Forests, Operations, Fish and Wildlife, and Forest Rangers have been only loosely coordinated. In addition, the jurisdiction of the staff within each division has been delineated generally by county lines rather than by the boundaries of
IV. Proposed Management Actions

Forest Preserve management units. Making the Forest Preserve unit the focus of management and improving coordination among program divisions would benefit the public giving them a single contact for information about the unit and making the unit more identifiable as a separate entity with a consistent recreational atmosphere.

Objectives:
- Provide better coordination and communication between Department Divisions, volunteers and local municipalities for the maintenance of existing trails and improvements.
- Obtain adequate funding to assume proper maintenance of area facilities.

Management Actions:
- Designate a unit manager for the SLWF who would coordinate all management activities to make the management of the unit as efficient and consistent as possible, and to facilitate communication with the public about the management of the unit. Staff from all Department program divisions would keep the manager informed about planned activities and natural resource conditions, as well as any other conditions that would have a bearing on Forest Preserve management or public communication.
- Appoint a management team as another measure to advance the cause of coordinating the management of the SLWF. The management team would be appointed by the regional director. The activities of the team would be overseen by the unit manager. For each unit, the unit management team would typically be comprised of the following individuals:
 - The Unit Manager;
 - One Forester;
 - Staff from the Office of Public Protection to include at least one Forest Ranger, and if appropriate, an Environmental Conservation Officer;
 - One Fisheries and one Wildlife Biologist;
 - One Operations Supervisor, and
 - One representative of the Bureau of Real Property.

2. Open Space/Land Acquisition

Present Conditions:
The overall framework for land protection in New York State is identified in the “State Open Space Conservation Plan.” The plan is built from the work of nine regional committees representing the spectrum of open space advocates, natural resource and
IV. Proposed Management Actions

recreation professionals, local government, and concerned citizens. This plan ensures that the State of New York conserves its cherished open space resources as a critical part of efforts to improve the economy and the quality of life in New York communities.

There are approximately 178 miles of boundary line between the SLWF and private land. This number does not include the boundary lines that are adjacent to public roads or the many lakes and ponds that are in the planning area. Many miles of boundary lines are difficult to reach and maintain. Many of the boundary lines are either poorly marked or are not marked at all. These areas are vulnerable to encroachments. There are currently several possible encroachments being investigated. Encroachments are time-consuming to investigate and resolve. The largest possible encroachment is the Saranac Inn Golf Course. It is believed that 8.5 acres of the golf course may be on the SLWF.

Objective:
- SLWF boundary lines will be readily identifiable on the ground.

Management Actions:
- Physically inspect boundary lines to determine resurvey and maintenance needs; assign a priority to each. Undertake maintenance activity to ensure that all boundaries are identified and marked within the five-year implementation of this plan. Brush, paint, and sign all boundary lines at least once every seven years.
- Mark boundaries where they cross any trail, road, or stream.
- Survey and mark new land acquisitions.
- Investigate possible encroachments. If an encroachment exists, work with the owner to have it removed; if necessary, legal action may be pursued.

3. Rights-of-Way

Present Conditions:
The lands which make up the SLWF have been acquired from many different land owners for over a period of more than 100 years. Each of these purchases result in the State acquiring the deeded rights to the property. Some parcels have reservations or exceptions in the deed. These reservations are often a right-of-way used to cross a parcel to reach adjacent property. There are believed to be fourteen private roads or developed right-of-ways through the SLWF. There may be more deeded right-of-ways which are not being used. Deed research has been done on the rights-of-way; however, more needs to be done for some of them.

There is also a road which is of uncertain legal status (as to whether it is a town road or not). This road is known as Kelly or Pine Pond Road or an extension of Averyville Road. It runs along the border between the SLWF and the High Peaks Wilderness. This road
is in the towns of North Elba and Harrietstown. The legality of this use has not been proven or disproven. The road is used to reach private property along Oseetah Lake and by the public for recreational uses, such as access for hunting, snowmobiling, and mountain biking.

There are about 18 miles of electrical transmission right-of-ways through portions of the SLWF. These require periodic trimming of trees adjacent to the power lines. There are also other utilities which cross through sections of the SLWF that are not as well documented as the main electrical lines.

The State prison in Ray Brook has a waterline through the SLWF. This waterline starts at an impoundment south of the Remsen to Lake Placid Travel Corridor. The prison maintains the impoundment and waterline.

There is one municipal access road used to reach water supply facilities on McKenzie Pond.

Objective:
- Allow legitimate right-of-ways to be used, while protecting the area’s wild forest character.

Management Actions:
- Continue research into legality of right-of-ways in the SLWF.
- Enforce restrictions of right-of-ways stated in deeds.
- Work with right-of-way holders to ensure that the use of right-of-ways will not harm the natural resources of the SLWF.
- Close off illegitimate right-of-ways or illegitimate use of legal right-of-ways.
- Ensure that the public’s rights to utilize the sections of State land upon which the right-of-way exists are not infringed.

4. Control of Exotic and Invasive Species

Present Conditions:
The negative impacts of invasive species on natural forest and aquatic communities are well documented. Unrestrained growth of invasive species causes the loss of biodiversity; interruption of normal hydrology; suppression of native vegetation; and significant aesthetic, human safety, and economic impacts. Terrestrial and aquatic invasive species have been identified at increasing rates of colonization along roadsides, in campgrounds, and in water bodies of the Forest Preserve. Some of these species have the potential to colonize backcountry areas and degrade natural resources of the Forest Preserve.
IV. Proposed Management Actions

Although in the context of a global society, the transfer of species from one location to another may be viewed as part of a "natural process," there may be occasions when this relocation of non-native species becomes unacceptable and an active response is warranted.

The Department has created an Office of Invasive Species to work with various universities, state agencies, and non-profit groups in coordinating a response to invasive species. The Department is a member and will continue to collaborate with other partners of the Adirondack Park Invasive Plant Program (APIPP) (Adirondack PRISM) to support education, inventory, research, and control of invasive species. An inventory and analysis of the current distribution of invasive species on Forest Preserve lands will provide the necessary information on the present extent of invasive exotics and provide the basis for long term decision making.

In 2010 Department and APA developed Inter-Agency Guidelines for Implementing Best Management Practices for the Control of Terrestrial and Aquatic Invasive Species on Forest Preserve Lands in the Adirondack Park (http://www.apa.ny.gov/State_Land/Appendix_F.pdf). These guidelines provide a template for the process through which comprehensive active terrestrial and aquatic invasive species management will take place on Forest Preserve lands in the Adirondack Park. Department shall be responsible for management of terrestrial and aquatic invasive species on Forest Preserve lands while APA will be responsible for providing review of, and advice on, APDSLMP compliance and permit jurisdiction.

The control methods and Best Management Plans (BMPs) contained in the guidelines restrict the use of herbicides so that adverse impacts to non-target species are avoided and native plant communities are restored. Aquatic invasive species will be managed using non-mechanical harvesting techniques (hand-pulling) and temporary benthic matting as described in the guidelines. Use of pesticides for aquatics is not a part of this guidance. The guidelines are meant to be a dynamic document that is periodically revised to reflect new invasive species threats, continuing inventory of the Forest Preserve, and evolving invasive species management techniques.

Efforts should be made to restore and protect native ecological communities through early detection and rapid response efforts to eradicate or control existing or newly identified invasive species populations. Adoption of the guidelines and implementation through the UMP and site-specific work planning process, gives Department the basic tools needed to preserve, protect and restore the natural native ecosystems of the Forest Preserve.

Prior to implementing containment and/or eradication controls, terrestrial invasive plant infestations occurring within the unit need to be assessed on a site-by-site basis. The geophysical setting and the presence, or absence, of sensitive native flora within or adjacent to the targeted infestation often predicts the BMP’s and limitations of the control methodology. Infestations occurring within specific jurisdictional settings may trigger a permitting process, as do most terrestrial infestations occurring within an aquatic setting. The species itself often dictates whether manual management controls,
e.g. hand-pulling or cutting, or the judicious, surgical application of herbicides is warranted to best control that specific species in that specific setting. No single BMP guarantees invasive plant containment or eradication. Many infestations require multiple, seasonal control efforts to reduce the density and biomass at that setting. Adaptive management protocols suggest that implementation of integrated control methodologies may provide the best over-all efficacy at specific infestations.

All management recommendations are based on knowledge of non-native invasive species present and their location, species, abundance and density. A complete inventory is necessary to identify aquatic and terrestrial invasive plant threats. Inventory should be based on existing inventories, formal or informal inventories during routine operations, and by soliciting help from volunteers to actively study and report on invasive species presence, location, and condition.

Many, if not all, invasive plant infestations will have multiple transport and distribution vectors. All “easy to contain – low abundance” terrestrial and aquatic invasive plant infestations are immediate targets for containment and/or eradication controls. Minimizing the spread of newly documented and immature infestations before they have the chance to become established is a priority management action.

Facilities and activities may influence invasive plant species introduction, establishment, and distribution. These facilities and activities are likely to serve as “hosts” for invasive plant establishment. Perpetual early detection and rapid response protocols will be implemented at probable locations of invasive plant introductions, such as parking/trailhead areas.

Protocols to minimize the introduction and transfer of invasive plant species will be incorporated during routine operations and emergency maintenance activities.

Restoration of sites where invasive plant management occurs is critical to maintain or enhance historical ecological function and structure. Restoration will incorporate best available science to determine effective techniques and the use of appropriate native or non-invasive plant species for site restoration.

Educating natural resource managers, elected officials, and the public is essential to increase awareness about the threat of invasive species and ways to prevent their introduction and transport into or out of the unit. Invasive species education will be incorporated in staff training and citizen licensing programs for hunting, fishing, and boating; through signage, brochures, and identification materials; and included in information centers, campgrounds, community workshops, and press releases.

Information about the location of invasive species in the SLWF is maintained on New York iMapInvasives. http://www.nyimapinvasives.org/ The webpage states:

iMapInvasives is New York State's on-line, all-taxon invasive species database and mapping tool. The comprehensive database can be used for:
IV. Proposed Management Actions

• Documenting and sharing invasive species observation, survey, assessment and treatment data

• The coordination of early detection and rapid response efforts through email alerts

• Data analysis and summaries in the web interface and GIS

iMapInvasives partners with many organizations to leverage collaboration in the fight against invasive species.

Aquatic Invasive Species

With over 2,300 lakes and ponds, 1,500 miles of rivers, 30,000 miles of brooks and streams, the Adirondack region is particularly vulnerable to the introduction of aquatic invasive species (AIS). Once established, AIS can spread rapidly through connecting waterways or by “hitchhiking” on the propellers, trailers, rudders, motors, etc. of the vessels of recreational boaters and anglers

New York is actively engaged in a strategic approach to combat the growing problems associated with AIS. These include:

• Complying with and enforcing the provisions of regulations. Examples of regulations designed to reduce the spread of AIS include: any watercraft that is launched or retrieved from State land must be cleaned of visible plant or animal fragments, any watercraft launching or retrieved from State land must be drained, a list of prohibited and regulated species, on certain waters only artificial lures may be used, and only certain species of baitfish are allowed.

• Complying with the legislative requirement to place educational signs at each boat launch which inform boaters to “clean, drain and dry” waterway vessels.

• Implementing recommendations of the recently updated New York Aquatic Invasive Species Management Plan (AISMP). Included among the top 10 priority actions in the AISMP is expanding boat steward programs and ensuring consistency of steward program delivery. Stewards help prevent the spread of AIS through boating activities by delivering AIS spread prevention education and outreach to boaters, conducting courtesy boat and trailer inspections, and showing boaters how to inspect and remove plants and organisms from their boats, trailers, and other equipment.

• Fostering collaboration and coordination among state agencies and partners to minimize the harm AIS cause to waters in the Adirondack region through the Adirondack region-wide AIS Spread Prevention Program (hereafter referred to as the Program). The Program is led by DEC and the Natural Heritage Trust, in
collaboration with the Adirondack Park Invasive Plant Program and Paul Smith’s College Adirondack Watershed Institute. The Program is designed to deliver education and outreach and voluntary boat inspection at the listed boat access sites and provide decontamination services for boats exiting waters inhabited by small-bodied AIS. Additionally, the program is intended to protect waters particularly vulnerable to AIS by providing education and outreach and voluntary boat inspection at the Department’s boat access sites on those waters having high priority plant AIS and at Department boat access sites on other waters that do not have AIS. High priority AIS are those non-native species that rank “high” or “very high” in New York’s ecological assessments and for which the Department has determined that boats can be important vectors for transport and introduction. The program is consistent with the concepts and recommendations in the *Boat Inspection and Decontamination for Aquatic Invasive Species Prevention – Recommendations for the Adirondack Region*.

High priority actions for the Program include:

- Preventing the introduction and spread of high priority AIS into and within the Adirondack region
- Protecting native aquatic species and their habitats
- Protecting water-based recreational resources and economy
- Educating recreational watercraft operators on steps they need to take to prevent the spread of AIS and helping them understand new regulations requiring them to take such precautions at all public waters
- Providing decontamination services at sites where Department determines such services are needed
- Fostering a sense of responsibility in watercraft operators so they take steps to help stop the spread of AIS through their activities
- Protecting New York citizens’ investment in publicly-owned waters

Significant work to control the spread on invasive species in the SLWF has been conducted by private organizations. The Lake Colby Association and Upper Saranac Lake Foundation are two groups which have been working to control invasive species. These groups, working with the Adirondack Watershed Institute, have invested considerable time and money to eliminate occurrences of Eurasian water milfoil. Through the efforts of these organizations, several years of handpicking and laying benthic mats have shown a reduction in the infestation levels of Eurasian water milfoil. As an example of the work involved, the Upper Saranac Lake Foundation has reported on their efforts at AIS removal from Fish Creek Ponds. In 2016, four weeks of harvesting removed 9.5 tons of AIS from 10 acres. In 2017, eight weeks of harvesting removed 7.5 tons of AIS from 60 acres. As a comparison in 2017, divers spent 15 weeks covering 1,200 of Upper Saranac Lake and removed 364 pounds of AIS.

Another project working to control invasive species in the SLWF is the watershed stewardship program run by the Adirondack Watershed Institute of Paul Smith’s College. This program has made a significant impact on the spread of AIS. For
example, in 2017, stewards intercepted 332 AIS from the 17,275 boats they inspected at boat launches near the SLWF (E. Holmund).

APIPP oversees a project where volunteers survey ponds for invasive plant species. APIPP provides training to the volunteers and collects the data. Information from these volunteers was used in the following table and list. The table lists waterbodies and the aquatic invasive plant species found in them. This data came from APIPP and was summarized by the Upper Saranac Lake Foundation.

<table>
<thead>
<tr>
<th>Water</th>
<th>Eurasian Water Milfoil</th>
<th>Variable Leaf Milfoil</th>
<th>Curly Leaf Pondweed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copperas Pond</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Pond</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fish Creek Ponds</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follensby Clear Pond</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiwassa Lake</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lake Colby</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Flower</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lake Placid</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Little Colby Pond</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Square Pond</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oseetah Lake</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Saranac Lake Lower</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Saranac Lake Middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saranac Lake Upper</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Second Pond</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Square Pond</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Waters in the SLWF that were surveyed and where invasive plant species are absent include: Bear Pond, Black Pond, Bog Pond, Cherrypatch Pond, East Pine Pond, Echo
IV. Proposed Management Actions

Objectives:

- Prevent the introduction of new invasive species into the SLWF
- Eliminate occurrences of invasive species in the SLWF.

Management Actions:

- Take aquatic invasive species prevention actions within the SLWF. Actions may be taken at any location where a watercraft can access the water or wherever public recreation may spread AIS. These measures will vary based on location within the following spectrum:
 - Printed materials handed out at the entrance to the watercraft access site
 - Posted signs
 - Information regarding nearby boat decontamination stations
 - Presence of Stewards at the watercraft access site
 - Presence of a decontamination station at the watercraft access site
- Management of invasive species will follow the Inter-Agency Guidelines for Implementing Best Management Practices for the Control of Terrestrial and Aquatic Invasive Species on Forest Preserve Lands in the Adirondack Park.
- Continue periodic monitoring and management of identified invasive plant populations.
- Partner with organizations addressing invasive species in the SLWF.
- Train Department staff working within the unit to identify and document the location of invasive plant species.
- Work towards a complete comprehensive inventory of the presence and extent of invasive plants in the unit.
- Periodically review staffing, training, and licensure needs to establish capacity to provide invasive species monitoring and response.

5. Recommendations for corrections to land classification errors

Page 16 the APSLMP states:

“While care has been employed in compiling and depicting the information shown on the map forming part of this APSLMP, it should be emphasized that, due to possible base map inaccuracies and the large scale of the map the location of the classification system boundaries are subject to precise definition on the site by the Adirondack Park Agency, in consultation with the Department of Environmental Conservation, the Department of Transportation and such other state agencies as may be involved.”
IV. Proposed Management Actions

Several mapping errors have been identified in the SLWF planning area.

- There is a mapping error around the entrance to the Rollins Pond Campground where parts of the existing campground are classified as Wild Forest. A correction is needed to expand the Intensive Use Area to include all the campsites, the registration booth, the caretaker’s cabin, and the road that connects the Rollins Pond and Fish Creek campgrounds. This would result in approximately 46 acres of Wild Forest becoming Intensive Use. This acreage would increase if it is decided to include the capped landfill in the Intensive Use area.

- There is a 40-acre parcel of land located on the east shore of Little Clear Pond that borders the St. Regis Canoe Area. This parcel shows on computer mapping as being classified as Wild Forest, but information from the APA indicates that this is a mapping error. The parcel was designated as Canoe Area when it went through the classification process.

- The Administrative Area around the DOT and Department facilities on State Route 186, near Lake Clear, does not encompass all the area being utilized by the Department for administrative purposes. Specifically, there is a capped landfill and storage areas that appear to be outside of the Administrative boundary. This classification change would result in approximately five acres of Wild Forest becoming Administrative.

- The boundary line between the SLWF and the High Peaks Wilderness along the Kelly Road needs to be adjusted to reflect recent mapping information on the location of the road.

- The DOT maintenance facility on State Route 3/30 in the Town of Harrietstown does not show on the APA classification coverage as Administrative, instead it shows as Wild Forest. This facility is listed as an Administrative area in the APSLMP.

- Between Crescent Bay and Lonesome Bay on Lower Saranac Lake are three administrative buildings known as the Facility Supervisor’s Seasonal Headquarters at Crescent Bay. The classification change is needed to provide for state administrative purposes that are not primarily designed to accommodate visitors to the Park at the Facility Supervisor’s Seasonal Headquarters at Crescent Bay. The change will address a mapping error of an unknown administrative facility at the time the area was originally classified Wild Forest. The change would result in approximately one acre of Wild Forest becoming State Administrative.
6. Carrying Capacity

The Department and the APA are working together to develop a guidance framework for monitoring wildlands in the Adirondack Park which will assess the effects of management actions and public use with respect to physical, biological and social conditions. This UMP identifies desired conditions for the SLWF and proposes methods and indicators for monitoring and measuring how visitor use is impacting those conditions. In certain instances, implementation of the UMP will be conditional and/or phased according to the results of visitor use monitoring. Additional visitor use management strategies and actions to achieve desired conditions outlined in the final guidance for wildlands monitoring will inform future management of SLWF. Any final guidance would become an appendix to the APA/DEC memorandum of Understanding and applied to future UMPs.

Objectives

- Utilize a phased approach to facility implementation.
 - Proposals in this document that are intended as subsequent phases are referred to as conditional actions.
- Collect baseline data related to recreational use and the physical condition of facilities.
- Establish and implement a regular and reoccurring monitoring program to help track changes to the unit over time.
- Use the latest best management practices (BMPs) available in the siting and construction of all facilities.
- Provide consistent messaging with partners to help educate users.
- Commit to implementing a carrying capacity based phased approach through this UMP. Quality data derived through this process will lead the Department in making the best decisions available to protect the resource and user experience.

Action Steps

- Develop an annual report including the status of the Wildland Monitoring, implementation progress, usage trends and identify issues impacting the unit.
- Collect and tally trail register information on an annual basis
- Monitor facilities like parking areas, tent sites, high-use trails, and climbing areas on a periodic basis for comparison over time. These monitoring efforts will involve data collection through photo documentation, visual observations, use number data, etc. Preference will be given to variables that will help guide management decisions.
 - Data that may be sampled (specifics in guidance for wildlands monitoring)
 - Erosion and Compaction;
IV. Proposed Management Actions

- Occurrences of litter and human waste;
- Expansion of use beyond the designed area;
- Visual and audio sampling during peak and off-peak times;
- Need for enforcement actions, etc.

- Use a phased approach when constructing new facilities. This allows the Department to evaluate and ensure the social and environmental carrying capacities are not being exceeded and ensure there is a public desire for additional facilities before they are constructed. If monitoring efforts show the limits of acceptable change are being exceeded then management adjustments will be made, and the next phases of the plan will not be considered until corrective measures are successfully completed. This could hold or bring the management back to a previous phase.

- Site facilities in locations that provide long-term sustainability, keep overall maintenance to a minimum, and enhance the user experience

- Develop a visitor survey to monitor user experience. Using various methodologies develop a survey that discusses user satisfaction, acceptance of crowding, perceived management conditions and other factors to gauge user experience. This survey should be completed on a 3-5-year cycle across the unit.

- Design, locate, and construct all new structures and improvements in ways that will minimize the potential for soil erosion.

- Monitor the site conditions at all facilities. If unacceptable change occurs, provide restoration to secure the disturbed areas in a manner that prevents erosion.

- Close, relocate, or restrict use of unit facilities, as appropriate, to reduce negative impacts to resources caused by recreational use.

- Provide educational materials the public can find through signage on site and on the Department’s website before their visit.

- Emphasize information and education as the primary means to reduce impacts and slow unacceptable levels of change.

- Provide outreach through on the ground interactions with Department representatives like Assistant Forest Rangers, SCA Back Country Stewards, and volunteers.
7. Water Body Carrying Capacity

The SLWF is comprised of approximately 75,070 acres of Wild Forest lands. There are 142 water bodies totaling 19,000 acres. The waters provide direct recreational opportunities (e.g. swimming, angling, boating), scenic value, and wildlife habitat. Eighty-six water bodies (totaling 2,592 acres) are completely within the unit and wholly surrounded by Forest Preserve. Forty-five of the 86 water bodies are greater than 5 acres and total 2,503 acres. Within the planning area are seven public boat launches.

This UMP includes the following boat launches: Lake Placid, Lake Flower, Upper Saranac Lake, and the Raquette River (known as the Crusher). Additional boat launches in the SLWF planning area include Second Pond, Rollins Pond, and Fish Creek Ponds. There are 14 water or fishing access sites for hand launching of boats.

There are several ways that water quality is impacted: introduction of nutrients, petroleum products, effluent, sediment, and invasive species; damage to riparian vegetation; and disturbances to bird nesting are pressures and impacts on water bodies from use. Several water bodies within the unit are of concern, including Rollins Pond, Square Pond, and Upper Saranac Lake. These have significant potential for impacts from inputs such as shoreline development and ease of access.

In addition to the environmental impacts, there are also impacts to the recreational experience caused by use on water bodies. Crowding and conflict impact one’s experience on a waterbody. Lower Saranac Lake and Follensby Clear Pond have a significant density of tentsites and ease of access. These factors greatly increase the probability of social impacts.

The APSLMP recommends that a comprehensive study of Adirondack lakes and ponds should be conducted by the Department to determine each waterbody’s capacity to withstand various uses. The Department and APA are working together to develop a guidance framework for monitoring wildlands in the Adirondack Park which will assess the effects of management actions and public use with respect to the physical, biological and social conditions. This wildlands monitoring guidance framework will likely be based on selecting indicators that will comprehensively monitor the ecological and social impacts of use on the water bodies and surrounding riparian lands to assess the carrying capacity.

The monitoring will examine water-related use and development in the SLWF. The monitoring will select indicators, monitor the indicators, and evaluate against standards to determine the capacity of waterbodies. Indicators may look at ecological impacts (e.g. non-native aquatic plants, fecal coliform, chloride, dissolved oxygen, and water temperature), social impacts (e.g. trip satisfaction, visitor conflict), recreation use (e.g. people at one time, visitor overnight use), and adjacent development (e.g. number of campsites).

This UMP provides information about impacts, but a cumulative assessment between
IV. Proposed Management Actions

use and impacts has not been done. The following resources within this UMP provides valuable information that will be useful in the assessment of cumulative impacts:

- Trail register information (see appendix 12)
- Physical feature data (e.g. max depth), results of chemical (e.g. pH) and biological surveys (e.g. fish species present and number caught) of lakes and ponded waters (see appendix 11)
- Individual pond descriptions (e.g. reclamation history, liming history, stocking history, recreational use, and shoreline conditions) (see appendix 6)
- Inventory and description of facilities in the SLWF (e.g. roads, trails, boat launches) for each waterbody
- Inventory of aquatic invasive species

Several organizations are involved with studying Adirondack waterbodies. The following is a list of some of the organizations collecting data and a brief description of the information gathered:

- Adirondack Watershed Institute (AWI) – Oversees several programs related to water quality. The Stewardship program has the mission of preventing the introduction of new aquatic invasive species. This program also collects information including the number of boats, number of people, and presence/absence of aquatic invasive species found on boats inspected (see Section 2, subsection D. Public use, 4. Water Resources, Table 8). The Adirondack Lake Assessment Program is a collaboration between Paul Smith's College, Protect the Adirondacks, and AWI to develop a long-term water quality database. AWI also works with other organizations to conduct detailed water quality studies.
- Adirondack Lake Survey Corporation – Gathers biological and chemical information as part of monitoring water quality
- Adirondack Park Invasive Plant Program – Monitors for invasive aquatic plant species

In addition to the organizations listed above, there are several other groups working to monitor and protect water, particularly some shore owners’ associations. All these organizations can be partners in a comprehensive monitoring of waterbodies in the SLWF.

Objectives

- The Department develops and coordinates a comprehensive study of lakes and ponds in the SLWF.
Management Actions:

- Establish desired conditions to determine if carrying capacity has been exceeded.
 - Desired conditions for water bodies may be ones that demonstrate the integrity of the water body ecosystem and appropriate recreation quality.
- Develop and implement a comprehensive monitoring program. Monitoring use of water bodies will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for carrying capacity of Adirondack lakes and ponds.
 - Monitoring could include photo point locations, boat counts, water analysis, and visitor surveys.

C. Facilities

1. Trails

Foot Trails

Present Conditions:

There are about 82 miles of foot trails in the SLWF. Types of trails include hiking trails, interpretive trails, and canoe carries. These trails are used for the enjoyment of hiking and to access other recreational opportunities. Popular hiking trails include those to Scarface Mountain, Panther Mountain, Floodwood Mountain, Deer Pond, Middle Saranac Lake beach, and Trombley landing. Two interpretive nature trails in the SLWF are at Brewster Peninsula and Fernow Forest. In addition to the official trails, there are also many herd paths scattered throughout the SLWF.

Some trails in the SLWF are in poor condition and need significant work. On the Scarface Mountain Trail there are a couple of sections with significant erosion problems. On the Floodwood Mountain Trail an extended length of the trail is muddy. The Panther Mountain trail has quite a few switch-backs, which are being short-cutted. The Lead Pond and Horseshoe Pond trails each cross several wetlands and streams and need new bridges. Factors that influence the condition of a trail include the trail’s layout, amount of use it receives, the time of year that the trail is used, and level of maintenance the trail gets (non-maintained trails will deteriorate). The most important factor that influences trail condition is water flow. Water flowing down a trail will quickly cause significant damage to the trail tread.

Most people hike on official trails, but some people enjoy walking through areas that do not have maintained trails. This “bushwhacking” occurs by people looking for a remote experience, solitude, the enjoyment of exploring, a less disturbed destination, or possibly a shortcut to a destination. Some of these experiences would be degraded if trail systems are built in an area.
Studies have shown that use of foot trails can result in negative impacts to biological communities (Reed 2008). A review of studies on this issue found: “effects of recreation on animals include behavioral responses such as increased flight and vigilance; changes in spatial or temporal habitat use; declines in abundance, occupancy, or density; physiological stress; reduced reproductive success; and altered species richness and community composition.” (Larson, et al, 2016) This information should be considered when planning trails. Avoiding impacts to habitat of rare, threatened, or endangered species would be obvious, but the cumulative impacts of building additional trails should also be considered. Special consideration of these impacts should be given to areas that are a significant distance from roads and buildings.

Desired Conditions for Hiking Trail Monitoring

Properly designed and constructed hiking trails will maintain their firm and stable surface for their intended use, and with minimal maintenance. A sustainable trail ensures environmental protection, user safety, function and enjoyment. Building a well-designed, sustainable trail that blends well with its natural surroundings enhances the user’s experience and decreases user conflict. Like other facilities, the variables for hiking trails will include monitoring efforts to collect data on the presence of eroded areas, the expansion of the tread through vegetation loss, and the occurrence of trash and human waste. Photo points will be a useful tool to help illustrate potential changes over time.

Objectives:

- Monitoring for the desired conditions of hiking trails will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for hiking trails will be ones that have minimal erosion and expansion from the designed footprint of the built facility, doesn’t negatively impact trailside vegetation, is free of occurrences of human waste or litter, and provides an enjoyable user experience.
 - Monitoring could include photo point locations; control measuring points for erosion, tread expansion, or trash; and user surveys.
- Provide visitors a significant trail system that includes a variety of trail types.
- Preserve a sense of remoteness and solitude in sections of the SLWF.

Management Actions:

- New trails will be built to accessibility standards, unless terrain or other factors make compliance impracticable. Particular effort will be made to build new trails to accessibility standards at Lake Colby, Lake Clear, and Monument Falls.
Additional information about management actions related to access for persons with disabilities can be found in Section IV.D.3.

- Allow the reopening of the Sangemo Canoe Carry. This historic route runs between Upper St. Regis Lake and Lake Clear. The reopened trail will be routed to Saint Germain Pond, instead of Lake Clear. At the Upper Saint Regis Lake end, the old trail crosses private property along a right-of-way. This right-of-way may be used, or a new trail may be created to connect to St. Regis Carry Road (see map 8).

- A trail system may be developed on the parcel of land along the southeast shore of Lake Colby. Further details are in the Special Management Section of this UMP.

- An interpretive trail system will be developed on the east side of Lake Clear (see map 9). Further details are provided in the Special Management Section of this UMP.

- A trail will be created to the summit of Seymour Mountain. This trail will come from Averyville Road (see map 10).

- Scarface Mountain Trail will be rerouted to avoid a steep section near the top that is heavily eroded. All construction and maintenance work on Scarface Mountain will conform to the Adirondack sub-alpine forest bird conservation area guidelines (see map 10).

- Bartlett Carry Trail will be routed off the road. There will be about 0.4 miles of new trail constructed through the woods. The location of the canoe takeout may also be relocated (see map 8).

- The trail from Rollins Pond Campground to Deer and Lead ponds will be closed. This trail is being closed because it passes through significant wetlands (see map 8).

- Segments of Deer Pond Trail will be rerouted to avoid wet and steep areas (see map 8).

- A herd path along the south west shore of Lake Clear will be improved to become a secondary class trail. This trail intersects the Remsen to Lake Placid Travel Corridor. It is about 500 feet long.

- The Horseshoe Pond Trail, which crosses Little Polliwog Pond Outlet, will be rerouted to avoid the need to replace a bridge at that stream crossing (see map 8).

- The Fowlers Crossing Trail will be rerouted to avoid a wet area.

- A section of the carry between Saginaw Bay and Weller Pond will be rerouted.
IV. Proposed Management Actions

There is a section of the trail in a wet area. This area has segments of bog bridging. Instead of replacing the bog bridging, the trail will be rerouted to higher ground to avoid the wet area (see map 8).

- If the Ampersand Mountain Trail is rerouted to a new parking area, then a new trail may be built from Middle Saranac Lake to that new trail. This would provide an opportunity for people to access the start of the trail via watercraft. An undeveloped area for canoes and kayaks to be pulled onto shore will be provided.

- Trails may be rerouted to avoid going through a primitive tent site. An example of a trail that needs to be rerouted around a campsite is the Little Square Pond Trail (see map 2).

- Portions of the SLWF will be managed as areas without developed trails. The reasoning for this is to facilitate recreation opportunities of an undeveloped nature and to preserve areas that have comparatively lower levels of human impacts. The largest contiguous area that will be kept free of developed trails will be the area between Forest Home Road and the Saranac lakes, excepting a one quarter mile buffer from any road, private property, or lake shore. This trail free area covers about 7,400 acres and includes Black Pond, Boot Bay Mountain, and Shingle Bay Mountain (see map 15). The herd paths in the trail free areas will be allowed to remain, provided the use of the paths does not cause significant damage to the natural resources. The herd paths will not be improved or maintained.

- Herd paths or social trails which are in poor locations or are causing significant damage to natural resources will be brushed-in. Other herd paths will be allowed to remain.

- Trail maintenance will include trail relocations around problem areas, removal of downed trees, ditching, clearing of brush, water diversion device construction and cleaning, bridge repairs and reconstruction, cribbing, turnpiking, and building rock steps.

- Trail structures which may be built for resource protection or visitor safety include bridges, ladders, turnpike, rock cribbing, and bog bridges.

- Trails may be closed during wet seasons, if other actions cannot prevent excessive damage.

Mountain Bike Trails

Present Conditions:
The APSLMP allows for mountain bike use on trails in wild forest areas. A UMP is required to specify which trails are open for mountain bike use. Currently mountain
IV. Proposed Management Actions

bikes are allowed on any trail in the SLWF except those trails posted closed to bikes. Only a few of the trails in the SLWF are posted as closed to mountain bike use.

Mountain bike riding is a popular activity, but it is not known exactly how many people are using the trails in the SLWF for mountain biking. Based on observations of the trails and talking with enthusiasts, it is believed that mountain biking is a significant portion of the use on some trails. Since mountain biking is prohibited in adjacent wilderness areas, visitors and residents look to the SLWF to provide riding opportunities. There have already been projects to develop mountain bike trails on private property and municipal lands in vicinity of the SLWF. In the nearby Wilmington Wild Forest, the Department has developed a significant mountain bike trail network.

Desired Conditions for Mountain Bike Trail Monitoring

There are several proposed trails that will either be open to or purpose built for mountain bikes. Properly designed and constructed mountain bike trails will maintain their firm and stable surface for their intended use, with minimal maintenance. A sustainable trail endures environmental protection, user safety, function and enjoyment. Building a well-designed, sustainable trail that blends well with its natural surroundings enhances the user’s experience and decreases user conflict. Like other facilities, the variables for mountain bike trails will include monitoring efforts to collect data on the presence of eroded areas, the expansion of the tread through vegetation loss, trash and human waste, and illegal operation off designated trails. Photo points will be a useful tool to help illustrate potential changes over time.

Objectives:

- Provide recreation opportunities for mountain bike riders on suitable trails.
- Mountain bike trails in the SLWF will have minimal environmental impacts.

Management Actions:

- Monitoring for the desired conditions of mountain bike trails will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for mountain bike trails will be ones that have minimal expansion from the designed footprint of the built facility, minimal erosion, doesn’t negatively impact trailside vegetation, is free of occurrences of human waste and litter, illegal operation off designated trails is not occurring and provides an enjoyable user experience.
 - Monitoring could include photo point locations, control measuring points, occurrences of trash, and user surveys.
IV. Proposed Management Actions

- Trails that are expected to be used mainly by mountain bikes will be built to standards associated with singletrack trails. Trails that see significant hiking use and those trails intended for beginner bikers will be built wider. The trails listed here will not be built to standards associated with road bikes or front-country bike paths.

- Allow mountain bike use of the trails known as “Loggers Loops” near Cherry Patch Pond. These trails are accessed from private property and a little used trail from State Route 86. Improvements to be made to the trails in this area include: building a new segment of trail onto Loop 1, so that this trail will be entirely on State land; and building a new trail to connect these trails to State Route 86 near the Connery Pond parking area. Other work can be done to the current trails to address problem spots, including: rerouting several segments of trail, hardening wet locations, building bridges, installing broad based dips, and installing trail signs and makers (see map 10).

- A 0.75-mile long, beginner level mountain bike loop may be built near the Route 86 / Connery Pond parking area.

- The Cherrypatch Pond Trail will be rerouted and improved to allow mountain bike use.

- A trail system may be developed west of Lake Placid on the parcels of land near State Route 86, the Remsen to Lake Placid Travel Corridor, Carolyn Road, Barn Road, and Old Military Road. These trails will form loops of varying difficulty levels. The density of these trails would be approximately one mile for every 100 acres of land. Thus, there could be about 9.2 miles of trail over the 920 acres in this area. A trail will be built to connect Averyville Road to these trails. Access for these trails would come from parking areas, local roads, or other trails open to the public (see map 10).

- Loop trails may be built in the area between State Route 86, the Prison Waterline Truck Trail, the Remsen to Lake Placid Travel Corridor, and the Saranac Lake Golf Club property. These trails could total about 2.5 miles long (see map 10).

- A trail system may be developed outside the Village of Saranac Lake in the area south of Turtle Pond between State Route 86 and McKenzie Pond Road. This will utilize the Jackrabbit Trail, a former snowmobile trail, some informal trails, and the construction of new trails. The density of these trails would be approximately one mile for every 100 acres of land. This area covers about 600 acres, which means that about six miles of trail could be built here (see map 10).

- Allow volunteer groups to construct mountain bike trails between Averyville Road...
IV. Proposed Management Actions

and the Scarface trails pursuant to agreements with the Department. These trails would form a loop with one segment north of Scarface Mountain, one south of the mountain, and a trail connecting these. Construction will proceed after the Department approves the layout of the trail; the location of the trail on the UMP map is a conceptualization. These trails will be opened for use when they meet Department standards for trail construction. These trails will be intended for single track riding (see map 10).

- Mountain bikes will be allowed on the planned trail system on the southeast shore of Lake Colby. This 50-acre parcel will have approximately 1.75 miles of trail (see map 9).

- Several mountain bike loop trails may be built off Old Wawbeek Road, near Tupper Lake. These trails will be about 5 miles long (see map 8).

- A mountain bike trail may be built between Heavens Pond and the conservation easement lands to the south. This trail could be built after completion of a Recreation Management Plan for the easement lands. The trail would provide a connection between logging roads on the easement property and Floodwood Road. The trail connection on the SLWF will be about 1-mile-long (see map 8).

- A mountain bike trail will be built to connect Rollins Pond Campground to the Remsen to Lake Placid Travel Corridor. This trail will leave the campground near the “A” loop campsites. This trail is intended to provide an easier connection to Tupper Lake for those staying at Fish Creek and Rollins Pond campgrounds than other routes. It will be built to accommodate novice riders and will be built as wide as trail standards allow. The trail will be about 1-mile long, and it will cross two brooks and some wetlands (see map 8). This trail is one of two proposed connections between Rollins Pond Campground and the Remsen to Lake Placid Travel Corridor. The other trail is proposed in the snowmobile section.

- A trail will be built to connect the Remsen to Lake Placid Travel Corridor with Rock Pond. This trail will require building 0.45 miles of new trail and upgrading 0.27 miles of her path (see map 8).

- In addition to the specific trail listed in this UMP, bicycles will be allowed on all administrative roads and roads that are legally open to the public that are in the SLWF.

- The land manager may place restrictions on the use of mountain bike trails if damage to the natural resources or user conflict occurs. This would be done in consultation with the involved user groups. These restrictions can include the use of informational signs, group size restrictions, trail closures (seasonal, temporary, or permanent), designating direction of travel, parking restrictions, closing trails to other user groups, and other actions that may be appropriate.

- The trails open for mountain bike use are listed in Appendix 1, table #17 of this
IV. Proposed Management Actions

UMP and will be posted on the ground as being open for bikes. Trails that are closed to bike use will be prominently posted as such. Reasons that a trail may be closed to bike use include: unsuitable alignment or grade, poor drainage, short distance or low potential interest by mountain bike riders, and desire keep some trails limited to foot use.

Alternative discussion on mountain biking

No-action Alternative - Do Not Designate Mountain Bike Trails

This alternative would prevent the designation of any mountain bike trails. This would eliminate the potential for conflict between bikers and hikers on trails. The no-action alternative would prevent the official designation of bike trails where a need is demonstrated and anticipated public use is indicated. Further, the requirements of the APSLMP to designate appropriate routes for mountain bikes through the UMP planning process would not be met. Without the designation of specific trails through the UMP planning process, the trails would have to be closed to bikes. The demand for bike trails would not be satisfied. For these reasons, this alternative will not be supported by this UMP.

Alternative 1 - Incremental Approach

This alternative would open a small number of trails for mountain bike use. At the next UMP update more trails could be opened. This would allow close monitoring of mountain bike use and the conditions of the trails. This alternative would result in closing many miles of trails which are currently being used for mountain biking; there would be substantial reduction in mountain bike riding opportunities in the SLWF. This alternative would not allow for the construction of new trails designed for mountain bike use. This alternative will not be supported by this UMP because experience with other units and past use in the SLWF has shown that mountain bikes can be accommodated without causing damage to natural resources.

Alternative 2- Preferred Alternative

The preferred alternative is to allow the continued use of mountain bikes on many of the trails currently being used for mountain biking while providing for the creation of new riding opportunities. Some trails in the SLWF that have been ridden in the past will be posted against mountain bike use. Examples of some of these trails that will be closed include: a trail between Forest Home Road and Lower Saranac Lake and the Otter Brook trail. The closing of these trails will not seriously restrict mountain biking because of the new trails planned for in this UMP.

The level of mountain bike use is likely to increase under this alternative, since new trails could bring mountain bikers to the area. This increase would likely not have a significant impact on most other users of the SLWF because many of the trails are currently used by mountain bikers. The new trails would be built in areas that are not used by large numbers of people, and the SLWF is a large enough area to meet the
needs of mountain bike riders and other recreational users without significant user group conflict. One group that could be impacted is hunters. Several parcels where mountain bike trails are proposed also receive hunting use. The impact will be somewhat mitigated because hunting season would be a time of year that would be expected to have low mountain bike use. The layout of trails can also mitigate this possible conflict. Trails built near the boundary of a parcel would be in areas that many hunters would avoid anyway.

Trail designation will direct mountain bike riders to trails which can be more environmentally appropriate places to ride, thus reducing environmental impacts. The existing trails proposed to be designated for mountain bike use were considered for suitability as bike trails, taking into consideration existing public uses, trail slopes, obstacles and features, and possible conflicts with other users. In addition, the new trail proposals will allow for trails designed primarily for mountain bike use. The formal designation of mountain bike trails in the SLWF will accommodate a type of recreational use and access method that is not permitted in surrounding wilderness areas. For these reasons, this alternative will be supported by this UMP.

Projected Use and Potential Impacts of the Preferred Alternatives

By formally designating a trail with mountain bike markers, the trail is likely to receive more notice, thereby potentially increasing use. However, many of the trails are already used and known in the mountain bike community. The construction of new trails in the SLWF, on adjacent private lands, and other nearby State lands could result in the area becoming a destination for mountain bike riders. This would lead to a more significant increase in use. Trails built to the standards laid out in the latest best management practices should be able to handle the use levels without resulting in damage to natural resources. Problems of trail widening, braiding and development of new bootleg trails are possible impacts; these can be mitigated by partnering with the mountain bike community for monitoring and undertaking of corrective actions on the trails. There will be some environmental impacts from the construction and use of the trails. There is a potential for erosion to occur from the trail construction. Vegetation would be removed during the construction of trails. The use of the trails will cause some disturbance to wildlife. Given the size of the SLWF these impacts will be small in scale and can readily be reversed.

Cross-country Ski / Snowshoe Trails

Present Conditions:
Winter use of the SLWF is an important recreational activity. This is providing economic activity at a usually slow time of year for area businesses. The trails also provide an opportunity for residents to connect with nature.

The terrain of the SLWF provides great opportunities for cross-country skiing and snowshoeing. Most of these activities occur on trails, but there are areas that also used for off-trail skiing and snowshoeing.
IV. Proposed Management Actions

All the trails in the SLWF are open for winter use, although some trails are difficult to access because roads and parking areas may not be plowed, and they can become blocked by snow banks. Some of the trails receive as much or even more use in the winter than the summer. The more popular winter trails in the SLWF include: those at the Deer Pond area, Brewster Peninsula, around Follensby Clear Pond, and Scarface Mountain. In addition to these trails, the Jackrabbit Trail passes through sections of the SLWF. The Jackrabbit Trail stretches from Paul Smiths to Keene. The trail traverses private, State, and conservation easement lands. The Jackrabbit Trail is managed by the Adirondack Ski Touring Council; on State land this is pursuant to an agreement with the Department.

 Desired Conditions for Cross-Country Ski Trail Monitoring
Desirable conditions are typically easily achievable for cross country ski trails, if the weather cooperates. With adequate snow pack, conditions rarely become deteriorated, which shifts the typical tread concerns like erosion to other concerns like corridor expanding through a loss of vegetation. Desirable cross-country ski trails maintain safe lines of sight and corridors that are free from vegetative obstructions, along several other features. Cross-country skiing is often a secondary use on hiking or mountain bike trails, so when this is the case, the monitoring variables for the trails in which they use will be the primary guide for monitoring variables. When the trails are for skiing only, the monitoring program will assess, in the non-winter months, corridor expansion through vegetation loss, and erosion. Photo points will be developed along routes to continually monitor impacts and to ensure corridor expansion through vegetation loss is not occurring.

Objective:
• To provide winter recreational opportunities for various activities and user ability levels.

Management Actions:
• Monitoring for the desired conditions of cross-country ski trails will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 o Desired conditions for ski trails will be ones that have minimal expansion from the designed footprint of the built facility, doesn’t negatively impact trailside vegetation, and provides an enjoyable user experience.
 o Monitoring could include photo point locations, control measuring points, occurrences corridor expansion, and visible erosion in non-winter months.
• Allow construction of a portion of the Jackrabbit Trail onto a portion of the SLWF south of Mountain Lane. This is a reroute of the trail from the road. The trail will travel on SLWF for about 2,530 feet. The route will be roughly parallel to Mountain Lane.
IV. Proposed Management Actions

- New loop trails may be constructed off the current trails near Moose Pond. (see map 9).

- The herd path that starts near the Haystack Mountain Parking Area (on State Route 86) and goes to the Prison Water Line Truck Trail (administrative road) will be upgraded to ski trail standards (see map 10).

- Where practical, new trails, reroutes, and trail structures will be designed and constructed to accommodate and enhance ski use. This will be prioritized for trails which receive significant amounts of ski use.

- To better accommodate skiers, sections of trails that have steep slope may be cut wider in accordance with existing Department policy. At the base of steep slopes, the trail width will gradually taper down.

- Work to establish partnerships that will provide the means to plow parking areas and access roads so that more trails may be used in the winter.

Snowmobile Trails

Present Conditions:
The main snowmobile route that passes through the SLWF is the Remsen to Lake Placid Travel Corridor. While this route is managed as a separate unit that is not part of the SLWF, it is still very important for the management of SLWF. The travel corridor spans over 18 miles through the SLWF planning area, connecting Tupper Lake, Saranac Lake, and Lake Placid. This is the prime snowmobile connection between the communities. A UMP was completed for the travel corridor in 1996 and then amended in 2016. This UMP states that between Tupper Lake and Lake Placid the corridor will be converted from a railroad to a multiple-use trail.

There are 34.81 miles of trails and Department roads in the SLWF which are open for snowmobiling. This snowmobile mileage includes trails on power line right-of-ways. Of the total mileage of snowmobile trails to be open after this UMP, 10.29 miles are located on Department roads.

Not included in the mileage of snowmobile trails in the SLWF are public roads, private right-of-ways, and the Remsen to Lake Placid Travel Corridor. Snowmobiles can use town and county roads which are designated for snowmobile use. There are several such roads in the SLWF planning area. Snowmobiles may also ride along the outside banks of State highways. There are several private right-of-ways in the unit that are being used by some snowmobilers, but the public does not have permission to use these.

Over the years some snowmobile trails have been closed by the Department. In the SLWF at least three miles of trails have been closed. Most of this mileage was part of a section of trail that went by Deer Pond. This was closed by the Department due to the
deteriorating condition of the trail. Also closed was a short trail that ran from Lake Clear to State Route 30. In adjacent Wilderness, Canoe, or Primitive areas 22.18 miles of snowmobile trail have been closed. The majority of this was in the SRCA, which had 15.4 miles of snowmobile trails. Some snowmobile trails have also been closed when the State purchased private property, and these include the trail to Heavens Pond, trails around Lake Clear, and a trail between Lake Clear and Upper St. Regis Lake. The total mileage of these closed trails is approximately four miles. Additionally, several more miles of trails, while still officially open, have been in effect closed because of lack of maintenance, such as failure to replace deteriorated bridges.

Since 1972 the State has purchased lands which have been added to the SLWF. Some of the existing snowmobile trails on these lands have remained open. These trails are: Floodwood Reservation (3.10 miles long); portion of the D&H to Remsen - Lake Placid Travel Corridor (0.5 miles); and part of the D&H railroad (1.38 miles).

The snowmobile trails in the SLWF which serve as community connectors are: the old rail bed that runs through the Bloomingdale Bog; the trail that connects the Remsen to Lake Placid Travel Corridor with the Bloomingdale Bog trail; the trail along the power line from the Bloomingdale Bog trail to the rail bed by Lake Clear Airport; and the trail on the rail bed by the Lake Clear Airport (short segments of which are on the SLWF).

Groomed trails in the SLWF include the D&H railroad, the power line to the D&H, and the old NY Central rail bed. They are all groomed with small tracked groomers.

In 2009 the DEC and APA amended the Memorandum of Understanding Between the Adirondack Park Agency and the Department of Environmental Conservation concerning the Implementation of the State Land APSLMP for the Adirondack Park to include the Management Guidance: Snowmobile Trail Siting, Construction and Maintenance on Forest Preserve Land in the Adirondack Park, 11-2009 (2009 Management Guidance). This management guidance and the Snowmobile Plan for the Adirondack Park (2006) both outline the concept of reconfiguring the existing snowmobile trail network across the Forest Preserve through the UMP process. All construction and maintenance of snowmobile trails in the SLWF will follow these guidelines. There are now two trail types:

Class II Trails (Community Connector Trails): Snowmobile trails or trail segments that serve to connect communities and provide the main travel routes for snowmobiles within a unit are Community Connector Trails. They are not duplicated or paralleled by other snowmobile trails. Some can be short, linking communities to longer Class II trails that connect two or more other communities.

Class I Trails (Secondary Snowmobile Trails): All other snowmobile trails that are not Community Connector Trails are Secondary Snowmobile Trails. They may be spur trails (perhaps leading to population areas and services such as repair shops, service stations, restaurants and lodging), short loop trails or longer recreational trails.
IV. Proposed Management Actions

Snowmobile Use on Roads- Snowmobile use can occur on designated Forest Preserve roads. Management of all such roads for motor vehicle use, including snowmobiles, is guided by the Department’s “CP-38 Forest Preserve Roads” policy.

Desired Conditions for Snowmobile Trail Monitoring

Snowmobile trails have the benefit of snow cover to reduce some impacts on trails. With adequate snow typical tread concerns, like erosion, are mitigated. However, snowmobile usage could result in significant impacts, such as noise and engine exhaust, to the wildland character well away from the designated trail. Desirable snowmobile trails will maintain safe lines of site and corridors that are free from vegetative obstructions. Corridors free from obstruction not only provide for safe user conditions, but also increase user enjoyment. Although snowmobiling occurs on snowpack and does not typically impact the frozen soil below, it is important to monitor these trails like many other facilities. Photo points will be developed along routes to continually monitor impacts and to ensure erosion, corridor expansion through vegetation loss, impacts to areas off the corridor, and illegal operation off designated trails are not occurring.

Wild Forest Basic Guideline #4: No Material Increase

The original guideline in the Adirondack Park State Land APSLMP reads:

Public use of motor vehicles will not be encouraged and there will not be any material increase in the mileage of roads and snowmobile trails open to motorized use by the public in wild forest areas that conformed to the master plan at the time of its original adoption in 1972.

In March of 2008, the Agency adopted a resolution which found that existing DEC policy, which places a limit on the total snowmobile trail mileage on all wild forest units in the Adirondack Park at 848.88 miles, is consistent with the Wild Forest Basic Guideline #4. The resolution also outlined the format in which snowmobile trail mileage should be presented in UMP’s to ensure continued compliance with Basic Guideline #4.

This information is presented below, and only includes mileage within what is currently classified as the Saranac Lakes Wild Forest, on roads and trails under DEC’s jurisdiction.

Saranac Lake Wild Forest Snowmobile Trail Mileage

<table>
<thead>
<tr>
<th>Category</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Snowmobile Trail Mileage</td>
<td>34.9 miles</td>
</tr>
<tr>
<td>Proposed Closure Mileage</td>
<td>15.23 miles</td>
</tr>
<tr>
<td>Proposed New Trail Mileage</td>
<td>2.43 miles</td>
</tr>
<tr>
<td>Total Proposed Trail Mileage</td>
<td>22.1 miles</td>
</tr>
</tbody>
</table>
IV. Proposed Management Actions

Table 13: Adirondack Park Wild Forest snowmobile mileage.

| 1972 Mileage | Estimated Existing Mileage in All Wild Forest Units | Estimated Existing Mileage in SLWF | Estimated Proposed Mileage in SLWF | Proposed Net Gain/(Loss) of Mileage in SLWF | New Total Estimated Mileage in All Wild Forest Units | Total Allowable Wild Forest Mileage *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>740</td>
<td>788.81</td>
<td>34.9</td>
<td>22.1</td>
<td>(12.8)</td>
<td>791.11</td>
<td>848.88</td>
</tr>
</tbody>
</table>

Objective:
- Establishment of a snowmobile trail system to appropriate standards for safety of the users, significant recreation value, and the protection of the environment.

Management Actions:
- Monitoring for the desired conditions of snowmobile trails will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for snowmobile trails will be ones that have minimal expansion from the designed footprint of the built facility, doesn’t negatively impact trailside vegetation, is free of occurrences of erosion, has minimal negative impacts of other user groups, and provides an enjoyable user experience.
 - Monitoring could include photo point locations; control measuring points for occurrences of erosion, corridor expansion, and illegal operation off designated trails; and user surveys.
- Class II trails may be groomed by mechanized groomers.

New Trails to be Opened (total 2.43 miles long):
- Open a snowmobile trail to Heavens Pond. There has been interest in reestablishing this trail; the former trail was closed when the State purchased the land. The trail will be along the old road that went to the pond; this is also the route that was used as a snowmobile trail. This trail will be 1.77 miles long. A description of the justification for and alternatives to this trail is at the end of this section. This trail will be a Class I trail (see map 12).
- A trail to Lead Pond from the Lyme Conservation Easement lands will be opened.
IV. Proposed Management Actions

for snowmobile use. This 0.32-mile-long trail will follow an existing route and will lead to the pond near the SLWF/ Lyme Easement property line. The portion of trail that runs along the north shore of the pond will be closed. The purpose of this trail is to provide ice fishing access to Lead Pond. A Recreation Management Plan for the easement lands will need to be completed prior to allowing public use of this trail. This will be a Class I trail (see map 12).

- Create a snowmobile trail from the Remsen to Lake Placid Travel Corridor to a proposed bridge over Rollins Pond Outlet the Rollins Pond Campground. This trail will be about 0.25 miles long. This will be a Class I trail. (see map 12)

- To provide snowmobile ice fishing access to Follensby Clear Pond, the 0.09-mile-long canoe carry trail to Follensby Clear Pond from the Little Square Pond Snowmobile Trail will be designated for snowmobile use. This will be a Class I trail (see map 12).

Trails to be closed, the following trails will be closed for snowmobile use. Except as noted, the trails will remain open for other uses and will be managed accordingly. The length of these closures totals 15.23 miles.

- The **Lead Pond Trail** from the Rollins Pond campground will be closed. The length of this closure is 3.41 miles. This trail will be completely abandoned and will no longer be maintained for any recreation use. The trail receives limited use because of its condition. Bridges across the outlet of Deer Pond need to be replaced. Wetlands on the approaches to these bridges would present construction challenges. There is also a bridge over the Lead Pond inlet that needs replacement. The trail along the north shore of Lead Pond will be closed, except for the portion needed to access the pond from the conservation easement lands (listed above). (see map 912)

- **Horseshoe Pond Trail**- This trail runs between Fish Creek Campground and Floodwood Road and goes next to Horseshoe Pond. The length of this closure is 3.52 miles. This trail roughly parallels the Little Square Pond Trail and receives little use. A bridge would need to be rebuilt at the outlet of Little Polliwog Pond to make the trail useable. This trail is also very grown-in (see map 12).

- **Otter Hollow Trail**- This trail goes between the Rollins Pond and Fish Creek Campgrounds to the west of Little Square Pond. The length of this closure is 3.92 miles. This trail was chosen for closure because of its current condition, low use, and it roughly parallels the Little Square Pond Trail. A short segment of this trail between the Fish Creek Campground and Copperas Pond will remain open for ice fishing access to the pond (see map 12).

- **Rat Pond trails**- There are redundant trails near Rat Pond that will be closed. The trails to be closed are 1.61 miles long (see map 12).

- **Oseetah Lake trail**- The trail that parallels the shore of Oseetah Lake at the
IV. Proposed Management Actions

The vicinity of Turtle Pond will be closed to snowmobiles. This trail is 0.42 miles long (see map 14).

- The gates on the Old Wawbeek Road have not been opened for snowmobile use for the last several years, although this was a designated snowmobile trail. This trail will be permanently closed for snowmobile use. This is 2.35 miles long (see map 12).

- The following trails have been closed for snowmobile use prior to the adoption of this UMP and will remain closed: Paul Smith’s Trolley Line, Deer Pond Trail (runs along the east shore of Deer Pond), a trail that paralleled Coreys Road, the roads to Sunday Pond, and the administrative road between Old Wawbeek Road and State Route 30.

Existing Trails, Classification as per the Management Guidance (total length is 9.19 miles)

- Copperas Pond Trail- This 0.21-mile-long trail provides access to Copperas Pond for ice fishing. This will be maintained as a Class I trail (see map 12).

- D & H Power Line- This 0.94-mile-long trail is along a power line right-of-way and serves as a connection between the snowmobile trails on the D&H and the NY Central rail beds. This will be considered a Class II trail (see map 13).

- Lake Colby By-Pass- This 2.49-mile-long trail connects the D&H rail bed with the Remsen to Lake Placid Travel Corridor. It will be maintained as a Class II trail (see map 13).

- Little Square Pond Trail- This 3.57-mile-long trail goes between Fish Creek Campground and Floodwood Road. This will be a Class I trail. The Little Square Pond trail was selected to remain open because it provides access to several ponds that are open for ice fishing. This trail will need to be brushed out and there are several bridges will need to be repaired or replaced (see map 12).

- Middle & Floodwood Ice Access- This 0.13-mile-long trail provides ice fishing access to Middle and Floodwood ponds from the Little Square Pond Trail. This will be a Class I trail (see map 12).

- Oseetah Lake Area Trails- These trails are 1.14 miles long. These will be Class I trails. These trails lead directly to a water body and cross a class 1 wetland, creating possible natural resource impacts and safety concerns. However, if the trails were closed, it would preclude safe access to private property on the main, southern portion of Oseetah Lake. If a more appropriate location for a snowmobile trail providing access to Oseetah Lake is identified at a future date, a UMP amendment to re-route the trails should be proposed (see map 14).

- Rat Pond Trail- This 0.66-mile trail provides a connection between the Remsen to Lake Placid Travel Corridor and the Saranac Inn area. This will be a Class I
IV. Proposed Management Actions

trail (see map 12).

- **Remsen - Lake Placid corridor to Rollins Pond** - This 0.04-mile-long trail provides access to Rollins Pond from the Remsen to Lake Placid Travel Corridor. It will be maintained as a Class I trail (see map 12).

Significant Department Roads Open for Snowmobiling (total length is 10.49 miles)

- **D & H Rail Bed** - This 3.74-mile-long trail is on the former D&H Rail Road. This is considered as an administrative road; this will also be considered a Class II trail (see map 13).

- **Fish Creek to Rollins Pond** - This 0.83-mile-long trail is on the road that connects the Rollins Pond and Fish Creek campgrounds (see map 12).

- **Floodwood Reservation Road** - This 3.10-mile-long road is a private right-of-way for the Floodwood Reservation Boy Scout Camp (see map 12).

- **Lake Clear Ice Fishing** - This 0.08-mile-long administrative road provides access to Lake Clear from the public parking area (see map 13).

- **Little Clear Pond Road** - This 0.10-mile-road segment provides access to the Remsen to Lake Placid Travel Corridor from Hatchery Road, a town road (see map 12).

- **New York Central** - This is two segments of the former NY Central Rail Road on the SLWF which are separated by conservation easement land. The segments on State land total 2.17 miles long (see map 13).

- **Rat Pond Road** - This 0.47-mile-road segment provides a connection between the Remsen to Lake Placid Travel Corridor and the Saranac Inn area (see map 12).

Alternative Discussion for Snowmobile Trails

Trail to Heavens Pond - Heavens Pond is located on the SLWF, but it is near adjacent private property. The alternative routes are within one mile of motorized travel corridors, including existing roads on the adjacent Lyme Conservation Easement. There is private property near Heavens Pond. Because of the terrain at the pond there should not be significant impacts on the private property from snowmobile use. It would be unlikely that snowmobiles would travel down the outlet of the pond to reach the private property. The forest surrounding the pond should buffer the sounds from snowmobile use. The recreation value of a trail to Heavens Pond would be high, because it provides the opportunity to visit a scenic setting. Impacts from snowmobile use on sensitive resources should be minimal. Any trail to Heavens Pond would be a class I trail.

No-Action Alternative – This would continue the current situation of no legal snowmobile access to Heavens Pond. This alternative would have the least environmental impact.
Alternative 1 – Use the old road and trail (preferred alternative) – (1.77 miles long) This alternative would follow the former trail and road that lead to the pond. This route would start at the Remsen to Lake Placid Travel Corridor. This route would not require new construction or tree cutting. Of the alternatives that would open a snowmobile trail, this would be the cheapest and quickest to implement. The environmental impacts from construction would also be minimal.

Alternative 2 – Follow the Property Boundary – (0.54 miles long) This route would start on the Lyme Conservation Easement lands south of Heavens Pond and then follow along the State / private property line. The boundary line has been cleared and there is a trail that has been illegally used by all-terrain vehicles that continues to Heavens Pond. This illegal trail currently goes through a wet area and there are several steep slopes that would be problematic for snowmobile use. This alternative was not selected because of the steep slopes, the possibility that the trail would encroach onto private property, and the likelihood this trail may encourage illegal ATV use.

Alternative 3 – Create a New Trail – (0.78 miles long) This route would start from logging roads on the Lyme Conservation Easement lands southeast of Heavens Pond. The segment on the SLWF would be new construction. Barriers to deter illegal motorized vehicle use would need to be included in the design of this trail. This is the same route of a new mountain bike trail proposed in this UMP.

Alternative 4 – Create a Through Route Using Alternatives 1 and 3 – (2.55 miles long) This route would provide a loop recreational trail for snowmobile use, which may encourage more use than a dead-end trail. This alternative is desirable from the perspective of some snowmobilers because of the additional riding through a narrow woods trail. This option would result in more negative impacts than either Alternative 1 or 3.

Horse Trails

Present Conditions:
There is limited horse-riding use in the SLWF. Department regulations allow horse use anywhere on State land, except in intensive use areas and on foot trails, unless those trails are posted as being open for horse use. Some trails could provide horse riding opportunities; however, these trails receive a large amount of use from other recreationists. The APSLMP allows for new horse trails to be built in Wild Forest areas.

The trails in the SLWF that are open for horse use are those around Rat Pond. There has been interest expressed in expanding the horse trails in the SLWF. A particular interest is in the possibility of a route from Tupper Lake to the Coreys Road area.

Desired Conditions for Equestrian Facility Monitoring
There are several trails proposed to be open to equestrian use. Properly designed and constructed equestrian trails will maintain their firm and stable surface for their intended
use, with minimal maintenance. A sustainable trail ensures environmental protection, user safety, function and enjoyment. Building a well-designed, sustainable trail that blends well with its natural surroundings enhances the user’s experience and decreases user conflict. Like other facilities, the variables for equestrian trails will include monitoring efforts to collect data on the presence of eroded areas, the expansion of the tread through vegetation loss, and the occurrence of trash and human waste. It will also be important to monitor for the presence of invasive species on equestrian facilities. Photo points will be a useful tool to help illustrate potential changes over time.

Objective:

- Accommodate and expand horse use in the SLWF.

Management Actions:

- Monitoring for the desired conditions of equestrian trails will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for equestrian trails will be ones that are free of invasive species, has minimal expansion from the designed footprint of the built facility, doesn’t negatively impact trailside vegetation, is free of occurrences of human waste or litter, and provides an enjoyable user experience.
 - Monitoring could include photo point locations, control measuring points, survey of invasive species, surveys of visual occurrences of trash, and user surveys.
- Designate the Old Wawbeek Road and the administrative road that proceeds to the north from the Old Wawbeek Road to State Route 30 as open for horse use. These trails would be opened for horse use as they are brought up to the Department’s horse trail standards. These trails would also be used by mountain bikers. Possible conflicts which could occur between these groups can be mitigated through information posted at trailheads and through education (see map 8).
- Work with those interested in horse use to develop trail proposals that would be incorporated into updates or amendments to this UMP.

2. Roads and Administrative Roads

Present Conditions:

The SLWF has over 53 miles of public road frontage. The primary roads are State Routes 3, 30, 86, and 73. Other important roads include: Forest Home, Floodwood, Moose Pond, Bartlett Carry, Coreys, and Bloomingdale roads. Several of these roads are surrounded by lands of the SLWF. There is one road, Kelly Road (also known as
IV. Proposed Management Actions

Pine Pond Road or Averyville Road Extension), which is included in the mileage listed in this paragraph. It should be noted that the Towns of North Elba and Harrietstown consider this to be a town road; however there have been some assertions that this road is not a public highway. This UMP has not attempted to resolve this matter.

There are more than 26 miles of Department roads, including administrative roads, in the SLWF. Many of these roads are less than a mile in length. The Department uses administrative roads for various administrative purposes such as for fisheries management, maintenance of facilities, law enforcement and access for firefighting. Several of the Department’s roads are open for public use of vehicles to access recreational facilities in the SLWF. However, the use of motor vehicles, except snowmobiles, in and of themselves is not a program offered by the Department.

Administrative use of motor vehicles must comply with Commissioner’s Policy - 17 (CP-17). This policy requires reporting of administrative use of motor vehicles, motorized equipment, and aircraft. One of the intentions of this policy is to “minimize the administrative use of motor vehicles on roads closed to public motor vehicle use and aircraft on Forest Preserve lands.”

Desired Conditions for Forest Preserve Road Monitoring

The roads of the unit serve as public access to recreational facilities, administrative and emergency access to the lands the Department manages. Roads that are kept open for use will be maintained to a sustainable standard which protects environmental quality by resisting erosion and rutting, and will also allow for safe, unimpeded access by users. It is understood that normal wear and tear will occur, but these roads will be kept to a firm and stable standard that resists wear from natural and man-made actions. It is also important when maintaining these roads to do so in a manner that blends the road to its natural surroundings. The wild experience can be preserved as much as possible through being minimally invasive and blending work activities to maximize the public's enjoyment along their route. Like other recreational facilities, roads will be monitored as part of the guidance for wildlands monitoring discussed throughout this UMP. Road monitoring variables will be evaluating are evidence of erosion, rutting, deteriorated drainage devices like ditches and culverts, and occurrences of invasive species. The objective will be to maintain relatively undisturbed road surfaces that have properly working drainage devices which allow for safe and enjoyable travel. Photo points will be a useful tool to help illustrate potential changes over time.

Objective:

- In the SLWF there will be a road system that allows public access to recreational opportunities and provides administrative access.

Management Actions:

- Monitoring for the desired conditions of Forest Preserve roads will help measure and determine impacts to better inform carrying capacity development and long-
term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:

- Desired conditions for roads will be ones that are firm, stable and well drained with minimal erosion, free of invasive species, has minimal expansion from the designed footprint of the built facility, doesn’t negatively impact trailside vegetation, is free of litter, does not facilitate illegal motor vehicle operation off the designated road, and provides an enjoyable user experience.
- Monitoring could include photo and control point locations; surveys for erosion, invasive species, illegal motor vehicle operation off the road, and occurrences of trash; and visitor surveys.

- The road to Rat Pond from State Route 30 will provide vehicle access to the pond. A turnaround and parking area for four cars will be built near the pond. One roadside primitive tent site will be built off this road. The remaining sections of road will be closed to prevent motor vehicles access. Vehicle access to Rat Pond from the north of the pond will be blocked near the administrative road to Fish Pond. A parking area for four cars will be built at this location. The access to Rat Pond from the north has been on a road in the Remsen to Lake Placid travel corridor. (see map 8).

- There are multiple roads to Sunday Pond. One road will remain open and the others will be closed. The road that will remain open is the one that starts across from Fish Hatchery Road and goes to the eastern side of the pond. This is the longest road to reach Sunday Pond, but it is in the best condition and located on the best terrain (see map 8).

- Appendix 1 contains a list of roads that will be open for public motor vehicle use. Public use of ATVs and dirt bikes on these roads is prohibited.

- The road to Floodwood Road primitive tent sites numbers 1 and 2 will be closed.

- Designate Dunlap Road, a private right-of-way across Forest Preserve lands, as being a CP-3 road to increase access to a unique area for those with disabilities. This road will be open for passenger vehicles, not ATVs. For safety reasons, a bridge will have to be improved. Dunlap Road will be opened for CP-3 use as far as the second bridge, near where Hatchery Brook enters Upper Saranac Lake; the Department will share in maintenance with the private land owners of this section of road based upon public use levels. An accessible nature trail, to provide opportunities for fishing and wildlife viewing, will be built at this location. Create an accessible primitive tent site adjacent to the start of the Dunlap Road. Monitor the CP-3 road to ensure that significant negative environmental impacts are not occurring. This road would be closed to CP-3 use during mud season and when the road is covered with snow. The road will provide access to existing Department programs such as: hunting, bird watching, and fishing. By designating this CP-3 road, those with disabilities will be able to travel away from
heavily used public roads to take part in recreational activities (see map 8).

- Study additional CP-3 opportunities, particularly private rights-of-way that are on State Lands.
- Gates will be constructed at Department roads so that the roads can be protected from damage during mud season.

3. Trailheads and Water Access Sites

Present Conditions:

Trailheads and water access sites are points of entry to State land which may contain some or all the following: fishing access sites, boat ramps, trails, parking, signs, and kiosks. The SLWF is served by approximately 37 trailheads. These trailheads vary considerably in condition. Twenty of the trailheads directly access a waterbody; the others provide access to trails. Several of the trailheads in the SLWF provide access to adjacent Wilderness or Canoe areas. These are the McKenzie Mountain Wilderness (Moose Pond FAS, Connery Pond Road] via permission to cross private property], and Whiteface Landing), High Peaks Wilderness (Ampersand Mountain trail, Indian Carry, and Axton Landing), and the SRCA (Hoel Pond, Floodwood Pond parking, Meadow Pond truck trail/administrative road, and Fish Pond truck trail/administrative road).

In addition to the official trailheads, there are also numerous locations where access to the SLWF is available by small roadside pull-offs or parking areas. Many of these do not access official facilities, but there are herd paths at some.

Parking at trailheads is a concern. There is limited parking and sometimes the demand for parking exceeds the available supply. If a parking area is full, visitors sometimes park on the side of roads and entryways creating several problems. By parking in areas not designated for parking, visitors can risk an accident, block access for emergency vehicles, damage natural resources, and impede traffic flow. Parking is a problem at several of the trailheads in the SLWF. The worst problems are at the Ampersand Mountain/ Middle Saranac Lake Beach and Hoel Pond. At the Ampersand Mountain/ Middle Saranac Lake Beach area, frequently during the summer, there are more vehicles than spaces available. This results in cars parking along the shoulders of State Route 3. Hoel Pond is used both as a camping area and trailhead, which is creating problems. The parking area is not well defined, so visitors can be confused as to where they should park.

Desired Conditions for Trailhead Facility Monitoring

There are numerous parking areas that serve as entry points to the front and backcountry. Properly designed and managed parking areas will maintain their firm and stable surface with minimal maintenance and allow unencumbered parking for the designed number of vehicles. This not only maximizes environmental protection, but also user safety, function and enjoyment. Appurtenances to the parking areas like
privies and gates should also be maintained in a clean and functional working condition. Like roads and other facilities described, parking areas can add to a user’s positive experience if it blends well with the natural area and is kept free of trash and human waste. The variables to be monitored in parking areas will be the presence of a firm and stable surface that is smooth and easily accessible by the public, along with clean sanitary conditions including properly maintained privies and an absence of trash. Photo points will be a useful tool to help illustrate potential changes over time.

Objectives:

- There will be an adequate number of trailhead facilities that protect resource values and accommodate visitor needs.

- Interior use will be indirectly managed by balancing parking lot capacities to visitor capacities.

Trailheads

Management Actions:

- Monitoring for the desired conditions of parking areas will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for parking areas will be a firm and stable surface that has minimal expansion from the designed footprint, well maintained privies and gates, is free of occurrences of litter and human waste, and adds to the overall user experience.
 - Monitoring could include photo point locations, control measuring points, survey of invasive species, surveys of visual occurrences of trash, and user surveys.

- Create a parking area at the road to Lonesome Bay. Vehicles are currently parking along the road, which is interfering with use of the road. The parking area will be large enough to accommodate six cars. The road to Lonesome Bay will be rerouted where it intersects with State Route 3. This is needed to improve the angle that the roads intersect and provide better line of sight for vehicles turning onto State Route 3. The reroute will involve the construction of 475 feet of new road and the closing of 285 feet of road, resulting in a net increase of 190 feet (see map 7).

- Address the parking issues at the Ampersand Mountain / Middle Saranac Lake trails by constructing a new parking lot as to be proposed in an amendment to the High Peaks Wilderness UMP. A listing of alternatives is included below (see map 7).
IV. Proposed Management Actions

- A parking area for 10 cars will be developed on the State land at the end of Van Buren Street, in Saranac Lake for the Lake Colby trails (see map 9).

- Build a parking area at the Brewster Peninsula trails to accommodate 18 cars. This parking area will be located north of the intersection of Peninsula Way and the peninsula road (see map 10).

- Create a parking area for 10 cars on Barn Road for access to the proposed trails near Lake Placid (see map 10).

- Create a parking area for 7 cars off Averyville Road, near the Chubb River, for access to the proposed trails in that area (see map 10).

- Create a parking area for 10 cars off Little Clear Pond Road, south of the Remsen to Lake Placid Travel Corridor (see map 8).

- Improve and expand the parking at the Clifford Pettis Plantation on the south side of State Route 86 to accommodate 10 cars.

- Improve and define the parking off Lake Clear Camp Road for Saint Germain Pond. Actions may be taken to make sure that public use of the parking does not interfere with the private use of the road (see map #8).

- Improve the parking along Averyville Road near Cameras Pond (see map 10).

- Along Floodwood Road improvements may be made to pull-off locations where the road shoulders are wide enough to allow safe parking.

- Create a parking area along Coreys Road at the Stony Creek Bridge to allow for a snowplow to turn around and for visitor parking during the winter. There is currently space available at this site for parking during the summer. The parking lot will be designed to accommodate 10 vehicles. This parking area will provide access to the western High Peaks Wilderness during the winter. This parking is needed because the road past this point is sometimes plowed by the private right-of-way owner, but the parking areas are not plowed. This has resulted in the public driving the road to find parking and then having difficulty turning around or getting stuck. A parking area at this location could be plowed when the town plows the road. This parking area is not expected to increase summer use, since the currently available parking is not being fully utilized (see map 7).

- Create a parking lot on Mountain Lane (Old Mountain Road). The parking area will be at the western end of the road near the intersection of State Route 73. There will be parking provided for 11 cars. Parking for six of the cars will be in the SLWF. The additional parking will be on the north side of the road, which is in the Sentinel Range Wilderness. This parking is needed to accommodate current use and to mitigate the problems that are occurring from inadequate parking along the road. Parking at this location will be more attractive for winter users after the Jackrabbit Trail is relocated off the plowed road (see map 10).
IV. Proposed Management Actions

- A parking area will be created off State Route 3 at the foot bridge over the Saranac River that is the trail to Moose Pond. At this location there already is an area for parking in the summer, this area will be improved. A winter parking area may be built adjacent to State Route 3; however, space is limited (see map 9).

- A four-car parking area will be created off State Route 30 across from Junction Street, near Lake Clear (see map 9).

- The parking area on State Route 86 at the road to Connery Pond has been closed. The public is directed to the parking area on State Route 86 adjacent to the bridge over the Ausable River; this parking area needs to be improved. The parking areas further down the road to Connery Pond will remain open, except when the road is closed during winter and mud season (see map 10).

- There is a large parking area off State Route 30 near the intersection with State Route 3. Much of the parking area is outside of the DOT right-of-way. This parking area is not significantly used for public recreation. The parking area will be modified with the objective that the portion outside of the DOT right-of-way (about 0.5 acres) will not be used for parking and will be returned to a natural state (see map 8).

- Parking areas may be resurfaced with gravel and graded as needed.

- Maintain and repair trailheads to appropriate standards.

- Develop partnerships with local governments and outside volunteers to maintain and snowplow roadside trailhead parking facilities.

Alternatives for Parking at Ampersand Mountain / Middle Saranac Lake Trails (see map 7).

The following alternatives were considered for the parking problems along State Route 3 at the Ampersand Mountain and Middle Saranac Lake trails. Current use far exceeds the parking available. This parking area is used to reach a sandy beach on Middle Saranac Lake, by campers on Middle Saranac Lake (either for guests of people with sites or a location to quickly reach a car for trips into town), and for hiking Ampersand Mountain (most of the parking is for this purpose). It is common for a couple of cars to be parked here overnight (the prohibition of overnight parking can be considered with all alternatives). The current demand for use of the trails is such that large numbers of vehicles park along the shoulders of State Route 3. These cars present a safety hazard. With cars parking along State Route 3, there is virtually no limit to the number of users who can access the trails.

Alternative 1 - Close one or both trails.

To deal with the current parking problems, a reduction in the need for parking could be achieved by closing either one or both trails. This would eliminate enjoyable recreational opportunities; however, there are other mountains and beaches where people could go.
There would be public dissatisfaction with the implementation of this alternative. In addition to closing both trails, the parking lot itself would be closed to prevent continued use of the trails.

Alternative 2 - Limit use to what the parking lot can hold.

Prohibit parking along State Route 3 for one mile in each direction of the parking lot. The small size of the parking lot would severely limit use. Many of those currently using the site would be displaced to other locations. This alternative could be combined with Alternative 1.

Alternative 3 - Expand the current parking lot.

This alternative recognizes the public demand to utilize the recreational opportunities that these trails offer. A larger parking lot could provide for greater user safety by allowing vehicles to park off State Route 3. Parking could then be limited to those cars that fit in the parking lot. This would satisfy public use and set a limit on the number of vehicles that can use the site. There is a limited area where the parking lot could be expanded without a major construction effort. The area around the current parking lot would require significant fill to expand parking.

Alternative 4 - Construct a new parking area at a suitable site.

This is the preferred alternative. A new parking lot could contain the levels of use and be constructed with less environmental impacts than Alternative 3. A suitable site would be on the south side of State Route 3, west of the current parking. This would be in the High Peaks Wilderness Area, which would be addressed in an amendment to the High Peaks Wilderness Area UMP. The current parking lot will be retained to reduce the amount of pedestrian traffic crossing State Route 3. Parking could then be limited to those cars that fit in the parking lots. This would satisfy public use and set a limit on the number of vehicles that can use the site.

Fishing and Water Access Sites

According to the APSLMP public access locations to waterbodies fall into two categories either a boat launch or a fishing and waterway access site. Boat launches allow for trailered boats to be launched and are classified as Intensive Use areas. Fishing and waterway access sites do not “contain a ramp for or otherwise permit the launching of trailered boats.” The four boat launches that are part of this UMP are Lake Placid (see map 10), Lake Flower (see map 10), Raquette River (see map 8), and Upper Saranac Lake (see map 8). The access site at South Creek is classified as Intensive Use, but it does not provide for the launching of trailered boats. There is also an access site on Lower Saranac Lake at Ampersand Bay that is classified as Intensive Use. In addition to providing public access this site also includes administrative buildings. Several of the fishing and waterway access sites in the SLWF have a history of being used for the direct launching of trailered boats; these include the sites at Follensby Clear Pond, Lake Colby, Moose Pond, and Polliwog Pond. The launching of trailered boats results in
impacts from vehicles being driven into areas that cannot sustainably handle the use and impacts from larger boats being on the waterbody.

For further discussion and management concerning water craft see Section IV. D. 2.

Desired Conditions for Fishing and Water Access Sites Monitoring

These sites should be stable, erosion free areas that exhibit minimal wear over time and are free of invasive species, human waste and litter. The tread should remain well developed with minimal expansion. This should also blend well with the natural surroundings to enhance user experience. Like other facilities, the variables for hand carry launches will include monitoring efforts to look for the presence of eroded areas, trash and human waste. Photo points will be a useful tool to help illustrate potential changes over time.

Management Actions:

- Monitoring each location for the desired conditions for a sustainable fishing and water access sites will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for all fishing and water access sites will be one that is free of erosion, occurrences of invasive species, human waste and litter, has minimal expansion from the designed footprint of the built facility, and provides an enjoyable user experience.
 - Monitoring could include photo point locations, control measuring points, surveys of visual occurrences of erosion, trash, invasive species, and user surveys.

- Access by persons with disabilities is very important; actions taken at a particular site should be designed to improve accessibility. Where a motor vehicle barrier is needed, different designs may be tried to find a solution that does not impede access for persons with disabilities. Existing barriers that make access difficult will be redesigned. The East Pine Pond and Whey Pond access sites are examples of sites with barriers the unreasonably impede hand launching of boats. Access trails may be improved or rerouted to improve accessibility to the water. Hardened, level areas may be provided at the shoreline to improve accessibility into the water.

- Improve the Axton Landing fishing access site. A level parking area will be created to allow parking of 10 vehicles. Four spaces will be reserved for day use. The access roads will be signed for one-way traffic. A vegetated buffer area will be left between the river and parking area (see map 7).

- The roadside parking on Coreys Road for access to Stony Creek Ponds (northern end) will be improved. The accessibility of the trail to Stony Creek
Ponds will be improved.

- The parking area along Floodwood Road adjacent to the Remsen to Lake Placid Travel Corridor crossing will be expanded to hold 30 more vehicles. This location is currently congested from parking for access to Floodwood Pond and access to the Saint Regis Canoe Area (see map 8).

- The access route to Floodwood Pond from Floodwood Road will be rerouted and improved to make it more accessible.

- Reconstruct the Hoel Pond parking area (see map 8). One issue with the parking area is that private property, part of the Saranac Inn Golf Course, must be crossed to reach the parking. It appears that the right to cross the private property may be at the convenience of the landowner and that there is not a deeded right for public access. There are problems at this parking area that need to be corrected so, even though access to this parking area may be closed off, reconstruction of the access site will be conducted. Problems that need to be corrected include: erosion caused by water flowing down the road, uneven parking surface, poorly defined parking locations, insufficient buffer between the parking area and the pond, and the narrow and twisting access road. The following actions will be taken:
 - Create distinct parking areas for those using the water access site and those using the walk-in primitive tent site. The primitive tent site parking will be designed to hold two cars. The water access site parking will be built to accommodate 14 cars, four of which will be designated for day-use. The new water access parking area will be 20 feet by 140 feet rectangle shape. Vehicles will pull in perpendicular to the roadway. A loading and unloading area will be established near the launch.
 - The portion of road on State land may be improved and/or rerouted (to a minor degree) to address erosion issues and improve line of sight.
 - A vegetated buffer will be created between the parking area and the pond.
 - Eroded areas will be rehabilitated.
 - Primitive tent site number 2 will become the water access site. The current access site continuously experiences erosion problems and the steps present a difficulty for some people to navigate. The new location should provide better accessibility for people and long-term sustainability.

- The South Creek fishing access site will be modified. The gate or boulders will be moved to allow for easier access to the creek. This will remain a hand launch site; watercraft will still need to be carried to the creek. (see map 8).

- The parking area at Follensby Clear Pond (north) needs improvement and
IV. Proposed Management Actions

modification to address natural resource impacts. Erosion control work is needed between the parking and launch areas. There is also a need to divert water off the entry roadway. The size of the vegetated buffer between the pond and the parking will be increased. To accomplish this, the parking area will be moved further from the pond. The number of parking spaces will be kept the same (see map 8).

- The parking at Middle Pond will be improved to accommodate two vehicles (see map 8).

- Create a fishing and waterway access site at Lake Clear Outlet. This will be located at the unofficial site that is being used off Forest Home Road. A parking area for three cars will be built. Boats using this site will be allowed a maximum motor size of 15 horsepower. A justification for this proposal is included in Appendix 2 (see map 8).

- Turtle Pond access may be improved to allow it to sustainably withstand use (see map 10).

- Relocate and improve the fishing access site at Polliwog Pond. This site will use primitive tent sites that are being closed. A parking area will be created using the closed primitive tent sites along Floodwood Road. The maximum horsepower of motors allowed to use this access site will be 15 horsepower. The parking area will be large enough to hold seven vehicles. A justification for this proposal is included in Appendix 2 (see map 8).

- At Ampersand Bay, Axton Landing, Follensby Clear Pond (north), Lake Clear Outlet, Lake Colby, Moose Pond, and Polliwog Pond vehicle and trailer access to the water’s edge will be allowed. These sites would not allow the floating of boats off the trailers but would allow the pushing or lifting of boats from trailers directly into the water. Further details are included below in the description of Alternative 3.

- At the following fishing and waterway access sites vehicles will be blocked a distance from the water’s edge and boats must be carried to the water: East Pine Pond, Floodwood Pond, Hoel Pond, Indian Carry, Middle Pond, South Creek, and Spyder Creek (on Follensby Clear Pond).

- At Rat Pond a parking area for four cars will be built. This will be located off the road from NY Route 30.

- A parking area will be built off Saint Regis Carry Road near the Town of Harrietstown boat launch to Upper Saint Regis Lake. The parking area will be built to accommodate 10 cars.

- Motor boats that use the following access sites will be limited to those with an engine of 15 horsepower or less: East Pine Pond, Spyder Creek, Follensby Clear
IV. Proposed Management Actions

Pond (north), Polliwog Pond, and South Creek.

- Parking areas may be resurfaced with gravel and graded as needed.
- There are several outfitters who transport groups to water access sites using a passenger van with a canoe trailer. Provision for a loading / unloading zone with a turnaround area should be considered at certain water access sites.
- Develop partnerships with local governments and outside volunteers to maintain and snowplow parking facilities.

Alternatives Discussion for Fishing and Water Access Sites

The following are the alternatives considered in determining actions. The preferred alternative for a specific site is expressed in the management actions above.

Alternative 1 - Close site

This would decrease the public use of the associated waterbody by restricting access. All types of water craft and users would be affected by this alternative. The public would likely move to other locations which could create problems of over use at another waterbody. This UMP does not support this alternative at any site.

Alternative 2 – Block access away from the water

This alternative would block access a distance from the water’s edge. The public would have to carry or drag their water craft to the water. Some damage to the natural resources from vehicles (such as erosion at the shoreline and chance for the spread of invasive species) may decrease. This alternative would make it more difficult for those with heavy motor boats and those with disabilities to use the site. This would not eliminate the use of motor boats but require them to be carried for a distance. This would mean that groups with more people and those who are physically strong would have an advantage at being able to use motor boats over others.

Alternative 3 – Allow vehicle and trailer access to the water

This alternative would not provide float-off or float-on trailered boat launching. These sites will accommodate the approach to the water's edge of small and light trailered boats. The boat would then be pushed or lifted on or off the trailer. The design of these sites may allow the wheels of the trailer to the water’s edge but prevent floating boats off the trailer. When compared to Alternative 2, this alternative would provide easier access, particularly for those who would have difficulty moving their boat. This alternative would also be easier for groups with fewer people. This alternative would probably result in larger/heavier boats being able to use a site. This alternative could result in minor damage to natural resources (such as erosion) from trailers being driven to the water and there would be a higher risk of invasive species being spread than alternative 2, but there are mitigation measures which could be taken to address these concerns.
Alternative 4- Prohibit any trailered water craft.

Trailers will not be allowed in the parking area of the site. No water craft which arrives on a trailer will be allowed to utilize the site. This would significantly affect the use of motor boats (except those placed in the back of pick-up trucks), canoe groups which use a canoe trailer, and persons with disabilities who cannot place their water craft on or in their vehicle. This alternative would reduce congestion at parking areas. Public use would also likely be decreased. The APSLMP does not require this level of restriction. This alternative is not supported at any site by this UMP.

No-Action Alternative

This would retain the current condition and use of a site. This alternative is not appropriate for most sites because of the requirement for the Department to comply with APSLMP guidelines.

4. Primitive Tent Sites and Lean-tos

Present Conditions:

Camping is one of the primary recreational activities in the SLWF. There are 162 designated primitive tent sites and eight lean-tos in the SLWF. (The campsites that are part of the Saranac Lake Islands Campground are not included in this section. For information on those sites see the special management section: Saranac Lakes Islands Camping Plan.) The majority of the primitive tent sites are located along the shorelines of the unit’s waterbodies. Many primitive tent sites are also a short distance from a road, a boat launch, or a water access site. This means that most of the primitive tent sites in the SLWF are easy to access and, as a result, are heavily used. Many the primitive tent sites, 75, are located on the ponds south of Floodwood Road (see map 2).

The APSLMP allows “primitive tent sites below 3,500 feet in elevation that are out of sight and sound and generally one-quarter mile from any other primitive tent site or lean-to”. If severe terrain prevents the attainment of the guideline for separation distance, then on a site-specific basis, primitive tent sites may have a separation distance of generally not less than 500 feet. Many of the primitive tent sites in the SLWF do not meet required separation distances. Approximately 70 percent of the sites in the SLWF do not meet the one-quarter mile separation guideline. The separation distance for 76 of these sites is less than one-tenth of a mile; most of these 76 sites are located on Floodwood, Follensby Clear, Poliwog, Hoel, and Little Green ponds. To bring the primitive tent sites into compliance with separation distance guidelines there will need to be a significant change in the location of primitive tent sites in the SLWF, particularly on the ponds just mentioned. There are some primitive tent sites that can be relocated to achieve the required separation distance, but there are limited options for relocating a site while maintaining reasonable access from a waterway.

The APSLMP requires lean-tos be set back 100 feet from the mean high-water mark of lakes, ponds, rivers or major streams. There are three lean-tos (these are the lean-tos
IV. Proposed Management Actions

on Lake Placid and Follensby Clear Pond) that do not meet this distance.

Heavy camping use is resulting in damage to the natural resources. Impacts to primitive tent sites include loss of vegetative screening, soil erosion, soil compaction, large disturbed areas, injury to vegetation, removal of dead wood, and improper human waste disposal. These impacts can be a threat to water resources because many of the primitive tent sites are close to the water’s edge. These impacts also impair the public’s enjoyment from the use of these primitive tent sites and the surrounding lands. The impacts are factor in determining which sites to close.

APA conducted a detailed campsite condition assessment of 79 of the 170 primitive tent sites in the SLWF. This assessment documented significant visitor use impacts that need to be addressed. The assessment found that nearly half of the campsites have excessively large impacted areas. At thirteen of the sites the impacted area was greater than 4,000 square feet. The greatest impacted area was measured at 11,537 square feet at Floodwood Road site number 10. Another measure of impact compared existing site conditions to pre-determined descriptive condition classes. The five condition classes are based on a level various impacts (e.g. vegetation damage, mineral soil exposure and erosion). A score of five reflected a site with the most visitor impacts. A score of one reflected a site with the least visitor impacts. Campsites with a rating of four and five have impacts at unacceptable levels of visitor impact. The assessment rated three campsites as being in condition class five and 16 campsites in condition class four. The campsites rated as condition class five are site numbers 1 and 2 at Hoel Pond and Floodwood Road site number 2.

A common problem associated with camping is that camp fires are sometimes left unattended or fires are built at unsuitable locations. Unattended and improperly located campfires are a threat to people’s safety and the natural resources of the area. There have been several fires in the SLWF in recent years because of people failing to fully extinguish a fire when leaving a campsite or where a fire was built outside of a provided fire ring. In 2018 ground fires caused significant damage at campsite number 2 on Floodwood Pond and at Follensby Clear Pond near the put-in from Polliwog Pond.

Since 1995 there has been a regional policy that limits camping group size to a maximum of 12 individuals. In the definition of a primitive tent site in the APSLMP a limit of eight people per site is included. Large camping groups have been restricted because they can have a greater impact on a primitive tent site than smaller groups. Larger groups also tend to have a greater impact on the experience of other visitors than smaller groups.

Some of the primitive tent sites in the SLWF allow people to drive on to the campsite. These sites can be used by trailered or self-propelled campers along with tent camping from the back of a car. There are roadside sites located along Floodwood Road, Little Green Pond, and Hoel Pond. These primitive tent sites are popular during the summer and the big game hunting season. There are also several primitive tent sites along State Route 3 that are used for roadside camping during the big game hunting season. Most of the primitive tent sites have significant impacts from the use. Floodwood Road
IV. Proposed Management Actions

campsite numbers 1, 3, 10, 12, and 14 all show significant impacts from use, such as muddy and rutted access driveways, soil compaction, injured trees, and expansion from the original site. A major concern with these sites is that overseeing the primitive tent sites takes considerable time on the part of the area Forest Ranger.

There are problems with some users monopolizing a campsite for a significant part of the summer by circumventing regulations designed to limit the length of time someone can use a campsite. This results in decreased availability of sites. A complaint related to this is that for days at a time camping gear is left on the campsite, but the site is not occupied by anyone.

Floodwood Road Primitive Tent Sites (see map 2):

Floodwood Road is a town road that runs west from State Route 30 to the Santa Clara/Tupper Lake town line. At the town line the road becomes a private right-of-way and a Department road that the public can use to reach the parking area for the Floodwood Mountain parcel. There are 18 drive-in primitive tent sites along the road. The primitive tent sites are not spaced evenly apart and many of the sites do not have the required quarter mile separation distance. For example, at the northern end of Polliwog Pond nine sites are clustered along a 0.4-mile stretch of road. All the Floodwood Road primitive tent sites are in the SLWF. A campsite in the SRCA was closed after the SRCA UMP determined drive-in camping was not appropriate for that area.

Desired Conditions for Tent Site Monitoring

Emphasis is given throughout the plan on well designed and constructed facilities that promote resource protection and will maximize long term sustainability. Tent Sites are a great example of the importance of constructing a well-built, sustainable facility up front. Choosing a suitable location and constructing a tent site with a hardened tent pad ensures initial and long-term environmental protection. These facilities will exhibit a comfortable, well drained tent pad, usable fire pit, and a sanitary privy. Beyond the obvious environmental benefits, these facilities add to the user’s experience as much as a desirable location does. The monitoring variables for tent sites will include efforts to collect data on the expansion of the designated area through vegetation loss, soil compaction, and the occurrence of trash and human waste. Photo points will be a useful tool to help illustrate potential changes over time.

Objectives:

- Limit the adverse impacts from people camping in the SLWF.
- Move toward compliance with the APSLMP campsite guidelines.

Management Actions:

- Monitoring for the desired conditions of tent sites will help measure and determine impacts to better inform carrying capacity development and long-term
planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
\[\text{o Desired conditions for tent sites will be ones that have minimal expansion from the designed footprint of the built facility, doesn’t negatively impact adjacent vegetation, shows minimal signs of compaction, is free of occurrences of human waste or litter, and provides an enjoyable user experience.}\]
\[\text{o Monitoring could include photo point locations, control measuring points, occurrences of trash, vegetation loss, and visitor surveys}\]

- Active measures will be taken to reduce the size of primitive tent sites that do not comply with APSLMP guidelines. Many of the existing sites which will remain open to camping will need work to reduce their size. Specific examples are Floodwood Road site number 10, Follensby Clear Pond site number 26, Upper Saranac Lake site number 11, and Polliwog Pond site number 2.

- Close any campsite which could not have a pit privy installed because the privy would be too close to water.

- Install pit privies or box toilets at heavily used primitive tent sites. As resources become available install privies or box toilets at all sites.

- To bring primitive tent sites into compliance with APSLMP separation distance requirements and to address impacted sites there will be significant changes to the arrangement of primitive tent sites. Sixty primitive tent sites will be closed and there will be 59 new primitive tent sites built. The current arrangement of primitive tent sites means that the changes are not evenly distributed across the unit. Some areas of the SLWF will see a significant decrease in campsite numbers. Here is a breakdown of the changes:

\[\text{o Axton Landing (see map 6): One roadside campsite will remain. The access for this site will be delineated.}\]
\[\text{o Black Pond (see map 2): The campsite will be moved to the north.}\]
\[\text{o Copperas Pond (see map 2): Build one new campsite.}\]
\[\text{o Coreys Road (see map 6): Two roadside primitive tent sites will be built to replace primitive tent sites closed over the past few years.}\]
\[\text{o Deer Pond (see map 1): Build two new primitive tent sites and close one campsite (this site will be for day-use).}\]
\[\text{o Dunlap Road (see map 3): Build an accessible site to be associated with the CP-3 route.}\]
\[\text{o Floodwood Pond (see map 2): Close seven primitive tent sites and build six new primitive tent sites.}\]
IV. Proposed Management Actions

- Floodwood Road (see maps 2 & 3): Close sites # 2, 3, 5, 6, 7, 8, 13, and 17. Prohibit vehicles from driving to sites # 1 and #4. Site #4 will be moved further away from the pond. Build seven new roadside primitive tent sites along Floodwood Road. These new sites will be spaced one-quarter mile apart. The new sites will be screened from the road. Overall this will result in the loss of three roadside primitive tent sites. At least four of the primitive tent sites will be built to accessibility standards.

- Follensby Clear Pond (see map 3): Close 17 primitive tent sites (including the lean-to site) and build seven new primitive tent sites. This significant reduction in primitive tent sites is needed to comply with required separation distances.

- Green Pond (see map 3): Build one new campsite.

- Hoel Pond, roadside camping sites (see map 3): Close sites # 1, 3, and 4. Prohibit vehicles from driving onto site # 2. Prohibit camping for more than three nights. The parking will be improved with separate areas for the campsite and those using the water access site.

- Hoel Pond, water access primitive tent sites (see map 3): Build two new primitive tent sites and close one.

- Horseshoe Pond (see map 3): Build one new campsite and move a campsite further away from the canoe carry.

- Lake Colby (see map 1): Close one site.

- Little Green Pond (see map 3): Close sites numbers 4, 6, 8, 9, 10, and 12; retain sites numbers 5, 7, and 11 as roadside primitive tent sites. There will also be two walk-in only sites in the SRCA portion of Little Green Pond. Build a parking area, to be located before the outlet of Little Green Pond, for four cars to replace the larger parking area in the SRCA.

- Little Square Pond (see map 2): Close three primitive tent sites and build three.

- Meadow Pond (see map 1): Build one campsite

- Middle Pond (see map 2): Build one new campsite.

- Moose Pond (see map 1): There will be no changes to the number of primitive tent sites in the SLWF, but the site of the northwest shore will be relocated about 500 feet to the south to avoid conflict with day use.

- Polliwog Pond (see map 3): Close four primitive tent sites and build one campsite. The shoreline of Polliwog Pond is an illustrative example of unique community that needs additional protection, so the number of primitive tent sites is being reduced further than just what is required to
IV. Proposed Management Actions

comply with separation distance requirements.

- Raquette River (see map 6): Build five primitive tent sites and close three primitive tent sites.
- Rollins Pond (see map 2): Build one new campsite.
- Saint Germain Pond (see map 1): Build one campsite.
- Saint Regis River (see map 1): Create two new primitive tent sites near Lower Saint Regis Lake.
- Saranac River (see map 5): Build one campsite near the lower lock.
- Stony Creek Ponds (see map 6): Close the campsite in the SLWF.
- Upper Saranac Lake (see maps 3 and 4): Close two primitive tent sites and build five new primitive tent sites.
- Whey Pond (see map 2): Build two primitive tent sites.
- Whiteface Landing (see map 1): Close the two primitive tent sites because of deed restrictions.

- Build six new roadside primitive tent sites to replace some of those closed at Little Green and Hoel ponds. This will result in a total of three fewer roadside sites. These sites will meet separation distance requirements. The sites will be located on Forest Home Road, State Routes 30 and 186, and Rat Pond Road.

- Officially designate five roadside camping sites along State Route 3 (see map 1). These sites have been used during hunting season for many years. Camping at these sites will be by permit only and will be only be allowed during the big game hunting season.

- In addition to the above changes, 15 primitive tent sites will be designated for group camping. Five of these group sites will be at new sites and the other 10 will be converted from existing primitive tent sites. See the discussion below for details.

- To comply with separation distance requirements several primitive tent sites will need to be relocated a short distance, roughly a few hundred feet.

- This UMP identifies nine camping zones. These zones will be used to verify that the UMP complies with minimum standards of numbers of accessible primitive tent sites and that accessible sites are representative of the various recreational opportunities in the unit. This will result in a minimum of 20 primitive tent sites being built to accessibility standards. At roadside zones the number of sites built
to accessibility standards may exceed the minimum standards. Accessible primitive tent sites will not be designated as reserved for exclusive use by persons with disabilities, but information may be posted at the sites informing users that it has been built to accessibility standards and to encourage that persons with disabilities be accommodated at the site.

- A reduction in the number of primitive tent sites on some ponds could greatly increase the demand for the remaining sites. To increase site availability, the length of time that a party can camp on a pond may be limited to one week. Initially this will apply to Follensby Clear Pond and Poliwog Pond. This restriction may be ended or expanded to additional areas as deemed necessary. This restriction may be rescinded during the big game hunting season, so that the long-term camping permits could still be issued for duration of the big game hunting season.

- To accommodate a variety of campers, some tent sites may be reserved for campers not needing a length of stay permit.

- All new or relocated primitive tent sites will comply with APSLMP requirements.

- The lean-to on Follensby Clear Pond is too close to the water and the island it is on is not large enough to allow a privy to be built with the required set back distance. This lean-to will be removed, and camping will not be allowed at this site (see map 2).

- When the lean-tos on Lake Placid need major repair work they will be moved farther from the water but will remain at the same general location.

- Five new lean-tos may be built at designated primitive tent sites in the unit. New lean-tos will be set back 100 feet from the mean high-water mark of lakes, ponds, rivers, or major streams. New lean-tos will not be built at roadside campsites or on islands that are less than 15 acres in size.

- Primitive tent sites will be numbered where there are more than two sites along the same feature (such as road, pond, or river). This numbering will extend to adjacent units when necessary, for example the Raquette River, Moose Pond, and Coreys Road.

- The campsite closures will occur as the new sites are built.

- All temporarily or permanently closed primitive tent sites will be restored toward a natural condition. Fire rings and other evidence of past use will be removed. Erosion will be controlled and vegetation (nursery stock or transplanting of native plants) will be planted.

- At fire sensitive areas, the Department has the discretion to place sand, a cement slab, or similar material under fire rings.
IV. Proposed Management Actions

- For roadside primitive tent sites, the following actions will be taken:
 - Camping permits will be issued for a maximum of one week. This restriction may be rescinded during the big game hunting season, so that the long-term camping permits could still be issued for duration of the big game hunting season.
 - All the people in a group will be listed on camping permits for roadside camping sites. No one in that group will be allowed to get another permit for the same location.
 - For the roadside sites along Floodwood Road a kiosk will be established for the self-issuing of camping permits. Everyone camping along Floodwood Road would be required to get a permit. These permits will be free and will be available on a first-come first-served basis. (This action could also be taken for other locations where there are multiple roadside sites).
 - If these selected actions do not address the problems related to roadside camping the Department will implement some of the alternatives listed below for roadside camping until a solution is found.

Table of campsite changes

<table>
<thead>
<tr>
<th>Location</th>
<th>Current number of sites</th>
<th>Proposed number of sites</th>
<th>Change</th>
<th>Accessible Camping Zone</th>
<th>Map #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axton Landing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Black Pond</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Copperas Pond</td>
<td>2</td>
<td>3</td>
<td>+1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Coreys Road</td>
<td>0</td>
<td>2</td>
<td>+2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Deer Pond</td>
<td>2</td>
<td>3</td>
<td>+1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Dunlap Road</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>East Pine Pond</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>14</td>
<td>13</td>
<td>-1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Floodwood Road</td>
<td>18</td>
<td>17</td>
<td>-1</td>
<td>4</td>
<td>2 & 3</td>
</tr>
<tr>
<td>Follensby Clear Pond</td>
<td>32</td>
<td>22</td>
<td>-10</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
IV. Proposed Management Actions

<table>
<thead>
<tr>
<th>Location</th>
<th>Current number of sites</th>
<th>Proposed number of sites</th>
<th>Change</th>
<th>Accessible Camping Zone</th>
<th>Map #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Home Road</td>
<td>0</td>
<td>2</td>
<td>+2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Green Pond</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Hoel Pond (roadside sites)</td>
<td>4</td>
<td>1</td>
<td>-3</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Hoel Pond (water sites)</td>
<td>5</td>
<td>6</td>
<td>+1</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Horseshoe Pond</td>
<td>4</td>
<td>5</td>
<td>+1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Kiwassa Lake</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Lake Placid</td>
<td>4</td>
<td>2</td>
<td>-2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Little Green Pond</td>
<td>9</td>
<td>3</td>
<td>-6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Little Square Pond</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Meadow Pond</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Middle Pond</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Moose Pond</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>NY Route 3</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>NY Route 30</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>NY Route 186</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Polliwog Pond</td>
<td>9</td>
<td>6</td>
<td>-3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Raquette River</td>
<td>17</td>
<td>19</td>
<td>+2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Rat Pond</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rat Pond Road</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rollins Pond</td>
<td>2</td>
<td>3</td>
<td>+1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Saint Germain Pond</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
IV. Proposed Management Actions

<table>
<thead>
<tr>
<th>Location</th>
<th>Current number of sites</th>
<th>Proposed number of sites</th>
<th>Change</th>
<th>Accessible Camping Zone</th>
<th>Map #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saint Regis River</td>
<td>0</td>
<td>2</td>
<td>+2</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Saranac River</td>
<td>2</td>
<td>3</td>
<td>+1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Stony Creek Ponds</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>N/A</td>
<td>6</td>
</tr>
<tr>
<td>Upper Saranac Lake</td>
<td>19</td>
<td>22</td>
<td>+3</td>
<td>2</td>
<td>3 & 4</td>
</tr>
<tr>
<td>Whey Pond</td>
<td>1</td>
<td>3</td>
<td>+2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>169</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alternatives for Management of Primitive Tent Sites

Alternative 1 – Use a system to periodically rest primitive tent sites. To reduce the impacts to primitive tent sites there would be a system of alternating closures of primitive tent sites. For example, a campsite would be closed for several years and then opened again and a nearby site would then close for several years. This pattern would then continue. Studies have shown that impacts to a campsite occur from a short period of use and it takes a long time for a site to recover. The restoration of impacted primitive tent sites would take considerable time and resources. This system would result in twice as many sites requiring maintenance as Alternative 2.

Alternative 2 – Preferred Alternative - Harden primitive tent sites to better withstand impacts; closed primitive tent sites will be restored to a natural condition. Designated primitive tent sites will be improved to better withstand impacts. For example, privies will be provided at heavily used sites, areas will be cleared and leveled for tent placement, and fire rings will be at a fixed location. Sites which are closed may be closed to all uses until they are restored. Efforts to restore sites will include erosion control, planting of vegetation, and soil recovery.

Alternative 3 - Turn the management of some of the primitive tent sites in the SLWF over to a reservation system, such as the one used by Department campgrounds. The primitive tent sites on Middle Saranac Lake and Weller Pond are an example of where the Department has transferred primitive tent sites over to a reservation system. Fees could be charged for the administration of the reservation system and the use of primitive tent sites. This would be a fundamental change from how the primitive tent sites are currently managed. This would allow groups to plan their route ahead of time and for those travelling from a distance to be assured that a site is available for them. This system would make it more difficult for those wanting to camp on a spur of the moment decision. This alternative would create additional administrative burdens of
managing camping in the SLWF.

Alternatives for management of roadside primitive tent sites

1. Do not issue camping permits for the roadside primitive tent sites; this means groups could have no more than nine people and stay a maximum of three nights.
2. For one night of the week, use of each campsite would be prohibited. This would require the removal of all belongings from the site.
3. Convert the area to a reservation system managed like DEC intensive use campgrounds. A fee would be charged to cover the administrative costs of this system.

Group Camping Discussion:

The APSLMP states a primitive tent site will be designed for a maximum of eight people. The APSLMP also allows for groupings of closely spaced primitive tent sites that hold up to 20 people. These groupings are to be spaced generally one mile apart.

The SLWF is used by organized groups to go on extended trips along various converging and diverging routes. Most of these groups are composed of youths and young adults, and the timing of these trips are largely based upon school schedules. The months of July and August are when the most groups are using the SLWF.

Camping permits in the SLWF have been issued for a maximum group size of 12 people for many years; this means organized groups have a great deal of experience of traveling and camping in groups of 12. There has been little interest for people to camp with groups larger than 12 people in the SLWF.

Within the SLWF the Department currently lacks an effective means of enabling groups to reserve a site or controlling the numbers of larger groups which may be passing through the SLWF on a particular date. For these reasons this UMP is considering several approaches for managing camping by large groups.

It should be noted that the APSLMP restriction on number of people camping in a group only applies to a primitive tent site developed by the Department. It does not restrict the ability of groups to camp at locations that are not developed primitive tent sites.

Preferred Alternative:

Groups of more than eight people will be accommodated at designated groupings of primitive tent sites. These sites are intended to be used by camping parties of more than eight people. A permit will be required to camp at these sites, however if a site is not occupied by 5:00 pm the site will then be open for anyone on a first-come basis for that night. The number of camping permits issued by the Department will be limited to the number of sites that are available. The permits for sites along waterways will be issued for maximum stays of three nights. The groupings of primitive tent sites in the SLWF will be limited to two primitive tent sites and a maximum of 12 people. The
groupings of primitive tent sites will be spaced generally one mile apart.

This alternative would comply with APSLMP requirements. This alternative will likely create difficulties for groups as they compete for a limited number of primitive tent sites. A review of group camping permits issued for previous years indicate that at peak use there will be greater demand for group sites than can be accommodated. Some groups may be able to shift their trips to a period of lower use levels. There are also some groups that may be able to divide into multiple parties with fewer than eight people to avoid the restrictions. Not all groups will be able to make these changes because of other scheduling priorities, the logistics of organizing camping trips, or legal requirements for having a certain number of chaperones. Under this alternative, some of the impacts to natural resources from groups would be reduced because they could be channeled to sites able to withstand the use. This would also allow maintenance resources to be focused on the specific group sites.

This alternative will be a challenge for the Department to administer; a system to manage the issuance of permits needs to be developed prior to implementing this alternative. It is possible that this system may need to be administered through an online reservation system, such as the Reserve America system used by Department campgrounds. This would mean that there will be a fee associated with the reservation.

The locations for the groupings of primitive tent sites are indicated on the campsites maps. Initially there will be 15 of these sites. All the group sites will be designed for a maximum of 12 people. Since this alternative is a new way of administering camping in the SLWF, additional group sites may be built, or groupings may be converted to traditional primitive tent sites to address usage patterns encountered during the implementation of this alternative. Other minor adjustments (such as the time that unclaimed sites become available) may be made to the system based on implementation results.

Alternatives Considered:

1) Primitive tent sites which are along specific waterways will be allowed to accommodate a maximum of 12 people. The site separation distance between these primitive tent sites will be generally one-third of a mile. This alternative recognizes the fact that routes used by watercraft cross multiple units. Differences in camping group size between units would create difficulties for people undertaking extended trips. This alternative would allow camping groups the flexibility of finding a site that they are accustomed to. This alternative would result in a reduction in the total number of primitive tent sites when compared to the other alternatives. Under this alternative, the impacts associated from large groups would continue, although the impacts from a group of 12 should be less than the groups of 20 allowed under the APSLMP. Primitive tent sites that are not along a canoe route will be limited to eight persons, except for specifically designated groupings of primitive tent sites as allowed by the APSLMP. Groups of more than nine people would still require a camping permit from the Forest Ranger. A map will be sent with the permit that identifies the waterways with primitive tent sites that can accommodate groups of 12 people. The waterways that this will apply
IV. Proposed Management Actions

to are the Raquette River, Saranac River; Upper, Middle, and Lower Saranac lakes; Kiwassa Lake; Lower St. Regis Lake; Spitfire Lake; Lake Clear; Lake Clear Outlet; Follensby Clear Pond; Polliwog Pond; Horseshoe Pond; Floodwood Pond; Rollins Pond; Little Square Pond; and Hoel Pond.

This alternative does not comply with the APSLMP, although something very similar to this alternative was approved in the Moose River Plains Wild Forest UMP (January 2011) for camping on Seventh and Eighth lakes. There are, however, significant differences between the situations in the two units. In the SLWF this would apply to more waterways and therefore many more primitive tent sites would be involved. Many of the primitive tent sites in the SLWF are excessively large and use of all these sites by groups of 12 would contribute to the continuation of this problem. Even under the tighter restrictions of the preferred alternative there will be more sites for groups of 12 people in the SLWF than on Seventh and Eighth lakes.

2) Continue with the current system. Groups of 10 or more require a permit and permits are not issued to groups of more than 12. The group would be allowed to camp at any campsite unless the Forest Ranger set terms on the permit or a campsite had a posted occupancy limit. This alternative would result in the least disruption to camping groups, but the impacts caused by large groups would continue. The High Peaks Wilderness Area UMP used something similar to this alternative for addressing camping on Long Lake and along the Raquette River. This alternative was not selected because it would not comply with the APSLMP.

3) Do not allow groups of more than 8 to camp in the SLWF. To further protect the natural resources, this restriction would not just apply to designated primitive tent sites but would include at-large camping. This alternative would be much more restrictive than called for in the APSLMP. This level of restriction would have a significant impact on users. Previous UMPs for Wilderness and Canoe areas have been limiting large group camping, with the thought that the groups could be accommodated in Wild Forest areas. While large groups could have greater impacts than a smaller group of similar composition there are also benefits that come from large groups, such as helping people to connect with nature. Therefore, this alternative was not selected.

4) Request that a revision to the APSLMP be considered by the APA allowing groups of up to 12 people to camp at primitive tent sites in either all Wild Forest areas or areas specifically designated in a UMP. The APSLMP allows the Department to request the APA to consider revisions to the APSLMP. Alternative 2 would be utilized to manage group camping in the SLWF until the APA can consider the requested revision. If the request for revision is rejected or not acted upon by the APA, then Alternative 1 would be implemented. This alternative was not selected to comply with the current APSLMP rather than seek to change it. A request to revise the APSLMP should not be used as the first choice; it should be used in situations where other options have failed.
IV. Proposed Management Actions

5. Other Structures and Improvements

Present Conditions:
There are other improvements in the SLWF, however these facilities do not warrant individual sections in this UMP. The APSLMP limits the type and in some situations the locations for improvements. Among the improvements in the SLWF are pit privies, bridges, register boxes, picnic tables, fire places, signs, barriers, and boat docks. The condition of these varies significantly. Several of the facilities in the SLWF are in poor condition and need major repairs or replacement. Most prominent among these are some of the bridges in the unit. Areas where there are bridges in need of replacement include the trails south of Floodwood Road.

There are several improvements in the SLWF that do not conform to APSLMP guidelines. The APSLMP lists structures and improvements that are allowed. Anything that is not listed is considered to be non-conforming. Some of the non-conforming structures and improvements that are in the SLWF already existed when the land was purchased by the State, others were built by the State. An example of a non-conforming bridge is over the Saranac River at the trail that goes to Moose Pond from NY Route 3. This bridge is made of steel, while bridges in wild forest areas are required to be made of natural materials.

Within the SLWF there are two former landfills. One of these is located between the Fish Creek and Rollins Pond Campgrounds, the other is adjacent to the Department and DOT Administrative Area on State Route 186. The Fish Creek landfill was likely established during the 1930's and was used for waste generated by the campgrounds until 1986. This landfill was officially closed, capped, and had monitoring wells installed on November 9, 1988. An administrative road provides access to the landfill. The State Route 186 landfill was established in the late 1960's to handle wood and miscellaneous debris generated by Department operations. The landfill was capped between 1999 and 2000. Eleven monitoring wells were installed with this closure. There are requirements that the area of both landfills be mowed to prevent large woody vegetation from becoming established. This is needed to protect the containment cap.

There is an old sand pit near Connery Pond (see map 10) that for many years has been used for target shooting. Located at this area is a shooting bench, the remains of a second bench, and cleared lanes of fire to a sand back stop. Target shooting is allowed in Wild Forest areas, however, this area has experienced problems with a significant amount of garbage and shooting debris being left on site. A number of years ago the Department removed a significant amount of garbage that had accumulated. At that time the access road to the shooting pit was blocked at its intersection with Connery Pond Road. The problem of debris being left on the site has not been resolved. Recently a regulation has been enacted that prohibits the possession or use of breakable targets on State land, which includes clay pigeons and glass containers (6 NYCRR § 190.8(ab)). This regulation also allows the Department to close areas to target shooting.
IV. Proposed Management Actions

There is a concrete dam on Lake Clear Outlet. This dam is 11.5 feet high and has a spillway 70 feet long. This dam’s normal water storage is 3,190 acre-feet. The reservoir area for this dam is 1,107 acres.

There was a concrete dam on the West Branch Ausable River one mile upstream from Monument Falls. This dam was removed in the fall of 2018. This dam’s normal water storage was 13.3-acre feet. This dam was seven feet high and about 60 feet long.

Objectives:
- Keep number of improvements to the minimum that are needed to help protect the resources.
- Improvements will conform to APSLMP guidelines.

Management Actions:
- All pit and box privies will be set a minimum of 150 feet from any lake, pond, river, or stream. Any privy that violates this APSLMP guideline will be removed or relocated.
- Box toilets will be phased in as a replacement for pit privies where appropriate conditions exist.
- When the steel bridge over the Saranac River (on the foot trail to Moose Pond) needs significant rehabilitation, it will be removed to comply with APSLMP guidelines. A decision whether to replace the bridge with one made of natural materials or to eliminate the bridge will be made at that time (see map 9).
- New, reconstructed or relocated improvements near shorelines of lakes, ponds, rivers or major streams will be located to be reasonably screened from view from the waterbody to avoid intruding on the natural character of the shoreline.
- Maintain, repair, improve, or replace structures and improvements as needed.
- New structures and improvements will only be built where needed to protect the natural resources, provide for public safety, and afford public enjoyment in keeping with the wild forest atmosphere. Such facilities include fire rings, pit privies, picnic tables and standard trail improvements (i.e.: bridges, ladders, turnpike, rock cribbing, and bog bridges). All such facilities will conform to APSLMP guidelines.
- Mow the area of the former landfills as required, monitor the test wells as required, and maintain the administrative roads to the landfills. If required, seek reclassification of area of the landfill.
- The benches at the shooting area near Connery Pond will be removed. All the shooting debris will be removed. If volunteers help with the cleanup and if the
IV. Proposed Management Actions

area remains largely free of debris, the area will remain open for target shooting. If not, then the area will be closed to target shooting. The Department will seek to establish a partnership to keep the area clean.

- The dam on Lake Clear Outlet may be maintained.
- A deteriorating dam on the West Branch Ausable River has been removed. The site will be monitored for impacts related to the removal of the dam.

6. Saranac Lake Locks

Present Conditions:
Boating on Middle and Lower Saranac Lakes are facilitated by two locks on the Saranac River. The locks raise and lower boats the 10-foot difference in height between Middle Saranac Lake and Oseetah Lake (see map 7). These locks are operated and maintained by the Department under the direction of Environmental Conservation Law §9-0903(3). There is no charge for those using the locks. These locks are important for allowing motor boat access through the area, but they are also bottle necks. When the locks are not operating properly they create travel delays.

The upper lock is located 1.1 miles downriver from Middle Saranac Lake. This lock was constructed in the 1890’s as a private enterprise, although there are reports that funds from the State were used to pay for the construction. The lock is manually operated. This lock consists of fill and drain wicket doors and two swing doors, one on the upstream side and the other on the downstream side. The typical pass through time is ten minutes.

The lower lock is located where the Saranac River enters Oseetah Lake. This lock was built by the State around the year 1900. This lock is currently computer controlled using electrically powered hydraulic doors. Special vegetable-base hydraulic oil is used. Power for the system is from the grid. The drain and fill meters are actuated by hydraulic pistons. The doors swing open or closed by hydraulics. There are directions posted for manual operation to allow the public to pass through the locks when staff is not available. The manual system consists of wheels that are turned to build up hydraulic pressure to activate the proper function and direction (drain, fill, open, or close) of the system. Manual operation does require some physical effort and time to operate the lock. Typical time to pass through manually is 15 minutes.

Over the years the locks have been repaired and improved. In 1965 cabins were constructed at both locks for the operators. In the 1970’s electric power was brought to the lower lock to operate a compressed air system. Between 1987 and 1989 the lower lock went through a two-phase rehabilitation. The hydraulic system was added in the 1990’s, replacing a compressed air system. The upper lock was last rehabilitated in 1993.
Table 14: Saranac River locks usage.

<table>
<thead>
<tr>
<th>Year</th>
<th>Upper Lock</th>
<th></th>
<th>Lower Lock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boats</td>
<td>People</td>
<td>Boats</td>
<td>People</td>
</tr>
<tr>
<td>1983</td>
<td>3,990</td>
<td>10,975</td>
<td>5,514</td>
<td>17,251</td>
</tr>
<tr>
<td>1984</td>
<td>3,415</td>
<td>10,233</td>
<td>5,751</td>
<td>18,506</td>
</tr>
<tr>
<td>1985</td>
<td>3,297</td>
<td>9,702</td>
<td>5,357</td>
<td>16,583</td>
</tr>
<tr>
<td>1989</td>
<td>4,758</td>
<td>13,620</td>
<td>6,295</td>
<td>19,250</td>
</tr>
<tr>
<td>1990</td>
<td>4,644</td>
<td>14,094</td>
<td>5,336</td>
<td>16,525</td>
</tr>
<tr>
<td>1991</td>
<td>3,924</td>
<td>11,789</td>
<td>5,396</td>
<td>16,631</td>
</tr>
<tr>
<td>1995</td>
<td>4,349</td>
<td>12,231</td>
<td>5,685</td>
<td>18,017</td>
</tr>
<tr>
<td>1997</td>
<td>4,028</td>
<td>11,281</td>
<td>5,847</td>
<td>17,557</td>
</tr>
<tr>
<td>2000</td>
<td>3,991</td>
<td>11,759</td>
<td>5,600</td>
<td>17,624</td>
</tr>
<tr>
<td>2001</td>
<td>4,101</td>
<td>12,331</td>
<td>5,910</td>
<td>18,439</td>
</tr>
<tr>
<td>2002</td>
<td>4,302</td>
<td>13,031</td>
<td>7,083</td>
<td>21,547</td>
</tr>
<tr>
<td>2005</td>
<td>3,897</td>
<td>10,191</td>
<td>5,386</td>
<td>15,305</td>
</tr>
<tr>
<td>2007</td>
<td>4,038</td>
<td>11,780</td>
<td>5,832</td>
<td>17,075</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>5,404</td>
<td></td>
<td>16,802</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>5,832</td>
<td></td>
<td>17,075</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>4,987</td>
<td></td>
<td>17,491</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td>5,849</td>
<td></td>
<td>17,899</td>
</tr>
</tbody>
</table>

Both sets of locks need partial or total rehabilitation to remain operational into the foreseeable future. The upper lock has suffered from weathering and normal wear and tear since the last overhaul in 1993. The lower lock has experienced many problems with the wicket doors and hydraulic mechanisms. The frequency of the problems appears to be increasing. The lock has been closed several times to address some of the problems. The spillway of the lower lock is also in disrepair and will require rehabilitation or replacement. Water is bypassing the water control spillway through cracks or holes in the base of the structure.
IV. Proposed Management Actions

Objective:
- Operate the locks in an environmentally sustainable way.

Management Actions:
- Rehabilitate and maintain both locks as needed.

D. Public Use and Access

1. Public Use

Present Conditions:
While the exact number of visitors to the SLWF is unknown, this area is heavily used. The proximity to the villages of Saranac Lake, Tupper Lake, and Lake Placid; easy access from highway systems; and the unique natural features on the area all contribute to high levels of use. The clear majority of this use is occurring at the developed recreational areas of the SLWF. There are large areas of the SLWF which receive limited use. The heaviest use occurs during the summer, but there are significant numbers of visitors throughout the year. Primitive tent sites, water access sites, trails, and beach areas of the SLWF are popular and the amount of use they receive is resulting in impacts to the natural resources and visitor experiences.

Visitor’s knowledge and experience are a large factor in the level of impacts that they create. One group may not leave any evidence that they have used a site, while another group, or even an individual, can significantly damage an area. For this reason, education of proper outdoor recreational techniques is important in protecting the resources of the SLWF. The Department uses brochures and publications to provide information to the public. Forest Rangers, Assistant Forest Rangers, and ECOs interact with the public to carry out informal educational efforts. The Department’s effort to encourage use of “Leave No Trace” recreation is one example of efforts to reduce impacts.

Large groups can create problems for other visitors. Large groups tend to clog up trails and slow down other hikers. Also, a large group can disrupt the experience of other visitors on ponds, summits, and other stopping points. Large groups can also have a greater impact on the natural resources than smaller groups. Any group of more than 20 people conducting an organized event on State land is required to get a permit. The Department has placed restrictions on day-use group size in some Wilderness and Canoe areas, but not in Wild Forest areas.

One problem that occurs occasionally involves people having parties on the SLWF. Complaints about parties usually involve large fires, loud noise, and vandalism. These activities result in a very negative experience for other visitors to the SLWF, complaints from nearby private property owners, destruction of recreational facilities, and damage to natural resources. Management decisions consider this problem.
There are some activities that the public is enjoying in the SLWF which are not covered in the discussions in the facilities section. Examples of such activities include: geocaching, rock and boulder climbing, berry picking, and swimming. The Department does not need to build facilities for these activities because the public can enjoy these activities where they find them. There are some areas which are used regularly for these activities.

There are cases of illegal use occurring in the SLWF. Examples include: camping too close to water, failure to obtain required permits, storing personal property on State land, tree cutting, littering, and operating motor vehicles off roads. Some of those conducting illegal activities do so because of lack of knowledge of Department regulations and are not deliberate. Others, however, are willfully breaking the law. Department regulations are in place to protect the natural resources, enhance visitor experience, and provide for public safety.

Objective:
- Allow visitor use while limiting negative impacts on the natural resources or visitor experience.

Management Actions:
- Prohibit the use of any audio device which is audible outside the immediate area of a campsite.
- Utilize a variety of methods to provide information to the users of the SLWF on proper recreational techniques and Department regulations.
- Appropriate informational kiosks will be installed at selected entry points.
- Monitor public use activities which do not utilize Department facilities to ensure that damage to the natural resources is not occurring. Allow these activities to occur as long as they are not causing damage to the natural resources or user conflicts.
- Install barriers where they are needed to curtail illegal motorized use.
- The land manager may use any or all the following actions as temporary measures to protect natural resources: request public to voluntarily not use sections of the SLWF, restrict or eliminate the issuance of camping permits, constrict available parking areas, close trails or access points, and close or relocate problem primitive tent sites.
- Develop visitor use management direction and strategies for land and water use of the SLWF and in consideration of the surrounding areas.
2. Water Craft Use

Present Conditions:
The waters in the SLWF have served as important transportation routes since the earliest human settlement of the area. Today these are key recreational routes for motorized and non-motorized watercraft. The Adirondack Canoe Route, the Adirondack Classic 90-Miler Canoe Race, and the Northern Forest Canoe Trail are all well-known races or paddling routes that pass through the SLWF. Other important paddling areas in the SLWF are in the north and western portions of the unit. The canoe routes in these areas serve as connections with the Saint Regis Canoe Area (SRCA) and the St. Regis Chain of Lakes (with routes continuing into the Debar Wild Forest). A few of the key connectors are at Floodwood Pond, Hoel Pond, Little Clear Pond, Bear Pond, and at Lower St. Regis Lake. These connections between the SLWF and the SRCA allow visitors to be able to make loop trips or to travel for long distances.

There has been a great deal of comment about the use of motor boats and non-motorized watercraft in the SLWF. Motor boats and canoes can and often do use the same body of water without conflict; however, this depends on how the water craft are operated and the expectations of the users. For example, if motor boats are operated inappropriately they can swamp other water craft and they can detract from the experience being sought by other recreationists. Canoes using the middle of a marked channel can impede the movement of other water craft. Most of the comments about motor boat usage has been focused on three locations; Follensby Clear Pond (and ponds near it), Weller Pond, and the Raquette River.

The concern of inappropriately operated motorboats is not limited to canoers and kayakers. Users of small motorboats can be concerned about being swamped by wakes from larger, fast moving boats. These visitors may like the opportunity to use their boats on a waterbody that does not have boats towing water skiers or parasailers, fishing boats that race from one location to another, and jet skis making abrupt course changes. The operators of small motorboats may also find some of the recreational activities that they participate in (particularly camping and fishing) to be more enjoyable on a waterbody where the entire shoreline is owned by the State.

The ponds near Follensby Clear Pond are generally used by those seeking a semi-remote camping experience. These are also popular fishing ponds. Motor boats are used by some to reach primitive tent sites and while fishing. Follensby Clear Pond can be accessed by motor boat through Spider Creek (which connects to Fish Creek) and the fishing access sites. Rarely, a boat towing a water skier or a personal water craft will be used on Follensby Clear Pond. These uses are not compatible with the general use of the pond. There are large bodies of water nearby to accommodate personal water craft and water skiers. Polliwog Pond can have small motor boats put in at its north end. The remaining ponds are difficult for motor boats to access, as this would require carrying the boat for a distance. Some restrictions are in place on motor boat use in the area. Only electric motors with a rating of five horsepower or less are allowed on Fish Creek between Floodwood Pond and the campground boat launch, this includes Little
IV. Proposed Management Actions

Square and Copperas ponds. Whey Pond has the same restriction. The boat launch at Rollins Pond Campground only allows the launching of boats with a motor of 25 horsepower or less. All mechanically propelled vessels are prohibited on Gordon Pond, also called Twelfth Tee Pond.

Weller Pond is a small pond connected to Middle Saranac Lake. Middle Saranac Lake has significant motor boat use, and these boats can easily access Weller Pond. Primitive tent sites on the shore of Weller Pond and Middle Saranac Lake are managed as part of the Saranac Lake Islands Campground. The primitive tent sites on Weller Pond are the most remote in the campground. Occasionally, a boat towing a water skier or a personal water craft will be used on Weller Pond; however, these uses are not compatible with the general use of the waters. Middle Saranac Lake provides sufficient opportunities for personal water craft and water skiers.

The section of the Raquette River in the SLWF is winding and slow moving. In the spring the water level rises and floods a large area. There are two access sites on this section of river, one is at Axton landing and the other is a boat launch known as the Crusher. The Raquette River is used as a canoe route and is part of the 90-Miler canoe race. It is a destination for fishing, and it is also used to reach hunting camps during the big game hunting season. Motor boats have been used on the river for many years. Motor boats can access this section of river by putting in at either of the two access locations and by coming upstream from Simon Pond (there is a bridge on private property which sometimes restricts the size of boats taking this route). New York Navigation Law places a speed limit of five miles per hour on boats when they are within 100 feet of a shoreline. The width of the Raquette River varies greatly, but often it is less than 200 feet wide. This means a speed limit of five miles per hour applies to the section of the Raquette River in the SLWF.

The restrictions listed here deal with the use occurring on the waterbodies themselves. There are also restrictions listed in Section IV. C. 3 which will impact the size and type of water craft that can use the various access sites.

Objectives:

- Protect the character of the waterways in the SLWF.
- Provide recreational opportunities for a diverse range of user groups.

Management Actions:

- The ponds near Follensby Clear Pond, Weller Pond, and the section of the Raquette River in the SLWF will be managed in a way to favor camping, fishing, and other activities which are leisurely in nature. High speed motor boating is not appropriate for these waters, particularly personal water craft and boats pulling a water skier (or other similar types of recreation). To prohibit high speed recreation on these waters, motor boats will face restrictions.
 - The maximum horsepower of motors allowed to be used on the ponds
IV. Proposed Management Actions

near Follensby Clear Pond will be 15 horsepower. These ponds are Follensby Clear, Polliwog, Middle, Green, East Pine, and Horseshoe ponds. For those ponds which have private shoreline ownership this restriction will not apply to the pond but to the public access site on the pond.

- There will be a speed limit of five miles per hour placed on all of Weller Pond and Little Weller Pond. This speed limit will allow for quiet recreation on the ponds and the primitive tent sites on the shore, while allowing access to these areas by a broad range of people.

- On the Raquette River there will be an increased effort at education about and enforcement of the existing five miles per hour speed limit within 100 feet of shore. Signs may be used to inform the public of the speed limit. Department personnel will set an example to the public and obey the five miles per hour speed limit, except in emergency situations.

- Public use of motorboats will be prohibited on Bear and Bog ponds. These ponds provide access to the St. Regis Canoe Area. Motorboats do not use these ponds.

- Efforts will be made to educate the public about regulations and courtesies for motorized and non-motorized watercraft.

- Retain the current motor use restrictions already in place on other waters in the SLWF.

Alternatives Discussion for Water Craft Use

The management of water craft must consider the impacts from these on the adjacent private property owners, other users of the Forest Preserve, and the environment. To adequately address APSLMP guidelines, public comments, carrying capacity, and potential adverse impacts on the physical, biological or scenic resources of the unit, a range of possible alternatives was considered regarding public water craft use in the SLWF. Since there are many waterbodies of differing character in the SLWF, these alternatives are presented in general terms. They may apply to a specific waterbody to varying degrees. The actions above express the preferred alternative for specific waterbodies.

No-Action Alternative- Currently, as listed above, there are restrictions on water craft use on some of the waters of the SLWF; however, on most of the waters there is no statute or regulation that restricts the use of motor boats. The restrictions placed at access sites (listed in section IV. C. 3) may not be enough to address the concerns on all the waterbodies in the SLWF. At some locations there are waterbodies that are connected by navigable waterways which would allow water craft of an inappropriate nature to utilize the smaller, remote waterbodies.
Alternative 2 - Prohibit all motorized water craft from utilizing the waterbody.

Motorized water craft can negatively impact other users through noise, odors, and wakes. A prohibition would help the environment because two stroke engines are inefficient in the burning of fossils fuels. As a result, some of the fuel is released unburned as pollutants into the air and water. In wild forest areas, the use of motors is allowed. Motor boat usage has been a traditional activity on many of the waters. Motors can enhance the use of waterbodies for some people, including persons with disabilities. This alternative would limit opportunities for those who use small motorboats to enjoy a pond that has features such as an undeveloped shoreline, protection from wind, and not used by high speed boat traffic.

Alternative 3 – Allow only the use of electric motors on motorized water craft.

This alternative would eliminate the noise, air and water pollution associated with gas powered engines. Electric motors would allow individuals who want the assistance of a motor, including persons with disabilities, to easily move about while fishing or camping. However, the utility of an electric motor powered from batteries for use during a camping trip could be questioned because of limited endurance. Electric motors are designed for different purposes than gas motors. Electric motors generally propel boats at lower speed than gas motors. This would be a result in decreased wakes and increased safety, but also increased travel times. This alternative could place a financial hardship on some visitors to the pond because they may have to purchase a new motor and battery or purchase a new watercraft that does not need a motor.

Alternative 4 - Develop a regulation for a horsepower limit for gas motors.

There tends to be a correlation between greater motor horsepower and greater impacts. A larger engine produces more noise than a smaller one. Under most situations a larger motor would consume more fuel than a smaller one, thereby also emitting more pollution. A larger motor size would allow a boat to travel at higher speeds, which could create safety concerns among other watercraft users and result in greater wakes. While the motor size limits could reduce air, water and noise pollution, it would not eliminate them completely. Under this alternative there will be some people who have used the waterbody that have motor boats with more horsepower than would be allowed; this would result in those people no longer visiting the waterbody, having to buy a motor with lower horsepower for their boat, or having to buy a new watercraft.

Alternative 5 - Establish and enforce speed limits.

Many of the negative impacts associated with motor boats increase with the speed at which the water craft is operated. The faster a boat travels the greater the wake it creates, until the boat gets on plane. The wake can impact water fowl nesting and shore line vegetation. An engine operating at full throttle would be louder than one just above idle. The risk to other water craft is reduced as slower speeds increase the time available to react and decrease stopping distance. The impacts from motor use would be decreased, but not totally removed with speed limits. On larger bodies of water, a
speed limit would significantly increase travel time. The enforcement of speed limits could take more staff time and resources than the enforcement of other regulations.

3. Access for Persons with Disabilities

Several projects have been undertaken in, or adjacent to, the SLWF that improve accessibility for persons with disabilities. Some examples include: fishing access sites at East Pine Pond, Follensby Clear Pond, Indian Carry, and Lake Colby; boat launches at Raquette River, Second Pond, and Upper Saranac Lake; and campsites on Lower Saranac Lake. These facilities require maintenance and monitoring to ensure that they continue to meet accessibility standards.

Objectives:

- Provide opportunities for access by people with disabilities.
- Comply with the Americans with Disabilities Act in the design and construction of all new structures and/or improvements.
- For structures not covered by official accessibility guidelines, design and build them to maximize accessibility in accordance with available design information.

Management Actions:

- Designate the Dunlap Road as being a CP-3 road. An accessible nature trail, to provide opportunities for fishing and wildlife viewing, will be built at this location. Create an accessible campsite adjacent to the start of the Dunlap Road. The road will provide access to existing Department programs such as: hunting, bird watching, and fishing. By designating this CP-3 road, those with disabilities will be able to travel away from heavily used public roads to take part in recreational activities. Further discussion is provided in section IV. C. 2 (see map 8).

- The Bloomingdale Bog Trail is an abandoned railroad. This 3.8-mile-long trail has a generally firm and level surface that should be able to accommodate persons with disabilities, however there are several sections of the trail where the surface material has been washed out. The surface of this trail will be improved to better accommodate persons with disabilities. Accessible parking will be provided at the north and south ends of this trail (see map 9).

- An accessible trail will be built along the Ausable River near Monument Falls. There is an existing foot path in this area the can be upgraded to accessibility standards. This trail will about 500 feet long. The trail may be expanded in the future to make a 0.5-mile long loop. The trail will leave from the parking at the monuments marking the 50th and 100th anniversary of the Forest Preserve. Interpretive signage will be provided along the trail (see map 10).

- The trail to Lake Clear, from the main parking lot, will be improved to meet accessibility standards, this trail will extend along the beach for a distance.
IV. Proposed Management Actions

- At least 20 of the campsites in the SLWF will be built to accessibility standards. The locations of these accessible sites will be representative of the various recreational opportunities in the unit. These sites will not be designated as reserved for use by persons with disabilities exclusively. Information may be posted at the sites informing users that it has been built to accessibility standards and to encourage that persons with disabilities be accommodated at the site.

- Place motor vehicle barriers so that they are not barriers to persons with disabilities. There shall be a minimum 36 inches of clear space around the barrier.

- Make information available regarding the level of difficulty that one might expect to encounter when accessing various facilities of the unit. Make this information available at trail heads, the Department website and/or in the area brochures. The information will be based on objective measurements of the facility.

- Involve a knowledgeable representative from the community of individuals with disabilities in subsequent projects and proposals, including the design and construction of any accessible trails, accessible campsites and/or picnic areas as proposed.

E. Proposed Regulations

Several of the management proposals outlined in this UMP require the promulgation of new rules and regulations in accordance with Department policies and procedures, and the APSLMP. Statutory authority for regulations are found in the ECL §§9-0105(3) and (15), and in the Adirondack Park Agency Act (Executive law §§816.1 - 816.3). Executive Law §816.3 directs the Department to develop rules and regulations necessary to implement the APSLMP. Existing regulations relating to public use of State Lands under the jurisdiction of the Department are found in 6 NYCRR Part 190. These proposed regulations constitute the minimum level of direct regulation necessary to assure APSLMP compliance and directly influence visitor behavior to protect resources and the experiences of visitors.

Amend 6NYCRR Part 190 to apply the following regulations to the SLWF:

- Miscellaneous restrictions: which prohibit the disposal of any food scrap, food matter, or food container in any pond, stream, or other waterbody; prohibiting the use of soap or detergent in any pond, stream, or other waterbody; and prohibiting the use of any audio device which is audible outside the immediate area of a campsite.

- Develop regulations that will prohibit fires and camping on the Wild Forest lands on the east side of Lake Clear between the lake and State Route 30.

- Develop regulations that will prohibit camping and fires on the Brewster Peninsula.
IV. Proposed Management Actions

- Develop regulations that will prohibit camping and fires from within 500 feet of the Fernow Forest trail.

- Develop regulations that will prohibit camping and fires on the Lake Colby Nature Trail Parcel.

Amend 6 NYCRR § 196.5 to:

- Prohibit the operation of mechanically propelled vessels other than those powered by a motor with a rating of 15 horsepower or less on Horseshoe Pond, Middle Pond, Polliwog Pond, Follensby Clear Pond, and East Pine Pond; and

- Prohibit the operation of mechanically propelled vessels on Bear Pond and Bog Pond in Franklin County.

Adopt new regulations for the SLWF to:

- Prohibit the public from launching boats powered by a motor with a rating greater than 15 horsepower at the following access sites: Hoel Pond, Floodwood Pond, East Pine Pond, Lake Clear Outlet, and South Creek; and

- Establish a speed limit of five miles per hour for Weller Pond and Little Weller Pond.

F. Special Management Areas

The following areas require special management actions because they have resource or public use factors that need to be addressed more specifically than is provided elsewhere in this UMP. Several of these areas are identified in the APSLMP as illustrative examples of special management areas. The APSLMP lists additional areas of the SLWF as illustrative examples of special management areas, but those are not included in this section of the UMP because the general Wild Forest guidelines provide sufficient protections.

1. **Fernow Forest**

Fernow Forest is a 68-acre parcel of the larger 30,000-acre demonstration forest, known as Axton Plantation, established by the College of Forestry at Cornell University in the year 1898. It is located off State Route 30, near Wawbeek (see map 8). A description of this area is included in the history section of this UMP. This location is where Bernhard Fernow set out to convert a deteriorating hardwood forest to a coniferous forest in the year 1900. Fernow clear-cut the parcel and burned whatever lumber could not be sold. The cleared area was then planted with white pine and Norway spruce seedlings in alternating rows. The history of this area makes it a unique location in the Adirondack Park. Since the lands became part of the Forest Preserve, natural forces have been dominant in shaping changes to the forest.
Today there is a one-half mile interpretive nature trail through the plantation. The self-guided trail provides visitors with information on the history of Fernow Forest and the early efforts to promote scientific and sustainable forestry in the United States. There is a plaque commemorating Bernhard Fernow and the historical significance of the forest that he established.

Objective:
- Encourage the enjoyment of the historic Fernow Forest.

Management Actions:
- Maintain the trail, interpretive materials, and the historic markers.
- Camping and fires will not be allowed within 500 feet of the trail.
- The installation of better interpretive signs at key locations on the trail will be allowed. These interpretive signs will be made of rustic materials.
- Allow natural forces to continue shaping the condition of the current forest.

2. Brewster Peninsula Nature Trails

This is a system of nature trails located near the Village of Lake Placid (see map 10). The location results in high use of the parcel. It is used by cross-country skiers, bikers, hikers, and anglers. It receives a significant amount of use by people walking their dogs. When this property was originally purchased the Department had considered putting a campground on this parcel, but this was not developed, in part because there was significant opposition to the idea.

This parcel totals 161 acres; most of which was bought in 1963. Forty acres were acquired in 2006. The parcel is bordered by developed private lands and Lake Placid. A segment of trail, approximately 275 feet long, passes through private property near the dam on Lake Placid outlet. The dam and a small dock near it are on private property. There is a dirt road that passes through the center of the parcel. This road has been opened seasonally to facilitate fishing access. There are telephone and sewer lines that cross the property; these utilities existed prior to State ownership.

In 2002 the Lake Placid Garden Club placed 14 interpretive panels along the trails. There is also a brochure that provides a description of some labeled features along the trails.

The current parking area for this parcel is a pull off area in front of the gated access road. A right-of-way over a private road is used to reach this parking area. The parking area is poorly delineated, which results in vehicles parking along the private road. This causes problems with access through the private road.
IV. Proposed Management Actions

Objective:

- Facilitate the connection of people to nature through the nature trails on this parcel.

Actions:

- Camping and fires on the Brewster Peninsula parcel will be prohibited because of the small size of this parcel and heavy use it receives.

- The trails on this parcel will be interpretive trails. Trails may be improved to make access easier for visitors. Additional signs may be placed along the trails. The interpretive signs will be made of rustic materials.

- A designated parking area for 18 cars will be built off Peninsula Way.

3. Lake Clear Beach

This area is a strip of sandy beach on the east shoreline of Lake Clear (see map 9). This has been a popular swimming location for many years, going back to when Paul Smith’s College owned this parcel. In 1989 the State purchased this area from the college. In 1992 the Department constructed the current parking area; prior to this there were problems with cars parking along State Route 30. The Department has also installed pit privies at this location. A gated road that passes through the parking area is opened during winter to allow for ice fishing access.

The beach receives a great deal of use in the summer. There are problems with fires and garbage on the beach, thus detracting from the experience of other visitors by making the beach area unsightly and creating a hazard from broken glass. The worst of the problems seem to occur from groups holding parties at the beach, often at night. The Department has posted signs at the beach indicating that fires and camping are prohibited.

The upland portions of this special management area were used for many years by Paul Smith’s College as part of the forestry curriculum. This area includes a 42-acre pine plantation that was established in the 1950’s. This plantation was planted by forestry students under the direction of professors Gould Hoyt and George Peroni. Over the years, many forestry students worked on this plantation as part of their studies.

Desired Conditions for Beach Areas Monitoring

The Lake Clear Beach is an example of a natural area the receives a high level of recreation use. This makes it different than a purpose-built facility, but this area can still be included in a wildland monitoring plan or guidance. The monitoring variables for a beach area will include efforts to collect data on the expansion vegetation loss; the occurrence of trash, human waste, and remnants of fires; and that visitors are perceiving the wild forest character of the area. Photo points will be a useful tool to help illustrate potential changes over time.
Objective:

- Provide public enjoyment of the Lake Clear beach throughout the year while protecting the resources of the area.

Actions:

- Monitoring for the desired conditions of beach area will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 o Desired conditions for beach area will be ones that have minimal expansion from the current use footprint, doesn’t negatively impact adjacent vegetation; is free of occurrences of human waste, litter, or fires; and provides an enjoyable user experience.
 o Monitoring could include photo point locations; control measuring points for occurrences of trash, fires, human waste, and vegetation loss; and visitor surveys.
- Develop regulations that will prohibit campfires and camping on the Wild Forest lands on the east side of Lake Clear between the lake and State Route 30. This would apply to about 170 acres.
- An interpretive trail system, a four-car parking lot, and a picnic area will be developed in the former Paul Smith’s College pine plantation. It is expected that donations from interested groups will be used in the construction of these improvements. The interpretive message of the trail will include the history of the plantation and the changes occurring through natural processes. The trail system may connect with a trail on the former Lake Clear School property. The Department has a policy that allows for the naming of capital improvements for those who donated resources to make the improvement possible. In this case the trail system will be named to honor former Paul Smith’s College professors Gould Hoyt and George Peroni. These two individuals were heavily involved in the establishment of this plantation. The interpretive signs will be made of rustic materials.
- The trail to Lake Clear, from the main parking lot, will be improved to meet accessibility standards, this trail will extend along the beach for a distance.
- Continue to allow ice fishing access by opening the gates to allow motor vehicle access during the winter.

4. Lake Colby Nature Trails

There is a 50-acre parcel of SLWF on the southeast shore of Lake Colby, this includes 1,400 feet of lake frontage (see map 9). The land was purchased by the State in 1963. When the parcel was purchased there was a residence, several accessory structures,
IV. Proposed Management Actions

and a series of carriage roads on the property. The structures have been removed, although the remains of several foundations are present. Some of the roads are still easily identifiable.

There is limited access to this parcel because the parcel is bordered by Lake Colby on one side and private property on the others. When the parcel was privately owned the primary access was from Moir Road, a private road, but there was also some access from a road at the end of Van Buren Street.

There are two significant biological occurrences on the parcel that influence management. One is a bald eagle’s nest; all activities planned for this parcel have considered this nest and will comply with recommendations in the Department’s Bald Eagle Conservation Management Plan (draft version dated January 2015). The other occurrence is a patch of invasive periwinkle. Efforts will be made to eradicate this infestation and to ensure that it is not spread by public use.

Objective:

• Facilitate the connection of people to nature through the development of recreational facilities on this parcel.

Actions:

• Develop a system of trails on this parcel. The trails will be considered nature and interpretive trails. Interpretive signage could be included at appropriate locations; the interpretive signs will be made of rustic materials. Approximately 1.75 miles of trail will be developed. The trails will be geared toward pedestrian use. Mountain biking will be allowed on these trails, but if there are conflicts between users, mountain bikes may be prohibited from some of the trails.

• Picnic tables may be built at appropriate locations along the trails.

• A parking area for 10 cars will be developed on the State Land at the end of Van Buren Street.

• Camping and fires will be prohibited on this parcel. This restriction is being implemented because of the small size of the parcel.

Alternative discussion

Alternative 1 - no action.

The area will be managed the way it is currently. Public access to the parcel will occur from the lake frontage. It would be expected that there will be very limited public use of the parcel. There is currently some use of the parcel from adjacent property residents. This would continue, but any paths on the parcel will not be considered official trails.

Alternative 2 - create access from Van Buren Street (preferred alternative).
The actions under this alternative are reflected in the list above. These actions will result in increased recreational opportunities, but there will also be increased impacts from the use of the parcel. The impacts are expected to be minor because the use of best management practices will be included in the trail design and construction. The use of existing hardened carriage ways will also limit the impacts. There will be some trail construction through wetlands; this construction will follow proper practices to limit the amount of impacts to the wetland and to allow the impacts to be reversible. Another impact from this alternative will be an increase in traffic on Van Buren Street. This increase is not expected to create significant traffic problems. It is expected that the timing of use of the trail will be dispersed through the day; there would likely be more use on the weekends. The proposed parking area would use an area of fill that has been used for parking and storage in the past.

This alternative was selected because it is expected to provide the best access to new outdoor recreational opportunities and the impacts are not expected to be significant.

Alternative 3- create a trail system but do not provide parking on site.

This alternative is like Alternative 2, with the exception that parking would not be provided off Van Buren Street. This alternative would allow increased recreation use of the parcel but would not result in increased vehicle use of Van Buren Street. The trail system would be within walking distance of a significant number of Saranac Lake residents. People from outside the immediate area would have more difficulty accessing the trails. There would be less use of the trails under this option than Alternative 2. The impacts from increased traffic on Van Buren Street are not expected to be significant enough to require that this alternative be selected.

Alternative 4- provide pedestrian access from the northern end of the parcel.

The actions under this alternative are like the proposed actions, except that Moir Road would be used to access the trail system. This would be pedestrian access only (without significant improvements Moir Road is not suitable for public motor vehicle use). Under this alternative the distance to the trail system would be increased (by about one mile) for most residents. There are limited options for nearby parking. The parking lot at the beach area on Lake Colby could be used, but it is gated when the beach is not open. This alternative would eliminate the need for trails to cross wetlands. Under this alternative a trail would be closer to a bald eagle’s nest. The trail would also come closer to private residences.

5. McKenzie Pond Road Boulders

There is a location off McKenzie Pond Road where there are several groups of large boulders (see map 10). Large glacial erratics are not uncommon in the Adirondacks. What makes these boulders special is that they are a short walk from a road and there are several boulders in a small area. These two facts have resulted in this location becoming a popular destination for people who want to climb boulders. A system of herd paths has developed connecting these boulders. Through an online guide and
guidebooks this area has received a good deal of publicity for its bouldering opportunities.

The sport of bouldering is different from rock climbing. The equipment generally used for bouldering consists of a mat, chalk, and tight-fitting shoes. The climbers test their skills by trying different routes (known as problems) on a boulder. Some people enjoy the technical aspects of the many ways to climb the boulders, while others enjoy the practice they receive from climbing the same boulder.

Much of the land that the boulders are located on is managed by the Department, although several of the boulders are on Wild Forest lands under the jurisdiction of the Department of Corrections. The parking for this area is limited and there have been concerns raised about the public parking on private property. When Essex County performed some work on McKenzie Pond Road in 2005, an area for increased parking along the shoulder on the south side of the road was created. In the winter of 2013 Essex County Public Works Department posted signs prohibiting parking on the north side of McKenzie Pond Road. This significantly reduced the parking available for those using the boulders.

Over the thousands of years since the boulders were left by retreating glaciers, soil has accumulated on the boulders. This has allowed plants to become established. These plants form a community that may differ from the adjacent ground because they are protected from browsing by deer, the soil on the boulders is thin, and boulders create a variety of microclimates. Vegetation on many of the boulders near McKenzie Pond Road has been impacted by recreational use.

Desired Conditions for Bouldering Monitoring

The access routes are like hiking trails in that they will maintain their firm and stable surface for their intended use and with minimal maintenance. A sustainable trail ensures environmental protection, user safety, function and enjoyment. The bottom of bouldering routes can be prone to soil compaction and impacted area expansion. Somewhat like other facilities, the variables for bouldering will include monitoring efforts to collect data on access trails for the presence of eroded areas, the expansion of the tread through vegetation loss, and the occurrence of trash and human waste. Variables to consider for the bouldering routes are stable soils at the base and vegetation loss. Photo points will be a useful tool to help illustrate potential changes over time.

Objective:

- Manage the use of the bouldering area to protect the resources, especially boulders still covered by vegetation, while providing for a unique recreational opportunity.
IV. Proposed Management Actions

Actions:

- As prescribed in the carrying capacity discussion, collect use data through visitor number information, visual observations, and photo documentation. DEC will also establish photo point monitoring locations to help monitor impacts at the base of boulders, vegetation on boulders, and approach trails. This data will help inform the decision-making process on future management decisions on these facilities.

- Monitoring for the desired conditions of bouldering will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions for bouldering will be ones that have minimal impacts to the vegetation and access routes, is free of occurrences of human waste or litter, doesn’t have any expansion vegetation clearing, and provides an enjoyable user experience.
 - Monitoring could include photo point locations, control measuring points, occurrences of erosion, vegetation loss, occurrence of trash, and user surveys.

- The area will be managed as a bouldering area, technical rock-climbing equipment (such as fixed anchors) will not be allowed.

- The current trails will be considered official trails and can be maintained. New trails will not be built.

- Interpretive signage will be developed that will include information about bouldering etiquette and resource protection.

- Construct a parking area off McKenzie Pond Road to accommodate the use of the bouldering area. This parking area will be large enough to hold ten cars. A trail will be built from the parking area to the bouldering areas.

6. Scenic and Recreational Rivers

ECL §15-2713 (2)(d); 6 NYCRR 666 (Department regulations) and 9 NYCRR 577 (APA regulations) provide for the management of Wild, Scenic, and Recreational Rivers. Within the SLWF, and other state lands, the regulations identify the ½-mile zone from each bank of the designated river as the “river area”. On private lands, the river area is ¼ mile from each bank of the designated river. The designated rivers which flow through the SLWF are the Raquette, Saranac, and West Branch Ausable rivers. The Raquette River is designated as a Recreational River, from a point about one mile downstream of Trombley Landing and then continuing downstream, about 1,150 acres of this river area are in the SLWF. The Raquette River upstream from that point is designated as a Scenic River, about 2,340 acres of that river area are in the SLWF. The
Saranac River is designated as a Recreational River, about 4,450 acres of the river area are in the SLWF. The West Branch Ausable River is designated as a Recreational River, about 1,900 acres of the SLWF falls within this river area. In total about 9,840 acres of the SLWF falls within a river area. This UMP will serve as the river area management plan, as required by 6 NYCRR § 666.7, for lands of the SLWF that are in one of the river areas.

The APSLMP contains guidelines for the management and use of designated rivers. These guidelines generally conform to the guidelines for wild forest areas.

Objective:
- Manage the use of the designated rivers according to legal requirements.

Actions:
- The boundary of the river corridors on lands of the SLWF will remain at one-half mile from the mean high-water mark.
- Motorboat use will be allowed to continue on the Raquette and Saranac Rivers. The use of motorboats is well established on these rivers. This UMP describes, in Section IV.D.2, that on the Raquette River there will be improved efforts at education and enforcement of the existing 5 miles per hour speed limit within 100 feet of shore.
- The cable car over the Raquette River will be removed and the road to this location (on the SLWF) will be abandoned if the private right-of-way ceases to exist. This will eliminate an administrative access point to the river.

7. Upper Saranac Lake Boat Launch

The boat launch is located on the north shore of the lake in the community of Saranac Inn, which is in the Town of Santa Clara. The launch is accessed by County Route 46, which is off State Route 30.

The State acquired the property in 1965 for constructing a boat launch. Shortly after the property was acquired the State did build a boat launch on the property. The boat launch provides for the launching of trailered boats via a concrete ramp. The parking area has room for 26 vehicles with trailers and 6 vehicles without trailers. There is also a mowed area approximately 80 feet by 100 feet that is used as additional parking and picnicking. There are two docks on either side of the launch ramp. There is a restroom facility next to the parking area. The State-owned boat launch is 3.87 acres in size. The State-owned property goes to the low water line and includes approximately 325 feet of shoreline; approximately 200 feet of the shoreline is undeveloped and vegetated. Along the shore there is a narrow strip of sand that gives way to a vegetated bank. A mowed path provides access to the shore for those wanting to hand launch canoes and kayaks. Boats are sometimes left along the shore; mostly this is for short periods of time.
The properties adjacent to the boat launch are both owned by the Back Bay Association for use as common property by the members of the association. The property to the east is used for boat docking. The property to the west is a beach. A small parcel of land, owned by the Saranac Inn Golf Course, is on the lake shore adjacent to the western edge of the boat launch property. There are two power lines which cross the property, with five poles located on the property.

Upper Saranac Lake is 4,807 acres. There are about 46.7 miles of shoreline; about 16.5 miles of this is owned by the State. Most of the private property is developed with residential type buildings. There are several summer camps and resorts on the lake, as well as 19 campsites on the State lands along the shores of Upper Saranac Lake.

Major renovation work occurred on the boat launching facilitates from the September 2014 through May 2015. This work included repaving and realigning the parking area, replacement of the docks, improved access for persons with disabilities, and installation of a boat wash station.

The boat launch is currently heavily used during the summer. Some of the use of the boat launch includes access for: fishing, day boating trips, and camping on State land. Besides the typical uses, the launch is also used during the winter when the lake is frozen.

Objective:
- Provide safe and efficient access to Upper Saranac Lake in a manner that protects the physical, biological, and scenic resources of Upper Saranac Lake and the surrounding land.

Proposed actions:
- Vegetative screenings and buffers will be maintained and improved as needed.

8. Saranac Lake Islands Administrative Camping Plan

Introduction
This special area plan has been developed for what is known as the Saranac Lake Islands Campground (SLIC). The management of this area is important for the protection of the Forest Preserve because of its popularity. The lakes and surrounding state lands are both attractive and easily accessible. They have been an important vacation destination for the past 150 years. Thirty years ago, overuse was recognized as a problem. This led to the initiation of a campsite management program in 1977 that has been very effective. That program should be continued because it represents the best option for protecting the Forest Preserve while allowing for a sustainable level of recreational use (see maps 4 and 5).

The SLIC currently includes 82 campsites, five lean-tos, and five day-use picnic sites.
These are located on Middle and Lower Saranac and First, Second, and Weller ponds. A use fee has been charged for use of these sites for the past thirty years. Seventy-three of the sites are available by reservation, two large group sites are available through a lottery system, and seven sites are reserved for administrative purposes, but may become available for walk-in use.

In 2015, 6,660 individuals paid to stay overnight at the campground, and the total attendance was 21,084 visitor days. The camping fee is currently $22.00 per night for a campsite, not including an additional reservation fee. Camping fees support the seasonal staff hired to manage the area during the camping season. Without the seasonal camping staff, there would be no oversight of the campsites daily.

Historical Background

The history of camping on State land on Lower Saranac Lake is long, and at times controversial. The lake has been utilized for recreation since at least 1850. The first real recreational developments were private resort hotels on the lake in the late 1800's. The state encouraged recreational use more than one hundred years ago:

> “Though its (Lower Saranac Lake) scenery is considered inferior to that of the Upper Saranac, it has strong points of beauty, the many islands scattered through it adding greatly to its attractions and furnishing charming campsites. Next to Lake George it has the most islands of any lake in the state, there being over fifty, including some bare rocks which here and there rise above its surface. But there are many large, well wooded islands whose shady thickets make good tenting grounds, and which are open to the public.” (NYS Forest Commission, 1891 Annual Report)

In 1916 the Conservation Commission began issuing camping permits. These included permits which allowed for the construction of tent platforms with wooden frames and wooden sides up to three feet tall. Campsites with tent platforms could be renewed annually. This system was very popular on Middle and Lower Saranac lakes where it was in place for more than fifty years. By 1968, about 300 tent platform sites had been established on the Saranac Lakes chain. Since camping permits were routinely renewed; these tent platforms were essentially private camps on state land. However, the program became increasingly controversial.

Following the adoption of the APSLMP in 1972, the tent platform permit system was terminated. Although permit holders in the Saranac Lake area protested vehemently, camping permits were not renewed, and the platforms were removed. The elimination of tent platform permits opened the area to camping under general state land use regulations. These regulations allow up to nine campers at one location for up to three nights without a camping permit. Camping is allowed at designated sites or at locations that are further than 150 feet from a trail, road, or water. The regulations do not place a separation requirement between camping locations. Thus, there is no limit to the total number of camping spots allowed on the lakes.

The general state land use regulations along with high levels of recreational use on...
Middle and/or Lower Saranac Lake(s) soon led to major problems. These included accumulations of trash at campsites, inadequate sanitation, erosion, and damage to trees and vegetation wherever people camped. More restrictions were clearly needed, along with additional staff to provide better control of the area. Thus, in 1976 a plan was adopted to establish what is now popularly known as the Saranac Lake Islands Campground.

The 1976 camping area plan included several management actions to mitigate problems associated with overuse problems of the area. They were:

1. Designate a limited number of campsites.
2. Allow only six campers per site.
3. Prohibit camping except at designated sites.
4. Establish a camping season.
5. Install pit privies or vault toilets at each site.
6. Hire staff to manage these campsites during the season.

In 1977 the Saranac Lake Administrative Camping Area was opened with sixty-two camping sites on Lower Saranac Lake. The regulations that govern the use of campgrounds were applied to this area.

In 1985 a campsite plan for the SLWF inventoried the locations that were being used for camping. This plan identified 52 sites on Middle Saranac Lake and 13 on Weller Pond. The plan called for reducing these numbers so that there would be 28 campsites of Middle Saranac Lake and seven on Weller Pond.

In 1992 the twenty-five camping sites located on Middle Saranac and Weller Pond were added to the SLIC. This was done because the level of staffing available to administer this area was not enough to handle the levels of use. By charging a fee for the use of the sites and placing the area into the campground system there would be increased staff to address the usage impacts and provide more effective control of the use.

Current Situation

The establishment of the camping area proved to be an effective strategy to control recreational use problems. Except at designated sites, camping has been prohibited within 1,000’ of the shoreline of Lower Saranac Lake – protecting about 1,700 acres. Camping use has been limited to specific locations covering about 11 acres in area. The current use levels are kept within the carrying capacity of the resource. The campsites are also managed in ways which make them especially appealing to a broader segment of recreational users. In particular, the sites are popular with families because they offer
IV. Proposed Management Actions

a primitive camping experience without detracting from the wild forest character of the Forest Preserve. A recently published camping guide \(^2\) states; “With 87 primitive sites to choose from, you are guaranteed an unforgettable Adirondack camping experience”. Furthermore, these campsites provide local economic benefits. There are seasonal employment opportunities and additional business from campers who help support local businesses through their patronage.

The 87 sites in the camping area are currently administered by the DEC’s Bureau of Recreation. The Bureau manages campgrounds and day-use areas in the Adirondacks and Catskills with the following programmatic goals:

- to protect the Forest Preserve in accordance with Article 14, the APSLMP and all other relevant laws and regulations;
- to provide recreational opportunities to the public;
- to offset operating costs with revenues;
- to provide economic benefits to the local economy.

These goals provide a framework for the management of campgrounds, day-use areas, and other special facilities.

Wherever recreational use occurs on Forest Preserve lands, there is some impact. The SLIC has been a popular destination for more than a century because of the natural beauty of the lakes and the accessibility to outdoor enthusiasts. Consequently, the potential for adverse environmental impact is high without some controls.

Currently, regulations prohibit camping on most of the Forest Preserve surrounding Lower Saranac Lake. There is also limit of six campers per site during the camping season, which is fewer than allowed at other sites in the SLWF. This means there should be a reduction in the impacts to the social and natural resources of the area.

There are thirteen seasonal employees who are assigned for the administration and maintenance of the campsites. This level of staffing is much higher than the rest of the SLWF, which allows problems to be addressed quickly.

Staff:

1 - Conservation Recreation Facilities Supervisor III
1 - Maintenance Assistant Parks
2 - Park Attendants

\(^2\) The Best Tent Camping in New York State 2007
IV. Proposed Management Actions

1 - Park Recreation Aide III
2 - Park Recreation Aides IV
3 - Conservation Park Workers
3 - Laborers

Campsites in the SLIC can be reserved from mid-May through Columbus Day. The camping fee is currently $22.00 per night which does not include a separate reservation fee. The campsite reservation service is provided by a private company, Reserve America, sites can be reserved on the internet or by telephone. Unreserved sites are available on a walk-in basis. The maximum length of stay is 14 consecutive nights. Revenue generated from these campsites is used for hiring of seasonal staff and for campsite maintenance. From 2004 to 2008 the average seasonal attendance was 19,430 stay days.

The popularity of this area for camping may seem counterintuitive, since thousands of acres of undeveloped Forest Preserve lands are available nearby for free camping. However, these 87 campsites offer several advantages. These include:

- They can be reserved in advance of arrival.
- They are easily accessible by boat.
- They offer a fireplace, a picnic table and a pit privy.
- Camping staff are available in case of emergency.

For many prospective campers, especially for families camping with children, older campers, and for people with some mobility impairment, these differences make this type of campsite much more attractive than other alternatives, such as camping at undeveloped locations, and well worth the cost of a camping permit.

The SLIC is popular with families. This is evident by comparing camper demographics between Fish Creek Pond Campground and SLIC. Fish Creek Pond, which is just a few miles away, is widely recognized as the iconic Adirondack family campground. These statistics show that, although the SLIC is not as heavily used by families as Fish Creek, it may also be considered a family camping destination.
IV. Proposed Management Actions

Table 15: Demographics of campers.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Sex</th>
<th>Camping Party</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Couples/Families</td>
<td>Groups of Friends</td>
</tr>
<tr>
<td>Fish Creek Pond</td>
<td>52%</td>
<td>48%</td>
<td>72%</td>
<td>28%</td>
</tr>
<tr>
<td>Saranac Lake Islands</td>
<td>59%</td>
<td>31%</td>
<td>59%</td>
<td>41%</td>
</tr>
</tbody>
</table>

Information taken from registered campers in 2007

Campers who use the camping area have been surveyed for the past decade. The survey form includes an opportunity to rate satisfaction with the camping experience. The following is a summary of the responses to the first question on the survey which concerns overall satisfaction.

How would you rate your visit to this facility?

- Excellent 68%
- Good 24%
- Average 2%
- Poor 3%
- Unacceptable 3%

Inventory of Facilities

The full inventory of facilities is included in Appendix 1

Campsites

- 87 sites
- 88 picnic tables
- 91 fireplaces
- 55 pit privies
- 34 poly lined vault privies
- 5 lean-tos (located on sites: 2, 45, 63, 81, and 87)

Note: all sites are for tents and are boat access only.
IV. Proposed Management Actions

Note: 2 sites are universal access sites

Day-Use Area

10 - picnic tables
7 - fireplaces
3 - poly lined vault privies
2 - pit privies

Note: all day-use sites are boat access only.

Administrative Camping Area Description

The administrative camping area is defined at 6NYCRR § 190.7(e):

The state-owned islands and shoreline, to a point 1,000 feet landward from the water’s edge of Lower Saranac Lake, the Saranac River from Lower Saranac Lake to and including First Pond and Second Pond, not including the public access to the Saranac waterway located on Second Pond

The registration booth for the facility is located at the Second Pond Boat Launch (which is covered by a separate UMP) on State Route 3, about 4 miles west of the Village of Saranac Lake. Other access points to the facility/wild forest area include the South Creek Boat Launch Site which has 6,240 square feet of parking and hand launching. Ampersand Bay, which is located on Bayside Drive, has an informal ramp type launching and approximately 4,524 square feet of parking area. South Creek has a vaulted toilet unit and Ampersand Bay has flush toilet comfort facilities.

The administrative camping area provides many economic benefits to the region because of its popularity. The high demand for the campsites along with the revenue generated from their use means that allocating resources and staff will result in a return on the investment. From April through October full time seasonal staff is hired to manage the camping facility and the locks. Private outfitters in the area benefit from the recreational visitors who require their services. Many of these outfitters deliver rented equipment to the boat launch on a daily basis. Visitors also purchase products or other services in the area. The combination of direct employment opportunities and the purchase of supplies, materials, and services both by the state and by individual campers all help to support the economy in the area.

The Department has taken many steps over the years to protect the natural resources of this area and provide the public with a wild forest camping experience. These efforts have included the development of a camping plan for Lower Saranac Lake in 1977 that resulted in the closure of hundreds of camp sites and the removal of over 300 tent platforms; the completion of a 1985 camping plan for the camp sites on Middle Saranac Lake and Weller Pond; and extending administration of 25 shoreline camping sites to
IV. Proposed Management Actions

the Bureau of Recreation in 1992. Without question, the most significant step the Department has taken over the past forty years has been to employ an administrative presence in the area, which has controlled public use through Department staff presence, use of the camping reservation system and application of area regulations. Evidence of this protection can be seen in the re-vegetation of the 87 campsites from 1977 to present, photos displaying a selection of this can be found in Appendix 3. Essentially, the area has been administered in the same manner as remote areas classified as Intensive Use Areas such as Tioga Point, Forked Lake and Alger Island.

Desired Conditions for Day Use Area Monitoring

Day use areas in the Saranac Lakes Islands Campground should be properly designed and constructed to accommodate their intended use with minimal maintenance and limited undesirable impacts. The beach on Middle Saranac Lake presents significant challenges, because it is the largest and most popular day use area in the SLIC. The monitoring variables for the day use areas will include efforts to collect data on the expansion vegetation loss; the occurrence of trash, human waste, and remnants of fires; and that visitors are perceiving the wild forest character of the area. Photo points will be a useful tool to help illustrate potential changes over time.

Management Actions:

The following management actions are proposed for the administrative camping area:

- Monitoring for the desired conditions will help measure and determine impacts to better inform carrying capacity development and long-term planning. Final specifics will be detailed in the guidance for wildlands monitoring but generally:
 - Desired conditions will be ones that have minimal expansion from the current use footprint, doesn’t negatively impact adjacent vegetation; is free of occurrences of human waste, litter, or fires; and provides an enjoyable user experience.
 - Monitoring could include photo point locations; control measuring points for occurrences of trash, fires, human waste, and vegetation loss; and visitor surveys

- Relocate 14 campsites.

- Create no more than 4 new sites.

- Develop and implement indicators and standards for soil erosion and vegetation at campsites.

- Relocate any pit privy that is closer than 150’ from the shoreline or replace it with a vault toilet.
• Hire and train seasonal staff for campsite administration and maintenance. A focus of the training for this campground will be on maintaining a Wild Forest character.

• Allow vegetation to naturally grow on campsites. Use native plant material if rehabilitation is necessary.

• Adopt rules and regulations so that the State-owned islands and shoreline (to a point 1,000 feet landward from the water’s edge) of Weller Pond, Middle Saranac Lake, and the Saranac River from Middle Saranac Lake to Lower Saranac Lake are covered by 6NYCRR §190.7, the same regulations as the rest of Saranac Lake Islands Campground.

• Clarify regulations:
 o Day-users are exempt from the requirement to register with the facility supervisor.
 o When the SLIC is not being operated the use of the campsites will be allowed according to the general regulations governing the use of State Land.
 o During the hunting season, the campground regulation will not prohibit the discharge of firearms within 1,000 feet of the shoreline.

• Survey campers to obtain feedback and monitor social carrying capacity.

• Limit the camping party size to six individuals, except at designated group camping sites within the administrative camping area that will accommodate groups of up to 12 people. Designation of group sites will be done in consultation with APA staff.

• Maintenance and management of the campsites will focus on keeping or improving the wild forest character of the area and the unique primitive camping experience by protecting the vegetation and other natural resources that make this area attractive to the public, of particular importance will be the vegetative screening between the water and the campsite.

• A storage building will be built on at the Ampersand Bay Intensive Use Area near the facility supervisor’s headquarters.
IV. Proposed Management Actions

Alternatives Considered for Saranac Lake Islands Administrative Camping Area

Five alternatives were considered for the future management of the camping area. These were:

Alternative 1 - Eliminate the Administrative Camping Area Management

Alternative 2 – Relocated Campsites

Alternative 3 – Close Campsites

Alternative 4 - Reclassify the Area to Intensive Use

Alternative 5 – Enhance Protections for the SLIC, relocate, and add campsites

Each of these alternatives was evaluated in terms of the programmatic goals listed above. The preferred alternative is Alternative 5.

Alternative 1 - Eliminate the Administrative Camping Area Management

Under this alternative, the entire area would be managed under the general regulations for use of State Land. The public would have the same camping options that exist in the rest of the unit. Camping group size would increase from six to eight. Campsites would no longer be able to be reserved ahead of time; they would be available on a first-come basis. Pump out privies would be removed, which would result in the closing of campsites where a pit privy cannot be installed.

The problem with this alternative is that the Lower and Middle Saranac lakes are such popular destinations. The area is attractive, has good access, and a long history of high recreational use. Thousands of campers who pay a camping fee are currently accommodated each season, but use is carefully managed. If camping was “free” and without Department staff for oversight, history would likely repeat itself, bringing significant adverse social and environmental impacts. Without the camping fees, the Department would not have the ability to hire the number of staff currently overseeing the area. It is believed that by requiring campers to register and pay a fee there is a higher rate of compliance with regulations than more anonymous camping. To address some of the potential problems from this alternative, actions that could be taken include limit camping to designated sites only, prohibit at-large camping within 1,000 feet of the water bodies, not issue camping permits, and prohibit campfires.

Another consideration is the likelihood that visitor demographics would change, and that current campers would voice unhappiness over the loss of this recreational opportunity. Surveys show that the system of camping by permit, with stricter rules of use, and staff oversight is especially appealing to families and others who prefer a measure of security provided by camping staff and appreciate the option of reserving a campsite. Although backpacking is permitted on almost all the Forest Preserve, and there are dozens of traditional developed Intensive Use Area (IUA) campgrounds, the primitive camping
experience offered on Saranac Lake is unusual - somewhere between backpacking and IUA camping. Only a few other examples exist, including the campsites on Forked Lake and on the Indian Lake Islands. Although there is a high demand for this type of camping opportunity, there are very few places in the Adirondack Park where it is available.

Under this alternative there would probably be a decrease in total use, but this lower level of use could result in greater impacts. The lower levels of use would result in decreased economic benefit for the surrounding communities.

Alternative 2 – Relocate Campsites

Under this alternative, 12 campsites would be relocated so that the campsites would conform to a general 500-foot separation distance. All relocated campsites would be set back a minimum of 100 feet from the mean high-water mark and located so as to be reasonably screened from the shoreline and to avoid intruding on its natural character or public enjoyment and use thereof.

The intent of increasing the site separation would be to bring the area into compliance with the APSLMP. This could some benefits to the visitors’ experience at those sites which would be further apart, but overall there would likely be no change. This alternative could result in an increase in impacts to natural resources, since the campsites will be moved to locations currently not impacted by use and the natural resources of the closed sites will continue to be influenced somewhat by the remaining campsites.

Some campers return to the same campsite year after year and they look forward to using that particular site. A change in the location of a campsite could make those people who use it unhappy.

A concern with this alternative is the work load associated with constructing 12 new campsites. An equal intensive effort will be required to restore the closed campsites. The closed sites will need continual attention to ensure that they are not being used and that the restoration efforts are producing the desired results.

Alternative 3 – Close Campsites

Fourteen campsites could be closed to achieve a general 500-foot separation between the remaining sites. The goal is to avoid intruding on the natural character of the area and public enjoyment and use thereof. Furthermore, DEC camper surveys show that campers are well satisfied with the current campsite configuration. Survey responses have not indicated any problem with the distance between sites. Reducing the number of campsites would also reduce recreational opportunities, since fewer visitors would be accommodated.

The management of the SLIC depends on having enough qualified employees to administer the camping area. Funding to hire and train seasonal camping staff is contingent on revenues generated from camping fees. A reduction in the number of
IV. Proposed Management Actions

campsites would mean fewer seasonal employees to administer the remaining sites. Although there would be fewer campsites for staff to manage, there would also be a loss of efficiency of scale (larger facilities can be run more efficiently than smaller facilities). DEC cannot absorb the costs of managing inefficient facilities – as evidenced by the closure of five small Forest Preserve campgrounds in 2009 (one was permanently closed, but the others later reopened).

Eliminating campsites would also have an adverse impact on the local economy by reducing the number of summer visitors. Campers typically spend money for food, gasoline, camping supplies and services which helps support local businesses. A recent study (Economic Impacts of Campers 2004) done in Maryland estimated that campers spent $100 per night per campsite at state park campgrounds including fees, equipment, and associated expenditures. Other economic impact studies of camping have shown similar impacts. Over the camping season, each campsite generates thousands of dollars in economic activity. Closing campsites would reduce economic activity.

Reducing the number of campsites could have a slight benefit to the visitors’ experience. This could be noticeable at the adjacent campsites that will remain open, but overall the reduction in use would likely not be felt. There could be a slight benefit to the natural resources of the area, but this will be limited by the fact that the remaining campsites are near enough to possibly influence the natural resources of the closed sites.

Finally, it should be recognized that the existing campsite locations were the result of a collaborative effort between APA and DEC in the 1970’s (Saranac Chain of Lakes Management Plan, 1976) to permanently close approximately 300 “tent platforms” which had previously been located here. The campsite locations were determined to be the optimum locations in balancing needs for environmental protection, recreational use, and the APSLMP.

Alternative 4 - Reclassify to Intensive Use

The existing protected camping area could be reclassified as an Intensive Use Area Campground. This alternative would resolve concerns with campsite separation and other APSLMP compliance issues. However, reclassification would have little effect on recreational use or the camping experience because there would be no change in how the area is managed.

This option might engender opposition from advocacy groups and individuals who generally oppose any Forest Preserve reclassification which reduces the acreage in wild forest or wilderness. There would likely be concerns that a reclassification would set an undesirable precedent and/or allow for more development of the area. This could result in controversy that would detract from the more important goals of protecting the Forest Preserve and providing recreational opportunities.

Furthermore, not selecting this alternative as the preferred alternative, at this time, does
not prohibit the Department from pursuing it in the future. Consistent with established procedures and law, the Department can, at a future date, develop a separate Unit Management Plan for this camping area that proposes a reclassification and submit it to the Adirondack Park Agency for consideration.

Alternative 5 – Enhance Protections for the SLIC, Relocate and Add Campsites (preferred alternative)

The current regulations that cover Lower Saranac Lake will be expanded to include Middle Saranac Lake and Weller Pond. This will add more than 1,800 acres to the area covered by these regulations. This revision is necessary to legally limit camping to the 25 designated primitive tent sites. This recognizes the existing use and protection of the area and would properly apply the regulatory protections that the area has been managed under.

The Department will develop and implement a Limits of Acceptable Change (LAC) program. Options for collecting the necessary data may include camper surveys, incident reports, interviews, and other data collection methods. This LAC program will include a monitoring plan to provide periodic, systematic feedback regarding the effectiveness of management actions. The focus of this will likely be soil erosion and vegetation screening.

Currently, there are primitive tent sites that do not meet the minimum separation distance under the APSLMP Wild Forest guidelines. Under this alternative, 14 primitive tent sites would be relocated (12 on Lower Saranac Lake plus 2 on Middle Saranac Lake) and four new primitive tent sites would be created. The relocated and new primitive tent sites will be selected and established in consultation with the APA and in compliance with APSLMP guidance. The relocation of sites would be conducted over three years. Aside from bringing the primitive tent sites into compliance with the APSLMP, increasing site separation distances will enhance the primitive experience for users of the area. Some visitors may be upset with the relocation of a favorite campsite, however the increased solitude and enhanced primitive experience may appeal to some people and offset the negative impacts.

Several group camping sites may be established in the SLIC to accommodate groups of more than 6 people. These group sites will be established in consultation with the APA and in compliance with APSLMP guidance.

A concern with this alternative is the work associated with relocating 14 sites, restoring the tent sites that have been relocated, and ensuring those sites are no longer used so that restoration efforts are successful.

Maintaining the existing administrative camping area is the most practical way to manage current levels of use while protecting the Forest Preserve. The existing and proposed primitive tent sites and the special restrictions that apply to their use maintain an appropriate balance between environmental protection, recreational use, and compliance with the APSLMP. Additional benefits include preserving and expanding a
camping venue that is especially appealing to families; realizing the continued regional economic benefits provided by campers; and affording an experience between car camping and primitive camping, similar to that found at “boat access only” Intensive Use Areas.
V. Phases for Implementation

Background

The overall guidance throughout this UMP is based on implementing the prescribed management actions in phases that allows land managers to continuously monitor and evaluate the carrying capacity of the lands affected. The phases are outlined to provide initial access to facilities, which will then be monitored for use and impacts to the environment. Once ground use data is collected through monitoring it will be evaluated to determine if the specific thresholds of each facility have been met in order to activate the following phase of the plan. With this phased approach it is understood that the actions in phase 1 will be constructed, and once the carrying capacity of the area in relation to the phase 1 facilities is evaluated successive phases may be implemented. Successive phases are conditional and will need to be activated in order to be constructed. This process will be repeated for each facility outlined below. Monitoring results will determine if successive phases will be started, if the facility will be maintained at its current level of development, or if we need to step back a phase and re-evaluate our management strategy. Through this process we can methodically develop opportunities, monitor them and make decisions to realize the management goals for the area.

Completing items in the schedule are contingent upon sufficient staffing levels and available funding. Approval for construction of individual projects is also contingent upon the results of monitoring of use levels from prior projects, assessment of impacts, and a consideration of demand. The estimated costs of implementing these projects are based on historical costs incurred by the Department for similar projects. Values for some projects are based on projected costs for service contracting. These cost estimates do not include capital expenditures for items such as equipment, nor do they include the value of program staff salaries.
V. Schedule for Implementation and Estimated Budget

<table>
<thead>
<tr>
<th>Reoccurring Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain boundary lines, including identification and removal of encroachments. (25 miles per year)</td>
</tr>
<tr>
<td>Conduct chemical monitoring of limed waters.</td>
</tr>
<tr>
<td>Develop facilities maintenance needs list. Develop work plans. Coordinate activities with APA staff, secure needed permits.</td>
</tr>
<tr>
<td>Perform routine maintenance on facilities. Areas where natural resources are being degraded will be addressed.</td>
</tr>
<tr>
<td>Monitor visitor use levels/impacts and compile visitor register information.</td>
</tr>
<tr>
<td>Provide outreach concerning invasive species, proper camping techniques, and LEAVE-NO-TRACE.</td>
</tr>
<tr>
<td>Submit sign requests and install signs as necessary. Remove illegal signs.</td>
</tr>
<tr>
<td>Conduct biological surveys to monitor and maintain high quality fisheries.</td>
</tr>
<tr>
<td>Enhance natural fish barriers and construct fish barriers as needed to prevent the spread of non-native fish.</td>
</tr>
<tr>
<td>Address invasive species by taking actions to prevent the introduction of new invasive species and work to eliminate occurrences of invasive species.</td>
</tr>
<tr>
<td>Stock fish in SLWF waters consistent with Bureau of Fisheries policies and the Final Programmatic Environmental Impact Statement on Fish Species Management Activities of the Department of Environmental Conservation Division of Fish and Wildlife (1980). Stocking efforts will include use of aircraft on remote waters and may involve motor vehicle use on seasonal roads.</td>
</tr>
</tbody>
</table>
V. Schedule for Implementation and Estimated Budget

Phase 1

<table>
<thead>
<tr>
<th>Activity Description</th>
<th>Person days</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitate the shooting range near Connery Pond.</td>
<td>2</td>
<td>$500</td>
</tr>
<tr>
<td>Build a parking area at the Brewster Peninsula trails.</td>
<td>5</td>
<td>$2,000</td>
</tr>
<tr>
<td>Improve the Hoel Pond fishing access site.</td>
<td>6</td>
<td>$2,000</td>
</tr>
<tr>
<td>Mark trails where mountain bikes will be allowed.</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Build a ski trail south of Mountain Lane.</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Develop the parking and nature trails at Lake Colby.</td>
<td>35</td>
<td>$7,000</td>
</tr>
<tr>
<td>Close and brush-in the trails identified for closure.</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Sign and make improvements to the Loggers Loop Trails.</td>
<td>3</td>
<td>$2,000</td>
</tr>
<tr>
<td>Improve part of the Rat Pond Road and close segments of the road.</td>
<td>6</td>
<td>$3,000</td>
</tr>
<tr>
<td>Allow snowmobile use of the canoe carry to Follensby Clear Pond from the Little Square Pond Snowmobile Tail.</td>
<td>.5</td>
<td>0</td>
</tr>
<tr>
<td>Close snowmobile trails as called for in the UMP.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Close the road to campsites numbers 1 and 2 off Floodwood Road.</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Construct the parking and nature trails at Lake Clear.</td>
<td>8</td>
<td>$2,000</td>
</tr>
<tr>
<td>Build new campsites and close existing campsites as called for in the UMP.</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>Build connector trails between Rollins Pond Campground and the Remsen to Lake Placid Travel Corridor.</td>
<td>50</td>
<td>$60,000</td>
</tr>
<tr>
<td>Total</td>
<td>280.5</td>
<td>$78,500</td>
</tr>
</tbody>
</table>
V. Schedule for Implementation and Estimated Budget

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Person days</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a parking area at the intersection of State Route 3 and the</td>
<td>5</td>
<td>$2,000</td>
</tr>
<tr>
<td>road to Lonesome Bay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reroute the Scarface Mountain Trail.</td>
<td>5</td>
<td>$500</td>
</tr>
<tr>
<td>Build new campsites and close existing campsites as called for in the</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>UMP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research the legality of right-of-ways in the SLWF.</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Develop the trail systems near Lake Placid, this will work will</td>
<td>150</td>
<td>$10,000</td>
</tr>
<tr>
<td>continue for several years.</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Reduce the size of the parking area at the intersection of NY Routes</td>
<td>3</td>
<td>$1,000</td>
</tr>
<tr>
<td>3 & 30.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construct a snowmobile trail to Heavens Pond.</td>
<td>18</td>
<td>$1,000</td>
</tr>
<tr>
<td>Total</td>
<td>389</td>
<td>$14,500</td>
</tr>
</tbody>
</table>
V. Schedule for Implementation and Estimated Budget

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Person days</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adopt regulations identified in UMP.</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Build an accessible trail at Monument Falls.</td>
<td>40</td>
<td>$8,000</td>
</tr>
<tr>
<td>Improve the Axton Landing fishing access site.</td>
<td>5</td>
<td>$1,000</td>
</tr>
<tr>
<td>Modify the South Creek fishing access site.</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Build parking area at Mountain Lane.</td>
<td>8</td>
<td>$4,000</td>
</tr>
<tr>
<td>Improve the parking area at the Moose Pond trailhead on State Route 3.</td>
<td>5</td>
<td>$1,000</td>
</tr>
<tr>
<td>Build new campsites and close existing campsites as called for in the UMP.</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Create a fishing access site at Lake Clear Outlet.</td>
<td>10</td>
<td>$1,000</td>
</tr>
<tr>
<td>Improve and designate a trail up Seymour Mountain.</td>
<td>30</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>311</td>
<td>$20,000</td>
</tr>
</tbody>
</table>
V. Schedule for Implementation and Estimated Budget

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Person days</td>
</tr>
<tr>
<td>Open Dunlap Road as a CP-3 road.</td>
<td>15</td>
</tr>
<tr>
<td>Develop a trail system near the Village of Saranac Lake at Turtle Pond.</td>
<td>30</td>
</tr>
<tr>
<td>Improve the Follensby Clear Pond (north) fishing access site.</td>
<td>12</td>
</tr>
<tr>
<td>Improve the fishing access site at Polliwog Pond.</td>
<td>16</td>
</tr>
<tr>
<td>Build a parking area on Barn Road.</td>
<td>15</td>
</tr>
<tr>
<td>Improve the parking area at Averyville Road near Cameras Pond.</td>
<td>8</td>
</tr>
<tr>
<td>Build new campsites and close existing campsites as called for in the UMP.</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Person days</td>
</tr>
<tr>
<td>Build a parking area on McKenzie Pond Road for the bouldering area.</td>
<td>16</td>
</tr>
<tr>
<td>Build a parking area near the Upper Saint Regis Lake boat launch.</td>
<td>14</td>
</tr>
<tr>
<td>Build a parking area off Averyville Road near the Chubb River.</td>
<td>16</td>
</tr>
<tr>
<td>Improve the Bloomingdale Bog Trail</td>
<td>40</td>
</tr>
<tr>
<td>Reroute the Bartlett Carry Trail.</td>
<td>35</td>
</tr>
<tr>
<td>Reroute the trail between Weller Pond and Saginaw Bay.</td>
<td>8</td>
</tr>
<tr>
<td>Close portions of the roads to Sunday Pond.</td>
<td>5</td>
</tr>
<tr>
<td>Create parking area at Little Clear Pond Road</td>
<td>5</td>
</tr>
<tr>
<td>Create a parking area along Coreys Road at the Stony Creek bridge.</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
</tr>
</tbody>
</table>
V. Schedule for Implementation and Estimated Budget

<table>
<thead>
<tr>
<th>Total Cost Years 1-5</th>
<th>Person days</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,788.5</td>
<td>$175,500</td>
</tr>
</tbody>
</table>

Phase 2

- **Trails.** Allow the construction of the remaining trails listed in the UMP. Approval for construction of individual trails will be contingent upon the results of monitoring of use levels, assessment of impacts, and a consideration of demand.
 - Reroute of northern access to Loggers Loop Trails.
 - Trail between Averyville Road and Scarface Trails.
 - Outer loop trails near Lake Placid.
 - Trail system off Old Wawbeek Road, near Tupper Lake.
 - Trail between Saint Germain Pond and Upper Saint Regis Lake.
 - Loop trail at Moose Pond.
Appendices

Appendix 1 - Facilities
Appendix 2 - Justifications of boat launches and fishing and waterway access sites
Appendix 3 – Saranac Lakes Islands Campsites Photograph Comparison
Appendix 4 - Acronyms
Appendix 5 - Mammals Reptiles and Birds
Appendix 6 - Individual Pond Descriptions
Appendix 7 - Lakes and Ponded Water Survey Data
Appendix 8 - Citizen Discussion Group
Appendix 9 – Response to Public Comments
Appendix 10 - Open House Public Comments
Appendix 11 - Bibliography and References
Appendix 12- Trail Register Information
Appendix 13 - Unit Maps
Table 16: Snowmobile trails in the SLWF.

<table>
<thead>
<tr>
<th>Road/Trail Name</th>
<th>Miles open to snowmobiling (2009)</th>
<th>description and history</th>
<th>Miles open in 1972</th>
<th>Miles open to snowmobiling post UMP</th>
<th>Trail Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bear Pond to St. Regis Lake</td>
<td>0</td>
<td>Closed in 1972 with Wilderness trails; 1.08 miles on water</td>
<td>1.22</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Bone Pond #</td>
<td>0</td>
<td>Closed in 1972 with Wilderness trails</td>
<td>0.47</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Bull Point Road *</td>
<td>0</td>
<td>Connects State Route 30 to Old Wawbeek Road, 1.94 miles</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Coreys Road</td>
<td>0</td>
<td>Section of trail between State land boundary and Stony Creek bridge</td>
<td>0.73</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>D&H rail bed *</td>
<td>3.74</td>
<td>A portion of this was acquired after 1972</td>
<td>?</td>
<td>3.74</td>
<td>Road</td>
</tr>
<tr>
<td>D&H - power line @</td>
<td>0.94</td>
<td>Power line ROW</td>
<td>0</td>
<td>0.94</td>
<td>1</td>
</tr>
<tr>
<td>Deer Pond trail</td>
<td>0</td>
<td>Closed in the 1980's</td>
<td>3.13</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Fish Creek to Rollins Pond - camp road #</td>
<td>0.83</td>
<td>Paved road</td>
<td>0.83</td>
<td>0.83</td>
<td>Road</td>
</tr>
<tr>
<td>Floodwood Pond to Middle Pond</td>
<td>0</td>
<td>Became unnecessary when new trails opened; includes 1.61 miles on water</td>
<td>1.90</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Floodwood Reservation *</td>
<td>3.10</td>
<td>Private ROW, land acquired after 1972</td>
<td>0</td>
<td>3.10</td>
<td>Road</td>
</tr>
<tr>
<td>Follensby Clear access</td>
<td>0</td>
<td>Ice fishing access</td>
<td>0</td>
<td>0.09</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Road/Trail Name</th>
<th>Miles open to snowmobiling (2009)</th>
<th>description and history</th>
<th>Miles open in 1972</th>
<th>Miles open to snowmobiling post UMP</th>
<th>Trail Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavens Pond</td>
<td>0</td>
<td>Original trail was closed when the State purchased the land</td>
<td>0</td>
<td>1.77</td>
<td>1</td>
</tr>
<tr>
<td>Horseshoe Pond Trail</td>
<td>3.52</td>
<td>Probably relocated from SCRA, needs bridge replaced</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Lake Clear beach</td>
<td>0.08</td>
<td>Seasonal road</td>
<td>0.08</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>Lake Colby by-pass</td>
<td>2.49</td>
<td>Connects the D&H to the Remsen-Lake Placid corridor; approximately 0.5 miles on land acquired by the State after 1972</td>
<td>0</td>
<td>2.49</td>
<td>2</td>
</tr>
<tr>
<td>Lead Pond trail *</td>
<td>3.41</td>
<td>Connects Rollins Pond to Lead Pond; 0.73 miles on Department road, not currently maintained</td>
<td>2.09 – 3.41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lead Pond access</td>
<td>0</td>
<td>Trail starts on easement land, trail already exists</td>
<td>0</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>Little Clear Pond</td>
<td>0</td>
<td>Closed in 1972 with Wilderness trails; on water</td>
<td>1.49</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Little Square Pond Trail</td>
<td>3.67</td>
<td>Probably relocated from SCRA, access to Little Square Pond</td>
<td>0</td>
<td>3.67</td>
<td>1</td>
</tr>
<tr>
<td>McKenzie Pond Road</td>
<td>0</td>
<td>0.86 miles; relocated from Wilderness, but later closed</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Middle Pond to Polliwog Pond</td>
<td>0</td>
<td>Became unnecessary when new trails opened; includes 0.50 miles on water</td>
<td>0.83</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>New York Central rail bed */@</td>
<td>2.17</td>
<td>From Lake Clear to Gabriels; private ROW and power line ROW</td>
<td>?</td>
<td>2.17</td>
<td>Road</td>
</tr>
<tr>
<td>Old Wawbeek Road *</td>
<td>2.35</td>
<td>Paved; snowmobile trail, but gate has not been opened for several years</td>
<td>2.35</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Road/ Trail Name</th>
<th>Miles open to snow-mobiling (2009)</th>
<th>description and history</th>
<th>Miles open in 1972</th>
<th>Miles open to snowmobiling post UMP</th>
<th>Trail Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oseetah Lake Area</td>
<td>1.67</td>
<td>Trail crosses water</td>
<td>1.67</td>
<td>1.14</td>
<td>1</td>
</tr>
<tr>
<td>Otter Hollow trail</td>
<td>3.79</td>
<td>Probably relocated from SCRA; section to Copperas Pond</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Polliwog Pond to Follensby Clear Pond</td>
<td>0</td>
<td>Became unnecessary when new trails opened, includes 2.65 miles on water</td>
<td>2.73</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Rat Pond #</td>
<td>2.52</td>
<td>0.47 mile on Department road open to the public, 0.45 miles are class 1</td>
<td>2.52</td>
<td>0.92</td>
<td>1/Road</td>
</tr>
<tr>
<td>Remsen - Lake Placid corridor to Rollins Pond</td>
<td>0.04</td>
<td>Used for ice fishing access to Rollins Pond</td>
<td>0</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>Remsen - Lake Placid corridor to Rollins Pond Outlet</td>
<td>0</td>
<td>Used as a connector between the trails in the campground and the travel corridor, avoiding a water crossing</td>
<td>0</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>Sunday Pond #</td>
<td>0</td>
<td>Closed after 1972</td>
<td>0.60</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Trolley line</td>
<td>0</td>
<td>Land acquired by the State after 1972, 1.46 miles</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Whiteface landing</td>
<td>0</td>
<td>Closed in 1972 with Wilderness trails; includes 3.22 miles on water</td>
<td>3.67</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Total</td>
<td>34.32</td>
<td></td>
<td>26.31-27.63</td>
<td>26.01</td>
<td></td>
</tr>
</tbody>
</table>

? - uncertain when snowmobiles first used this trail

* Administrative road

Department road open to the public

@ Utility line right-of-way
Table 17: Trails.

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (miles)</th>
<th>Trail Class</th>
<th>Mountain bikes allowed after UMP approval</th>
<th>Shown on map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausable Quarry Trails</td>
<td>0.42</td>
<td>3</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Ausable Quarry West</td>
<td>0.09</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Ausable River Access (3 Trails)</td>
<td>0.24</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Bartlett Carry</td>
<td>0.14</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Black Pond Access Trail</td>
<td>0.03</td>
<td>3</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Black Pond Carry</td>
<td>0.03</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Black Pond Trail</td>
<td>1.68</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Boundary Trail (Brewster Peninsula)</td>
<td>0.38</td>
<td>6</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Brewster Spur Trails</td>
<td>0.43</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>CCC Camp Trail</td>
<td>0.65</td>
<td>3</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Cherrypatch Pond Trail</td>
<td>1.20</td>
<td>3</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Clara Barton Forest</td>
<td>0.51</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Cobble Hill Trails</td>
<td>2.20</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Connery Pond Trail</td>
<td>0.01</td>
<td>4</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Coreys Trail</td>
<td>0.71</td>
<td>3</td>
<td>yes</td>
<td>6</td>
</tr>
<tr>
<td>Deer Pond Loop</td>
<td>6.09</td>
<td>5</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>East to West Pine Ponds</td>
<td>0.05</td>
<td>3</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Echo Pond Trail</td>
<td>0.09</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Federation Pond Trail</td>
<td>0.05</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Fernow Forest Trail</td>
<td>0.58</td>
<td>6</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Fish Creek Bridge</td>
<td>0.09</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Fish Creek to Follensby Clear Pond</td>
<td>0.14</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Floodwood Mountain Trail</td>
<td>1.36</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Name</td>
<td>Length (miles)</td>
<td>Trail Class</td>
<td>Mountain bikes allowed after UMP approval</td>
<td>Shown on map</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Floodwood Scout Trail</td>
<td>0.98</td>
<td>3</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Floodwood to Middle Pond</td>
<td>0.15</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Follensby Clear Pond Path</td>
<td>0.75</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Follensby Clear to Green Pond</td>
<td>0.08</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Follensby Clear to Horseshoe Pond</td>
<td>0.04</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Follensby Clear to Polliwog Pond</td>
<td>0.09</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Follensby Clear to Sunrise Pond</td>
<td>0.16</td>
<td>3</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Fowler's Crossing Trails</td>
<td>1.16</td>
<td>3</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Green Pond Access Trail</td>
<td>0.07</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Heavens Pond Trail</td>
<td>2.53</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Hoel Pond Beach Path</td>
<td>0.25</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Hoel Pond Trail</td>
<td>1.65</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Hoel to Polliwog Canoe Carry</td>
<td>0.67</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Horseshoe Pond Trail</td>
<td>3.51</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Indian Carry Campsite Trail</td>
<td>0.34</td>
<td>3</td>
<td>no</td>
<td>6</td>
</tr>
<tr>
<td>Indian Carry Day-use</td>
<td>0.11</td>
<td>3</td>
<td>no</td>
<td>6</td>
</tr>
<tr>
<td>Jackrabbit Trail - North Meadow Brook</td>
<td>0.41</td>
<td>8</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Jackrabbit Trail- Easy Street</td>
<td>0.46</td>
<td>5</td>
<td>no</td>
<td>9</td>
</tr>
<tr>
<td>Jackrabbit Trail- McKenzie Pond Road</td>
<td>0.82</td>
<td>5</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Jackrabbit Trail- Brewster Peninsula</td>
<td>0.32</td>
<td>6</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>John Brown Farm</td>
<td>2.03</td>
<td>4</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Lake Clear Trail</td>
<td>0.28</td>
<td>3</td>
<td>yes</td>
<td>9</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (miles)</th>
<th>Trail Class</th>
<th>Mountain bikes allowed after UMP approval</th>
<th>Shown on map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Colby Bypass Trail</td>
<td>2.52</td>
<td>4</td>
<td>yes</td>
<td>9</td>
</tr>
<tr>
<td>Lake Shore Trail (Brewster Peninsula)</td>
<td>0.42</td>
<td>6</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Lead Pond Trail</td>
<td>1.31</td>
<td>3</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Little Cherrypatch Pond Trail</td>
<td>0.30</td>
<td>3</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Little Clear Pond Eastern Trail</td>
<td>1.03</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Little Polliwog to Horseshoe Carry</td>
<td>0.10</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Little Square Pond Trail</td>
<td>3.54</td>
<td>5</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Loggers Loop- Broken Dreams</td>
<td>0.89</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Loggers Loop- Loop 1</td>
<td>0.29</td>
<td>5</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Loggers Loop- Loop 2</td>
<td>1.04</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Loggers Loop- Loop 3</td>
<td>0.45</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Loggers Loop- Loop 4</td>
<td>0.17</td>
<td>3</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Loggers Loop Main Trail</td>
<td>1.82</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Lonesome Bay Path</td>
<td>0.05</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Lower Lock Carry</td>
<td>0.08</td>
<td>4</td>
<td>no</td>
<td>7</td>
</tr>
<tr>
<td>Lower Lock Trail</td>
<td>2.13</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Lower Saranac Lake</td>
<td>2.35</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Lower St. Regis Path</td>
<td>0.19</td>
<td>3</td>
<td>no</td>
<td>7</td>
</tr>
<tr>
<td>McKenzie Boulders Trail</td>
<td>0.21</td>
<td>3</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Meadow Pond Trails</td>
<td>1.37</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Middle Saranac Beach Trail</td>
<td>0.49</td>
<td>4</td>
<td>no</td>
<td>7</td>
</tr>
<tr>
<td>Monument Falls Trail</td>
<td>0.42</td>
<td>3</td>
<td>no</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (miles)</th>
<th>Trail Class</th>
<th>Mountain bikes allowed after UMP approval</th>
<th>Shown on map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moose Pond Old Road</td>
<td>0.29</td>
<td>3</td>
<td>no</td>
<td>9</td>
</tr>
<tr>
<td>Moose Pond Trail</td>
<td>0.93</td>
<td>3</td>
<td>no</td>
<td>9</td>
</tr>
<tr>
<td>Old Mountain Trail</td>
<td>0.06</td>
<td>8</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Old Wawbeek Side Trail</td>
<td>0.57</td>
<td>2</td>
<td>yes</td>
<td>-</td>
</tr>
<tr>
<td>Oseetah Lake Trails</td>
<td>1.31</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Otter Hollow Trail</td>
<td>3.91</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Panther Mountain Trail</td>
<td>0.41</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Paul Smith's Trolley Connector</td>
<td>0.14</td>
<td>4</td>
<td>yes</td>
<td>9</td>
</tr>
<tr>
<td>Paul Smith's Trolley Line</td>
<td>1.31</td>
<td>4</td>
<td>yes</td>
<td>9</td>
</tr>
<tr>
<td>Pine Ponds Esker Trail</td>
<td>0.90</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Polliwog to Little Polliwog</td>
<td>0.06</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Polliwog to Middle Pond Carry</td>
<td>0.14</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Rat Pond Point</td>
<td>0.14</td>
<td>3</td>
<td>no</td>
<td>3</td>
</tr>
<tr>
<td>Rat Pond Trail</td>
<td>1.27</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Ray Brook Office to Jack Rabbit</td>
<td>0.55</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Ridge Trail (Brewster Peninsula)</td>
<td>1.04</td>
<td>6</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Ridge Trail spur (Brewster Peninsula)</td>
<td>0.23</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Rock Pond Trail</td>
<td>0.95</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Rock to West Pine Pond Trail</td>
<td>0.68</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Rollins Pond to Deer Pond (N)</td>
<td>0.22</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Route 186 trail</td>
<td>0.63</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Saranac River Path 1</td>
<td>0.09</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (miles)</th>
<th>Trail Class</th>
<th>Mountain bikes allowed after UMP approval</th>
<th>Shown on map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saranac River Path 2</td>
<td>0.10</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Scarface Loops</td>
<td>1.49</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Scarface Mountain Trail</td>
<td>1.64</td>
<td>5</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Scarface Mountain Trail</td>
<td>1.99</td>
<td>5</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Square to Whey Pond Canoe Carry</td>
<td>0.37</td>
<td>3</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>St Germain Pond, East</td>
<td>0.14</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>St. Germain, West</td>
<td>0.04</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Stony Creek Pond Trail</td>
<td>0.17</td>
<td>3</td>
<td>yes</td>
<td>7</td>
</tr>
<tr>
<td>Track Pond</td>
<td>0.64</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Turtle Pond Access</td>
<td>0.05</td>
<td>3</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Turtle Pond Trail</td>
<td>0.39</td>
<td>3</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Weller to Saginaw Bay Canoe Carry</td>
<td>0.84</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>West Pine Pond Trail</td>
<td>0.64</td>
<td>3</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>West Pine to Rock Pond Trail</td>
<td>1.12</td>
<td>2</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Whey Pond Carry</td>
<td>0.07</td>
<td>3</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Whiteface Landing Trail</td>
<td>0.36</td>
<td>5</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Whiteface Mountain Trail</td>
<td>0.45</td>
<td>5</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>1675 Grove Trail</td>
<td>0.13</td>
<td>3</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td>Total (miles)</td>
<td>81.66</td>
<td></td>
<td>50.66</td>
<td></td>
</tr>
<tr>
<td>Bartlett Carry Reroute</td>
<td>0.16</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Carolyn Road Trails- Inner Loop</td>
<td>1.11</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Carolyn Road Trails- Loop 1</td>
<td>1.52</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Carolyn Road Trails- Loop 2</td>
<td>1.10</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Length (miles)</th>
<th>Trail Class</th>
<th>Mountain bikes allowed after UMP approval</th>
<th>Shown on map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carolyn Road Trails- Loop 3</td>
<td>2.22</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Carolyn Road Trails- Loop 4</td>
<td>1.53</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Chubb River Trail</td>
<td>1.37</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Heavens Pond South</td>
<td>0.85</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Jackrabbit Trail- Mountain Lane</td>
<td>0.42</td>
<td>8</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Lake Clear Access</td>
<td>0.10</td>
<td>4</td>
<td>no</td>
<td>8</td>
</tr>
<tr>
<td>Lake Colby Trails</td>
<td>1.56</td>
<td>6</td>
<td>yes</td>
<td>9</td>
</tr>
<tr>
<td>Loggers Loop 1</td>
<td>0.5</td>
<td>4</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>Loggers Loop Extension</td>
<td>0.80</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Middle Saranac to Ampersand</td>
<td>0.45</td>
<td>5</td>
<td>no</td>
<td>7</td>
</tr>
<tr>
<td>Moose Pond Ski Loop</td>
<td>1.93</td>
<td>4</td>
<td>no</td>
<td>9</td>
</tr>
<tr>
<td>Northern Scarface Trail</td>
<td>4.65</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Old Wawbeek Loops</td>
<td>2.88</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Pettis Plantation Loops</td>
<td>2.5</td>
<td>4</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>Rollins to Rail Trail, north</td>
<td>0.36</td>
<td>5</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Rollins to Rail Trail, south</td>
<td>0.97</td>
<td>5</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Rollins to Rock Pond connection</td>
<td>0.45</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Scarface Loops</td>
<td>0.87</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Scarface to Averyville</td>
<td>4.31</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Seymour Mountain Trail</td>
<td>0.42</td>
<td>4</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>Southern Scarface Trail</td>
<td>6.58</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Saint Germain Carry</td>
<td>1.33</td>
<td>4</td>
<td>yes</td>
<td>8</td>
</tr>
<tr>
<td>Turtle Pond Loop</td>
<td>0.35</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Length</th>
<th>Trail Class</th>
<th>Mountain bikes allowed after UMP approval</th>
<th>Shown on map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle Pond Trail</td>
<td>0.62</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Waterline connector</td>
<td>0.75</td>
<td>4</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>Total (miles)</td>
<td>38.35</td>
<td>35.37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risks:

This table lists the administrative roads in the SLWF that are used for administrative purposes. Some of these roads are also used by the public to access recreational opportunities. The APSLMP allows the continued use of existing roads in wild forest areas (page 35). Some short roads are not listed on this table, such as those roads that access a campsite; these will continue to be open for the current use. This table does not include private right-of-ways that are not used by the Department; these are listed in table 12 in section III.B.3
Table 18: Department roads, including administrative roads.

<table>
<thead>
<tr>
<th>Name / Destination</th>
<th>Mileage open for public motor vehicle use</th>
<th>Admin mileage after UMP</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axton Landing</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Bartlett Carry Road</td>
<td>0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Bear Pond/ Little Long Pond</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Bloomingdale Bog</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>Brewster Peninsula</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Camp Colby Road</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Connery Pond</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Deer Pond</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Duell Pond</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fish Creek Landfill</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
</tr>
<tr>
<td>Floodwood Mountain</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Hoel Pond Access</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Kelly/Pine Pond</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>Lake Clear Beach</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name / Destination</th>
<th>Mileage open for public motor vehicle use</th>
<th>Admin mileage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1972</td>
<td>2011</td>
<td>after UMP</td>
</tr>
<tr>
<td>Little Clear Pond</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Green Pond Road</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonesome Bay Caretaker's Cabin</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Meadow Pond</td>
<td>0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old New York Central Rail Bed</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Wawbeek Road</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prison Water Line</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raquette River Cable Car</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat Pond</td>
<td>1.8</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat Pond North</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rollins Pond from Fish Creek Campground</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motor vehicle barriers:

Gates- 24

Rocks- 20 significant locations

Bridges:

There are more than 30 bridges in the SLWF. The most significant bridges are:

- Over the Saranac River on the trail to Moose Pond from New York Route 3.
- Over Fish Creek at the Otter Hallow Trail
- Over Ray Brook on the Scarface Mountain Trail
Table 19: Boat launches and fishing and waterway access sites.

<table>
<thead>
<tr>
<th>Location</th>
<th>Waterbody size-</th>
<th>Shoreline Ownership</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axton Landing</td>
<td>8 miles</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>East Pine Pond</td>
<td>61</td>
<td>public</td>
<td>FWAS</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>222</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Follensby Clear Pond (north)</td>
<td>492</td>
<td>public</td>
<td>FWAS</td>
</tr>
<tr>
<td>Follensby Clear Pond (Spider Creek)</td>
<td>491</td>
<td>public</td>
<td>FWAS</td>
</tr>
<tr>
<td>Hoel Pond</td>
<td>445</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Indian Carry- Upper Saranac Lake</td>
<td>4775</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Lake Clear</td>
<td>980</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Lake Clear Outlet</td>
<td>104</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>286</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Lake Flower</td>
<td>980</td>
<td>public/private</td>
<td>BL/ IU</td>
</tr>
<tr>
<td>Lake Placid</td>
<td>1958</td>
<td>public/private</td>
<td>BL/ IU</td>
</tr>
<tr>
<td>Lower Saranac Lake (Ampersand Bay)</td>
<td>2108</td>
<td>public/private</td>
<td>FWAS</td>
</tr>
<tr>
<td>Middle Pond</td>
<td>61</td>
<td>public</td>
<td>FWAS</td>
</tr>
<tr>
<td>Mirror Lake</td>
<td>118</td>
<td>private</td>
<td>FWAS/IU</td>
</tr>
<tr>
<td>Moose Pond</td>
<td>158</td>
<td>public</td>
<td>FWAS</td>
</tr>
<tr>
<td>Polliwog Pond</td>
<td>197</td>
<td>public</td>
<td>FWAS</td>
</tr>
<tr>
<td>Raquette River (Crusher)</td>
<td>11 miles</td>
<td>public/private</td>
<td>BL/ IU</td>
</tr>
<tr>
<td>South Creek- Middle Saranac Lake</td>
<td>1392</td>
<td>public/private</td>
<td>FWAS/IU</td>
</tr>
<tr>
<td>Upper Saranac Lake</td>
<td>4775</td>
<td>public/private</td>
<td>BL/ IU</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

Key: FWAS: fishing and waterway access site, IU: intensive use, BL: boat launch

Table 20: Parking Areas.

<table>
<thead>
<tr>
<th>Name</th>
<th>Parking Spaces</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampersand Bay</td>
<td>10</td>
<td>gravel</td>
</tr>
<tr>
<td>Ausable Bridge #1</td>
<td>12</td>
<td>paved/dirt</td>
</tr>
<tr>
<td>Ausable Bridge #2</td>
<td>7</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Ausable River #1</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>Ausable River #2</td>
<td>10</td>
<td>dirt/gravel</td>
</tr>
<tr>
<td>Ausable River #3</td>
<td>6</td>
<td>dirt</td>
</tr>
<tr>
<td>Ausable River #4</td>
<td>7</td>
<td>dirt</td>
</tr>
<tr>
<td>Ausable River #5</td>
<td>2</td>
<td>dirt</td>
</tr>
<tr>
<td>Ausable River #6</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>Averyville Road</td>
<td>4</td>
<td>dirt/gravel</td>
</tr>
<tr>
<td>Axton Landing</td>
<td>12</td>
<td>dirt</td>
</tr>
<tr>
<td>Bartlett Carry #1</td>
<td>2</td>
<td>dirt/grass</td>
</tr>
<tr>
<td>Bartlett Carry #2</td>
<td>2</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Bartlett Carry #3</td>
<td>1</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Black Pond</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Bloomingdale Bog</td>
<td>4</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Brewster Peninsula</td>
<td>8</td>
<td>gravel</td>
</tr>
<tr>
<td>Cable Car</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>Cherry Patch Pond</td>
<td>3</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Cobble Hill</td>
<td>2</td>
<td>dirt</td>
</tr>
<tr>
<td>Connery Pond #2</td>
<td>3</td>
<td>dirt/gravel</td>
</tr>
<tr>
<td>Connery Pond #3</td>
<td>3</td>
<td>gravel</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Parking Spaces</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connery Pond 1</td>
<td>7</td>
<td>dirt/gravel</td>
</tr>
<tr>
<td>Connery Range</td>
<td>3</td>
<td>dirt/gravel</td>
</tr>
<tr>
<td>Coreys Road 1</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Coreys Road 2</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Crusher</td>
<td>38</td>
<td>paved</td>
</tr>
<tr>
<td>Deer Pond (Bull Point)</td>
<td>7</td>
<td>paved</td>
</tr>
<tr>
<td>Deer Pond (Rt30/3)</td>
<td>7</td>
<td>paved / dirt</td>
</tr>
<tr>
<td>Duell Pond</td>
<td>2</td>
<td>dirt</td>
</tr>
<tr>
<td>East Pine Pond</td>
<td>5</td>
<td>gravel</td>
</tr>
<tr>
<td>Echo Pond</td>
<td>2</td>
<td>gravel</td>
</tr>
<tr>
<td>Fernow Forest</td>
<td>8</td>
<td>paved</td>
</tr>
<tr>
<td>Fish Pond Truck Trail</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Floodwood Mountain</td>
<td>10</td>
<td>gravel</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>5</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Follensby Clear (north)</td>
<td>12</td>
<td>dirt / paved</td>
</tr>
<tr>
<td>Follensby Clear (south)</td>
<td>12</td>
<td>dirt</td>
</tr>
<tr>
<td>Forest Home Rd # 2</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>Forest Home Rd #1</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Halfway Brook</td>
<td>6</td>
<td>paved</td>
</tr>
<tr>
<td>Hoel Pond</td>
<td>11</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Horseshoe Pond Trail</td>
<td>2</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Indian Carry</td>
<td>10</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Indian Carry (at Rt 3)</td>
<td>12</td>
<td>paved</td>
</tr>
<tr>
<td>Lake Clear Beach</td>
<td>56</td>
<td>gravel / dirt</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Parking Spaces</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Clear Outlet</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>20</td>
<td>paved</td>
</tr>
<tr>
<td>Lake Flower</td>
<td>30</td>
<td>paved</td>
</tr>
<tr>
<td>Lake Placid</td>
<td>29</td>
<td>paved</td>
</tr>
<tr>
<td>Little Cherry Patch Pond</td>
<td>7</td>
<td>dirt, pavement</td>
</tr>
<tr>
<td>Little Square Pond Trail</td>
<td>3</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Lonesome Bay</td>
<td>4</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>McKenzie Bouldering</td>
<td>6</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Meadow Pond</td>
<td>2</td>
<td>dirt</td>
</tr>
<tr>
<td>Middle Pond</td>
<td>2</td>
<td>gravel/dirt</td>
</tr>
<tr>
<td>Middle Saranac / Ampersand Mtn.</td>
<td>8</td>
<td>paved</td>
</tr>
<tr>
<td>Monument Falls</td>
<td>7</td>
<td>dirt</td>
</tr>
<tr>
<td>Moose Pond</td>
<td>15</td>
<td>paved</td>
</tr>
<tr>
<td>Moose Pond Horse Trail</td>
<td>2</td>
<td>gravel</td>
</tr>
<tr>
<td>Mountain Lane</td>
<td>4</td>
<td>dirt</td>
</tr>
<tr>
<td>Oseetah Trails</td>
<td>10</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Panther Mountain</td>
<td>5</td>
<td>paved</td>
</tr>
<tr>
<td>Pettis Plantation</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>Polliwog Pond</td>
<td>5</td>
<td>gravel/dirt</td>
</tr>
<tr>
<td>Prison Water Line</td>
<td>2</td>
<td>dirt</td>
</tr>
<tr>
<td>Rat Pond</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>River Road # 1</td>
<td>3</td>
<td>dirt</td>
</tr>
<tr>
<td>River Road # 2</td>
<td>2</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>River Road # 3</td>
<td>7</td>
<td>gravel / dirt</td>
</tr>
</tbody>
</table>
Appendix 1: Facilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Parking Spaces</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Road # 4</td>
<td>1</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>River Road # 5</td>
<td>8</td>
<td>gravel, old pavement</td>
</tr>
<tr>
<td>River Road # 6</td>
<td>1</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Rt 3 Plow Turn</td>
<td>4</td>
<td>paved</td>
</tr>
<tr>
<td>Rt 3/ Saranac River # 1</td>
<td>3</td>
<td>sand</td>
</tr>
<tr>
<td>Rt 3/ Saranac River # 2</td>
<td>7</td>
<td>gravel</td>
</tr>
<tr>
<td>Rt 3/ Saranac River # 3</td>
<td>5</td>
<td>gravel</td>
</tr>
<tr>
<td>Rt 3/ Saranac River # 4</td>
<td>6</td>
<td>gravel</td>
</tr>
<tr>
<td>Rt 30/3 Junction</td>
<td>60</td>
<td>gravel / dirt</td>
</tr>
<tr>
<td>Rt 86, Old Loggers Road #1</td>
<td>10</td>
<td>gravel</td>
</tr>
<tr>
<td>Rt 86, Old Loggers Road #2</td>
<td>1</td>
<td>dirt</td>
</tr>
<tr>
<td>South Creek</td>
<td>21</td>
<td>paved</td>
</tr>
<tr>
<td>Stony Creek Bridge</td>
<td>10</td>
<td>dirt</td>
</tr>
<tr>
<td>Trombley Landing</td>
<td>9</td>
<td>paved</td>
</tr>
<tr>
<td>Upper Saranac Lake</td>
<td>30</td>
<td>paved/gravel</td>
</tr>
<tr>
<td>West Pine Pond</td>
<td>3</td>
<td>gravel</td>
</tr>
</tbody>
</table>

These are parking areas that can be found adjacent to the lands of the SLWF. Not all of these are under the jurisdiction of the Department; many are pull offs within road right-of-ways.
Table 21: Fish barrier dams.

<table>
<thead>
<tr>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Cherrypatch Pond</td>
<td>To be maintained</td>
</tr>
<tr>
<td>Connery Pond</td>
<td>Breached/ not to be repaired</td>
</tr>
<tr>
<td>East Copperas Pond</td>
<td>Breached/ not to be repaired</td>
</tr>
<tr>
<td>Little Green Pond</td>
<td>To be maintained</td>
</tr>
<tr>
<td>West Pine Pond</td>
<td>To be maintained</td>
</tr>
<tr>
<td>Whey Pond</td>
<td>To be maintained</td>
</tr>
</tbody>
</table>

Saranac Lake Islands Administrative Camping Area:

Roads
Ampersand Bay Administrative Headquarters Entrance: 328 feet of gravel road. Approximately 18 feet wide. Fair condition.
Crescent Bay Seasonal Administrative Headquarters: 1,850 feet of gravel road. Approximately 12 feet wide. Poor condition.

Boating Facilities
Ampersand Bay Boat Launch Site is located on Bayside Drive in the Village of Saranac Lake. There is an informal ramp for launching of small boats. The parking area is gravel surfaced, with 4,524 square feet. A flush toilet facility, which currently does not meet ADA requirements, is available at this site. The launch and parking area are in poor condition.
South Creek Boat Launch Site is on State Route 3, 10 miles west of the Village of Saranac Lake. The site is on the opposite side of State Route 3 from Middle Saranac Lake. There is no ramp, but boats are launched by hand off of the bank. A small dock is available. The parking lot is macadam surfaced, with 6,240 square feet. A permanent vault toilet, which currently does not meet ADA requirements, is located on the perimeter of the parking area.

Buildings
Facility Supervisor’s Headquarters at Ampersand Bay: Constructed in 1968, this building is 26' x 40' with 1,040 square feet of living space and an additional 70 square feet of office space. LP gas heating and an oil boiler are utilized. This structure is in good condition.
Ampersand Bay Administrative Headquarters Garage/Workshop: Constructed in
Appendix 1: Facilities

1975, this building is 25' x 37' equal to 925 square feet and utilizes forced air and/or wood heat. This structure is in good condition.

Pinewood Administrative Complex: Constructed in 1944 as two cabins and then remodeled in 1969 into one cabin. Total living space is 33' x 62' which is equal to 2,046 square feet. This cabin utilizes electric, LP gas monitor or wood fireplace. This structure has major roof and ventilation problems as well as an ant infestation. This structure is in fair condition.

Comfort Station at Ampersand Bay: Constructed in 1968, this building is 13' x 26' which is equal to 338 square feet of space. The building is divided into male and female sections containing a total of three flush toilet units, one urinal, and two sinks. There is excellent vegetative screening for this building. This structure is in good condition.

Ampersand Bay Boathouse: Constructed in 1974, this building is 40' x 46' and is equal to 1,840 square feet. It has three enclosed boat slips with storage upstairs. This structure is in good condition.

Facility Supervisor’s Seasonal Headquarters at Crescent Bay: Constructed in 1934 this building is 26' x 43' and is equal to 1,118 square feet. This building utilizes electric heat and a wood fireplace. This structure is in fair condition.

Garage/Workshop at Crescent Bay: Constructed in 1976, this building is 14' x 32' and is equal to 448 square feet. This structure is in fair condition.

Crescent Bay Boathouse: Constructed in 1934, the boathouse is 32' x 35' which is equal to 1,120 square feet. It has three enclosed boat slips and storage upstairs. This structure is in good condition.

Lower Lock Cabin on Saranac River: Constructed in 1965, the cabin is 32' x 38' and is equal to 1,216 square feet of living space. This structure is in fair condition.

Storage Building at Lower Lock: The storage building was constructed in 1946 and is 10' x 16' which is equal to 160 square feet. This structure is in poor condition.

Upper Lock Cabin on Saranac River: Constructed in 1965, this cabin is 32' x 38' which is equal to 1,216 square feet of living space. This structure is in fair condition and has no electric service.

Storage Building at Upper Locks: Constructed in 1946, this building is 10' x 16' and is equal to 160 square feet. This structure is in poor condition.

Lower Lock Water Channel Structure: Dimensions of lock are 60' x 17' with a lift height of 6 feet. This structure is in poor condition.

Upper Lock Water Channel Structure: Dimensions of lock are 44' x 11' with a lift height of 3 feet. This structure is in poor condition.

Control Building at Lower Lock: Constructed in 1986, this 5' x 6' building equals to
Appendix 1: Facilities

30 square feet. This structure is in good condition.

Equipment Building at Lower Lock: Constructed in 1990, this building is 12' x 13' and equal to 156 square feet. This structure is in fair condition.

Tom's Rock Lean-to, Campsite #2 on Lower Saranac: Constructed in 1934, the lean-to is 8' x 12' and equal to 96 square feet. This structure is in good condition.

Narrows Lean-to, Campsite #45 on Lower Saranac: Constructed in 1956, the lean-to is 8' x 12' and equal to 96 square feet. This structure is in good condition.

Bull Rush Lean-to, Campsite #63 on Middle Saranac: Constructed in 1967, this lean-to is 8' x 12' and equal to 96 square feet. This structure is in good condition.

Ruben Lean-to, Campsite #81 on Middle Saranac: Constructed in 1964, it is 8' x 12' and equal to 96 square feet. This structure is in good condition.

Weller Pond Lean-to, Campsite #87 on Weller Pond: Constructed in 1962, the lean-to is 8' x 12' and equal to 96 square feet. This structure is in good condition.

Vault Toilet at South Creek Launch Site: Constructed in 1977, this building is 8' x 22' and is equal to 176 square feet. This structure is in poor condition and currently does not meet ADA accessibility standards.

Potable Water

Facility Supervisor’s Headquarters at Ampersand Bay, Pinewood Complex, and the Ampersand Bay Comfort Station

- Drilled well (1968)
- 275' depth (pump installed at 263')
- 40-gallon storage tank

Facility Supervisor’s Headquarters at Crescent Bay

- Retrieved from a spring fed well in basement
- 20-gallon storage tank

Lower Lock Cabin on Saranac River

- Retrieved from the Saranac River by submerged water line with a foot valve on the end and an inline check valve
 - 90-gallon capacity (45 +45) dual storage tanks

Upper Lock Cabin on Saranac River
Appendix 1: Facilities

Retrieved from the Saranac River by submerged water line with a foot valve on the end and an inline check valve

90-gallon capacity (45 +45) dual storage tanks

Sewage Systems

Facility Supervisor’s Headquarters at Ampersand Bay: This building utilizes a septic system composed of a 1,500-gallon septic tank which is connected to a distribution box that handles the effluent that flows into a leach field.

Pinewood Administrative Complex: The sewage system at this building utilizes a 30' x 36" sewage basin tank with a grinder lift pump. The effluent is lifted to the existing sewage system that services the Facility Supervisor’s Headquarters.

Comfort Station at Ampersand Bay Headquarters: This building utilizes the existing sewage system that services the Facility Supervisor’s Headquarters.

Facility Supervisor’s Headquarters at Crescent Bay: This building utilizes a septic system composed of a 500-gallon tank and a leach field.

Lower Lock Cabin on Saranac River: This building utilizes a septic system composed of a metal 275-gallon tank which is pumped to a leach field.

Upper Lock Cabin on Saranac River: This building utilizes a series of three 500-gallon low profile holding tanks which are pumped as needed.

Vault Toilet at South Creek Launch Site: This facility utilizes pump out vaults.

Electrical

The administrative camping area has three power meters: one located at Ampersand Bay, one at Crescent Bay and one at the Lower Locks. The electricity is supplied to all three locations from National Grid Power Corporation.

Solid Waste

No refuse collection containers are supplied at this facility. A “carry in - carry out” policy is in effect. However, a significant amount of trash is collected throughout the area including the designated campsites by staff each season. The average annual amount of waste brought to the Franklin County Transfer Station is approximately 9,000 pounds.

Barriers

There are currently five security gates: one at the entrance to Ampersand Bay Parking Area, utilized for closing the parking lot due to seasonal conditions or repairs; one at the entrance to Crescent Bay Headquarters, used to limit public access and use at this administrative facility; one at the entrance to Lonesome Bay, used as a maintenance access road and closed to prevent unauthorized parking in the area; one at the
entrance to the South Creek vault toilet, utilized for building maintenance purposes; and one at the entrance to South Creek access site for emergency and rescue boats. All of the gates are utilized to prevent unauthorized access to these locations.

Telephones

Ampersand Bay: (518) 891-3170
(518) 891-2889 computer line
Crescent Bay: (518) 891-4590
State Bridge/Second Pond: (518) 891-2841
Lower Locks: (518) 891-3796
Upper Locks: (518) 891-3269

Signs

A variety of messages are conveyed to public users by standard (yellow on brown) signs. Subjects include directions, information, traffic control, regulations, recycling, boat speed limits, comfort stations locations, boat lock passage information, invasive species information and camping sites.

Fuel Systems

Ampersand Bay Administrative Headquarters
- 550-gallon fuel oil tank for cabin
- 300-pound LP tank for cabin
- 300-pound LP tank for garage/workshop
- 550-gallon unleaded fuel tank for boat house

Pinewood Administrative Complex
- Two-300-pound LP tanks for cabin

Lower Locks Cabin
- Two-100-pound LP tanks for cabin

Upper Locks Cabin
- Two-100-pound LP tanks for cabin
Appendix 2: Justifications for Fishing and Waterway Access Sites

The APSLMP states that proposals for new water access sites must demonstrate that APSLMP management guidelines are met. The following are the justifications that the new fishing and waterway access sites comply with these guidelines.

Lake Clear Outlet Access Site:

1) There are not any official public hand launching facilities on Lake Clear Outlet. Boats can be launched at Lake Clear Beach; however, this is not suitable for all users. A demonstrated need for this facility can be seen from the fact that through informal use three areas for hand launching have been created.

2) Lake Clear Outlet has a carrying capacity of several vessels. The parking area proposed will only provide space for two vehicles. Small, light-weight vessels could also travel to Lake Clear which greatly increases the available area for the visitors to disperse. Those using this access site are expected to take part in quiet, leisurely recreation such as fishing or canoeing.

3) The site and attendant water uses are compatible with state and private land use classifications on the land surrounding the waterbody. There is slightly more State land than privately owned land along the shoreline. The private land is a mix of low intensity and resource management. The State land is mostly wild forest with two travel corridors passing through. The water uses are expected to be quiet in nature, which is compatible with the land use classifications.

4) No adverse impacts are anticipated on nearby State or private lands from the location of the site. The current use of the informal access seems to fit with the surroundings. The only negative impacts from the current use are related to the nature of the site being user created instead of hardened to prevent natural resource damage.

5) A motor size limitation of 15 horsepower will be imposed on the use of the site. This limit will provide for appropriate uses while preventing large and high-speed motor boat traffic.

6) There are no adverse impacts expected upon the physical, biological, or scenic resources of the waterbody or the surrounding land. The area is developed with private homes and roads visible from the water. The site
Appendix 2: Justification for Fishing and Waterway Access Sites

itself will be far less noticeable than the private homes and the roads that are around Lake Clear Outlet. The expected uses of fishing and canoeing will not detract from the surrounding land. This site may be used as access to Lake Clear which is a large waterbody capable of sustaining higher levels of use.

The fishing access site at Polliwog Pond is already an established facility; however, since this UMP will reconfigure it by moving the location of the access and designating a parking area, it will be treated as if it were a new facility.

1) Polliwog Pond is used for fishing, camping, and canoe trips. The primary access to Polliwog Pond is from Floodwood Road at the current access site. Secondary access is from canoe carries from Little Polliwog and Follensby Clear ponds, as well as several of the campsites off of Floodwood Road (which this UMP calls for closing). This site is needed to provide a way for the public to access the fishing and camping opportunities that Polliwog Pond offers. There is no other location to provide hand launching facilities on Polliwog Pond.

2) The parking area to be constructed will allow for up to seven vehicles. This parking capacity is in keeping with the current number of vehicles using the area. The uses which would occur on Polliwog Pond will be canoeing, fishing, accessing campsites. These uses should not approach the pond’s carrying capacity. The new site will include a barrier to prohibit the direct launch of trailered boats, which should reduce the size of boats on Polliwog Pond. The reduced size of boats would have a positive impact on carrying capacity.

3) Polliwog Pond is entirely classified as Wild Forest. This is an appropriate facility for Wild Forest classification. Motor boat use, canoeing, fishing, and accessing campsites are all appropriate for this classification.

4) This fishing access site will be located at a campsite which will be closed. This will allow the site to be better located than the current site. There will be limited screening for this site due to the fact that the current campsites have reduced the vegetation present. Following construction of the fishing access site, vegetation will be replanted in order to increase the screening of the site.

5) There will be motor size limitations placed on the use of this access site. A limit of 15 horsepower will be imposed. This will help to ensure that those motor boats using this site will be for activities of a leisurely nature, such as fishing and accessing campsites.

6) The relocation of this site will not have an adverse impact on the resources of the waterbody and the surrounding land. The relocation of this site is not expected to change the current use of Polliwog Pond. The
Appendix 2: Justification for Fishing and Waterway Access Sites

new site will allow for better parking, horsepower limits, and prohibition of launching trailered boats; all of which will reduce the current impacts that are occurring, yet it will still allow for public access.
Appendix 2: Justification for Fishing and Waterway Access Sites

This page intentionally left blank
Appendix 3: Saranac Lake Islands Campsite Photograph Comparison

Site #1 in 1977

Site #1 in 2009
Appendix 3: Saranac Lake Islands Campsite Photograph Comparison

Site #2 in 1977

Site #2 in 2009
Site #3 in 1977

Site #3 in 2009
Appendix 3: Saranac Lake Islands Campsite Photograph Comparison

Site #15 in 1977
Site #15 in 2009
Appendix 3: Saranac Lake Islands Campsite Photograph Comparison

Site #31 in 1977

Site #31 in 2009

1977 photos were part of a campsite inventory conducted by the Adirondack Park Agency

2009 photos by Douglas Bernhard (DEC)
Appendix 4: Acronyms

ADA - American with Disabilities Act
ADAAG - American with Disabilities Act Accessibility Guidelines
ADK - Adirondack Mountain Club
AFR - Assistant Forest Ranger
ALSC - Adirondack Lakes Survey Corporation
ANC - Acid Neutralizing Capacity
APA - Adirondack Park Agency
APLUDP - Adirondack Park Land Use Development Plan
APSLMP - Adirondack Park State Land APSLMP
ARTC - Adirondack Regional Tourism Council
ATV - All Terrain Vehicle
ATIS - Adirondack Trail Improvement Society
BCA - Bird Conservation Area
CAC - Citizens' Advisory Committee
DEC - New York State Department of Environmental Conservation
DMU - Deer Management Unit
DOC - New York State Department of Corrections
DOT - New York State Department of Transportation
ECL - Environmental Conservation Law
EIS - Environmental Impact Statement
EPA - Environmental Protection Act of 1993
EQBA - Environmental Quality Bond Act
FAA - Federal Aviation Administration
Appendix 4: Acronyms

FR - Forest Ranger
FWMA – Fish and Wildlife Management Agreement
LAC - Limits of Acceptable Change
NBWI - Native-But-Widely-Introduced
NHPC - Natural Heritage Plant Community
NPS - National Park Service
NYCRR - New York Code of Rules and Regulations
NYS - New York State
ORDA - Olympic Regional Development Authority
OSP - Open Space Plan
ROW - Right-Of-Way
SEQRA - State Environmental Quality Review Act
SLIC – Saranac Lake Islands Campground
SUNY-ESF - State University of New York College of Environmental Science and Forestry
TNC - The Nature Conservancy
UFAS - Uniform Accessibility Standards
USGS - United States Geologic Survey
UMP - Unit Management Plan
USFS - United States Forest Service
WMU - Wildlife Management Unit
Appendix 5: Mammals and Birds

Table 22: Mammals of the SLWF.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Habitat Types</th>
<th>Protected Status</th>
<th>Heritage Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alces</td>
<td>moose</td>
<td>DF, MF, CF, wetlands</td>
<td>game species</td>
<td>S1</td>
</tr>
<tr>
<td>Blarina brevicauda</td>
<td>northern short-tailed shrew</td>
<td>all habitats</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Canis latrans</td>
<td>coyote</td>
<td>all habitats</td>
<td>game species</td>
<td>S5</td>
</tr>
<tr>
<td>Castor canadensis</td>
<td>beaver</td>
<td>MF, adjacent to water</td>
<td>games species</td>
<td>S5</td>
</tr>
<tr>
<td>Clethrionomys gapperi</td>
<td>southern red-backed vole</td>
<td>DF, CF, boreal forest</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Condylura cristata</td>
<td>star-nosed mole</td>
<td>DF, wetlands</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Didelphis virginian</td>
<td>Virginia opossum</td>
<td>villages, roadsides</td>
<td>games species</td>
<td>S5</td>
</tr>
<tr>
<td>Eptesicus fuscus</td>
<td>big brown bat</td>
<td>wooded, semi-wooded</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Erethizon dorsatum</td>
<td>porcupine</td>
<td>DF, MF, CF</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Glaucomys sabrinus</td>
<td>northern flying squirrel</td>
<td>CF, MF</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Glaucomys volans</td>
<td>southern flying squirrel</td>
<td>DF, MF</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Lasiurcteris noctivagans</td>
<td>silver-haired bat</td>
<td>forests, adj. lakes, ponds</td>
<td>unprotected</td>
<td>S4</td>
</tr>
<tr>
<td>Lasiurus cinereus</td>
<td>hairy bat</td>
<td>DF, MF</td>
<td>unprotected</td>
<td>S4</td>
</tr>
<tr>
<td>Lasiurus borealis</td>
<td>red bat</td>
<td>all forested areas</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Lepus americanus</td>
<td>varying hare</td>
<td>CF, MF, alder swamps</td>
<td>game species</td>
<td>S5</td>
</tr>
<tr>
<td>Lutra canadensis</td>
<td>river otter</td>
<td>lakes, ponds, streams</td>
<td>game species</td>
<td>S5</td>
</tr>
<tr>
<td>Lynx rufus</td>
<td>bobcat</td>
<td>DF, MF, CF</td>
<td>game species</td>
<td>S4</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Habitat Types</td>
<td>Protected Status</td>
<td>Heritage Rank</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Marmota monax</td>
<td>woodchuck</td>
<td>open areas, DF, roadsides</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Martes americana</td>
<td>American marten</td>
<td>DF, MF, CF</td>
<td>game species</td>
<td>S3</td>
</tr>
<tr>
<td>Martes pennanti</td>
<td>fisher</td>
<td>DF, MF, CF</td>
<td>games species</td>
<td>S3</td>
</tr>
<tr>
<td>Mephitis</td>
<td>striped skunk</td>
<td>open forests, fields, villages</td>
<td>games species</td>
<td>S5</td>
</tr>
<tr>
<td>Microtus pennsylvanicus</td>
<td>meadow vole</td>
<td>old fields, bogs, marshes</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Microtus chrotorrhinus</td>
<td>rock vole</td>
<td>moist talus slopes</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Microtus pinetorum</td>
<td>woodland vole</td>
<td>DF, meadows</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>house mouse</td>
<td>buildings</td>
<td>unprotected</td>
<td>SE</td>
</tr>
<tr>
<td>Mustela eminea</td>
<td>ermine</td>
<td>DF, MF, CF, old fields</td>
<td>game species</td>
<td>S5</td>
</tr>
<tr>
<td>Mustela vison</td>
<td>mink</td>
<td>forested wetlands</td>
<td>games species</td>
<td>S5</td>
</tr>
<tr>
<td>Mustelas frenata</td>
<td>long-tailed weasel</td>
<td>old fields, DF</td>
<td>game species</td>
<td>S5</td>
</tr>
<tr>
<td>Myotis leibil</td>
<td>small-footed bat</td>
<td>unknown/caves</td>
<td>special concern</td>
<td>S1</td>
</tr>
<tr>
<td>Myotis keea</td>
<td>Keenes myotis</td>
<td>woodlands, buildings</td>
<td>protected</td>
<td>S5</td>
</tr>
<tr>
<td>Myotis sodalis</td>
<td>Indiana bat</td>
<td>Caves- winter, summer- unk</td>
<td>endangered</td>
<td>S1</td>
</tr>
<tr>
<td>Myotis lucifugus</td>
<td>little brown bat</td>
<td>buildings, caves</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Odocoileus virginianus</td>
<td>white-tailed deer</td>
<td>DF, MF, CF</td>
<td>games species</td>
<td>S5</td>
</tr>
<tr>
<td>Ondatra zibethicus</td>
<td>muskrat</td>
<td>marshes, rivers, w/cattail</td>
<td>game species</td>
<td>S5</td>
</tr>
<tr>
<td>Parascalops breweri</td>
<td>hairy-tailed mole</td>
<td>DF</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Peromyscus leucopus</td>
<td>white-footed mouse</td>
<td>woodland edges, DF, CF, MF</td>
<td>unprotected</td>
<td>S5</td>
</tr>
<tr>
<td>Peromyscus maniculatus</td>
<td>deer mouse</td>
<td>DF, CF, MF, open areas</td>
<td>unprotected</td>
<td>S5</td>
</tr>
</tbody>
</table>
Appendix 5: Mammals and Birds

Habitat key: CF- coniferous forests, DF- deciduous forests, MF- mixed forests

Definitions of protected status and heritage ranks are at the end of this section.

<table>
<thead>
<tr>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>BREEDING CLASS</th>
<th>NY Legal Status</th>
<th>State Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>common loon</td>
<td>Gavia immer</td>
<td>NY</td>
<td>Protected-Special Concern</td>
<td>S3S4</td>
</tr>
<tr>
<td>pied-billed grebe</td>
<td>Podilymbus podiceps</td>
<td>T2</td>
<td>Threatened</td>
<td>S3</td>
</tr>
<tr>
<td>American bittern</td>
<td>Botaurus lentiginosus</td>
<td>D2</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>least bittern</td>
<td>Ixobrychus exilis</td>
<td>X1</td>
<td>Threatened</td>
<td>S3</td>
</tr>
<tr>
<td>great blue heron</td>
<td>Ardea herodias</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>green heron</td>
<td>Butorides virescens</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Canada goose</td>
<td>Branta canadensis</td>
<td>FL</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>wood duck</td>
<td>Aix sponsa</td>
<td>NE</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>green-winged teal</td>
<td>Anas crecca</td>
<td>FL</td>
<td>Game Species</td>
<td>S3</td>
</tr>
<tr>
<td>American black duck</td>
<td>Anas rubripes</td>
<td>NE</td>
<td>Game Species</td>
<td>S4</td>
</tr>
<tr>
<td>mallard</td>
<td>Anas platyrhynchos</td>
<td>NE</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>mallard x Am. black duck hybrid</td>
<td>Anas platyrhynchos x A. rubripes</td>
<td>X1</td>
<td>Game Species</td>
<td>NR</td>
</tr>
<tr>
<td>northern pintail</td>
<td>Anas acuta</td>
<td>FL</td>
<td>Game Species</td>
<td>S2</td>
</tr>
<tr>
<td>blue-winged teal</td>
<td>Anas discors</td>
<td>FL</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>redhead</td>
<td>Aythya americana</td>
<td>FL</td>
<td>Game Species</td>
<td>SE</td>
</tr>
<tr>
<td>ring-necked duck</td>
<td>Aythya collaris</td>
<td>FL</td>
<td>Game Species</td>
<td>S3</td>
</tr>
<tr>
<td>common goldeneye</td>
<td>Bucephala clangula</td>
<td>FL</td>
<td>Game Species</td>
<td>S2</td>
</tr>
<tr>
<td>hooded merganser</td>
<td>Lophodytes cucullatus</td>
<td>ON</td>
<td>Game Species</td>
<td>S4</td>
</tr>
<tr>
<td>common merganser</td>
<td>Mergus merganser</td>
<td>NY</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>turkey vulture</td>
<td>Cathartes aura</td>
<td>T2</td>
<td>Protected</td>
<td>S4</td>
</tr>
</tbody>
</table>
Appendix 5: Mammals and Birds

<table>
<thead>
<tr>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>BREEDING CLASS</th>
<th>NY Legal Status</th>
<th>State Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>osprey</td>
<td>Pandion haliaetus</td>
<td>NY</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>bald eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>P2</td>
<td>Threatened</td>
<td>S1</td>
</tr>
<tr>
<td>northern harrier</td>
<td>Circus cyaneus</td>
<td>NE</td>
<td>Threatened</td>
<td>S3</td>
</tr>
<tr>
<td>sharp-shinned hawk</td>
<td>Accipiter striatus</td>
<td>FL</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>Cooper's hawk</td>
<td>Accipiter cooperii</td>
<td>FY</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>northern goshawk</td>
<td>Accipiter gentilis</td>
<td>NY</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>red-shouldered hawk</td>
<td>Buteo lineatus</td>
<td>T2</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>broad-winged hawk</td>
<td>Buteo platypterus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>red-tailed hawk</td>
<td>Buteo jamaicensis</td>
<td>D2</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>American kestrel</td>
<td>Falco sparverius</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>peregrine falcon</td>
<td>Falco peregrinus</td>
<td>NY</td>
<td>Endangered</td>
<td>S2</td>
</tr>
<tr>
<td>ring-necked pheasant</td>
<td>Phasianus colchicus</td>
<td>FL</td>
<td>Game Species</td>
<td>SE</td>
</tr>
<tr>
<td>spruce grouse</td>
<td>Falcipennis canadensis</td>
<td>FL</td>
<td>Endangered</td>
<td>S2</td>
</tr>
<tr>
<td>ruffed grouse</td>
<td>Bonasa umbellus</td>
<td>FY</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>wild turkey</td>
<td>Meleagris gallopavo</td>
<td>X1</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>American crow</td>
<td>Corvus brachyrhynchos</td>
<td>NY</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>Virginia rail</td>
<td>Rallus limicola</td>
<td>D2</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>sora</td>
<td>Porzana carolina</td>
<td>T2</td>
<td>Game Species</td>
<td>S4</td>
</tr>
<tr>
<td>killdeer</td>
<td>Charadrius vociferus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>spotted sandpiper</td>
<td>Actitis macularia</td>
<td>FL</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>BREEDING CLASS</td>
<td>NY Legal Status</td>
<td>State Rank</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>common snipe</td>
<td>Gallinago</td>
<td>FL</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>American woodcock</td>
<td>Scolopax minor</td>
<td>NE</td>
<td>Game Species</td>
<td>S5</td>
</tr>
<tr>
<td>herring gull</td>
<td>Larus argentatus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>black tern</td>
<td>Chlidonias niger</td>
<td>P2</td>
<td>Endangered</td>
<td>S2</td>
</tr>
<tr>
<td>dock dove</td>
<td>Columba livia</td>
<td>NY</td>
<td>Unprotected</td>
<td>SE</td>
</tr>
<tr>
<td>mourning dove</td>
<td>Zenaida macroura</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>black-billed cuckoo</td>
<td>Coccyzus erythropthalmus</td>
<td>T2</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>yellow-billed cuckoo</td>
<td>Coccyzus americanus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>great horned owl</td>
<td>Bubo virginianus</td>
<td>FL</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>barred owl</td>
<td>Strix varia</td>
<td>FL</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>long-eared owl</td>
<td>Asio otus</td>
<td>S2</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>short-eared owl</td>
<td>Asio flammeus</td>
<td>T2</td>
<td>Endangered</td>
<td>S2</td>
</tr>
<tr>
<td>northern saw-whet owl</td>
<td>Aegolius acadicus</td>
<td>T2</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>common nighthawk</td>
<td>Chordeiles minor</td>
<td>FL</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>whip-poor-will</td>
<td>Caprimulgus vociferus</td>
<td>T2</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>chimney swift</td>
<td>Chaetura pelagica</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>ruby-throated hummingbird</td>
<td>Archilochus colubris</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>belted kingfisher</td>
<td>Ceryle alcyon</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>red-headed woodpecker</td>
<td>Melanerpes erythrocephalus</td>
<td>FY</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>yellow-bellied sapsucker</td>
<td>Sphyrapicus varius</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>BREEDING CLASS</td>
<td>NY Legal Status</td>
<td>State Rank</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>downy woodpecker</td>
<td>Picoides pubescens</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>hairy woodpecker</td>
<td>Picoides villosus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>three-toed woodpecker</td>
<td>Picoides tridactylus</td>
<td>FY</td>
<td>Protected</td>
<td>S2</td>
</tr>
<tr>
<td>black-backed woodpecker</td>
<td>Picoides arcticus</td>
<td>NY</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>northern flicker</td>
<td>Colaptes auratus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>pileated woodpecker</td>
<td>Dryocopus pileatus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>olive-sided flycatcher</td>
<td>Contopus cooperi</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>eastern wood-pewee</td>
<td>Contopus virens</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>yellow-bellied flycatcher</td>
<td>Empidonax flaviventris</td>
<td>NE</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>alder flycatcher</td>
<td>Empidonax alnorum</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>least flycatcher</td>
<td>Empidonax minimus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>eastern phoebe</td>
<td>Sayornis phoebe</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>great crested flycatcher</td>
<td>Myiarchus crinitus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>eastern kingbird</td>
<td>Tyrannus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>horned lark</td>
<td>Eremophila alpestris</td>
<td>FL</td>
<td>Protected-Special Concern</td>
<td>S5</td>
</tr>
<tr>
<td>tree swallow</td>
<td>Tachycineta bicolor</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>northern rough-winged swallow</td>
<td>Stelgidopteryx serripennis</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>bank swallow</td>
<td>Riparia</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>cliff swallow</td>
<td>Petrochelidon pyrrhonota</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>barn swallow</td>
<td>Hirundo rustica</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>BREEDING CLASS</td>
<td>NY Legal Status</td>
<td>State Rank</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>gray jay</td>
<td>Perisoreus canadensis</td>
<td>FY</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>blue jay</td>
<td>Cyanocitta cristata</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>common raven</td>
<td>Corvus corax</td>
<td>ON</td>
<td>Protected</td>
<td>S4</td>
</tr>
<tr>
<td>black-capped chickadee</td>
<td>Poecile atricapillus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>boreal chickadee</td>
<td>Poecile hudsonicus</td>
<td>FY</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>red-breasted nuthatch</td>
<td>Sitta canadensis</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>white-breasted nuthatch</td>
<td>Sitta carolinensis</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>brown creeper</td>
<td>Certhia americana</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>house wren</td>
<td>Troglodytes aedon</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>winter wren</td>
<td>Troglodytes</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>sedge wren</td>
<td>Cistothorus platensis</td>
<td>X1</td>
<td>Threatened</td>
<td>S2</td>
</tr>
<tr>
<td>marsh wren</td>
<td>Cistothorus palustris</td>
<td>S2</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>golden-crowned kinglet</td>
<td>Regulus satrapa</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>ruby-crowned kinglet</td>
<td>Regulus calendula</td>
<td>NE</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>eastern bluebird</td>
<td>Sialia sialis</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>veery</td>
<td>Catharus fuscescens</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Bicknell's thrush</td>
<td>Catharus bicknelli</td>
<td>X1</td>
<td>Protected-Special</td>
<td>S2S3</td>
</tr>
<tr>
<td>Swainson's thrush</td>
<td>Catharus ustulatus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>hermit thrush</td>
<td>Catharus guttatus</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>wood thrush</td>
<td>Hylocichla mustelina</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>American robin</td>
<td>Turdus migratorius</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
</tbody>
</table>
Appendix 5: Mammals and Birds

<table>
<thead>
<tr>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>BREEDING CLASS</th>
<th>NY Legal Status</th>
<th>State Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>gray catbird</td>
<td>Dumetella carolinensis</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>northern mockingbird</td>
<td>Mimus polyglottos</td>
<td>P2</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>brown thrasher</td>
<td>Toxostoma rufum</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>cedar waxwing</td>
<td>Bombycilla cedrorum</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>european starling</td>
<td>Sturnus vulgaris</td>
<td>NY</td>
<td>Unprotected</td>
<td>SE</td>
</tr>
<tr>
<td>blue-headed vireo</td>
<td>Vireo solitarius</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>warbling vireo</td>
<td>Vireo gilvus</td>
<td>UN</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Philadelphia vireo</td>
<td>Vireo philadelphicus</td>
<td>D2</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>red-eyed vireo</td>
<td>Vireo olivaceous</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>golden-winged warbler</td>
<td>Vermivora chrysoptera</td>
<td>X1</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>Tennessee warbler</td>
<td>Vermivora peregrina</td>
<td>T2</td>
<td>Protected</td>
<td>S2</td>
</tr>
<tr>
<td>Nashville warbler</td>
<td>Vermivora ruficapilla</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>northern parula</td>
<td>Parula americana</td>
<td>FY</td>
<td>Protected</td>
<td>S3S4</td>
</tr>
<tr>
<td>yellow warbler</td>
<td>Dendroica petechia</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>chestnut-sided warbler</td>
<td>Dendroica pensylvanica</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>magnolia warbler</td>
<td>Dendroica magnolia</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Cape May warbler</td>
<td>Dendroica tigrina</td>
<td>T2</td>
<td>Protected</td>
<td>S2</td>
</tr>
<tr>
<td>black-throated blue warbler</td>
<td>Dendroica caerulescens</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>yellow-rumped warbler</td>
<td>Dendroica coronata</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>black-throated green warbler</td>
<td>Dendroica virens</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Blackburnian warbler</td>
<td>Dendroica fusca</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>BREEDING CLASS</td>
<td>NY Legal Status</td>
<td>State Rank</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>pine warbler</td>
<td>Dendroica pinus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>palm warbler</td>
<td>Dendroica palmarum</td>
<td>NE</td>
<td>Protected</td>
<td>S1</td>
</tr>
<tr>
<td>bay-breasted warbler</td>
<td>Dendroica castanea</td>
<td>T2</td>
<td>Protected</td>
<td>S2</td>
</tr>
<tr>
<td>Blackpoll warbler</td>
<td>Dendroica striata</td>
<td>T2</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>black-and-white warbler</td>
<td>Mniotilta varia</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>American redstart</td>
<td>Setophaga ruticilla</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>ovenbird</td>
<td>Seiurus aurocapillus</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>northern waterthrush</td>
<td>Seiurus noveboracensis</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>mourning warbler</td>
<td>Oporornis philadelphia</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>common yellowthroat</td>
<td>Geothlypis trichas</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Wilson’s warbler</td>
<td>Wilsonia pusilla</td>
<td>P2</td>
<td>Protected</td>
<td>S1</td>
</tr>
<tr>
<td>Canada warbler</td>
<td>Wilsonia canadensis</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>scarlet tanager</td>
<td>Piranga olivacea</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>northern cardinal</td>
<td>Cardinalis</td>
<td>FL</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>rose-breasted grosbeak</td>
<td>Pheucticus ludovicianus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>indigo bunting</td>
<td>Passerina cyanea</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>eastern towhee</td>
<td>Pipilo erythrophthalmus</td>
<td>P2</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>chipping sparrow</td>
<td>Spizella passerina</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>field sparrow</td>
<td>Spizella pusilla</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>vesper sparrow</td>
<td>Pooecetes gramineus</td>
<td>FY</td>
<td>Protected-Special Concern</td>
<td>S5</td>
</tr>
<tr>
<td>savannah sparrow</td>
<td>Passerculus sandwichensis</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>BREEDING CLASS</td>
<td>NY Legal Status</td>
<td>State Rank</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>grasshopper sparrow</td>
<td>Ammmodramus savannarum</td>
<td>X1</td>
<td>Protected-Special Concern</td>
<td>S4</td>
</tr>
<tr>
<td>song sparrow</td>
<td>Melospiza melodia</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Lincoln's sparrow</td>
<td>Melospiza lincolnii</td>
<td>FY</td>
<td>Protected</td>
<td>S4</td>
</tr>
<tr>
<td>swamp sparrow</td>
<td>Melospiza georgiana</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>white-throated sparrow</td>
<td>Zonotrichia albicollis</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>dark-eyed junco</td>
<td>Junco hyemalis</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>bobolink</td>
<td>Dolichonyx oryzivorus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>red-winged blackbird</td>
<td>Agelaius phoeniceus</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>eastern meadowlark</td>
<td>Sturnella magna</td>
<td>FL</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>rusty blackbird</td>
<td>Euphagus carolinus</td>
<td>FY</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>common grackle</td>
<td>Quiscalus quiscula</td>
<td>NY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>brown-headed cowbird</td>
<td>Molothrus ater</td>
<td>NE</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>Baltimore oriole</td>
<td>Icterus galbula</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>purple finch</td>
<td>Carpodacus purpureus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>house finch</td>
<td>Carpodacus mexicanus</td>
<td>NY</td>
<td>Protected</td>
<td>SE</td>
</tr>
<tr>
<td>red crossbill</td>
<td>Loxia curvirostra</td>
<td>FL</td>
<td>Protected</td>
<td>S3</td>
</tr>
<tr>
<td>white-winged crossbill</td>
<td>Loxia leucoptera</td>
<td>FY</td>
<td>Protected</td>
<td>S2S3</td>
</tr>
<tr>
<td>pine siskin</td>
<td>Carduelis pinus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>American goldfinch</td>
<td>Carduelis tristis</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>evening grosbeak</td>
<td>Coccothraustes vespertinus</td>
<td>FY</td>
<td>Protected</td>
<td>S5</td>
</tr>
<tr>
<td>house sparrow</td>
<td>Passer domesticus</td>
<td>NY</td>
<td>Unprotected</td>
<td>SE</td>
</tr>
</tbody>
</table>
Appendix 5: Mammals and Birds

Breeding Code Definitions

Possible Breeding:

X1 - Species observed in possible nesting habitat but no other indication of breeding noted, or singing male(s) present (or breeding calls heard), in breeding season (based upon one visit).

Probable Breeding:

P2 - Pair observed in suitable habitat in breeding season.

S2 - Singing male present (or breeding calls heard) on more than one date in the same place.

T2 - Bird (or pair) apparently holding territory.

D2 - Courtship and display, agitated behavior or anxiety calls from adults suggesting probable presence nearby of a nest or young; well-developed brood-patch or cloacal protuberance on trapped adult. Includes copulation.

N2 - Visiting probable nest site. Nest building by wrens and woodpeckers.

B2 - Nest building or excavation of a nest hole.

Confirmed Breeding:

DD - Distraction display or injury-feigning.

UN - Used nest found.

FE - Female with egg in the oviduct.

FL - Recently fledged young (including downy young of precocial species - waterfowl, shorebirds).

ON - Adult(s) entering or leaving nest site in circumstances indicating occupied nest.

FS - Adult carrying fecal sac.

FY - Adult(s) with food for young.

NE - Identifiable nest and eggs, bird setting on nest or eggs, identifiable eggshells found beneath nest, or identifiable dead nestling(s).

NY - Nest with young.

New York State Legal Status Definitions

Categories of Endangered and Threatened species are defined in New York State Conservation Law section 11-0535. Endangered, Threatened, and Special Concern
species are listed in regulation 6NYCRR 182.5.

Endangered species are those species that meet one of the following criteria:

1) any native species in imminent danger of extirpation or extinction in New York;

2) any species listed as endangered by the United States Department of the Interior, as enumerated in the Code of Federal Regulations 50 CFR 17.11.

Threatened species are those species that meet one of the following criteria:

1) any native species likely to become an endangered species within the foreseeable future in New York;

2) any species listed as threatened by the United States Department of the Interior, as enumerated in the Code of Federal Regulations 50 CFR 17.11, and not listed as endangered in New York.

Special Concern species are those species which are not yet recognized as endangered or threatened, but for which documented concern exists for their continued welfare in New York. Unlike the first two categories, species of special concern receive no additional legal protection under ECL section 11-0535.

Protected species (defined in ECL section 11-0103) include wild game, protected wild birds, and endangered species of wildlife.

Unprotected species (defined in ECL section 11-0103) include species that may be taken at any time without limit; however, a license to take may be required.

Game species (defined in ECL section 11-0103) include any of a variety of big game or small game species as stated in the ECL; many normally have an open season for at least part of the year, and are protected at other times.

Natural Heritage Rank Definitions

Each species has a global and a state rank as determined by the N.Y. Natural Heritage Program. These ranks carry no legal weight. The state rank reflects the rarity within New York State.

State Ranks:

S1 - Extremely rare; typically 5 or fewer occurrences, very few remaining individuals, acres, or miles of stream, or some other factor of its biology making it especially vulnerable in New York State.

S2 - Very rare; typically 6 to 20 occurrences, few remaining individuals, acres, or miles of stream, or factors demonstrably making it very vulnerable in New York State.

S3 - Rare to uncommon; typically 21 to 100 occurrences, limited acreage, or miles of stream in New York State. May have fewer occurrences with many large populations.
S4 - Common, apparently secure in New York State; typically 100 or more occurrences. May be fewer occurrences with many large populations.

S5 - Very common, demonstrably secure in New York State.

SH - Historically known from New York State, but not seen in the past 15 years.

SX - Apparently extirpated from New York State.

SE - Exotic, not native to New York State.

SR - Reported in the state but without persuasive documentation.

SU - Status in New York State is uncertain.

NR - Not ranked, usually a hybrid species.
Appendix 6: Individual Pond Descriptions

Alford Pond (C-P96)
Alford Pond is a shallow, 34-acre brook trout pond that is the headwater for Ray Brook. About 75 percent of the shoreline is privately owned and there are several camps on or near the pond. Private owners can access the pond via a road that branches off the Averyville Road on the outskirts of Lake Placid. Public access is considerably harder and involves bushwhacking from the Averyville Road or from the railroad line connecting Lake Placid and Saranac Lake. The 1929 biological survey states that brook trout and brown bullhead (NBWI) were present. Brook trout were stocked beginning in 1933, but the policy was canceled when a 1957 survey caught only two small brook trout, golden shiner (non-native) and brown bullhead. A 1984 ALSC survey caught the same species. The maximum depth of Alford Pond is 2 feet with an average of 1.5 feet. Muck and organic matter comprise most of the substrate. The pond’s light brown water has a pH of 6.47, ANC of 45.9 μeq/l, and specific conductivity of 19.5 μmhos. Aquatic vegetation becomes very abundant in midsummer in this pond and it should be too warm to support trout. Large springs must provide cool water, however, because this pond has no permanent inlets yet its outlet flow was estimated by ALSC to be 4,300 liters/minute.

Alford Pond will be managed as an Adirondack brook trout pond to preserve its native fishes in the presence of non-native species. Large springs and probable lack of a barrier site along Ray Brook preclude reclamation.

Management Class: Adirondack Brook Trout

Amphitheater Pond (C-P131)
This 1.7-acre kettle pond derives its local name from its location next to the Fish Creek Campground amphitheater. Brook trout stocking was recommended after the pond was first inspected in 1929, but ALSC records indicate that stocking did not occur until 1959. A 1954 survey caught no fish. Amphitheater Pond was treated with hydrated lime in 1959 as part of the DJ F-22-R experimental program. Liming was repeated in 1960, 1961 and 1962. A 1973 netting captured no fish, so stocking was eliminated. In 1986, the ALSC measured an unusually low pH value of 4.03 with an ANC of -96 and specific conductivity of 38.2 μmhos. Dissolved oxygen was limiting even at 5 feet in depth. Naturally, no fish were caught. Amphitheater Pond has a floating bog shoreline and very dark water. Its maximum depth is 21 feet and the mean depth is 10 feet. The pond has a flushing rate of 0.7 times per year with no inlets or outlets.

Amphitheater Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other
Bad News Pond (C-P5364)
A tiny 0.5-acre pond located amidst a wetland that drains to Polliwog Pond. Bad News Pond can be found just south of the Floodwood Road. The only survey data available for this pond dates to July 1973, just prior to the September 1973 reclamation of Polliwog Pond. Two non-native species, yellow perch and golden shiner, were netted in that survey. There are no file data to suggest Bad News Pond was reclaimed in conjunction with Polliwog Pond. During a 1999 pre-reclamation survey of Polliwog Pond field staff noted that Bad News Pond appeared to be fishless. The pond reaches a maximum depth of 14 feet and has a mean depth of eight feet. Bad News Pond is unnamed on topographic maps; its former P number was C-P120a. The unique fisheries file name for this pond may derive from the technical difficulties it poses for reclamation treatments. Field staff have noted that treatment is possible, but would entail days of dedicated effort.

Bad News Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Unknown

Bear Pond (SC-P271)
Bear Pond (54.6 acres) is a deep, clear water Adirondack brook trout pond that is usually thought of as being in the St. Regis Canoe Area. The northeastern shoreline of Bear Pond is privately owned and much of the remaining shoreline borders the Canoe Area. However, a small segment of wild forest land associated with the canoe carry from Upper St. Regis Lake crosses private land and ends on Bear Pond. When first surveyed in 1930, Bear Pond had a native fish community consisting of brook trout, white sucker, brown bullhead (NBWI), common shiner, creek chub and pumpkinseed. Surveys done in 1955 and 1958 documented the presence of non-native yellow perch and the native species of lake trout. There are no stocking records for lake trout, so the species may have been a true native. Both lake trout and brook trout were scarce in those surveys. Bear Pond was reclaimed in 1958 to eliminate the perch and later restocked with brook trout. Surveys done in 1963 and 1964 caught only brook trout, but brown bullhead reappeared in a 1967 effort. Special studies involving several wild strains of brook trout were conducted in the late 1960's and early 1970's. Tag returns documented excellent brook trout growth in this pond. A 1982 survey caught brook trout and one splake (probably a stocking error). Brook trout and brown bullhead were caught by the ALSC in 1985. In 2005 an abundant population of small pumpkinseed was noted during survey efforts, but brook trout were still common and in excellent condition. This survey also established that Bear Pond could be easily reclaimed. Bear Pond has a maximum depth of 60 feet, average depth of 22.3 feet and flushing rate of 0.4 times per year. Bear Pond has a forested shoreline and a "hard" bottom consisting mainly of sand, gravel and rubble. The exceptionally clear waters of Bear Pond exhibit chemical signs of acidification. The ALSC measured a pH of 5.0, ANC of -9.5 μeq/l, and specific conductivity of 22 μmhos. The 2014 survey found chemical conditions had improved to a pH of 6.5 and ANC of 26 μeq/l.
Appendix 6: Individual Pond Descriptions

Bear Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon the establishment of non-native or other fishes to enhance and restore a native fish community. Bear Pond’s water chemistry will be periodically monitored and if acidity levels decline to the point of threatening trout survival the pond will be limed.

Management Class: Adirondack Brook Trout

Big Cherrypatch Pond (C-P241)

Located about 1,100 feet south of State Route 86 to the east of the village of Lake Placid, Big Cherrypatch Pond is the headwater for a tributary of the West Branch Ausable River. This 14-acre Adirondack brook trout pond harbored a native community of brook trout, brown bullhead and pumpkinseed in 1929. A 1951 survey caught the same species, plus the non-native yellow perch and native cyprinids of white sucker, creek chub, common shiner and northern redbelly dace. Big Cherrypatch Pond was reclaimed in 1951 after construction of a wooden barrier dam. Shortly after the reclamation, however, beaver activity flooded out the dam and the pond was reinfested with undesirable species. A 1961 netting captured many of the same species present in 1951, along with non-native golden shiner. The barrier dam was reconstructed out of concrete and wooden slats in 1962 and the pond was reclaimed a second time. Only brook trout and brown bullhead were captured in 1984 by the ALSC. Brook trout, pumpkinseed, northern redbelly dace and brown bullhead comprised the native fish community present in 1995. There are angler reports of yellow perch being caught in recent years. In 1995, a permit for the application of pesticides in a wetland was obtained from the APA for the third reclamation of Big Cherrypatch Pond. That project was not undertaken and the permit has since lapsed. Pre-reclamation survey work has determined that beaver activity has raised pond levels and flooded adjacent wetlands making treatment impractical. Big Cherrypatch Pond has a maximum depth of 15 feet, mean depth of 6.2 feet and a flushing rate of 12 times per year. For a dark water pond, it has unusually good water chemistry with a pH of 7.3, ANC of 208 and specific conductivity of 127 μmhos. Big Cherrypatch Pond has been stocked continuously with brook trout since 1929. It is accessible by a 0.6-mile trail from State Route 86. Tall grass wetlands surround much of the shore.

Big Cherrypatch Pond will be managed as an Adirondack brook trout pond to preserve, enhance and restore its native fish community in the presence of non-native species. The concrete barrier dam on the outlet will be maintained and repaired as necessary to keep it functional. Big Cherrypatch Pond will be reclaimed if non-native or other fish species threaten the brook trout population and if wetland water levels return to a treatable status.

Management Class: Adirondack Brook Trout
Black Pond (C-P130)

This 20.5-acre Adirondack brook trout pond has an intensive management history related to its status as an "experimental" water. It is located next to Whey Pond, in the Fish Creek Campground, and is a popular fishery. File notes indicate it was, historically, one of the best brook trout ponds in the area. When first surveyed in June 1952, it contained a few brook trout and brown bullhead, plus numerous yellow perch. Black Pond was reclaimed the fall of 1952 and restocked with brook trout and rainbow trout. Black Pond was included in the experimental DJ F-22-R liming project and was subsequently treated with hydrated lime in 1959, 1960, 1975, 1976 and with agricultural lime in 1980. Unlike many ponds in the DJ project, Black Pond has clear water and is not a bog. Black Pond was also an IPN (Infectious Pancreatic Necrosis) study pond in the 1970's and thus received experimental stocks of tagged trout of various strains and species. Nettings conducted in 1970, 1971, 1972 and 1977 caught brook trout, rainbow trout and golden shiner, plus a few splake, brown trout and landlocked Atlantic salmon. By the time of a 1984 ALSC survey, splake, browns and salmon were gone and northern redbelly dace were added to the fish community. Department surveys in 1993, 1998 and 1999 have added only creek chub to the fish community list. As part of The Department’s liming program, Black Pond is monitored annually to measure trends in pH and ANC. Since the 1980 liming, pH levels have gradually declined from above 7.0 to around 6.06 in 2000. Black Pond was relimed in 2004 after several years of monitoring indicated low ANC levels. Its pH level was measured as 7.2 in 2008 with ANC of 122 μeq/l. Black Pond has a maximum depth of 44 feet, mean depth of 20.3 feet and flushing rate of 0.4 times per year. A 1999 pre-reclamation survey determined that the pond could be easily retreated with rotenone due to the absence of an inlet or outlet and less than 0.25 acre of associated wetland. Sand, muck and organic matter comprise the pond substrate. A short trail from the Fish Creek road system provides access. Canoes and small boats can utilize a small hand launch site.

Black Pond will be managed as an Adirondack brook trout pond to preserve its native fishes in the presence of non-native and historically associated species. Black Pond will be reclaimed if other fish species continue to accrue and negatively impact the trout population. Reclamation would be followed by restocking with brook trout and rainbow trout. Also, Black Pond will be limed when annual chemical monitoring indicates that pH levels have decreased below 6.0 or ANC decreases below 25 μeq/l in compliance with criteria specified in the Department’s Liming FEIS. It is likely that Black Pond will not require liming within the five-year scope of this plan. The APA has already issued a nonjurisdictional determination for liming Black Pond, so it can be limed as needed.

Management Class: Adirondack Brook Trout

Black Pond (C-P205)

The second Black Pond (43 acres) in the SLWF lies 1.2 miles west of Saginaw Bay of Upper Saranac Lake at the head of a huge wetland complex. A poor trail system about 1.6 miles in length leads to this pond from the Forest Home Road. But, hikers are forewarned that this area has a reputation for getting folks lost due to confusing terrain
and thick brush. Biologists noted that non-native northern pike were NSA in Black Pond in 1929. The only other survey data available was taken by the ALSC in 1984. They captured northern pike, smallmouth bass, yellow perch, brown bullhead, pumpkinseed and fallfish. Black Pond P205 has a pH of 6.8, ANC of 94 μeq/l and specific conductance of 35.5 μmhos. Maximum depth of P205 is 33 feet with a mean depth of 17 feet and a flushing rate of 3.6 times per year. Bedrock, boulder and rubble comprise much of the shoreline. The smallmouth bass captured by the ALSC averaged over two pounds in weight and may be representative of a lightly impacted population. Reclamation of Black Pond P205 is not possible due to extensive wetlands above and below the pond.

Black Pond P205 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Bog Pond (SC-P270)

Bog Pond (2.5 acres) is bounded on its northern shoreline by the canoe carry to Bear Pond from Upper St. Regis Lake. A narrow ring of bog vegetation surrounds this pond which was surveyed for the first time by the ALSC in 1986. They collected only brown bullhead. Based on this evidence of fish survival and a pH measurement of 5.34, ANC of 8.5 μeq/l and specific conductance of 7.5 μmhos, a stocking policy for brook trout was initiated in 1992. Bog Pond was netted in 1996 to evaluate the trout policy, but results were similar to 1986; only brown bullhead were captured. A pH of 5.85 was measured in 1996, so acidity levels seem adequate for trout survival. However, a dissolved oxygen level of only 1.0 ppm was present in the hypolimnion. The stocking policy was canceled in 1997. Bog Pond has a maximum depth of 17 feet, mean depth of 7.9 feet and flushing rate of 23.7 times per year. The high flushing rate and sphagnum ring around this pond preclude liming it according to FEIS criteria.

Bog Pond will be managed to preserve its native fish community for its intrinsic value. This pond is a possible stocking candidate for native minnow species identified as having declined within the unit. Consideration should be given to introducing species such as lake chub, pearl dace, brassy minnow and northern redbelly dace.

Management Class: Other

Bosquet Pond (C-P127)

Bosquet Pond is a former Adirondack brook trout pond that was first stocked with that species in 1942. This 2.2-acre bog pond is located just off the Dump Road between Square Pond and Rollins Pond. When first surveyed in 1954, Bosquet Pond contained brook trout and brown bullhead. Biologists noted, however, that nearby P128 contained yellow perch and that the two ponds probably interconnected at high water levels. ALSC records indicate that Bosquet Pond was reclaimed in 1955, but there is a lack of corroborating information regarding this in Fisheries files. Brook trout stocking ended in
1958. When next surveyed by the ALSC in 1984, the pond contained brown bullhead, yellow perch and golden shiner. A 1993 pre-reclamation survey noted a direct channel to P128 and untreatable wetlands that preclude another treatment. Bosquet Pond has a pH of 5.56, ANC of 7 μeq/l and specific conductance of 8.8 μmhos. The pond averages 7.9 feet in depth with a maximum of 15 feet and a flushing rate of 2.8 time/year. Most of the bottom is muck and organic matter. Largemouth bass may now be present in Bosquet Pond due to stocking done in Dump Pond (P128).

Bosquet Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Brandy Pond (C-P115)

Brandy Pond is also known as Mosquito Pond which may be a more representative name due to its location within a large wetland bordering Upper Saranac Lake. Bog vegetation fringes the perimeter of this 5.4-acre pond which was first stocked with brook trout in 1934. A regular stocking policy was instituted in 1953. The earliest survey data dates back to 1957 when brook trout, golden shiner, brown bullhead and yellow perch were netted. Both the trout and the perch were uncommon in that survey. Another evaluation in 1974 caught only brown bullhead which lead to termination of the trout stocking policy. A 1984 ALSC survey caught brown bullhead, golden shiner, central mudminnow and northern redbelly dace. Brandy Pond has a maximum depth of 10 feet, mean depth of 4.9 feet, pH of 4.82, ANC of -2.3 μeq/l, specific conductance of 105.9 μmhos, and very dark brown water. The pond’s flushing rate is 21.8 times per year and its substrate is entirely muck. The outlet of Brandy Pond, Brandy Creek, flows through a long wetland before entering Upper Saranac Lake at Pelky Bay. Brandy Pond lies within 500 feet of State Route 3 just to the south of Fish Creek.

Brandy Pond will be managed to preserve its native fishes in the presence of non-native species. Neither reclamation nor liming are feasible management options for this bog pond.

Management Class: Other

Bread Pond (SC-P268)

A 1.5-acre bog pond located near Upper St. Regis Lake and the St. Regis Canoe Area to the west of Roiley Pond, Bread Pond is unnamed on topographic maps. This acidic pond was first surveyed in 1972 and found to be fishless. It was limed later that year as part of the experimental DJ F-22-R liming program. Stocked brook trout initially did well, so the policy was continued. By 1976, pH levels declined to 5.8. A 1986 ALSC survey measured a pH of 4.72 and caught only one stocked fingerling brook trout. Bread Pond does not qualify for liming under FEIS guidelines because its flushing rate is 3.9 times per year and the shoreline is comprised entirely of sphagnum bog. Bread Pond has a maximum depth of 24 feet and a mean depth of 11.1 feet. The pond had an ANC of -
14.8 μeq/l, specific conductance of 15.7 μmhos and no dissolved oxygen below the thermocline in 1986.

Bread Pond will be managed to preserve the aquatic community present for its intrinsic value.

Management Class: Other

Cameras Pond (C-P97)

This 11-acre brook trout pond is located to the southwest of Alford Pond (C-P96) on the outskirts of Lake Placid. Several camps are located along the 75 percent of the shoreline that is privately owned. Public access is possible by bushwhacking about 0.5 miles north from the trail to Big Pine Pond that begins at the end of Averyville Road. Cameras Pond has the unusual characteristic of completely drying up during droughts despite a maximum depth of ten feet and an average depth of five feet. Biologists reported brook trout and brown bullhead in 1929. They recommended stocking brook trout which commenced in 1935 and still continues. Surveys done in 1954, 1972, 1984, and 1998 caught the same species reported in 1929. An unidentified minnow species was observed in 1972. A file note indicates the pond was dry in 1967, but the bullheads must have some mechanism for surviving this calamity. ALSC staff noted a mixture of substrates in 1984. A 1998 pre-reclamation survey found pH was 5.84, ANC was 9.8 μeq/l, conductivity was 10 μmhos, and aquatic vegetation was abundant. In 1998, Cameras Pond had no flowing outlet and staff determined that adjoining wetlands would be difficult, but feasible, to treat.

Cameras Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon the establishment of non-native or other fishes to enhance and restore a native fish community. Reclamation appears to be unnecessary within the five-year scope of this plan.

Management Class: Adirondack Brook Trout

Connery Pond (C-P243)

Connery Pond (75.6 acres) supports a popular coldwater fishery for brown trout and splake. The pond is located 0.6 miles west of State Route 86 about 3 miles northeast of the village of Lake Placid. A mixture of private, wilderness and wild forest lands comprise the shoreline. Department stocking records indicate lake trout, brook trout and rainbow trout have been added to the pond since 1896. But, there are no survey data available prior to 1954 when yellow perch (non-native), pumpkinseed, brown bullhead and white sucker were captured. Lake trout and smallmouth bass (non-native) were reported present in 1954. Connery Pond was reclaimed in 1955 and thereafter stocked with brook trout and splake. In 1962, brook trout, common shiner, golden shiner, pearl dace, longnose sucker, white sucker and brown bullhead were captured. A 1966 effort added pumpkinseed, creek chub and splake to the species list. Non-native yellow perch and banded killifish appeared in a 1984 ALSC survey, along with bluntnose minnow and
Appendix 6: Individual Pond Descriptions

brown trout. The origin of brown trout in Connery Pond can probably be attributed to stocking error. Northern redbelly dace was added to the fish community list by a 1992 survey. Based on the good average size and abundance of brown trout noted in 1984, a regular stocking policy for this species was started in 1986. The combination of brown trout and splake stocking has proved popular with anglers, particularly in winter.

Connery Pond has clear water with a pH of 7.27, ANC of 164 μeq/l and conductivity of 37 μmhos. Maximum depth of the pond is 50 feet with a mean depth of 17.4 feet and a flushing rate of 2 times per year. A two-wheel drive road about 0.5 miles long approaches the pond. This road crosses onto private land close to the pond. A FWMA agreement allows for public access across the private lands to reach the pond and adjoining wilderness hiking trails. An unpaved parking lot for three or four vehicles is located on the private land. The FWMA agreement further specifies that no additional parking will be developed on nearby state lands; that motorized vehicles cannot be used on the private paths to the pond; that a 7.5 horsepower restriction applies to electric or outboard motor use on the pond; and that Department management actions pertaining to the pond must be approved by the private landowners. Connery Pond receives water from a tributary system that includes Long Pond, Coldspring Pond and Duck Pond all located in the McKenzie Pond Wilderness. All of these waters were reclaimed in 1995. A barrier dam exists on the outlet of Connery Pond (which drains to the West Branch Ausable River). This dam is in poor repair. Rebuilding the existing dam would be costly and would flood more than an acre of land with possible negative environmental impacts. There are two private camps on Connery Pond and a small sandy beach. Much of the shoreline is wooded.

Connery Pond will be managed as a coldwater pond to preserve its native fishes in the presence of non-native and historically associated species. Reclamation, although technically possible, does not seem warranted based on economic and environmental costs associated with the fish barrier repair. The FWMA agreement on Connery Pond has worked successfully since 1985 and every effort should be made to continue this contract.

Management Class: Coldwater

Copperas Pond (C-P139)

Copperas Pond is a 24-acre warmwater pond that outlets directly to Fish Creek about 0.5 north of the DEC campground area. Unlike many of the neighboring kettle bog ponds, Copperas Pond has clear water with good alkalinity levels. Biologists reported smallmouth bass, pumpkinseed and yellow perch were present in 1929. A 1984 ALSC survey captured northern pike, golden shiner, brown bullhead, yellow perch and largemouth bass. Copperas Pond reaches 19 feet in depth and averages 8.8 feet with a flushing rate of 1.7 times per year. Water chemistry values of pH 7.54, ANC of 379 μeq/l, and specific conductance of 49.5 μmhos were measured by the ALSC. Copperas Pond has a muck and sand substrate. A mixed forest lines the shoreline. Access for portaged boats is possible by following trails from the Fish Creek campgrounds. This pond has no stocking, liming or reclamation history due to the infeasibility of putting a
Appendix 6: Individual Pond Descriptions

barrier on its outlet to Fish Creek.

Copperas Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Deer Pond (C-P178)

There are two Deer ponds in the Saranac Wild Forest that are about two miles apart as the crowd flies. Deer Pond P178 is the furthest north of this pair. It is located about 2.7 miles south of Floodwood Road near the Remsen-Lake Placid railroad tracks. The outlet of Deer Pond P178 is short, flowing only 1,000 feet before entering a large bay on the western shore of Rollins Pond.

Yellow perch and northern pike were NSA at the time of its first biological survey in 1929. A 1956 netting effort caught yellow perch, brown bullhead, white sucker, golden shiner and pumpkinseed, but missed the northern pike. The ALSC revisited this pond in 1986 and caught the same species noted in 1956, plus the northern pike. Deer Pond P178 is shallow with a maximum depth of five feet and a mean depth of 2.6 feet. It has a flushing rate of 6.2 times per year. Most of the substrate is sand with some rubble and boulder. Aquatic vegetation is scarce. The ALSC measured a pH of 7.32, ANC of 235.5 μeq/l, and specific conductance of 29 μmhos in the dark yellow-brown waters of this pond. Although leatherleaf is common along the shore, Deer Pond P178 is not a bog pond. Large wetlands and a wide, low gradient outlet preclude reclamation of this pond.

Deer Pond C-P178 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Deer Pond (C-P181)

The southernmost of the two Deer ponds located in the vicinity of the Fish Creek Ponds. Deer Pond is aptly named; it is a popular hunting location for local sportsmen. P181 is a 110.5 acre two story pond that has supported lake trout since it was first studied in 1929. The pond is accessible by a 1.6-mile trail from the Old Wawbeek Road to the east of the Village of Tupper Lake. Another trail provides access from State Route 30 near Wawbeek. In 1929, lake trout were reported present along with non-native yellow perch and northern pike. Lake trout stocking began in 1929. The next survey, conducted in 1956, caught lake trout and yellow perch as before, but not northern pike. Pumpkinseed were added to the species list and the non-native smallmouth bass was reported present. A 1984 ALSC netting confirmed the presence of smallmouth bass and added brown bullhead (NBWI) and white sucker. Angler reports of brown trout being caught were confirmed by staff observation in 1995. The brown trout may have originated by stocking error. Since large brown trout were being caught, a new policy for that species
Appendix 6: Individual Pond Descriptions

was initiated in 1996. Evaluation of that policy in 2000 confirmed brown trout can reach good size in this pond. Lake trout, white sucker and smallmouth bass were also caught. P181 has a maximum depth of 64 feet and a mean depth of 34 feet with a low flushing rate of 0.2 time/year. The clear water of this pond has a pH of 7.03, ANC of 83.3 μeq/l, and specific conductance of 26.7 μmhos. Several primitive camping sites border P181.

Deer Pond is a potential reclamation candidate, however, pre-reclamation data are lacking for this pond. Most of the pond’s shoreline is steep with some flat land on the northern end. Deer Pond drains towards a large marsh. Reclamation suitability will depend on whether a barrier site exists on the outlet close to the pond. Also, Mud Pond C-P182, drains into the southern end of Deer Pond and a pre-reclamation survey is also required for that pond. If Deer Pond can be reclaimed it would be restocked with lake trout and brook trout and managed as a coldwater pond. If the pond cannot be reclaimed it will be managed to preserve its native fishes in the presence of non-native species.

Management Class: Two Story

Duell Pond (C-P195)
This 2-acre Adirondack brook trout pond is unnamed on maps, but is locally known as Duell Pond in honor of Charlie Duell, a past manager of the Adirondack Fish Hatchery. It is the most westerly of three small ponds located between State Route 30 and Little Green Pond near the fish hatchery. Duell Pond is very accessible and can easily be fished from shore, making it popular with local families. Brook trout stocking was recommended after the first visit to this pond in 1929. A 1954 survey caught brook trout and golden shiner (non-native). Acid rain studies done in 1976 documented the continued presence of brook trout, but found pH levels of 4.7. Duell Pond was limed in the winter of 1976 and its water chemistry has been monitored annually since that date. In 1999, the pH was 7.07 and brook trout were common. Golden shiner has not been captured in this pond since the 1954 survey. The pond has a maximum depth of 35 feet and a mean depth of 15 feet. It has a muck substrate and bog vegetation surround much of the shore, however its water is only lightly stained. Duell Pond cannot be relimed due to the high percentage of sphagnum along its shore which also precludes the possibility of successfully reclaiming this pond.

Duell Pond will be managed as an Adirondack brook trout pond to preserve it native fish community.

Management Class: Adirondack Brook Trout

Dump Pond (C-P128) and Unnamed Pond (C-P129)
Dump Pond has changed repeatedly over the years in surface area and general shape. Depending on which map you consult, the pond ranges from 10 acres to 44 acres in size. The most recent metric maps show the latter size, plus an additional 24 acres of floating bog. Dump Pond is located in a large wetland complex lying between Square
Appendix 6: Individual Pond Descriptions

Pond and Rollins Pond. The pond derives its local name from the nearby campground dump site; it is unnamed on topographic maps. In 1929, biologists did not report the fish species present, but did recommend stocking brook trout. Trout were stocked in the early 1950’s, but none were caught in a 1954 survey. That effort revealed abundant populations of yellow perch and brown bullhead. A 1984 ALSC survey added golden shiner and central mudminnow to the species list. Largemouth bass electrofished from Lake Colby were stocked in 1993 in Dump Pond, but there have been no reports of a fishery developing for that species. Dump Pond is surrounded by a floating bog mat, yet has a pH of 6.19, ANC of 43.4 μeq/l, and specific conductance of 13.2 μmhos. The darkly stained waters of this pond average just 3.3 feet deep with a maximum depth of 12 feet. Dump Pond probably connects to Bosquet Pond at high water levels. Anglers can access this pond by parking near the gated road leading to the dump and hiking down the road about 0.25 miles.

Unnamed pond, C-P129, appears to be contiguous with Dump Pond on the most recent metric topographic map. Former maps indicate a separate 16-acre pond. The only survey data available were collected by the ALSC in 1984. The pond had the same fish community as Dump Pond, with slightly higher pH, ANC and specific conductivity values. Sand, muck and organic matter comprise the substrate of both ponds. Floating bog mats are common.

Dump Pond and C-P129 will be managed as warmwater ponds to preserve their native fishes in the presence of non-native species. Additional efforts will be made to establish a largemouth bass population.

Management Class: Warmwater

East Copperas Pond (C-P138)

East Copperas Pond is a 9.6-acre Adirondack brook trout pond with an extensive management history. It is located about 0.4 miles northeast of Amphitheater Pond on the Fish Creek Campgrounds. Brook trout stocking was recommended by biologists who examined the pond in 1929, but there is no indication of the fish species present at that time. Netting conducted in 1954 revealed an abundant yellow perch population and some pumpkinseed. East Copperas Pond drains to Copperas Pond, although that outlet does not appear on current topographic maps. File notes indicate an excellent barrier dam site on the outlet. It is likely a barrier was built sometime between the 1954 survey and a reclamation conducted in 1960. East Copperas Pond was reclaimed again in 1964, but survey data are lacking to indicate why this was necessary. Brook trout were stocked from 1959-1986 and rainbow trout were stocked from 1959-1964. East Copperas Pond was part of the F-22-R liming study and was treated with varying amounts of hydrated lime in 1959, 1960, 1961, and 1962. ALSC records indicate it may also have been limed in 1975, 1976, 1980 and 1983, but materials used and amounts applied are not provided. File notes indicate brook trout survived through the 1960 limings. A 1984 ALSC survey noted the presence of a wooden fish barrier dam on the outlet. Only central mudminnow were captured by the ALSC which measured a
midsummer pH level of 4.53, ANC of -28.9 μeq/l, PtCo color of 60, and specific conductance of 19 μmhos. East Copperas Pond has a maximum depth of 21 feet and an average depth of 13.5 feet with a flushing rate of 0.6 times per year. Its substrate is mostly muck with some sand. Sphagnum and cranberry border the eastern third of the pond shoreline, while conifers line the western shore.

East Copperas Pond will be managed as an Adirondack brook trout pond to enhance and restore a native fish community. Its status as a long term study water precludes any further liming while that study lasts. If monitoring data indicates that pH and ANC values have improved, brook trout stocking may be resumed in the pond. That action is not expected to occur within the five-year scope of this plan.

Management Class: Adirondack Brook Trout

East Pine Pond (C-P147)

This 60.5-acre, former brook trout pond is located one quarter mile west of the railroad track crossing on Floodwood Road. Although paired in name with nearby West Pine Pond, the two waters are not contiguous and drain into different waterbodies. Biologists captured yellow perch, brown bullhead, white sucker, pumpkinseed and common shiner in 1929. They noted that perch had been present for about 20 years prior to the survey and that lake trout had been mistakenly stocked in the past. Fair trout fishing (probably brook trout) still occurred in the spring months. A 1951 survey captured the same species and noted low oxygen levels below 26 feet. East Pine Pond was reclaimed with rotenone in the fall of 1951 and restocked with brook trout. Netting efforts captured brook trout, brown bullhead, creek chub and golden shiner in 1963 so the 1951 treatment was successful in eliminating at least yellow perch and white sucker. Rumors of yellow perch being reestablished began in 1970 but were not confirmed until a 1979 survey. East Pine Pond was reclaimed a second time in 1981. A 1984 ALSC survey captured brook trout, brown bullhead, golden shiner, banded killifish, pumpkinseed and yellow perch. Thus, the second reclamation was an apparent failure. Brook trout stocking was replaced with kokanee salmon and largemouth bass in 1990. A 1993 assessment netting failed to capture kokanee and that policy was terminated. However, the largemouth bass transfer from Lake Colby was successful and East Pine Pond now provides good fishing for that species. The outlet of East Pine Pond joins with the outlet of Long Pond in the St. Regis Canoe Area and subsequently drains to Floodwood Pond. Careful inspection of the outlet in 1993 failed to locate a suitable barrier dam site. It is likely that yellow perch and other species in Floodwood Pond reinvaded East Pine Pond after the two reclamation efforts. Reports of black crappie being present by anglers were confirmed by survey work done in 2006. The appearance of black crappie must be due to deliberate movement of fish from other waters, since the closest water containing black crappie is 15+ miles away. ALSC data indicate a mean depth of 15.7 feet with a maximum depth of 33 feet and a flushing rate of 0.6 times per year. Water chemistry testing found a pH of 7.19, ANC of 145 μeq/l, and specific conductance of 28.6 μmhos. As in past surveys, low dissolved oxygen conditions were present below 20 feet. A small parking area, a hand launch for small boats, and two primitive camp
sites are present on East Pine Pond. Many anglers canoe across East Pine Pond to reach the portage trail to West Pine Pond. A steep esker separates the two ponds. East Pine Pond has a moderate amount of aquatic vegetation, particularly in its shallow northern bay. The pond substrate has patches of sand, gravel and muck.

East Pine Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Echo Pond (C-P136)

Echo Pond is a 16.3-acre Adirondack brook trout pond located about 0.25-mile north of the entrance to Fish Creek Campgrounds. Visible from State Route 30, the pond is accessed by a flat, 50-yard trail. Old-timers sometimes refer to this pond as Duck Pond. Comments on the 1929 survey map for Echo Pond mention it was formerly a fine brook trout pond and recommended brook trout stocking which has been done since 1942. A brook trout monoculture was present in a 1957 survey which also recorded a pH of level of 5.5. A 1964 survey had the same result, but an effort in 1966 caught no fish. This was blamed on drought conditions and marginal chemistry. Only a few brook trout were caught in 1968 and poor chemical conditions were again noted. Echo Pond was limed for the first time in 1969 and later in 1975, 1976, 1980 and 1984. Annual chemical monitoring has occurred since the 1970's. Since the 1984 liming, pH levels have remained stable near 7.0. Netting conducted in 1985 captured mostly brook trout, but also lake trout, brown trout and white sucker. The lake trout and brown trout probably originated from stocking mistakes. Anecdotal reports of large lake trout being caught were periodically received in the 1990's. In 1997, anglers began reporting catches of largemouth bass, large schools of minnows, and a decline in the brook trout fishery. Echo Pond was reclaimed in 1998 which confirmed the former presence of largemouth bass, smallmouth bass and golden shiner. Brook trout and rainbow trout were stocked after the reclamation. Echo Pond reaches 32 feet in depth with an average depth of 14.4 feet. Unlike many nearby ponds, Echo Pond has a hard shoreline with no sphagnum mat fringe. It has clear water and no flowing inlets or outlets. Sand and muck comprise most of the substrate.

Echo Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon establishment of non-native or other fishes to enhance and restore a native fish community. Echo Pond will also be limed when pH levels approach the liming criteria of 6.0. Liming would be conducted with the assistance of the Franklin County Federation of Sportsmen who funded and participated in the 1984 effort. As part of DEC’s liming program, midsummer water chemistry monitoring will be conducted annually.

Management Class: Adirondack Brook Trout

Echo Pond (C-P251)

Echo Pond is also sometimes referred to as Echo Lake. This 14.3-acre lake is located
about 0.4 miles west of the north end of Mirror Lake near to the Hamlet of Lake Placid, the outlet of Echo Pond flows into Mirror Lake. About half the shoreline is private land and a private road runs close to the lake. In 1929 brook trout and brown bullhead (NBWI) were reported to be present. A 1957 NYSDEC survey reported that vegetation was relatively abundant and white sucker, pumpkinseed and yellow perch (non-native) were reported. This water was last surveyed in 1984 by ALSC when smallmouth bass (non-native) and golden shiner were added to the fish species already present. ALSC reported a maximum depth of 5.9 feet and a mean depth of 3.3 feet. The flushing rate was 6.5 and this water was classified as salt impacted. The pH in 1985 was 7.23, the ANC was 124 μeq/l, and the PTCO color was 40.

Echo Pond C-P251 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Federation Pond (C-P148)

This 6-acre Adirondack brook trout pond is unnamed on topographic maps, but is labeled as Federation Pond in fisheries files because it is part of the Franklin County Federation of Sportsmen’s Clubs liming program. It is located just to the east of East Pine Pond, quite close to the intersection of the Floodwood Road and the Remsen-Lake Placid railroad tracks. Brook trout stocking was recommended by biologists in 1929, although they did not provide information on the fish community present. Trout stocking began in 1938. A 1966 netting survey caught brook trout and brown bullhead. Water sampling revealed a pH of 4.7 in 1966 leading to a recommendation to lime the pond. However, liming was not immediately conducted. A 1984 ALSC netting captured only three small brook trout and measured a pH of 4.61, ANC of -23.2 μeq/l, and specific conductance of 18 µmhos. The Franklin County Federation bought the lime and supplied the manpower necessary to treat this pond for the first time in 1986. Annual water chemistry monitoring by DEC documents good pH levels from 1986 to 1992. Between 1992 and 1994 pH levels were below 6.0 each year and hit a low of 5.18 in 1994. Federation Pond was retreated in February 1995 - again with the financial and labor assistance of the Federation. Liming was also conducted in 2008, but with no financial or physical assistance from sportsmen. Federation Pond has a maximum depth of 27 feet, mean depth of 14.4 feet, a flushing rate of 1.5 times per year and a muck substrate. Although sphagnum moss fringes much of the pond’s shoreline, no bog mat exists. Field inspections by APA and DEC Natural Heritage staff in 1994 lead to agreement that Federation Pond meets liming FEIS criteria. This pond will remain in DEC’s liming program and continues to be of keen interest to local sportsmen.

Federation Pond will be limed and managed as an Adirondack brook pond as necessary to maintain trout survival.

Management Class: Adirondack Brook Trout
Appendix 6: Individual Pond Descriptions

First Pond (C-P103)

Part of the Saranac chain of lakes, First Pond is a relatively shallow “wide water” of the Saranac River that is located immediately downstream of Lower Saranac Lake. This 51-acre pond averages 5.3 feet in depth with a maximum depth of 20 feet. A 1984 ALSC survey provides the only data available. Fish species caught in that effort were smallmouth bass, yellow perch, brown bullhead, pumpkinseed, golden shiner and white sucker. Northern pike are known to be present and largemouth bass are likely present. Water chemistry values were good with a pH of 7.27 and ANC of 170.4 μeq/l. Much of the pond bottom is muck with some outcrops of cobble and boulders. Submerged aquatic vegetation is of moderate abundance. Several campsites associated with the Island camping system on Lower Saranac Lake are found along the shoreline of First Pond. Boating traffic is heavy through this waterbody on most summer days due to the presence of a DEC boat launch on neighboring Second Pond. Angling pressure on First Pond is light.

First Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Fish Creek Ponds (C-P123, P124)

Fish Creek Ponds are often a “first time” destination for visitors to the Adirondacks. Both ponds are surrounded by the 335 camping sites associated with DEC’s Fish Creek Campgrounds. Channels connect the two ponds to Square Pond, Follensby Clear Pond, Little Square Pond and Upper Saranac Lake. The Fish Creek Ponds have similar fish communities and chemical/physical characteristics. P123 has a surface area of 76.8 acres, while P124 is 134.4 acres. Both have a maximum depth of 20 feet with average depths near 12 feet along with substrates of sand and muck. In 1929, smallmouth bass, northern pike, yellow perch and golden shiner were present in each pond. P124 was surveyed by the ALSC in 1984. The species listed for 1929 were still present along with pumpkinseed, brown bullhead, rainbow smelt, largemouth bass and fallfish. Water sampling found a pH of 7.12, ANC of 139.4 μeq/l and specific conductance of 30 μmhos. These warmwater ponds have no direct stocking history, but anglers report occasional catches of trout or salmon that have strayed from Upper Saranac Lake or other connected waters. A trailer boat launch site is present at the campground. Non-campers are charged a day-use fee to access this launch. Recreational boating traffic can be heavy on these ponds during the summer causing most anglers to restrict their usage to early morning or late evening hours.

The Fish Creek Ponds will be managed as warmwater ponds to preserve their native fishes in the presence of non-native species.

Management Class: Warmwater
Appendix 6: Individual Pond Descriptions

Floodwood Pond (C-P142)
Floodwood Pond (222 acres) is a two story pond with a diverse stocking history. Lake trout were stocked as early as 1889 in this pond and it has received plantings of brook trout, lake whitefish, walleye and landlocked salmon. Floodwood Pond is bordered on the north by Floodwood Road and on the east by the Remsen-Lake Placid railroad line. Several private homes are located along the pond as are about ten popular camp sites. Floodwood Pond receives water from Rollins Pond, Middle Pond and the Champlain watershed ponds located in the St. Regis Canoe Area (Long Pond, Turtle Pond, Slang Pond, and et.al.). It outlets to Little Square Pond and hence to Upper Saranac Lake.

Biologists reported yellow perch, smallmouth bass, golden shiner, banded killifish and brown bullhead in 1929. Plosila (1977) lists Floodwood Pond as a water in which native lake trout were extirpated. A 1959 survey failed to capture lake trout after years of stocking, but did catch white sucker, golden shiner, brown bullhead, northern pike, yellow perch, smallmouth bass, and pumpkinseed. Largemouth bass was reported present. This study indicated no dissolved oxygen at 23 feet. Floodwood Pond averages 17 feet in depth with a maximum depth of 36 feet. A 1984 ALSC survey confirmed the presence of largemouth bass and added fallfish and rainbow smelt to the species list. Water chemistry testing found a pH of 7.03, ANC of 160 μeq/l and specific conductance of 30 μmhos. Landlocked salmon and lake trout stocking policies were initiated in 1996 and were evaluated in 2001. Unfortunately, no lake trout or salmon were caught and water chemistry conditions were barely suitable for coldwater species. However, two coldwater forage species – rainbow smelt and cisco were present in 2001. The experimental stocking policies for lake trout and landlocked salmon were terminated after 2001. A small car top launch is located off Floodwood Road.

Floodwood Pond will be managed as a two story fishery to preserve and restore historically associated species.

Management Class: Two Story

Follensby Clear Pond (C-P116)
Follensby Clear Pond (491.5 acres) is a uniquely shaped and easily accessible pond located near the northwestern end of Upper Saranac Lake. Dotted with islands, shoals and small bays; this scenic pond is popular with campers who frequent its many primitive, no-fee, tent sites. As its name implies, this pond has clear water. Its average depth is 21 feet with a maximum of 60 feet occurring in a small area in its southern basin. Much of the substrate is sand, but there are patches of cobble and boulder around several islands and points. Follensby Clear Pond has two beach launch sites maintained by DEC with parking for a handful of cars. Both are located just off State Route 30. Boaters can reach Upper Saranac Lake from this pond by following its outlet (Spider Creek) to the Fish Creek Ponds and on into the larger lake. The entire wooded shoreline of this pond is State-owned. Biologists reported whitefish (probably lake whitefish), lake trout, yellow perch, smallmouth bass, longnose sucker and pumpkinseed in 1929. Stocking of lake trout and lake whitefish was conducted repeatedly thereafter. Netting done in 1964 did not catch lake trout, but did catch lake
whitefish, cisco, yellow perch, pumpkinseed, golden shiner, brown bullhead, banded killifish and smallmouth bass. Lake trout stocking ceased after that survey. In 1984, ALSC netting revealed some significant community changes with captures of northern pike, fallfish, and rainbow smelt. No cisco and only one lake whitefish were noted, while yellow perch, brown bullhead, pumpkinseed and golden shiner were common. An experimental stocking policy for landlocked Atlantic salmon was initiated in 1992 and evaluated in 1996. That survey targeted salmon and rainbow smelt via suspending nets in deep water. Those two species were caught, along with yellow perch. A new species for the pond, largemouth bass, were observed on spawning beds during this 1996 effort. Continued stocking of landlocked salmon was recommended. Follensby Clear Pond has a good pH of 7.4, with an ANC of 249.5 μeq/l and specific conductance of 42.7 μmhos. Low dissolved oxygen levels were found below 40 feet in 1996.

Follensby Clear Pond will be managed as a two story pond to preserve its native fishes in the presence of non-native species.

Management Class: Two Story

Frog Pond (C-P121)

Frog Pond (1.5 acres) is located about 500 feet north of Polliwog Pond on the north side of the Floodwood Road. Since the two waters are joined by a permanent tributary, Frog Pond is managed jointly with Polliwog Pond. The earliest record for this pond does not list the fish species present, but recommended stocking brook trout. Brook trout, rainbow trout and landlocked salmon have been stocked at various times since then. A 1956 survey caught yellow perch, brown bullhead, and golden shiner and reported that brook trout were present. Frog Pond was reclaimed with rotenone in 1973 along with Polliwog Pond. Netting conducted in 1977 caught brook trout and yellow perch. The reestablishment of yellow perch lead to the cessation of trout stocking. In 1984, the ALSC caught central mudminnow, golden shiner and yellow perch. Frog Pond averages 9.2 feet deep with a maximum depth of 16 feet. This muck bottomed pond has dark brown water with a pH of 5.33, ANC of 16 μeq/l and specific conductivity of 20.8 μmhos. It has a flushing rate of 6.6 times per year, but has no inlets.

Frog Pond will be managed to preserve the fish community present for its intrinsic value. Due to its high flushing rate, Frog Pond does not qualify for liming.

Management Class: Other

Green Pond (C-P183)

Green Pond is a 58.6 acre, isolated, waterbody located in the Town of Santa Clara. The southern and western shorelines of the pond are publicly owned. The eastern and northern shorelines are privately owned and are accessible by the Floodwood Road and State Route 30. Tax records indicate that 34 lots owned by 22 landowners border the pond. A small, 5-acre pond variously called Gordon Pond or 12th Tee Pond flows into Green Pond from the north during the spring melt. Green Pond has no outlet. An
The embayment of Upper Saranac Lake is found directly across State Route 30 from Green Pond. Other nearby waters are Polliwog Pond and Follensby Clear Pond. A 100-yard trail from State Route 30 provides public access.

Green Pond derives its name from its clear blue-green water. Maximum depth of the pond is 60 feet and its mean depth is 27.6 feet. Dissolved oxygen levels are good at all depths. The pond has a good pH of 7.17 with an ANC of 171.4 μeq/l and specific conductivity of 33.5 μmhos.

Green Pond has a long history of fisheries management. Beginning in 1896, the pond was stocked at various times with brown trout, brook trout, lake trout, lake whitefish, rainbow trout, splake, landlocked Atlantic salmon and alewife. The pond was first surveyed in 1929 and contained lake trout and yellow perch. Lake trout and lake whitefish stocking was recommended and conducted after the 1929 survey. A 1955 survey captured lake trout, lake whitefish, yellow perch, white sucker and pumpkinseed. The surveying biologists recommended reclaiming the pond to eliminate competing fishes and to restock with rainbow trout and splake. Reclamation with rotenone was completed in 1956. Unfortunately, experimental stockings of alewife were made in 1957 and 1959 in an effort to establish a forage base for splake. Alewife soon established a naturalized population that served its intended purpose. However, rainbow trout fishing declined after the alewife introduction. Green Pond was netted repeatedly during the 1960’s as part of a Finger Lake vs. Adirondack strain splake study. In 1984 the ALSC captured rainbow trout, splake, brook trout, brown bullhead and white sucker, but failed to capture alewife. During the 1980’s and early 1990’s, Green Pond was stocked with large surplus broodstock landlocked Atlantic salmon each fall. A 1987 DEC netting targeted towards catching broodstock salmon also missed alewife. However, a survey conducted in July 1996 captured large numbers of alewife in small mesh nets suspended through the thermocline. Surplus landlocked salmon are occasionally stocked in Green Pond. A policy for two-year-old brown trout was initiated in 1998 and splake stocking continues.

Region 5 fisheries staff has long been concerned about the presence of alewife in Green Pond. This non-native species poses a grave threat to the nearby waters of the Saranac Chain and ultimately to Lake Champlain. In 1995 and 1996, a dialogue was begun with riparian owners on Green Pond about the potential for a second reclamation of the pond to eliminate alewife. Public meetings and considerable correspondence resulted. Although some riparian owners supported the reclamation proposal, significant opposition was expressed by others. Just prior to an administrative law judge hearing to establish interested party status, the proposal to reclaim Green Pond was withdrawn at the request of Central Office legal staff who had become involved in a lawsuit against the Adirondack Fish Hatchery brought by the Upper Saranac Lake Association. A heavy workload and a desire to avoid mixing separate issues with similar constituency groups lead to a postponement of action on the reclamation proposal.

The ecological threat posed by alewife has not diminished with time. Establishment of this species in Upper Saranac Lake would have serious negative impacts on the yellow perch, rainbow smelt and other fish populations. Alewife are notorious for
overpopulating in lakes and then dying off in massive numbers after they spawn in the spring. Recent research has implicated failures in salmonid reproduction in the Finger Lakes and Great Lakes to diets high in alewife which contain an enzyme that breaks down the vitamin thiamin. Thiamin deficiency in the eggs of salmonids leads to massive mortality shortly after hatching due to a series of symptoms collectively described as “Cayuga Syndrome.” Unfortunately, alewife have become established in Lake Champlain, first being noted circa 2007, and many of the ecological impacts noted above are occurring.

Due to significant public opposition in the past Green Pond will not be reclaimed to eliminate alewife. It can only be hoped that alewife is not accidentally or illegally moved to nearby waters. Green Pond will be managed as a coldwater pond to preserve its native species in the presence of historically associated and non-native species.

Management Class: Coldwater

Heavens Pond (R-P104) and Unnamed Pond (R-P5063)

Heavens Pond (40.8 acres) lies on the western boundary of the SLWF. A marked 1.3-mile trail heading west from the railroad tracks near Rollins Pond provides access for the public. The fish community of Heavens Pond has changed relatively little since it was first surveyed in 1933. Non-native yellow perch were present at that time along with a variety of native species: pumpkinseed, brown bullhead, white sucker, common shiner, blacknose dace and creek chub. A 1955 survey added the non-native golden shiner and brook trout were present in a 1984 ALSC survey. The brook trout likely originated from private stocking efforts. Brown trout stocking was initiated in 1995 and a 2000 survey collected several large browns (brook trout were not captured in 2000). Pre-reclamation scouting done in 1993 judged reclamation was unfeasible due to a large wetland on the outlet and lack of a natural barrier on state land. Heavens Pond has a maximum depth of 20 feet, mean depth of 8.5 feet and a flushing rate of 1.5 times per year. This pond has a variety of substrates ranging from boulder to sand and organic matter. Two small islands add to the scenic quality of this remote pond. Its lightly stained water has a pH of 7.18, ANC of 63.6 μeq/l and specific conductivity of 20.4 μmhos. Heavens Pond is lightly used by the general public due to remoteness and unawareness that it is now State-owned. The brown trout stocking policy for Heavens Pond was cancelled after 2001 because it was evident that little or no angler use was being made of this fishery. If access is improved to this pond and angling interest increases, consideration should be given to reinstating the brown trout stocking policy.

Unnamed Pond P5063 is located a few hundred feet down the outlet of Heavens Pond. This 4.7-acre pond is bisected by private and state land. Its fish community and aquatic chemistry probably resembles Heavens Pond, but it has not been surveyed.

Heavens Pond and P5063 will be managed as coldwater fisheries to preserve their native fishes in the presence of non-native and historically associated species. Effort should be made to more actively promote Heavens Pond as a destination of choice for those seeking a remote angling experience.
Appendix 6: Individual Pond Descriptions

Management Class: Coldwater

Hoel Pond (C-P161)

Hoel Pond (445 acres) is a quality two story fishery resource located on the fringe of the Saranac Inn golf course. Private homes occupy about 25 percent of the pond’s shoreline, mostly along a shallow western bay. A small, car top launch provides access. Hoel Pond is an access point for canoeists wishing to access the western ponds within the St. Regis Canoe Area who need only to portage across the Remsen -Lake Placid railroad grade to reach Turtle and Slang Ponds. Historic stocking records indicate lake trout, salmon (no species specified), rainbow trout, brown trout and brook trout were planted between 1887 and 1900. Biological survey records for 1929 indicate lake trout and whitefish (species unknown) were present and recommended brook trout stocking. Lake whitefish were stocked in 1937. A 1956 netting captured lake trout, cisco, lake whitefish, round whitefish, white sucker, brown bullhead, yellow perch and pumpkinseed. The now endangered round whitefish was listed as being common in the 1956 effort. Biologists returned to the pond in 1968 and focused their netting efforts on round whitefish, but caught no specimens. During the 1970's, Hoel Pond was part of a Dingell-Johnson lake trout study and received clipped Seneca Lake and Upper Saranac (Adirondack) strain lake trout. File notes indicate the Adirondack strain lakers clearly survived better. Netting conducted in 1971 succeeded in capturing round whitefish and the other species previously mentioned and added smallmouth bass. In 1984, ALSC nets confirmed the continued presence of round whitefish, but revealed the accrual of three new non-native fish species: rainbow smelt, largemouth bass and golden shiner. An experimental stocking for landlocked Atlantic salmon began in 1996 and will be evaluated in the near future. Anecdotal angler accounts indicate that salmon are doing well. Hoel Pond has a maximum depth of 80 feet with a history of good dissolved oxygen levels throughout the water column. Its mean depth is 26.6 feet and the flushing rate is 0.3 times per year. Hoel Pond has clear, unstained water with a pH of 6.67, ANC of 42 μeq/l and specific conductivity of 22 μmhos. The substrate of this pond is quite varied and ranges from bedrock to muck with a preponderance of gravel and sand.

Hoel Pond will be managed as a two story lake to preserve its native fishes in the presence of non-native and historically associated species. It is not known whether round whitefish continue to survive in this pond despite the accrual of non-native species. Reclamation of this pond is not feasible due to its direct connection to Turtle and Slang Ponds via a culvert under the railroad grade and the sheer size of the pond. If it is found to be desirable round whitefish could be stocked to restore this species to the fish community.

Management Class: Two Story

Horseshoe Pond (C-P118)

Anglers visiting 82-acre Horseshoe Pond for the first time quickly surmise how it got its name. A sharply-bent, inverted “C” shape leaves them wondering which arm of the pond
Appendix 6: Individual Pond Descriptions

to fish first. Located directly west of Follensby Clear Pond, access to Horseshoe Pond requires canoeing across Follensby from the Moss Rock Point hand launch site, then portaging about 100 feet from a back bay. Horseshoe Pond lies entirely on state land and has just a few primitive tent sites. Despite a lack of direct, easy access this pond has always been a popular fishery. Propagation records indicate that brook trout and lake trout were stocked as early as 1929. However, when first surveyed in 1952, the fish community in Horseshoe Pond consisted of yellow perch, smallmouth bass, brown bullhead, pumpkinseed and white sucker. The pond was reclaimed in 1953 and restocked with rainbow trout and brook trout. File notes indicate bluntnose minnow were common by 1959, probably due to a bait pail introduction. Complaints of poor fishing spurred a 1963 survey which caught the two stocked species, plus numerous white sucker, common shiner, creek chub and spottail shiner. All of the cyprinids were likely bait pail introductions. Horseshoe Pond was reclaimed with rotenone for the second time in 1965.

Good fishing for rainbow and brook trout persisted for the next 20 years. By the time of a 1984 ALSC survey, creek chub, fallfish, blacknose dace, common shiner and white sucker were again present. A 1990 netting added northern redbelly dace to the species list. Low numbers of rainbow and brook trout were caught in the May 1990 netting. Horseshoe Pond was reclaimed for the third time in June 1990. Brook trout and rainbow trout stocking was resumed in the fall of 1990. Post-reclamation netting conducted in 1991 captured only trout. Netting conducted in 1999 determined that brook trout were reproducing naturally. Other species captured were rainbow trout, brown trout and northern redbelly dace. The presence of brown trout was due to stocking error. A 2005 survey collected brook stickleback, and northern redbelly dace as well as the stocked trout species and in a 2015 survey no new species were found to be present. Horseshoe Pond has been heavily fished since the 1990 reclamation and it is remarkable that so few species have accrued to the fishery.

Horseshoe Pond has clear water with good pH and dissolved oxygen values at all depths. The 1984 ALSC survey found a pH value of 6.58, ANC of 46.2 μeq/l and specific conductance of 19.2 μmhos. Its maximum depth is 26 feet and the average depth is 14.4 feet. The substrate is primarily sand, gravel and bedrock. Most of the shoreline is mixed forest. A hiking trail from the Fish Creek Campground skirts the western end of each arm of the pond. A single inlet, from Little Polliwog Pond (C-P119), enters on the northern arm. There are no outlets.

Horseshoe Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon the establishment of non-native or other fishes to enhance and restore a native fish community. Any reclamation project for Horseshoe Pond must include Little Polliwog Pond to be successful. Rainbow trout are a historically associated species for Horseshoe Pond and will continue to be stocked along with brook trout.

Management Class: Adirondack Brook Trout
Humdinger Pond (SC-P269)

A 1.2-acre acidic bog pond located to the north of Bread Pond and Roiley Pond on the eastern edge of the St. Regis Canoe Area not far from Upper St. Regis Lake. Humdinger Pond was fishless when first surveyed in 1972. It was limed later that same year as part of the F-22-R project and stocked with brook trout. Trout were observed rising the next year and the stocking policy was continued. Chemical monitoring conducted through 1976 showed declining pH levels. In 1985, the ALSC measured a pH of 5.02, ANC of 4.6 μeq/l and specific conductance of 14.8 μmhos. This survey caught only a single stocked fingerling brook trout, leading to cancellation of the stocking policy. Humdinger Pond is ringed with bog vegetation. It has a maximum depth of 31 feet, mean depth of 14.1 feet and flushing rate of 1.5 times per year. Dissolved oxygen levels were low in the thermocline. There are no inlets or outlets and the pond bottom is mostly muck. Humdinger Pond is located about 700 feet south of the jeep trail used by residents to access camps on Upper St. Regis Lake not far from the portage to Bear Pond.

Humdinger Pond will be managed to preserve the aquatic community present for its intrinsic value. This pond does not meet FEIS criteria for liming due to the amount of sphagnum bog vegetation on its shoreline.

Management Class: Other

Kiwassa Lake (C-P100)

Kiwassa Lake (262 acres) is included within the Saranac chain of lakes because a shallow channel connects it to Oseetah Lake not far from the lower locks on the Saranac River. Much of Kiwassa Lake is bordered by private camps and homes owned for generations by local families. It is a popular lake for water skiing and recreational boating. Kiwassa Lake has a maximum depth of 43 feet and a mean depth of 23.6 feet. Its clear water has a pH of 6.9. Biologists reported smallmouth bass, northern pike, yellow perch and lake whitefish in 1929. Netting done in 1964 caught those species plus cisco, pumpkinseed and brown bullhead. The ciscos ranged from 15-17 inches in length and were rated as being abundant. A popular and unique (for this unit) fishery for cisco existed at that time. A major netting effort in 1977 added only golden shiner to the species list, but this netting clearly showed that ciscos were now uncommon and ranged only 10-15 inches in length. In 1983, rainbow smelt were noted for the first time in the fish community, ciscos were still uncommon and only one lake whitefish was caught. Most anglers now focus on smallmouth bass and northern pike in this lake. Water chemistry profiles done in 1977 and 1983 found low dissolved oxygen levels below 30 feet, but D.O. was good at 30 feet in an August 1976 profile. Most of the lake’s littoral area is rock and boulder with some sand and muck. Aquatic vegetation is sparse. Survey work done in 2006 found deep-water chemistry conditions considerably improved, but no coldwater species were caught. This survey did capture three walleye, which were likely immigrants from stocking efforts made in Lower Saranac Lake.

Kiwassa Lake will be managed as a two story lake to preserve its native fishes in the

Saranac Lakes Wild Forest – Unit Management Plan – April 2019
Appendix 6: Individual Pond Descriptions

presence of non-native species. The coldwater component of this fishery is currently underutilized. Recent improvements in water quality favor reintroduction of cisco to the fish community, but such an effort will depend upon acquiring disease free adult stock or eggs from approved sources. Walleye stocking should also be considered as it is evident the species prefers Kiwassa Lake conditions over Lower Saranac Lake. A five-year stocking program of 50-day-old walleye fry began in 2014.

Public access to Kiwassa Lake is effectively limited to boats entering from Oseetah Lake. Informal ice fishing access is possible from the end of Lake Street coming from the Village of Saranac Lake, but such access depends upon the permission of adjoining landowners. The southwestern corner of Kiwassa Lake lies within 1,000 feet of State Route 3 not far from DEC’s boat launch on Second Pond. Development of off road parking for a few cars and a short portage trail across the low gradient state land at this point would greatly facilitate canoe and ice fishing access.

Management Class: Two Story

Lake Clear (C-P199)

Lake Clear (980 acres) lies just west of the juncture of State Routes 86 and 30. This broad lake is regarded as the headwater for the Saranac chain of lakes. Geologists claim this lake is a remnant of a much larger glacial lake that included the St. Regis chain of lakes to the north. Lake Clear serves as a good example of the negative impacts of non-native fish species introductions in the Adirondacks. At the time of the 1929 Biological Survey, Lake Clear still had a relatively undisturbed native fish fauna and was compared to nearby waters where non-natives had ruined fisheries in the Champlain watershed report. Biologists listed the native species of round whitefish, brook trout, lake trout, white sucker, longnose sucker, northern redbelly dace, brassy minnow, pearl dace, finescale dace, fathead minnow, blacknose dace, common shiner, creek chub, brown bullhead, pumpkinseed and slimy sculpin. The only non-natives present in 1929 were rainbow trout and lake whitefish. This latter species was present in sufficient numbers to support a commercial fishery. Non-native species spread to Lake Clear soon after the 1929 report. Sometime in the 1930’s, yellow perch, largemouth bass and cisco appeared in the lake. By 1947, the fish community was dominated by non-native yellow perch and the native salmonids and cyprinids present in 1929 were not captured. That survey effort did catch a non-native cyprinid, the golden shiner. Surveys done in 1953 and 1964 documented the continued “unbalanced” nature of the fishery due to the abundance of stunted yellow perch. During the 1960’s and 70’s, Lake Clear was notorious for fish die offs that consisted mainly of yellow perch and some brown bullhead. In the late 1960’s, the lake fishery was so poor that reclamation with rotenone was seriously considered. High treatment costs and landowner objections lead to tabling of that proposal. The non-native predator species, northern pike, was introduced by the Department in the 1967 in an effort to control yellow perch abundance. This introduction may have been successful, since die offs have not been reported in the last two decades. Experimental policies for brown trout and splake were made in the 1980’s with reasonable success. The non-native forage species, rainbow
Appendix 6: Individual Pond Descriptions

Smelt, was introduced in the early 1980's and has fluctuated in abundance ever since. Landlocked salmon and lake trout were stocked starting in 1990 when splake production was cut back in the hatchery system. A 1996 survey determined that landlocked salmon were outperforming lake trout and the policy was cut. Fish species caught in 1996 were landlocked salmon, brown trout, lake trout, rainbow smelt, northern pike, white sucker, brown bullhead, yellow perch and pumpkinseed. A 2012 survey collected two additional species, white sucker and largemouth bass. The 1996 and 2012 surveys also noted low dissolved oxygen levels below 35 feet that may have negatively impacted the rainbow smelt population. Springtime smelt runs were low in the late 1990’s, but have increased in abundance since 2003. Brown trout stocking was temporarily suspended from 1997 to 2002 to allow smelt populations to recover.

Lake Clear has a sandy substrate and a notable lack of substrate structure, making it a difficult lake to fish. Weed beds are sparse. Its maximum depth is 60 feet and mean depth is 29 feet. Lake Clear Outlet is also known as Mill Pond. It is a long, shallow waterbody created by a ten-foot concrete dam on the outlet stream of Lake Clear. The only survey data available for this impoundment was collected by the ALSC in 1985. Non-native species dominate the fish community: northern pike, largemouth bass, yellow perch and golden shiner. Native species include brown bullhead and pumpkinseed. Lake Clear Outlet has a maximum depth of 8.5 feet, mean depth of 3.6 feet and a flushing rate of 35.2 times per year. Water chemistry values found were a pH of 7.30, ANC of 204.3 μeq/l and specific conductance of 44.5 μmhos. About ten homes border the north shore of the pond. Forest Home Road parallels some of the southern shore of the lake. An informal hand launch site for boats is present off the Forest Home Road and some anglers access the pond from the State Route 30 bridge crossing on
the north end. Sand and muck dominate the substrate. Submerged aquatic vegetation is abundant.

Lake Clear Outlet will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. This UMP proposes improving the informal hand launch site by designating parking spots that will minimize damage to soils and vegetation.

Management Class: Warmwater

Lake Colby (C-P106) and Little Colby (C-P105, also P5363)

Location, easy access and a productive fishery combine to make 286-acre Lake Colby one of the most heavily fished lakes in the unit. Lake Colby lies just to the north of the Village of Saranac Lake. State Route 86 borders the eastern end of the lake and has several pull off/picnic areas to entice visitors. A DEC boat launch and parking area is located on the northeast corner of the lake. Designed as a hand launch site, local intervention generally enables access by small boat trailers. Parking for 30 cars and port-o-potty facilities enhance the launch site. A DEC Youth Conservation Education camp is located on the north end of Lake Colby. About half of the lake’s shoreline borders State land (mostly along the western shore). Several private homes, a summer cottage rental business, and a public beach border other portions of the lake. A railroad grade causeway constructed in 1892 cuts off the former southern tip of Lake Colby. The separated pond is now called Little Colby. Fish can interchange between the lakes via a small channel which does not permit boat passage.

Lake Colby is shaped vaguely like a star with several long broad bays. Its maximum depth is 47 feet and the mean depth is 25 feet. A small tributary enters the lake near the DEC launch. The lake has a low flushing rate of 0.7 times per year and can have episodes of low dissolved oxygen at depths over 30 feet. Water chemistry is excellent, however, and indicates the productive nature of the lake with a pH of 7.65, specific conductivity of 136.3 μmhos and ANC of 471.6 μeq/l being measured in 1984. Water quality is improving in the lake since installation of sewage lines that receive effluents formerly piped to the lake or its tributaries from nearby homes and businesses. A variety of substrate types are found in the littoral zone ranging from bedrock to sand. Moderate amounts of submerged and floating vegetation are present in the back ends of the bays.

Little Colby is 35.5 acres in size and has nearly identical water chemistry as Lake Colby. It is much shallower however, with a mean depth of five feet and a maximum depth of 15 feet in one small pocket. Bog mats are common along the fringes of Little Colby and submerged vegetation is thick in most of the lake. Little Colby is accessible from the Forest Home Road, but there is no official launching site. A culvert under the Forest Home Road is the outlet for both lakes. This culvert empties into a small privately-owned pond across the street, below which a barrier dam has been constructed to prevent fish migrating up from Lower Saranac Lake.

Lake Colby most likely supported brook trout, and perhaps lake trout (Plosila, 1977), in
Appendix 6: Individual Pond Descriptions

pre-historic times. Settlement of the area occurred in the mid-1800's and by the time of the first biological survey in 1929 significant changes had accrued to the fish community. Biologists reported yellow perch, bass (no designation of species) and lake whitefish in the lake with a stocking of lake trout and whitefish recommended. The first comprehensive netting survey occurred in 1952 resulting in the capture of lake whitefish, longnose sucker, white sucker, golden shiner, brown bullhead, smallmouth bass and pumpkinseed. Dissolved oxygen was low in deep water and no lake trout were captured despite recent stocking efforts. Rainbow trout stocking was recommended. The next survey effort in 1996 captured the same species, except for longnose sucker. Stocked rainbow trout and splake were either captured or observed. The survival of salmonids encouraged managers to try reclaiming the lake with rotenone. A large scale project ensued in the fall of 1967 with application of the rotenone by helicopter and significant public involvement in collecting dead and dying fish. The lake was trap netted annually from 1968-1975 to assess reclamation success. The capture of two adult brown bullhead in Little Colby in 1968 revealed that reclamation was only partially effective. Thousands of young-of-the-year bullhead were caught in 1970 along with a few golden shiners. By 1971 golden shiner were abundant and pumpkinseed began appearing. White sucker was noticed in 1973, but it was not until 1980 that yellow perch and smallmouth bass were again observed. Largemouth bass was not caught in a 1984 ALSC effort, but were present in fair numbers in a 1987 DEC survey. In the early 1990's largemouth bass became very abundant and since 1993, Lake Colby has been electrofished several times to provide largemouth bass for transfer to new waters.

Despite reestablishment of competing species in Lake Colby after reclamation, stocking of various salmonids has maintained a popular coldwater fishery. Brook trout, rainbow trout, splake and kokanee salmon were stocked beginning in 1968. Of these, kokanee salmon proved the most successful. An abundance of kokanee averaging 13 inches in length drew many anglers and remains a fondly remembered fishery. Kokanee fishing remained good until the early 1980's when yellow perch, rainbow smelt and smallmouth bass became established in the lake. Brook trout stocking ended in the same time period. Brown trout stocking began in 1972 and continues to provide consistent fishing, while rainbow trout have been successful all along and remain the most popular target species in Lake Colby. It has become something of a tradition to transfer surplus broodstock landlocked salmon into Lake Colby each November. These large salmon are eagerly sought during early ice fishing season and few survive to the following spring. Stocking of two-year-old brown trout has also been popular. The Saranac Lake Fish & Game Club sponsors both summer and winter fishing derbies on Lake Colby that can draw anglers from all over northern New York.

Reliable reports indicate that anglers have caught several adult northern pike in Little Colby during the summers of 2000 and 1998. Since the barrier below Little Colby is in good repair, these pike must have been illegal introductions. Establishment of northern pike in Little Colby and Lake Colby could greatly harm the trout and salmon fishery.

The popularity of Lake Colby contributes to continual degradation of the hand launch site. Barriers placed to restrict small trailer launching are immediately removed by parties unknown. The dirt ramp access point is frequently rutted and poses a hazard to
vehicle use. This ramp should be paved or hardened to permit easier launching of small
trailered boats. At the same time, permanent signage should be erected and maintained
to clearly inform boaters of the 10 horse power motor restriction on Lake Colby.

Fly fishing and spin casting for trout and salmon is a popular activity directly off the
small beach near the boat access site. The shallow, weedy bay off the beach is
frequented by trout in spring and again from August-October. Anglers wade out to cast
to these fish, but are limited by soft bottom conditions.

Lake Colby and Little Colby will be managed as two story fisheries to preserve
historically associated coldwater and warmwater species. In the event that northern pike
or other illegally introduced species significantly impair the coldwater fishery, both lakes
will be reclaimed to enhance and restore native and historically associated species.
Restocking of brook trout, rainbow trout and kokanee salmon would follow reclamation.
Low dissolved oxygen conditions in the deepest portions of Lake Colby preclude
reintroduction of lake trout and lake whitefish. As the 1967 reclamation demonstrated, it
is likely that brown bullhead and golden shiner would survive the reclamation effort.
Success of any future reclamation project in Lake Colby should be judged on its
effectiveness in eliminating the problematic non-native species (e.g. northern pike).

Management Class: Two Story

Lake Placid (C-P254)

Lake Placid is an internationally famous Adirondack name due to the Village of Lake
Placid hosting the Winter Olympics in 1932 and 1980. Well before the Olympics,
however, the beauty of Lake Placid itself and surrounding terrain made this area a
popular tourist destination. Ironically, many tourists never actually see the village’s
namesake water because most of the businesses in town border the much smaller
Mirror Lake. Lake Placid (1,958 acres) is shaped roughly like a figure 8 with two large
islands. Whiteface Mountain abuts the north end of the lake, providing unforgettable
views for boaters. Biologists noted in 1929 that Lake Placid was famous for excellent
tROUT fishing for lake trout, brook trout and rainbow trout. Between 1919 and 1928, lake
whitefish and smallmouth bass were stocked. Earlier stocking of all five species
mentioned so far, is likely, but stocking records are incomplete. Lake trout and brook
tROUT were undoubtedly native to the lake, as they were in all of the large waters of the
SLWF. Survey data is lacking between the 1930's through early 1960's. Gillnetting
conducted in 1964 captured lake trout, lake whitefish, cisco, yellow perch, white sucker,
longnose sucker, pumpkinseed and smallmouth bass. Sampling done in 1968 added
rainbow trout and brown bullhead to the species list, but did not capture lake whitefish
or cisco. Biologists reported northern pike were present in a 1968 report. Netting efforts
conducted in 1983 and 1992 have documented the accrual of the non-native species
rock bass. The lake trout population in Lake Placid is sustained by natural reproduction
and is characterized by high numbers of slow growing individuals. Most adult lake trout
range from 15-20 inches in length with an occasional extremely large individual. The
New York State angling record for lake trout for many years came from Lake Placid. A
15-inch size limit for lake trout has been in effect since 1983. Length distribution data from the 1992 survey suggests a greater proportion of lake trout are now larger than 15 inches as compared to pre-1983 conditions. Lake Placid reaches its maximum depth of 151 feet near the local landmark known as Pulpit Rock. Mean depth of the lake is 52 feet and its flushing rate is less than 0.2 times per year. Water quality is excellent throughout the lake with good dissolved oxygen at all depths, a pH of 7.06, ANC of 129 μeq/l and specific conductance of 33.8 μmhos. Lake Placid has very clear water and was long used as a drinking water source for area homes. Numerous large camps and exclusive resorts line much of the shoreline. State and town boat launches are located in the southeast corner of the lake. Two lean-tos are located on state land on the north end of Moose Island (the northernmost of the two large islands). State land also comprises some of Brewster Peninsula which juts into the southern end of the lake. The peninsula has nature and hiking trails used in all seasons. A road which approaches the outlet bay of Lake Placid was gated off in the mid-1980’s due to partying and vandalism. Region 5 Fisheries monitors this gate during June and early July to provide access for anglers pursuing rainbow trout in the outlet area. In the 1960’s through the early 1980’s, fisheries staff made efforts to establish rainbow smelt as forage for lake trout. Current knowledge suggests that a large smelt population could ruin the excellent rainbow trout fishery and diminish the eating quality of lake trout (their flesh would be oilier). In recent years, efforts have been made to locate and destroy rainbow smelt eggs in the small tributaries of the lake. The smelt population density in the lake is believed to be slight and, hopefully, declining as a result of these efforts. The smallmouth bass in Lake Placid are common, but grow slowly and specimens over 15 inches are unusual. Yellow perch are uncommon in the lake, but can reach large size (10-14 inches). Rock bass are now abundant in the rocky shallows of the lake. Although easy to catch, this species is of small average size. Interspecific competition from this aggressive species will probably be detrimental to many lake species.

Lake Placid will be managed as a two story fishery to preserve its native fishes in the presence of non-native and historically associated species. Waterway access points for the general public will be maintained at existing parking capacities.

Management Class: Two Story

Lead Pond (R-P93)

Lead Pond (79.8 acres) is a warmwater pond located on the western edge of the SLWF not far from the Village of Tupper Lake. Indeed, a third of the pond’s shoreline is privately owned and there are a half dozen camps in that section. The public can access Lead Pond via a 2.1-mile trail that begins at the end of the Dump Road in the Fish Creek Campground. Lead Pond once harbored brook trout and that species was last stocked there in 1936. A 1933 survey captured the non-native species of yellow perch and northern pike. Brown bullhead (NBWI) were abundant in the 1933 survey and brook trout were reported present. A 1957 netting effort added the non-native golden shiner to the fish community list. Little change was apparent in a 1984 ALSC effort; a single northern redbelly dace was the only previously unreported species. Lead Pond is
shallow, weedy and has a substrate comprised of sand and silt. Its maximum depth is 12 feet; the mean depth is 5.6 feet with a flushing rate of 3.1 times per year. The dark brown water of Lead Pond has a pH of 7.16, ANC of 181 μeq/l and specific conductance of 32 μmhos. Smallmouth bass was stocked in Lead Pond in 1893, but apparently never established.

Lead Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. Largemouth bass could be introduced to enhance the current fishery.

Management Class: Warmwater

Lilypad Pond (C-P108)

Lilypad Pond is also known as Shingle Bay Pond because it is the headwater for a tributary of Lower Saranac Lake that empties into Shingle Bay. A narrow corridor of wild forest lands bound the outlet stream and the entire shoreline of this pond. However, the surrounding lands are private, thus access is possible only by boating across Lower Saranac Lake and hiking the corridor. Brook trout were reported in Lilypad Pond by biologists in 1929 and that species was stocked ten times between 1936 and 1962. A 1953 survey captured brook trout, brown bullhead and pumpkinseed. Golden shiner and creek chub were noted in the shallows. A 1986 ALSC survey added white sucker and pearl dace to the fish community list. Lilypad Pond is well-named because it has abundant emergent vegetation during the summer. A swampy, boggy fringe discourages shoreline angling. Lilypad Pond has a maximum depth of 12 feet, mean depth of 6.4 feet and a flushing rate of 14 times per year. Large springs must be present because this pond has a tiny inlet and a large, flowing outlet. The springs help account for the continued presence of brook trout. Good water chemistry also helps. The ALSC measured a pH of 7.37, ANC of 255 μeq/l and specific conductance of 44 μmhos. A natural barrier of some sort must be present on the outlet of Lilypad Pond because yellow perch, bass and pike common in Lower Saranac Lake have not invaded this trout pond.

Lilypad Pond will be managed as an Adirondack brook trout pond to preserve its native fishes in the presence of non-native species. Large wetland areas and springs preclude reclamation.

Management Class: Adirondack Brook Trout

Little Black Pond (C-P130A)

A 5.4-acre Adirondack brook trout pond located about 100 yards east of Black Pond in the Fish Creek campground. Bog mats fringe the clear waters of this kettle pond which was part of the DJ F-22-R liming project of the 1950's and 60's. No fish were caught when Little Black Pond was first surveyed in 1952. Biologists did recommend stocking brook trout which commenced in 1953. A 1954 gill net set captured trout, but a 1957
Appendix 6: Individual Pond Descriptions

Little Black Pond

An effort did not and a 1958 netting caught only two trout. Little Black Pond was treated with hydrated lime in 1959, 1960, 1961, 1962, 1975 and 1976 and with agricultural lime in 1980. Nettings conducted in 1974, 1977 and 1984 all indicated that a brook trout monoculture was surviving in the pond. Annual chemistry sampling conducted from 1975-1995 documents the gradual decline in pH since the 1980 liming. Little Black Pond was dropped from the regional liming program after finalization of the FEIS on Liming which specified no more than 50 percent of a candidate water’s shoreline could be surrounded by sphagnum. Like other kettle ponds in this area, Little Black Pond is surprisingly deep for its size and has no inlets or outlets. It has a maximum depth of 27 feet, mean depth of 13 feet and flushing rate of 0.6 times per year. Chemistry sampling done in 1995 found a pH of 4.72, ANC of -10.6 μeq/l and specific conductance of 17 μmhos at the depth of 5 feet. Dissolved oxygen was nil below 15 feet. Slightly better chemical conditions for supporting trout may still exist between 5 and 15 feet in Little Black Pond.

Little Black Pond will be managed as an Adirondack brook trout pond in the event that acid conditions improve over time. A netting survey will be conducted within the five-year scope of this plan to determine whether continued brook trout stocking is warranted.

Management Class: Adirondack Brook Trout

Little Cherrypatch Pond (C-P240)

Little Cherrypatch Pond (3.2 acres) is located about 0.5 mile down the outlet of Big Cherrypatch Pond. This shallow, boggy pond is visible from State Route 86 to the east of the Village of Lake Placid. Brook trout were reported present in Little Cherrypatch Pond in 1929 and this species was stocked there from 1931-1952. Yellow perch (non-native) were observed in the pond in 1951, leading to cancellation of the stocking policy. A 1984 ALSC netting effort captured yellow perch, golden shiner, common shiner, northern redbelly dace, creek chub, brook trout, white sucker, brown bullhead, pumpkinseed and pearl dace. Although it is a darkly-stained water lying amidst bog vegetation, its water chemistry is good with a pH of 7.37, ANC of 236.3 μeq/l and specific conductance of 187.5 μmhos. Largemouth bass was introduced to the pond in 1993, but there is no information available to suggest the species is still present. Little Cherrypatch Pond is very shallow with a mean depth of only 1.6 feet and a maximum depth of five feet. It has a high flushing rate of 225 times per year. Muck and organic matter comprise most of the substrate. Beavers are active on the pond’s outlet and their activities have sometimes resulted in the pond’s surface area increasing to around six acres.

Little Cherrypatch Pond will be managed as a warmwater pond to preserve its native species in the presence of non-native fishes. If largemouth bass fail to establish in this pond, consideration will be given to stocking brown trout.

Management Class: Warmwater/Coldwater
Little Clear Pond (C-P191)

Little Clear Pond (344 acres) serves as New York State’s broodstock water for landlocked Atlantic salmon. The Adirondack Fish Culture Station is located close to a southern embayment on the pond and withdraws water from Little Clear Pond to raise salmon. Angling is not permitted on Little Clear, but the public can canoe across the pond to reach portage/trail systems in the St. Regis Canoe Area. Surprisingly little information is available on the early fish community for this high-quality water. A 1946 file note mentions very good fishing for lake trout but reports no brook trout. From 1963 to 1968, Little Clear Pond was trap netted intensively each year and was the focus of several population studies and creel surveys done as a prelude to reclamation. The fish species caught in this interval were lake trout, brook trout, yellow perch, white sucker, brown bullhead, longnose sucker, lake whitefish, round whitefish, pumpkinseed, rainbow trout, golden shiner, cutlips minnow, fallfish and common shiner. Little Clear was reclaimed in 1969 and restocked with brook trout, rainbow trout, and landlocked Atlantic salmon. Rainbow smelt were introduced in 1971 as forage for the salmon. Fishing was prohibited at that time in an effort to establish broodstock for each species. In the early 1970's, infectious pancreatic necrosis (IPN) was detected in several stocks of brook trout slated to be placed in Little Clear Pond. Concerns over the possible spread of this disease to the landlocked salmon broodstock in the hatchery lead to abandonment of the stocking policies for brook and rainbow trout. Little Clear Pond is trap netted annually to take eggs for salmon production. This monitoring and a 1984 ALSC survey have documented the accrual of various native and non-native fish species including white sucker, pumpkinseed, golden shiner, fathead minnow, creek chub, pearl dace and brook trout. A single large brown bullhead was caught in 2000. Little Green Pond (C-P192) drains into Little Clear Pond. An emergency reclamation of Little Green Pond was conducted in 1991 after establishment of non-native yellow perch, which posed a grave threat to the landlocked salmon population in Little Clear Pond. That reclamation was successful and no perch have been caught in Little Clear Pond.

Little Clear Pond has an average depth of 35.4 feet and a maximum depth of 77 feet with a flushing rate of 0.3 times per year. Water quality is excellent with a pH of 7.52, ANC of 263.3 μeq/l and specific conductance of 40.3 μmhos.

Little Clear Pond will be managed as a coldwater fishery to preserve its native fishes in the presence of non-native species. Regulations prohibiting fishing will be continued to help preserve the landlocked Atlantic salmon broodstock. The short outlet stream of Little Green Pond that drains into Little Clear Pond is the main spawning site for rainbow smelt. This stream has been enhanced for smelt spawning by placement of gravel. Hatchery personnel are also considering fencing along the stream bank to prevent the public from wading within the stream and/or transferring spawning smelt to Little Green Pond. Although fishing is prohibited in Little Clear Pond, its broodstock population is threatened by illegal fish introductions. Prohibition of angling in Little Green Pond somewhat alleviates this threat. Banning camping on Little Green Pond would be an important further step in protecting Little Clear Pond.

Management Class: Coldwater
Appendix 6: Individual Pond Descriptions

Little East Copperas Pond (C-P137)

Little East Copperas Pond is a 0.5-acre bog pond located about 1,000 feet north of Amphitheater Pond and the Fish Creek Campgrounds. Cranberry and sphagnum fringe the dark brown water of this pond. In 1929, biologists estimated a surface area of 5 acres and recommended stocking brook trout, but there is no indication fish were caught in the pond. A 1954 survey caught no fish and found low dissolved oxygen levels below 10 feet. Brook trout and rainbow trout were stocked from 1959-1964 when Little East Copperas Pond was included in the DJ F-22-R liming study. Treatments with hydrated lime were conducted in 1959 and 1963. Comments on a 1965 stocking policy deletion form indicate survival of stocked trout was poor. Little East Copperas Pond averages 13.5 feet in depth with a maximum depth of 29 feet. Its substrate is 100 percent muck.

Little East Copperas Pond will be managed to preserve its aquatic community present for its intrinsic value.

Management Class: Other

Little Echo Pond (C-P126)

Located just to the south of Echo Pond and north of Fish Creek Campgrounds this 2-acre, acidic bog pond has never supported a fish community. The 1929 biological survey reported attempts to introduce brown bullhead had failed, but then recommended an experimental brook trout policy. Trout were stocked in the 1950’s, but nettings conducted in 1954, 1957 and 1958 all caught nothing. Little Echo Pond was treated with hydrated lime in 1959 and again in 1962 but had only temporary increases in pH. Acid rain study work conducted in 1976 caught no fish and determined a pH of 4.1. Its trout stocking policy was canceled after the 1976 survey. Little Echo Pond has a muck substrate and a surrounding bog fringe. It is naturally acidic.

Little Echo Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Little Egg Pond (C-P127a)

This 1-acre pond is located just to the south of Whey Pond on the Fish Creek Campgrounds. Unnamed on topographic maps, the local name for this pond reflects its shape. A former brook trout pond, Little Egg Pond was limed three times as part of a Federal Aid study. When first surveyed in 1954 no fish were caught, but water chemistry (pH of 6) seemed conducive for a fishery. Brook trout were stocked beginning in 1956, but no fish were captured in netting done in 1957 or 1958, leading to suspicions of unsuitable water chemistry. Little Egg Pond was treated with hydrated lime in 1959 as part of DJ Project F-22-R-1. Liming was repeated in 1960. File notes indicate brook trout survived through the mid-1960’s, but a 1976 survey found the pond to be fishless.
and recorded a surface pH of 3.9. Little Egg Pond was limed for the last time later in 1976. Water chemistry work done in 1980 found pH levels of 5.6 to 6.1. An ALSC survey in 1986 determined a surface pH of 4.67, ANC of -15 μeq/l and specific conductance of 18 μmhos, plus no fish. Better pH conditions were evident at depths below 15 feet, but there was no dissolved oxygen. Brook trout stocking ended in 1992. It is likely this pond chemically stratifies. Despite its small size, Little Egg Pond reaches 33 feet in depth and has an average depth of 11.8 feet with a flushing rate of 1.9 times per year. The pond bottom is entirely muck and organic matter.

Little Egg Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Little Green Pond (C-P192)

Little Green Pond (68 acres) is one of the most productive coldwater ponds in the SLWF.

Although its fish community has changed dramatically over the years, the fish species present at any given time were generally abundant. Little Green Pond is part of the Adirondack Fish Hatchery preserve and has been used in recent years as a broodstock water for Horn Lake strain brook trout. When first surveyed in 1946, Little Green Pond had abundant populations of round whitefish, lake whitefish, longnose sucker and cisco. Other species present were creek chub, fathead minnow, blacknose dace, pumpkinseed, white sucker, and brown bullhead. A few yellow perch were also caught in 1946, a harbinger of major changes to the native fish community. Rainbow trout and lake trout were stocked in the early 1950's but did not fare particularly well as yellow perch numbers increased. A 1957 survey found round whitefish, lake whitefish and cisco numbers were much reduced. A new non-native, golden shiner, were also reported in 1957. By 1963, round whitefish were no longer present and yellow perch were extremely abundant. Little Clear Pond was reclaimed in 1963 and subsequently stocked with brook trout, rainbow trout and kokanee salmon. The kokanee did extremely well and this became a very popular local fishery. Unfortunately, the popular fishery may have accelerated illegal fish introductions. In 1968, brown bullhead was noted in fall trap net catches. Within the next few years, golden shiner, creek chub, northern redbelly dace, fathead minnow, blacknose dace and white sucker reappeared in the pond. Kokanee salmon and rainbow trout were stocked in the 1970's and 1980's. Kokanee salmon numbers declined during this interval due to increasing interspecific competition. In 1989, rainbow smelt were first noted in Little Clear Pond and in 1991 yellow perch were netted in low numbers. The reappearance of yellow perch posed a grave threat to the landlocked salmon brood stock population in Little Clear Pond just downstream of Little Green Pond. An emergency reclamation was conducted in 1991 to eliminate the yellow perch. This reclamation project was actively opposed by members of Earth First, who demonstrated at the pond and were arrested for trespass. The reclamation was successful and yellow perch have not been noted in Little Green Pond or Little Clear Pond since 1991. Little Green Pond was designated as a brood stock water after the
reclamation and Horn Lake strain brook trout were stocked. Fishing was also prohibited, but several primitive camping sites were allowed to remain on the pond. A wolf trap barrier device on the outlet of Little Green Pond was rendered ineffective in 1992 after a nearby tree uprooted and pond waters flooded around the barrier. Rainbow smelt, white sucker and golden shiner populations quickly rebuilt after this incident and brook trout numbers decreased through the 1990’s. Egg take efforts for brook trout also revealed that illegal poaching was taking a toll on the population. Many fish were noted as having hook scars and even leaders in their mouths.

Little Green Pond has a maximum depth of 46 feet and a mean depth of 18.4 feet and a flushing rate of 0.3 times per year. Gravel and sand dominate its substrate. Water quality is excellent with a pH of 7.27, ANC of 155.9 μeq/l and specific conductance of 28.9 μmhos. Underwater springs in several areas of the pond provide good salmonid spawning habitat. Dissolved oxygen levels are good throughout the water column.

Little Green Pond will be managed as a coldwater pond to preserve, enhance and restore a native fish community. Little Green Pond was reclaimed in 2003 and is currently managed for round whitefish. Some brook trout survived the reclamation effort and are slowly rebuilding population levels. Fishing should continue to be prohibited on Little Green Pond. The historical and current abundance of round whitefish in Little Green Pond suggests a robust population should build quickly in this pond and help protect this endangered fish species.

Management Class: Coldwater

Little North Whey Pond (C-P141A)

Little North Whey Pond is a 2.5-acre kettle bog pond located just north of North Whey Pond on a plot of land separating Whey, Copperas and Little Square Ponds. Early survey data are lacking for this pond, but it is known that brook trout were stocked here beginning in 1961. In 1962, Little North Whey Pond was treated with hydrated lime and stocking policy change form notes indicate adequate survival of trout. A water chemistry check done in 1976 found a pH of 4.2 leading to cancellation of the stocking policy. ALSC netting done in 1984 caught no fish. Water testing done by the ALSC measured a pH of 4.45, ANC of -41 μeq/l and specific conductance of 21.5 μmhos. Little North Whey Pond has darkly stained water and a muck substrate. A 2012 DEC survey found a pH of 4.43, an ANC of -33 μeq/l and a conductivity of 17.8 μmhos. The pond has a mean depth of 7 feet, maximum depth of 15 feet and a flushing rate of 3.3 times per year. An extensive bog shoreline and flushing rate greater than twice per year make this pond ineligible for liming.

Little North Whey Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other
Little Polliwog Pond (C-P119)

Little Polliwog Pond is a 15.3-acre Adirondack brook trout pond managed in conjunction with Horseshoe Pond (C-P118). Thus, it has been reclaimed three times in the same years as Horseshoe: 1953, 1965, and 1990. Prior to its first reclamation, a 1952 survey caught white sucker, yellow perch and brown bullhead. Although this pond appears to be too shallow and warm to support trout, netting conducted in 1957 to evaluate experimental brook trout stocking confirmed that trout can survive. Little Polliwog was reclaimed again in 1965, but there are no data to show whether non-native species accruals had occurred. A 1984 ALSC survey captured brook trout, creek chub, fallfish and white sucker. Little Polliwog Pond was surveyed in 2015 and northern redbelly dace were collected along with brook trout. Despite the shallow nature of this water a viable brook trout population is in place.

About 40 percent of Little Polliwog’s shoreline is wetland and it averages just 2.6 feet in depth. Its maximum depth is 6 feet. The bottom is mostly muck, silt and sand. Midsummer chemistry sampling by the ALSC found a pH of 6.58, ANC μeq/l of 58 and specific conductance of 23.4 μmhos. The outlet stream of Little Polliwog Pond flows about 400 feet before connecting to Horseshoe Pond. Since the pond has no inlets, but does have a permanent outlet, it must be spring fed which would explain trout survival. A hiking trail from Fish Creek Campground skirts the eastern end of the pond.

Little Polliwog Pond will be managed as an Adirondack brook trout pond and will be reclaimed upon establishment of non-native or other species, to enhance and restore a native fish community. As in the past, Little Polliwog Pond will be reclaimed in conjunction with any project involving Horseshoe Pond.

Management Class: Adirondack Brook Trout

Little Square Pond (C-P140)

Little Square Pond (116 acres) is part of the Fish Creek pond complex although it is outside of DEC’s Fish Creek campground. A 1.5-mile, navigable section of Fish Creek connects Little Square Pond to Square Pond. When first studied in 1929, this pond supported yellow perch and northern pike; trout stocking was not recommended. A 1984 ALSC survey revealed pH, dissolved oxygen and temperature conditions suitable for salmonids. Their nets captured landlocked salmon, rainbow smelt, golden shiner, fallfish, white sucker, brown bullhead, pumpkinseed, smallmouth bass, largemouth bass, northern pike and yellow perch. The salmon caught in 1984 were probably emigrants from Upper Saranac Lake. Little Square Pond has a mean depth of 10.5 feet and a maximum depth of 29 feet. The lightly stained waters had a pH that was 7.03, ANC of 118 μeq/l and specific conductivity of 29 μmhos. A trail from the Fish Creek campgrounds borders the western end of this sandy-bottomed pond. Much of its shoreline is forested. Reclamation of this pond is not possible due to the size and low gradient of its outlet. A stocking policy for landlocked salmon was initiated in 1995 but was ultimately unsuccessful.
Appendix 6: Individual Pond Descriptions

Little Square Pond will be managed as a two-story fishery to preserve historically associated coldwater and warmwater species.

Management Class: Two Story

Little Weller Pond (C-P208)

Little Weller Pond (10 acres) should be more properly regarded as an embayment of Middle Saranac Lake. It lies amidst a large wetland contiguous with Middle Saranac Lake and Weller Pond. A navigable stream branches from the channel that connects those two larger waterbodies to provide access to Little Weller Pond. Non-native warmwater species of northern pike, smallmouth bass and yellow perch were reported present in 1929, along with the native sunfish species called pumpkinseed. A 1984 ALSC survey caught northern pike, yellow perch and pumpkinseed and added the non-native golden shiner and NBWI brown bullhead. About 80 percent of Little Weller Pond’s shoreline is comprised of bog vegetation. It reaches a maximum depth of 13 feet with a mean depth of 6.6 feet and flushing rate of 20 times per year. Despite the boggy shoreline, water chemistry values are not acidic with a pH of 6.75, ANC of 96 μeq/l and specific conductivity of 39 μmhos.

Little Weller Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Lower Saranac Lake (C-P104)

Lower Saranac Lake (2,108 acres) epitomizes the allure of Adirondack lakes for sportsmen and recreationalists. Dotted with rocky islands and bordering on the Village of Saranac Lake, the lake is scenic and heavily used. A DEC island-based campground with 62 sites (including 2 lean-tos) draws visitors all summer. Private camps and homes line about 25 percent of the shoreline on the eastern end of the lake. DEC boat launches at Second Pond (C-P102) and on Ampersand Bay, plus a private marina, provide good boating access. Rocky shoals and weedy bays are the focus for anglers seeking smallmouth bass and northern pike. A series of locks connecting Lower Saranac Lake to Middle Saranac Lake and the downstream waters of Oseetah Lake, Kiwassa Lake and Lake Flower enable full day boating “tours” of the Saranac chain of lakes. All of these factors combine to generate the most angler days of any water in this unit.

Most of Lower Saranac Lake ranges between 10 and 30 feet deep. A maximum depth of 65 feet occurs in a small area to the north of Eagle Island. Much of the shoreline is cobble, boulder or bedrock with sand in some embayments. Water chemistry is good with a pH of 7.3 and ANC of 195.7 μeq/l being measured in 1987. Submerged aquatic vegetation is of moderate abundance in the littoral zones of Ampersand, Pope and Loon Bays.
Historically, Lower Saranac Lake was home to brook trout, lake trout and a variety of native minnows (see Upper Saranac Lake, C-P114, for a broader discussion). The lake was first surveyed in 1952. The only two coldwater species caught, lake whitefish and rainbow smelt, were listed as being uncommon. Yellow perch and brown bullhead dominated the catch while northern pike and smallmouth bass were common. Golden shiner, white sucker, and pumpkinseed were present. Stocking of rainbow trout was recommended.

Rainbow trout, brown trout, and landlocked salmon have all been stocked at various times in Lower Saranac Lake, but reliable fisheries for these species have never developed. Water chemistry sampling conducted in 1976, 1977, 1981 and 1987 revealed late summer dissolved oxygen problems in depths as shallow as 26 feet, with low values common at depths over 40 feet. An extensive survey effort in 1976 captured only one lake whitefish and no smelt. No whitefish or smelt were caught in a 1984 netting. Ice fishermen reported that smelt were readily caught during the winter of 1997/98, but such reports were not received in 1998/99.

Lower Saranac Lake has a reputation for being a good smallmouth bass fishery and hosts several small-scale bass tournaments annually. Smallmouth are common around the islands and rocky shoals and typically range between 1 and 3 pounds. Northern pike are less common in the lake, but are of good average size, with 3-5-pound fish being a typical catch. Yellow perch are abundant and range 6-11 inches in size. Largemouth bass are infrequently caught.

The abundance of most species in Lower Saranac Lake has changed little since the 1952 survey. Surveys conducted in 1976 and 1984 caught the same species in roughly the same proportions. A recent and unfortunate change in the fish community, however, has been the appearance of an abundant rock bass population. Rock bass were common in the 1998/99 ice fishery. This omnivorous and prolific panfish occupies the same habitat as smallmouth bass and competes with that species for many prey items. The growth and survival of smallmouth bass may be inhibited by the establishment of this species.

Lower Saranac Lake has been prioritized among regional waters for establishment of walleye as a major fishery. From 1982 to 1986, 4.4 million walleye fry were stocked annually and in 1998, about 250 adult walleyes were transferred from Great Sacandaga Lake in an effort to establish the species. Both efforts were unsuccessful. In 1998, 34,300 walleye fingerlings averaging 5 inches in length were stocked, followed by 44,280 4.5 inch fingerlings in 1999. Assessment surveys done in 2005 and 2006 caught only a few walleye and have discouraged thoughts of further stocking efforts. The walleyes present in this lake will have to increase naturally in abundance or will die off in time.

Lower Saranac Lake will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. Stocking of trout is no longer recommended due to repeated failures to establish rainbow trout and brown trout fisheries.
Appendix 6: Individual Pond Descriptions

Management Class: Warmwater

Marsh Pond (C-P145)

Marsh Pond (1.7 acres) is unnamed on topographic maps. It lies 0.25 miles north of Floodwood Road and southwest of Track Pond (C-P146). Brook trout stocking was recommended in 1929, but no other fish species information is available from that time. Fall fingerling brook trout were stocked in 1952 and 1953. A 1954 netting effort caught no fish and biologists suggested the pond was chemically unsuitable. A 1985 ALSC survey caught no fish and measured a pH of 4.53 with an ANC of -29 μeq/l. Marsh Pond has a maximum depth of 22 feet, mean depth of 9 feet, flushing rate of 1.8 times per year, and a muck substrate. Bog vegetation rings the shoreline.

Marsh Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

McCauley Pond (C-P107)

An 81.5-acre warmwater pond located two miles west of Lake Colby, McCauley Pond is the headwater of Fish Creek and thus, a tributary to Lower Saranac Lake. The southern shore of McCauley Pond is bordered by a railroad line now being proposed for renovation. Several private homes border the pond which has, perhaps 20 percent of its shoreline on wild forest land. Average depth of the pond is 7.5 feet with a maximum of 12 feet. Aquatic vegetation is abundant. Biologists reported largemouth bass and northern pike in 1929 and recommended stocking smallmouth bass, brown bullhead, and pike. A 1956 survey caught golden shiner, brown bullhead, yellow perch and pumpkinseed besides the two gamefish. The ALSC caught the same species in 1984, plus a single smallmouth bass. Water chemistry values were 7.13 pH, 133 ANC μeq/l and 31.7 μmhos, specific conductivity. The substrate is mostly sand with some boulder, rubble and gravel. Northern pike rarely exceed 25 inches and bass were uncommon in the surveys. The outlet of McCauley Pond lies on private lands in a low gradient area with large wetlands within 0.25 mile of the pond. Reclamation appears unfeasible.

McCauley Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

McKenzie Pond (C-P88)

McKenzie Pond (238 acres) lies to the east of the Village of Saranac Lake. A small, isolated patch of wild forest land bounds the western edge of the pond while much of the remaining shoreline is included in the McKenzie Mountain Wilderness. The only road access occurs across private lands, and local residents do not condone trespass.
Improved trail access will be proposed in the UMP for the McKenzie Mountain Wilderness.

McKenzie Pond is a coldwater fishery that was first surveyed in 1959. The pond contained lake trout, brook trout, lake whitefish, white sucker, common shiner, creek chub, pumpkinseed and brown bullhead. ALSC records indicate lake trout were stocked in 1892 and 1898 while brook trout were stocked annually since 1937. Limited trap netting done in 1973 added landlocked salmon to the species list which were first stocked the year before. ALSC netting done in 1984 established that brook trout and lake whitefish were still common in McKenzie Pond, but did not catch lake trout. A 1992 survey also failed to catch lake trout but did add rainbow smelt and slimy sculpin to the fish community list.

The water quality of McKenzie Pond is excellent. The pond’s clear water averages 22.6 feet in depth with a maximum depth of 53 feet. Dissolved oxygen levels were over 8 ppm at all depths in 1984, pH was 7.04, ANC 134 μeq/l and specific conductivity of 31.4 μmhos. Boulder, rubble and gravel comprise the pond’s substrate. Private homes are set well back from the shoreline, so anglers see only mixed forest and the overlooking heights of Baker and Little McKenzie Mountains.

McKenzie Pond will be managed as a coldwater pond to preserve its native fishes in the presence of historically associated and non-native species. Future survey work will focus on establishing the presence/absence of lake trout and, if necessary, that species will be reestablished by stocking.

Management Class: Coldwater

Meadow Pond (C-P203)

Meadow Pond (10 acres) is an Adirondack brook trout pond located about 700 yards northwest of Lake Clear near Saint Germain Pond. A 0.5 mile hiking trail from the dirt road leading to the Girl Scout camp on the north end of Lake Clear provides access. Like nearby Saint Germain Pond, Meadow Pond is a popular brook trout fishery. Biologists recommended stocking brook trout in 1929 and these were apparently diverted to the pond on occasion until a regular policy was instituted in 1955. A 1954 survey captured brook trout and pumpkinseed. In 1966, brook trout and non-native golden shiner were captured, but not pumpkinseed. Surveys done in 1973 and 1976 caught only brook trout. A 1986 ALSC survey captured brook trout and northern redbelly dace. Golden shiner was reported abundant in 1992 and the brook trout fishery began to decline. Meadow Pond was reclaimed in 1995 and restocked with brook trout. It has remained a brook trout monoculture since the reclamation. Meadow Pond is isolated with no inlets or outlets. The pond does have a slightly elevated wetland complex of about four acres. Under high water conditions this wetland is contiguous with the main pond. In dry years the wetland is effectively isolated from the pond. Meadow Pond has a maximum depth of 22 feet and a mean depth of 8.2 feet with a flushing rate of 1.7 times per year. Its pH in 2014 was 6.70 with an ANC of 42 μeq/l and specific conductivity of
13 μmhos. As in Saint Germain Pond, pH levels of this pond have seemingly improved in recent years. Unlike other ponds in the immediate area, Meadow Pond has little bog vegetation along the shore and has a relatively firm shoreline substrate of sand and some rubble.

Meadow Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon establishment of non-native or other fishes to enhance and restore a native fish community.

Management Class: Adirondack Brook Trout

Middle Pond (C-P143)

Middle Pond (61 acres) is an elongated, shallow pond that abuts the Floodwood Road. A beach launch for small boats and a no-fee camping site add to the attraction of this pond for local anglers. Fish species reported present in 1929 were northern pike, yellow perch and brown bullhead. A 1953 netting effort caught the same species and added white sucker and golden shiner to the species list. Biologist R. Zilliox noted in that survey that Middle Pond was a reclamation candidate with the possibility of building a low barrier about 50 yards down its outlet to Floodwood Pond. In 1984, ALSC netting added largemouth bass to the species list. Also notable was the abundance and large average size of brown bullhead caught by the ALSC. Middle Pond has a mean depth of 5 feet and a maximum depth of 11 feet. Beaver activity has raised water levels two or more feet in the past. Middle Pond has a varied substrate of rubble, gravel and sand and an extensive zone of emergent and floating vegetation in midsummer. The ALSC recorded a pH of 7.13, ANC of 86 μeq/l and specific conductivity of 28.7 μmhos in 1984. Brown trout were stocked once in 1895.

Middle Pond will be managed as an Adirondack Brook Trout pond to restore a native fish population. Pre-reclamation surveys will be conducted to ascertain whether a barrier dam is still feasible and whether wetland areas are treatable. If so, the barrier will be constructed and Middle Pond will be reclaimed with rotenone to eliminate non-native species. If reclamation is impractical, Middle Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Adirondack Brook Trout / Warmwater

Middle Saranac Lake (C-P110)

It takes effort to reach Middle Saranac Lake. Boaters leaving the DEC launch on Second Pond will spend 45 minutes navigating the length of Lower Saranac Lake, plus a 2.25-mile stretch of the Saranac River to reach this 1,393-acre lake. They may also have to wait at a DEC lock. There is no shortage of recreationalists who frequent its broad, windswept expanse throughout the summer. Eighteen camp sites and two lean-tos’, part of the Saranac Lake Islands Campground, draw many visitors. A sandy beach and a wonderful view of Ampersand Mountain are further attractions. An alternative
access point for hand launched boats is available at the South Creek parking area (20 car capacity) off State Route 3. About 25 percent of the shoreline is privately owned, but only a few camps are visible from the water.

Middle Saranac Lake has been surveyed thoroughly only once, in 1975, with some minor netting done in 1976. The species caught in order of abundance were yellow perch, brown bullhead, pumpkinseed, golden shiner, white sucker, smallmouth bass, northern pike, largemouth bass, and rainbow smelt. DEC file notes indicate that anglers occasionally catch landlocked salmon and brown trout that have emigrated from Upper Saranac Lake or other upstream waterbodies. But coldwater habitat is lacking Middle Saranac Lake due to its long fetch and average depth of only 10 feet (maximum 26 feet). Its varied substrate ranges from sand to bedrock. As with other lakes in the Saranac chain, the water is slightly stained with a pH near 7.0. Dissolved oxygen levels are usually good, but a low value of 4.4 ppm was noted at 20 feet during a July 1975 sampling. Middle Saranac Lake receives less angling pressure than Lower Saranac Lake and is better known for northern pike rather than smallmouth bass fishing. It is likely that rock bass will spread to Middle Saranac from Lower Saranac Lake. Walleyes stocked into the lower lake will, hopefully, spread to Middle Saranac, as well. Walleyes would have a good forage base in the abundant yellow perch population in Middle Saranac and would be expected to utilize the Bartlett Carry area of the Saranac River on the lake’s inlet as a spawning site.

Middle Saranac Lake will be managed as a warmwater fishery to preserve its native fishes in the presence of non-native species. In the event that walleyes do not spread naturally from Lower Saranac Lake, future stocking of walleye fingerlings may be conducted.

Management Class: Warmwater

Mike’s Pond (SC-P269)

Mike’s Pond One of a trio of small bog ponds located to the east of Little Long Pond and south of Upper St. Regis Lake. All three of these ponds were limed in 1972, but reacidified quickly. Mike’s Pond is the most eastern of these ponds, lying east of Bread Pond and south of Humdinger Pond. Older maps designate Mike’s Pond as SC-P268A, as does the ALSC. Mike’s Pond was first surveyed in 1972, prior to liming, and was fishless. No fish were caught in a 1973 post-liming effort, but two brook trout were caught in 1974. Water chemistry monitoring found the pH had dropped to 5.9 by 1976, but stocking was continued. A 1986 ALSC effort caught no fish and found that the pH had declined to 4.9 with an ANC of -5.5 μeq/l and specific conductivity of 12.8 μmhos. The trout stocking policy was deleted in 1991. Mike’s Pond has a maximum depth of 34 feet, mean depth of 10.5 feet and flushing rate of 1.0 times per year. Sphagnum bog surrounds this pond, making it ineligible for liming following FEIS criteria.

Mike’s Pond will be managed to preserve the aquatic community present for its intrinsic value.
Appendix 6: Individual Pond Descriptions

Management Class: Other

Moose Pond (C-P83)

Moose Pond (158 acres) is a locally popular two story fishery bordered on the west by the Saranac Lake Wild Forest and on the east by the McKenzie Mountain Wilderness. It is accessible by a paved road that connects to the Franklin Falls Road outside of Bloomingdale. This scenic pond has several well-used, non-paying, camping sites. A rather steep launch permits small motorized boat access. The first biological survey of 1929 listed brook trout, lake trout and round whitefish as being present. It is not known whether lake trout were native to this lake because this species was stocked as early as 1893. Survey work done in 1951 captured the two trout species, but no round whitefish. Other species caught were cisco, white sucker, cutlips minnow, smallmouth bass, and pumpkinseed, with reports of rainbow trout. Surveys done in 1961, 1971 and 1984 added brown bullhead and creek chub to the species list, but did not catch cisco. Limited netting in 1993 documented survival of recently planted landlocked salmon and confirmed the presence of rainbow smelt. Moose Pond reaches 70 feet in depth and averages 28.5 feet. Water chemistry work done by the ALSC in 1984 found a pH of 6.9, ANC of 104.2 μeq/l and specific conductivity of 38.3 μmhos with good dissolved oxygen levels at all depths. Over half the pond shoreline is rock or boulder with sand, muck and organic matter comprising other observable substrates. A concrete dam seven feet in height is on the outlet of Moose Pond. This dam acts as a fish barrier, but does not control lake water levels. Pre-reclamation inspection work done in 1995 determined that untreatable wetlands on a major tributary system preclude reclamation. The coldwater fishery for rainbow trout, brook trout, lake trout and landlocked salmon draws most anglers to Moose Pond. Smallmouth bass are common, but slow growing and of small average size.

Moose Pond will be managed as a two story fishery to preserve its native fishes in the presence of non-native species. The concrete dam on the outlet of Moose Pond (Moose Creek) will be maintained as a fish barrier against non-native species moving upstream from the Saranac River.

Management Class: Two Story

Morette Pond (R-P184)

Morette Pond is a 6.2-acre shallow, weedy pond located 0.8 miles north of the Old Wawbeek Road near the Sunmount facility in Tupper Lake. The trail to Deer Pond (C-P181) parallels the eastern shoreline of Morette Pond. Brown bullhead and pumpkinseed were the only species captured in the first and only survey of this water done in 1955. Biologists described the pond as weed choked and muddy with extensive lily pad beds. Maximum depth of the pond is nine feet. Muck and some rock comprise the substrate. The pH in 1955 was 6.6 at the surface. Dissolved oxygen levels were limiting at seven feet. The outlet of Morette Pond channels through a series of beaver
ponds before entering the Raquette River just west of the state boat launch site off State Route 30. Recent metric maps have labeled this pond as "Mosquito Pond" or left it unnamed. It is unlikely that Morette Pond could be reclaimed successfully. Topographic maps indicate about 10 acres of wetland surround most of the pond and that its outlet traverses low relief terrain all the way to the Raquette River.

Morette Pond will be managed as a warmwater fishery to preserve its native species in the presence of non-native fishes. Largemouth bass could be introduced to enhance the fishery.

Management Class: Warmwater

Mud Pond (C-P182)

Mud Pond (4.7 acres) is unnamed on topographic maps. It lies just 400 feet south of Deer Pond (C-P181) to the west of Wawbeek. A 1.5-mile trail from the Old Wawbeek Road provides access. Brook trout stocking was recommended in 1929, but the pond was not surveyed at that time. Netting conducted in 1956 captured only pumpkinseed, although comments on the survey sheet indicate it was a good candidate for brook trout stocking. Despite such comments, Mud Pond has no trout stocking history. A 1984 ALSC survey captured pumpkinseed, brown bullhead (NBWI), white sucker and the non-native golden shiner. Mud Pond has a maximum depth of nine feet and a mean depth of 3.3 feet with a flushing rate of 26.6 times per year. About half of its substrate is composed of bedrock, boulder and sand, with the remainder being muck and organic matter. Mud Pond has a pH of 7.22, ANC of 170.4 μeq/l, and specific conductance of 33 μmhos. Since this pond has no inlets but does possess a sizeable flowing outlet, it must be spring fed.

A pre-reclamation survey will be conducted on this pond to judge whether it can be reclaimed successfully along with neighboring Deer Pond. If it can be reclaimed, Mud Pond will be managed as an Adirondack brook trout pond to enhance and restore a native fish community. If it cannot be reclaimed, it will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

North Whey Pond (C-P141)

North Whey Pond is one of two small ponds lying in the area separating Copperas, Whey and Little Square Ponds to the north of DEC’s Fish Creek campgrounds. North Whey Pond (3.2 acres) was visited in 1929 and brook trout stocking was recommended, but no other species data were provided. Like other kettle bog ponds in the vicinity, North Whey Pond is surrounded by a bog mat, is remarkably deep for its size, and was part of the F-22-R liming study. A 1957 netting captured no fish and reported a pH of 5.2. Brook trout were stocked from 1958 to 1975. Hydrated lime was applied in 1959 and apparently successful for awhile in raising pH levels. Stocking change form notes
indicate brook trout survival was adequate in the 1960's, although survey data corroborating those notes are lacking. A 1976 chemical survey documented a pH of 3.8 and stocking was canceled. In 1984, the ALSC captured no fish and reported a pH of 4.35, ANC of -50 μeq/l and specific conductance of 23.2 μmhos. This nearly circular pond has a muck bottom, maximum depth of 25 feet and mean depth of 11 feet with a flushing rate of 1.4 times per year.

North Whey Pond will be managed to preserve its aquatic community for its intrinsic value. Due to the extensive bog mat shoreline, North Whey Pond does not meet current liming policy criteria.

Management Class: Other

N-W Amphitheater Pond (C-P135)

N-W Amphitheater Pond is an isolated, 0.5-acre bog pond located to the northwest of Amphitheater Pond (C-P131) on the Fish Creek Campground. Like the other kettle ponds in this area, a sphagnum mat surrounds the pond. Brook trout and rainbow trout were stocked here from 1942-1964. N-W Amphitheater Pond was part of the DJ F-22-R liming study and was treated with hydrated lime in 1959, 1960, 1961 and 1976. Agricultural lime was applied in 1980 and 1984. A 1954 survey caught no fish and noted low dissolved oxygen below six feet. There are no other survey data available for this pond. N-W Amphitheater Pond averages 7.2 feet in depth with a maximum depth of 11 feet. Although current data are lacking, it is likely that this pond is highly acidic and no fish are present.

N-W Amphitheater Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Oseetah Lake (C-P90)

Oseetah Lake, locally referred to as Miller Pond, is a shallow, weedy, 826-acre member of the Saranac chain of lakes. It is located between Lake Flower and Second Pond. Oseetah Lake was formed by construction of the Lake Flower dam and its water levels are influenced by that facility. Boaters are advised to stay within the buoyed navigation channels because rocks and tree stumps are common on the lake bed. Less than 10 percent of the shoreline is bordered by wild forest, the remainder being private property. Camps, docks and boats are prevalent on Oseetah Lake and boating traffic can be heavy. The broad expanse of this lake offers prime views of surrounding mountains. Surprisingly, this lake was not netted until 1977. That effort revealed abundant populations of yellow perch, pumpkinseed and brown bullhead. Gamefish species present were northern pike, smallmouth bass and largemouth bass. Golden shiner, white sucker and blacknose dace were also captured. Rock bass have established in the last few years. Northern pike are very common in Oseetah Lake and typically range
from 1-3 pounds (18-24 inches), but specimens as large as 10 pounds are occasionally caught. Largemouth bass are common and range from 1-3 pounds. Aquatic vegetation is abundant and Eurasian milfoil is a problem in several bays by midsummer. The stained water of Oseetah Lake had a pH of 6.7 in 1977.

Oseetah Lake will be managed as a warmwater lake to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Panther Pond (R-P188)

Panther Pond (11.4 acres) nestles in a bowl at the base of Panther Mountain just to the south of Upper Saranac Lake. State Route 3 bounds the northern end of the pond. This scenic pond catches the eye of most travelers who are probably unaware that it is one of the few remaining brook trout ponds alongside a major highway in the Adirondacks. Intensive management has been needed to preserve brook trout in Panther Pond; it has been reclaimed three times. When first surveyed in 1933, the pond supported a native fish community of brook trout, white sucker, brown bullhead and northern redbelly dace. Stocking records indicate brook trout and lake trout had been added periodically to Panther Pond prior to 1933 and brookies were stocked thereafter. A 1954 survey documented the presence of two non-native species, yellow perch and golden shiner. Brook trout were scarce in that survey. Panther Pond was reclaimed with rotenone later that year. Splake were stocked after the reclamation at the request of local sportsmen. A splake monoculture persisted through 1963, but by 1966, brown bullhead and golden shiner were again noted in the pond. A 1983 survey added blacknose dace and pearl dace to the species list and found splake growth to be unimpressive. The second reclamation of Panther Pond was conducted in September 1983 and the stocking policy was switched back to brook trout. Fair trout fishing continued until the mid-1990's.

Rumors of minnows being present prompted a 1998 survey which found golden shiner to be abundant and white sucker common, along with a few brook trout. Panther Pond was reclaimed with rotenone for the third time in October 1999. Field observations made after treatment found the additional species of brown bullhead, central mudminnow and pearl dace. Brook trout stocking was renewed after the reclamation. Panther Pond has a maximum depth of 18 feet, mean depth of 10.8 feet and a flushing rate of 1.7 times per year. Water chemistry values from 2014 show a pH of 7.5, ANC of 196.2 μeq/l and specific conductance of 299 μmhos. The high conductivity value in Panther Pond has led to its classification by the ALSC as “salt impacted”. State Route 3 drains directly toward the pond and this hilly, curvy section of highway is heavily salted during the winter months. A pull off area for three or four vehicles provides access to the pond and a nearby hiking trail up Panther Mountain. Panther Pond is ringed with fallen trees and has a variety of bottom substrates. A natural barrier occurs on the outlet about 0.25 miles downstream of the pond.

Panther Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon establishment of non-native or other fishes to enhance and restore a native fish
community.

Management Class: Adirondack Brook Trout

Polliwog Pond (C-P120)

Polliwog Pond (196.7 acres) lies just west of Follensby Clear Pond; its northern bay is bordered by the Floodwood Road. Polliwog Pond has three distinct basins, each with a deep-water pocket. Thus, the average depth of the pond is 23 feet and reaches a maximum depth of 80 feet in its southern bay. Several primitive camping sites and a beach launch for boats on the north end attract modest numbers of visitors. Polliwog Pond supported lake trout and smallmouth bass when first surveyed in 1929. There are no records of lake trout stocking prior to 1929, but the species was stocked repeatedly thereafter. In 1956, lake trout, white sucker, brown bullhead, yellow perch, smallmouth bass and pumpkinseed were captured. Water chemistry work done in 1956 found a pH of 6.1 at 30 feet and low dissolved oxygen at 55 feet. Lake trout stocking continued until 1968. Reports of a declining coldwater fishery spurred a creel survey for May-July 1971 that documented catches of northern pike, smallmouth bass, yellow perch and only four lake trout. Polliwog Pond was reclaimed in September 1973. In 1974, landlocked salmon, Windfall strain brook trout and rainbow trout stocking began. Rainbow smelt eggs were placed in the pond from 1974 to 1976 and some adult smelt were transferred from Tupper Lake in 1976 in an effort to improve the forage base for landlocked salmon. Netting done in 1976 captured all three salmonid species along with some rainbow smelt, yellow perch and brown bullhead. Further netting conducted in 1977 established that yellow perch were now abundant and added golden shiner to the species list. The rapid reappearance of yellow perch in Polliwog Pond has been attributed by a former regional fisheries manager to “sabotage” by disgruntled former users of closed tent platform sites. Landlocked salmon stocking was discontinued after 1977 due to poor growth. Splake and brown trout policies were started to supplement the rainbow trout fishery. In 1984, the ALSC netted the expected stocked species and previously noted species, plus pumpkinseed. The ALSC did not capture rainbow smelt. Brown trout up to 24 inches were captured in that survey, while splake and rainbow trout were less abundant and of smaller average size. Surplus fingerling kokanee salmon were stocked in 1988 and 1989. A 1991 survey revealed, surprisingly, that the kokanee had survived and were growing well. Kokanee fishing has declined in recent years due to insufficient stocking and interspecific competition from yellow perch. Anglers began reporting the presence of smallmouth bass in the mid-2000’s and it is believed this species is now common in Polliwog Pond. An experimental lake trout stocking effort began in 2006 and lake trout were collected in a 2013 DEC survey targeting that species. Common white sucker and yellow perch were also collected.

Polliwog Pond had a pH of 5.8 at 40 feet in 1991 with a conductivity of 20 μmhos. ALSC testing in 1984 found ANC’s as low as -0.9 μeq/l indicating little or no buffering capacity. Dissolved oxygen was 5.0 ppm at 70 feet in 1991. A 2013 survey showed improvement in the water quality, with a pH of 6.3, ANC of 18.9 and 5.9 ppm of dissolved oxygen at a depth of 50 feet. There are three inlets to Polliwog Pond, but no outlet. Its flushing rate
is 0.4 times per year. Pre-reclamation survey work done in 1999 determined that reclamation of Polliwog Pond would be difficult, but possible.

Polliwog Pond will be managed as a coldwater fishery to restore and enhance native species in the presence of historically associated species. If periodic chemical and biological monitoring of the pond indicates declining pH levels are effecting salmonid survival, Polliwog Pond will be limed. Polliwog Pond is not part of the Volunteer Liming Program active in Franklin County, thus this large-scale project would be funded and carried out by DEC personnel. Liming is not expected to be necessary within the five-year scope of this plan.

Management Class: Coldwater

Porkchop Pond (C-P206)

Porkchop Pond (2.2 acres) lies 0.6 miles east of Upper Saranac Lake and drains into Pork Bay on Upper Saranac. The pond is unnamed on topographic maps. Its local name must derive from some interesting, but unknown, folklore. Biologists visited the pond in 1929 but did not set nets to sample the fish population. They described Porkchop Pond as shallow and heavily vegetated with little open water. A 1984 ALSC survey found similar conditions but succeeded in setting a net. They caught the native species of brook trout, northern redbelly dace and brown bullhead, but also caught non-native golden shiner and central mudminnow. Porkchop Pond has a maximum depth of five feet, mean depth of 2.6 feet and a flushing rate of 82 times per year. Its darkly stained water has a pH of 6.98, ANC of 233.6 μeq/l and specific conductance of 38.8 μmhos. Bog vegetation and wetland surround much of the pond. Beavers are active on its outlet. There is no stocking history for Porkchop Pond, so the single brook trout caught in 1984 was likely of wild origin. Unfortunately, competition from golden shiner has, by now, probably eliminated trout from Porkchop Pond.

Porkchop Pond will be managed as an Adirondack brook trout pond to preserve its native fishes in the presence of non-native species. The pond should be surveyed to see if wild brook trout are persisting in the face on interspecific competition.

Management Class: Adirondack Brook Trout

Rag Pond (C-P153)

On older topographic maps, Rag Pond (1.5 acres) lies just to the north of West Pine Pond.

Newer maps indicate a wetland in the same area; this is correct according to a 1993 field visit by fisheries staff. The Boy Scouts, who formerly owned nearby West Pine Pond, erected a sign with the name “Rag Pond” at the pond’s outlet which was found during the field visit. Only a channel through a marshland now remains of this former beaver pond. The outlet connects to West Pine Pond and may require treatment if that
Appendix 6: Individual Pond Descriptions

Rag Pond (C-P186)

Rag Pond was reclaimed. Rag Pond was stocked with brook trout between 1953 and 1965 until it was posted as part of Township 19. No records are available that indicate when the dams breached and the waters drained from this pond. Also lacking are any records of the fish community or water chemistry.

Rag Pond will be managed as an Adirondack Brook Trout pond in conjunction with plans pertaining to West Pine Pond. It will be reclaimed upon establishment of non-native or other fishes to enhance and restore a native fish community. Reestablishment of an active beaver colony on the outlet could well result in the return of Rag Pond as a brook trout pond.

Management Class: Adirondack Brook Trout

Rat Pond (C-P186)

Rat Pond is a 28.4 acre coldwater pond located to the north of the Saranac Inn golf course and State Route 30. The Remsen-Lake Placid railroad borders the northern shore of Rat Pond, separating it from St. Regis Canoe Area lands. Lake trout and brook trout were reported present by biologists in 1929.

Prior to 1929, stocking records indicate some plantings of lake trout, brook trout and brown trout. Brook trout were stocked regularly after 1929. A 1959 survey caught brook trout, white sucker, pumpkinseed, brown bullhead (NBWI) and the non-native golden shiner. Lake trout were reportedly still present in 1959. Rat Pond was reclaimed with rotenone in 1966 and brook trout stocking was resumed shortly thereafter. It is uncertain whether the reclamation was completely successful. By the next survey in 1984, all the species caught in 1959 were present, except pumpkinseed. New species accrued to the pond were fathead minnow, blacknose dace, rainbow smelt (non-native) and brown trout. The brown trout probably originated from stocking error. Brown trout growth and survival was clearly superior to brook trout in 1984, so the stocking policy was switched to that species. Evaluation of that policy in 1994 showed continued good growth for brown trout. Rainbow smelt and golden shiner were also caught. A 1993 pre-reclamation survey of Rat Pond judged that it was a poor candidate due to large wetlands on one of its tributaries. The pond had low dissolved oxygen conditions below 15 feet in 1994. Rat Pond has a maximum depth of 29 feet, mean depth of 12 feet and a flushing rate of 1.2 times per year. Its darkly stained waters had a pH of 6.51, ANC of 42.6 μeq/l and specific conductance of 18.3 μmhos in 1994.

Rat Pond will be managed as a coldwater pond to preserve its native fishes in the presence of historically associated and non-native species.

Management Class: Coldwater

Ray Brook Pond (C-P91)

Ray Brook Pond (25 acres) is a shallow impoundment of Ray Brook. It lies just south of the DEC Region 5 Headquarters. Access to the pond is somewhat limited, because half
its southern shoreline is controlled by a Federal Penitentiary and the northern shore is bounded by the Lake Placid-Remsen railroad bed. The concrete dam forming Ray Brook Pond is under Federal control. Brook trout were first stocked in Ray Brook Pond in 1957, but wild trout were likely present before that because the species is common in Ray Brook itself. A 1966 survey caught brook trout, central mudminnow, creek chub and white sucker. A 1985 ALSC survey added the native species of pearl dace, longnose sucker, common shiner and brown bullhead. The only non-native species caught was golden shiner. Ray Brook has a nearly uniform depth of four feet. Its pH in 1985 was 7.5 with an ANC of 483 μeq/l. Muck and silt comprise most of its substrate. Ray Brook Pond is prone to warming, but brook trout must sustain themselves in spring holes or seek refuge in upstream segments of Ray Brook during warm spells. By agreement with the NYS DOT, a short access road, parking area and water access was developed along the north bank of the railroad bed to keep this pond available to anglers. NYDOT railroad safety regulations have required fencing along other areas of the pond formerly used by anglers.

Ray Brook Pond will be managed as an Adirondack brook trout pond to preserve its native fishes in the presence of non-native species. Reclamation of the pond is not possible due to its extensive tributary system.

Management Class: Adirondack Brook Trout

Ray Brook Boys Camp Pond (C-P92A, also P5131)

This little, one-acre pond is unnamed on topographic maps and was formerly about three acres in size. Located about 0.25 miles behind the DEC Ray Brook headquarters, this pond was utilized by the Conservation Education Boys Camp before that facility moved to Lake Colby. A dam, three-foot-high, probably constructed of timber and stone, maintained pond levels until it washed out in 1985. Brook trout were stocked annually until the dam breach. No other fish species information is available. Currently the pond is less than one-foot-deep and has a large frog population.

Boys Camp Pond will be managed as an Adirondack brook trout pond to preserve its native fishes. In the event that beaver dam construction restores former pond levels, brook trout stocking may be resumed.

Management Class: Adirondack Brook Trout

Rock Pond (C-P170)

Rock Pond (55.8 acres) is a warmwater pond located 500 yards west of the Remsen-Lake Placid railroad tracks bordering Floodwood Pond. A 0.75-mile trail from the Floodwood Road provides access. Rock Pond lies downstream of West Pine Pond and a wooden fish barrier on its inlet prevents competing fish from reaching the upstream trout water. The Biological Survey of 1929 reported northern pike and yellow perch were present in this pond and recommended stocking smallmouth bass. That action was
Appendix 6: Individual Pond Descriptions

apparently never taken. A survey done in 1956 did not capture bass, but did catch white sucker, brown bullhead, pumpkinseed, and yellow perch, and reported the presence of northern pike. A 1984 ALSC survey added the non-native golden shiner to the community list. Rock Pond has a generally firm substrate comprised of sand, gravel and rubble. Its water quality is good with a pH of 6.97, ANC of 101.9 μeq/l and specific conductance of 25.4 μmhos. Maximum depth of the pond is 32 feet and it averages 16 feet deep with a flushing rate of 0.9 times per year. The northern pike in Rock Pond are of small average size, the largest specimen caught by the ALSC was 20 inches. A stocking policy for largemouth bass was in place from 1990-1995, but the species was never actually stocked.

Rock Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. If found to be desirable, largemouth bass could be stocked to diversify the fishery.

Management Class: Warmwater

Roiley Pond (SC-P266) and Unnamed Pond (SC-P5226)

Roiley Pond (15 acres) is located at the head of a large bog/wetland complex that drains to Upper Saint Regis Lake near Saint Regis Landing. Only a small portion of the pond near the outlet lies within the SLWF. The remainder lies in the St. Regis Canoe Area. A native fish community consisting of brook trout, brown bullhead (NBWI), white sucker and creek chub was present when the pond was first surveyed in 1930. Biologists noted rich planktonic life and good gravel beds. They recommended stocking brook trout, but there are no stocking records that indicate this policy was enacted. Non-native yellow perch were common in a 1955 survey that also found brook trout were scarce while brown bullhead and white sucker were abundant. Staff noted in 1955 that reclamation of Roiley Pond would be “impossible” due to the surrounding bog and wetlands. A 1986 ALSC survey found yellow perch were abundant but did catch one large brook trout. Largemouth bass and golden shiner were two new non-natives captured in 1986 along with the expected brown bullhead and white sucker. Roiley Pond has a maximum depth of 14 feet, mean depth of 6.9 feet and flushing rate of 19.8 times per year. Water chemistry testing found a pH of 6.24, ANC of 31.1 μeq/l and specific conductance of 20.6 μmhos. Floating and emergent aquatic vegetation is common during the summer months. No trails lead to Roiley Pond and boat access is difficult due to numerous beaver dams on the outlet. Little Long Pond in the St. Regis Canoe Area drains to Roiley Pond. The Department maintains a barrier dam on this connecting stream to prevent yellow perch from infesting Little Long Pond. The persistence of brook trout in Roiley Pond may be due to good natural spawning conditions or to emigration of trout from Little Long Pond.

Unnamed Pond, SC-P5226, is a one-acre pond on the outlet stream of Roiley Pond. It lies about 0.25 miles south of Upper St. Regis Lake. P5226 is probably a beaver impoundment. Since warmwater species have reached Roiley Pond in the past from Upper St. Regis Lake, it is likely that yellow perch, largemouth bass and other species
found in Roiley Pond are present in P5226. No survey work has been done on this pond. Located amidst a large wetland, P5226 is not a reclamation candidate.

Roiley Pond and P5226 will be managed to preserve their native fishes in the presence of non-native species.

Management Class: Warmwater

Roll Bank Pond (R-P189)

Roll Bank Pond is a 5.7-acre warmwater pond located about 1.5 miles south-southwest of Panther Pond and 0.4 miles north of the Raquette River to the west of Axton Landing. Roll Bank Pond is unnamed on topographic maps. It has been surveyed only once, by the ALSC, in 1984. They found a typical warmwater assemblage consisting of non-native northern pike, golden shiner and yellow perch, plus NBWI brown bullhead and the ubiquitous white sucker. Roll Bank Pond is surrounded by bog and outlets to a tributary of the Raquette River. Its darkly stained water has a pH of 6.84, ANC of 111.5 μeq/l and specific conductance of 34.2 μmhos. No trails lead to this pond, so a bushwhack of about one mile from Coreys Road is necessary to reach it. Roll Bank is shallow, having an average depth of 4.6 feet and a maximum depth of 12 feet. Muck and organic matter comprise most of the substrate.

Roll Bank Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Rollins Pond (C-P168)

Rollins Pond (435.6 acres), like the Fish Creek Ponds, is a frequent “first time” Adirondack experience for many campers. Tucked behind the larger Fish Creek Campground, anglers and campers enjoy a quieter, more backwoods experience on Rollins Pond. Rollins Pond has a large watershed and several sizeable tributaries. In turn, it drains eventually to Fish Creek Ponds via a circuitous route that includes Floodwood and Little Square Ponds. Historically, Rollins Pond likely supported a native lake trout population, and stocking of that species began in 1889. Rollins Pond has at least four bays where pockets of water exceed 40 feet in depth and its central deep hole reaches 77 feet. When first surveyed in 1929, lake trout and non-native lake whitefish, northern pike and smallmouth bass were present. Surveys conducted in 1958 and 1959 failed to capture lake trout despite heavy stocking of that species in the preceding decade. Other species captured were northern pike, smallmouth bass, white sucker, longnose sucker, yellow perch and rainbow smelt. Largemouth bass, brown bullhead and pumpkinseed were reported present. Water chemistry work done in 1960 found pH levels ranging from 5.4 to 6.5 and more importantly, low dissolved oxygen levels below 20 feet in several bays. Lake trout stocking was terminated after the 1960 chemistry work. More hopeful conditions for salmonids were revealed in a 1984 ALSC study. Their
Appendix 6: Individual Pond Descriptions

chemistry work found good dissolved oxygen levels at 36 feet, plus a pH of 7.07, ANC of 122.3 μeq/l and specific conductance of 29 μmhos. ALSC netting added only golden shiner to the fish community list. Based on the favorable ALSC data, stocking policies for lake trout and landlocked Atlantic salmon were renewed in 1995. Survey work done in 2001 and 2008 has established that salmon and lake trout are both doing well in this lake. Rollins Pond also has a quality fishery for smallmouth bass. Rollins Pond has a trailer boat ramp, but has less boating traffic than the Fish Creek Ponds because it does not provide access to Upper Saranac Lake.

Rollins Pond will be managed as a two story fishery to preserve its native fishes in the presence of non-native and historically associated species.

Management Class: Two Story

Saint Germain Pond (C-P201)

Saint Germain Pond is an 11.6-acre Adirondack brook trout pond familiar to locals as Sanjamaw Pond. It is located to the north of Lake Clear. A short trail from the dirt road leading to a Girl Scout camp on Lake Clear provides access. Stocking records indicate brook trout were first placed in Saint Germain Pond in 1895. A doubtful file note indicates the pond was dry when first visited in 1929. Since the pond has no inlets or outlets and currently reaches a maximum depth of 17 feet, that early report is suspicious. There was plenty of water in 1954 when biologists netted numerous yellow perch and noted the pond was a good reclamation project. Saint Germain was reclaimed the following year and restocked with brook trout. No trout were captured in 1965, but brown bullhead were abundant. A 1973 survey caught brook trout, but the brown bullhead were gone and biologists reported low pH levels near 5.0. Surveys conducted in 1986, 1998 and 1999 affirm the continuation of a brook trout monoculture. Water chemistry monitoring has been conducted annually since 1993 and shows remarkably, that pH levels have been gradually improving. In 2016, the pH at 5 feet was 5.90 and rose to 6.00 at 10 feet. The ANC was 9.0 μeq/l and the specific conductivity was 7.0 μmhos. Saint Germain Pond has a mean depth of 9.2 feet and a flushing rate of 2.2 times per year. A narrow fringe of sphagnum borders most of the pond. Saint Germain Pond is one of the most popular brook trout ponds in the SLWF.

Saint Germain Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon the establishment of non-native or other fishes to enhance and restore a native fish community. Periodic water chemistry testing should be continued and if pH levels decline sufficiently to endanger brook trout, Saint Germain Pond should receive a pre-liming survey to judge whether it meets criteria specified in the Final EIS on Liming. Saint Germain Pond could qualify for liming based on its history as a quality brook trout fishery.

Management Class: Adirondack Brook Trout
Second Pond (C-P102)

Second Pond is an 81-acre “wide-water” of the Saranac River located a few miles west of the Village of Saranac Lake on State Route 3. Boating traffic is heavy on Second Pond because it is part of the Saranac chain of lakes and has a large DEC boat launch facility. The launch area also serves as a registration and embarkation point for the Lower Saranac Lake Island campground. From July 4th through Labor Day, the 75 car and trailer parking area is often filled to capacity with spillover parking occurring along the State Route 3 shoulder.

Second Pond averages only 3.3 feet in depth with a maximum depth of nine feet. Muck and sand comprise most of the bottom. Second Pond is contiguous with First Pond (C-P103) with the State Route 3 bridge serving as the only distinguishing feature between the waters. A 1984 ALSC survey caught the following species in order of abundance: yellow perch, brown bullhead, pumpkinseed, golden shiner, northern pike, white sucker, central mudminnow, longnose sucker and largemouth bass. Rocky substrate is limited in Second Pond, so it is not surprising that smallmouth bass was absent in the 1984 survey. Thick beds of submerged aquatic vegetation are common outside of the buoyed boating lanes in this pond. Second Pond has a pH of 7.13, an ANC of 171.9 μeq/l, and a specific conductivity of 44.9 μmhos.

Second Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Sochia Pond (C-P197)

Sochia Pond (2.7 acres) is unnamed on topographic maps. It is the easternmost of three small ponds located between Little Green Pond and State Route 30 near the Adirondack Fish Hatchery.

Biologists recommended stocking brook trout in 1929 and records indicate that this began in 1942. Continued stocking was recommended in 1954. Complaints of poor fishing spurred a 1974 netting which captured only brown bullhead and noted a low pH of 5.0. A 1984 ALSC effort did not capture fish and found a pH of 4.68, an ANC of -21.1 μeq/l, and a specific conductivity of 12.7 μmhos. The pond has a maximum depth of 18 feet and a mean depth of 10 feet, flushing rate of 1.2 times per year with no inlets or outlets. Sochia Pond is surrounded by sphagnum, but unlike typical bog waters, it has always had clear, unstained water.

Sochia Pond will be managed to preserve the fish species present for their intrinsic value.

Management Class: Other
Appendix 6: Individual Pond Descriptions

Sour Pond (SC-P259)

Sour Pond (2.2 acres) is well-named, it is acidic enough to probably taste sour. This kettle hole bog pond is located just south of the Keese Mills Road slightly west of the outlet to Lower St. Regis Lake. Sour Pond was entirely owned by Paul Smith’s College for many years, but now only half the pond is in private ownership. The pond was apparently limed by the college in 1964 and was stocked by the State for a few years thereafter with brook trout under an experimental agreement. Data and records for this liming effort were lost in a fire, but the stocking was probably unsuccessful. College personnel conducted a survey in 1972 and caught brown bullhead, common shiner and pumpkinseed. A 1985 ALSC survey caught only brown bullhead. Water sampling revealed a pH of 4.62, ANC of -34.4 μeq/l and specific conductivity of 14.9 μmhos. Dissolved oxygen was poor in the deeper water and comments suggested that Sour Pond could be meromictic. Bog vegetation surrounds the pond which averages 12.5 feet deep and has a maximum depth of 33 feet. The flushing rate is low at 0.4 times per year and there are no inlets or outlets. Muck and organic matter comprise its substrate.

Sour Pond will be managed to preserve the fish species present for their intrinsic value.

Management Class: Other

Spitfire Lake (SC-P264)

Spitfire Lake (254 acres) is the central lake in the St. Regis chain of lakes. Navigable channels connect Spitfire Lake to both Upper and Lower St. Regis Lakes. Only a small segment of the shoreline is state land; most of the lake is ringed by great camps and summer cottages. Like other members of the St. Regis chain, Spitfire Lake had a relatively pristine fish community until northern pike, largemouth bass and smallmouth bass were introduced sometime in the late 1960’s or early 1970’s. In the 1930 Biological Survey report of the St. Lawrence watershed, field staff reported that lake trout, brook trout, lake whitefish, longnose sucker, white sucker, brown bullhead, pumpkinseed, lake chub, creek chub, common shiner, pearl dace, brassy minnow and slimy sculpin were present. A file note dating to 1959 reports non-native yellow perch were established but provided no other data. Netting was conducted in 1971 to investigate rumors of northern pike and largemouth bass. Neither species was caught, but major changes to the fish community were apparent. Yellow perch, white sucker, brown bullhead, golden shiner and pumpkinseed were the only species captured. Thus, a variety of native Adirondack minnows were gone along with the native coldwater species. Angler reports soon verified the establishment of northern pike, largemouth bass and smallmouth bass in the St. Regis chain. A 1986 ALSC survey added only one new species, the non-native rainbow smelt, to the fish community list. Spitfire Lake averages 15.7 feet in depth, reaching a maximum depth of 31 feet. It has a pH of 7.28, ANC of 166.1 μeq/l and specific conductivity of 36.7 μmhos. The lake has a variety of substrates ranging from muck to bedrock. Despite the number of camps on this lake, much of the shoreline is wooded and boating traffic is relatively light. Spitfire Lake has clear water but is unfortunately prone to green algae blooms in mid-summer. Since 2005, construction of
several large-scale boathouses has impacted a fair portion of the formerly natural shoreline of this lake. It is not known how this will affect the fish community.

Spitfire Lake will be managed as a warmwater lake to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Square Pond (C-P125)

Square Pond (145 acres) is part of the Fish Creek pond system and is very similar to the other ponds in terms of fish community, water chemistry and recreational use levels. The most obvious difference from the Fish Creek ponds is its average depth of 25 feet and maximum depth of 55 feet. Biologists noted the presence of northern pike, smallmouth bass, yellow perch, brown bullhead and golden shiner in 1929. The availability of coldwater habitat spurred a stocking recommendation for lake trout and lake whitefish, but ALSC records indicate that stocking never occurred. In 1984, ALSC netting added fallfish, pumpkinseed, white sucker, rainbow smelt and lake trout to the fish species list. Square Pond has a pH of 7.08, ANC of 149 μeq/l, and specific conductance of 29 μmhos. Its substrate is sand, muck and organic matter. Campsites from DEC’s Fish Creek Campground surround the pond. Summertime recreational use is heavy.

Square Pond will be managed as a two-story fishery to preserve its native fishes in the presence of historically associated and non-native species. An experimental stocking policy for landlocked Atlantic salmon was tried for several years in Square Pond but was cancelled in 2009 based on no angler reports for the species and an inability to survey the lake due to heavy summer boating use.

Management Class: Two Story

Stony Creek Pond (R-P191)

Located to the south of Upper Saranac Lake adjacent to the hamlet of Coreys, Stony Creek Pond (178 acres) has changed little since it was first surveyed in 1933. Stony Creek Pond is oddly shaped, seemingly more a collection of small bays than a single pond. A convoluted channel connects the pond to the Raquette River just east of Axton Landing. Historically, Stony Creek Pond was stocked with lake trout and lake whitefish. That practice ended after the 1933 survey showed warmwater species were dominant and dissolved oxygen levels were low in the deeper portions of the pond. Gillnetting captured non-native northern pike, yellow perch, smallmouth bass, walleye and lake whitefish. The only native species caught was pumpkinseed, although lake trout were reported present. A 1984 ALSC survey captured the same assortment of warmwater gamefish and added white sucker, golden shiner (non-native) and common shiner to the fish community list. Lake whitefish were not caught in 1984, but cisco were, thus indicating the coldwater habitat is somewhat hospitable. Only a small portion of the
Appendix 6: Individual Pond Descriptions

SLWF touches upon Stony Creek Pond at a site just north of Coreys. Car top boats and canoes can be launched at this access point. Stony Creek Pond reaches 41 feet in depth but averages 12.5 feet. Its flushing rate is 1.5 times per year. Water chemistry values measured in 1984 showed a pH of 7.12, ANC of 204.6 μeq/l, and specific conductance of 40.1 μmhos. Much of the pond substrate is sand, but there is also a mixture of boulder, rubble and gravel. There are numerous private camps along the shoreline of the pond at Coreys and a bridge crosses the pond at a narrows to provide access for camps on the eastern shore. Motorized water craft usually cannot access Stony Pond from the Raquette River due to beaver dams on the outlet.

Stony Creek Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Sunday Pond (C-P188)

A 10.4-acre Adirondack brook trout pond located just to the north of Upper Saranac Lake and 0.3 miles south of State Route 30. Historically, Sunday Pond supported an abundant brook trout population, but by 1929, biologists were reporting no returns from recent stocking efforts. Brook trout stocking was continued and a single trout was caught in a 1938 survey. Netting conducted in 1948 captured only pumpkinseed and noted a pH of 4.8. Chemical sampling done in 1958 also found a low pH of 5.2. Sunday Pond was treated with hydrated lime in 1959 as part of the F-22-R project. Survival of stocked brook trout and rainbow trout was good after the stocking. Additional liming efforts were conducted in 1960, 1961, 1962, 1970 and 1976. The pumpkinseed population increased dramatically after the initial liming treatments and a tagging study indicated that trout growth was negatively impacted by this increase. Reclamation with rotenone was completed in 1964 and was successful in eliminating the sunfish. A 1970 netting survey captured many brook trout and a few rainbow trout, plus a single pearl dace. Limited trap netting done in 1971 added the non-native golden shiner to the list of known species. Sunday Pond was part of an experimental stocking program comparing spring versus fall fingerling brook trout stocking from 1995 until 2000. Evaluation nettings done in 1998 and 1999 have added no additional species and did not capture golden shiner or pearl dace seen previously. Since the 1976 liming, Sunday Pond has maintained pH levels suitable for trout survival, but there has been a gradual decline from levels around 6.8 in the 1970's to a pH of 5.85 measured in 1999. The ANC level in 1999 was low at 7.9 μeq/l, indicating there is little buffer capacity left in this pond to neutralize future acidic inputs. Sunday Pond is bowl-shaped with a maximum depth of 32 feet and a mean depth of 19.4 feet. Its flushing rate is 2.9 times per year. The pond has no inlets or outlets and has a sand substrate with some gravel. A 0.3-mile road from State Route 30 provides access. This road is in poor shape and needs repair. It is easily mistaken as a driveway to one of the homes bordering State Route 30 and should have better signage to prevent the public from trespassing on private property.

Sunday Pond will be managed as an Adirondack brook trout pond. It will be reclaimed.
upon the establishment of non-native or other fishes to enhance and restore a native
fish community. Although Sunday Pond was formerly in DEC’s liming program, its
current status as a long-term study water for ALSC research prevents reliming the pond.
Water sampling done by ALSC indicates the pond is slowly acidifying. If ALSC drops
Sunday Pond from its monitoring program, DEC reserves the right to resume liming this
historically important brook trout water.

Management Class: Adirondack Brook Trout

Sunrise Pond (C-P117)

Sunrise Pond is a nearly circular 7.9-acre brook trout pond that, surprisingly, reaches 55
feet in depth. This kettle hole pond is located quite close to Follensby Clear Pond and is
within 0.25 mile of State Route 30. Brook trout stocking began in 1954 in Sunrise Pond,
earlier fish species information is not available. Netting conducted in 1956 caught only
brook trout. Complaints of poor fishing spurred a 1964 survey which again captured only
tROUT and reported a pH of 5.9 with low dissolved oxygen below 30 feet. In 1967, a
single brown bullhead was netted along with brook trout. No bullhead were captured in a
1976 acid rain survey, but pH values as low as 4.4 were measured. Sunrise Pond was
limed in January 1984 using 9.1 tons of agricultural lime. The Franklin County
Federation of Sportsmen purchased the lime and supplied manpower and snowmobiles
to assist in its application. Surface pH increased to 6.57 post-liming and has ranged
from 6.0 to 6.7 since 1984 based on annual midsummer chemical monitoring. A 1998
netting confirmed that Sunrise Pond persists as a brook trout monoculture. Sunrise
Pond has a wooded shoreline with no bog vegetation. Its substrate is muck. There are
no inlets or outlets. The most recent chemical monitoring work done (2016) indicates
good conditions with a pH of 7.1 and ANC of 74 μeq/l.

Sunrise Pond will be managed as an Adirondack brook trout pond to preserve, enhance
and restore its native fish community. In October 1995, the APA determined that
Sunrise Pond was nonjurisdictional with regard to requiring a wetlands permit for future
liming projects. Sunrise Pond is part of the Volunteer Liming Program which is closely
associated with the Franklin County Sportsmen Federation. DEC will monitor Sunrise
Pond yearly for declining trends in pH and ANC. DEC FEIS liming criteria specify that
reliming will be conducted if summer surface pH decreases to 6.0 (or less) or ANC
drops to 25 μeq/l or less. Sunrise Pond will be relimed if criteria are reached. The pond
will also be periodically surveyed and will be reclaimed upon the establishment of non-
native or other fishes to enhance and restore a native fish community.

Management Class: Adirondack Brook Trout

S-W Amphitheater Pond (C-P132)

This little one-acre pond is located off the southwest corner of Amphitheater Pond in the
Fish Creek Campgrounds. Like its neighbor, this kettle pond is surrounded by a
sphagnum mat. The depth profile of this circular pond must resemble a tea cup with a
maximum depth of 24 feet in the center of the pond. It has an average depth of 10 feet and a flushing rate of 0.9 times per year. Yellow perch were present when this pond was first netted in 1954 despite measurements of low dissolved oxygen below 5 feet. S-W Amphitheater Pond was included in the DJ F-22-R Liming Project and was treated with hydrated lime in 1959 and 1960. Brook trout and rainbow trout were stocked during the same interval. Study results showed no survival of trout and continued unsuitable chemical conditions so stocking and further liming were discontinued. A 1984 ALSC survey captured no fish and found a pH of 4.55, ANC of 16.6 μeq/l and specific conductance of 19.2 μmhos. This pond has very dark water and a muck bottom.

S-W Amphitheater Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Tamarack Pond (C-P207)

Tamarack Pond is a 13 acre warmwater pond that derives its name from the numerous tamarack trees found in the large wetland complex surrounding the pond. This wetland drains toward Hungry Bay of Middle Saranac Lake. Northern pike and yellow perch (both non-native) were NSA when Tamarack Pond was first studied in 1929. A 1984 ALSC added the non-native species of golden shiner and central mudminnow, plus the native species of pumpkinseed and brown bullhead to the fish community list. Tamarack Pond is relatively shallow, averaging 5 feet in depth, but reaches 11 feet in one deep pocket. It has a flushing rate of 15.2 times per year and a muck/organic substrate. Although wetlands surround the pond, submerged vegetation is scarce, perhaps due to its dark brown water. Water chemistry values for the pond show a pH of 6.38, ANC of 98 eq/l and specific conductance of 28.2 μmhos. No marked trails lead to Tamarack Pond, but it is known to receive some fishing pressure during the winter months when the wetlands are frozen.

Tamarack Pond will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Tiff Pond (R-P190)

Tiff Pond (10.9 acres) is located 0.4 miles west of Coreys to the south of Upper Saranac Lake and State Route 3. Northern pike (non-native) were reported present in 1933, but the pond was not actually netted. When first surveyed in 1955, biologists captured northern pike and brown bullhead (NBWI). They noted that the pond would be an easy reclamation project. A 1985 ALSC netting added pumpkinseed and golden shiner (non-native) to the species list. Tiff Pond has a hard shoreline with little wetland vegetation, but beavers are active on its small outlet. The pond reaches 17 feet in depth and averages 10.8 feet. It has a flushing rate of 2.1 times per year, pH of 6.82, ANC of 67.2
μeq/l and specific conductance of 25.6 μmhos. A portion of the northeast shore of Tiff Pond is privately-owned but there are no private camps on the pond. There are no marked trails leading to the pond. Muck and organic matter comprise much of the substrate, but there are areas of bedrock, boulder and rubble. A 1993 pre-reclamation survey on the pond indicated the outlet area posed treatment problems due to a series of beaver dams and lack of a natural barrier site.

Tiff Pond will be managed as a warmwater pond to preserve its native species in the presence of non-native species.

Management Class: Warmwater

Tom Peck Pond (C-P242)

Tom Peck Pond is a 7.4-acre brook trout pond that is found about .2 miles west of Connery Pond. About 50 percent of the shoreline is privately owned. Public access involves bushwhacking from the Connery Pond road before it enters private land, a distance of about .2 miles. Approximately 90% of the pond is ringed by grassy wetlands. Department stocking records indicate that brook trout were first stocked here in 1895 and have been stocked regularly since 1930. There are no survey data available until 1960 when brook trout, white sucker, brown bullhead (NBWI) and splake were captured. It is postulated that splake entered Tom Peck Pond by way of the pond’s outlet which connects to the Connery Pond outlet. Splake are stocked in Connery Pond. However, given the species composition of Connery pond it is likely the outlet gradient of the Tom Peck Pond outlet does prevent the introduction of some fish species. A beaver dam was present on the Tom Peck Pond outlet during both fish surveys. In the most recent fish survey, a 1984 ALSC survey, several new fish species appeared, including northern redbelly dace, blacknose dace, pearl dace, and creek chub. ALSC data indicate a maximum depth of 14.8 feet, and a mean depth of 6.2 feet for this water, a flushing rate of 12 times per year and the water was classified as salt impacted. ALSC measured a pH of 7.41 with an ANC of 185 μeq/l; the PtCo color was 60, and specific conductance was 39 μmhos. A 1999 NYSDEC pre-reclamation survey found no natural or potential fish barrier site.

Tom Peck Pond will be managed as an Adirondack brook trout pond, unless the fish population becomes such that a switch to coldwater management is warranted.

Management Class: Adirondack Brook Trout

Track Pond (C-P146)

Track Pond (2.7 acres) adjoins the Remsen-Lake Placid railroad bed and was probably partially filled in during construction of that route. Track Pond is unnamed on topographic maps. It is located 0.25 miles north of Floodwood Road and 0.75 miles from the road/railroad intersection. Brook trout stocking was recommended for this pond in 1929 and file notes indicate this occurred irregularly until 1950. Biologists caught brook
Appendix 6: Individual Pond Descriptions

trout and reported brown bullhead in 1952. The same species were netted in 1982. A 1985 ALSC survey caught non-native yellow perch along with brook trout and brown bullhead. They measured a pH of 6.02, ANC of 23 μeq/l and specific conductivity of 12.6 μmhos. Track Pond has a mean depth of 11 feet and maximum depth of 24 feet with a flushing rate of 2.1 times per year. Track Pond was reclaimed in 1990 despite legal maneuvering and protesting by Earth First! activists. Brook trout were subsequently restocked and continue providing a fishery.

Track Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon establishment of non-native or other fishes to enhance and restore a native fish community.

Management Class: Adirondack Brook Trout

Turtle Pond (C-P89)

Turtle Pond (6.4 acres) is located just to the east of the Village of Saranac Lake and is bordered by State Route 86. Several homes ring the western shoreline of this pond, but its eastern corner lies on state land. A hand launch site is available for small boat access. Biologists recommended stocking largemouth bass and a species abbreviated as either GB or CB in their handwritten notes dating to 1929, despite the reported presence of a few brook trout. CB may be short for calico bass, otherwise known as black crappie. This interpretation is favored because by the next survey in 1957, black crappie was present and Turtle Pond was the only waterbody within 30 miles that harbors this species. The 1957 netting also captured largemouth bass, pumpkinseed and yellow perch. Water chemistry work done in 1957 found a pH of 6.1 and low dissolved oxygen below 30 feet. Turtle Pond has a maximum depth of 37 feet, but has an extensive littoral region under 10 feet deep. Trap netting done in early May 2000 to assess the black crappie population captured that species plus pumpkinseed, brown bullhead, yellow perch and northern pike. Largemouth bass were observed in the shallows. Northern pike are a very recent and unfortunate illegal introduction to this pond. Turtle Pond has no inlets or outlets

Turtle Pond will be managed as a warmwater pond to preserve its native species in the presence of non-native species. Epilimnion water temperatures over 70°C and low dissolved oxygen levels in the cooler hypolimnion favor continued management of this pond for warmwater species.

Management Class: Warmwater

Twelfth Tee Pond (C-P184)

Twelfth Tee Pond (4.2 acres), also known as 12th Tee Pond or Gordon Pond, is located across Floodwood Road from Green Pond (C-P183) into which it drains. A portion of this pond is bordered by the Saranac Inn golf course and by several private homes. The west corner of the pond lies on state land. Brook trout stocking was recommended in
1929, but the fish community present at that time was not listed. A 1954 survey caught no fish despite previous stocking of brook trout and sometimes lake trout since 1942. Twelfth Tee Pond was reclaimed in 1956 in concert with the reclamation of Green Pond. A 1978 survey caught only brook trout, while a 1984 ALSC effort added brown bullhead (NBWI). Netting conducted in 1996 added white sucker to the fish community list. The outlet of Twelfth Tee Pond is seasonal; in July 1996 the outlet streambed was dry. The fact that Twelfth Tee Pond does not harbor alewives or splake shows fish cannot reach the pond from Green Pond. Twelfth Tee Pond has a maximum depth of 25 feet, mean depth of 12.5 feet, and a flushing rate of 2 times per year. Most of its substrate is muck and organic matter. The ALSC determined a pH of 4.96, ANC of -5.6 μeq/l and specific conductivity of 18 μmhos. Low dissolved oxygen was present at 18 feet in 1996. Despite the low pH and lack of dissolved oxygen, brook trout were common and of good average size in 1996. Twelfth Tee Pond is visible from the Floodwood Road.

Twelfth Tee Pond will be managed as an Adirondack brook trout pond. It will be reclaimed upon establishment of non-native or other fishes to enhance and restore a native fish community. Twelfth Tee Pond will also be periodically monitored for pH. If the native fish community becomes imperiled by reductions in pH, Twelfth Tee Pond will be evaluated for liming using criteria specified in the FEIS on Liming. Twelfth Tee Pond does not need to be reclaimed in conjunction with activities planned for Green Pond.

Management Class: Adirondack Brook Trout

Unnamed Pond (C-P133)

This 1.5-acre pond lies just west of Amphitheater Pond and S-W Amphitheater Pond in the Fish Creek Campground. Like them, it is surrounded by a sphagnum mat and is fishless. Early maps identified two isolated ponds that were numbered P133 and P134, but these were connected by the time of a 1954 survey and P133 was retained for the combined waters. P133 is shallow, averaging only 2.3 feet with a maximum depth of 6 feet. The 1954 survey and a 1985 ALSC survey caught no fish. The dark brown water of this pond has a pH of 4.12, ANC of -91.8 μeq/l, and specific conductance of 40.8 μmhos. Submerged vegetation is abundant and the entire bottom is composed of decaying organic matter. This pond has never been stocked, limed or reclaimed.

Unnamed Pond C-P133 will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Unnamed Pond (C-P144)

P144 is a dumbbell-shaped pond of 9.6 acres that drains to Floodwood Pond. Although visible from the Floodwood Road, the two pond segments are difficult to access due to surrounding bog mat. The pond was first surveyed by ALSC in 1984 which caught brown bullhead, yellow perch, golden shiner and central mudminnow. Mean depth is 8
feet and maximum depth is 15 feet. The darkly-stained water of P144 has a pH of 6.46, ANC of 54 μeq/l and specific conductivity of 18.5 μmhos. A 1993 pre-reclamation survey determined that the pond’s outlet is unsuitable for a barrier dam. Largemouth bass were transferred to P144 from Lake Colby in 1995, but staff angling efforts in 1999 failed to capture that species.

Unnamed Pond C-P144 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. Largemouth bass could to introduced to diversify the fishery.

Management Class: Warmwater

Unnamed Pond (C-P165)

This is a tiny (0.25 acre) bog pond that lies 0.3 miles southeast of Federation Pond not far from the Remsen-Lake Placid railroad tracks and Floodwood Road. A 1961 chemical survey pronounced it chemically unsuitable based on a pH of 5.2 and no dissolved oxygen at depths greater than five feet. This pond has a maximum depth of 15 feet and a bog fringe. The fish community, if any, is unknown.

Unnamed pond (C-P165) will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Pond (C-P167)

This 1.2-acre pond abuts the Remsen-Lake Placid railroad line about 0.9 miles south of the track’s intersection with Floodwood Road. The only data available are from a 1986 ALSC survey which captured brown bullhead, yellow perch and pumpkinseed. A thin fringe of floating bog surrounds this pond which, nevertheless, has a pH of 7.05, ANC of 130.1 μeq/l and specific conductivity of 26.1 μmhos. The pond has a maximum depth of 10 feet and mean depth of 4.6 feet with a flushing rate of 2.5 times per year. It is likely that this pond is a former portion of Floodwood Pond, now cutoff by the railroad grade. Unlike kettle bogs in the area, this pond has a fair amount of gravel and sand substrate. A 1993 pre-reclamation survey determined that its wetlands are treatable and that the pond has no inlets or outlets.

Unnamed Pond C-P167 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Unnamed Pond (C-P169)

Unnamed Pond (C-P169, 3 acres) lies about 1000 feet south of C-P167 and also abuts
Appendix 6: Individual Pond Descriptions

Saranac Lakes Wild Forest – Unit Management Plan – April 2019

the Remsen-Lake Placid railroad. P169 is on the outlet of the West Pine Pond/Rock Pond system and it drains directly to Rollins Pond. The first survey of this pond occurred in 1954 and the sole fish species caught was yellow perch. The ALSC revisited this pond in 1986 and captured northern pike and brown bullhead in addition to yellow perch. They measured a pH of 6.78, ANC of 105.6 μeq/l and specific conductivity of 26.5 μmhos. P169 has a maximum depth of 11 feet, mean depth of 5.9 feet and flushing rate of 126.6 times per year. A bog fringe surrounds most of the pond. The barrier dam protecting West Pine Pond from infestation by non-native fishes is located upstream of this pond.

Unnamed Pond C-P169 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species.

Management Class: Warmwater

Unnamed Pond (C-P171)

This 0.7-acre pond lies just to the west of the Remsen-Lake Placid railroad tracks about 400 feet south of the outlet to Rock Pond. No fish were captured when it was first surveyed in 1954. A 1993 effort captured brown bullhead. P171 has a maximum depth of 12 feet. Water chemistry testing done in 1993 found a pH of 7.89, ANC of 481.1 μeq/l and specific conductivity of 48.4 μmhos. A sharp thermocline was present in the July 1993 testing and although dissolved oxygen was limiting below eight feet, there may be sufficient cool water to support a trout population. The boggy shoreline of P171 precludes reclamation although there is a suitable barrier dam site on the pond’s outlet. Aquatic vegetation is scarce in this pond which likely has a muck substrate.

Unnamed Pond C-P171 will be managed as warmwater pond to preserve its native fishes in the presence of non-native species. Largemouth bass and pumpkinseed will be introduced to establish a more diverse fishery. Good water quality and ease of access favor management despite the small size of this pond. Comparable management of neighboring C-P172 will enhance the recreational value of these ponds.

Management Class: Warmwater

Unnamed Pond (C-P172)

This 2.5-acre pond lies immediately across the tracks from C-P171. It is likely that construction of the railroad grade split a former, single waterbody to form these two smaller ponds. Biologists visiting this pond in 1929 recommended stocking brook trout but provided no data on the existing fish community. A 1954 netting captured golden shiner, NBWI brown bullhead and pumpkinseed, plus non-native yellow perch and golden shiner. In 1985, the ALSC netted the same species, except brown bullhead were not captured. Their water chemistry measurements found a pH of 7.39, ANC of 214.8 μeq/l and specific conductivity of 29 μmhos. P172 has a maximum depth of 15 feet, mean depth of 7.5 feet and a flushing rate of 4.4 times per year. Rubble and cobble from the railroad grade lines one shoreline, but organic material comprises most of the
Appendix 6: Individual Pond Descriptions

substrate. A 1993 pre-reclamation check found no inlets and outlets. The small wetland area on the pond’s south end is treatable. Temperature profile data collected by the ALSC indicates this pond does not form a thermocline and may be too warm to support trout (it was 75°F at 7 feet). Dissolved oxygen was only 1.5 ppm at 13 feet.

Unnamed Pond C-P172 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. Largemouth bass could be introduced to diversify the fishery.

Management Class: Warmwater

Unnamed Ponds (C-P174 and P175)

P174 is a 9.1-acre warmwater pond that outlets under the Remsen-Lake Placid railroad tracks into Rollins Pond about 1.9 miles south of Floodwood Road. Biologists did not net the pond in 1929, but there was a recommendation to stock brook trout that was seemingly never acted upon. A 1955 survey captured brown bullhead and pumpkinseed plus the non-native golden shiner and yellow perch. The ALSC found northern pike to be abundant in 1984 and also caught white sucker, brown bullhead, pumpkinseed and yellow perch. The pike were small, however, with the largest caught being only 22 inches long. P174 has a maximum depth of 14 feet and a mean depth of 7.2 feet with a flushing rate of 16 times per year. Most of its substrate is sand with some gravel, boulder and organic matter. Bog vegetation and marshy wetlands comprise most of the shoreline. The pond’s water is darkly stained and has a pH of 5.46, ANC of 39 μeq/l and specific conductivity of 23.4 μmhos. Extensive wetlands preclude reclamation.

P175 (3.2 acres) is contiguous with P174. A narrow channel connects the ponds, but a set of beaver dams inhibits easy fish movement between the ponds. P175 has never been surveyed but is presumed to have a fish community and water chemistry similar to P174. Bog vegetation entirely surrounds this small pond.

Unnamed ponds P175 and P174 will be managed as warmwater ponds to preserve their native fishes in the presence of non-native species.

Management Class: Warmwater

Unnamed Pond (C-P176)

This is a 4.2-acre warmwater pond found along the course of tributary 10 to Rollins Pond. P176 was not netted in 1929, but brook trout stocking was recommended. The pond may have been stocked for a time, but by its first survey in 1955, no stocking had been done for at least three years. That netting effort caught brown bullhead and the non-native species of northern pike and yellow perch. A 1993 survey did not capture northern pike but did catch the bullhead and perch along with golden shiner, pumpkinseed, common shiner and central mudminnow. Wetlands and bogs surrounding the pond prevent a successful reclamation. P176 reaches 10 feet in depth, but its
average depth is not known. Its water is very dark brown with a pH of 7.27, ANC of 164.3 μeq/l and specific conductivity of 27.3 μmhos. Floating and submerged vegetation covers much of the pond.

Unnamed Pond P176 will be managed as a warmwater pond to preserve its native fishes in the presence of non-native species. Largemouth bass could be introduced to diversify the fishery.

Management Class: Warmwater

Unnamed Pond (C-P178a)

This is a 1.5-acre pond that borders on the western edge of the huge Deer Pond swamp, 0.8 miles south of Rollins Pond. The outlet of this pond joins with the outlet of Deer Pond (C-P178) and hence to Rollins Pond. There are no survey data available for P178a. The Remsen-Lake Placid railroad lies about 1500 feet west of the pond, but there are no direct trails for access.

P178a will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Pond (C-P179) and Unnumbered Pond

This 3.2-acre, egg-shaped, pond lies 0.5 miles west of Deer Pond C-178. The pond has never been surveyed. Topographic maps indicate it has no inlet or outlet. Heavens Pond, R-P104, lies about 0.2 miles further west. No trails traverse this area.

Recent metric maps indicate a pond of similar size lies 650 feet to the north of P179. This latter pond does not appear on biosurvey topographic maps and has not been assigned a pond number. It is most likely a transient beaver pond.

P179 and its unnumbered neighbor will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Ponds (C-P118a, P118b)

P118a (0.5 acres) and P118b (0.7 acres) are located just west of Horseshoe Pond and north of Fish Creek Campground. Neither pond has been surveyed; both are likely small, acidic bog ponds that are common in that vicinity. No trails lead to these ponds.

P118a and P118b will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown
Appendix 6: Individual Pond Descriptions

Unnamed Pond (C-P189)
This 1.7-acre pond lies about 500 feet north of Sunday Pond. Bog vegetation surrounds this muck-bottomed pond which has been surveyed only once. A 1986 ALSC effort caught no fish and noted a pH of 4.38, an ANC of -45.4 μeq/l, and specific conductance of 18.4 μmhos. The pond has a maximum depth of 25 feet, mean depth of 13 feet and a flushing rate of 3.5 times per year. Access is possible by crossing the bog mat that abuts the road leading to Sunday Pond.

P189 will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Unnamed Pond (C-P196)
This is a shallow 1.2-acre bog pond that lies just east of Duell Pond near the Adirondack Fish Hatchery off State Route 30. Brook trout stocking was recommended in 1929, but apparently was never done. Biologists visiting the pond in 1954 declared it to be too shallow and warm to support trout. A 1986 ALSC survey caught no fish and found a pH of 4.65, ANC of -12.9 μeq/l, and specific conductance of 12.8 μmhos. The pond has a mean depth of two feet with one small pocket of water that reaches five feet. Bog vegetation surrounds the shoreline. P196 has no inlets or outlets.

P196 will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Unnamed Pond (C-P202)
This ephemeral, 1.6-acre pond is located about 500 feet north of Meadow Pond off the northwest corner of Lake Clear. A 1929 file note indicates the pond was dry. ALSC staff report the pond was dry circa 1984. Since the pond appears on most maps, it is likely this is a seasonal pond that exists in one of the shallow bowls that abound in this area. Nothing is known about P202's aquatic community.

P202 will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Unknown

Unnamed Pond (C-P5101)
C-P5101 is a 1.2-acre oxbow off the Saranac River located about one mile south of Bloomingdale. This pond has never been surveyed. It is situated on the east side of the river. No trails provide access. The Saranac River, in this section, is a warmwater stream, so it is likely this former stream channel harbors warmwater species and native minnows.
P5101 will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Ponds (C-P5124, P5125)

These two unnamed ponds are each about one acre in size. They lie at the head of Rickerson Brook about 0.9 miles south of State Route 86 at a point just west of Gabriels. Large wetlands surround the ponds and most maps show other smaller, unnumbered ponds in the area. All are undoubtedly formed by beaver activity. No survey exists for these waters. Since Rickerson Brook harbors an NSA brook trout population, it is likely that they are present in these ponds along with a variety of native minnows. No trails provide access.

P5124 and P5125 will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Pond (C-P5127)

P5127 (2 acres) lies close to a power line corridor about 0.25 miles south of Lake Clear Junction. Wetlands surround the pond and the drainage/terrain suggests this complex drains to Lake Clear. The pond has never been surveyed.

P5127 will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Pond (C-P5128)

C-P5128 is a 2.7-acre pond located about 1.8 miles up from Lower Saranac Lake on Fish Creek. A large wetland complex surrounds the pond and stream in this area. No survey data are available for P5128. A one mile bushwhack from Forest Home Road is the only available access.

P5128 will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Pond (C-P5140)

P5140 (1.5 acres) was around six acres in size prior to 1990. This pond is located along a bend of Panther Mountain Road (County Route 45), not far from State Route 3 at Coreys. The pond outlet crosses under CR45 at the apex of the bend. Beavers dammed the outlet conduit in 1990 and a local highway crew blew up the dam, thus draining the
Appendix 6: Individual Pond Descriptions

pond. P5140 was surveyed in 1986 by the ALSC, who designated it as 020114A. Fish species present were non-native golden shiner and central mudminnow along with the native species of northern redbelly dace, pearl dace and brown bullhead. The pond’s pH was 6.69, ANC was 83.8 μeq/l and specific conductivity was 151.8 μmhos. Although the former pond reached 11 feet in depth, trout stocking was never attempted. Low dissolved oxygen conditions occurred below five feet in the ALSC survey. A large emergent wetland now occupies most of the former pond bed.

P5140 will be managed to preserve the fish species present for their intrinsic value.

Management Class: Other

Unnamed Pond (C-P5147)

This 1-acre pond is quite remote, lying about 0.5 mile west of the northern portion of Weller Pond and 1.3 miles east of Upper Saranac Lake. P5147 has never been surveyed and no trails even approach it.

P5147 will be managed to preserve any fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Ponds (R-P5081, 5086, 5134, 5135, 5139, 5211, 5214)

These twelve ponds, ranging in size from 0.7 to 20.3 acres, are all located within the Raquette River flood plain between Tupper Lake and Axton Landing. Most are surrounded by wetland vegetation during the summer but are contiguous with the river during spring melt. Their fish communities probably consist of warmwater species such as northern pike, walleye, smallmouth bass, yellow perch, pumpkinseed and brown bullhead. Water chemistry values are probably good with pH’s near 7. None of these waters have been surveyed. There are numerous other small ponds, side channels and old oxbows along this section of river that were not numbered by the Biological Survey.

These twelve unnamed ponds will be managed as warmwater ponds to preserve their native fishes in the presence of non-native species.

Management Class: Warmwater

Unnamed Ponds (R-P5160, P5161)

P5160 (4.2 acres) and P5161 (1.7 acres) are beaver impoundments in the course of tributary 116 of the Raquette River. This tributary begins in the large wetland complex located east of Deer Pond (C-P181) and empties into the Raquette River just east of the state boat launch site off State Route 30. More recent metric maps indicate P5160 is now less than one acre in size and P5161 does not even appear. Transitory beaver impoundments are probably common along this stretch of low gradient stream. No
survey data exists for these ponds.

P5160 and P5161 will be managed to preserve the fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Ponds (SC-P5210, P5214)

P5210 (1.7 acres) and P5214 (0.7 acres) lie on lands recently acquired from Paul Smith’s College. They are located just south of Keese Mills Road near the cluster of homes known as Keese Mills. Neither pond has been surveyed. Maps indicate they are surrounded by wetlands.

These unnamed ponds will be managed to preserve the fish species present for their intrinsic value.

Management Class: Unknown

Unnamed Pond (SC-P5242)

P5242 (0.5 acres) lies just to the north of Bread Pond and east of Little Long Pond. Like nearby Bread, Humdinger and Mike’s Ponds, SC-P5242 is probably an acidic bog pond that is fishless. There is no survey data available for this pond, although all of its neighbors have been limed experimentally in the past.

Unnamed Pond SC-P5242 will be managed to preserve the fish species present for their intrinsic value.

Management Class: Unknown

Upper Saint Regis Lake (SC-P256)

Upper Saint Regis Lake (712 acres), along with Upper Saranac Lake and Lake Placid, has an assortment of great camps and summer homes owned by the wealthy bordering its scenic waters. This lake is the headwater for the Saint Regis chain of lakes. A short channel connects it to Spitfire Lake and from there one can journey to Lower Saint Regis Lake. Upper Saint Regis Lake has a convoluted shape with numerous islands and shoals. A town launch at Saint Regis Landing on the southern bay of the lake provides access for small boats and canoes. The Upper Saint Regis Lake Association maintains better launch facilities for use by lake residents adjacent to the town launch site. The Saint Regis Landing area is also a popular embarkation point for canoeists wishing to access the ponds in the northeast corner of the St. Regis Canoe Area. Public parking in this area is often a problem. Unlike most waters in the SLWF, the Saint Regis chain maintained a nearly pristine native fish community until the early 1970's. The 1930 Biological Survey for the St. Lawrence watershed reports catching lake trout, brook
Appendix 6: Individual Pond Descriptions

trout, lake whitefish, longnose sucker, white sucker, brown bullhead, pumpkinseed, lake chub, common shiner, creek chub, pearl dace, slimy sculpin and brassy minnow. Early stocking records indicate lake trout, brook trout and lake whitefish were stocked in the system as early as the 1880’s, but wild lake trout and brook trout were still present in 1930. So, lake whitefish were the only non-native fish in the St. Regis chain as late as 1930. By 1950, however, yellow perch (non-native) had become abundant and most of the native minnows were gone. Lake trout and brook trout were still present, but in reduced numbers. Round whitefish were reported in 1950 and were probably present earlier. The non-native bait fish, golden shiner, was first noted in this survey. A 1964 netting effort emphasized the continuing decline of the brook trout and lake trout fisheries. Largemouth bass fingerlings were common in the last departmental survey of this water conducted in 1969. Since that date, smallmouth bass and northern pike have also become common. Stocking efforts switched from lake trout to splake after the 1969 survey. Splake performed adequately in this lake, but a switch to lake trout yearlings was necessitated in 1995 when hatchery cutbacks limited splake availability. Rainbow smelt became established in the St. Regis chain sometime in the 1980’s. A landlocked salmon stocking policy was initiated in 1997 to take advantage of this new forage species. A stocking evaluation survey done in 2003 resulted in cancellation of the lake trout policy, but continuation of landlocked salmon stocking. This lake has only a small volume of deep water with chemical conditions suitable for coldwater species. Upper Saint Regis Lake reaches 90 feet in depth but averages close to 30 feet. Only limited chemistry data is available; pH’s of 7.3 were reported in 1969 and 2003.

Upper Saint Regis Lake will be managed as a two-story lake to preserve its native fishes in the presence of non-native and historically associated species.

Management Class: Two Story

Upper Saranac Lake (C-P114)

Upper Saranac Lake (4,776 acres) is the centerpiece of the Saranac Lakes Wild Forest. It is bordered by a variety of resorts, youth camps, college retreats, great camps, estates, and upscale homes. DEC maintains a 50 car/trailer capacity boat launch on the north end of the lake and a hand launch site at Indian Carry on the south end. Boat access from the Fish Creek Campgrounds is also possible. Upper Saranac Lake is managed as a two-story fishery. The Biological Survey of 1929 identified lake trout and brook trout as being the native salmonids of Upper Saranac Lake. Lake trout have been the mainstay of the coldwater fishery for over a century and have been stocked for many years. Records dating back to 1942 indicate that landlocked Atlantic salmon, brown trout and rainbow trout have also been stocked at various times. Other coldwater species present are lake whitefish and rainbow smelt. The endangered fish species, round whitefish, is mentioned by the 1929 survey as being native to Upper Saranac Lake, but was not collected by the survey. Other species listed as part of the native community (Greeley 1930) were longnose sucker, white sucker, northern red belly dace, brassy minnow, pearl dace, fathead minnow, blacknose dace, common shiner, creek chub, brown bullhead, pumpkinseed and slimy sculpin.
Upper Saranac Lake has been surveyed repeatedly, but the fish community has changed little since 1929. Smallmouth bass and northern pike are the predominant warmwater gamefish species. Largemouth bass is present in small numbers. Although no largemouth bass were caught in the most recent survey of the lake (1994), the species is found in Lake Clear and in the Fish Creek Ponds tributary to Upper Saranac Lake. Yellow perch are the most abundant panfish species. Pumpkinseed and brown bullhead are common. Other species caught in the 1994 survey were white sucker and fallfish. All three warmwater gamefish species, plus the yellow perch and fallfish, are non-native to the Adirondacks. Biologists of the 1929 survey linked such species introductions to the disappearance of brook trout, round whitefish and a variety of native minnows from Upper Saranac Lake.

Upper Saranac Lake is a well-known lake trout fishery. At one time, the lake served as a brood stock egg source for “Adirondack” strain lake trout. A declining lake trout population (perhaps linked to DDT spraying in the 1950’s and 60’s) lead DEC to drop the lake as an egg source in the late 1960’s. A protective 23” minimum size limit for lakers was established in 1982 in an effort to rebuild adult spawning stock. Special angling regulations are in place for Upper Saranac Lake. These measures have led to a gradual improvement in the size structure of the lake trout population. Lake trout up 28 inches were netted in 1994 and many lakers were above the legal size limit. Natural reproduction of lake trout is minimal in Upper Saranac Lake, however, most lakers captured in 1994 had fin clips indicative of hatchery origin.

The current stocking policy for Upper Saranac Lake is lake trout yearlings (Raquette strain). Policies for rainbow trout yearlings and brown trout yearlings were cancelled after a 2006 evaluation survey failed to capture either species.

Upper Saranac Lake will be managed as a two-story fishery to preserve its native fish in the presence of non-native species.

Management Class: Two Story

Upper Spectacle Pond (SC-P253)

Upper Spectacle Pond is a 45.5-acre coldwater fishery separated from Upper St. Regis Lake by a narrow esker. Most of the pond is publicly owned, although a small portion of the north end of Upper Spectacle Pond lies on land belonging to Camp Topridge. Upper Spectacle drains into Lower Spectacle Pond which outlets to the St. Regis River. The lower pond lies entirely on private property. A small fish barrier dam restricts fish movement between the waterbodies. The private owners of Camp Topridge commissioned a survey of the ponds in 1962 by Stephen Simkins of Paul Smith’s College. That netting captured lake trout, rainbow trout, yellow perch, white sucker, pumpkinseed, brown bullhead and golden shiner. Simkins noted low dissolved oxygen levels below 35 feet in Upper Spectacle Pond which reaches a maximum depth of 68 feet. He recommended either stocking bass or reclamation of the ponds to control the minnow and perch populations. The ponds were apparently reclaimed in the late 1960's,
but the exact date and methodology is unknown. New York State acquired Camp Topridge in 1974 and managed the property until 1988 when the lower pond and the great camp were sold to Roger Jackobowskki. Upper Spectacle Pond was excluded in this sale and became open to public angling for the first time shortly thereafter. A 1978 survey by DEC found that brook trout and lake trout were NSA in the pond and also captured rainbow trout, splake, landlocked Atlantic salmon, rainbow smelt and creek chub. The absence of five competing species caught in 1962 confirms the reports of a private reclamation effort. A 1984 ALSC netting added brown trout, golden shiner and brown bullhead to the fish community list. By the time of a 1993 survey, white sucker was again present in the pond and northern redbelly dace were common. Brook trout abundance was reduced in 1993 leading to the institution of a stocking policy for that species in 1995/96. Lake trout continue to reproduce successfully in Upper Spectacle Pond. Water chemistry parameters measured in 1993 had a pH of 7.23, ANC of 96.1 μeq/l and specific conductivity of 24.2 μmhos. Dissolved oxygen was limiting below 30 feet. Upper Spectacle Pond averages 28 feet in depth and has a flushing rate of 0.9 times per year. It has a varied substrate ranging from rubble to muck. Public access is best obtained by portaging from Upper St. Regis Lake. The trail to the fire tower on St. Regis Mountain overlooks this scenic pond and provides another means of access, although some bushwhacking is required to reach the shoreline.

Upper Spectacle Pond will be managed as a coldwater pond to preserve its native fishes in the presence of historically associated and non-native species.

Management Class: Coldwater

Weller Pond (C-P209)

Weller Pond (180 acres) is connected to the north end Middle Saranac Lake by an easily navigable 1000-foot-long channel. A lean to and several primitive camping sites make this island studded pond a popular stopping point for overnight and day-use recreationists. Paddlers utilize a 0.85-mile portage trail that begins on the north end of the pond to reach Saginaw Bay on Upper Saranac Lake. Weller Pond’s fish community is indistinguishable from nearby Middle Saranac Lake and has changed little since 1929 when biologists reported northern pike, smallmouth bass, yellow perch and pumpkinseed. A 1975 survey added largemouth bass and golden shiner showed up in a 1984 ALSC netting. Weller Pond has a maximum depth of 21 feet and a mean depth of 9.5 feet with a flushing rate of 1.1 times per year. Like other members of the Saranac chain of lakes, it has good water chemistry with a pH of 6.64, ANC of 74.5 μeq/l and specific conductivity of 30.4 μmhos. The littoral zone of Weller Pond has a variety of substrates ranging from boulder to organic matter. When that factor is combined with the uneven depth structure of the lake and its variety of islands, points and drop-offs, Weller Pond provides anglers an interesting fishing experience.

Weller Pond will be managed as a warmwater pond to preserve its native fish in the presence of non-native species.
Appendix 6: Individual Pond Descriptions

Management Class: Warmwater

West Pine Pond (C-P173)

West Pine Pond (62.5 acres) is a productive Adirondack brook trout pond separated from East Pine Pond by a steep esker. West Pine and East Pine are connected by name, but not by water. West Pine Pond drains to Rock Pond and eventually to Rollins Pond while East Pine Pond drains towards Floodwood Pond. The Biological Survey of 1929 reported non-native yellow perch as being present and recommended stocking lake trout and lake whitefish (non-native) in West Pine Pond. Brook trout were stocked in 1938 and lake trout were stocked from 1944 until 1951. A 1955 survey caught brook trout, brown bullhead, pumpkinseed and white sucker, plus the non-native species of golden shiner, northern pike and yellow perch. The same species were caught in a 1974 survey that established West Pine Pond could by reclaimed with rotenone. The private owners of the pond (Bergen Council of Boy Scouts of America) agreed to the reclamation. A barrier dam was constructed on the pond’s outlet and West Pine Pond was reclaimed in 1975. Rainbow trout and Windfall strain brook trout were stocked after the reclamation and excellent fisheries for these species resulted. A Fish & Wildlife Management Agreement was enacted with the Boy Scouts to permit angling during the spring and autumn when the scout camp on the western end of the pond was not active. A 1978 survey caught rainbow, brook and brown trout. The latter species was an accidental stocking introduction. In 1984, an ALSC survey added lake trout (another stocking accident) and northern redbelly dace to the fish community list. The Boy Scouts terminated the FWMA agreement in 1989, so stocking ended. However, in 1991 the state acquired two thirds of the pond’s shoreline from the Boy Scouts and rainbow trout stocking was resumed. An assessment survey done in 1991 revealed that the history of stocking errors in West Pine Pond had a new entry, kokanee salmon. Hatchery personnel mistakenly stocked West Pine Pond instead of East Pine Pond with this species in 1989. A follow up survey done in 1994 established that kokanee salmon had established a naturally spawning population. Lake trout numbers have also increased in this pond. Non-native rainbow smelt were caught in a 1997 netting effort. Survey work in 2009 found the fish community was essentially unchanged from 1997, however no rainbow trout were caught, and stocking of that species was cancelled. West Pine Pond has a maximum depth of 38 feet and mean depth of 18 feet with a flushing rate of 1.1 times per year. Sand and gravel comprise most of its substrate. The pond’s yellow brown water has a pH of 7.22, ANC of 139 μeq/l and specific conductivity of 28.4 μmhos. Dissolved oxygen levels are good at all depths. West Pine Pond probably has springs because it has a small inlet, but a sizeable outlet.

West Pine Pond will be managed as an Adirondack brook trout pond. It will be reclaimed when establishment of non-native or other fishes threaten the brook trout fishery, to enhance and restore a native fish community. Rag Pond (C-P153) or the wetland that now remains of that pond will be reclaimed in conjunction with West Pine Pond.

Management Class: Adirondack Brook Trout
West Polliwog Pond (C-P122)

West Polliwog Pond is an isolated; 1.7-acre pond located about 300 feet west of Polliwog Pond (C-P120). West Polliwog Pond was a liming study pond in the early 1960's. Sampling done in 1956 and 1958 determined that this pond was fishless due to acidic conditions. Hydrated lime was applied annually from 1959-1962 and the pond was stocked with brook trout and rainbow trout. File notes indicate survival of the stocked trout was “very poor” and the experimental programs were ended. The pond was revisited in 1993 with the same netting results. Chemical sampling found a pH of 4.24, ANC of -53.1 μeq/l, specific conductivity of 25.9 μmhos and very dark brown water. West Polliwog Pond has a low, bog shoreline with a coniferous forest over story.

West Polliwog Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Whey Pond (C-P180)

Whey Pond (107.7 acres) has a long management history. It borders on the intensive use lands of the Rollins Pond/Fish Creek campgrounds. A short outlet connects Whey Pond to Rollins Pond. As with most ponds in the area, non-native yellow perch and northern pike were present when Whey Pond was first surveyed in 1929. Twenty-six years later in 1955, biologists determined the pond was a reclamation candidate. Their pre-treatment netting captured yellow perch, smallmouth bass, pumpkinseed, brown bullhead, creek chub, golden shiner and white sucker. Northern pike and largemouth bass were reported present. Whey Pond was reclaimed for the first time in September 1956. Prior to treatment, a barrier dam was constructed on the outlet to prevent infestation from Rollins Pond. A file note indicates that this barrier dam failed shortly after construction and Whey Pond was retreated in 1961. Netting data from 1963 suggests the second treatment was successful as only brook trout and rainbow trout were captured. Trout were tagged during the fall 1963 netting to assess angler catch rates on this pond. This study continued for several years and verified heavy angler use of this pond. Trap netting done in October 1967 caught brook trout and rainbow trout, but also caught brown trout, a few golden shiner and large numbers of yellow perch 4-6 inches long. The third reclamation of Whey Pond was completed in September 1968. Netting conducted in 1971 revealed that a few yellow perch were still present and that golden shiners were very abundant. A few small white sucker were also caught in 1971 along with brook, rainbow and brown trout. Whey Pond was reclaimed a fourth time in October 1971. Trap netting done in 1972 captured just stocked brook trout. Rainbow trout stocking resumed in 1975 and trap netting that year caught both trout species, but also documented the presence of a few adult golden shiners. By the time of a 1984 ALSC survey, golden shiner and yellow perch were abundant and trout numbers were declining. Whey Pond was reclaimed twice in 1989. Capture of live golden shiner after a September treatment prompted a complete retreatment in October. Both treatments had a target concentration of 0.75 ppm of Noxfish. Subsequent netting done in November
still caught live golden shiner, establishing that 0.75 ppm Noxfish is insufficient for killing this species. Windfall strain brook trout were stocked after the 1989 reclamations and these established a naturally spawning population through the 1990's despite a resurgence of the golden shiner population. Rainbow trout also continue to do well, although that population is dependent on stocking. Whey Pond has been used a brood stock source for Windfall strain and regulations prohibiting the harvest of brook trout were enacted in the late 1990's. The prohibition on keeping brook trout was eased a few years later when it was evident that natural reproduction was very successful. Regulations at that time specified artificial lures only and a 3 fish/day combined limit of rainbow trout and brook trout. Brood stock nettings conducted in 1996, 1997 and 1998 have documented the addition of brown bullhead to the fish community. Since bullheads have not been seen in the pond since pre-1955, this documents that illegal angler introductions continue to be a problem in roadside ponds. A 2013 trap net survey caught more than 3000 brown bullhead and only 2 brook trout despite the targeting of the brook trout. The extremely large bullhead population allowed no room for their survival. The special regulations in place to protect the brook trout fishery and the stocking of brook trout were both discontinued after the 2013 survey. A brown trout stocking policy was also initiated at that time as this species is more likely to successfully compete with the other fish species present. The rainbow trout stocking policy was continued.

Whey Pond has a maximum depth of 20 feet, mean depth of 12.5 feet and a flushing rate of 0.5 times per year. The clear blue/green water of this pond has a good pH of 7.43, ANC of 254.2 μeq/l, and specific conductivity of 36.9 μmhos. Sand comprises most of the substrate. Underwater springs occur in several areas of the pond. These springs are known trout spawning areas and may help account for the persistence of golden shiner after reclamations. A parking area for about ten vehicles adjoins the pond. Anglers must carry canoes about 100 feet from the parking area to launch.

Whey Pond will be managed as a coldwater pond until such time as it can be reclaimed to restore a native fish community.

Management Class: Adirondack Brook Trout

Wood Pond (C-P185)

This tiny, 0.5-acre pond is located just to south of the Floodwood Road and just west of Green Pond (C-P183). Biologists visited the pond in 1929, but no fish species data are available. In 1956, biologists deemed Wood Pond to be chemically unsuitable after netting caught no fish. Wood Pond was limed once in 1962 with hydrated lime as part of the F-22-R study. Subsequent netting still found poor survival of stocked trout due to low dissolved oxygen levels and high-water temperatures. Stocking efforts ceased in 1965. Wood Pond has a maximum depth of 20 feet and mean depth of 10.4 feet. The last recorded pH for this pond was 5.4 in 1963. Bog/swamp wetlands surround the darkly stained waters of Wood Pond.
Wood Pond will be managed to preserve its aquatic community for its intrinsic value.

Management Class: Other

Literature Cited:

 DEC mimeograph. Ray Brook, NY. 26 pages.
Appendix 7: Lakes and Ponded Water Survey Data

Table 24: Ponded water data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Wshed</th>
<th>File</th>
<th>County</th>
<th>USGS Quad (7.5')</th>
<th>Area (acres) NYSBS U</th>
<th>Max Depth (feet)</th>
<th>Mean Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alford Pond</td>
<td>96</td>
<td>C</td>
<td>114</td>
<td>Essex</td>
<td>McKenzie Mtn</td>
<td>34</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Amphitheater Pond</td>
<td>131</td>
<td>C</td>
<td>162</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.7</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Bad News Pond</td>
<td>5364</td>
<td>C</td>
<td>143</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.5</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Bear Pond</td>
<td>271</td>
<td>SC</td>
<td>527</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>54.6</td>
<td>60</td>
<td>22.3</td>
</tr>
<tr>
<td>Big Cherrypatch Pond</td>
<td>241</td>
<td>C</td>
<td>278</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>13.8</td>
<td>15</td>
<td>6.2</td>
</tr>
<tr>
<td>Black Pond</td>
<td>130</td>
<td>C</td>
<td>160</td>
<td>Franklin</td>
<td>Derrick</td>
<td>20.5</td>
<td>44</td>
<td>20.3</td>
</tr>
<tr>
<td>Black Pond</td>
<td>205</td>
<td>C</td>
<td>225</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>43</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>Bog Pond</td>
<td>270</td>
<td>SC</td>
<td>526.1</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>2.5</td>
<td>17</td>
<td>7.9</td>
</tr>
<tr>
<td>Bosquet Pond</td>
<td>127</td>
<td>C</td>
<td>149</td>
<td>Franklin</td>
<td>Derrick</td>
<td>2.2</td>
<td>15</td>
<td>7.9</td>
</tr>
<tr>
<td>Brandy Pond</td>
<td>115</td>
<td>C</td>
<td>137</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>5.4</td>
<td>10</td>
<td>4.9</td>
</tr>
<tr>
<td>Bread Pond</td>
<td>268</td>
<td>SC</td>
<td>526</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>1.5</td>
<td>24</td>
<td>11.1</td>
</tr>
<tr>
<td>Cameras Pond</td>
<td>97</td>
<td>C</td>
<td>116</td>
<td>Essex</td>
<td>Street Mountain</td>
<td>11.1</td>
<td>10</td>
<td>4.9</td>
</tr>
<tr>
<td>Connery Pond</td>
<td>243</td>
<td>C</td>
<td>280</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>75.6</td>
<td>50</td>
<td>17.4</td>
</tr>
<tr>
<td>Copperas Pond</td>
<td>139</td>
<td>C</td>
<td>167</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>24</td>
<td>19</td>
<td>8.8</td>
</tr>
<tr>
<td>Deer Pond</td>
<td>178</td>
<td>C</td>
<td>202</td>
<td>Franklin</td>
<td>Derrick</td>
<td>47.7</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>Deer Pond</td>
<td>181</td>
<td>C</td>
<td>204</td>
<td>Franklin</td>
<td>Derrick</td>
<td>110.5</td>
<td>64</td>
<td>34.1</td>
</tr>
<tr>
<td>Duell Pond</td>
<td>195</td>
<td>C</td>
<td>216</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>2</td>
<td>35</td>
<td>18.4</td>
</tr>
<tr>
<td>Dump Pond</td>
<td>128</td>
<td>C</td>
<td>151</td>
<td>Franklin</td>
<td>Derrick</td>
<td>44</td>
<td>12</td>
<td>3.3</td>
</tr>
<tr>
<td>East Copperas Pond</td>
<td>138</td>
<td>C</td>
<td>166</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>9.6</td>
<td>21</td>
<td>13.5</td>
</tr>
<tr>
<td>East Pine Pond</td>
<td>147</td>
<td>C</td>
<td>175</td>
<td>Franklin</td>
<td>Derrick</td>
<td>60.5</td>
<td>33</td>
<td>15.7</td>
</tr>
<tr>
<td>Echo Pond</td>
<td>136</td>
<td>C</td>
<td>164</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>16.3</td>
<td>32</td>
<td>14.4</td>
</tr>
<tr>
<td>Echo Pond</td>
<td>251</td>
<td>C</td>
<td>287 S2</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>14</td>
<td>6</td>
<td>3.3</td>
</tr>
<tr>
<td>Federation Pond</td>
<td>148</td>
<td>C</td>
<td>176</td>
<td>Franklin</td>
<td>Derrick</td>
<td>5.9</td>
<td>27</td>
<td>14.4</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Wshed</th>
<th>File</th>
<th>County</th>
<th>USGS Quad (7.5')</th>
<th>Area (acres)</th>
<th>Max Depth (feet)</th>
<th>Mean Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Pond</td>
<td>103</td>
<td>C</td>
<td>123B</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>51.1</td>
<td>20</td>
<td>5.3</td>
</tr>
<tr>
<td>Fish Creek Ponds</td>
<td>124</td>
<td>C</td>
<td>146</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>134.4</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Fish Creek Ponds</td>
<td>123</td>
<td>C</td>
<td>146</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>76.8</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>142</td>
<td>C</td>
<td>170</td>
<td>Franklin</td>
<td>Derrick</td>
<td>222.4</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>Follensby Clear Pond</td>
<td>116</td>
<td>C</td>
<td>138</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>491.5</td>
<td>60</td>
<td>21</td>
</tr>
<tr>
<td>Frog Pond</td>
<td>121</td>
<td>C</td>
<td>144</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.5</td>
<td>16</td>
<td>9.2</td>
</tr>
<tr>
<td>Green Pond</td>
<td>183</td>
<td>C</td>
<td>206</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>58.6</td>
<td>60</td>
<td>27.6</td>
</tr>
<tr>
<td>Heavens Pond</td>
<td>104</td>
<td>R</td>
<td>197</td>
<td>Franklin</td>
<td>Derrick</td>
<td>40.8</td>
<td>20</td>
<td>8.5</td>
</tr>
<tr>
<td>Hoel Pond</td>
<td>161</td>
<td>C</td>
<td>189</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>444.8</td>
<td>80</td>
<td>26.6</td>
</tr>
<tr>
<td>Horseshoe Pond</td>
<td>118</td>
<td>C</td>
<td>141</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>82</td>
<td>26</td>
<td>15.4</td>
</tr>
<tr>
<td>Humdinger Pond</td>
<td>5200</td>
<td>SC</td>
<td>526</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>2</td>
<td>31</td>
<td>14.1</td>
</tr>
<tr>
<td>Kiwassa Lake</td>
<td>100</td>
<td>C</td>
<td>120</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>262.4</td>
<td>43</td>
<td>-</td>
</tr>
<tr>
<td>Lake Clear</td>
<td>199</td>
<td>C</td>
<td>219</td>
<td>Franklin</td>
<td>Gabriels</td>
<td>979.5</td>
<td>60</td>
<td>~30</td>
</tr>
<tr>
<td>Lake Clear Outlet</td>
<td>198</td>
<td>C</td>
<td>218A</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>103.5</td>
<td>8.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>106</td>
<td>C</td>
<td>126</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>285.9</td>
<td>47</td>
<td>25.3</td>
</tr>
<tr>
<td>Lake Placid</td>
<td>254</td>
<td>C</td>
<td>288</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>1958.3</td>
<td>151</td>
<td>52</td>
</tr>
<tr>
<td>Lead Pond</td>
<td>93</td>
<td>R</td>
<td>181</td>
<td>Franklin</td>
<td>Derrick</td>
<td>79.8</td>
<td>12</td>
<td>5.6</td>
</tr>
<tr>
<td>Lily Pad Pond</td>
<td>108</td>
<td>C</td>
<td>129</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>13.6</td>
<td>12</td>
<td>6.4</td>
</tr>
<tr>
<td>Little Black Pond</td>
<td>130a</td>
<td>C</td>
<td>161</td>
<td>Franklin</td>
<td>Derrick</td>
<td>5.4</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>Little Cherry patch Pond</td>
<td>240</td>
<td>C</td>
<td>277</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>3.5</td>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>Little Clear Pond</td>
<td>191</td>
<td>C</td>
<td>212</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>343.5</td>
<td>77</td>
<td>35.4</td>
</tr>
<tr>
<td>Little Colby</td>
<td>105,5363</td>
<td>C</td>
<td>125</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>35.8</td>
<td>15</td>
<td>5.2</td>
</tr>
<tr>
<td>Little East Copperas Pond</td>
<td>137</td>
<td>C</td>
<td>165</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.5</td>
<td>29</td>
<td>13.5</td>
</tr>
<tr>
<td>Little Echo Pond</td>
<td>126</td>
<td>C</td>
<td>148</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Little Egg Pond</td>
<td>127a</td>
<td>C</td>
<td>150</td>
<td>Franklin</td>
<td>Derrick</td>
<td>1</td>
<td>33</td>
<td>11.8</td>
</tr>
<tr>
<td>Little Green Pond</td>
<td>192</td>
<td>C</td>
<td>213</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>67.7</td>
<td>46</td>
<td>18.4</td>
</tr>
<tr>
<td>Little North Whey Pond</td>
<td>141A</td>
<td>C</td>
<td>169A</td>
<td>Franklin</td>
<td>Derrick</td>
<td>2.5</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Little Polliwog Pond</td>
<td>119</td>
<td>C</td>
<td>142</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>15.3</td>
<td>6</td>
<td>2.6</td>
</tr>
<tr>
<td>Little Square Pond</td>
<td>140</td>
<td>C</td>
<td>168</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>116.1</td>
<td>29</td>
<td>10.5</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Wshed</th>
<th>File</th>
<th>County</th>
<th>USGS Quad (7.5')</th>
<th>Area (acres) NYSBS U</th>
<th>Max Depth (feet)</th>
<th>Mean Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little Weller Pond</td>
<td>208</td>
<td>C</td>
<td>228</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>10.4</td>
<td>13</td>
<td>6.6</td>
</tr>
<tr>
<td>Lower Saranac Lake</td>
<td>104</td>
<td>C</td>
<td>124</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>2108.3</td>
<td>63</td>
<td>-</td>
</tr>
<tr>
<td>Marsh Pond</td>
<td>145</td>
<td>C</td>
<td>173</td>
<td>Franklin</td>
<td>Derrick</td>
<td>1.7</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>McCauley Pond</td>
<td>107</td>
<td>C</td>
<td>128</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>81.5</td>
<td>12</td>
<td>7.5</td>
</tr>
<tr>
<td>McKenzie Pond</td>
<td>88</td>
<td>C</td>
<td>106</td>
<td>Franklin</td>
<td>McKenzie Mtn</td>
<td>237.5</td>
<td>53</td>
<td>22.6</td>
</tr>
<tr>
<td>Meadow Pond</td>
<td>203</td>
<td>C</td>
<td>223</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>9.9</td>
<td>22</td>
<td>8.2</td>
</tr>
<tr>
<td>Middle Pond</td>
<td>143</td>
<td>C</td>
<td>171</td>
<td>Franklin</td>
<td>Derrick</td>
<td>61</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Middle Saranac Lake</td>
<td>110</td>
<td>C</td>
<td>133</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>1392.9</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>Mike's Pond</td>
<td>269</td>
<td>SC</td>
<td>526</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>1.2</td>
<td>34</td>
<td>10.5</td>
</tr>
<tr>
<td>Mirror Lake</td>
<td>250</td>
<td>C</td>
<td>287</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>118.1</td>
<td>60</td>
<td>23</td>
</tr>
<tr>
<td>Moose Pond</td>
<td>83</td>
<td>C</td>
<td>99</td>
<td>Franklin</td>
<td>Bloomingdale</td>
<td>157.9</td>
<td>70</td>
<td>28.5</td>
</tr>
<tr>
<td>Morette Pond</td>
<td>184</td>
<td>R</td>
<td>362</td>
<td>Franklin</td>
<td>Derrick</td>
<td>6.2</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Mud Pond</td>
<td>182</td>
<td>C</td>
<td>205</td>
<td>Franklin</td>
<td>Derrick</td>
<td>4.7</td>
<td>9</td>
<td>3.3</td>
</tr>
<tr>
<td>North Whey Pond</td>
<td>141</td>
<td>C</td>
<td>169</td>
<td>Franklin</td>
<td>Derrick</td>
<td>3.2</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>NW Amphitheater Pond</td>
<td>135</td>
<td>C</td>
<td>163a</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.5</td>
<td>11</td>
<td>7.2</td>
</tr>
<tr>
<td>Oseetah Lake</td>
<td>90</td>
<td>C</td>
<td>108</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>825.6</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Panther Pond</td>
<td>188</td>
<td>R</td>
<td>381</td>
<td>Franklin</td>
<td>Stony Creek Mtn</td>
<td>11.4</td>
<td>18</td>
<td>10.8</td>
</tr>
<tr>
<td>Polliwog Pond</td>
<td>120</td>
<td>C</td>
<td>143</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>196.7</td>
<td>80</td>
<td>23</td>
</tr>
<tr>
<td>Porkchop Pond</td>
<td>206</td>
<td>C</td>
<td>226</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>2.2</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>Rag Pond</td>
<td>153</td>
<td>C</td>
<td>181a</td>
<td>Franklin</td>
<td>Derrick</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rat Pond</td>
<td>186</td>
<td>C</td>
<td>209</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>28.4</td>
<td>29</td>
<td>12.1</td>
</tr>
<tr>
<td>Ray Brook Boys Camp Pond</td>
<td>92A</td>
<td>C</td>
<td>110</td>
<td>Essex</td>
<td>McKenzie Mtn</td>
<td>.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ray Brook Pond</td>
<td>91</td>
<td>C</td>
<td>109a</td>
<td>Essex</td>
<td>McKenzie Mtn</td>
<td>25</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rock Pond</td>
<td>170</td>
<td>C</td>
<td>195</td>
<td>Franklin</td>
<td>Derrick</td>
<td>55.8</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Roiley Pond</td>
<td>266</td>
<td>SC</td>
<td>523</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>15.1</td>
<td>14</td>
<td>6.9</td>
</tr>
<tr>
<td>Roll Bank Pond</td>
<td>189</td>
<td>R</td>
<td>383</td>
<td>Franklin</td>
<td>Stony Creek Mtn</td>
<td>5.7</td>
<td>12</td>
<td>4.6</td>
</tr>
<tr>
<td>Rollins Pond</td>
<td>168</td>
<td>C</td>
<td>194</td>
<td>Franklin</td>
<td>Derrick</td>
<td>435.6</td>
<td>77</td>
<td>22.6</td>
</tr>
<tr>
<td>Second Pond</td>
<td>102</td>
<td>C</td>
<td>123A</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>78.6</td>
<td>9</td>
<td>3.3</td>
</tr>
<tr>
<td>Name</td>
<td>P#</td>
<td>Wshed</td>
<td>File</td>
<td>County</td>
<td>USGS Quad (7.5')</td>
<td>Area (acres) NYSBS U</td>
<td>Max Depth (feet)</td>
<td>Mean Depth (ft)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Sochia Pond</td>
<td>197</td>
<td>C</td>
<td>218</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>2.7</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Sour Pond</td>
<td>259</td>
<td>SC</td>
<td>509A</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>2.2</td>
<td>33</td>
<td>12.5</td>
</tr>
<tr>
<td>Spitfire Lake</td>
<td>264</td>
<td>SC</td>
<td>516A</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>254</td>
<td>31</td>
<td>15.7</td>
</tr>
<tr>
<td>Square Pond</td>
<td>125</td>
<td>C</td>
<td>147</td>
<td>Franklin</td>
<td>Derrick</td>
<td>145</td>
<td>55</td>
<td>25</td>
</tr>
<tr>
<td>Saint Germain Pond</td>
<td>201</td>
<td>C</td>
<td>221</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>11.6</td>
<td>17</td>
<td>9.2</td>
</tr>
<tr>
<td>Stony Creek Pond</td>
<td>191</td>
<td>R</td>
<td>389</td>
<td>Franklin</td>
<td>Mountain</td>
<td>177.7</td>
<td>41</td>
<td>12.5</td>
</tr>
<tr>
<td>Sunday Pond</td>
<td>188</td>
<td>C</td>
<td>210</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>10.4</td>
<td>32</td>
<td>19.4</td>
</tr>
<tr>
<td>Sunrise Pond</td>
<td>117</td>
<td>C</td>
<td>140</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>7.9</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>SW Amphitheater Pond</td>
<td>132</td>
<td>C</td>
<td>162a</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.7</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Tamarack Pond</td>
<td>207</td>
<td>C</td>
<td>227</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>13.1</td>
<td>11</td>
<td>4.9</td>
</tr>
<tr>
<td>Tiff Pond</td>
<td>190</td>
<td>R</td>
<td>385</td>
<td>Franklin</td>
<td>Mountain</td>
<td>10.9</td>
<td>17</td>
<td>10.8</td>
</tr>
<tr>
<td>Tom Peck Pond</td>
<td>242</td>
<td>C</td>
<td>249</td>
<td>Essex</td>
<td>Lake Placid</td>
<td>7.4</td>
<td>15</td>
<td>6.2</td>
</tr>
<tr>
<td>Track Pond</td>
<td>146</td>
<td>C</td>
<td>174</td>
<td>Franklin</td>
<td>Derrick</td>
<td>2.7</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Turtle Pond</td>
<td>89</td>
<td>C</td>
<td>107</td>
<td>Essex</td>
<td>McKenzie Mtn</td>
<td>6.4</td>
<td>37</td>
<td><10</td>
</tr>
<tr>
<td>Twelfth Tee Pond</td>
<td>184</td>
<td>C</td>
<td>207</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>4.2</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>Unnamed Pond 5161</td>
<td>5161</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 5147</td>
<td>5147</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 5160</td>
<td>5160</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 178a</td>
<td>178a</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Derrick</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 118b</td>
<td>118b</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 202</td>
<td>202</td>
<td>C</td>
<td>222</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 165</td>
<td>165</td>
<td>C</td>
<td>176a</td>
<td>Franklin</td>
<td>Derrick</td>
<td>0.25</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 129</td>
<td>129</td>
<td>C</td>
<td>152</td>
<td>Franklin</td>
<td>Derrick</td>
<td>8.9</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Unnamed Pond 174</td>
<td>174</td>
<td>C</td>
<td>198</td>
<td>Franklin</td>
<td>Derrick</td>
<td>9.1</td>
<td>14</td>
<td>7.2</td>
</tr>
<tr>
<td>Unnamed Pond 175</td>
<td>175</td>
<td>C</td>
<td>199</td>
<td>Franklin</td>
<td>Derrick</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 5210</td>
<td>5210</td>
<td>SC</td>
<td>-</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 5214</td>
<td>5214</td>
<td>SC</td>
<td>-</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 179</td>
<td>179</td>
<td>C</td>
<td>202a?</td>
<td>Franklin</td>
<td>Derrick</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 5124</td>
<td>5124</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Gabiels</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond 5128</td>
<td>5128</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Name</td>
<td>P#</td>
<td>Wshed</td>
<td>File</td>
<td>County</td>
<td>USGS Quad (7.5')</td>
<td>Area (acres)</td>
<td>NYSBS U</td>
<td>Max Depth (feet)</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5125</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Gabriels</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5101</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Bloomingdale</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5127</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Saranac Lake</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5063</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Derrick</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>144</td>
<td>C</td>
<td>172</td>
<td>Franklin</td>
<td>Derrick</td>
<td>9.6</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>133</td>
<td>C</td>
<td>163</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.5</td>
<td>6</td>
<td>2.3</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>196</td>
<td>C</td>
<td>217</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>171</td>
<td>C</td>
<td>196SA</td>
<td>Franklin</td>
<td>Derrick</td>
<td>0.7</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5140</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Stony Creek Mountain</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>172</td>
<td>C</td>
<td>196AS1</td>
<td>Franklin</td>
<td>Derrick</td>
<td>2.5</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>169</td>
<td>C</td>
<td>194</td>
<td>Franklin</td>
<td>Derrick</td>
<td>3</td>
<td>11</td>
<td>5.9</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5081</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Tupper Lake</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5082</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Tupper Lake</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5083</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Tupper Lake</td>
<td>9.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5084</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Tupper Lake</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5085</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Tupper Lake</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5086</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Tupper Lake</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5134</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Stony Creek Mountain</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5135</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Stony Creek Mountain</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5139</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Stony Creek Mountain</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>176</td>
<td>C</td>
<td>200</td>
<td>Franklin</td>
<td>Derrick</td>
<td>4.2</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5242</td>
<td>SC</td>
<td>-</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5211</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Stony Creek Mountain</td>
<td>7.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5214</td>
<td>R</td>
<td>-</td>
<td>Franklin</td>
<td>Stony Creek Mountain</td>
<td>20.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>118a</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>166</td>
<td>C</td>
<td>193</td>
<td>Franklin</td>
<td>Derrick</td>
<td>1.2</td>
<td>10</td>
<td>4.6</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5226</td>
<td>SC</td>
<td>-</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>189</td>
<td>C</td>
<td>-</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.7</td>
<td>25</td>
<td>13.1</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Wshed</th>
<th>File</th>
<th>County</th>
<th>USGS Quad (7.5')</th>
<th>Area (acres) NYSBS U</th>
<th>Max Depth (feet)</th>
<th>Mean Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Saranac Lake</td>
<td>114</td>
<td>C</td>
<td>134</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>4775.7</td>
<td>105</td>
<td>27</td>
</tr>
<tr>
<td>Upper Spectacle Pond</td>
<td>253</td>
<td>SC</td>
<td>504a</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>45.5</td>
<td>68</td>
<td>28.2</td>
</tr>
<tr>
<td>Upper St. Regis Lake</td>
<td>256</td>
<td>SC</td>
<td>518</td>
<td>Franklin</td>
<td>Saint Regis</td>
<td>711.6</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Weller Pond</td>
<td>209</td>
<td>C</td>
<td>229</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>180.1</td>
<td>21</td>
<td>9.5</td>
</tr>
<tr>
<td>West Pine Pond</td>
<td>173</td>
<td>C</td>
<td>197</td>
<td>Franklin</td>
<td>Derrick</td>
<td>62.5</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>West Polliwog Pond</td>
<td>122</td>
<td>C</td>
<td>145</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>1.7</td>
<td>19</td>
<td>8.9</td>
</tr>
<tr>
<td>Whey Pond</td>
<td>180</td>
<td>C</td>
<td>203</td>
<td>Franklin</td>
<td>Derrick</td>
<td>107.7</td>
<td>20</td>
<td>12.5</td>
</tr>
<tr>
<td>Wood Pond</td>
<td>185</td>
<td>C</td>
<td>208</td>
<td>Franklin</td>
<td>Upper Saranac</td>
<td>0.5</td>
<td>20</td>
<td>10.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,010.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wshed: watershed

SC: St. Regis; C: Champlain, R: Raquette
Table 25: Ponded water inventory data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th>Most Recent Biological Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
</tr>
<tr>
<td>Alford Pond</td>
<td>96</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Amphitheater Pond</td>
<td>131</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Bear Pond</td>
<td>271</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Big Cherrypatch Pond</td>
<td>241</td>
<td>1995</td>
<td>DEC</td>
</tr>
<tr>
<td>Black Pond</td>
<td>130</td>
<td>2008</td>
<td>DEC</td>
</tr>
<tr>
<td>Black Pond</td>
<td>205</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Bog Pond</td>
<td>270</td>
<td>1996</td>
<td>DEC</td>
</tr>
<tr>
<td>Bosquet Pond</td>
<td>127</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Brandy Pond</td>
<td>115</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Bread Pond</td>
<td>268</td>
<td>1986</td>
<td>ALSC</td>
</tr>
<tr>
<td>Cameras Pond</td>
<td>97</td>
<td>1998</td>
<td>DEC</td>
</tr>
<tr>
<td>Copperas Pond</td>
<td>139</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Deer Pond</td>
<td>181</td>
<td>2000</td>
<td>DEC</td>
</tr>
<tr>
<td>Duell Pond</td>
<td>195</td>
<td>2000</td>
<td>DEC</td>
</tr>
<tr>
<td>East Copperas Pond</td>
<td>138</td>
<td>2003</td>
<td>ALSC</td>
</tr>
<tr>
<td>East Pine Pond</td>
<td>147</td>
<td>1993</td>
<td>DEC</td>
</tr>
<tr>
<td>Echo Pond</td>
<td>136</td>
<td>2008</td>
<td>DEC</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th>Most Recent Biological Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
</tr>
<tr>
<td>Echo Pond</td>
<td>251</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Federation Pond</td>
<td>148</td>
<td>2007</td>
<td>DEC</td>
</tr>
<tr>
<td>First Pond</td>
<td>103</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Fish Creek Ponds</td>
<td>123</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Creek Ponds</td>
<td>124</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>142</td>
<td>2001</td>
<td>DEC</td>
</tr>
<tr>
<td>Follensby Clear Pond</td>
<td>116</td>
<td>1996</td>
<td>DEC</td>
</tr>
<tr>
<td>Frog Pond</td>
<td>121</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Green Pond</td>
<td>183</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Heavens Pond</td>
<td>104</td>
<td>2000</td>
<td>DEC</td>
</tr>
<tr>
<td>Hoel Pond</td>
<td>161</td>
<td>2000</td>
<td>DEC</td>
</tr>
<tr>
<td>Horseshoe Pond</td>
<td>118</td>
<td>2015</td>
<td>DEC</td>
</tr>
<tr>
<td>Humdinger Pond</td>
<td>5200</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Kiwassa Lake</td>
<td>100</td>
<td>2006</td>
<td>DEC</td>
</tr>
<tr>
<td>Lake Clear</td>
<td>199</td>
<td>1996</td>
<td>DEC</td>
</tr>
<tr>
<td>Lake Clear Outlet</td>
<td>198</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>106</td>
<td>1984</td>
<td>ALSC</td>
</tr>
</tbody>
</table>

Saranac Lakes Wild Forest – Unit Management Plan – April 2019

334
<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th>Most Recent Biological Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Placid</td>
<td>254</td>
<td>2013</td>
<td>DEC</td>
</tr>
<tr>
<td>Lead Pond</td>
<td>93</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Lily Pad Pond</td>
<td>108</td>
<td>1986</td>
<td>ALSC</td>
</tr>
<tr>
<td>Little Black Pond</td>
<td>130a</td>
<td>1995</td>
<td>DEC</td>
</tr>
<tr>
<td>Little Clear Pond</td>
<td>191</td>
<td>1993</td>
<td>DEC</td>
</tr>
<tr>
<td>Little East Copperas Pond</td>
<td>137</td>
<td>1954</td>
<td>DEC</td>
</tr>
<tr>
<td>Little Echo Pond</td>
<td>126</td>
<td>1976</td>
<td>DEC</td>
</tr>
<tr>
<td>Little Egg Pond</td>
<td>127a</td>
<td>1986</td>
<td>ALSC</td>
</tr>
<tr>
<td>Little Green Pond</td>
<td>192</td>
<td>1993</td>
<td>DEC</td>
</tr>
<tr>
<td>Little North Whey Pond</td>
<td>141A</td>
<td>2012</td>
<td>DEC</td>
</tr>
<tr>
<td>Little Polliwog Pond</td>
<td>119</td>
<td>2015</td>
<td>DEC</td>
</tr>
<tr>
<td>Little Weller Pond</td>
<td>208</td>
<td>1984</td>
<td>ALSC</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th></th>
<th>Most Recent Biological Survey</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
<td>ANC (ueq/l)</td>
<td>pH</td>
</tr>
<tr>
<td>Lower Saranac Lake</td>
<td>104</td>
<td>1983</td>
<td>DEC</td>
<td>166</td>
<td>7.26</td>
</tr>
<tr>
<td>Marsh Pond</td>
<td>145</td>
<td>1985</td>
<td>ALSC</td>
<td>-29</td>
<td>4.53</td>
</tr>
<tr>
<td>McCauley Pond</td>
<td>107</td>
<td>1984</td>
<td>ALSC</td>
<td>133.3</td>
<td>7.13</td>
</tr>
<tr>
<td>Meadow Pond</td>
<td>203</td>
<td>2014</td>
<td>DEC</td>
<td>42.4</td>
<td>6.70</td>
</tr>
<tr>
<td>Middle Pond</td>
<td>143</td>
<td>1984</td>
<td>ALSC</td>
<td>86.5</td>
<td>7.13</td>
</tr>
<tr>
<td>Mike's Pond</td>
<td>269</td>
<td>1986</td>
<td>ALSC</td>
<td>-5.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Mirror Lake</td>
<td>250</td>
<td>2003</td>
<td>DEC</td>
<td>354.8</td>
<td>7.71</td>
</tr>
<tr>
<td>Moose Pond</td>
<td>83</td>
<td>2001</td>
<td>DEC</td>
<td>105.46</td>
<td>7.26</td>
</tr>
<tr>
<td>Morette Pond</td>
<td>184</td>
<td>1955</td>
<td>DEC</td>
<td>-</td>
<td>6.6</td>
</tr>
<tr>
<td>Mud Pond</td>
<td>182</td>
<td>1984</td>
<td>ALSC</td>
<td>170.4</td>
<td>7.22</td>
</tr>
<tr>
<td>North Whey Pond</td>
<td>141</td>
<td>1984</td>
<td>ALSC</td>
<td>-50</td>
<td>4.35</td>
</tr>
<tr>
<td>NW Amphitheater Pond</td>
<td>135</td>
<td>1954</td>
<td>DEC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oseetah Lake</td>
<td>90</td>
<td>1977</td>
<td>DEC</td>
<td>-</td>
<td>6.7</td>
</tr>
<tr>
<td>Panther Pond</td>
<td>188</td>
<td>1979</td>
<td>DEC</td>
<td>190.6</td>
<td>7.43</td>
</tr>
<tr>
<td>Polliwog Pond</td>
<td>120</td>
<td>2013</td>
<td>DEC</td>
<td>13.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Porkchop Pond</td>
<td>206</td>
<td>1984</td>
<td>ALSC</td>
<td>233.6</td>
<td>6.98</td>
</tr>
<tr>
<td>Rag Pond</td>
<td>153</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Name</td>
<td>P#</td>
<td>Most Recent Chemical Survey</td>
<td>Most Recent Biological Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
<td>ANC (ueq/l)</td>
<td>pH</td>
</tr>
<tr>
<td>Rat Pond</td>
<td>186</td>
<td>1994</td>
<td>DEC</td>
<td>42.6</td>
<td>6.51</td>
</tr>
<tr>
<td>Ray Brook Boys Camp</td>
<td>92A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Camp Pond</td>
<td></td>
<td>1985</td>
<td>ALSC</td>
<td>482.9</td>
<td>7.48</td>
</tr>
<tr>
<td>Rock Pond</td>
<td>170</td>
<td>1984</td>
<td>ALSC</td>
<td>-21.1</td>
<td>4.68</td>
</tr>
<tr>
<td>Roiley Pond</td>
<td>266</td>
<td>1986</td>
<td>ALSC</td>
<td>31.1</td>
<td>6.24</td>
</tr>
<tr>
<td>Roll Bank Pond</td>
<td>189</td>
<td>1984</td>
<td>ALSC</td>
<td>111.5</td>
<td>6.84</td>
</tr>
<tr>
<td>Rollins Pond</td>
<td>168</td>
<td>2008</td>
<td>DEC</td>
<td>144</td>
<td>7.3</td>
</tr>
<tr>
<td>Second Pond</td>
<td>102</td>
<td>1984</td>
<td>ALSC</td>
<td>171.9</td>
<td>7.13</td>
</tr>
<tr>
<td>Sochia Pond</td>
<td>197</td>
<td>1984</td>
<td>ALSC</td>
<td>-21.1</td>
<td>4.68</td>
</tr>
<tr>
<td>Sour Pond</td>
<td>259</td>
<td>1985</td>
<td>ALSC</td>
<td>-34.4</td>
<td>4.62</td>
</tr>
<tr>
<td>Spitfire Lake</td>
<td>264</td>
<td>1986</td>
<td>ALSC</td>
<td>166.1</td>
<td>7.28</td>
</tr>
<tr>
<td>Square Pond</td>
<td>125</td>
<td>1984</td>
<td>ALSC</td>
<td>149</td>
<td>7.08</td>
</tr>
<tr>
<td>Saint Germain Pond</td>
<td>201</td>
<td>2016</td>
<td>DEC</td>
<td>9.00</td>
<td>5.90</td>
</tr>
<tr>
<td>Stony Creek Pond</td>
<td>191</td>
<td>1984</td>
<td>ALSC</td>
<td>204.6</td>
<td>7.12</td>
</tr>
<tr>
<td>Sunday Pond</td>
<td>188</td>
<td>2003</td>
<td>ALSC</td>
<td>-2.8</td>
<td>5.17</td>
</tr>
<tr>
<td>Sunrise Pond</td>
<td>117</td>
<td>2016</td>
<td>DEC</td>
<td>74</td>
<td>7.1</td>
</tr>
<tr>
<td>SW Amphitheater Pond</td>
<td>132</td>
<td>1984</td>
<td>ALSC</td>
<td>16.6</td>
<td>4.55</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th>Most Recent Biological Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
</tr>
<tr>
<td>Unsurveyed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiff Pond</td>
<td>190</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Track Pond</td>
<td>146</td>
<td>2000</td>
<td>DEC</td>
</tr>
<tr>
<td>Turtle Pond</td>
<td>89</td>
<td>1957</td>
<td>DEC</td>
</tr>
<tr>
<td>Twelfth Tee Pond</td>
<td>184</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>129</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>118a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>118b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>178a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>165</td>
<td>1961</td>
<td>DEC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>174</td>
<td>1984</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>144</td>
<td>1984</td>
<td>ALSC</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th>Most Recent Biological Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>ANC (meq/l)</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>171</td>
<td>1993</td>
<td>DEC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>133</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>196</td>
<td>1986</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>172</td>
<td>1985</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5140,14a</td>
<td>1986</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>169</td>
<td>1986</td>
<td>ALSC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5081</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5082</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5083</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5084</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5085</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5086</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5134</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5135</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5139</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>176</td>
<td>1993</td>
<td>DEC</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5242</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5211</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5214</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5127</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5128</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>5226</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>166</td>
<td>1986</td>
<td>ALSC</td>
</tr>
</tbody>
</table>
Appendix 7: Lakes and Ponded Water Survey Data

<table>
<thead>
<tr>
<th>Name</th>
<th>P#</th>
<th>Most Recent Chemical Survey</th>
<th>Most Recent Biological Survey</th>
<th>Fish Species Present and Number Caught</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>Source</td>
<td>ANC (ueq/l)</td>
</tr>
<tr>
<td>Unnamed Pond</td>
<td>189</td>
<td>1986</td>
<td>ALSC</td>
<td>-45.3</td>
</tr>
<tr>
<td>Upper Saranac Lake</td>
<td>114</td>
<td>2006</td>
<td>DEC</td>
<td>199</td>
</tr>
<tr>
<td>Upper Spectacle Pond</td>
<td>253</td>
<td>1993</td>
<td>DEC</td>
<td>96.09</td>
</tr>
<tr>
<td>Upper St. Regis Lake</td>
<td>265</td>
<td>2003</td>
<td>DEC</td>
<td>171.05</td>
</tr>
<tr>
<td>Weller Pond</td>
<td>209</td>
<td>1984</td>
<td>ALSC</td>
<td>74.5</td>
</tr>
<tr>
<td>West Polliwog Pond</td>
<td>122</td>
<td>1993</td>
<td>DEC</td>
<td>-53.1</td>
</tr>
<tr>
<td>Whey Pond</td>
<td>180</td>
<td>2006</td>
<td>DEC</td>
<td>291</td>
</tr>
<tr>
<td>Wood Pond</td>
<td>185</td>
<td>1963</td>
<td>DEC</td>
<td>-</td>
</tr>
</tbody>
</table>

Species Abbreviations

- BND= blacknose dace
- CS=common shiner
- PKS=pumpkinseed
- TGRM=tiger musky
- BB= brown bullhead
- GS=golden shiner
- RB=rock bass
- WAE=walleye
- BK=banded killifish
- LMB=largemouth bass
- RBS=redbreast sunfish
- WS=white sucker
- BT=brown trout
- LT=lake trout
- RT=rainbow trout
- YP=yellow perch
- CC=creek chub
- NRD=northern redbelly dace
- SMB=smallmouth bass
- Unknown = no biological survey
- NP=northern pike
- ST=brook trout
- No fish = no fish captured during survey
- C=Cisco

Saranac Lakes Wild Forest – Unit Management Plan – April 2019
Appendix 8: Citizen Discussion Group

The Department formed a Citizen Discussion Group to help in the development of this UMP. The Discussion Group was composed of representatives from local towns and sportspersons, and environmental organizations. The information gathered from the group assisted in understanding the various perspectives that exist in order that appropriate management options were developed. The Discussion Group members shared their ideas, concerns, facts, and opinions during their candid discussions of the issues. The meetings not only provided good information for the DEC but also allowed the individuals to learn more about each other and the interests they represent. While there were differing opinions on many issues, there was agreement on some of the most important issues, including the importance of stewardship of the lands and waters in the SLWF.

The Discussion Group met 13 times between February and August of 2003.

Key Recommendations

Camping:

- Close camping area at Hoel Pond due to overuse, misuse, and lack of maintenance. Relocate some camping areas at Polliwog Pond to comply with site separation and setback recommendations.

- Redesign the permit camping on Lower Saranac Lake.

- Establish consistent rules for group camping in the unit.

- Redesign campsites by hardening area for tents, establishing opportunity for resources to take a break, revolving numbered sites according to odd/even year proposal.

- Saranac Lake Islands Campground needs to be addressed: close sites, rotate site closures, increase separation distances, address parking conflicts, and take whatever other actions that are needed to provide an appropriate camping experience for a wild forest area.

- The UMP needs to bring campsites into conformity with the separation guidelines and assess the physical, biological, and social carrying capacity as required by the APSLMP. Stop managing the Lower and Middle Saranac Lake campsites as intensive use and adhere to APSLMP guidelines.

- Address lack of parking and day-use/local use sites on Middle and Lower Saranac Lakes.
Appendix 8: Citizen Discussion Group

Parking:

- Redesign parking area at South Creek to accommodate more vehicles and post the main road.
- Redesign or enlarge the parking area at Second Pond to define parking for day use, overnight use, and trailered boat use.
- Define the parking area at Hoel Pond for canoeing access to the St. Regis Canoe Area.
- Increasing parking isn't always the solution; some areas are receiving too high levels of use and these areas are often where the parking problems exist. Match the parking lot size to a level of appropriate use for the area and place "no parking" signs around the parking lot.
- Second Pond parking is not only inadequate, it is dangerous; it is both a campground and day-use boat launch.
- Find additional parking space for the Lake Flower boat launch, even if it is some distance away.

Additional Comments:

- The number of snowmobiles is too high in the corridor; access should be by permit only. Limit the number of snowmobiles.

- Barriers are needed at fishing access sites to preclude trailered boats.

- Designate trails for different uses and have clear signage on trails to avoid user conflicts.

- Laws should be enforced. If not some folks are encouraged to break them.

- Attempt to better educate the public on proper usage and preservation of the natural resource.

- Limits of acceptable change should be utilized. There should be a base line from which to work with numbers of users in all categories and the condition of campsites, trails, etc.

- There are 14 boat launch sites which meet the APSLMP's definition of a boat launch, however only 6 are listed as suitable for this purpose. The UMP must heed the APSLMP's delineations on waterway access thereby controlling use and traffic flow.

- Stronger focus on Forest Preserve education is needed.

- Assess the condition of the natural resources of the SLWF and match appropriate management actions. Management actions and a monitoring program should ensure the appropriateness of various recreational uses.
- Protection of the natural resources is paramount.

- Boat motor sizes should be appropriate for the size of the waterbody and its character.

- Consider limiting size, power and types of motors so that they are appropriate for the waterbody.

- Educate the public on land use, NYS rules, regulations, and laws.

- Personnel are needed to achieve management goals, education, enforcement, reconstruction, and maintenance.

- Match the resource with the demand; more people want easy access to well maintained trails, campsites, parking areas, and outhouses.

- Design and reconstruct trails for multiple users.

- Education/law enforcement: the level of personnel available for monitoring and enforcing compliance in this area is less than adequate. People would comply with regulations to protect this area if they understood better how to do certain things and/or why these are important.

- Snowmobiling can be expanded with minimal impact on the environment and reap economic benefit for the area.

- Increase the management for warm-water fish species such as bass and pike.

- Develop a system to provide information on the recreational opportunities in the SLWF.

- No ATV's should be allowed in the SLWF.

- Snowmobile trail inventory is needed; snowmobile mileage cap cannot be calculated into a comprehensive plan

- Status of Averyville Road extension: is it a road or a trail? Ask Attorney General for an official designation.

- Motorless water designation for Weller Pond is needed as well as some form of motorless season on Raquette River between Axton Landing and Raquette Falls.

- There will be a seed for more law enforcement personnel to enforce the new regulations from the UMP.

- Where motorized use currently exists, it should be maintained.
- Boat launches and fishing access sites should be repaired.

- No extensions of "canoe only" areas.

- The impacts of 2-cycle motor boats should be measured.

- Limit motorized use to electric motors on some ponds.

- Address the threat of aquatic invasive species.

- Determine each waterbody's capacity to withstand various uses, particularly motorized.

- Rotate campsite use based on odd/even years.

- Maintain opportunities for snowmobiling, mountain biking, and ATV's.

- Maintain hunting and fishing opportunities and access, including motorized access.

- Keep currently used motorized use trails and roads open
Appendix 9: Response to Public Comments

The following section contains responses to public comments received on the Draft SLWF UMP. The public comments came from 213 separate emails, 51 letters, and the 20 people who gave verbal comments at one of the public meetings, held in July 2017. Comments are organized by general topic.

Parking

1. Winter parking has been a problem at several trailheads because the parking lots were not plowed. One example is Little Panther, on NY Route 3. DEC needs to include plowing in its annual budget or work out agreements with DOT and municipalities to clear trailheads. DEC should not rely on volunteers to keep trailheads accessible in winter.
 - Response: Efforts will be made to develop partnerships for plowing of parking areas.

2. The commenter supports the addition of a parking lot and the prohibition of camping fires at the Peninsula Trails.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

3. The commenter supports construction of a new parking lot for 7 cars at Averyville for access to new trails in that area.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. DEC should create a winter parking area for 10 vehicles at Corey's Road near the Stoney Creek Bridge that will allow for a snowplow to turn around, and allow visitor parking during the winter months. DEC should limit public winter vehicle access beyond this parking lot in winter.
 - Response: A parking area may be built near the Stoney Creek Bridge. Any decision to allow access past this parking would be made as part of management of the High Peaks Wilderness Area.

5. Improve the parking area on Corey's Road.
 - Response: This parking area may be improved.
6. With the current parking restrictions in place in the Town of Santa Clara, please reevaluate the parking proposals for State Lands accessed from roads in that Town.

 o Response: The UMP has reevaluated the parking proposals in the Town of Santa Clara. The UMP calls of additional parking off the road.

7. Parking is needed on Floodwood Road near Polliwog Pond.

 o Response: The UMP proposes parking at this location.

8. The commenter strongly supports the proposal in the Draft UMP to expand the parking area along Floodwood Rd adjacent to the Adirondack Rail Trail crossing to hold 20 more vehicles. However, the department should allow for an even larger parking area if the Rail Trail is developed.

 o Response: The UMP has been changed to call for additional parking at this location.

9. Since you are proposing increasing the camping sites on Upper Saranac Lake from 19 to 28 I think it would be a good idea to provide a separate area for people camping on state land to park [near the boat launch] for more than 24 hours.

 o Response: The Department is considering solutions to the problem of parking while people are camping on State land. We recognize the problems with the current situation.

10. One area that needs to be addressed better is the Ampersand Mountain parking. Is 20-30 cars enough to handle all the use? This area should be the show piece of the SLWF. Currently there is a small parking area with a trail, with broken bridges, to a broken outhouse.

 o Response: The parking problem at the Ampersand Mountain Trail may be addressed in an amendment to the High Peaks Wilderness UMP. The number of parking spaces to be provided will be reassessed. Improvements may be made to the trail to Middle Saranac Lake.

11. The commenter supports Alternative 4 regarding parking for Ampersand Mt/Middle Saranac Beach. DEC should include a public bathroom of some fashion at this popular access point.

 o Response: Efforts will be made to provide bathroom facilities at this and other parking areas.

12. Building bigger parking lots without addressing the larger underlying problems will only mean that there will be more people and more cars added to the problem. DEC must begin to lay the foundation for more effective management actions to address parking, for which this UMP could act as the inaugural model.
13. The lines along the road for many of the most popular hikes – Ampersand, Giant, Cascade and Porter, etc. get incredibly long, and can pose a safety hazard since they are on the busier roads. Traffic and parking in Lake Placid can be a real bear in the summer and winter ski season. Hopefully these issues are given a high priority and the DEC is working with the towns to anticipate what the UMPs might mean for them. Bringing more people to the area – all through the year - has important benefits of course. But unmanaged congestion could quickly degrade the quality of the ADK vacation experience.

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

14. DEC should create a parking lot on Mountain Lane (Old Mountain Road) at the western end of the road near the intersection with NYS Route 73 with parking for 11 cars to provide access for winter users especially for use of the Sentinel Range Wilderness.

Response: This recommendation is included as a proposal in the UMP.

Camping

1. Pond-side camp sites have better noise insulation from their neighbors on the shore than they do from neighbors across the water. Consider adjusting camp site locations to account for this.

Response: Sight and sound separation is one consideration in the development of the campsite proposals.

2. No campsites should be closed. There should be many more campsites created, especially on Floodwood and other roads. The APSLMP should be revised to accommodate roadside camping without 150-foot paths from parking areas. This is a popular and the campgrounds are not a substitute.

Response: The APSLMP establishes standards for campsites, which must be followed by the UMP. The process to revise the APSLMP is separate from the development of a UMP.

3. If the rail trail is built, campsites should be created along it.

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. The current separation between campsites does not bother people. The best sites are being closed.
Appendix 9: Response to Public Comments

5. APSLMP is intended to be a living document. There is an opportunity to do a better job in this plan. Need to ask for a change to the APSLMP.

 Response: The APSLMP establishes standards for campsites, which must be followed by the UMP. The process to revise the APSLMP is separate from the development of a UMP.

6. Encourage the APA to set a new definition for primitive campsite in wild forest. Do not use the same as wilderness. Provide tent pads, cement slab for fires, and picnic tables.

 Response: The APSLMP establishes standards for campsites, which must be followed by the UMP. The process to revise the APSLMP is separate from the development of a UMP.

7. Campsites set back 100 feet from water are not used.

 Response: The UMP will not establish a water setback distance for campsites.

8. The commenter requests that the sites not be set back 100’ from the water’s edge, because this is an important part of the camping experience at the lakes.

 Response: The UMP will not establish a water setback distance for campsites.

9. Please do not move campsites away from shores. Also, only reduce Follensby Clear Pond sites to no fewer than 26.

 Response: The UMP will not establish a water setback distance for campsites.

10. Do not close Floodwood campsite #18 (formerly #19). The commenter enjoys the privacy and the quiet of this site.

 Response: The UMP has been modified to keep Floodwood Road campsite #18, and close #17

11. The UMP does not address enforcement of closing of campsites. Is it realistic with the current personnel and lack of funding to support closing the number of campsites?

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

12. Please reconsider taking away so many sites in some of the more popular and accessible places.
Appendix 9: Response to Public Comments

13. Commenter requests that the current campsite distances and densities remain the same.
 - Response: The APSLMP establishes standards for campsites, which must be followed by the UMP.

14. Commenter would like the DEC to reconsider its position on the drastic proposed campsite closures to Follensby Clear Pond. Please consider at least implementing other changes first, such as more frequent ranger patrolling, further restrictions on use of deadwood, setting up a system to allow fellow campers to report serious violations, and better signage and distribution of information about the rules of use for this area. And if there is simply no way to avoid closing some of these campsites, please considering doing so in a way that will not make camping on this lake inaccessible to so many people.
 - Response: The UMP has been modified so that more campsites at Follensby Clear Pond will remain, but there will still be a reduction in the number of campsites.

15. It has been a challenge for me to take advantage of the camping opportunities within the unit due to local residents staying longer than the allowed amount of time and passing off campsites to their friends and family.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

16. Commenter expresses concern over the loss of campsites on Follensby Clear Pond and how it will limit camping access for people who are looking for a combination camping and trailer/motor boat experience. For those who travel from far away, there will be heavy competition for campsites and the campsite closures will increase illegal camping.
 - Response: The UMP has been modified so that more campsites at Follensby Clear Pond will remain, but there will still be a reduction in the number of campsites.

17. Keep all existing campsites open for use on Follensby Clear Pond. It seems crazy to close the campsite only to have a shortage of campsites afterwards. It seems that the time and money of the NYS DEC and APA could be better allotted to maintain what is already there.
 - Response: The UMP has been modified so that more campsites at Follensby Clear Pond will remain, but there will still be a reduction in the number of campsites.
18. Saranac Lakes Islands Campground, extreme caution will be needed when setting up new campsites. It is a fragile environment.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

19. Is there a need of so many roadside campsites? There needs to be a balance.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

20. Modify the UMP recommendations to allow for campsite siting at less than the ¼ mile guideline and allow for sites to remain on the water. This is a designated Wild Forest area; it is not classified as Wilderness. Manage site erosion with well-designed erosion control and mitigation methods. Destroying existing sites that are already hardened, and adding new sites, is extremely costly and will put real scars upon this pristine wild forest that we’re supposedly trying to “protect.” The greatest negative impact of a campsite is incurred at its creation. Screen sites as needed with native shrubbery species that are undesirable as firewood. Require island campers to bring their own firewood. Build tent site pads to prevent campsite spread. Implement shoreline erosion control methods. Have a system where volunteers can “Adopt a Campsite” like we do with Lean-Tos, roadside clean up. We have summit stewards and watershed stewards, why not campsite stewards? Put in cement slabs as a base for campfires, which prevents ground fires. Build box privies (easier to move/maintain) when existing outhouses need to be replaced. Currently we manage camping by requiring campers to be at a designated site. Competition for dwindling sites encourages rogue camping which often results in more erosion issues and ground fires. Allow Scout, youth, etc. groups to be able to continue to fully access this area in group sizes up to 12. They’re not the problem; they’re our future.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment. Several of these suggestions are actions that may be undertaken.

21. Allow organized groups to continue to camp anywhere in the wild forest with a group of 12.
 - Response: The APSLMP establishes standards for campsites, which must be followed by the UMP.

22. The change in group camping will be difficult for groups. A size limit of eight will be a problem because there needs to be at least 2 adults. Canoe trips will be hard because of need to reserve consecutive sites while on a trip. Would need to have someone knowledgeable of the area working the reservation system.
 - Response: The APSLMP establishes standards for campsites, which must be followed by the UMP.
23. Maintain, rather than close, the Little Green sites that are already hardened and adequately screened from other sites and relocate the cluster of sites at Floodwood Road that are on top of each other with no screening.

 Response: The APSLMP establishes standards for campsites, which must be followed by the UMP.

24. The commenter is concerned that the proposed UMP inappropriately applies Wilderness standards to this area. By this definition, I would not expect campsites to be spaced as far apart as required by the proposed plan.

 Response: The APSLMP establishes standards for tent sites, which must be followed by the UMP.

25. Saranac Lake Islands need “walk-in” campsites.

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

26. Please do not close or relocate any campsites in the SLWF UMP. The sites on Floodwood Road provide an affordable and convenient campsite for locals and visitors. Regarding these sites and similar roadside sites, please make vast improvements to these sites. The same goes for Follensby Clear Pond and surrounding ponds. The sites on Lower and Middle Saranac Lake are amazing. Please do nothing with these except maybe ADD a few more day use sites.

 Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP.

27. Please reconsider your plan to close sites in the ADK's!! Having some sites that are closer together, in my opinion, helps build confidence for new camping families. Not everyone is ready to jump into camping in a site that is removed from sight and sounds of other people.

 Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP.

28. Closing the campsites is not a good idea because it is one of the areas that scout groups can enjoy freely. Also, the loss of visibility from moving the campsites back will decrease accountability. Tent pads should be created to prevent erosion.

 Response: Proposals in the UMP must conform with requirements from the APSLMP. The UMP will not establish a water setback distance for campsites.

29. Closing campsites in the SLWF will create a negative perception by the state to the tourists, which are the life blood of the Adirondack economy. Further, moving the sites requires unnecessary tax expenditure.
30. The commenter is concerned that opening St. Germain Pond to camping will bring an increased number of visitors for overnight stays and therefore increase security needs at the [girl scout] camp.
 o Response: The impacts on adjacent property owners is given consideration in the development of proposals in the UMP. This proposed primitive tent site is not expected to create problems for the adjacent land owner.

31. The proposed campsites on Forest Home Road or Beaverwood Road would not make up for the loss of campsites on the water but would encourage underage parties.
 o Response: The proposal to build a primitive tent site on Beaverwood Road has been removed from the UMP.

32. Having the parking for the new Beaverwood Rd campsite is a very poor choice. The road is very narrow and the shoulder nonexistent. There is barely enough room for two cars to pass safely and if there are several cars parked for the campsite a dangerous condition will be created.
 o Response: The proposal to build a primitive tent site on Beaverwood Road has been removed from the UMP.

33. The commenter is concerned that campsites on Lower Fish Creek Pond and Beaverwood Rd would increase noise levels through ready access to alcohol consumption as well as disposal of human waste and associated toilet paper.
 o Response: The proposal to build a primitive tent site on Beaverwood Road has been removed from the UMP.

34. The proximately of the proposed campsite on Beaverwood Rd to such a significant number of homes is not appropriate. Some homes are but a few hundred yards from the site as the crow flies and on approximately the same elevation thus presenting significant noise concerns.
 o Response: The proposal to build a primitive tent site on Beaverwood Road has been removed from the UMP.

35. The Draft UMP would close campsites on Polliwog Pond and other areas due to overuse and soil compaction. However, it doesn’t seem logical to close one site and open another site which could become “overused” over a period of time, unless the new sites are located where no one wants to use them!
 o Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP.

36. Although they fall under different APSLMP land classifications, one must ask what makes the campsites on Polliwog Pond any different, in terms of soil
compaction from overuse, then the campsites at Fish Creek and other state campgrounds? It seems that DEC is willing to turn a blind eye to “unacceptable” conditions as long as they can charge for their use.

- Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP. There are different standards for sites in intensive use areas.

37. The commenter feels the added campsites on Corey’s Road are not needed, as the campsites are never full as it is, even during the hunting season over the last couple of years. The residents of Corey’s Road may not favor additional campsites being put in closer to them.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

38. At least two campsites with shore frontage on Polliwog Pond, including campsites #1 (which the SLWF Draft UMP proposes to convert to a group site) and #4 on Floodwood Road (despite ¼-mile proximity) should be retained as drive-in sites. These should be developed into universally accessible, drive-in sites with the construction of lean-tos modeled after those at Dillon Park, hardened pathways to the pond and privies and managed through a reservation system. They could be opened to the general public when not reserved by disabled persons (or groups in the case of Campsite #1 as discussed later).

- Response: Primitive tent sites may be improved to meet accessibility standards. Additional lean-tos may be built at some primitive tent sites in the unit; however, these will not be provided at roadside primitive tent sites.

39. Floodwood Road campsite #14, on the shoreline of East Pine Pond, should be made into universally accessible, drive-in site, with the removal of the boulder in the road, and the construction of a hardened pathway to the pond, a lean-to and a privy.

- Response: Primitive tent sites may be improved to meet accessibility standards. Additional lean-tos may be built in the SLWF; however, these will not be provided at roadside primitive tent sites.

40. Construct three lean-tos at the new or existing sites (at Follensby Clear Pond) to make them more attractive to campers. Make them as universally accessible as possible so that disabled people can get from a boat up to them, even if they don’t meet ADA standards.

- Response: Lean-tos may be built at some primitive tent sites in the unit, however the costs involved would be a limiting factor.

41. Retain the existing, water-access campsite on the northern shore of Polliwog Pond at the narrow passage that leads to the small western basin. Close the campsite in the northeastern corner of that basin. Make the campsite on the
peninsula that separates the southern basin of Polliwog Pond from the rest of the pond into a combination group campsite and universally accessible campsite available by reservation. Keep the currently designated tent site on the southeastern corner of the pond as it currently is.

- Response: The UMP has been changed so that the campsite on the narrow passage will be retained. Primitive tent sites may be improved to meet accessibility standards.

42. Develop a second group campsite in addition to the one proposed in this Draft UMP on Bartlett Bay, Upper Saranac Lake so that boaters on Upper Saranac Lake could find sites before getting over the carry into Middle Saranac Lake. Develop a tent site half-way across the proposed Bartlett Carry.

- There are terrain, deed, and APSLMP restrictions that limit the potential for campsite development in this area.

43. Supports the construction of additional campsites on Upper Saranac Lake. New campsites to be developed on Upper Saranac Lake should be constructed with lean-tos. This would be more convenient for through-paddlers.

- Response: Additional lean-tos may be built at some primitive tent sites in the unit, however the costs involved would be a limiting factor. The number of proposed primitive tent sites on Upper Saranac Lake has been reduced.

44. Provide more lean-tos near most waterways and as destination points.

- Response: Additional lean-tos may be built at some primitive tent sites in the unit, however the costs involved would be a limiting factor.

45. DEC should propose stove-only use for campsites in the SLWF in areas that have significant loss of site vegetative screening and a shortage of dead and downed wood. Stove only, no campfire designated campsites would also address the significant damage caused by unattended and improperly located campfires.

- Response: DEC does encourage the use of camp stoves. Campfires may be prohibited from locations that are being restored.

46. The commenter supports the management actions explained on page 128, including properly locating pit privies or box toilets at all campsites. The commenter supports the closure of 64 campsites and building of 68 new campsites with closure of degraded campsites occurring as new campsites are constructed.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
47. The commenter supports the one week camping limit on Follensby Clear Pond and Polliwog Pond. Fire rings may need to be relocated to more sustainable and safer locations. Highly popular campsites should be managed using a permit only reservation system, fees should be charged, and the system carefully monitored to prevent cheating or gaming the system.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

48. It is overdue to address some of the roadside campsites.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

49. A limited number of group campsites should be created and regulated by a permit, reservation system. The commenter supports the Preferred Alternative discussed on Page 136 implemented with a reservation system. The commenter opposes any amendment to the APSLMP that allows groups over 12 people to camp at primitive tent sites in Wild Forest areas.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

50. The Saranac and Raquette River provide almost the only extended canoe itineraries for beginner trips. These are very important to exposure to the Adirondacks. There are going to be problems with the group permit system. Reserve America is a curse. The longer the journey the harder it will be to string together open campsites.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

51. There has been little done in the last 17 years to maintain or upgrade the sites or facilities on Little Green Pond, and efforts to do that would certainly enhance the experience and serve to protect the resource. Once in my experience was the road to Fish Pond parking area (which provides access to sites 7-12) graded, and only after years of deterioration that had begun to make access extremely challenging. I assume that the work was undertaken for the benefit of the hatchery trucks. The road has remained more than adequate but could still benefit for the long-term by adding gravel to raise the road and help with drainage and durability. The road to the day-use had more recent work, but it
could also benefit from building up the road base. This would serve to protect the area as the places that get muddy tend to be damaged and cars drive on the edges as the center of the road deteriorates.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

52. Rather than follow an outdated recommend action from over 40 years ago to have campsites ¼ mile apart, the plan should incorporate more recent data that might suggest having campsites clustered would have less overall environmental impact than spreading them out. Specifically, the proposal to build new campsites on Follensby Clear Pond would adversely impact areas that have not had human use. Most, if not all of the current campsites were placed where there were previous tent platforms and human impact has been felt for many years. Closing many of those only to build new ones where no human habitation has ever been would have even more detrimental impact.

- Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP. The process to revise the APSLMP is separate from the development of a UMP.

53. Early in the UMP process there was a suggestion that campsites not be located at canoe put-ins, what happened to that suggestion?

- Response: This was given consideration in the development of campsite proposals.

54. The commenter supports the plans by the DEC for campsite closure and relocation. The commenter supports efforts to close existing non-APSLMP-compliant campsites on the Floodwood Road.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

55. Many problems created by current uses of campsites are addressed in the plan. This is good. However, real control is going to require staff and in the field supervision. Will the human resources needed to do this be available? For instance, how does one get a permit? Will there be online or an office for this? Fees in the future – I would like to see a commitment to fee-free camping. And who is available for checking that squatters are not holding a site for the weekend or that sites are not passed from hand to hand and occupied all summer by the same group?
56. The commenter notes the expansion of sites for the disabled, but there are hordes of us who are not disabled but who don’t carry heavy weights long distances. The resident population of the Adirondacks is increasingly older and many of us are enthusiastic users of the outdoors. And then there are families with young children. Easy car access to many sites is necessary. Walking up/down the steep slope to Kushaqua or ½ mile to other ponds is not supportive of families and the elderly. In fact, it is discriminatory, confining access to the young and middle aged.

Response: Improved accessibility will be considered where feasible.

57. Sites should be close enough to the water so occupants can see and enjoy them. The lean-to on Kiwassa Lake is so far back in the trees that one hardly can see the water and the site can be dark and cold. As a result, it is seldom used. We go outdoors to be near the water and should be able to see it, enjoy it, and supervise our kids easily who are playing there. The setback restriction should be modified or dropped.

Response: The UMP will not establish a water setback distance for primitive tent sites.

58. Closing 64 sites and constructing 68 new tent sites to comply with the APSLMP’s 0.25-mile separation distance between designated tent sites is a major undertaking and, in many cases, unnecessary and detrimental to the environment. Many of the existing sites were once tent platform sites and have been used for over 65 years. Other sites in the unit are 100 or more years old. Thus, most of the existing sites are located on areas that are well hardened by use. Further, they are desirable and located on terrain well suited for camping.

Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP.

59. Fifteen group sites will not meet the demand for these types of sites, thus denying many young people the experience of primitive camping. This will contribute to the next generation of citizen having a diminished appreciation for special areas like the Forest Preserve which may result in less future support for such areas. Further, given permitting, special rules and enforcement the DEC lacks the resources to effectively manage these proposed actions. This issue also needs much more study and evaluation to develop an acceptable solution.
Appendix 9: Response to Public Comments

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

60. The commenter strongly urges that the "detailed campsite condition assessment" developed by the APA for evaluation of the 80+ campsite for SLMP compliance to be included as an appendix document to the Final UMP.

- Response: Campsite monitoring guidance will be available but will not be included as an appendix to the UMP.

61. Changes to the camping use in the SLWF is one of the most contentious components of the UMP. The informal use of some of these campsites has strong connections that transcend generations and will be sharply felt by local residents and longtime users who may not be aware of these changes. The suggestion in the UMP of a reservation system to manage the campsites of SLWF would better allow for equal-user opportunities to reserve campsites, create a more direct and open channel of communication between the DEC and camper, and would allow for more efficient enforcement.

- Response: This suggestion will not be implemented at this time but may be considered in the future.

62. The commenter supports Alternative 2 for campsite management with the following caveat. Retain some of the existing water sites that are being closed for camping to allow for day use on ponds in the SLWF.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

63. With the closing of both campsites at Whiteface Landing, that only leaves the 2 lean-to sites on Moose Island. Why not replace the closed sites with new ones on Buck Island or elsewhere on the shore in McKenzie Mt Wilderness?

- Response: This will be considered when the McKenzie Mountain Wilderness UMP is developed.

64. Create a primitive campsite on Spitfire Lake. It is the only State waterfront parcel on the lake and would provide an option for the public to camp. Most of the shoreline of the adjacent Upper and Lower St. Regis Lakes is also privately owned.

- Response: The State-owned land on Spitfire Lake is not the best location to build a campsite; however, adjacent land is covered by a conservation easement and would be an excellent location for a campsite.
65. The lean-to on Kiwassa Lake should be moved closer to the shoreline. It is so far back in the woods that hardly anyone cares to camp there. It can be moved and still comply with the 100-foot setback.

 o Response: This lean-to may be relocated if a suitable location is available.

66. DEC needs to put greater effort into creating primitive campsites. The ground should be leveled and hardened or consider installing a wooden tent platform to encourage campers to use the same tenting location. There should be a designated fire ring with a fireproof base to prevent duff fires. Many of the sites that have been recently designated for primitive camping are located on uneven ground and are rather unattractive.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

67. Since SLWF Unit gets a lot of recreational use, some of the user pressure can be dispersed by developing more opportunities (trails, campsites, etc.) in the adjacent Debar Mt WF.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

68. When camping, people want to be on the water. There are some problems with erosion that need attention. There are possibilities for volunteers to help with maintenance. Opposed to sites set back from 100 - 150 feet from water. This should not have the same regulations as wilderness. The campsite changes are an overkill. On islands sites there could be a requirement to bring firewood and not cut vegetation.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

69. The closure of roadside campsites on the Floodwood Road, Hoel Pond and Little Clear along with campsites on Follensby Clear Pond and others not meeting separation standards is long overdue and correct. To assume however that some of these sites should then be recreated on Upper Saranac Lake and elsewhere does not make logical sense. These are distinctly different outdoor experiences and the current sites on Upper Saranac Lake are significantly underutilized and have been for decades. In addition, the new proposed sites encourage motorized boat access; the group site opposite Buck Island is not warranted and poses a threat to become a party site with easy motorized access from Saranac Inn, Fish Creek Public Campsite as well as landowners and renters.
Appendix 9: Response to Public Comments

- Response: The number of primitive tent sites proposed for Upper Saranac Lake has been reduced.

70. On page 61 opportunities for persons with disabilities is discussed, but there is no mention of the need to have water access only campsites suitable for persons with disabilities.

 - Response: Primitive tent sites may be improved to meet accessibility standards.

71. Need to add the phrase “except for sites used during the big game season” to the action about limiting camping permits to one week.

 - Response: This has been added to the UMP.

72. If it is absolutely necessary to move a campsite back from water’s edge, the creation of a small shoreline open area associated with these sites where campers can relax and enjoy the view or eat their meal could take a little of the sting out of some setbacks.

 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

73. We are concerned about how the touring public will be informed about changes as they occur. Maps that will require reprinting will also be slow to appear; and as the plan is likely to be implemented over the course of many years, tourists may have maps showing campsites that no longer exist and not showing new sites. We recommend the placement of kiosks with continuously updated maps, showing campsites, portages, hiking trails, bike trails, and winter sport trails at each entry point into a system. Much more outreach is needed than currently exists. For instance, a significant number of paddlers that are unaware of the long-standing reservation system on Middle and Lower Saranac Lakes, and are trying to beat darkness to get to campsites on Upper Saranac Lake.

 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

74. There are a large number of campsites that are proposed to be eliminated on Follensby Clear and surrounding areas. It appears in the UMP that the large loss of campsites in and around Follensby Clear Pond is being supplemented by adding campsites on Upper Saranac Lake. The issue, from my experience, is there is a totally different user group on the Saranac Lakes versus those that visit and stay at Follensby Clear and the surrounding areas. Therefore, the large reduction in campsites in these areas will likely lead to those individuals not visiting these areas again as there are not similar camping accommodations.
being considered in your alternatives. This is in direct conflict with the effort being undertaken by Governor Cuomo, NYS DEC, and various other state agencies encouraging folks to visit the Adirondacks. The roadside camping locations at Little Green and Floodwood Roads are usually filled during the summer months. There are a large number of campsites being removed with the proposed plan and the additional sites being added to supplement some of the removed sites offer a much different camping experience. I would ask the staff working on this plan if you were accustomed to camping on Little Green Pond or Floodwood Road along the water for several years, would you be inclined to move to a camping location on the side of NYS Rt. 30, NYS Rt. 186 or any of the other locations depicted? There are only a certain number of locations in the Adirondack Park that offer this experience and the demand for these locations far exceeds the supply. The proposed alternatives offered in the UMP further eliminate the supply of these camping experiences. The NYSDEC should consider modifying the UMP to allow the campsites that currently exist to remain. Enhancements could be added that would help better protect the state land. This could be accomplished with better signage, information on invasive species, or possibly some volunteer stewards similar to what occurs in other locations.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment. The UMP has been modified so that more primitive tent sites at Follensby Clear Pond will remain, but there will still be a reduction in the number of primitive tent sites.

75. Expanding the current regulations that cover Lower Saranac Lake to also cover Middle Saranac Lake and Weller Pond is necessary and overdue. These areas should have been included in the original creation of this campground.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

76. The Saranac Lake Campground needs to define where a campsite begins and where it ends. Some sites have small beaches and non-renters pull up to use the beach saying this is public land. The Second Pond boat launch smells horrible.

- Response: Private numbered sites at the campground, are for the sole use of the paying customer and can be enforced, please make sure a ranger is notified of future problems. New efforts have been made to combat the odor at the Second Pond latrine.

77. All of Lower Saranac Lake, Middle Saranac Lake, and Weller Pond should be covered by the Saranac Islands Campgrounds Rules and Regulations.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
Trails

1. The commenter feels that the new trail proposed behind Turtle Pond is not of any benefit given the current trails in the area that are already being used. It would be better to improve public access to the south end of Turtle Pond from the parking area off route 86.
 - Response: The UMP now includes a statement that the access to Turtle Pond may be improved. The proposed trail addition will be kept in the UMP. It would provide a new loop trail opportunity, which may be an interest to some people.

2. The commenter strongly and enthusiastically supports the NYSDEC proposal to improve and expand single-track mountain bike and cross-country skiing trails in the Saranac Lakes Wild Forest.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

3. The commenter supports the construction, designation, and maintenance of single track mountain bike trails, and supports Alternative 2. However, if DEC intends to build wilder trails it must map sections by design, width, and intended use and explain the rational for wider trails. Single track trails are appropriate for use with hikers and bikes, and wider trails are not needed for beginner bikers. We endorse posting as “closed to bike use” those trails which the UMP determines should be closed to bike use for environmental impact and/or user conflict concerns.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. Concerned about mountain bike trail proposals. How will the trails be managed and regulated? The trails need to avoid wetlands.
 - Response: The trails will avoid wetlands and other sensitive areas as much as practical. Construction of the trail will follow established mountain bike trail standards and management guidance.

5. DEC should provide the reason for closing trails to bicycles that are approximately a mile or more in length that are not steep, rocky or wet. Trails that fit this category include: Black Pond, John Brown Farm, Lower Lock, Meadow Pond, Pine Pond Esker, West Pine Pond, and West Pine Pond to Rock Pond.
 - Response: An explanation of why trails are closed to mountain bike use has been included.

6. Trails must be designated for Mountain Biking use or non-use. To assume they can be used if not designated ‘no use,’ is foolish and not protective of the wild forest character, not to mention the safety and enjoyment of the rider. Most trails
in the SLWF are not properly maintained to start with; so, blow-down, mud, bridges and wetland areas can become hazardous and detrimental to environmental preservation. Mountain biking and road biking are clearly increasing and popular trends, but it is wrong headed to assume they can go where they please unless prohibited by a sign.

- Response: DEC regulations state that “The operation of bicycles is permitted on all roads and trails on Adirondack forest preserve wild forest areas except for those roads and trails posted as closed to bicycle operation.”

7. The trail from Little Clear Pond to Meadow Pond should remain open to bicycles so one can ride from Conley Rd out to Route 30. Since part of this trail is now included in the St. Regis Canoe Area and bicycles are prohibited in the Canoe Area, the boundary should be moved to coincide with the trail so bicyclists can continue to use this trail.

- Response: This trail crosses the Saint Regis Canoe Area, so it cannot be opened to mountain bikes.

8. The new trails planned for skiing near Moose Pond should be constructed to also accommodate bike use.

- Response: The proposed trails at Moose Pond will not be opened for mountain bike use. The reasons for this decision include the fact that this area is adjacent to the McKenzie Mountain Wilderness (a strong preference will be for new development in this area to be wilderness compliant), one of the access trails crosses the wilderness area, and the development of a mountain bike trail system would likely lead to overuse of this location.

9. The commenter supports the proposals for new foot trails in this unit, which total over 36.6 miles. Over 34 miles of these trails are either designed as new mountain bikes systems or will be open to mountain bikes. While we are generally supportive of new mountain biking trail networks we urge the DEC to seek out opportunities for trails that are foot trails for walking without having to compete other uses.

- Response: There will be a provision for some foot only trails.

10. Would like to see the development of the Saint Germain Carry. It runs between Lake Clear and Upper Saint Regis Lake.

- Response: This trail is included in the UMP, but a change has been made in the proposed route of the trail so that the trail will go to Saint Germain Pond instead of Lake Clear.

11. The commenter supports the new carry trail from Lake Clear to Conley Road. We also support the re-route of Scarface Mountain Trail, the re-route of the Bartlett...
Carry trail off the road and into the woods. The commenter supports the closure of the trail from the Rollins Pond Campground to Deer and Lead Ponds. The commenter also approves of the designation of a trailless area of over 7,400 acres in the SLWF.

- Response: The proposal for a trail from Lake Clear to Conley Road has been removed from the UMP.

12. Carry trail proposal from Lake Clear to Little Clear should be reconsidered.

- Response: This trail proposal has removed from the UMP.

13. The draft plan calls for creating 36.7 miles of new trails. Due to restrictions on the setting of body-gripping traps within 100' of trails, the building of new trails creates 200' wide swaths of restricted trapping zones. If a trail is routed along a stream, shoreline, ridge rim, etc., then trappers lose access to the best set locations in a larger area. Each mile of trail affects 24 acres and 36.7 miles of trails would affect 880 acres! If new trails are to be created, then a DEC biologist/trapper should be involved with the route planning to minimize this problem just as trails are routed away from rare plants and sensitive areas.

- Response: The authors acknowledge that the trail proposals will impact other recreational use. The layout of the trails will consider these impacts and seek to minimize these impacts. A significant area of the SLWF is being managed as an area without trails as a way to balance these conflicts.

14. The commenter recommends the following management actions related to the Brewster Peninsula area: 1) As stated in the proposed management actions, these trails are used for cross-country skiing, biking, hiking, fishing and dog walking. I would suggest that these trails be considered as recreational hiking trails rather than nature trails and should be managed as such. The name should be changed to Brewster Peninsula Trails and signage should reflect this change. 2) The 14 interpretive panels should be maintained and there should be the option of adding additional panels in the future. These could be historical, natural history, or simply informational panels. The future panels should be of the same durable, attractive materials as the current panels. 3) The trails should be maintained to much higher standards than are currently in place. They are heavily used and are showing serious signs of neglect. This is DEC property and trail maintenance is part of the DEC mission. Volunteers can certainly be part of the mix but the major maintenance should be the responsibility of professional trail crews. 4) The small numbered signs that were created to accompany the printed brochure should be removed and the printed brochure should be made accessible through a downloadable app rather than as hard copy. 5) An updated map should be created and installed in the same format as the current interpretive panels. This map should be of high quality such that it may be
Appendix 9: Response to Public Comments

photographed with a cell phone and utilized by people on the trail at the time of their visit. 6) New signage should be created which has correct spellings of the trail names. Signage should appear at all intersections should include a durable, high quality map showing where the visitor is on the trail system at that intersection. 7) There should be options for rerouting trails to avoid wet areas or in the case of damage due to blow down or other catastrophic events that cause sections of a trail to become impassible or unpleasant for casual walkers.

 o Response: These suggestions may be implemented in the management of the area. The trails in this area are considered to be nature and interpretive trails because under the APSLMP this is a distinct improvement from a traditional foot trail and could receive a higher level of management.

15. The building of connector trails between Rollins Pond Campground and the Adirondack Rail Trail should be moved down in the implementation schedule from year 1 to year 2.

 o Response: This proposal will be kept in year 1 of the schedule but may be deferred depending on several factors.

16. The commenter agrees that spending time and resources on the trail section from Rollins Pond to Deer Pond is not practical, since the outlet of Deer has become very difficult to cross and much money would need to be spent to bring it back to a useable condition. The plan should state that it won’t be “officially” closed; but will be allowed to deteriorate naturally.

 o Response: The trail will not be marked as closed, so that people may walk on the route. Actions may be taken to address any natural resources impacts caused by the trail.

17. The commenter supports the 2.18 miles of new snowmobile trails to be opened and the proposed closure of 15.33 miles, comprising a net loss of 9.82 miles of snowmobile trails in the SLWF. The commenter believes any new trails in the SLWF should be class I trails with the character of foot trails and groomed only by utility snowmobiles with drags.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

18. Class II Community Connector Snowmobile Trail Construction Violates the Adirondack Park State Land Master Plan and Article XIV, Section 1 of the State Constitution: The SLWFUMP proposes 2.18 miles of new class II community connector snowmobile trails. The APSLMP defines a snowmobile trail as “a marked trail of essentially the same character as a foot trail” and mandates that it be “compatible with the wild forest character of an area.” A snowmobile trail “should be designed and located in a manner than will not adversely affect
adjoining private landowners or the wild forest atmosphere....” Class II community connector snowmobile trails are 9-12 feet in width and are road-like and simply do not have the character of a foot trail, which violates both the wild forest character and the wild forest atmosphere of the area. The commenter has consistently stated that class II community connector snowmobile trails do not conform to these three standards.

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

19. **Class II Community Connector Snowmobile Trails Violate the State Constitution:**

Class II community connector snowmobile trails are designed and built for snowmobiles to travel 25 miles per hour or higher and be groomed with large tracked groomers. No other recreational “trail” use sees this kind of speed. No other trail system in the Forest Preserve requires 9-11-foot-wide trails, specifically designed and constructed to allow regular grooming with large multi-ton motor vehicles and high-speed snowmobile travel. Unlike other trails built by hand, these trails are excavated with heavy machinery, utilize extensive bench cutting, remove thousands of trees over 3 inches diameter at breast height (DBH), remove tens of thousands of trees under 3 inches DBH, remove the entire native understory, often replace the native understory with a grass mix, open the forest canopy, often fracture and chip away bed rock, utilize oversized bridges often equipped with reflectors, and are built to handle operation of motor vehicles. No other recreational activity in the Forest Preserve, outside of Intensive Use Areas, requires such profound terrain alteration and destruction of natural resources.

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

20. **The commenter supports the DEC’s decision to reduce the overall number of snowmobile trails within the SLWF. The commenter supports Alternative 1 for the snowmobile trail to Heavens Pond.**

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

21. **Allow the construction of new trails and trail connectors that enable the realization and implementation of the Saranac Lake Circuit, a 30+ mile loop that starts and ends in the village of Saranac Lake. Trail section specifics include 1) A trail that leaves the Village of Saranac Lake via the rail trail across the Lake Colby Causeway and cuts SW to Forest Home Road. This trail parallels Forest Home for a short distance before heading south to Lower Saranac Lake following a well-established herd path. 2) A trail that follows SW along the shoreline of Lower Saranac lake behind the campsites here, around Boot Bay and Kelly Slough and along the Saranac River. 3) A foot/ski bridge that crosses the...**

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
Appendix 9: Response to Public Comments

Saranac River at the Upper Locks. This bridge could be designed to blend into the current infrastructure there as much as possible. 4) A trail that leaves the Upper Locks and follows roughly along the southeastern shore of Lower Saranac Lake to the SLIC Headquarters Second Pond/State Bridge Boat Launch on Route 3. This trail would preferably have a spur to an overlook at Devil’s Pulpit. 5) The trail would continue eastward from Second Pond, through the Eastern High Peaks Wilderness and then back on to SLWF land to the Pine Pond Trail. It is in this vicinity where AHH would like to construct on private land on Oseetah Lake an ecododge that is universally-designed and can accommodate people with disabilities. I recommend that a trail accommodating people in wheelchairs be built from this place of lodging on private land that crosses SLWF and Eastern High Peaks Wilderness land to Pine Pond. 6) The SL Circuit Trail would then follow south on the Pine Pond Trail. I recommend a new section of trail that leaves the Pine Pond Trail in the vicinity north of Alford Mountain and travels up to the summit of Scarface Mountain. This trail would provide great views from the cliff ledges on the west/southwest face of Scarface Mountain and thereby maximize the trekkers’ experience as they summit Scarface. 7) The Saranac Lake Circuit would then follow down the existing Scarface Mountain Trail into Ray Brook. I recommend that the current Scarface Trail be moved to near or at the Meadowbrook DEC Campground. The popularity of the Saranac 6er program requires increased parking for the 6er mountains. This move would result in the Scarface Trail taking hikers directly into the commercial center of Ray Brook. 8) The Saranac Lake Circuit Trail will, at least in the short-term, follow along the proposed rail trail to the Haystack Mountain Trailhead along Route 86 where hut-to-hut trekkers would then continue their hike up to Haystack and then McKenzie if they wish. I would like for the DEC to consider working with the private landowner at Wolf Pond, if possible, to reestablish the hiking trail that leads to Haystack Mountain via the vicinity of Wolf Pond. This would underscore AHH’s efforts to create (or in this case, reestablish) trails that leave from communities and not roadside trailheads. This route also would be more direct for hut-to-hut trekkers. 9) The remaining sections of the Saranac Lake Circuit that return trekkers to the Village of Saranac Lake involve the McKenzie Mountain Wilderness and are thus outside the scope of this UMP.

- Response: This proposal would require consideration and action in several UMPs. There are additional details that need to be developed for this proposal to be considered. Therefore, this proposal will not be included in the UMP. As this project moves forward the UMP may be amended to fully consider these trails.

22. The commenter supports the DEC proposal for a new interpretive trail on the east side of Lake Clear and upgrades to the two existing interpretive trails. Every Wild Forest area should have an interpretive trail.
Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

23. The commenter supports the DEC’s efforts to educate the public about bald eagles through an interpretive trail along Lake Colby. The commenter asks that there be posting around the nesting area to establish a buffer to minimize habitat and human disturbance.
 - Response: Efforts will be made to provide a buffer between the nest site and recreation use.

24. Need to include better maps showing the location of each trail listed in Table 17 with an identification number. For trails that are not mapped, include a description to clarify the location.
 - Response: The maps have been changed to improve understanding of the proposals.

25. Reroute trails to avoid wet areas or steep eroded sections. Replace bridges that have collapsed. Perform routine maintenance. DEC needs more resources dedicated to stewardship of Forest Preserve lands, including hiring trail crews rather than relying on volunteer labor.
 - Response: Actions may be taken to address existing problems.

26. The commenter supports the creation of an accessible trail at Monument Falls along the West Branch of the Ausable River. Additionally, we would encourage the DEC to install a permanent vault toilet facility at this location.
 - Response: The DEC will work to provide sanitary facilities at appropriate locations.

27. The commenter supports the 7,400-acre trailless area. A motorless and trailless core should be a goal within every Wild Forest area and UMP.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

28. We are not opposed to the area without trails, but we are opposed to any reference to the term “hunting” in connection to the ‘trailless’ area. We did not ask for a separate “hunting” area, nor do we want one designated in any form or manner. We have not had any conflict with other users. This is a multi-use area, not strictly for hunter use, and it should not be labeled so, any more than any other area. Hunters use all multi-use areas including foot and bike trails as all other users do for access, but hunters usually exit the trails to get to areas where the wildlife they are hunting is found. Hunters also use trails for retrieving harvested game. Officially discussing the activity of “hunting” within a ‘trailless’ area further discriminates against disabled hunters. Our position is that the association of “hunting” and the proposed ‘trailless’ area raises a false concern in
the minds of non-hunters that hunters are dangerous and should not be on multi-use trails, when in fact there has never been a firearm or bow accident documented in connection with multi-use trails in the Adirondack Park. Through the Pittman-Robertson Federal Aid in Wildlife Restoration Act and license sale revenues deposited in DEC’s Conservation Fund, hunters fund the wildlife conservation efforts that take place on DEC lands with and without trails. We strongly object to the use of the terms “hunting” and “hunter” in the proposed trailless area and want these terms eliminated from that section in the final document. Strike the sentence: “This area is used during the deer hunting season, keeping this area without trails will help to ensure that hunters can continue to use the area without conflict from other users.”

- Response: The wording for this proposal has been change to reflect this comment.

29. The commenter would like to see the development of a new “boat-to-trail” experience for boaters and hikers on Lower Saranac Lake. Boaters could navigate to a new trail constructed from water’s edge from on Lower Saranac Lake to the top of Boot Bay Mountain combining two of the most common recreation activities in the Adirondacks – water travel and mountain hiking.

- Response: A trail will not be developed to Boot Bay Mountain, in keeping with the intended trailless management of that location. A proposal has been added for a trail that may be built from Middle Saranac Lake to connect with any rerouted Ampersand Mountain Trail.

30. Commenter strongly and enthusiastically supports the NYSDEC proposal to improve and expand single-track mountain bike and cross-country skiing trails in the Saranac Lakes Wild Forest. These trails will directly benefit the local communities in several key ways: 1) Provides direct access (minimal or no driving) to Forest Preserve lands from the hamlet areas, thereby creating new recreational opportunities for local residents and visitors alike. 2) Creates a long-distance trail which will provide a unique backcountry mountain biking, ski touring and hiking experience in the region. 3) Preserves existing trails in the unit that have been deemed appropriate and sustainable for continued use by mountain bikers and other recreationists. 4) Provides sensible opportunities for creating new ski touring trails and improving connections on the Jackrabbit Ski Trail. 5) Connects the communities of Lake Placid and Saranac Lake with a system of single-track trails that will complement and add value to the 34-mile Adirondack Rail Trail currently being planned for construction in the Lake Placid-Remsen Travel Corridor.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

31. The draft UMP provides a sensible yet ambitious plan to develop a trail system between the communities of Saranac Lake and Lake Placid, in the heart of the
Park’s largest regional tourism destination. Still 25-35 miles of new foot, bike and ski trails is a tremendous amount of work. Significant investment by New York State will be required to build the trails proposed in this draft UMP, combined with thousands of hours of professional and volunteer labor and continued coordination between the DEC, Barkeater Trails Alliance, Adirondack Mountain Club, Student Conservation Association, local municipalities, other recreational groups, and adjacent landowners.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

32. Commenter strongly supports the proposal to preserve the Loggers Loop trail network, and also supports a modest expansion to the overall trail mileage for purposes of connecting the existing network of trails to NYS Route 86, just westerly of River Road (opposite the Connery Pond Rd parking area). Extending the trail to a new parking area in this location will allow direct public access via Saranac Lake Wild Forest lands as well as provide a convenient access point from the Wilmington area. Specifically, we recommend the following new trails or re-routes: 1) Extend the main “Loggers” trunk trail to Rt. 86 as described above, beginning at its intersection with the start of “Loop 3”. Select a route that is suitable for both mountain biking and ski touring. The existing section of the “Loggers” trail is skiable and extending this trail to Rt. 86 will allow skiers to reach the Whiteface Landing trail directly from the hamlet of Lake Placid via the Jackrabbit Ski Trail. 2) Allow for modest re-routes of the existing “Loggers” trunk trail to address erosion and drainage issues (much of this trail follows an old road grade and was not originally designed to accommodate mountain bike use). 3) Allow for up to 0.5 mile of new trail to be constructed to “close the loop” on the existing “Loop One” trail. This would allow the entire loop to be located on state lands and would eliminate one of the connections between the private “Lussi Trails” network to the west. 4) Preserve the “Loop 4” trail that begins at the existing “Loop 3” trail and ends at the outlet of Cherry Patch Pond on Rt. 86 (locally this is known as the Cherry Patch trail). Install bog bridging on persistently wet areas and allow for minimal tread improvements to address erosion and drainage issues. Maintain the difficulty of the trail for advanced-expert riders. 5) Construct a new section of trail from the parking area near the outlet of Cherry Patch Pond on Rt. 86, heading west between the pond and the highway, where it would intersect with an existing trail that runs parallel to Rt. 86. The trail ends at an existing parking area near the state land boundary and directly adjacent to the private “Lussi Trails”. This route is shown as existing on Map #10 in the draft UMP but some new construction and tread improvements are necessary to make it suitable for mountain bike use. Opening this section to mountain bikes would eliminate the need for people to ride on the state highway between the existing “Loop 4/Cherry Patch” trail and the existing parking area.
Appendix 9: Response to Public Comments

371

33. Trails in the vicinity of SR 86, Old Military Rd, Barn Rd, and Carolyn Rd (Lake Placid): Commenter strongly supports the proposal to construct a system of trail loops on these tracts of land in the unit that are segmented by local/county roads. Once constructed, these trails would be accessible by bike or foot from the hamlet area of Lake Placid via the Jackrabbit Trail and existing trails on adjacent private lands (known as Fawn Ridge).

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

34. Trail alignments on these tracts should not be limited to the periphery of each tract (as depicted in Map 10), but instead routes should be chosen based on accepted principles of mountain bike trail construction, including but not limited to factors such as terrain, slopes, soils, tree cover, user experience, and unique natural features. This may necessitate locating trails in the interior of each individual tract. This area of trail development is best suited for a “stacked loop” system given its close proximity to the hamlet area and adjacent trails located on private land.

 o Response: Language in the UMP has been modified to consider these factors in trail layout, however, to mitigate impacts on natural resources and other user groups, routing trails to the periphery will be given strong consideration.

35. Supports the construction of a modest parking lot on Barn Rd to provide a centralized access point for this network. For safety reasons, we do not support the use of existing pull-offs on Rt. 86 between Old Military Rd and Carolyn Rd. for trail head parking.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

36. Commenter strongly supports the proposal to create a long trail loop around Scarface Mountain, with multiple access points from Rt. 86, Averyville Rd, Old Military Rd and the Adirondack Rail Trail. Such a trail would provide a long-distance, backcountry mountain bike experience unparalleled in the Adirondack Park. The individual segments of this trail, when paired with other planned single-track trails, creates a mountain bike connection between the hamlets of
Lake Placid and Saranac Lake. The trail can be biked or hiked as a full loop, or users can enjoy shorter distance trips from the multiple access points. Furthermore, the planned Adirondack Rail Trail would complement this trail network and would allow mountain bikers a full range of riding opportunities and experiences. Specifically, we submit the following comments regarding this trail network: 1) create a small system of loop trails in the area immediately to the west of the Prison Water Line Truck Trail, between the Adirondack Rail Trail and Rt. 86. This location would provide a unique riding experience in a plantation pine forest close to the highway and golf course. 2) The proposed new parking area and trail head on Averyville Rd is adjacent to the existing parking area/trail head for the Northville Placid Trail, which is located in the High Peaks Wilderness. DEC should provide clear signage to differentiate between the mountain bike trails to the north and the Wilderness Area and NPT to the south. Even with education, this creates a potential management and enforcement issue. 3) The trail from the DEC Meadowbrook Campground in Ray Brook to the Scarface Mountain trail should be improved as necessary to facilitate mountain bike use. This would encourage visiting mountain bikers to utilize the state campground and allow for a unique experience of riding directly from the campground to the Scarface Mountain trail network. 4) The draft UMP proposes to use a segment of the existing Scarface Mountain foot trail. Portions of this trail may not be suitable for mountain bike use as currently designed. The plan should allow for tread improvements to protect natural resources and facilitate mountain bike use where appropriate. Additionally, the existing bridge near the beginning of the trail may need to be modified to better accommodate mountain bike use.

- Response: These suggestions have been added as proposals to the UMP.

37. Commenter strongly supports the proposal to improve and expand a network of trails in the vicinity of Turtle Pond and the Jackrabbit Ski Trail. The terrain and soils in this area are well-suited for single track trail construction and would allow for a “stacked loop” trail system that would appeal to both beginner and advanced mountain bikers. This network would be accessible directly from the hamlet of Saranac Lake via the Adirondack Rail Trail and/or Rt. 86, as well as from the planned parking area on Rt. 86 for the rail trail. This segment of the Jackrabbit Trail, and the existing trails, are already used by mountain bikers, hikers, skiers and snowshoers. An improved system of loops would be appealing to these users.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

38. The trail between Forest Home Road and the Adirondack Rail Trail has little value to mountain bikers. It does provide a connection between Forest Home Rd
and the Adirondack Rail Trail but does not connect to any existing or planned bike trail networks and is therefore unlikely to see much mountain bike use.
 o Response: This trail proposal has been removed from the UMP.

39. Commenter strongly supports the proposal to allow for construction of a roughly 1-mile section of ski trail parallel to Mountain Lane between Rt. 73 and the trail head for the Old Mountain Rd section of the Jackrabbit Ski Trail. Currently skiers traversing the Jackrabbit Trail south toward Keene are usually forced to walk on Mountain Lane (except for the rare instance when sufficient snow is found on the usually plowed road). We also support the construction of the small parking lot at the end of Mountain Lane to alleviate some of the parking issues at the Old Mountain Rd. trail head.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

40. Commenter fully supports the proposal to construct a loop to extend the Moose Pond trail, a popular backcountry ski tour outside Saranac Lake with views of the Mackenzie Mountain Wilderness.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

41. We are aware of concerns raised by the hunting community regarding the new trails proposed in the draft UMP, especially the long-distance loop trail around Scarface. With Adirondack winters arriving later and later each year, it is inevitable that mountain bike use of the trail networks will continue to extend well into the regular big game hunting season. Given the long-standing use of these lands for hunting some conflict is inevitable. We are committed to working with DEC, APA, and the local hunting community to reduce the potential for conflict between mountain bikers and hunters on trails in the Saranac Lakes Wild Forest. We propose that DEC form a working group to bring trail groups and sportsmen together so that all stakeholders can understand where potential conflicts may arise with new trail development.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

Roads and Administrative Roads

1. The commenter would like to see the road to Rat Pond from Route 30 maintained and repaired along its entire length, space allocated for four vehicles along the water’s edge, ensure the hatchery trucks can reach the pond, and allow driving along the railroad tracks from the north within 50 feet of the pond.
 o Response: The UMP has been change so that the Rat Pond Road from Route 30 may be improved. Road access to the north of the pond will not be provided.
2. Develop roadside drainage areas, where it appears the shoulder of Floodwood Road has been bulldozed, to accommodate at least two vehicles each for hunting or paddling access; form an agreement with the Town of Santa Clara to allow parking in these spots.
 - Response: This suggestion has been added as a proposal in the UMP.

3. The commenter objects to the closure of road access to campsites #1 and #2 on Polliwog Pond, off Floodwood Road.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. The commenter supports the closure of motor vehicle roads as described on pages 117 and 118 of the draft UMP and urges stronger enforcement actions on these roads to reduce or prevent illegal ATV use. Effective ATV barriers and gates should be employed to discourage and prevent illegal ATV riding.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

5. There is also a road which is of uncertain legal status (as to whether it is a town road or not). This road is known as Kelly or Pine Pond Road or an extension of Averyville Road. It runs along the border between the SLWF and the High Peaks Wilderness. Right now, this road facilitates trespassing on the Forest Preserve for illegal ATV and motor vehicle use.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

6. Work with Towns of North Elba and Harrietstown to resolve the legal status of Pine Pond Road.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

7. The issue about Averyville Road should be addressed in this UMP.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment. This is a legal issue that is outside the scope of this plan.

8. The plan does not currently address the use of bicycles on administrative or department roads. Bicycles should be allowed to use such roads for recreation and access to the SLWF.
 - Response: This has been added to the UMP.
Appendix 9: Response to Public Comments

9. A concern about the speed of cars on Floodwood Road. There should be a speed limit.
 o Response: This issue is outside the scope of the UMP.

10. The town and village have just made new maps for the Peninsula trails. The commenters maintain the road from NY Route 86 to the end of Peninsula Way. It should not be their responsibility to keep the area graded and plowed so people can use the trails. The town, village and state should take the responsibility for maintaining the road from Rt. 86 to the Peninsula trail head, plus the new parking area.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

11. The current parking for the Brewster Peninsula area is grossly inadequate and creates a serious hazard.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

12. The road to Connery Pond is listed on page 87, table 12. It should be noted that the DEC does not have a right to cross the private properties at Connery Pond. The Fish and Wildlife Management Agreement provides access to the pond for fishing.
 o Response: This information has been added to the UMP

Boating

1. Commenter requests that motorboats be banned on Rollins Pond.
 o Response: A complete motorboat ban is not warranted at this time.

2. Motor boats should be banned from Rollins Pond to prevent the introduction and spread of invasive species and protect the loon population.
 o Response: A complete motorboat ban is not warranted at this time.
 Measures to address the problem of invasive species will be implemented.

3. Some water access points should not permit motors at all. Motors of any kind at South Creek, for example, are a problem. Motor users would need to row/pole some distance. Monitoring and enforcement of visitors’ self-restraint will be difficult. Let motors come to Middle Saranac Lake from Second Pond, where there is a boat monitor.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. The effects of the rail/trail, which is subjected to small craft access, should be considered before additional lake and pond access is considered.
Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

5. The plan does not mention the water ski course that has been in existence for many years in Pope Bay, Lower Saranac Lake, this certainly does not meet the requirements of a wild forest and waters area.

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

6. On page 144 motor boat usage and conflicts are discussed. The present conditions do not reflect the numerous concerns about boat usage on Lower Saranac Lake and Ampersand Bay. There are many places where human powered vessels are at risk when wake creating vessels pass by. Some of the same protections afforded the smaller bodies of water must be made to apply to portions of Lower Saranac Lake. Ampersand Bay should have a maximum speed limit of 5 miles per hour. The 5 mph that applies to within 100 feet of shore should apply within 300 feet of shore.

Response: The majority of the property in Ampersand Bay is privately owned, so this UMP is not the best venue to address motorboat usage in that area.

Invasive species

1. Commenter would like to see the UMP address the issue of invasive species more aggressively. The UMP should call for monitors/educators at all trailer ramps and boat washing stations at strategic points.

Response: Additional language about invasive species has been added. Wording has been added to the UMP describing the importance of boat launch stewards. Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

2. The Plan needs to elaborate its preventive strategies to thwart the spread of AIS, address the management of current infestations and outline what resources are needed to support AIS prevention and maintenance.

Response: The UMP now includes recommendations from the New York State Aquatic Invasive Species Management Plan.

3. A primary management tool to minimize the possible introduction of AIS should be to limit and control access at non-monitored access sites.

Response: The UMP now includes recommendations from the New York State Aquatic Invasive Species Management Plan.
4. Where monitors are not available (i.e. Lake Colby and South Creek), proper gating should be maintained to prevent un-inspected trailers.

 o Response: The UMP now includes recommendations from the New York State Aquatic Invasive Species Management Plan.

5. Upper Saint Regis has a wash station and it is free of invasives. Every launch should have a wash.

 o Response: Wash stations are being established on a regional basis.

6. There are no management recommendations in the plan to address aquatic invasive species, though the shore of Lower Saranac Lake is 80 percent State owned.

 o Response: Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

7. Float-on / float-off trailered access be banned at the water way access sites to prevent the spread of aquatic invasive species.

 o Response: The UMP will restrict float-on / float-off trailer boat access to boat launches. The UMP now includes recommendations from the New York State Aquatic Invasive Species Management Plan.

8. Declare motor-free water bodies that are both accessed only by car-top boats and currently free of invasive species. While car-top boats play a role in the spread of invasive species, they pose a smaller risk.

 o Response: Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

9. Given the increasing risks to native plants and animals that invasive species and climate change pose, how will the DEC evaluate and prioritize the risks to each waterway? How will the DEC and townships cost effectively enforce and monitor boat cleaning? How will the DEC prioritize and manage sites in need of remediation? How will it monitor and manage pollutants, which will inevitably accompany any increased usage of waterways by motorized watercraft?

 o Response: Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP. The State has instituted regulations at deal with the transportation of invasive species.

10. The commenter is very concerned that there is no site-specific plan outlined in this UMP for invasive species spread prevention, early detection and rapid response, and eradication management actions.

 o Response: Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

11. The commenter is concerned about the proposed new trail to Heavens Pond and the subsequent potential increase to boating and fishing that could lead to AIS
Appendix 9: Response to Public Comments

infestation. Invasive species at Heavens Pond would also spread to downstream waters, which are otherwise protected from invasive species introductions. The UMP needs to better address AIS protections for Heavens Pond.

 o Response: Additional language about invasive species has been added to the UMP. Wording has been added describing the importance of invasive species prevention. Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

12. Concern about threat of invasive species to Heavens Pond. The snowmobile trail should be blocked so that motorized access is prohibited. Should take steps to reduce threat of invasive species while providing access.

 o Response: Additional language about invasive species has been added to the UMP. Wording has been added describing the importance of invasive species prevention. Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

Water Access

1. In places where the terrain is not amenable to back a trailer to water’s edge, at the very least the access sites need to be wide enough to allow small boats to be carried as easily and as short a distance as possible to the water. The obstacles to prevent launching of large boats are positioned too close together for the users of small boats to get through the barriers without damaging boats and injuring themselves. Inspection of many local small-boat launches leads one to believe there is no standard width for access controlled by boulders or posts. The answer lies in development of a larger, standardized passage space (or gate) for small boat access without obstacles. The gates should be located as near the water as possible, and wide enough for two adults to carry the boat on each side (to prevent damage to the boat, the people and the access site.) This should be wide enough to allow the backing of a small boat on a trailer to water’s edge, but be too small to allow access to large trailers. Failure to solve this issue is discriminatory to the elderly, but most importantly, to our grandchildren and future generations, whose conservation ethic will be vital to the future of the Adirondack Park.

 o Response: Access may be improved where feasible.

2. Fifteen horse power limit on Lake Clear Outlet is too high.

 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

3. The “No Parking” signs should be removed from the water access site at Floodwood Pond and two universally accessible parking spaces should be designated there.

 o Response: Parking at Floodwood Pond will be improved.
4. The trail down to Floodwood Pond should be graded with no steps and made as universally accessible as possible. It appears that wheelchair access, possibly meeting ADA slope guidelines may be constructed, if the trail is made to meander to the water.
 o Response: Accessibility will be improved where feasible.

5. Two accessible parking spots and a wheelchair accessible trail to the water’s edge should be constructed at Hoel Pond.
 o Response: Accessibility will be improved where feasible.

6. The campsite at Hoel Pond that is proposed to be closed should be replaced by a water access site for car-top and small boats on trailers.
 o Response: This proposal has been added to the UMP.

7. The design for the water access at South Creek should allow a small boat with a 15-, or lower, horsepower motor to back up to the water’s edge and floated or pushed off the trailer, while excluding larger trailers. If that cannot be accommodated, a boat slide that would allow a small boat trailer to be backed up to it for hand launching is recommended.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

8. Two accessible parking areas should be designated at South Creek.
 o Response: Accessibility will be improved where feasible.

9. The dock at Follensby Clear Pond should be upgraded to ADA standards.
 o Response: Accessibility will be improved where feasible.

10. The parking lot for Follensby Clear Pond should not be moved farther from the pond.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

11. Extend the existing wheelchair ramp (at Follensby Clear Pond) directly to water’s edge; or as an alternative, add fill material like that in the wheelchair ramp and smooth the sloped area that that runs from a point near the top of the wheelchair ramp, parallel to Route 30, directly to the water.
 o Response: Accessibility will be improved where feasible.

12. Vehicle trailer access to the water’s edge, two accessible parking spaces, and a graded accessible path should be constructed at Poliwog Pond.
 o Response: Accessibility will be improved where feasible.

13. The commenter strongly supports the Draft UMP’s proposal that, at “…Ampersand Bay and Axton Landing, vehicle and trailer access to the water’s edge will be allowed. These sites would not allow the floating of boats off the trailers, but would allow the pushing or lifting of boats from trailers directly into
the water.” This is the type of access design that should be made available at all fishing and water access sites on waters which do not qualify for a Boat Launch Site as defined in the APSLMP.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

14. At least one universally accessible parking spot should be constructed as close to the River as possible at Axton Landing.

- Response: Accessibility will be improved where feasible.

15. An accessible parking space should be constructed at the fishing access site on Moose Pond.

- Response: Accessibility will be improved where feasible.

16. Blocking vehicles some distance from the water’s edge at East Pine, Floodwood, Hoel, Indian Carry, Lake Clear Outlet, Middle Pond, Polliwog, South Creek, and Spider Creek requires boats to be carried further to the water, makes access more difficult, and doesn’t facilitate older, “less-abled and disabled persons. Delete this action.

- Response: Accessibility will be improved where feasible.

17. The commenter supports the construction of a 10-car parking area on the Saint Regis Carry Road near the Town of Harrietstown boat launch to Upper Saint Regis Lake.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

18. Parking and access (to Middle Pond) from the pull-off on Floodwood Road (about ¼ mile from the east end of the pond) is good for a single vehicle, but the plan should call for smoothing and marking a disabled person parking space and developing one or two additional parking spaces.

- Response: The UMP has been changed to include this suggestion.

19. Designate a second parking space for disabled persons adjacent to the launch site at Second Pond.

- Response: Accessibility will be improved where feasible.

20. Develop a hand-launch site for canoes and kayaks (at Stony Creek Ponds) about 50 feet from the road, to avoid the long carry required now. This could be done by clearing brush, smoothing a path to the water and firming the bottom at the access point to a depth of at least 12 inches.

- Response: This existing access site may be improved.

21. Work with the Village to put a designated parking area for persons with disabilities at the Pine Street Bridge (Denny Park). Develop a firm, sloped path with as gradual a grade as possible to the water. If a suitable location can be found 4-5 miles downstream, develop an additional path to exit the river with
nearby parking. This may work well at the Moose Pond trailhead parking area proposed for improvement in the Draft UMP.

- Response: The location in the village is outside the scope of the UMP. The parking for the Moose Pond Trail may be improved.

22. The commenter strongly encourages DEC to prohibit motor boats and motor boat launch on South Creek (page 124). The commenter supports these measures at South Creek to prevent the spread of invasive species, damage to shallow water areas, and erosion of shorelines caused by trailers and other recreational actions. The public should carry water craft to the water. Boulders and gates should remain in place.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

23. The UMP talks about limiting the number of motor boats and the size of the motor, and that seems to be essential here. As boats have gotten bigger, shorelines experience higher waking from motorboats, a threat to loon nests and the integrity of the shore. Large and numerous motorboats compound the threat of higher water levels from (climate change-related) increased rainfall. We completely support limiting the size of motors and the numbers of boats as appropriate to each lake’s shoreline, wildlife, and water quality challenges.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

24. The South Creek boat launch area should be managed only for non-motorized watercraft. The site should be permanently gated to prevent the launching of motorized watercraft. South Creek should also be managed as a motorless waterway.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

25. There are a number of launch sites where trailered boats cannot be launched and are primarily used for canoes and kayaks, though some allow for boats and small motors to be launched. These launches need to be secured to prevent illegal launching of trailered boats. The commenter questions why some of these waterbodies need a 15 HP engine and encourages the DEC to look at limiting use to electric trolling motors, similar to those used on Thirteenth Lake as part of the Siamese Ponds Wilderness Area UMP.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

26. The proposed trail connecting the Adirondack Rail Trail and Rollins Pond Campground will require a bridge across the Rollins Pond Outlet. Please be sure to design this bridge to allow for paddle watercraft to float beneath it.

- Response: This will be considered in the design of the bridge.
27. Install dock on Oseetah Lake to improve boater access to Pine Pond Trail. This landing is very muddy and difficult to use in its current condition.
 o Response: Actions to address this problem will be considered.

28. There is a problem with the 24-hour parking limit at boat launches. How can people camp on Upper Saranac if they will get a parking ticket?
 o Response: The authors of the SLWF UMP are aware of this issue and are seeking a resolution to it.

29. The access at the State facility at Ampersand Bay should stay as it presently is. There is not enough room for vehicle parking as it is and the addition of boat trailers would be a nightmare.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

30. For fishing and water access site management, commenter supports alternative 3 (allow vehicle and trail access to the water) or the no action alternative; none of the other alternatives are acceptable.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

31. Critical needs at all waterway access sites and campsites to allow senior citizens, less-abled, and disabled persons to use the SLWF are as follows: Provide gradually sloped, hard-packed, smooth paths to these facilities. At water’s edge, and underwater to a depth of approximately 12-14 inches, create a firm smooth bottom for wading and hand-launching paddled watercraft. Designate at least one or two disabled parking spaces within 20 feet of launch sites where possible, and no more than 100 feet away from the water’s edge.
 o Response: Accessibility will be improved where feasible.

32. There are lots of people who have trouble with access. Access is a problem. Access needs: drive close to water, bank not steep or hardened, and water shallow enough to launch boat. There are very few of these spaces. The APSLMP requires access for persons with disabilities. This UMP will remove access to several spots.
 o Response: Accessibility will be improved where feasible.

Weller Pond

1. Weller Pond should be declared motor-free, because it is relatively easy to access and could serve as a motor-free experience for visitors with limited paddling abilities.
Appendix 9: Response to Public Comments

1. Weller pond is popular with motor boaters and paddlers alike. The UMP proposal to place a speed limit on the pond should help to mitigate conflicts.

2. Weller Pond should remain motor-less to provide paddlers with a motor-free experience.

3. The commenter supports prohibiting motorboat use of Weller and Little Weller Ponds and the enforcement of the 5-mpg speed limit on the entire section of Raquette River in SLWF. DEC should prohibit public motor boat use on Bear and Bog Ponds in Franklin County. The commenter supports a maximum horsepower of 15 horsepower on Follensby Clear Pond, Polliwog, Middle, Green, East Pine, and Horseshoe Ponds. We urge the Department to limit motorized use on the smaller of these ponds to electric motors only, (or in some cases prohibit motorized use) (page 147).

4. The plan calling for a 5 MPH speed limit on Weller Pond seems ill conceived. Water skiers use Weller Pond to practice without interfering with pleasure boaters. There are plenty of bodies of water that lend themselves naturally to canoe or low HP boating. Weller Pond is part of one of the most used motor boating waterways. Enforcement would be very expensive and/or intrusive. Enforcement resources, already too thin, would serve the public interest much better slowing boat traffic down on the Saranac River, where large wakes from speeding boats are causing significant erosion to shore lines.

Lake Colby

1. The commenter supports the proposed UMP’s emphasis on protection of the Colby fishery and the prevention of further contamination and destruction by northern pike introductions.

Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
Appendix 9: Response to Public Comments

2. There are invasive species in Lake Colby because of trailer boat access. DEC needs to reconsider access sites.
 o Response: Additional language dealing with invasive species has been added to the UMP.

3. The commenter applauds the proposed improved signage at the boat launch as the current notices of a legal 10HP limit are totally inadequate and unfair to innocent boaters who fail to be aware of the limitation.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. The commenter strongly opposes any changes to the boat launch that do not restrict future uses by larger boats, especially in light of the 10HP limitation.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

5. The commenter does not oppose the state’s plans to make recreational use of the Old Mann estate for the creation of Nature Trails, as long as the privacy and peace and quiet of the neighboring private lands are respected and the nesting bald eagle and mink populations are protected. Alternative 1 is acceptable. Alternative 2, the preferred alternative, could be acceptable under the preceding constraints and subject to review of final plans. Alternative 3 is unacceptable as it would invite illegal parking and trespass. Alternative 4 is totally unacceptable and illegal taking that would prompt a legal challenge if advanced. Moir Road is a private driveway maintained by the Lake Colby Association that has been managed with appropriate signage for 20 years by the Association, and before that by the individual landowners. Public access is not permitted.
 o Response: Alternative 4 is in keeping with the deeded rights that were acquired by the State.

6. The commenter supports the proposed removal of one campsite and the improved management of the remaining two.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

Upper Saranac Lake

1. The Plan needs to better address and understand the potential, cumulative impacts of offering greater access to the watershed and address better
management of existing resources, including access points, before developing accessibility and facilities which will lead to increased demand and use.

- Response: The proposals for the Upper Saranac Lake area are intended to accommodate current use in a way that complies with the APSLMP and mitigates environmental impacts.

2. The commenter is concerned that the designation of Dunlap Rd as a CP-3 route will disturb nesting bald eagles that nest near the outlet of Hatchery Brook and Black Brook into the basin of Upper Saranac Lake.

- Response: The proposals in the UMP have been reviewed by DEC wildlife staff. There is little concern of impact to eagle’s nesting. The distance between the proposed recreation facilities and the eagles nest far exceed the 660-foot distance in federal guidelines.

3. Although Carrying Capacity is a subjective figure, there are many in the watershed who would suggest we have reached our Carrying Capacity. The plan seemingly doesn’t consider or acknowledge the impact the largest Public Campground in the State has on the unit. Will the increase of additional primitive tent sites, and increased accessibility, exceed what the watershed can withstand? The SLWF UMP does not answer this. It is often the case that on any given summer weekend, water access parking lots are overfull and parking spills over onto roadways.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. It is recommended that the DEC conduct a much more extensive utilization study and environmental impact assessment for the proposed changes on the watershed before implementation, as the costs of resource restoration and recovery can be great.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

5. The carrying capacity of Upper Saranac Lake has already been reached. On any given weekend, water access parking lots are overfilled and parked vehicles crowd the roadway. The Square Bay “sand bar” is heavily utilized during the summer, often with over a hundred boats present. The large state campgrounds at Fish Creek and Rollins Pond are also heavily utilized, offering campers wide access to the watershed, and yet, their impact on the UMP is not considered in this plan. Assessments should be conducted to determine the potential impacts of noise, shoreline erosion, sanitation disposal and user conflicts prior to introducing additional burden to the unit.
The proposals for the Upper Saranac Lake area are intended to accommodate current use in a way that complies with the APSLMP and mitigates environmental impacts.

6. The UMP refers to the construction of a boathouse on private property that is underwater in front of an undeveloped part of the Upper Saranac Lake boat launch. The document indicates that this will be available for use by the DEC and the Saranac Lake Volunteer Fire Department. We would note that currently the Tupper Lake Volunteer Fire Department provides service to the Town of Santa Clara, and thus the northern end of the lake.

 Response: The proposal to build a boat house has been removed from the UMP.

7. The area along the Upper Saranac Lake north shore and near the inlet may have large wetlands which may be disturbed by camping, not to mention mosquito infested campsites which may be very unattractive.

 Response: The proposal to build a campsite on the north shore has been removed from the UMP.

8. The addition of 11 new campsites on Upper Saranac Lake without a current accurate census of the usage and condition of the current sites and without any plan to provide full time monitoring for those sites is concerning. It is apparent that the DEC is not inspecting, enforcing or caring for the current sites. High impact behavior: litter, noise issues, more than the allotted number of people at a campsite, degradation of the natural landscape and unsanitary conditions (People are not using the provided facilities), are all problems at these locations. Pitching in and removing litter is feasible from a homeowner but nothing can repair trails that are degraded, noise issues well into the night, stripping the forest of the underbrush, and using the area surrounding the campsites as a bathroom.

 Response: The number of primitive tent sites proposed to be built on Upper Saranac Lake has been reduced.

Lake Clear

1. The proposed increase in access would be a continuance of the assault on Lake Clear's fragile ecosystem. Lake Clear's water quality has been threatened by the current accessibility, by run off from the surrounding roadways, and by the pending rails to trails. Any expansion will further expose the Lake to fish disease, invasive species, and reduced water quality, that would cause irreversible damage. Additionally, the increase in trails, parking, and access, will require financial support and come at a cost. Not only the initial costs, but the costs to maintain and provide continuous upkeep and monitoring, which will result in an increased burden for the taxpayers.
Appendix 9: Response to Public Comments

2. The commenter is concerned that two proposed changes within the SLWF proposal will significantly increase the risk of exposure of Lake Clear to AIS. The first is increasing accessibility to Lake Clear beach for car top boats, the closer the access is to the beach the greater the likelihood of transporting viable AIS to the lake. Thus, I urge the state to maintain current car-top access to Lake Clear from the parking lot. The second is increasing boater access to Lake Clear by improving the fishing access site at Lake Clear Outlet and allowing the use of outboard motors on boats launched from this site. This will increase AIS pressure on Lake Clear through increased boater traffic.

 Response: The proposal to allow vehicle access closer to Lake Clear at the beach area has been removed from the UMP. Recommendations from the New York State Aquatic Invasive Species Management Plan have been added to the UMP.

3. The draft UMP proposes many new and/or upgraded trails, increased access to the Rail Trail, and increased access to waterbodies, including Lake Clear. Based on my observations, current funding and staffing levels at DEC are apparently inadequate to prevent degradation of the natural resources of the Park. The increased access proposed by the UMP will further strain the ability of existing DEC staff to protect those resources. The UMP does not propose an increase in funding or staffing at DEC, or other clear management actions to protect the resources of the Park, such as boat washing and inspection stations, and other specific actions to prevent and manage invasive species. Accordingly, I find that the draft UMP is inconsistent with the “unifying theme” of the SLMP in this respect.

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

4. The commenter is concerned that the new/upgraded trails to be accessed from the rail trail will increase illegal use by snowmobiles and ATVs.

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

5. It is the commenter’s strong belief that preserving and protecting Lake Clear for the present and future use by humans and wildlife means no additional access beyond what exists already.

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

6. There is currently enough access to the lake for public enjoyment with non-motorized craft. Lake Clear is largely free of motor boat traffic now, which is a
key element of its appeal for those who enjoy canoes, kayaks, and sailboats. Adding more motor boats (and the almost inevitable speedboats and jet skis) will adversely impact the very quality that attracts people to the lake now.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

7. The commenter feels that the SLWF draft plan could result in overuse of Lake Clear and cause damage from aquatic invasive species.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

8. The commenter requests that the state thoroughly evaluate the impact that the rail trail has on the community and natural resources before increasing access to Lake Clear rather than implementing these changes at the same time.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

9. The commenter opposes the construction of a canoe carry trail from Conley Road to Little Clear to concerns of the impacts on wetland areas in the path of the proposed trail.

- Response: The proposed trail from Lake Clear to Conley Road has been removed from the UMP.

10. The commenter is concerned about the amount of garbage that will contribute to the existing litter problems with increased visitation to Lake Clear.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

11. The proposed Sangemo Trail will bring people to a short distance of private properties. This will increase the potential for trespass and security issues.

- Response: This trail is included in the UMP, but a change has been made in the proposed route of the trail so that it will go to Saint Germain Pond instead of Lake Clear Camp Road.

12. The State needs to do more to clean up the current problems with trash from public use of the Lake Clear beach and parking area.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

13. Do not allow fires on the beach.

- Response: A proposal to prohibit fires on the Lake Clear beach is in the UMP.
14. The commenter recommends the development of an official Boat Launch Site on Lake Clear for public access with a proper invasive species station for boat cleaning and appropriate signage. This is not a private lake; a significant portion adjoins public lands. Several years ago, the state purchased a parcel on the Conley Road for this purpose, but it has not been developed.

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

Miscellaneous

1. The central feature of the UMP are the lakes. While the lakes attract the most use, the UMP does not adequately address management guidance to implement the requirement in the APSMLP. Only three actions to protect water quality. UMP is inadequate in its discussion in addressing capacity to withstand use, but there is no mention of waterbodies. There is no section titled water protection, yet there is one called land protection.

 Response: Language about protection of waterbodies from invasive species has been improved. The word “water” has been added title of the land protection section and information about waterbody carrying capacity has been added.

2. Carrying capacity assessment is listed on page 146, but it is not in the schedule of implementation section.

 Response: This assessment cannot be scheduled because the procedure for the carrying capacity assessment has not been established.

3. This plan needs to provide access to the SLWF areas that people want to use, and refrain from imposing too many restrictions on how people can use them. We wish to see more emphasis on access for aging hunters, anglers and the general public, especially for people who are losing physical ability as well as those who are already disabled. The Saranac Lake Wild Forest should be enjoyed by everyone and not just the fit.

 Response: The UMP will include proposals for recreational opportunities for visitors of various abilities.

4. While there are no CP-3 motorized routes in the SLWF UMP, we note that there are three specially designed fishing access areas for disabled individuals. We also note that since so much of the major water bodies on the Saranac Lake Chain, and other major lakes, are accessible by motorboat, that access is also provided for disabled individuals. More important is that a number of trails will be made accessible for disabled access.

 Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
Appendix 9: Response to Public Comments

5. The diverse recreational and viewing opportunities that the SLWF poses makes it a very appropriate environment to encourage more trails to be built for CP-3 users and that more facilities, including fishing access sites and primitive tent sites, become ADA compliant.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

6. Whether Park wide or within specific unit management plans, education of the public and comprehensive staff training is paramount. Lip service has been given to educational efforts for years but there is still no consistent park-wide education plan that informs the public about the Park and the different classifications of Forest Preserve, public safety and what is required to have a safe outdoor recreation experience.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

7. Regulatory enforcement plays a critical role in educating the user and protecting the environment. Ask a boater or hiker how many times they have encountered some sort of law enforcement officer in the field. I have hiked, paddled, and motorboated the Adirondack for over sixty years and the number of times I have encountered law enforcement I can count on one hand. This must change. Enforcement plays an essential role in the spectrum of direct management options.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

8. It is my understanding that there was no input into the plan from forest rangers in the area. If true, it is a major oversight and input from the experts that know the area well should be incorporated into the plan.
 o Response: Forest Rangers, and other field staff, provided valuable input during the development of the UMP.

9. The commenter would like to discuss access issues and the future of the boulder field with you. Regarding the parking, there is already an access road to the town water tower in the immediate vicinity. The gate could be moved back 100 yards approximately, and the flat terrain just inside the current gate location could be hardened for parking. My only concern would be that of people potentially parking and “partying” and leaving litter. An outhouse is a necessity as well. A clevis could be ideal as it is a summer use area, predominantly.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
10. The public use data had significant gaps. How is it that an entire year of data for some of the most popular and heavily used areas can go missing? Data is missing for Brewster Point and Connery Pond trails for 2010 and 2011. Further, there is no data for 2012-2016. The UMP does not appear to have current information for boat launches as nearly half of the data on Table 8 “Amount of Use at Selected Boat Launches” is missing. What does it say about the DEC and its priorities that half of the trail registration data in Table 8 is missing?
 o Response: Usage data in the UMP has been updated.

11. The commenter is concerned that there is very little data or analysis of management action impacts. The alternatives analysis, for example, seems to simply choose one management action per subheading for an alternatives analysis. For example, under Trailheads, one parking lot management action is chosen for an alternatives analysis. In another example, under Fishing Water Access, the UMP simply analyzes the 4 access choices the department used, but these choices or alternatives were not considered or analyzed site-specifically. Finally, there is no attempt to look at cumulative impacts.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

12. The commenter’s biggest disappointment in the plan is the lack of consistent data and the recognition of its importance in making management decisions. Effective management requires good data and this plan does not focus enough on this issue.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

13. I believe a clear “Data Plan” is necessary that: 1) Identifies the gaps in data and what data needs to be consistently collected. 2) The role data plays in Limits of Acceptable Change (LAC) or Visitor Experience and Resource Protection (VERP) planning and implementation. 3) How the data will be collected. 4) How the data will be used.
 o Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

14. The draft UMP does not incorporate relevant bodies of scientific knowledge pertaining to natural resource management and protection. In fact, of the 95 references cited, only 4 come from peer-reviewed scientific literature. The literature used is dated, with an average year of reference of 1985 and 75% of the literature is older than 2003. The most recent resource cited was published in 2012. Further, much of the data used in the management plan is over 30 years
old. Most of the data used to make decisions about fisheries management dates to the 1984 ALSC survey, data which is now 33 years old.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

15. It is disappointing that this document took 15 years to produce and is twice as many years overdue for an area of this level of importance to the Adirondack Park and local communities. It still lacks current data regarding usage of trails and water bodies. Trends are important and stopping at 2006 and 2011 is insufficient to understand current stresses and opportunities. We all acknowledge that trail and launch registers understate actual use but trends and significant aberrations give a clearer picture over time than what is presented in the UMP.

- Response: Usage data in the UMP has been updated.

16. While the inclusion of “state land tax payment” data in this UMP is appreciated, it would be helpful to have more current data than 2009.

- Response: The State land tax payment information in the UMP has been updated.

17. The UMP states that ATV trespass is a problem (pages 72-73) and that illegal use is causing damage on the Forest Preserve. Unfortunately, the UMP fails to identify where it is a problem, the extent of the damage caused, or what the DEC plans to do to curb these violations.

- Response: Additional information about ATV damage has been added to the UMP.

18. Another issue that is unresolved in the SLWF UMP is the trespass on the Forest Preserve of the Saranac Inn golf course. This should be resolved. This UMP contains a section “Recommendations for corrections for Land Classification Errors.” This section should include a statement about Forest Preserve lands currently being maintained and used as private golf course lands. This issue grows even more serious as there is speculation that these lands could be developed for housing.

- Response: This is a legal issue that is outside the scope of the UMP.

19. The section “Capacity to Withstand Use” contains a robust discussion of about leading theories of public lands and wildlands management and practices. The DEC states that it blends established practices of (1) the goal-achievement process; (2) the Limits of Acceptable Change (LAC) model employed by the U.S. Forest Service; and (3) the Visitor Experience and Resource Protection (VERP) model employed by the National Park Service. DEC states that there are “clear benefits offered by employing a blend of these approaches.” This is a bold management proclamation by the DEC for a comprehensive approach to Forest
Appendix 9: Response to Public Comments

Preserve management. Unfortunately, the commenter sees very little evidence that the DEC actually does any of this.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

20. The Plan covers a huge area and is very long – computer downloading is not practical given the weak broadband access for most of us. The copy I worked with also lacked an index which makes it hard to use. In some ways, I wish it were broken down into sections which could be considered separately.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

21. The Plan needs to address already inadequate State resources and insufficient funding for managing the Unit.

- Response: New York State’s budget process is outside the scope of this UMP.

22. Resources are insufficient to enforce rules governing motor size, motorized boat speed limits, illegal camping, and identifying SLWF boundary lines.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

23. The department should allocate funding and staffing to inventory the small streams and ponds of the unit to extent that all viable waters capable of holding a self-sustaining brook trout population are identified and baseline data on them established.

- Response: The allocation of resources is outside the scope of the UMP.

24. The abundance of fishing opportunities in the SLWF is an important economic and ecological draw for the area, with many anglers looking to catch heritage brook trout and other popular fish species in the Adirondacks. The high number of dedicated users presents DEC with an opportunity to develop and implement more modern management practices, as the constituency can act as a feedback loop for which practices do and don’t work for the management of fisheries.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

25. The commenter does not support the stocking of bass or other warm water species in any pond that has a history of being a brook trout fishery, such as Little Cherrypatch Pond, and any effort to proceed with warm water stocking, now or in the future, in those brook trout fisheries should be discontinued.

- Response: The DEC will not stock bass and other warm water species in the SLWF.
26. Bass are in Connery Pond and there are few brown trout and splake. Any that are stocked are just becoming bass food.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

27. Complete boundary line maintenance with priority for marking where State land crosses any trail, road, or stream. Clearly identify State lands to help prevent encroachment from private landowners.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

28. Ensure that the public’s rights to utilize the sections of State land upon which the right-of-ways exist are not infringed.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

29. The commenter is very pleased to see the inclusion of the Hoyt-Peroni Memorial Forest at Lake Clear in the draft UMP.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

30. The plan should be proactive and not just reactive. The ultimate goal of the plan should be set out clearly. The plan seems to be focused more on addressing present problems than on looking into the future.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

31. On page 56, the plan recognizes the difficulty in projecting future use "with any level of certainty". Yes, it is difficult, but the effort must be made.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

32. On page 57, the plan suggests that the public use impact to wildlife is unknown. For some species it is well known, particularly the common loon.
 - Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

33. On Lower Saranac Lake, currently there are only 3 designated day use areas and all are boat access only. There should be more day use sites for locals to use when the campground is in operation. It would be nice if there were a couple of day use sites that people could walk to as well. Since the administrative camping area description includes all lands within 1000 feet from the shoreline
there are other popular places where people go to recreate that are currently not designated day use areas.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

34. Under no circumstance should the area of the Saranac Lakes Islands Campground be reclassified to Intensive Use. Alternative 5 is the best option.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment.

35. Sportsmen will be the last interest group to advocate ‘locking up’ portions of the resource, and we would vehemently oppose splitting use into ‘hunting only, hiking only, biking only’ use restrictions. We recognize, however, that sociological factors such as “value” through familiarity, economic pressures, tradition, location within reach of the population centers, and a host of other non-biological factors have and will continue to have direct effect on the unit. We would like to see a series of discussions with stake holder groups initiated to both establish what the demands on the resources are going to be, and to try to project better practices for future UMP creation. We felt that the time lines for review and discussion of this UMP, for example, were inadequate to allow for complete consideration by stakeholder groups and did not take into consideration such things as meeting times for working people that populate the stakeholder groups, frequency of meetings and needed response time for stake holder groups, public education regarding the issues affecting the unit, and time to formulate responses to issues and proposed policy by the people of those groups.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment and note that this UMP has been in the planning stage since 2002.

36. The APSLMP was drafted in 1972, and much has changed since it was published. There was virtually no recognition then of the need for disabled persons to have access to the trails, campsites and waterways in the Adirondacks or elsewhere. The Adirondacks are being used more and more each year, yet residents and visitors have lost the use of many places that they once enjoyed due to the APSLMP restrictions. After revision of the State Land Master Plan, the Saranac Lake Wild Forest Unit Management Plan should be amended as necessary to enhance public use and access. We need to ensure that what we have right now remains, and if the State Land Use Master Plan must be changed, then that should be addressed.

- Response: The authors of the SLWF UMP acknowledge and appreciate this comment
37. It is evident that there are a large number of issues that need to be resolved in this Unit Management Plan. However, it appears that the department is trying to apply rules and regulations that were meant to be guidance in 1972 as strict guidelines some 45 years later. The area covered by this UMP is the destination for thousands of sportsmen and families, has sustained a large amount of public use for a long period of time, and generates significant revenue to surround Towns and business. Shouldn’t we be encouraging people to come visit these areas rather than steer them away? For the reasons mentioned above, the commenter is not in favor of addition restrictions that further hinder the sporting communities’ access to the lands in the Saranac Lakes Wild Forest.

 o Response: The APSLMP establishes standards for primitive tent sites, which must be followed by the UMP, and the courts have ruled that the APSLMP has the force and effect of law.

38. The SLWF has been so designated because it can withstand this higher degree of human use. It is both a popular and relatively well-developed recreational area. People like it because they can easily camp near the water and enjoy an evening campfire. Not many prefer to camp away from the water, where campfires are discouraged or prohibited, as is the case in the Essex Chain Lakes Primitive Area. Provision of access is paramount. People must love the Adirondacks and its wild places to sustain the “forever wild” clause in Article XIV of the New York State Constitution. To know these places is to love them, and one must be able to use the lands and waters in the SLWF to both know and love them. A primary concern of sportsmen, both in regard to this UMP and others, is the establishment and maintenance of a proactive versus a reactive approach to managing natural resources within each state land unit. Clearly these resources are interactive, and if the human pressure increases of the recent past are indicative, we expect each will be receiving increasing pressure in coming years. The tremendous uptick in wildlands tourism has greatly impacted (and compacted) many of the sites that are proposed to be removed, and it may likely impact those to be created. We believe this increase is the new reality, and the plans of the APA and DEC should be focused on proactive approaches to conserve our resource while supporting tourism; not just as a reaction to the fairly recent increase in traffic. Achievement of proactive natural resources management requires the allocation of adequate resources, both financial and human, to manage based on scientifically established best practices. We understand and accept managing fish and game populations on a scientific basis with the health of each species and the overall resources as the first controlling factor. However, it is difficult to accept more restrictive management steps that further reduce access to fisheries and wildlife resources, when DEC staff and funding have not been allocated to provide current data on the specific population, the area, the body of water, etc. It is very frustrating to watch the overuse and sometimes outright abuse of resources such as hiking trails and camping areas (official and unofficial) by throngs of people attracted by New York’s multimedia campaign promoting these special features of the
Adirondacks, while ever more restrictions are placed on hunters, trappers and anglers by reducing motorized land access to forested areas, and restricting boat access to increasing numbers of waters over the years. There appears to be a double standard here. Maintenance of existing infrastructure, data collection on all important variables, and enforcement of human behaviors within each area are essential. Without that, we are wasting resources, wasting money, wasting time, and inevitably returning to a reactive management process. That maintenance will require staffing and funding that matches the increasing human use of the resources. The present condition of Lake Colby might well be seen as illustrative of this concept. Thirty years ago, it maintained a very good trout fishery following its reclamation in the previous decade. Regular care and maintenance of the barrier dam, more law enforcement, closer monitoring of the appearance of undesirable species, and better public education regarding fishing practices (the illegal use of live baitfish, for example) may well have extended the life of that pond as an excellent trout fishery as opposed to its present condition as a two-story lake with mediocre bass and trout fishing. The costs and probable lack of support from shore-owners for any future reclamation warrant the spending DEC resources on preventative measures.

○ Response: The authors of the SLWF UMP acknowledge and appreciate this comment.
This page intentionally left blank
Appendix 10: Open House Public Comments

Below is a summary of public comments received at the open house for the Saranac Lakes Wild Forest, held March 20th, 2002 at 6:00 p.m. at the Saranac Lake High School, organized by topic of comment.

Motorized Access:

• Concerned with motorized vehicles in park.
• Do not allow ATVs on snowmobile trails.
• Create ATV trails.
• Need more snowmobile trails.
• Motorized uses should be continued.
• Keep Averyville Road access to Pine Pond snowmobile trail.
• Do not restrict motorized access.
• Do not limit motor vehicles.
• Do not limit rights of access for sportsmen.
• Do not close roads and trails access is needed for fire and rescue.
• Open more trails for bikes, snowmobiles, and ATV's.
• Averyville Road and others should not be closed to property owners.
• Concerned about Averyville Road use. Make sure people can access property.
• "Give motorized users a chance".
• Need to allow Averyville Road motorized use for access.
• Do not close snowmobile trails.
• Averyville “Trail” is a public road.
• A forest ranger said Averyville Road was closed, couldn't access area to hunt.
• Trail to Oseetah Marsh from Saranac Lake has been posted closed. This trail is an important access to Oseetah Lake. Reopen this trail.
Appendix 10: Open House Public Comments

- Do not close snowmobile trails that are being used.
- Reopen snowmobile trail across from Charlies Inn to allow access to Lake Clear.
- Is Le Pan Road privately owned or state owned?
- Averyville Road used by camp owners to access camps when weather prevents snowmobiling and boating.
- There is proof that Averyville Road is owned by the towns.
- There is room for motorized use and skiing / snowshoeing.

Motor Boats:

- Some areas should have horsepower restrictions as well as some motorless areas.
- Historic motor boating to Raquette Falls.
- Rehabilitate boat launch; stop letting it deteriorate.
- Prohibit jet skis.
- Supports "quiet waters" campaign.
- No motor restrictions on Middle Saranac Lake.
- Against restrictions on areas that motors are allowed: Weller, Raquette, others.
- Want motors to be allowed in areas with canoeists.
- Boat channels are like roads; educate canoeists.
- Need more boat launches.
- Direct larger boats to areas other than Lake Flower.
- One percent of waters in SLWF should be quiet.
- Make Weller Pond electric motors only.
- There was an unannounced canoe race on the Raquette River; boater was insulted and treated rudely by canoeists.
- Allow electric motors in Whitney area.
- Canoeists and motorized users can co-exist.
Appendix 10: Open House Public Comments

- Restricting motorboats will not help natural resources.
- Do not limit use of motorboats on any of the waters in area.
- Direct canoes to less used waterways.
- Middle Saranac Lake, Follensby, Weller and other unit waters should continue to be open to motorboats.
- Support continued use of motorboats on historic used areas.
- Maintain & enforce 5 mph speed limit on Raquette River.
- Do not restrict motorboats.
- Do not close the river to motorboats; camp owners need access.
- Close waterways to all boats not just motorboats, there should not be exclusive use for canoes and eclectic motors.
- Keep Raquette River open to motor boats.
- Hopes the state will not expand any of the boat launches further. Talked about the Second Pond parking problem but was firm on not expanding the parking at the site. Speed limits of boats and jet skis are not being adequately enforced on waterways.
- Electric motors on Weller Pond is a good compromise.
- Bigger and better boat ramps result in bigger and more powerful boats.

Mountain Bikes:

- Wild Forest should allow appropriate use of mountain bikes.
- Mountain Biking can and should be encouraged; it is important to cyclists because they are banned on adjacent lands.
- Create more mountain biking opportunities.
- Open opportunities, do not close them.
- Mountain bikes are larger group than known.
- Bike recreation info sources: SL- LP trail, bicycle trail inventory (ANCA/ ADK), bikeadirondacks.org.
- North Elba has a grant for a trail along the railroad; accommodate areas where trail needs to go on to SLWF.
Appendix 10: Open House Public Comments

- Bike shops have maps of bike trails.
- Mountain biking needs more trails; want trails off of Averyville Road, Old Military, Route 86, and railroad.
- Explore possible trails along the Jack Rabbit ski trail.

Camping:
- Rollins Pond and Fish Creek campgrounds should be "toned down".
- Hoel Pond camping area: vandalism from campers, drinking, and parties.
- Hoel Pond area not suitable for campers.
- Campers trespass on private property.
- Hoel Pond has unsanitary conditions: human waste, batteries, lake pollution. Close the campground road. Have all users register, designate as canoe sites, 3-day use limit, and no group permits. Close this camping area if it cannot be fixed.
- Need law enforcement presence in Hoel Pond area.
- Garbage along Hoel Pond.
- Hoel Pond campsites are overused.

Management Actions:
- State can't maintain what it has.
- Make sure to consider other management techniques before resorting to trail closure.
- DEC should strive to allow uses that are appropriate in this area.
- Popular areas may receive overuse; pay attention to APSLMP section on public use and impacts.
- Stop buying land.
- Conduct thorough assessment of resources and uses as per APSLMP.
- Take care with lakes and use on these.
- If SLWF treated as wilderness it will kill the area.
- Keep as wild forest, do not turn into wilderness.
• Make decision based on facts, not environmental biases.
• Use good reasoning and judgment when making decisions.

• Protect what we have.
• Respect rights of those who do not live here.
• Do not protect land from locals for the sake of non-residents.
• Educate users on appropriate places to go.
• Set up recycle and reuse programs.
• Be fair and balanced, especially with opportunities not allowed in Wilderness.
• Multiple use trails with bikes, snowmobiles, hikers, and skiers.
• Channel users to appropriate places. Users can co-exist.

Public Participation:

• Maintain variety of uses, not just "quiet" sports. People should have a choice.
• Concerned about pre-made decisions.
• Comment period should be a free exchange of ideas.
• Have draft UMP meetings inside and outside the park.
• Have meetings more often.
• Keep public informed.
• Come to the people.
• Special interest group agenda should not dictate decisions.
• Keep active dialogue between area businesses and DEC.
• Work with the Town of Harrietstown
• Use caution in developing plan, work with local governments
• People should come to local governments with concerns
• Work closely with local governments.
• People of the area should be the primary factor in decisions.
• Involve public more. A large percent of Adirondack residents live in this area,
need more opportunities than usual.

• Comments or not DEC's mind is made up.

Environmental Concerns:

• Concerned about pollution and the introduction of Eurasian Milfoil to waters from the Campground.
• Develop a plan to stop the spread of Eurasian water milfoil.
• People impact resources, and canoeists outnumber motorboats.
• There is soil erosion and lack of silence in the area that needs to be addressed.
• Water quality being eroded.
• Lack of quiet outside the park makes the quiet inside more precious.

Cross-country Skiing:

• Expand Jack Rabbit Ski Trail to Tupper Lake.
• Re-designate snowmobile trails as cross-country ski trails (Pollywog Pond).
• Create new ski trail west of Lake Colby, adjacent to current trail.
• Snowmobiles are riding in the Jack Rabbit Trail in Town of Brighton.
• More cross-country ski trails with no snowmobiles; more novice trails.

Economic:

• Paddlers provide significant economic benefit.
• Economic benefits from use of quiet areas.
• People should not have control over management protection that will lead to them making profit.
• Make sure economic impact is assessed and acknowledged.
• Tourism money important.
• UMP will impact economy of towns.
• Keep balance with economic opportunities and public use.
Appendix 10: Open House Public Comments

Additional Comments:

- "How much do the people have to give up?"
- Register canoes to increase revenue from Pittman-Robert Act.
- Pittman-Roberts money goes to DEC; other users get benefits.
- Canoes should contribute to Pittman-Roberts fund.
- Natural resources belong to everybody.
- Agreed with previous speakers (no motor limits, need more snowmobile trails).
- Open the St. Germaine Carry: Upper St. Regis Lake to Lake Clear.
- Open old canoe route along Hatchery Brook to outlet.
- Increase forest ranger and ECO staff.
- Boaters are also canoeists.
- There are more radical canoeists now - they are hostile, rude, and self-centered.
- Concerned that there is no longer good access for ice fishermen to put their shanties on Lower Saranac Lake. Bubblers, one at the state dock and one private, have made the Ampersand launch area unsafe for anglers. Bubblers not needed in Ampersand Bay - he has lived on the bay 20+ years - and ice does not build up where the Ampersand launch is located. Suggested that the caretaker road to Lonesome Bay off Route 3 be plowed in the winter and designated as a winter access spot for snowmobilers, ice shanty haulers, etc. The non-state access point at the end of Algonquin Avenue is also now unsafe due to bubblers and the approach to the lake is too steep and rocky to take shanties on and off the ice.
- Wants a trail developed to McKenzie Pond. Favors the state (or Conservancy) purchasing a 10-acre lot just off the softball fields on McKenzie Pond road near the Jack Rabbit Trail for parking then developing a spur off the Rabbit to McKenzie.
- Suggested a trail from Second Pond boat launch area to Kiwassa Lake (about 0.5 mile). Liked the idea and said the very same idea had been suggested as part of a spur from the Jack Rabbit trail to Route 3 and Lower Saranac Lake. This trail would be good for canoers trying to reach Kiwassa - it would save them dodging boats in the river section, going around the locks and the open waters of Oseetah. The trail would also be popular with cross-country skiers. Folks on Kiwassa Lake might not be keen on the idea though.
- Taxpayers have a right to use state lands.
• Cooperation among users in Floodwood area has been good historically.
• DEC needs more support to manage land.
• Mt. Baker Trail: needs trailhead, parking lot, and some trail hardening in areas that are starting to erode.
• Pay for facilities.
• Snowmobilers were very courteous to skiers.
• Contractor will fleece taxpayers’ money; they will just take notes.
Appendix 11: Bibliography and References

Beier, Colin; Abigail Larkin. 2014. Developing an Adirondack Park Trail Register Database to Support Recreation Management and Community Planning. SUNY College of Environmental Science and Forestry. Syracuse, NY.

Calvin. 1903. Report to the Commissioners of Fisheries, Game and Forests. 1902-1903.
Appendix 11: Bibliography and References

Dawson, Chad P. 2012. Adirondack Forest Preserve Visitor Study Summary. SUNY College of Environmental Science and Forestry. Syracuse, NY.

Dawson, Chad P. 2011. Northeastern Adirondack Forest Preserve Visitor Study. SUNY College of Environmental Science and Forestry. Syracuse, NY.

Appendix 11: Bibliography and References

Fernow, Bernhard. 1889. Beginnings of Professional Forestry in the Adirondacks

NYS-DEC: Albany, NY.

Graefe, David; Chad Dawson; and Lisa Gerstenberger. 2010. Adirondack Park Forest Preserve Roadside Camping Study. SUNY College of Environmental Science and Forestry. Syracuse, NY.

Howard, William. 1937. New York State’s Forest Preserve Policy

Illick, Joseph. 1937. Significant Forestry Trends in New York State

Appendix 11: Bibliography and References

McEwen, April; Chad Dawson; and Lisa Gerstenberger. 2011. Adirondack Park Forest Preserve Carrying Capacity of Water Bodies Study: Phase 1 – Selecting Indicators for Monitoring Recreational Impacts. SUNY College of Environmental Science and Forestry. Syracuse, NY.

New York State Department of Transportation. NYSDOT 2003 Highway Mileage Summary. (http://www.dot.state.ny.us/tech_serv/high/highwaym.html).

Appendix 11: Bibliography and References

New York State Forest Commission Report 1885.

New York State Forest Commission Report 1891.

NYS-DEC. Freshwater Wetlands Status and Trends. (http://dec.state.ny.us/website/dfwmr/habitat/fwwprog3.htm).

Outdoor Industry Foundation. 2006. Outdoor Recreation Participation Study

Appendix 11: Bibliography and References

Thill, Mary. “Skyscraper.” Sequel Sumer 2012: 13

Whipple, Gurth. 1935. Fifty Years of Conservation in New York State.

This page intentionally left blank
Appendix 12: Trail Register Information

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Follensby Clear (N)</td>
<td>642</td>
<td>721</td>
<td>707</td>
<td>775</td>
<td>863</td>
<td>1,014</td>
<td>894</td>
<td>1,196</td>
<td>1,199</td>
<td>1,197</td>
<td>1,337</td>
<td>1,288</td>
</tr>
<tr>
<td>Follensby Clear (S)</td>
<td>884</td>
<td>995</td>
<td>885</td>
<td>1,086</td>
<td>1,141</td>
<td>1,176</td>
<td>1,174</td>
<td>1,129</td>
<td>1,190</td>
<td>1,149</td>
<td>1,279</td>
<td>1,384</td>
</tr>
<tr>
<td>Totals</td>
<td>1,526</td>
<td>1,716</td>
<td>1,592</td>
<td>1,861</td>
<td>2,004</td>
<td>2,190</td>
<td>2,068</td>
<td>2,325</td>
<td>2,389</td>
<td>2,346</td>
<td>2,616</td>
<td>2,672</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location / Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axton Landing</td>
<td>x</td>
<td>x</td>
<td>1,100</td>
<td>1,082</td>
<td>1,151</td>
<td>1,198</td>
<td>1,091</td>
<td>1,061</td>
<td>1,163</td>
<td>1,135</td>
</tr>
<tr>
<td>Brewster Peninsula</td>
<td>x</td>
<td>1,784*</td>
<td>2,961*</td>
<td>2,694</td>
<td>3,019</td>
<td>2,685</td>
<td>3,007</td>
<td>2,005*</td>
<td>2,719</td>
<td>2,878</td>
</tr>
<tr>
<td>Connery Pond</td>
<td>x</td>
<td>x</td>
<td>2,533</td>
<td>2,248</td>
<td>2,125</td>
<td>2,135</td>
<td>2,099</td>
<td>975*</td>
<td>2,389</td>
<td>2,717</td>
</tr>
<tr>
<td>Fernow Forest</td>
<td>x</td>
<td>1,158</td>
<td>579*</td>
<td>x</td>
<td>x</td>
<td>103*</td>
<td>102*</td>
<td>344</td>
<td>494</td>
<td>430</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>1,565</td>
<td>1,183</td>
<td>1,462</td>
<td>1,331</td>
<td>1,265</td>
<td>1,168</td>
<td>1,161</td>
<td>1,012</td>
<td>1,118</td>
<td>1,054</td>
</tr>
<tr>
<td>Follensby Clear (N)</td>
<td>1,228</td>
<td>1,330</td>
<td>1,806</td>
<td>1,238</td>
<td>1,295</td>
<td>1,316</td>
<td>1,103</td>
<td>450*</td>
<td>1,031</td>
<td>956</td>
</tr>
<tr>
<td>Follensby Clear (S)</td>
<td>1,038</td>
<td>1,083</td>
<td>1,191</td>
<td>1,196</td>
<td>452*</td>
<td>1,083</td>
<td>1,071</td>
<td>955*</td>
<td>864*</td>
<td>1,029</td>
</tr>
<tr>
<td>Scarface</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1,524</td>
<td>1,033</td>
<td>1,605</td>
<td>1,430</td>
<td>1,293</td>
<td>762*</td>
</tr>
<tr>
<td>South Creek</td>
<td>422*</td>
<td>1,339</td>
<td>2,148</td>
<td>1,375</td>
<td>1,337</td>
<td>1,357</td>
<td>1,279</td>
<td>1,189</td>
<td>1,144</td>
<td>963</td>
</tr>
<tr>
<td>Totals</td>
<td>4,253</td>
<td>7,877</td>
<td>13,780</td>
<td>11,164</td>
<td>12,168</td>
<td>12,078</td>
<td>12,518</td>
<td>9,421</td>
<td>12,215</td>
<td>11,924</td>
</tr>
</tbody>
</table>
Appendix 12: Trail Register Information

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Axton Landing</td>
<td>1,122</td>
<td>x</td>
<td>907</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>Brewster Peninsula</td>
<td>x</td>
<td>2.972</td>
<td>2,677</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Connery Pond</td>
<td>x</td>
<td>x</td>
<td>1,825</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fernow Forest</td>
<td>573</td>
<td>437</td>
<td>531</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Floodwood Pond</td>
<td>1,093</td>
<td>1,082</td>
<td>1,016</td>
<td>X</td>
<td>1,019*</td>
<td>981</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Follensby Clear (N)</td>
<td>981</td>
<td>1,086</td>
<td>1,182</td>
<td>1,048</td>
<td>873</td>
<td>1,125</td>
<td>936</td>
<td>X</td>
</tr>
<tr>
<td>Follensby Clear (S)</td>
<td>1,231</td>
<td>1,063</td>
<td>1,015</td>
<td>898</td>
<td>782</td>
<td>1,069</td>
<td>544*</td>
<td>x</td>
</tr>
<tr>
<td>Scarface</td>
<td>1,400</td>
<td>1,252</td>
<td>1,278</td>
<td>2,191</td>
<td>2,076*</td>
<td>2,429</td>
<td>2,736</td>
<td>2,543</td>
</tr>
<tr>
<td>South Creek</td>
<td>x</td>
<td>x</td>
<td>907</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>6,400</td>
<td>7,892</td>
<td>11,338</td>
<td>4,137</td>
<td>4,750</td>
<td>5,604</td>
<td>4,216</td>
<td>2,543</td>
</tr>
</tbody>
</table>

x: data not available

*: significant data missing
Appendix 13: Maps

Map 1: Campsites / Lean-tos (overview)
Map 2: Campsites / Lean-tos (western area)
Map 3: Campsites / Lean-tos (Follensby Clear Pond)
Map 4: Campsites / Lean-tos (Upper Saranac Lake)
Map 5: Campsites / Lean-tos (Lower Saranac Lake)
Map 6: Campsites / Lean-tos (Raquette River)
Map 7: Parking / Trails, Excluding Snowmobile Trails (overview)
Map 8: Parking / Trails, Excluding Snowmobile Trails (western area)
Map 9: Parking / Trails, Excluding Snowmobile Trails (Lake Clear)
Map 10: Parking / Trails, Excluding Snowmobile Trails (eastern area)
Map 11: Proposed Actions - Snowmobile Trails Overview
Map 12: Proposed Actions - Snowmobile Trails (western area)
Map 13: Proposed Actions - Snowmobile Trails (Lake Clear)
Map 14: Proposed Actions - Snowmobile Trails (eastern area)
Map 15: Forest Home Road Area Without Trails